
PostgreSQL Tutorial

The PostgreSQL Development Team

Edited by

Thomas Lockhart

PostgreSQL Tutorial
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL

 is Copyright © 1996-2000 by the PostgreSQL Inc.

i

Table of Contents
Table of Contents . i
List of Figures. iii
List of Examples . iv
Summary. i
Chapter 1. Introduction . 1

What is Postgres? . 1
A Short History of Postgres . 1

The Berkeley Postgres Project. 2
Postgres95 . 2
PostgreSQL . 3

About This Release . 3
Resources . 4
Terminology . 5
Notation. 5
Problem Reporting Guidelines . 6

Identifying Bugs . 6
What to report . 7
Where to report bugs . 8

Y2K Statement . 9
Copyrights and Trademarks . 9

Chapter 2. SQL . 11
The Relational Data Model . 12
Relational Data Model Formalities . 12

Domains vs. Data Types . 13
Operations in the Relational Data Model . 13

Relational Algebra. 14
Relational Calculus . 16
Tuple Relational Calculus . 16
Relational Algebra vs. Relational Calculus. 17

The SQL Language . 17
Select . 17
Data Definition . 24
Data Manipulation. 27
System Catalogs . 28
Embedded SQL . 29

Chapter 3. Architecture. 30
Postgres Architectural Concepts . 30

Chapter 4. Getting Started. 31
Setting Up Your Environment. 31
Starting the Interactive Monitor (psql) . 32
Managing a Database . 32

Creating a Database. 33
Accessing a Database . 33
Destroying a Database. 34

Chapter 5. The Query Language . 36
Interactive Monitor . 36
Concepts . 36
Creating a New Class . 37
Populating a Class with Instances . 37
Querying a Class . 37
Redirecting SELECT Queries . 39
Joins Between Classes. 39
Updates . 40
Deletions . 40
Using Aggregate Functions. 40

ii

Chapter 6. Advanced Postgres SQL Features . 43
Inheritance. 43
Non-Atomic Values . 44

Arrays . 44
More Advanced Features . 46

Bibliography . 47
SQL Reference Books. 47
PostgreSQL-Specific Documentation . 47
Proceedings and Articles. 48

iii

List of Figures
3-1. How a connection is established .. 30

iv

List of Examples
2-1. The Suppliers and Parts Database .. 12
2-3. A Query Using Relational Algebra .. 14
2-4. Simple Query with Qualification ... 16
2-5. Aggregates ... 20
2-6. Aggregates and GROUP BY.. 20
2-7. Having.. 22
2-8. Subselect .. 22
2-9. Union, Intersect, Except... 23
2-10. Table Creation.. 24
2-11. Create Index ... 25

i

Summary
 Postgres, developed originally in the UC Berkeley Computer Science Department,
pioneered many of the object-relational concepts now becoming available in some
commercial databases. It provides SQL92/SQL3 language support, transaction integrity,
and type extensibility. PostgreSQL is an open-source descendant of this original Berkeley
code.

1

Chapter 1. Introduction
 This document is the user manual for the PostgreSQL (http://postgresql.org/) database
management system, originally developed at the University of California at Berkeley.
PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led
by Professor Michael Stonebraker, was sponsored by the Defense Advanced Research
Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

What is Postgres?
 Traditional relational database management systems (DBMSs) support a data model
consisting of a collection of named relations, containing attributes of a specific type. In
current commercial systems, possible types include floating point numbers, integers,
character strings, money, and dates. It is commonly recognized that this model is
inadequate for future data processing applications. The relational model successfully
replaced previous models in part because of its "Spartan simplicity". However, as
mentioned, this simplicity often makes the implementation of certain applications very
difficult. Postgres offers substantial additional power by incorporating the following four
additional basic concepts in such a way that users can easily extend the system:

classes
inheritance
types
functions

 Other features provide additional power and flexibility:

constraints
triggers
rules
transaction integrity

 These features put Postgres into the category of databases referred to as object-relational.
Note that this is distinct from those referred to as object-oriented, which in general are not
as well suited to supporting the traditional relational database languages. So, although
Postgres has some object-oriented features, it is firmly in the relational database world. In
fact, some commercial databases have recently incorporated features pioneered by
Postgres.

A Short History of Postgres
 The Object-Relational Database Management System now known as PostgreSQL (and
briefly called Postgres95) is derived from the Postgres package written at Berkeley. With
over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multi-version concurrency control, supporting
almost all SQL constructs (including subselects, transactions, and user-defined types and

Chapter 1. Introduction

2

functions), and having a wide range of language bindings available (including C, C++,
Java, perl, tcl, and python).

The Berkeley Postgres Project

 Implementation of the Postgres DBMS began in 1986. The initial concepts for the system
were presented in The Design of Postgres and the definition of the initial data model
appeared in The Postgres Data Model. The design of the rule system at that time was
described in The Design of the Postgres Rules System. The rationale and architecture of the
storage manager were detailed in The Postgres Storage System.

 Postgres has undergone several major releases since then. The first "demoware" system
became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We
released Version 1, described in The Implementation of Postgres, to a few external users in
June 1989. In response to a critique of the first rule system (A Commentary on the Postgres
Rules System), the rule system was redesigned (On Rules, Procedures, Caching and Views
in Database Systems) and Version 2 was released in June 1990 with the new rule system.
Version 3 appeared in 1991 and added support for multiple storage managers, an improved
query executor, and a rewritten rewrite rule system. For the most part, releases until
Postgres95 (see below) focused on portability and reliability.

 Postgres has been used to implement many different research and production applications.
These include: a financial data analysis system, a jet engine performance monitoring
package, an asteroid tracking database, a medical information database, and several
geographic information systems. Postgres has also been used as an educational tool at
several universities. Finally, Illustra Information Technologies (http://www.illustra.com/)
(since merged into Informix (http://www.informix.com/)) picked up the code and
commercialized it. Postgres became the primary data manager for the Sequoia 2000
(http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in
late 1992.

 The size of the external user community nearly doubled during 1993. It became
increasingly obvious that maintenance of the prototype code and support was taking up
large amounts of time that should have been devoted to database research. In an effort to
reduce this support burden, the project officially ended with Version 4.2.

Postgres95

 In 1994, Andrew Yu (mailto:ayu@informix.com) and Jolly Chen
(http://http.cs.berkeley.edu/~jolly/) added a SQL language interpreter to Postgres.
Postgres95 was subsequently released to the Web to find its own way in the world as an
open-source descendant of the original Postgres Berkeley code.

 Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal
changes improved performance and maintainability. Postgres95 v1.0.x ran about 30-50%
faster on the Wisconsin Benchmark compared to Postgres v4.2. Apart from bug fixes, these
were the major enhancements:

 The query language Postquel was replaced with SQL (implemented in the server).
Subqueries were not supported until PostgreSQL (see below), but they could be imitated
in Postgres95 with user-defined SQL functions. Aggregates were re-implemented.
Support for the GROUP BY query clause was also added. The libpq interface remained
available for C programs.

Chapter 1. Introduction

3

 In addition to the monitor program, a new program (psql) was provided for interactive
SQL queries using GNU readline.

 A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell,
pgtclsh, provided new Tcl commands to interface tcl programs with the Postgres95
backend.

 The large object interface was overhauled. The Inversion large objects were the only
mechanism for storing large objects. (The Inversion file system was removed.)

 The instance-level rule system was removed. Rules were still available as rewrite rules.

 A short tutorial introducing regular SQL features as well as those of Postgres95 was
distributed with the source code.

 GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be
compiled with an unpatched gcc (data alignment of doubles was fixed).

PostgreSQL

 By 1996, it became clear that the name �Postgres95� would not stand the test of time. We
chose a new name, PostgreSQL, to reflect the relationship between the original Postgres
and the more recent versions with SQL capability. At the same time, we set the version
numbering to start at 6.0, putting the numbers back into the sequence originally begun by
the Postgres Project.

 The emphasis during development of Postgres95 was on identifying and understanding
existing problems in the backend code. With PostgreSQL, the emphasis has shifted to
augmenting features and capabilities, although work continues in all areas.

 Major enhancements in PostgreSQL include:

 Table-level locking has been replaced with multi-version concurrency control, which
allows readers to continue reading consistent data during writer activity and enables hot
backups from pg_dump while the database stays available for queries.

 Important backend features, including subselects, defaults, constraints, and triggers,
have been implemented.

 Additional SQL92-compliant language features have been added, including primary
keys, quoted identifiers, literal string type coercion, type casting, and binary and
hexadecimal integer input.

 Built-in types have been improved, including new wide-range date/time types and
additional geometric type support.

 Overall backend code speed has been increased by approximately 20-40%, and backend
startup time has decreased 80% since v6.0 was released.

About This Release
 PostgreSQL is available without cost. This manual describes version 7.0 of PostgreSQL.

 We will use Postgres to mean the version distributed as PostgreSQL.

 Check the Administrator’s Guide for a list of currently supported machines. In general,
Postgres is portable to any Unix/Posix-compatible system with full libc library support.

Chapter 1. Introduction

4

Resources
 This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

User’s Guide

 General information for users, including available commands and data types.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and management information. List of supported machines.

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing
to the Postgres project; application development information should appear in the
Programmer’s Guide. Currently included in the Programmer’s Guide.

Reference Manual

 Detailed reference information on command syntax. Currently included in the User’s
Guide.

 In addition to this manual set, there are other resources to help you with Postgres
installation and use:

man pages

 The man pages have general information on command syntax.

FAQs

 The Frequently Asked Questions (FAQ) documents address both general issues and
some platform-specific issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The Postgres (postgresql.org) web site might have some information not appearing in
the distribution. There is a mhonarc catalog of mailing list traffic which is a rich
resource for many topics.

Mailing Lists

 The pgsql-general (mailto:pgsql-general@postgresql.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-general/)) mailing list is a good place
to have user questions answered. Other mailing lists are available; consult the Info
Central section of the PostgreSQL web site for details.

Chapter 1. Introduction

5

Yourself!

 Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up
and contribute it. If you add features to the code, contribute it.

 Even those without a lot of experience can provide corrections and minor changes in
the documentation, and that is a good way to start. The pgsql-docs
(mailto:pgsql-docs@postgresql.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-docs/)) mailing list is the place to get
going.

Terminology
 In the following documentation, site may be interpreted as the host machine on which
Postgres is installed. Since it is possible to install more than one set of Postgres databases
on a single host, this term more precisely denotes any particular set of installed Postgres
binaries and databases.

 The Postgres superuser is the user named postgres who owns the Postgres binaries and
database files. As the database superuser, all protection mechanisms may be bypassed and
any data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some
support programs which are generally not available to all users. Note that the Postgres
superuser is not the same as the Unix superuser (which will be referred to as root). The
superuser should have a non-zero user identifier (UID) for security reasons.

 The database administrator or DBA, is the person who is responsible for installing
Postgres with mechanisms to enforce a security policy for a site. The DBA can add new
users by the method described below and maintain a set of template databases for use by
createdb.

 The postmaster is the process that acts as a clearing-house for requests to the Postgres
system. Frontend applications connect to the postmaster, which keeps tracks of any system
errors and communication between the backend processes. The postmaster can take several
command-line arguments to tune its behavior. However, supplying arguments is necessary
only if you intend to run multiple sites or a non-default site.

 The Postgres backend (the actual executable program postgres) may be executed directly
from the user shell by the Postgres super-user (with the database name as an argument).
However, doing this bypasses the shared buffer pool and lock table associated with a
postmaster/site, therefore this is not recommended in a multiuser site.

Notation
 �...� or /usr/local/pgsql/ at the front of a file name is used to represent the path to the
Postgres superuser’s home directory.

 In a command synopsis, brackets (�[� and �]�) indicate an optional phrase or keyword.
Anything in braces (�{� and �}�) and containing vertical bars (�|�) indicates that you must choose
one.

 In examples, parentheses (�(� and �)�) are used to group boolean expressions. �|� is the boolean
operator OR.

Chapter 1. Introduction

6

 Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with �>�. Commands executed from the
Postgres superuser account will be preceeded with �%�, while commands executed from an
unprivileged user’s account will be preceeded with �$�. SQL commands will be preceeded
with �=>� or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v7.0) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to
the Documentation Mailing List (mailto:docs@postgresql.org).

Problem Reporting Guidelines
 When you encounter a problem in PostgreSQL we want to hear about it. Your bug reports
are an important part in making PostgreSQL more reliable because even the utmost care
cannot guarantee that every part of PostgreSQL will work on every platform under every
circumstance.

 The following suggestions are intended to assist you in forming bug reports that can be
handled in an effective fashion. No one is required to follow them but it tends to be to
everyone’s advantage.

 We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a
lot of users, chances are good that someone will look into it. It could also happen that we
tell you to update to a newer version to see if the bug happens there. Or we might decide
that the bug cannot be fixed before some major rewrite we might be planning is done. Or
perhaps it’s simply too hard and there are more important things on the agenda. If you need
help immediately, consider obtaining a commercial support contract.

Identifying Bugs

 Before you ask �Is this a bug?�, please read and re-read the documentation to verify that you
can really do whatever it is you are trying. If it is not clear from the documentation whether
you can do something or not, please report that too; it’s a bug in the documentation. If it
turns out that the program does something different from what the documentation says,
that’s a bug. That might include, but is not limited to, the following circumstances:

 A program terminates with a fatal signal or an operating system error message that
would point to a problem in the program (a counterexample might be a �disk full�
message, since that must be fixed outside of Postgres).

 A program produces the wrong output for any given input.

 A program refuses to accept valid input.

 A program accepts invalid input without a notice or error message.

 PostgreSQL fails to compile, build, or install according to the instructions on supported
platforms.

 Here �program� refers to any executable, not only the backend server.

 Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask
on one of the mailing lists for help in tuning your applications. Failing to comply to SQL is
not a bug unless compliance for the specific feature is explicitly claimed.

Chapter 1. Introduction

7

 Before you continue, check on the TODO list and in the FAQ to see if your bug is already
known. If you can’t decode the information on the TODO list, report your problem. The
least we can do is make the TODO list clearer.

What to report

 The most important thing to remember about bug reporting is to state all the facts and only
facts. Do not speculate what you think went wrong, what �it seemed to do�, or which part of
the program has a fault. If you are not familiar with the implementation you would
probably guess wrong and not help us a bit. And even if you are, educated explanations are
a great supplement to but no substitute for facts. If we are going to fix the bug we still have
to see it happen for ourselves first. Reporting the bare facts is relatively straightforward
(you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it doesn’t matter or the report would �ring a bell�
anyway.

 The following items should be contained in every bug report:

 The exact sequence of steps from program startup necessary to reproduce the problem.
This should be self-contained; it is not enough to send in a bare select statement without
the preceeding create table and insert statements, if the output should depend on the data
in the tables. We do not have the time to decode your database schema, and if we are
supposed to make up our own data we would probably miss the problem. The best
format for a test case for query-language related problems is a file that can be run
through the psql frontend that shows the problem. (Be sure to not have anything in your
~/.psqlrc startup file.) You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproduceable, we’ll find it either way.

 If your application uses some other client interface, such as PHP, then please try to
isolate the offending queries. We probably won’t set up a web server to reproduce your
problem. In any case remember to provide the exact input files, do not guess that the
problem happens for �large files� or �mid-size databases�, etc.

 The output you got. Please do not say that it �didn’t work� or �failed�. If there is an error
message, show it, even if you don’t understand it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of
your test case is a program crash or otherwise obvious it might not happen on our
platform. The easiest thing is to copy the output from the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not
contain all the information available. In that case, also look at the output of the
database server. If you do not keep your server output, this would be a good time to
start doing so.

 The output you expected is very important to state. If you just write �This command
gives me that output.� or �This is not what I expected.�, we might run it ourselves, scan the
output, and think it looks okay and is exactly what we expected. We shouldn’t have to
spend the time to decode the exact semantics behind your commands. Especially refrain
from merely saying that �This is not what SQL says/Oracle does.� Digging out the correct
behavior from SQL is not a fun undertaking, nor do we all know how all the other
relational databases out there behave. (If your problem is a program crash you can
obviously omit this item.)

 Any command line options and other startup options, including concerned environment
variables or configuration files that you changed from the default. Again, be exact. If

Chapter 1. Introduction

8

you are using a pre-packaged distribution that starts the database server at boot time, you
should try to find out how that is done.

 Anything you did at all differently from the installation instructions.

 The PostgreSQL version. You can run the command SELECT version(); to find out.
If this function does not exist, say so, then we know that your version is old enough. If
you can’t start up the server or a client, look into the README file in the source
directory or at the name of your distribution file or package name. If your version is
older than 6.5 we will almost certainly tell you to upgrade. There are tons of bugs in old
versions, that’s why we write new ones.

 If you run a pre-packaged version, such as RPMs, say so, including any subversion the
package may have. If you are talking about a CVS snapshot, mention that, including its
date and time.

 Platform information. This includes the kernel name and version, C library, processor,
memory information. In most cases it is sufficient to report the vendor and version, but
do not assume everyone knows what exactly �Debian� contains or that everyone runs on
Pentiums. If you have installation problems information about compilers, make, etc. is
also necessary.

 Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It’s better
to report everything the first time than us having to squeeze the facts out of you. On the
other hand, if your input files are huge, it is fair to ask first whether somebody is interested
in looking into it.

 Do not spend all your time to figure out which changes in the input make the problem go
away. This will probably not help solving it. If it turns out that the bug can’t be fixed right
away, you will still have time to find and share your work around. Also, once again, do not
waste your time guessing why the bug exists. We’ll find that out soon enough.

 When writing a bug report, please choose non-confusing terminology. The software
package as such is called �PostgreSQL�, sometimes �Postgres� for short. (Sometimes the
abbreviation �Pgsql� is used but don’t do that.) When you are specifically talking about the
backend server, mention that, don’t just say �Postgres crashes�. The interactive frontend is
called �psql� and is for all intends and purposes completely separate from the backend.

Where to report bugs

 In general, send bug reports to <pgsql-bugs@postgresql.org>. You are invited to find a
descriptive subject for your email message, perhaps parts of the error message.

 Do not send bug reports to any of the user mailing lists, such as pgsql-sql or pgsql-general.
These mailing lists are for answering user questions, their subscribers normally do not wish
to receive bug reports. More importantly, they are unlikely to fix them.

 Also, please do not send reports to <pgsql-hackers@postgresql.org>. This list is for
discussing the development of PostgreSQL, it would be nice if we could keep the bug
reports separate. We might choose take up a discussion about your bug report on it, if the
bug needs more review.

 If you have a problem with the documentation, send email to
<pgsql-docs@postgresql.org>. Refer to the document, chapter, and sections.

 If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Chapter 1. Introduction

9

Note: Due to the unfortunate amount of spam going around, all of the above email
addresses are closed mailing lists. That is, you need to be subscribed to them in order
to be allowed to post. If you simply want to send mail but do not want to receive list
traffic, you can subscribe to the special pgsql-loophole �list�, which allows you to post to
all PostgreSQL mailing lists without receiving any messages. Send email to
<pgsql-loophole-request@postgresql.org> to subscribe.

Y2K Statement
Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on
1998-10-22. Updated 2000-03-31.

 The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it’s behavior or performance.
However, at the time of writing:

 The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

 The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We
might have expected to hear about problems if they existed, given the installed base and
the active participation of users on the support mailing lists.

 To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://www.postgresql.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. �70-01-01� is
interpreted as �1970-01-01�, whereas �69-01-01� is interpreted as �2069-01-01�.

 Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl
Institute (http://language.perl.com/news/y2k.html) for further discussion of Y2K issues,
particularly as it relates to open source, no fee software.

Copyrights and Trademarks
 PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. and is distributed under the
terms of the Berkeley license.

 Postgres95 is Copyright © 1994-5 by the Regents of the University of California.
Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the
above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

 In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use
of this software and its documentation, even if the University of California has been
advised of the possibility of such damage.

 The University of California specifically disclaims any warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.

Chapter 1. Introduction

10

The software provided hereunder is on an "as-is" basis, and the University of California has
no obligations to provide maintainance, support, updates, enhancements, or modifications.

 All trademarks are the property of their respective owners.

11

Chapter 2. SQL
 This chapter introduces the mathematical concepts behind relational databases. It is not
required reading, so if you bog down or want to get straight to some simple examples feel
free to jump ahead to the next chapter and come back when you have more time and
patience. This stuff is supposed to be fun!

 This material originally appeared as a part of Stefan Simkovics’ Master’s Thesis
(Simkovics, 1998).

 SQL has become the most popular relational query language. The name �SQL� is an
abbreviation for Structured Query Language. In 1974 Donald Chamberlin and others
defined the language SEQUEL (Structured English Query Language) at IBM Research.
This language was first implemented in an IBM prototype called SEQUEL-XRM in
1974-75. In 1976-77 a revised version of SEQUEL called SEQUEL/2 was defined and the
name was changed to SQL subsequently.

 A new prototype called System R was developed by IBM in 1977. System R implemented
a large subset of SEQUEL/2 (now SQL) and a number of changes were made to SQL
during the project. System R was installed in a number of user sites, both internal IBM
sites and also some selected customer sites. Thanks to the success and acceptance of
System R at those user sites IBM started to develop commercial products that implemented
the SQL language based on the System R technology.

 Over the next years IBM and also a number of other vendors announced SQL products
such as SQL/DS (IBM), DB2 (IBM), ORACLE (Oracle Corp.), DG/SQL (Data General
Corp.), and SYBASE (Sybase Inc.).

 SQL is also an official standard now. In 1982 the American National Standards Institute
(ANSI) chartered its Database Committee X3H2 to develop a proposal for a standard
relational language. This proposal was ratified in 1986 and consisted essentially of the IBM
dialect of SQL. In 1987 this ANSI standard was also accepted as an international standard
by the International Organization for Standardization (ISO). This original standard version
of SQL is often referred to, informally, as "SQL/86". In 1989 the original standard was
extended and this new standard is often, again informally, referred to as "SQL/89". Also in
1989, a related standard called Database Language Embedded SQL (ESQL) was
developed.

 The ISO and ANSI committees have been working for many years on the definition of a
greatly expanded version of the original standard, referred to informally as SQL2 or
SQL/92. This version became a ratified standard - "International Standard ISO/IEC
9075:1992, Database Language SQL" - in late 1992. SQL/92 is the version normally meant
when people refer to "the SQL standard". A detailed description of SQL/92 is given in
Date and Darwen, 1997. At the time of writing this document a new standard informally
referred to as SQL3 is under development. It is planned to make SQL a Turing-complete
language, i.e. all computable queries (e.g. recursive queries) will be possible. This is a very
complex task and therefore the completion of the new standard can not be expected before
1999.

Chapter 2. SQL

12

The Relational Data Model
 As mentioned before, SQL is a relational language. That means it is based on the
relational data model first published by E.F. Codd in 1970. We will give a formal
description of the relational model later (in Relational Data Model Formalities) but first
we want to have a look at it from a more intuitive point of view.

 A relational database is a database that is perceived by its users as a collection of tables
(and nothing else but tables). A table consists of rows and columns where each row
represents a record and each column represents an attribute of the records contained in the
table. The Suppliers and Parts Database shows an example of a database consisting of
three tables:

 SUPPLIER is a table storing the number (SNO), the name (SNAME) and the city
(CITY) of a supplier.

 PART is a table storing the number (PNO) the name (PNAME) and the price (PRICE)
of a part.

 SELLS stores information about which part (PNO) is sold by which supplier (SNO). It
serves in a sense to connect the other two tables together.

Example 2-1. The Suppliers and Parts Database

 SUPPLIER SNO | SNAME | CITY SELLS SNO | PNO
 -----+---------+-------- -----+-----
 1 | Smith | London 1 | 1
 2 | Jones | Paris 1 | 2
 3 | Adams | Vienna 2 | 4
 4 | Blake | Rome 3 | 1
 3 | 3
 4 | 2
 PART PNO | PNAME | PRICE 4 | 3
 -----+---------+--------- 4 | 4
 1 | Screw | 10
 2 | Nut | 8
 3 | Bolt | 15
 4 | Cam | 25

 The tables PART and SUPPLIER may be regarded as entities and SELLS may be regarded
as a relationship between a particular part and a particular supplier.

 As we will see later, SQL operates on tables like the ones just defined but before that we
will study the theory of the relational model.

Relational Data Model Formalities
 The mathematical concept underlying the relational model is the set-theoretic relation
which is a subset of the Cartesian product of a list of domains. This set-theoretic relation
gives the model its name (do not confuse it with the relationship from the
Entity-Relationship model). Formally a domain is simply a set of values. For example the

Chapter 2. SQL

13

set of integers is a domain. Also the set of character strings of length 20 and the real
numbers are examples of domains.

 The Cartesian product of domains D
1, D2, ... Dk, written D1 × D2 × ... × Dk is the set of all

k-tuples v1, v2, ... vk, such that v1 ∈ D1, v1 ∈ D1, ... vk ∈ Dk.

 For example, when we have k=2, D1={0,1} and D2={a,b,c} then D1 × D2 is
{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}.

 A Relation is any subset of the Cartesian product of one or more domains: R ⊆ D1 × D2 ×
... × Dk.

 For example {(0,a),(0,b),(1,a)} is a relation; it is in fact a subset of D1 × D2
mentioned above.

 The members of a relation are called tuples. Each relation of some Cartesian product D1 ×
D2 × ... × Dk is said to have arity k and is therefore a set of k-tuples.

 A relation can be viewed as a table (as we already did, remember The Suppliers and Parts
Database where every tuple is represented by a row and every column corresponds to one
component of a tuple. Giving names (called attributes) to the columns leads to the
definition of a relation scheme.

 A relation scheme R is a finite set of attributes A1, A2, ... Ak. There is a domain Di, for each
attribute Ai, 1 <= i <= k, where the values of the attributes are taken from. We often write
a relation scheme as R(A1, A2, ... Ak).

Note: A relation scheme is just a kind of template whereas a relation is an instance of
a relation scheme. The relation consists of tuples (and can therefore be viewed as a
table); not so the relation scheme.

Domains vs. Data Types

 We often talked about domains in the last section. Recall that a domain is, formally, just a
set of values (e.g., the set of integers or the real numbers). In terms of database systems we
often talk of data types instead of domains. When we define a table we have to make a
decision about which attributes to include. Additionally we have to decide which kind of
data is going to be stored as attribute values. For example the values of SNAME from the
table SUPPLIER will be character strings, whereas SNO will store integers. We define this
by assigning a data type to each attribute. The type of SNAME will be VARCHAR(20) (this
is the SQL type for character strings of length <= 20), the type of SNO will be INTEGER.
With the assignment of a data type we also have selected a domain for an attribute. The
domain of SNAME is the set of all character strings of length <= 20, the domain of SNO is
the set of all integer numbers.

Operations in the Relational Data Model
 In the previous section (Relational Data Model Formalities) we defined the mathematical
notion of the relational model. Now we know how the data can be stored using a relational
data model but we do not know what to do with all these tables to retrieve something from
the database yet. For example somebody could ask for the names of all suppliers that sell
the part ’Screw’. Therefore two rather different kinds of notations for expressing operations
on relations have been defined:

Chapter 2. SQL

14

 The Relational Algebra which is an algebraic notation, where queries are expressed by
applying specialized operators to the relations.

 The Relational Calculus which is a logical notation, where queries are expressed by
formulating some logical restrictions that the tuples in the answer must satisfy.

Relational Algebra

 The Relational Algebra was introduced by E. F. Codd in 1972. It consists of a set of
operations on relations:

 SELECT (ó): extracts tuples from a relation that satisfy a given restriction. Let R be a
table that contains an attribute A. óA=a(R) = {t ∈ R ? t(A) = a} where t denotes a tuple of
R and t(A) denotes the value of attribute A of tuple t.

 PROJECT (ð): extracts specified attributes (columns) from a relation. Let R be a
relation that contains an attribute X. ðX(R) = {t(X) ? t ∈ R}, where t(X) denotes the value
of attribute X of tuple t.

 PRODUCT (×): builds the Cartesian product of two relations. Let R be a table with arity
k1 and let S be a table with arity k2. R × S is the set of all k1 + k2-tuples whose first k1
components form a tuple in R and whose last k2 components form a tuple in S.

 UNION (∪): builds the set-theoretic union of two tables. Given the tables R and S (both
must have the same arity), the union R ∪ S is the set of tuples that are in R or S or both.

 INTERSECT (∩): builds the set-theoretic intersection of two tables. Given the tables R
and S, R ∪ S is the set of tuples that are in R and in S. We again require that R and S have
the same arity.

 DIFFERENCE (− or ?): builds the set difference of two tables. Let R and S again be two
tables with the same arity. R - S is the set of tuples in R but not in S.

 JOIN (∏): connects two tables by their common attributes. Let R be a table with the
attributes A,B and C and let S be a table with the attributes C,D and E. There is one
attribute common to both relations, the attribute C. R ∏ S = ðR.A,R.B,R.C,S.D,S.E(óR.C=S.C(R ×
S)). What are we doing here? We first calculate the Cartesian product R × S. Then we
select those tuples whose values for the common attribute C are equal (óR.C = S.C). Now we
have a table that contains the attribute C two times and we correct this by projecting out
the duplicate column.

Example 2-2. An Inner Join

 Let’s have a look at the tables that are produced by evaluating the steps necessary for a
join. Let the following two tables be given:
 R A | B | C S C | D | E
 ---+---+--- ---+---+---
 1 | 2 | 3 3 | a | b
 4 | 5 | 6 6 | c | d
 7 | 8 | 9

Chapter 2. SQL

15

First we calculate the Cartesian product R × S and get:

 R x S A | B | R.C | S.C | D | E
 ---+---+-----+-----+---+---
 1 | 2 | 3 | 3 | a | b
 1 | 2 | 3 | 6 | c | d
 4 | 5 | 6 | 3 | a | b
 4 | 5 | 6 | 6 | c | d
 7 | 8 | 9 | 3 | a | b
 7 | 8 | 9 | 6 | c | d

 After the selection óR.C=S.C(R × S) we get:

 A | B | R.C | S.C | D | E
 ---+---+-----+-----+---+---
 1 | 2 | 3 | 3 | a | b
 4 | 5 | 6 | 6 | c | d

 To remove the duplicate column S.C we project it out by the following operation:
ðR.A,R.B,R.C,S.D,S.E(óR.C=S.C(R × S)) and get:

 A | B | C | D | E
 ---+---+---+---+---
 1 | 2 | 3 | a | b
 4 | 5 | 6 | c | d

 DIVIDE (÷): Let R be a table with the attributes A, B, C, and D and let S be a table with
the attributes C and D. Then we define the division as: R ÷ S = {t ? ∀ ts ∈ S ∃ tr ∈ R
such that tr(A,B)=t∧tr(C,D)=ts} where tr(x,y) denotes a tuple of table R that consists only
of the components x and y. Note that the tuple t only consists of the components A and
B of relation R.

 Given the following tables

 R A | B | C | D S C | D
 ---+---+---+--- ---+---
 a | b | c | d c | d
 a | b | e | f e | f
 b | c | e | f
 e | d | c | d
 e | d | e | f
 a | b | d | e

 R ÷ S is derived as

 A | B
 ---+---
 a | b
 e | d

Chapter 2. SQL

16

 For a more detailed description and definition of the relational algebra refer to [Ullman,
1988] or [Date, 1994].

Example 2-3. A Query Using Relational Algebra

 Recall that we formulated all those relational operators to be able to retrieve data from the
database. Let’s return to our example from the previous section (Operations in the
Relational Data Model) where someone wanted to know the names of all suppliers that sell
the part Screw. This question can be answered using relational algebra by the following
operation:
ðSUPPLIER.SNAME(óPART.PNAME=’Screw’(SUPPLIER ∏ SELLS ∏ PART))

 We call such an operation a query. If we evaluate the above query against the our example
tables (The Suppliers and Parts Database) we will obtain the following result:
 SNAME

 Smith
 Adams

Relational Calculus

 The relational calculus is based on the first order logic. There are two variants of the
relational calculus:

 The Domain Relational Calculus (DRC), where variables stand for components
(attributes) of the tuples.

 The Tuple Relational Calculus (TRC), where variables stand for tuples.

 We want to discuss the tuple relational calculus only because it is the one underlying the
most relational languages. For a detailed discussion on DRC (and also TRC) see Date,
1994 or Ullman, 1988.

Tuple Relational Calculus

 The queries used in TRC are of the following form: x(A) ? F(x) where x is a tuple variable
A is a set of attributes and F is a formula. The resulting relation consists of all tuples t(A)
that satisfy F(t).

 If we want to answer the question from example A Query Using Relational Algebra using
TRC we formulate the following query:

 {x(SNAME) ? x ∈ SUPPLIER ∧ \nonumber
 ∃ y ∈ SELLS ∃ z ∈ PART (y(SNO)=x(SNO) ∧ \nonumber
 z(PNO)=y(PNO) ∧ \nonumber
 z(PNAME)=’Screw’)} \nonumber

Chapter 2. SQL

17

 Evaluating the query against the tables from The Suppliers and Parts Database again leads
to the same result as in A Query Using Relational Algebra.

Relational Algebra vs. Relational Calculus

 The relational algebra and the relational calculus have the same expressive power; i.e. all
queries that can be formulated using relational algebra can also be formulated using the
relational calculus and vice versa. This was first proved by E. F. Codd in 1972. This proof
is based on an algorithm (�Codd’s reduction algorithm�) by which an arbitrary expression of
the relational calculus can be reduced to a semantically equivalent expression of relational
algebra. For a more detailed discussion on that refer to Date, 1994 and Ullman, 1988.

 It is sometimes said that languages based on the relational calculus are "higher level" or
"more declarative" than languages based on relational algebra because the algebra
(partially) specifies the order of operations while the calculus leaves it to a compiler or
interpreter to determine the most efficient order of evaluation.

The SQL Language
 As is the case with most modern relational languages, SQL is based on the tuple relational
calculus. As a result every query that can be formulated using the tuple relational calculus
(or equivalently, relational algebra) can also be formulated using SQL. There are, however,
capabilities beyond the scope of relational algebra or calculus. Here is a list of some
additional features provided by SQL that are not part of relational algebra or calculus:

 Commands for insertion, deletion or modification of data.

 Arithmetic capability: In SQL it is possible to involve arithmetic operations as well as
comparisons, e.g. A < B + 3. Note that + or other arithmetic operators appear neither in
relational algebra nor in relational calculus.

 Assignment and Print Commands: It is possible to print a relation constructed by a
query and to assign a computed relation to a relation name.

 Aggregate Functions: Operations such as average, sum, max, etc. can be applied to
columns of a relation to obtain a single quantity.

Select

 The most often used command in SQL is the SELECT statement, used to retrieve data.
The syntax is:

 SELECT [ALL|DISTINCT]
 { * | expr_1 [AS c_alias_1] [, ...
 [, expr_k [AS c_alias_k]]]}
 FROM table_name_1 [t_alias_1]
 [, ... [, table_name_n [t_alias_n]]]
 [WHERE condition]
 [GROUP BY name_of_attr_i
 [,... [, name_of_attr_j]] [HAVING condition]]
 [{UNION [ALL] | INTERSECT | EXCEPT} SELECT ...]
 [ORDER BY name_of_attr_i [ASC|DESC]
 [, ... [, name_of_attr_j [ASC|DESC]]]];

Chapter 2. SQL

18

 Now we will illustrate the complex syntax of the SELECT statement with various
examples. The tables used for the examples are defined in The Suppliers and Parts
Database.

Simple Selects

 Here are some simple examples using a SELECT statement:

Example 2-4. Simple Query with Qualification

 To retrieve all tuples from table PART where the attribute PRICE is greater than 10 we
formulate the following query:
 SELECT * FROM PART
 WHERE PRICE > 10;

 and get the table:
 PNO | PNAME | PRICE
 -----+---------+--------
 3 | Bolt | 15
 4 | Cam | 25

 Using "*" in the SELECT statement will deliver all attributes from the table. If we want to
retrieve only the attributes PNAME and PRICE from table PART we use the statement:
 SELECT PNAME, PRICE
 FROM PART
 WHERE PRICE > 10;

 In this case the result is:
 PNAME | PRICE
 --------+--------
 Bolt | 15
 Cam | 25

 Note that the SQL SELECT corresponds to the "projection" in relational algebra not to the
"selection" (see Relational Algebra for more details).

 The qualifications in the WHERE clause can also be logically connected using the
keywords OR, AND, and NOT:
 SELECT PNAME, PRICE
 FROM PART
 WHERE PNAME = ’Bolt’ AND
 (PRICE = 0 OR PRICE < 15);

 will lead to the result:
 PNAME | PRICE
 --------+--------
 Bolt | 15

Chapter 2. SQL

19

 Arithmetic operations may be used in the target list and in the WHERE clause. For
example if we want to know how much it would cost if we take two pieces of a part we
could use the following query:
 SELECT PNAME, PRICE * 2 AS DOUBLE
 FROM PART
 WHERE PRICE * 2 < 50;

 and we get:
 PNAME | DOUBLE
 --------+---------
 Screw | 20
 Nut | 16
 Bolt | 30

 Note that the word DOUBLE after the keyword AS is the new title of the second column.
This technique can be used for every element of the target list to assign a new title to the
resulting column. This new title is often referred to as alias. The alias cannot be used
throughout the rest of the query.

Joins

 The following example shows how joins are realized in SQL.

 To join the three tables SUPPLIER, PART and SELLS over their common attributes we
formulate the following statement:

 SELECT S.SNAME, P.PNAME
 FROM SUPPLIER S, PART P, SELLS SE
 WHERE S.SNO = SE.SNO AND
 P.PNO = SE.PNO;

 and get the following table as a result:

 SNAME | PNAME
 -------+-------
 Smith | Screw
 Smith | Nut
 Jones | Cam
 Adams | Screw
 Adams | Bolt
 Blake | Nut
 Blake | Bolt
 Blake | Cam

 In the FROM clause we introduced an alias name for every relation because there are
common named attributes (SNO and PNO) among the relations. Now we can distinguish
between the common named attributes by simply prefixing the attribute name with the alias
name followed by a dot. The join is calculated in the same way as shown in An Inner Join.
First the Cartesian product SUPPLIER × PART × SELLS is derived. Now only those
tuples satisfying the conditions given in the WHERE clause are selected (i.e. the common

Chapter 2. SQL

20

named attributes have to be equal). Finally we project out all columns but S.SNAME and
P.PNAME.

Aggregate Operators

 SQL provides aggregate operators (e.g. AVG, COUNT, SUM, MIN, MAX) that take the
name of an attribute as an argument. The value of the aggregate operator is calculated over
all values of the specified attribute (column) of the whole table. If groups are specified in
the query the calculation is done only over the values of a group (see next section).

Example 2-5. Aggregates

 If we want to know the average cost of all parts in table PART we use the following query:
 SELECT AVG(PRICE) AS AVG_PRICE
 FROM PART;

 The result is:
 AVG_PRICE

 14.5

 If we want to know how many parts are stored in table PART we use the statement:
 SELECT COUNT(PNO)
 FROM PART;

 and get:
 COUNT

 4

Aggregation by Groups

 SQL allows one to partition the tuples of a table into groups. Then the aggregate operators
described above can be applied to the groups (i.e. the value of the aggregate operator is no
longer calculated over all the values of the specified column but over all values of a group.
Thus the aggregate operator is evaluated individually for every group.)

 The partitioning of the tuples into groups is done by using the keywords GROUP BY
followed by a list of attributes that define the groups. If we have GROUP BY A1, ?, Ak we
partition the relation into groups, such that two tuples are in the same group if and only if
they agree on all the attributes A1, ?, Ak.

Example 2-6. Aggregates and GROUP BY

 If we want to know how many parts are sold by every supplier we formulate the query:
 SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
 FROM SUPPLIER S, SELLS SE
 WHERE S.SNO = SE.SNO
 GROUP BY S.SNO, S.SNAME;

Chapter 2. SQL

21

 and get:
 SNO | SNAME | COUNT
 -----+-------+-------
 1 | Smith | 2
 2 | Jones | 1
 3 | Adams | 2
 4 | Blake | 3

 Now let’s have a look of what is happening here. First the join of the tables SUPPLIER
and SELLS is derived:
 S.SNO | S.SNAME | SE.PNO
 -------+---------+--------
 1 | Smith | 1
 1 | Smith | 2
 2 | Jones | 4
 3 | Adams | 1
 3 | Adams | 3
 4 | Blake | 2
 4 | Blake | 3
 4 | Blake | 4

 Next we partition the tuples into groups by putting all tuples together that agree on both
attributes S.SNO and S.SNAME:
 S.SNO | S.SNAME | SE.PNO
 -------+---------+--------
 1 | Smith | 1
 | 2

 2 | Jones | 4

 3 | Adams | 1
 | 3

 4 | Blake | 2
 | 3
 | 4

 In our example we got four groups and now we can apply the aggregate operator COUNT
to every group leading to the total result of the query given above.

 Note that for the result of a query using GROUP BY and aggregate operators to make
sense the attributes grouped by must also appear in the target list. All further attributes not
appearing in the GROUP BY clause can only be selected by using an aggregate function.
On the other hand you can not use aggregate functions on attributes appearing in the
GROUP BY clause.

Having

 The HAVING clause works much like the WHERE clause and is used to consider only
those groups satisfying the qualification given in the HAVING clause. The expressions

Chapter 2. SQL

22

allowed in the HAVING clause must involve aggregate functions. Every expression using
only plain attributes belongs to the WHERE clause. On the other hand every expression
involving an aggregate function must be put to the HAVING clause.

Example 2-7. Having

 If we want only those suppliers selling more than one part we use the query:
 SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
 FROM SUPPLIER S, SELLS SE
 WHERE S.SNO = SE.SNO
 GROUP BY S.SNO, S.SNAME
 HAVING COUNT(SE.PNO) > 1;

 and get:
 SNO | SNAME | COUNT
 -----+-------+-------
 1 | Smith | 2
 3 | Adams | 2
 4 | Blake | 3

Subqueries

 In the WHERE and HAVING clauses the use of subqueries (subselects) is allowed in
every place where a value is expected. In this case the value must be derived by evaluating
the subquery first. The usage of subqueries extends the expressive power of SQL.

Example 2-8. Subselect

 If we want to know all parts having a greater price than the part named ’Screw’ we use the
query:
 SELECT *
 FROM PART
 WHERE PRICE > (SELECT PRICE FROM PART
 WHERE PNAME=’Screw’);

 The result is:
 PNO | PNAME | PRICE
 -----+---------+--------
 3 | Bolt | 15
 4 | Cam | 25

 When we look at the above query we can see the keyword SELECT two times. The first
one at the beginning of the query - we will refer to it as outer SELECT - and the one in the
WHERE clause which begins a nested query - we will refer to it as inner SELECT. For
every tuple of the outer SELECT the inner SELECT has to be evaluated. After every
evaluation we know the price of the tuple named ’Screw’ and we can check if the price of
the actual tuple is greater.

Chapter 2. SQL

23

 If we want to know all suppliers that do not sell any part (e.g. to be able to remove these
suppliers from the database) we use:
 SELECT *
 FROM SUPPLIER S
 WHERE NOT EXISTS
 (SELECT * FROM SELLS SE
 WHERE SE.SNO = S.SNO);

 In our example the result will be empty because every supplier sells at least one part. Note
that we use S.SNO from the outer SELECT within the WHERE clause of the inner
SELECT. As described above the subquery is evaluated for every tuple from the outer
query i.e. the value for S.SNO is always taken from the actual tuple of the outer SELECT.

Union, Intersect, Except

 These operations calculate the union, intersect and set theoretic difference of the tuples
derived by two subqueries.

Example 2-9. Union, Intersect, Except

 The following query is an example for UNION:
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNAME = ’Jones’
 UNION
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNAME = ’Adams’;

gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris
 3 | Adams | Vienna

 Here an example for INTERSECT:
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 1
 INTERSECT
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 2;

 gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris

The only tuple returned by both parts of the query is the one having
$SNO=2$.

Chapter 2. SQL

24

 Finally an example for EXCEPT:
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 1
 EXCEPT
 SELECT S.SNO, S.SNAME, S.CITY
 FROM SUPPLIER S
 WHERE S.SNO > 3;

 gives the result:
 SNO | SNAME | CITY
 -----+-------+--------
 2 | Jones | Paris
 3 | Adams | Vienna

Data Definition

 There is a set of commands used for data definition included in the SQL language.

Create Table

 The most fundamental command for data definition is the one that creates a new relation
(a new table). The syntax of the CREATE TABLE command is:

 CREATE TABLE table_name
 (name_of_attr_1 type_of_attr_1
 [, name_of_attr_2 type_of_attr_2
 [, ...]]);

Example 2-10. Table Creation

 To create the tables defined in The Suppliers and Parts Database the following SQL
statements are used:
 CREATE TABLE SUPPLIER
 (SNO INTEGER,
 SNAME VARCHAR(20),
 CITY VARCHAR(20));

 CREATE TABLE PART
 (PNO INTEGER,
 PNAME VARCHAR(20),
 PRICE DECIMAL(4 , 2));

 CREATE TABLE SELLS
 (SNO INTEGER,
 PNO INTEGER);

Chapter 2. SQL

25

Data Types in SQL

 The following is a list of some data types that are supported by SQL:

 INTEGER: signed fullword binary integer (31 bits precision).

 SMALLINT: signed halfword binary integer (15 bits precision).

 DECIMAL (p[,q]): signed packed decimal number of p digits precision with assumed q
of them right to the decimal point. (15 ≥ p ≥ qq ≥ 0). If q is omitted it is assumed to be
0.

 FLOAT: signed doubleword floating point number.

 CHAR(n): fixed length character string of length n.

 VARCHAR(n): varying length character string of maximum length n.

Create Index

 Indices are used to speed up access to a relation. If a relation R has an index on attribute A
then we can retrieve all tuples t having t(A) = a in time roughly proportional to the
number of such tuples t rather than in time proportional to the size of R.

 To create an index in SQL the CREATE INDEX command is used. The syntax is:

 CREATE INDEX index_name
 ON table_name (name_of_attribute);

Example 2-11. Create Index

 To create an index named I on attribute SNAME of relation SUPPLIER we use the
following statement:
 CREATE INDEX I
 ON SUPPLIER (SNAME);

 The created index is maintained automatically, i.e. whenever a new tuple is inserted into
the relation SUPPLIER the index I is adapted. Note that the only changes a user can
percept when an index is present are an increased speed.

Create View

 A view may be regarded as a virtual table, i.e. a table that does not physically exist in the
database but looks to the user as if it does. By contrast, when we talk of a base table there
is really a physically stored counterpart of each row of the table somewhere in the physical
storage.

Chapter 2. SQL

26

 Views do not have their own, physically separate, distinguishable stored data. Instead, the
system stores the definition of the view (i.e. the rules about how to access physically stored
base tables in order to materialize the view) somewhere in the system catalogs (see System
Catalogs). For a discussion on different techniques to implement views refer to SIM98.

 In SQL the CREATE VIEW command is used to define a view. The syntax is:

 CREATE VIEW view_name
 AS select_stmt

 where select_stmt is a valid select statement as defined in Select. Note that
select_stmt is not executed when the view is created. It is just stored in the system
catalogs and is executed whenever a query against the view is made.

 Let the following view definition be given (we use the tables from The Suppliers and
Parts Database again):

 CREATE VIEW London_Suppliers
 AS SELECT S.SNAME, P.PNAME
 FROM SUPPLIER S, PART P, SELLS SE
 WHERE S.SNO = SE.SNO AND
 P.PNO = SE.PNO AND
 S.CITY = ’London’;

 Now we can use this virtual relation London_Suppliers as if it were another base table:

 SELECT *
 FROM London_Suppliers
 WHERE P.PNAME = ’Screw’;

 which will return the following table:

 SNAME | PNAME
 -------+-------
 Smith | Screw

 To calculate this result the database system has to do a hidden access to the base tables
SUPPLIER, SELLS and PART first. It does so by executing the query given in the view
definition against those base tables. After that the additional qualifications (given in the
query against the view) can be applied to obtain the resulting table.

Drop Table, Drop Index, Drop View

 To destroy a table (including all tuples stored in that table) the DROP TABLE command is
used:

 DROP TABLE table_name;

Chapter 2. SQL

27

 To destroy the SUPPLIER table use the following statement:

 DROP TABLE SUPPLIER;

 The DROP INDEX command is used to destroy an index:

 DROP INDEX index_name;

 Finally to destroy a given view use the command DROP VIEW:

 DROP VIEW view_name;

Data Manipulation

Insert Into

 Once a table is created (see Create Table), it can be filled with tuples using the command
INSERT INTO. The syntax is:

 INSERT INTO table_name (name_of_attr_1
 [, name_of_attr_2 [,...]])
 VALUES (val_attr_1
 [, val_attr_2 [, ...]]);

 To insert the first tuple into the relation SUPPLIER (from The Suppliers and Parts
Database) we use the following statement:

 INSERT INTO SUPPLIER (SNO, SNAME, CITY)
 VALUES (1, ’Smith’, ’London’);

 To insert the first tuple into the relation SELLS we use:

 INSERT INTO SELLS (SNO, PNO)
 VALUES (1, 1);

Chapter 2. SQL

28

Update

 To change one or more attribute values of tuples in a relation the UPDATE command is
used. The syntax is:

 UPDATE table_name
 SET name_of_attr_1 = value_1
 [, ... [, name_of_attr_k = value_k]]
 WHERE condition;

 To change the value of attribute PRICE of the part ’Screw’ in the relation PART we use:

 UPDATE PART
 SET PRICE = 15
 WHERE PNAME = ’Screw’;

 The new value of attribute PRICE of the tuple whose name is ’Screw’ is now 15.

Delete

 To delete a tuple from a particular table use the command DELETE FROM. The syntax is:

 DELETE FROM table_name
 WHERE condition;

 To delete the supplier called ’Smith’ of the table SUPPLIER the following statement is
used:

 DELETE FROM SUPPLIER
 WHERE SNAME = ’Smith’;

System Catalogs

 In every SQL database system system catalogs are used to keep track of which tables,
views indexes etc. are defined in the database. These system catalogs can be queried as if
they were normal relations. For example there is one catalog used for the definition of
views. This catalog stores the query from the view definition. Whenever a query against a
view is made, the system first gets the view definition query out of the catalog and
materializes the view before proceeding with the user query (see Simkovics, 1998 for a
more detailed description). For more information about system catalogs refer to Date,
1994.

Chapter 2. SQL

29

Embedded SQL

 In this section we will sketch how SQL can be embedded into a host language (e.g. C).
There are two main reasons why we want to use SQL from a host language:

 There are queries that cannot be formulated using pure SQL (i.e. recursive queries). To
be able to perform such queries we need a host language with a greater expressive power
than SQL.

 We simply want to access a database from some application that is written in the host
language (e.g. a ticket reservation system with a graphical user interface is written in C
and the information about which tickets are still left is stored in a database that can be
accessed using embedded SQL).

 A program using embedded SQL in a host language consists of statements of the host
language and of embedded SQL (ESQL) statements. Every ESQL statement begins with the
keywords EXEC SQL. The ESQL statements are transformed to statements of the host
language by a precompiler (which usually inserts calls to library routines that perform the
various SQL commands).

 When we look at the examples throughout Select we realize that the result of the queries is
very often a set of tuples. Most host languages are not designed to operate on sets so we
need a mechanism to access every single tuple of the set of tuples returned by a SELECT
statement. This mechanism can be provided by declaring a cursor. After that we can use
the FETCH command to retrieve a tuple and set the cursor to the next tuple.

 For a detailed discussion on embedded SQL refer to Date and Darwen, 1997, Date, 1994,
or Ullman, 1988.

30

Chapter 3. Architecture

Postgres Architectural Concepts
 Before we begin, you should understand the basic Postgres system architecture.
Understanding how the parts of Postgres interact will make the next chapter somewhat
clearer. In database jargon, Postgres uses a simple "process per-user" client/server model.
A Postgres session consists of the following cooperating Unix processes (programs):

 A supervisory daemon process (postmaster),

 the user’s frontend application (e.g., the psql program), and

 the one or more backend database servers (the postgres process itself).

 A single postmaster manages a given collection of databases on a single host. Such a
collection of databases is called an installation or site. Frontend applications that wish to
access a given database within an installation make calls to the library. The library sends
user requests over the network to the postmaster (How a connection is established), which
in turn starts a new backend server process

Figure 3-1. How a connection is established

POSTMASTER

SERVER

server hostclient host

User
App LIBPQ

 and connects the frontend process to the new server. From that point on, the frontend
process and the backend server communicate without intervention by the postmaster.
Hence, the postmaster is always running, waiting for requests, whereas frontend and
backend processes come and go.

 The libpq library allows a single frontend to make multiple connections to backend
processes. However, the frontend application is still a single-threaded process.
Multithreaded frontend/backend connections are not currently supported in libpq. One
implication of this architecture is that the postmaster and the backend always run on the
same machine (the database server), while the frontend application may run anywhere. You
should keep this in mind, because the files that can be accessed on a client machine may
not be accessible (or may only be accessed using a different filename) on the database
server machine.

 You should also be aware that the postmaster and postgres servers run with the user-id of
the Postgres "superuser." Note that the Postgres superuser does not have to be a special
user (e.g., a user named "postgres"). Furthermore, the Postgres superuser should definitely
not be the Unix superuser ("root")! In any case, all files relating to a database should
belong to this Postgres superuser.

31

Chapter 4. Getting Started
 How to begin work with Postgres for a new user.

 Some of the steps required to use Postgres can be performed by any Postgres user, and
some must be done by the site database administrator. This site administrator is the person
who installed the software, created the database directories and started the postmaster
process. This person does not have to be the Unix superuser (�root�) or the computer system
administrator; a person can install and use Postgres without any special accounts or
privileges.

 If you are installing Postgres yourself, then refer to the Administrator’s Guide for
instructions on installation, and return to this guide when the installation is complete.

 Throughout this manual, any examples that begin with the character �%� are commands that
should be typed at the Unix shell prompt. Examples that begin with the character �*� are
commands in the Postgres query language, Postgres SQL.

Setting Up Your Environment
 This section discusses how to set up your own environment so that you can use frontend
applications. We assume Postgres has already been successfully installed and started; refer
to the Administrator’s Guide and the installation notes for how to install Postgres.

 Postgres is a client/server application. As a user, you only need access to the client
portions of the installation (an example of a client application is the interactive monitor
psql). For simplicity, we will assume that Postgres has been installed in the directory
/usr/local/pgsql. Therefore, wherever you see the directory /usr/local/pgsql you
should substitute the name of the directory where Postgres is actually installed. All
Postgres commands are installed in the directory /usr/local/pgsql/bin. Therefore,
you should add this directory to your shell command path. If you use a variant of the
Berkeley C shell, such as csh or tcsh, you would add

% set path = (/usr/local/pgsql/bin path)

 in the .login file in your home directory. If you use a variant of the Bourne shell, such as
sh, ksh, or bash, then you would add

% PATH=/usr/local/pgsql/bin:$PATH
% export PATH

 to the .profile file in your home directory. From now on, we will assume that you have
added the Postgres bin directory to your path. In addition, we will make frequent reference
to �setting a shell variable� or �setting an environment variable� throughout this document. If
you did not fully understand the last paragraph on modifying your search path, you should
consult the Unix manual pages that describe your shell before going any further.

 If your site administrator has not set things up in the default way, you may have some
more work to do. For example, if the database server machine is a remote machine, you
will need to set the PGHOST environment variable to the name of the database server
machine. The environment variable PGPORT may also have to be set. The bottom line is

Chapter 4. Getting Started

32

this: if you try to start an application program and it complains that it cannot connect to the
postmaster, you should immediately consult your site administrator to make sure that your
environment is properly set up.

Starting the Interactive Monitor (psql)
 Assuming that your site administrator has properly started the postmaster process and
authorized you to use the database, you (as a user) may begin to start up applications. As
previously mentioned, you should add /usr/local/pgsql/bin to your shell search path.
In most cases, this is all you should have to do in terms of preparation.

 Two different styles of connections are supported. The site administrator will have chosen
to allow TCP/IP network connections or will have restricted database access to local
(same-machine) socket connections only. These choices become significant if you
encounter problems in connecting to a database, since you will want to confirm that you
are choosing an allowed connection option.

 If you get the following error message from a Postgres command (such as psql or
createdb):

% psql template1
Connection to database ’postgres’ failed.
connectDB() failed: Is the postmaster running and accepting
connections
 at ’UNIX Socket’ on port ’5432’?

 or

% psql -h localhost template1
Connection to database ’postgres’ failed.
connectDB() failed: Is the postmaster running and accepting TCP/IP
 (with -i) connections at ’localhost’ on port ’5432’?

 it is usually because
 the postmaster is not running, or
 you are attempting to connect to the wrong server host.

 If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) != database owner
(268)

 it means that the site administrator started the postmaster as the wrong user. Tell him to
restart it as the Postgres superuser.

Managing a Database
 Now that Postgres is up and running we can create some databases to experiment with.
Here, we describe the basic commands for managing a database.

Chapter 4. Getting Started

33

 Most Postgres applications assume that the database name, if not specified, is the same as
the name on your computer account.

 If your database administrator has set up your account without database creation
privileges, then she should have told you what the name of your database is. If this is the
case, then you can skip the sections on creating and destroying databases.

Creating a Database

 Let’s say you want to create a database named mydb. You can do this with the following
command:

% createdb mydb

 If you do not have the privileges required to create a database, you will see the following:

% createdb mydb
WARN:user "your username" is not allowed to create/destroy databases
createdb: database creation failed on mydb.

 Postgres allows you to create any number of databases at a given site and you
automatically become the database administrator of the database you just created. Database
names must have an alphabetic first character and are limited to 32 characters in length.
Not every user has authorization to become a database administrator. If Postgres refuses to
create databases for you, then the site administrator needs to grant you permission to create
databases. Consult your site administrator if this occurs.

Accessing a Database

 Once you have constructed a database, you can access it by:
 Running the Postgres terminal monitor programs (e.g. psql) which allows you to
interactively enter, edit, and execute SQL commands.
 Using an existing native frontend tool like pgaccess or ApplixWare (via ODBC) to
create and manipulate a database.
 Using a language like perl or tcl which has a supported interface for Postgres. Some of
these languages also have convenient and powerful GUI toolkits which can help you
construct custom applications. pgaccess, mentioned above, is one such application
written in tk/tcl and can be used as an example.
 Writing a C program using the LIBPQ subroutine library. This allows you to submit
SQL commands from C and get answers and status messages back to your program. This
interface is discussed further in The PostgreSQL Programmer’s Guide.

 You might want to start up psql, to try out the examples in this manual. It can be activated
for the mydb database by typing the command:

% psql mydb

Chapter 4. Getting Started

34

 You will be greeted with the following message:

Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL

 type \? for help on slash commands
 type \q to quit
 type \g or terminate with semicolon to execute query
 You are currently connected to the database: template1

mydb=>

 This prompt indicates that the terminal monitor is listening to you and that you can type
SQL queries into a workspace maintained by the terminal monitor. The psql program
responds to escape codes that begin with the backslash character, �\� For example, you can
get help on the syntax of various Postgres SQL commands by typing:

mydb=> \h

 Once you have finished entering your queries into the workspace, you can pass the
contents of the workspace to the Postgres server by typing:

mydb=> \g

 This tells the server to process the query. If you terminate your query with a semicolon,
the �\g� is not necessary. psql will automatically process semicolon terminated queries. To
read queries from a file, say myFile, instead of entering them interactively, type:

mydb=> \i fileName

 To get out of psql and return to Unix, type

mydb=> \q

 and psql will quit and return you to your command shell. (For more escape codes, type \h
at the monitor prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in
SQL queries. Single-line comments are denoted by �--�. Everything after the dashes up to the
end of the line is ignored. Multiple-line comments, and comments within a line, are
denoted by �/* ... */�

Destroying a Database

 If you are the database administrator for the database mydb, you can destroy it using the
following Unix command:

% dropdb mydb

Chapter 4. Getting Started

35

 This action physically removes all of the Unix files associated with the database and
cannot be undone, so this should only be done with a great deal of forethought.

36

Chapter 5. The Query Language
 The Postgres query language is a variant of the SQL3 draft next-generation standard. It has
many extensions to SQL92 such as an extensible type system, inheritance, functions and
production rules. These are features carried over from the original Postgres query language,
PostQuel. This section provides an overview of how to use Postgres SQL to perform
simple operations. This manual is only intended to give you an idea of our flavor of SQL
and is in no way a complete tutorial on SQL. Numerous books have been written on
SQL92, including Melton and Simon, 1993 and Date and Darwen, 1997. You should be
aware that some language features are extensions to the ANSI standard.

Interactive Monitor
 In the examples that follow, we assume that you have created the mydb database as
described in the previous subsection and have started psql. Examples in this manual can
also be found in /usr/local/pgsql/src/tutorial/. Refer to the README file in that
directory for how to use them. To start the tutorial, do the following:

% cd /usr/local/pgsql/src/tutorial
% psql -s mydb
Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL

 type \? for help on slash commands
 type \q to quit
 type \g or terminate with semicolon to execute query
 You are currently connected to the database: postgres

mydb=> \i basics.sql

 The \i command read in queries from the specified files. The -s option puts you in single
step mode which pauses before sending a query to the backend. Queries in this section are
in the file basics.sql.

 psql has a variety of \d commands for showing system information. Consult these
commands for more details; for a listing, type \? at the psql prompt.

Concepts
 The fundamental notion in Postgres is that of a class, which is a named collection of object
instances. Each instance has the same collection of named attributes, and each attribute is
of a specific type. Furthermore, each instance has a permanent object identifier (OID) that
is unique throughout the installation. Because SQL syntax refers to tables, we will use the
terms table and class interchangeably. Likewise, an SQL row is an instance and SQL
columns are attributes. As previously discussed, classes are grouped into databases, and a
collection of databases managed by a single postmaster process constitutes an installation
or site.

Chapter 5. The Query Language

37

Creating a New Class
 You can create a new class by specifying the class name, along with all attribute names
and their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

 Note that both keywords and identifiers are case-insensitive; identifiers can preserve case
by surrounding them with double-quotes as allowed by SQL92. Postgres SQL supports the
usual SQL types int, float, real, smallint, char(N), varchar(N), date, time, and timestamp, as
well as other types of general utility and a rich set of geometric types. As we will see later,
Postgres can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not syntactical keywords, except where required to support
special cases in the SQL92 standard. So far, the Postgres CREATE command looks
exactly like the command used to create a table in a traditional relational system. However,
we will presently see that classes have properties that are extensions of the relational
model.

Populating a Class with Instances
 The INSERT statement is used to populate a class with instances:

INSERT INTO weather
 VALUES (’San Francisco’, 46, 50, 0.25, ’11/27/1994’);

 You can also use the COPY command to perform load large amounts of data from flat
(ASCII) files. This is usually faster because the data is read (or written) as a single atomic
transaction directly to or from the target table. An example would be:

COPY weather FROM ’/home/user/weather.txt’
 USING DELIMITERS ’|’;

 where the path name for the source file must be available to the backend server machine,
not the client, since the backend server reads the file directly.

Querying a Class
 The weather class can be queried with normal relational selection and projection queries.
A SQL SELECT statement is used to do this. The statement is divided into a target list

Chapter 5. The Query Language

38

(the part that lists the attributes to be returned) and a qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of weather, type:

SELECT * FROM weather;

 and the output should be:

+--------------+---------+---------+------+------------+
|city | temp_lo | temp_hi | prcp | date |
+--------------+---------+---------+------+------------+
|San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
+--------------+---------+---------+------+------------+
|San Francisco | 43 | 57 | 0 | 11-29-1994 |
+--------------+---------+---------+------+------------+
|Hayward | 37 | 54 | | 11-29-1994 |
+--------------+---------+---------+------+------------+

 You may specify any arbitrary expressions in the target list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

 Arbitrary Boolean operators (AND, OR and NOT) are allowed in the qualification of any
query. For example,

SELECT * FROM weather
 WHERE city = ’San Francisco’
 AND prcp > 0.0;

results in:

+--------------+---------+---------+------+------------+
|city | temp_lo | temp_hi | prcp | date |
+--------------+---------+---------+------+------------+
|San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
+--------------+---------+---------+------+------------+

Chapter 5. The Query Language

39

 As a final note, you can specify that the results of a select can be returned in a sorted order
or with duplicate instances removed.

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

Redirecting SELECT Queries
 Any SELECT query can be redirected to a new class

SELECT * INTO TABLE temp FROM weather;

 This forms an implicit CREATE command, creating a new class temp with the attribute
names and types specified in the target list of the SELECT INTO command. We can then,
of course, perform any operations on the resulting class that we can perform on other
classes.

Joins Between Classes
 Thus far, our queries have only accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class
are being processed at the same time. A query that accesses multiple instances of the same
or different classes at one time is called a join query. As an example, say we wish to find
all the records that are in the temperature range of other records. In effect, we need to
compare the temp_lo and temp_hi attributes of each EMP instance to the temp_lo and
temp_hi attributes of all other EMP instances.

Note: This is only a conceptual model. The actual join may be performed in a more
efficient manner, but this is invisible to the user.

 We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
 W2.city, W2.temp_lo AS low, W2.temp_hi AS high
 FROM weather W1, weather W2
 WHERE W1.temp_lo < W2.temp_lo
 AND W1.temp_hi > W2.temp_hi;

+--------------+-----+------+---------------+-----+------+
|city | low | high | city | low | high |
+--------------+-----+------+---------------+-----+------+
|San Francisco | 43 | 57 | San Francisco | 46 | 50 |
+--------------+-----+------+---------------+-----+------+
|San Francisco | 37 | 54 | San Francisco | 46 | 50 |
+--------------+-----+------+---------------+-----+------+

Chapter 5. The Query Language

40

Note: The semantics of such a join are that the qualification is a truth expression
defined for the Cartesian product of the classes indicated in the query. For those
instances in the Cartesian product for which the qualification is true, Postgres
computes and returns the values specified in the target list. Postgres SQL does not
assign any meaning to duplicate values in such expressions. This means that
Postgres sometimes recomputes the same target list several times; this frequently
happens when Boolean expressions are connected with an "or". To remove such
duplicates, you must use the SELECT DISTINCT statement.

 In this case, both W1 and W2 are surrogates for an instance of the class weather, and both
range over all instances of the class. (In the terminology of most database systems, W1 and
W2 are known as range variables.) A query can contain an arbitrary number of class names
and surrogates.

Updates
 You can update existing instances using the UPDATE command. Suppose you discover
the temperature readings are all off by 2 degrees as of Nov 28, you may update the data as
follow:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > ’11/28/1994’;

Deletions
 Deletions are performed using the DELETE command:

DELETE FROM weather WHERE city = ’Hayward’;

 All weather recording belongs to Hayward is removed. One should be wary of queries of
the form

DELETE FROM classname;

 Without a qualification, DELETE will simply remove all instances of the given class,
leaving it empty. The system will not request confirmation before doing this.

Using Aggregate Functions
 Like most other relational database products, PostgreSQL supports aggregate functions.
An aggregate function computes a single result from multiple input rows. For example,
there are aggregates to compute the count, sum, avg (average), max (maximum) and min
(minimum) over a set of instances.

Chapter 5. The Query Language

41

 It is important to understand the interaction between aggregates and SQL’s WHERE and
HAVING clauses. The fundamental difference between WHERE and HAVING is this:
WHERE selects input rows before groups and aggregates are computed (thus, it controls
which rows go into the aggregate computation), whereas HAVING selects group rows
after groups and aggregates are computed. Thus, the WHERE clause may not contain
aggregate functions; it makes no sense to try to use an aggregate to determine which rows
will be inputs to the aggregates. On the other hand, HAVING clauses always contain
aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s wasteful; the same condition could be used more efficiently
at the WHERE stage.)

 As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

 If we want to know which city (or cities) that reading occurred in, we might try

SELECT city FROM weather WHERE temp_lo = max(temp_lo);

 but this will not work since the aggregate max can’t be used in WHERE. However, as is
often the case the query can be restated to accomplish the intended result; here by using a
subselect:

SELECT city FROM weather
 WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

 This is OK because the sub-select is an independent computation that computes its own
aggregate separately from what’s happening in the outer select.

 Aggregates are also very useful in combination with GROUP BY clauses. For example,
we can get the maximum low temperature observed in each city with

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city;

 which gives us one output row per city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city
 HAVING min(temp_lo) < 0;

 which gives us the same results for only the cities that have some below-zero readings.
Finally, if we only care about cities whose names begin with "P", we might do

SELECT city, max(temp_lo)
 FROM weather
 WHERE city like ’P%’
 GROUP BY city
 HAVING min(temp_lo) < 0;

Chapter 5. The Query Language

42

 Note that we can apply the city-name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the
grouping and aggregate calculations for all rows that fail the WHERE check.

43

Chapter 6. Advanced Postgres SQL
Features

 Having covered the basics of using Postgres SQL to access your data, we will now discuss
those features of Postgres that distinguish it from conventional data managers. These
features include inheritance, time travel and non-atomic data values (array- and set-valued
attributes). Examples in this section can also be found in advance.sql in the tutorial
directory. (Refer to Chapter 5 for how to use it.)

Inheritance
 Let’s create two classes. The capitals class contains state capitals which are also cities.
Naturally, the capitals class should inherit from cities.

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- (in ft)
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

 In this case, an instance of capitals inherits all attributes (name, population, and altitude)
from its parent, cities. The type of the attribute name is text, a native Postgres type for
variable length ASCII strings. The type of the attribute population is float, a native
Postgres type for double precision floating point numbers. State capitals have an extra
attribute, state, that shows their state. In Postgres, a class can inherit from zero or more
other classes, and a query can reference either all instances of a class or all instances of a
class plus all of its descendants.

Note: The inheritance hierarchy is a directed acyclic graph.

 For example, the following query finds all the cities that are situated at an attitude of 500ft
or higher:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+

Chapter 6. Advanced Postgres SQL Features

44

 On the other hand, to find the names of all cities, including state capitals, that are located
at an altitude over 500ft, the query is:

SELECT c.name, c.altitude
 FROM cities* c
 WHERE c.altitude > 500;

 which returns:

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+
|Madison | 845 |
+----------+----------+

 Here the �*� after cities indicates that the query should be run over cities and all classes
below cities in the inheritance hierarchy. Many of the commands that we have already
discussed (SELECT, UPDATE and DELETE) support this �*� notation, as do others, like
ALTER.

Non-Atomic Values
 One of the tenets of the relational model is that the attributes of a relation are atomic.
Postgres does not have this restriction; attributes can themselves contain sub-values that
can be accessed from the query language. For example, you can create attributes that are
arrays of base types.

Arrays

 Postgres allows attributes of an instance to be defined as fixed-length or variable-length
multi-dimensional arrays. Arrays of any base type or user-defined type can be created. To
illustrate their use, we first create a class with arrays of base types.

CREATE TABLE SAL_EMP (
 name text,
 pay_by_quarter int4[],
 schedule text[][]
);

 The above query will create a class named SAL_EMP with a text string (name), a
one-dimensional array of int4 (pay_by_quarter), which represents the employee’s salary by
quarter and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule. Now we do some INSERTSs; note that when appending to an array, we

Chapter 6. Advanced Postgres SQL Features

45

enclose the values within braces and separate them by commas. If you know C, this is not
unlike the syntax for initializing structures.

INSERT INTO SAL_EMP
 VALUES (’Bill’,
 ’{10000, 10000, 10000, 10000}’,
 ’{{"meeting", "lunch"}, {}}’);

INSERT INTO SAL_EMP
 VALUES (’Carol’,
 ’{20000, 25000, 25000, 25000}’,
 ’{{"talk", "consult"}, {"meeting"}}’);

 By default, Postgres uses the "one-based" numbering convention for arrays -- that is, an
array of n elements starts with array[1] and ends with array[n]. Now, we can run some
queries on SAL_EMP. First, we show how to access a single element of an array at a time.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name
 FROM SAL_EMP
 WHERE SAL_EMP.pay_by_quarter[1] <>
 SAL_EMP.pay_by_quarter[2];

+------+
|name |
+------+
|Carol |
+------+

 This query retrieves the third quarter pay of all employees:

SELECT SAL_EMP.pay_by_quarter[3] FROM SAL_EMP;

+---------------+
|pay_by_quarter |
+---------------+
|10000 |
+---------------+
|25000 |
+---------------+

Chapter 6. Advanced Postgres SQL Features

46

 We can also access arbitrary slices of an array, or subarrays. This query retrieves the first
item on Bill’s schedule for the first two days of the week.

SELECT SAL_EMP.schedule[1:2][1:1]
 FROM SAL_EMP
 WHERE SAL_EMP.name = ’Bill’;

+-------------------+
|schedule |
+-------------------+
|{{"meeting"},{""}} |
+-------------------+

More Advanced Features
 Postgres has many features not touched upon in this tutorial introduction, which has been
oriented toward newer users of SQL. These are discussed in more detail in both the User’s
and Programmer’s Guides.

47

Bibliography
 Selected references and readings for SQL and Postgres.

 Some white papers and technical reports from the original Postgres development team are
available at http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books
 The Practical SQL Handbook , Using Structured Query Language , 3, Judith Bowman,

Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley,
1996.

 A Guide to the SQL Standard , A user’s guide to the standard database language SQL , 4,
C. J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

 An Introduction to Database Systems , C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL , A complete guide, Jim Melton and Alan R. Simon,
1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Jeffrey D. Ullman, 1, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation
 The PostgreSQL Administrator’s Guide , Edited by Thomas Lockhart, 2000-05-01, The

PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University
of Technology.

 The Postgres95 User Manual , A. Yu and J. Chen, The POSTGRES Group , Sept. 5, 1995,
University of California, Berkeley CA.

Bibliography

48

Proceedings and Articles
 Partial indexing in POSTGRES: research project , Nels Olson, 1993, UCB Engin

T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database
System, L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33,
University of California, Berkeley CA.

 The Postgres Data Model , L. Rowe and M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

 Generalized partial indexes
(http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) , P. Seshadri
and A. Swami, March 1995, Eleventh International Conference on Data Engineering,
1995, Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , M. Stonebraker and L. Rowe, May 1986, Conference on
Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, M. Stonebraker, E. Hanson, and C. H. Hong,
Feb. 1987, Conference on Data Engineering, Los Angeles, CA, IEEE, 1987.

 The Postgres Storage System , M. Stonebraker, Sept. 1987, VLDB Conference, Brighton,
England, 1987.

 A Commentary on the Postgres Rules System , M. Stonebraker, M. Hearst, and S.
Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf),
M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , M. Stonebraker, L. A. Rowe, and M. Hirohama, March
1990, Transactions on Knowledge and Data Engineering 2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , M. Stonebraker and et
al, June 1990, Conference on Management of Data, ACM-SIGMOD.

