PostgreSQL Programmer’s Guide

The PostgreSQL Development Team

Edited by
Thomas Lockhart

PostgreSQL Programmer’s Guide
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL
is Copyright © 1996-2000 by PostgreSQL Inc.

Table of Contents

Table Of CoNteNtS.o i
List Of Tableso iX
LSt Of FIgUIES ..o X
List of EXamples.o xi
QUMY ottt et e e e e e e i
Chapter 1. IntroduCtion. o 1
RESOUICES . . ottt 1
Terminology oot 2
NOtAtION 3
Problem Reporting Guidelines 3
Identifying BUQSot 3

What to reporto 4

Where to report UGS oo 6

Y2K Statement . . .o 6
Copyrightsand Trademarks e 7
Chapter 2. ArChiteCture 8
Postgres Architectural ConCepts. ot 8
Chapter 3. Extending SQL: AN OVEIVIEW oottt e 11
How Extensibility Works o 11

The Postgres Type SYStemt 11

About the Postgres System Catalogs, 12
Chapter 4. Extending SQL: FUNCLIONSo 15
Query Language (SQL) FUNCLIONSot 15
EXamples . . . 15

SQL Functions on Base TYPeS . .. oo vvi it 16

SQL Functions on Composite TYPeS. . ..o e it 16

Procedural Language FUNCtions i 19
Internal FUNCLIONS o 19
Compiled (C) Language FUNCtions. 19

C Language Functions on Base TYPesS.o vviei i 20

C Language Functions on Composite Types., 24

WIItING COUE. . ..o 25
FunctionOverloadingt 26

Name Space Conflicts. 26

Chapter 5. Extending SQL: TYPeS . ..ottt 27
User-Defined TypesSot 27
Functions Needed for a User-Defined Typettt 27

Large ObJeCtSot 28

Chapter 6. Extending SQL: Operatorsovu ittt 29
Operator Optimization Information, 30
COMMUTATOR . .o e 30

NEGATOR ..t e 31

RESTRICT . 31

JOIN L 32

HASHES . . o 32

SORTLand SORT 2. ...ttt 33

Chapter 7. Extending SQL: Aggregates. . ..o vt 35
Chapter 8. The Postgres Rule System e 37
What 1S @ QUENYLIEE 2. . . ottt 37

The Partsof a QUerytreet e 37

Views andthe Rule System i 39
Implementation of Views in Postgres 39

How SELECT RuleSWOrKo e 39

View Rules in Non-SELECT Statements 46

The Power of Views in POStgres 47
Implementation Side Effects. 48

Rules on INSERT, UPDATE and DELETE. it 48

Differencesto View Rules. 48

How These RulesWork. e 49

Cooperation With Views 53

Rules and Permissions 59

RUIES VEISUS THIgQerS .« - o v ottt e e e e e e e 60
Chapter 9. Interfacing Extensions To Indices, 64
Chapter 10. Index Cost Estimation Functions 70
Chapter 11, GIST INAICES. . ..ttt e 73
Chapter 12. Procedural Languages.ot e e 75
Installing Procedural Languages.o oot e 75
Chapter 13. Linking Dynamically-Loaded Functions 77
LU« e 78

DEC OSF L. . o 78
SunOS 4.x, Solaris2.xand HP-UX 78
Chapter 14, TrIggerS. « . o vttt e et e e e e e e e 80
Trigger Creationt 80
Interaction with the Trigger Manager. i 81
Visibility of Data Changeso 83
EXamMPIeS. . . 83
Chapter 15. Server Programming Interface i, 87
Interface FUNCLIONS 88

SPI CONNECT . ..o 88

NamE . . 88

Y7110 0] 88

DesCription 88

USB0B .« ot ot it et 88

Algorithm ... 88

SPLfiNiSh . oo 89

NamE . L 89

Y10 0] 89

DesCription 89

USB0B .« ot vt ettt 89

Algorithm ... 89

SRl BXEC . . ot 90

NamE . L 90

Y7110 0] 90

DesCription 91

L Vo 91

Algorithm ... 91

QP PrEParE. . oo 92

NamME . . 92

Y7110 0] 92

DesCription 92

USB0B .« ot vt it et 92

SPL_saveplan. 93

NaME . 93

SYNOPSIS. .« o vt e 93

DESCIiPtION . .o 93

O LT Vo 93

SRl BXEC . ottt 94

NamME . . 94

S0 0] 94

DesCription 94

USB0B .« ot vt ittt 95

Interface Support FUNCLiONS 95

SPL COpYtUPIE. . .o e 95

NamME . L 95

Y7110 0] 95

DesCription 95

il

USB0B . « ot vt ettt 95

SPL_modifytuple. 96
NaME . 96
SYNOPSIS. .« o v et 96
DESCrIPtION . .o 97
O LT T 97

SPL fnuUmMber. . 97
NamME . L 97
3310 0] 97
DesCription 97
USB0B .« ot ot ettt 97

SPl fname. .. 98
NaME . 98
SYNOPSIS. « o v et 98
DESCIiPtION . .o 98
O LT Vo 98
Algorithm ... 98

SPLgetvalue. o 99
NaME . 99
SYNOPSIS. .« o v et 99
DESCriPtiON . .o 99
O LT T 99
Algorithm ... e 99

SPLgethinval 100
NaME . 100
SYNOPSIS. .« o o et 100
DESCriPtiON . .o 100
O LT Vo 100
Algorithm ... 100

SPl gettype. . 101
NaME . 101
SYNOPSIS. .« o o et 101
DESCriPtiON . .o 101
USO8, - ot ittt 101
Algorithm .. 101

SPLgettypeido 102
NaME . 102
SYNOPSIS. .« o o et 102
DESCriPtiON . .o 102
O LT T 102
Algorithm ... 102

SPL_getrelname.o 103
NaME . . 103
SYNOPSIS. .« o o et 103
DESCriPtION . .o 103
O LT T 103
Algorithm .. 103

SPLpalloc. . ..o 104
NaME . 104
SYNOPSIS. .« o o et 104
DESCriPtiON . .o 104
O L Vo 104

SPL repalloC . ..o 105
Name . . 105
37110 0] 105
DesCription 105
USB0B .« ot vttt 105

QP pfree . 106
NaME . 106
SYNOPSIS. .« o o et 106

il

USB0B. - ottt et 106
Memory Management.ot 106
Visibility of Data Changes oo 107
EXaMPIES. . .o e 107

Chapter 16. Large Objectsottt e 110
Historical NOte o 110
Implementation Features. 110
Nt aCES. . o ot 110

Creatinga Large Object 111

Importinga Large Object i 111

Exportinga Large Object 111

Opening an Existing Large Object 111

Writing Datatoa Large Object. i 111

Reading Data fromalLargeObject 112

SeekingonalargeObject 112

Closing a Large Object DesCriptort 112
Built in registered functions 112
Accessing Large Objects from LIBPQ i 112
Sample Programo 113

Chapter 17. libpg - C Library. e 118
Database Connection FUNCtions i 118
Query Execution FUNCLIONS. oo 124
Asynchronous QUery ProCeSSINGo v e it 128
Fast Path . . . 130
Asynchronous Notification. 131
Functions Associated with the COPY Command. 132
libpg Tracing FUNCLIONS 134
libpg Control FUNCLIONS e 134
Environment Variables 135
Threading Behavior i e 135
Sample Programso 136

Sample Program L. 136

Sample Program 2.o 138

Sample Program 3. 140

Chapter 18. libpg - C++ Binding Library. 145
Control and Initialization i 145

Environment Variables 145
libpg++ Classes. . . oot e 146

Connection Class: PgConnection, 146

Database Class: PgDatabase, 146
Database Connection FUNCtions i 146
Query Execution FUNCLIONS. oot 147
Asynchronous Notification. 151
Functions Associated with the COPY Command. 151

Chapter 19. pgtcl - TCL Binding Library. 153
COMMANGS .« ot 153
EXamMpIes. . . 154
pgtcl Command Reference Information 155
PO_CONMNECT . . ettt et et et et e e e e e e e 155

NaME . . 155

SYNOPSIS. .« o v et 155

DESCriPtiON . .o 155

O LT Vo 156
PO _dISCONNECE . . .\ttt 156

Name . . 156

337110 0] 156

DesCription 156
pg_conndefaults 157

Name . . 157

v

Synopsis.
................................... 157

Description
D oM 157
g exeh 157
Name..............: 158
Somonsis, 158
o 158
g eSO e 158
Lo 159
Somonsis, 159
oy 159
g selogt (PO 160
Ol 161
Somonsis, 161
ey 161
Daga oM 161
g listen S 161
Name..............: 162
Somosis, 162
oo | 162
g o ape PO o 162
CIEAL - 163
Somosis, 163
oo | 163
D oM 163
oo open 163
DREM s 164
Somonsis, L 164
oy 164
D oM 164
g o Slengl 164
Name..............: 165
Somosis, 165
ooy | 165
D oM 165
g o taa 165
A0 165
Somonsis, 165
ey 165
Daga oM 166
g o 166
WILE 166
Somosis, 166
oy | 166
D oM 166
g lo o 166
SECK . 167
Somonsis, 167
ey 167
D oM 167
o 167
Name..............: 168
Somosis, 168
oy | 168
D oM 168
g o U, 168
IIIK. 168
Somonsis, | 168
ey 168
Daga oM 169
.. 169

PO 0 IMPOIt. . 169

Name . . 169

37110 0] 169

DesCription 169

USB0E . . ot vttt 169

PO_l0 EXPOIT . . 170

NaMIE . 170

SYNOPSIS. .« o v et 170

DESCriPtION . .o 170

O LT T 170

Chapter 20. libpgeasy - Simplified C Binding Library. 171
Chapter 21. ecpg - Embedded SQL IiNC 172
Why Embedded SQL? i 172

The CONCEPto 172

HOW TO USE 80P .« o vttt e e et e e ettt 172
PreprOCESSOr . . .o 172

Library. .. 173
Errorhandling 173

Limitationso 175
Porting From Other RDBMS Packages, 176
Installation 176
Forthe Developer o 176

TODO LISt ..o 176

The PreproCessor.ottt e e e e 177

AComplete Example i 181

The Library 181

Chapter 22. ODBC INterface oot e e e 183
Background. 183
Windows Applications 183
Writing Applications. 183

Unix Installation 184
Buildingthe Driver 184
Configuration Files. i 187
APPIXWVANE. .« 189
Configuration. 189

Common Problems 190

Debugging ApplixWare ODBC Connectionsovu... 190

Running the ApplixWare Demo 191

USefUl MaCKOS oo 192

Supported Platforms 192

Chapter 23. JDBC Interfaceo o e 193
Building the JDBC Interface. 193
Compiling the Driver. e 193

Installing the Driver. 193

Preparing the Database for JDBC. it 194

UsSiNg the DIiVero 194
IMPOrting JDBC e 194
Loading the Driver 194
Connectingtothe Databaseiiiiii e, 195
Issuing a Query and Processingthe Result. 196

Using the Statement Interface i, 196

Using the ResultSet Interface 196

Performing Updatest e 197
Closing the Connection. o 197

Using Large Objectsot e 197
Postgres Extensionsto the IDBC APl i 198
Further Readingo e e 236
Chapter 24. Lisp Programming Interface. i, 237
Chapter 25. Postgres Source Codeot e e 238
Formatting.o 238

vi

Chapter 26. Overview of PostgreSQL Internals. 239

The Pathof aQUErYo 239

How Connections are Established. i 240

The Parser Stageo 240

ParSEr . . 240
Transformation Process. 242

The Postgres Rule System i 242

The Rewrite System 242
Planner/Optimizer. o e 244
Generating Possible Plans. 244

Data Structure of the Plan o 244

EXBCULON . . .o 245
Chapter 27. Pg_OPtioNS. . ..ot 246
Chapter 28. Genetic Query Optimization in Database Systems. 249
Query Handling as a Complex Optimization Problem 249
Genetic Algorithms (GA)o 249
Genetic Query Optimization (GEQO) inPostgres, 250

Future Implementation Tasks for Postgres GEQO 251

Basic Improvementso 251

References.o 251

Chapter 29. Frontend/Backend Protocol i, 253
OVBIVIBW. . . o e 253
PrOtOCOL. . o .t 253
StAITUD . .o 254

QUETY . e 255

Function Call. 256

Notification ReSpONSeSot 257

Cancelling Requests in Progresso 257

Terminationo 258

Message Data TYPeS v et e e 258
Message FOIMaLSt e 259
Chapter 30. Postgres Signals 267
Chapter 31. gcc Default Optimizations i 269
Chapter 32. Backend Interface. 270
BKIFile Format 270
General Commands.ttt 270

MaCro CoOmMMANGS.ttt et e 271
Debugging Commandst 271
EXamMple .. 272
Chapter 33. Page Files 273
Page StTUCTUNE. . . .o 273

FileS . 274

BUGS .« ot 274
Appendix DG1. The CVS Repository e 275
CVS Tree Organization.t e e 275
Getting The Source Via Anonymous CVS 276
Getting The Source Via CVSUP . ..o oo e 277
Preparing A CVSup Client System 278

Runninga CVSup Client. e 278

Installing CVSUPo 280

Installation from Sources. i 281

Appendix DG2. DOCUMENEAtION.t 283
Documentation Roadmapo oot 283

The Documentation Project 284
DocumMeNtation SOUICES vttt et et 284
Document Structure. 284

Stylesand ConNVeNtioNnS vt 285

SGML Authoring ToOIS.o 285

Building Documentation. i 287
ANPGRS . . oottt 287

vii

Hardcopy Generation forv7z.0 i 288

Text Hardcopy.o oo 288
Postscript Hardcopy.o 289
TO0ISBES. . ot 290
Linux RPM Installation. i, 291
FreeBSD Installation. i, 291
Debian Installation 292
Manual Installationof Tools 292
Alternate TOOISES. . ..ottt 297
Bibliography. 298
SQL Reference BOOKS. . ..o\ v i 298
PostgreSQL-Specific Documentation. i 298
Proceedings and Articles. e 299

viil

List of Tables

3-1. Postgres SYStemM CatalOgscvevereriereiireie e 12
4-1. Equivalent C Types for Built-In POSIGres TYPeS.......coceiirirerieiiiiene e 20
0-1. INAEX SCREMA ...ttt sttt ne e e 64
0-2. B-1rEE SIFALEGIES ... eveveeeiei ettt bbb e 65
S oo T od B O] 141 = o SRS 153
30-1. POSEGrES SIGNAISeeeiieeitieieee ettt et sbe st e nen 267
33-1. SAMPIE PAGE LAYOUL.......eviiiiiiieiiiteieeiesie ettt 273
DG2-1. Postgres Documentation ProdUCESccevveveieniiesiciesiece e 283

X

List of Figures

2-1. How a connection is established

3-1. The major Postgres SyStem Catalogs.coveieeiiiierie e 13

List of Examples

26-1. A SIMPIE SEIECL.......i i

xi

Summary

Postgres, developed originally in the UC Berkeley Computer Science Department,
pioneered many of the object-relational concepts now becoming available in some
commercial databases. It provides SQL92/SQL3 language support, transaction integrity,
and type extensibility. PostgreSQL is an open-source descendant of this original Berkeley

code.

Chapter 1. Introduction

This document is the programmer’s manual for the PostgreSQL (http://postgresql.org/)
database management system, originally developed at the University of California at
Berkeley. PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led
by Professor Michael Stonebraker, has been sponsored by the Defense Advanced Research
Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

The first part of this manual explains the Postgres approach to extensibility and describe
how users can extend Postgres by adding user-defined types, operators, aggregates, and
both query language and programming language functions. After a discussion of the
Postgres rule system, we discuss the trigger and SPI interfaces. The manual concludes with
a detailed description of the programming interfaces and support libraries for various
languages.

We assume proficiency with Unix and C programming.

Resources

This manual set is organized into several parts:

Tutorial

An introduction for new users. Does not cover advanced features.

User’s Guide

General information for users, including available commands and data types.

Programmer’s Guide
Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

Installation and management information. List of supported machines.

Developer’s Guide

Information for Postgres developers. This is intended for those who are contributing
to the Postgres project; application development information should appear in the
Programmer’s Guide. Currently included in the Programmer’s Guide.

Reference Manual

Detailed reference information on command syntax. Currently included in the User’s
Guide.

In addition to this manual set, there are other resources to help you with Postgres
installation and use:

man pages

The man pages have general information on command syntax.

Chapter 1. Introduction

FAQs

The Frequently Asked Questions (FAQ) documents address both general issues and
some platform-specific issues.

READMEs

README files are available for some contributed packages.

Web Site

The Postgres (postgresql.org) web site might have some information not appearing in
the distribution. There is a mhonarc catalog of mailing list traffic which is a rich
resource for many topics.

Mailing Lists

The pgsql-general (mailto:pgsqgl-general@postgresqgl.org) (archive
(http:/lwww.PostgreSQL.ORG/mhonarc/pgsql-general/)) mailing list is a good place
to have user questions answered. Other mailing lists are available; consult the Info
Central section of the PostgreSQL web site for details.

Yourself!

Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up
and contribute it. If you add features to the code, contribute it.

Even those without a lot of experience can provide corrections and minor changes in
the documentation, and that is a good way to start. The pgsql-docs
(mailto:pgsql-docs@postgresql.org) (archive
(http://lwww.PostgreSQL.ORG/mhonarc/pgsql-docs/)) mailing list is the place to get

going.

Terminology

In the following documentation, site may be interpreted as the host machine on which
Postgres is installed. Since it is possible to install more than one set of Postgres databases
on a single host, this term more precisely denotes any particular set of installed Postgres
binaries and databases.

The Postgres superuser is the user named post gr es who owns the Postgres binaries and
database files. As the database superuser, all protection mechanisms may be bypassed and
any data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some
support programs which are generally not available to all users. Note that the Postgres
superuser is not the same as the Unix superuser (which will be referred to as root). The
superuser should have a non-zero user identifier (UID) for security reasons.

The database administrator or DBA, is the person who is responsible for installing
Postgres with mechanisms to enforce a security policy for a site. The DBA can add new
users by the method described below and maintain a set of template databases for use by
createdb.

The postmaster is the process that acts as a clearing-house for requests to the Postgres
system. Frontend applications connect to the postmaster, which keeps tracks of any system

Chapter 1. Introduction

errors and communication between the backend processes. The postmaster can take several
command-line arguments to tune its behavior. However, supplying arguments is necessary
only if you intend to run multiple sites or a non-default site.

The Postgres backend (the actual executable program postgres) may be executed directly
from the user shell by the Postgres super-user (with the database name as an argument).
However, doing this bypasses the shared buffer pool and lock table associated with a
postmaster/site, therefore this is not recommended in a multiuser site.

Notation

. or/ usr/ | ocal / pgsql / atthe front of a file name is used to represent the path to the
Postgres superuser’s home directory.

In a command synopsis, brackets ([and]) indicate an optional phrase or keyword.
Anything in braces ({ and }) and containing vertical bars (|) indicates that you must choose
one.

In examples, parentheses ((and)) are used to group boolean expressions. | is the boolean
operator OR.

Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with > . Commands executed from the
Postgres superuser account will be preceeded with % , while commands executed from an
unprivileged user’s account will be preceeded with $. SQL commands will be preceeded
with => or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v7.0) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to
the Documentation Mailing List (mailto:docs@postgresql.org).

Problem Reporting Guidelines

When you encounter a problem in PostgreSQL we want to hear about it. Your bug reports
are an important part in making PostgreSQL more reliable because even the utmost care
cannot guarantee that every part of PostgreSQL will work on every platform under every
circumstance.

The following suggestions are intended to assist you in forming bug reports that can be
handled in an effective fashion. No one is required to follow them but it tends to be to
everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a
lot of users, chances are good that someone will look into it. It could also happen that we
tell you to update to a newer version to see if the bug happens there. Or we might decide
that the bug cannot be fixed before some major rewrite we might be planning is done. Or
perhaps it’s simply too hard and there are more important things on the agenda. If you need
help immediately, consider obtaining a commercial support contract.

Identifying Bugs

Before you ask " Is this a bug? ", please read and re-read the documentation to verify that
you can really do whatever it is you are trying. If it is not clear from the documentation
whether you can do something or not, please report that too; it’s a bug in the
documentation. If it turns out that the program does something different from what the

Chapter 1. Introduction

documentation says, that’s a bug. That might include, but is not limited to, the following
circumstances:

A program terminates with a fatal signal or an operating system error message that
would point to a problem in the program (a counterexample might be a disk full
message, since that must be fixed outside of Postgres).

A program produces the wrong output for any given input.
A program refuses to accept valid input.
A program accepts invalid input without a notice or error message.

PostgreSQL fails to compile, build, or install according to the instructions on supported
platforms.

Here program refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask
on one of the mailing lists for help in tuning your applications. Failing to comply to SQL is
not a bug unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already
known. If you can’t decode the information on the TODO list, report your problem. The
least we can do is make the TODO list clearer.

What to report

The most important thing to remember about bug reporting is to state all the facts and only
facts. Do not speculate what you think went wrong, what it seemed to do , or which part of
the program has a fault. If you are not familiar with the implementation you would
probably guess wrong and not help us a bit. And even if you are, educated explanations are
a great supplement to but no substitute for facts. If we are going to fix the bug we still have
to see it happen for ourselves first. Reporting the bare facts is relatively straightforward
(you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it doesn’t matter or the report would ring a bell
anyway.

The following items should be contained in every bug report:

The exact sequence of steps from program startup necessary to reproduce the problem.
This should be self-contained,; it is not enough to send in a bare select statement without
the preceeding create table and insert statements, if the output should depend on the data
in the tables. We do not have the time to decode your database schema, and if we are
supposed to make up our own data we would probably miss the problem. The best
format for a test case for query-language related problems is a file that can be run
through the psql frontend that shows the problem. (Be sure to not have anything in your
~/ . psql r c startup file.) You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproduceable, we’ll find it either way.

If your application uses some other client interface, such as PHP, then please try to
isolate the offending queries. We probably won’t set up a web server to reproduce your
problem. In any case remember to provide the exact input files, do not guess that the
problem happens for large files or mid-size databases , etc.

The output you got. Please do not say that it didn’twork or failed . If there is an error
message, show it, even if you don’t understand it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of

Chapter 1. Introduction

your test case is a program crash or otherwise obvious it might not happen on our
platform. The easiest thing is to copy the output from the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not
contain all the information available. In that case, also look at the output of the
database server. If you do not keep your server output, this would be a good time to
start doing so.

The output you expected is very important to state. If you just write This command
gives me that output. or This is not what | expected. , we might run it ourselves, scan the
output, and think it looks okay and is exactly what we expected. We shouldn’t have to
spend the time to decode the exact semantics behind your commands. Especially refrain
from merely saying that This is not what SQL says/Oracle does. Digging out the correct
behavior from SQL is not a fun undertaking, nor do we all know how all the other
relational databases out there behave. (If your problem is a program crash you can
obviously omit this item.)

Any command line options and other startup options, including concerned environment
variables or configuration files that you changed from the default. Again, be exact. If
you are using a pre-packaged distribution that starts the database server at boot time, you
should try to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the command SELECT ver si on() ; to find out
what version you are currently running. If this function does not exist, say so, then we
know that your version is old enough. If you can’t start up the server or a client, look
into the README file in the source directory or at the name of your distribution file or
package name. If your version is older than 7.0 we will almost certainly tell you to
upgrade. There are tons of bug fixes in each new version, that’s why we write them.

If you run a pre-packaged version, such as RPMs, say so, including any subversion the
package may have. If you are talking about a CVS snapshot, mention that, including its
date and time.

Platform information. This includes the kernel name and version, C library, processor,
memory information. In most cases it is sufficient to report the vendor and version, but
do not assume everyone knows what exactly Debian contains or that everyone runs on
Pentiums. If you have installation problems information about compilers, make, etc. is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It’s better
to report everything the first time than us having to squeeze the facts out of you. On the
other hand, if your input files are huge, it is fair to ask first whether somebody is interested
in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go
away. This will probably not help solving it. If it turns out that the bug can’t be fixed right
away, you will still have time to find and share your work around. Also, once again, do not
waste your time guessing why the bug exists. We’ll find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software
package as such is called PostgreSQL , sometimes Postgres for short. (Sometimes the
abbreviation Pgsql is used but don’t do that.) When you are specifically talking about the
backend server, mention that, don’t just say Postgres crashes . The interactive frontend is
called psql and is for all intends and purposes completely separate from the backend.

Chapter 1. Introduction

Where to report bugs

In general, send bug reports to pgsql-bugs@postgresql.org
(mailto:pgsql-bugs@postgresgl.org). You are invited to find a descriptive subject for your
email message, perhaps parts of the error message.

Do not send bug reports to any of the user mailing lists, such as pgsql-sql@postgresgl.org
(mailto:pgsql-sql@postgresql.org) or pgsql-general@postgresgl.org
(mailto:pgsql-general@postgresql.org). These mailing lists are for answering user
questions and their subscribers normally do not wish to receive bug reports. More
importantly, they are unlikely to fix them.

Also, please do not send reports to pgsql-hackers@postgresql.org
(mailto:pgsql-hackers@postgresgl.org). This list is for discussing the development of
PostgreSQL and it would be nice if we could keep the bug reports separate. We might
choose to take up a discussion about your bug report on it, if the bug needs more review.

If you have a problem with the documentation, send email to pgsql-docs@postgresgl.org
(mailto:pgsgl-docs@postgresgl.org). Mention the document, chapter, and sections in your
problem report.

If your bug is a portability problem on a non-supported platform, send mail to
pgsql-ports@postgresql.org (mailto:pgsql-ports@postgresql.org), so we (and you) can
work on porting PostgreSQL to your platform.

Note: Due to the unfortunate amount of spam going around, all of the above email
addresses are closed mailing lists. That is, you need to be subscribed to them in order
to be allowed to post. If you simply want to send mail but do not want to receive list
traffic, you can subscribe to the special pgsql-loophole list , which allows you to post to
all PostgreSQL mailing lists without receiving any messages. Send email to
pgsql-loophole-request@postgresqgl.org

(mailto:pgsql-loophole-request@postgresql.org) to subscribe.

Y2K Statement

Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on
1998-10-22. Updated 2000-03-31.

The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it’s behavior or performance.
However, at the time of writing:

The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We
might have expected to hear about problems if they existed, given the installed base and
the active participation of users on the support mailing lists.

To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://www.postgresql.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. 70-01-01 is
interpreted as 1970-01-01 , whereas 69-01-01 is interpreted as 2069-01-01 .

Chapter 1. Introduction

Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl
Institute (http://language.perl.com/news/y2k.html) for further discussion of Y2K issues,
particularly as it relates to open source, no fee software.

Copyrights and Trademarks

PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. and is distributed under the
terms of the Berkeley license.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.
Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the
above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use
of this software and its documentation, even if the University of California has been
advised of the possibility of such damage.

The University of California specifically disclaims any warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
The software provided hereunder is on an "as-is" basis, and the University of California has
no obligations to provide maintainance, support, updates, enhancements, or modifications.

All trademarks are the property of their respective owners.

Chapter 2. Architecture

Postgres Architectural Concepts

Before we continue, you should understand the basic Postgres system architecture.
Understanding how the parts of Postgres interact will make the next chapter somewhat
clearer. In database jargon, Postgres uses a simple "process per-user" client/server model.
A Postgres session consists of the following cooperating Unix processes (programs):

A supervisory daemon process (postmaster),
the user’s frontend application (e.g., the psql program), and
the one or more backend database servers (the postgres process itself).

A single postmaster manages a given collection of databases on a single host. Such a
collection of databases is called an installation or site. Frontend applications that wish to
access a given database within an installation make calls to the library. The library sends
user requests over the network to the postmaster (How a connection is established(a)),
which in turn starts a new backend server process (How a connection is established(b))

Chapter 2. Architecture

Figure2-1. How a connection is established

POSTMASTER

client host

(a) frontend sends request to postmaster
via well-known network socket

POSTMASTER
SERVER

client host

(b) postmaster creates backend server

A?;%r LIBPQ

client host

POSTMASTER
SERVER

server host

(c) frontend connected to backend server

And multiple connections
can be established...

POSTMASTER
SERVER

client host

POSTMASTER
SERVER

and connects the frontend process to the new server (How a connection is established(c)).
From that point on, the frontend process and the backend server communicate without
intervention by the postmaster. Hence, the postmaster is always running, waiting for
requests, whereas frontend and backend processes come and go. The | i bpq library allows
a single frontend to make multiple connections to backend processes. However, the
frontend application is still a single-threaded process. Multithreaded frontend/backend
connections are not currently supported in | i bpg. One implication of this architecture is
that the postmaster and the backend always run on the same machine (the database server),
while the frontend application may run anywhere. You should keep this in mind, because
the files that can be accessed on a client machine may not be accessible (or may only be
accessed using a different filename) on the database server machine. You should also be
aware that the postmaster and postgres servers run with the user-id of the Postgres

(d) frontend connected
to multiple backend servers

N

Chapter 2. Architecture

"superuser." Note that the Postgres superuser does not have to be a special user (e.g., a user
named "postgres"), although many systems are installed that way. Furthermore, the
Postgres superuser should definitely not be the Unix superuser, "root"! In any case, all files
relating to a database should belong to this Postgres superuser.

10

Chapter 3. Extending SQL: An Overview

In the sections that follow, we will discuss how you can extend the Postgres SQL query
language by adding:

functions

types

operators

aggregates

How Extensibility Works

Postgres is extensible because its operation is catalog-driven. If you are familiar with
standard relational systems, you know that they store information about databases, tables,
columns, etc., in what are commonly known as system catalogs. (Some systems call this
the data dictionary). The catalogs appear to the user as classes, like any other, but the
DBMS stores its internal bookkeeping in them. One key difference between Postgres and
standard relational systems is that Postgres stores much more information in its catalogs --
not only information about tables and columns, but also information about its types,
functions, access methods, and so on. These classes can be modified by the user, and since
Postgres bases its internal operation on these classes, this means that Postgres can be
extended by users. By comparison, conventional database systems can only be extended by
changing hardcoded procedures within the DBMS or by loading modules specially-written
by the DBMS vendor.

Postgres is also unlike most other data managers in that the server can incorporate
user-written code into itself through dynamic loading. That is, the user can specify an
object code file (e.g., a compiled .o file or shared library) that implements a new type or
function and Postgres will load it as required. Code written in SQL are even more trivial to
add to the server. This ability to modify its operation "on the fly" makes Postgres uniquely
suited for rapid prototyping of new applications and storage structures.

The Postgres Type System

The Postgres type system can be broken down in several ways. Types are divided into base
types and composite types. Base types are those, like int4, that are implemented in a
language such as C. They generally correspond to what are often known as "abstract data
types"; Postgres can only operate on such types through methods provided by the user and
only understands the behavior of such types to the extent that the user describes them.
Composite types are created whenever the user creates a class. EMP is an example of a
composite type.

Postgres stores these types in only one way (within the file that stores all instances of the
class) but the user can "look inside" at the attributes of these types from the query language
and optimize their retrieval by (for example) defining indices on the attributes. Postgres
base types are further divided into built-in types and user-defined types. Built-in types (like
int4) are those that are compiled into the system. User-defined types are those created by
the user in the manner to be described below.

11

Chapter 3. Extending SQL: An Overview

About the Postgres System Catalogs

Having introduced the basic extensibility concepts, we can now take a look at how the
catalogs are actually laid out. You can skip this section for now, but some later sections
will be incomprehensible without the information given here, so mark this page for later
reference. All system catalogs have names that begin with pg_. The following classes
contain information that may be useful to the end user. (There are many other system
catalogs, but there should rarely be a reason to query them directly.)

Table 3-1. Postgres System Catalogs

Catalog Name Description

pg_database databases

pg_class classes

pg_attribute class attributes

pg_index secondary indices

pg_proc procedures (both C and SQL)
pg_type types (both base and complex)
Ppg_operator operators

pg_aggregate aggregates and aggregate functions
pg_am access methods

pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

12

Chapter 3. Extending SQL: An Overview

Figure 3-1. Themajor Postgres system catalogs

0N 0N
indrelid amopid
indkey [8] amopclaid
indproc pg_language | amopopr
indpred _ amopstrategy
ON [] 0N
(ndexrelid J :
13N] 01
pg_type 1
1
[Ttyprelid 01 ! | |oe_proc | _
N\
typinput N oid H—
R
typoutput ! proname 1
typreceive] [prorettype
i ON
typsend proargtypes 8
0N 0N 1|
prolang
0N
class 1 N y
relam amid
O:N 0N)
am 1 operator ! amopclaid
1 |oid oid T
)
amgettuple oprname a
) 0:N
aminsert oprleft
amdelete oprright
amgetattr oprresult
. ambeginscan oprcom T
KEY:

DEPENDENT

foreign ke

REFERS-TO

INDEPENDENT

primary key

non-oid primary

key (if any

hnon-key 4

amrescan

amendscan
ammarkpos
amrestrpos

ambuild
amcreate
amdestroy

amcostestimate

0N

optional

mandatory

O indicates these key values are alternate primary keys

(i.e., this class is generally identified by oid but may be

identified by the non-oid primary key in other contexts).

oprnegate

oprlsortop

oprrsortop

opreode

oprrest

hoprjoin)

0:N

The Reference Manual gives a more detailed explanation of these catalogs and their
attributes. However, The major Postgres system catal ogs shows the major entities and their

relationships in the system catalogs. (Attributes that do not refer to other entities are not
shown unless they are part of a primary key.) This diagram is more or less
incomprehensible until you actually start looking at the contents of the catalogs and see

1

how they relate to each other. For now, the main things to take away from this diagram are

as follows:

In several of the sections that follow, we will present various join queries on the system
catalogs that display information we need to extend the system. Looking at this diagram

13

Chapter 3. Extending SQL: An Overview

should make some of these join queries (which are often three- or four-way joins) more
understandable, because you will be able to see that the attributes used in the queries
form foreign keys in other classes.

Many different features (classes, attributes, functions, types, access methods, etc.) are
tightly integrated in this schema. A simple create command may modify many of these
catalogs.

Types and procedures are central to the schema.

Note: We use the words procedure and function more or less interchangably.

Nearly every catalog contains some reference to instances in one or both of these
classes. For example, Postgres frequently uses type signatures (e.g., of functions and
operators) to identify unique instances of other catalogs.

There are many attributes and relationships that have obvious meanings, but there are
many (particularly those that have to do with access methods) that do not. The
relationships between pg_am, pg_amop, pg_amproc, pg_operator and pg_opclass are
particularly hard to understand and will be described in depth (in the section on
interfacing types and operators to indices) after we have discussed basic extensions.

14

Chapter 4. Extending SQL: Functions

As it turns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a
new type, the reverse is not true. We therefore describe how to add new functions to
Postgres before describing how to add new types.

Postgres SQL provides three types of functions:
query language functions (functions written in SQL)
procedural language functions (functions written in, for example, PLTCL or PLSQL)

programming language functions (functions written in a compiled programming
language such as C)

Every kind of function can take a base type, a composite type or some combination as
arguments (parameters). In addition, every kind of function can return a base type or a
composite type. It’s easiest to define SQL functions, so we’ll start with those. Examples in
this section can also be found in f uncs. sql and f uncs. c.

Query Language (SQL) Functions

SQL functions execute an arbitrary list of SQL queries, returning the results of the last
query in the list. SQL functions in general return sets. If their returntype is not specified as
a set of , then an arbitrary element of the last query’s result will be returned.

The body of a SQL function following AS should be a list of queries separated by
whitespace characters and bracketed within quotation marks. Note that quotation marks
used in the queries must be escaped, by preceding them with two backslashes.

Arguments to the SQL function may be referenced in the queries using a $n syntax: $1
refers to the first argument, $2 to the second, and so on. If an argument is complex, then a
dot notation (e.g. "$1.emp") may be used to access attributes of the argument or to invoke
functions.

Examples

To illustrate a simple SQL function, consider the following, which might be used to debit
a bank account:

create function TP1 (int4, float8) returns int4
as 'update BANK set bal ance = BANK. bal ance - $2
wher e BANK. acctountno = $1
select(x = 1)’
| anguage 'sql’;

A user could execute this function to debit account 17 by $100.00 as follows:

select (x = TP1(17,100.0));

15

Chapter 4. Extending SQL: Functions

The following more interesting example takes a single argument of type EMP, and
retrieves multiple results:

sel ect function hobbies (EMP) returns set of HOBBIES
as 'select (HOBBIES. all) from HOBBI ES

where $1.name = HOBBI ES. person’
| anguage ’'sql’

SQL Functions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type, such
asint4:

CREATE FUNCTI ON one() RETURNS int4
AS * SELECT 1 as RESULT LANGUAGE ’'sql’;

SELECT one() AS answer;

[e +
| answer |
[, +
|1 I
LI +

Notice that we defined a target list for the function (with the name RESULT), but the

target list of the query that invoked the function overrode the function’s target list. Hence,
the result is labelled answer instead of one.

It’s almost as easy to define SQL functions that take base types as arguments. In the
example below, notice how we refer to the arguments within the function as $1 and $2:

CREATE FUNCTI ON add_emn(int4, int4) RETURNS int4
AS ' SELECT $1 + $2;° LANGUAGE 'sql’;

SELECT add_en{(1, 2) AS answer;

Fom - +
| answer |
Fom - +
|3 I
Fom - +

SQL Functions on Composite Types

When specifying functions with arguments of composite types (such as EMP), we must
not only specify which argument we want (as we did above with $1 and $2) but also the

16

Chapter 4. Extending SQL: Functions

attributes of that argument. For example, take the function double_salary that computes
what your salary would be if it were doubled:

CREATE FUNCTI ON doubl e_sal ary(EMP) RETURNS i nt 4
AS ’ SELECT $1.salary * 2 AS salary;’ LANGUAGE 'sql’;

SELECT nane, doubl e_sal ary(EMP) AS dream
FROM EMP
VWHERE EMP. cubicle ~= ' (2,1)’::point;

| nane | dream |

Notice the use of the syntax $1.salary. Before launching into the subject of functions that
return composite types, we must first introduce the function notation for projecting
attributes. The simple way to explain this is that we can usually use the notation
attribute(class) and class.attribute interchangably:

-- this is the sanme as:
-- SELECT EMP. name AS youngster FROM EMP WHERE EMP. age < 30

SELECT nane(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;

[SR +
| youngster |
[SR +
| Sam |
[Ry, +

As we shall see, however, this is not always the case. This function notation is important
when we want to use a function that returns a single instance. We do this by assembling the
entire instance within the function, attribute by attribute. This is an example of a function
that returns a single EMP instance:

CREATE FUNCTI ON new_enp() RETURNS EMP
AS ’ SELECT \’ None\’::text AS nane,
1000 AS sal ary,
25 AS age,
\"(2,2)\"::point AS cubicle’
LANGUAGE ' sql ' ;

17

Chapter 4. Extending SQL: Functions

In this case we have specified each of the attributes with a constant value, but any
computation or expression could have been substituted for these constants. Defining a
function like this can be tricky. Some of the more important caveats are as follows:

The target list order must be exactly the same as that in which the attributes appear in
the CREATE TABLE statement (or when you execute a .* query).

You must typecast the expressions (using ::) very carefully or you will see the following
error:

WARN: : function declared to return type EMP does not retrieve (EMP.*)

When calling a function that returns an instance, we cannot retrieve the entire instance.
We must either project an attribute out of the instance or pass the entire instance into
another function.

SELECT nane(new_enp()) AS nobody;

B +
| nobody |
E S +
| None |
- +

The reason why, in general, we must use the function syntax for projecting attributes of
function return values is that the parser just doesn’t understand the other (dot) syntax for
projection when combined with function calls.

SELECT new_enp().nanme AS nobody;
WARN: par ser: syntax error at or near "."

Any collection of commands in the SQL query language can be packaged together and
defined as a function. The commands can include updates (i.e., INSERT, UPDATE, and
DELETE) as well as SELECT queries. However, the final command must be a SELECT
that returns whatever is specified as the function’s returntype.

CREATE FUNCTION clean_EMP () RETURNS int4
AS ' DELETE FROM EMP WHERE EMP. sal ary <= O0;
SELECT 1 AS ignore_this’

LANGUACE 'sql ' ;

SELECT cl ean_EMP() ;

+- -+
I x|
+--
1]
+-o -+

18

Chapter 4. Extending SQL: Functions

Procedural Language Functions

Procedural languages aren’t built into Postgres. They are offered by loadable modules.
Please refer to the documentation for the PL in question for details about the syntax and
how the AS clause is interpreted by the PL handler.

There are two procedural languages available with the standard Postgres distribution
(PLTCL and PLSQL), and other languages can be defined. Refer to Procedural Languages
for more information.

Internal Functions

Internal functions are functions written in C which have been statically linked into the
Postgres backend process. The AS clause gives the C-language name of the function,
which need not be the same as the name being declared for SQL use. (For reasons of
backwards compatibility, an empty AS string is accepted as meaning that the C-language
function name is the same as the SQL name.) Normally, all internal functions present in the
backend are declared as SQL functions during database initialization, but a user could use
CREATE FUNCTION to create additional alias names for an internal function.

Compiled (C) Language Functions

Functions written in C can be compiled into dynamically loadable objects, and used to
implement user-defined SQL functions. The first time the user defined function is called
inside the backend, the dynamic loader loads the function’s object code into memory, and
links the function with the running Postgres executable. The SQL syntax for CREATE
FUNCTION links the SQL function to the C source function in one of two ways. If the
SQL function has the same name as the C source function the first form of the statement is
used. The string argument in the AS clause is the full pathname of the file that contains the
dynamically loadable compiled object. If the name of the C function is different from the
desired name of the SQL function, then the second form is used. In this form the AS clause
takes two string arguments, the first is the full pathname of the dynamically loadable object
file, and the second is the link symbol that the dynamic loader should search for. This link
symbol is just the function name in the C source code.

Note: After it is used for the first time, a dynamically loaded, user function is retained
in memory, and future calls to the function only incur the small overhead of a symbol
table lookup.

The string which specifies the object file (the string in the AS clause) should be the full
path of the object code file for the function, bracketed by quotation marks. If a link symbol
is used in the AS clause, the link symbol should also be bracketed by single quotation
marks, and should be exactly the same as the name of the function in the C source code. On
Unix systems the command nm will print all of the link symbols in a dynamically loadable
object. (Postgres will not compile a function automatically; it must be compiled before it is
used in a CREATE FUNCTION command. See below for additional information.)

19

Chapter 4. Extending SQL: Functions

C Language Functions on Base Types

The following table gives the C type required for parameters in the C functions that will be
loaded into Postgres. The "Defined In" column gives the actual header file (in the

... Isrc/ backend/ directory) that the equivalent C type is defined. However, if you
include uti I s/ builtins. h, these files will automatically be included.

Table 4-1. Equivalent C Typesfor Built-In Postgres Types

Built-In Type C Type Defined In
abstime AbsoluteTime utils/nabstime.h
bool bool include/c.h
box (BOX *) utils/geo-decls.h
bytea (bytea *) include/postgres.h
char char N/A
cid CID include/postgres.h
datetime (DateTime *) include/c.h or

include/postgres.h
int2 int2 include/postgres.h
int2vector (int2vector *) include/postgres.h
int4 int4 include/postgres.h
float4 float32 or (float4 *) include/c.h or

include/postgres.h
float8 float64 or (float8 *) include/c.h or

include/postgres.h

Iseg (LSEG *) include/geo-decls.h
name (Name) include/postgres.h
oid oid include/postgres.h
oidvector (oidvector *) include/postgres.h
path (PATH *) utils/geo-decls.h
point (POINT *) utils/geo-decls.h
regproc regproc or REGPROC include/postgres.h
reltime RelativeTime utils/nabstime.h
text (text *) include/postgres.h
tid ItemPointer storage/itemptr.h
timespan (TimeSpan *) include/c.h or

include/postgres.h
tinterval Timelnterval utils/nabstime.h

20

Chapter 4. Extending SQL: Functions

Built-In Type C Type Defined In
uint2 uint16 include/c.h

uint4 uint32 include/c.h

xid (XID *) include/postgres.h

Internally, Postgres regards a base type as a "blob of memory." The user-defined functions
that you define over a type in turn define the way that Postgres can operate on it. That is,
Postgres will only store and retrieve the data from disk and use your user-defined functions
to input, process, and output the data. Base types can have one of three internal formats:

pass by value, fixed-length
pass by reference, fixed-length

pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports
by-value types of other sizes). Postgres itself only passes integer types by value. You
should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, the | ong type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereas i nt type is 4 bytes on most Unix machines
(though not on most personal computers). A reasonable implementation of the i nt 4 type
on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference. For
example, here is a sample implementation of a Postgres type:

/* 16-byte structure, passed by reference */
t ypedef struct

{
double x, vy;

} Point;

Only pointers to such types can be used when passing them in and out of Postgres
functions. Finally, all variable-length types must also be passed by reference. All
variable-length types must begin with a length field of exactly 4 bytes, and all data to be
stored within that type must be located in the memory immediately following that length
field. The length field is the total length of the structure (i.e., it includes the size of the

21

Chapter 4. Extending SQL: Functions

length field itself). We can define the text type as follows:

t ypedef struct {

int4 |ength;
char data[1];
} text;

Obviously, the data field is not long enough to hold all possible strings; it’s impossible to
declare such a structure in C. When manipulating variable-length types, we must be careful
to allocate the correct amount of memory and initialize the length field. For example, if we
wanted to store 40 bytes in a text structure, we might use a code fragment like this:

#i ncl ude "postgres. h"
char buffer[40]; /* our source data */

text *destination = (text *) pall oc(VARHDRSZ + 40);
destinati on->l ength = VARHDRSZ + 40;
nmemove(desti nati on->data, buffer, 40);

Now that we’ve gone over all of the possible structures for base types, we can show some
examples of real functions. Suppose f uncs. ¢ look like:

#i ncl ude <string. h>
#i ncl ude "postgres.h"

/* By Value */

i nt
add_one(int arg)

{

return(arg + 1);

}

/* By Reference, Fixed Length */

Poi nt *
makepoi nt (Poi nt *poi ntx, Point *pointy)
{
Poi nt *new_point = (Point *) palloc(sizeof(Point));

new_poi nt->x = poi nt x- >x;
new_poi nt->y = pointy->y;

return new_point;

}

/* By Reference, Variable Length */

text *
copytext(text *t)

22

struct.

*/

VARHDRSZ;

Chapter 4. Extending SQL: Functions

{
/*
* VARSI ZE is the total size of the struct in bytes.
*/
text *new t = (text *) palloc(VARSI ZE(t));
menset (new_t, 0, VARSIZE(t));
VARSI ZE(new_t) = VARSI ZE(t);
/*
* VARDATA is a pointer to the data region of the
*/
mencpy((void *) VARDATA(new_ t), /* destination */
(void *) VARDATA(t), /* source */
VARSI ZE(t) - VARHDRSZ) ; /* how many bytes
return(new_t);
}
text *
concat _text(text *argl, text *arg2)
{

int32 new text_size = VARSI ZE(argl) + VARSI ZE(arg2) -
text *new text = (text *) palloc(new_ text_size);
menset ((void *) new_text, 0, new_text_size);

VARSI ZE(new_t ext) = new_text_size;
st rncpy(VARDATA(new_t ext), VARDATA(argl),

VARSI ZE(ar g1) - VARHDRSZ) ;

strncat (VARDATA(new_t ext), VARDATA(arg2),

VARSI ZE(ar g2) - VARHDRSZ) ;

return (new_ text);

}

On OSF/1 we would type:

CREATE FUNCTI ON add_one(int4) RETURNS int4
AS ' PGROOT/ tutorial/funcs.so’ LANGUAGE 'c’;

CREATE FUNCTI ON nakepoi nt (poi nt, point) RETURNS poi nt
AS ' PGROOT/ tutorial/funcs.so’ LANGUAGE 'c’;

CREATE FUNCTI ON concat _text(text, text) RETURNS text
AS ' PGROOT/tutorial/funcs.so’ LANGUAGE 'c¢’;

CREATE FUNCTI ON copyt ext (text) RETURNS text
AS ' PGROOT/ tutorial/funcs.so’ LANGUAGE 'c’;

On other systems, we might have to make the filename end in .sl (to indicate that it’s a
shared library).

23

Chapter 4. Extending SQL: Functions

C Language Functions on Composite Types

Composite types do not have a fixed layout like C structures. Instances of a composite
type may contain null fields. In addition, composite types that are part of an inheritance
hierarchy may have different fields than other members of the same inheritance hierarchy.
Therefore, Postgres provides a procedural interface for accessing fields of composite types
from C. As Postgres processes a set of instances, each instance will be passed into your
function as an opaque structure of type TUPLE. Suppose we want to write a function to
answer the query

* SELECT nanme, c_overpai d(EMP, 1500) AS overpaid

FROM EMP
WHERE nane = 'Bill’ or nane = 'Sam ;

In the query above, we can define c_overpaid as:

#i ncl ude "postgres. h"
#i ncl ude "executor/executor.h" [* for GetAttributeByName()

*/
bool
c_overpai d(Tupl eTabl eSl ot *t, /* the current instance of
EMP */
intd limt)
{
bool isnull = fal se;
int4 salary;
salary = (int4) GetAttributeByName(t, "salary",
& snull);
if (isnull)
return (false);
return(salary > limt);
}

Get Att ri but eByNane is the Postgres system function that returns attributes out of the
current instance. It has three arguments: the argument of type TUPLE passed into the
function, the name of the desired attribute, and a return parameter that describes whether
the attribute is null. Get At t ri but eByName will align data properly so you can cast its
return value to the desired type. For example, if you have an attribute name which is of the
type name, the Get At t ri but eByNane call would look like:

char *str;

str = (char *) GetAttributeByName(t, "nane", & snull)

The following query lets Postgres know about the c_overpaid function:

* CREATE FUNCTI ON c_over pai d(EMP, int4) RETURNS bool
AS ' PGROOT/ tutorial /obj/funcs.so’ LANGUAGE 'c’;

24

Chapter 4. Extending SQL: Functions

While there are ways to construct new instances or modify existing instances from within
a C function, these are far too complex to discuss in this manual.

Writing Code

We now turn to the more difficult task of writing programming language functions. Be
warned: this section of the manual will not make you a programmer. You must have a good
understanding of C (including the use of pointers and the malloc memory manager) before
trying to write C functions for use with Postgres. While it may be possible to load functions
written in languages other than C into Postgres, this is often difficult (when it is possible at
all) because other languages, such as FORTRAN and Pascal often do not follow the same
calling convention as C. That is, other languages do not pass argument and return values
between functions in the same way. For this reason, we will assume that your programming
language functions are written in C.

C functions with base type arguments can be written in a straightforward fashion. The C
equivalents of built-in Postgres types are accessible in a C file if

PGROOT/ sr ¢/ backend/ uti | s/ bui |l tins. hisincluded as a header file. This can be
achieved by having

#include <utils/builtins.h>

at the top of the C source file.
The basic rules for building C functions are as follows:

Most of the header (include) files for Postgres should already be installed in
PGROOT/ i ncl ude (see Figure 2). You should always include

-1 $PGROAT/ i ncl ude

on your cc command lines. Sometimes, you may find that you require header files that
are in the server source itself (i.e., you need a file we neglected to install in include). In
those cases you may need to add one or more of

-1 $PCGROOT/ sr c/ backend

- | $PGROCT/ sr c/ backend/ i ncl ude

- | $PGROCT/ sr c/ backend/ por t / <PORTNAVE>
-1 $PCROOT/ sr ¢/ backend/ obj

(where <PORTNAME> is the name of the port, e.g., alpha or sparc).

When allocating memory, use the Postgres routines palloc and pfree instead of the
corresponding C library routines malloc and free. The memory allocated by palloc will
be freed automatically at the end of each transaction, preventing memory leaks.

Always zero the bytes of your structures using memset or bzero. Several routines (such
as the hash access method, hash join and the sort algorithm) compute functions of the
raw bits contained in your structure. Even if you initialize all fields of your structure,
there may be several bytes of alignment padding (holes in the structure) that may contain
garbage values.

25

Chapter 4. Extending SQL: Functions

Most of the internal Postgres types are declared in post gr es. h, so it’s a good idea to
always include that file as well. Including postgres.h will also include elog.h and
palloc.h for you.

Compiling and loading your object code so that it can be dynamically loaded into
Postgres always requires special flags. See Linking Dynamically-Loaded Functions for a
detailed explanation of how to do it for your particular operating system.

Function Overloading

More than one function may be defined with the same name, as long as the arguments they
take are different. In other words, function names can be overloaded. A function may also
have the same name as an attribute. In the case that there is an ambiguity between a
function on a complex type and an attribute of the complex type, the attribute will always
be used.

Name Space Conflicts

As of Postgres v7.0, the alternative form of the AS clause for the SQL CREATE
FUNCTION command decouples the SQL function name from the function name in the C
source code. This is now the preferred technique to accomplish function overloading.

Pre-v7.0

For functions written in C, the SQL name declared in CREATE FUNCTION must be
exactly the same as the actual name of the function in the C code (hence it must be a legal
C function name).

There is a subtle implication of this restriction: while the dynamic loading routines in most
operating systems are more than happy to allow you to load any number of shared libraries
that contain conflicting (identically-named) function names, they may in fact botch the load
in interesting ways. For example, if you define a dynamically-loaded function that happens
to have the same name as a function built into Postgres, the DEC OSF/1 dynamic loader
causes Postgres to call the function within itself rather than allowing Postgres to call your
function. Hence, if you want your function to be used on different architectures, we
recommend that you do not overload C function names.

There is a clever trick to get around the problem just described. Since there is no problem
overloading SQL functions, you can define a set of C functions with different names and
then define a set of identically-named SQL function wrappers that take the appropriate
argument types and call the matching C function.

Another solution is not to use dynamic loading, but to link your functions into the backend
statically and declare them as INTERNAL functions. Then, the functions must all have
distinct C names but they can be declared with the same SQL names (as long as their
argument types differ, of course). This way avoids the overhead of an SQL wrapper
function, at the cost of more effort to prepare a custom backend executable. (This option is
only available in version 6.5 and later, since prior versions required internal functions to
have the same name in SQL as in the C code.)

26

Chapter 5. Extending SQL: Types

As previously mentioned, there are two kinds of types in Postgres: base types (defined in a
programming language) and composite types (instances). Examples in this section up to
interfacing indices can be found in conpl ex. sgl and conpl ex. c. Composite examples
are in f uncs. sq|

User-Defined Types

Functions Needed for a User-Defined Type

A user-defined type must always have input and output functions. These functions
determine how the type appears in strings (for input by the user and output to the user) and
how the type is organized in memory. The input function takes a null-delimited character
string as its input and returns the internal (in memory) representation of the type. The
output function takes the internal representation of the type and returns a null delimited
character string. Suppose we want to define a complex type which represents complex
numbers. Naturally, we choose to represent a complex in memory as the following C
structure:

typedef struct Conpl ex {

doubl e X;
doubl e y;
} Conpl ex;

and a string of the form (x,y) as the external string representation. These functions are
usually not hard to write, especially the output function. However, there are a number of
points to remember:

When defining your external (string) representation, remember that you must eventually
write a complete and robust parser for that representation as your input function!

Conpl ex *
conpl ex_i n(char *str)
{

doubl e x, vy;

Conpl ex *result;
if (sscanf(str, " (%f , %f)", &, &) !=
2) {

el og(WARN, "conplex_in: error in parsing
return NULL

}

result = (Conplex *)palloc(sizeof (Conplex));

result->x = x;

result->y =y

return (result);

27

Chapter 5. Extending SQL: Types

The output function can simply be:

char *
conpl ex_out (Conpl ex *conpl ex)
{

char *result;
if (conplex == NULL)
return(NULL);
result = (char *) palloc(60);
sprintf(result, "(%, %)", conplex->x, conplex->y);
return(result);

}

You should try to make the input and output functions inverses of each other. If you do
not, you will have severe problems when you need to dump your data into a file and then
read it back in (say, into someone else’s database on another computer). This is a
particularly common problem when floating-point numbers are involved.

To define the complex type, we need to create the two user-defined functions complex_in
and complex_out before creating the type:

CREATE FUNCTI ON conpl ex_i n(opaque)
RETURNS conpl ex
AS ' PGROOT/ tutori al / obj / conpl ex. so’
LANGUAGE '¢’;

CREATE FUNCTI ON conpl ex_out (opaque)
RETURNS opaque
AS ’ PGROOT/ tut ori al / obj / conpl ex. so’
LANGUACGE "¢’ ;

CREATE TYPE conpl ex (
internallength = 16,
i nput = conpl ex_i n,
out put = conpl ex_out

)

As discussed earlier, Postgres fully supports arrays of base types. Additionally, Postgres
supports arrays of user-defined types as well. When you define a type, Postgres
automatically provides support for arrays of that type. For historical reasons, the array type
has the same name as the user-defined type with the underscore character _ prepended.
Composite types do not need any function defined on them, since the system already
understands what they look like inside.

Large Objects

The types discussed to this point are all "small* objects -- that is, they are smaller than
8KB in size.

Note: 1024 longwords == 8192 bytes. In fact, the type must be considerably smaller
than 8192 bytes, since the Postgres tuple and page overhead must also fit into this
8KB limitation. The actual value that fits depends on the machine architecture.

If you require a larger type for something like a document retrieval system or for storing
bitmaps, you will need to use the Postgres large object interface.

28

Chapter 6. Extending SQL: Operators

Postgres supports left unary, right unary and binary operators. Operators can be
overloaded; that is, the same operator name can be used for different operators that have
different numbers and types of arguments. If there is an ambiguous situation and the
system cannot determine the correct operator to use, it will return an error. You may have
to typecast the left and/or right operands to help it understand which operator you meant to
use.

Every operator is "syntactic sugar" for a call to an underlying function that does the real
work; so you must first create the underlying function before you can create the operator.
However, an operator is not merely syntactic sugar, because it carries additional
information that helps the query planner optimize queries that use the operator. Much of
this chapter will be devoted to explaining that additional information.

Here is an example of creating an operator for adding two complex numbers. We assume
we’ve already created the definition of type complex. First we need a function that does the
work; then we can define the operator:

CREATE FUNCTI ON conpl ex_add(conpl ex, conpl ex)
RETURNS conpl ex
AS ' $PWD obj / conpl ex. so’
LANGUAGE '¢’;

CREATE OPERATOR + (
| eftarg = conpl ex,
rightarg = conpl ex,
procedure = conpl ex_add,
comut ator = +

Now we can do:

SELECT (a + b) AS ¢ FROMtest_conpl ex;

o +
|c I
oo +
| (5.2, 6.05) |
o e +
| (133.42, 144. 95) |
o +

We’ve shown how to create a binary operator here. To create unary operators, just omit
one of leftarg (for left unary) or rightarg (for right unary). The procedure clause and the
argument clauses are the only required items in CREATE OPERATOR. The
COMMUTATOR clause shown in the example is an optional hint to the query optimizer.
Further details about COMMUTATOR and other optimizer hints appear below.

29

Chapter 6. Extending SQL: Operators

Operator Optimization Information

Author: Written by Tom Lane.

A Postgres operator definition can include several optional clauses that tell the system
useful things about how the operator behaves. These clauses should be provided whenever
appropriate, because they can make for considerable speedups in execution of queries that
use the operator. But if you provide them, you must be sure that they are right! Incorrect
use of an optimization clause can result in backend crashes, subtly wrong output, or other
Bad Things. You can always leave out an optimization clause if you are not sure about it;
the only consequence is that queries might run slower than they need to.

Additional optimization clauses might be added in future versions of Postgres. The ones
described here are all the ones that release 6.5 understands.

COMMUTATOR

The COMMUTATOR clause, if provided, names an operator that is the commutator of the
operator being defined. We say that operator A is the commutator of operator B if (X A'y)
equals (y B x) for all possible input values x,y. Notice that B is also the commutator of A.
For example, operators <’ and ">’ for a particular datatype are usually each others’
commutators, and operator ’+’ is usually commutative with itself. But operator ’-’ is
usually not commutative with anything.

The left argument type of a commuted operator is the same as the right argument type of
its commutator, and vice versa. So the name of the commutator operator is all that Postgres
needs to be given to look up the commutator, and that’s all that need be provided in the
COMMUTATOR clause.

When you are defining a self-commutative operator, you just do it. When you are defining
a pair of commutative operators, things are a little trickier: how can the first one to be
defined refer to the other one, which you haven’t defined yet? There are two solutions to
this problem:

One way is to omit the COMMUTATOR clause in the first operator that you define, and
then provide one in the second operator’s definition. Since Postgres knows that
commutative operators come in pairs, when it sees the second definition it will
automatically go back and fill in the missing COMMUTATOR clause in the first
definition.

The other, more straightforward way is just to include COMMUTATOR clauses in both
definitions. When Postgres processes the first definition and realizes that
COMMUTATOR refers to a non-existent operator, the system will make a dummy entry
for that operator in the system’s pg_operator table. This dummy entry will have valid
data only for the operator name, left and right argument types, and result type, since
that’s all that Postgres can deduce at this point. The first operator’s catalog entry will
link to this dummy entry. Later, when you define the second operator, the system
updates the dummy entry with the additional information from the second definition. If
you try to use the dummy operator before it’s been filled in, you’ll just get an error
message. (Note: this procedure did not work reliably in Postgres versions before 6.5, but
it is now the recommended way to do things.)

30

Chapter 6. Extending SQL: Operators

NEGATOR

The NEGATOR clause, if provided, names an operator that is the negator of the operator
being defined. We say that operator A is the negator of operator B if both return boolean
results and (x A y) equals NOT (x B y) for all possible inputs x,y. Notice that B is also the
negator of A. For example, <’ and ">=" are a negator pair for most datatypes. An operator
can never be validly be its own negator.

Unlike COMMUTATOR, a pair of unary operators could validly be marked as each
others’ negators; that would mean (A x) equals NOT (B x) for all x, or the equivalent for
right-unary operators.

An operator’s negator must have the same left and/or right argument types as the operator
itself, so just as with COMMUTATOR, only the operator name need be given in the
NEGATOR clause.

Providing NEGATOR is very helpful to the query optimizer since it allows expressions
like NOT (x =) to be simplified into x <>y. This comes up more often than you might
think, because NOTS can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for
commutator pairs.

RESTRICT

The RESTRICT clause, if provided, names a restriction selectivity estimation function for
the operator (note that this is a function name, not an operator name). RESTRICT clauses
only make sense for binary operators that return boolean. The idea behind a restriction
selectivity estimator is to guess what fraction of the rows in a table will satisfy a
WHERE-clause condition of the form

field OP constant

for the current operator and a particular constant value. This assists the optimizer by
giving it some idea of how many rows will be eliminated by WHERE clauses that have this
form. (What happens if the constant is on the left, you may be wondering? Well, that’s one
of the things that COMMUTATOR is for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this
chapter, but fortunately you can usually just use one of the system’s standard estimators for
many of your own operators. These are the standard restriction estimators:

egsel for =
neqgsel for <>
scal arl t sel for < or <=
scal ar gt sel for > or >=

It might seem a little odd that these are the categories, but they make sense if you think
about it. ’=" will typically accept only a small fraction of the rows in a table; <> will
typically reject only a small fraction. <’ will accept a fraction that depends on where the
given constant falls in the range of values for that table column (which, it just so happens,
is information collected by VACUUM ANALYZE and made available to the selectivity
estimator). ’<=" will accept a slightly larger fraction than ’<” for the same comparison

31

JOIN

Chapter 6. Extending SQL: Operators

constant, but they’re close enough to not be worth distinguishing, especially since we’re
not likely to do better than a rough guess anyhow. Similar remarks apply to ’>" and ’>=",

You can frequently get away with using either egsel or negsel for operators that have very
high or very low selectivity, even if they aren’t really equality or inequality. For example,
the approximate-equality geometric operators use egsel on the assumption that they’ll
usually only match a small fraction of the entries in a table.

You can use scalarltsel and scalargtsel for comparisons on datatypes that have some
sensible means of being converted into numeric scalars for range comparisons. If possible,
add the datatype to those understood by the routine convert_to_scalar() in
src/backend/utils/adt/selfuncs.c. (Eventually, this routine should be replaced by
per-datatype functions identified through a column of the pg_type table; but that hasn’t
happened yet.) If you do not do this, things will still work, but the optimizer’s estimates
won’t be as good as they could be.

There are additional selectivity functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c: areasel, positionsel, and contsel. At this writing these
are just stubs, but you may want to use them (or even better, improve them) anyway.

The JOIN clause, if provided, names a join selectivity estimation function for the operator
(note that this is a function name, not an operator name). JOIN clauses only make sense for
binary operators that return boolean. The idea behind a join selectivity estimator is to guess
what fraction of the rows in a pair of tables will satisfy a WHERE-clause condition of the
form

tablel.fieldl OP table2.field2

for the current operator. As with the RESTRICT clause, this helps the optimizer very
substantially by letting it figure out which of several possible join sequences is likely to
take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity
estimator function, but will just suggest that you use one of the standard estimators if one is
applicable:

egj oi nsel for =
neqj oi nsel for <>
scalarltjoinsel for < or <=
scal argtjoinsel for > or >=
ar eaj oi nsel for 2D area-based conpari sons
positionjoinsel for 2D position-based conparisons
contj oi nsel for 2D contai nment - based conpari sons

HASHES

The HASHES clause, if present, tells the system that it is OK to use the hash join method
for a join based on this operator. HASHES only makes sense for binary operators that
return boolean, and in practice the operator had better be equality for some data type.

32

Chapter 6. Extending SQL: Operators

The assumption underlying hash join is that the join operator can only return TRUE for
pairs of left and right values that hash to the same hash code. If two values get put in
different hash buckets, the join will never compare them at all, implicitly assuming that the
result of the join operator must be FALSE. So it never makes sense to specify HASHES for
operators that do not represent equality.

In fact, logical equality is not good enough either; the operator had better represent pure
bitwise equality, because the hash function will be computed on the memory representation
of the values regardless of what the bits mean. For example, equality of time intervals is
not bitwise equality; the interval equality operator considers two time intervals equal if
they have the same duration, whether or not their endpoints are identical. What this means
is that a join using "=" between interval fields would yield different results if implemented
as a hash join than if implemented another way, because a large fraction of the pairs that
should match will hash to different values and will never be compared by the hash join. But
if the optimizer chose to use a different kind of join, all the pairs that the equality operator
says are equal will be found. We don’t want that kind of inconsistency, so we don’t mark
interval equality as hashable.

There are also machine-dependent ways in which a hash join might fail to do the right
thing. For example, if your datatype is a structure in which there may be uninteresting pad
bits, it’s unsafe to mark the equality operator HASHES. (Unless, perhaps, you write your
other operators to ensure that the unused bits are always zero.) Another example is that the
FLOAT datatypes are unsafe for hash joins. On machines that meet the IEEE floating point
standard, minus zero and plus zero are different values (different bit patterns) but they are
defined to compare equal. So, if float equality were marked HASHES, a minus zero and a
plus zero would probably not be matched up by a hash join, but they would be matched up
by any other join process.

The bottom line is that you should probably only use HASHES for equality operators that
are (or could be) implemented by mememp().

SORT1 and SORT2

The SORT clauses, if present, tell the system that it is permissible to use the merge join
method for a join based on the current operator. Both must be specified if either is. The
current operator must be equality for some pair of data types, and the SORT1 and SORT2
clauses name the ordering operator (’<’ operator) for the left and right-side data types
respectively.

Merge join is based on the idea of sorting the left and righthand tables into order and then
scanning them in parallel. So, both data types must be capable of being fully ordered, and
the join operator must be one that can only succeed for pairs of values that fall at the "same
place" in the sort order. In practice this means that the join operator must behave like
equality. But unlike hashjoin, where the left and right data types had better be the same (or
at least bitwise equivalent), it is possible to mergejoin two distinct data types so long as
they are logically compatible. For example, the int2-versus-int4 equality operator is
mergejoinable. We only need sorting operators that will bring both datatypes into a
logically compatible sequence.

When specifying merge sort operators, the current operator and both referenced operators
must return boolean; the SORT1 operator must have both input datatypes equal to the
current operator’s left argument type, and the SORT2 operator must have both input
datatypes equal to the current operator’s right argument type. (As with COMMUTATOR
and NEGATOR, this means that the operator name is sufficient to specify the operator, and

33

Chapter 6. Extending SQL: Operators

the system is able to make dummy operator entries if you happen to define the equality
operator before the other ones.)

In practice you should only write SORT clauses for an ’=" operator, and the two
referenced operators should always be named ’<’. Trying to use merge join with operators
named anything else will result in hopeless confusion, for reasons we’ll see in a moment.

There are additional restrictions on operators that you mark mergejoinable. These
restrictions are not currently checked by CREATE OPERATOR, but a merge join may fail
at runtime if any are not true:

The mergejoinable equality operator must have a commutator (itself if the two data
types are the same, or a related equality operator if they are different).

There must be ’<” and *>’ ordering operators having the same left and right input
datatypes as the mergejoinable operator itself. These operators must be named <’ and
’>’: you do not have any choice in the matter, since there is no provision for specifying
them explicitly. Note that if the left and right data types are different, neither of these
operators is the same as either SORT operator. But they had better order the data values
compatibly with the SORT operators, or mergejoin will fail to work.

34

Chapter 7. Extending SQL: Aggregates

Aggregate functions in Postgres are expressed as state values and state transition
functions. That is, an aggregate can be defined in terms of state that is modified whenever
an input item is processed. To define a new aggregate function, one selects a datatype for
the state value, an initial value for the state, and a state transition function. The state
transition function is just an ordinary function that could also be used outside the context of
the aggregate.

Actually, in order to make it easier to construct useful aggregates from existing functions,
an aggregate can have one or two separate state values, one or two transition functions to
update those state values, and a final function that computes the actual aggregate result
from the ending state values.

Thus there can be as many as four datatypes involved: the type of the input data items, the
type of the aggregate’s result, and the types of the two state values. Only the input and
result datatypes are seen by a user of the aggregate.

Some state transition functions need to look at each successive input to compute the next
state value, while others ignore the specific input value and simply update their internal
state. (The most useful example of the second kind is a running count of the humber of
input items.) The Postgres aggregate machinery defines sfuncl for an aggregate as a
function that is passed both the old state value and the current input value, while sfunc2 is a
function that is passed only the old state value.

If we define an aggregate that uses only sfuncl, we have an aggregate that computes a
running function of the attribute values from each instance. "Sum" is an example of this
kind of aggregate. "Sum" starts at zero and always adds the current instance’s value to its
running total. For example, if we want to make a Sum aggregate to work on a datatype for
complex numbers, we only need the addition function for that datatype. The aggregate
definition is:

CREATE AGGREGATE conpl ex_sum (
sfuncl = conpl ex_add,
baset ype = conpl ex,
stypel = conpl ex,
initcondl = ' (0,0)’

);

SELECT conpl ex_sun({a) FROM test_conpl ex;

[R +
| conpl ex_sum |
R +
| (34,53.9) |
Fommmmea e +

(In practice, we’d just name the aggregate "sum", and rely on Postgres to figure out which
kind of sum to apply to a complex column.)

If we define only sfunc2, we are specifying an aggregate that computes a running function
that is independent of the attribute values from each instance. "Count" is the most common
example of this kind of aggregate. "Count" starts at zero and adds one to its running total

35

Chapter 7. Extending SQL: Aggregates

for each instance, ignoring the instance value. Here, we use the built-in int4inc routine to
do the work for us. This routine increments (adds one to) its argument.

CREATE AGGREGATE ny_count (
sfunc2 = int4inc, -- add one
basetype = int4,
stype2 = int4,
initcond2 ='0

)

SELECT my_count (*) as enp_count from EMP;

[R +
| emp_count |
[+
|5 I
Fommmea e +

"Average" is an example of an aggregate that requires both a function to compute the
running sum and a function to compute the running count. When all of the instances have
been processed, the final answer for the aggregate is the running sum divided by the
running count. We use the intdpl and int4inc routines we used before as well as the
Postgres integer division routine, int4div, to compute the division of the sum by the count.

CREATE AGGREGATE ny_aver age (
sfuncl = int4pl, -~ sum
basetype = int4,
stypel = int4,

sfunc2 = int4inc, -- count
stype2 = int4,

final func = int4div, -- division
initcondl = '0",

initcond2 ='0

)

SELECT ny_aver age(sal ary) as enp_average FROM EMP;

B +
| enp_aver age |
B R +
| 1640 |
Femmmeea e +

For further details see CREATE AGGREGATE in The PostgreSQL User’s Guide.

36

Chapter 8. The Postgres Rule System

Production rule systems are conceptually simple, but there are many subtle points involved
in actually using them. Some of these points and the theoretical foundations of the Postgres
rule system can be found in [Stonebraker et al, ACM, 1990].

Some other database systems define active database rules. These are usually stored
procedures and triggers and are implemented in Postgres as functions and triggers.

The query rewrite rule system (the "rule system" from now on) is totally different from
stored procedures and triggers. It modifies queries to take rules into consideration, and then
passes the modified query to the query optimizer for execution. It is very powerful, and can
be used for many things such as query language procedures, views, and versions. The
power of this rule system is discussed in [Ong and Goh, 1990] as well as [Stonebraker et
al, ACM, 1990].

What is a Querytree?

To understand how the rule system works it is necessary to know when it is invoked and
what it’s input and results are.

The rule system is located between the query parser and the optimizer. It takes the output
of the parser, one querytree, and the rewrite rules from the pg_r ewr i t e catalog, which are
querytrees too with some extra information, and creates zero or many querytrees as result.
So it’s input and output are always things the parser itself could have produced and thus,
anything it sees is basically representable as an SQL statement.

Now what is a querytree? It is an internal representation of an SQL statement where the
single parts that built it are stored separately. These querytrees are visible when starting the
Postgres backend with debuglevel 4 and typing queries into the interactive backend
interface. The rule actions in the pg_r ewr i t e system catalog are also stored as querytrees.
They are not formatted like the debug output, but they contain exactly the same
information.

Reading a querytree requires some experience and it was a hard time when | started to
work on the rule system. | can remember that | was standing at the coffee machine and |
saw the cup in a targetlist, water and coffee powder in a rangetable and all the buttons in a
qualification expression. Since SQL representations of querytrees are sufficient to
understand the rule system, this document will not teach how to read them. It might help to
learn it and the naming conventions are required in the later following descriptions.

The Parts of a Querytree

When reading the SQL representations of the querytrees in this document it is necessary to
be able to identify the parts the statement is broken into when it is in the querytree
structure. The parts of a querytree are

the commandtype

This is a simple value telling which command (SELECT, INSERT, UPDATE,
DELETE) produced the parsetree.

37

Chapter 8. The Postgres Rule System

the rangetable

The rangtable is a list of relations that are used in the query. In a SELECT statement
that are the relations given after the FROM keyword.

Every rangetable entry identifies a table or view and tells by which name it is called
in the other parts of the query. In the querytree the rangetable entries are referenced by
index rather than by name, so here it doesn’t matter if there are duplicate names as it
would in an SQL statement. This can happen after the rangetables of rules have been
merged in. The examples in this document will not have this situation.

the resultrelation

This is an index into the rangetable that identifies the relation where the results of the
query go.

SELECT queries normally don’t have a result relation. The special case of a SELECT
INTO is mostly identical to a CREATE TABLE, INSERT ... SELECT sequence and
is not discussed separately here.

On INSERT, UPDATE and DELETE queries the resultrelation is the table (or view!)
where the changes take effect.

the targetlist

The targetlist is a list of expressions that define the result of the query. In the case of
a SELECT, the expressions are what builds the final output of the query. They are the
expressions between the SELECT and the FROM keywords (* is just an abbreviation
for all the attribute names of a relation).

DELETE queries don’t need a targetlist because they don’t produce any result. In fact
the optimizer will add a special entry to the empty targetlist. But this is after the rule
system and will be discussed later. For the rule system the targetlist is empty.

In INSERT queries the targetlist describes the new rows that should go into the
resultrelation. Missing columns of the resultrelation will be added by the optimizer
with a constant NULL expression. It is the expressions in the VALUES clause or the
ones from the SELECT clause on INSERT ... SELECT.

On UPDATE queries, it describes the new rows that should replace the old ones.
Here now the optimizer will add missing columns by inserting expressions that put the
values from the old rows into the new one. And it will add the special entry like for
DELETE too. It is the expressions from the SET attribute = expression part of the
query.

Every entry in the targetlist contains an expression that can be a constant value, a
variable pointing to an attribute of one of the relations in the rangetable, a parameter
or an expression tree made of function calls, constants, variables, operators etc.

the qualification

The queries qualification is an expression much like one of those contained in the
targetlist entries. The result value of this expression is a boolean that tells if the
operation (INSERT, UPDATE, DELETE or SELECT) for the final result row should
be executed or not. It is the WHERE clause of an SQL statement.

38

Chapter 8. The Postgres Rule System

the others

The other parts of the querytree like the ORDER BY clause arent of interest here.
The rule system substitutes entries there while applying rules, but that doesn’t have
much to do with the fundamentals of the rule system. GROUP BY is a special thing
when it appears in a view definition and still needs to be documented.

Views and the Rule System

Implementation of Views in Postgres

Views in Postgres are implemented using the rule system. In fact there is absolutely no
difference between a

CREATE VI EW nyvi ew AS SELECT * FROM nyt ab;
compared against the two commands

CREATE TABLE nyview (sane attribute list as for nytab);
CREATE RULE " _RETnyvi ew' AS ON SELECT TO nyvi ew DO | NSTEAD
SELECT * FROM myt ab;

because this is exactly what the CREATE VIEW command does internally. This has some
side effects. One of them is that the information about a view in the Postgres system
catalogs is exactly the same as it is for a table. So for the query parsers, there is absolutely
no difference between a table and a view. They are the same thing - relations. That is the
important one for now.

How SELECT Rules Work

Rules ON SELECT are applied to all queries as the last step, even if the command given is
an INSERT, UPDATE or DELETE. And they have different semantics from the others in
that they modify the parsetree in place instead of creating a new one. So SELECT rules are
described first.

Currently, there could be only one action and it must be a SELECT action that is
INSTEAD. This restriction was required to make rules safe enough to open them for
ordinary users and it restricts rules ON SELECT to real view rules.

The example for this document are two join views that do some calculations and some
more views using them in turn. One of the two first views is customized later by adding
rules for INSERT, UPDATE and DELETE operations so that the final result will be a view
that behaves like a real table with some magic functionality. It is not such a simple
example to start from and this makes things harder to get into. But it’s better to have one
example that covers all the points discussed step by step rather than having many different
ones that might mix up in mind.

The database needed to play on the examples is named al_bundy. You’ll see soon why this
is the database name. And it needs the procedural language PL/pgSQL installed, because

39

Chapter 8. The Postgres Rule System

we need a little min() function returning the lower of 2 integer values. We create that as

CREATE FUNCTI ON mi n(i nt eger,
" BEG N
IF $1 < $2 THEN
RETURN $1;
END | F;
RETURN $2;
END; ’
LANGUACE ' pl pgsql’

i nteger) RETURNS integer AS

The real tables we need in the first two rule system descripitons are these:

CREATE TABLE shoe_data (

shoenane char (10),
sh_avai | i nteger
sl col or char (10),

sl mnl en fl oat,
sl max| en float,

slunit char (8)

)

CREATE TABLE shoel ace_data (
sl _nane char (10),
sl _avai l i nt eger,
sl _col or char (10),
sl _len float,
sl _unit char (8)

)

CREATE TABLE unit (
un_nane char (8),
un_fact fl oat

)

primary key

avail able # of pairs
preferred shoel ace col or
m m num shoel ace | ength
maxi mum shoel ace | ength
length unit

primary key

avail able # of pairs
shoel ace col or

shoel ace | ength
length unit

the primary key
factor to transformto cm

I think most of us wear shoes and can realize that this is really useful data. Well there are
shoes out in the world that don’t require shoelaces, but this doesn’t make Al’s life easier

and so we ignore it.

The views are created as

CREATE VI EW shoe AS
SELECT sh. shoenane,
sh. sh_avail,
sh. sl col or,
sh. sl m nl en,

sh.slmnlen * un.un_fact AS slminlen_cm

sh. sl maxl| en,

sh. sl maxl en * un.un_fact AS sl maxlen_cm

sh.slunit

FROM shoe_data sh, unit

WHERE sh.slunit = un.un_nane;

40

Chapter 8. The Postgres Rule System

CREATE VI EW shoel ace AS

SELECT s. sl _nane,
s.sl _avail,
s.sl _col or,
s.sl _len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoel ace_data s, unit u
VWHERE s. sl _unit = u.un_nane;

CREATE VI EW shoe_ready AS
SELECT r sh. shoenane,

rsh.sh_avail,
rsl.sl _nane,
rsl.sl_avail,
m n(rsh.sh_avail, rsl.sl_avail) AS total _avail

FROM shoe rsh, shoel ace rsl

VWHERE rsl . sl _col or = rsh.slcolor
AND rsl.sl_len_cm>= rsh.slmnlen_cm
AND rsl.sl _len_cm<= rsh.sl maxl en_cm

The CREATE VIEW command for the shoel ace view (which is the simplest one we
have) will create a relation shoelace and an entry in pg_r ewr i t e that tells that there is a
rewrite rule that must be applied whenever the relation shoelace is referenced in a queries
rangetable. The rule has no rule qualification (discussed in the non SELECT rules since
SELECT rules currently cannot have them) and it is INSTEAD. Note that rule
qualifications are not the same as query qualifications! The rules action has a qualification.

The rules action is one querytree that is an exact copy of the SELECT statement in the
view creation command.

Note: The two extra range table entries for NEW and OLD (named *NEW* and
CURRENT for historical reasons in the printed querytree) you can see in the
pg_rewite entry aren’t of interest for SELECT rules.

Now we populate uni t , shoe_dat a and shoel ace_dat a and Al types the first SELECT
in his life:

al _bundy=> I NSERT I NTO unit VALUES ('cm, 1.0);

al _bundy=> I NSERT I NTO unit VALUES ('m, 100.0);

al _bundy=> | NSERT | NTO unit VALUES (’'inch’, 2.54);

al _bundy=>

al _bundy=> I NSERT | NTO shoe_data VALUES

al _bundy- > ("sh1’, 2, "black’, 70.0, 90.0, 'cm);

al _bundy=> | NSERT | NTO shoe_dat a VALUES

al _bundy-> ("sh2’, 0, "black’, 30.0, 40.0, 'inch);
al _bundy=> | NSERT | NTO shoe_data VALUES

al _bundy- > ("sh3, 4, "brown’, 50.0, 65.0, 'cm);
al _bundy=> | NSERT | NTO shoe_data VALUES

al _bundy- > ("sh4’, 3, "brown’, 40.0, 50.0, 'inch);
al _bundy=>

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy- > ("sl1, 5, "black’, 80.0, 'cnmi);

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy-> ("sl2", 6, "black’, 100.0, 'cmi);

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy-> ("sl3, 0, "black’, 35.0, 'inch');

41

Chapter 8. The Postgres Rule System

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy- > ("sl4, 8, 'black’, 40.0, 'inch');

al _bundy=> I NSERT | NTO shoel ace_dat a VALUES

al _bundy-> ("sl5, 4, "brown’, 1.0, 'm);

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy-> ("sl6, 0, "brown’, 0.9, "m);

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy- > ('sl7, 7, "brown’, 60 , 'cm);

al _bundy=> | NSERT | NTO shoel ace_dat a VALUES

al _bundy- > ("sl8, 1, "brown’, 40 , 'inch’);

al _bundy=>

al _bundy=> SELECT * FROM shoel ace;

sl _nane | sl _avail|sl_color |sl_len|sl_unit |[sl_len_cm
---------- T S e L e
sl 1 | 5| bl ack | 80| cm | 80
sl 2 | 6| bl ack | 100l cm | 100
sl 7 | 7| br own | 60| cm | 60
sl 3 | 0| bl ack | 35| i nch | 88.9
sl 4 | 8| bl ack | 40| i nch | 101. 6
sl 8 | 1| br own | 40| i nch | 101.6
sl 5 | 4| br own | 1l m | 100
sl 6 | 0| br own | 0.9 m | 90
(8 rows)

It’s the simplest SELECT Al can do on our views, so we take this to explain the basics of
view rules. The ’SELECT * FROM shoelace’ was interpreted by the parser and produced

the parsetree

SELECT shoel ace.
shoel ace.
shoel ace.

FROM shoel ace

sl _nane, shoel ace.sl _avail,
sl _col or, shoel ace.sl _|en,
sl _unit, shoelace.sl _len_cm
shoel ace

and this is given to the rule system. The rule system walks through the rangetable and
checks if there are rules in pg_r ewr i t e for any relation. When processing the rangetable
entry for shoel ace (the only one up to now) it finds the rule °_RETshoelace’ with the

parsetree

SELECT s. sl _nane,
s.sl _col or,
float8mul (s.sl_Ilen,

FROM shoel ace

shoel ace_
WHERE bpchareq(s.sl _unit,

s.sl _avail,

s.sl_len, s.sl_unit,

u.un_fact) AS sl _len_cm
shoel ace *NEW,

unit u

u. un_nane) ;

QLD,
data s,

Note that the parser changed the calculation and qualification into calls to the appropriate
functions. But in fact this changes nothing. The first step in rewriting is merging the two

42

Chapter 8. The Postgres Rule System

rangetables. The resulting parsetree then reads

SELECT shoel ace. sl _nane, shoel ace. sl _avail,
shoel ace. sl _col or, shoel ace. sl _|en,
shoel ace. sl _unit, shoel ace.sl_len_cm

FROM shoel ace shoel ace, shoel ace *COLD*,
shoel ace *NEW, shoel ace_data s,
unit u;

In step 2 it adds the qualification from the rule action to the parsetree resulting in

SELECT shoel ace. sl _nane, shoel ace. sl _avai l
shoel ace. sl _col or, shoel ace. sl _|en,
shoel ace. sl _unit, shoelace.sl _len_cm

FROM shoel ace shoel ace, shoel ace *OLD*,
shoel ace *NEW, shoel ace_data s,
unit u
VWHERE bpchareq(s. sl _unit, u.un_nane);

And in step 3 it replaces all the variables in the parsetree, that reference the rangetable
entry (the one for shoel ace that is currently processed) by the corresponding targetlist
expressions from the rule action. This results in the final query

SELECT s.sl_name, s.sl_avail,
s.sl_color, s.sl_len,
s.sl_unit, float8mul (s.sl_len, u.un_fact) AS sl_len_cm
FROM shoel ace shoel ace, shoel ace *OLD*,
shoel ace *NEW, shoel ace_data s,
unit u
WHERE bpchareq(s. sl _unit, u.un_nane);

Turning this back into a real SQL statement a human user would type reads

SELECT s.sl_name, s.sl_avail,
s.sl_color, s.sl_len,
s.sl_unit, s.sl_len * u.un_fact AS sl_len_cm
FROM shoel ace_data s, unit u
VWHERE s. sl _unit = u.un_nane;

That was the first rule applied. While this was done, the rangetable has grown. So the rule
system continues checking the range table entries. The next one is number 2 (shoelace
OLD). Relation shoel ace has a rule, but this rangetable entry isn’t referenced in any of
the variables of the parsetree, so it is ignored. Since all the remaining rangetable entries
either have no rules in pg_rewr i t e or aren’t referenced, it reaches the end of the
rangetable. Rewriting is complete and the above is the final result given into the optimizer.
The optimizer ignores the extra rangetable entries that aren’t referenced by variables in the
parsetree and the plan produced by the planner/optimizer would be exactly the same as if
Al had typed the above SELECT query instead of the view selection.

Now we face Al with the problem that the Blues Brothers appear in his shop and want to
buy some new shoes, and as the Blues Brothers are, they want to wear the same shoes. And
they want to wear them immediately, so they need shoelaces too.

Al needs to know for which shoes currently in the store he has the matching shoelaces
(color and size) and where the total number of exactly matching pairs is greater or equal to
two. We theach him how to do and he asks his database:

43

Chapter 8. The Postgres Rule System

al _bundy=> SELECT * FROM shoe_ready WHERE total _avail >= 2;

shoenanme |sh_avail|sl_nane | sl _avail|total _avail
---------- B T e e T e
shil | 2|sl1 | 5] 2
sh3 | 4] sl 7 | 7] 4
(2 rows)

Al is a shoe guru and so he knows that only shoes of type sh1 would fit (shoelace sI7 is
brown and shoes that need brown shoelaces aren’t shoes the Blues Brothers would ever
wear).

The output of the parser this time is the parsetree

SELECT shoe_ready. shoenane, shoe_ready.sh_avail,
shoe_ready. sl _nane, shoe_ready. sl _avail,
shoe_ready. total _avail

FROM shoe_ready shoe_ready
WHERE i nt 4ge(shoe_ready.total _avail, 2);

The first rule applied will be that one for the shoe_r eady relation and it results in the
parsetree

SELECT rsh. shoenane, rsh.sh_avail,
rsl.sl_nanme, rsl.sl_avail,
m n(rsh.sh_avail, rsl.sl _avail) AS total avail
FROM shoe_ready shoe_ready, shoe_ready *QOLD*,
shoe_ready *NEW, shoe rsh,
shoel ace rsl
VWHERE i nt4ge(ni n(rsh.sh_avail, rsl.sl_avail), 2)
AND (bpchareq(rsl.sl_color, rsh.slcolor)
AND fl oat 8ge(rsl.sl _len_cm rsh.slmnlen_cm
AND fl oat8le(rsl.sl_len_cm rsh.slmxlen_cm

)i

In reality the AND clauses in the qualification will be operator nodes of type AND with a
left and right expression. But that makes it lesser readable as it already is, and there are
more rules to apply. So | only put them into some parantheses to group them into logical
units in the order they where added and we continue with the rule for relation shoe as it is
the next rangetable entry that is referenced and has a rule. The result of applying it is

SELECT sh. shoenane, sh.sh_avail, rsl.sl _nane, rsl.sl _avail,
m n(sh.sh_avail, rsl.sl_avail) AS total _avail,
FROM shoe_r eady shoe_ready, shoe_ready *OLD*,
shoe_ready *NEW, shoe rsh,
shoel ace rsl, shoe *OLD*,
shoe *NEW, shoe_data sh,
unit un
VWHERE (i nt4ge(mi n(sh.sh_avail, rsl.sl_avail), 2)
AND (bpchareq(rsl.sl_color, sh.slcolor)
AND f | oat 8ge(rsl.sl _len_cm
fl oat 8mul (sh. sl mnlen, un.un_fact))
AND float8le(rsl.sl_len_cm
fl oat 8mul (sh. sl maxl en, un.un_fact))
)
)

AND bpchareq(sh. slunit, un.un_nane);

44

Chapter 8. The Postgres Rule System

And finally we apply the already well known rule for shoel ace (this time on a parsetree

that is a little more complex) and get

SELECT sh. shoenane,
s.sl _nanme, s.sl _avail,
m n(sh. sh_avail,
shoe_ready shoe_ready,
shoe_ready *NEW,
shoel ace rsl,
shoe *NEW,
unit un,
shoel ace *NEW,
unit u

VWHERE (

FROM

un. un_fact))

AND f | oat 8l e(fl oat 8nmul (s. sl _I en,

un. un_fact))

)
)

AND bpchareq(sh.slunit,

)
AND bpchareq(s.sl _unit,

(int4ge(m n(sh.sh_avail,
AND (bpchareq(s. sl _col or,
AND f | oat 8ge(fl oat 8mul (s.sl_len,

sh.sh_avail,

s.sl _avail) AS total _availl
shoe_ready *OLD*,
shoe rsh,

shoe *OLD*,

shoe_data sh,

shoel ace *QOLD*,

shoel ace_data s,

s.sl_avail),
sh. sl col or)

2)

u.un_fact),
fl oat 8mul (sh. sl mi nl en,

u.un_fact),
f | oat 8rmul (sh. sl maxl en,

un. un_nane)

u. un_nane) ;

Again we reduce it to a real SQL statement that is equivalent to the final output of the rule

system:

SELECT sh. shoenane,
s.sl_nane, s.sl_avail,

m n(sh. sh_avail,

FROM shoe_dat a sh,
VWHERE mni n(sh. sh_avai |,

AND s. sl _col or = sh. sl col or

AND s.sl _len * u.un_fact >=
AND s.sl len * u.un_fact <=
AND sh. sl _unit = un.un_nane
AND s.sl _unit = u.un_nane;

sh.sh_avail,

s.sl_avail) AS total _avail
shoel ace_data s,
s.sl_avail) >= 2

unit u, unit un

sh.slmnlen * un.un_fact
sh. sl maxl en * un. un_fact

Recursive processing of rules rewrote one SELECT from a view into a parsetree, that is
equivalent to exactly that what Al had to type if there would be no views at all.

Note: There is currently no recursion stopping mechanism for view rules in the rule
system (only for the other rules). This doesn’t hurt much, because the only way to
push this into an endless loop (blowing up the backend until it reaches the memory
limit) is to create tables and then setup the view rules by hand with CREATE RULE in
such a way, that one selects from the other that selects from the one. This could never
happen if CREATE VIEW is used because on the first CREATE VIEW, the second
relation does not exist and thus the first view cannot select from the second.

45

Chapter 8. The Postgres Rule System

View Rules in Non-SELECT Statements

Two details of the parsetree aren’t touched in the description of view rules above. These
are the commandtype and the resultrelation. In fact, view rules don’t need these
informations.

There are only a few differences between a parsetree for a SELECT and one for any other
command. Obviously they have another commandtype and this time the resultrelation
points to the rangetable entry where the result should go. Anything else is absolutely the
same. So having two tables t1 and t2 with attributes a and b, the parsetrees for the two
statements

SELECT t2.b FROMt1l, t2 WHERE tl.a = t2. a;
UPDATE t1 SET b = t2.b WHERE t1l.a = t2. a;

are nearly identical.
The rangetables contain entries for the tables t1 and t2.

The targetlists contain one variable that points to attribute b of the rangetable entry for
table t2.

The qualification expressions compare the attributes a of both ranges for equality.

The consequence is, that both parsetrees result in similar execution plans. They are both
joins over the two tables. For the UPDATE the missing columns from t1 are added to the
targetlist by the optimizer and the final parsetree will read as

UPDATE t1 SET a =tl.a, b =t2.b WVHERE tl.a = t2. a;
and thus the executor run over the join will produce exactly the same result set as a
SELECT tl.a, t2.b FROMt1l, t2 WHERE tl.a = t2. a;

will do. But there is a little problem in UPDATE. The executor does not care what the
results from the join it is doing are meant for. It just produces a result set of rows. The
difference that one is a SELECT command and the other is an UPDATE is handled in the
caller of the executor. The caller still knows (looking at the parsetree) that this is an
UPDATE, and he knows that this result should go into table t1. But which of the 666 rows
that are there has to be replaced by the new row? The plan executed is a join with a
qualification that potentially could produce any number of rows between 0 and 666 in
unknown order.

To resolve this problem, another entry is added to the targetlist in UPDATE and DELETE
statements. The current tuple 1D (ctid). This is a system attribute with a special feature. It
contains the block and position in the block for the row. Knowing the table, the ctid can be
used to find one specific row in a 1.5GB sized table containing millions of rows by
fetching one single data block. After adding the ctid to the targetlist, the final result set
could be defined as

SELECT tl.a, t2.b, tl.ctid FROMt1l, t2 WHERE t1l.a = t2. a;

Now another detail of Postgres enters the stage. At this moment, table rows aren’t
overwritten and this is why ABORT TRANSACTION is fast. In an UPDATE, the new
result row is inserted into the table (after stripping ctid) and in the tuple header of the row
that ctid pointed to the cmax and xmax entries are set to the current command counter and

46

Chapter 8. The Postgres Rule System

current transaction ID. Thus the old row is hidden and after the transaction commited the
vacuum cleaner can really move it out.

Knowing that all, we can simply apply view rules in absolutely the same way to any
command. There is no difference.

The Power of Views in Postgres

The above demonstrates how the rule system incorporates view definitions into the
original parsetree. In the second example a simple SELECT from one view created a final
parsetree that is a join of 4 tables (unit is used twice with different names).

Benefits

The benefit of implementing views with the rule system is, that the optimizer has all the
information about which tables have to be scanned plus the relationships between these
tables plus the restrictive qualifications from the views plus the qualifications from the
original query in one single parsetree. And this is still the situation when the original query
is already a join over views. Now the optimizer has to decide which is the best path to
execute the query. The more information the optimizer has, the better this decision can be.
And the rule system as implemented in Postgres ensures, that this is all information
available about the query up to now.

Concerns

There was a long time where the Postgres rule system was considered broken. The use of
rules was not recommended and the only part working was view rules. And also these view
rules gave problems because the rule system wasn’t able to apply them properly on
statements other than a SELECT (for example an UPDATE that used data from a view
didn’t work).

During that time, development moved on and many features were added to the parser and
optimizer. The rule system got more and more out of sync with their capabilities and it
became harder and harder to start fixing it. Thus, no one did.

For 6.4, someone locked the door, took a deep breath and shuffled that damned thing up.
What came out was a rule system with the capabilities described in this document. But
there are still some constructs not handled and some where it fails due to things that are
currently not supported by the Postgres query optimizer.

Views with aggregate columns have bad problems. Aggregate expressions in
qualifications must be used in subselects. Currently it is not possible to do a join of two
views, each having an aggregate column, and compare the two aggregate values in the
qualification. In the meantime it is possible to put these aggregate expressions into
functions with the appropriate arguments and use them in the view definition.

Views of unions are currently not supported. Well it’s easy to rewrite a simple SELECT
into a union. But it is a little difficult if the view is part of a join doing an update.

ORDER BY clauses in view definitions aren’t supported.
DISTINCT isn’t supported in view definitions.

There is no good reason why the optimizer should not handle parsetree constructs that the
parser could never produce due to limitations in the SQL syntax. The author hopes that
these items disappear in the future.

47

Chapter 8. The Postgres Rule System

Implementation Side Effects

Using the described rule system to implement views has a funny side effect. The following
does not seem to work:

al _bundy=> | NSERT | NTO shoe (shoenane, sh_avail, slcolor)

al _bundy- > VALUES (’'sh5', 0, 'black’);

| NSERT 20128 1

al _bundy=> SELECT shoenane, sh_avail, slcolor FROM shoe_data
shoename |sh_avail| sl col or

__________ e
shl | 2| bl ack

sh3 | 4| br own

sh2 | 0| bl ack

sh4 | 3| br own

(4 rows)

The interesting thing is that the return code for INSERT gave us an object ID and told that
1 row has been inserted. But it doesn’t appear in shoe_dat a. Looking into the database
directory we can see, that the database file for the view relation shoe seems now to have a
data block. And that is definitely the case.

We can also issue a DELETE and if it does not have a qualification, it tells us that rows
have been deleted and the next vacuum run will reset the file to zero size.

The reason for that behaviour is, that the parsetree for the INSERT does not reference the
shoe relation in any variable. The targetlist contains only constant values. So there is no
rule to apply and it goes down unchanged into execution and the row is inserted. And so for
the DELETE.

To change this we can define rules that modify the behaviour of non-SELECT queries.
This is the topic of the next section.

Rules on INSERT, UPDATE and DELETE

Differences to View Rules

Rules that are defined ON INSERT, UPDATE and DELETE are totally different from the
view rules described in the previous section. First, their CREATE RULE command allows
more:

They can have no action.

They can have multiple actions.

The keyword INSTEAD is optional.

The pseudo relations NEW and OLD become useful.
They can have rule qualifications.

Second, they don’t modify the parsetree in place. Instead they create zero or many new
parsetrees and can throw away the original one.

48

Chapter 8. The Postgres Rule System

How These Rules Work

Keep the syntax

CREATE RULE rul e_name AS ON event
TO obj ect [WHERE rul e_qualification]
DO [I NSTEAD] [action | (actions) | NOTH NG ;

in mind. In the following, "update rules" means rules that are defined ON INSERT,
UPDATE or DELETE.

Update rules get applied by the rule system when the result relation and the commandtype
of a parsetree are equal to the object and event given in the CREATE RULE command. For
update rules, the rule system creates a list of parsetrees. Initially the parsetree list is empty.
There can be zero (NOTHING keyword), one or multiple actions. To simplify, we look at a
rule with one action. This rule can have a qualification or not and it can be INSTEAD or
not.

What is a rule qualification? It is a restriction that tells when the actions of the rule should
be done and when not. This qualification can only reference the NEW and/or OLD pseudo
relations which are basically the relation given as object (but with a special meaning).

So we have four cases that produce the following parsetrees for a one-action rule.

No qualification and not INSTEAD:

The parsetree from the rule action where the original parsetrees qualification has been
added.

No qualification but INSTEAD:

The parsetree from the rule action where the original parsetrees qualification has been
added.

Qualification given and not INSTEAD:

The parsetree from the rule action where the rule qualification and the original
parsetrees qualification have been added.

Qualification given and INSTEAD:

The parsetree from the rule action where the rule qualification and the original
parsetrees qualification have been added.

The original parsetree where the negated rule qualification has been added.

Finally, if the rule is not INSTEAD, the unchanged original parsetree is added to the list.
Since only qualified INSTEAD rules already add the original parsetree, we end up with a
total maximum of two parsetrees for a rule with one action.

The parsetrees generated from rule actions are thrown into the rewrite system again and
maybe more rules get applied resulting in more or less parsetrees. So the parsetrees in the
rule actions must have either another commandtype or another resultrelation. Otherwise

49

Chapter 8. The Postgres Rule System

this recursive process will end up in a loop. There is a compiled in recursion limit of
currently 10 iterations. If after 10 iterations there are still update rules to apply the rule
system assumes a loop over multiple rule definitions and aborts the transaction.

The parsetrees found in the actions of the pg_r ewr i t e system catalog are only templates.
Since they can reference the rangetable entries for NEW and OLD, some substitutions have
to be made before they can be used. For any reference to NEW, the targetlist of the original
query is searched for a corresponding entry. If found, that entries expression is placed into
the reference. Otherwise NEW means the same as OLD. Any reference to OLD is replaced
by a reference to the rangetable entry which is the resultrelation.

A First Rule Step by Step

We want to trace changes to the sl_avail column in the shoel ace_dat a relation. So we
setup a log table and a rule that writes us entries every time and UPDATE is performed on
shoel ace_dat a.

CREATE TABLE shoel ace_| og (

sl _nane char (10), -- shoel ace changed

sl _avai l i nteger, -- new avail abl e val ue
| og_who name, -- who did it

| og_when datetinme -- when

)

CREATE RULE | og_shoel ace AS ON UPDATE TO shoel ace_dat a

VWHERE NEW sl avail != OLD.sl _avail
DO | NSERT | NTO shoel ace_l og VALUES (
NEW sl _nane,
NEW sl _avai l
get pguser nane(),
now ::text
)

One interesting detail is the casting of 'now’ in the rules INSERT action to type text.
Without that, the parser would see at CREATE RULE time, that the target type in

shoel ace_| og is a datetime and tries to make a constant from it - with success. So a
constant datetime value would be stored in the rule action and all log entries would have
the time of the CREATE RULE statement. Not exactly what we want. The casting causes
that the parser constructs a datetime(’now’::text) from it and this will be evaluated when
the rule is executed.

Now Al does
al _bundy=> UPDATE shoel ace_data SET sl __avail = 6
al _bundy-> WHERE sl _nane = 'sl 7’ ;

and we look at the logtable.

al _bundy=> SELECT * FROM shoel ace_| og;

sl _nane | sl _avail | | og_who| | og_when

---------- e T
sl 7 | 6| Al | Tue Cct 20 16: 14: 45 1998 MET DST
(1 row

That’s what we expected. What happened in the background is the following. The parser
created the parsetree (this time the parts of the original parsetree are highlighted because
the base of operations is the rule action for update rules).

50

Chapter 8. The Postgres Rule System

UPDATE shoel ace_data SET sl _avail =6
FROM shoel ace_dat a shoel ace_dat a
WHERE bpchar eq(shoel ace_data. sl _name, 'sl7');

There is a rule ’log_shoelace’ that is ON UPDATE with the rule qualification expression
i nt4ne(NEW sl _avail, OLD.sl_avail)
and one action

| NSERT | NTO shoel ace_| og SELECT
*NEW . sl _nane, *NEW.sl _avail,
get pgusernanme(), datetine(’ now ::text)
FROM shoel ace_data *NEW, shoel ace_data *COLD*,
shoel ace_I| og shoel ace_| og;

Don’t trust the output of the pg_rules system view. It specially handles the situation that
there are only references to NEW and OLD in the INSERT and outputs the VALUES
format of INSERT. In fact there is no difference between an INSERT ... VALUES and an
INSERT ... SELECT on parsetree level. They both have rangetables, targetlists and maybe
qualifications etc. The optimizer later decides, if to create an execution plan of type result,
segscan, indexscan, join or whatever for that parsetree. If there are no references to
rangetable entries leftin the parsetree , it becomes a result execution plan (the INSERT ...
VALUES version). The rule action above can truely result in both variants.

The rule is a qualified non-INSTEAD rule, so the rule system has to return two parsetrees.
The modified rule action and the original parsetree. In the first step the rangetable of the
original query is incorporated into the rules action parsetree. This results in

| NSERT | NTO shoel ace_| og SELECT
*NEW . sl _name, *NEW. sl _avai,
get pgusername(), datetine(’ now ::text)
FROM shoel ace_dat a shoel ace_data, shoel ace_data *NEW,
shoel ace_data *OLD*, shoel ace_| og shoel ace_| og;

In step 2 the rule qualification is added to it, so the result set is restricted to rows where
sl_avail changes.

| NSERT | NTO shoel ace_| og SELECT
*NEW . sl _nanme, *NEW. sl _avai,
get pgusernanme(), datetine(’ now ::text)
FROM shoel ace_dat a shoel ace_data, shoel ace_data *NEW,
shoel ace_data *OLD*, shoel ace_| og shoel ace_| og
WHERE i nt4ne(*NEW.sl _avail, *OLD*.sl _avail);

In step 3 the original parsetrees qualification is added, restricting the resultset further to
only the rows touched by the original parsetree.

| NSERT | NTO shoel ace_| og SELECT
*NEW . sl _name, *NEW. sl _avai,
get pgusernanme(), datetine(’ now ::text)
FROM shoel ace_dat a shoel ace_data, shoel ace_data *NEW,
shoel ace_data *OLD*, shoel ace_| og shoel ace_| og
WHERE i nt4ne(*NEW . sl _avail, *OLD*.sl _avail)
AND bpchar eq(shoel ace_data. sl _nane, 'sl7');

51

Chapter 8. The Postgres Rule System

Step 4 substitutes NEW references by the targetlist entries from the original parsetree or
with the matching variable references from the result relation.

| NSERT | NTO shoel ace_| og SELECT
shoel ace_dat a. sl _nane, 6,
get pgusernane(), datetime(’ now ::text)
FROM shoel ace_dat a shoel ace_data, shoel ace_data *NEW,
shoel ace_data *OLD*, shoel ace_| og shoel ace_| og
VWHERE i nt 4ne(6, *OLD*.sl _avail)
AND bpchar eq(shoel ace_data. sl _nane, 'sl7');

Step 5 replaces OLD references into resultrelation references.

| NSERT | NTO shoel ace_| og SELECT
shoel ace_dat a. sl _nane, 6,
get pgusernane(), datetime(’ now ::text)
FROM shoel ace_dat a shoel ace_data, shoel ace_data *NEW,
shoel ace_data *OLD*, shoel ace_| og shoel ace_| og
VWHERE i nt 4ne(6, shoel ace_data. sl _avail)
AND bpchar eq(shoel ace_data. sl _nane, 'sl7');

That’s it. So reduced to the max the return from the rule system is a list of two parsetrees
that are the same as the statements:

| NSERT | NTO shoel ace_| og SELECT
shoel ace_dat a. sl _nan®e, 6,
get pguser nanme(), ' now
FROM shoel ace_dat a
WHERE 6 ! = shoel ace_data. sl avail
AND shoel ace_data.sl _name = sl 7";

UPDATE shoel ace_data SET sl _avail =6
WHERE sl _nane = 'sl 7’ ;

These are executed in this order and that is exactly what the rule defines. The subtitutions
and the qualifications added ensure, that if the original query would be an

UPDATE shoel ace_data SET sl _color = 'green’
VWHERE sl _nane = 'sl 7' ;

No log entry would get written because due to the fact that this time the original parsetree
does not contain a targetlist entry for sl_avail, NEW.sl_avail will get replaced by
shoelace_data.sl_avail resulting in the extra query

| NSERT | NTO shoel ace_| og SELECT
shoel ace_dat a. sl _nane, shoel ace_dat a. sl _avai |,
get pguser nanme(), 'now
FROM shoel ace_dat a
WHERE shoel ace_data. sl _avail != shoel ace_data. sl _avai l
AND shoel ace_data.sl _nane = "sl 7 ;

and that qualification will never be true. Since the is no difference on parsetree level
between an INSERT ... SELECT, and an INSERT ... VALUES, it will also work if the

52

Chapter 8. The Postgres Rule System

original query modifies multiple rows. So if Al would issue the command

UPDATE shoel ace_data SET sl _avail = 0
WHERE sl col or = 'black’;

four rows in fact get updated (sl1, sl2, sI3 and sl4). But sI3 already has sl_avail = 0. This
time, the original parsetrees qualification is different and that results in the extra parsetree

I NSERT | NTO shoel ace_| og SELECT
shoel ace_dat a. sl _nane, 0,
get pguser nane(), 'now
FROM shoel ace_dat a
VWHERE 0 ! = shoel ace_dat a. sl _avai |
AND shoel ace_dat a. sl _col or = 'black’;

This parsetree will surely insert three new log entries. And that’s absolutely correct.

It is important, that the original parsetree is executed last. The Postgres "traffic cop" does a
command counter increment between the execution of the two parsetrees so the second one
can see changes made by the first. If the UPDATE would have been executed first, all the
rows are already set to zero, so the logging INSERT would not find any row where 0 !=
shoelace_data.sl_avail.

Cooperation with Views

A simple way to protect view relations from the mentioned possibility that someone can
INSERT, UPDATE and DELETE invisible data on them is to let those parsetrees get
thrown away. We create the rules

CREATE RULE shoe_ins_protect AS ON | NSERT TO shoe
DO | NSTEAD NOTHI NG,

CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
DO | NSTEAD NOTHI NG,

CREATE RULE shoe_del _protect AS ON DELETE TO shoe
DO | NSTEAD NOTHI NG,

If Al now tries to do any of these operations on the view relation shoe, the rule system
will apply the rules. Since the rules have no actions and are INSTEAD, the resulting list of
parsetrees will be empty and the whole query will become nothing because there is nothing
left to be optimized or executed after the rule system is done with it.

Note: This fact might irritate frontend applications because absolutely nothing
happened on the database and thus, the backend will not return anything for the
query. Not even a PGRES_EMPTY_QUERY or so will be available in libpg. In psql,
nothing happens. This might change in the future.

A more sophisticated way to use the rule system is to create rules that rewrite the parsetree
into one that does the right operation on the real tables. To do that on the shoel ace view,
we create the following rules:

CREATE RULE shoel ace_ins AS ON | NSERT TO shoel ace
DO | NSTEAD
I NSERT | NTO shoel ace_data VALUES (
NEW sl _nanme, NEW sl _avail,
NEW sl _col or, NEWSsI _|en,
NEW sl _unit);

53

Chapter 8. The Postgres Rule System

CREATE RULE shoel ace_upd AS ON UPDATE TO shoel ace
DO | NSTEAD
UPDATE shoel ace_data SET
sl _nane = NEW sl _nane,
sl _avail = NEWsl _avail,
sl _color = NEWsl _col or,
sl _len = NEWsI _| en,
sl _unit = NEWsI _unit
VWHERE sl _name = OLD. sl _nane;

CREATE RULE shoel ace_del AS ON DELETE TO shoel ace
DO | NSTEAD
DELETE FROM shoel ace_dat a
WHERE sl _nane = QOLD. sl _nane;

Now there is a pack of shoelaces arriving in Al’s shop and it has a big partlist. Al is not
that good in calculating and so we don’t want him to manually update the shoelace view.
Instead we setup two little tables, one where he can insert the items from the partlist and
one with a special trick. The create commands for anything are:

CREATE TABLE shoel ace_arrive (
arr_nane char (10),
arr_quant i nt eger

)

CREATE TABLE shoel ace_ok (
ok_nane char (10),
ok_quant i nt eger

)

CREATE RULE shoel ace_ok_i ns AS ON I NSERT TO shoel ace_ok

DO | NSTEAD
UPDATE shoel ace SET
sl _avail = sl_avail + NEW ok_quant

WHERE sl _nane = NEW ok_nane;
Now Al can sit down and do whatever until

al _bundy=> SELECT * FROM shoel ace_arrive
arr_nane |arr_quant

__________ .
sl 3 | 10
sl 6 | 20
sl 8 | 20
(3 rows)

54

Chapter 8. The Postgres Rule System

is exactly that what’s on the part list. We take a quick look at the current data,

al _bundy=> SELECT * FROM shoel ace ORDER BY sl _nane;

sl _nane | sl _avail|sl_color |[sl_len|sl_unit |sl_len_cm
---------- T T e I e
sl 1 | 5| bl ack | 80| cm | 80
sl 2 | 6| bl ack | 100l cm | 100
sl 7 | 6| br own | 60| cm | 60
sl 3 | 0| bl ack | 35| inch | 88.9
sl 4 | 8| bl ack | 40| i nch | 101.6
sl 8 | 1| br own | 40| i nch | 101.6
sl 5 | 4| br own | 1l m | 100
sl 6 | 0| br own | 0.9 m | 90
(8 rows)

move the arrived shoelaces in

al _bundy=> | NSERT | NTO shoel ace_ok SELECT * FROM shoel ace_arri ve;

and check the results

al _bundy=> SELECT * FROM shoel ace ORDER BY sl _nane;

sl _nane | sl _avail|sl_color |[sl_len|sl_unit |sl_len_cm
---------- T T T T I U
sl 1 | 5| bl ack | 80| cm | 80
sl 2 | 6| bl ack | 100l cm | 100
sl 7 | 6| br own | 60| cm | 60
sl 4 | 8| bl ack | 40| i nch | 101. 6
sl 3 | 10| bl ack | 35| inch | 88.9
sl 8 | 21| br own | 40| i nch | 101.6
sl 5 | 4| br own | 1l m | 100
sl 6 | 20| br own | 0.9 m | 90
(8 rows)

al _bundy=> SELECT * FROM shoel ace_| og;

sl _nane | sl _avai |l | | og_who| | og_when

---------- R e L Ty R S e
sl 7 | 6| Al | Tue Oct 20 19: 14: 45 1998 MET DST
sl 3 | 10| Al | Tue Oct 20 19:25:16 1998 MET DST
sl 6 | 20| Al | Tue Oct 20 19: 25:16 1998 MET DST
sl 8 | 21| A | Tue Cct 20 19:25:16 1998 MET DST
(4 rows)

It’s a long way from the one INSERT ... SELECT to these results. And it’s description
will be the last in this document (but not the last example :-). First there was the parsers

output

I NSERT | NTO shoel ace_ok SELECT
shoel ace_arrive. arr_nane,

shoel ace_arrive. arr_quant

FROM shoel ace_arrive shoel ace_arri ve,

shoel ace_ok shoel ace_ok;

Now the first rule "shoelace_ok_ins’ is applied and turns it into

UPDATE shoel ace SET
sl _avail =

shoel ace_arrive. arr_quant)
FROM shoel ace_arrive shoel ace_arri ve,

i nt4pl (shoel ace. sl _avai |,

shoel ace_ok shoel ace_ok,

55

Chapter 8. The Postgres Rule System

shoel ace_ok *QOLD*, shoel ace_ok *NEW,
shoel ace shoel ace
VWHERE bpchar eq(shoel ace. sl _nanme, show ace_arrive. arr_nane);

and throws away the original INSERT on shoel ace_ok. This rewritten query is passed to
the rule system again and the second applied rule ’shoelace_upd’ produced

UPDATE shoel ace_data SET
sl _nane = shoel ace. sl _nan®e,
sl _avail = int4pl (shoel ace. sl _avail,

shoel ace_arrive. arr_quant),
sl _col or = shoel ace. sl _col or,
sl _len = shoel ace. sl _| en,
sl _unit = shoel ace.sl _unit
FROM shoel ace_arrive shoel ace_arrive, shoel ace_ok shoel ace_ok,

shoel ace_ok *OLD*, shoel ace_ok *NEW,
shoel ace shoel ace, shoel ace *QOLD*,
shoel ace *NEW, shoel ace_data show ace_data

WHERE bpchar eq(shoel ace. sl _nane, show ace_arrive. arr_nane)

AND bpchar eq(shoel ace_dat a. sl _nane, shoel ace. sl _nan®);

Again it’s an INSTEAD rule and the previous parsetree is trashed. Note that this query sill
uses the view shoel ace But the rule system isn’t finished with this loop so it continues
and applies the rule °_RETshoelace’ on it and we get

UPDATE shoel ace_data SET
sl _nane = s.sl_nane,
sl _avail = int4pl(s.sl_avail, shoelace_arrive.arr_quant),
sl _color = s.sl_color,
sl _len = s.sl_len,
sl _unit = s.sl_unit
FROM shoel ace_arrive shoel ace_arrive, shoel ace_ok shoel ace_ok,
shoel ace_ok *QOLD*, shoel ace_ok *NEW,
shoel ace shoel ace, shoel ace *OLD*,
shoel ace *NEW, shoel ace_data show ace_dat a,
shoel ace *OLD*, shoel ace *NEW,
shoel ace_data s, unit u
VWHERE bpchareq(s. sl _name, show ace_arrive. arr_nane)
AND bpchar eq(shoel ace_dat a. sl _nane, s.sl_nane);

56

Chapter 8. The Postgres Rule System

Again an update rule has been applied and so the wheel turns on and we are in rewrite
round 3. This time rule "log_shoelace’ gets applied what produces the extra parsetree

| NSERT | NTO shoel ace_| og SELECT
s. sl _nane,
intdpl (s.sl_avail, shoelace_arrive.arr_quant),
get pguser nane(),
datetime(’ now ::text)
FROM shoel ace_arrive shoel ace_arrive, shoel ace_ok shoel ace_ok,
shoel ace_ok *OLD*, shoel ace_ok *NEW,
shoel ace shoel ace, shoel ace *OLD*,
shoel ace *NEW, shoel ace_data show ace_dat a,
shoel ace *OLD*, shoel ace *NEW,
shoel ace_data s, unit u
shoel ace_data *OLD*, shoel ace_data *NEW
shoel ace_| og shoel ace_| og
WHERE bpchareq(s.sl _nane, show ace_arrive. arr_nane)
AND bpchar eq(shoel ace_dat a. sl _nane, s.sl_nane);
AND i nt4ne(intdpl (s.sl_avail, shoelace_arrive.arr_quant),
s.sl _avail);

After that the rule system runs out of rules and returns the generated parsetrees. So we end
up with two final parsetrees that are equal to the SQL statements

| NSERT | NTO shoel ace_| og SELECT
s. sl _nane,
s.sl _avail + shoel ace_arrive. arr_quant,
get pguser nane(),
" now
FROM shoel ace_arrive shoel ace_arrive, shoel ace_data
shoel ace_dat a
shoel ace_data s
WHERE s. sl _nane = shoel ace_arrive. arr_nane
AND shoel ace_dat a. sl _name = s. sl _nane
AND s. sl _avail + shoel ace_arrive.arr_quant != s.sl_avail

UPDATE shoel ace_data SET
sl _avail = shoel ace _data.sl _avail +
shoel ace_arrive. arr_quant
FROM shoel ace_arrive shoel ace_arrive
shoel ace_dat a shoel ace_dat a,
shoel ace_data s
WHERE s. sl _nanme = shoel ace_arrive. sl _nane
AND shoel ace_dat a. sl _nanme = s. sl _nane;

The result is that data coming from one relation inserted into another, changed into
updates on a third, changed into updating a fourth plus logging that final update in a fifth
gets reduced into two queries.

There is a little detail that’s a bit ugly. Looking at the two queries turns out, that the
shoel ace_dat a relation appears twice in the rangetable where it could definitely be

57

Chapter 8. The Postgres Rule System

reduced to one. The optimizer does not handle it and so the execution plan for the rule
systems output of the INSERT will be

Nest ed Loop
-> Merge Join
-> Seq Scan
-> Sort
-> Seq Scan on s
-> Seq Scan
-> Sort
-> Seq Scan on shoel ace_arrive
-> Seq Scan on shoel ace_data

while omitting the extra rangetable entry would result in a

Mer ge Join
-> Seq Scan
-> Sort
-> Seq Scan on s
-> Seq Scan
-> Sort
-> Seq Scan on shoel ace_arrive

that totally produces the same entries in the log relation. Thus, the rule system caused one
extra scan on the shoel ace_dat a relation that is absolutely not necessary. And the same
obsolete scan is done once more in the UPDATE. But it was a really hard job to make that
all possible at all.

A final demonstration of the Postgres rule system and it’s power. There is a cute blonde
that sells shoelaces. And what Al could never realize, she’s not only cute, she’s smart too -
a little too smart. Thus, it happens from time to time that Al orders shoelaces that are
absolutely not sellable. This time he ordered 1000 pairs of magenta shoelaces and since
another kind is currently not available but he committed to buy some, he also prepared his
database for pink ones.

al _bundy=> | NSERT | NTO shoel ace VALUES

al _bundy- > ('sl9, 0, "pink’, 35.0, '"inch’, 0.0);
al _bundy=> | NSERT | NTO shoel ace VALUES
al _bundy- > ('sl10", 1000, ’'magenta’, 40.0, 'inch’, 0.0);

Since this happens often, we must lookup for shoelace entries, that fit for absolutely no
shoe sometimes. We could do that in a complicated statement every time, or we can setup a
view for it. The view for this is

CREATE VI EW shoel ace_obsol ete AS
SELECT * FROM shoel ace WHERE NOT EXI STS
(SELECT shoename FROM shoe WHERE sl col or = sl _color);

It’s output is

al _bundy=> SELECT * FROM shoel ace_obsol et €;

sl _nane | sl _avail|sl_color |[sl_len|sl_unit |sl_len_cm
---------- T T T T I U
sl 9 | 0| pi nk | 35| i nch | 88.9
sl 10 | 1000| magent a | 40| i nch | 101.6

58

Chapter 8. The Postgres Rule System

For the 1000 magenta shoelaces we must debt Al before we can throw ’em away, but
that’s another problem. The pink entry we delete. To make it a little harder for Postgres, we
don’t delete it directly. Instead we create one more view

CREATE VI EW shoel ace_candel ete AS
SELECT * FROM shoel ace_obsol ete WHERE sl _avail = 0;

and do it this way:

DELETE FROM shoel ace WHERE EXI STS
(SELECT * FROM shoel ace_candel et e
WHERE sl _nane = shoel ace. sl _nane);

Voila:

al _bundy=> SELECT * FROM shoel ace;

sl _nane | sl _avail|sl _color |sl_len|sl_unit |sl_len_cm
---------- T D C T T TR ISR S
sl 1 | 5| bl ack | 80| cm | 80
sl 2 | 6| bl ack | 100| cm | 100
sl 7 | 6| br own | 60| cm | 60
sl 4 | 8| bl ack | 40| i nch | 101.6
sl 3 | 10| bl ack | 35| i nch | 88.9
sl 8 | 21| br own | 40| i nch | 101.6
sl 10 | 1000| magent a | 40| i nch | 101.6
sl 5 | 4| br own | 1l m | 100
sl 6 | 20| br own | 0.9 m | 90
(9 rows)

A DELETE on a view, with a subselect qualification that in total uses 4 nesting/joined
views, where one of them itself has a subselect qualification containing a view and where
calculated view columns are used, gets rewritten into one single parsetree that deletes the
requested data from a real table.

I think there are only a few situations out in the real world, where such a construct is
necessary. But it makes me feel comfortable that it works.

The truth is: Doing this | found one more bug while writing this document. But after
fixing that | was a little amazed that it works at all.

Rules and Permissions

Due to rewriting of queries by the Postgres rule system, other tables/views than those used
in the original query get accessed. Using update rules, this can include write access to
tables.

Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is
automatically the owner of the rewrite rules that are defined for it. The Postgres rule
system changes the behaviour of the default access control system. Relations that are used
due to rules get checked during the rewrite against the permissions of the relation owner,
the rule is defined on. This means, that a user does only need the required permissions for
the tables/views he names in his queries.

For example: A user has a list of phone numbers where some of them are private, the
others are of interest for the secretary of the office. He can construct the following:

59

Chapter 8. The Postgres Rule System

CREATE TABLE phone_data (person text, phone text, private bool);
CREATE VI EW phone_nunber AS

SELECT person, phone FROM phone_data WHERE NOT pri vate;
GRANT SELECT ON phone_nunber TO secretary;

Nobody except him (and the database superusers) can access the phone_data table. But
due to the GRANT, the secretary can SELECT from the phone_number view. The rule
system will rewrite the SELECT from phone_number into a SELECT from phone_data and
add the qualification that only entries where private is false are wanted. Since the user is
the owner of phone_number, the read access to phone_data is now checked against his
permissions and the query is considered granted. The check for accessing phone_number is
still performed, so nobody than the secretary can use it.

The permissions are checked rule by rule. So the secretary is for now the only one who can
see the public phone numbers. But the secretary can setup another view and grant access to
that to public. Then, anyone can see the phone_number data through the secretaries view.
What the secretary cannot do is to create a view that directly accesses phone_data (actually
he can, but it will not work since every access aborts the transaction during the permission
checks). And as soon as the user will notice, that the secretary opened his phone_number
view, he can REVOKE his access. Immediately any access to the secretaries view will fail.

Someone might think that this rule by rule checking is a security hole, but in fact it isn’t. If
this would not work, the secretary could setup a table with the same columns as
phone_number and copy the data to there once per day. Then it’s his own data and he can
grant access to everyone he wants. A GRANT means "l trust you". If someone you trust
does the thing above, it’s time to think it over and then REVOKE.

This mechanism does also work for update rules. In the examples of the previous section,
the owner of the tables in Al’s database could GRANT SELECT, INSERT, UPDATE and
DELETE on the shoelace view to al. But only SELECT on shoelace_log. The rule action to
write log entries will still be executed successfull. And Al could see the log entries. But he
cannot create fake entries, nor could he manipulate or remove existing ones.

Warning: GRANT ALL currently includes RULE permission. This means the granted
user could drop the rule, do the changes and reinstall it. | think this should get
changed quickly.

Rules versus Triggers

Many things that can be done using triggers can also be implemented using the Postgres
rule system. What currently cannot be implemented by rules are some kinds of constraints.
It is possible, to place a qualified rule that rewrites a query to NOTHING if the value of a
column does not appear in another table. But then the data is silently thrown away and
that’s not a good idea. If checks for valid values are required, and in the case of an invalid
value an error message should be generated, it must be done by a trigger for now.

On the other hand a trigger that is fired on INSERT on a view can do the same as a rule,
put the data somewhere else and suppress the insert in the view. But it cannot do the same
thing on UPDATE or DELETE, because there is no real data in the view relation that could
be scanned and thus the trigger would never get called. Only a rule will help.

For the things that can be implemented by both, it depends on the usage of the database,
which is the best. A trigger is fired for any row affected once. A rule manipulates the
parsetree or generates an additional one. So if many rows are affected in one statement, a

60

Chapter 8. The Postgres Rule System

rule issuing one extra query would usually do a better job than a trigger that is called for
any single row and must execute his operations this many times.

For example: There are two tables

CREATE TABLE conputer (

host nane t ext -- indexed
manuf act ur er t ext -- indexed
)
CREATE TABLE software (
sof tware text, -- indexed
host nane t ext -- indexed

)

Both tables have many thousands of rows and the index on hostname is unique. The
hostname column contains the full qualified domain name of the computer. The rule/trigger
should constraint delete rows from software that reference the deleted host. Since the
trigger is called for each individual row deleted from computer, it can use the statement

DELETE FROM sof t war e WHERE host nanme = $1;

in a prepared and saved plan and pass the hostname in the parameter. The rule would be
written as

CREATE RULE comput er _del AS ON DELETE TO conput er
DO DELETE FROM sof t ware WHERE host nane = OLD. host nane;

Now we look at different types of deletes. In the case of a
DELETE FROM conput er WHERE hostname = ’'nypc.local . net’;

the table computer is scanned by index (fast) and the query issued by the trigger would
also be an index scan (fast too). The extra query from the rule would be a

1

DELETE FROM sof tware WHERE conput er. host nane = ' nypc. | ocal . net
AND sof t war e. host nane

conput er . host nane;
Since there are appropriate indices setup, the optimizer will create a plan of

Nest | oop
-> | ndex Scan using conp_hostidx on conputer
-> |Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule
implementation. With the next delete we want to get rid of all the 2000 computers where
the hostname starts with "old’. There are two possible queries to do that. One is

DELETE FROM conput er WHERE hostnane >= 'ol d’
AND hostnanme < ’'ol e’

Where the plan for the rule query will be a

Hash Join
-> Seq Scan on software
-> Hash

-> | ndex Scan using conp_hostidx on comnputer

61

Chapter 8. The Postgres Rule System

The other possible query is a
DELETE FROM conput er WHERE hostnane ~ '“ol d’;
with the execution plan

Nest | oop
-> | ndex Scan using conp_hostidx on conputer
-> |ndex Scan using soft_hostidx on software

This shows, that the optimizer does not realize that the qualification for the hosthame on
computer could also be used for an index scan on software when there are multiple
qualification expressions combined with AND, what he does in the regexp version of the
query. The trigger will get invoked once for any of the 2000 old computers that have to be
deleted and that will result in one index scan over computer and 2000 index scans for the
software. The rule implementation will do it with two queries over indices. And it depends
on the overall size of the software table if the rule will still be faster in the segscan
situation. 2000 query executions over the SPI manager take some time, even if all the index
blocks to look them up will soon appear in the cache.

The last query we look at is a
DELETE FROM conput er WHERE manuf acurer = ’bini;

Again this could result in many rows to be deleted from computer. So the trigger will
again fire many queries into the executor. But the rule plan will again be the Nestloop over
two IndexScan’s. Only using another index on computer:

Nest | oop
-> | ndex Scan using conp_manufidx on conputer
-> |ndex Scan using soft_hostidx on software

resulting from the rules query

DELETE FROM sof tware WHERE conput er. manufacurer = 'bim
AND sof t war e. host name =
conput er . host nane;

In any of these cases, the extra queries from the rule system will be more or less
independent from the number of affected rows in a query.

Another situation is cases on UPDATE where it depends on the change of an attribute if an
action should be performed or not. In Postgres version 6.4, the attribute specification for
rule events is disabled (it will have it’s comeback latest in 6.5, maybe earlier - stay tuned).
So for now the only way to create a rule as in the shoelace_log example is to do it with a
rule qualification. That results in an extra query that is performed always, even if the
attribute of interest cannot change at all because it does not appear in the targetlist of the
initial query. When this is enabled again, it will be one more advantage of rules over
triggers. Optimization of a trigger must fail by definition in this case, because the fact that
it’s actions will only be done when a specific attribute is updated is hidden in it’s
functionality. The definition of a trigger only allows to specify it on row level, so whenever
a row is touched, the trigger must be called to make it’s decision. The rule system will
know it by looking up the targetlist and will suppress the additional query completely if the
attribute isn’t touched. So the rule, qualified or not, will only do its scans if there ever
could be something to do.

62

Chapter 8. The Postgres Rule System

Rules will only be significant slower than triggers if their actions result in large and bad
qualified joins, a situation where the optimizer fails. They are a big hammer. Using a big
hammer without caution can cause big damage. But used with the right touch, they can hit
any nail on the head.

63

Chapter 9. Interfacing Extensions To
Indices

The procedures described thus far let you define a new type, new functions and new
operators. However, we cannot yet define a secondary index (such as a B-tree, R-tree or
hash access method) over a new type or its operators.

Look back at The major Postgres system catalogs. The right half shows the catalogs that
we must modify in order to tell Postgres how to use a user-defined type and/or user-defined
operators with an index (i.e., pg_am pg_anop, pg_anproc, pg_oper ator and
pg_opcl ass). Unfortunately, there is no simple command to do this. We will demonstrate
how to modify these catalogs through a running example: a new operator class for the
B-tree access method that stores and sorts complex numbers in ascending absolute value
order.

The pg_amclass contains one instance for every user defined access method. Support for
the heap access method is built into Postgres, but every other access method is described
here. The schema is

Table 9-1. Index Schema

Attribute Description

amname name of the access method

amowner object id of the owner’s instance in pg_user

amstrategies number of strategies for this access method (see below)
amsupport number of support routines for this access method (see below)
amorderstrategy zero if the index offers no sort order, otherwise the strategy

number of the strategy operator that describes the sort order

amgettuple

aminsert

procedure identifiers for interface routines to the access
method. For example, regproc ids for opening, closing, and
getting instances from the access method appear here.

The object ID of the instance in pg_amis used as a foreign key in lots of other classes.
You don’t need to add a new instance to this class; all you’re interested in is the object ID
of the access method instance you want to extend:

SELECT oi d FROM pg_am WHERE amane = ’'btree’;

64

Chapter 9. Interfacing Extensions To Indices

We will use that SELECT in a WHERE clause later.

The anst r at egi es attribute exists to standardize comparisons across data types. For
example, B-trees impose a strict ordering on keys, lesser to greater. Since Postgres allows
the user to define operators, Postgres cannot look at the name of an operator (eg, ">" or
"<") and tell what kind of comparison it is. In fact, some access methods don’t impose any
ordering at all. For example, R-trees express a rectangle-containment relationship, whereas
a hashed data structure expresses only bitwise similarity based on the value of a hash
function. Postgres needs some consistent way of taking a qualification in your query,
looking at the operator and then deciding if a usable index exists. This implies that Postgres
needs to know, for example, that the "<="and ">" operators partition a B-tree. Postgres
uses strategies to express these relationships between operators and the way they can be
used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain
how B-tree strategies work because you’ll need to know that to add a new operator class. In
the pg_amclass, the amstrategies attribute is the number of strategies defined for this
access method. For B-trees, this number is 5. These strategies correspond to

Table 9-2. B-tree Strategies

Operation Index

less than 1

less than or equal

equal

greater than or equal

gl Jw DN

greater than

The idea is that you’ll need to add procedures corresponding to the comparisons above to
the pg_anop relation (see below). The access method code can use these strategy numbers,
regardless of data type, to figure out how to partition the B-tree, compute selectivity, and
so on. Don’t worry about the details of adding procedures yet; just understand that there
must be a set of these procedures fori nt2, int4, oid, and every other data type on
which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use an
index. Some access methods require other support routines in order to work. For example,
the B-tree access method must be able to compare two keys and determine whether one is
greater than, equal to, or less than the other. Similarly, the R-tree access method must be
able to compute intersections, unions, and sizes of rectangles. These operations do not
correspond to user qualifications in SQL queries; they are administrative routines used by
the access methods, internally.

In order to manage diverse support routines consistently across all Postgres access
methods, pg_amincludes an attribute called ansuppor t . This attribute records the number
of support routines used by an access method. For B-trees, this number is one -- the routine
to take two keys and return -1, 0, or +1, depending on whether the first key is less than,
equal to, or greater than the second.

65

Chapter 9. Interfacing Extensions To Indices

Note: Strictly speaking, this routine can return a negative number (< 0), 0, or a
non-zero positive number (> 0).

The anst r at egi es entry in pg_amis just the number of strategies defined for the access
method in question. The procedures for less than, less equal, and so on don’t appear in
pg_am Similarly, amsupport is just the number of support routines required by the access
method. The actual routines are listed elsewhere.

By the way, the anor der st r at egy entry tells whether the access method supports
ordered scan. Zero means it doesn’t; if it does, anor der st r at egy is the number of the
strategy routine that corresponds to the ordering operator. For example, btree has
anor der st r at egy = 1 which is its "less than" strategy number.

The next class of interest is pg_opcl ass. This class exists only to associate an operator
class name and perhaps a default type with an operator class oid. Some existing opclasses
areint2_ops, int4_ops, andoi d_ops. You need to add an instance with your opclass
name (for example, conpl ex_abs_ops) to pg_opcl ass. The oi d of this instance will be
a foreign key in other classes, notably pg_anop.

I NSERT | NTO pg_opcl ass (opcnane, opcdeftype)
SELECT ' conpl ex_abs_ops’, oid FROM pg_type WHERE typnane =
" compl ex’ ;

SELECT oi d, opcnane, opcdeftype
FROM pg_opcl ass
WHERE opcnane = ' conpl ex_abs_ops’;

oid | opcnane | opcdeftype
________ e,
277975 | conpl ex_abs_ops | 277946
(1 row)

Note that the oid for your pg_opcl ass instance will be different! Don’t worry about this
though. We’ll get this number from the system later just like we got the oid of the type
here.

The above example assumes that you want to make this new opclass the default index
opclass for the conpl ex datatype. If you don’t, just insert zero into opcdef t ype, rather
than inserting the datatype’s oid:

| NSERT | NTO pg_opcl ass (opcnane, opcdeftype) VALUES
(' conpl ex_abs_ops’, 0);

So now we have an access method and an operator class. We still need a set of operators.
The procedure for defining operators was discussed earlier in this manual. For the
conpl ex_abs_ops operator class on Btrees, the operators we require are:

absol ute val ue | ess-than

absol ut e val ue | ess-than-or-equal
absol ut e val ue equal

absol ute val ue greater-than-or-equal

66

Chapter 9. Interfacing Extensions To Indices

absol ute val ue greater-than

Suppose the code that implements the functions defined is stored in the file
PGROOT/ src/ tutorial / conpl ex. c

Part of the C code looks like this: (note that we will only show the equality operator for the
rest of the examples. The other four operators are very similar. Refer to conpl ex. c or
conpl ex. sour ce for the details.)

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

bool

conpl ex_abs_eq(Conmpl ex *a, Conpl ex *b)

{
doubl e amag = Mag(a), bmag = Mag(b);
return (amag==bmag);

We make the function known to Postgres like this:

CREATE FUNCTI ON conpl ex_abs_eq(conpl ex, conpl ex)
RETURNS bool
AS ’ PGROOT/ tut ori al / obj / conpl ex. so’
LANGUAGE ' ¢’ ;

There are some important things that are happening here.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal, and
greater-than for conpl ex are being defined. We can only have one operator named, say, =
and taking type conpl ex for both operands. In this case we don’t have any other operator
= for conpl ex, but if we were building a practical datatype we’d probably want = to be the
ordinary equality operation for complex numbers. In that case, we’d need to use some other
operator name for complex_abs_eq.

Second, although Postgres can cope with operators having the same name as long as they
have different input datatypes, C can only cope with one global routine having a given
name, period. So we shouldn’t name the C function something simple like abs_eq.
Usually it’s a good practice to include the datatype name in the C function name, so as not
to conflict with functions for other datatypes.

Third, we could have made the Postgres name of the function abs_eq, relying on Postgres
to distinguish it by input datatypes from any other Postgres function of the same name. To
keep the example simple, we make the function have the same names at the C level and
Postgres level.

Finally, note that these operator functions return Boolean values. The access methods rely
on this fact. (On the other hand, the support function returns whatever the particular access
method expects -- in this case, a signed integer.) The final routine in the file is the "support
routine" mentioned when we discussed the amsupport attribute of the pg_amclass. We will
use this later on. For now, ignore it.

67

Chapter 9. Interfacing Extensions To Indices

Now we are ready to define the operators:

CREATE OPERATOR = (
|l eftarg = conplex, rightarg = conpl ex
procedure = conpl ex_abs_eq
restrict = eqsel, join = eqjoinse

)

The important things here are the procedure names (which are the C functions defined
above) and the restriction and join selectivity functions. You should just use the selectivity
functions used in the example (see conpl ex. sour ce). Note that there are different such
functions for the less-than, equal, and greater-than cases. These must be supplied, or the
optimizer will be unable to make effective use of the index.

The next step is to add entries for these operators to the pg_anop relation. To do this,
we’ll need the oi ds of the operators we just defined. We’ll look up the names of all the
operators that take two conpl exes, and pick ours out:

SELECT o.0id AS opoi d, o.oprnane

I NTO TABLE conpl ex_ops_tnp

FROM pg_operator o, pg_type t

WHERE o.oprleft =t.oid and o.oprright =t.oid

and t.typname = 'conpl ex’;

opoid | oprname

________ Fom e - -

277963 | +

277970 | <

277971 | <=

277972 | =

277973 | >=

277974 | >

(6 rows)

(Again, some of your oi d numbers will almost certainly be different.) The operators we
are interested in are those with oi ds 277970 through 277974. The values you get will
probably be different, and you should substitute them for the values below. We will do this
with a select statement.

Now we’re ready to update pg_anop with our new operator class. The most important
thing in this entire discussion is that the operators are ordered, from less than through
greater than, in pg_anop. We add the instances we need:

| NSERT | NTO pg_amop (anopi d, anopcl ai d, anmopopr, anopstrategy)
SELECT amoid, opcl.oid, c.opoid, 1
FROM pg_am am pg_opcl ass opcl, conplex_ops_tnmp ¢
WHERE ammane = ' btree’ AND
opcnane = 'conpl ex_abs_ops’ AND
c.oprname = ’'<';

Now do this for the other operators substituting for the 1" in the third line above and the
"<"in the last line. Note the order: "less than™ is 1, "less than or equal™ is 2, "equal” is 3,
"greater than or equal™ is 4, and "greater than" is 5.

68

Chapter 9. Interfacing Extensions To Indices

The next step is registration of the "support routine™ previously described in our discussion
of pg_am The oi d of this support routine is stored in the pg_anpr oc class, keyed by the
access method oi d and the operator class oi d. First, we need to register the function in
Postgres (recall that we put the C code that implements this routine in the bottom of the file
in which we implemented the operator routines):

CREATE FUNCTI ON conpl ex_abs_cnp(conpl ex, conpl ex)
RETURNS i nt 4

AS ' PGROOT/ tutori al / obj / conpl ex. so’

LANGUACE 'c¢’;

SELECT oi d, proname FROM pg_proc
WHERE pronane = 'conpl ex_abs_cnp’;

oid | pr oname
________ e,
277997 | conpl ex_abs_cnp
(1 row

(Again, your oi d number will probably be different.) We can add the new instance as
follows:

| NSERT | NTO pg_anproc (am d, anopclaid, anproc, anprocnum
SELECT a.oid, b.oid, c.oid, 1
FROM pg_am a, pg_opclass b, pg_proc c
VWHERE a.ammane = 'btree’ AND
b. opcnane = ' conpl ex_abs_ops’ AND
c. proname = ’'conpl ex_abs_cnp’;

And we’re done! (Whew.) It should now be possible to create and use btree indexes on
conpl ex columns.

69

Chapter 10. Index Cost Estimation
Functions

Author: Written by Tom Lane (mailto:tgl@sss.pgh.pa.us) on 2000-01-24.

Note: This must eventually become part of a much larger chapter about writing new
index access methods.

Every index access method must provide a cost estimation function for use by the
planner/optimizer. The procedure OID of this function is given in the antost esti nat e
field of the access method’s pg_amentry.

Note: Prior to Postgres 7.0, a different scheme was used for registering index-specifi
cost estimation functions.

C

The amcostestimate function is given a list of WHERE clauses that have been determined
to be usable with the index. It must return estimates of the cost of accessing the index and

the selectivity of the WHERE clauses (that is, the fraction of main-table tuples that will be
retrieved during the index scan). For simple cases, nearly all the work of the cost estimator

can be done by calling standard routines in the optimizer; the point of having an
amcostestimate function is to allow index access methods to provide index-type-specific
knowledge, in case it is possible to improve on the standard estimates.
Each amcostestimate function must have the signature:
voi d
ancostestimate (Query *root,

Rel OptInfo *rel,

I ndexOpt I nf o *i ndex,

Li st *indexQual s,

Cost *indexStartupCost,

Cost *i ndexTot al Cost,
Sel ectivity *indexSel ectivity);

The first four parameters are inputs:

root

The query being processed.

rel

The relation the index is on.

index

The index itself.

indexQuals

List of index qual clauses (implicitly ANDed); a NIL list indicates no qualifiers are
available.

70

Functions

Chapter 10. Index Cost Estimation

The last three parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index startup processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

Note that cost estimate functions must be written in C, not in SQL or any available
procedural language, because they must access internal data structures of the
planner/optimizer.

The index access costs should be computed in the units used by
src/backend/optimizer/path/costsize.c: a sequential disk block fetch has cost 1.0, a
nonsequential fetch has cost random_page cost, and the cost of processing one index tuple
should usually be taken as cpu_index_tuple_cost (which is a user-adjustable optimizer
parameter). In addition, an appropriate multiple of cpu_operator_cost should be charged for
any comparison operators invoked during index processing (especially evaluation of the
indexQuals themselves).

The access costs should include all disk and CPU costs associated with scanning the index
itself, but NOT the costs of retrieving or processing the main-table tuples that are identified
by the index.

The "startup cost" is the part of the total scan cost that must be expended before we can
begin to fetch the first tuple. For most indexes this can be taken as zero, but an index type
with a high startup cost might want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the main table tuples that
will be retrieved during the index scan. In the case of a lossy index, this will typically be
higher than the fraction of tuples that actually pass the given qual conditions.

Cost Estimation
A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of main-table tuples that will be visited based on the
given qual conditions. In the absence of any index-type-specific knowledge, use the
standard optimizer function clauselist_selectivity():

*indexSel ectivity = clauselist_selectivity(root, indexQuals,
Ifirsti(rel--
>relids));

2. Estimate the number of index tuples that will be visited during the scan. For many
index types this is the same as indexSelectivity times the number of tuples in the
index, but it might be more. (Note that the index’s size in pages and tuples is available
from the IndexOptinfo struct.)

71

Functions

Chapter 10. Index Cost Estimation

3. Estimate the number of index pages that will be retrieved during the scan. This might
be just indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*

* Qur generic assunption is that the index pages will be
read

* sequentially, so they have cost 1.0 each, not
random page_cost.

* Also, we charge for evaluation of the indexquals at each
i ndex tuple.

* AIl the costs are assuned to be paid increnentally during
the scan.

*/

*indexSt artupCost = 0;

*i ndexTot al Cost = numl ndexPages +

(cpu_i ndex_tupl e_cost + cost_qual _eval (i ndexQual s)) *

num ndexTupl es;

Examples of cost estimator functions can be found in
src/ backend/ util s/ adt/sel funcs.c

By convention, the pg_pr oc entry for an antost est i mat e function should show

prorettype = 0
pronargs = 7

proargtypes =0 000000

We use zero (“opaque™) for all the arguments since none of them have types that are
known in pg_type.

72

Chapter 11. GiST Indices

The information about GIST is at http://GiST.CS.Berkeley.EDU:8000/gist/ with more on
different indexing and sorting schemes at
http://s2k-ftp.CS.Berkeley.EDU:8000/personal/jmh/ And there is more interesting reading
at the Berkely database site at http://epoch.cs.berkeley.edu:8000/.

Author: This extraction from an e-mail sent by Eugene Selkov Jr.
(mailto:selkovjr@mcs.anl.gov) contains good information on GiST. Hopefully we will
learn more in the future and update this information. - thomas 1998-03-01

Well, I can’t say | quite understand what’s going on, but at least | (almost) succeeded in
porting GiST examples to linux. The GiST access method is already in the postgres tree
(src/ backend/ access/ gi st).

Examples at Berkeley (ftp://s2k-ftp.cs.berkeley.edu/pub/gist/pggist/pggist.tgz) come with
an overview of the methods and demonstrate spatial index mechanisms for 2D boxes,
polygons, integer intervals and text (see also GiST at Berkeley
(http://gist.cs.berkeley.edu:8000/gist/)). In the box example, we are supposed to see a
performance gain when using the GiST index; it did work for me but | do not have a
reasonably large collection of boxes to check that. Other examples also worked, except
polygons: I got an error doing

test=> create index pix on polytnp
test-> using gist (p:box gist_poly_ ops) with (islossy);
ERROR. cannot open pi X

(PostgreSQ. 6.3 Sun Feb 1 14:57:30 EST 1998)

I could not get sense of this error message; it appears to be something we’d rather ask the
developers about (see also Note 4 below). What | would suggest here is that someone of
you linux guys (linux==gcc?) fetch the original sources quoted above and apply my patch
(see attachment) and tell us what you feel about it. Looks cool to me, but | would not like
to hold it up while there are so many competent people around.

A few notes on the sources:

1. | failed to make use of the original (HPUX) Makefile and rearranged the Makefile from
the ancient postgres95 tutorial to do the job. I tried to keep it generic, but | am a very poor
makefile writer -- just did some monkey work. Sorry about that, but I guess it is now a little
more portable that the original makefile.

2. | built the example sources right under pgsql/src (just extracted the tar file there). The
aforementioned Makefile assumes it is one level below pgsql/src (in our case, in
pgsql/src/pggist).

3. The changes | made to the *.c files were all about #include’s, function prototypes and
typecasting. Other than that, | just threw away a bunch of unused vars and added a couple
parentheses to please gcc. | hope | did not screw up too much :)

4. There is a comment in polyproc.sql:

-- -- there’'s a nenory leak in rtree poly_ops!!
-- -- create index pix2 on polytnp using rtree (p poly_ops);

73

Chapter 11. GiST Indices

Roger that!! I thought it could be related to a number of Postgres versions back and tried

the query. My system went nuts and | had to shoot down the postmaster in about ten
minutes.

I will continue to look into GiST for a while, but | would also appreciate more examples of
R-tree usage.

74

Chapter 12. Procedural Languages

Postgres supports the definition of procedural languages. In the case of a function or
trigger procedure defined in a procedural language, the database has no built-in knowledge
about how to interpret the function’s source text. Instead, the task is passed to a handler
that knows the details of the language. The handler itself is a special programming
language function compiled into a shared object and loaded on demand.

Writing a handler for a new procedural language (PL) is outside the scope of this manual.

Installing Procedural Languages

Procedural Language I nstallation

A procedural language is installed in the database in three steps. (For the languages
supplied with the standard distribution, the shell script cr eat el ang can be used instead of
carrying out the details manually.)

1.

The shared object for the language handler must be compiled and installed. By default
the handler for PL/pgSQL is built and installed into the database library directory. If
Tcl/Tk support is configured in, the handler for PL/Tcl is also built and installed in the
same location.

The handler must be declared with the command

CREATE FUNCTI ON handl er _functi on_nane ()
RETURNS OPAQUE AS
’ pat h-t o-shared-object’” LANGUACGE ' C ;

The special return type of OPAQUE tells the database that this function does not
return one of the defined SQL datatypes and is not directly usable in SQL statements.

The PL must be declared with the command

CREATE [TRUSTED] PROCEDURAL LANGUAGE ' | anguage- nane’
HANDLER handl er _functi on_nane
LANCOWPI LER ' descri ption’;

The optional keyword TRUSTED tells whether ordinary database users that have no
superuser privileges should be allowed to use this language to create functions and
trigger procedures. Since PL functions are executed inside the database backend, the
TRUSTED flag should only be given for languages that don’t allow access to database
backends internals or the filesystem. The languages PL/pgSQL and PL/Tcl are known
to be trusted.

Example

1.

The following command tells the database where to find the shared object for the
PL/pgSQL language’s call handler function.

CREATE FUNCTI ON pl pgsql _cal | _handl er () RETURNS OPAQUE AS
"lusr/local/pgsql/lib/plpgsql.so LANGUAGE ' C ;

75

Chapter 12. Procedural Languages

The command

CREATE TRUSTED PROCEDURAL LANGUAGE ' pl pgsql’
HANDLER pl pgsql _cal | _handl er
LANCOWPI LER * PL/ pgSQL’ ;

then defines that the previously declared call handler function should be invoked for
functions and trigger procedures where the language attribute is "plpgsql’.

PL handler functions have a special call interface that is different from regular C
language functions. One of the arguments given to the handler is the object ID in the
pg_pr oc tables entry for the function that should be executed. The handler examines
various system catalogs to analyze the functions call arguments and it’s return data
type. The source text of the functions body is found in the prosrc attribute of pg_pr oc.
Due to this, PL functions can be overloaded like SQL language functions. There can
be multiple different PL functions having the same function name, as long as the call
arguments differ.

Procedural languages defined in the t enpl at el database are automatically defined in
all subsequently created databases. So the database administrator can decide which
languages are available by default.

76

Chapter 13. Linking Dynamically-Loaded
Functions

After you have created and registered a user-defined function, your work is essentially
done. Postgres, however, must load the object code (e.g., a . o file, or a shared library) that
implements your function. As previously mentioned, Postgres loads your code at runtime,
as required. In order to allow your code to be dynamically loaded, you may have to
compile and link-edit it in a special way. This section briefly describes how to perform the
compilation and link-editing required before you can load your user-defined functions into
a running Postgres server.

You should expect to read (and reread, and re-reread) the manual pages for the C compiler,
cc(1), and the link editor, 1d(1), if you have specific questions. In addition, the contrib area
(PGROOT/ cont ri b) and the regression test suites in the directory

PGROOT/ src/ test/ regress contain several working examples of this process. If you
copy one of these examples then you should not have any problems.

The following terminology will be used below:

Dynamic loading is what Postgres does to an object file. The object file is copied into
the running Postgres server and the functions and variables within the file are made
available to the functions within the Postgres process. Postgres does this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing is what you do to an object file in order to produce another
kind of object file (e.g., an executable program or a shared library). You perform this
using the link editing program, 1d(1).

The following general restrictions and notes also apply to the discussion below:

Paths given to the create function command must be absolute paths (i.e., start with "/*")
that refer to directories visible on the machine on which the Postgres server is running.

Tip: Relative paths do in fact work, but are relative to the directory where the database
resides (which is generally invisible to the frontend application). Obviously, it makes
no sense to make the path relative to the directory in which the user started the
frontend application, since the server could be running on a completely different
machine!

The Postgres user must be able to traverse the path given to the create function
command and be able to read the object file. This is because the Postgres server runs as
the Postgres user, not as the user who starts up the frontend process. (Making the file or
a higher-level directory unreadable and/or unexecutable by the "postgres" user is an
extremely common mistake.)

Symbol names defined within object files must not conflict with each other or with
symbols defined in Postgres.

The GNU C compiler usually does not provide the special options that are required to
use the operating system’s dynamic loader interface. In such cases, the C compiler that
comes with the operating system must be used.

77

Chapter 13. Linking Dynamically-Loaded
Functions

Linux

Under Linux ELF, object fiiles can be generated by specifying the compiler flag -fpic.
For example,

sinple Linux exanple
% cc -fpic -c foo.c

produces an object file called foo.o that can then be dynamically loaded into Postgres. No
additional loading or link-editing must be performed.

DEC OSF/1

Under DEC OSF/1, you can take any simple object file and produce a shared object file by
running the Id command over it with the correct options. The commands to do this look
like:

sinmple DEC OSF/ 1 exanpl e
%cc -c foo.c
% 1 d -shared -expect_unresolved '*' -0 foo.so foo.o

The resulting shared object file can then be loaded into Postgres. When specifying the
object file name to the create function command, one must give it the name of the shared
object file (ending in .so) rather than the simple object file.

Tip: Actually, Postgres does not care what you name the file as long as it is a shared
object file. If you prefer to name your shared object files with the extension .o, this is
fine with Postgres so long as you make sure that the correct file name is given to the
create function command. In other words, you must simply be consistent. However,
from a pragmatic point of view, we discourage this practice because you will
undoubtedly confuse yourself with regards to which files have been made into shared
object files and which have not. For example, it's very hard to write Makefiles to do the
link-editing automatically if both the object file and the shared object file end in .o!

If the file you specify is not a shared object, the backend will hang!

SunOS 4.x, Solaris 2.x and HP-UX

Under SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by
compiling the source file with special compiler flags and a shared library must be
produced. The necessary steps with HP-UX are as follows. The +z flag to the HP-UX C
compiler produces so-called "Position Independent Code" (PIC) and the +u flag removes
some alignment restrictions that the PA-RISC architecture normally enforces. The object
file must be turned into a shared library using the HP-UX link editor with the -b option.
This sounds complicated but is actually very simple, since the commands to do it are just:

sinple HP-UX exanpl e

78

Functions

Chapter 13. Linking Dynamically-Loaded

%cc +z +u -c foo.c
%ld -b -0 foo.sl foo.o

As with the .so files mentioned in the last subsection, the create function command must
be told which file is the correct file to load (i.e., you must give it the location of the shared
library, or .sl file). Under SunOS 4.x, the commands look like:

sinple SunCS 4. x exanpl e

%cc -PIC -c foo.c

%1d -dc -dp -Bdynamic -0 foo.so foo.o
and the equivalent lines under Solaris 2.x are:

sinple Solaris 2.x exanple

%cc -KPIC-c foo.c

%l|d -G -Bdynanmic -o foo.so foo.o

or

sinple Solaris 2.x exanple

% gcc -fPIC -c foo.c
%|ld -G -Bdynamc -o foo.so foo.o

When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on your Id command line.

79

Chapter 14. Triggers

Postgres has various client interfaces such as Perl, Tcl, Python and C, as well as three
Procedural Languages (PL). It is also possible to call C functions as trigger actions. Note
that STATEMENT-level trigger events are not supported in the current version. You can
currently specify BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple as a
trigger event.

Trigger Creation

If a trigger event occurs, the trigger manager (called by the Executor) initializes the global
structure TriggerData *CurrentTriggerData (described below) and calls the trigger function
to handle the event.

The trigger function must be created before the trigger is created as a function taking no
arguments and returns opaque.

The syntax for creating triggers is as follows:

CREATE TRI GGER <trigger nane> <BEFORE| AFTER>
<| NSERT| DELETE| UPDATE>
ON <rel ati on name> FOR EACH <ROW STATEMENT>
EXECUTE PROCEDURE <procedure nanme> (<function args>);

The name of the trigger is used if you ever have to delete the trigger. It is used as an
argument to the DROP TRIGGER command.
The next word determines whether the function is called before or after the event.

The next element of the command determines on what event(s) will trigger the function.
Multiple events can be specified separated by OR.

The relation name determines which table the event applies to.

The FOR EACH statement determines whether the trigger is fired for each affected row or
before (or after) the entire statement has completed.

The procedure name is the C function called.

The args are passed to the function in the CurrentTriggerData structure. The purpose of
passing arguments to the function is to allow different triggers with similar requirements to
call the same function.

Also, function may be used for triggering different relations (these functions are named as
"general trigger functions").

As example of using both features above, there could be a general function that takes as its
arguments two field names and puts the current user in one and the current timestamp in
the other. This allows triggers to be written on INSERT events to automatically track
creation of records in a transaction table for example. It could also be used as a "last
updated” function if used in an UPDATE event.

Trigger functions return HeapTuple to the calling Executor. This is ignored for triggers
fired after an INSERT, DELETE or UPDATE operation but it allows BEFORE triggers to:

- return NULL to skip the operation for the current tuple (and so the tuple will not
be inserted/updated/deleted);

80

Chapter 14. Triggers

- return a pointer to another tuple (INSERT and UPDATE only) which will be
inserted (as the new version of the updated tuple if UPDATE) instead of original
tuple.

Note, that there is no initialization performed by the CREATE TRIGGER handler. This
will be changed in the future. Also, if more than one trigger is defined for the same event
on the same relation, the order of trigger firing is unpredictable. This may be changed in
the future.

If a trigger function executes SQL-queries (using SPI) then these queries may fire triggers
again. This is known as cascading triggers. There is no explicit limitation on the number of
cascade levels.

If a trigger is fired by INSERT and inserts a new tuple in the same relation then this
trigger will be fired again. Currently, there is nothing provided for synchronization (etc) of
these cases but this may change. At the moment, there is function funny_dupl7() in the
regress tests which uses some techniques to stop recursion (cascading) on itself...

Interaction with the Trigger Manager

As mentioned above, when function is called by the trigger manager, structure
TriggerData *CurrentTriggerData is NOT NULL and initialized. So it is better to check
CurrentTriggerData against being NULL at the start and set it to NULL just after fetching
the information to prevent calls to a trigger function not from the trigger manager.

struct TriggerData is defined in src/include/commands/trigger.h:

typedef struct TriggerData

{
Tri gger Event tg_event;
Rel ati on tg_relation;
HeapTupl e tg_trigtuple;
HeapTupl e tg_newt upl e;
Tri gger *tg_trigger;

} TriggerDat a;

tg_event
descri bes event for which the function is called. You may use the
follow ng nacros to exanine tg_event:

TRI GGER_FI RED _BEFORE(event) returns TRUE if trigger fired BEFORE;
TRI GGER_FI RED_AFTER(event) returns TRUE if trigger fired AFTER
TRI GGER_FI RED FOR RON event) returns TRUE if trigger fired for
ROW | evel event;
TRI GGER_FI RED_FOR_STATEMENT(event) returns TRUE if trigger fired
for
STATEMENT- | evel event;
TRI GGER_FI RED_BY_I NSERT(event) returns TRUE if trigger fired by
| NSERT;
TRI GGER_FI RED_BY_DELETE(event) returns TRUE if trigger fired by
DELETE;
TRI GGER_FI RED_BY_UPDATE(event) returns TRUE if trigger fired by
UPDATE.

tg_relation

81

Chapter 14. Triggers

is pointer to structure describing the triggered relation. Look
at

src/include/utils/rel.h for details about this structure. The
nost

interest things are tg relation->rd_att (descriptor of the
relation

tuples) and tg_relation->rd_rel->relnane (relation’s nanme. This
is not

char*, but NaneData. Use SPI_getrel nane(tg_relation) to get
char* if

you need a copy of nane).

tg_trigtuple

is a pointer to the tuple for which the trigger is fired. This is
the tuple

being inserted (if INSERT), deleted (if DELETE) or updated (if
UPDATE) .

I f | NSERT/ DELETE then this is what you are to return to Executor
if

you don’t want to replace tuple with another one (INSERT) or skip
t he

operati on.

tg_newtupl e

is a pointer to the new version of tuple if UPDATE and NULL if
this is

for an INSERT or a DELETE. This is what you are to return to
Executor if

UPDATE and you don’t want to replace this tuple with another one
or skip

the operation.

tg_trigger
is pointer to structure Trigger defined in
src/include/utils/rel.h:

typedef struct Trigger

{
ad t goi d;
char *t gnane;
ad t gf oi d;
Frgr I nfo t gf unc;
intl16 t gt ype;
bool t genabl ed;
bool t gi sconstraint;
bool t gdef errabl e;
bool t gi ni tdef erred;
intl6 t gnar gs;
intl6 tgattr[FUNC_MAX_ARGS] ;
char **t gargs;

} Trigger;

tgname is the trigger’s name, tgnargs is nunber of arguments in
t gar gs,

tgargs is an array of pointers to the argunents specified in the
CREATE

TRI GGER statenent. OQther nenbers are for internal use only.

82

Chapter 14. Triggers

Visibility of Data Changes

Postgres data changes visibility rule: during a query execution, data changes made by the
query itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For
example, in query

I NSERT | NTO a SELECT * FROM a
tuples inserted are invisible for SELECT” scan. In effect, this duplicates the database table
within itself (subject to unique index rules, of course) without recursing.

But keep in mind this notice about visibility in the SPI documentation:

Changes made by query Q are visible by queries which are started
after

query Q no matter whether they are started inside Q (during the

execution of Q or after Qis done.

This is true for triggers as well so, though a tuple being inserted (tg_trigtuple) is not
visible to queries in a BEFORE trigger, this tuple (just inserted) is visible to queries in an
AFTER trigger, and to queries in BEFORE/AFTER triggers fired after this!

Examples

There are more complex examples in in src/test/regress/regress.c and in contrib/spi.

Here is a very simple example of trigger usage. Function trigf reports the number of tuples
in the triggered relation ttest and skips the operation if the query attempts to insert NULL
into x (i.e - it acts as a NOT NULL constraint but doesn’t abort the transaction).

#i ncl ude "executor/spi.h" /* this is what you need to work with
SPI */
#i ncl ude "comrands/trigger.h" /* -"- and triggers */
HeapTupl e trigf(void);
HeapTupl e
trigf()
{
Tupl eDesc t updesc;
HeapTupl e rettuple;
char *when;
bool checknul | = fal se;
bool isnull;
i nt ret, i;

if (!CurrentTriggerData)
el og(WARN, "trigf: triggers are not initialized");

/* tuple to return to Executor */

i f (TRI GGER_FI RED_BY_UPDATE(Current Tri gger Dat a- >t g_event))
rettuple = CurrentTriggerDat a->tg_newt upl e;

el se
rettuple = CurrentTriggerData->tg_trigtuple;

&3

Chapter 14. Triggers

/* check for NULLs ? */
if (!TRI GGER_FI RED BY_DELETE(Current Tri gger Dat a- >t g_event)

TRI GGER_FI RED _BEFORE(Current Tri gger Dat a- >t g_event))
checknul | = true;

i f (TRI GGER_FI RED_BEFORE(Current Tri gger Dat a- >t g_event))
when = "before";
el se
when = "after ";
tupdesc = Current TriggerData->tg_relation->rd_att;
Current TriggerData = NULL;

/* Connect to SPI nmanager */
if ((ret = SPI_connect()) < 0)
el og(WARN, "trigf (fired %): SPI_connect returned
%", when, ret);

/* Get nunber of tuples in relation */
ret = SPlI_exec("select count(*) fromttest”, 0);

if (ret <0)
el og(WARN, "trigf (fired %): SPlI_exec returned %",
when, ret);

i = SPI _getbinval (SPI _tuptabl e->val s[0],
SPI _tuptabl e->tupdesc, 1, & snull);

elog (NOTICE, "trigf (fired %): there are %l tuples in
ttest", when, i);

SPI _finish();

if (checknull)

{
i = SPI _getbinval (rettuple, tupdesc, 1, & snull);
if (isnull)
rettupl e = NULL;
}

return (rettuple);

}

Now, compile and create table ttest (x int4); create function trigf () returns opaque as
’...path_to_so’ language ’c’;

vac=> create trigger tbefore before insert or update or delete on
ttest

for each row execute procedure trigf();

CREATE

vac=> create trigger tafter after insert or update or delete on
ttest

for each row execute procedure trigf();

CREATE

vac=> insert into ttest values (null);

NOTI CE: trigf (fired before): there are O tuples in ttest

84

Chapter 14. Triggers

I NSERT 0 O
-- Insertion skipped and AFTER trigger is not fired

vac=> select * fromttest;
X

(0 rows)

vac=> insert into ttest values (1);
NOTICE: trigf (fired before): there are O tuples in ttest
NOTICE: trigf (fired after): there are 1 tuples in ttest
ANNNNNANNNAN

renmenber what we said about visibility.
| NSERT 167793 1
vac=> select * fromttest;
X

1
(1 row)

vac=> insert into ttest select x * 2 fromttest;

NOTI CE: trigf (fired before): there are 1 tuples in ttest

NOTICE: trigf (fired after): there are 2 tuples in ttest
NANNNNNNNAN

remenber what we said about visibility.

| NSERT 167794 1

vac=> select * fromttest;

X

1

2

(2 rows)

vac=> update ttest set x = null where x = 2;

NOTICE: trigf (fired before): there are 2 tuples in ttest
UPDATE 0

vac=> update ttest set x = 4 where x = 2;

NOTICE: trigf (fired before): there are 2 tuples in ttest
NOTICE: trigf (fired after): there are 2 tuples in ttest
UPDATE 1

vac=> select * fromttest;

X

1

4

(2 rows)

vac=> delete fromttest;
NOTICE: trigf (fired before): there are 2 tuples in ttest
NOTICE: trigf (fired after): there are 1 tuples in ttest
NOTICE: trigf (fired before): there are 1 tuples in ttest
NOTICE: trigf (fired after): there are O tuples in ttest
NANNNNNNNAN

renenber what we said about visibility.
DELETE 2
vac=> select * fromttest;

&5

Chapter 14. Triggers

EO r ows)

86

Chapter 15. Server Programming Interface

The Server Programming Interface (SPI) gives users the ability to run SQL queries inside
user-defined C functions. The available Procedural Languages (PL) give an alternate
means to access these capabilities.

In fact, SPI is just a set of native interface functions to simplify access to the Parser,
Planner, Optimizer and Executor. SPI also does some memory management.

To avoid misunderstanding we’ll use function to mean SPI interface functions and
procedure for user-defined C-functions using SPI.

SPI procedures are always called by some (upper) Executor and the SPI manager uses the
Executor to run your queries. Other procedures may be called by the Executor running
queries from your procedure.

Note, that if during execution of a query from a procedure the transaction is aborted then
control will not be returned to your procedure. Rather, all work will be rolled back and the
server will wait for the next command from the client. This will be changed in future
versions.

Other restrictions are the inability to execute BEGIN, END and ABORT (transaction
control statements) and cursor operations. This will also be changed in the future.

If successful, SPI functions return a non-negative result (either via a returned integer value
or in SPI_result global variable, as described below). On error, a negative or NULL result
will be returned.

87

Chapter 15. Server Programming Interface

Interface Functions

SPI_connect

Name

SPI _connect Connects your procedure to the SPI manager.

Synopsis
i nt SPI_connect (void)

Inputs

None
Outputs
int
Return status

SPI_OK_CONNECT

if connected

SPI_ERROR_CONNECT

if not connected

Description

SPI _connect opens a connection to the Postgres backend. You should call this function if
you will need to execute queries. Some utility SPI functions may be called from
un-connected procedures.

You may get SPI_ERROR_CONNECT error if SPI _connect is called from an already
connected procedure - e.g. if you directly call one procedure from another connected one.
Actually, while the child procedure will be able to use SPI, your parent procedure will not
be able to continue to use SPI after the child returns (if SPI _fi ni sh is called by the child).
It’s bad practice.

Usage

Algorithm

SPI _connect performs the following:

Initializes the SPI internal structures for query execution and memory management.

88

Chapter 15. Server Programming Interface

SPI_finish

Name

SPI _fi ni sh Disconnects your procedure from the SPI manager.
Synopsis

SPI_fi ni sh(voi d)

Inputs

None

Outputs

int

SPI_OK_FINISH if properly disconnected
SPI_ERROR_UNCONNECTED if called from an un-connected procedure

Description

SPI _fi ni sh closes an existing connection to the Postgres backend. You should call this
function after completing operations through the SPI manager.

You may get the error return SPI_ERROR_UNCONNECTED if SPI _fi ni sh is called
without having a current valid connection. There is no fundamental problem with this; it
means that nothing was done by the SP1 manager.

Usage

SPI _fi ni sh must be called as a final step by a connected procedure or you may get
unpredictable results! Note that you can safely skip the call to SPI _f i ni sh if you abort
the transaction (via elog(ERROR)).

Algorithm

SPI _fi ni sh performs the following:

Disconnects your procedure from the SPI1 manager and frees all memory allocations
made by your procedure via pal | oc since the SPI _connect . These allocations can’t
be used any more! See Memory management.

&9

Chapter 15. Server Programming Interface

SPI_exec

Name

SPI _exec Creates an execution plan (parser+planner+optimizer) and executes a query.

Synopsis
SPI _exec(query, tcount)
Inputs

char *query

String containing query plan

intt count

Maximum number of tuples to return
Outputs

int

SP1_OK_EXEC if properly disconnected

SPI_ERROR_UNCONNECTED if called from an un-connected procedure
SPI_ERROR_ARGUMENT if query is NULL or t count <0.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.

SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

If execution of your query was successful then one of the following (non-negative)
values will be returned:

SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed
SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed
SPI_OK_SELINTO if SELECT ... INTO was executed

SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed
SPI_OK_DELETE if DELETE was executed

SPI_OK_UPDATE if UPDATE was executed

90

Chapter 15. Server Programming Interface

Description

SPI _exec creates an execution plan (parser+planner+optimizer) and executes the query
fort count tuples.

Usage

This should only be called from a connected procedure. If t count is zero then it executes
the query for all tuples returned by the query scan. Using t count >0 you may restrict the
number of tuples for which the query will be executed. For example,

SPI _exec ("insert into table select * fromtable", 5);

will allow at most 5 tuples to be inserted into table. If execution of your query was
successful then a non-negative value will be returned.

Note: You may pass many queries in one string or query string may be re-written by
RULEs. SPI _exec returns the result for the last query executed.

The actual number of tuples for which the (last) query was executed is returned in the
global variable SPI_processed (if not SPI_OK_UTILITY). If SPI_OK_SELECT returned
and SPI_processed > 0 then you may use global pointer SPITupleTable *SPI_tuptable to
access the selected tuples: Also NOTE, that SPI _f i ni sh frees and makes all
SPITupleTables unusable! (See Memory management).

SPI _exec may return one of the following (negative) values:

SPI_ERROR_ARGUMENT if query is NULL or t count <0.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.

SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

Algorithm

SPI _exec performs the following:

Disconnects your procedure from the SPI manager and frees all memory allocations
made by your procedure via pal | oc since the SPI _connect . These allocations can’t
be used any more! See Memory management.

91

Chapter 15. Server Programming Interface

SPI_prepare

Name

SPI _prepare Connects your procedure to the SPI manager.

Synopsis
SPI _prepare(query, nargs, argtypes)

Inputs

query
Query string

nar gs

Number of input parameters ($1 ... $nargs - as in SQL-functions)

ar gt ypes

Pointer list of type OIDs to input arguments
Outputs

void *

Pointer to an execution plan (parser+planner+optimizer)

Description

SPI _pr epar e creates and returns an execution plan (parser+planner+optimizer) but
doesn’t execute the query. Should only be called from a connected procedure.

Usage

nargs is number of parameters ($1 ... $nargs - as in SQL-functions), and nargs may be 0
only if there is not any $1 in query.

Execution of prepared execution plans is sometimes much faster so this feature may be
useful if the same query will be executed many times.

The plan returned by SPI _pr epar e may be used only in current invocation of the
procedure since SPI _f i ni sh frees memory allocated for a plan. See SPI _savepl an.

If successful, a non-null pointer will be returned. Otherwise, you’ll get a NULL plan. In
both cases SPI_result will be set like the value returned by SPI_exec, except that it is set to
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes is
NULL.

92

Chapter 15. Server Programming Interface

SPI _saveplan

Name

SPI _savepl an Saves a passed plan

Synopsis
SPI _savepl an(pl an)
Inputs

void *query

Passed plan
Outputs

void *

Execution plan location. NULL if unsuccessful.

SPI_result

SPI_ERROR_ARGUMENT if plan is NULL
SPI_ERROR_UNCONNECTED if procedure is un-connected

Description

SPI _savepl an stores a plan prepared by SPI _pr epar e in safe memory protected from
freeing by SPI _f i ni sh or the transaction manager.

In the current version of Postgres there is no ability to store prepared plans in the system
catalog and fetch them from there for execution. This will be implemented in future
versions. As an alternative, there is the ability to reuse prepared plans in the consequent
invocations of your procedure in the current session. Use SPI _execp to execute this saved
plan.

Usage

SPI _savepl an saves a passed plan (prepared by SPI _pr epar e) in memory protected
from freeing by SPI _f i ni sh and by the transaction manager and returns a pointer to the
saved plan. You may save the pointer returned in a local variable. Always check if this
pointer is NULL or not either when preparing a plan or using an already prepared plan in
SPI_execp (see below).

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan

is dropped during your session (by your backend or another process) then the results
of SPI _execp for this plan will be unpredictable.

93

Chapter 15. Server Programming Interface

SPI_execp

Name

SPI _execp Executesaplanfrom SPI _savepl an

Synopsis

SPI _execp(pl an,
val ues,

nul | s,

t count)

Inputs

void *pl an

Execution plan

Datum *val ues

Actual parameter values

char *nul | s
Array describing what parameters get NULLs
’n’ indicates NULL allowed
* ” indicates NULL not allowed
intt count

Number of tuples for which plan is to be executed

Outputs
int
Returns the same value as SPI _exec as well as
SPI_ERROR_ARGUMENT if pl an is NULL ort count <0
SPI_ERROR_PARAM if val ues is NULL and pl an was prepared with some parameters.
SPI_tuptable

initialized as in SPI _exec if successful

SPI_processed

initialized as in SPI _exec if successful

Description

SPI _execp stores a plan prepared by SPI _pr epar e in safe memory protected from
freeing by SPI _fi ni sh or the transaction manager.

In the current version of Postgres there is no ability to store prepared plans in the system
catalog and fetch them from there for execution. This will be implemented in future

94

Chapter 15. Server Programming Interface

versions. As a work arround, there is the ability to reuse prepared plans in the consequent
invocations of your procedure in the current session. Use SPI _execp to execute this saved
plan.

Usage
If nul I s is NULL then SPI _execp assumes that all values (if any) are NOT NULL.

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan
is dropped during your session (by your backend or another process) then the results
of SPI _execp for this plan will be unpredictable.

Interface Support Functions

All functions described below may be used by connected and unconnected procedures.

SPI _copytuple

Name

SPI _copyt upl e Makes copy of tuple in upper Executor context

Synopsis
SPI _copyt upl e(tupl e)
Inputs

HeapTuplet upl e
Input tuple to be copied

Outputs

HeapTuple
Copied tuple

non-NULL if t upl e is not NULL and the copy was successful
NULL only if t upl e is NULL

Description

SPI _copyt upl e makes a copy of tuple in upper Executor context. See the section on
Memory Management.

Usage
TBD

95

Chapter 15. Server Programming Interface

SPI_modifytuple

Name

SPI _nodi fyt upl e Modifies tuple of relation

Synopsis

SPI _nodi fytuple(rel, tuple , nattrs
, attnum, Values , Nulls)

Inputs

Relationr el

HeapTuplet upl e
Input tuple to be modified

intnattrs

Number of attribute numbers in attnum

int*att num

Array of numbers of the attributes which are to be changed

Datum * Val ues

New values for the attributes specified

char*Nul | s
Which attributes are NULL, if any

Outputs

HeapTuple
New tuple with modifications
non-NULL if t upl e is not NULL and the modify was successful
NULL only if t upl e is NULL

SPI_result

SPI_ERROR_ARGUMENT if rel is NULL or tuple is NULL or natts < 0 or attnum is NULL or

Values is NULL.
SPI_ERROR_NOATTRIBUTE if there is an invalid attribute number in atthum (attnum < 0 or >

number of attributes in tuple)

96

Chapter 15. Server Programming Interface

Description

SPI _nodi f yt upl e Modifies a tuple in upper Executor context. See the section on
Memory Management.

Usage

If successful, a pointer to the new tuple is returned. The new tuple is allocated in upper
Executor context (see Memory management). Passed tuple is not changed.

SPI_fnumber

Name

SPI _f nunber Finds the attribute number for specified attribute

Synopsis
SPI _f nunber (t updesc, fnane)
Inputs

TupleDesc t updesc

Input tuple description

char * f nane

Field name
Outputs
int

Attribute number

Valid one-based index number of attribute
SPI_ERROR_NOATTRIBUTE if the named attribute is not found

Description

SPI _f nunber returns the attribute number for the attribute with name in fname.

Usage

Attribute numbers are 1 based.

97

Chapter 15. Server Programming Interface

SPI_fname

Name

SPI _fnanme Finds the attribute name for the specified attribute

Synopsis
SPI _fname(tupdesc, fnane)
Inputs

TupleDesc t updesc

Input tuple description

char * f nunber

Attribute number
Outputs

char *
Attribute name

NULL if fnumber is out of range
SPI_result set to SPI_ERROR_NOATTRIBUTE on error

Description

SPI _f nane returns the attribute name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the attribute name.

98

Chapter 15. Server Programming Interface

SPI _getvalue

Name

SPI _get val ue Returns the string value of the specified attribute

Synopsis
SPI _getval ue(tuple, tupdesc, fnunber)
Inputs

HeapTuplet upl e

Input tuple to be examined

TupleDesc t updesc

Input tuple description

int f number

Attribute number
Outputs

char *
Attribute value or NULL if

attribute is NULL
fnumber is out of range (SPI_result set to SPI_ERROR_NOATTRIBUTE)
no output function available (SPI1_result set to SPI_ ERROR_NOOUTFUNC)

Description

SPI _get val ue returns an external (string) representation of the value of the specified
attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Allocates memory as required by the value.

99

Chapter 15. Server Programming Interface

SPI_getbinval

Name

SPI _get bi nval Returns the binary value of the specified attribute

Synopsis
SPI _get bi nval (tuple, tupdesc, fnunber, isnull)
Inputs

HeapTuplet upl e

Input tuple to be examined

TupleDesc t updesc

Input tuple description

int f number

Attribute number
Outputs

Datum

Attribute binary value

bool *i snul |

flag for null value in attribute

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI _get bi nval returns the binary value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

100

Chapter 15. Server Programming Interface

SPI_gettype

Name

SPI _gettype Returns the type name of the specified attribute

Synopsis
SPI _gettype(tupdesc, fnunber)
Inputs

TupleDesc t updesc

Input tuple description

int f nunmber

Attribute number
Outputs

char *

The type name for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI _get t ype returns a copy of the type name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

101

Chapter 15. Server Programming Interface

SPI_gettypeid

Name

SPI _gettypei d Returns the type OID of the specified attribute
Synopsis
SPI _gettypei d(tupdesc, fnunber)

Inputs

TupleDesc t updesc

Input tuple description

int f nunmber

Attribute number
Outputs

OID
The type OID for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI _get t ypei d returns the type OID for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

TBD

102

Chapter 15. Server Programming Interface

SPI _getrelname

Name

SPI _getrel nane Returns the name of the specified relation
Synopsis
SPI _getrel nanme(rel)

Inputs

Relationr el

Input relation
Outputs

char *

The name of the specified relation

Description

SPI _get r el name returns the name of the specified relation.

Usage
TBD

Algorithm

Copies the relation name into new storage.

103

Chapter 15. Server Programming Interface

SPI _palloc

Name

SPI _pal | oc Allocates memory in upper Executor context
Synopsis

SPI _pal | oc(si ze)

Inputs

Size si ze

Octet size of storage to allocate
Outputs
void *

New storage space of specified size

Description

SPI _pal | oc allocates memory in upper Executor context. See section on memory
management.

Usage

TBD

104

Chapter 15. Server Programming Interface

SPI _repalloc

Name

SPI _repal | oc Re-allocates memory in upper Executor context

Synopsis
SPI _repal | oc(pointer, size)
Inputs

void * poi nt er

Pointer to existing storage

Size si ze

Octet size of storage to allocate
Outputs
void *

New storage space of specified size with contents copied from existing area

Description

SPI _repal | oc re-allocates memory in upper Executor context. See section on memory
management.

Usage
TBD

105

Chapter 15. Server Programming Interface

SPI_pfree

Name

SPI _pfree Frees memory from upper Executor context

Synopsis
SPI _pfree(pointer)
Inputs

void * poi nt er

Pointer to existing storage
Outputs

None

Description

SPI _pf r ee frees memory in upper Executor context. See section on memory management.

Usage
TBD

Memory Management

Server allocates memory in memory contexts in such way that allocations made in one
context may be freed by context destruction without affecting allocations made in other
contexts. All allocations (via pal | oc, etc) are made in the context which are chosen as
current one. You’ll get unpredictable results if you’ll try to free (or reallocate) memory
allocated not in current context.

Creation and switching between memory contexts are subject of SPI manager memory
management.

SPI1 procedures deal with two memory contexts: upper Executor memory context and
procedure memory context (if connected).

Before a procedure is connected to the SPI manager, current memory context is upper
Executor context so all allocation made by the procedure itself via pal | oc/r epal | oc or
by SPI utility functions before connecting to SPI are made in this context.

After SPI _connect is called current context is the procedure’s one. All allocations made
via pal | oc/r epal | oc or by SPI utility functions (except for SPI _copyt upl e,
SPI _nodi fyt upl e, SPI _pal | oc and SPI _r epal | oc) are made in this context.

When a procedure disconnects from the SPI manager (via SPI _f i ni sh) the current
context is restored to the upper Executor context and all allocations made in the procedure
memory context are freed and can’t be used any more!

106

Chapter 15. Server Programming Interface

If you want to return something to the upper Executor then you have to allocate memory
for this in the upper context!

SPI has no ability to automatically free allocations in the upper Executor context!

SPI automatically frees memory allocated during execution of a query when this query is
done!

Visibility of Data Changes

Postgres data changes visibility rule: during a query execution, data changes made by the
query itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For
example, in query INSERT INTO a SELECT * FROM a tuples inserted are invisible for
SELECT’ scan. In effect, this duplicates the database table within itself (subject to unique
index rules, of course) without recursing.

Changes made by query Q are visible by queries which are started after query Q, no matter
whether they are started inside Q (during the execution of Q) or after Q is done.

Examples

This example of SPI usage demonstrates the visibility rule. There are more complex
examples in in src/test/regress/regress.c and in contrib/spi.

This is a very simple example of SPI usage. The procedure execq accepts an SQL-query in
its first argument and tcount in its second, executes the query using SPI_exec and returns
the number of tuples for which the query executed:

#i ncl ude "executor/spi.h" /* this is what you need to work with
SPI */
int execq(text *sqgl, int cnt);
i nt
execq(text *sql, int cnt)
{
int ret;

int proc = 0;
SPI _connect ();
ret = SPI_exec(textout(sql), cnt);

proc = SPI _processed;
/*
* |f this is SELECT and sone tuple(s) fetched -
* returns tuples to the caller via elog (NOTICE).
*/
if (ret == SPI_OK SELECT && SPI _processed > 0)
{
Tupl eDesc tupdesc = SPI _tuptabl e->t updesc;
SPI Tupl eTabl e *tuptabl e = SPI _tupt abl e;
char buf[8192];
int i;

for (ret = 0; ret < proc; ret++)

107

Chapter 15. Server Programming Interface

{
HeapTupl e tuple = tuptabl e->val s[ret];
for (i =1, buf[0] = 0; i <= tupdesc->natts;
i ++)
sprintf(buf + strlen (buf), " %%",
SPI _getval ue(tuple, tupdesc
i),
(i == tupdesc->natts) ? " "
[");
el og (NOTICE, "EXECQ %", buf);
}
}
SPI _finish();
return (proc);
}

Now, compile and create the function:

create function execq (text, int4) returns int4 as ’'...path_to_so
| anguage ' ¢’

vac=> sel ect execq('create table a (x int4)', 0);
execq

vac=> insert into a values (execq('insert into a values (0)',0));
| NSERT 167631 1

vac=> sel ect execq(' select * froma',0);

NOTI CE: EXECQ 0 <<< inserted by execq

NOTI CE: EXECQ 1 <<< value returned by execq and inserted by upper
| NSERT

vac=> sel ect execq(’'insert into a select x + 2 froma',1);
execq

vac=> sel ect execq(’select * froma', 10);
NOTI CE: EXECQ O

NOTI CE: EXECQ 1
NOTICE: EXECQ 2 <<< 0 + 2, only one tuple inserted - as specified

execq

108

Chapter 15. Server Programming Interface

3 <<< 10 is max value only, 3 is real # of tuples

vac=> del ete from a;

DELETE 3

vac=> insert into a values (execq('select * froma', 0) + 1);
| NSERT 167712 1

vac=> select * froma;

X

1 <<< no tuples ina (0) + 1

(1 row

vac=> insert into a values (execq('select * froma', 0) + 1);
NOTI CE: EXECQ O

| NSERT 167713 1

vac=> select * from a;

X

1

2 <<< there was single tuple ina + 1

(2 rows)

-- Thi s denponstrates data changes visibility rule:

vac=> insert into a select execq(’'select * froma', 0) * x froma;
NOTI CE: EXECQ 1

NOTI CE: EXECQ
NOTI CE: EXECQ
NOTI CE: EXECQ
NOTI CE: EXECQ
I NSERT 0 2
vac=> select * from a;

NNEFEDN

X
1

2

2 <<< 2 tuples * 1 (x in first tuple)

6 <<< 3 tuples (2 + 1 just inserted) * 2 (x in second
tupl e)

(4 rows) ANANANANN

tuples visible to execq() in different
i nvocat i ons

109

Chapter 16. Large Objects

In Postgres, data values are stored in tuples and individual tuples cannot span data pages.
Since the size of a data page is 8192 bytes, the upper limit on the size of a data value is
relatively low. To support the storage of larger atomic values, Postgres provides a large
object interface. This interface provides file oriented access to user data that has been
declared to be a large type. This section describes the implementation and the
programming and query language interfaces to Postgres large object data.

Historical Note

Originally, Postgres 4.2 supported three standard implementations of large objects: as files
external to Postgres, as external files managed by Postgres, and as data stored within the
Postgres database. It causes considerable confusion among users. As a result, we only
support large objects as data stored within the Postgres database in PostgreSQL. Even
though it is slower to access, it provides stricter data integrity. For historical reasons, this
storage scheme is referred to as Inversion large objects. (We will use Inversion and large
objects interchangeably to mean the same thing in this section.)

Implementation Features

The Inversion large object implementation breaks large objects up into "chunks" and
stores the chunks in tuples in the database. A B-tree index guarantees fast searches for the
correct chunk number when doing random access reads and writes.

Interfaces

The facilities Postgres provides to access large objects, both in the backend as part of
user-defined functions or the front end as part of an application using the interface, are
described below. For users familiar with Postgres 4.2, PostgreSQL has a new set of
functions providing a more coherent interface.

Note: All large object manipulation must take place within an SQL transaction. This
requirement is strictly enforced as of Postgres v6.5, though it has been an implicit
requirement in previous versions, resulting in misbehavior if ignored.

The Postgres large object interface is modeled after the Unix file system interface, with
analogues of open(2),read(2),wite(2),!seek(2), etc. User functions call these
routines to retrieve only the data of interest from a large object. For example, if a large
object type called mugshot existed that stored photographs of faces, then a function called
beard could be declared on mugshot data. Beard could look at the lower third of a
photograph, and determine the color of the beard that appeared there, if any. The entire
large object value need not be buffered, or even examined, by the beard function. Large
objects may be accessed from dynamically-loaded C functions or database client programs
that link the library. Postgres provides a set of routines that support opening, reading,
writing, closing, and seeking on large objects.

110

Chapter 16. Large Objects

Creating a Large Object
The routine
G d | o_creat(PGconn *conn, int node)

creates a new large object. node is a bitmask describing several different attributes of the
new object. The symbolic constants listed here are defined in

$PGROOT/ sr ¢/ backend/ | i bpg/ | i bpg-fs. h The access type (read, write, or both) is
controlled by OR ing together the bits INV_READ and INV_WRITE. If the large object
should be archived -- that is, if historical versions of it should be moved periodically to a
special archive relation -- then the INV_ARCHIVE bit should be set. The low-order
sixteen bits of mask are the storage manager number on which the large object should
reside. For sites other than Berkeley, these bits should always be zero. The commands
below create an (Inversion) large object:

inv_oid = | o_creat (| NV_READ| | N\V_WRI TE| | NV_ARCHI VE) ;

Importing a Large Object
To import a UNIX file as a large object, call
G d lo_inmport(PGconn *conn, const char *fil enane)

f i | enanme specifies the Unix pathname of the file to be imported as a large object.

Exporting a Large Object
To export a large object into UNIX file, call
int |o_export(PGonn *conn, G d lobjld, const char *fil enane)

The lobjld argument specifies the Oid of the large object to export and the filename
argument specifies the UNIX pathname of the file.

Opening an Existing Large Object
To open an existing large object, call
int |o_open(PConn *conn, Od |lobjld, int node)

The lobjld argument specifies the Oid of the large object to open. The mode bits control
whether the object is opened for reading INV_READ), writing or both. A large object
cannot be opened before it is created. | o_open returns a large object descriptor for later
useinlo read,lo wite,lo_|seek,lo_tell,andlo_cl ose.

Writing Data to a Large Object
The routine

int lo wite(PGonn *conn, int fd, const char *buf, size t len)

111

Chapter 16. Large Objects

writes len bytes from buf to large object fd. The fd argument must have been returned by a
previous | o_open. The number of bytes actually written is returned. In the event of an
error, the return value is negative.

Reading Data from a Large Object
The routine
int |o_read(PGonn *conn, int fd, char *buf, size_t len)

reads len bytes from large object fd into byf. The fd argument must have been returned by
a previous | o_open. The number of bytes actually read is returned. In the event of an
error, the return value is negative.

Seeking on a Large Object
To change the current read or write location on a large object, call
int |o_Iseek(PGconn *conn, int fd, int offset, int whence)

This routine moves the current location pointer for the large object described by fd to the
new location specified by offset. The valid values for whence are SEEK_SET,
SEEK_CUR, and SEEK_END.

Closing a Large Object Descriptor
A large object may be closed by calling
int 1o_close(PGconn *conn, int fd)

where fd is a large object descriptor returned by | o_open. On success, | o_cl ose returns
zero. On error, the return value is negative.

Built in registered functions

There are two built-in registered functions, lo_import and lo_export which are convenient
for use in SQL queries. Here is an example of their use

CREATE TABLE i mage (

name t ext,
raster oid

)

| NSERT | NTO i mage (nane, raster)
VALUES (' beautiful image’, lo_inmport(’'/etc/notd));

SELECT | o_export(image.raster, ’'/tnp/notd) from i mage
VWHERE nane = ’'beautiful image’;

Accessing Large Objects from LIBPQ

Below is a sample program which shows how the large object interface in LIBPQ can be
used. Parts of the program are commented out but are left in the source for the readers

112

Chapter 16. Large Objects

benefit. This program can be found in . . / src/ t est/ exanpl es Frontend applications
which use the large object interface in LIBPQ should include the header file
libpg/libpg-fs.h and link with the libpq library.

Sample Program

testlo.c--
test using large objects with Iibpq

Copyright (c) 1994, Regents of the University of California

| DENTI FI CATI ON
/usr/ 1 ocal/devel /pglitel/cvs/src/doc/ nmanual .ne,v 1.16

#i ncl ude <stdio. h>
#include "libpg-fe.h"
#include "libpqg/libpg-fs.h"

#defi ne BUFSI ZE 1024

/*

* inportFile * inport file "in_filename" into database as |arge

obj ect "l obj G d"
*

G d inportFile(PGconn *conn, char *filenane)

{

G d |objld,;

int |obj_fd;

char buf [BUFSI ZE] ;
int nbytes, tnp;
int fd;

/*
* open the file to be read in
*
/
fd = open(fil enane, O RDONLY, 0666)
if (fd <0 { [* error */
fprintf(stderr, "can't open unix file %\n", filenane);

}

/*
* create the |arge object
*
/
lobjld = | o_creat(conn, | NV_READ| | NV_WRI TE)
if (lobjld == 0) {
fprintf(stderr, "can't create | arge object\n")

}

lobj _fd = 1o_open(conn, lobjld, IN/_WR TE)
/*

113

Chapter 16. Large Objects

* read in fromthe Unix file and wite to the inversion file
*/
while ((nbytes = read(fd, buf, BUFSIZE)) > 0) {
tnp = lo_wite(conn, lobj_fd, buf, nbytes);
if (tnmp < nbytes) {
fprintf(stderr, "error while reading | arge object\n");
}
}

(void) close(fd);
(void) lo_close(conn, |obj_fd);

return |objld,;

}

voi d pi ckout (PGconn *conn, Od lobjld, int start, int len)
{

int |obj_fd;

char* buf;

int nbytes;

int nread,

lobj _fd = 1o_open(conn, |objld, |NV_READ);

if (lobj_fd < 0) {

fprintf(stderr,"can't open |arge object %\ n",
| obj 1d);

}

|l o_I seek(conn, lobj_fd, start, SEEK SET);
buf = malloc(len+l);

nread = O;
while (len - nread > 0) {
nbytes = lo_read(conn, lobj _fd, buf, len - nread);

buf [nbytes] ="
fprintf(stderr,">>> 9", buf);
nread += nbytes;
}
fprintf(stderr,"\n");
I o_cl ose(conn, |obj_fd);

}

void overwite(PGeonn *conn, Od lobjld, int start, int |en)
{

int |obj_fd;

char* buf;

i nt nbytes;

int nwitten;

int i;

lobj _fd = 1o_open(conn, lobjld, |INV_READ);

if (lobj_fd < 0) {

fprintf(stderr,"can’t open |arge object %\ n",
| obj 1d);

}

|l o_I seek(conn, lobj_fd, start, SEEK SET);

114

Chapter 16. Large Objects

buf = malloc(len+l);

for (i=0;i<len;i++)
buf[i] = 'X;
buf[i] ="

nwitten = 0;
while (len - nwitten > 0) {

nbytes = lo_wite(conn, lobj_fd, buf + nwitten, len -
nwitten);
nwitten += nbytes;
}
fprintf(stderr,"\n");
Il o_close(conn, |obj _fd);
}
/*

* exportFile * export large object "lobjGd" to file
"out _fil enanme"
*
*/
voi d exportFile(PConn *conn, Gd lobjld, char *fil enane)
{
int |obj_fd;
char buf [BUFSI ZE] ;
int nbytes, tnp;
int fd;

/*
* create an inversion "object"
*
/
lobj _fd = lo_open(conn, lobjld, |INV_READ);
if (lobj_fd < 0) {
fprintf(stderr,"can't open |l arge object %\ n",

I obj I d);
}
/*
* open the file to be witten to
*
/

fd = open(fil ename, O _CREAT| O WRONLY, 0666);
if (fd <0) { [* error */
fprintf(stderr, "can't open unix file %\n",

filenane);
}
/*
* read in fromthe Unix file and wite to the inversion file
*/

while ((nbytes = lo_read(conn, |obj_fd, buf, BUFSIZE)) > 0) {
tnp = wite(fd, buf, nbytes);
if (tnp < nbytes) {
fprintf(stderr,"error while witing %\n",
filenane);

115

Chapter 16. Large Objects

(void) lo_close(conn, |obj_fd);
(void) close(fd);

return;

}
voi d
exit_ni cel y(PGconn* conn)
{

PQ i ni sh(conn);

exit(l);
}
int
mai n(int argc, char **argv)
{

char *in_filenane, *out_fil enane;
char *dat abase;

ad | objGd;

PGconn *conn;

PG esult *res;

if (argc '=4) {
fprintf(stderr, "Usage: % database_nane in_fil enane
out filename\n",
argv[0]);
exit(1l);
}

dat abase = argv[1];
in_filenane = argv[2];
out _filename = argv[3];

/*

* set up the connection

*/

conn = PQsetdb(NULL, NULL, NULL, NULL, database);

/* check to see that the backend connection was successfully
made */
if (PQstatus(conn) == CONNECTI ON_BAD) ({
fprintf(stderr,"Connection to database '%’ failed.\n",
dat abase) ;
fprintf(stderr," %", PQerror Message(conn));
exit_nicely(conn);

}

res = PQexec(conn, "begin");
PQcl ear (res);

printf("inporting file %\n", in_filenane);
/* lobjGd = inportFile(conn, in_filename); */
lobjGd = lo_inport(conn, in_filenane);

/*
printf("as large object %.\n", |objQd);

printf("picking out bytes 1000-2000 of the |arge object\n");

116

X s\n");

*/

/*

Chapter 16. Large Objects

pi ckout (conn, |objG d, 1000, 1000);

printf("overwiting bytes 1000-2000 of the large object with

overwite(conn, lobjGd, 1000, 1000);

printf("exporting large object to file %\n", out_filenane);
exportFile(conn, |IobjQOd, out_filenane); */

| o_export(conn, |objGd, out_filenane);

res = PQexec(conn, "end");

PQcl ear(res);

PX i ni sh(conn);
exit(0);

117

Chapter 17. libpg - C Library

| i bpq is the C application programmer’s interface to Postgres. | i bpq is a set of library
routines that allow client programs to pass queries to the Postgres backend server and to
receive the results of these queries. | i bpq is also the underlying engine for several other
Postgres application interfaces, including | i bpg++ (C++), 1 i bpgt ¢l (Tcl), Perl, and
ecpg. So some aspects of libpg’s behavior will be important to you if you use one of those
packages.

Three short programs are included at the end of this section to show how to write
programs that use | i bpg. There are several complete examples of | i bpq applications in
the following directories:

../src/test/regress
../src/test/exanpl es
..Isrc/bin/psql

Frontend programs which use | i bpg must include the header file | i bpg- f e. h and must
link with the | i bpq library.

Database Connection Functions

The following routines deal with making a connection to a Postgres backend server. The
application program can have several backend connections open at one time. (One reason
to do that is to access more than one database.) Each connection is represented by a
PGconn object which is obtained from PQconnectdb() or PQsetdbLogin(). Note that these
functions will always return a non-null object pointer, unless perhaps there is too little
memory even to allocate the PGconn object. The PQstatus function should be called to
check whether a connection was successfully made before queries are sent via the
connection object.

PQconnect db Makes a new connection to the database server.

PGconn *PQconnect db(const char *conni nf 0)

This routine opens a new database connection using the parameters taken from the
string conni nf 0. Unlike PQsetdbLogin() below, the parameter set can be extended
without changing the function signature, so use either of this routine or the non-blocking
analogues PQconnectStart / PQconnectPoll is prefered for application programming. The
passed string can be empty to use all default parameters, or it can contain one or more
parameter settings separated by whitespace.

Each parameter setting is in the form keywor d = val ue. (To write a null value or a
value containing spaces, surround it with single quotes, e.g., keyword = ’a val ue’.
Single quotes within the value must be written as* . Spaces around the equal sign are
optional.) The currently recognized parameter keywords are:

118

Chapter 17. libpg - C Library

host

Name of host to connect to. If a non-zero-length string is specified, TCP/IP
communication is used. Using this parameter causes a hostname look-up. See
hostaddr.

host addr

IP address of host to connect to. This should be in standard numbers-and-dots
form, as used by the BSD functions inet_aton et al. If a non-zero-length string is
specified, TCP/IP communication is used.

Using hostaddr instead of host allows the application to avoid a host name look-up,
which may be important in applications with time constraints. However, Kerberos
authentication requires the host name. The following therefore applies. If host is
specified without hostaddr, a hostname look-up is forced. If hostaddr is specified
without host, the value for hostaddr gives the remote address; if Kerberos is used,
this causes a reverse name query. If both host and hostaddr are specified, the value
for hostaddr gives the remote address; the value for host is ignored, unless Kerberos
is used, in which case that value is used for Kerberos authentication. Note that
authentication is likely to fail if libpq is passed a host name which is not the name
of the machine at hostaddr.

Without both a host name and host address, libpg will connect using a local Unix
domain socket.

port

Port number to connect to at the server host, or socket filename extension for
Unix-domain connections.

dbnane

The database name.

user

User name to connect as.

password

Password to be used if the server demands password authentication.

options

Trace/debug options to be sent to the server.

tty
A file or tty for optional debug output from the backend.

If any parameter is unspecified, then the corresponding environment variable (see
"Environment Variables™ section) is checked. If the environment variable is not set
either, then hardwired defaults are used. The return value is a pointer to an abstract struct
representing the connection to the backend.

PQset dbLogi n Makes a new connection to the database server.

PGconn *PQset dbLogi n(const char *pghost,
const char *pgport,

119

Chapter 17. libpg - C Library

const char *pgopti ons,
const char *pgtty,
const char *dbNane,
const char *|ogin,
const char *pwd)

This is the predecessor of PQconnect db with a fixed number of parameters but the
same functionality.

PQset db Makes a new connection to the database server.

PGconn *P(set db(char *pghost,
char *pgport,
char *pgoptions,
char *pgtty,
char *dbNane)

This is a macro that calls PQset dbLogi n() with null pointers for the login and pwd
parameters. It is provided primarily for backward compatibility with old programs.

PQconnect St art PQconnect Pol | Make a connection to the database server in a
non-blocking manner.

PGconn *PQconnect Start (const char *conni nf o)
Post gresPol | i ngSt at usType *PQconnect Pol | (PQconn *conn)

These two routines are used to open a connection to a database server such that your
application’s thread of execution is not blocked on remote 1/0 whilst doing so.

The database connection is made using the parameters taken from the string conni nf o,
passed to PQconnectStart. This string is in the same format as described above for
PQconnectdb.

Neither PQconnectStart nor PQconnectPoll will block, as long as a number of
restrictions are met:

The hostaddr and host parameters are used appropriately to ensure that name and
reverse name queries are not made. See the documentation of these parameters under
PQconnectdb above for details.

If you call PQtrace, ensure that the stream object into which you trace will not block.

You ensure for yourself that the socket is in the appropriate state before calling
PQconnectPoll, as described below.

To begin, call conn=PQconnect Start (" <connecti on_i nfo_string>").Ifconnis
NULL, then libpg has been unable to allocate a new PGconn structure. Otherwise, a
valid PGconn pointer is returned (though not yet representing a valid connection to the
database). On return from PQconnectStart, call status=PQstatus(conn). If status equals
CONNECTION_BAD, PQconnectStart has failed.

If PQconnectStart succeeds, the next stage is to poll libpg so that it may proceed with
the connection sequence. Loop thus: Consider a connection ’inactive’ by default. If
PQconnectPoll last returned PGRES _POLLING_ACTIVE, consider it "active’ instead.
If PQconnectPoll(conn) last returned PGRES_POLLING_READING, perform a select
for reading on PQsocket(conn). If it last returned PGRES_POLLING_WRITING,
perform a select for writing on PQsocket(conn). If you have yet to call PQconnectPoll,
i.e. after the call to PQconnectStart, behave as if it last returned
PGRES_POLLING_WRITING. If the select shows that the socket is ready, consider it

120

Chapter 17. libpg - C Library

"active’. If it has been decided that this connection is ’active’, call PQconnectPoll(conn)
again. If this call returns PGRES_POLLING_FAILED, the connection procedure has
failed. If this call returns PGRES_POLLING_OK, the connection has been successfully
made.

Note that the use of select() to ensure that the socket is ready is merely a (likely)
example; those with other facilities available, such as a poll() call, may of course use
that instead.

At any time during connection, the status of the connection may be checked, by calling
PQstatus. If this is CONNECTION_BAD, then the connection procedure has failed; if
this is CONNECTION_OK, then the connection is ready. Either of these states should be
equally detectable from the return value of PQconnectPoll, as above. Other states may be
shown during (and only during) an asynchronous connection procedure. These indicate
the current stage of the connection procedure, and may be useful to provide feedback to
the user for example. These statuses may include:

CONNECTION_STARTED: Waiting for connection to be made.
CONNECTION_MADE: Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE: Waiting for a response from the
postmaster.

CONNECTION_AUTH_OK: Received authentication; waiting for backend startup.
CONNECTION_SETENV: Negotiating environment.

Note that, although these constants will remain (in order to maintain compatibility) an
application should never rely upon these appearing in a particular order, or at all, or on
the status always being one of these documented values. An application may do
something like this:

swi t ch(PQst at us(conn))

{
case CONNECTI ON_STARTED:
f eedback = "Connecting...";
br eak;
case CONNECTI ON_MADE:
f eedback = "Connected to server...";
br eak;
defaul t:
f eedback = "Connecting...";
}

Note that if PQconnectStart returns a non-NULL pointer, you must call PQfinish when
you are finished with it, in order to dispose of the structure and any associated memory
blocks. This must be done even if a call to PQconnectStart or PQconnectPoll failed.

PQconnectPoll will currently block if libpg is compiled with USE_SSL defined. This
restriction may be removed in the future.

PQconnectPoll will currently block under Windows, unless libpq is compiled with
WIN32_NON_BLOCKING_CONNECTIONS defined. This code has not yet been

121

Chapter 17. libpg - C Library

tested under Windows, and so it is currently off by default. This may be changed in the
future.

These functions leave the socket in a non-blocking state as if PQset nonbl ocki ng had
been called.

PQconndef aul t s Returns the default connection options.
PQconni nf oOpti on *PQconndef aul t s(voi d)

struct PQconni nfoQption

{
char *keywor d; /* The keyword of the option */
char *envvar; /* Fal | back environment variable name */
char *conpiled; [/* Fallback conpiled in default value */
char *val ; /* Option’s current value, or NULL */
char *| abel ; /* Label for field in connect dialog */
char *di spchar; [/* Character to display for this field
in a connect dialog. Values are:
" Di splay entered value as is
o Password field - hide val ue
"D Debug option - don’t show by
default */
i nt dispsize; /* Field size in characters for dialog */
}

Returns a connection options array. This may be used to determine all possible
PQconnectdb options and their current default values. The return value points to an array
of PQconninfoOption structs, which ends with an entry having a NULL keyword
pointer. Note that the default values ("val” fields) will depend on environment variables
and other context. Callers must treat the connection options data as read-only.

After processing the options array, free it by passing it to PQconninfoFree(). If this is
not done, a small amount of memory is leaked for each call to PQconndefaults().

In Postgres versions before 7.0, PQconndefaults() returned a pointer to a static array,
rather than a dynamically allocated array. That wasn’t thread-safe, so the behavior has
been changed.

PQ i ni sh Close the connection to the backend. Also frees memory used by the
PGconn object.

voi d PCYini sh(PGconn *conn)

Note that even if the backend connection attempt fails (as indicated by PQstatus), the
application should call PQfinish to free the memory used by the PGconn object. The
PGconn pointer should not be used after PQfinish has been called.

PQ eset Reset the communication port with the backend.
voi d PQreset (PGconn *conn)

This function will close the connection to the backend and attempt to reestablish a new
connection to the same postmaster, using all the same parameters previously used. This
may be useful for error recovery if a working connection is lost.

PQreset Start PQ eset Pol | Reset the communication port with the backend, in a
non-blocking manner.

int PQresetStart(PGconn *conn);
Post gresPol | i ngSt at usType PQ eset Pol | (PGconn *conn);

122

Chapter 17. libpg - C Library

These functions will close the connection to the backend and attempt to reestablish a
new connection to the same postmaster, using all the same parameters previously used.
This may be useful for error recovery if a working connection is lost. They differ from
PQreset (above) in that they act in a non-blocking manner. These functions suffer from
the same restrictions as PQconnectStart and PQconnectPoll.

Call PQresetStart. If it returns 0, the reset has failed. If it returns 1, poll the reset using
PQresetPoll in exactly the same way as you would create the connection using
PQconnectPoll.

libpg application programmers should be careful to maintain the PGconn abstraction. Use
the accessor functions below to get at the contents of PGconn. Avoid directly referencing
the fields of the PGconn structure because they are subject to change in the future.
(Beginning in Postgres release 6.4, the definition of struct PGconn is not even provided in
l'i bpg- f e. h. If you have old code that accesses PGconn fields directly, you can keep
using it by including | i bpg-i nt . h too, but you are encouraged to fix the code soon.)

PQdb Returns the database name of the connection.
char *PQdb(const PCGconn *conn)

PQdb and the next several functions return the values established at connection. These
values are fixed for the life of the PGconn object.

PQuser Returns the user name of the connection.

char *PQuser (const PGconn *conn)

PQpass Returns the password of the connection.

char *PQpass(const PGconn *conn)

PChost Returns the server host name of the connection.
char *PChost (const PGconn *conn)

PQport Returns the port of the connection.

char *PQport (const PGconn *conn)

PQ t y Returns the debug tty of the connection.

char *PQty(const PGconn *conn)

PQopt i ons Returns the backend options used in the connection.
char *PQoptions(const PGconn *conn)

PQst at us Returns the status of the connection.

ConnSt at usType PQst at us(const PGconn *conn)

The status can be one of a number of values. However, only two of these are seen
outside of an asynchronous connection procedure - CONNECTI ON_OK or

CONNECTI ON_BAD. A good connection to the database has the status
CONNECTION_OK. A failed connection attempt is signaled by status

CONNECTI ON_BAD. Ordinarily, an OK status will remain so until PG i ni sh, buta
communications failure might result in the status changing to CONNECTI ON_BAD
prematurely. In that case the application could try to recover by calling PQr eset .

See the entry for PQconnectStart and PQconnectPoll with regards to other status codes
that might be seen.

PQer r or Message Returns the error message most recently generated by an operation
on the connection.

123

Chapter 17. libpg - C Library

char *PQerror Message(const PGconn* conn);

Nearly all libpg functions will set PQer r or Message if they fail. Note that by libpg
convention, a non-empty PQer r or Message will include a trailing newline.

PQoackendPl D Returns the process ID of the backend server handling this connection.
i nt PQbackendPl D(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY
messages (which include the PID of the notifying backend). Note that the PID belongs to
a process executing on the database server host, not the local host!

Query Execution Functions

Once a connection to a database server has been successfully established, the functions
described here are used to perform SQL queries and commands.

PQexec Submit a query to Postgres and wait for the result.

PG esul t *PQexec(PGconn *conn,
const char *query);

Returns a PGresult pointer or possibly a NULL pointer. A non-NULL pointer will
generally be returned except in out-of-memory conditions or serious errors such as
inability to send the query to the backend. If a NULL is returned, it should be treated like
a PGRES_FATAL_ERROR result. Use PQerrorMessage to get more information about
the error.

The PG esul t structure encapsulates the query result returned by the backend. | i bpg
application programmers should be careful to maintain the PGresult abstraction. Use the
accessor functions below to get at the contents of PGresult. Avoid directly referencing the
fields of the PGresult structure because they are subject to change in the future. (Beginning
in Postgres release 6.4, the definition of struct PGresult is not even provided in libpg-fe.h.
If you have old code that accesses PGresult fields directly, you can keep using it by
including libpg-int.h too, but you are encouraged to fix the code soon.)

PQ esul t St at us Returns the result status of the query.

ExecSt at usType PQesultStatus(const PGresult *res)

PQresultStatus can return one of the following values:
PGRES_EMPTY_QUERY -- The string sent to the backend was empty.
PGRES_COMMAND_(XK -- Successful completion of a command returning no data
PGRES_TUPLES_OX -- The query successfully executed
PGRES_COPY_QUT -- Copy Out (from server) data transfer started
PGRES_COPY_I N-- Copy In (to server) data transfer started
PGRES_BAD_RESPONSE -- The server’s response was not understood
PGRES NONFATAL_ERROR
PGRES FATAL_ERROR

124

Chapter 17. libpg - C Library

If the result status is PGRES_TUPLES (X, then the routines described below can be used
to retrieve the tuples returned by the query. Note that a SELECT that happens to retrieve
zero tuples still shows PGRES_TUPLES OK. PGRES_COMMAND_(X is for commands that

can never return tuples (INSERT, UPDATE, etc.). A response of PGRES_EMPTY_QUERY
often exposes a bug in the client software.

PQ esSt at us Converts the enumerated type returned by PQresultStatus into a string
constant describing the status code.

char *PQresStatus(ExecStatusType status);

PQ esul t Err or Message returns the error message associated with the query, or an
empty string if there was no error.

char *PQresul t Error Message(const PGesult *res);

Immediately following a PQexec or PQget Resul t call, PQerr or Message (on the
connection) will return the same string as PQr esul t Er r or Message (on the result).
However, a PGresult will retain its error message until destroyed, whereas the
connection’s error message will change when subsequent operations are done. Use

PQ esul t Er r or Message wWhen you want to know the status associated with a
particular PGresult; use PQer r or Message When you want to know the status from the
latest operation on the connection.

Pnt upl es Returns the number of tuples (instances) in the query result.

int PQntupl es(const PGresult *res);

POnfi el ds Returns the number of fields (attributes) in each tuple of the query result.
int POnfields(const PGresult *res);

PQbi nar yTupl es Returns 1 if the PGresult contains binary tuple data, O if it contains
ASCII data.

i nt PQbi naryTupl es(const PGresult *res);

Currently, binary tuple data can only be returned by a query that extracts data from a
BINARY cursor.

PQ name Returns the field (attribute) name associated with the given field index. Field
indices start at 0.

char *PCf name(const PGresult *res,
int field_index);

PQF nunmber Returns the field (attribute) index associated with the given field name.

i nt PQfnunber(const PGresult *res,
const char *field_name);

-1 is returned if the given name does not match any field.

PQ t ype Returns the field type associated with the given field index. The integer
returned is an internal coding of the type. Field indices start at O.

Od PQOftype(const PGresult *res,
int field_num;

You can query the system table pg_t ype to obtain the name and properties of the
various datatypes. The OIDs of the built-in datatypes are defined in
src/incl ude/ cat al og/ pg_t ype. h in the source tree.

P si ze Returns the size in bytes of the field associated with the given field index.
Field indices start at 0.

125

Chapter 17. libpg - C Library

int PQfsize(const PGresult *res,

int field_index);
PQfsize returns the space allocated for this field in a database tuple, in other words the
size of the server’s binary representation of the data type. -1 is returned if the field is
variable size.

PQ nod Returns the type-specific modification data of the field associated with the
given field index. Field indices start at 0.

int PQfnmod(const PGresult *res,

int field_index);
PQet val ue Returns a single field (attribute) value of one tuple of a PGresult. Tuple
and field indices start at 0.

char* PQgetval ue(const PG esult *res,

int tup_num

int field_num;
For most queries, the value returned by PQget val ue is a null-terminated ASCII string
representation of the attribute value. But if PQbi nar yTupl es() is 1, the value returned
by PQget val ue is the binary representation of the type in the internal format of the
backend server (but not including the size word, if the field is variable-length). It is then
the programmer’s responsibility to cast and convert the data to the correct C type. The
pointer returned by PQget val ue points to storage that is part of the PGresult structure.
One should not modify it, and one must explicitly copy the value into other storage if it
is to be used past the lifetime of the PGresult structure itself.

PQuet | engt h Returns the length of a field (attribute) in bytes. Tuple and field indices
start at 0.

int PQgetlength(const PGesult *res,
int tup_num
int field_num;

This is the actual data length for the particular data value, that is the size of the object
pointed to by PQgetvalue. Note that for ASCII-represented values, this size has little to
do with the binary size reported by PQfsize.

PQueti snul | Tests a field for a NULL entry. Tuple and field indices start at 0.

int PQgetisnull(const PGresult *res,
int tup_num
int field_num;

This function returns 1 if the field contains a NULL, 0 if it contains a non-null value.
(Note that PQgetvalue will return an empty string, not a null pointer, for a NULL field.)

PQcndSt at us Returns the command status string from the SQL command that
generated the PGresult.

char * PQcndStatus(const PGresult *res);
PQcndTupl es Returns the number of rows affected by the SQL command.
char * PQcndTupl es(const PGesult *res);

If the SQL command that generated the PGresult was INSERT, UPDATE or DELETE,
this returns a string containing the number of rows affected. If the command was
anything else, it returns the empty string.

126

Chapter 17. libpg - C Library

PQoi dVal ue Returns the object id of the tuple inserted, if the SQL command was an
INSERT. Otherwise, returns | nval i dGi d.

O d PQoi dval ue(const PGresult *res);

The type Oid and the constant | nval i dG d will be defined if you include the libpqg
header file. They will both be some integer type.

PQoi dSt at us Returns a string with the object id of the tuple inserted, if the SQL
command was an INSERT. Otherwise, returns an empty string.

char * PQoi dStatus(const PG esult *res);
This function is deprecated in favor of PQoi dVal ue and is not thread-safe.

PQori nt Prints out all the tuples and, optionally, the attribute hames to the specified
output stream.

voi d PQprint (FILE* fout, /* output stream*/
const PG esult *res,
const PQorintOpt *po);

struct {

pgbool header; /* print output field headings and row
count */

pgbool align; /* fill align the fields */

pgbool standard; /* old brain dead format */

pgbool htm 3; /* output html tables */

pgbool expanded; /* expand tables */

pgbool pager; /* use pager for output if needed */

char *fi el dSep; /* field separator */

char *t abl eOpt ; /* insert to HTML <table ...> */

char *caption; /* HTM.L <caption> */

char **fieldName; /* null term nated array of replacenent
field names */
} PQprint Opt;

This function was formerly used by psql to print query results, but this is no longer the
case and this function is no longer actively supported.

PQcl ear Frees the storage associated with the PGresult. Every query result should be
freed via PQclear when it is no longer needed.

voi d Pl ear (PQresult *res);

You can keep a PGresult object around for as long as you need it; it does not go away
when you issue a new query, nor even if you close the connection. To get rid of it, you
must call PQcl ear . Failure to do this will result in memory leaks in the frontend
application.

PQrekeEnpt yPGr esul t Constructs an empty PGresult object with the given status.

PG esul t* PQrakeEnpt yPG esul t (PGconn *conn, ExecStatusType
status);

This is libpg’s internal routine to allocate and initialize an empty PGresult object. It is
exported because some applications find it useful to generate result objects (particularly
objects with error status) themselves. If conn is not NULL and status indicates an error,
the connection’s current errorMessage is copied into the PGresult. Note that PQclear
should eventually be called on the object, just as with a PGresult returned by libpq itself.

127

Chapter 17. libpg - C Library

Asynchronous Query Processing

The PQexec function is adequate for submitting queries in simple synchronous
applications. It has a couple of major deficiencies however:

PQexec waits for the query to be completed. The application may have other work to do
(such as maintaining a user interface), in which case it won’t want to block waiting for
the response.

Since control is buried inside PQexec, it is hard for the frontend to decide it would like
to try to cancel the ongoing query. (It can be done from a signal handler, but not
otherwise.)

PQexec can return only one PGresult structure. If the submitted query string contains
multiple SQL commands, all but the last PGresult are discarded by PQexec.

Applications that do not like these limitations can instead use the underlying functions that
PQexec is built from: PsendQuery and PQget Resul t .

Older programs that used this functionality as well as PQput | i ne and PQoput nbyt es
could block waiting to send data to the backend, to address that issue, the function
PQset nonbl ocki ng was added.

Old applications can neglect to use PQset nonbl ocki ng and get the older potentially
blocking behavior. Newer programs can use PQset nonbl ocki ng to achieve a completely
non-blocking connection to the backend.

PQset nonbl ocki ng Sets the state of the connection to non-blocking.
i nt PQset nonbl ocki ng(PGconn *conn)

this function will ensure that calls to PQput | i ne, PQout nbyt es, PQsendQuery and
PQendcopy will not block but instead return an error if they need to be called again.

When a database connection has been set to non-blocking mode and PQexec is called, it
will temporarily set the state of the connection to blocking until the PQexec completes.

More of libpg is expected to be made safe for PQset nonbl ocki ng functionality in the
near future.

PQ snonbl ocki ng Returns the blocking status of the database connection.
i nt PQ snonbl ocki ng(const PGconn *conn)
Returns TRUE if the connection is set to non-blocking mode, FALSE if blocking.

PQsendQuery Submit a query to Postgres without waiting for the result(s). TRUE is
returned if the query was successfully dispatched, FALSE if not (in which case, use
PQerrorMessage to get more information about the failure).

i nt PQsendQuery(PGconn *conn,
const char *query);

After successfully calling PQsendQuery, call PQget Resul t one or more times to
obtain the query results. PQsendQuer y may not be called again (on the same
connection) until PQget Resul t has returned NULL, indicating that the query is done.

PQuet Resul t Wait for the next result from a prior PQsendQuer y, and return it. NULL
is returned when the query is complete and there will be no more results.

PG esult *PQet Resul t (PGconn *conn);

128

Chapter 17. libpg - C Library

PQuet Resul t must be called repeatedly until it returns NULL, indicating that the
query is done. (If called when no query is active, PQget Resul t will just return NULL
at once.) Each non-null result from PQget Resul t should be processed using the same
PGresult accessor functions previously described. Don’t forget to free each result object
with PQcl ear when done with it. Note that PQget Resul t will block only if a query is
active and the necessary response data has not yet been read by PQconsunel nput .

Using PQsendQuer y and PQget Resul t solves one of PQexec’s problems: If a query
string contains multiple SQL commands, the results of those commands can be obtained
individually. (This allows a simple form of overlapped processing, by the way: the frontend
can be handling the results of one query while the backend is still working on later queries
in the same query string.) However, calling PQget Resul t will still cause the frontend to
block until the backend completes the next SQL command. This can be avoided by proper
use of three more functions:

PQconsunel nput If input is available from the backend, consume it.
i nt PQconsunel nput (PGconn *conn);

PQconsunel nput normally returns 1 indicating "no error", but returns O if there was
some kind of trouble (in which case PQer r or Message is set). Note that the result does
not say whether any input data was actually collected. After calling PQconsunel nput ,
the application may check PQ sBusy and/or PQnot i f i es to see if their state has
changed.

PQconsunel nput may be called even if the application is not prepared to deal with a
result or notification just yet. The routine will read available data and save it in a buffer,
thereby causing a sel ect (2) read-ready indication to go away. The application can thus
use PQconsunel nput to clear the sel ect condition immediately, and then examine the
results at leisure.

PQ sBusy Returns 1 if a query is busy, that is, PQget Resul t would block waiting for
input. A O return indicates that PQget Resul t can be called with assurance of not
blocking.

i nt PQ sBusy(PGconn *conn);

PQ sBusy will not itself attempt to read data from the backend; therefore
PQconsunel nput must be invoked first, or the busy state will never end.

PQX | ush Attempt to flush any data queued to the backend, returns 0 if successful (or if
the send queue is empty) or EOF if it failed for some reason.

int PQflush(PGconn *conn);

PQ | ush needs to be called on a non-blocking connection before calling sel ect to
determine if a responce has arrived. If O is returned it ensures that there is no data
queued to the backend that has not actually been sent. Only applications that have used
PQset nonbl ocki ng have a need for this.

PQsocket Obtain the file descriptor number for the backend connection socket. A valid
descriptor will be >=0; a result of -1 indicates that no backend connection is currently
open.

i nt PQsocket (const PGconn *conn);

PQsocket should be used to obtain the backend socket descriptor in preparation for
executing sel ect (2). This allows an application using a blocking connection to wait for
either backend responses or other conditions. If the result of sel ect (2) indicates that
data can be read from the backend socket, then PQconsumel nput should be called to

129

Chapter 17. libpg - C Library

read the data; after which, PQ sBusy, PQget Resul t, and/or PQnot i fi es can be used
to process the response.

Non-blocking connections (that have used PQset nonbl ocki ng) should not use sel ect
until PGY | ush has returned 0 indicating that there is no buffered data waiting to be sent
to the backend.

A typical frontend using these functions will have a main loop that uses sel ect (2) to wait
for all the conditions that it must respond to. One of the conditions will be input available
from the backend, which in sel ect ’s terms is readable data on the file descriptor
identified by PQsocket . When the main loop detects input ready, it should call
PQconsunel nput to read the input. It can then call PQ sBusy, followed by

PQuet Resul t if PQ sBusy returns false (0). It can also call PQnot i fi es to detect
NOTIFY messages (see "Asynchronous Notification", below).

A frontend that uses PQsendQuer y/PQget Resul t can also attempt to cancel a query that
is still being processed by the backend.

PQ equest Cancel Request that Postgres abandon processing of the current query.
i nt PQrequest Cancel (PGconn *conn);

The return value is 1 if the cancel request was successfully dispatched, 0 if not. (If not,
PQer r or Message tells why not.) Successful dispatch is no guarantee that the request
will have any effect, however. Regardless of the return value of PQr equest Cancel , the
application must continue with the normal result-reading sequence using PQget Resul t .
If the cancellation is effective, the current query will terminate early and return an error
result. If the cancellation fails (say, because the backend was already done processing
the query), then there will be no visible result at all.

Note that if the current query is part of a transaction, cancellation will abort the whole
transaction.

PQ equest Cancel can safely be invoked from a signal handler. So, it is also possible to
use it in conjunction with plain PQexec, if the decision to cancel can be made in a signal
handler. For example, psgl invokes PQr equest Cancel from a SIGINT signal handler,
thus allowing interactive cancellation of queries that it issues through PQexec. Note that
PQ equest Cancel will have no effect if the connection is not currently open or the
backend is not currently processing a query.

Fast Path

Postgres provides a fast path interface to send function calls to the backend. This is a
trapdoor into system internals and can be a potential security hole. Most users will not need
this feature.

PQF n Request execution of a backend function via the fast path interface.

PG esul t* PQ n(PGconn* conn,
int fnid,
int *result_buf,
int *result_|en,
int result_is_int,
const PQArgBl ock *args,
int nargs);

The fnid argument is the object identifier of the function to be executed. result_buf is
the buffer in which to place the return value. The caller must have allocated sufficient

130

Chapter 17. libpg - C Library

space to store the return value (there is no check!). The actual result length will be
returned in the integer pointed to by result_len. If a 4-byte integer result is expected, set
result_is_int to 1; otherwise set it to 0. (Setting result_is_int to 1 tells libpg to byte-swap
the value if necessary, so that it is delivered as a proper int value for the client machine.
When result_is_int is 0, the byte string sent by the backend is returned unmodified.) args
and nargs specify the arguments to be passed to the function.

typedef struct {
int |len;
int isint;
uni on {
int *ptr;
int integer;
o
} PQArgBl ock;
PQ¥ n always returns a valid PGresult*. The resultStatus should be checked before the
result is used. The caller is responsible for freeing the PGresult with PQcl ear when it is
no longer needed.

Asynchronous Notification

Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A
backend registers its interest in a particular notification condition with the LISTEN
command (and can stop listening with the UNLISTEN command). All backends listening
on a particular condition will be notified asynchronously when a NOTIFY of that condition
name is executed by any backend. No additional information is passed from the notifier to
the listener. Thus, typically, any actual data that needs to be communicated is transferred
through a database relation. Commonly the condition name is the same as the associated
relation, but it is not necessary for there to be any associated relation.

I'i bpg applications submit LISTEN and UNLISTEN commands as ordinary SQL queries.
Subsequently, arrival of NOTIFY messages can be detected by calling PQnotifies().

PQnot i fi es Returns the next notification from a list of unhandled notification
messages received from the backend. Returns NULL if there are no pending
notifications. Once a notification is returned from PQnotifies, it is considered handled
and will be removed from the list of notifications.

PGnhoti fy* PQnotifies(PGconn *conn);

typedef struct pgNotify {

char rel name[NAMEDATALEN ; /* name of relation
* containing data */
int be_pid; /* process id of backend */
} PGhoti fy;

After processing a PGnotify object returned by PQnot i fi es, be sure to free it with
free() toavoid a memory leak.

Note: In Postgres 6.4 and later, the be_pi d is the notifying backend’s, whereas in
earlier versions it was always your own backend’s PID.

The second sample program gives an example of the use of asynchronous notification.

PQnoti fi es() does not actually read backend data; it just returns messages previously
absorbed by another libpg function. In prior releases of libpg, the only way to ensure timely

131

Chapter 17. libpg - C Library

receipt of NOTIFY messages was to constantly submit queries, even empty ones, and then
check PQnot i fi es() after each PQexec() . While this still works, it is deprecated as a
waste of processing power.

A better way to check for NOTIFY messages when you have no useful queries to make is
to call PQconsumel nput (), then check PQnoti fi es(). You can use sel ect (2) to wait
for backend data to arrive, thereby using no CPU power unless there is something to do.
(See PQsocket () to obtain the file descriptor number to use with sel ect .) Note that this
will work OK whether you submit queries with PQsendQuer y/PQget Resul t or simply
use PQexec. You should, however, remember to check PQnot i fi es() after each

PQuet Resul t or PQexec, to see if any notifications came in during the processing of the

query.

Functions Associated with the COPY Command

The COPY command in Postgres has options to read from or write to the network
connection used by | i bpg. Therefore, functions are necessary to access this network
connection directly so applications may take advantage of this capability.

These functions should be executed only after obtaining a PGRES_COPY_OUT or
PGRES_COPY_I Nresult object from PQexec or PQget Resul t .

PQuet | i ne Reads a newline-terminated line of characters (transmitted by the backend
server) into a buffer string of size length.

int PQgetline(PGconn *conn,
char *string,
int |ength)

Like f get s(3), this routine copies up to length-1 characters into string. It is like

get s(3), however, in that it converts the terminating newline into a null character.
PQuet | i ne returns ECF at EOF, 0 if the entire line has been read, and 1 if the buffer is
full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of the two characters
"\.", which indicates that the backend server has finished sending the results of the copy
command. If the application might receive lines that are more than length-1 characters
long, care is needed to be sure one recognizes the "\." line correctly (and does not, for
example, mistake the end of a long data line for a terminator line). The code in

src/ bi n/ psqgl / copy. c contains example routines that correctly handle the copy
protocol.

PQget | i neAsync Reads a newline-terminated line of characters (transmitted by the
backend server) into a buffer without blocking.

int PQgetlineAsync(PCGconn *conn,
char *buffer,
i nt bufsize)

This routine is similar to PQget | i ne, but it can be used by applications that must read
COPY data asynchronously, that is without blocking. Having issued the COPY
command and gotten a PGRES_COPY_QUT response, the application should call
PQconsunel nput and PQget | i neAsync until the end-of-data signal is detected.
Unlike PQget | i ne, this routine takes responsibility for detecting end-of-data. On each
call, PQget | i neAsync will return data if a complete newline- terminated data line is
available in libpg’s input buffer, or if the incoming data line is too long to fit in the

132

Chapter 17. libpg - C Library

buffer offered by the caller. Otherwise, no data is returned until the rest of the line
arrives.

The routine returns -1 if the end-of-copy-data marker has been recognized, or 0 if no
data is available, or a positive number giving the number of bytes of data returned. If -1
is returned, the caller must next call PQendcopy, and then return to normal processing.
The data returned will not extend beyond a newline character. If possible a whole line
will be returned at one time. But if the buffer offered by the caller is too small to hold a
line sent by the backend, then a partial data line will be returned. This can be detected by
testing whether the last returned byte is \ n or not. The returned string is not
null-terminated. (If you want to add a terminating null, be sure to pass a bufsize one
smaller than the room actually available.)

PQput | i ne Sends a null-terminated string to the backend server. Returns 0 if OK, EOF
if unable to send the string.

int PQoutline(PCGonn *conn,
const char *string);

Note the application must explicitly send the two characters \. on a final line to indicate
to the backend that it has finished sending its data.

PQout nbyt es Sends a non-null-terminated string to the backend server. Returns 0 if
OK, EOF if unable to send the string.

i nt PQput nbyt es(PGconn *conn,
const char *buffer,
i nt nbytes);

This is exactly like PQput | i ne, except that the data buffer need not be null-terminated
since the number of bytes to send is specified directly.

PQendcopy Syncs with the backend. This function waits until the backend has finished
the copy. It should either be issued when the last string has been sent to the backend
using PQout | i ne or when the last string has been received from the backend using
PGget | i ne. It must be issued or the backend may get out of sync with the frontend.
Upon return from this function, the backend is ready to receive the next query. The
return value is 0 on successful completion, nonzero otherwise.

i nt PQendcopy(PGconn *conn);
As an example:

PQexec(conn, "create table foo (a int4, b char(16), d float8)");
PQexec(conn, "copy foo fromstdin");

PQoutline(conn, "3\thello world\t4.5\n");

PQout I i ne(conn, "4\t goodbye worl d\t7.11\n");

PQout li ne(conn, "\\.\n");
PQendcopy(conn);

When using PQget Resul t, the application should respond to a PGRES_COPY_QUT result
by executing PQget | i ne repeatedly, followed by PQendcopy after the terminator line is

seen. It should then return to the PQget Resul t loop until PQget Resul t returns NULL.

Similarly a PGRES_COPY_I Nresult is processed by a series of PQout | i ne calls followed
by PQendcopy, then return to the PQget Resul t loop. This arrangement will ensure that a
copy in or copy out command embedded in a series of SQL commands will be executed

correctly.

133

Chapter 17. libpg - C Library

Older applications are likely to submit a copy in or copy out via PQexec and assume that
the transaction is done after PQendcopy. This will work correctly only if the copy infout is
the only SQL command in the query string.

libpq Tracing Functions

PQ r ace Enable tracing of the frontend/backend communication to a debugging file
stream.

voi d PQrace(PCGconn *conn
FI LE *debug_port)

PQunt r ace Disable tracing started by PQtrace

voi d PQuntrace(PGconn *conn)

libpg Control Functions

PQset Not i ceProcessor Control reporting of notice and warning messages generated
by libpg.

typedef void (*PQnoticeProcessor) (void *arg, const char
*message) ;

PQnot i ceProcessor
PQset Not i ceProcessor (PGconn *conn,
PQnhot i ceProcessor proc,
void *arg);
By default, libpg prints notice messages from the backend on st der r, as well as a few
error messages that it generates by itself. This behavior can be overridden by supplying a
callback function that does something else with the messages. The callback function is
passed the text of the error message (which includes a trailing newline), plus a void pointer
that is the same one passed to PQset Not i cePr ocessor . (This pointer can be used to
access application-specific state if needed.) The default notice processor is simply

static void
def aul t Noti ceProcessor(void * arg, const char * nessage)

{

fprintf(stderr, "%", nessage);

}

To use a special notice processor, call PQset Not i cePr ocessor just after creation of a
new PGconn object.

The return value is the pointer to the previous notice processor. If you supply a callback
function pointer of NULL, no action is taken, but the current pointer is returned.

Once you have set a notice processor, you should expect that that function could be called
as long as either the PGconn object or PGresult objects made from it exist. At creation of a
PGresult, the PGconn’s current notice processor pointer is copied into the PGresult for
possible use by routines like PQget val ue.

134

Chapter 17. libpg - C Library

Environment Variables

The following environment variables can be used to select default connection parameter
values, which will be used by PQconnect db or PQset dbLogi n if no value is directly
specified by the calling code. These are useful to avoid hard-coding database names into
simple application programs.

PGHOST sets the default server name. If a non-zero-length string is specified, TCP/IP
communication is used. Without a host name, libpg will connect using a local Unix
domain socket.

PGPORT sets the default port or local Unix domain socket file extension for
communicating with the Postgres backend.

PGDATABASE sets the default Postgres database name.
PGUSER sets the username used to connect to the database and for authentication.

PGPASSWORD sets the password used if the backend demands password
authentication.

PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local
realm. If PGREALM is set, Postgres applications will attempt authentication with
servers for this realm and use separate ticket files to avoid conflicts with local ticket
files. This environment variable is only used if Kerberos authentication is selected by the
backend.

PGOPTIONS sets additional runtime options for the Postgres backend.

PGTTY sets the file or tty on which debugging messages from the backend server are
displayed.

The following environment variables can be used to specify user-level default behavior for
every Postgres session:

PGDATESTYLE sets the default style of date/time representation.
PGTZ sets the default time zone.

PGCLIENTENCODING sets the default client encoding (if MULTIBYTE support was
selected when configuring Postgres).

The following environment variables can be used to specify default internal behavior for
every Postgres session:

PGGEQO sets the default mode for the genetic optimizer.

Refer to the SET SQL command for information on correct values for these environment
variables.

Threading Behavior

I i bpq is thread-safe as of Postgres 7.0, so long as no two threads attempt to manipulate the
same PGconn object at the same time. In particular, you can’t issue concurrent queries
from different threads through the same connection object. (If you need to run concurrent
queries, start up multiple connections.)

PGresult objects are read-only after creation, and so can be passed around freely between
threads.

135

Chapter 17. libpg - C Library

The deprecated functions PQoi dSt at us and f e_set aut hsvc are not thread-safe and
should not be used in multi-thread programs. PQoi dSt at us can be replaced by
PQoi dVal ue. There is no good reason to call f e_set aut hsvc at all.

Sample Programs

Sample Program 1

/*
* testlibpg.c Test the C version of Libpg, the Postgres frontend
* library.

*

*/
#i ncl ude <stdio. h>
#include "libpg-fe.h"

voi d
exit_nicel y(PGonn *conn)
{
P i ni sh(conn);
exit(1);
}
mai n()
{
char *pghost ,
*pgport,
*pgopti ons,
*potty;
char *dbNane;
i nt nFi el ds;
i nt i,
is
/* FILE *debug; */
PGconn *conn;
PG esul t *res;
/*
* begin, by setting the paraneters for a backend connection if
t he

* paraneters are null, then the systemwll try to use
reasonabl e

* defaults by | ooking up environnent variables or, failing
t hat ,

* using hardwi red constants

*
/
pghost = NULL; /* host name of the backend server
*
/
pgport = NULL; /* port of the backend server */
pgopti ons = NULL; /* special options to start up the
backend

* server */

136

Chapter 17. libpg - C Library

pogtty = NULL; /* debugging tty for the backend
server */
dbNane = "tenpl atel”;

/* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbNanme);

/*
* check to see that the backend connection was successfully
nmade
*/
if (PQstatus(conn) == CONNECTI ON_BAD)
{
fprintf(stderr, "Connection to database '%’' failed.\n",
dbNane) ;
fprintf(stderr, "9%", PQerrorMessage(conn));
exi t _nicely(conn);

}

/* debug = fopen("/tnp/trace.out","w'); */
/* PQrace(conn, debug); */

/* start a transaction block */
res = PQexec(conn, "BEG N');
if ('res || PQresultStatus(res) != PGRES_COVVAND_CK)
{
fprintf(stderr, "BEA N comand failed\n");
PQl ear (res);
exi t_ni cely(conn);

}

/*

* shoul d PQcl ear PGresult whenever it is no |onger needed to
avoi d

* menory | eaks

*/

PQcl ear (res);

/*
* fetch instances fromthe pg_database, the system catal og of
* dat abases
*/
res = PQexec(conn, "DECLARE nycursor CURSOR FOR select * from
pg_dat abase");
if ('res || PQresultStatus(res) != PGRES_COVVAND_CXK)
{
fprintf(stderr, "DECLARE CURSOR conmmand failed\n");
PQcl ear (res);
exi t_ni cely(conn);
}
PQcl ear (res);
res = PQexec(conn, "FETCH ALL in nycursor");
if ('res || PQesultStatus(res) != PGRES TUPLES CX)
{
fprintf(stderr, "FETCH ALL comuand didn't return tuples
properly\n");
PQcl ear (res);

137

Chapter 17. libpg - C Library

exit_nicely(conn);

}

/* first, print out the attribute nanes */
nFields = Pnhfields(res);
for (i =0; i <nFields; i++)

printf("% 15s", PQnane(res, i));
printf("\n\n");

/* next, print out the instances */
for (i =0; i < PMntuples(res); i++)

{
for (j =0; j < nFields; j++)
printf("% 15s", PQgetvalue(res, i, j));
printf("\n");
}

PQcl ear (res);

/* close the cursor */

res = PQexec(conn, "CLOSE mycursor");
PQcl ear (res);

/* commt the transaction */

res = PQexec(conn, "COWM T");

PQcl ear (res);

/* close the connection to the database and cl eanup */
PG i ni sh(conn);

/* fcl ose(debug); */
}

Sample Program 2
/*

* testlibpg2.c
* Test of the asynchronous notification interface

*

* Start this program then from psqgl in another w ndow do
* NOTI FY TBLZ2;

* O, if you want to get fancy, try this:
* Popul ate a database with the foll ow ng:

* CREATE TABLE TBL1 (i int4);
* CREATE TABLE TBL2 (i int4);

* CREATE RULE r1 AS ON I NSERT TO TBL1 DO
* (I NSERT | NTO TBL2 val ues (new.i); NOTIFY TBL2);

* and do
* I NSERT | NTO TBL1 val ues (10);

*/
#i ncl ude <stdio. h>

138

Chapter 17. libpg - C Library

#include "libpg-fe.h"

voi d
exit_nicel y(PGconn *conn)
{
PQ i ni sh(conn);
exit(1);
}
mai n()
{
char *pghost ,
*pgport,
*pgopti ons,
*pgtty;
char *dbNane;
i nt nFi el ds;
i nt i,
is
PGconn *conn;
PG esul t *res;
PGhotify *notify;
/*
* begin, by setting the paraneters for a backend connection if
t he

* paraneters are null, then the systemwll try to use
reasonabl e

* defaults by |ooking up environnment variables or, failing
t hat ,

* using hardwi red constants

*/

pghost = NULL; /* host nane of the backend server
*/

pgport = NULL; /* port of the backend server */

pgopti ons = NULL; /* special options to start up the
backend

* server */

potty = NULL; /* debugging tty for the backend
server */

dbNanme = getenv("USER'); /* change this to the name of your
t est

* dat abase */

/* make a connection to the database */
conn = PQset db(pghost, pgport, pgoptions, pgtty, dbNanme);

/*
* check to see that the backend connection was successfully
made
*/
if (PQstatus(conn) == CONNECTI ON_BAD)
{
fprintf(stderr, "Connection to database '%’' failed.\n",
dbNane) ;
fprintf(stderr, "9%", PQerrorMessage(conn));

139

Chapter 17. libpg - C Library

exit_nicely(conn);

res = PQexec(conn, "LISTEN TBL2");
if ('res || PQresultStatus(res) != PGRES_COVVAND_CK)

{
fprintf(stderr, "LISTEN command failed\n");
PQl ear (res);
exi t_ni cely(conn);
}
/*
* shoul d PQcl ear PGresult whenever it is no |onger needed to
avoi d
* menory | eaks
*/

PQcl ear (res);

while (1)
{

/*

*wait alittle bit between checks; waiting with select()
* woul d be nore efficient.

*/

sl eep(l);

/* collect any asynchronous backend nessages */

PQconsunel nput (conn) ;

/* check for asynchronous notify nessages */

while ((notify = PQnotifies(conn)) !'= NULL)

{
fprintf(stderr,
"ASYNC NOTI FY of '%’ from backend pid ' %’
recei ved\ n",
notify->rel nane, notify->be pid);
free(notify);
}

}

/* close the connection to the database and cl eanup */
PQ i ni sh(conn);

}

Sample Program 3

* testlibpg3.c Test the C version of Libpg, the Postgres frontend
* |library. tests the binary cursor interface

* popul ate a database by doing the follow ng:

* CREATE TABLE testl (i int4, d float4, p polygon);

* INSERT INTO testl values (1, 3.567, (3.0, 4.0, 1.0,

140

Chapter 17. libpg - C Library

* 2.0)’::polygon);

* INSERT INTO testl1l values (2, 89.05, '(4.0, 3.0, 2.0
* 1.0)"::polygon);

* the expected output is:

* tuple 0: got i = (4 bytes) 1, d = (4 bytes) 3.567000, p = (4
* bytes) 2 points boundbox = (hi =3.000000/4.000000, lo =
* 1.000000, 2. 000000) tuple 1: got i = (4 bytes) 2, d = (4 bytes)

* 89.050003, p = (4 bytes) 2 points boundbox =
* (‘hi =4. 000000/ 3. 000000, | o = 2.000000, 1. 000000)

*/
#i ncl ude <stdio. h>
#include "libpg-fe.h"

#i nclude "util s/ geo-decls.h" /* for the POLYGON type */
voi d
exit_nicel y(PGconn *conn)
{
P& i ni sh(conn);
exit(1);
}
mai n()
{
char *pghost ,
*pgport,
*pgopti ons,
*potty;
char *dbNane
i nt nFi el ds;
i nt i,
is
i nt i _fnum
d_f num
p_f num
PCGconn *conn
PG esul t *res;
/*
* begin, by setting the paraneters for a backend connection if
t he

* paraneters are null, then the systemwll try to use
reasonabl e
* defaults by | ooking up environnent variables or, failing

t hat,

* using hardwi red constants

*/

pghost = NULL; /* host nane of the backend server
*/

pgport = NULL; /* port of the backend server */

pgopti ons = NULL; /* special options to start up the
backend

* server */

141

Chapter 17. libpg - C Library

pogtty = NULL; /* debugging tty for the backend
server */
dbNane = getenv("USER'); /* change this to the nane of your

t est
* dat abase */

/* make a connection to the database */
conn = PQset db(pghost, pgport, pgoptions, pgtty, dbName);

/*
* check to see that the backend connection was successfully
made
*/
if (PQstatus(conn) == CONNECTI ON_BAD)
{
fprintf(stderr, "Connection to database '%’ failed.\n",
dbNane) ;
fprintf(stderr, "%", PQerrorMessage(conn));
exit_nicely(conn);

}

/* start a transaction block */
res = PQexec(conn, "BEG N');
if ('res || PQresultStatus(res) != PGRES_COVVAND_CK)
{
fprintf(stderr, "BEA N comand failed\n");
PQl ear (res);
exi t_ni cely(conn);

}

/*

* shoul d PQcl ear PGresult whenever it is no |onger needed to
avoi d

* menory | eaks

*/

PQcl ear (res);

/*
* fetch instances fromthe pg_database, the system catal og of
* dat abases
*/
res = PQexec(conn, "DECLARE nycursor BI NARY CURSOR FOR sel ect *
fromtestl");
if ('res || PQresultStatus(res) != PGRES_COVVAND_CXK)
{
fprintf(stderr, "DECLARE CURSOR comrand failed\n");
PQl ear (res);
exi t_ni cely(conn);
}
PQcl ear (res);

res = PQexec(conn, "FETCH ALL in mycursor");
if ('res || PQresultStatus(res) != PGRES TUPLES CX)
{
fprintf(stderr, "FETCH ALL comand didn't return tuples
properly\n");

142

PQcl ear (res);
exit_nicely(conn);

Chapter 17. libpg - C Library

PQcl ear (res);

/* close the cursor */
res PQexec(conn, "CLOSE mycursor");
PQcl ear (res);

/* commt the transaction */
res PQexec(conn, "COW T");
PQcl ear (res);

}
i _fnum = PQf nunber(res, "i");
d_fnum = PQ nunber(res, "d");
p_fnum = P nunber(res, "p");
for (i =0; i < 3; i++)
{
printf("type[%d] = %, size[%] = %\ n",
i, PQftype(res, i),
i, PQfsize(res, i));
}
for (i =0; i < PMtuples(res); i++)
{
i nt *jval ;
f1 oat *dval ;
i nt pl en;
POLYGON *pval ;
/* we hard-wire this to the 3 fields we know about */
ival = (int *) PQetvalue(res, i, i_fnum;
dval = (float *) PQuetvalue(res, i, d_fnum;
pl en = PQgetl ength(res, i, p_fnum;
/*
* plen doesn’t include the length field so need to
* increment by VARHDSZ
*/
pval = (PCLYGON *) mall oc(plen + VARHDRSZ);
pval - >si ze = plen;
memmove((char *) &pval ->npts, PQgetvalue(res, i, p_fnum,
plen);
printf("tuple %: got\n", i);
printf(" i = (% bytes) %, \n",
PQoetl ength(res, i, i_fnum, *ival);
printf(" d = (% bytes) % ,\n",
PQoet | ength(res, i, d_fnum, *dval);
printf(" p = (% bytes) % points \tboundbox = (hi=%/%, |lo
=9%,%)\n",
PQgetl ength(res, i, d_fnum,
pval - >npt s,
pval - >boundbox. xh,
pval - >boundbox. yh,
pval - >boundbox. xI ,
pval - >boundbox. yl) ;
}

143

Chapter 17. libpg - C Library

/* close the connection to the database and cl eanup */
PQ i ni sh(conn);

144

Chapter 18. libpg - C++ Binding Library

| i bpg++ is the C++ API to Postgres. | i bpg++ is a set of classes which allow client
programs to connect to the Postgres backend server. These connections come in two forms:
a Database Class and a Large Obiject class.

The Database Class is intended for manipulating a database. You can send all sorts of SQL
queries to the Postgres backend server and retrieve the responses of the server.

The Large Object Class is intended for manipulating a large object in a database. Although
a Large Object instance can send normal queries to the Postgres backend server it is only
intended for simple queries that do not return any data. A large object should be seen as a
file stream. In the future it should behave much like the C++ file streams ci n, cout and
cerr.

This chapter is based on the documentation for the | i bpqg C library. Three short programs
are listed at the end of this section as examples of | i bpg++ programming (though not
necessarily of good programming). There are several examples of | i bpg++ applications in
src/ |i bpg++/ exanpl es, including the source code for the three examples in this
chapter.

Control and Initialization

Environment Variables

The following environment variables can be used to set up default values for an
environment and to avoid hard-coding database names into an application program:

Note: Refer to the libpg - C Library for a complete list of available connection options.

The following environment variables can be used to select default connection parameter
values, which will be used by PQconnectdb or PQsetdbLogin if no value is directly
specified by the calling code. These are useful to avoid hard-coding database names into
simple application programs.

Note: | i bpg++ uses only environment variables or PQconnectdb conninfo style
strings.

PGHOST sets the default server name. If a non-zero-length string is specified, TCP/IP
communication is used. Without a host name, libpg will connect using a local Unix
domain socket.

PGPORT sets the default port or local Unix domain socket file extension for
communicating with the Postgres backend.

PGDATABASE sets the default Postgres database name.
PGUSER sets the username used to connect to the database and for authentication.

PGPASSWORD sets the password used if the backend demands password
authentication.

145

Chapter 18. libpg - C++ Binding Library

PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local
realm. If PGREALM is set, Postgres applications will attempt authentication with
servers for this realm and use separate ticket files to avoid conflicts with local ticket
files. This environment variable is only used if Kerberos authentication is selected by the

backend.
PGOPTIONS sets additional runtime options for the Postgres backend.

PGTTY sets the file or tty on which debugging messages from the backend server are
displayed.

The following environment variables can be used to specify user-level default behavior for
every Postgres session:
PGDATESTYLE sets the default style of date/time representation.

PGTZ sets the default time zone.

The following environment variables can be used to specify default internal behavior for
every Postgres session:
PGGEQO sets the default mode for the genetic optimizer.

Refer to the SET SQL command for information on correct values for these environment

variables.

libpg++ Classes

Connection Class: PgConnect i on
The connection class makes the actual connection to the database and is inherited by all of
the access classes.

Database Class: PgDat abase

The database class provides C++ objects that have a connection to a backend server. To
create such an object one first needs the apropriate environment for the backend to access.
The following constructors deal with making a connection to a backend server from a C++

program.

Database Connection Functions

PgConnect i on makes a new connection to a backend database server.

PgConnecti on: : PgConnecti on(const char *conni nfo)

Although typically called from one of the access classes, a connection to a backend
server is possible by creating a PgConnection object.
Connect i onBad returns whether or not the connection to the backend server succeeded

or failed.

146

Chapter 18. libpg - C++ Binding Library

i nt PgConnecti on:: Connecti onBad()

Returns TRUE if the connection failed.
St at us returns the status of the connection to the backend server.

ConnSt at usType PgConnecti on: : Stat us()

Returns either CONNECTION_OK or CONNECTION_BAD depending on the state of
the connection.

PgDat abase makes a new connection to a backend database server.

PgDat abase(const char *conni nf o)

After a PgDatabase has been created it should be checked to make sure the connection
to the database succeded before sending queries to the object. This can easily be done by
retrieving the current status of the PgDatabase object with the St at us or

Connect i onBad methods.

DBNane Returns the name of the current database.

const char *PgConnecti on:: DBNanme()

Not i fi es Returns the next notification from a list of unhandled notification messages
received from the backend.

PGnhot i fy* PgConnection:: Notifies()

See PQnotifies() for details.

Query Execution Functions

Exec Sends a query to the backend server. 1t’s probably more desirable to use one of the
next two functions.

ExecSt at usType PgConnecti on: : Exec(const char* query)

Returns the result of the query. The following status results can be expected:

PGRES_EMPTY_QUERY

PGRES_COMMAND_OK, if the query was a command
PGRES_TUPLES_OK, if the query successfully returned tuples
PGRES_COPY_OUT

PGRES_COPY_IN

PGRES_BAD_RESPONSE, if an unexpected response was received
PGRES_NONFATAL_ERROR

PGRES_FATAL_ERROR

ExecCommandCk Sends a command query to the backend server.

147

Chapter 18. libpg - C++ Binding Library

i nt PgConnection: : ExecConmandCk(const char *query)

Returns TRUE if the command query succeeds.
ExecTupl esCk Sends a command query to the backend server.

i nt PgConnection:: ExecTupl esCk(const char *query)

Returns TRUE if the command query succeeds.
Er r or Message Returns the last error message text.

const char *PgConnecti on:: Error Message()

Tupl es Returns the number of tuples (instances) in the query result.

i nt PgDat abase: : Tupl es()

CndTupl es Returns the number of rows affected after an INSERT, UPDATE or
DELETE. If the command was anything else, it returns -1.

i nt PgDat abase: : CndTupl es()

Fi el ds Returns the number of fields (attributes) in each tuple of the query result.

i nt PgDat abase: : Fi el ds()

Fi el dNane Returns the field (attribute) name associated with the given field index.
Field indices start at 0.

const char *PgDat abase: : Fi el dNane(int fiel d_num

Fi el dNumPQfnumber Returns the field (attribute) index associated with the given field
name.

i nt PgDat abase: : Fi el dNum(const char* fiel d_nane)

-1 is returned if the given name does not match any field.

Fi el dType Returns the field type associated with the given field index. The integer
returned is an internal coding of the type. Field indices start at 0.

O d PgDat abase: : Fi el dType(int field_num

Fi el dType Returns the field type associated with the given field name. The integer
returned is an internal coding of the type. Field indices start at 0.

O d PgDat abase: : Fi el dType(const char* fiel d_nane)

148

Chapter 18. libpg - C++ Binding Library

Fi el dSi ze Returns the size in bytes of the field associated with the given field index.
Field indices start at 0.

short PgDat abase: : Fi el dSi ze(int field_num

Returns the space allocated for this field in a database tuple given the field number. In
other words the size of the server’s binary representation of the data type. -1 is returned
if the field is variable size.

Fi el dSi ze Returns the size in bytes of the field associated with the given field index.
Field indices start at 0.

short PgDat abase: : Fi el dSi ze(const char *fiel d_nane)

Returns the space allocated for this field in a database tuple given the field name. In
other words the size of the server’s binary representation of the data type. -1 is returned
if the field is variable size.

Get Val ue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and
field indices start at 0.

const char *PgDat abase:: Get Val ue(int tup_num int field_num

For most queries, the value returned by GetValue is a null-terminated ASCII string
representation of the attribute value. But if BinaryTuples() is TRUE, the value returned
by GetValue is the binary representation of the type in the internal format of the backend
server (but not including the size word, if the field is variable-length). It is then the
programmer’s responsibility to cast and convert the data to the correct C type. The
pointer returned by GetValue points to storage that is part of the PGresult structure. One
should not modify it, and one must explicitly copy the value into other storage if it is to
be used past the lifetime of the PGresult structure itself. BinaryTuples() is not yet
implemented.

Get Val ue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and
field indices start at 0.

const char *PgDat abase:: Get Val ue(int tup_num const char
*field_nane)

For most queries, the value returned by GetValue is a null-terminated ASCII string
representation of the attribute value. But if BinaryTuples() is TRUE, the value returned
by GetValue is the binary representation of the type in the internal format of the backend
server (but not including the size word, if the field is variable-length). It is then the
programmer’s responsibility to cast and convert the data to the correct C type. The
pointer returned by GetValue points to storage that is part of the PGresult structure. One
should not madify it, and one must explicitly copy the value into other storage if it is to
be used past the lifetime of the PGresult structure itself. BinaryTuples() is not yet
implemented.

Get Lengt h Returns the length of a field (attribute) in bytes. Tuple and field indices
start at 0.

i nt PgDat abase:: GetLength(int tup_num int field_num

149

Chapter 18. libpg - C++ Binding Library

This is the actual data length for the particular data value, that is the size of the object
pointed to by GetValue. Note that for ASCII-represented values, this size has little to do
with the binary size reported by PQfsize.

Get Lengt h Returns the length of a field (attribute) in bytes. Tuple and field indices
start at 0.

i nt PgDat abase:: GetLength(int tup_num const char* fiel d_nane)

This is the actual data length for the particular data value, that is the size of the object
pointed to by GetValue. Note that for ASClI-represented values, this size has little to do
with the binary size reported by PQfsize.

Di spl ayTupl es Prints out all the tuples and, optionally, the attribute names to the
specified output stream.

voi d PgDat abase: : Di spl ayTupl es(FILE *out = 0, int fillAlign
=1,

const char* fieldSep = "|",int printHeader = 1, int quiet
= O)

Pri nt Tupl es Prints out all the tuples and, optionally, the attribute names to the
specified output stream.

voi d PgDat abase: : Print Tupl es(FILE *out = 0, int printAttName =
1,
int terseQutput = 0, int width = 0)

Cet Li ne

i nt PgDat abase: : Get Li ne(char* string, int |ength)

Put Li ne

voi d PgDat abase: : Put Li ne(const char* string)

Q dSt at us
const char *PgDat abase: : O dSt at us()

EndCopy
i nt PgDat abase: : EndCopy()

150

Chapter 18. libpg - C++ Binding Library

Asynchronous Notification

Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A
backend registers its interest in a particular semaphore with the LI STEN command. All
backends that are listening on a particular named semaphore will be notified
asynchronously when a NOTIFY of that name is executed by another backend. No
additional information is passed from the notifier to the listener. Thus, typically, any actual
data that needs to be communicated is transferred through the relation.

Note: In the past, the documentation has associated the names used for asyncronous
notification with relations or classes. However, there is in fact no direct linkage of the
two concepts in the implementation, and the named semaphore in fact does not need
to have a corresponding relation previously defined.

| i bpg++ applications are notified whenever a connected backend has received an
asynchronous notification. However, the communication from the backend to the frontend
is not asynchronous. The | i bpg++ application must poll the backend to see if there is any
pending notification information. After the execution of a query, a frontend may call
PgDat abase: : Not i f i es to see if any notification data is currently available from the
backend. PgDat abase: : Noti f i es returns the notification from a list of unhandled
notifications from the backend. The function eturns NULL if there is no pending
notifications from the backend. PgDat abase: : Not i f i es behaves like the popping of a
stack. Once a notification is returned from PgDat abase: : Noti fi es, it is considered
handled and will be removed from the list of notifications.

PgDat abase: : Noti f i es retrieves pending notifications from the server.
PGnhot i fy* PgDat abase: : Notifies()

The second sample program gives an example of the use of asynchronous notification.

Functions Associated with the COPY Command

The copy command in Postgres has options to read from or write to the network
connection used by | i bpg++. Therefore, functions are necessary to access this network
connection directly so applications may take full advantage of this capability.

PgDat abase: : Get Li ne reads a newline-terminated line of characters (transmitted by
the backend server) into a buffer st ri ng of size | engt h.

i nt PgDat abase:: GetLine(char* string, int |ength)

Like the Unix system routine f get s (3), this routine copies up to | engt h- 1
characters into st ri ng. Itis like get s (3), however, in that it converts the
terminating newline into a null character.

PgDat abase: : Get Li ne returns EOF at end of file, O if the entire line has been read,
and 1 if the buffer is full but the terminating newline has not yet been read.

151

Chapter 18. libpg - C++ Binding Library

Notice that the application must check to see if a new line consists of a single period
("."), which indicates that the backend server has finished sending the results of the
copy. Therefore, if the application ever expects to receive lines that are more than
I engt h- 1 characters long, the application must be sure to check the return value of
PgDat abase: : Get Li ne very carefully.

PgDat abase: : Put Li ne Sends a null-terminated st r i ng to the backend server.

voi d PgDat abase: : Put Li ne(char* string)

The application must explicitly send a single period character (".") to indicate to the
backend that it has finished sending its data.

PgDat abase: : EndCopy syncs with the backend.
i nt PgDat abase: : EndCopy()

This function waits until the backend has finished processing the copy. It should either
be issued when the last string has been sent to the backend using

PgDat abase: : Put Li ne or when the last string has been received from the backend
using PgDat abase: : Get Li ne. It must be issued or the backend may get out of sync
with the frontend. Upon return from this function, the backend is ready to receive the
next query.

The return value is 0 on successful completion, nonzero otherwise.

As an example:

PgDat abase dat a;

dat a. Exec("create table foo (a int4, b char(16), d float8)");
dat a. Exec("copy foo fromstdin");

data.putline("3\etHell o Wrld\et4. 5\ en");

dat a. putline("4\ et Goodbye World\et7.11\en");

& ..

data. putline(".\en");

dat a. endcopy() ;

152

Chapter 19. pgtcl - TCL Binding Library

pgt cl is a tcl package for front-end programs to interface with Postgres backends. It
makes most of the functionality of | i bpq available to tcl scripts.

This package was originally written by Jolly Chen.

Commands
Table 19-1. pgt cI| Commands

Command Description

pg_connect opens a connection to the backend
server

pg_disconnect closes a connection

pg_conndefaults get connection options and their
defaults

pg_exec send a query to the backend

pg_result manipulate the results of a query

pg_select loop over the result of a SELECT
statement

pg_listen establish a callback for NOTIFY
messages

pg_lo_creat create a large object

pg_lo_open open a large object

pg_lo_close close a large object

pg_lo_read read a large object

pg_lo_write write a large object

pg_lo_lIseek seek to a position in a large object

pg_lo_tell return the current seek position of a
large object

pg_lo_unlink delete a large object

pg_lo_import import a Unix file into a large object

pg_lo_export export a large object into a Unix file

These commands are described further on subsequent pages.

The pg_lo* routines are interfaces to the Large Object features of Postgres. The functions
are designed to mimic the analogous file system functions in the standard Unix file system
interface. The pg_lo* routines should be used within a BEGIN/END transaction block

153

Chapter 19. pgtcl - TCL Binding Library

because the file descriptor returned by pg_lo_open is only valid for the current transaction.
pg_lo_import and pg_lo_export MUST be used in a BEGIN/END transaction block.

Examples
Here’s a small example of how to use the routines:
getDBs :
get the names of all the databases at a given host and port
nunber

with the defaults being the | ocal host and port 5432
return themin al phabetical order
proc getDBs { {host "local host"} {port "5432"} } {
datnanes is the list to be result
set conn [pg_connect tenplatel -host $host -port S$port]
set res [pg_exec $conn "SELECT dat name FROM pg_dat abase ORDER BY
dat nanme"]
set ntups [pg_result $res -nunilupl es]
for {set i 0} {$i < $ntups} {incr i} {
| append datnanes [pg_result $res -getTuple $i]
}
pg_result $res -clear
pg_di sconnect $conn
return $dat nanes

154

Chapter 19. pgtcl - TCL Binding Library

pgtcl Command Reference Information

pg_connect

Name

pg_connect opens a connection to the backend server
Synopsis

pg_connect -conni nfo connect Opti ons

pg_connect dbName [-host hostNane] [-port portNunber] [-tty pqtty]
[-options optional BackendAr gs]

Inputs (new style)

connect Opti ons

A string of connection options, each written in the form keyword = value.
Inputs (old style)

dbNane

Specifies a valid database name.

[-host host Nane]

Specifies the domain name of the backend server for dbNarre.

[-port por t Nunber]

Specifies the IP port number of the backend server for dbNane.

[-tty pat ty]
Specifies file or tty for optional debug output from backend.

[-options opt i onal BackendAr gs]

Specifies options for the backend server for dbNane.
Outputs

dbHandl e

If successful, a handle for a database connection is returned. Handles start with the
prefix "pgsql”.

Description

pg_connect opens a connection to the Postgres backend.

Two syntaxes are available. In the older one, each possible option has a separate option
switch in the pg_connect statement. In the newer form, a single option string is supplied

155

Chapter 19. pgtcl - TCL Binding Library

that can contain multiple option values. See pg_conndef aul t s for info about the
available options in the newer syntax.

Usage

(Not yet documented)

pg_disconnect

Name

pg_di sconnect closes a connection to the backend server
Synopsis

pg_di sconnect dbHandl e

Inputs

dbHandl e

Specifies a valid database handle.

Outputs

None

Description

pg_di sconnect closes a connection to the Postgres backend.

156

Chapter 19. pgtcl - TCL Binding Library

pg_conndefaults

Name

pg_conndef aul t s obtain information about default connection parameters

Synopsis
pg_conndefaul ts

Inputs

None.
Outputs

option |ist
The result is a list describing the possible connection options and their current default
values. Each entry in the list is a sublist of the format:

{optname label dispchar dispsize value}

where the optname is usable as an option in pg_connect -conni nfo.

Description

pg_conndef aul t s returns info about the connection options available in pg_connect
- conni nf o and the current default value for each option.

Usage

pg_conndefaults

157

Chapter 19. pgtcl - TCL Binding Library

pg_exec

Name

pg_exec send a query string to the backend

Synopsis
pg_exec dbHandl e queryString
Inputs

dbHandl e

Specifies a valid database handle.

queryString
Specifies a valid SQL query.

Outputs

resul t Handl e

A Tcl error will be returned if Pgtcl was unable to obtain a backend response.
Otherwise, a query result object is created and a handle for it is returned. This handle
can be passed to pg_r esul t to obtain the results of the query.

Description

pg_exec submits a query to the Postgres backend and returns a result. Query result
handles start with the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the query succeeded! An error message
returned by the backend will be processed as a query result with failure status, not by
generating a Tcl error in pg_exec.

158

Chapter 19. pgtcl - TCL Binding Library

pg_result

Name

pg_result getinformation about a query result

Synopsis
pg_result resultHandl e resul t Option
Inputs

resul t Handl e

The handle for a query result.

resul t Option

Specifies one of several possible options.
Options
-status

the status of the result.

-error

the error message, if the status indicates error; otherwise an empty string.

-conn
the connection that produced the result.

-oid
if the command was an INSERT, the OID of the inserted tuple; otherwise an empty
string.

-numTuples

the number of tuples returned by the query.

-numAttrs

the number of attributes in each tuple.

-list VarName

assign the results to a list of lists.

-assign arrayName

assign the results to an array, using subscripts of the form (tupno,attributeName).

-assignbyidx arrayName ?appendstr?

assign the results to an array using the first attribute’s value and the remaining
attributes” names as keys. If appendstr is given then it is appended to each key. In

159

Chapter 19. pgtcl - TCL Binding Library

short, all but the first field of each tuple are stored into the array, using subscripts of
the form (firstFieldValue,fieldNameAppendsStr).

-getTuple tupleNumber

returns the fields of the indicated tuple in a list. Tuple numbers start at zero.

-tupleArray tupleNumber arrayName

stores the fields of the tuple in array arrayName, indexed by field names. Tuple
numbers start at zero.

-attributes

returns a list of the names of the tuple attributes.

-lAttributes

returns a list of sublists, {name ftype fsize} for each tuple attribute.

-clear

clear the result query object.

Outputs

The result depends on the selected option, as described above.

Description

pg_resul t returns information about a query result created by a prior pg_exec.

You can keep a query result around for as long as you need it, but when you are done with
it, be sure to free it by executing pg_resul t -cl ear . Otherwise, you have a memory
leak, and Pgtcl will eventually start complaining that you’ve created too many query result
objects.

160

Chapter 19. pgtcl - TCL Binding Library

pg_select

Name
pg_sel ect loop over the result of a SELECT statement

Synopsis

pg_sel ect dbHandl e queryString arrayVar queryProcedure
Inputs

dbHandl e

Specifies a valid database handle.
queryString

Specifies a valid SQL select query.

arrayVar

Avrray variable for tuples returned.

quer yProcedur e

Procedure run on each tuple found.
Outputs

resul t Handl e

the return result is either an error message or a handle for a query result.

Description

pg_sel ect submits a SELECT query to the Postgres backend, and executes a given chunk
of code for each tuple in the result. The quer ySt ri ng must be a SELECT statement.
Anything else returns an error. The ar r ayVar variable is an array name used in the loop.
For each tuple, ar r ayVar is filled in with the tuple field values, using the field names as
the array indexes. Then the quer yPr ocedur e is executed.

Usage

This would work if table "table™ has fields "control" and "name" (and, perhaps, other
fields):

pg_sel ect $pgconn "SELECT * fromtable" array {
puts [format "%d %" array(control) array(nane)]

}

161

Chapter 19. pgtcl - TCL Binding Library

pg_listen

Name

pg_listen setsorchanges a callback for asynchronous NOTIFY messages

Synopsis
pg_l i sten dbHandl e notifyNanme cal | backConmmrand
Inputs

dbHandl e

Specifies a valid database handle.

not i f yNanme

Specifies the notify condition name to start or stop listening to.

cal | backCommand

If present and not empty, provides the command string to execute when a matching
notification arrives.

Outputs

None

Description

pg_| i st en creates, changes, or cancels a request to listen for asynchronous NOTIFY
messages from the Postgres backend. With a callbackCommand parameter, the request is
established, or the command string of an already existing request is replaced. With no
callbackCommand parameter, a prior request is canceled.

After apg_l i st en request is established, the specified command string is executed
whenever a NOTIFY message bearing the given name arrives from the backend. This
occurs when any Postgres client application issues a NOTIFY command referencing that
name. (Note that the name can be, but does not have to be, that of an existing relation in the
database.) The command string is executed from the Tcl idle loop. That is the normal idle
state of an application written with Tk. In non-Tk Tcl shells, you can execute updat e or
vwai t to cause the idle loop to be entered.

You should not invoke the SQL statements LISTEN or UNLISTEN directly when using
pg_l i st en. Pgtcl takes care of issuing those statements for you. But if you want to send a
NOTIFY message yourself, invoke the SQL NOTIFY statement using pg_exec.

162

Chapter 19. pgtcl - TCL Binding Library

pg_lo_creat

Name

pg_l o_creat create a large object
Synopsis

pg_l o_creat conn node
Inputs

conn

Specifies a valid database connection.

node

Specifies the access mode for the large object
Outputs
objG d

The oid of the large object created.

Description

pg_|l o_creat creates an Inversion Large Object.

Usage

mode can be any OR’ing together of INV_READ, INV_WRITE, and INV_ARCHIVE.
The OR delimiter character is "|".

[pg_l o_creat $conn "I NV_READ| | NV_WRI TE"]

163

Chapter 19. pgtcl - TCL Binding Library

pg_lo_open

Name

pg_| o_open open alarge object
Synopsis

pg_| o_open conn obj O d node
Inputs

conn

Specifies a valid database connection.
objG d
Specifies a valid large object oid.

node

Specifies the access mode for the large object
Outputs

fd

A file descriptor for use in later pg_lo* routines.

Description

pg_| o_open open an Inversion Large Object.

Usage

Mode can be either "r", "w", or "rw".

164

Chapter 19. pgtcl - TCL Binding Library

pg _lo_close

Name

pg_l o_cl ose close a large object
Synopsis

pg_l o_close conn fd

Inputs

conn

Specifies a valid database connection.

fd

A file descriptor for use in later pg_lo* routines.
Outputs

None

Description

pg_| o_cl ose closes an Inversion Large Object.

Usage

pg _lo_read

Name

pg_l o_read reada large object

Synopsis
pg_l o_read conn fd bufVar |en
Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

buf Var

Specifies a valid buffer variable to contain the large object segment.

165

Chapter 19. pgtcl - TCL Binding Library

| en

Specifies the maximum allowable size of the large object segment.
Outputs
None
Description
pg_| o_read reads at most | en bytes from a large object into a variable named buf Var .
Usage

buf Var must be a valid variable name.

pg_lo_write

Name

pg_l o _write writealarge object
Synopsis

pg_lo_wite conn fd buf |en
Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

buf

Specifies a valid string variable to write to the large object.

| en

Specifies the maximum size of the string to write.
Outputs

None

Description

pg_l o_writ e writes at most | en bytes to a large object from a variable buf .

Usage

buf must be the actual string to write, not a variable name.

166

Chapter 19. pgtcl - TCL Binding Library

pg_lo_Iseek

Name

pg_l o_| seek seektoa position in a large object

Synopsis
pg_l o_| seek conn fd of fset whence
Inputs

conn

Specifies a valid database connection.

fd

File descriptor for the large object from pg_lo_open.

of f set

Specifies a zero-based offset in bytes.

whence
whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET"

Outputs

None

Description

pg_| o_I seek positions to of f set bytes from the beginning of the large object.

Usage

whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET".

167

Chapter 19. pgtcl - TCL Binding Library

pg_lo_tell

Name

pg_lo_tell return the current seek position of a large object
Synopsis

pg_lo_tell conn fd

Inputs

conn
Specifies a valid database connection.

fd
File descriptor for the large object from pg_lo_open.

Outputs

of f set
A zero-based offset in bytes suitable for input to pg_I o_I seek.

Description

pg_l o_tel | returns the current to of f set in bytes from the beginning of the large
object.

Usage

pg_lo_unlink

Name

pg_l o_unlink delete alarge object

Synopsis

pg_l o_unlink conn |objld
Inputs

conn

Specifies a valid database connection.

| obj I d

Identifier for a large object. XXX Is this the same as objOid in other calls?? - thomas
1998-01-11

168

Chapter 19. pgtcl - TCL Binding Library

Outputs

None

Description

pg_| o_unl i nk deletes the specified large object.

Usage

pg_lo_import

Name

pg_l o_i nport import a large object from a Unix file
Synopsis

pg_l o_i nport conn fil ename

Inputs

conn

Specifies a valid database connection.

filenane

Unix file name.

Outputs

None XXX Does this return a lobjld? Is that the same as the objOid in other calls? thomas -
1998-01-11

Description

pg_| o_i nport reads the specified file and places the contents into a large object.

Usage

pg_l o_i nport must be called within a BEGIN/END transaction block.

169

Chapter 19. pgtcl - TCL Binding Library

pg_lo_export

Name

pg_l o_export exporta large object to a Unix file

Synopsis
pg_l o_export conn lobjld filenane
Inputs

conn

Specifies a valid database connection.

| obj I d

Large object identifier. XXX Is this the same as the objOid in other calls?? thomas -
1998-01-11

filenane

Unix file name.

Outputs

None XXX Does this return a lobjld? Is that the same as the objOid in other calls? thomas -
1998-01-11

Description

pg_| o_export writes the specified large object into a Unix file.

Usage

pg_| o_export must be called within a BEGIN/END transaction block.

170

Chapter 20. libpgeasy - Simplified C
Binding Library

Author: Written by Bruce Momijian (root@candle.pha.pa.us
(mailto:root@candle.pha.pa.us)) and last updated 2000-03-30.
pgeasy allows you to cleanly interface to the libpq library, more like a 4GL SQL interface.

It consists of set of simplified C functions that encapsulate the functionality of libpg. The
functions are:

PGresult *doquery(char *query);
PGconn *connectdb();

void disconnectdb();

int fetch(void *param,...);

int fetchwithnulls(void *param,...);
void reset_fetch();

void on_error_continue();

void on_error_stop();

PGresult *get_result();

void set_result(PGresult *newres);

void unset_result(PGresult *oldres);

Many functions return a structure or value, so you can do more work with the result if
required.

You basically connect to the database with connect db, issue your query with doquery,
fetch the results with f et ch, and finish with di sconnect db.

For sel ect queries, f et ch allows you to pass pointers as parameters, and on return the
variables are filled with data from the binary cursor you opened. These binary cursors can
not be used if you are running the pgeasy client on a system with a different architecture
than the database server. If you pass a NULL pointer parameter, the column is skipped.

f et chwi t hnul | s allows you to retrieve the NULL status of the field by passing an i nt *
after each result pointer, which returns true or false if the field is null. You can always use
libpg functions on the PGresult pointer returned by doquery. r eset _f et ch starts the
fetch back at the beginning.

get _result,set_result,andunset _result allow you to handle multiple result sets
at the same time.

There are a variety of demonstration programs in the source directory.

171

Chapter 21. ecpg - Embedded SQL in C

This describes an embedded SQL in C package for Postgres. It is written by Linus Tolke ()
and Michael Meskes ().

Note: Permission is granted to copy and use in the same way as you are allowed to
copy and use the rest of PostgreSQL.

Why Embedded SQL?

Embedded SQL has some small advantages over other ways to handle SQL queries. It
takes care of all the tedious moving of information to and from variables in your C
program. Many RDBMS packages support this embedded language.

There is an ANSI-standard describing how the embedded language should work. ecpg was
designed to meet this standard as much as possible. So it is possible to port programs with
embedded SQL written for other RDBMS packages to Postgres and thus promoting the
spirit of free software.

The Concept

You write your program in C with some special SQL things. For declaring variables that
can be used in SQL statements you need to put them in a special declare section. You use a
special syntax for the SQL queries.

Before compiling you run the file through the embedded SQL C preprocessor and it
converts the SQL statements you used to function calls with the variables used as
arguments. Both variables that are used as input to the SQL statements and variables that
will contain the result are passed.

Then you compile and at link time you link with a special library that contains the
functions used. These functions (actually it is mostly one single function) fetches the
information from the arguments, performs the SQL query using the ordinary interface
(1'i bpg) and puts back the result in the arguments dedicated for output.

Then you run your program and when the control arrives to the SQL statement the SQL
statement is performed against the database and you can continue with the result.

How To Use ecpg

This section describes how to use the ecpg tool.

Preprocessor

The preprocessor is called ecpg. After installation it resides in the Postgres bi n/ directory.

172

Chapter 21. ecpg - Embedded SQL in C

Library

The ecpg library is called | i becpg. a or | i becpg. so. Additionally, the library uses the
I'i bpq library for communication to the Postgres server so you will have to link your
program with - | ecpg -1 pg.

The library has some methods that are "hidden" but that could prove very useful sometime.

ECPGdebug(int on, FILE *strean) turns on debug logging if called with the first
argument non-zero. Debug logging is done on st r eam Most SQL statement logs its
arguments and result.

The most important one (ECPGdo) that is called on almost all SQL statements logs both
its expanded string, i.e. the string with all the input variables inserted, and the result
from the Postgres server. This can be very useful when searching for errors in your SQL
statements.

ECPGst at us() This method returns TRUE if we are connected to a database and
FALSE if not.

Error handling
To be able to detect errors from the Postgres server you include a line like

exec sql include sqglca

in the include section of your file. This will define a struct and a variable with the name
sql ca as following:

struct sqlca
{
char sql cai d[8];
| ong sql abc;
| ong sql code
struct
{
int sqlerrm;
char sqlerrnc[70];
} sqglerrm
char sqlerrp[8];
I ong sql errd[6];

[* 0: enpty */
/* 1: OD of processed tuple if applicable */
[* 2: nunber of rows processed in an | NSERT, UPDATE */
/* or DELETE st at enent */
[* 3: enpty */
[* 4: enpty */
/* 5. enpty */
char sqglwarn[8];

/* 0: set to'W if at |least one other is 'W */
/* 1. if "W at |east one character string */
/* val ue was truncated when it was */
/* stored into a host variabl e. */
[* 2: enpty */

173

Chapter 21. ecpg - Embedded SQL in C

[* 3: enpty */
[* 4: enpty */
/* 5. enpty */
/* 6. enpty */
[* 7. enpty */
char sql ext[8];

} sqlca;

If an error occured in the last SQL statement then sql ca. sqgl code will be non-zero. If
sql ca. sql code is less that 0 then this is some kind of serious error, like the database
definition does not match the query given. If it is bigger than 0 then this is a normal error
like the table did not contain the requested row.

sqlca.sqlerrm.sqglerrmc will contain a string that describes the error. The string ends with
the line number in the source file.

List of errors that can occur:

-12, Out of memory in line %d.

Does not normally occur. This is a sign that your virtual memory is exhausted.

-200, Unsupported type %s on line %d.

Does not normally occur. This is a sign that the preprocessor has generated something
that the library does not know about. Perhaps you are running incompatible versions
of the preprocessor and the library.

-201, Too many arguments line %d.

This means that Postgres has returned more arguments than we have matching
variables. Perhaps you have forgotten a couple of the host variables in the INTO
:varl,:var 2-list.

-202, Too few arguments line %d.
This means that Postgres has returned fewer arguments than we have host variables.
Perhaps you have too many host variables in the INTO :var 1,:var 2-list.

-203, Too many matches line %d.
This means that the query has returned several lines but the variables specified are no
arrays. The SELECT you made probably was not unique.

-204, Not correctly formatted int type: %s line %d.

This means that the host variable is of an int type and the field in the Postgres
database is of another type and contains a value that cannot be interpreted as an int.
The library uses st rt ol for this conversion.

-205, Not correctly formatted unsigned type: %s line %d.

This means that the host variable is of an unsigned int type and the field in the
Postgres database is of another type and contains a value that cannot be interpreted as
an unsigned int. The library uses st rt oul for this conversion.

174

Chapter 21. ecpg - Embedded SQL in C

-206, Not correctly formatted floating point type: %s line %d.

This means that the host variable is of a float type and the field in the Postgres
database is of another type and contains a value that cannot be interpreted as an float.

The library uses st r t od for this conversion.

-207, Unable to convert %s to bool on line %d.
This means that the host variable is of a bool type and the field in the Postgres

database is neither ’t’ nor 'f’.

-208, Empty query line %d.
Postgres returned PGRES_EMPTY_QUERY, probably because the query indeed was

empty.

-220, No such connection %s in line %d.
The program tries to access a connection that does not exist.

-221, Not connected in line %d.
The program tries to access a connection that does exist but is not open.

-230, Invalid statement name %s in line %d.
The statement you are trying to use has not been prepared.

-400, Postgres error: %s line %d.
Some Postgres error. The message contains the error message from the Postgres

backend.

-401, Error in transaction processing line %d.
Postgres signalled to us that we cannot start, commit or rollback the transaction.

-402, connect: could not open database %s.
The connect to the database did not work.

100, Data not found line %d.
This is a "normal" error that tells you that what you are quering cannot be found or

we have gone through the cursor.

Limitations

What will never be included and why or what cannot be done with this concept.

Oracle’s single tasking possibility
Oracle version 7.0 on AlX 3 uses the OS-supported locks on the shared memory

segments and allows the application designer to link an application in a so called
single tasking way. Instead of starting one client process per application process both

175

Chapter 21. ecpg - Embedded SQL in C

the database part and the application part is run in the same process. In later versions
of Oracle this is no longer supported.

This would require a total redesign of the Postgres access model and that effort can
not justify the performance gained.

Porting From Other RDBMS Packages

The design of ecpg follows SQL standard. So porting from a standard RDBMS should not
be a problem. Unfortunately there is no such thing as a standard RDBMS. So ecpg also
tries to understand syntax additions as long as they do not create conflicts with the
standard.

The following list shows all the known incompatibilities. If you find one not listed please
notify Michael Meskes (). Note, however, that we list only incompatibilities from a
precompiler of another RDBMS to ecpg and not additional ecpg features that these
RDBMS do not have.

Syntax of FETCH command
The standard syntax of the FETCH command is:
FETCH [direction] [amount] INJFROM cur sor nane.

ORACLE, however, does not use the keywords IN resp. FROM. This feature cannot
be added since it would create parsing conflicts.

Installation

Since version 0.5 ecpg is distributed together with Postgres. So you should get your
precompiler, libraries and header files compiled and installed by default as a part of your
installation.

For the Developer

This section is for those who want to develop the ecpg interface. It describes how the
things work. The ambition is to make this section contain things for those that want to have
a look inside and the section on How to use it should be enough for all normal questions.
So, read this before looking at the internals of the ecpg. If you are not interested in how it
really works, skip this section.

ToDo List

This version the preprocessor has some flaws:

Library functions

to_date et al. do not exists. But then Postgres has some good conversion routines
itself. So you probably won’t miss these.

176

Chapter 21. ecpg - Embedded SQL in C

Structures ans unions

Structures and unions have to be defined in the declare section.

Missing statements

The following statements are not implemented thus far:

exec sqgl allocate

exec sql deallocate

SQLSTATE

message 'no data found’
The error message for "no data” in an exec sql insert select from statement has to be
100.

sglwarn[6]

sqlwarn[6] should be "W’ if the PRECISION or SCALE value specified in a SET
DESCRIPTOR statement will be ignored.

The Preprocessor

The first four lines written to the output are constant additions by ecpg. These are two
comments and two include lines necessary for the interface to the library.

Then the preprocessor works in one pass only, reading the input file and writing to the
output as it goes along. Normally it just echoes everything to the output without looking at
it further.

When it comes to an EXEC SQL statements it intervenes and changes them depending on
what it is. The EXEC SQL statement can be one of these:
Declare sections

Declare sections begins with

exec sql begin declare section;

and ends with

exec sql end decl are secti on;

In the section only variable declarations are allowed. Every variable declare within
this section is also entered in a list of variables indexed on their name together with
the corresponding type.

177

Chapter 21. ecpg - Embedded SQL in C

In particular the definition of a structure or union also has to be listed inside a declare
section. Otherwise ecpg cannot handle these types since it simply does not know the
definition.

The declaration is echoed to the file to make the variable a normal C-variable also.

The special types VARCHAR and VARCHAR?2 are converted into a named struct for
every variable. A declaration like:

VARCHAR var [180] ;

is converted into

struct varchar_var { int len; char arr[180]; } var;

Include statements
An include statement looks like:

exec sql include fil enaneg;

Note that this is NOT the same as

#i ncl ude <fil enane. h>

Instead the file specified is parsed by ecpg itself. So the contents of the specified file
is included in the resulting C code. This way you are able to specify EXEC SQL
commands in an include file.

Connect statement
A connect statement looks like:

exec sqgl connect to connection target;

It creates a connection to the specified database.
The connect i on t arget can be specified in the following ways:
dbname[@server][:port][as connect i on nane][user user narme]

tcp:postgresql://server[:port][/dbname][as connect i on nane][user user nane]

unix:postgresql://server[:port][/dbname][as connect i on nane][user user
nane]

character vari abl e[asconnecti on nane][user user nane]

178

Chapter 21. ecpg - Embedded SQL in C

character string[asconnection name]luser]

default

user

There are also different ways to specify the user name:

userid

useri d/password

useri d identified by passwor d

useri d using password

Finally the userid and the password. Each may be a constant text, a character variable
or a chararcter string.

Disconnect statements
A disconnect statement looks loke:

exec sql disconnect [connection target];

It closes the connection to the specified database.

The connecti on t arget can be specified in the following ways:

connecti on nane

default

current

all

179

Chapter 21. ecpg - Embedded SQL in C

Open cursor statement
An open cursor statement looks like:

exec sql open cursor;

and is ignore and not copied from the output.

Commit statement
A commit statement looks like

exec sql comit;

and is translated on the output to

ECPGcommit (__LINE__);

Rollback statement
A rollback statement looks like

exec sql roll back;

and is translated on the output to

ECPG ol | back(__LINE_);

Other statements

Other SQL statements are other statements that start with exec sgl and ends with ;.
Everything inbetween is treated as an SQL statement and parsed for variable
substitution.

Variable substitution occur when a symbol starts with a colon (:). Then a variable
with that name is looked for among the variables that were previously declared within
a declare section and depending on the variable being for input or output the pointers
to the variables are written to the output to allow for access by the function.

For every variable that is part of the SQL request the function gets another ten
arguments:

The type as a special symbol.

A pointer to the value or a pointer to the pointer.

The size of the variable if it is a char or varchar.

Number of elements in the array (for array fetches).

The offset to the next element in the array (for array fetches)

The type of the indicator variable as a special symbol.

A pointer to the value of the indicator variable or a pointer to the pointer of the indicator variable.
0.

Number of elements in the indicator array (for array fetches).

The offset to the next element in the indicator array (for array fetches)

180

Chapter 21. ecpg - Embedded SQL in C

A Complete Example
Here is a complete example describing the output of the preprocessor of a file foo.pgc:

exec sql begin declare section;
i nt index;

int result;

exec sql end decl are secti on;

exec sql select res into :result fromnytable where index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */

/* These two include files are added by the preprocessor */
#i ncl ude <ecpgtype. h>;

#i ncl ude <ecpglib. h>;

/* exec sqgl begin declare section */
#line 1 "foo.pgc"

int index;
int result;
/* exec sgl end declare section */

ECPGdo(__LINE__, NULL, "select res fromnytable where index = ?

ECPG _i nt, &(i ndex), 1L, 1L, si zeof (int),

ECPG _NO_| NDI CATOR, NULL , OL, OL, OL, ECPG _EQT,

ECPG _int, & result), 1L, 1L, si zeof (i nt),

ECPG _NO_| NDI CATOR, NULL , OL, OL, OL, ECPG _EORT);
#1 ine 147 "foo. pgc"

(the indentation in this manual is added for readability and not something that the
preprocessor can do.)

The Library

The most important function in the library is the ECPGdo function. It takes a variable
amount of arguments. Hopefully we will not run into machines with limits on the amount
of variables that can be accepted by a vararg function. This could easily add up to 50 or so
arguments.

The arguments are:

A line number

This is a line number for the original line used in error messages only.

181

Chapter 21. ecpg - Embedded SQL in C

A string
This is the SQL request that is to be issued. This request is modified by the input
variables, i.e. the variables that where not known at compile time but are to be entered
in the request. Where the variables should go the string contains ; .

Input variables
As described in the section about the preprocessor every input variable gets ten
arguments.

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables
As described in the section about the preprocessor every input variable gets ten
arguments. These variables are filled by the function.

ECPGt_EORT

An enum telling that there are no more variables.

All the SQL statements are performed in one transaction unless you issue a commit
transaction. To get this auto-transaction going the first statement or the first after statement
after a commit or rollback always begins a transaction. To disable this feature per default
use the -t option on the commandline.

To be completed: entries describing the other entries.

182

Chapter 22. ODBC Interface

Note: Background information originally by Tim Goeke
(mailto:tgoeke@xpressway.com)

ODBC (Open Database Connectivity) is an abstract APl which allows you to write
applications which can interoperate with various RDBMS servers. ODBC provides a
product-neutral interface between frontend applications and database servers, allowing a
user or developer to write applications which are transportable between servers from
different manufacturers..

Background

The ODBC API matches up on the backend to an ODBC-compatible data source. This
could be anything from a text file to an Oracle or Postgres RDBMS.

The backend access come from ODBC drivers, or vendor specifc drivers that allow data
access. psqlODBC is such a driver, along with others that are available, such as the
OpenLink ODBC drivers.

Once you write an ODBC application, you should be able to connect to any back end
database, regardless of the vendor, as long as the database schema is the same.

For example. you could have MS SQL Server and Postgres servers which have exactly the
same data. Using ODBC, your Windows application would make exactly the same calls
and the back end data source would look the same (to the Windows app).

Windows Applications

In the real world, differences in drivers and the level of ODBC support lessens the
potential of ODBC:
Access, Delphi, and Visual Basic all support ODBC directly.
Under C++, such as Visual C++, you can use the C++ ODBC API.
In Visual C++, you can use the CRecordSet class, which wraps the ODBC API set
within an MFC 4.2 class. This is the easiest route if you are doing Windows C++
development under Windows NT.

Writing Applications

If I write an application for Postgres can | write it using ODBC calls to the Postgres
server, or is that only when another database program like MS SQL Server or Access needs
to access the data?

The ODBC API is the way to go. For Visual C++ coding you can find out more at
Microsoft’s web site or in your VC++ docs.

Visual Basic and the other RAD tools have Recordset objects that use ODBC directly to
access data. Using the data-aware controls, you can quickly link to the ODBC back end
database (very quickly).

183

Chapter 22. ODBC Interface

Playing around with MS Access will help you sort this out. Try using Fi | e- >Get
Ext er nal Dat a.

Tip: You'll have to set up a DSN first.

Unix Installation

ApplixWare has an ODBC database interface supported on at least some platforms.
ApplixWare v4.4.2 has been demonstrated under Linux with Postgres v7.0 using the
psqlODBC driver contained in the Postgres distribution.

Building the Driver

The first thing to note about the psqlODBC driver (or any ODBC driver) is that there must
exist a driver manager on the system where the ODBC driver is to be used. There exists a
freeware ODBC driver for Unix called iodbc which can be obtained from various locations
on the Net, including at AS200 (http://www.as220.org/FreeODBCliodbc-2.12.shar.Z).
Instructions for installing iodbc are beyond the scope of this document, but there is a
READNME that can be found inside the iodbc compressed .shar file that should explain how to
get it up and running.

Having said that, any driver manager that you can find for your platform should support
the psqlODBC driver or any ODBC driver.

The Unix configuration files for psqlODBC have recently been extensively reworked to
allow for easy building on supported platforms as well as to allow for support of other Unix
platforms in the future. The new configuration and build files for the driver should make it
a simple process to build the driver on the supported platforms. Currently these include
Linux and FreeBSD but we are hoping other users will contribute the necessary
information to quickly expand the number of platforms for which the driver can be built.

There are actually two separate methods to build the driver depending on how you
received it and these differences come down to only where and how to run configure and
make. The driver can be built in a standalone, client-only installation, or can be built as a
part of the main Postgres distribution. The standalone installation is convenient if you have
ODBC client applications on multiple, heterogeneous platforms. The integrated installation
is convenient when the target client is the same as the server, or when the client and server
have similar runtime configurations.

Specifically if you have received the psqlODBC driver as part of the Postgres distribution
(from now on referred to as an "integrated™ build) then you will configure and make the
ODBC driver from the top level source directory of the Postgres distribution along with the
rest of its libraries. If you received the driver as a standalone package than you will run
configure and make from the directory in which you unpacked the driver source.
Integrated Installation

This installation procedure is appropriate for an integrated installation.

1. Specify the - - wi t h- odbc command-line argument for src/configure:

% ./ configure --wth-odbc
% make

184

Chapter 22. ODBC Interface

2. Rebuild the Postgres distribution:

% make install

3. Install the ODBC catalog extensions available in
PGROOT/ cont ri b/ odbc/ odbc. sql :

% psql -e tenplatel < $PGROOT/ contri b/ odbc/ odbc. sql

where specifying t enpl at el as the target database will ensure that all subsequent
new databases will have these same definitions.

Once configured, the ODBC driver will be built and installed into the areas defined for the
other components of the Postgres system. The installation-wide ODBC configuration file
will be placed into the top directory of the Postgres target tree (POSTGRESDIR). This can
be overridden from the make command-line as

% nake ODBCI NST=fi | enane install

Pre-v6.4 Integrated I nstallation

If you have a Postgres installation older than v6.4, you have the original source tree
available, and you want to use the newest version of the ODBC driver, then you may want
to try this form of installation.

1. Copy the output tar file to your target system and unpack it into a clean directory.
2. From the directory containing the sources, type:

% ./ configure
% nmake
% make POSTGRESDI R=Post gresTopDi r install

3. If you would like to install components into different trees, then you can specify
various destinations explicitly:

% nmake BINDI R=bindir LIBD R=libdir HEADERDI R=headerdir
ODBCI NST=i nstfile install

Standalone I nstallation

A standalone installation is not integrated with or built on the normal Postgres distribution.
It should be best suited for building the ODBC driver for multiple, heterogeneous clients
who do not have a locally-installed Postgres source tree.

The default location for libraries and headers for the standalone installation is
/usr/local/liband/usr/local/include/iodbc, respectively. There is another
system wide configuration file that gets installed as / shar e/ odbci nst . i ni (if/ share
exists) or as/ et ¢/ odbci nst . i ni (if / shar e does not exist).

185

Chapter 22. ODBC Interface

Note: Installation of files into / shar e or / et ¢ requires system root privileges. Most
installation steps for Postgres do not have this requirement, and you can choose
another destination which is writable by your non-root Postgres superuser account
instead.

The standalone installation distribution can be built from the Postgres distribution or
may be obtained from Insight Distributors (http://www.insightdist.com/psqlodbc), the
current maintainers of the non-Unix sources.

Copy the zip or gzipped tarfile to an empty directory. If using the zip package unzip it
with the command

% unzi p -a packagenamne

The - a option is necessary to get rid of DOS CR/LF pairs in the source files.
If you have the gzipped tar package than simply run

% tar -xzf packagenane

a. To create a tar file for a complete standalone installation from the main
Postgres source tree:

Configure the main Postgres distribution.
Create the tar file:

% cd interfaces/odbc
% nake standal one

Copy the output tar file to your target system. Be sure to transfer as a binary file if
using ftp.

Unpack the tar file into a clean directory.
Configure the standalone installation:

% ./ configure

The configuration can be done with options:

% ./configure --prefix=rootdir --with-odbc=inidir

where - - pr ef i x installs the libraries and headers in the directoriesrootdir/lib
and root di r/i ncl ude/ i odbc, and - - wi t h- odbc installs odbci nst . i ni inthe
specified directory.

Note that both of these options can also be used from the integrated build but be
aware that when used in the integrated build - - pr ef i x will also apply to the rest of
your Postgres installation. - - wi t h- odbc applies only to the configuration file
odbci nst . i ni .

Compile and link the source code:
% make ODBCI NST=i nstdir

186

Chapter 22. ODBC Interface

You can also override the default location for installation on the ’'make’ command
line. This only applies to the installation of the library and header files. Since the
driver needs to know the location of the odbcinst.ini file attempting to override the
enviroment variable that specifies its installation directory will probably cause you
headaches. It is safest simply to allow the driver to install the odbcinst.ini file in the
default directory or the directory you specified on the ’./configure’ command line with
--with-odbc.

8. Install the source code:
% make POSTGRESDI R=t argettree install

To override the library and header installation directories separately you need to pass
the correct installation variables on the make i nstal | command line. These
variables are LIBDIR, HEADERDIR and ODBCINST. Overriding POSTGRESDIR
on the make command line will cause LIBDIR and HEADERDIR to be rooted at the
new directory you specify. ODBCINST is independent of POSTGRESDIR.

Here is how you would specify the various destinations explicitly:
% make BI NDI R=bi ndi r LI BDI R=Ii bdi r HEADERDI R=headerdir install

For example, typing
% make POSTGRESDI R=/ opt/ psql odbc install

(after you’ve used ./configure and make) will cause the libraries and headers to be
installed in the directories / opt / psql odbc/1i b and
/ opt / psql odbc/ i ncl ude/ i odbc respectively.

The command

% make POSTGRESDI R=/ opt/ psql odbc HEADERDI R=/ usr/l ocal install

should cause the libraries to be installed in /opt/psqglodbc/lib and the headers in
/usr/local/include/iodbc. If this doesn’t work as expected please contact one of the
maintainers.

Configuration Files

~/ . odbc. i ni contains user-specified access information for the psqlODBC driver. The
file uses conventions typical for Windows Registry files, but despite this restriction can be
made to work.

The . odbc. i ni file has three required sections. The first is [ODBC Dat a Sour ces]
which is a list of arbitrary names and descriptions for each database you wish to access.
The second required section is the Data Source Specification and there will be one of these
sections for each database. Each section must be labeled with the name given in [ODBC
Dat a Sour ces] and must contain the following entries:

187

Chapter 22. ODBC Interface

Driver = POSTGRESDI R/ |i b/Iibpsqgl odbc. so
Dat abase=Dat abaseNane

Ser ver nanme=| ocal host

Port =5432

Tip: Remember that the Postgres database name is usually a single word, without
path names of any sort. The Postgres server manages the actual access to the
database, and you need only specify the name from the client.

Other entries may be inserted to control the format of the display. The third required
section is [ODBC] which must contain the | nst al | Di r keyword and which may contain
other options.

Here is an example . odbc. i ni file, showing access information for three databases:

[ODBC Dat a Sour ces]

Dat aEntry = Read/ Wite Dat abase
QueryOnly = Read-only Database
Test = Debuggi ng Dat abase
Default = Postgres Stripped

[Dat aEnt ry]

ReadOnly = 0
Servernane = | ocal host
Dat abase = Sal es

[QueryOnly]

ReadOnly = 1
Servernane = | ocal host
Dat abase = Sal es

[Test]
Debug = 1
Commiog = 1
ReadOnly = 0
Servernane = | ocal host
Usernane = tgl
Password = "no$way"
Port = 5432

Dat abase = test

[Def aul t]

Servernanme = | ocal host

Dat abase = tgl

Driver = /opt/postgres/current/lib/libpsqgl odbc. so

[ODBC]
Instal I Dir = /opt/applix/axdatal/axshlib

188

Chapter 22. ODBC Interface

ApplixWare

Configuration

ApplixWare must be configured correctly in order for it to be able to access the Postgres
ODBC software drivers.
Enabling ApplixWar e Database Access

These instructions are for the 4. 4. 2 release of ApplixWare on Linux. Refer to the Linux
Sys Admin on-line book for more detailed information.

1. You must modify axnet . cnf so that el f odbc can find | i bodbc. so (the ODBC
driver manager) shared library. This library is included with the ApplixWare
distribution, but axnet . cnf needs to be modified to point to the correct location.

As root, edit the file appl i xr oot / appl i x/ axdat a/ axnet . cnf .
a. At the bottom of axnet . cnf, find the line that starts with

#1 i bFor el fodbc /ax/...

b. Change line to read

I'i bFor el fodbc applixroot/applix/axdatal/axshlib/lib

which will tell elfodbc to look in this directory for the ODBC support
library. Typically Applix is installed in / opt so the full path would be

/ opt / appl i x/ axdat a/ axshl i b/ | i b, but if you have installed Applix
somewhere else then change the path accordingly.

2. Create . odbc. i ni as described above. You may also want to add the flag

Text AsLongVar char =0

to the database-specific portion of . odbc. i ni so that text fields will not be shown as
BLOB.
Testing ApplixwWare ODBC Connections
1. Bring up Applix Data
2. Select the Postgres database of interest.
a. Select Query->Choose Server.

b. Select ODBC, and click Browse. The database you configured in
.odbc. i ni should be shown. Make sure that the Host : fi el d is empty (if
it is not, axnet will try to contact axnet on another machine to look for the
database).

c. Select the database in the box that was launched by Browse, then click OK.

d. Enter username and password in the login identification dialog, and click
OK.

189

Chapter 22. ODBC Interface

You should see Starting elfodbc server in the lower left corner of the data window. If
you get an error dialog box, see the debugging section below.

3. The "Ready’ message will appear in the lower left corner of the data window. This
indicates that you can now enter queries.

4. Select a table from Query->Choose tables, and then select Query->Query to access the
database. The first 50 or so rows from the table should appear.

Common Problems

The following messages can appear while trying to make an ODBC connection through
Applix Data:
Cannot launch gateway on server

el f odbc can’tfind I i bodbc. so. Check your axnet . cnf.

Error from ODBC Gateway: IM003::[iODBC][Driver Manager]Specified driver could not
be loaded

| i bodbc. so cannot find the driver listed in . odbc. i ni . Verify the settings.

Server: Broken Pipe
The driver process has terminated due to some other problem. You might not have an
up-to-date version of the Postgres ODBC package.

setuid to 256: failed to launch gateway

The September release of ApplixWare v4.4.1 (the first release with official ODBC
support under Linux) shows problems when usernames exceed eight (8) characters in
length. Problem description ontributed by Steve Campbell
(mailto:scampbell@lear.com).

Author: Contributed by Steve Campbell (mailto:scampbell@lear.com) on 1998-10-20.

The axnet program’s security system seems a little suspect. axnet does things on behalf of
the user and on a true multiple user system it really should be run with root security (so it
can read/write in each user’s directory). | would hesitate to recommend this, however,
since we have no idea what security holes this creates.

Debugging ApplixWare ODBC Connections
One good tool for debugging connection problems uses the Unix system utility strace.

Debugging with strace
1. Start applixware.
2. Start an strace on the axnet process. For example, if

% ps -aucx | grep ax

shows

190

Chapter 22. ODBC Interface

cary 10432 0.0 2.6 1740 392 ? S Cct 9 0:00 axnet
cary 27883 0.9 31.0 12692 4596 ? S 10:24 0:04 axmain

Then run
% strace -f -s 1024 -p 10432

3. Check the strace output.

Note from Cary: Many of the error messages from ApplixWare go to stderr, but
I’'m not sure where st derr is sent, so strace is the way to find out.

For example, after getting a Cannot launch gateway on server , | ran strace on axnet and
got

[pid 27947] open("/usr/lib/libodbc.so", O RDONLY) = -1 ENOCENT
(No such file or directory)

[pid 27947] open("/1ib/libodbc.so", O RDONLY) = -1 ENCENT

(No such file or directory)

[pid 27947] wite(2, "/usr2/applix/axdatalelfodbc:

can't load library 'libodbc.so’\n", 61) = -1 EIO (I/O error)

So what is happening is that applix elfodbc is searching for libodbc.so, but it can’t find it.
That is why axnet.cnf needed to be changed.

Running the ApplixWare Demo

In order to go through the ApplixXWare Data Tutorial, you need to create the sample tables
that the Tutorial refers to. The ELF Macro used to create the tables tries to use a NULL
condition on many of the database columns, and Postgres does not currently allow this
option.

To get around this problem, you can do the following:

M odifying the ApplixWare Demo
1. Copy/opt/applix/axdat a/ eng/ Denpos/ sql deno. amto a local directory.
2. Edit this local copy of sgl dermo. am
a. Search for ’null_clause = "NULL"
b. Change this to null_clause = ""
Start Applix Macro Editor.
Open the sgldemo.am file from the Macro Editor.
Select File->Compile and Save.
Exit Macro Editor.
Start Applix Data.

Select *->Run Macro

© o N o g &~ w

Enter the value sgldemo , then click OK.

191

Chapter 22. ODBC Interface

You should see the progress in the status line of the data window (in the lower left
corner).

10. You should now be able to access the demo tables.

Useful Macros

You can add information about your database login and password to the standard Applix
startup macro file. This is an example ~/ axhone/ macr os/ | ogi n. amfile:

nmacro |l ogin

set_set_systemvar@"sql _username@, "tgl")
set _systemvar @"sql _passwd@, "no$way")
endmacr o

Caution

You should be careful about the file protections on any file containing username
and password information.

Supported Platforms

psglODBC has been built and tested on Linux. There have been reports of success with
FreeBSD and with Solaris. There are no known restrictions on the basic code for other
platforms which already support Postgres.

192

Chapter 23. JDBC Interface

Author: Written by Peter T. Mount (peter@retep.org.uk), the author of the JDBC
driver.

JDBC is a core API of Java 1.1 and later. It provides a standard set of interfaces to
SQL-compliant databases.

Postgres provides a type 4 JDBC Driver. Type 4 indicates that the driver is written in Pure
Java, and communicates in the database’s own network protocol. Because of this, the
driver is platform independent. Once compiled, the driver can be used on any platform.

Building the JDBC Interface

Compiling the Driver

The driver’s source is located in the src/ i nt er f aces/ j dbc directory of the source tree.
To compile simply change directory to that directory, and type:

% make

Upon completion, you will find the archive post gresql . j ar in the current directory.
This is the JDBC driver.

Note: You must use make, not javac, as the driver uses some dynamic loading
techniques for performance reasons, and javac cannot cope. The Makefi | e will

generate the jar archive.

Installing the Driver
To use the driver, the jar archive postgresql.jar needs to be included in the CLASSPATH.

Example

I have an application that uses the JDBC driver to access a large database containing
astronomical objects. | have the application and the jdbc driver installed in the /usr/local/lib

directory, and the java jdk installed in /usr/local/jdk1.1.6.

To run the application, | would use:
export CLASSPATH =

/usr/local/lib/finder.jar:/usr/local/lib/postgresql.jar:.
java uk.org.retep.finder.Min

193

Chapter 23. JDBC Interface

Loading the driver is covered later on in this chapter.

Preparing the Database for JDBC

Because Java can only use TCP/IP connections, the Postgres postmaster must be running
with the -i flag.

Also, the pg_hba. conf file must be configured. It’s located in the PGDATA directory. In
a default installation, this file permits access only by Unix domain sockets. For the JDBC
driver to connect to the same localhost, you need to add something like:

host al | 127.0.0.1 255. 255. 255. 255 password

Here access to all databases are possible from the local machine with JDBC.

The JDBC Driver supports trust, ident, password and crypt authentication methods.

Using the Driver

This section is not intended as a complete guide to JDBC programming, but should help to
get you started. For more information refer to the standard JDBC API documentation. Also,
take a look at the examples included with the source. The basic example is used here.

Importing JDBC

Any source that uses JDBC needs to import the java.sgl package, using:

i mport java.sql.?*;

Important: Do not import the postgresql package. If you do, your source will not
compile, as javac will get confused.

Loading the Driver

Before you can connect to a database, you need to load the driver. There are two methods
available, and it depends on your code to the best one to use.

In the first method, your code implicitly loads the driver using the d ass. f or Nane()
method. For Postgres, you would use:

Cl ass. for Name(" postgresql . Driver");

This will load the driver, and while loading, the driver will automatically register itself
with JDBC.

Note: The f or Name() method can throw a Cl assNot FoundExcept i on, so you will
need to catch it if the driver is not available.

194

Chapter 23. JDBC Interface

This is the most common method to use, but restricts your code to use just Postgres. If
your code may access another database in the future, and you don’t use our extensions,
then the second method is advisable.

The second method passes the driver as a parameter to the JVM as it starts, using the -D
argument. Example:

% java -Djdbc.drivers=postgresql.Driver exanple.|nmgeVi ewer

In this example, the JVM will attempt to load the driver as part of it’s initialisation. Once
done, the ImageViewer is started.

Now, this method is the better one to use because it allows your code to be used with other
databases, without recompiling the code. The only thing that would also change is the
URL, which is covered next.

One last thing. When your code then tries to open a Connection, and you geta No dri ver
avai | abl e SQLException being thrown, this is probably caused by the driver not being in
the classpath, or the value in the parameter not being correct.

Connecting to the Database

With JDBC, a database is represented by a URL (Uniform Resource Locator). With
Postgres, this takes one of the following forms:

jdbc:postgresgl:dat abase
jdbc:postgresql://host /dat abase
jdbc:postgresql://host por t /dat abase

where:

host

The hostname of the server. Defaults to "localhost".

port

The port number the server is listening on. Defaults to the Postgres standard port
number (5432).

dat abase

The database name.
To connect, you need to get a Connection instance from JDBC. To do this, you would use

the DriverManager.getConnection() method:

Connection db = DriverManager. get Connecti on(url, user, pwd);

195

Chapter 23. JDBC Interface

Issuing a Query and Processing the Result

Any time you want to issue SQL statements to the database, you require a Statement
instance. Once you have a Statement, you can use the executeQuery() method to issue a
query. This will return a ResultSet instance, which contains the entire result.

Using the Statement Interface

The following must be considered when using the Statement interface:
You can use a Statement instance as many times as you want. You could create one as
soon as you open the connection, and use it for the connections lifetime. You have to
remember that only one ResultSet can exist per Statement.
If you need to perform a query while processing a ResultSet, you can simply create and
use another Statement.
If you are using Threads, and several are using the database, you must use a separate

Statement for each thread. Refer to the sections covering Threads and Servlets later in
this document if you are thinking of using them, as it covers some important points.

Using the ResultSet Interface

The following must be considered when using the ResultSet interface:

Before reading any values, you must call next () . This returns true if there is a result,
but more importantly, it prepares the row for processing.

Under the JDBC spec, you should access a field only once. It’s safest to stick to this
rule, although at the current time, the Postgres driver will allow you to access a field as
many times as you want.

You must close a ResultSet by calling cl ose() once you have finished with it.

Once you request another query with the Statement used to create a ResultSet, the
currently open instance is closed.

An example is as follows:

Statenent st = db.createStatenent();

Resul t Set rs = st.executeQuery("select * fromnytable");

while(rs.next()) {
Systemout.print("Colum 1 returned ");
Systemout.println(rs.getString(1));

}

rs.close();

st.close();

196

Chapter 23. JDBC Interface

Performing Updates

To perform an update (or any other SQL statement that does not return a result), you
simply use the execut eUpdat e() method:

st . executeUpdate("create table basic (a int2, b int2)");

Closing the Connection

To close the database connection, simply call the close() method to the Connection:

db. cl ose();

Using Large Objects

In Postgres, large objects (also known as blobs) are used to hold data in the database that
cannot be stored in a normal SQL table. They are stored as a Table/Index pair, and are
referred to from your own tables by an OID value.

Important: For Postgres, you must access large objects within an SQL transaction.
Although this has always been true in principle, it was not strictly enforced until the
release of v6.5. You would open a transaction by using the set Aut oConmi t () method
with an input parameter of f al se:

Connecti on nycon;

mycon. set Aut oCommi t (f al se);
now use Large Objects

Now, there are two methods of using Large Objects. The first is the standard JDBC way,
and is documented here. The other, uses our own extension to the api, which presents the
libpg large object API to Java, providing even better access to large objects than the
standard. Internally, the driver uses the extension to provide large object support.

In JDBC, the standard way to access them is using the getBinaryStream() method in
ResultSet, and setBinaryStream() method in PreparedStatement. These methods make the
large object appear as a Java stream, allowing you to use the java.io package, and others, to
manipulate the object.

For example, suppose you have a table containing the file name of an image, and a large
object containing that image:

create tabl e images (ingnanme nane, ingoid oid);

197

Chapter 23. JDBC Interface

To insert an image, you would use:

File file = new File("nyimage.gif");

FilelnputStreamfis = new Fil el nputStreanm(file);

Pr eparedSt at enent ps = conn. prepareStatenent ("insert into i mages
values (?,?2)");

ps.setString(1,file.getNane());
ps.setBinaryStream(2,fis,file.length());

ps. execut eUpdat e() ;

ps.close();

fis.close();

Now in this example, setBinaryStream transfers a set number of bytes from a stream into a
large object, and stores the OID into the field holding a reference to it.

Retrieving an image is even easier (I’m using PreparedStatement here, but Statement can
equally be used):

Pr epar edSt at enent ps = con. prepareStatenent ("sel ect oid fromimages
where nanme=?");
ps.setString(l,"nyimge.gif");
Resul tSet rs = ps. executeQery();
if(rs!=null) {
while(rs.next()) {
Input Streamis = rs.getBinarylnput Strean(1);
/1 use the streamin sonme way here
is.close();

}

rs.close();

}

ps. cl ose();

Now here you can see where the Large Object is retrieved as an InputStream. You’ll also
notice that we close the stream before processing the next row in the result. This is part of
the JDBC Specification, which states that any InputStream returned is closed when
ResultSet.next() or ResultSet.close() is called.

Postgres Extensions to the JDBC API

Postgres is an extensible database system. You can add your own functions to the backend,
which can then be called from queries, or even add your own data types.

Now, as these are facilities unique to us, we support them from Java, with a set of
extension API’s. Some features within the core of the standard driver actually use these
extensions to implement Large Objects, etc.

Accessi ng the extensions

To access sone of the extensions, you need to use sone extra nethods

198

Chapter 23. JDBC Interface
in the postgresqgl.Connection class. In this case, you would need to
case the return value of Driver.getConnection().

For exanpl e:
Connection db = Driver. getConnection(url, user, pass);

/1 later on
Fastpath fp = ((postgresql.Connection)db).getFastpat hAPI ();

Cl ass post gresgl . Connection
j ava. | ang. Obj ect
I
+- - --post gresql . Connection

public class Connection extends Object inplenments Connection

These are the extra methods used to gain access to our extensions. |
have not listed the methods defined by java.sql.Connection

publ i ¢ Fastpath get Fast pat hAPI () throws SQLException
This returns the Fastpath APl for the current connection.

NOTE: This is not part of JDBC, but allows access to
functions on the postgresql backend itself.

It is primarily used by the LargeObject AP
The best way to use this is as foll ows:
i mport postgresqgl.fastpath.*;
#éétpath fp = ((postgresql. Connection)nyconn). get Fast pat hAPI () ;
where myconn is an open Connection to postgresql
Ret ur ns:
Fast path object allow ng access to functions on the

post gresqgl backend.

Throws: SQLException
by Fastpath when initialising for first tine

publ i c LargeQbj ect Manager getLargeCbj ect APl () throws SQ.Exception

This returns the LargeCbject APl for the current
connecti on.

NOTE: This is not part of JDBC, but allows access to
functions on the postgresql backend itself.

The best way to use this is as foll ows:

i mport postgresql.| argeobject.*;

199

Chapter 23. JDBC Interface

Lar geQoj ect Manager o =
((postgresqgl . Connection)nyconn) . get LargeChj ect API () ;

where myconn is an open Connection to postgresql.

Ret ur ns:
Largehj ect object that inplements the API

Throws: SQLException
by LargeOoject when initialising for first tine

public void addDat aType(String type,
String nane)

This allows client code to add a handl er for one of
postgresqgl’s nore unique data types. Normally, a data type not known
by the driver is returned by ResultSet.getOhject() as a PGobject
i nst ance.

This nethod allows you to wite a class that extends PGobject, and
tell the driver the type nanme, and class nanme to use.

The down side to this, is that you nmust call this nethod each tinme a
connection is nade.

NOTE: This is not part of JDBC, but an extension.

The best way to use this is as foll ows:

((post gresqgl . Connecti on) nyconn) . addDat aType(" nytype", "my. cl ass. nam
e" -

)

where myconn is an open Connection to postgresql.
The handling class nust extend postgresqgl.util.PGobject

See Al so:
PCGobj ect

Fast pat h

Fastpath is an APl that exists within the libpg Cinterface, and
allows a client machine to execute a function on the database
backend.

Most client code will not need to use this nethod, but it’'s provided
because the Large Object APl uses it.

To use, you need to inport the postgresql.fastpath package, using
t he
l'i ne:

i nport postgresqgl.fastpath.*;

Then, in your code, you need to get a FastPath object:
Fastpath fp = ((postgresql. Connecti on)conn). get Fast pat hAPI ();

200

Chapter 23. JDBC Interface

This will return an instance associated with the database connection
that you can use to issue commands. The casing of Connection to
post gresql . Connection is required, as the getFastpathAPI() is one of
our own nethods, not JDBC s.
Once you have a Fastpath instance, you can use the fastpath()
nmet hods
to execute a backend function.
Cl ass postgresql.fastpath. Fast path
j ava. | ang. Obj ect
I
+----postgresql.fastpath. Fastpath
public class Fastpath
extends Obj ect

This class inplenments the Fastpath api.

This is a neans of executing functions inbeded in the postgresql
backend fromwithin a java application.

It is based around the file src/interfaces/|ibpg/fe-exec.c

See Al so:
Fast pat hFast pat hArg, LargeQj ect

Met hods
public Object fastpath(int fnid,
bool ean resul ttype,
Fast pathArg args[]) throws SQ.Exception
Send a function call to the PostgreSQ backend
Par anet er s:

fnid - Function id
resulttype - True if the result is an integer, false

for
other results
args - FastpathArgunents to pass to fastpath
Ret ur ns:
null if no data, Integer if an integer result, or
byt e[]
ot herwi se

Throws: SQ.Exception
i f a database-access error occurs.

public Ohject fastpath(String nane,

bool ean resul ttype,
Fast pathArg args[]) throws SQ.Exception

201

Chapter 23. JDBC Interface

Send a function call to the PostgreSQ. backend by nane.

Not e:

the mapping for the procedure nanme to function id needs to
exist, usually to an earlier call to addfunction(). This is the
prefered nmethod to call, as function id s can/may change between
versions of the backend. For an exanple of how this works, refer to
post gresql . Lar ge(hj ect

Par anet er s:
name - Function nane
resulttype - True if the result is an integer, false
for
other results
args - FastpathArgunents to pass to fastpath

Ret ur ns:
null if no data, Integer if an integer result, or
byt e[]
ot herwi se

Throws: SQ.Exception
if name is unknown or if a database-access error
occurs.

See Al so:
Lar gehj ect

public int getlnteger(String nane,
Fast pathArg args[]) throws SQLException

Thi s conveni ence net hod assunes that the return value is
an
I nt eger

Par anet er s:
nanme - Function nane
args - Function argunents

Ret ur ns:
i nteger result

Throws: SQLException
i f a dat abase-access error occurs or no result

public byte[] getData(String nane,
Fast pathArg args[]) throws SQLException

Thi s conveni ence nethod assunes that the return value is
bi nary data

Par anet er s:
nane - Function nanme

args - Function arguments

Ret ur ns:
byte[] array containing result

202

Chapter 23. JDBC Interface

Throws: SQ.Exception
i f a database-access error occurs or no result

public void addFunction(String nane,
int fnid)

This adds a function to our |ookup table.

User code shoul d use the addFunctions nethod, which is
based
upon a query, rather than hard coding the oid. The oid for a
function
is not guaranteed to renmmin static, even on different servers of the
sane version.

Par anet ers:
nanme - Function nane
fnid - Function id

public void addFuncti ons(ResultSet rs) throws SQ.Exception

This takes a ResultSet containing two colums. Columm 1
contains the function name, Colum 2 the oid

It reads the entire ResultSet, |oading the values into the
function table.

REMEMBER to close() the resultset after calling this!!
| npl ement ati on note about function name | ookups:

Post greSQ. stores the function id s and their
correspondi ng
names in the pg _proc table. To speed things up locally, instead of
queryi ng each function fromthat table when required, a Hashtable is
used. Also, only the function's required are entered into this
t abl e,
keepi ng connection tines as fast as possible.

The postgresql.LargeObject class performs a query upon
it's
startup, and passes the returned ResultSet to the addFuncti ons()
nmet hod here.

Once this has been done, the LargeChject api refers to the
functions by nane.

Dont think that manually converting themto the oid s wl
work. Ok, they will for now, but they can change during devel oprment
(there was sone discussion about this for V7.0), so this is
i mpl emented to prevent any unwarranted headaches in the future.

Par anet er s:
rs - ResultSet

Throws: SQ.Exception

203

Chapter 23. JDBC Interface

i f a database-access error occurs.

See Al so:
Lar gehj ect Manager

public int getID(String nane) throws SQLException

This returns the function id associated by its nane

| f addFunction() or addFunctions() have not been called
for

this name, then an SQ.Exception is thrown.

Par anet ers:
name - Function nanme to | ookup

Ret ur ns:
Function ID for fastpath call

Throws: SQ.Exception
is function is unknown.

Cl ass postgresql . fastpath. Fast pathArg
j ava. | ang. Obj ect
I
+----postgresql . fastpath. Fast pat hArg

public cl ass FastpathArg extends nhject

Each fastpath call requires an array of arguments, the nunber and
type dependent on the function being called.

This class inplenments nethods needed to provide this capability.

For an exanple on how to use this, refer to the
post gresql .| argeobj ect package

See Al so:
Fast pat h, LargeObj ect Manager, LargeObj ect

Constructors
publ i ¢ FastpathArg(int val ue)
Constructs an argunment that consists of an integer value

Par anet er s:
value - int value to set

publ i ¢ Fast pat hArg(byte bytes[])
Constructs an argunent that consists of an array of bytes

Par anet ers:
bytes - array to store

204

Chapter 23. JDBC Interface

publ i c Fast pat hArg(byte buf[],
int off,
int |en)

Constructs an argunent that consists of part of a byte
array

Par anet er s:
buf - source array
off - offset within array
len - length of data to include
public FastpathArg(String s)

Constructs an argunent that consists of a String

Par anet er s:
s - String to store

Geonetric Data Types

Post greSQL has a set of datatypes that can store geonetric features
into a table. These range fromsingle points, lines, and pol ygons.

We support these types in Java with the postgresql.geonetric
package.

It contains classes that extend the postgresql.util.PGobject class
Refer to that class for details on how to inplenent your own data

type
handl ers.

Cl ass postgresqgl.geonetric. PGbox

j ava. | ang. Obj ect

I
+----postgresql.util.PGobject

+----postgresql.geonetric. PGbox

public class PGhox extends PGobject inplenments Serializable
Cl oneabl e

This represents the box datatype wi thin postgresqgl.
Vari abl es
publ i ¢ PGpoint point[]
These are the two corner points of the box.
Constructors
publ i ¢ PGhox(double x1,
doubl e y1

doubl e x2,
doubl e y2)

205

Chapter 23. JDBC Interface

Par anet ers:
x1 - first x coordinate
yl - first y coordinate
x2 - second x coordinate
y2 - second y coordinate

public PGhox(PGpoint pl,
PGpoi nt p2)

Par anet er s:
pl - first point
p2 - second point

public PGhox(String s) throws SQ.Exception

Par anet ers:
s - Box definition in PostgreSQL syntax

Throws: SQ.Exception
if definitionis invalid

public PGhox()
Requi red constructor
Met hods
public void setValue(String value) throws SQException

This nethod sets the value of this object. It should be
overidden, but still called by subcl asses.

Par anet ers:
value - a string representation of the value of the
obj ect
Throws: SQ.Exception
thrown if value is invalid for this type

Overri des:
setVal ue in class PGobject

public bool ean equal s(Obj ect obj)

Par anet ers:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identical

Overri des:
equal s in class PGobject

public Object clone()

This nust be overidden to allow the object to be cloned

206

Chapter 23. JDBC Interface
Overri des:
clone in class PGobject
public String getVal ue()

Ret ur ns:
the PGbhox in the syntax expected by postgresq

Overri des:
get Val ue in class PCGobj ect

Cl ass postgresql.geonetric.PGcircle
j ava. | ang. Obj ect

I
+----postgresql.util.PGobject

+----postgresql.geonetric. PGcircle

public class PCGcircle extends PGobject inplenments Serializable,
Cl oneabl e

This represents postgresql’s circle datatype, consisting of a
poi nt
and a radius
Vari abl es
publ i c PGpoint center
This is the centre point
public doubl e radius
This is the radius
Constructors
public PCecircl e(doubl e x,
doubl e vy,
doubl e r)
Par anet er s:
X - coordinate of centre
y - coordi nate of centre

r - radius of circle

public PCcircl e(PGoint c,
doubl e r)

Par anet er s:
c - PGpoint describing the circle’s centre
r - radius of circle

public PCcircle(String s) throws SQLException

Par anet er s:

207

public
Met hods
public

public

public

public

Chapter 23. JDBC Interface

s - definition of the circle in PostgreSQ' s syntax.

Throws: SQLException
on conversion failure

PCGcircle()
This constructor is used by the driver.
void setValue(String s) throws SQ.Exception

Par anet ers:
s - definition of the circle in PostgreSQ’'s syntax.

Throws: SQLException
on conversion failure

Overri des:
setVal ue in class PGobject

bool ean equal s(Obj ect obj)

Par anet ers:
obj - Object to conpare with

Ret ur ns:

true if the two boxes are identical
Overri des:

equal s in class PGobject
oj ect clone()

This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

String getVal ue()

Ret ur ns:
the PGcircle in the syntax expected by postgresql

Overri des:
get Val ue in class PGobject

Cl ass postgresql.geonetric. PAine

j ava. |l ang. Qbj ect

+----postgresqgl.util.PGobject

+----postgresql.geonetric. PAine

public class PdAine extends PGobject inplenents Serializable,

208

Chapter 23. JDBC Interface

Cl oneabl e

This inplenents a line consisting of two points. Currently line
is
Inot yet inplenented in the backend, but this class ensures that when
it’s done were ready for it.
Vari abl es
publ i c PGpoint point[]
These are the two points.

Constructors

public Pdine(double x1,
doubl e y1,
doubl e x2,
doubl e y2)

Par anet er s:
x1 - coordinate for first point
yl - coordinate for first point
x2 - coordinate for second point
y2 - coordinate for second point

public Pdine(PGoint pl,
PGpoi nt p2)

Par anet er s:
pl - first point
p2 - second point

public PAine(String s) throws SQ.Exception

Par anet ers:
s - definition of the circle in PostgreSQ’ s syntax.

Throws: SQLException
on conversion failure

public PQine()
reuired by the driver
Met hods
public void setValue(String s) throws SQ.Exception
Par anet er s:
s - Definition of the line segnent in PostgreSQ’s

synt ax

Throws: SQ.Exception
on conversion failure

Overri des:

209

Chapter 23. JDBC Interface

setVal ue in class PGobject
publ i c bool ean equal s(Obj ect obj)

Par anet ers:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identical

Overri des:
equal s in class PGobject

public Object clone()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

public String getVal ue()

Ret ur ns:
the PAine in the syntax expected by postgresql

Overri des:
getVal ue in class PGobject

Cl ass postgresql.geonetric. PA seg
j ava. |l ang. Qbj ect

I
+----postgresqgl.util.PGobject

+----postgresql.geonetric. PA seg

public class Pd seg extends PGobject inplenents Serializable,
Cl oneabl e

This inplements a | seg (line segment) consisting of two points
Vari abl es
publi ¢ PGpoint point[]
These are the two points.
Constructors
public Pd seg(doubl e x1,
doubl e y1,
doubl e x2,
doubl e y2)

Par anet er s:

x1 - coordinate for first point

210

Chapter 23. JDBC Interface

yl - coordinate for first point
x2 - coordinate for second point
y2 - coordinate for second point

public Pd seg(PGpoi nt pil,
PGpoi nt p2)

Par anet er s:
pl - first point
p2 - second point

public PA seg(String s) throws SQ.Exception

Par anet ers:
s - definition of the circle in PostgreSQ's syntax.

Throws: SQLException
on conversion failure

public Pd seg()
reuired by the driver
Met hods
public void setValue(String s) throws SQ.Exception
Par anet er s:
s - Definition of the line segment in PostgreSQ’'s

synt ax

Throws: SQ.Exception
on conversion failure

Overri des:
setVal ue in class PGobject

publ i ¢ bool ean equal s(bj ect obj)

Par anet er s:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identical

Overri des:
equal s in class PGobject

public Object clone()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

public String getVal ue()

211

Chapter 23. JDBC Interface
Ret ur ns:
the PAseg in the syntax expected by postgresq

Overri des:
get Val ue in class PGobject

Cl ass postgresql.geonetric. PGoath
java. | ang. oj ect

I
+----postgresql.util.PGobject

I
+----postgresql.geonetric. PGath

public class PGpath extends PGobject inplenents Serializable,
Cl oneabl e

This inplements a path (a nultiple segmented |ine, which may be
cl osed)

Vari abl es
publ i c bool ean open
True if the path is open, false if closed
publi ¢ PGpoi nt points[]
The points defining this path
Constructors

publ i c PGpat h(PGpoi nt points[],
bool ean open)

Par anet ers:
points - the PGpoints that define the path
open - True if the path is open, false if closed
publ i c PGpat h()
Requi red by the driver

public PGpath(String s) throws SQ.Exception

Par anet ers:
s - definition of the circle in PostgreSQ’ s syntax.

Throws: SQLException
on conversion failure

Met hods
public void setValue(String s) throws SQ.Exception

Par anet ers:
s - Definition of the path in PostgreSQ's syntax

212

Chapter 23. JDBC Interface

Throws: SQ.Exception
on conversion failure

Overri des:
setVal ue in class PGobject

publi ¢ bool ean equal s(oj ect obj)

Par anet er s:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identica

Overri des:
equal s in class PGobject

public Object clone()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

public String getVal ue()

This returns the polygon in the syntax expected by
post gr esql

Overri des:
get Val ue in class PCobj ect

publ i ¢ bool ean i sOpen()
This returns true if the path is open
publi ¢ bool ean isd osed()
This returns true if the path is cl osed
public void closePath()
Mar ks the path as cl osed
public void openPath()
Marks the path as open
Cl ass postgresql.geonetric. PGoi nt
j ava. |l ang. Qbj ect

I
+----postgresqgl.util.PGobject

+----postgresql.geonetric. PGoi nt

213

Chapter 23. JDBC Interface
public class PGuoint extends PCGobject inplenments Serializable
Cl oneabl e
This inplenents a version of java.aw.Point, except it uses
doubl e
to represent the coordinates
It maps to the point datatype in postgresql
Vari abl es
publ i c doubl e x
The X coordi nate of the point
public double y
The Y coordi nate of the point

Constructors

publ i ¢ PGpoi nt (doubl e x,
doubl e y)

Par anet er s:
X - coordinate
y - coordinate
public PGpoint(String value) throws SQLException
This is called mainly fromthe other geonetric types, when
a
point is inbeded within their definition.
Par anet er s:
value - Definition of this point in PostgreSQ's
synt ax
public PGpoint ()
Requi red by the driver
Met hods
public void setValue(String s) throws SQ.Exception

Par anet er s:
s - Definition of this point in PostgreSQ’'s syntax

Throws: SQ.Exception
on conversion failure

Overri des:
setVal ue in class PGobject

publi ¢ bool ean equal s(Ooj ect obj)

214

public

public

public

public

public

Chapter 23. JDBC Interface
Par anet er s:
obj - Object to conmpare with

Ret ur ns:
true if the two boxes are identica

Overri des:
equal s in class PGobject

oj ect cl one()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

String getVal ue()

Ret urns:
the PGpoint in the syntax expected by postgresq

Overri des:
get Val ue in class PGobj ect

void translate(int x
int y)

Translate the point with the supplied amount.
Par anet er s:
X - integer ampunt to add on the x axis

y - integer anmount to add on the y axis

voi d transl at e(doubl e x,
doubl e y)

Translate the point with the supplied anmount.
Par anet ers:
X - double anmpbunt to add on the x axis

y - double ampunt to add on the y axis

voi d nmove(int x,
int y)

Moves the point to the supplied coordinates.

Par anet er s:
X - integer coordinate
y - integer coordinate

public void nmove(doubl e x,

doubl e y)
Moves the point to the supplied coordinates.

Par anet er s:

215

Chapter 23. JDBC Interface

X - doubl e coordi nate
y - doubl e coordinate

public void setlLocation(int x,
int y)

Moves the point to the supplied coordinates. refer to
java.awt . Point for description of this

Par anet er s:

X - integer coordinate

y - integer coordinate
See Al so:

Poi nt

public void setlLocation(Point p)

Moves the point to the supplied java.awt.Point refer to
java. awt . Point for description of this

Par anet ers:
p - Point to nove to

See Al so:
Poi nt

Cl ass postgresql.geonetric. PGol ygon
j ava. |l ang. Qbj ect

I
+----postgresqgl.util.PGobject

I
+----postgresql.geonetric. PGol ygon

public class PGpol ygon extends PGobject inplenents Serializable,
Cl oneabl e

This inplenents the pol ygon datatype w thin PostgreSQL.
Vari abl es
public PGpoi nt points[]
The points defining the polygon
Constructors
publ i ¢ PGpol ygon(PGpoi nt points[])
Creates a pol ygon using an array of PGpoints

Par anet ers:
points - the points defining the pol ygon

public PGpol ygon(String s) throws SQ.Exception

216

Chapter 23. JDBC Interface
Par anet er s:
s - definition of the circle in PostgreSQ.’ s syntax.

Throws: SQ.Exception
on conversion failure

public PGpol ygon()
Requi red by the driver
Met hods
public void setValue(String s) throws SQ.Exception

Par anet er s:
s - Definition of the polygon in PostgreSQ's syntax

Throws: SQLException
on conversion failure

Overri des:
setVal ue in class PGobject

publ i ¢ bool ean equal s(oj ect obj)

Par anet ers:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identical

Overri des:
equal s in class PCobject

public Object clone()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

public String getVal ue()

Ret ur ns:
the PGpol ygon in the syntax expected by postgresql

Overri des:
getVal ue in class PGobject

Large Objects

Large objects are supported in the standard JDBC specification.
However, that interface is linmted, and the api provided by

Post greSQL

allows for random access to the objects contents, as if it was a
| ocal

file.

217

Chapter 23. JDBC Interface

The postgresql .| argeobj ect package profides to Java the libpg C
interface's large object API. It consists of two classes,
Lar gehj ect Manager, which deals with creating, opening and del eting
| arge obejects, and LargeObject which deals with an individual
obj ect .
Cl ass postgresql. |l argeobject. LargeCbj ect
j ava. |l ang. Qbj ect

I

+----postgresqgl .| argeobject. LargeCbj ect
public class Large(oject extends bject
This class inplenents the | arge object interface to postgresql.

It provides the basic nethods required to run the interface, plus
a
pair of methods that provide InputStream and Cutput Stream cl asses
for
this object.

Normal Iy, client code would use the getAscii Stream
get Bi naryStream or getUni codeStream nethods in ResultSet, or
set Ascii Stream setBinaryStream or setUnicodeStream nethods in
PreparedSt atenent to access Large (bjects.

However, sonetines |ower |evel access to Large (bjects are
requi red, that are not supported by the JDBC specification.

Refer to postgresql .| argeobject.LargeCbj ect Manager on how to gain
access to a Large bject, or how to create one.

See Al so:
Lar gehj ect Manager

Vari abl es
public static final int SEEK SET
Indi cates a seek fromthe begining of a file
public static final int SEEK CUR
I ndicates a seek fromthe current position
public static final int SEEK _END
I ndicates a seek fromthe end of a file
Met hods
public int getd D()

Ret ur ns:
the O D of this Large(ject

218

Chapter 23. JDBC Interface

public void close() throws SQ.Exception
This nethod cl oses the object. You nust not call nethods
in

this object after this is called.

Throws: SQ.Exception
i f a dat abase-access error occurs.

public byte[] read(int len) throws SQ.Exception

Reads sone data fromthe object, and return as a byte[]
array

Par anet ers:
I en - nunber of bytes to read

Ret ur ns:
byte[] array containing data read

Throws: SQ.Exception
i f a dat abase-access error occurs.

public void read(byte buf[],
int off,
int len) throws SQ.Exception
Reads sone data fromthe object into an existing array
Par anet er s:
buf - destination array
off - offset within array

| en - nunber of bytes to read

Throws: SQLException
i f a dat abase-access error occurs.

public void wite(byte buf[]) throws SQ.Exception
Wites an array to the object
Par anet er s:
buf - array to wite

Throws: SQ.Exception
i f a dat abase-access error occurs.

public void wite(byte buf[],
int off,
int len) throws SQ.Exception

Wites sone data froman array to the object

Par anet ers:
buf - destination array

219

Chapter 23. JDBC Interface
off - offset within array
I en - nunber of bytes to wite

Throws: SQ.Exception
i f a dat abase-access error occurs.

public void seek(int pos,
int ref) throws SQ.Exception

Sets the current position within the object.

This is simlar to the fseek() call in the standard C
library.lt allows you to have random access to the | arge object.

Par anet er s:
pos - position w thin object
ref - Either SEEK SET, SEEK CUR or SEEK _END
Throws: SQ.Exception
i f a database-access error occurs.
public void seek(int pos) throws SQLException

Sets the current position within the object.

This is simlar to the fseek() call in the standard C
library.lt allows you to have random access to the | arge object.

Par anet er s:
pos - position within object from begining

Throws: SQ.Exception
i f a database-access error occurs.

public int tell() throws SQ.Exception

Ret ur ns:
the current position within the object

Throws: SQLException
i f a database-access error occurs.

public int size() throws SQLException

This nethod is inefficient, as the only way to find out

t he
size of the object is to seek to the end, record the current
posi tion,

then return to the original position.
A better nethod will be found in the future.

Ret urns:
the size of the |arge object

Throws: SQ.Exception
if a database-access error occurs.

220

Chapter 23. JDBC Interface

public I nputStream getlnputStrean() throws SQLException
Returns an InputStream from this object.

This InputStream can then be used in any nethod that
requires an | nputStream

Throws: SQ.Exception
i f a dat abase-access error occurs.

publ i ¢ Qut put St ream get Cut put Streanm() throws SQ.Exception
Returns an QutputStreamto this object

Thi s QutputStream can then be used in any nethod that
requi res an Cutput Stream

Throws: SQ.Exception
i f a dat abase-access error occurs.

Cl ass postgresqgl .| argeobject. LargeQbj ect Manager

j ava. | ang. Ooj ect

+----postgresql .| argeobject. Lar geChj ect Manager
public class LargeObject Manager extends bject
This class inplenents the |arge object interface to postgresql.

It provides methods that allow client code to create, open and
delete | arge objects fromthe database. Wen opening an object, an
i nstance of postgresql.|argeobject.Largetject is returned, and its
net hods then all ow access to the object.

This class can only be created by postgresqgl.Connection
To get access to this class, use the follow ng segnent of code:

i mport postgresql.|largeobject.*;
Connection conn;
Lar ge(oj ect Manager | obj;
code that opens a connection ...
| obj = ((postgresql.Connection)nyconn). getLargeChject APl ();

Normal |y, client code would use the getAscii Stream getBinaryStream
or getUni codeStream nethods in ResultSet, or setAsciiStream

setBi naryStream or setUni codeStream nethods in PreparedStatenent to
access Large Objects.

However, sonetines |ower |evel access to Large (bjects are
requi red, that are not supported by the JDBC specification.

Refer to postgresql .| argeobject. LargeCbject on how to manipul ate
the contents of a Large nbject.

See Al so:

221

Chapter 23. JDBC Interface

Lar ge(hj ect
Vari abl es
public static final int WRITE

This nbde indicates we want to wite to an object
public static final int READ

This npbde indicates we want to read an object
public static final int READWRI TE

This node is the default. It indicates we want read and
wite access to a | arge object

Met hods
public LargeChject open(int oid) throws SQLException
Thi s opens an existing | arge object, based on its AOD.
Thi s
net hod assunes that READ and WRI TE access is required (the

defaul t).

Par anet ers:
oid - of large object

Ret ur ns:
LargeChj ect instance providing access to the object

Throws: SQLException
on error

public LargeQhject open(int oid,
int nmode) throws SQLException

Thi s opens an existing |arge object, based on its AD
Par anet er s:
oid - of large object

node - node of open

Ret ur ns:
LargeQhj ect instance providing access to the object

Throws: SQ.Exception
on error

public int create() throws SQ.Exception
This creates a large object, returning its OD.
It defaults to READWRI TE for the new object’s attributes.

Ret ur ns:

222

Chapter 23. JDBC Interface

oid of new object

Throws: SQLException
on error

public int create(int node) throws SQ.Exception
This creates a large object, returning its QD

Par anmet er s:
node - a bitmask describing different attributes of
t he
new obj ect

Ret ur ns:
oi d of new object

Throws: SQ.Exception
on error

public void delete(int oid) throws SQ.Exception
This del etes a | arge object.

Par anet ers:
oid - describing object to delete

Throws: SQ.Exception
on error

public void unlink(int oid) throws SQ.Exception
This deletes a | arge object.

It is identical to the delete nmethod, and is supplied as
t he
C APl uses unlink.

Par anet er s:
oid - describing object to delete

Throws: SQ.Exception
on error

oj ect Serialisation

PostgreSQ. is not a normal SQ. Database. It is far nore extensible
than npst ot her databases, and does support Object Oriented features
that are unique to it.

One of the consequences of this, is that you can have one table
refer
to a row in another table. For exanple:

test=> create table users (usernane nane, ful | nane text);
CREATE

test=> create table server (servernane nane, adni nuser users);
CREATE

223

Chapter 23. JDBC Interface

test=> insert into users values (' peter’,’ Peter Munt');

| NSERT 2610132 1

test=> insert into server values (' maidast’, 2610132::users);
| NSERT 2610133 1

test=> select * from users;

user nane| ful | name

pet er | Peter Mbount
(1 row

test=> select * from server;
server nane| adm nuser

mai dast | 2610132
(1 row)

&k, the above exanple shows that we can use a table nane as a field,
and the row s oid value is stored in that field.

What does this have to do with Java?

In Java, you can store an object to a Streamas long as it’'s class
i npl ements the java.io.Serializable interface. This process, known
as

oj ect Serialization, can be used to store conplex objects into the
dat abase.

Now, under JDBC, you would have to use a LargeCbject to store them
However, you cannot perform queries on those objects.

What the postgresql.util.Serialize class does, is provide a neans of
storing an object as a table, and to retrieve that object froma
table. In nost cases, you would not need to access this class
direct,

but you woul d use the PreparedStatenent. setObject() and
Resul t Set . get Obj ect () met hods. Those nethods will check the objects
cl ass name against the table's in the database. If a nmatch is found,
it assunes that the object is a Serialized object, and retrieves it
fromthat table. As it does so, if the object contains other
serialized objects, then it recurses down the tree.

Sound’ s conplicated? In fact, it’'s sinpler than what | wote - it’s
just difficult to explain.

The only tinme you would access this class, is to use the create()
net hods. These are not used by the driver, but issue one or nore
"create table" statenents to the database, based on a Java Object or
Class that you want to serialize.
Ch, one last thing. If your object contains a line like:

public int oid,
then, when the object is retrieved fromthe table, it is set to the

oid within the table. Then, if the object is nodified, and re-
serialized, the existing entry is updated.

224

Chapter 23. JDBC Interface

If the oid variable is not present, then when the object is
serialized, it is always inserted into the table, and any existing
entry in the table is preserved.

Setting oid to O before serialization, will also cause the object to
be inserted. This enables an object to be duplicated in the
dat abase.

Cl ass postgresql.util.Serialize

j ava. |l ang. Qbj ect

+----postgresqgl.util.Serialize
public class Serialize extends Object

This class uses PostgreSQ.'s object oriented features to store
Java
hjects. It does this by mapping a Java Class name to a table in the
dat abase. Each entry in this new table then represents a Serialized
instance of this class. As each entry has an O D (Obj ect
| Dentifier),
this O D can be included in another table. This is too conplex to
show
here, and will be docunented in the nmain docunments in nore detail.

Constructors

public Serialize(Connection c,
String type) throws SQ.Exception

This creates an instance that can be used to serialize
ordeserialize a Java object froma PostgreSQ table.

Met hods
public Object fetch(int oid) throws SQLException
This fetches an object froma table, givenit's QD

Par anet ers:
oid - The oid of the object

Ret ur ns:
oject relating to oid

Throws: SQ.Exception
on error

public int store(Object o) throws SQ.Exception
This stores an object into a table, returning it’s O D.
If the object has an int called OD, and it is > 0, then
that value is used for the OD, and the table will be updated. If

t he
value of ODis 0, then a newroww |l be created, and the val ue of

225

Chapter 23. JDBC Interface

ODwIll be set in the object. This enables an object’s value in the
dat abase to be updateable. If the object has no int called O D, then
the object is stored. However if the object is later retrieved,
amended and stored again, it’'s new state will be appended to the
table, and will not overwite the old entries.

Par anet er s:
0 - hject to store (must inplenent Serializable)

Ret ur ns:
oid of stored object

Throws: SQLException
on error

public static void create(Connection con,
hj ect 0) throws SQLException

This nethod is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before
serializing any objects.

Par anet er s:
c - Connection to database

0 - hject to base table on

Throws: SQ.Exception
on error

Ret urns:
hject relating to oid

Throws: SQLException
on error

public int store(Object o) throws SQ.Exception
This stores an object into a table, returning it’'s OD.

If the object has an int called O D, and it is > 0, then

that value is used for the OD, and the table will be updated. If
t he
value of ODis 0, then a newrow will be created, and the val ue of

ODwIll be set inthe object. This enables an object’s value in the
dat abase to be updateable. If the object has no int called O D, then
the object is stored. However if the object is later retrieved,
amended and stored again, it's new state will be appended to the
table, and will not overwite the old entries.

Par anet er s:
0 - hject to store (must inplenment Serializable)

Ret ur ns:
oid of stored object

Throws: SQ.Exception
on error

226

Chapter 23. JDBC Interface

public static void create(Connection con,
bj ect 0) throws SQLException

This nethod is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before
serializing any objects.

Par anet ers:
¢ - Connection to database
0 - hject to base table on

Throws: SQLException
on error

public static void create(Connection con,
Class c) throws SQLException

This nethod is not used by the driver, but it creates a
table, given a Serializable Java Object. It should be used before

serializing any objects.

Par anet er s:
c - Connection to database
0 - Class to base table on

Throws: SQ.Exception
on error

public static String toPostgreSQ(String name) throws SQLException

This converts a Java Class nane to a postgresqgl table, by
replacing . with _

Because of this, a Cass nane nmay not have _ in the nane.

Another limtation, is that the entire class nane
(including

packages) cannot be |longer than 31 characters (a limt

forced by PostgreSQ.).

Par anet er s:
nane - Cl ass nane

Ret ur ns:
Post greSQ. tabl e nane

Throws: SQ.Exception
on error

public static String toC assName(String nane) throws SQLException

This converts a postgresql table to a Java C ass nane, by
replacing _ with .

Par anet ers:
name - PostgreSQ@ table nanme

227

Chapter 23. JDBC Interface

Ret ur ns:
d ass nane

Throws: SQ.Exception
on error

Uility C asses

The postgresql.util package contains classes used by the internals
of

the main driver, and the other extensions.

Cl ass postgresqgl.util.PGmney

j ava. | ang. Obj ect

I
+----postgresql.util.PGobject

I
+----postgresql.util.PGmney

public class PGroney extends PCobject inplenments Serializable
Cl oneabl e

This inplenments a class that handl es the PostgreSQ. noney type
Vari abl es
publ i c doubl e va
The value of the field
Constructors
publ i ¢ PGroney(doubl e val ue)

Par anet er s:
value - of field

public PGroney(String value) throws SQLException
This is called mainly fromthe other geonetric types, when
a
point is inbeded within their definition.
Par anet er s:
value - Definition of this point in PostgreSQ's
synt ax
publ i c PGroney()
Requi red by the driver

Met hods

public void setValue(String s) throws SQ.Exception

228

Chapter 23. JDBC Interface

Par anet er s:
s - Definition of this point in PostgreSQ.' s syntax

Throws: SQ.Exception
on conversion failure

Overri des:
setVal ue in class PGobject

publ i c bool ean equal s(Obj ect obj)

Par anet er s:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identical

Overri des:
equal s in class PCobject

public Object clone()
This must be overidden to allow the object to be cloned

Overri des:
clone in class PGobject

public String getVal ue()

Ret ur ns:
the PGpoint in the syntax expected by postgresql

Overri des:
get Val ue in class PGobject

Cl ass postgresql.util.PGobject

j ava. |l ang. Obj ect

I
+----postgresql.util.PGobject

public class PGobject extends Cbject inplenents Serializable,
Cl oneabl e

This class is used to describe data types that are unknown by
JDBC

St andar d.

A call to postgresql.Connection permits a class that extends
this
class to be associated with a nanmed type. This is how the
post gresql . geonetric package operates.

Resul t Set. get Cbject() will return this class for any type that
is
not recogni sed on having it’s own handl er. Because of this, any
postgresql data type is supported.

Constructors

229

Chapter 23. JDBC Interface

publ i ¢ PCGobj ect ()

This is called by postgresql.Connection.getObject() to
create the object.

Met hods
public final void setType(String type)
This nethod sets the type of this object.
It should not be extended by subcl asses, hence its fina

Par anet ers:
type - a string describing the type of the object

public void setValue(String value) throws SQException

This nethod sets the value of this object. It nust be
overi dden.

Par anet ers:
value - a string representation of the value of the

obj ect

Throws: SQ.Exception
thrown if value is invalid for this type

public final String getType()

As this cannot change during the life of the object, it’'s
final.

Ret ur ns:
the type nane of this object

public String getVal ue()

This nust be overidden, to return the value of the object,
in the formrequired by postgresql

Ret ur ns:
the value of this object

publ i ¢ bool ean equal s(Ooj ect obj)
Thi s nust be overidden to allow conparisons of objects

Par anet er s:
obj - Object to conpare with

Ret ur ns:
true if the two boxes are identica

Overri des:
equals in class Object

230

Chapter 23. JDBC Interface

public Object clone()
This nust be overidden to allow the object to be cloned

Overri des:
clone in class hject

public String toString()
This is defined here, so user code need not overide it.
Ret ur ns:
the value of this object, in the syntax expected by

post gr esql

Overri des:
toString in class Object

Cl ass postgresql.util.PG okenizer
j ava. |l ang. Qbj ect
|+- ---postgresql . util.PG okeni zer
public class PG okeni zer extends hject

This class is used to tokenize the text output of postgres.

We coul d have used StringTokenizer to do this, however, we needed
to handle nesting of "(’ ')’ [’ ']’ '< and ’'> as these are used

by
the geonetric data types.
It’s mainly used by the geonetric classes, but is useful in
par si ng
any out put from custom data types output from postgresql.

See Al so:
P&Goox, PCGcircle, Pd seg, PGpath, PGpoint, PGpol ygon

Constructors

publi ¢ P& okeni zer (String string,
char delim

Create a tokeniser.
Par anet er s:
string - containing tokens
delim- single character to split the tokens

Met hods

public int tokenize(String string,
char delim

231

Chapter 23. JDBC Interface

This resets this tokenizer with a new string and/or
delimter.

Par anet er s:
string - containing tokens
delim- single character to split the tokens

public int getSize()

Ret ur ns:
t he nunber of tokens avail able

public String getToken(int n)

Par anet er s:
n - Token number (0 ... getSize()-1)

Ret ur ns:
The t oken val ue

publ i c P& okeni zer tokenizeToken(int n,
char delim

This returns a new tokeni zer based on one of our tokens.
The
geonetri c datatypes use this to process nested tokens (usually

PGpoi nt) .

Par anet ers:
n - Token number (0 ... getSize()-1)
delim- The delimter to use

Ret ur ns:
A new i nstance of PG okeni zer based on the token

public static String renmove(String s,
String I,
String t)

This renmoves the lead/trailing strings froma string

Par anet er s:
s - Source string
| - Leading string to renove
t - Trailing string to renove

Ret ur ns:
Str

ng without the lead/trailing strings

public void renmove(String I,
String t)

This renoves the lead/trailing strings fromall tokens
Par anet er s:

| - Leading string to renove
t - Trailing string to renove

232

Chapter 23. JDBC Interface

public static String removePara(String s)
Rermoves (and) fromthe beginning and end of a string

Par anet ers:
s - String to renpve from

Ret ur ns:
String without the (or)

public void renovePara()
Renmoves (and) fromthe beginning and end of all tokens

Ret ur ns:
String without the (or)

public static String renmoveBox(String s)
Removes [and] fromthe beginning and end of a string

Par anet ers:
s - String to renpbve from

Ret ur ns:
String without the [or]

public void renoveBox()
Removes [and] fromthe beginning and end of all tokens

Ret ur ns:
String without the [or]

public static String renmoveAngl e(String s)
Removes < and > from the beginning and end of a string

Par anet er s:
s - String to renpve from

Ret ur ns:
String without the < or >

public void renpbveAngl e()
Renmoves < and > fromthe beginning and end of all tokens

Ret ur ns:
String without the < or >

Cl ass postgresqgl.util.Serialize
Thi s was docunented earlier under Object Serialisation.

Cl ass postgresqgl.util. UnixCrypt

233

Chapter 23. JDBC Interface

j ava. |l ang. Qbj ect
I
+----postgresqgl.util. UnixCrypt
public class Uni xCrypt extends Object

This class provides us with the ability to encrypt passwords when
sent over the network stream

Contains static nethods to encrypt and conpare passwords wth
Uni x
encrypt ed passwords.
See John Dunmas’s Java Crypt page for the original source.
http://ww. zeh. conifl ocal /jfd/crypt. htm

Met hods

public static final String crypt(String salt,
String original)

Encrypt a password given the cleartext password and a

"salt".
Par anet ers:
salt - A two-character string representing the salt
used
to iterate the encryption engine in |lots of
di fferent
ways. |f you are generating a new encryption then
this
val ue shoul d be random sed
original - The password to be encrypted.
Ret ur ns:
A string consisting of the 2-character salt followed
by

t he encrypted password.
public static final String crypt(String original)

Encrypt a password given the cleartext password. This
nmet hod
generates a randomsalt using the 'java.util.Random class

Par anet er s:
original - The password to be encrypted.

Ret ur ns:
A string consisting of the 2-character salt foll owed
by
the encrypted password.

public static final bool ean matches(String encryptedPassword,
String enteredPassword)

234

Chapter 23. JDBC Interface

Check that enteredPassword encrypts to encryptedPassword.

Par anet ers:
encrypt edPassword - The encryptedPassword. The first
two characters are assunmed to be the salt. This string would be the
sane as one found in a Unix /etc/passwd file.
ent eredPassword - The password as entered by the
user
(or otherw se aquired).

Ret ur ns:
true if the password should be considered correct.

Using the driver in a multi Threaded or Servlet environnent

A problemw th many JDBC drivers, is that only one thread can use a
Connection at any one tine - otherwise a thread could send a query
whi |l e another one is receiving results, and this would be a bad

t hi ng

for the database engine

PostgreSQ. 6.4, brings thread safety to the entire driver. Standard
JDBC was thread safe in 6.3.x, but the Fastpath
APl wasn’t.

So, if your application uses multiple threads (which npst decent
ones

woul d), then you don’t have to worry about conplex schemes to ensure
only one uses the database at any tine.

If a thread attenpts to use the connection while another is using
it,

it will wait until the other thread has finished it’s current

oper ati on.

If it’s a standard SQL statenent, then the operation is sending the
statement, and retrieving any ResultSet (in full).

If it’s a Fastpath call (ie: reading a block froma LargeObject),
t hen
it’s the time to send, and retrieve that bl ock.

This is fine for applications & applets, but can cause a perfornmance
problemw th servlets.

Wth servlets, you can have a heavy | oad on the connection. |If you
have several threads perform ng queries, then each one will pause
whi ch may not be what you are after.

To solve this, you would be advised to create a pool of Connections.

When ever a thread needs to use the database, it asks a manager
cl ass
for a Connection. It hands a free connection to the thread, and
mar ks
it as busy. If a free connection is not available, it opens one

235

Chapter 23. JDBC Interface

Once the thread has finished with it, it returns it to the nanager,
who can then either close it, or add it to the pool. The manager
woul d

al so check that the connection is still alive, and renove it from
t he

pool if it’'s dead.

So, with servlets, it’s up to you to use either a single connection,

or a pool. The plus side for a pool is that threads will not be hit
by

the bottle neck caused by a single network connection. The down

si de,

is that it increases the |load on the server, as a backend is created
for each Connection.

It’s up to you, and your applications requirenments.

Further Reading

If you have not yet read it, I’d advise you read the JDBC APl Documentation (supplied
with Sun’s JDK), and the JDBC Specification. Both are available on JavaSoft’s web site
(http://www.javasoft.com).

My own web site (http://www.retep.org.uk) contains updated information not included in
this document, and also includes precompiled drivers for v6.4, and earlier.

236

Chapter 24. Lisp Programming Interface

pg. el is a socket-level interface to Postgres for emacs.

Author: Written by Eric Marsden (mailto:emarsden@mail.dotcom.fr) on 21 Jul 1999.

pg. el is a socket-level interface to Postgres for emacs (text editor extraordinaire). The
module is capable of type coercions from a range of SQL types to the equivalent Emacs
Lisp type. It currently supports neither crypt or Kerberos authentication, nor large objects.

The code (version 0.2) is available under GNU GPL from Eric Marsden
(http://www.chez.com/emarsden/downloads/pg.el)

Changes since last release:
now works with XEmacs (tested with Emacs 19.34 & 20.2, and XEmacs 20.4)
added functions to provide database metainformation (list of databases, of tables, of
columns)
arguments to ‘pg:result’ are now :keywords
MULE-resistant
more self-testing code

Please note that this is a programmer’s API, and doesn’t provide any form of user
interface. Example:

(defun denmo ()
(interactive)
(let* ((conn (pg:connect "tenpl atel" "postgres" "postgres"))
(res (pg:exec conn "SELECT * from scshdenmo WHERE a =

42")))
(message "status is %" (pg:result res :status))
(message "netadata is %" (pg:result res :attributes))
(message "data is %" (pg:result res :tuples))

(pg: di sconnect conn)))

237

Chapter 25. Postgres Source Code

Formatting

Source code formatting uses a 4 column tab spacing, currently with tabs preserved (i.e.
tabs are not expanded to spaces).

For emacs, add the following (or something similar) to your ~/ . emacs initialization file:

;; check for files with a path containing "postgres” or "pgsqgl"
(setq auto-node-alist (cons ' ("\\(postgres\\|pgsql\\).*\\.[ch]\\""
pgsql - c- node) auto-node-alist))

(setq auto-node-alist (cons ' ("\\(postgres\\|pgsqgl\\).*\\.cc\\""
pgsql - c- node) aut o-node-alist))

(defun pgsql -c-node ()
;; sets up formatting for Postgres C code
(interactive)

(c-node)

(setqg-default tab-wi dth 4)

(c-set-style "bsd") ; set c-basic-offset to 4, plus
ot her stuff

(c-set-offset 'case-label ’'+) ; tweak case indent to match PG
custom

(setq indent-tabs-node t)) ; make sure we keep tabs when
i ndenti ng

For vi, your ~/ . vi nr c or equivalent file should contain the following:

set tabstop=4

or equivalently from within vi, try

.set ts=4

The text browsing tools more and less can be invoked as

nore -x4
| ess -x4

238

Chapter 26. Overview of PostgreSQL
Internals

Author: This chapter originally appeared as a part of Simkovics, 1998, Stefan
Simkovics’ Master’s Thesis prepared at Vienna University of Technology under the
direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of Postgres. After
having read the following sections you should have an idea of how a query is processed.
Don’t expect a detailed description here (I think such a description dealing with all data
structures and functions used within Postgres would exceed 1000 pages!). This chapter is
intended to help understanding the general control and data flow within the backend from
receiving a query to sending the results.

The Path of a Query

Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the Postgres server has to be established.
The application program transmits a query to the server and receives the results sent
back by the server.

2. The parser stage checks the query transmitted by the application program (client) for
correct syntax and creates a query tree.

3. The rewrite systemtakes the query tree created by the parser stage and looks for any
rules (stored in the system catalogs) to apply to the querytree and performs the
transformations given in the rule bodies. One application of the rewrite system is given
in the realization of views.

Whenever a query against a view (i.e. a virtual table) is made, the rewrite system
rewrites the user’s query to a query that accesses the base tables given in the view
definition instead.

4. The planner/optimizer takes the (rewritten) querytree and creates a queryplan that will
be the input to the executor.

It does so by first creating all possible paths leading to the same result. For example if
there is an index on a relation to be scanned, there are two paths for the scan. One
possibility is a simple sequential scan and the other possibility is to use the index. Next
the cost for the execution of each plan is estimated and the cheapest plan is chosen and
handed back.

5. The executor recursively steps through the plan tree and retrieves tuples in the way
represented by the plan. The executor makes use of the storage system while scanning
relations, performs sorts and joins, evaluates qualifications and finally hands back the
tuples derived.

In the following sections we will cover every of the above listed items in more detail to
give a better understanding on Postgres’s internal control and data structures.

239

Internals

Chapter 26. Overview of PostgreSQL

How Connections are Established

Postgres is implemented using a simple "process per-user" client/server model. In this
model there is one client process connected to exactly one server process. As we don’t
know per se how many connections will be made, we have to use a master process that
Spawns a new server process every time a connection is requested. This master process is
called post mast er and listens at a specified TCP/IP port for incoming connections.
Whenever a request for a connection is detected the post nast er process spawns a new
server process called post gr es. The server tasks (post gr es processes) communicate
with each other using semaphores and shared memory to ensure data integrity throughout
concurrent data access. Figure \ref{connection} illustrates the interaction of the master
process post mast er the server process post gr es and a client application.

The client process can either be the psql frontend (for interactive SQL queries) or any user
application implemented using the | i bpg library. Note that applications implemented
using ecpg (the Postgres embedded SQL preprocessor for C) also use this library.

Once a connection is established the client process can send a query to the backend
(server). The query is transmitted using plain text, i.e. there is no parsing done in the
frontend (client). The server parses the query, creates an execution plan, executes the plan
and returns the retrieved tuples to the client by transmitting them over the established
connection.

The Parser Stage

Parser

The parser stage consists of two parts:
The parser defined in gram y and scan. | is built using the Unix tools yacc and lex.

The transformation process does modifications and augmentations to the data structures
returned by the parser.

The parser has to check the query string (which arrives as plain ASCII text) for valid
syntax. If the syntax is correct a parse treeis built up and handed back otherwise an error is
returned. For the implementation the well known Unix tools lex and yacc are used.

The lexer is defined in the file scan. | and is responsible for recognizing identifiers, the
L keywords etc. For every keyword or identifier that is found, a token is generated and
handed to the parser.

The parser is defined in the file gr am y and consists of a set of grammar rules and actions
that are executed whenever a rule is fired. The code of the actions (which is actually
C-code) is used to build up the parse tree.

The file scan. | is transformed to the C-source file scan. c using the program lex and
gram y is transformed to gr am c using yacc. After these transformations have taken place
a normal C-compiler can be used to create the parser. Never make any changes to the
generated C-files as they will be overwritten the next time lex or yacc is called.

240

Chapter 26. Overview of PostgreSQL
Internals

Note: The mentioned transformations and compilations are normally done
automatically using the makefiles shipped with the Postgres source distribution.

A detailed description of yacc or the grammar rules given in gr am y would be beyond the
scope of this paper. There are many books and documents dealing with lex and yacc. You
should be familiar with yacc before you start to study the grammar given in gram y
otherwise you won’t understand what happens there.

For a better understanding of the data structures used in Postgres for the processing of a
query we use an example to illustrate the changes made to these data structures in every
stage.

Example 26-1. A Simple Select

This example contains the following simple query that will be used in various descriptions
and figures throughout the following sections. The query assumes that the tables given in
The Supplier Database have already been defined.
sel ect s.snane, se. pno

fromsupplier s, sells se

where s.sno > 2 and s.sno = se. sno;

Figure \ref{parsetree} shows the parse tree built by the grammar rules and actions given

in gr am y for the query given in A Smple SelectThis example contains the following
simple query that will be used in various descriptions and figures throughout the following
sections. The query assumes that the tables given in The Supplier Database have already
been defined. select s.sname, se.pno from supplier s, sells se where s.sno > 2 and s.sno =
se.sno; (without the operator tree for the where clause which is shown in figure
\ref{where_clause} because there was not enough space to show both data structures in one
figure).

The top node of the tree is a Sel ect St nt node. For every entry appearing in the from
clause of the SQL query a RangeVar node is created holding the name of the aliasand a
pointer to a Rel Expr node holding the name of the relation. All RangeVar nodes are
collected in a list which is attached to the field f r onCl ause of the Sel ect St nt node.

For every entry appearing in the select list of the SQL query a ResTar get node is created
holding a pointer to an At t r node. The At t r node holds the relation name of the entry and
a pointer to a Val ue node holding the name of the attribute. All ResTar get nodes are
collected to a list which is connected to the field t ar get Li st of the Sel ect St nt node.

Figure \ref{where_clause} shows the operator tree built for the where clause of the SQL
query given in example A Smple SelectThis example contains the following simple query
that will be used in various descriptions and figures throughout the following sections. The
guery assumes that the tables given in The Supplier Database have already been defined.
select s.sname, se.pno from supplier s, sells se where s.sno > 2 and s.sno = se.sno; which
is attached to the field qual of the Sel ect St nt node. The top node of the operator tree is
an A_Expr node representing an AND operation. This node has two successors called
| expr and r expr pointing to two subtrees. The subtree attached to | expr represents the
qualification s. sno > 2 and the one attached to r expr representss. sno = se. sno. For
every attribute an At t r node is created holding the name of the relation and a pointer to a

241

Chapter 26. Overview of PostgreSQL
Internals

Val ue node holding the name of the attribute. For the constant term appearing in the query
a Const node is created holding the value.

Transformation Process

The transformation process takes the tree handed back by the parser as input and steps
recursively through it. If a Sel ect St nt node is found, it is transformed to a Quer y node
which will be the top most node of the new data structure. Figure \ref{transformed} shows
the transformed data structure (the part for the transformed where clause is given in figure
\ref{transformed_where} because there was not enough space to show all parts in one
figure).

Now a check is made, if the relation names in the FROM clause are known to the system.
For every relation name that is present in the system catalogsa RTE node is created
containing the relation name, the alias name and the relation id. From now on the relation
ids are used to refer to the relations given in the query. All RTE nodes are collected in the
range table entry list which is connected to the field r t abl e of the Quer y node. If a name
of a relation that is not known to the system is detected in the query an error will be
returned and the query processing will be aborted.

Next it is checked if the attribute names used are contained in the relations given in the
query. For every attribute} that is found a TLE node is created holding a pointer to a
Resdomnode (which holds the name of the column) and a pointer to a VAR node. There are
two important numbers in the VAR node. The field var no gives the position of the relation
containing the current attribute} in the range table entry list created above. The field

var at t no gives the position of the attribute within the relation. If the name of an attribute
cannot be found an error will be returned and the query processing will be aborted.

The Postgres Rule System

Postgres supports a powerful rule system for the specification of views and ambiguous
view updates. Originally the Postgres rule system consisted of two implementations:

The first one worked using tuple level processing and was implemented deep in the
executor. The rule system was called whenever an individual tuple had been accessed.
This implementation was removed in 1995 when the last official release of the Postgres
project was transformed into Postgres95.

The second implementation of the rule system is a technique called query rewriting.
The rewrite system} is a module that exists between the parser stage and the
planner/optimizer. This technique is still implemented.

For information on the syntax and creation of rules in the Postgres system refer to The
PostgreSQL User’s Guide.

The Rewrite System

The query rewrite systemis a module between the parser stage and the planner/optimizer.
It processes the tree handed back by the parser stage (which represents a user query) and if
there is a rule present that has to be applied to the query it rewrites the tree to an alternate

form.

242

Internals

Chapter 26. Overview of PostgreSQL

Techniques To Implement Views

Now we will sketch the algorithm of the query rewrite system. For better illustration we
show how to implement views using rules as an example.

Let the following rule be given:

create rule view rule

as on sel ect

to test_view

do instead
sel ect s.snane, p.pnanme
fromsupplier s, sells se, part p
where s.sno = se.sno and

p. pno = se. pno;

The given rule will be fired whenever a select against the relation t est _vi ewis detected.

Instead of selecting the tuples from t est _vi ewthe select statement given in the action
part of the rule is executed.

Let the following user-query against t est _vi ewbe given:

sel ect snane
fromtest_view
where snane <> 'Snmith’;

Here is a list of the steps performed by the query rewrite system whenever a user-query
against t est _vi ewappears. (The following listing is a very informal description of the
algorithm just intended for basic understanding. For a detailed description refer to
Sonebraker et al, 1989).

test _vi ewRewrite
1. Take the query given in the action part of the rule.
2. Adapt the targetlist to meet the number and order of attributes given in the user-query.

3. Add the qualification given in the where clause of the user-query to the qualification of
the query given in the action part of the rule.

Given the rule definition above, the user-query will be rewritten to the following form
(Note that the rewriting is done on the internal representation of the user-query handed
back by the parser stage but the derived new data structure will represent the following
query):

sel ect s.snane
fromsupplier s, sells se, part p
where s.sno = se.sno and

p. pno = se.pno and

Ss.snhame <> 'Smth’;

243

Chapter 26. Overview of PostgreSQL
Internals

Planner/Optimizer

The task of the planner/optimizer is to create an optimal execution plan. It first combines
all possible ways of scanning and joining the relations that appear in a query. All the
created paths lead to the same result and it’s the task of the optimizer to estimate the cost
of executing each path and find out which one is the cheapest.

Generating Possible Plans

The planner/optimizer decides which plans should be generated based upon the types of
indices defined on the relations appearing in a query. There is always the possibility of
performing a sequential scan on a relation, so a plan using only sequential scans is always
created. Assume an index is defined on a relation (for example a B-tree index) and a query
contains the restrictionrel ati on. attri bute OPR constant. If

rel ation. attri but e happens to match the key of the B-tree index and OPR is anything
but ’<>" another plan is created using the B-tree index to scan the relation. If there are
further indices present and the restrictions in the query happen to match a key of an index
further plans will be considered.

After all feasible plans have been found for scanning single relations, plans for joining
relations are created. The planner/optimizer considers only joins between every two
relations for which there exists a corresponding join clause (i.e. for which a restriction like
where rel 1. attr1=rel 2. attr 2 exists) in the where qualification. All possible plans
are generated for every join pair considered by the planner/optimizer. The three possible
join strategies are:

nested iteration join: The right relation is scanned once for every tuple found in the left
relation. This strategy is easy to implement but can be very time consuming.

merge sort join: Each relation is sorted on the join attributes before the join starts. Then
the two relations are merged together taking into account that both relations are ordered
on the join attributes. This kind of join is more attractive because every relation has to be
scanned only once.

hash join: the right relation is first hashed on its join attributes. Next the left relation is
scanned and the appropriate values of every tuple found are used as hash keys to locate
the tuples in the right relation.

Data Structure of the Plan

Here we will give a little description of the nodes appearing in the plan. Figure \ref{plan}
shows the plan produced for the query in example \ref{simple_select}.

The top node of the plan is a Mer geJoi n node which has two successors, one attached to
the field | ef t t r ee and the second attached to the field ri ght t r ee. Each of the subnodes
represents one relation of the join. As mentioned above a merge sort join requires each
relation to be sorted. That’s why we find a Sor t node in each subplan. The additional
qualification given in the query (s. sno > 2) is pushed down as far as possible and is
attached to the gpqual field of the leaf SeqScan node of the corresponding subplan.

244

Internals

Chapter 26. Overview of PostgreSQL

The list attached to the field mer gecl auses of the Mer geJoi n node contains information
about the join attributes. The values 65000 and 65001 for the var no fields in the VAR
nodes appearing in the mer gecl auses list (and also in the t ar get | i st) mean that not
the tuples of the current node should be considered but the tuples of the next "deeper"
nodes (i.e. the top nodes of the subplans) should be used instead.

Note that every Sort and SeqScan node appearing in figure \ref{plan} has got a
target!i st but because there was not enough space only the one for the Mer geJoi n
node could be drawn.

Another task performed by the planner/optimizer is fixing the operator idsin the Expr and
Oper nodes. As mentioned earlier, Postgres supports a variety of different data types and
even user defined types can be used. To be able to maintain the huge amount of functions
and operators it is necessary to store them in a system table. Each function and operator
gets a unique operator id. According to the types of the attributes used within the
qualifications etc., the appropriate operator ids have to be used.

Executor

The executor takes the plan handed back by the planner/optimizer and starts processing the
top node. In the case of our example (the query given in example \ref{simple_select}) the
top node is a Mer geJoi n node.

Before any merge can be done two tuples have to be fetched (one from each subplan). So
the executor recursively calls itself to process the subplans (it starts with the subplan
attached to | ef t t r ee). The new top node (the top node of the left subplan) is a SeqScan
node and again a tuple has to be fetched before the node itself can be processed. The
executor calls itself recursively another time for the subplan attached to | ef t t r ee of the
SeqScan node.

Now the new top node is a Sort node. As a sort has to be done on the whole relation, the
executor starts fetching tuples from the Sort node’s subplan and sorts them into a
temporary relation (in memory or a file) when the Sor t node is visited for the first time.
(Further examinations of the Sor t node will always return just one tuple from the sorted
temporary relation.)

Every time the processing of the Sort node needs a new tuple the executor is recursively
called for the SeqScan node attached as subplan. The relation (internally referenced by the
value given in the scanr el i d field) is scanned for the next tuple. If the tuple satisfies the
qualification given by the tree attached to gpqual it is handed back, otherwise the next
tuple is fetched until the qualification is satisfied. If the last tuple of the relation has been
processed a NULL pointer is returned.

After a tuple has been handed back by the | ef t t r ee of the Mer geJoi ntheri ghttree
is processed in the same way. If both tuples are present the executor processes the

Mer geJoi n node. Whenever a new tuple from one of the subplans is needed a recursive
call to the executor is performed to obtain it. If a joined tuple could be created it is handed
back and one complete processing of the plan tree has finished.

Now the described steps are performed once for every tuple, until a NULL pointer is
returned for the processing of the Mer geJoi n node, indicating that we are finished.

245

Chapter 27. pg_options

Note: Contributed by Massimo Dal Zotto (mailto:dz@cs.unitn.it)

The optional file dat a/ pg_opt i ons contains runtime options used by the backend to
control trace messages and other backend tunable parameters. What makes this file
interesting is the fact that it is re-read by a backend when it receives a SIGHUP signal,
making thus possible to change run-time options on the fly without needing to restart
Postgres. The options specified in this file may be debugging flags used by the trace
package (backend/ util s/ m sc/trace. c) or numeric parameters which can be used by
the backend to control its behaviour. New options and parameters must be defined in
backend/ util s/ nmisc/trace. c and backend/incl ude/utils/trace.h.

For example suppose we want to add conditional trace messages and a tunable numeric
parameter to the code in file f oo. c. All we need to do is to add the constant TRACE_FOO
and OPT_FOO_PARAM into backend/ i ncl ude/ util s/trace. h:

/* file trace.h */
enum pg_opti on_enum {

TRACE_FQOOQ, /* trace foo functions */

OPT_FOO_PARAM /* foo tunabl e parameter */
NUM PG _OPTI ONS /* must be the last item of enum */

}s

and a corresponding line in backend/ uti | s/ mi sc/trace. c:

/* file trace.c */
static char *opt_nanes[] = {

"foo", /* trace foo functions */
"f oopar ant' /* foo tunabl e parameter */

}s

Options in the two files must be specified in exactly the same order. In the foo source files
we can now reference the new flags with:

/* file foo.c */
#i nclude "trace. h"
#defi ne foo_param pg_opti ons[OPT_FOO_PARAM

i nt
foo_function(int x, int vy)
{
TPRI NTF(TRACE_FOO, "entering foo_function, foo_paran=%d",
f oo_param;
if (foo_param> 10) {
do_nore_foo(x, y);

246

Chapter 27. pg_options

Existing files using private trace flags can be changed by simply adding the following
code:

#include "trace. h"
/* int ny_own _flag = 0; -- renobved */
#define ny_own_flag pg_options[OPT_My_OM_FLAG

All pg_options are initialized to zero at backend startup. If we need a different default
value we must add some initialization code at the beginning of Post gr esMai n. Now we
can set the foo_param and enable foo trace by writing values into the dat a/ pg_opt i ons
file:

file pg_options
foo=1
f oopar anrl17

The new options will be read by all new backends when they are started. To make
effective the changes for all running backends we need to send a SIGHUP to the
postmaster. The signal will be automatically sent to all the backends. We can also activate
the changes only for a specific backend by sending the SIGHUP directly to it.

pg_options can also be specified with the - T switch of Postgres:

postgres options -T "verbose=2, query, host| ookup-"

The functions used for printing errors and debug messages can now make use of the
syslog(2) facility. Message printed to stdout or stderr are prefixed by a timestamp
containing also the backend pid:

#t i mest anp #pi d #message

980127.17:52: 14. 173 [29271] Start Transacti onComrand
980127.17:52: 14. 174 [29271] ProcessUility: drop table t;
980127.17: 52: 14. 186 [29271] SlIncNunEntries: table is 70% full
980127.17:52: 14. 186 [29286] Async_Noti f yHandl er
980127.17:52: 14. 186 [29286] Waki ng up sl eepi ng backend process
980127. 19: 52: 14. 292 [29286] Async_Noti f yFront End
980127.19: 52: 14. 413 [29286] Async_NotifyFront End done
980127. 19: 52: 14. 466 [29286] Async_Noti fyHandl er done

247

Chapter 27. pg_options

This format improves readability of the logs and allows people to understand exactly
which backend is doing what and at which time. It also makes easier to write simple awk or
perl scripts which monitor the log to detect database errors or problem, or to compute
transaction time statistics.

Messages printed to syslog use the log facility LOG_LOCALO. The use of syslog can be
controlled with the syslog pg_option. Unfortunately many functions call directly

printf () to print their messages to stdout or stderr and this output can’t be redirected to
syslog or have timestamps in it. It would be advisable that all calls to printf would be
replaced with the PRINTF macro and output to stderr be changed to use EPRINTF instead
so that we can control all output in a uniform way.

The new pg_options mechanism is more convenient than defining new backend option
switches because:
we don’t have to define a different switch for each thing we want to control. All options
are defined as keywords in an external file stored in the data directory.
we don’t have to restart Postgres to change the setting of some option. Normally
backend options are specified to the postmaster and passed to each backend when it is
started. Now they are read from a file.
we can change options on the fly while a backend is running. We can thus investigate
some problem by activating debug messages only when the problem appears. We can
also try different values for tunable parameters.

The format of the pg_opt i ons file is as follows:

commrent

opti on=i nteger _value # set value for option
option # set option = 1

opti on+ # set option =1

opti on- # set option =0

Note that keywor d can also be an abbreviation of the option name defined in
backend/ util s/ m sc/trace.c.

Refer to The Administrator’s Guide chapter on runtime options for a complete list of
currently supported options.

Some of the existing code using private variables and option switches has been changed to
make use of the pg_options feature, mainly in post gr es. c. It would be advisable to
modify all existing code in this way, so that we can get rid of many of the switches on the
Postgres command line and can have more tunable options with a unique place to put
option values.

248

Chapter 28. Genetic Query Optimization in
Database Systems

Author: Written by Martin Utesch (utesch@aut.tu-freiberg.de) for the Institute of
Automatic Control at the University of Mining and Technology in Freiberg, Germany.

Query Handling as a Complex Optimization
Problem

Among all relational operators the most difficult one to process and optimize is the join.
The number of alternative plans to answer a query grows exponentially with the number of
joins included in it. Further optimization effort is caused by the support of a variety of join
methods (e.g., nested loop, index scan, merge join in Postgres) to process individual joins
and a diversity of indices (e.g., r-tree, b-tree, hash in Postgres) as access paths for relations.

The current Postgres optimizer implementation performs a near- exhaustive search over
the space of alternative strategies. This query optimization technique is inadequate to
support database application domains that involve the need for extensive queries, such as
artificial intelligence.

The Institute of Automatic Control at the University of Mining and Technology, in
Freiberg, Germany, encountered the described problems as its folks wanted to take the
Postgres DBMS as the backend for a decision support knowledge based system for the
maintenance of an electrical power grid. The DBMS needed to handle large join queries
for the inference machine of the knowledge based system.

Performance difficulties within exploring the space of possible query plans arose the
demand for a new optimization technique being developed.

In the following we propose the implementation of a Genetic Algorithm as an option for
the database query optimization problem.

Genetic Algorithms (GA)

The GA is a heuristic optimization method which operates through determined,
randomized search. The set of possible solutions for the optimization problem is considered
as a population of individuals. The degree of adaption of an individual to its environment is
specified by its fitness.

The coordinates of an individual in the search space are represented by chromosomes, in
essence a set of character strings. A gene is a subsection of a chromosome which encodes
the value of a single parameter being optimized. Typical encodings for a gene could be
binary or integer.

Through simulation of the evolutionary operations recombination, mutation, and selection
new generations of search points are found that show a higher average fitness than their
ancestors.

According to the "comp.ai.genetic" FAQ it cannot be stressed too strongly that a GA is not
a pure random search for a solution to a problem. A GA uses stochastic processes, but the
result is distinctly non-random (better than random).

249

Chapter 28. Genetic Query Optimization in
Database Systems

Structured Di agram of a GA

P(t) generation of ancestors at a tine t
P’ (t) generation of descendants at a tine t

+ +
| >>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<L|
+ +
| INNTIALIZEt :=0 |
+ +
| INITIALI ZE P(t) |
+ +
| evalute FITNESS of P(t) |
+ +
| while not STOPPING CRI TERI ON do |
| e +
[| P (t) = RECOVBI NATI ON{P(t)} [
| B e +
|1 Pr(t) := MITATION(P' (1)} I
| o e m e e e e e e e e e e e e mm e aeaoa +
| | P(t+1) := SELECTION{P ' (t) + P(t)} |
| o e e e e e e e e e e e e e e e me e ae—oa +
| | evalute FITNESS of P ' (t) |
| o e m e e e e e e e e e e e e e ee oo +
[[t =t +1 [
+===+ +

Genetic Query Optimization (GEQO) in Postgres

The GEQO module is intended for the solution of the query optimization problem similar
to a traveling salesman problem (TSP). Possible query plans are encoded as integer strings.
Each string represents the join order from one relation of the query to the next. E. g., the
query tree

I\

I\ 2
I\ 3
4 1

is encoded by the integer string "4-1-3-2’, which means, first join relation ’4’ and ’1’, then
’3’, and then 2, where 1, 2, 3, 4 are relids in Postgres.

Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

Specific characteristics of the GEQO implementation in Postgres are:
Usage of a steady state GA (replacement of the least fit individuals in a population, not
whole-generational replacement) allows fast convergence towards improved query plans.
This is essential for query handling with reasonable time;
Usage of edge recombination crossover which is especially suited to keep edge losses
low for the solution of the TSP by means of a GA;
Mutation as genetic operator is deprecated so that no repair mechanisms are needed to
generate legal TSP tours.

250

Chapter 28. Genetic Query Optimization in
Database Systems

The GEQO module gives the following benefits to the Postgres DBMS compared to the
Postgres query optimizer implementation:
Handling of large join queries through non-exhaustive search;
Improved cost size approximation of query plans since no longer plan merging is needed
(the GEQO module evaluates the cost for a query plan as an individual).

Future Implementation Tasks for Postgres GEQO

Basic Improvements

Improve freeing of memory when query is already processed

With large join queries the computing time spent for the genetic query optimization seems
to be a mere fraction of the time Postgres needs for freeing memory via routine

Menor yCont ext Fr ee, file backend/ uti | s/ myr/ ncxt . c. Debugging showed that it
get stucked in a loop of routine Or der edEl enPop, file backend/ uti | s/ nmgr/ oset . c.
The same problems arise with long queries when using the normal Postgres query
optimization algorithm.

Improve genetic algorithm parameter settings

In file backend/ opt i mi zer/ geqo/ geqo_par ans. ¢, routines gi mre_pool _si ze and
gi me_nunber _gener at i ons, we have to find a compromise for the parameter settings
to satisfy two competing demands:

Optimality of the query plan

Computing time

Find better solution for integer overflow

In file backend/ opt i mi zer/ geqo/ geqo_eval . c, routine geqo_j oi nrel _si ze, the
present hack for MAXINT overflow is to set the Postgres integer value of r el - >si ze to
its logarithm. Modifications of Rel in backend/ nodes/ r el ati on. h will surely have
severe impacts on the whole Postgres implementation.

Find solution for exhausted memory

Memory exhaustion may occur with more than 10 relations involved in a query. In file
backend/ opt i i zer/ geqo/ geqo_eval . c, routine gi mre_t r ee is recursively called.
Maybe | forgot something to be freed correctly, but I dunno what. Of course the rel data
structure of the join keeps growing and growing the more relations are packed into it.
Suggestions are welcome :-(

References

Reference information for GEQ algorithms.

The Hitch-Hiker’ s Guide to Evolutionary Computation, Jorg Heitkétter and David Beasley,
InterNet resource, The Design and Implementation of the Postgres Query Optimizer,
Z. Fong, University of California, Berkeley Computer Science Department,
Fundamentals of Database Systems, R. EImasri and S. Navathe, The
Benjamin/Cummings Pub., Inc..

251

Chapter 28. Genetic Query Optimization in
Database Systems

FAQ in comp.ai.genetic (news://comp.ai.genetic) is available at Encore
(ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/Welcome.html).

File pl anner / Report . ps in the ’postgres-papers’ distribution.

252

Chapter 29. Frontend/Backend Protocol

Note: Written by Phil Thompson (mailto:phil@river-bank.demon.co.uk). Updates for
protocol 2.0 by Tom Lane (mailto:tgl@sss.pgh.pa.us).

Postgres uses a message-based protocol for communication between frontends and
backends. The protocol is implemented over TCP/IP and also on Unix sockets. Postgres
v6.3 introduced version numbers into the protocol. This was done in such a way as to still
allow connections from earlier versions of frontends, but this document does not cover the
protocol used by those earlier versions.

This document describes version 2.0 of the protocol, implemented in Postgres v6.4 and
later.

Higher level features built on this protocol (for example, how | i bpq passes certain
environment variables after the connection is established) are covered elsewhere.

Overview

The three major components are the frontend (running on the client) and the postmaster and
backend (running on the server). The postmaster and backend have different roles but may
be implemented by the same executable.

A frontend sends a startup packet to the postmaster. This includes the names of the user
and the database the user wants to connect to. The postmaster then uses this, and the
information in the pg_hba.conf(5) file to determine what further authentication information
it requires the frontend to send (if any) and responds to the frontend accordingly.

The frontend then sends any required authentication information. Once the postmaster
validates this it responds to the frontend that it is authenticated and hands over the
connection to a backend. The backend then sends a message indicating successful startup
(normal case) or failure (for example, an invalid database name).

Subsequent communications are query and result packets exchanged between the frontend
and the backend. The postmaster takes no further part in ordinary query/result

communication. (However, the postmaster is involved when the frontend wishes to cancel
a query currently being executed by its backend. Further details about that appear below.)

When the frontend wishes to disconnect it sends an appropriate packet and closes the
connection without waiting for a response for the backend.

Packets are sent as a data stream. The first byte determines what should be expected in the
rest of the packet. The exception is packets sent from a frontend to the postmaster, which
comprise a packet length then the packet itself. The difference is historical.

Protocol

This section describes the message flow. There are four different types of flows depending

on the state of the connection: startup, query, function call, and termination. There are also

special provisions for notification responses and command cancellation, which can occur at
any time after the startup phase.

253

Chapter 29. Frontend/Backend Protocol

Startup is divided into an authentication phase and a backend startup phase.

Initially, the frontend sends a StartupPacket. The postmaster uses this info and the contents
of the pg_hba.conf(5) file to determine what authentication method the frontend must use.
The postmaster then responds with one of the following messages:

ErrorResponse

The postmaster then immediately closes the connection.

AuthenticationOk

The postmaster then hands over to the backend. The postmaster takes no further part
in the communication.

AuthenticationKerberosV4
The frontend must then take part in a Kerberos V4 authentication dialog (not

described here) with the postmaster. If this is successful, the postmaster responds with
an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationKerberosV5

The frontend must then take part in a Kerberos V5 authentication dialog (not
described here) with the postmaster. If this is successful, the postmaster responds with
an AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationUnencryptedPassword
The frontend must then send an UnencryptedPasswordPacket. If this is the correct
password, the postmaster responds with an AuthenticationOk, otherwise it responds
with an ErrorResponse.

AuthenticationEncryptedPassword

The frontend must then send an EncryptedPasswordPacket. If this is the correct
password, the postmaster responds with an AuthenticationOk, otherwise it responds
with an ErrorResponse.

If the frontend does not support the authentication method requested by the postmaster,
then it should immediately close the connection.

After sending AuthenticationOk, the postmaster attempts to launch a backend process.
Since this might fail, or the backend might encounter a failure during startup, the frontend
must wait for the backend to acknowledge successful startup. The frontend should send no
messages at this point. The possible messages from the backend during this phase are:

BackendKeyData

This message is issued after successful backend startup. It provides secret-key data
that the frontend must save if it wants to be able to issue cancel requests later. The
frontend should not respond to this message, but should continue listening for a
ReadyForQuery message.

254

Chapter 29. Frontend/Backend Protocol

ReadyForQuery
Backend startup is successful. The frontend may now issue query or function call
messages.

ErrorResponse

Backend startup failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but
continue listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each query
cycle. Depending on the coding needs of the frontend, it is reasonable to consider
ReadyForQuery as starting a query cycle (and then BackendKeyData indicates successful
conclusion of the startup phase), or to consider ReadyForQuery as ending the startup phase
and each subsequent query cycle.

Query

A Query cycle is initiated by the frontend sending a Query message to the backend. The
backend then sends one or more response messages depending on the contents of the query
command string, and finally a ReadyForQuery response message. ReadyForQuery informs
the frontend that it may safely send a new query or function call.

The possible response messages from the backend are:

CompletedResponse

An SQL command completed normally.

CopylInResponse

The backend is ready to copy data from the frontend to a relation. The frontend
should then send a CopyDataRows message. The backend will then respond with a
CompletedResponse message with a tag of "COPY".

CopyOutResponse

The backend is ready to copy data from a relation to the frontend. It then sends a
CopyDataRows message, and then a CompletedResponse message with a tag of
"COPY™.

CursorResponse

The query was either an insert(l), delete(l), update(l), fetch(l) or a select(l) command.
If the transaction has been aborted then the backend sends a CompletedResponse
message with a tag of "*ABORT STATE*". Otherwise the following responses are
sent.

For an insert(l) command, the backend then sends a CompletedResponse message
with a tag of "INSERT oi d r ows" where r ows is the number of rows inserted, and
oi d is the object ID of the inserted row if r ows is 1, otherwise oi d is 0.

For a delete(l) command, the backend then sends a CompletedResponse message with
atag of "DELETE r ows™ where r ows is the number of rows deleted.

255

Chapter 29. Frontend/Backend Protocol

For an update(l) command, the backend then sends a CompletedResponse message
with a tag of "UPDATE r ows" where r ows is the number of rows deleted.

For a fetch(l) or select(l) command, the backend sends a RowDescription message.
This is then followed by an AsciiRow or BinaryRow message (depending on whether
a binary cursor was specified) for each row being returned to the frontend. Finally, the
backend sends a CompletedResponse message with a tag of "SELECT".
EmptyQueryResponse
An empty query string was recognized. (The need to specially distinguish this case is
historical.)
ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this
because the query string may contain multiple SQL commands. (CompletedResponse
marks the end of processing one SQL command, not the whole string.)
ReadyForQuery will always be sent, whether processing terminates successfully or

with an error.

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to
other responses, ie. the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages
whenever it is expecting any other type of message.

Actually, it is possible for NoticeResponse to arrive even when the frontend is not
expecting any kind of message, that is, the backend is nominally idle. (In particular, the
backend can be commanded to terminate by its postmaster. In that case it will send a
NoticeResponse before closing the connection.) It is recommended that the frontend check
for such asynchronous notices just before issuing any new command.

Also, if the frontend issues any listen(l) commands then it must be prepared to accept
NotificationResponse messages at any time; see below.

Function Call

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the
backend. The backend then sends one or more response messages depending on the results
of the function call, and finally a ReadyForQuery response message. ReadyForQuery
informs the frontend that it may safely send a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

FunctionResultResponse

The function call was executed and returned a result.

256

Chapter 29. Frontend/Backend Protocol

FunctionVoidResponse

The function call was executed and returned no result.

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent,
whether processing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in
addition to other responses, ie. the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages
whenever it is expecting any other type of message. Also, if it issues any listen(l)
commands then it must be prepared to accept NotificationResponse messages at any time;
see below.

Notification Responses

If a frontend issues a listen(l) command, then the backend will send a NotificationResponse
message (not to be confused with NoticeResponse!) whenever a notify(I) command is
executed for the same notification name.

Notification responses are permitted at any point in the protocol (after startup), except
within another backend message. Thus, the frontend must be prepared to recognize a
NotificationResponse message whenever it is expecting any message. Indeed, it should be
able to handle NotificationResponse messages even when it is not engaged in a query.

NotificationResponse

A notify(l) command has been executed for a name for which a previous listen(l)
command was executed. Notifications may be sent at any time.

It may be worth pointing out that the names used in listen and notify commands need not
have anything to do with names of relations (tables) in the SQL database. Notification
names are simply arbitrarily chosen condition names.

Cancelling Requests in Progress

During the processing of a query, the frontend may request cancellation of the query by
sending an appropriate request to the postmaster. The cancel request is not sent directly to
the backend for reasons of implementation efficiency: we don’t want to have the backend
constantly checking for new input from the frontend during query processing. Cancel
requests should be relatively infrequent, so we make them slightly cumbersome in order to
avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the postmaster and sends
a CancelRequest message, rather than the StartupPacket message that would ordinarily be
sent across a new connection. The postmaster will process this request and then close the
connection. For security reasons, no direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and
secret key) passed to the frontend during connection startup. If the request matches the PID
and secret key for a currently executing backend, the postmaster signals the backend to
abort processing of the current query.

257

Chapter 29. Frontend/Backend Protocol

The cancellation signal may or may not have any effect --- for example, if it arrives after
the backend has finished processing the query, then it will have no effect. If the
cancellation is effective, it results in the current command being terminated early with an
error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no
direct way to tell whether a cancel request has succeeded. It must continue to wait for the
backend to respond to the query. Issuing a cancel simply improves the odds that the current
query will finish soon, and improves the odds that it will fail with an error message instead
of succeeding.

Since the cancel request is sent to the postmaster and not across the regular
frontend/backend communication link, it is possible for the cancel request to be issued by
any process, not just the frontend whose query is to be canceled. This may have some
benefits of flexibility in building multiple-process applications. It also introduces a security
risk, in that unauthorized persons might try to cancel queries. The security risk is addressed
by requiring a dynamically generated secret key to be supplied in cancel requests.

Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message
and immediately closes the connection. On receipt of the message, the backend
immediately closes the connection and terminates.

An ungraceful termination may occur due to software failure (i.e., core dump) at either end.
If either frontend or backend sees an unexpected closure of the connection, it should clean
up and terminate. The frontend has the option of launching a new backend by recontacting
the postmaster, if it doesn’t want to terminate itself.

Message Data Types

This section describes the base data types used in messages.

Intn(i)

An n bit integer in network byte order. If i is specified it is the literal value. Eg.
Int16, Int32(42).

LimStringn(s)

A character array of exactly n bytes interpreted as a ’\0” terminated string. The *\0’ is
omitted if there is insufficient room. If s is specified it is the literal value. Eg.
LimString32, LimString64("user").

String(s)

A conventional C *\0’ terminated string with no length limitation. If s is specified it
is the literal value. Eg. String, String("'user").

Note: There is no predefined limit on the length of a string that can be returned
by the backend. Good coding strategy for a frontend is to use an expandable
buffer so that anything that fits in memory can be accepted. If that’s not feasible,
read the full string and discard trailing characters that don’t fit into your fixed-size
buffer.

258

Chapter 29. Frontend/Backend Protocol

Byten(c)
Exactly n bytes. If c is specified it is the literal value. Eg. Byte, Byte1(’\n’).

Message Formats

This section describes the detailed format of each message. Each can be sent by either a
frontend (F), a postmaster/backend (B), or both (F & B).

AsciiRow (B)

Bytel(’D’)

Identifies the message as an ASCII data row. (A prior RowDescription message
defines the number of fields in the row and their data types.)

Byten

A bit map with one bit for each field in the row. The 1st field corresponds to bit
7 (MSB) of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th
field corresponds to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7
of the 2nd byte, and so on. Each bit is set if the value of the corresponding field
is not NULL. If the number of fields is not a multiple of 8, the remainder of the
last byte in the bit map is wasted.

Then, for each field with a non-NULL value, there is the following:

Int32
Specifies the size of the value of the field, including this size.
Byten

Specifies the value of the field itself in ASCII characters. n is the above
size minus 4. There is no trailing \0’ in the field data; the front end must
add one if it wants one.

AuthenticationOk (B)

Bytel('R’)
Identifies the message as an authentication request.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV4 (B)

Bytel('R’)

Identifies the message as an authentication request.

259

Chapter 29. Frontend/Backend Protocol

Int32(1)

Specifies that Kerberos V4 authentication is required.

AuthenticationKerberosV5 (B)

Bytel(’'R’)

Identifies the message as an authentication request.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationUnencryptedPassword (B)

Bytel(’'R’)

Identifies the message as an authentication request.

Int32(3)

Specifies that an unencrypted password is required.

AuthenticationEncryptedPassword (B)

Bytel('R’)

Identifies the message as an authentication request.

Int32(4)

Specifies that an encrypted password is required.

Byte2

The salt to use when encrypting the password.

BackendKeyData (B)

Bytel(’K”)

Identifies the message as cancellation key data. The frontend must save these
values if it wishes to be able to issue CancelRequest messages later.

Int32
The process ID of this backend.

Int32
The secret key of this backend.

BinaryRow (B)

260

Chapter 29. Frontend/Backend Protocol

Bytel(’B’)

Identifies the message as a binary data row. (A prior RowDescription message
defines the number of fields in the row and their data types.)

Byten

A bit map with one bit for each field in the row. The 1st field corresponds to bit
7 (MSB) of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th
field corresponds to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7
of the 2nd byte, and so on. Each bit is set if the value of the corresponding field
is not NULL. If the number of fields is not a multiple of 8, the remainder of the
last byte in the bit map is wasted.

Then, for each field with a non-NULL value, there is the following:
Int32
Specifies the size of the value of the field, excluding this size.
Byten
Specifies the value of the field itself in binary format. n is the above size.

CancelRequest (F)

Int32(16)
The size of the packet in bytes.

Int32(80877102)

The cancel request code. The value is chosen to contain "1234" in the most
significant 16 bits, and "5678" in the least 16 significant bits. (To avoid
confusion, this code must not be the same as any protocol version number.)

Int32
The process ID of the target backend.

Int32
The secret key for the target backend.

CompletedResponse (B)

Bytel(’C’)
Identifies the message as a completed response.
String

The command tag. This is usually (but not always) a single word that identifies
which SQL command was completed.

261

Chapter 29. Frontend/Backend Protocol

CopyDataRows (B & F)

This is a stream of rows where each row is terminated by a Byte1(*\n’). This is then
followed by the sequence Bytel(’\\’), Bytel(’.”), Byte1l(’\n’).

CopyInResponse (B)

Bytel('G’)

Identifies the message as a Start Copy In response. The frontend must now send
a CopyDataRows message.

CopyOutResponse (B)

Bytel("H’)

Identifies the message as a Start Copy Out response. This message will be
followed by a CopyDataRows message.

CursorResponse (B)

Byte1(’P’)

Identifies the message as a cursor response.

String

The name of the cursor. This will be "blank" if the cursor is implicit.

EmptyQueryResponse (B)

Byte1('l’)

Identifies the message as a response to an empty query string.

String("™)

Unused.

EncryptedPasswordPacket (F)

Int32
The size of the packet in bytes.

String
The encrypted (using crypt()) password.

ErrorResponse (B)

262

Chapter 29. Frontend/Backend Protocol

Bytel(’E’)

Identifies the message as an error.

String

The error message itself.

FunctionCall (F)

Bytel(’F’)
Identifies the message as a function call.

String("")

Unused.

Int32

Specifies the object ID of the function to call.

Int32
Specifies the number of arguments being supplied to the function.

Then, for each argument, there is the following:

Int32

Specifies the size of the value of the argument, excluding this size.
Byten
Specifies the value of the field itself in binary format. n is the above size.

FunctionResultResponse (B)

Bytel(’V’)

Identifies the message as a function call result.
Bytel(’G’)

Specifies that a nonempty result was returned.

Int32

Specifies the size of the value of the result, excluding this size.

Byten
Specifies the value of the result itself in binary format. n is the above size.
Bytel1(’0’)

Unused. (Strictly speaking, FunctionResultResponse and FunctionVVoidResponse
are the same thing but with some optional parts to the message.)

263

Chapter 29. Frontend/Backend Protocol

FunctionVoidResponse (B)

Bytel(’V’)

Identifies the message as a function call result.

Bytel1(’0’)

Specifies that an empty result was returned.

NoticeResponse (B)

Bytel(’N’)

Identifies the message as a notice.

String

The notice message itself.

NotificationResponse (B)

Bytel("A’)

Identifies the message as a notification response.

Int32
The process ID of the notifying backend process.

String

The name of the condition that the notify has been raised on.

Query (F)

Bytel(’Q’)
Identifies the message as a query.

String
The query string itself.

ReadyForQuery (B)

Bytel(’Z’)

Identifies the message type. ReadyForQuery is sent whenever the backend is
ready for a new query cycle.

RowDescription (B)

264

Chapter 29. Frontend/Backend Protocol

Bytel(’T’)
Identifies the message as a row description.
Int16

Specifies the number of fields in a row (may be zero).

Then, for each field, there is the following:
String
Specifies the field name.

Int32
Specifies the object ID of the field type.

Int16
Specifies the type size.

Int32
Specifies the type modifier.

StartupPacket (F)

Int32(296)
The size of the packet in bytes.

Int32

The protocol version number. The most significant 16 bits are the major version
number. The least 16 significant bits are the minor version number.

LimString64

The database name, defaults to the user name if empty.
LimString32

The user name.

LimString64

Any additional command line arguments to be passed to the backend by the
postmaster.

LimString64

Unused.

LimString64

The optional tty the backend should use for debugging messages.

Terminate (F)

265

Bytel(’X")

Identifies the message as a termination.

UnencryptedPasswordPacket (F)

Int32
The size of the packet in bytes.

String

The unencrypted password.

Chapter 29. Frontend/Backend Protocol

266

Chapter 30. Postgres Signals

Note: Contributed by Massimo Dal Zotto (mailto:dz@cs.unitn.it)

Postgres uses the following signals for communication between the postmaster and
backends:

Table 30-1. Postgres Signals

Signal postmaster Server Action
Action
SIGHUP kill(*,sighup) read_pg_options
SIGINT die cancel query
SIGQUIT Kill(*,sigterm) handle_warn
SIGTERM Kill(*,sigterm), die
kill(*,9), die
SIGPIPE ignored die
SIGUSR1 kill(*,sigusrl), die quickdie
SIGUSR2 kill(*,sigusr2) async notify (Sl flush)
SIGCHLD reaper ignored (alive test)
SIGTTIN ignored
SIGTTOU ignored
SIGCONT dumpstatus
SIGFPE FloatExceptionHandler

Note: Kkill(*,signal) means sending a signal to all backends.

The main changes to the old signal handling are the use of SIGQUIT instead of SIGHUP to
handle warns, SIGHUP to re-read the pg_options file and the redirection to all active
backends of SIGHUP, SIGTERM, SIGUSR1 and SIGUSR2 sent to the postmaster. In this
way these signals sent to the postmaster can be sent automatically to all the backends
without need to know their pids. To shut down postgres one needs only to send a
SIGTERM to postmaster and it will stop automatically all the backends.

The SIGUSR2 signal is also used to prevent Sl cache table overflow which happens when
some backend doesn’t process Sl cache for a long period. When a backend detects the Sl
table full at 70% it simply sends a signal to the postmaster which will wake up all idle
backends and make them flush the cache.

267

Chapter 30. Postgres Signals

The typical use of signals by programmers could be the following:

stop postgres

kill -TERM $postnaster_pid
kill all the backends
kill -QU T $postmaster_pid
kill only the postnaster
kill -INT $postnaster_pid

change pg_options
cat new_pg_options > $DATA DI R/ pg_options
kill -HUP $postmaster_pid

change pg_options only for a backend
cat new_pg_options > $DATA DI R/ pg_options
kill -HUP $backend_pid

cat ol d_pg_options > $DATA DI R/ pg_options

268

Chapter 31. gcc Default Optimizations

Note: Contributed by Brian Gallew (mailto:geek+@cmu.edu)

Configuring gcc to use certain flags by default is a simple matter of editing the
/usr/local/libl/lgcc-1ib/platform version/specs file. The format of this file
pretty simple. The file is broken into sections, each of which is three lines long. The first
line is "*sect i on_nane:" (e.g. "*asm:"). The second line is a list of flags, and the third
line is blank.

The easiest change to make is to append the desired default flags to the list in the
appropriate section. As an example, let’s suppose that | have linux running on a *486 with
gcc 2.7.2 installed in the default location. In the file
Jusr/local/lib/gce-lib/i486-linux/2.7.2/specs, 13 lines down | find the following section:

As you can see, there aren’t any default flags. If | always wanted compiles of C code to use
"-m486 -fomit-frame-pointer", | would change it to look like:

*ccl:
If I wanted to be able to generate 386 code for another, older linux box lying around, 1’d
have to make it look like this:

*ccl:

This will always omit frame pointers, any will build 486-optimized code unless -m386 is
specified on the command line.

You can actually do quite a lot of customization with the specs file. Always remember,
however, that these changes are global, and affect all users of the system.

269

Chapter 32. Backend Interface

Backend Interface (BKI) files are scripts that are input to the Postgres backend running in
the special "bootstrap™ mode that allows it to perform database functions without a
database system already existing. BKI files can therefore be used to create the database
system in the first place. initdb uses BKI files to do just that: to create a database system.
However, initdb’s BKI files are generated internally. It generates them using the files

gl obal 1. bki . source and | ocal 1.t enpl at el. bki . sour ce, which it finds in the
Postgres "library" directory. They get installed there as part of installing Postgres. These
.source files get build as part of the Postgres build process, by a build program called
genbki. genbki takes as input Postgres source files that double as genbki input that builds
tables and C header files that describe those tables.

Related information may be found in documentation for initdb, createdb, and the SQL
command CREATE DATABASE.

BKI File Format

The Postgres backend interprets BKI files as described below. This description will be
easier to understand if the gl obal 1. bki . sour ce file is at hand as an example. (As
explained above, this .source file isn’t quite a BKI file, but you’ll be able to guess what the
resulting BKI file would be anyway).

Commands are composed of a command name followed by space separated arguments.
Arguments to a command which begin witha $ are treated specially. If $$ are the first two
characters, then the first $ is ignored and the argument is then processed normally. If the $
is followed by space, then it is treated as a NULL value. Otherwise, the characters
following the $ are interpreted as the name of a macro causing the argument to be replaced
with the macro’s value. It is an error for this macro to be undefined.

Macros are defined using

define macro nacro_name = macro_val ue
and are undefined using

undefi ne macro macro_nane

and redefined using the same syntax as define.

Lists of general commands and macro commands follow.

General Commands

OPEN cl assnane

Open the class called cl assnane for further manipulation.

CLOSE [cl assnhan®]

Close the open class called cl assnane. Itis an error if cl assnane is not already
opened. If no cl assnan® is given, then the currently open class is closed.

270

Chapter 32. Backend Interface

PRINT

Print the currently open class.

INSERT [OID=0i d_val ue] (val uel val ue2...)
Insert a new instance to the open class using val uel, val ue2, etc., for its attribute
values and oi d_val ue for its OID. If oi d_val ueisnot 0 , then this value will be
used as the instance’s object identifier. Otherwise, it is an error.

INSERT (val uelval ue2..)

As above, but the system generates a unique object identifier.

CREATE cl assnane (nanel =t ypel [,nane2 =t ype2|[,...]])

Create a class named cl assnarme with the attributes given in parentheses.

OPEN (nanel =typel [,nane2 =t ype2[,..]]) AS cl assnane
Open a class named cl assnare for writing but do not record its existence in the
system catalogs. (This is primarily to aid in bootstrapping.)
DESTROY cl assnhane
Destroy the class named cl assnane.
DEFINE INDEX i ndexnane ON cl ass_namne USING ammane (opcl ass attr |
(function(attr))

Create an index named i ndexnairre on the class named cl assnan® using the
amaie access method. The fields to index are called nanel, nane?2 etc., and the
operator collections to use are col | ecti on_1, col | ecti on_2 etc., respectively.

Note: This last sentence doesn’t reference anything in the example. Should be
changed to make sense. - Thomas 1998-08-04

Macro Commands

DEFINE FUNCTION nacro_nane ASrettype functi on_nane(ar gs)

Define a function prototype for a function named nmacr o_nane which has its value
of type r et t ype computed from the execution f unct i on_nane with the
arguments ar gs declared in a C-like manner.

DEFINE MACRO nmacr o_nanme FROM FILE fi | enane

Define a macro named macr o_nane which has its value read from the file called
fil enane.

Debugging Commands

Note: This section on debugging commands was commented-out in the original
documentation. Thomas 1998-08-05

Randomly print the open class.

271

Chapter 32. Backend Interface

m -1

Toggle display of time information.

mo

Set retrievals to now.

m 1 Jan 1 01:00:00 1988

Set retrievals to snapshots of the specfied time.

m 2 Jan 1 01:00:00 1988, Feb 1 01:00:00 1988
Set retrievals to ranges of the specified times. Either time may be replaced with space
if an unbounded time range is desired.

&A cl assnanme natt s naneltypel nane2type?2. ..
Add nat t s attributes named nanel, nane2, etc. of typest ypel, t ype2, etc. to
the class cl assnane.

&RR ol dcl assnane newcl assnane

Rename the ol dcl assnane class to newcl assnane.

&RA classname oldattname newattname cl assnarmne ol dat t name newat t nane

Rename the ol dat t nane attribute in the class named cl assnare to
newat t namne.

Example

The following set of commands will create the pg_opclass class containing the i nt _ops
collection as an object with an OID of 421, print out the class, and then close it.

create pg_opcl ass (opcnanme=nane)
open pg_opcl ass

insert oi d=421 (int_ops)

print

cl ose pg_opcl ass

272

Chapter 33. Page Files

A description of the database file default page format.

This section provides an overview of the page format used by Postgres classes.
User-defined access methods need not use this page format.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item
refers to data which is stored in Postgres classes.

Page Structure

The following table shows how pages in both normal Postgres classes and Postgres index
classes (e.g., a B-tree index) are structured.

Table 33-1. Sample Page L ayout

Iltem Description

itemPointerData

filler

itemData...

Unallocated Space

ItemContinuationData

Special Space

““ItemData 2”’

“ItemData 1”’

ItemldData

PageHeaderData

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the
header, the first three 2-byte integer fields (lower, upper, and special) represent byte offsets
to the start of unallocated space, to the end of unallocated space, and to the start of special
space. Special space is a region at the end of the page which is allocated at page
initialization time and which contains information specific to an access method. The last 2
bytes of the page header, opaque, encode the page size and information on the internal
fragmentation of the page. Page size is stored in each page because frames in the buffer
pool may be subdivided into equal sized pages on a frame by frame basis within a class.
The internal fragmentation information is used to aid in determining when page
reorganization should occur.

Following the page header are item identifiers (ItemldData). New item identifiers are
allocated from the first four bytes of unallocated space. Because an item identifier is never
moved until it is freed, its index may be used to indicate the location of an item on a page.
In fact, every pointer to an item (ItemPointer) created by Postgres consists of a frame

273

Files

Bugs

Chapter 33. Page Files

number and an index of an item identifier. An item identifier contains a byte-offset to the
start of an item, its length in bytes, and a set of attribute bits which affect its interpretation.

The items themselves are stored in space allocated backwards from the end of unallocated
space. Usually, the items are not interpreted. However when the item is too long to be
placed on a single page or when fragmentation of the item is desired, the item is divided
and each piece is handled as distinct items in the following manner. The first through the
next to last piece are placed in an item continuation structure (ItemContinuationData). This
structure contains itemPointerData which points to the next piece and the piece itself. The
last piece is handled normally.

dat a/

Location of shared (global) database files.

dat a/ base/

Location of local database files.

The page format may change in the future to provide more efficient access to large objects.

This section contains insufficient detail to be of any assistance in writing a new access
method.

274

Appendix DG1. The CVS Repository

The Postgres source code is stored and managed using the CVS code management system.

At least two methods, anonymous CVS and CVSup, are available to pull the CVS code
tree from the Postgres server to your local machine.

CVS Tree Organization

Author: Written by Marc G. Fournier (mailto:scrappy@hub.org) on 1998-11-05.

The command cvs checkout has a flag, - r, that lets you check out a certain revision of a
module. This flag makes it easy to, for example, retrieve the sources that make up release

1.0 of the module ‘tc’ at any time in the future:

$ cvs checkout -r REL6_4 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you
cannot find the bug in the current working copy.

Tip: You can also check out a module as it was at any given date using the - D option.

When you tag more than one file with the same tag you can think about the tag as "a curve
drawn through a matrix of filename vs. revision number". Say we have 5 files with the

following revisions:

filel file2z file3 file4 fileb

1.1 1.1 1.1 1.1 /--1.1*% <-*- TAG
1. 2*- 1.2 1.2 -1.2%-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \' 1.4 / 1.4
\-1.5*- 1.5
1.6

thenthetag TAG will reference filel-1.2, file2-1.3, etc.

Note: For creating a release branch, other then a -b option added to the command, it's
the same thing.

So, to create the v6.4 release | did the following:

$ cd pgsql
$ cvs tag -b REL6_4

275

Appendix DG1. The CVS Repository

which will create the tag and the branch for the RELEASE tree.
Now, for those with CVS access, it’s too simple. First, create two subdirectories,
RELEASE and CURRENT, so that you don’t mix up the two. Then do:

cd RELEASE

cvs checkout -P -r REL6_4 pgsq
cd ../ CURRENT

cvs checkout -P pgsql

which results in two directory trees, RELEASE/ pgsql and CURRENT/ pgsql . From that
point on, CVS will keep track of which repository branch is in which directory tree, and
will allow independent updates of either tree.

If you are only working on the CURRENT source tree, you just do everything as before we
started tagging release branches.

After you’ve done the initial checkout on a branch

$ cvs checkout -r REL6_4

anything you do within that directory structure is restricted to that branch. If you apply a
patch to that directory structure and do a

cvs conmit

while inside of it, the patch is applied to the branch and only the branch.

Getting The Source Via Anonymous CVS

If you would like to keep up with the current sources on a regular basis, you can fetch
them from our CVS server and then use CVS to retrieve updates from time to time.
Anonymous CVS

1. You will need a local copy of CVS (Concurrent Version Control System), which you
can get from http://www.cyclic.com/ or any GNU software archive site. We currently
recommend version 1.10 (the most recent at the time of writing). Many systems have a
recent version of cvs installed by default.

2. Do an initial login to the CVS server:

$ cvs -d :pserver:anoncvs@ostgresql.org:/usr/local/cvsroot
| ogin

You will be prompted for a password; enter "post gr esql ’. You should only need to
do this once, since the password will be saved in . cvspass in your home directory.

3. Fetch the Postgres sources:

cvs -z3 -d :pserver:anoncvs@ostgresqgl.org:/usr/local/cvsroot co
- P pgsql

276

Appendix DG1. The CVS Repository

which installs the Postgres sources into a subdirectory pgsql of the directory you are
currently in.

Note: If you have a fast link to the Internet, you may not need - z3, which instructs
CVS to use gzip compression for transferred data. But on a modem-speed link,
it's a very substantial win.

This initial checkout is a little slower than simply downloading a t ar . gz file; expect
it to take 40 minutes or so if you have a 28.8K modem. The advantage of CVS doesn’t
show up until you want to update the file set later on.

4. Whenever you want to update to the latest CV'S sources, cd into the pgsq|
subdirectory, and issue

$ cvs -z3 update -d -P

This will fetch only the changes since the last time you updated. You can update in
just a couple of minutes, typically, even over a modem-speed line.

5. You can save yourself some typing by making a file . cvsr c in your home directory
that contains

cvs -z3
update -d -P

This supplies the - z3 option to all cvs commands, and the - d and - P options to cvs
update. Then you just have to say

$ cvs update

to update your files.

Caution

Some older versions of CVS have a bug that causes all checked-out files to be
stored world-writable in your directory. If you see that this has happened, you
can do something like

$ chnod - R go-w pgsql

to set the permissions properly. This bug is fixed as of CVS version 1.9.28.

CVS can do a lot of other things, such as fetching prior revisions of the Postgres sources
rather than the latest development version. For more info consult the manual that comes
with CVS, or see the online documentation at http://www.cyclic.com/.

Getting The Source Via CVSup

An alternative to using anonymous CVS for retrieving the Postgres source tree is CVSup.
CVSup was developed by John Polstra (mailto:jdp@polstra.com) to distribute CVS
repositories and other file trees for the FreeBSD project (http://www.freebsd.org).

277

Appendix DG1. The CVS Repository

A major advantage to using CVSup is that it can reliably replicate the entire CVS
repository on your local system, allowing fast local access to cvs operations such as | og
and di f f . Other advantages include fast synchronization to the Postgres server due to an
efficient streaming transfer protocol which only sends the changes since the last update.

Preparing A CVSup Client System

Two directory areas are required for CVSup to do it’s job: a local CVS repository (or
simply a directory area if you are fetching a snapshot rather than a repository; see below)
and a local CVSup bookkeeping area. These can coexist in the same directory tree.

Decide where you want to keep your local copy of the CVS repository. On one of our
systems we recently set up a repository in / home/ cvs/ , but had formerly kept it under a
Postgres development tree in / opt / post gr es/ cvs/ . If you intend to keep your
repository in / home/ cvs/ , then put

set env CVSROOT / home/ cvs

in your . cshr c file, or a similar line in your . bashrc or . profi | e file, depending on
your shell.

The cvs repository area must be initialized. Once CVSROQOT is set, then this can be done
with a single command:

$ cvs init
after which you should see at least a directory named CVSROOT when listing the
CVSROOQOT directory:

$ |'s $CVSROOT
CVSROOT/

Running a CVSup Client
Verify that cvsup is in your path; on most systems you can do this by typing

whi ch cvsup

Then, simply run cvsup using:

$ cvsup -L 2 postgres. cvsup

where - L 2 enables some status messages so you can monitor the progress of the update,
and post gr es. cvsup is the path and name you have given to your CVSup
configuration file.

278

Appendix DG1. The CVS Repository

Here is a CVVSup configuration file modified for a specific installation, and which
maintains a full local CVS repository:

This file represents the standard CVSup distribution file

for the PostgreSQ ORDBMS proj ect

Modified by | ockhart @l umi.caltech. edu 1997-08-28

- Point to nmy local snapshot source tree

- Pull the full CVS repository, not just the | atest snapshot
#
#

Defaults that apply to all the collections
*def aul t host =postgresql.org
*defaul t conpress
*defaul t rel ease=cvs
*default delete use-rel-suffix
enable the following line to get the | atest snapshot
#*default tag=.
enable the following line to get whatever was specified above or
by defaul t
at the date specified bel ow
#*def aul t dat e=97. 08. 29. 00. 00. 00

base directory points to where CVSup will store its ’bookmarks’
file(s)

wll create subdirectory sup/

#*default base=/opt/postgres # /usr/local/pgsq

*defaul t base=/ hone/ cvs

prefix directory points to where CVSup will store the actua
di stribution(s)
*defaul t prefix=/hone/cvs

conpl ete distribution, including all bel ow

pgsq

individual distributions vs 'the whole thing’
pgsql - doc

pgsql -perl 5

pgsql -src

The following is a suggested CVSup config file from the Postgres ftp site
(ftp://ftp.postgresql.org/pub/CVSup/README.cvsup) which will fetch the current
snapshot only:

This file represents the standard CVSup distribution file
for the PostgreSQ. ORDBMS proj ect

#

Defaults that apply to all the collections

*def aul t host =postgresql.org

*defaul t conpress

*defaul t rel ease=cvs

*default delete use-rel-suffix

*default tag=

279

Appendix DG1. The CVS Repository

base directory points to where CVSup will store its 'bookmarks’
file(s)
*defaul t base=/usr/| ocal / pgsql

prefix directory points to where CVSup will store the actual
di stribution(s)
*default prefix=/usr/local/pgsql

conpl ete distribution, including all bel ow

pgsal

individual distributions vs 'the whole thing’
pgsql - doc

pgsql -perl 5

pgsql -src

Installing CVSup

CVSup is available as source, pre-built binaries, or Linux RPMs. It is far easier to use a
binary than to build from source, primarily because the very capable, but voluminous,
Modula-3 compiler is required for the build.

CVSup Installation from Binaries

You can use pre-built binaries if you have a platform for which binaries are posted on the
Postgres ftp site (ftp://postgresql.org/pub), or if you are running FreeBSD, for which
CVSup is available as a port.

Note: CVSup was originally developed as a tool for distributing the FreeBSD source
tree. It is available as a "port", and for those running FreeBSD, if this is not sufficient to
tell how to obtain and install it then please contribute a procedure here.

At the time of writing, binaries are available for Alpha/Tru64, ix86/xBSD,
HPPA/HPUX-10.20, MIPS/irix, ix86/linux-libcs, ix86/linux-glibc, Sparc/Solaris, and
Sparc/SunOS.

1. Retrieve the binary tar file for cvsup (cvsupd is not required to be a client) appropriate
for your platform.

a. Ifyou are running FreeBSD, install the CVSup port.

b. If you have another platform, check for and download the appropriate binary
from the Postgres ftp site (ftp://postgresqgl.org/pub).

2. Check the tar file to verify the contents and directory structure, if any. For the linux tar
file at least, the static binary and man page is included without any directory
packaging.

a. If the binary is in the top level of the tar file, then simply unpack the tar file
into your target directory:

$ cd /usr/local/bin
$ tar zxvf /usr/local/src/cvsup-16.0-1inux-i386.tar.gz
$ nv cvsup. 1l ../doc/man/ manl/

280

Appendix DG1. The CVS Repository

b. If there is a directory structure in the tar file, then unpack the tar file within
/usr/local/src and move the binaries into the appropriate location as above.

3. Ensure that the new binaries are in your path.

$ rehash

$ which cvsup

$ set path=(path to cvsup $path)
$ which cvsup

/usr/ 1 ocal /bin/cvsup

Installation from Sources

Installing CVSup from sources is not entirely trivial, primarily because most systems will
need to install a Modula-3 compiler first. This compiler is available as Linux RPM,
FreeBSD package, or source code.

Note: A clean-source installation of Modula-3 takes roughly 200MB of disk space,
which shrinks to roughly 50MB of space when the sources are removed.

Linux installation
1. Install Modula-3.

a. Pick up the Modula-3 distribution from Polytechnique Montréal
(http://m3.polymtl.ca/m3), who are actively maintaining the code base
originally developed by the DEC Systems Research Center
(http://www.research.digital.com/SRC/modula-3/html/home.html). The PM3
RPM distribution is roughly 30MB compressed. At the time of writing, the
1.1.10-1 release installed cleanly on RH-5.2, whereas the 1.1.11-1 release is
apparently built for another release (RH-6.0?) and does not run on RH-5.2.

Tip: This particular rpm packaging has many RPM files, so you will likely
want to place them into a separate directory.

b. Install the Modula-3 rpms:
rpm -Uvh pnB*.rpm

2. Unpack the cvsup distribution:

cd /usr/local/src
tar zxf cvsup-16.0.tar.gz

281

Appendix DG1. The CVS Repository

Build the cvsup distribution, suppressing the GUI interface feature to avoid requiring
X11 libraries:

make MBFLAGS="- DNOGUI "

and if you want to build a static binary to move to systems which may not have
Modula-3 installed, try:

make MBFLAGS="-DNOGUl - DSTATIC'

Install the built binary:
make MBFLAGS="-DNOGUI -DSTATIC' install

282

Appendix DG2. Documentation

The purpose of documentation is to make Postgres easier to learn, use, and extend.. Th

e

documentation set should describe the Postgres system, language, and interfaces. It should
be able to answer common questions and to allow a user to find those answers on his own

without resorting to mailing list support.

Documentation Roadmap

Postgres has four primary documentation formats:
Plain text for pre-installation information.
HTML, for on-line browsing and reference.
Hardcopy (Postscript or PDF), for in-depth reading and reference.

man pages, for quick reference.

Table DG2-1. Postgres Documentation Products

File Description

JCOPYRIGHT Copyright notice

JINSTALL Installation instructions (text from sgml->rtf->text)
J/README Introductory info

Jregister.txt

Registration message during make

.Jdoc/bug.template

Bug report template

Jdoc/postgres.tar.gz

Integrated docs (HTML)

./doc/programmer.ps.gz

Programmer’s Guide (Postscript)

Jdoc/programmer.tar.gz

Programmer’s Guide (HTML)

Jdoc/reference.ps.gz

Reference Manual (Postscript)

Jdoc/reference.tar.gz

Reference Manual (HTML)

Jdocftutorial.ps.gz

Introduction (Postscript)

Jdoc/tutorial.tar.gz

Introduction (HTML)

Jdoc/user.ps.gz

User’s Guide (Postscript)

Jdocluser.tar.gz

User’s Guide (HTML)

There are man pages available, as well as a large number of plain-text README-type
files throughout the Postgres source tree.

283

Appendix DG2. Documentation

The Documentation Project

Packaged documentation is available in both HTML and Postscript formats. These are
available as part of the standard Postgres installation. We discuss here working with the
documentation sources and generating documentation packages.

The documentation sources are written using SGML markup of plain text files. The
purpose of DocBook SGML is to allow an author to specify the structure and content of a
technical document (using the DocBook DTD), and to have a document style define how
that content is rendered into a final form (e.g. using Norm Walsh’s Modular Style Sheets).

See Introduction to DocBook
(http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html) for a nice "quickstart"
summary of DocBook features. DocBook Elements
(http://www.ora.com/homepages/dtdparse/docbook/3.0/) provides a powerful
cross-reference for features of DocBook.

This documentation set is constructed using several tools, including James Clark’s jade
(http://www.jclark.com/jade/) and Norm Walsh’s Modular DocBook Stylesheets
(http://www.nwalsh.com/docbook/dsssl/).

Currently, hardcopy is produced by importing Rich Text Format (RTF) output from jade
into ApplixWare for minor formatting fixups, then exporting as a Postscript file.

TeX (http://sunsite.unc.edu/pub/packages/TeX/systems/unix/) is a supported format for
jade output, but is not used at this time for several reasons, including the inability to make
minor format fixes before committing to hardcopy and generally inadequate table support
in the TeX stylesheets.

Documentation Sources

Documentation sources include plain text files, man pages, and html. However, most new
Postgres documentation will be written using the Standard Generalized Markup Language
(SGML) DocBook (http://www.ora.com/davenport/) Document Type Definition (DTD).
Much of the existing documentation has been or will be converted to SGML.

The purpose of SGML is to allow an author to specify the structure and content of a
document (e.g. using the DocBook DTD), and to have the document style define how that
content is rendered into a final form (e.g. using Norm Walsh’s stylesheets).

Documentation has accumulated from several sources. As we integrate and assimilate
existing documentation into a coherent documentation set, the older versions will become
obsolete and will be removed from the distribution. However, this will not happen
immediately, and will not happen to all documents at the same time. To ease the transition,
and to help guide developers and writers, we have defined a transition roadmap.

Document Structure

There are currently five separate documents written in DocBook. Each document has a
container source document which defines the DocBook environment and other document
source files. These primary source files are located in doc/ src/ sgmi /, along with many
of the other source files used for the documentation. The primary source files are:

284

Appendix DG2. Documentation

postgres.sgml

This is the integrated document, including all other documents as parts. Output is
generated in HTML since the browser interface makes it easy to move around all of
the documentation by just clicking. The other documents are available in both HTML
and hardcopy.

tutorial.sgml

The introductory tutorial, with examples. Does not include programming topics, and
is intended to help a reader unfamiliar with SQL. This is the "getting started"
document.

user.sgml
The User’s Guide. Includes information on data types and user-level interfaces. This
is the place to put information on "why".

reference.sgml
The Reference Manual. Includes Postgres SQL syntax. This is the place to put
information on "how".

programming.sgml
The Programmer’s Guide. Includes information on Postgres extensibility and on the
programming interfaces.

admin.sgml

The Administrator’s Guide. Include installation and release notes.

Styles and Conventions

DocBook has a rich set of tags and constructs, and a suprisingly large percentage are
directly and obviously useful for well-formed documentation. The Postgres documentation
set has only recently been adapted to SGML, and in the near future several sections of the
set will be selected and maintained as prototypical examples of DocBook usage. Also, a
short summary of DocBook tags will be included below.

SGML Authoring Tools

The current Postgres documentation set was written using a plain text editor (or
emacs/psgml; see below) with the content marked up using SGML DocBook tags.

SGML and DocBook do not suffer from an oversupply of open-source authoring tools.
The most common toolset is the emacs/xemacs editing package with the psgml feature
extension. On some systems (e.g. RedHat Linux) these tools are provided in a typical full
installation.

emacs/psgmli

emacs (and xemacs) have an SGML major mode. When properly configured, this will
allow you to use emacs to insert tags and check markup consistancy.

285

Appendix DG2. Documentation

Put the following in your ~/ . emacs environment file (adjusting the path names to be
appropriate for your system):

krkkxxkxxx for SGWL node (psgm)

(setq sgm -catal og-files "/usr/lib/sgm/CATALOG")
(setq sgm -1l ocal -catal ogs "/usr/lib/sgm/CATALOG')

(autol oad 'sgm -node "psgm " "Major node to edit SGW files." t)

and add an entry in the same file for SGML into the (existing) definition for
auto-mode-alist:

(setq
aut o- node- al i st
"(("\\.sgm $" . sgm -node)
))

Each SGML source file has the following block at the end of the file:

l-- Keep this comment at the end of the file
Local vari abl es:

node: sgm

sgn -omttag:t

sgm -shorttag:t

sgm -m nini ze-attributes: nil

sgm - al ways-quote-attributes:t

sgm -i ndent-step: 1

sgnl -i ndent-data: t

sgnl - par ent - docunent : ni |

sgm -default-dtd-file:"./reference. ced"

sgm - exposed-t ags: ni |

sgm -l ocal -catal ogs: ("/usr/lib/sgm/catal og")
sgm -l ocal -ecat-files:nil

End:

The Postgres distribution includes a parsed DTD definitions file r ef er ence. ced. You
may find that

When using emacs/psgml, a comfortable way of working with these separate files of book
parts is to insert a proper DOCTYPE declaration while you’re editing them. If you are
working on this source, for instance, it’s an appendix chapter, so you would specify the
document as an "appendix" instance of a DocBook document by making the first line look
like this:

I'doct ype appendi x PUBLIC "-//Davenport//DTD DocBook V3.0//EN'

This means that anything and everything that reads SGML will get it right, and | can
verify the document with "nsgmls -s docguide.sgml”.

286

Appendix DG2. Documentation

Building Documentation

GNU make is used to build documentation from the DocBook sources. There are a few
environment definitions which may need to be set or modified for your installation. The
Makef i | e looks for doc/ . . / src/ Makefi | e and (implicitly) for

doc/ ../ src/ Makefil e. cust omto obtain environment information. On my system, the
src/ Makefi | e. cust omlooks like

Makefile.custom
Thomas Lockhart 1998-03-01

POSTGRESDI R= / opt / post gres/ current
CFLAGS+= - 186
YFLAGS+= -v

docunent ati on

HSTYLE= / home/ | ockhart/ SGW./ db143. d/ docbook/ ht m
PSTYLE= / hone/ | ockhart/ SGW./ db143. d/ docbook/ pri nt

where HSTYLE and PSTYLE determine the path to docbook. dsl for HTML and
hardcopy (print) stylesheets, respectively. These stylesheet file names are for Norm
Walsh’s Modular Style Sheets; if other stylesheets are used then one can define HDSL and
PDSL as the full path and file name for the stylesheet, as is done above for HSTYLE and
PSTYLE. On many systems, these stylesheets will be found in packages installed in
lusr/lib/sgm/,/usr/share/lib/sgm/,or/usr/local/lib/sgm/.

HTML documentation packages can be generated from the SGML source by typing

% cd doc/src

% make tutorial.tar.gz
% make user.tar.gz

% nmake admin.tar.gz

% make progranmer.tar.gz
% make postgres.tar.gz
% make install

These packages can be installed from the main documentation directory by typing

% cd doc
% make install

Manpages

We use the dochook2man utility to convert DocBook REFENTRY pages to *roff output
suitable for man pages. At the time of writing, the utility required patching to successfully

287

Appendix DG2. Documentation

run on the Postgres markup, and we added a small amount of new functionality to allow
setting the man page section in the output file name.

docbook2man is written in perl, and requires the CPAN package SGVLSpmto run. Also, it
requires nsgmls to be available, which is included in the jade distribution. After installing
these packages, then simply run

$ cd doc/src
$ make man

which will result in a tar file being generated in the doc/ sr ¢ directory.

docbook2man I nstallation Procedure

1. Install the dochook2man package, available at
http://shell.ipoline.com/~elmert/comp/docbook2X/

2. Install the SGMLSpm perl module, available from CPAN mirrors.

3. Install nsgmls if not already available from your jade installation.

Hardcopy Generation for v7.0

The hardcopy Postscript documentation is generated by converting the SGML source code
to RTF, then importing into ApplixWare-4.4.1. After a little cleanup (see the following
section) the output is "printed" to a postscript file.

Text Hardcopy

I NSTALL and HI STORY are updated for each release. For historical reasons, these files are
in plain text, but are derived from the newer SGML sources.
Plain Text Generation

Both | NSTALL and HI STORY are generated from existing SGML sources. They are
extracted from the same intermediate RTF file.

1. Generate RTF by typing:

% cd doc/ src/sgmnl
% nmake installation.rtf

2. Importinstallation.rtf into Applix Words.
3. Set the page width and margins.
a. Adjust the page width in File.PageSetup to 10 inches.

b. Select all text. Adjust the right margin using the ruler to 9.5 inches. This will
give a maximum column width of 79 characters, within the 80 columns upper
limit goal.

288

Appendix DG2. Documentation

Lop off the parts of the document which are not needed.

For I NSTALL, remove all release notes from the end of the text, except for those from
the current release. For HI STORY, remove all text up to the release notes, preserving
and modifying the title and ToC.

Export the resultas ASCII Layout .

Using emacs or vi, clean up the tabular information in | NSTALL. Remove the mailto
URLSs for the porting contributors to shrink the column heights.

Postscript Hardcopy

Several areas are addressed while generating Postscript hardcopy, including RTF repair,
ToC generation, and page break adjustments.

Applixware RTF Cleanup

jade, an integral part of the hardcopy procedure, omits specifying a default style for body
text. In the past, this undiagnosed problem led to a long process of Table of Contents (ToC)
generation. However, with great help from the ApplixWare folks the symptom was
diagnosed and a workaround is available.

1.

Generate the RTF input by typing (for example):

% cd doc/ src/ sgn
% make tutorial.rtf

Repair the RTF file to correctly specify all styles, in particular the default style. The
field can be added using vi or the following small sed procedure:

#!/ bi n/ sh
fixrtf.sh
for i in$* ; do

m/ $i $i.orig

cat $i.orig | sed 's#\ \styl esheetNornal; #\ \styl esheet {\\s0
Normal ;}# > $
done
exit

where the script is adding {\ sO Nor mal ;} as the zero-th style in the document.
According to ApplixWare, the RTF standard would prohibit adding an implicit zero-th
style, though M$Word happens to handle this case.

Open a new document in Applix Words and then import the RTF file.
Generate a new ToC using ApplixWare.

a. Select the existing ToC lines, from the beginning of the first character on the
first line to the last character of the last line.

b. Build a new ToC using Tool s. BookBui | di ng. Cr eat eToC. Select the first
three levels of headers for inclusion in the ToC. This will replace the existing
lines imported in the RTF with a native ApplixWare ToC.

289

Appendix DG2. Documentation

c. Adjust the ToC formatting by using For mat . St yl e, selecting each of the
three ToC styles, and adjusting the indents for Fi r st and Lef t . Use the

following values:

Table DG2-2. Indent Formatting for Table of Contents

Style First Indent (inches) Left Indent (inches)
TOC- Heading 1 0.6 0.6
TOC- Headi ng 2 1.0 1.0
TOC- Headi ng 3 1.4 1.4

Insert figures into the document. Center each figure on the page using the centering

Note: Not all documents have figures. You can grep the SGML source files for the
string graphic to identify those parts of the documentation which may have
figures. A few figures are replicated in various parts of the documentation.

Replace the right-justified page numbers in the Examples and Figures portions of the

If a bibliography is present, remove the short form reference title from each entry. The
DocBook stylesheets from Norm Walsh seem to print these out, even though this is a

Save the document as native Applix Words format to allow easier last minute editing

5. Work through the document to:
Adjust page breaks.
Adjust table column widths.
margins button on the ApplixWare toolbar.
6.
ToC with correct values. This only takes a few minutes per document.
7.
subset of the information immediately following.
8.
later.
9. Print the document to a file in Postscript format.
10. Compress the Postscript file using gzip. Place the compressed file into the doc
directory.
Toolsets

We have documented experience with three installation methods for the various tools that
are needed to process the documentation. One is installation from RPMs on Linux, the
second is installation from FreeBSD port, and the last is a general installation from original

distributions of the individual tools. These will be described below.

There may be some other packaged distributions for these tools. Please report package
status to the docs mailing list and we will include that information here.

290

Appendix DG2. Documentation

Linux RPM Installation

The simplest installation for a RedHat-compatible Linux system uses the RPM set
developed by Mark Galassi at Cygnus. It should also be possible to install from sources, as
described in a subsequent section.

Installing RPMs

1. Install RPMs (ftp://ftp.cygnus.com/pub/home/rosalia/) for Jade and related packages.

2. Install Norm Walsh’s latest style sheets. Depending on the age of the RPMs, the latest
style sheets may be substantially improved from those contained in the RPMs.

3. Update your src/ Makefi | e. cust omto include HSTYLE and PSTYLE definitions

pointing to the style sheets.

FreeBSD Installation

There is a full set of ports of the documentation tools available on FreeBSD. In fact,
postgresgl.org, on which documentation is automatically updated every evening, is a
FreeBSD machine.

Installing FreeBSD Ports

1.

To build the documentation on FreeBSD a number of ports will need to be installed.

% cd /usr/ports/devel / gnake && make install

% cd /usr/ports/textproc/docproj && make install

% cd /usr/ports/textproc/dochook &% make install

% cd /usr/ports/textproc/dsssl-docbook-nodul ar &% make install

Set environment variables to access the jade toolset.

Note: This was not required for the FreeBSD machine at postgresgl.org, so you may
not have to do this.

export SMAEL_ROOT=/usr/| ocal / share/ sgm

SGML_CATALOG FI LES=/usr /| ocal / share/ sgm /j ade/ cat al og
SGML._CATALOG FI LES=/usr /| ocal / share/ sgm / ht ml / cat al og: $SGWV._CAT-
ALOG FI LES

SGMWML_CATALOG FI LES=/usr /| ocal / share/ sgm /i s0o8879/ cat al og: $SGV__-
CATALOG FI LES

SGWL_CATALOG FI LES=/usr/ 1 ocal / share/ sgm / transpec/ cat al og: $SGVL-
_CATALOG FI LES

SGWL_CATALCG FI LES=/ usr/ 1 ocal / shar e/ sgm / docbook/ cat al og: $SGV_-
CATALOG FI LES

export SGWL_CATALOG FI LES

(this is sh/bash syntax; adjust accordingly for csh/tcsh).

291

Appendix DG2. Documentation

Make needs some special arguments, or these need to be added to your
Makefile.custom:

HSTYLE=/ usr/| ocal / shar e/ sgm / docbook/ dsssl / nodul ar/ htm /
PSTYLE=/ usr/ | ocal / shar e/ sgm / docbook/ dsssl / nodul ar/ print/

Of course you’ll need to use gmake rather than just plain "make’ to build.

Debian Installation

There is a full set of packages of the documentation tools available for Debian.

Installing Debian Packages

1.

3.

Install jade, dochook, and unzip:

apt-get install jade
apt-get install docbook
apt-get install docbook-styl esheets

Install the latest style sheets.
a. Verify that unzip is installed, or install the package:

apt-get install unzip

b. Grab the latest stylesheet zipballs from
http://www.nwalsh.com/docbook/dsssl and unzip it somewhere (possibly
Jusr/share).

Edit src/Makefile.custom to add appropriate HSTYLE and PSTYLE definitions:

HSTYLE= / usr/ shar e/ docbook/ ht m
PSTYLE= / usr/ shar e/ docbook/ pri nt

Manual Installation of Tools

This is a brief run-through of the process of obtaining and installing the software you’ll
need to edit DocBook source with Emacs and process it with Norman Walsh’s DSSSL
style sheets to create HTML and RTF.

The easiest way to obtain the SGML and DocBook tools may be to get sgmltools from
sgmltools (http://www.sgmltools.org/). sgmltools requires the GNU version of m4. To
confirm that you have the correct version of m4 available, try

gnumd --version

install, you will have sgmltools, jade, and Norm Walsh’s DocBook style sheets. The
instructions below are for installing these tools separately.

If you install GNU m4, install it with the name gnum4 and sgmltools will find it. After the

292

Appendix DG2. Documentation

Prerequisites

What you need:

A working installation of GCC 2.7.2
A working installation of Emacs 19.19 or later

An unzip program for Unix to unpack things

What you must fetch:

James Clark’s Jade (ftp:/ftp.jclark.com/pub/jade/) (version 1.1 in file j adel_1. zi p
was current at the time of writing)

DocBook version 3.0 (http://www.ora.com/davenport/dochook/current/docbk30.zip)

Norman Walsh’s Modular Stylesheets (http://nwalsh.com/docbook/dsssl/) (version 1.19
was originally used to produce these documents)

Lennart Staflin’s PSGML (ftp://ftp.lysator.liu.se/pub/sgml/) (version 1.0.1 in
psgni - 1. 0. 1. t ar. gz was available at the time of writing)

Important URLSs:

The Jade web page (http://www.jclark.com/jade/)

The DocBook web page (http://www.ora.com/davenport/)

The Modular Stylesheets web page (http://nwalsh.com/docbook/dsssl/)

The PSGML web page (http://www.lysator.liu.se/projects/about_psgml.html)

Steve Pepper’s Whirlwind Guide (http://www.infotek.no/sgmltool/guide.htm)

Robin Cover’s database of SGML software (http://www.sil.org/sgml/publicSW.html)

Installing Jade

Installing Jade

1. Read the installation instructions at the above listed URL.

2. Unzip the distribution kit in a suitable place. The command to do this will be
something like
unzip -aU jadel 1.zip

3. Jade is not built using GNU autoconf, so you’ll need to edit a Makef i | e yourself.

Since James Clark has been good enough to prepare his kit for it, it is a good idea to
make a build directory (hamed for your machine architecture, perhaps) under the main
directory of the Jade distribution, copy the file Makef i | e from the main directory into
it, edit it there, and then run make there.

However, the Makef i | e does need to be edited. There is a file called
Makef i | e. j ade in the main directory, which is intended to be used with make -f
Makefile.jade when building Jade (as opposed to just SP, the SGML parser kit that

293

4.
5.

Appendix DG2. Documentation

Jade is built upon). We suggest that you don’t do that, though, since there is more that
you need to change than what is in Makef i | e. j ade, so you’d have to edit one of
them anyway.

Go through the Makef i | e, reading James’ instructions and editing as needed. There
are various variables that need to be set. Here is a collected summary of the most
important ones, with typical values:

prefix = /usr/local

XDEFI NES =

- DSGWL_CATALOG FI LES DEFAULT=\"/usr/| ocal / share/ sgm / cat al og\"
XLIBS = -Im

RANLIB = ranlib

srcdir = ..

XLI BDI RS = grove spgrove style

XPROGDI RS = j ade

Note the specification of where to find the default catalog of SGML support files --
you may want to change that to something more suitable for your own installation. If
your system doesn’t need the above settings for the math library and the ranlib
command, leave them as they are in the Makefi | e.

Type make to build Jade and the various SP tools.

Once the software is built, make install will do the obvious.

Installing the DocBook DTD Kit

Installing the DocBook DTD Kit

1.

You’ll want to place the files that make up the DocBook DTD kit in the directory you
built Jade to expect them in, which, if you followed our suggestion above, is
/usr/1ocal /share/sgm /. Inaddition to the actual DocBook files, you’ll need to
have a cat al og file in place, for the mapping of document type specifications and
external entity references to actual files in that directory. You’ll also want the 1SO
character set mappings, and probably one or more versions of HTML.

One way to install the various DTD and support files and set up the cat al og file, is
to collect them all into the above mentioned directory, use a single file named
CATALOG o describe them all, and then create the file cat al og as a catalog pointer to
the former, by giving it the single line of content:

CATALQOG / usr/ | ocal / share/ sgm / CATALOG

The CATALOGfile should then contain three types of lines. The first is the (optional)
SGML declaration, thus:

SGWL.DECL dochook. dcl

Next, the various references to DTD and entity files must be resolved. For the
DocBook files, these lines look like this:

PUBLI C "-// Davenport// DTD DocBook V3.0//EN' docbook. dtd
PUBLI C "-//USA-DODY / DTD Tabl e Mbdel 951010//EN' cal s-tbl.dtd
PUBLI C "-// Davenport//ELEMENTS DocBook | nfornmati on Pool

V3. 0//EN" dbpool . nod

294

Appendix DG2. Documentation

PUBLI C "-// Davenport// ELEMENTS DocBook Docunent Hi erarchy
V3. 0//EN' dbhier. nod

PUBLI C "-// Davenport//ENTI TI ES DocBook Additional GCeneral
Entities V3.0//EN' dbgenent. nod

Of course, a file containing these comes with the DocBook kit. Note that the last item
on each of these lines is a file name, given here without a path. You can put the files in
subdirectories of your main SGML directory if you like, of course, and modify the
reference in the CATALOGfile. DocBook also references the ISO character set entities,
so you need to fetch and install these (they are available from several sources, and are
easily found by way of the URLSs listed above), along with catalog entries for all of
them, such as:

PUBLI C "1 SO 8879-1986//ENTI TI ES Added Latin 1//EN' 1SO|SO at 1

Note how the file name here contains a directory name, showing that we’ve placed the
ISO entity files in a subdirectory named | SO. Again, proper catalog entries should
accompany the entity kit you fetch.

Installing Norman Walsh’s DSSSL Style Sheets

Installing Norman Walsh’s DSSSL Style Sheets

1.
2.

Read the installation instructions at the above listed URL.

To install Norman’s style sheets, simply unzip the distribution kit in a suitable place.
A good place to dot this would be / usr /| ocal / shar e, which places the kit in a
directory tree under / usr/ | ocal / shar e/ docbook. The command will be something
like

unzip -aU db119.zip

One way to test the installation is to build the HTML and RTF forms of the
PostgreSQL User’s Guide.

a. To build the HTML files, go to the SGML source directory, doc/ src/ sgnl ,
and say

jade -t sgm -d /usr/local/share/docbook/htm /docbook. dsl
-D ../ graphics postgres. sgni

book1. ht mis the top level node of the output..

b. To generate the RTF output, ready for importing into your favorite word
processing system and printing, type:

jade -t rtf -d /usr/local/share/docbook/print/docbook. dsl
-D ../graphics postgres.sgm

295

Appendix DG2. Documentation

Installing PSGML

Installing PSGM L
1. Read the installation instructions at the above listed URL.

2. Unpack the distribution file, run configure, make and make install to put the
byte-compiled files and info library in place.

3. Then add the following lines to your
/usr/local/share/emacs/site-lisp/site-start.el fileto make Emacs
properly load PSGML when needed:

(setq | oad-path
(cons "/usr/local/share/emacs/site-1isp/psgm" |oad-path))
(autol oad 'sgm -node "psgm " "Major node to edit SGWL files." t)

4. If you want to use PSGML when editing HTML too, also add this:

(setqg auto-node-ali st
(cons ' ("\\.s?htm 2\\"" . sgnl -nbde) auto-nobde-alist))

5. There is one important thing to note with PSGML.: its author assumed that your main
SGML DTD directory would be / usr/ | ocal /I i b/ sgn . If, as in the examples in
this chapter, you use / usr/ | ocal / shar e/ sgm , you have to compensate for this.

a. You can set the SGVL_CATALOG_FI LES environment variable.
b. You can customize your PSGML installation (its manual tells you how).

c. You can even edit the source file psgm . el before compiling and installing
PSGML, changing the hard-coded paths to match your own default.

Installing JadeTeX

If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade.
Note that this is still quite unpolished software, and will generate printed output that is
inferior to what you get from the RTF backend. Still, it works all right, especially for
simpler documents that don’t use tables, and as both JadeTeX and the style sheets are
under continuous improvement, it will certainly get better over time.

To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e,
including the supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX,
the PSNFSS extension and companion kit of “the 35 fonts", the dvips program for
generating PostScript, the macro packages fancyhdr, hyperref, minitoc, url and ot2enc, and
of course JadeTeX itself. All of these can be found on your friendly neighborhood CTAN
site.

JadeTeX does not at the time of writing come with much of an installation guide, but there
is a makef i | e which shows what is needed. It also includes a directory cooked, wherein
you’ll find some of the macro packages it needs, but not all, and not complete -- at least
last we looked.

296

Appendix DG2. Documentation

Before building the j adet ex. f mt format file, you’ll probably want to edit the
j adet ex. | t x file, to change the configuration of Babel to suit your locality. The line to

change looks something like

\ Requi rePackage[ger man, french, engl i sh] { babel }[1997/ 01/ 23]

and you should obviously list only the languages you actually need, and have configured
Babel for.

With JadeTeX working, you should be able to generate and format TeX output for the
PostgreSQL manuals by giving the commands (as above, in the doc/ src/ sgnm directory)

jade -t tex -d /usr/local/share/docbook/print/docbook.dsl -D
../ graphics postgres.sgn

j adet ex postgres.tex

j adet ex postgres.tex

dvi ps postgres. dvi

Of course, when you do this, TeX will stop during the second run, and tell you that its
capacity has been exceeded. This is, as far as we can tell, because of the way JadeTeX
generates cross referencing information. TeX can, of course, be compiled with larger data
structure sizes. The details of this will vary according to your installation.

Alternate Toolsets

sgml-tools v2.x supports jade and DocBook.

297

Bibliography

Selected references and readings for SQL and Postgres.

Some white papers and technical reports from the original Postgres development team are
available at the University of California Computer Science Department web site
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/).

SQL Reference Books

The Practical SQL Handbook , Using Structured Query Language, 3, Judith Bowman,
Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley,
1996.

A Guide to the SQL Sandard , A user’s guide to the standard database language SQL ,
C. J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

An Introduction to Database Systems, 6, C. J. Date, 1994, Addison-Wesley, 1994.

Under standing the New SQL , A complete guide, Jim Melton and Alan R. Simon,
1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract
Accessible reference for SQL features.

Principles of Database and Knowledge : Base Systems, Jeffrey D. Ullman, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation

The PostgreSQL Administrator’s Guide, Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Developer’s Guide, Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Programmer’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Tutorial Introduction , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL User’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

Enhancement of the ANS SQL Implementation of PostgreSQL , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University
of Technology.

The Postgres95 User Manual , A. Yu and J. Chen, The POSTGRES Group , Sept. 5, 1995,
University of California, Berkeley CA.

298

Bibliography

Proceedings and Articles

Partial indexing in POSTGRES: research project , Nels Olson, 1993, UCB Engin
T7.49.1993 0676, University of California, Berkeley CA.

A Unified Framework for Version Modeling Using Production Rulesin a Database System
, L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33, University
of California, Berkeley CA.

The Postgres Data Model , Rowe and Stonebraker, 1987 , Sept. 1987, VLDB Conference,
Brighton, England, 1987.

Generalized partial indexes
(http://simon.cs.cor nell.edu/home/praveen/paper §/partindex.ded5.ps.Z) , P. Seshadri
and A. Swami, March 1995, Eleventh International Conference on Data Engineering,
1995, Cat. N0.95CH35724, IEEE Computer Society Press.

The Design of Postgres, M. Stonebraker and L. Rowe, May 1986, Conference on
Management of Data, Washington DC, ACM-SIGMOD, 1986.

The Design of the Postgres Rules System, M. Stonebraker, E. Hanson, and C. H. Hong,
Feb. 1987, Conference on Data Engineering, Los Angeles, CA, IEEE, 1987.

The Postgres Sorage System, M. Stonebraker, Sept. 1987, VLDB Conference, Brighton,
England, 1987.

A Commentary on the Postgres Rules System, M. Stonebraker, M. Hearst, and S.
Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley. EDU: 8000/postgres/paper /ERL-M89-17.pdf) , M.
Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

The Implementation of Postgres, M. Stonebraker, L. A. Rowe, and M. Hirohama, March
1990, Transactions on Knowledge and Data Engineering 2(1), IEEE.

On Rules, Procedures, Caching and Viewsin Database Systems, M. Stonebraker and et
al, June 1990, Conference on Management of Data, ACM-SIGMOD.

299

