Arcane Technologies Ltd.
PO Boz 3738

Glasgow

G41 4YD

Scotland

T: 444 141 428 3449
F: +44 141 423 3449
hitp://www.arcana.co.uk

info@arcana.co.uk

Arcane Technologies’ Response to OpenGL ARB
JavaGL Issues

Alligator Descartes

descarte@arcana. co.uk

November 16, 1998

Abstract

This document contains Arcane Technologies’ response to the list of
issues outlined by the OpenGL Architecture Review Board regarding the
Java OpenGL bindings, or JavaGL.

We have described in detail the solutions for each issue as implemented
within our Magician technology. Magician is a mature, high-performance,
robust and fully portable product which has been on public release for over
a year supporting a wide range of operating systems and Java Virtual Ma-
chines.

1 Organization

The first area of specific interest requiring additional information covers the
topics of how OpenGL and GLU functions and constant variables are organized
within the JavaGL class structure.

1.1 How are the methods and constants...?

Magician implements a clearly defined boundary between the traditional OpenGL
functions and constants, prefixed with gl and GL_ respectively, and the GLU
functions and constants prefixed with glu and GLU_ respectively. Magician im-
plements OpenGL and GLU constants throught a group of interfaces which also
provide the basis for Magician’s powerful “composable pipeline” architecture.

1.1.1 Constants

The constants defined within the OpenGL Specification are declared within Ma-
gician as static and final integer values within an interface called GLConstants.

This interface is the only place in which these constants are defined. Further-
more, by using the static final modifiers and placing the declarations within
an interface you are assured that the values cannot be modified by end-user
applications.

For example, Magician 1.0 simply declared all OpenGL constants and meth-
ods within an interface called GL. This meant that if you wished to reference
OpenGL constants you were forced to prepend each constant with an explicit
reference to the GL interface. A short example of this form of constant addressing
follows.

/*x Draw a triangle */
glBegin (GL.GL_TRIANGLES);
glVertex2f(0.0f, 0.0f);
glVertex2f(75.0f, 75.0f);
glVertex2f(75.0f, 0.0f);
glEnd () ;

This form of constant addressing is not a major problem in itself, but it does re-
duce the “cut and paste-ability” of porting existing OpenGL code from C/C++
since each variable needs to be prefixed with the GL. interface reference.

Magician 1.1.0 introduced a new, but backwardly-compatible, solution with the
GLConstants interface. By implementing this interface within your programs,
you automatically make all the constant values defined within it locally available
within the implementing class. This means that you don’t need to reference the
GL interface for constant values.

Additionally, since the GL interface is a subclass of GLConstants, all the con-
stant values are imported into that interface ensuring that existing Magician
1.0 programs that have explicit class references will continue to work without
modification.

A short example of this form of constant addressing follows.

/** A short class that uses GLConstants */
public class shortClass implements GLConstants {

/** Draw a triangle */
glBegin(GL_TRIANGLES);

glEnd () ;
Therefore, the separation of methods and constants in this way affords you flex-
ibility and power when referencing constant values and greatly speeds up the
task of porting existing OpenGL code to Java. The separation of methods and

constants into separate interfaces also provides the basis of Magician’s powerful
and innovative “composable pipeline” architecture.

Constant addressing for GLU is identical except the GLUConstants and GLU
interfaces are used.

1.1.2 Functions and Composable Pipelines

Composable pipelines are an innovative feature introduced in Magician to allow
runtime switching between different OpenGL pipeline functionality including
OpenGL function execution, per-statement tracing, per-statement profiling and
automatic error-checking. These facilities provide an extremely fully-featured
development environment for you to work within and allows for extremely fast
program development.

All the composable pipeline classes implement the GL interface which requires
that all OpenGL methods are implemented in some pipeline-specific way. This
also ensures that pipelines can be cast freely between themselves which allows
for per-statement pipeline switching to occur. That is, if you wished to enable
profiling for a short portion of code only, you can do so simply by switching
to a profiling pipeline instead of the usual recompile-and-execute cycle required
with C/C++ programming.

Therefore, all OpenGL methods are defined initially within the GL interface
and implemented with each pipeline class. I shall discuss this further in Section
1.2.1.

GLU methods are implemented in an identical way in the GLU interface and
various GLU pipeline classes.

1.2 How are the classes and interfaces...?

A complete JavaGL implementation, such as Magician, requires both mappings
between the core OpenGL and GLU methods and constants and mappings for
utility classes to handle objects such as GLU quadrics, NURBS and tessellators.
This section explicitly excludes any window-system integration classes.

1.2.1 GL and GLU

The core OpenGL and GLU functionality is partitioned into several interfaces
upon which the whole composable pipeline architecture is implemented. Figure
1 illustrates this more clearly.

The composable pipelines that we ship as a standard part of Magician are the
core execution pipeline called CoreGL, a tracing pipeline called TraceGL, a profil-
ing pipeline called ProfileGL and an error-checking pipeline called ErrorGL. By
splitting OpenGL and GLU functionality in this way, you can quickly “switch

GLConst ants
extends CL

L~ implements Cor eGL
TraceGL
Profil eCG
ErrorGL

Tenpl ateGL

GLUConst ant s

L~ extends GLU
L~ implements Cor eGLU

TraceG.U
Profil eGLU
Error GLU

Tenpl at eGLU

Figure 1: GL and GLU Pipelines

on” functionality that you need to write bullet-proof and performance-tuned
applications. However, when you ship your applications, you can simply use
the CoreGL pipeline for maximum performance. Since the core and extended
pipelines all implement the GL interface, pipelines can be switched on a statement-
to-statement basis without recompilation or any code alteration.

If this functionality wasn’t impressive enough, pipelines can be “stacked’ for
multiplied functionality. For example, if you wished to both profile and trace
your program’s execution, you can create a composite pipeline from both TraceGL
and ProfileGL. These composite pipelines behave in exactly the same way as
the standard pipelines.

The GLU functions are identically covered by pipelines named CoreGLU, TraceGLU,
ProfileGLU and ErrorGLU and a base interface called GLU.

1.2.2 GLU Quadrics

Magician provides a class called GLUQuadric which encapsulates the notion of a
GLU quadric object, usually defined as GLUquadricObj or GLUtriangulator0Obj
within the C/C++ APL

Quadric manipulation can occur in two ways.

1. via GLU, as per the C/C++ APIL That is, you can write code in the
following manner.

GLUQuadric quadric = gluNewQuadric();
gluDisk(quadric, 1, 10, 10, 10);

which will behave exactly as expected.

2. via the GLUQuadric object which has methods mapped for each GLU
method. For example

GLUQuadric quadric = new GLUQuadric();
quadric.disk(1, 10, 10, 10);

Both of these approaches are functionally identical and generate the same results
but offer alternative programming styles to you, the “old-style” and a newer,
more object-orientated, style.

1.2.3 GLU Nurbs

Magician offers a full implementation of NURBS by using a similar style of par-
titioning as implemented with quadrics. In the case of NURBS, a class entitled
GLUNurbs exists which encapsulates the C/C++ GLUnurbs0bj data structure.

As with the GLUQuadric class, GLUNurbs may be used either wvia the GLU
pipeline or directly in an object-orientated manner.

1.2.4 GLU Tessellators

Finally, Magician offers a powerful and innovative interface for implementing
GLU tessellators within a Java environment.

Magician provides an abstract base class called GLUTesselator which handles
the basic functionality required by tessellators under Magician. This functional-
ity includes the allocation of internal structures for the tessellators and providing
default methods for the tessellator callbacks.

The rationale behind our implementation of tessellators stems from the inablity
of Java to do function callbacks or function redirection as used with C/C++ tes-
sellator code. For example, the following C/C++ code will pass all tessellated
vertices directly to glVertex3f ().

gluTessCallback(GLU_VERTEX, (GLvoid (CALLBACK *) ())&glVertex3f);

This is an extremely powerful system, but one which is not suited to Java.
In order to provide an equally powerful Java system, we have decided to im-
plement callbacks that execute defined Java methods within subclasses of the
GLUTesselator class. This allows you to write customised tessellator callbacks
in Java without any difficulty and in a portable manner.

For example, a sample tessellator subclass can be written as

public class dinoballTesselator extends GLUTesselator {

/** Begins tesselation of a polygon */
public void begin(int mode) {
gl.glBegin(mode);
}

/** Ends tesselation of a polygon */
public void end() {
gl.glEnd();
}

/*#* Handles a single vertex from the tesselator */
public void vertex(float[] vertex) {
gl.glVertex2fv(vertex);
}

/** Handles edge flag setting */
public void edgeFlag(boolean edgeFlag) {
gl.glEdgeFlag(edgeFlag);
}
}

These Java methods are invoked from within the native code when the native
OpenGL implementation decides the callback should be invoked. This tech-
nique affords identical power to you as if you were writing tessellator code in
C/C++. The actual passing of tesselator data can be expressed as going via the
standard GLU pipeline classes or directly via the instantiated tessellator object
if you prefer writing object-orientated code as described for GLU quadrics and
NURBS.

A final note on tessellator usage is that the GLU Specification defines the gen-
eration of primitives depending on which callbacks are registered. That is, if
you do not wish to register an edge flag callback, the tessellator will attempt
to generate triangle strips as opposed to triangles. Since Magician provides no
explicit system for registering callbacks as it is done internally, we supply an
alternate constructor for the GLUTesselator class which allows you to specify
which callbacks you wish to be registered. For example, if you only wished to
register the bare minimum of callbacks to allow geometry tessellation to occur,
the following code stub would do so.

/x%
* Create a new dinoballTesselator (see above) with non-default
* callbacks
*/
dinoballTesselator tess =
new dinoballTesselator(GLUTesselator.BEGIN_CALLBACK |
GLUTesselator.END_CALLBACK |
GLUTesselator.VERTEX_CALLBACK);

Therefore, on high-performance tessellators, it is likely that triangle strips would
be generated instead of triangles.

1.3 Should there be separate packages...?

Concerning the question of whether the window-system functionality for JavaGL
should be split into separate classes from the core OpenGL and GLU classes,
it is our opinion that such a split is necessary if only to follow the precedent of
GLX, wgl et al.

From our experience of supporting multiple JVMs and operating systems, the
main area of abstraction required lies within the window-system interface and
not the “core” APIs as these are already platform-independent. As such, tying
the window-system code into the core APIs is an overly restrictive and sub-
optimal solution.

2 Versioning

This section discusses how OpenGL versioning is tracked and queried from
within a JavaGL implementation.

2.1 How is the native OpenGL API support queried?

The version of the native OpenGL that has been loaded by the JavaGL imple-
mentation is queryable by using the glGetString () method with the argument
of GL_VERSION.

2.2 How is version compatibility determined?

Magician handles this internally at the moment for use with runtime function
linkage checking. This is discussed in more detail in Section 9.3.

OpenGL Type Java Type
GLvoid void
GLbitfield int
GLboolean boolean
GLbyte byte
GLshort short
GLint int
GLubyte byte
GLushort short
GLuint int
GLsizei int
GLfloat float
GLclampf float
GLdouble double
GLclampd double

Table 1: OpenGL to Java Data Type Mapping

3 Argument Passing

Java supports a far more restricted range of data types that C/C++. Further-
more, since Java is a strongly-typed and type-safe language, pointers, callbacks
and function redirection are not supported within the language. Furthermore,
Java does not have any notion of unsigned data types nor does it have a way of
declaring enumerated types. Finally, because Java does not use a preprocessing
stage macro definitions and #defines are not available.

Since these features are heavily used within OpenGL and GLU, some form of
standardised conversion must be decided upon. The following sections illustrate
how Magician has worked around these restrictions to be a fully-functional Java
OpenGL interface.

3.1 How are Java types mapped to C types?

Magician uses a standard technique to map the OpenGL data types to Java
data types as shown in Table 1.

These values are generally passed through Java unaltered and are explicitly
type-cast to the expected data type internally before being passed to the native
OpenGL implementation. This generally ensures that no data type corruption,
such as signed vs. unsigned, occurs causing errors in application execution.

Magician also converts GLboolean to an actual Java boolean value in order
to allow you to write slightly more readable application code. This can produce
some slight problems if explicit comparisons to GL_TRUE or GL_FALSE are used,
but we have checked a large quantity of OpenGL application code and these
values are almost never used for comparison tests. Most developers appear to
prefer to write code similar to

if (blah) {

}
as opposed to the more correct

if (blah == GL_TRUE) {

}

As such, we decided that converting GLboolean to a Java boolean was a sensible
and useful change.

3.2 How are unsigned types converted?

The conversion of unsigned data types in C/C++ to Java is treated in a
straight-forward manner by Magician. We simply use the signed version of
a particular data type in Java which is internally re-cast to being unsigned
before being dispatched to the native OpenGL implementation.

3.3 How does JavaGL handle pointers?

Java, being a portable language, does not support the concept of pointers or
direct memory addressing in any form. This makes the conversion of functions
using pointers slightly problematic.

Magician has implemented the solution of using Java arrays of data instead
of pointers to blocks of memory containing the data in question. This solution
works admirably in all but one case.

For example, the glVertex3fv() function takes the argument of GLfloat *
which points at a contiguous block of memory containing three GLfloat val-
ues. Magician defines glVertex3fv () as having an argument of float [] which
should have a length of 3.

For functions that take GLvoid pointers as arguments, we have implemented
all the possible variants for that function for each data type. This allows you
to use all of OpenGL that is available to you under C/C++ but has the benefit
of being compile-time checkable.

The only situation that this solution does not work is with interleaved data
arrays composed of multiple data types such as GL_C4UB_V2F. One possible solu-
tion we have tested is to create an array of objects each stuffed with appropriate
values simulating a C union. However, the performance on this solution is so
utterly atrocious it completely invalidates the point of using interleaved data
arrays in the first place. It also brings up many implementation issues as the
physical data location and contiguousness which causes implementation prob-
lems on multiple JVMs. Therefore, Magician currently does not support mixed
interleaved data but does support non-mixed interleaved data.

3.4 How does JavaGL handle callbacks?

Callbacks are implemented within GLU only for use with quadrics, NURBS and
tessellators and are not implemented at all within the core OpenGL.

Magician side-steps the more traditional form of callback registration via
gluQuadricCallback(), gluNurbsCallback() and gluTessCallback() by sim-
ply allowing you to subclass the appropriate base classes of GLUQuadric, GLUNurbs
or GLUTesselator accordingly.

For example, if you wished to implement an custom error callback, you could
simply subclass GLUQuadric and implement the error () method. This would
ensure that if a quadric generation error occurred, your custom method would
be invoked.

GLU tessellator callback handling is far more detailed than the simple call-
backs registerable for quadrics and NURBS handling and is detailed in Section
1.2.4 supra.

This system is far more powerful than the alternatives for several reasons.

1. Tt is compile-time checkable. One possible, but rejected, solution we tested
registered named Java methods as being the callback to execute when an
action occurred. For example,

gluTessCallback(tessellator, GLU_ERROR, "error");

The downside to this approach is that the named callback is not compile-
time checkable, and if it doesn’t actually exist, the JavaGL implementation
would error internally in a way that might not be recoverable by the
application.

2. Tt is extremely simple to use within the context of Java compared to
fiddling about with the various callback calls which are very C/C++ in
style.

10

3. It defines a standard base behaviour for each callback in the base class
which will perform useful callback operations even if not explicitly overri-
den.

3.5 How does JavaGL handle enumerated types?

As Java does not handle enumerated types, Magician simply converts all the
enumerated type values to their corresponding integerial values. This solution
requires a certain amount of monitoring as these values may change between
OpenGL versions, but doing so would destroy backwards-compatibility in both
OpenGL and JavaGL. As such, it’s a potential, but unlikely, issue.

3.6 How does JavaGL handle typedefs and #defines?

Again, Java does not support the notion of typedefs and has no standard pre-
processing stage to support #define macros.

Magician simply ignores typedefs completely as they are not widely used within
the gl.h and glu.h header files other than to map OpenGL data types onto C
data types, e.g., GLfloat to float. Since this data type mapping has already
been performed as discussed in 3.1, the typedefs are simply not required in
JavaGL.

3.7 Are OpenGL functions overloaded or does JavaGL use
variants?

Magician implements two strategies regarding OpenGL function naming and
access paths.

Standard Functions Magician implements all of the “standard” C/C++ OpenGL functions
exactly as they are defined within the OpenGL and GLU Specification
documents with variants substituted where GLvoid * is used in arguments.
This form of function addressing is required as far as we are concerned.
This provides you with the ability to quickly write JavaGL code if you are
used to the C/C++ APIs. This is also the case from the point of view
of porting existing C/C++ application code to Java. By supplying these
functions, porting is reduced to being 99% cutting and pasting.

Qwverloaded Functions Magician also implements the notion of polymorphic methods within its
core pipelines. For example, the variants of glVertex[234]*() such as
glVertex3f (), glVertex2d () et al are reduced into a single set of meth-
ods called vertex () which are multiply defined with differing arguments.
That is,

vertex(float[] v);

11

vertex(double x, double y, double z, double w);
vertex(short x, short y);

and so on.

Another benefit of this form of addressing is that the explicit namespacing
prefix of gl can be dropped since the JavaGL namespace within Java is en-
forced by Java itself rather than the global free-for-all that manifests in C.

We consider this form of function addressing to be required by a JavaGL
implementation as it greatly improves the readability of OpenGL programs
and also uses the functionality that is present within Java to powerful ef-
fect.

We also feel this form of addressing is most useful to developers who
are starting off with OpenGL using Magician and do not really wish to be
totally bewildered by the sheer quantity of OpenGL functions available to
them.

Therefore, we would recommend that this form of function addressing
is also included within JavaGL to complement and enhance the standard
form of function addressing.

4 Java Integration

This section discusses some of the ARB members’ concerns about the way in
which JavaGL integrates with the Java Virtual Machine technologies provided
by third party vendors such as Sun, Microsoft, Symantec and IBM amongst
others.

4.1 How does JavaGL access system fonts?

The topic of font access is an extremely tricky one to approach because of the
vast difference between the ways in which each operating system implement
fonts, e.g., BDF, PCF and SNF format fonts under X11, TrueType and Adobe
Typel font under Windows and MacOS, not to mention the native Windows
font format and the standard MacOS formats.

There are several ways in which font access can be implemented. These in-
clude

1. The use of Java fonts as defined by the java.awt.Font classes. This
limits the fonts available to you to the fonts specified within the standard

12

Java class, i.e., Times-Roman, Helvetica and Courier. This functionality
is implemented in all JVMs, but does not implement any functionality to
define your own fonts for use.

2. Using Java2D. This solution appears to be a lot better than the former in
that custom fonts can be used. There are two major downsides to using
Java2D. Firstly, there is a requirement that the fonts be installed on the
end-user’s machine and secondly that the JVM the end-user is executing
the JavaGL application on supports Java2D.

In the case of fonts being installed, this brings up the problems of font
licensing and expected behaviour when the desired fonts are not available.

Magician implements a third strategy that is neither subject to the reliance of
non-core JVM functionality such as Java2D nor the reliance on installed fonts
on end-users’ machines. Our solution also works with the most common font
foundries’ licensing agreements for the distribution of font info.

We have implemented a framework of classes that allows you to quickly ren-
der font glyphs onto an OpenGL drawing surface. We also provide two utility
programs to generate the appropriate Java classes that encapsulate the font
glyphs suitable for this framework. By using this framework, you can easily
integrate font rendering into your software with the following benefits.

1. Font data is encapsulated within Java classes which can be delivered via
the network or as part of an application. This removes the dependency
on assuming that the end-user has the appropriate fonts installed on their
machine for the application to look correct.

2. Because the font data is stored in the format of bitmapped data within
a Java class, you will not be in breach of font distribution policies which
regulate only the distribution of scalable font data.

3. The font glyph bitmaps can be used in other ways, for example, textured
textual data instead of simple bitmapped data.

The class structure implemented by Magician to support bitmapped font render-
ing relies on an abstract base class called GLBitmapFont which defines methods
for rendering individual glyphs and strings of glyphs within the font.

The font-generating utility programs simply generate Java code in the form of
subclasses of GLBitmapFont which defines the individual glyphs. These classes
can be compiled and distributed with your applications allowing them to be
sure that the application will look identical and correct on all platforms.

13

4.2 How does JavaGL handle class loading?

There are a few different approaches that can be taken to handling JavaGL class
loading depending on how you may wish multiple JavaGL implementations to
interoperate or be selected between.

4.2.1 No Interoperation

If no interoperation is desired between JavaGL implementations, that is, mul-
tiple JavaGL implementations may not be installed and used simultaneously,
then there are no real additional requirements to handling the bootstrapping of
JavaGL.

However, this is possibly not a desirable solution as users may want to install
multiple versions of JavaGL simultaneously for either evaluation, or to mix and
match optimal aspects of each implementation.

An argument for the unique operation of each implementation is that the bound-
ary between implementations is clearly delineated. For example, a complete im-
plementation is installed and used, but the user also installs a less complete or
less powerful implementation which leads the user to construe that the former
implementation is at fault. This could increase support for the entirely wrong
product and would require some form of monitoring.

4.2.2 Interoperation

To support safe interoperation between JavaGL implementations simultaneously
installed on a machine, there are some possible solutions that could be imple-
mented to bootstrap the desired implementation.

All of the following techniques assume the existence of a factory which would
be supplied as standard by all implementations. This factory would contain
methods such as createGL() to allocate OpenGL pipeline classes using the se-
lected implementation and so on for all “objects” defined within the JavaGL
Specification.

Arcane Technologies are still evaluating solutions to this issue and the details
described in the above section are best regarded as “fluid”. There has been dis-
cussion on the working group mailing list to this end, but no conclusions have
been drawn as yet.

4.3 How are differences in the native JVM handled?

Despite the desire of Sun, many JVM vendors have implemented high-performance
proprietary native method interfaces for their JVMs. Most notable of these in-

14

terfaces is Microsoft’s Raw Native Interface, or RNI. This makes it considerably
more difficult to develop a portable and robust JavaGL implementation as each
native method interface and operating system will require a separate branch of
code.

Magician provides a completely abstracted view of the OpenGL, GLU and
various window-system APIs allowing you to write 100% portable code that
operates identically on all JVMs and operating systems. The main levels of ab-
straction exist within the window-system code as opposed to the OpenGL and
GLU pipelines. The main differences in the window-system code pertains to
the configuration of visuals or device contexts and to this end, Magician defines
a class called GLCapabilities that allows portable visual configuration. This
allows you access to all the functionality that can be accessed via the window-
system protocols such as GLX and wgl.

In order to support a wide range of platforms and JVMs, Magician internally
implements many code branches ensuring that the shipped Java class files are
identical for each platform. Only the native library is different. This technique
allows us to run code on Linux, Solaris, Irix, Windows95/98/NT, OS/2 and
MacOS on many JVMs without modification and ensures identical behaviour
and rendering quality on all platforms.

5 Window System

This section discusses the less platform-independent topics of window-system
integration with Java’s windowing technologies such as AWT and Swing and
the underlying operating-system specific protocols such as GLX, wgl, PGL and
AGL.

Magician has defined a set of classes that provide a totally platform- and JVM-
independent abstracted view of these protocols and window-systems allowing
you to write powerful and fully portable code with ease.

Magician provides a class called GLCapabilities which is an abstracted view
of the visual and device context capabilities that can be set within the most
popular window-system and OpenGL windowing protocols. For example, the
depth buffer size can be configured, the number of auxiliary buffers, whether or
not double-buffering is in operation and so on.

The GLCapabilities class provides about 20 common characteristics or ca-
pabilities which OpenGL uses to configure the way in which framebuffers are
rendered to a window or off-screen buffer. These characteristics can be set and
read back via accessor methods and it by using GLCapabilities that solutions

15

for many of the following questions is implemented.

5.1 How does JavaGL interact with Swing?

Magician interacts seamlessly with Swing through the JGLComponent class which
is a fully Swing- and AW T-compliant GUI component that can be rendered onto
from OpenGL.

JGLComponent is supplied separately from the heavyweight GLComponent class as
the underlying logic for locating drawing surfaces to render onto differs greatly.
From an application perspective, there are no differences between the compo-
nents in terms of API or functionality. The only difference lies in the fact that
JGLComponent is completely lightweight.

Being completely lightweight, JGLComponents can be easily added into complex
Swing layout managers such as splitter panes and JInternalFrames without
any trouble whatsoever. Other Swing-related problems with heavyweight com-
ponents such as z-ordering and peerless rendering are side-stepped completely.

5.2 How does JavaGL handle lightweight vs. heavyweight?

Magician defines two Java components suitable for rendering onto within a Java
GUI framework.

GLComponent GLComponent is the standard heavyweight drawing surface component sup-
plied with Magician. It is a subclass of java.awt.Canvas, which is in itself
heavyweight, and uses underlying private window-system resources inter-
nally.

GLComponent is a fully functional AWT-aware component that can have
various “listeners”, such as MouseMotionListener, attached to it as any
other AWT component would have. This design allows OpenGL-aware
components to be easily slotted into existing GUIs without requiring elab-
orate rewrites or redesigns.

JGLComponent JGLComponent, as discussed supra, is a lightweight Swing-aware drawing
surface that OpenGL can render onto. Objects instantiated from this class
can be used exactly as GLComponents via AWT or via Swing’s APIs, for
example, tooltips can be attached to a JGLComponent.

Additionally, JGLComponent can have listeners attached to it in exactly
the same way as GLComponents.

You may select which component is required for your particular applications.
Heavyweight components are considerably faster and if your applications are

16

not using Swing at all or are using Swing in such a way that z-ordering is not
an issue or specialised layout managers are not used then GLComponent is the
best choice. Otherwise, JGLComponent should be used.

Both classes, and the off-screen buffer class, all implement an interface called
GLDrawable allowing them to be swapped around with minimum fuss and max-
imum conformance with each other.

5.3 How is Double-buffering handled?

Double-buffering is a windowing function that exists either within the OpenGL
window-system protocol, e.g., glXSwapBuffers() or pglSwapBuffers(), or
within the operating system itself, e.g., Win32’s SwapBuffers() function.

As such, configuration of a double-buffered visual lies within the OpenGL window-
system protocol and takes many forms depending on the operating system used.

The GLCapabilities class simplifies and unifies the requesting of double- or
single-buffered visuals by using the setDoubleBuffered () method which takes
arguments of either GLCapabilities.SINGLEBUFFER or GLCapabilities.DOUBLEBUFFER.
Single-buffering is enabled by default.

The operation of buffer swapping when a window refresh is required is equally
simple. In most cases, GLComponent or JGLComponent will automatically either
buffer swap or flush the pipeline when all OpenGL commands are completed, or
you can force a buffer swap at any point by invoking the swapBuffers () method
defined within the GLContext class. Again, this method is totally portable and
is translated internally to the appropriate OpenGL window protocol or operat-
ing system call.

5.4 How is Off-screen rendering handled?

Magician implements off-screen rendering through the GLOffscreenBuffer class
which is analogous to GLComponent and JGLComponent in that it implements the
GLDrawable interface. Therefore, it is treated by Magician as a valid drawing
surface.

Internally, an off-screen buffer behaves almost identically to an on-screen buffer
in that a GLContext is associated with it. The contents of the off-screen buffer
can be read via glReadPixels() or it can be copied completely to a visible
drawing surface by invoking the GLOffscreenBuffer.swapBuffers() method
which takes a single argument of a GLDrawable object. The given object will
have the contents of the off-screen buffer copied onto it and be automatically
refreshed.

17

Again, Magician shields the majority of internal work from you and provides a
completely portable way of performing off-screen rendering in a simple way that
is also seamlessly integrated with Magician’s other visible drawing surfaces.

5.5 How are Overlays handled?

Magician has no implemented overlay handling at the moment as of version
1.1.0, purely due to our lack of having a machine capable of supporting over-
lays. We aim to have overlay support implemented in Magician 1.2.0 which is
planned to be available in December 1998.

However, hooks for overlay support already exist within the GLCapabilities
class.

5.6 How are extended visual capabilities handled?

Extended visual capabilities are handled completely via the GLCapabilities
class as described throughout this section.

5.7 How are Ancillary buffers handled?

Ancillary buffer support is defined within the GLCapabilities class by using a
group of methods to correctly initialize the underlying visuals.

Depth Buffer Depth buffer configuration is achieved by using the setDepthBits () method

which takes an integerial argument specifying the number of bits the de-
sired depth buffer should have. The corollary getDepthBits() method
will return the number of depth bits in a given set of capabilities.

Stencil Buffer Configuration of the stencil buffer can be achieved using the setStencilBits ()

Accumulation Buffer

method which takes an integerial argument specifying the number of bits
of stencil required. The corollary getStencilBits() method will return
the number of stencil bits in a given set of capabilities.

setAccumGreenBits () and setAccumBlueBits() methods which config-
ure the depth of the accumulation buffers for each colour. The corollary

Accumulation buffer configuration is performed by using the setAccumRedBits (),

methods of getAccumRedBits (), getAccumGreenBits () and getAccumBlueBits ()

are also provided for querying the accumulation buffer configuration.

Auziliary Buffers Magician allows for easy configuration of the number of desired auxiliary

buffers that can be accessed via GLCapabilities. This can be achieved

18

by invoking the setAuxiliaryBuffers() method with the number of re-
quired auxiliary buffers as the sole argument. Once the visual is config-
ured, you can query the number of available auxiliary buffers by invoking
getAuxiliaryBuffers().

Stereo Buffers Magician has no built-in capabilities for stereo rendering handling as this
is typically dependent on platform- and OpenGL-specific extensions.

GLCapabilities does not query the underlying OpenGL or operating system
for values but merely reflects the values that have been set within an application
or the defaults. When a query accessor method is executed, it simply returns
the current value. After a GLContext has been initialized, the capabilities are
locked and the set*() methods have no effect.

5.8 How are Index vs. RGB buffers handled?

The GLCapabilities class allows portable and simple configuration of the
framebuffer such as the type of addressing used and the depth of the frame-
buffer.

Configuring the depth of framebuffer can be achieved by using the setColourBits ()
method which takes an integerial argument specifying the depth of the frame-
buffer.

The type of framebuffer can be configured by using the setPixelType () method
which takes the arguments of GLCapabilities.RGBA for RGB framebuffers and
GLCapabilities.INDEXED for indexed framebuffers.

5.9 How is integration with other Java applications han-
dled?

The ability to draw onto a Java AWT or Swing component by using the AWT
graphics context is only partially available with Magician not because of any
restriction Magician enforces but simply because of the differences in the way
that AWT and OpenGL render to windows.

The main problem is that the AWT graphics contexts and the OpenGL ren-
dering contexts are completely separate entities that cannot share information.
Therefore, to render both types of graphics onto a single drawing surface, one
context must be flushed, then the other one typically in the order of OpenGL
then Java.

For example, if you rendered some basic shapes to a GLComponent using a Java

AWT graphics context then flushed the OpenGL framebuffer to that compo-
nent, the results of the AWT drawing would be totally overwritten because the

19

OpenGL buffer swap or flushing operation operates on the entire window and
does not preserve previous window contents.

However, it is possible to render OpenGL onto a drawing surface then scrib-
ble over the top of that with AWT using the java.awt.Graphics class since
an AWT graphics context does not implicitly clear the context’s framebuffer
contents unless explicitly asked to do so. This should be done after OpenGL
has finished rendering, however.

By using Magician’s GLEventListener mechanism, it will be ensured that the
underlying window system and OpenGL have finished writing to the drawing
surface and framebuffer by the time you wish to use AWT graphics contexts in
your applications. Therefore, there are no real synchronization issues to worry
about.

5.10 How is remote rendering handled?

Remote rendering is essentially handled by underlying OpenGL window-system
protocols such as GLX. This requires access to underlying window information
and target X display information which a portable and abstracted API such as
JavaGL cannot directly support.

Similarly, rendering to remote displays is not necessarily possible due to the
fact that the OpenGL drawing surfaces will be embedded within a GUI and
cannot be simply separated out.

However, it is possible, at least under X Windows, to cause the entire GUI
to be displayed on a remote display. This would, however, be extremely slow in
comparison to direct rendering through a local framebuffer or shared memory
segments.

5.11 Is a new remote rendering protocol required?

A new remote rendering protocol would be required to support an abstracted
system such as JavaGL in a portable manner unless some form of extension
mechanism was added to JavaGL to implement support on a non-standard basis.

6 Multi-Threading

Multi-threading is a core part of Java rather than a nice feature tacked on wvia
an external threading APT as in C/C++. This brings to light several extremely
tricky problems from an architectural and implementation viewpoint from the

20

high-level “how do we do multi-threaded applications?” to the far more in-
sidious “how do we do multi-threaded applications that work identically on all
platforms and JVMs?”.

Magician implements its main thread-handling code internally regarding the
management of OpenGL resources across thread boundaries, but it also imple-
ments a higher-level thread strategy within the GLComponent, JGLComponent
and GLOffscreenBuffer classes. This higher-level strategy deals with simple
threading at an application level.

6.1 Are Java threads mapped 1 : 1 or n : 1 with OS
threads?

This question cannot really be answered in a concrete manner. The way in
which Java threads are mapped to OS threads is completely dependent on the
JVM being used. For example, the Microsoft JVM maps Java threads to OS
threads 1 : 1 whereas non-native-thread versions of the Sun JVM map multiple
Java threads onto a single native thread via Sun’s “Green Threads’ package.

This topic really doesn’t have a direct bearing on JavaGL from an applica-
tion development point of view as you should not have to care how the JVM
performs thread mapping. From an implementor’s point of view, it’s critical
to understand and straddle the differences in threading strategies with each
JVM. It is in this area that Magician implements its thread boundary strate-
gies within its native code segments as opposed to performing essentially JVM
low-level thread operations within Java.

6.2 If not 1:1, how do we create thread-safe JavaGL ap-
plications?

This question is difficult to unravel in a simple way. Again, from an applica-
tion development viewpoint, there should be no requirement to mess about with
threads unless you wish them in your application. JavaGL should function quite
happily on both single- and multiple-threaded applications.

Magician implements a few application level threading strategies that allows
you to quickly harness some of the power available to them through multi-
threaded rendering. The first strategy is that the GLComponent, JGLComponent
and GLOffscreenBuffer classes all define an internal threaded architecture that
allows them to be animated by simply invoking the start () method. This sim-
ply internally issues repeated calls to a registered listener’s display () method
which causes simple and repetitive animation to occur.

The second strategy revolves around the use of application-level threads written

21

by developers. Magician implements several internal mechanisms that ensure
that applications can drive rendering contexts safely from multiple threads in a
portable manner.

Therefore, Magician is totally thread-safe on all platforms and OpenGL im-
plementations.

7 Extensions

Extensions encompass functionality that has not been as yet voted into the
core OpenGL or GLU functionality, functionality that is extremely platform- or
machine-specific or functionality that is experimental in nature.

7.1 Is an extension mechanism required?

Yes, we feel that a mechanism to access extensions is required for JavaGL. Sup-
port for stereo rendering devices, for example, is generally implemented as a set
of extensions rather than being present within core OpenGL.

Similarly, extensions such as multi-texturing are extremely important if JavaGL
is to be useful in the arena of games or game editors. Furthermore, access to
hardware-specific functionality is a desirable feature that is only available via
extensions, e.g., PBuffer support.

7.2 Into what class(es) or interface(s) are extensions added?

Magician has implemented a base class called GLExtension which supplies hooks
for you to add your own extension methods into by subclassing. GLExtension
handles the basic extension library loading functionality and link checking re-
quired to ensure that versioning is correct and that the desired extensions are
present and available for use.

By doing so, we have separated extension handling from the standard OpenGL
and GLU functionality that is guaranteed to be present'.

You are required currently to write your own implementations of the extension
functions, but we are gathering together implementations of as many extensions
as possible for all supported JVMs and operating systems in order to provide a
pre-built repository of extension code that your can simply download and use
without additional effort.

Furthermore, some extensions require access to window-system information,

Depending on OpenGI, version.

22

such as the stereo rendering support on SGI machines. Magician is supplied with
an external piece of software known as the Fxtension Developer’s Kit or EDK.
This gives you access to the internal window-system information of Magician
GUI components such as GLComponent, JGLComponent and GLOffscreenBuffer
in a thread-safe and portable way.

7.3 How are optional features handled?

Magician treats optional features in exactly the same way as extensions.

8 Context Management

This section discusses the question of how higher granularity access to OpenGL
contexts and standard context operations is made available to you.

Magician implements a class called GLContext which encapsulates an OpenGL
rendering context in an abstract and platform-independent way. GLContext ob-
jects are associated on a 1 : 1 basis with drawing surfaces such as lightweight
and heavyweight components or off-screen buffers.

8.1 How are shared objects handled?

Magician handles the sharing of display lists and texture objects with an ex-
tremely straight-forward and completely abstracted way by automatically trans-
lating the different techniques found in the various window-systems.

The way in which we handle object sharing is best illustrated by an exam-
ple. If you have two GLComponents of which you wish to share the display lists
and texture objects, doing so is as simple as passing the first GLComponent to
the constructor of the second. This can be written as

/** Create the first GLComponent */
GLComponent compl =
GLComponentFactory.createGLComponent (WIDTH, HEIGHT);

/** Create the second GLComponent using the arenas of the first */
GLComponent comp2 =
GLComponentFactory.createGLComponent (compl, WIDTH, HEIGHT);

And that is all there is to it with Magician. Additional components can be
added by passing either compl or comp?2 in their constructor. Similarly, the
display lists and texture objects of lightweight JGLComponents can also be in-
termixed with GLComponents since it is in the internal GLContext object that

23

the sharing occurs.

Therefore, Magician implements an extremely simple and powerful mechanism
for providing shared object functionality that operates independently of any
platform, JVM or OpenGL differences.

9 Integration With Native OpenGL?

This section discusses some details as to how JavaGL integrates with the un-
derlying native OpenGL implementation and how any mismatches in versioning
or function linkage can be handled in a sensible way.

9.1 Are calls to JavaGL required to have a 1:1 mapping?

Generally, yes. Using the standard OpenGL functions should result in the corre-
sponding native OpenGL function being called if only for performance reasons.
In some cases, such as variant methods, some internal massaging of the data
being passed into the function might be required, but this is really an imple-
mentation issue rather than a specification issue.

9.2 How are errors handled in JavaGL?

Magician offers two forms of error handling regarding inline OpenGL function
execution failure.

glGetError () Magician fully support glGetError () for testing the error status after any
OpenGL or GLU function execution. This operates identically to C/C++
and is implemented by you at an application level.

ErrorGL / ErrorGLU Magician ships with two error-checking pipelines called ErrorGL and ErrorGLU
for OpenGL functions and GLU functions respectively. These pipelines
will automatically test for errors after each and every OpenGL function’s
execution through those pipelines. If an error is detected, a Java exception
of type OpenGLException will be thrown detailing exactly where and why
the execution of the program failed.

This is an extremely powerful and simple way to debug your applications
since you do not need to add any explicit error-handling code into your
applications at all in order to debug them. You simply need to switch to
an ErrorGL or ErrorGLU pipeline.

Another benefit to this method of error-checking is that you can sim-
ply enable or disable it on a statement-to-statement basis. This allows

24

you to switch it off when high-performance is required, or if you know one
particular section of code is prone to failure.

Therefore, Magician implements two powerful forms of error-checking that can
be used by both existing programs using their own error-checking routines or
new programs that wish to quickly and powerfully test for error conditions.

9.3 What is the behaviour when the underlying OpenGL
does not support a feature in JavaGL?

Magician internally probes for function linkage when initially loaded allowing us
to check whether or not a particular function is supported in the OpenGL imple-
mentation that has been loaded. This is necessary if Magician has been linked
against OpenGL 1.1 but is being executed on a machine with only OpenGL 1.0
installed.

If an unsupported function is invoked, Magician throws an exception of type
GLUnsupportedFunctionException which can be trapped by the application.

10 References

The following texts and software should be referenced to fully understand and
appreciate the design of Magician.

Magician 1.1.0 Magician 1.1.0 is available for evaluation download from
http://www.arcana.co.uk/products/magician

Magician Programmer’s Guide This document describes the task of program-
ming with Magician under Java in considerably more detail and provides
a complete discussion on the Magician architecture and design. It also
available from the URL shown above.

11 Caveats

Some of the features described within this document are not available for public
release in Magician 1.1.0. These features include offscreen buffers and Swing
components. These are currently in testing for release with Magician 1.2.0.

25

Contents

1 Organization
1.1 How are the methods and constants...?
1.1.1 Constants
1.1.2 Functions and Composable Pipelines
1.2 How are the classes and interfaces...”
1.21 GLand GLU
1.2.2 GLU Quadrics o
1.23 GLUNurbs o

2 Versioning
2.1 How is the native OpenGL API support queried?
2.2 How is version compatibility determined?

3 Argument Passing

3.1 How are Java types mapped to C types?
3.2 How are unsigned types converted?
3.3 How does JavaGL handle pointers?
3.4 How does JavaGL handle callbacks?
3.5 How does JavaGL handle enumerated types?
3.6 How does JavaGL handle typedefs and #defines?
3.7 Are OpenGL functions overloaded or does JavaGL use variants?

4 Java Integration
4.1 How does JavaGL access system fonts?
4.2 How does JavaGL handle class loading?
4.2.1 No Interoperation
4.2.2 Interoperation
4.3 How are differences in the native JVM handled?

5 Window System
5.1 How does JavaGL interact with Swing?
5.2 How does JavaGL handle lightweight vs. heavyweight?
5.3 How is Double-buffering handled?
5.4 How is Off-screen rendering handled?
5.5 How are Overlays handled?
5.6 How are extended visual capabilities handled?
5.7 How are Ancillary buffers handled?
5.8 How are Index vs. RGB buffers handled?
5.9 How is integration with other Java applications handled? ..
5.10 How is remote rendering handled?

—

5.11 Is a new remote rendering protocol required?

6 Multi-Threading

6.2 If not 1:1, how do we create thread-safe JavaGL applications? . .

7 Extensions
7.1 Is an extension mechanism required?
7.2 Into what class(es) or interface(s) are extensions added?

8 Context Management
8.1 How are shared objects handled?

9 Integration With Native OpenGL?
9.1 Are calls to JavaGL required to have a 1:1 mapping?
9.2 How are errors handled in JavaGL?
9.3 What is the behaviour when the underlying OpenGL does not
support a feature in JavaGL? Lo,

10 References

11 Caveats

20
21
21

22
22
22
23

23
23

24
24
24

25

25

25

