
VisualAge Generator

Getting Started

Version 4.5

GH23-0258-01

���

Note

Before using this document, read the general information under “Notices” on page vii.

Second Edition (April 2001)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 4 Release 4
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 503, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii

Trademarks ix
Terminology used in this document x

Terminology differences between Java and
Smalltalk xi

Welcome xiii

Documentation provided with VisualAge
Generator xv

Part 1. VisualAge Generator
overview 1

Chapter 1. What’s new in VisualAge
Generator 3
New function for VisualAge Generator 4.5 . . 3

Java Server Generation 3
Integrated MQSeries support 3
Web transaction enhancements 3
Remote DL/I access during test 4
OS/400 Support 4
Solaris Client/Server Support 4

New function for VisualAge Generator 4.0 . . 4
VisualAge for Java interoperability 4
WebSphere Rapid Application Development
Support 5
Functions 5
Object Scripting 5
VisualAge Generator Templates
Enhancements. 5
Solaris Runtime Support 5
Enterprise JavaBeans (EJBs) support . . . 6
Automated IC Packaging support 6
Native Oracle support 6
Enhanced Container Details part 6
Accessing remote VSAM files 6

Chapter 2. What is VisualAge Generator?. . 7
VisualAge Generator products 8

Chapter 3. VisualAge Generator Developer
Overview. 11

VisualAge Smalltalk Repository management 11
Managing VisualAge Smalltalk parts . . . 11
VisualAge Generator on Smalltalk
repository management 13
Version control 14

VisualAge for Java Repository management 15
VisualAge for Java repository management 16
VisualAge Generator on Java repository
management 17
Version control 18

Part types 20
VAGen Parts Browser 22

VisualAge Composition Editor 23
VAGen Script Wizard 26

VAGen part editors 29
Logic 29

Program Editor 29
Function Editor 30

Maps 34
Map Editor 34
Map Group Editor 35

Data 36
Record Editor 36
Table Editor 37
PSB Editor 38
Data Item Editor 39

Test facility 39
VisualAge Generator program generation . . 42

Chapter 4. VisualAge Generator Server . . 47
Running an application 47

VisualAge Generator Server for OS/2, AIX,
Windows NT, HP-UX, and Solaris . . . 47
VisualAge Generator Server for AS/400 . . 47
VisualAge Generator Server for MVS, VSE,
and VM 48

Chapter 5. Summary. 49

Part 2. VisualAge Generator
Tutorial 51

Chapter 6. VisualAge Generator Developer
on Smalltalk: a tutorial 53

© Copyright IBM Corp. 1980, 2001 iii

Creating an ENVY application 53
Importing and loading sample applications 55

Importing sample applications 55
Loading sample applications 56

Chapter 7. Tailoring preferences on
Smalltalk. 59
Program preferences 59
Database preferences 60
Test preferences 61

Chapter 8. VisualAge Generator Developer
on Java: a tutorial 65
Creating a project and a package 65
Importing and loading samples 70

Importing sample projects 70
Loading the sample projects. 71

Chapter 9. Tailoring options on Java . . . 73
Program options 73
Database options 74
Test options 75

Chapter 10. Defining a program. 79
Creating a new program 81
Creating a main function. 83
Defining a main function. 84

Summary of creating a function 88
Summary of defining a program 88

Chapter 11. Defining an SQL record . . . 89

Chapter 12. Defining a map 93
Specifying the map title 94
Specifying a prompted entry field 97
Specifying a variable message field 99
Adding a constant field 100
Defining a map array 101
Previewing and saving the map 104

Chapter 13. Running an intermediate test 105
Setting a breakpoint 105
Starting the test 108
Making changes or fixing a problem while
testing 110
Viewing the trace entries 111

Chapter 14. Defining the working storage
record 115

Chapter 15. Defining the processing logic 119
Completing the main function 119
Completing the functions 122
Completing the remaining functions . . . 127

Chapter 16. Preparing for generation . . 135

Chapter 17. Building a visual part using
VisualAge for Java 137
Before you start 137
Creating a new bean 137
Adding a VAGen Record to the visual part 139
Defining the CUSTOMER VAGen Record
Part 140
Customer Information window 141

Adding and connecting labels and fields 141
Adding the Find and Cancel buttons . . 142

Arranging visual parts 143
Using the bounding box 145

Adding an action to the Cancel button . . . 146
Testing the Customer Information window 146
Defining the address panel. 147

Creating a reusable bean 147
Adding parts to the address panel . . . 148
Promoting features of the reusable part 148

Defining a VAGen server program 149
Embedding a reusable visual part . . . 149
Defining the VAGen server application 153
Building parameters for the program . . 155
Testing the bean 157
Summary 158

Chapter 18. Building a visual part using
VisualAge Generator Developer on
Smalltalk 159
Before you start 159
Creating a new visual part 159
Adding a VAGen Record to the visual part 161
Defining the CUSTOMER VAGen Record
Part 162
Customer Information window 164
Arranging visual parts 167

Using the bounding box 169
Adding an action to the cancel push button 170
Testing the view 170
Optional exercises. 171

Setting the focus on a field. 171
Making a push button the default . . . 171
Testing the application 171

Defining a reusable visual part 172

iv VisualAge Generator: Getting Started

Creating an embeddable visual part. . . 172
Adding the Group Box 173
Populating the Address Group Box . . . 174
Laying out the Group Box 175
Promoting features of the reusable part 175

Defining a VAGen server program 176
Embedding a reusable visual part . . . 176
Defining the VAGen server application 179
Building parameters for the program . . 181
Testing the view 183
Summary 184

Part 3. Appendixes 185

Appendix A. Installing samples for
VisualAge Generator Developer on
Smalltalk 187

Importing and loading applications 188
Importing and loading configuration maps 188
Importing database tables 189
Binding to a database 189

Appendix B. Installing samples for
VisualAge Generator Developer on Java . 191
Importing and loading projects and packages 191
Importing database tables 192
Binding to a database 192

Appendix C. Samples in repositories . . 193
Associated files 196

Index 197

Contents v

vi VisualAge Generator: Getting Started

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2001 vii

viii VisualAge Generator: Getting Started

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
AD/Cycle
AIX
AS/400
CICS
CICS OS/2
CICS/ESA
CICS/MVS
CICS/VSE
CICS/6000
COBOL/370
COBOL/400
DataJoiner
DB2
DB2/2
DB2/400
DB2/6000
Distributed Relational Database Architecture
DRDA
IBM
IBMLink
IMS
IMS/ESA
Language Environment
Operating System/2
OS/2
OS/400
Presentation Manager
SAA
SQL/400
SQL/DS
TeamConnection
Virtual Machine/Enterprise Systems Architecture
VisualAge
VisualGen
VSE/ESA
VM/ESA

© Copyright IBM Corp. 1980, 2001 ix

The following terms are trademarks of other companies:

Micro Focus Micro Focus Limited
Micro Focus COBOL Micro Focus Limited
Oracle Oracle Corporation
PowerBuilder PowerSoft Corporation
Sybase Sybase Corporation
ENVY Object Technology, Inc.
HP-UX Hewlett-Packard

Microsoft, Windows, VisualBasic, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Solaris, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.
v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for

AIX, CICS for Windows NT, and CICS for Solaris.
v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.
v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to

message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:

x VisualAge Generator: Getting Started

– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.
v References to VM batch apply to any batch facility running on VM.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.
v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal

Database (UDB) for AIX Version 5.
v Windows applies to Windows 95, Windows 98, Windows NT, and

Windows 2000.
v Unless a specific version of Windows NT is referenced, statements

regarding Windows NT also apply to Windows 2000.

Terminology differences between Java and Smalltalk
VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Trademarks xi

Table 1. Terminology differences between Java and Smalltalk (continued)

Java term Combined Java/Smalltalk
term

Smalltalk term

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

xii VisualAge Generator: Getting Started

Welcome

Welcome to VisualAge Generator—a revolutionary development environment
that offers you a quick and easy way to create client/server and standalone
applications.

VisualAge Generator gives you one tool with the power to create both client
and server applications that run in both workstation and host environments. It
also provides access to VisualAge Generator’s patented
VisualAge/PowerServer technology. This technology enables developers to
use VisualAge Generator or a tool of their choice (for example, PowerBuilder,
VisualBasic, VisualAge for Smalltalk, or VisualAge for Java) to build client
applications and then use VisualAge Generator to quickly build powerful
distributed server applications that scale to support thousands of concurrent
users.

See your application development capabilities expand with VisualAge
Generator. For more information about VisualAge Generator, visit our web
site at: http://www.ibm.com/software/ad/visgen.

© Copyright IBM Corp. 1980, 2001 xiii

xiv VisualAge Generator: Getting Started

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM and from the VisualAge

Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

4. This document is included when you order the VisualAge Generator Server product CD.

© Copyright IBM Corp. 1980, 2001 xv

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

xvi VisualAge Generator: Getting Started

Part 1. VisualAge Generator overview

© Copyright IBM Corp. 1980, 2001 1

2 VisualAge Generator: Getting Started

Chapter 1. What’s new in VisualAge Generator

New function for VisualAge Generator 4.5

VisualAge Generator V4.5 introduces functional enhancements.

Java Server Generation
VisualAge Generator 4.5 enables you to run Java programs under VisualAge
Generator Server. With Java Server support, users can generate main batch,
called batch, and Web transaction program parts into Java source code. The
Java code is deployed to the target machine and compiled and executed in an
e-business environment where it can interact with other Java program parts.

When you generate a main batch or a called batch program as a Java Server,
you can also generate a session Enterprise Java Bean (EJB). The session bean
enables the program to participate in Enterprise Java Server (EJS) transactions.

Integrated MQSeries support
The integration of MQ Support into VisualAge Generator allows message
queues to be accessed as files by using the ADD and SCAN I/O options
instead of MQSeries API calls. Support includes:
v Automatic connection to the queue manager
v Automatic opening and closing of queues and disconnection at end of main

program
v Optional termination on hard errors
v Automatic return code checking
v Transaction control using EZECOMIT and EZEROLLB functions
v Automatic data conversion of messages based on the message record

structure
v Optional access to MQ control blocks for specifying MQ options that are

not selectable using the record level interface

Web transaction enhancements
Web transaction development has been enhanced in the following ways:
v Web transaction generation and the GatewayServlet now enable Web

transactions for multiple languages. A resource bundle can be generated for
a UI record that contains all titles, labels, and help text required by the UI
record. Additional resource bundles can be created for other languages that
may be used. The GatewayServlet will load the resource bundle for the
language of the client if that resource bundle is installed at the gateway.

v The ability to run a mixture of completed (deployed) Web transactions and
Web transactions under development is now supported. The completed

© Copyright IBM Corp. 1980, 2001 3

Web transactions are run in an application server environment while the
Web transactions being developed are run in ITF.

v Web transaction JSP generation is enhanced to, as an option, add default
values for fields displayed for a UI record. JSP designers can display
modifications made to the generated JSPs without running the Web
transaction that would normally provide data formatted by the JSP.

v UI records are enhanced to allow developers to specify a general UI Record
edit function that is run whenever any UI record field is changed in
response to the display of the UI record. This makes it easier to perform
cross-field edits.

Remote DL/I access during test
When you are testing a program that includes a call to DL/I, a new, built-in
feature provides remote DL/I access on MVS, where VisualAge brings up an
IMS batch environment. You can access DL/I from either Windows NT or
OS/2, even if your organization lacks an IMS Transaction Manager on MVS.

Although DL/I access is on MVS, the test facility simulates the runtime
behavior of any of several target environments.

OS/400 Support
VisualAge Generator now provides:
v Generation of Web transactions for the OS/400 platform
v Ability to call COBOL server programs from generated Java programs.

Solaris Client/Server Support
Solaris is now supported as the 2nd-tier in a 3-tier configuration with TCP/IP,
CICS Client, IPC, and Direct as supported protocols. Solaris can also now act
as a client using C++ TUIs or Java programs.

New function for VisualAge Generator 4.0

VisualAge Generator V4.0 introduces both functional enhancements and new
development and runtime platforms.

VisualAge for Java interoperability
VisualAge Generator is fully integrated into the VisualAge for Java Enterprise
development environment. In the Developer on Java platform:
v VisualAge Generator 4GL parts can be created and stored in a VisualAge

for Java development environment.
v VisualAge Generator 4GL parts and logic as well as Java methods can be

used in a VisualAge for Java component.
v VisualAge Generator 4GL parts used in a VisualAge for Java component

are generated as native Java for use at runtime.

4 VisualAge Generator: Getting Started

WebSphere Rapid Application Development Support
This new programming model provides traditionally skilled programmers a
fast path to creating scalable e-business systems using VisualAge Generator,
WebSphere Studio, and WebSphere Application Server. This new function
enables programmers to develop main transaction programs, using 4GL
programming techniques, that can interact with end users through a web
browser.

Functions
In VisualAge Generator V4.0, functions replace statement groups and
processes to handle the logic for a program. During migration to V4.0, the
Statement Group parts and Process parts are converted to Function parts.

A Function part is used the same way as a Process or Statement Group part
with the following support:
v Parameters
v Local storage
v Development of true reusable 4GL code

Object Scripting
In VisualAge Generator V4.0, you can access non-VisualAge Generator objects
from within the 4GL through the synchronous execution of a Smalltalk or Java
method (Object Script). A new EZE word, EZESCRPT, allows the you to make
a call to a Smalltalk or Java method or an Enterprise JavaBean from the 4GL
logic.

A new set of wizards and help guide you through the task of building basic
method logic (object scripts) in the target language (Java or Smalltalk).

VisualAge Generator Templates Enhancements
VisualAge Generator Templates now provides:
v Generation of Java-based systems
v Improved integration with VisualAge Generator
v Implementation of a VisualAge Generator Templates on Java version of the

information model and generators
v Redesigned user interface to improve both entity definition and information

model source management.

Solaris Runtime Support
VisualAge Generator programs can be generated as C++ programs that
support:
v Both the native operating system and CICS-based execution
v DB2, Oracle, and ODBC database access

Chapter 1. What’s new in VisualAge Generator 5

Enterprise JavaBeans (EJBs) support
VisualAge Generator support for Enterprise Java Beans (EJBs) will allow Java
clients to call VisualAge Generator server programs through an intermediary
session bean.

Support for calling server programs through an EJB session bean is only
provided in VisualAge Generator Developer on Java development platform.

Automated IC Packaging support
VisualAge Generator support for IC packaging feature allows you to package
your GUI system in a modular way. Each ENVY application containing GUIs
can be packaged into a separate file (typically 100K-1Mb in size) called an IC
(Image Component) file which can be repackaged and distributed separately.
Also, the runtime system loads these ICs dynamically as needed.

Native Oracle support
Generated programs can now access Oracle databases directly on CICS for
AIX and CICS for Windows NT platforms.

Enhanced Container Details part
The Container Details part has been enhanced for Smalltalk GUI clients to
support proportional column widths, tabbing between cells, multiline
headings, and common controls at the cell level.

Accessing remote VSAM files
Now when you test programs with the Interactive Test Facility, you can access
VSAM files that reside on a remote OS/390 system.

6 VisualAge Generator: Getting Started

Chapter 2. What is VisualAge Generator?

VisualAge Generator is a high-end system development environment for
building and deploying e-business and multitier client/server applications.
This award winning OO/4GL application development solution exploits the
use of existing system resources and provides developers with a highly
productive visual programming environment. VisualAge Generator also
provides:
v An integrated, interpretive test environment which allows developers to test

their entire N-tier solution (one, two, three or more tiers) on a single
development workstation (Windows NT or OS/2) before deployment and
use intelligent dynamic application partitioning to recommend the best
server deployment options

v Optimized source code generated in either C++ or COBOL depending on
the target platform which is then compiled to high-performance object code

v Generation of server programs into JavaBeans and EJBs
v Automatic generation of complete application systems using templates
v Support for legacy systems as your enterprise transitions to higher

performance solutions

Programs developed with VisualAge Generator can be written independent of
the underlying database, operating system, or transaction processing monitor.
You can mix and match their network client/server applications in an open
system environment. No special coding is required – VisualAge Generator
hides all the complexities of the databases, operating systems, TP monitors,
and communications protocols.

This open enterprise capability is further extended by VisualAge Generator’s
patented VisualAge/PowerServer technology. VisualAge/PowerServer enables
companies to use VisualAge Generator or a tool of their choice (for example,
PowerBuilder, VisualBasic, VisualAge Smalltalk, or VisualAge for C++) to
build the client portions of their client/server systems. Then they can use
VisualAge Generator to build powerful distributed server applications that
scale to support thousands of concurrent users with high levels of reliability,
performance, and portability while accessing their critical enterprise data.

With VisualAge Generator’s Rapid Application Development (RAD), you can
quickly develop, test, and deploy Web transactions:programs for the Internet or
a corporate intranet. This technology has several benefits:
v You can develop web programs more quickly than with other technologies.

© Copyright IBM Corp. 1980, 2001 7

v You can use existing skill in writing procedural code, using the language
with which all VisualAge Generator programs are developed.

v You can develop simpler, more easily maintained code.
v You can convert existing VisualAge Generator programs to provide service

on the web.
v Your organization can use personnel more effectively, assigning one team to

work on the business logic while another team works on the user interface.

VisualAge Generator products

VisualAge Generator is a workstation-based set of products for application
development that provides state-of-the-art integrated facilities to fully define
and interactively test business applications. It includes a powerful workbench
that allows the creation of various parts of an application (data specifications,
user interface definitions and business logic) in a full multitasking and
graphical environment.

The following are the VisualAge Generator products:
v VisualAge Generator Developer Version 4.5

With VisualAge Generator Developer you can define, test, and generate
programs and various types of user interfaces. VisualAge Generator
Developer is fully integrated with both VisualAge for Java and VisualAge
Smalltalk and takes full advantage of their object-oriented source code
management system and state-of-the-art team development environment.
Using the common visual builder, programmers visually define GUI
layouts, user actions, and how the occurrence of events trigger execution of
business logic, data access or UI changes. A layout editor allows the
programmer to quickly build sophisticated GUI windows by simply
choosing parts from a rich set of GUI controls, such as entry fields complete
with formatting and validation rules, list boxes that automatically
implement scrolling, push buttons, and radio buttons. Then these
application systems can be generated for various run-time environments.
VisualAge Generator Developer generates:
– COBOL programs for the CICS for OS/2, OS/400, VM CMS, VM batch,

MVS CICS, MVS/TSO, MVS batch, IMS/VS, IMS BMP, VSE CICS, and
VSE batch environments.

– C++ programs for the OS/2, Windows NT, CICS for Windows NT, AIX,
CICS for AIX, HP-UX, Solaris, and CICS for Solaris environments.

v VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and
Solaris Version 4.5
VisualAge Generator Server for OS/2 enables you to install and run
generated COBOL programs in the CICS for OS/2 environment and C++
programs in the OS/2 environment.

8 VisualAge Generator: Getting Started

VisualAge Generator Server for AIX enables you to install and run C++
programs in the AIX and CICS for AIX environments.
With VisualAge Generator Server for Windows NT, you can prepare, install,
and run C++ programs in the CICS for Windows NT, Windows NT, and
Windows 2000 environments.
With VisualAge Generator Server for HP-UX, you can prepare, install, and
run C++ programs in the HP-UX environment.
With VisualAge Generator Server for Solaris, you can prepare, install, and
run C++ programs in the CICS for Solaris and Solaris environments.

v VisualAge Generator Server for AS/400 Version 4.4
VisualAge Generator Server for AS/400 enables you to install and run
COBOL programs in the OS/400 environment.

v VisualAge Generator Server for MVS, VSE, and VM Version 1.2
VisualAge Generator Server for MVS, VSE, and VM enables you to prepare,
install, and run generated COBOL programs in the following environments:
– MVS CICS
– MVS/TSO
– MVS BATCH
– IMS/VS
– IMS BMP
– VM CMS
– VM BATCH
– VSE CICS
– VSE BATCH

These programs can be standalone host programs or server programs that
communicate with client programs through the provided communications
support.

Chapter 2. What is VisualAge Generator? 9

10 VisualAge Generator: Getting Started

Chapter 3. VisualAge Generator Developer Overview

VisualAge Generator Developer is a complete application development
environment that enables you to create, manage, test, and generate programs
for use on various platforms. You can build parts and store them in the source
code repository where they can be shared by multiple developers.

As you develop, VisualAge Generator Developer provides you with a
program diagram that shows the hierarchical structure of the program’s
components. This diagram is especially helpful to developers working on
more than one program. With the diagram, you can easily determine what
you have done and what you have left to do. VisualAge Generator Developer
maintains database and program test preferences for you in profiles you set
up when you start. Both features can help you respond quickly to changing
requirements.

VisualAge Generator Developer also provides a test facility for you to
interactively test your programs and remove errors as you develop. After
testing, you can generate a program for COBOL or C++, depending on the
intended run-time environment.

Packaged with VisualAge Generator Developer is a fully functioning
object-oriented language (Java or Smalltalk) that you can use for certain tasks
or use to support a phased, enterprise-wide move to an component-based
development model.

VisualAge Smalltalk Repository management

VisualAge Generator code is managed by the same built-in library system
used by VisualAge Smalltalk. This system, called ENVY, facilitates
team-development and code reuse by operating in concert with
object-oriented principles and providing programmers with an integrated
environment (Figure 1 on page 13) in which they can develop, share, and
manage source code. Code is managed as methods (or parts), classes,
applications, and configuration maps. Images enable developers to customize
their environments and changes to parts in the repository are managed as
application editions and versions.

Managing VisualAge Smalltalk parts
In this team-development environment VisualAge Generator and VisualAge
Smalltalk source code is managed at four levels:

© Copyright IBM Corp. 1980, 2001 11

Methods
are pieces of executable code that implement the logic of a particular
message for a class. Methods are the smallest unit of source code that
the repository maintains. Each time a method is changed and saved,
an edition of its source code is saved in the repository, so that
individual changes can be tracked and managed as classes are
developed.

Classes
are specifications that determine the attributes and behavior of
software objects. Classes, which typically contain several methods, are
also tracked in the repository. Developers can share versions of classes
and use them as templates to standardize objects across code libraries.
All VisualAge parts are stored as classes.

ENVY applications
are functionally related sets of defined and extended classes that
provide developers with reusable pieces of functionality. Developers
can also create and share versions of applications. Loaded applications
are listed in the Applications pane of the VisualAge Organizer
window.

Configuration maps
are named groups of application editions that are usually associated
with a product or a major component of a product. Configuration
maps provide an easy way for developers to import and export sets of
applications and share them with other development teams.

12 VisualAge Generator: Getting Started

For more information on VisualAge for Smalltalk repository management,
refer to the IBM Smalltalk User’s Guide.

VisualAge Generator on Smalltalk repository management
The VisualAge Generator team-development environment (Figure 2 on
page 14) uses the same library management system as VisualAge Smalltalk,
but VisualAge Generator adds some enhancements to the environment, so
there are a few terms that apply to VisualAge Generator development only:

VAGen parts
are units of VisualAge Generator 4GL code that are associated with a
Smalltalk method in an extension of a VAGen part class. VAGen parts
are listed by part type in the VAGen parts pane (available only if you
have installed VisualAge Generator) in the VisualAge Organizer
window. You can also look at an alphabetical list of VAGen parts
associated with a loaded application by opening the VAGen Parts
Browser. You can open a VAGen part by double-clicking on its name
in either window.

VAGen part classes
are extensions of a VisualAge part class. Like VisualAge part classes,
they are used as templates for creating parts to standardize object
specifications, attributes, and behavior for different part types. VAGen
part classes listed in the Parts pane in the VisualAge Organizer
window have as the first five letters of their class names ″VAGen.″

Smalltalk
classes

ENVY
applications

Figure 1. VisualAge Organizer window

Chapter 3. VisualAge Generator Developer Overview 13

Version control
Unlike traditional source code management systems, where source files are
checked out and checked in, VisualAge’s access control authorizes groups of
developers to work on specific part classes, applications, and configuration
maps. Developers customize their workspaces by loading copies of the
applications (editions) containing the parts they need to work on into their
image. During the development cycle, programmers create open editions and
scratch editions of applications to make changes to code and run tests. But
each application, and each part class has a single owner, or manager, who is
responsible for releasing stable versions at appropriate times.

Familiarity with the following terms is essential to understanding how to use
ENVY to manage your code libraries:

Image In the simplest terms, an image is a customized view of items in the
repository, limited to the applications that contain the parts you need
to change or test. All developers have an image file stored on their
workstations. The default image file name is abt.icx. When you save
your image, this file is updated to track which editions and versions
of applications you have loaded. The next time you start VisualAge

Smalltalk classes
VisualAge parts
VAGen part classes

ENVY
applications

Open
edition

VAGen parts

Scratch
edition

Versioned
application

Figure 2. VisualAge Organizer Window: VAGen Part Classes and Parts.

14 VisualAge Generator: Getting Started

Generator, all the applications that were loaded into your image when
you saved it last will be listed in the VisualAge Organizer window
and in the VAGen Parts Browser.

Edition
In general, editions are applications that are subject to change. The
two kinds of editions you will encounter most often are:
v Open editions—applications that have not been frozen. You can

save parts to loaded open editions, and you can recognize them by
the date and time stamp next to their names in the Applications
pane of the VisualAge Organizer window. Open application
editions can have new classes added to them, classes deleted from
them, and different versions of existing classes released into them.

v Scratch editions—copies of applications that are created
automatically when you save changes to an edition that is not open.
Scratch editions allow you to make changes for testing existing
classes in applications owned by other developers, but you cannot
add new classes to a scratch edition. Unlike open editions, scratch
editions have a version number in double angle brackets (<<>>)
instead of a date and time stamp beside the application name in the
Applications pane of the VisualAge Organizer window. Changes
made to scratch editions only exist in the image of the developer
who made them and they cannot be released into an application
that does not have an open edition.

Version
Versions are editions that have been frozen by the application
manager to prevent further changes to that level of code. They have
version numbers (without angle brackets) instead of date and time
stamps next to their names in the Applications pane of the VisualAge
Organizer window.

For hands-on practice loading applications, creating new editions, and other
repository management tasks, complete the steps outlined in “Chapter 6.
VisualAge Generator Developer on Smalltalk: a tutorial” on page 53.

VisualAge for Java Repository management

VisualAge Generator code is managed by the same built-in library system
used by VisualAge for Java. This system facilitates team development and
code reuse by operating in concert with object-oriented principles and
providing programmers with an integrated environment in which they can
develop, share, and manage source code. Code is managed as methods,
classes and interfaces, projects, and packages. Workspaces enable developers
to customize their environments. Changes to parts in the repository are
managed as editions and versions.

Chapter 3. VisualAge Generator Developer Overview 15

VisualAge for Java repository management
In this team-development environment, VisualAge Generator and VisualAge
for Java source code is managed at four levels:

Methods
are pieces of executable code that implement the logic of a particular
behavior for a class. Methods are the smallest unit of source code that
the repository maintains. Each time a method is changed and saved,
an edition of its source code is saved in the repository so that
individual changes can be tracked and managed as classes are
developed.

Classes and Interfaces
are specifications that determine the attributes and behavior of
software objects. Classes typically contain several attributes and
methods. Interfaces specify a set of behaviors that unrelated objects
can use to interact with each other without either object having to
know the full specification of the other. Both classes and interfaces are
tracked in the repository. Developers can share versions of classes and
interfaces and use them as templates to standardize objects across
code repositories. All VisualAge for Java beans are stored as classes or
interfaces.

Packages
are functionally related sets of classes and interfaces that provide
developers with reusable pieces of functionality. Developers can also
create and share versions of packages. Loaded packages are listed
under the Packages tab in the Workbench. They are also listed under
their individual projects under the Projects tab.

Projects
are named groups of packages that are usually associated with a
product or a major component of a product. Projects provide an easy
way for developers to import and export sets of packages and share
them with other development teams. The hierarchical relationship
between projects, packages, and classes and interfaces is shown under
the Projects tab in the Workbench.

16 VisualAge Generator: Getting Started

For more information on VisualAge for Java repository management, refer to
the online help.

VisualAge Generator on Java repository management
The VisualAge Generator team-development environment uses the same
repository management system as VisualAge for Java, but VisualAge
Generator adds some enhancements to the environment so there are a few
terms that apply to VisualAge Generator development only:

VAGen parts
are units of VisualAge Generator 4GL code that are associated with a
Java method in a VAGen part class. VAGen parts are listed in the
VisualAge Generator Parts Browser and are displayed in the VAGen
Parts pane depending on your selections in the Types pane. To display
the VAGen Parts Browser, select the Workspace menu, then VAGen
Parts Browser. You can open a VAGen part by double-clicking on its
name in the Parts Browser.

VAGen part classes
are Java classes that are used as templates for creating parts to

Figure 3. VisualAge for Java Workbench

Chapter 3. VisualAge Generator Developer Overview 17

standardize object specifications, attributes, and behavior for different
part types. VAGen part class names begin with ″VAGen.″

Version control
Unlike traditional source code management systems, where source files are
checked out and checked in, VisualAge for Java’s access control authorizes
groups of developers to work on specific classes, packages, and projects.
Developers customize their environment by adding to their workspace copies
of packages (editions) that contain the classes they need to work on. During
the development cycle, programmers create open editions and scratch editions
of packages to make changes to code and run tests. But each package and
each class has a single owner, or manager, who is responsible for releasing
stable versions at appropriate times.

Familiarity with the following terms is essential to understanding how to
manage your code repository:

Workspace
In the simplest terms, a workspace is a customized view of items in
the repository, limited to the packages that contain the parts you need
to change or test. All developers have a file stored on their
workstations that defines their workspace. The default image file
name is ide.icx. When you save your workspace, this file is updated

Versioned
project

Scratch
edition

Open
editions

Figure 4. VisualAge for Java Workbench: VAGen Part Classes and Parts

18 VisualAge Generator: Getting Started

to track which editions and versions of projects and packages you
have added. The next time you start VisualAge Generator, all the
projects and packages displayed in your workspace when you saved
it last will be listed on the Projects and Packages tab of the
Workbench.

Edition
In general, editions are packages that are subject to change. The two
kinds of editions you will encounter most often are:
v Open editions—packages that have not been frozen. You can save

classes to open editions in your workspace, and you can recognize
them by the date and time stamp enclosed in parentheses next to
their names in the Workbench. Open package editions can have
new classes added to them, classes deleted from them, and different
versions of existing classes released into them.

Note: Select the Show Edition Names button on the toolbar to
include edition information beside package and project
names.

v Scratch editions—copies of packages that are created automatically
when you save changes to an edition that is not open. Scratch
editions allow you to make changes for testing existing classes in
packages owned by other developers, but you cannot add new
classes to a scratch edition. Unlike open editions, scratch editions
are displayed in the Workbench with a version number in single
angle brackets (<>) beside the edition name. Changes made to
scratch editions only exist in the image of the developer who made
them and they cannot be released into a package that does not have
an open edition.

Version
Versions are editions that have been frozen by the application
manager to prevent further changes to that level of code. They have
version numbers (without angle brackets) instead of date and time
stamps next to their names in the Packages pane of the VisualAge for
Java Workbench.

For hands-on practice loading packages, creating new editions, and other
library management tasks, complete the steps outlined in “Chapter 8.
VisualAge Generator Developer on Java: a tutorial” on page 65.

Chapter 3. VisualAge Generator Developer Overview 19

Part types

Parts used with VisualAge Generator are described in the following table.

Part type Part class Part description

Program VAGenPrograms A program is a set of related parts that
VisualAge Generator can generate into
executable form.

Function VAGenFunctions A function is a block of logic consisting of a
set of statements. Functions can be used as
subroutines or to perform input or output
(I/O) operations. Processing operations or I/O
options are provided as high-level verbs. Some
examples are:
v Converse – display a screen and wait for

input
v Add – add information to a file or database
v Scan – read information from a file or

database

Map VAGenMaps A map defines the layout and characteristics
for all or part of the information presented on
a character-based screen or printout when
users run associated programs.

Map Group VAGenMapGroups Each map is part of a named collection called
a map group. All maps used in an application
must be in the same map group, except for
help maps, which can be in a separate map
group.

Record VAGenRecords A record is a collection of data items (a data
structure) organized to serve a specific
purpose. Records are analogous to rows in a
database table. Records can be used to describe
the layout of information in memory, in a
database table, or in a file.

Table VAGenTables A table is a collection of related data items that
can be used to edit data, store messages that a
program issues, and store information for
reference by an application system.

PSB VAGenPSBs A program specification block (PSB) describes
the hierarchical database structures that an
application system uses to access DL/I
databases.

Data Item VAGenDataItems A data item describes the characteristics of a
single unit of information in a record or table.

20 VisualAge Generator: Getting Started

Part type Part class Part description

Generation
Options

VAGenOptions Generation options are parts managed in the
library that list specifications used to
customize generation for different
environments.

Linkage
Table

VAGenLinkages A linkage table lists specifications required for
calls to non-VisualAge Generator programs or
calls to VisualAge Generator servers on remote
systems.

Resource
Associations

VAGenResources Resource associations specify default overrides
used during generation of COBOL or
CICS/6000 programs that use printer maps or
serial, indexed, or relative files.

Bind
Controls

VAGenBindControls Bind controls list commands that control DB2
applications. They are used in the COBOL
program generation process.

Link Edit VAGenLinkEdits Link edits contain program-specific control
statements used in generation of programs that
run in MVS, VSE, and VM environments and
call or are called by other programs using
static COBOL calls.

Chapter 3. VisualAge Generator Developer Overview 21

VAGen Parts Browser

The VAGen Parts Browser provides you with a complete listing of all of the
VAGen parts loaded in your workspace/image. You can also control how the
list is displayed. Using the Parts Browser, you can display VAGen parts by
package/application or part type. You can also sort them by name.

If you are using VisualAge Generator Developer on Java, you can open the
VAGen Parts Browser from the Workbench by selecting Workspace→Open
VAGen Parts Browser.

If you are using VisualAge Generator Developer on Smalltalk, you can open
the VAGen Parts Browser from the VisualAge Organizer window by selecting
VAGen Parts→Parts Browser.

To begin building new VAGen parts, you’ll use the New VAGen Part window,
shown in Figure 6 on page 23.

In this window, you’ll name your new part, choose the part type, and select a
package/application to contain it.

If you are using VisualAge Generator Developer on Java, you can display the
New VAGen Part window from the VAGen Parts Browser by selecting VAGen
Parts→Add→New Part.

Figure 5. VAGen Parts Browser

22 VisualAge Generator: Getting Started

If you are using VisualAge Generator Developer on Smalltalk, you can display
the New VAGen Part window from the VAGen Parts Browser by selecting
VAGen Parts→New.

For hands-on practice developing VAGen parts, complete the steps outlined in
“Part 2. VisualAge Generator Tutorial” on page 51.

VisualAge Composition Editor

The VisualAge Composition Editor, shown in Figure 7 on page 24, is used to
build VisualAge visual and nonvisual parts. A visual part has a visual
representation at run time. It can include other visual parts, such as windows,
labels, text parts (text entry fields), and push buttons.

Figure 6. New VAGen Part

Chapter 3. VisualAge Generator Developer Overview 23

It can also include nonvisual parts—parts that don’t have visual
representations at run time. A set of VAGen nonvisual parts are available to
be used with the Composition Editor. As you build your user interface, the
Composition Editor enables you to visually define connections that control
how that interface communicates with other parts.

Figure 7. Composition Editor on Smalltalk

24 VisualAge Generator: Getting Started

The Composition Editor provides you with the following:

Tool bar
The horizontal row of icons that appear underneath the menu bar. The
tool bar provides convenient access to common functions, such as
aligning and sizing your visual parts.

Beans/Parts palette
The two vertical columns of icons that appear on the left side of the
screen contain the parts you use to construct your graphical user
interface. The left column is the set of part categories, and the right
column is the set of parts within the selected part category.

Figure 8. Composition Editor on Java

Chapter 3. VisualAge Generator Developer Overview 25

Status area
The scrollable static text field at the bottom of the screen. This field
displays information about your last definition operation or your
current selection.

Free-form surface
The large open area in the middle of the screen where you place parts
to visually define a GUI.

You can specify the user interface characteristics and logic flow visually by
doing the following:
v Selecting visual parts from the Beans/Parts palette and placing them on the

free-form surface. Visual parts, such as push buttons, entry fields, and
windows, are the basic components of user interfaces.

v Defining connections between visual parts and VisualAge Generator parts.
For example, the GET-NEXT VAGen function is connected to the Find
button. When users click the Find button, the GET-NEXT function will be
performed.

v Specifying settings options to further refine the appearance and function of
the part.

v Building VisualAge Generator parts, such as records and tables, to be used
as your data structures and functions and programs to be used as the
procedural logic for your application systems.

Refer to the online help for VisualAge for Java or the VisualAge for Smalltalk
User’s Guide for more information on designing visual parts.

For hands-on practice building visual parts, complete the steps outlined in
“Chapter 17. Building a visual part using VisualAge for Java” on page 137 or
in “Chapter 18. Building a visual part using VisualAge Generator Developer
on Smalltalk” on page 159.

VAGen Script Wizard
The VAGen Script Wizard (shown in Figure 9 on page 28) is an extension
provided by VisualAge Generator to augment the capabilities of the
Composition Editor. It enables you to quickly and easily compose simple
scripts that get or set property values, or invoke methods in your parts. These
scripts use the syntax of an object-oriented language (shipped as part of your
development environment) without requiring you to master a new
programming language. These scripts can be invoked from VAGen functions
and give you access to non-VisualAge Generator parts, like graphical user
interface objects or Enterprise JavaBeans (EJBs), during execution of your 4GL
logic. Using the wizard can help reduce the number of static connections you
make between objects on the free-form surface. It simplifies maintenance and
can improve the performance of your visually composed clients.

26 VisualAge Generator: Getting Started

Before you compose a script, lay out your parts visually and save the part or
bean. To display the wizard, if you are using VisualAge Generator on Java,
select the Members tab, followed by the Members menu, and then VAGen
Script Wizard. If you are using VisualAge Generator on Smalltalk, select the
Script Editor icon, followed by the VAGen Script Wizard icon.

Methods developed with the VAGen Script Wizard are called VAGen scripts
or object scripts and are associated with the instance of the class (the GUI
client) in which you develop them. You can access these scripts by including
the reserved word EZESCRPT in a VAGen function and specifying the literal
script name or a data item that contains the script name. Scripts invoked this
way cannot require arguments. EZESCRPT cannot be used to pass arguments
to your scripts, but you can share information between your GUI client and
your 4GL parts by storing data in a record placed on the free-form surface of
the GUI client where you are developing the script.

The VAGen Script Wizard steps you through the process of naming a script,
declaring local variables, choosing patterns (including get
properties/attributes, set properties/attributes, invoke method/send message,
and perform action), and selecting objects to get data from and pass data to.
For example, if a condition specified in your VAGen function is not met by
input received from a GUI client, you can indicate which field is in error by
using a VAGen Script to change the color of that field.

Chapter 3. VisualAge Generator Developer Overview 27

Areas
The VAGen Script Wizard has five areas on each window that provide you
with information or allow you to enter data and make selections:

Action text
The action text is displayed at the top of each panel and directs you to
make a selection or type text for the current step.

Assist mode text
The Assist mode text provides you with additional information about
what to do in each step and, where appropriate, gives examples.
When you start the VAGen Script Wizard, the Assist mode text is
displayed. You can turn it off and on by selecting the Assist Mode
button.

Work area
The work area displays a set of fields where you specify logic and
data to be used in your script. Depending on the step you are
working on, different fields are displayed and the fields change as

Action
text

Work
area

Assist
mode text

Script
area

Status
area

Figure 9. VAGen Script Wizard

28 VisualAge Generator: Getting Started

you develop your script. See the section on the panel you are working
with for more specific information about this area.

Script area
The script area displays the current state of your script. This area is
for display only, but if you know the syntax for the statement you
want to add, you can select Free-form statement from the work area
and type statements directly into an edit window.

You can also use the Back button to sequentially remove changes that
you added, change a step, and then use the Next button to add your
selections back in.

Status area
The status area located near the bottom of the window provides you
with valuable information about your selections as you make them.
For example, if the Next button is still not available after you make a
selection, the status bar prompts you for another action.

VAGen part editors

The editors enable you to create the various parts of a program, such as
business logic, interface definitions, and data specifications. The editors detect
and prevent errors before you test them or generate applications by providing
statement templates and validation support.

Each VAGen part belongs to one of the following categories:
v Logic
v Maps
v Data

Logic

Use the logic editors to build VAGen parts that can access records, display
user interfaces, manipulate data, and perform decision-making processes.
VAGen logic parts are programs and functions that use the data and user
interface parts you define.

Program Editor
A VAGen program contains logic, data, and elements that define the
program’s structure.

Using VisualAge Generator Developer, you can view and work with the
hierarchical structure of a program in a graphical form called a program
diagram. Figure 10 on page 30 shows an example of a program diagram.

Chapter 3. VisualAge Generator Developer Overview 29

From the program diagram you can get to all the related VAGen parts.
Double-click on any VAGen part to open it in the appropriate editor. You can
also add various new parts to the Program Editor using one of many context
menus, or create new parts by selecting File→New to display the New VAGen
Parts window.

For hands-on practice defining a program, complete the steps outlined in
“Part 2. VisualAge Generator Tutorial” on page 51.

Function Editor
Logic is defined in groups of statements called functions. A VAGen program
consists of functions and their associated data and user interface parts. Each
function contains statements that handle the data for a specific task.

Processing logic in VisualAge Generator does the following:
v Accesses files and databases
v Moves data among records, user interface parts, files, and databases
v Displays character-based screens and prints reports
v Performs arithmetic calculations and other types of operations

Figure 10. Program Diagram

30 VisualAge Generator: Getting Started

You can also customize SQL statements and add them to some functions
using the SQL Statement Editor. Depending on the SQL statement you want to
edit, a window like the one shown in Figure 12 on page 32 will be displayed
for you. For more information on which clauses you can modify in each SQL
statement, refer to “SQL Statement Editor” in the VisualAge Generator
Developer help facility index.

Figure 11. Function Editor

Chapter 3. VisualAge Generator Developer Overview 31

Templates are provided for all VisualAge Generator statements to help you
create your statements as well as to help you avoid introducing syntax errors.
Figure 13 on page 33 shows an IF statement template.

Figure 12. SQL Statement Editor

32 VisualAge Generator: Getting Started

The Paste Part Name window provides you with a list of VAGen parts that
are loaded into your workspace/image. Use this window to add the names of
parts you want to use in functions. Figure 14 on page 34 shows a list of
functions.

Figure 13. IF Statement Template

Chapter 3. VisualAge Generator Developer Overview 33

For hands-on practice defining functions, complete the steps outlined in
“Part 2. VisualAge Generator Tutorial” on page 51.

Maps

Use the map editor to define the layout and characteristics of character-based
user interfaces and printed reports.

Map Editor
Map Editor provides you with a wide range of editing capabilities needed to
define character-based user interfaces. Like the Composition Editor, the Map
Editor’s parts palette gives you predefined components like variable fields,
constants, and arrays for designing SBCS, DBCS, and mixed format screens.

Figure 15 on page 35 shows a sample map.

Figure 14. Paste Part Name window

34 VisualAge Generator: Getting Started

Map Group Editor
Map Group Editor enables you to view a list of maps. Using the Map Group
Editor, you can define floating area characteristics for each device supported
by one or more maps in the map group.

Figure 16 on page 36 shows a sample map group.

Figure 15. Map Editor

Chapter 3. VisualAge Generator Developer Overview 35

For hands-on practice building a map, complete the steps outlined in “Part 2.
VisualAge Generator Tutorial” on page 51.

Data

Use the data editors to define the database, file information or user interface
description data that a program can access. Data is stored as records, tables,
program specification blocks (PSBs), and data items.

Record Editor
Record Editor enables you to build and format data structures intended for
specific purposes. Using Record Editor, you can easily reformat database
information for use in other programs.

Figure 17 on page 37 shows a record that uses SQL Row format. This record
can be defined manually or VisualAge Generator can fill the record with data
from an existing SQL table.

Figure 16. Map Group Editor

36 VisualAge Generator: Getting Started

Figure 18 shows a record that describes a user interface. Generating a UI
Record yields a bean (a Java part) and a default HTML user interface.

For hands-on practice defining records, complete the steps outlined in “Part 2.
VisualAge Generator Tutorial” on page 51.

Table Editor
Use Table Editor to define a collection of related data items that can be used
for the following:
v Editing data that a user enters on a map
v Storing messages that your program issues
v Storing information a program references when it runs

Figure 17. Record Editor

Figure 18. Record Editor

Chapter 3. VisualAge Generator Developer Overview 37

Figure 19 shows a sample table.

PSB Editor
Use the PSB Editor to add program communication block (PCB) entries to the
program specification block (PSB). PSBs describe the hierarchical database
structures of your DL/I databases. VisualAge Generator uses PSBs to build
and validate DL/I calls for I/O functions that access records in DL/I
databases.

Figure 20 shows a sample PSB.

Figure 19. Table Editor

Figure 20. PSB Editor

38 VisualAge Generator: Getting Started

Data Item Editor
Use the Data Item Editor to create global data items. Data items, both global
and local, are units of information defined by data type, length, and other
characteristics. You can define global data items that are independent of any
record structure or table structure, but changes made to global data items in
the Data Item Editor affect all records and tables that use them. Local data
items are defined in records and tables.

Figure 21 shows a sample data item displayed in the Data Item Editor.

Test facility

The VisualAge Generator Developer test facility is a unique feature that
dramatically streamlines the programming process. This facility enables you to
view development and test functions as tightly integrated activities rather
than distinct phases of development. This approach to prototyping and
debugging programs is faster and more interactive.

Figure 22 shows the Test Monitor window.

Figure 21. Data Item Editor

Chapter 3. VisualAge Generator Developer Overview 39

The tasks supported by the test facility span a wide range of testing activities,
from low-level debugging of new and unfamiliar programs to simple
regression testing of existing programs. You are free to move between
building parts and testing activities without jeopardizing any information that
has already been set.

To aid in debugging programs, the test facility includes the following:
v Breakpoints to enable you to suspend the test
v Watchpoints to enable you to observe changes and, if necessary,

dynamically make extensive revisions to data
v Tracepoints to enable you to trace specific program components

Figure 22. Test Monitor

40 VisualAge Generator: Getting Started

The test facility gives you a historical trace log that enables you to set filters
on certain categories to be tracked. Using filters, you can get more detailed
traces. You can also reset these filters after a test session and rebuild the trace
log without running the test again.

Figure 23 shows the VAGen Test Trace page.

The test facility also enables you to test maps as well as logic parts. Map
Monitor, a feature of the test facility, enables you to view your map as it will
appear when the program is running.

During testing, a VisualAge Generator program on an OS/2 or Windows NT
system can access relational data stored in DB2 directly or other databases
through ODBC.

Figure 23. VisualAge Preferences— VAGen Test Trace

Chapter 3. VisualAge Generator Developer Overview 41

Also, during testing, your program can access generated VisualAge Generator
programs and non-VisualAge Generator programs on local or remote systems.

VisualAge Generator program generation

The generation process uses VisualAge Generator (VAGen) part definitions,
which are created using VisualAge Generator Developer and are stored in the
repository. The part definitions and control files are used to generate COBOL
or C++ programs, depending upon the target environment.

You can generate programs, tables, and maps from the user interface or from
the command line using the HPTCMD command.

Figure 24 shows the Generate window where you can select the target system.

Figure 24. Generate package/application

42 VisualAge Generator: Getting Started

The generation options part enables you to customize the generation process
for specific target environments. You can specify generation options using the
following methods:
v By entering values using the VisualAge Generator Developer user interface
v As options on the command interface when you are using the GENERATE

subcommand
v By setting values for these options in generation options parts

Figure 25 shows the Generation Options window where you set generation
options such as validation parameters.

Generation options are stored in generation options parts, which enable
developers working on the same project to share generation options. You can
specify a default generation options part using the /OPTIONS option on the

Figure 25. Generation Options

Chapter 3. VisualAge Generator Developer Overview 43

GENERATE subcommand. A generation options part can also specify the
/OPTIONS option, creating a succession of generation options parts.

For C++, Java, and COBOL programs, the generation process consists of the
following processes:

Generation
Generation includes the following steps:

Validation
Collects definition information from parts for the object being
generated. Validation also includes cross-checking the parts to
ensure that the definitions are complete and correct.
Information and error messages are issued when problems are
detected. The generation process stops if there are errors. You
can validate the parts without generating the program.

Production
Builds the source code and related program objects from the
part definitions during this phase.

Preparation
Preparation includes the following steps:
v Transferring parts to the target environment
v Running precompilers, compilers, and linkers on the target system

The generation and preparation processes work together. On the development
system, generation produces source code and related program objects. Then,
on the target system, the preparation process prepares the generated source to
run.

The VisualAge Generator Developer command interface syntax is specified by
the command HPTCMD, followed by a subcommand. The VALIDATE
subcommand specifies that you want validation only, and the GENERATE
subcommand specifies that you want both validation and production. Using
the VisualAge Generator Developer command interface, you can issue
HPTCMD commands one at a time by specifying them on the command line,
or you can create a command file to issue multiple HPTCMD commands.

VisualAge Generator Developer is enabled to the TeamConnection
environment to provide TeamConnection functions, such as versioning,
change control, problem tracking, and configuration management for
VisualAge Generator members. The VisualAge Generator COBOL and C++
generators can be invoked by the TeamConnection build function.

The TeamConnection build environment for generation and preparation
consists of the following:

44 VisualAge Generator: Getting Started

v A TeamConnection server that provides access to the TeamConnection
database for all TeamConnection clients.

v A TeamConnection client from which build requests are issued. Application
development tools like VisualAge Generator Developer run using
TeamConnection client code.

v One or more TeamConnection build servers that consist of the following:
– A build processor that runs a build step. The build processor can reside

on a workstation or on a host machine. The actual build steps
(generation, compilation, and linking) are run by the build processor.

– A build agent is connected to the TeamConnection database and to a
build processor. Each build agent does the following:
1. Responds to build requests of a particular type that have been stored

in the TeamConnection database
2. Sends the necessary input parts to its connected build processor
3. Invokes the requested build operation on that processor
4. Returns the outputs to the TeamConnection database

Because a build processor can be CPU intensive, it is recommended that you
generate applications on a workstation other than one on which the
TeamConnection server is installed and other than a workstation being used
to develop and test applications with VisualAge Generator Developer.

Chapter 3. VisualAge Generator Developer Overview 45

46 VisualAge Generator: Getting Started

Chapter 4. VisualAge Generator Server

After VisualAge Generator applications have been generated, prepared, and
stored on the target system, the applications can be run with the support of
VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris
and VisualAge Generator Server for MVS, VSE, and VM.

VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris
and VisualAge Generator Server for MVS, VSE, and VM provide the following
support:
v Error management
v Message services
v Display services
v File and database services
v CICS services
v Segmentation storage services
v Application support services and functions common to every application
v Miscellaneous services

Running an application

The VisualAge Generator Server products provide client/server
communications support, a runtime library, and procedures and utilities for
preparing generated applications for run-time. Client/server communications
support enables GUI applications to communicate with COBOL and C++
applications. The runtime library implements installation-specified error
handling, transaction control, and other functions shared among generated
applications.

VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and
Solaris

VisualAge Generator Server provides support for running generated COBOL
applications targeted for CICS for OS/2, and generated C++ applications
targeted for OS/2. For more information, refer to the VisualAge Generator
Server Guide for Workstation Platforms.

VisualAge Generator Server for AS/400
VisualAge Generator Server for AS/400 provides support for running
generated COBOL applications targeted for the OS/400 environment. For
more information, refer to the VisualAge Generator Server Guide for AS/400
document.

© Copyright IBM Corp. 1980, 2001 47

VisualAge Generator Server for MVS, VSE, and VM
VisualAge Generator Server for MVS, VSE, and VM provides support for
running generated COBOL applications targeted for the MVS, VSE, and VM
environments. For more information, refer to the VisualAge Generator Server
Guide for MVS, VM, and VSE.

48 VisualAge Generator: Getting Started

Chapter 5. Summary

VisualAge Generator provides powerful solutions for creating applications.
The VisualAge Generator products enable you to develop, test, and generate
applications on your workstation and run applications on workstations or
host systems.

For step-by-step introductions on defining and testing application systems:
v If you are using VisualAge Generator Developer on Smalltalk, see

“Chapter 6. VisualAge Generator Developer on Smalltalk: a tutorial” on
page 53.

v If you are using VisualAge Generator Developer on Java, see “Chapter 8.
VisualAge Generator Developer on Java: a tutorial” on page 65.

© Copyright IBM Corp. 1980, 2001 49

50 VisualAge Generator: Getting Started

Part 2. VisualAge Generator Tutorial

© Copyright IBM Corp. 1980, 2001 51

52 VisualAge Generator: Getting Started

Chapter 6. VisualAge Generator Developer on Smalltalk: a
tutorial

This tutorial gives you a broad look at what you can do with VisualAge
Generator. After completing this tutorial, you will have built and tested a
small sample program that enables a user to search a customer database using
the customer number.

Before you can perform the steps in this tutorial, you must have VisualAge
Generator installed and the appropriate features loaded. You must also have
access to an installed IBM relational database like DB2 UDB. Some
prerequisite knowledge of the IBM relational databases is required.

Before you start, do the following:
v Validate the VisualAge Generator installation.
v Verify the installation of the sample database, SAMPLE, and the

CUSTOMER table.
See “Appendix A. Installing samples for VisualAge Generator Developer on
Smalltalk” on page 187 for instructions on installing the SAMPLE database.

This tutorial is intended to help you get started quickly with VisualAge
Generator, and therefore covers only a small set of the tasks you can do. After
you complete this tutorial, experiment and refer to the product documentation
to learn more about what VisualAge Generator can do for you.

Note: If you have installed VisualAge Generator Developer on Java, refer to
“Creating a project and a package” on page 65.

Creating an ENVY application

When you start VisualAge Generator, two windows will be displayed on your
desktop: the System Transcript window and the VisualAge Organizer window.
The System Transcript window has numerous functions, but for this tutorial,
you will only need to look at it for system information. You’ll start building
your sample application system in the VisualAge Organizer window, shown
in Figure 26 on page 54.

© Copyright IBM Corp. 1980, 2001 53

VisualAge Generator stores VAGen parts in ENVY applications. Before you
build a part, you must create a new application or load an edition of an
application to contain the parts you build.

Note: For a description of the 14 types of VisualAge Generator parts, see
“Part types” on page 20. For more information about working with
applications, see “VisualAge Smalltalk Repository management” on
page 11 or the IBM Smalltalk User’s Guide.

To create a new ENVY application called Tutorial, do the following:
1. On the VisualAge Organizer window, select Applications→New.

The New Application window is displayed.

Figure 26. VisualAge Organizer Window

54 VisualAge Generator: Getting Started

2. In the Name field, type Tutorial.
3. Select OK.

The application called Tutorial is displayed in the Applications pane.

Note: By Smalltalk convention, application names are capitalized. By Java
convention, package names are lowercase. For the tutorial which
follows, Smalltalk users should replace any references to the
package/application named tutorial with Tutorial.

Importing and loading sample applications

As you develop your program, you might want to look at some VAGen
sample parts. Applications that contain sample VAGen parts were stored on
your system in .DAT files when you installed VisualAge Generator. To look at
these sample parts, you’ll need to import the .DAT file and load the sample
applications it contains. For this tutorial you’ll import from EZEREMPS.DAT
and EZERSMPS.DAT and load the sample applications
HptSampleEzerempParts and HptSampleEzersmpParts.

Importing sample applications
If your installation gives you access to a common repository (that is, you are
working from a client, not from a standalone install), you will need two pieces
of information to do the following tasks:
v The host name or IP address of the system where your repository (server) is

located
v A directory to which you have access that is defined to the server

You’ll then need to copy EZEREMPS.DAT and EZERSMPS.DAT to that
directory and specify it at the appropriate point in the following task.

To import an application, perform the following steps:
1. From the Applications menu, select Import/Export → Import Applications.

Figure 27. New Application Window

Chapter 6. VisualAge Generator Developer on Smalltalk: a tutorial 55

A prompt is displayed asking for the IP address or host name of the
machine where the .DAT files are located.

Note: If you are using a standalone system, a system file selection
window is displayed, so you can skip the following step.

2. Enter the host name for the machine where EZEREMPS.DAT resides and
select OK.
A file selection window is displayed.

3. In the File name field, type the complete path name to EZEREMPS.DAT.
4. Select Open.

A selection window is displayed, prompting you for the name and version
of the application you want to import.

5. From the Names pane, select HptSampleEzerempParts.
6. In the Versions pane, select the version name and click on the top arrow

button.
7. Select OK.

The selection window closes. A statement indicating that the import is
complete is displayed in the System Transcript window when the import
is finished.

8. Repeat these steps but select EZERSMPS.DAT and
HptSampleEzersmpParts.

9. Select OK.
The selection window closes. A statement indicating that the import is
complete is displayed in the System Transcript window when the import
is finished.

Loading sample applications
Now that you have imported the sample applications, you must load them
into your image to work with them.

To load the sample applications:
1. From the VisualAge Organizer window, select

Applications→Load→Available Applications.

Tip: You can use the context menus in the VisualAge Organizer window
to make many tasks faster and easier. To display a context menu,
click with mouse button 2 in the appropriate pane of the VisualAge
Organizer window.

The selection window, shown in Figure 28 on page 57, displays a list of all
the available applications in the library that are not loaded into your
image.

56 VisualAge Generator: Getting Started

2. From the Names pane, select HptSampleEzerempParts.
3. In the Editions pane, select the edition name and click on the top arrow

button.
4. Repeat the previous two steps to add HptSampleEzersmpParts.
5. Select OK.

The applications you selected are displayed in the Applications pane of
the VisualAge Organizer window. If you don’t see them in the
Applications pane, from the Applications menu, select View→Show All
Applications.

Note: You cannot load all of the sample applications simultaneously because
some of them contain VAGen parts with the same name. This way you
cannot accidently overwrite parts you already have in your image with
parts of the same name in another application. If you are working with
samples, the easiest solution is to unload the sample application that
contains the conflicting part names and load the other sample
application. Under other circumstances, if the parts contained by two
applications are identical, it is better to create a new application to
contain the common parts, delete those parts from the two applications,
and make the new application a prerequisite for the other two.

For more information on managing applications, refer to the IBM Smalltalk
User’s Guide.

Figure 28. List of Applications

Chapter 6. VisualAge Generator Developer on Smalltalk: a tutorial 57

58 VisualAge Generator: Getting Started

Chapter 7. Tailoring preferences on Smalltalk

VisualAge Generator lets you set preferences that can save you time as you
develop programs and build parts. These profiles are used as defaults and by
setting them, you can tailor the environment to your needs. Preferences you
set on the VAGen Preferences window are stored in hpt.ini when you save
your Image.

Note: If you have installed VisualAge Generator Developer on Java, refer to
“Chapter 9. Tailoring options on Java” on page 73.

In this tutorial, you will set the following preferences:
v Program preferences
v SQL Database preferences
v Test preferences

To open the VisualAge Generator Preferences window:
1. From the VisualAge Organizer window, select Options→VAGen

Preferences.
The Preferences window is displayed.

Program preferences

As in many programs, this sample program uses implicit data items. The
system default is not to allow implicit data items. To change this default:
1. Select Program.
2. Select Allow implicits.

© Copyright IBM Corp. 1980, 2001 59

Database preferences

The sample program you are creating uses an SQL database called SAMPLE.
By selecting a default database in your preferences, you can ensure that you
are connecting to the correct database. To select database option:
1. Select SQL.
2. Ensure that SAMPLE is entered in the Database name field.

Figure 29. VAGen Program Preferences Window

60 VisualAge Generator: Getting Started

Test preferences

To set preferences for the VisualAge Generator test facility:
1. Select Test .
2. In the Relative execution speed field, use the arrow buttons to set the

value to 3.
The test facility runs relatively fast. You might want to reduce the test
speed to give you more time to stop it if you need to.

Figure 30. VAGen SQL Preferences Window

Chapter 7. Tailoring preferences on Smalltalk 61

You can use the test facility to collect trace data for your programs. Use the
trace filters to control the types of trace data you see. You can change the
filter settings in the test facility if you want to see other types of trace data. To
set trace filters:
1. Select Test Trace.

Figure 31. VAGen Test Preferences Window

62 VisualAge Generator: Getting Started

2. Deselect everything under the heading Data except Conditional results
and Results data.

3. Select OK.

You can specify trace filters to view information, such as:
v The statement where the expression was evaluated or the assignment was

made
v Results of expression evaluations and assignments

Selecting a trace entry filter causes all trace entries that match that filter’s
characteristics to appear in the Trace Log window. Setting a filter does not
alter the information that is collected by the test facility.

Note: To continue with this tutorial, skip to “Chapter 10. Defining a program”
on page 79.

Figure 32. VAGen Test Trace Preferences Window

Chapter 7. Tailoring preferences on Smalltalk 63

64 VisualAge Generator: Getting Started

Chapter 8. VisualAge Generator Developer on Java: a
tutorial

This tutorial gives you a broad look at what you can do with VisualAge
Generator. After completing this tutorial you will have built and tested a
small sample program that enables a user to search a customer database using
the customer number.

Before you can perform the steps in this tutorial, you must have VisualAge
Generator installed and the appropriate features loaded. You must also have
access to an installed IBM relational database like DB2 UDB. Some
prerequisite knowledge of the IBM relational databases is required.

Before you start, do the following:
v Validate the VisualAge Generator installation.
v Verify the installation of the sample database, SAMPLE, and the

CUSTOMER table.
Refer to the “Appendix B. Installing samples for VisualAge Generator
Developer on Java” on page 191 for instructions on installing the SAMPLE
database.

This tutorial is intended to help you get started quickly with VisualAge
Generator, and therefore covers only a small set of the tasks you can do. After
you complete this tutorial, experiment and refer to the product documentation
to learn more about what VisualAge Generator can do for you.

Note: If you have installed VisualAge Generator Developer on Smalltalk, refer
to “Creating an ENVY application” on page 53.

Creating a project and a package

When you start VisualAge Generator, the VisualAge for Java Workbench is
displayed. The Workbench has numerous functions, but for this tutorial, you
will only need to do two tasks here. You’ll start building your sample
application system in the Workbench, shown in Figure 33 on page 66.

© Copyright IBM Corp. 1980, 2001 65

VisualAge Generator stores VAGen parts in packages. Packages are stored in
projects. Before you build a VAGen part, you must add a project and a
package to your workspace to contain the parts you build. You can add an
existing project and package from the repository or create a new one.

Note: For a description of the 14 types of VisualAge Generator parts you can
create, see “Part types” on page 20. For more information about
working with projects and packages, see the online help for VisualAge
for Java.

For this tutorial, we’ll create a new project called VGTutorial and a package
called Tutorial. Do the following:
1. From the Workbench Selected menu, select Add→ Project.

The Add Project window is displayed.

Figure 33. VisualAge for Java Workbench

66 VisualAge Generator: Getting Started

2. In the Create a new project named field, type VGTutorial.
3. Select Finish.

The project called VGTutorial is displayed on the Projects tab.
4. On the Projects tab, select VGTutorial.
5. From the Selected menu, select Add→ Package.

The Add Package window is displayed.

Figure 34. Add Project Window

Chapter 8. VisualAge Generator Developer on Java: a tutorial 67

6. In the Create a new package named field, type Tutorial.
7. Select Finish.
8. The following message is displayed:

Figure 35. Add Package Window

68 VisualAge Generator: Getting Started

Select Lowercase and proceed.

The package called tutorial is displayed under the VGTutorial project on
the Projects tab.

Figure 36. VisualAge for Java Workbench with new project and package

Chapter 8. VisualAge Generator Developer on Java: a tutorial 69

Tip: To show additional information about the parts displayed on the
Workbench tabs, select the Show Edition Names icon,

Importing and loading samples

As you develop your program, you might want to look at some VAGen
sample parts. Packages that contain sample VAGen parts were stored on your
system in .DAT files when you installed VisualAge Generator. To look at these
sample parts, you’ll need to import the .DAT files and load the sample
projects it contains. For this tutorial you’ll import EZEREMPJ.DAT and
EZERSMPJ.DAT and load the samples projects they contain.

For a brief description of the samples, see “Appendix B. Installing samples for
VisualAge Generator Developer on Java” on page 191.

Importing sample projects
To import the sample projects:
1. From the Selected menu, select Import.

The Import SmartGuide is displayed.
2. Select Repository, then select Next.

A file selection window is displayed.
3. Select Local repository.
4. In the Repository name field, type the complete path name to

EZEREMPJ.DAT.
The files will be in c:\install_dir\IDE\program\samples, where install_dir
is the directory to which you installed VisualAge Generator.

5. Select Projects.
6. Select the Details button.

The Project import window is displayed.
7. From the Projects list, select VAGen Employee Sample.

Note: Ensure that a check mark is shown in the check box. If the project is
highlighted but no check mark is displayed, it is not selected. To
select it, click directly on the check box.

8. Select OK.
9. Select Finish.

Repeat these steps but select EZERSMPJ.DAT to import the VAGen Ezersmp
Sample project.

70 VisualAge Generator: Getting Started

Note: You can use this same procedure to import a similar project, VAGen
Staff Sample, from STAFFJ.DAT. However, because it includes parts
with the same name as those included in the samples you will load in
the following section, you should not load all three projects into your
workspace at the same time.

Loading the sample projects
To load the sample projects:
1. In the Workbench, All Projects list, click with mouse button 2 to display

the Selected context menu.
This context menu displays the same options as the Selected menu above
the tool bar.

2. From the context menu select Add→Project.
The Add Project SmartGuide is displayed.

Chapter 8. VisualAge Generator Developer on Java: a tutorial 71

3. Select Add projects from the repository.
4. From the Available Project Names pane, select VAGen Employee Sample.
5. In the Available Editions pane, select the latest edition name.
6. From the Available Project Names pane, select VAGen Ezersmp Sample .
7. In the Available Editions pane, select the latest edition name and select

Finish.
The projects you selected are displayed in the All Projects list.

For more information on managing projects and packages, refer to the online
help for VisualAge for Java.

Figure 37. Add Project SmartGuide

72 VisualAge Generator: Getting Started

Chapter 9. Tailoring options on Java

VisualAge Generator lets you set options that can save you time as you
develop programs and build parts. These profiles are used as defaults and by
setting them, you can tailor the environment to your needs. Options you set
on the VAGen Options window are stored in hpt.ini when you save your
Workspace.

Note: If you have installed VisualAge Generator Developer on Smalltalk, refer
to “Chapter 7. Tailoring preferences on Smalltalk” on page 59.

In this tutorial, you will set the following options:
v Program options
v SQL Database options
v Test options

To open the VisualAge Generator Options window:
1. From the VisualAge Workbench, select Workspace→Open VAGen Parts

Browser. The VAGen Parts Browser is displayed.
2. From the VAGen Parts Browser, select the Window→Options menu.

The Options window is displayed.

Program options

As in many programs, this sample program uses implicit data items. The
system default is not to allow implicit data items. To change this default:
1. Select Program.
2. Select Allow implicits.

© Copyright IBM Corp. 1980, 2001 73

Database options

The sample program you are creating uses an SQL database called SAMPLE.
By choosing a default database in your options, you can ensure that you are
connecting to the correct database. To choose database option:
1. Select SQL.
2. Ensure that SAMPLE is entered in the Database name field.

Figure 38. VAGen Program Options Window

74 VisualAge Generator: Getting Started

Test options

To set options for the VisualAge Generator test facility:
1. Select Test .
2. In the Relative execution speed field, use the arrow buttons to set the

value to 3.
The test facility runs relatively fast. You might want to reduce the test
speed to give you more time to stop it if you need to.

Figure 39. VAGen SQL Options Window

Chapter 9. Tailoring options on Java 75

You can use the test facility to collect trace data for your programs. Use the
trace filters to control the types of trace data you see. You can change the
filter settings in the test facility if you want to see other types of trace data. To
set trace filters:
1. Select the Test Trace.

Figure 40. VAGen Test Options Window

76 VisualAge Generator: Getting Started

2. Deselect everything under the heading Data except Conditional results
and Results data.

3. Select OK.

You can specify trace filters to view information, such as:
v The statement where the expression was evaluated or the assignment was

made
v Results of expression evaluations and assignments

Selecting a trace entry filter causes all trace entries that match that filter’s
characteristics to appear in the Trace Log window. Setting a filter does not
alter the information that is collected by the test facility.

Figure 41. VAGen Test Trace Options Window

Chapter 9. Tailoring options on Java 77

78 VisualAge Generator: Getting Started

Chapter 10. Defining a program

After you have created a new container for your parts and set your
preferences, you can begin developing a program. This tutorial takes you
through a top-down approach to developing a small sample program.

The sample program you develop in this tutorial lists customers from a table
that is shipped with VisualAge Generator. With your sample program, users
can perform the following tasks:
v Enter a starting customer identifier number
v Scroll forward and backward through the list of customers
v Close the program

The relational table shipped with VisualAge Generator contains the SQL
column information shown in Figure 42.

The columns of the table can be displayed using arrays in a single map. The
map can also contain the starting staff identifier number, the current date, a
message line, and a line of prompts for the function keys that are available.

As you develop, you can look at a diagram of your program using the
Program Editor shown in Figure 43 on page 80.

Figure 42. Record Editor

© Copyright IBM Corp. 1980, 2001 79

VisualAge Generator shows the elements of the program symbolically. The
program diagram is divided into two parts: Specifications and Structure
Diagram. The program diagram shows the logical hierarchy of the
components of a program. The following icons represent elements used in this
tutorial:

A function—For functions, the connecting lines from the function
symbol show the functions that are logically beneath the function.

I/O options and I/O object names appear to the right of the function
symbol. Record or map symbols displayed immediately under
functions, in the expanded view, are I/O objects.

A record

A map

You can expand or collapse sections of the program diagram to control what
levels of the hierarchy you see in the Program Editor. You can click on the
following symbols to expand or collapse a section:

Figure 43. Program Diagram

80 VisualAge Generator: Getting Started

Indicates that the section is expanded. Click on this symbol to collapse
the section next to it.

Indicates that the section is collapsed. Click on this symbol to expand
the section next to it.

Parts in the program diagram that do not show one of these symbols have no
child symbols and cannot be expanded.

A next to a symbol indicates that the part has not yet been defined.

In this tutorial, you are developing from the top down, starting with the
program, then defining the functions, and then the I/O objects. As you define
the program, you will perform an intermediate test to ensure that the
program is defined correctly.

Creating a new program

To create a new program, do the following :
1. From the VAGen Parts Browser, select VAGen Parts→Add/New.

If you selected Add, select New Part.
2. On the New VAGen Part window, in the Part name field, type sample.
3. Select the Part type Program

4. From the Package/Application drop-down list box, select tutorial.

Chapter 10. Defining a program 81

Program specifications and main functions are the elements that make up the
basic structure of your program. Use the Program Editor to set global
characteristics for the program and define the main functions.

For this tutorial, you will define a main transaction program with a working
storage record and a map group. To define properties for the program you
just created:
1. From the Define menu, select Properties.
2. Select Allow implicit data items and select OK.
3. From the drop-down list box on the Program Editor, select Main

Transaction-Nonsegmented.
4. In the Add Map Group window, type ctest.
5. Select OK.

You’ve defined the program SAMPLE as a nonsegmented transaction and
specified association with the map group CTEST.

Figure 44. New VAGen Part

82 VisualAge Generator: Getting Started

Now define a working storage record for this sample program. In the
Program Editor:
1. From the Define menu, select Specifications→Add Working Storage.
2. In the Part name field, type cust-list-ws.
3. Select OK.

The name of the working storage record is displayed under Specifications
in the Program Editor. The question mark beside it indicates that the
record has not yet been defined.

Tip: You can also perform many tasks in the Program Editor using context
menus. For example, you could have added this working storage record
by clicking mouse button 2 on Specifications and selecting Add
Working Storage to display the Add Working Storage window. You get
different context menus in the Program Editor, depending on what you
click on with mouse button 2. Feel free to experiment with the context
menus in the tasks that follow.

Creating a main function

Main functions provide the basic structure of a VisualAge Generator program.
You can define up to 254 main functions. When the program runs, control
usually transfers from one main function to the next.

Figure 45. Add Map Group

Chapter 10. Defining a program 83

To insert a main function into your the structure diagram of your sample
program:
1. In the Program Editor, select Define→Main Functions.
2. In the Part name field, type main-logic. Select OK.

The name of the main function is displayed in the structure diagram in the
Program Editor. The question mark beside it indicates that the function has
not yet been defined.

Defining a main function

A function provides the basic unit of the logic structure for a program. For
example, input and output operations that take place are done in functions.

A single function can contain only one I/O operation. However, a function is
not required to contain an I/O operation. In this tutorial, your sample
program includes some functions that include an I/O operation and some that
don’t.

You need to build a simple logic structure within the main function you have
defined. This allows you to do a quick, basic definition of the overall structure
of the program.

Figure 46. Insert Main Function window

84 VisualAge Generator: Getting Started

To begin building the program structure:
1. In the Program Editor double-click on MAIN-LOGIC.

The New Part Package/Application window is displayed.

2. Ensure that tutorial is selected, and select OK.

Figure 47. Program Editor

Figure 48. New Part Package/Application

Chapter 10. Defining a program 85

3. Type the statements as shown in Figure 49.

Note: You can type in lowercase. The editor will convert your code to
uppercase when you select Save, Validate, or Validate and Format.

Each line in this function invokes the function named.
4. Ensure that EXECUTE is displayed in the I/O option drop-down list box.

The list box on the left displays I/O options, which define the type of
operation a function will carry out. The list box on the right displays I/O
objects, the data parts on which I/O options are performed. The EXECUTE
option does not have an I/O object. Here it is used to control the flow
between functions.

5. From the Tools menu, select Validate and Format.
6. From the File menu, select Save.
7. Close the Function Editor.

Now you can partially define each of the performed functions. By partially
defining these functions, you can test the program structure without
completely defining the program. You can supply the logic of the program
later. Providing partial definitions of the program and its components is one
way to use VisualAge Generator Developer for rapid prototyping.
1. In Program Editor, click on the + beside MAIN-LOGIC.

That branch of the structure diagram is expanded.
2. Double-click on CONVERSE-MAP.

The New Part Package/Application window is displayed.
3. Ensure that tutorial is selected, and select OK.

The new part is created and the Function Editor is displayed.
4. From the I/O options drop-down list box, select CONVERSE.
5. In the I/O object drop-down list box, type custmap.
6. From the File menu, select Save.

Figure 49. Function Editor

86 VisualAge Generator: Getting Started

7. Close the Function Editor.

To define an I/O option and an I/O object for GET-LIST:
1. In the Program Editor double-click on GET-LIST.

The New Part Package/Application window is displayed.
2. Select OK.
3. From the I/O options drop-down list box, select SETINQ.

The SETINQ option selects a set of rows from an SQL row record.
4. In the I/O object drop-down list box, type customer.

Customer is the name you will use when you define the SQL row record
that SETINQ will select from.

5. From the File menu, select Save.
6. Close the Function Editor.

Your program structure should look like the one shown in Figure 50.

Figure 50. Program Diagram

Chapter 10. Defining a program 87

Summary of creating a function
All functions for a program are created using the steps you just completed.
The following is a summary of those steps:
1. In the Program Editor, double-click on the function name in the structure

diagram.
2. On the New Part Package/Application window, select OK to add the part

to the selected package/application.
3. In the Function Editor, select an I/O option and an I/O object, and enter

statements.
4. Save the statements, then close the Function Editor.

Summary of defining a program

You have defined enough of your program structure to run a test, but before
you do, you need to further define the I/O options, an SQL record and a map
used by the CONVERSE-MAP function and the GET-LIST function.

88 VisualAge Generator: Getting Started

Chapter 11. Defining an SQL record

VisualAge Generator supports various file access methods and databases,
including IBM’s implementation of relational databases. In this section of the
tutorial, you define the SQL record for the CUSTOMER sample table.

You define all records in the Record Editor, which you have easy access to
from the Program Editor.

To begin defining the SQL record:
1. In the Program Editor, click on the + beside GET-LIST.

This section of the structure diagram is expanded.
2. Double-click on the record CUSTOMER.

The New Part Package/Application window is displayed.
3. Ensure that tutorial is selected and select OK.

The Record Editor is displayed.
4. From the record type drop-down list box, select SQL Row.

Note: You’ll find the record type drop-down list box between the tool bar
buttons and the Default Usage drop-down list box. The default
record type is Working Storage.

5. If there is an item in the record, delete it. To delete an item, select it. Then,
select Edit→Delete.

6. Select Define→Properties.
The SQL Row Properties window is displayed.

7. On the SQL Row Properties window, select Insert.
8. A row is added and the cursor appears in the Name pane.

© Copyright IBM Corp. 1980, 2001 89

When you define an SQL row record, you specify the SQL table or table joins
for the record. In this tutorial, VisualAge Generator Developer uses the
CUSTOMER table from the SAMPLE database you specified in VAGen
Options/Preferences.

Once the SQL table or table join has been specified, VisualAge Generator
Developer can automatically build data item names and characteristics by
retrieving the column information for the table or join. This function is only
available if you are on a system that has access to the database catalog.

To finish defining an SQL table:
1. In the Name pane, type customer.
2. Select OK.

The SQL Row Properties window closes.
3. From the Tools menu, select Retrieve SQL. If you are prompted to run the

SQLBIND command, select Yes.
Data items based on the SQL table column characteristics are created and
inserted into the SQL row record.

Note: If Retrieve SQL is not available, delete any data items that appear
in the record.

4. Select the Key field of the CUSNUM data item. Select the Key checkbox.
5. Press Tab.

Figure 51. SQL Row Properties

90 VisualAge Generator: Getting Started

Tip: Before you can save a record, you must press the tab key to move the
cursor out of the changed field.

6. From the File menu, select Save.
7. Close the Record Editor.

Note: If you have problems with the previous task, refer to the section on
installing sample applications in the VisualAge Generator Installation
Guide.

In the SQL row record, VisualAge Generator Developer creates data items that
have the characteristics of the columns in the table.

Because you can retrieve SQL column information directly from any
supported relational database, you do not have to supply data item
characteristics. This saves you time and minimizes errors.

Figure 52. Record Editor

Chapter 11. Defining an SQL record 91

92 VisualAge Generator: Getting Started

Chapter 12. Defining a map

Maps are used to display information to users and for printing information
from a program. Your sample program uses one map. In this section of the
tutorial, you define the constant fields, variable fields, and arrays on the map.

Every position on the map is part of a field. If there are no fields defined on
the map, then there is one implicit field spanning the whole map.

Any map other than a help map can contain both constant and variable
information. Help maps can contain only constant information. Constants
typically consist of field labels and help fields that end users cannot change.
You define constant fields by dropping constant parts on the map presentation
area and defining properties for them.

Variable information can be changed either by users or other functions or
programs. You define variable fields by dropping variable parts on the map
presentation area. You can specify editing characteristics for the variable
fields, and VisualAge Generator automatically formats and edits the fields.

Assume that the design of your program allows users to enter a beginning
customer identifier when scrolling forward and backward through a list. You
only need five customers listed at once.

© Copyright IBM Corp. 1980, 2001 93

You have already specified the I/O object named CUSTMAP. The question
mark beside it, shown in Figure 53, means that you need to further define it.

To begin defining the map:
1. In Program Editor, click on the + beside CONVERSE-MAP.

That part of the structure diagram is expanded and a map symbol is
displayed.

2. Double-click on CUSTMAP.
The New Part Package/Application window is displayed.

3. Ensure that tutorial is selected, and select OK.
The new part is created and the Map Editor is displayed.

Specifying the map title

The title of a map often consists of a single constant field centered on the
map. VisualAge Generator Developer provides a centering function to enable
you to center fields quickly.

Figure 53. Program Editor

94 VisualAge Generator: Getting Started

The first line of the map is to contain the centered title Customer
Information. This title is a constant area on the map.

Tip: To help you align fields in the map presentation area, turn on the grid.
To turn on the grid, from the View menu, select Grid.

A grid pattern is displayed in the map presentation area.

To define the panel title:

1. On the Palette, select the Constant part .
2. The mouse pointer becomes a crosshair. Category, part, and mouse

position information is displayed in the status area at the bottom of the
Map Editor.

3. Click on the first line in the map presentation area.
The Constant Field Properties window is displayed.

1. In the Initial value field, type Customer Information.
The field length is automatically resized to fit the text you type.

Figure 54. Constant Field Properties

Chapter 12. Defining a map 95

2. Select OK.
The text you type is entered in a constant field on the map.

3. To center the title click on the text and, from the tool bar, select Center.

.
The text you typed is centered on the map.

If you want to view the map as it will look to users, from the View menu,
select Preview. To continue editing, select View→Preview again.

Note: You cannot edit in Preview mode.

If you want to see the colors and highlighting as they will be displayed to
users while you are editing the map, select View→Runtime Color Mode.

Figure 55. Map Editor

96 VisualAge Generator: Getting Started

Specifying a prompted entry field

Prompted entry fields require constant text for the field prompt and a variable
field for entering data into the program.

To define the prompted entry field, perform the following steps:

1. On the Palette, select the Constant part .
The mouse pointer becomes a crosshair.

2. Click in row 3, column 1 (3,1) on the map presentation area.
The Constant Field Properties window is displayed.

Tip: Using choices on the map context menu can make editing tasks faster.
To display the context menu, place the mouse pointer in the map
presentation area and click mouse button 2. For more information on
editing maps, see the online help.

3. In the Initial value field, type Customer Number and select OK.
The Constant Field Properties window closes and the text you typed is
displayed in a constant field on the map presentation area.

4. On the Palette, select the Variable part .
5. Click between the left and right brackets][at the right side of the constant

field.

On the Variable Field Properties window:
1. On the General tab, in the Name field, type cusnum.
2. In the Length field, type 8.

Chapter 12. Defining a map 97

3. Select OK.

Figure 56. Variable Field Properties

98 VisualAge Generator: Getting Started

Specifying a variable message field

Programs frequently require messages to provide feedback to users concerning
errors or other special conditions.

You can use the EZEMSG special function word and a map variable field for
presenting messages to users. When you use EZEMSG, you should provide a
variable field long enough to contain the text of the message.

To specify a variable message field:

1. From the Palette, select the Variable part .
2. Move the mouse pointer to line 15 and click in column 1 on the map

presentation area.
3. On the General tab, in the Name field, type ezemsg.
4. In the Length field, type 78.
5. Select OK.

Figure 57. Map Editor

Chapter 12. Defining a map 99

While you are defining a map, you can change any of your previous
definitions. For example, you can change the length of a variable field or the
text and position of a constant field.

To change the specifications for a constant field or a variable field,
double-click on the field, make the necessary changes in the properties
window and select OK.

To change the content of a constant field, you must enter edit mode. To enter
edit mode press and hold the Alt key and, click mouse button 1 in the field
where you want to make a change. You can type over the text or cut and
paste text using selections from the Edit menu. To select text to cut, copy,
paste, or delete, with your cursor in edit mode, click to the left of the text you
want to select. Drag the mouse pointer to the right until the text you want to
change is selected. Release the mouse button. From the Edit menu select the
appropriate menu choice.

Adding a constant field

You add constant fields the same way you specified the title.

To add a constant field showing the function key definitions, perform the
following steps:

1. On the Palette, select the Constant part .
2. Click in row 17, column 1 (17,1) on the map presentation area.
3. In the Initial value field, type

F3=Exit Enter=GetList F7=Backward F8=Forward

and select OK.

Your map should look something like Figure 58 on page 101.

100 VisualAge Generator: Getting Started

Defining a map array

You can define arrays of variable fields in a map to make it easier to work
with several related fields at the same time.

To define an array, you first specify the array’s physical arrangement on the
map and give the array a name.

You need to define four arrays for your sample program. These four map
arrays are arranged in four columns named CUSNUM-A, CUSNAME-A,
CUSCONTACT-A, and CUSPHONE-A.

Turn on the grid, select View→Grid, to help you locate lines and columns
referenced in the following tasks. If you want to look at array indices, select
Define→Field Edit Order→Show Tags. Both of these features can be turned off
by repeating the menu selections you used to turn them on.

To define the first map array:

Figure 58. Map Editor

Chapter 12. Defining a map 101

1. In the Map Editor, from the Palette, select the Array part

.
2. Click in row 6, column 1 (6,1) of the map presentation area.
3. On the Array tab, in the Fields down field, type 5.

4. Select the General tab.

Figure 59. Array Tab on the Variable Field Properties Window

102 VisualAge Generator: Getting Started

On the General tab, you specify the name of the array variable for the map
array. You can also specify an array index. Each variable field in the map
array is assigned a subscripted name, starting with this index. For instance, if
you specify SSN as the name and 1 as the starting index, the variable names
assigned are SSN(1), SSN(2), SSN(3), and so on.

If the map array you are defining has multiple rows and columns, you can
use the Naming Direction selections on the Array tab to choose the direction
used first in assigning names to the variable fields. Because you are defining
an array with only one column in this exercise (1 is the default value in the
Fields across field), the naming direction is not important.
1. In the Name field, type cusnum-a.
2. In the Length field, type 8.
3. Select OK.

Now define three more arrays using these same steps and the names and
values in the following table.

Figure 60. General Tab on the Variable Field Properties Window

Chapter 12. Defining a map 103

Start column Fields down Array name Length

13 5 cusname-a 20

37 5 cuscontact-a 20

61 5 cusphone-a 12

Your map should look like the one shown in Figure 61.

Previewing and saving the map

At any time while defining a map, you can preview it. When you preview a
map, graphics indicating field positions are removed, and the color and
highlighting attributes are displayed as the user will see them.

Perform the following steps:
1. From the View menu, select Preview.
2. The map preview is displayed.
3. To leave the preview mode, select View→Preview.
4. The Map Editor is displayed.

For now, you are finished defining the map for your sample program.
5. In the Map Editor, select File→Save and close the Map Editor.
6. In the Program Editor, from the File menu, select Save.

Figure 61. Map Editor

104 VisualAge Generator: Getting Started

Chapter 13. Running an intermediate test

After you define the basic structure of a program, you can run an
intermediate test to check your progress.

You can begin testing a program from the Program Editor by selecting the

Test button on the tool bar . You can also start tests from the VAGen
Parts Browser or the VisualAge Organizer window. To start a test from either
of these windows, select the program you want to test, then select the Test
button.

Before you begin testing a program, you often need to set one or more
breakpoints to suspend the test at specific points.

When the test is suspended, you can inspect the state of the program data and
the current location of the test to verify that the program is working as
designed.

Setting a breakpoint

One way to set a breakpoint is from Tools menu on the Program Editor.

© Copyright IBM Corp. 1980, 2001 105

Assume that you want the test to be suspended when it reaches the GET-LIST
function. To set a breakpoint on that function:
1. In the Parts Browser, double-click on the SAMPLE program icon to open it

in the Program Editor.

Tip: If you don’t see the program in the VAGen parts pane, select tutorial
in the Packages/Applications pane

2. From the Tools menu, select Set Testpoints→Part.
The Set Part Testpoint window is displayed.

Figure 62. Program Editor

106 VisualAge Generator: Getting Started

To set a breakpoint at the GET-LIST function, perform the following steps:
1. On the Set Part Testpoint window, type get-list and select OK.

The Set Testpoints window is displayed.

On the Set Testpoints window, you define testpoints for the components of
your program. For a function, you can set the following types of testpoints:
v A tracepoint that takes effect while the function has control
v Breakpoints on each statement in the function, including the I/O option
v A breakpoint that takes effect when control transfers to the function, before

any statements in the function run

Qualifications can be set on any or all of these testpoints. You can set certain
conditions which must be true for the testpoint to take effect.

To set a breakpoint on the function GET-LIST, perform the following steps:

Figure 63. Set Part Testpoints

Figure 64. Set Testpoints

Chapter 13. Running an intermediate test 107

1. On the Set Testpoints window, select the icon beside Breakpoint on
part.

The symbol changes to .
2. Select OK.

Note: If you want to see indicators for testpoints you have set, from the
Program Editor View menu, select Show Testpoint Indicators.

Starting the test

When the testpoints are set you can start the test and specify how tracing
takes place from the Test Monitor window.

To start the VisualAge Generator test facility:
1. In the Program Editor, select the Test button on the tool bar.

The Test Monitor is displayed.

108 VisualAge Generator: Getting Started

Use the row of push buttons along the bottom of the Test Monitor window to
monitor and control the test.

Step runs the highlighted statements in the Statement Monitor list
and steps into any performed functions.

Leap runs the highlighted statements in the Statement Monitor list to
completion without stepping into any performed functions.

Figure 65. Test Monitor

Chapter 13. Running an intermediate test 109

Run starts or resumes the test.

Stop suspends the test.

Bypass skips over the highlighted statement in the Statement Monitor
list.

Return runs up to the return point of the current function, main
function flow, or the program’s components list entry.

To trace every action:
1. From the Tools menu, select Trace→Trace All.

The test facility traces all statements.

The basic structure of your program is defined, so the map is displayed when
you run a test. To allow the program to run up to that point:

1. Select Run

The CONVERSE I/O option displays your map in the Map Monitor.

You open the map using the Map Editor, without exiting the test facility.
When you save your change, you can reposition the test pointer and run the
CONVERSE I/O option again, using the updated map definition. Refer to the
VisualAge Generator help facility, for more information on test facility
features.

To continue the test, on the Map Monitor window:
1. On the Map Monitor window, type 10 and press Enter.

The Map Monitor window closes and the test continues. It stops at the
breakpoint you set on GET-LIST.

Making changes or fixing a problem while testing

If you have a problem or see that something is not fully defined, you can
open the part and make changes without closing the test facility. The test
facility will pick up the changes, discarding data or repositioning the
statement pointer as necessary to allow you to continue the test.

110 VisualAge Generator: Getting Started

Viewing the trace entries

While you are testing a program or after you have finished a test, you can
open a Trace Log window to view the collected trace entries. You can use
these trace entries to view a historical record of your test.

Note: No trace entries are collected unless Trace All or Tracepoints Only is
selected from the Trace menu.

Assume you want to display only certain types of trace entries that have been
collected. On the Test Monitor window:
1. From the Tools menu, select Trace→View Trace

The Trace Log window is displayed.

Even though the portion of the program that you tested was small, the Trace
Log window displays several trace entries. You can reduce the number of
trace entries by setting trace filters.

Figure 66. Test Monitor

Chapter 13. Running an intermediate test 111

There are several different trace filters. Each trace filter allows only one type
of trace entry to pass through.
Assume that you want to see only those trace entries where transfer of control

has taken place. Also, you want to see the statements that caused the transfers
of control. On the Trace Log window:
1. Select Options, then Set Filters

The Trace Entry Filters window is displayed.

On the Trace Entry Filters window, you select the trace filters you want to
apply to the Trace Log.

Figure 67. Trace Log

112 VisualAge Generator: Getting Started

On the Trace Entry Filters window:
1. Select Clear All.
2. Select Path labels and Include associated statement.
3. Select OK.

After you change the trace filters, you need to refresh the contents of the
Trace Log window to display only the trace entries that apply to the
selected trace filters.

4. On the Trace Log window, select Refresh.

The refreshed Trace Log window shows only the trace entries that passed
through the selected trace filters. This amount of information is easier to view
and understand than all the trace entries displayed at once.

Figure 68. Trace Entry Filters

Chapter 13. Running an intermediate test 113

You can select trace entries in the Trace Log window and use the selections in
the Edit menu to copy selected information onto the clipboard.

The complete trace log is still available and can be viewed by selecting other
filters. You do not have to rerun the test to recreate the trace log.

When you are finished viewing the Trace Log window:
1. Close the Trace Log window.
2. Close the Test Monitor window.

Figure 69. Trace Log

114 VisualAge Generator: Getting Started

Chapter 14. Defining the working storage record

After you run an intermediate test and are satisfied with the results, you can
begin defining the working storage record and supplying the logic for your
program.

A working storage record holds temporary and intermediate data values that
a program uses while it runs. Your sample program requires a working
storage record containing four nonshared data items. Specifying that data
items are nonshared means that they are not part of other record parts and
cannot be used outside the context of the record they are used in.

You named the working storage record for this program when you defined
the program specifications in the Program Editor. The working storage record
is represented on the structure diagram by the record symbol and the name
CUST-LIST-WS to the right of the symbol. The question mark (?) symbol is
removed after you define the record.

To begin defining the working storage record, do the following:

Figure 70. Program Editor

© Copyright IBM Corp. 1980, 2001 115

1. In the Program Editor, double-click on CUST-LIST-WS.
The New Part Package/Application is displayed.

2. Ensure that tutorial is selected, and select OK.
The new part is created and the Record Editor is displayed.

You have already named CUST-LIST-WS as a working storage record. Now,
you need to define the nonshared data items for CUST-LIST-WS.

To define the nonshared data items for CUST-LIST-WS, perform the following
steps:
1. Ensure that Working Storage is displayed in the Record Type drop-down

list box and Nonshared is displayed in the Default Scope drop-down list
box.

2. From the Edit menu, select Insert After.
A new row is inserted and the cursor is displayed in the Name field.

Tip: Choices on the context menus can make defining records faster. To
display the context menu, place the mouse pointer in the data items
list and click mouse button 2. For more information on defining
records, see the online help.

3. In the Name field, type cusnum-ws and press Tab.
The cursor moves to the Occurs field.

4. In the Occurs field, type 10 and press Tab.
The cursor moves to the Type field.

5. In the Type field, press Tab.
The default type of Char remains in this field and the cursor is displayed
in the Length field.

Figure 71. Record Editor

116 VisualAge Generator: Getting Started

6. In the Length field, type 8.
Now add three more data items by selecting Edit→Insert After three times.
Then, enter the values from the following table into the three new data
items.

Name Occurs Length

cusname-ws 10 20

cuscontact-ws 10 20

cusphone-ws 10 12

When you’ve entered all the data items for your working storage record, it
should look like the record shown in Figure 72.

7. From the File menu, select Save.
The record is saved.

8. Close the Record Editor.

Figure 72. Record Editor

Chapter 14. Defining the working storage record 117

118 VisualAge Generator: Getting Started

Chapter 15. Defining the processing logic

After you define the working storage record, you supply the logic for the
program.

First, you create the main function for your program. Next, you define
statements within the main function that start other functions.

In VisualAge Generator Developer, there are two ways to supply processing
statements:
v Using the Statement Template window to construct the statement
v Typing the statement directly into the Function Editor window

Completing the main function

The steps in this section will help you construct the logic so that the program
does the following:
v Displays the Customer Information map
v Enables the user to press F3, Enter, F7, and F8
v Displays a message if the user presses a key that is not valid

To begin defining the processing logic:
1. In the Program Editor, double-click on MAIN-LOGIC.

The Function Editor is displayed.

Earlier, you prototyped the program by supplying a few of the statements for
the MAIN-LOGIC function.

In the Function Editor, you can finish supplying processing statements for
MAIN-LOGIC. Using Statement Templates makes this task faster and easier.

Figure 73. Function Editor

© Copyright IBM Corp. 1980, 2001 119

To open the Statement Templates window, from the Tools menu, select
Statement Templates. The Statement Templates window, shown in Figure 74,
is displayed.

To look at the templates, select a category in the Categories pane and click on
an item in the Language elements pane. A generic form of the element is
displayed in the statement area at the bottom of the window, and other forms
are displayed in the Variations pane. You can add this generic form by
placing the cursor where you want to add it in your function and
double-clicking on the element in the Language elements pane. You can look
at the variations by clicking on them in the Variations pane. As you click on
them, the statement variations are displayed with correct syntax and
appropriate place holders in the statement area. Double-click on a variation to
add it to your function. Then, if you double-click on a place holder like
statements in the Function Editor, you can easily replace it by double-clicking
on a statement in the Statement Templates window.

Try using the Statement Templates window to help you enter these statements
in MAIN-LOGIC:
1. In the Function Editor, enter the following statements:

while ezeaid not pf3;
converse-map();
if ezeaid is enter;
get-list();
else;
if ezeaid is pf7;
backwards();

Figure 74. Statement Templates

120 VisualAge Generator: Getting Started

else;
if ezeaid is pf8;
forwards();
else;
move "Key not valid, use Enter, PF7, or PF8" to ezemsg;
set ezemsg red;
end;
end;
end;
end;
backwards();

2. From the Tools menu, select Validate and Format.
VisualAge Generator will validate and format the statements to look like
those shown in Figure 75. You must correct any errors before you save the
definition.

3. From the File menu, select Save.
4. Close the Function Editor.

Note: As you can see, in Figure 70 on page 115 and Figure 76 on page 122, the
functions FORWARDS and BACKWARDS have reversed positions in
the program diagram. When you added BACKWARDS to
MAIN-LOGIC between GET-LIST and FORWARDS, you changed the
order of the program diagram display. The original use of
BACKWARDS is still at the end of MAIN-LOGIC, but the program
diagram only displays one instance of each function, even if it is used
more than once in the main function.

Figure 75. Function Editor

Chapter 15. Defining the processing logic 121

Completing the functions

The following are functions in the sample program:
v CONVERSE-MAP
v GET-LIST
v BACKWARDS
v FORWARDS

You already defined minimum forms of some of these functions before you
ran an intermediate test of the program. Now you need to finish defining
them.

Complete the GET-LIST function first.

To define GET-LIST:
1. In the Program Editor, double-click on GET-LIST.
2. In the Function Editor, enter the following statements:

move custmap.cusnum to cusnum;
---- SETINQ CUSTOMER ------
move 0 to count;
move 0 to last;

Figure 76. Program Editor

122 VisualAge Generator: Getting Started

while ezesqcod = 0 and count < 10;
read-and-save();
end;
forwards();

Note: You already defined the I/O option and I/O object. Add the text
around the line containing the name of the I/O option and I/O
object as shown here. The first line of the example should be
entered on line one. The second line of the example should be
entered on line three. Line numbers are displayed in the top right
corner of the editor beside the I/O Object drop-down list box. The
first number is the line your cursor is on. The second number is the
number of the column your cursor is in.

3. From the Tools menu, select Validate and Format.
4. VisualAge Generator will validate and format the statements. You must

correct any errors before you save the part.
5. From the File menu, select Save.
6. Your function should look like the one shown in Figure 77.
7. Close the Function Editor.

As shown in Figure 78 on page 124, READ-AND-SAVE and FORWARDS
have been added to the program diagram under GET-LIST.

Now, you can finish defining the BACKWARDS function.

Figure 77. Function Editor

Chapter 15. Defining the processing logic 123

To define BACKWARDS:
1. In the Program Editor, double-click on BACKWARDS.

The New Part Package/Application window is displayed.
2. Ensure that tutorial is selected, and select OK.

The new part is created and the Function Editor is displayed.
3. Enter the following statements:

sub2 = last - 5;
if sub2 < 1;
move "Top of Customer file" to ezemsg;
else;
last = sub2 - 5;
if last < 0;
move 0 to last;
end;
move-it();
end;

4. From the Tools menu, select Validate and Format.

Figure 78. Program Editor

124 VisualAge Generator: Getting Started

VisualAge Generator will validate and format the statements. You must
correct any errors before you save the part.

5. From the File menu, select Save.
Your function should look like the one shown in Figure 79.

6. Close the Function Editor.
As shown in Figure 80 on page 126, MOVE-IT has been added to the
program diagram under BACKWARDS.

Now, you can finish defining the FORWARDS function.

Figure 79. Function Editor

Chapter 15. Defining the processing logic 125

To define processing statements for FORWARDS:
1. In the Program Editor, double-click on FORWARDS.

The New Part Package/Application window is displayed.
2. Ensure that tutorial is selected, and select OK.

The new part is created and the Function Editor is displayed.
3. In the Function Editor, enter the following statements:

if last = count;
move "No more Customer Records" to ezemsg;
else;
move-it();
end;

4. From the Tools menu, select Validate and Format.
VisualAge Generator will validate and format the statements. You must
correct any errors before you save the part.

Figure 80. Program Editor

126 VisualAge Generator: Getting Started

5. From the File menu, select Save.
Your function should look like the one shown in Figure 81.

6. Close the Function Editor.
7. In the Program Editor, MOVE-IT has been inserted under FORWARDS in

two places.

Completing the remaining functions

In the functions you just completed, you named some implicit data items, for
example LAST and COUNT. VisualAge Generator will create these implicit
data items dynamically as needed in the program. You can specify in program
properties whether or not VisualAge Generator creates implicit data items.

Two of the performed functions you named, READ-AND-SAVE and MOVE-IT
are third or fourth-level performed functions. You must define these functions.

Figure 81. Function Editor

Chapter 15. Defining the processing logic 127

Define a I/O option that will read the next record from the database selected
by the SETINQ I/O option in the function GET-LIST. Also, specify an error
routine that causes an immediate return from the READ-N-SAVE function if
an error condition occurs when the record is read.

To define READ-AND-SAVE:
1. In the Program Editor, double-click on READ-AND-SAVE.

The New Part Package/Application window is displayed.
2. Ensure that tutorial is selected, and select OK.

The new part is created and the Function Editor is displayed.
3. In the I/O Option drop-down list box, select SCAN.

Figure 82. Program Editor

128 VisualAge Generator: Getting Started

4. In the I/O Object drop-down list box, select CUSTOMER.
5. From the Define menu, select Properties.

The Function Properties window (Figure 83) is displayed.
6. From the Error routine drop-down list box, select EZERTN.
7. Select OK.

To supply processing statements for READ-AND-SAVE:

1. In the Function Editor, enter the following statements after the line
containing the I/O option and I/O object:
if ezesqcod = 0;
count = count + 1;
sub = sub + 1;
move cusnum to cusnum-ws[sub];
move cusname to cusname-ws[sub];
move cuscontact to cuscontact-ws[sub];
move cusphone to cusphone-ws[sub];
end;

2. From the Tools menu, select Validate and Format.
VisualAge Generator will validate and format the statements. You must
correct any errors before you save the part.

3. From the File menu, select Save.
Your function should look like the one shown in Figure 84 on page 130.

4. Close the Function Editor.
5. In the Program Editor, the CUSTOMER record and EZERTN are displayed

under READ-AND-SAVE.

Figure 83. Function Properties

Chapter 15. Defining the processing logic 129

Now, you can define the logic behind MOVE-IT.

Figure 84. Function Editor

130 VisualAge Generator: Getting Started

To define MOVE-IT:
1. In the Program Editor, double-click on MOVE-IT.

The new part is created and the New Part Package/Application window is
displayed.

2. Ensure that tutorial is selected, and select OK.
The new part is created and the Function Editor is displayed.

3. Enter the following statements:

Figure 85. Program Editor

Chapter 15. Defining the processing logic 131

move 0 to sub;
move last to sub2;
set custmap empty;
while sub < 5 and sub2 < count;
sub = sub + 1;
sub2 = sub2 + 1;
move cusnum-ws[sub2] to cusnum-a[sub];
move cusname-ws[sub2] to cusname-a[sub];
move cuscontact-ws[sub2] to cuscontact-a[sub];
move cusphone-ws[sub2] to cusphone-a[sub];
end;
move sub2 to last;

4. From the Tools menu, select Validate and Format.
VisualAge Generator will validate and format the statements. You must
correct any errors before you save the part.

5. From the File menu, select Save.
6. Close the Function Editor.

In the Program Editor, MOVE-IT is displayed as defined under
FORWARDS and BACKWARDS. Your program should look like the one
shown in Figure 86 on page 133.

132 VisualAge Generator: Getting Started

Figure 86. Function Editor

Chapter 15. Defining the processing logic 133

134 VisualAge Generator: Getting Started

Chapter 16. Preparing for generation

Now that you have defined your program fully, you can test it thoroughly.
You can begin to look for the correct handling of boundary conditions and
errors in the logic.

Remember that, while testing, you can immediately move into the appropriate
editor and correct any errors you find, without closing the test facility. After
you have corrected the error and saved the part, reposition the test run to a
location just before the error, and continue testing. When you are satisfied
with the way the program works under the test facility, you are ready for
generation.

To generate your program:
1. In the Program Editor, from the Tools menu, select Generate

The Generate window is displayed.

© Copyright IBM Corp. 1980, 2001 135

From this point you could start the generation process for your program.
However, this tutorial does not take you through the steps to generate a
program. For information on generating and preparing programs, refer to
the VisualAge Generator Design Guide.

2. Select Cancel to close the Generate window.

For step-by-step instructions on building a client/server application with a
graphical user interface, proceed to “Chapter 17. Building a visual part using
VisualAge for Java” on page 137 or “Chapter 18. Building a visual part using
VisualAge Generator Developer on Smalltalk” on page 159.

Figure 87. Generate Window

136 VisualAge Generator: Getting Started

Chapter 17. Building a visual part using VisualAge for Java

This section of the tutorial provides you with experience building visual parts.
The objective of this section is to help you become familiar with the
Composition Editor and the tools it provides you for building Java visual
parts called beans. Using the Beans palette, a graphical list of parts you can
use to design a user interface, you will build the Customer Information
window and size and align labels, fields and buttons within the window.
You’ll also use this palette to place VisualAge Generator data and logic parts
on the free-form surface where you’ll connect them to your visual part.

Before you start

If you are using VisualAge Generator on Smalltalk, refer to “Chapter 18.
Building a visual part using VisualAge Generator Developer on Smalltalk” on
page 159.

If you have not completed the steps in “Chapter 8. VisualAge Generator
Developer on Java: a tutorial” on page 65, please go back and complete all the
steps in that section before you create a new visual part.

Creating a new bean

The window or bean you create in this tutorial (shown in Figure 88 on
page 138) displays detailed customer information.

© Copyright IBM Corp. 1980, 2001 137

To create a new visual part:
1. On the Workbench Projects tab, select the tutorial package.
2. From the Selected menu, select Add→Application.

The Create Application SmartGuide is displayed. The Project and Package
fields are filled for you.

3. In the Class name field, type the name TutorialView.
Create Swing based application is selected for you.

4. Select Next.
The Application Details page is displayed.

5. In the Title bar text field, type Customer Information.
6. Deselect all options except Center and pack frame on screen.
7. Select Finish.

Figure 88. Customer Information Window

138 VisualAge Generator: Getting Started

The window is displayed in the Composition Editor. The default size of
the window is width: 460 and height: 300. The area outside of the window
is called the free-form surface.

Adding a VAGen Record to the visual part

Now you are going to build a data part for your visual part. The fields
(columns) in a single row of a relational database table are described in a
VAGen record.
1. From the list above the Beans palette, change Swing to VAGen Parts.

The Beans palette is refreshed to show all the part types of the VAGen
Parts category.

2. Select the VAGen Record part. .
3. Drop the part by clicking on the free-form surface to the right of the

Customer Information window. The mouse pointer becomes a cross-hair
when your cursor is over an area where you can drop the part.
The Add Part window, shown in Figure 89, is displayed. You can enter a
part name (in this case, a record name) or use an existing VisualAge
Generator record by selecting from the drop-down list.

4. Type customer as the record name, and select OK.
The CUSTOMER record is now on your free-form surface and ready to be
defined. This name can be the same or different from the table name in the
relational database.

5. Click with mouse button 2 on the CUSTOMER record.
A context menu is displayed.

6. Select Open.
The CUSTOMER record is displayed in the Record Editor. This is the same
record defined in “Chapter 11. Defining an SQL record” on page 89. If you
completed that section of the tutorial, this record is already defined, except
for the data item descriptions.

Figure 89. Add Part Window

Chapter 17. Building a visual part using VisualAge for Java 139

Note: If you have not already defined the CUSTOMER record, the New
Part Package/Application window is displayed. Ensure that tutorial
is selected and select OK. The record editor is displayed.

Defining the CUSTOMER VAGen Record Part

Here you define the VAGen Record part as an SQL row record and use the
CUSTOMER table definition in the relational database catalog to define the
contents of the record.

Note: If you have already completed the steps in “Chapter 11. Defining an
SQL record” on page 89, skip to the last step in this section to
customize the data item descriptions.

1. In the Record Editor, select SQL row from the Record Type drop-down list
box.
VisualAge Generator supports accessing a variety of file types and
databases. In this case you are going to access a relational database table,
so you selected SQL row as the record type.

2. From the Define menu, select Properties.
The SQL Row Properties window is displayed.

3. Select Insert.
A blinking cursor is displayed in the Name field.

4. In the Name field, type customer and select OK.
The SQL Row Properties window closes.

5. From the Tools menu, select Retrieve SQL.

Note: If a message window is displayed, indicating that the system cannot
locate a database access plan, select Yes to have a plan created.

If you have not already connected to the database, you will be
prompted for an ID and Password. Enter the ID and Password you
used in setting up your database.

The table definition information is retrieved from the relational database
catalog and used to create data item definitions for the record.

6. Select the Key field of the CUSNUM data item. Select the Key check box
displayed in that field.

7. From the File menu, select Save.
8. Close the Record Editor.

For more information about defining records, refer to the VisualAge Generator
help facility.

140 VisualAge Generator: Getting Started

Now that you’ve defined an SQL Row record, you’re ready to add fields to
the Customer Information window and define connections to the record. Data
items in the CUSTOMER record will be visually connected to parts of the
Window with a blue line, indicating a property-to-property connection. With
this type of connection:
v When data is entered in the fields, it is automatically moved to the

corresponding data items in CUSTOMER.
v When data items in CUSTOMER are changed, the new values are also

automatically moved to the fields (when the window is displayed).

Customer Information window

In this section of the tutorial, you’ll begin building the parts of the Customer
Information Window. You’ll add labels and fields for the Customer Number,
Customer Name, Contact, and Phone and connect those fields to data items in
the CUSTOMER record. You’ll add a label for the Address panel and Find and
Cancel buttons.

Adding and connecting labels and fields
1. From the list above the Beans palette, select the Swing category.

2. Select JLabel and drop this bean inside the Customer Information
Window.

3. Select JTextField and drop this bean inside the Customer
Information Window.
See Figure 96 on page 160 for the placement of these beans. These beans
are for the Customer Number label and its corresponding text area. You
will need to resize the JTextField because it is small by default.

4. Double-click JLabel1 in the Customer Information window.
The Properties window is displayed with properties listed in alphabetical
order.

5. In the text field, type the name Customer Number.
The JLabel now says Customer Number. It may be necessary to resize the
JLabel so that all of the text is displayed.

6. Close the Properties window to commit the changes.
7. Select the Customer Number JTextField with mouse button 2.

A context menu is displayed.
8. Select Connect→Connectable Features from the context menu.

The Start connection from window is displayed.
9. Ensure that the Property radio button is selected and select text.

Chapter 17. Building a visual part using VisualAge for Java 141

10. Select OK

The mouse pointer is displayed as connected to a dashed line. This
indicates that you are in the process of making a connection.

11. Click the CUSTOMER record part with mouse button 1.
A context menu is displayed.

12. Select Connectable Features.
The End connection to window is displayed.

13. Select CUSNUM data, then select OK.
A blue line is displayed connecting the Customer Number field and the
CUSNUM data property in the CUSTOMER record. The description of the
connection is displayed in the status area at the bottom of the
Composition Editor.

14. Double-click on the connection you just created.
The property-to-property connection window is displayed.

15. From the Source event drop-down list, select keyReleased, then select
OK.
Specifying the keyReleased event for this connection causes the data
item CUSNUM in the CUSTOMER record to be updated when the
Customer Number field is changed, and causes the Customer Number
field (when displayed) to be updated when the data item CUSNUM is
changed.

Use the same procedures to create labels and fields for the CUSNAME,
CUSCONTACT, and CUSPHONE data items in the CUSTOMER record.

The basic steps you should follow add and connect these parts are:
1. Add a label.
2. Change the label to reflect data item name.
3. Add the field.
4. Make a property-to-property connection between the field and the

appropriate data item in the CUSTOMER record and set the source event.

Adding the Find and Cancel buttons
Complete the following steps to add push buttons to the bottom of your
Window.

1. Press Ctrl and from the Beans palette, select JButton .

Tip: Pressing Ctrl while you select a bean from the Beans palette enables
the Sticky feature. Use Sticky to drop more than one of the same
type of bean. To turn Sticky off, select another bean or the selection
tool.

142 VisualAge Generator: Getting Started

2. Click twice at the bottom of the Window.
Two push buttons are displayed at the bottom of the Window.

3. Click the selection tool .
4. To change the push button label, double-click on the button on the left

side of the Customer Information window to display the Properties
window.

5. Click in the field beside text and type Find.
The push button is now labeled Find.

6. Close the Properties window to commit the changes.
7. Double-click the second button
8. Click in the field beside text and type Cancel.
9. Close the Properties window to commit the changes.

Now that you have most of the visual parts of your user interface on the
Window, you can use the tool bar to align those parts in the window.

Arranging visual parts

To arrange visual parts you can use the tool bar buttons or selections from the
Tools menu. Each tool bar button has a corresponding menu choice with the
same name that performs the same function. The menu choices or buttons you
use to arrange visual parts are as follows:

Align Left

Align Center

Align Right

Align Top

Align Middle

Align Bottom

Distribute Horizontally

Chapter 17. Building a visual part using VisualAge for Java 143

Distribute Vertically

Match Width

Match Height

In this tutorial, you’ll be directed to the menu choices, but feel free to use the
tool bar buttons instead.

Note: Like the choices on the Tools menu, many of the buttons on the tool
bar are unavailable unless you have more than one visual part selected.
To select two or more parts at the same time,
1. Place your mouse pointer over the part you want to select.
2. While holding down the Ctrl key, move the mouse pointer to

another part and click and release mouse button 1.

Repeat step 2 as many times as necessary, until you have selected all
the parts you need to size or align in relation to each other.

Notice that the part you select last has solid handles, while the other
selected parts have hollow handles. The part with solid handles is used
as a reference point. So, when you want to align several parts, select
the parts you want to move first. Those parts will be aligned with the
part you select last.

In “Defining a reusable visual part” on page 172, you will add an Address
panel to the Customer Information window. So arrange the labels and fields at
the top of the Window and the push buttons at the bottom, leaving enough
room for the Address panel between them.

For a complete description of the tool bar and the tools available, refer to
Composition Editor in the VisualAge help facility or the VisualAge for Java User’s
Guide.

To arrange the visual parts on the Customer Information window, perform the
following steps:
1. Select the Find button and then the Cancel button.

The Find button has hollow handles and the Cancel button has solid
handles.

2. From the Tools menu, select Match Width.

144 VisualAge Generator: Getting Started

The Find button is resized to match the Cancel button in width.
3. From the Tools menu, select Match Height.

The Find button is resized to match the Cancel Push Button in height.
4. From the Tools menu, select Align Middle.

The Find button’s vertical center is aligned to the center of the Cancel
button.

5. From the Tools menu, select Distribute Horizontally.
The two buttons are placed at regular intervals across the Window.

Using the bounding box
Next, align the labels and fields in the top portion of the Window, leaving
space in the middle for the Address panel.

The bounding box enables you to align selected parts within a portion of your
Window, rather than the entire Window. The selected portion is defined by
the topmost and bottommost, or leftmost and rightmost sides of the parts
selected.
1. Select the Phone label and the associated field.

Both parts display selection handles.
2. Move these parts to where you want them in the Window using mouse

button 1.
The Phone label and the associated field define the bottom of the
bounding box, while Customer Number defines the top of the bounding
box.

3. Select all the fields (do not select the labels), making sure the Customer
Number field is the last one selected.
The Customer Number Text part should have primary selection handles
(solid).

4. Click mouse button 2 on one of the selected parts. Select
Layout→Distribute→Vertically In Bounding Box.
Now the fields are all evenly distributed in the top portion of the Window.

5. From the Tools menu, select Align Left to align the parts on the left.
All the fields are aligned on the left.

6. Select all the labels, making sure that the Customer Number label is the
last one selected.

7. Click mouse button 2 on one of the selected parts. Select
Layout→Distribute→Vertically In Bounding Box.
Now the labels are all evenly distributed in the top portion of the Window.
If you are not satisfied with your results, from the Edit menu, select Undo
and try again.

Chapter 17. Building a visual part using VisualAge for Java 145

8. From the Tools menu, select Align Left.
All labels are aligned on the left.

In the next chapter, you will add the Address panel to this Window.

Adding an action to the Cancel button

When users select the Cancel button, you want the Customer Information
window to close. This relationship is called an event-to-method connection.
1. To make a connection from the Cancel push button, click mouse button 2

on the Cancel push button.
The context menu is displayed.

2. From the context menu, select Connect→actionPerformed.

The mouse pointer is displayed as connected to a dashed line. This
indicates that you are in the process of making a connection.

3. Click mouse button 1 on the title bar of your Window (the area that says
Customer Information).
A context menu is displayed.

4. Select dispose().
A green line with an arrow pointing from the Cancel push button to the
Window edge is displayed. This connection means that when the Cancel
push button is clicked, the dispose() method is triggered and the window
is closed.

5. From the Bean menu, select Save Bean.

Testing the Customer Information window

The next step is to test the window (the bean) to ensure that the user interface
is displayed and the Cancel button works the way you want it to.

1. From the tool bar, select the Run button.
The Customer Information window is displayed. Verify your layout of the
window.

Note: The window will need to be resized to display the entire layout.
2. Select Cancel on your Customer Information window.

The window is closed.
3. Close the Composition Editor.

For more information on testing visual parts, refer to the VisualAge for Java
online help.

146 VisualAge Generator: Getting Started

After you have added some VAGen logic parts, you can use VisualAge
Generator test facility to test the connections from this user interface to your
VAGen logic and data parts. This powerful feature enables you to step
through a test of your user interface connections and logic and data parts,
modify code, and set break, watch, and test points.

Defining the address panel

The objective of this section is to familiarize you with creating reusable visual
parts and using them with VAGen parts. This exercise focuses on the
following tasks:
v Building a reusable bean called ReusableAddressBoxView, consisting of a

panel that includes labels and fields for address data
v Promoting the features of the bean to the public interface so that they can

be accessed by other beans

Creating a reusable bean
You will build a panel and add labels and fields for address information.
Figure 90 shows the panel you will define.

1. On the Workbench Projects tab, select the tutorial package.
2. From the Selected menu, select Add→Class.

The Create Class SmartGuide is displayed.

Tip: Choices on the Selected menu are the same as those on the context
menu displayed when you select a package and click mouse button 2.

3. In the Class name field, type the name ReusableAddressBoxView.
4. In the Superclass field, type the class javax.swing.JPanel.
5. Select Compose the class visually.
6. Select Finish.

The new visual part is displayed in the Composition Editor.

Figure 90. Address Panel

Chapter 17. Building a visual part using VisualAge for Java 147

Adding parts to the address panel
In this section of the tutorial, you will add labels and fields for street, city,
state, and zipcode.

Complete the following steps to add parts to the Address panel:
1. Resize the address panel by selecting it and dragging the selection handles

on the right or left side.
Alternatively, you can resize the panel by double-clicking on it to display
the Properties window where you can expand the constraints field and set
the values in the width and height fields to 400 and 100 respectively.

2. From the Beans palette, select JLabel .
3. Drop the part on the panel.
4. Double-click the label you dropped.

The Properties window is displayed.
5. In the text field type Street.

6. Select JTextField .
7. You will need to resize the JTextField because it is small by default.
8. Repeat the previous steps to create labels and associated text entry fields

for City, State, and Zip as shown in Figure 90 on page 147.
For more detailed information about arranging visual parts see “Arranging
visual parts” on page 143.

Promoting features of the reusable part
If you want to access any information in the Address panel from another
visual part, you must add the appropriate features to the bean’s public
interface. In this case, the features needed are the properties for the text field
beans. In this section, you will add properties for all four beans (Street, City,
State, and Zip) to the public interface.

For more complete information on topics covered in this section, refer to the
VisualAge for Java online help.

To promote bean features to the public interface, perform the following steps:

Note: Before you promote bean features, you should rename the beans so that
you will recognize them when you need to access them from other
beans. To rename a bean, select it with mouse button 2 to display the
context menu. Select Change Bean Name and type a name in the New
bean name field.

1. Select the Street entry field and rename it to StreetField.

148 VisualAge Generator: Getting Started

2. Select the Street entry field with mouse button 2. From the context menu,
select Promote Bean Feature.
The Promote features from window is displayed.

3. On the Promote features from window, select the property text and select
the >> button.
StreetFieldText is displayed in the Promoted features list.

4. Select OK.
5. Repeat the above steps for the City, State, and Zip entry fields, using the

names CityField, StateField, and ZipField, respectively.
The text property feature of each of the four beans has been added to the
public interface. Now these properties can be accessed by other beans.

6. Select Bean→Save Bean.
7. Close the Visual Composition Editor.

Now you are ready to embed the address box in your tutorial view and add
VAGen logic parts.

Defining a VAGen server program

The focus of this section is to finish developing your user interface and
connect it to a server application that reads data to be displayed in the
Customer Information window. The objective of this section is to familiarize
you with making connections between user interfaces and nonvisual parts,
such as records and server applications. In addition, you will build the server
application and embed the Address panel you created in the previous section.
Finally, you will use the interactive test facility to test how the client and
server applications work together.

Embedding a reusable visual part
You can now complete the window in Figure 91 on page 150, which displays
detailed customer information.

Chapter 17. Building a visual part using VisualAge for Java 149

To complete the window, add the Address panel you created in “Defining the
address panel” on page 147 to the Customer Information Window. To add the
reusable visual part, perform the following steps:
1. On the Workbench Projects tab, double-click on TutorialView.

The Composition Editor opens, displaying the Customer Information
window.

2. From the Beans palette, select Choose bean .
The Choose bean window is displayed

Figure 91. Customer Information Window

150 VisualAge Generator: Getting Started

1. In the Class Name field, type tutorial.ReusableAddressBoxView and
select OK.
The mouse pointer becomes a cross hair.

Tip: Alternatively, you can select the Browse button and select the class
name from the displayed list. The package name is automatically
appended for you.

2. Click on the Customer Information window where you want to add the
bean.
The Address panel is added to the Window.

3. Size the Address panel (and the Customer Information window if
necessary) until the panel fits inside the window.

4. Select the Address panel with mouse button 2. From the context menu,
select Connect→Connectable features.
The Start connection from window is displayed.

5. Select Property.
6. Select StreetFieldText.

A dotted line with a at the end is displayed.
7. Select the CUSTOMER Record part.
8. From the context menu, select Connectable features.

The End connection to window is displayed.
9. Select CUSSTREET data and select OK.

This creates a property-to-property connection between the Street entry
field and the data item CUSSTREET in the CUSTOMER Record part.

Figure 92. Choose Bean Window

Chapter 17. Building a visual part using VisualAge for Java 151

By selecting the data property, you are making a connection to only the
data contents of the data item. If the connection required a type
description in addition to the data contents, you would have selected
CUSSTREET, which represents the this property of the data item.
The entry fields in windows, as in this example, typically only require
the data contents. However, when you connect to a parameter in a called
parameter list for a program, the data contents and the type description
are required.

10. Repeat the previous steps for CityFieldText, StateFieldText, and
ZipFieldText. Connect them to CUSCITY data, CUSSTATE data, and
CUSZIP data, respectively.
This creates property-to-property connections between the fields in the
panel and the data items in the CUSTOMER Record part. If you want to
check any of the connections, select the connection and the status area
will contain a description of it.

Adding a VAGen Program to the visual part
Now that all the user interface parts are in place on the Window, you’ll add a
VAGen Program part to the free-form surface and connect it to the Find
button. The VAGen Program part represents a server program that you will
define later in this exercise. The server program will read the customer details
from the database and return the data to TutorialView to populate the fields
in the Customer Information window.
1. From the list above the Beans palette, select the VAGen Parts.

A graphical list of VAGen parts is shown on the Beans palette.

2. Select the VAGen Program part and click on the free-form surface
outside of your Window.
The Add Part window is displayed.

3. In the VAGen part field, type findcus and select OK.
The FINDCUS program part is now on your free-form surface.

4. Select the Find button with mouse button 2.
The context menu for the Find button is displayed.

5. Select Connect→actionPerformed.

A line with a on the end is displayed.
6. Select the FINDCUS program part.

A context menu is displayed.
7. From the context menu, select execute.

152 VisualAge Generator: Getting Started

A green line with an arrow now connects the Find button with the
FINDCUS program part. This connection means that when the Find
button is clicked, FINDCUS is called.

8. Select the FINDCUS program part with mouse button 2.
A context menu is displayed

9. Select Open.
The New Part Package window is displayed

10. Select the tutorial package and select OK.
The Program Editor opens to display FINDCUS.

Defining the VAGen server application
In this section you define the VAGen server application FINDCUS, which
reads the customer information from a relational database. To retrieve the
correct customer information, the record key (CUSNUM) for the database
must be passed to the server application from TutorialView. To display the
retrieved information, the data to populate the Customer Information window
must be returned from the server application. Parameters are the mechanisms
by which data is passed between applications.

To define the server application, in the Program Editor, perform the following
steps:
1. From the Define menu, select Called Parameters→Insert Parameter.

The Insert Parameter window is displayed.
2. Ensure that the Record radio button is selected, and from the Part Name

drop-down list box, select CUSTOMER.
3. Select OK.

The CUSTOMER record is displayed in the program diagram under
Called Parameters. Now you are ready to define the main functions for
FINDCUS.

4. From the Define menu, select Main Functions.
The Insert Main Function window is displayed.

5. In the Part name field, type find-customer and select OK.
The FIND-CUSTOMER function is displayed in the structure diagram.
The ? beside it means that it has not yet been defined.

6. Double-click on the function icon.
The New Part Package window is displayed.

7. Select OK.
The Function Editor is displayed.

8. From the I/O Option drop-down list box, select INQUIRY. In the I/O
Object field, type custinfo.

Chapter 17. Building a visual part using VisualAge for Java 153

The I/O option and I/O object are displayed on the second line in the
Function Editor.

9. From the Define menu, select Properties.
The Function Properties window is displayed.

10. From the Error routine drop-down list box, select EZERTN and select
OK.
The Function Properties window closes. The information retrieved from
the database inquiry will be placed in the CUSTINFO record you will
define later. The error routine EZERTN will return control to your
application when an error occurs. This prevents the application from
ending with system generated messages, which might confuse an
application user.

11. In the Function Editor, type the statements as shown in Figure 93.
The first statement executes before the actual database query. The other
statements execute after the query takes place.

1. From the Tools menu, select Validate and Format .
The statements have been validated and formatted. If a Validation Errors
window is displayed, correct the errors listed in the window, and select
Validate and Format again.

2. From the File menu, select Save.
3. Close the FIND-CUSTOMER function.

A + is displayed beside the FIND-CUSTOMER function in the Program
Editor.

Defining the CUSTINFO record
In the previous section, you defined an INQUIRY function that uses the
CUSTINFO record. Now, you need to define the record. This record will
contain the detailed customer information after it is retrieved from the
database.
1. In the Program Editor, click the + beside the FIND-CUSTOMER function.

The CUSTINFO record is displayed.
2. Double-click on the CUSTINFO record. In the New Part Package window,

select OK.
The Record Editor is displayed.

custinfo.cusnum = customer.cusnum; /*customer number to be retrieved
----------------------- INQUIRY CUSTINFO ---------------------
if custinfo not err; /*If the query did not return an error
customer = custinfo; /*Place all data from the retrieved
end; /*row into the customer record

Figure 93. Sample Statements

154 VisualAge Generator: Getting Started

3. From the record type drop-down list box, select SQL Row.
4. Ensure that there are no items in the record. If there is an item in the

record, delete it. To delete an item, select it. Then, from the Edit menu,
select Delete.

5. From the Define menu, select Properties.
The SQL Row Properties window is displayed.

6. On the SQL Row Properties window, select Insert.
A row is added and the cursor appears in the Name pane.

7. In the Name pane, type customer.
8. Select OK.

The SQL Row Properties window closes.
9. From the Tools menu, select Retrieve SQL.

The SQL table is displayed in the Record Editor.
10. Click in the Key column of the CUSNUM data item and select the check

box.
The check box is checked. The CUSNUM item is defined as the key data
item.

11. From the File menu, select Save.
12. Close the Record Editor.

The fully-defined CUSTINFO record is displayed in the Program Editor.
13. In the Program Editor, from the File menu, select Save.
14. Close the Program Editor.

Building parameters for the program
In this section you build the parameters that will be passed between the client
view and the FINDCUS program. You also visually connect the parameters to
complete the definition.
1. In TutorialView, select the FINDCUS program part with mouse button 2.

From the context menu, select Build parameters from definition.
Based on the parameter list of FINDCUS, this action creates the
parameters needed for the CALL.
Selecting Build parameters from definition causes defined parameters to
be added to the execute method of the FINDCUS program part. The solid
green line changes to a dashed green line and a statement displayed in the
status line confirms that default parameters were built.

2. Select the CUSTOMER part with mouse button 2. From the context menu,
select Connect→this.

You now have a line with a on the end.
3. Place the pointer on the JButton1,actionPerformed → FINDCUS,execute

connection and click mouse button 1.

Chapter 17. Building a visual part using VisualAge for Java 155

A context menu is displayed.
4. Select CUSTOMER.

A purple line is displayed connecting the CUSTOMER record to the
FINDCUS program. The dashed green becomes solid

A property-to-property connection connects the CUSTOMER parameter of
FINDCUS to the CUSTOMER record. You selected the this property to pass
the data contents and the type description of the record to the server
application.

Your completed server application should look like Figure 103 on page 182

For more information on building visual parts, refer to the VisualAge for Java
online help.

Figure 94. TutorialView

156 VisualAge Generator: Getting Started

Testing the bean
Now test your bean using the Interactive Test Facility.

1. From the tool bar, select the Run button.
The Customer Information window is displayed.

2. Place the cursor in the Customer Number field. Type a customer number
from the list below; then select Find. Use 111-0101 through 111-0106 and
122-0001 through 122-0003. If you type an invalid number, nothing
changes.
If you want Test Monitor to have focus while it tests your VAGen parts,
VAGen Parts Browser, select Window→Options. On the VAGen Test
window, under options, select Break on event entry for GUI clients.
Start the Test Monitor. The Test Monitor gets focus if you have an error in
a VAGen part. If you would like to see the Test Monitor window
throughout your test run, move it to the right side of your screen.
If errors are encountered during the test, you can change your code
without leaving the test. After you make changes and save the part, the
test facility automatically repositions the test for you to test your new
changes.
Otherwise, the program runs and the Customer Information window is
updated with data from the database. Your application ran successfully if
it looks like the one shown in Figure 95 on page 158.

3. Continue entering other customer numbers. After you finish testing, in the
Customer Information window, select Cancel.
The Customer Information window closes.

4. Close the Test Monitor window.
5. Close the Composition Editor.

Chapter 17. Building a visual part using VisualAge for Java 157

Summary
Congratulations! You have completed all the steps in this tutorial, and you
have experienced firsthand how easy it is to define and test applications using
VisualAge Generator. As you begin working with VisualAge Generator, you
can refer back to this tutorial, all the other VisualAge Generator
documentation, and VisualAge Generator’s extensive online help system.

Figure 95. Customer Information Window

158 VisualAge Generator: Getting Started

Chapter 18. Building a visual part using VisualAge
Generator Developer on Smalltalk

This section is the first of three sections that provide you with experience
building visual parts. The objective of this section is to help you become
familiar with the Composition Editor and the tools it provides you for
building visual parts. Using the parts palette, you will design a user interface
window and size and align labels and fields within the window. You’ll also
use the parts palette to connect VisualAge Generator data and logic parts to
your visual part.

Before you start

If you have not completed the steps in “Chapter 6. VisualAge Generator
Developer on Smalltalk: a tutorial” on page 53, please go back and complete
all the steps in that section before you create a new visual part.

Creating a new visual part

The window you create in this tutorial displays detailed customer
information.

Note: The Address part shown in this picture is created in “Defining a
reusable visual part” on page 172. Leave space for it, so it will fit as
shown in Figure 96 on page 160.

© Copyright IBM Corp. 1980, 2001 159

To create a new visual part, on the VisualAge Organizer window:
1. Ensure that the Tutorial application is selected in Applications pane.
2. From the Parts menu, select New.

The VisualAge New Part window is displayed.
3. In the Part class field, type the name TutorialView for your new part

class.

Note: Names of VisualAge parts are usually several words written
together without spaces. Visual part class names are case sensitive
and the first letter of each word is usually capitalized to make them
easier to read. The names of visual parts usually end with the word
View to help you distinguish them from nonvisual VisualAge parts.
The class shown in the Inherits from drop-down list box is one
example.

4. Select OK.

Figure 96. Customer Information Window

160 VisualAge Generator: Getting Started

The Composition Editor is displayed. Because the AbtAppBldrView class
was selected in the Inherits from drop-down list box, the TutorialView
part already contains a Window part. The area outside of the Window part
is called the free-form surface.

5. Maximize the Composition Editor to get a larger work area.
6. Select the window on the free-form surface.

Small solid boxes appear on the Window’s corners. These are called
selection handles.

7. Click and drag one of the selection handles to resize the Window.
For this sample, make the Window as large as possible in the viewable
area of the Composition Editor. Leave at least one inch of the free-form
surface visible to the right of the Window part for future use.

8. Give the Window a new title to replace the generic name Window. To do
this, move the mouse pointer to the Window title and press ALT+mouse
button 1.
The cursor is now at the end of the default name, which is blocked for
deletion in text edit mode.

9. Type the title, Customer Information. Click anywhere except on the title to
end text edit mode.
The Window now has the new title.

Note: Refer to the VisualAge for Smalltalk User’s Guide for basic techniques
used in creating visual parts.

Adding a VAGen Record to the visual part

Now you are going to build a data part for your visual part. The fields
(columns) in a single row of a relational database table are described in a
VAGen record.

1. Select the VAGen Parts category .
The parts palette is refreshed to show all the parts of the VAGen Parts
category.

2. Select the VAGen Record part . Drop the part by clicking on the
free-form surface to the right of the Customer Information window. The
mouse pointer becomes a cross-hair when your cursor is over an area
where you can drop the part.
The Add Part window, shown in Figure 97 on page 162, is displayed. You
can enter a part name (in this case, a record name) or use an existing
VisualAge Generator record by selecting from the drop-down list. For this
exercise, you will enter a record name.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 161

1. Type customer as the record name, and select OK.
The CUSTOMER record is now on your free-form surface and ready to be
defined. This name can be the same or different from the table name in the
relational database.

2. Click with mouse button 2 on the CUSTOMER record.
A context menu is displayed.

3. Select Edit Part.
The New Part Application window is displayed.

4. Ensure that Tutorial is selected, and select OK.
The CUSTOMER record is displayed in the Record Editor. This is the same
record defined in “Chapter 11. Defining an SQL record” on page 89. If you
have already completed that section, this record is already defined, except
for the data item descriptions.

Defining the CUSTOMER VAGen Record Part

Here you define the VAGen Record part as an SQL row record and use the
CUSTOMER table definition in the relational database catalog to define the
contents of the record.

Note: If you have already completed the steps in “Chapter 11. Defining an
SQL record” on page 89, the next five steps will be redundant. (Do not
repeat the steps if you completed them earlier.) Step 6 in this section is
not redundant, so be sure to follow it and customize the data item
descriptions.

1. In the Record Editor, select SQL row from the Record Type drop-down list
box.
VisualAge Generator supports accessing a variety of file types and
databases. In this case, you are going to access a relational database table,
so you selected SQL row as the record type.

Figure 97. Add Part Window

162 VisualAge Generator: Getting Started

2. From the Define menu, select Properties.
The SQL Row Properties window is displayed.

3. Select Insert.
A blinking cursor is displayed in the Name field.

4. In the Name field, type customer and select OK.
The SQL Row Properties window closes.

5. From the Tools menu, select Retrieve SQL.

Note: If a message window is displayed, indicating that the system cannot
locate a database access plan, select Yes to have a plan created.

If you have not already connected to the database, you will be
prompted for an ID and Password. Enter the ID and Password you
used in setting up your database.

The table definition information is retrieved from the relational database
catalog and used to create data item definitions for the record.

6. Customize the descriptions of data items in the SQL row record so that
you can use them as field labels later. For each data item in the record,
select the Description field and type descriptions for the data item names
as follows:

Name Description

CUSNUM Customer Number

CUSNAME Customer Name

CUSSTATUS Customer Status

CUSLIMIT Customer Limit

CUSCONTACT Contact

CUSPHONE Phone

CUSSTREET Street

CUSCITY City

CUSSTATE State

CUSZIP Zip

Note: You may need to maximize the Record Editor in order to view the
Description fields.

7. Select File→Save.
8. Close the Record Editor.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 163

For more information about defining records, refer to the VisualAge Generator
help facility.

Now that you’ve defined an SQL Row record and assigned data item
descriptions, you’re ready to add fields to the Customer Information window
and define connections to the record. Data items in the CUSTOMER record
will be visually connected to parts of the Window with a blue line, indicating
an attribute-to-attribute connection. With this type of connection:
v When data is entered in the fields, it is automatically moved to the

corresponding data items in CUSTOMER.
v When data items in CUSTOMER are changed, the new values are also

automatically moved to the fields (when the window is displayed).

Customer Information window

You can add Text parts (data fields) to your Window, either manually or with
the Quick Form function. The next section takes you through both techniques.
In addition to the Text and Label parts, you will also add two Push Buttons to
your Window.

1. Select the Data Entry category , and drop a Text part and a

Label part inside the top portion of the Window.
See Figure 96 on page 160 for placement of these parts. These parts are
for the Customer Number label and its corresponding text area.

2. Place the mouse pointer on the word Label1 in your Customer
Information window, and press ALT+mouse button 1. Type the name
Customer Number. Click anywhere except on the label to end text edit
mode.
The Label is automatically resized and now says Customer Number.

3. Click mouse button 2 on the customer number Text part.
A context menu is displayed.

4. Select Open Settings.

Note: If a Settings notebook is displayed, changing it to a Properties
window will make the tutorial instructions easier to follow. To
change the window, from the VisualAge Organizer window, select
Options, then Preferences. On the General tab, under Preferred
Settings View, select Properties Table. Select OK. In order to
bring up the Properties Table, you will need to close the Settings
notebook and repeat steps 3 and 4.

164 VisualAge Generator: Getting Started

The Properties window is displayed. Property names are listed in
alphabetical order.

5. Locate converter in the Name column and click beside it in the Value
column.
A push button is displayed.

6. Select the push button.
The Converter window is displayed.

7. From the Data Type drop-down list box, select String.
8. Select OK.

The Converter window closes.
9. Ensure that the notifyChangeOnEachKeystroke property is set to false.

If it is set to true, click in the Value field with mouse button 1 to display
the radio buttons. Select false.
By setting notifyChangeOnEachKeystroketo false, editing and other
actions will not occur until the cursor moves out of the Text part field.
Otherwise, every keystroke during data entry to the field will trigger a
data edit check of the field by VisualAge Generator.

10. Close the Properties window to accept the values you have changed.
The changes have now taken effect.

11. Select the CUSTOMER record with mouse button 2.
A context menu is displayed.

12. Select Connect from the context menu.
The Start connection from (CUSTOMER) window is displayed.

13. Select CUSNUM data from the Attribute column; then select OK.

The mouse pointer is displayed as connected to a dashed line. This
indicates that you are in the process of making a connection.

14. Select the Customer Number Text part.
A context menu is displayed.

15. Select object.
A blue line now is displayed connecting the Customer Number Text part
and the CUSNUM data attribute in the CUSTOMER record. By selecting
the blue line, the description of the connection is displayed in the status
area at the bottom of the Composition Editor. This attribute-to-attribute
connection causes the data item CUSNUM in the CUSTOMER record to
be updated when the Customer Number Text part is changed, and causes
the Customer Number Text part (when displayed) to be updated when
the data item CUSNUM is changed.

A faster way to add the parts and connections to the window is to use a
function called Quick Form to complete the following steps:

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 165

1. Build the Label part.
2. Change the label to the data item description from the record.
3. Build the Text part.
4. Set the correct data type using the data item definition from the record.
5. Make an attribute-to-attribute connection between the Text part and the

appropriate data item in the CUSTOMER record.

To add the parts:
1. Select the CUSTOMER record part with mouse button 2

A context menu for the VAGen Record part is displayed.
2. Select Quick Form.

A list of the data item names is displayed. These data items are defined in
the VAGen record part.

3. Select CUSNAME.
Your mouse pointer is now in the form of a cross-hair.

4. Click on the Window where you want this field positioned.
A Text part and a Label (Customer Name) are added to the Window. An
attribute-to-attribute connection is created, and the data type is set
according to the CUSNAME data item definition.

5. Repeat the previous four steps for the CUSCONTACT and CUSPHONE
data items.
The Window now has four Text parts with Labels, corresponding to those
shown in Figure 96 on page 160.

Complete the following steps to add Push Buttons to the bottom of your
Window:

1. Select the Buttons category .
The parts palette shows a list of all parts in the Buttons category.

2. Select the Push Button part . Select the Sticky checkbox and click
once at the bottom of the Window.
A Push Button is displayed at the bottom of the Window. The Push Button
part remains selected and your mouse pointer remains loaded.

3. Click to the right of your first Push Button.
A second Push Button is displayed on the Window. The Push Button part
remains selected and your mouse pointer remains loaded.

4. Deselect the Sticky checkbox.
The Push Button part is no longer selected and your mouse pointer
changes from a cross hair to an arrow.

166 VisualAge Generator: Getting Started

Note: You can unload the mouse pointer at any time by selecting the

selection tool from the tool bar.
5. To change the Push Button labels, select the button label by placing your

mouse pointer over one of the Push Buttons and pressing ALT+mouse
button 1.
The cursor is now at the end of the default name of the Push Button.

6. Type Find on the first Push Button and click anywhere in the editor except
on the part you just changed.
The Push Button is now labeled Find and has automatically resized to fit
the text.

7. Select the button label on the next Push Button and change it to Cancel.
Click anywhere to exit the text edit mode.
The Push Buttons have now been changed to Find and Cancel. The size of
each Push Button automatically adjusts to the size of its label.

Now that you have most of the visual parts of your user interface on the
Window, you can use the tool bar to align those parts in the window.

Arranging visual parts

To arrange visual parts you can use the tool bar buttons or selections from the
Tools menu. Each tool bar button has a corresponding menu choice with the
same name that performs the same function. The menu choices or buttons you
use to arrange visual parts are as follows:

Align Left

Align Center

Align Right

Align Top

Align Middle

Align Bottom

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 167

Distribute Horizontally

Distribute Vertically

Match Width

Match Height

In this tutorial, you’ll be directed to the menu choices, but feel free to use the
tool bar buttons instead.

Note: Like the choices on the Tools menu, many of the buttons on the tool
bar are unavailable unless you have more than one visual part selected.
To select two or more parts at the same time,
1. Place your mouse pointer over the part you want to select, press

and hold Ctrl and click and release mouse button 1.
2. While holding down the Ctrl key, move the mouse pointer to

another part and click and release mouse button 1.

Repeat these steps as many times as necessary, until you have selected
all the parts you need to size or align in relation to each other.

Notice that the part you select last has solid handles, while the other
selected parts have hollow handles. The part with solid handles is used
as a reference point. So, when you want to align several parts, select
the parts you want to move first. Those parts will be aligned with the
part you select last.

In “Defining a reusable visual part” on page 172, you will add an Address
group box to the Customer Information window. So arrange the Label and
Text parts at the top of the Window and the push buttons at the bottom,
leaving enough room for the Address Group Box between them.

For a complete description of the tool bar and the tools available, refer to
Composition Editor in the VisualAge help facility or the VisualAge for Smalltalk
User’s Guide.

To arrange the visual parts on the Customer Information window, perform the
following steps:

168 VisualAge Generator: Getting Started

1. Select both the Find Push Button and Cancel Push Button
Both buttons are selected. The Find Push Button has hollow handles and
the Cancel Push Button has solid handles.

2. From the Tools menu, select Match Width.
The Find Push Button is resized to match the Cancel Push Button in
width.

3. From the Tools menu, select Match Height.
The Find Push Button is resized to match the Cancel Push Button in
height.

4. From the Tools menu, select Align Middle.
The Find Push Button’s vertical center is aligned to the center of the
Cancel Push Button.

5. From the Tools menu, select Distribute Horizontally.
The two Push Buttons are placed at regular intervals across the Window.

Using the bounding box
Next, align the Label and Text parts in the top portion of the Window, leaving
space in the middle for the Address Group Box.

The bounding box enables you to align selected parts within a portion of your
Window, rather than the entire Window. The selected portion is defined by
the topmost and bottommost, or leftmost and rightmost sides of the parts
selected.
1. Select the Phone Text part and the associated Label.

Both parts display selection handles.
2. Move these parts to where you want them in the Window using mouse

button 1.
The Phone Text part and the associated Label define the bottom of the
bounding box, while Customer Number defines the top of the bounding
box.

3. Select all the Text parts (not the Label parts), making sure the Customer
Number Text part is the last one selected.
All the Text parts are selected. The Customer Number Text part should
have primary selection handles (solid).

4. Click mouse button 2 on one of the selected parts. Select
Layout→Distribute→Vertically In Bounding Box.
Now the Text parts are all evenly distributed in the top portion of
Window.

5. From the Tools menu, select Align Left to align the parts on the left.
All Text parts are aligned on the left.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 169

6. Select all the Label parts, making sure that the Customer Number Label
part is the last one selected.
All the Label parts are selected.

7. Click mouse button 2 on one of the selected parts. Select
Layout→Distribute→Vertically In Bounding Box.
Now the Label parts are all evenly distributed in the top portion of
Window. If you are not satisfied with your results, from the Edit menu,
select Undo and try again.

8. From the Tools menu, select Align Left.
All Label parts are aligned on the left.

In the next chapter, you will add the Address part to this Window.

Adding an action to the cancel push button

When users select the Cancel button, you want the Customer Information
window to close. This relationship is called an event-to-action connection.
1. To make a connection from the Cancel Push Button, click mouse button 2

on the Cancel Push Button.
The context menu is displayed.

2. From the context menu, select Connect→clicked.

The mouse pointer is displayed as connected to a dashed line. This
indicates that you are in the process of making a connection.

3. Click mouse button 2 on the title bar of your Window (the area that says
Customer Information).
A context menu is displayed.

4. Select closeWidget.
A green line with an arrow pointing from the Cancel Push Button to the
Window title is displayed. This connection means that when the Cancel
push button is clicked (an event), closeWidget (an action that means close
the window) is triggered. This is an event-to-action connection, as
indicated by the green rather than the blue connection.

5. Select File→Save to save the visual part.

Testing the view

The next step is to test the view to ensure that the user interface is displayed
and the Cancel Push Button works the way you want it to.

1. From the tool bar, select the Test icon .

170 VisualAge Generator: Getting Started

The Customer Information window is displayed. Verify your layout of the
window.

2. Select Cancel on your Customer Information window.
The window is closed.

3. If you have time to do the optional exercise below, wait to close the
Composition Editor until after you complete the exercise. If you don’t
have time to do the optional exercises, close the Composition Editor.

For more information on testing visual parts, refer to the VisualAge for
Smalltalk User’s Guide.

After you have added some VAGen logic parts, you can use the VisualAge
Generator test facility to test the connections from this user interface to your
VAGen logic and data parts. This powerful feature enables you to step
through a test of your user interface connections and logic and data parts,
modify code, and set breakpoints, watchpoints, and testpoints.

Optional exercises

This portion of the sample is your opportunity to navigate within VisualAge
Generator Developer without step-by-step instructions while adding
functionality to your view.

Setting the focus on a field
If you want to have the cursor in a particular field when the window is first
displayed, complete the following step. In this example, you are going to set
the focus (or put the cursor) in the Customer Number Text part.

Connect the openedWidget event of the Customer Information Window to
the setFocus action of the Customer Number Text part.

Making a push button the default
A default push button allows the user to select the push button by pressing
Enter or by using the mouse. You can define a default push button by
completing the following step:

Open the settings for the FIND Push Button, click in the showAsDefault field,
and select true.

Testing the application
The cursor should be in the Customer Number field and the Find push button
should have an outline indicating that it is the default push button.

Be sure to save the part when you are finished.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 171

If you did the optional exercises, your view should look like the one shown in
Figure 98.

Defining a reusable visual part

The objective of this section is to familiarize you with creating reusable visual
parts and using them with VAGen parts. This exercise focuses on the
following tasks:
v Building a reusable visual part called ADDRESS, consisting of a group box

that includes labels and fields for address data.
v Promoting the view to the public interface so that the visual part and its

functionality can be embedded in other visual parts.

Creating an embeddable visual part
You will build a group box and use the Quick Form function to add labels
and fields to it. Figure 99 on page 173 shows the group box you will define.

Figure 98. Customer Information Window

172 VisualAge Generator: Getting Started

First, you will create a new visual part (just as you did in “Creating a new
visual part” on page 159). In the next section you will add this reusable visual
part to your Customer Information window.

To build a Group Box using Quick Form, perform the following steps:
1. From the VisualAge Organizer window, select Part→New.

The VisualAge New Part window is displayed.
2. In the Part class field, type the name ReusableAddressBoxView for your

new part class.
3. Select OK.

The Composition Editor is displayed.
4. Maximize the Composition Editor to get a larger work area.

Now you can see the entire Window part.
5. Select the default Window part with mouse button 2.

The context menu is displayed.
6. Select Delete.

The Window is deleted.

Adding the Group Box
A Group Box places a rectangular box around a set of parts. It also allows you
to move and use them as a single unit.

Complete the following steps to create the Address Group Box.

1. Select the Canvas category .
The parts palette is refreshed to show all parts in the Canvas category.

2. Select the Group Box part and drop it on the free-form surface.
A default size Group Box is displayed on your free-form surface.

3. Select the Group Box (if it is not already selected).

Figure 99. Address Box

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 173

The Group Box corners have selection handles.
4. Size the Group Box to fit into the Customer Information window created

in “Chapter 18. Building a visual part using VisualAge Generator
Developer on Smalltalk” on page 159.
The Group Box is resized.

5. Update the label of the Group Box. To do this, place the mouse pointer on
the text Group Box and press Alt+mouse button 1.
The Group Box label becomes blocked for deletion in text edit mode.

6. Type Address and then click anywhere except on the label.
Address is now the label of the Group Box.

Populating the Address Group Box
To add parts to the Group Box, you will use Quick Form just like you did in
“Chapter 18. Building a visual part using VisualAge Generator Developer on
Smalltalk” on page 159.

Complete the following steps to add parts to the Address Group Box.

1. From the parts palette, select the VAGen parts category . Select a

VAGen record part and drop it on the free-form surface.
The Add Subpart window is displayed.

2. From the drop-down list, select CUSTOMER; then select OK.
The CUSTOMER record part is displayed on the free-form surface.

3. Select the CUSTOMER record part with mouse button 2.
The context menu is displayed.

4. Select Quick Form.
A list of data items is displayed.

5. Select CUSSTREET and move the mouse pointer (cross-hair) to the
appropriate area in the Address Group Box.
The Street Label part and a Text part are added to the Group Box. An
attribute-to-attribute connection is created, and the data type is set using
the CUSSTREET data item definition.

6. Repeat the above step for CUSCITY, CUSSTATE, and CUSZIP.
7. Click mouse button 2 on the CUSTOMER record part. From the context

menu, select Delete. When the warning message is displayed, select OK.
The record and all the connections are now deleted. You do not need the
attribute-to-attribute connections in this scenario. Later, you will promote
these fields to the public interface so that you can define connections to
them in any view where you embed this address box.

174 VisualAge Generator: Getting Started

Laying out the Group Box
Lay out the Label and Text parts in the Group Box as shown in Figure 99 on
page 173. Remember, to size a part, select it with mouse button 1, place the
mouse pointer on one of the selection handles, and move the mouse while
holding down mouse button 1. For more detailed information about laying
out visual parts, see “Arranging visual parts” on page 167.

Promoting features of the reusable part
If you want to access any information in the ADDRESS Group Box from
another view, you must add the appropriate features to the public interface. In
this case, the features needed are the attributes for the Text parts. In this
section, you will add attributes for all four Text parts (Street, City, State, and
Zip) to the public interface.

For more complete information on topics covered in this section, refer to the
VisualAge for Smalltalk User’s Guide.

To promote part features to the public interface, perform the following steps:
1. Select the Street Text part with mouse button 2. From the context menu,

select Promote Part Feature.
The Promote features from window is displayed.

2. On the Promote features from window, from the Attribute column, select
object.
textCUSSTREETObject is displayed in the Promote feature name field.

3. Change the Promote feature name to streetobject and select Promote.
Now other parts can reference this Text part by the attribute name. By
selecting object, you are adding the actual value of the data that the part
represents, including all customized parameters, such as currency symbols
or numeric separators. Selecting string would only have added a reference
to the input string typed into the field.

4. Select OK to accept your changes and close the Promote features from
window.

5. Repeat the above steps for the City, State, and Zip Text parts, using the
names cityobject, stateobject, and zipobject, respectively.
The object attribute feature of each of the four Text parts has been added to
the public interface. Now these attributes can be accessed by other parts.

6. Select File→Save Part.

You can also do this same task from the Promote tab in Public Interface
Editor. Refer to the VisualAge for Smalltalk User’s Guide more information on
using the Public Interface Editor.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 175

Now you are ready to embed the address box in your tutorial view and add
VAGen logic parts.

Defining a VAGen server program

The focus of this section is to finish developing your user interface and
connect it to a server application that reads data to be displayed in the
Customer Information window. The objective of this section is to familiarize
you with making connections between user interfaces and nonvisual parts,
such as records and server applications. In addition, you will build the server
application and embed the Address box you created in the previous section.
Finally, you will use the Interactive Test Facility to test how the client and
server applications work together.

Embedding a reusable visual part
You can now complete the window in Figure 100, which displays detailed
customer information.

Figure 100. Customer Information Window

176 VisualAge Generator: Getting Started

To complete the window, add the Address box you created in “Defining a
reusable visual part” on page 172 to the Customer Information Window. To
add the reusable visual part, perform the following steps:
1. In the VisualAge Organizer window, Double-click on TutorialView.

The Composition Editor opens, displaying the Customer Information
window.

2. From the Options menu, select Add Part.
The Add Part window is displayed

1. In the Class Name field, type ReusableAddressBoxView and select OK.
The mouse pointer becomes a cross hair.

Note: Selecting Browse will open the Choose a Valid Class window, which
lets you to search for available classes.

2. Click on the Customer Information window where you want to add the
part.
The Address box is added to the Window.

3. Size the Address box (and the Customer Information window if necessary)
until the entire Group Box fits inside the window.

4. Select the ADDRESS Group Box with mouse button 2. From the context
menu, select Connect→streetobject.

A dotted line with a at the end is displayed.
5. Select the CUSTOMER Record part.

The Connect attribute named: window is displayed.
6. From the Attribute column, select CUSSTREET data and select OK.

Figure 101. Add Part Window

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 177

This creates an attribute-to-attribute connection between the Street Text
part and the data item CUSSTREET in the CUSTOMER Record part.
By selecting the data attribute, you are making a connection to only the
data contents of the data item. If the connection required a type
description in addition to the data contents, you would have selected
CUSSTREET, which represents the self attribute of the data item.
Populating Text parts on a Window, as in this example, only requires the
data contents. However, when you connect to a parameter in a called
parameter list for a program, the data contents and the type description
are required.

7. Repeat the previous steps for cityobject, stateobject, and zipobject. Connect
them to CUSCITY data, CUSSTATE data, and CUSZIP data, respectively.
This creates attribute-to-attribute connections between the fields in the
Group Box and the data items in the CUSTOMER Record part. If you want
to check any of the connections, select the connection and the status area
will contain a description of it.

Adding a VAGen program to the visual part
Now that all the user interface parts are in place on the Window, add a
VAGen Program part to the free-form surface and connect it to one of the
Push Buttons. The VAGen Program part represents a server application that
you will define later in this exercise. The server application will read the
customer details from the database and return the data to TutorialView to
populate the fields in the Customer Information window.

1. Select the VAGen Parts category .
The list of parts in the VAGen Parts category is shown in the parts
palette.

2. Select the VAGen Program part and click on the free-form surface
to the right of your Window.
The Add Part window is displayed.

3. In the VAGen part field, type findcus and select OK.
The FINDCUS program part is now on your free-form surface.

4. Select the Find Push Button with mouse button 2.
The context menu for the Find Push Button is displayed.

5. Select Connect→clicked.

A line with a on the end is displayed.
6. Select the FINDCUS program part.

178 VisualAge Generator: Getting Started

A context menu is displayed.
7. From the context menu, select execute.

A green arrow now connects the Find Push Button with the FINDCUS
Program part. This connection means that when the Find Push Button is
clicked, FINDCUS is called.

8. Select the FINDCUS Program part with mouse button 2.
A context menu is displayed

9. Select Edit Part.
The New Part Application window is displayed

10. Ensure that Tutorial is selected, and select OK.
The Program Editor opens to display FINDCUS.

Defining the VAGen server application
In this section, you define the VAGen server application FINDCUS, which
reads the customer information from a relational database. To retrieve the
correct customer information, the record key (CUSNUM) for the database
must be passed to the server application from TutorialView. To display the
retrieved information, the data to populate the Customer Information window
must be returned from the server application. Parameters are the mechanisms
by which data is passed between applications.

To define the server application, in the Program Editor, perform the following
steps:
1. From the Define menu, select Called Parameters→Insert Parameter.

The Insert Parameter window is displayed.
2. Ensure that the Record radio button is selected, and from the Part Name

drop-down list box, select CUSTOMER.
3. Select OK.

The CUSTOMER record is displayed in the program diagram under
Called Parameters. Now you are ready to define the main functions for
FINDCUS.

4. From the Define menu, select Main Functions.
The Insert Main Function window is displayed.

5. In the Part name field, type find-customer and select OK.
The FIND-CUSTOMER function is displayed in the structure diagram.
The ? beside it means that it has not yet been defined.

6. Double-click on FIND-CUSTOMER function icon.
The New Part Application window is displayed.

7. Ensure that Tutorial is selected, and select OK.
The Function Editor is displayed. It contains two drop-down list boxes.
The list box on the left displays I/O options, which define the type of

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 179

operation a function will carry out. The list box on the right displays I/O
objects, the data parts on which I/O options are performed.

8. From the I/O Option drop-down list box, select INQUIRY. In the I/O
Object field, type custinfo.
Your entries are displayed on the second line in the Function Editor.

9. From the Define menu, select Properties.
The Function Properties window is displayed.

10. From the Error routine drop-down list box, select EZERTN and then
select OK.
The Function Properties window closes. The information retrieved from
the database inquiry will be placed in the CUSTINFO record you will
define later. The error routine EZERTN will return control to your
program when an error occurs. This prevents the program from ending
with system generated messages, which might confuse an application
user.

11. In the Function Editor, type the statements as shown in Figure 102.
The first statement executes before the actual database query. The other
statements execute after the query takes place.

1. From the Tools menu, select Validate and Format .
The statements have been validated and formatted. If a Validation Errors
window is displayed, correct the errors listed in the window, and select
Validate and Format again.

2. From the File menu, select Save.
A+ is displayed beside the FIND-CUSTOMER function in the Program
Editor.

Defining the CUSTINFO record
In the previous section, you defined an INQUIRY function that uses the
CUSTINFO record. Now, you need to define the record. This record will
contain the detailed customer information after it is retrieved from the
database.
1. In the Program Editor, click the + beside the FIND-CUSTOMER function.

The CUSTINFO record is displayed.
2. Double-click on the CUSTINFO record.

custinfo.cusnum = customer.cusnum; /*customer number to be retrieved
----------------------- INQUIRY CUSTINFO ---------------------
if custinfo not err; /*If the query did not return an error
customer = custinfo; /*Place all data from the retrieved
end; /*row into the customer record

Figure 102. Sample Statements

180 VisualAge Generator: Getting Started

The New Part Application window is displayed.
3. Ensure that Tutorial is selected, and select OK.

The Record Editor is displayed.
4. From the record type drop-down list box, select SQL Row.
5. Ensure that there are no items in the record. If there is an item in the

record, delete it. To delete an item, select it. Then, from the Edit menu,
select Delete.

6. From the Define menu, select Properties.
The SQL Row Properties window is displayed.

7. On the SQL Row Properties window, select Insert.
A row is added and the cursor appears in the Name pane.

8. In the Name pane, type customer.
9. Select OK.

The SQL Row Properties window closes.
10. From the Tools menu, select Retrieve SQL.

The SQL table is displayed in the Record Editor.
11. Click in the Key column of the CUSNUM data item and select the check

box.
The check box is checked. The CUSNUM item is defined as the key data
item.

12. From the File menu, select Save.
13. Close the Record Editor.

The fully-defined CUSTINFO record is displayed in the Program Editor.
14. In the Program Editor, from the File menu, select Save.
15. Close the Program Editor.

Building parameters for the program
In this section, you build the parameters that will be passed between the
client view and the FINDCUS program. You also visually connect the
parameters to complete the definition.
1. In TutorialView, select the FINDCUS Program part with mouse button 2.

From the context menu, select Build parameters from definition.
Based on the parameter list of FINDCUS, this action creates the
parameters needed for the CALL.
Selecting Build parameters from definition causes one parameter to be
added to the connection context menu for the FINDCUS Program part. A
statement displayed in the status line confirms that default parameters
were built.

2. Select the CUSTOMER part with mouse button 2. From the context menu,
select Connect.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 181

The Start connection from window is displayed
3. From the Attribute column, select self; then select OK.

You now have a line with a on the end.
4. Select the Push Button1,clicked→ FINDCUS,execute connection and click

mouse button 1.
Select CUSTOMER from the context menu.

5. From the Attribute column, select self; then select OK.
A parameter-from-attribute connection passes the CUSTOMER record to
the FINDCUS program. You selected the self attribute to pass the data
contents and the type description of the record to the server program.

Your completed server application should look like Figure 103

For more information on building visual parts, refer to the VisualAge for
Smalltalk User’s Guide.

Figure 103. TutorialView

182 VisualAge Generator: Getting Started

Testing the view
Now test your view using the Interactive Test Facility.

1. From the tool bar, select Test .
The Customer Information window is displayed.

2. Place the cursor in the Customer Number field. Type a customer number
from the list below; then select Find. Use 111-0101 through 111-0106 and
122-0001 through 122-0003. If you type an invalid number, nothing
changes.
If you want Test Monitor to have focus while it tests your VAGen parts,
on the VisualAge Organizer window, select Options→VAGen Preferences.
On the VAGen Test window, under options, select Break on event entry
for GUI clients.
Start the Test Monitor. The Test Monitor gets focus if you have an error in
a VAGen part. If you would like to see the Test Monitor window
throughout your test run, move it to the right side of your screen.
If errors are encountered during the test, you can change your code
without leaving the test. After you make changes and save the part, the
test facility automatically repositions the test for you to test your new
changes.
Otherwise, the program runs and the Customer Information window is
updated with data from the database. Your application ran successfully if
it looks like the one shown in Figure 104 on page 184.

3. Continue entering other customer numbers. After you finish testing, in the
Customer Information window, select Cancel.
The Customer Information window closes.

4. Close the Test Monitor window.
5. Close the Composition Editor.

Chapter 18. Building a visual part using VisualAge Generator Developer on Smalltalk 183

Summary
Congratulations! You have completed all the steps in this tutorial, and you
have experienced firsthand how easy it is to define and test applications using
VisualAge Generator. As you begin working with VisualAge Generator, you
can refer back to this tutorial, all the other VisualAge Generator
documentation, and VisualAge Generator’s extensive online help system.

Figure 104. Customer Information Window

184 VisualAge Generator: Getting Started

Part 3. Appendixes

© Copyright IBM Corp. 1980, 2001 185

186 VisualAge Generator: Getting Started

Appendix A. Installing samples for VisualAge Generator
Developer on Smalltalk

The following sample applications are shipped as .DAT files with VisualAge
Generator Developer on Smalltalk. If you do a typical install, they are
installed in the samples subdirectory (for Windows,
C:\Program Files\VAST\samples and for OS/2, C:\VAST\samples). To use
the sample applications, you must import the .DAT file and load the
applications into your image. Other files needed to run and test the sample
applications are installed in the same subdirectory.

See “Importing and loading applications” on page 188 for additional
installation information or refer to“Importing and loading sample
applications” on page 55 for step-by-step instructions.

Note: If you are using VisualAge Generator Developer on Java, see
“Appendix B. Installing samples for VisualAge Generator Developer on
Java” on page 191.

A description of each application is provided in “Appendix C. Samples in
repositories” on page 193.

Table 2. Sample applications shipped with VisualAge Generator Developer on Smalltalk

Repository Name Configuration Map Name Application Name

WEBS.DAT HptSampleWebApp /
HptSample3270MapApp

MQS.DAT HptSampleMQApp

ICPKGS.DAT VAGen Samples IC
Packaging

HptICSample4GLApp /
HptICSampleApp1 /
HptICSampleApp2 /
HptICSampleCommonPartsApp

EZEREMPS.DAT HptSampleEzerempParts

EZERSMPS.DAT HptSampleEzersmpParts

STAFFS.DAT HptSampleStaffParts

EZERMSGS.DAT HptSampleEzermsgParts

EZERPCBS.DAT HptSamplePcbParts

EZERADFS.DAT HptSampleEzerwadfParts

© Copyright IBM Corp. 1980, 2001 187

Note: If your installation gives you access to a common repository (that is,
you are working from a client, not from a standalone install), you will
need two pieces of information to do the following tasks:
v The host name or IP address of the system where your repository

(server) is located
v A directory to which you have access that is defined to the server

You’ll then need to copy repository files to that directory and specify
the directory at the appropriate point in the following task.

Importing and loading applications

Most of the samples shipped with VisualAge Generator Developer on
Smalltalk are stored as applications. The IC Packaging sample, however, is
stored as a configuration map. See “Importing and loading configuration
maps” for instructions on accessing this sample.

To import and load an application:
1. From the VisualAge Organizer window, select the Applications menu,

then Import/Export→Import Applications

2. Specify the host name or IP address for the machine (for most clients this
will be the local host).

3. Specify the fully qualified path to the .DAT file you want to import and
click OK.

4. To load imported applications into your image, from the VisualAge
Organizer window, select the Applications menu, then Load→Available
Applications.

5. Select the application you want to load and the appropriate edition. Use
the >> push button to copy your selections into the Selected Editions list
box.

Note: You can load another application by repeating the previous two
steps.

6. When you have selected all of the applications you want to load, select
OK.

Importing and loading configuration maps

To import and load a configuration map:
1. From the System Transcript window, select Tools→Browse Configuration

Maps.
2. From the Configuration Maps Browser, select Name→Import

188 VisualAge Generator: Getting Started

3. Specify the host name or IP address of the server where the repository is
located.

4. Specify the repository you want to import from.
5. Select the configuration map and the version you want to import, move it

into the list at the right by selecting the >> button. Then select OK.
6. To load a configuration, from the Configuration Maps Browser, select the

configuration map from the Names panel and the edition from the
Editions and Versions panel.

7. From the Configuration Map Browser, select Editions→Load.

Importing database tables

The file SAMPTBLS.CMD is stored in the C:\Program Files\VAST\samples
directory for Windows (the C:\VAST\samples directory for OS/2). To import
all database tables required for the sample applications and the tutorial into a
database on your workstation, run the SAMPTBLS command.

Binding to a database

If you have not used this release of VisualAge Generator Developer with the
DB2 database before, VisualAge Generator prompts you to run the SQLBIND
command. Click Yes on the prompt window to run the command and bind to
a database, or select No and set database preferences. To set database
preferences:
1. From the VisualAge Organizer window, select Options→VAGen

Preferences.
2. Select the SQL option and type the appropriate preferences in the fields on

that page.
3. Click OK.

Appendix A. Installing samples for VisualAge Generator Developer on Smalltalk 189

190 VisualAge Generator: Getting Started

Appendix B. Installing samples for VisualAge Generator
Developer on Java

The following samples are shipped as .DAT files with VisualAge Generator
Developer on Java. If you do a typical install, they are installed in the samples
subdirectory (c:\IBMVJava\IDE\program\samples). To use the samples, you
must import the .DAT file and load the project or package into your
workspace. Other files needed to run and test the samples are installed in the
same subdirectory.

See “Importing and loading projects and packages” for additional installation
information or refer to the section on importing and loading samples in
“Chapter 8. VisualAge Generator Developer on Java: a tutorial” on page 65 for
step-by-step instructions.

Note: If you are using VisualAge Generator Developer on Smalltalk, see
“Appendix A. Installing samples for VisualAge Generator Developer on
Smalltalk” on page 187.

Table 3. Samples shipped with VisualAge Generator Developer on Java

Repository Name Project Name Package Name

WEBJ.DAT VAGen Web Transaction
Sample

com.ibm.vgj.sample.map3270
com.ibm.vgj.sample.webmap

MQJ.DAT VAGen MQ Sample com.ibm.vgj.sample.mq

EZEREMPJ.DAT VAGen Employee Sample com.ibm.vgj.sample.ezeremp

EZERSMPJ.DAT VAGen Ezersmp Sample com.ibm.vgj.sample.ezersmp

STAFFJ.DAT VAGen Staff Sample com.ibm.vgj.sample.staff

EZERMSGJ.DAT VAGen Message
Conversion Sample

com.ibm.vgj.sample.ezermsg

EZERPCBJ.DAT VAGen PCB Sample com.ibm.vgj.sample.ezerpcb

EZERADFJ.DAT VAGen ADF Work
Database Sample

com.ibm.vgj.sample.ezerwadf

Importing and loading projects and packages

To import and load a project or package:
1. From the Workbench, select the File menu, then Import.
2. Select Repository.

© Copyright IBM Corp. 1980, 2001 191

3. Using the Import from another repository SmartGuide, specify the
location of the repository (.DAT file).

4. To import projects, select the Projects radio button, then select Details and
select the projects you want to load.

Note: You can also import individual packages by selecting the Packages
radio button, the Details button and then the packages you want to
import.

5. Select Finish to finish importing.
6. To load imported projects into your workspace, from the Projects tab

Selected menu, select Add→Project.

Note: You can load packages using these same instructions if you
selectAdd→Package. If you want to add packages instead of projects,
you must have an open edition of a project in your workspace to
add packages to.

7. Select Add projects from the repository and select the project to load.
8. Select the appropriate edition.
9. When you have finished selecting all the projects you want to load, select

Finish.

Additional files needed to generate and test the sample applications are also
stored on client workstations. If you did a typical install, these files are
located in the default directory C:\IBMVJava\IDE\program\samples.

Importing database tables

The file SAMPTBLS.CMD is stored in the
c:\IBMVJava\IDE\program\samples directory. To import all database tables
required for the samples and the tutorial into a database on your workstation,
run the SAMPTBLS command.

Binding to a database

If you have not used this release of VisualAge Generator Developer with this
DB2 database before, VisualAge Generator prompts you to run the SQLBIND
command. Click Yes on the prompt window to run the command and bind to
a database or, select No and set the database options. To set database options:
1. From the Workbench Workspace menu, select Open VAGen Parts

Browser.
2. Select the Window menu, then Options

3. Select the SQL and type the appropriate options in the fields on that page.
4. Click OK.

192 VisualAge Generator: Getting Started

Appendix C. Samples in repositories

Samples can be used to test your system setup. You should be able to
generate and run these application systems on the workstation or on the host.
The samples are listed in alphabetical order by repository name. File names in
the form *J.DAT file are for Java and *S.DAT are for Smalltalk.

Where appropriate, a configuration map or project name is shown. Many of
the samples are managed as applications on Smalltalk and therefore, will not
have a configuration map name corresponding to a project name. Many of the
samples that are available for Smalltalk show only the repository name and
the application name.

Repository Name on Java/Repository Name on Smalltalk
Project/Configuration Map Name

Package/Application Name(s)
Brief explanation of what the sample does.

EZEREMPJ.DAT / EZEREMPS.DAT
VAGen Employee Sample / No configuration map

com.ibm.vgj.sample.ezeremp / HptSampleEzerempParts
This sample is a simple employee database system. You can
use this example to verify that your system can properly
access DB2 data. The file EZEREMP.IXF contains a DB2 table
and data for use with this application.

EZERMSGJ.DAT / EZERMSGS.DAT
VAGen Message Conversion Sample / No configuration map

com.ibm.vgj.sample.ezermsg / HptSampleEzermsgParts
This sample is used on the host to convert user message files
to message table parts in external source format.

Note: Because this file includes some VAGen parts that have
the same names as parts in EZEREMP*.DAT, you
should unload the applications/packages you imported
from this file, before you load the one imported from
EZERMSG*.DAT.

EZERPCBJ.DAT / EZERPCBS.DAT
VAGen PCB Sample / No configuration map

com.ibm.vgj.sample.ezerpcb / HptSamplePcbParts
This sample contains examples of record definitions
corresponding to all PCB types.

© Copyright IBM Corp. 1980, 2001 193

EZERSMPJ.DAT / EZERSMPS.DAT
VAGen Ezersmp Sample / No configuration map

com.ibm.vgj.sample.ezersmp / HptSampleEzersmpParts
This sample contains examples showing how to develop
applications for basic business requirements. Applications for
accessing SQL databases, DL/I databases and data files, and
versions of these applications customized for the IMS
environment are included.

The following files contain DB2 tables and data for the EX00A
program. To use any of the tables, you must import them
using:

File Table name

INVENTRY.IXF INVENTORY

QUOTATNS.IXF QUOTATIONS

SECURITY.IXF SECURITY

SUPPLRS.IXF SUPPLIERS

The following files contain IMS program specification blocks,
database definitions, and data for the EX00AD program:
v SUPPQDBD.DBD—Database definition source file for the

SUPPQDB database
v SUPPINDX.DBD—Database definition source file for the

SUPPQDB database
v INVDB.DBD—Database definition source file for the

INVDB database
v INVINDX.DBD—Database definition source file for the

INVDB database
v EX99PS.PSB—Program specification block source file
v SUPPQDB.DTA—Data file for the SUPPQDB database
v INVDB.DTA—Data file for the INVDB database

The following files are data files for the EX00AV program.:
v INVNFILE.CSP
v QUOTFILE.CSP
v SUPFILEV.CSP
v EZERSMP.RAF (the resource association file)

These data files are in a format usable by the VisualAge
Generator test facility. To use these files with EX00AV, you

194 VisualAge Generator: Getting Started

must update the entries in the EZERSMP.RAF file with the
correct physical path of the first 3 files, if it has changed from
the default path.

To generate the sample applications, use the default
generation options file, create a Resource Association part
named EZERSMP, read the file EZERSMP.RSC into it and
specify it as the resource association file.

However, if you intend to generate and run the sample DL/I
program, EX00AD, on host environments other than IMS, you
need to remove ELAWORK from PSB EX99PS before
generation. Otherwise, message ELA00215P, PSB does not
match VisualAge Generator Developer PSB definition is
returned when the applications is run.

EZERADFJ.DAT / EZERADFS.DAT
VAGen ADF Work Database Sample / No configuration map

com.ibm.vgj.sample.ezerwadf / HptSampleEzerwadfParts
This sample contains examples of record definitions for the
ADF Work Database.

ICPKGS.DAT (Smalltalk only)
VAGen Samples IC Packaging

HptICSample4GLApp

HptICSampleApp1

HptICSampleApp2

HptICSampleCommonPartsApp

This sample is used to demonstrate automated IC packaging. For
more information on these samples, refer to the VisualAge Generator
User’s Guide.

MQJ.DAT / MQS.DAT
VAGen MQ Sample / No configuration map

com.ibm.vgj.sample.mq / HptSampleMQApp
This sample contains programs which demonstrate two ways
to implement MQ programs: using the file level interface, and
using direct MQ API calls. The programs which use the file
level interface are described in the file MQ.TXT, which is
located in the same directory as this DAT file. The programs
which use direct MQ API calls are described in the VisualAge
Generator User’s Guide.

Appendix C. Samples in repositories 195

STAFFJ.DAT / STAFFS.DAT
VAGen Staff Sample / No configuration map

com.ibm.vgj.sample.staff / HptSampleStaffParts
This sample application is a simple employee database system
with a graphical user interface that displays a list of
employees. The list includes user IDs, last names, salaries, and
commissions. The file STAFF.IXF contains a DB2 table and
data for use with this application.

This application/package includes programs that are used by
the stored procedure sample. See the VisualAge Generator
Design Guide for more detailed information on this sample.
The following files are included with this sample: STAFF.QMF
and STFPROC.SQL.

WEBJ.DAT / WEBS.DAT
VAGen Web Transaction Sample / No configuration map

com.ibm.vgj.sample.map3270 / HptSample3270MapApp

com.ibm.vgj.sample.webmap / HptSampleWebApp

This first sample is a set of text programs created using VisualAge
Generator templates. The programs list and update the EMPLOYEE
and DEPARTMENT tables in the DB2 sample database.

The second sample is the same set of programs modified to use web
user interface records (UI Records) instead of text maps. For
additional information on this sample, see WEB.TXT.

Associated files

This list provides a brief overview of the other files associated with the
VAGen samples that are located in the samples subdirectory.

CUSTOMER.IXF
This database table is associated with the VAGen tutorial in “Part 2.
VisualAge Generator Tutorial” on page 51. You must install this
database table in the SAMPLE database using CUSTOMER as the
table name to run the SAMPLE program.

VBsamp.exe, PBsamp.exe
These samples show how to build Visual Basic and Power Builder
clients for VisualAge Generator server programs using VisualAge
Interspace. For more information on these samples, refer to the Visual
Age Generator Client/Server Communications Guide section on
calling server programs via VisualAge Interspace.

196 VisualAge Generator: Getting Started

Index

A
accessing a relational database

table 140, 162
address panel 147
aligning visual parts 145, 169
applications

ENVY 12
importing sample 188
installing sample 187

arranging Visual parts 143, 145,
167, 169

array, map 101

B
beans

Java 137
palette 139

bounding box 145, 169
breakpoint setting 105

C
changing a label 141, 164
class 12, 16
configuration map 12
configuration maps

importing 188
loading 188

connecting visual parts 146, 170
constant field 100

D
data item 36

implicit 127
database

options 60, 74
preferences 60, 74

database preferences 59, 60, 73, 74
database tables

importing 189, 192
defining

a map 93
a reusable visual part 172
a server application 153, 179
a visual part 137, 159, 172
an application 81
an SQL record 89
applications 29
parameters 155, 181
processing logic 119

DL/I
remote access in ITF 4

E
edition 15, 19
editor

composition 23
data item 39
function 30
map 34
map group 35
program 29
PSB 38
record 36
SQL statement 31
table 37
visual part 23

EJB 6
embedding a visual part 149, 176
ENVY

applications 12
repository management 11

ENVY application
creating an 53
importing 55
loading 56

error routine, defining 129

F
filters trace entry 65, 77
free-form surface 26
function

creating 88
definition 120, 122
main 83
performed 84
specification 129

functions
completing 122

G
generation 42, 135

I
IC Packaging 6
image 14
importing

configuration maps 188
database tables 189, 192
package 70
sample applications 188

importing (continued)
samples 191

installing
sample applications 187
samples 191

J
Java

beans 137
creating packages 65
creating projects 65
database tables 192
EJBs 6
importing samples 191
installing VAGen samples 191
interoperability 4
packages 16
project 16
tutorial 65

Java Server
generation 3

L
logic 29

M
main function 83, 119

defining 84
map 34

array 101
constant field 100
definition 34, 93
entry field 97
previewing 104
title 94
variable message field 99

map group 35
MQSeries 3

O
options

database 60, 74
program 59, 73

Oracle support 6
OS/400 4

P
package

importing 70
packages

creating 65

© Copyright IBM Corp. 1980, 2001 197

packages (continued)
importing 191
Java 16
loading 191

part name
pasting 33

parts palette 25
paste

part name 33
performed function 84, 88
preface xiii
preferences

database 59, 60, 73, 74
program 59, 73
test 61, 75

preparing for generation 135
previewing a map 104
program

defining 79
options 59, 73
preferences 59, 73
testing GUI 146, 170

program diagram 80
project

adding 71
Java 16

projects
creating 65
importing 191
loading 191

prompted entry field 97
PSB 38
public interface 148, 175

Q
Quick Form function 164, 165, 172

R
record

SQL row 89
user interface 37
VAGen part 139, 140, 161, 162
working storage 115

relational database table 140, 162
renaming a label 161
repository management

ENVY 11
Java 15
version control 14, 18
VisualAge Smalltalk 11

retrieving a relational database
table 140, 162

reusable visual parts 172
running applications 47

S
sample applications

associated files 196
importing 55, 188
installing 187, 193
loading 56, 188

sample package
importing 70

sample projects
adding 71

samples
applications 193
installing 191
packages 193

scripts
object 5
wizard 5

server application 149, 176
Smalltalk

importing configuration
maps 188

importing database tables 189
importing samples 188
installing VAGen samples 187

Solaris 5
Client/Server 4

SQL record defining 89
SQL row record 89
SQL statement 31
statement template 32
statement templates

adding logic 120
statements processing 122
status area 26

T
table 37
test facility 39
test preferences 61, 75
testing

a program 105, 108
a visual part 146, 157, 170, 183

testpoint setting 105
tool bar 25
trace

entries 111
entry filters 63, 77, 113
log 112, 114

tutorial
on Java 65
on Smalltalk 53

V
VAGen part classes 13, 17
VAGen parts 13, 17

VAGen parts 13, 17 (continued)
data item 39
defined 20
function 30
map 34
map group 35
new 22
program 29
PSB 38
record 36
table 37

VAGen parts browser 22
validate and format statements 121
variable message field 99
version 15, 19
version control

edition 15, 19
image 14
repository management 14, 18
version 15, 19
workspace 18

visual part
connecting 146, 170
defining 137, 159

VisualAge for Java
Workbench 65

VisualAge Generator
products 8
tutorial 53

VisualAge Generator Server 47
VisualAge Generator Server for

MVS, VSE, and VM 47
VisualAge part 23
VisualAge Smalltalk

repository management 11

W
Web Transactions 3
WebSphere 5
Workbench

VisualAge for Java 65
working storage record 115
workspace 18

198 VisualAge Generator: Getting Started

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
Getting Started
Version 4.5

Publication No. GH23-0258-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GH23-0258-01

GH23-0258-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Part Number: CT7P7NA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GH23-0258-01

(1
P)

P/
N:

CT
7P

7N
A

	Contents
	Notices
	Trademarks
	Terminology used in this document
	Terminology differences between Java and Smalltalk

	Welcome
	Documentation provided with VisualAge Generator
	Part 1. VisualAge Generator overview
	Chapter 1. What's new in VisualAge Generator
	New function for VisualAge Generator 4.5
	Java Server Generation
	Integrated MQSeries support
	Web transaction enhancements
	Remote DL/I access during test
	OS/400 Support
	Solaris Client/Server Support

	New function for VisualAge Generator 4.0
	VisualAge for Java interoperability
	WebSphere Rapid Application Development Support
	Functions
	Object Scripting
	VisualAge Generator Templates Enhancements
	Solaris Runtime Support
	Enterprise JavaBeans (EJBs) support
	Automated IC Packaging support
	Native Oracle support
	Enhanced Container Details part
	Accessing remote VSAM files

	Chapter 2. What is VisualAge Generator?
	VisualAge Generator products

	Chapter 3. VisualAge Generator Developer Overview
	VisualAge Smalltalk Repository management
	Managing VisualAge Smalltalk parts
	VisualAge Generator on Smalltalk repository management
	Version control

	VisualAge for Java Repository management
	VisualAge for Java repository management
	VisualAge Generator on Java repository management
	Version control

	Part types
	VAGen Parts Browser

	VisualAge Composition Editor
	VAGen Script Wizard
	Areas

	VAGen part editors
	Logic
	Program Editor
	Function Editor

	Maps
	Map Editor
	Map Group Editor

	Data
	Record Editor
	Table Editor
	PSB Editor
	Data Item Editor

	Test facility
	VisualAge Generator program generation

	Chapter 4. VisualAge Generator Server
	Running an application
	VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, andSolaris
	VisualAge Generator Server for AS/400
	VisualAge Generator Server for MVS, VSE, and VM

	Chapter 5. Summary
	Part 2. VisualAge Generator Tutorial
	Chapter 6. VisualAge Generator Developer on Smalltalk: atutorial
	Creating an ENVY application
	Importing and loading sample applications
	Importing sample applications
	Loading sample applications

	Chapter 7. Tailoring preferences on Smalltalk
	Program preferences
	Database preferences
	Test preferences

	Chapter 8. VisualAge Generator Developer on Java: atutorial
	Creating a project and a package
	Importing and loading samples
	Importing sample projects
	Loading the sample projects

	Chapter 9. Tailoring options on Java
	Program options
	Database options
	Test options

	Chapter 10. Defining a program
	Creating a new program
	Creating a main function
	Defining a main function
	Summary of creating a function

	Summary of defining a program

	Chapter 11. Defining an SQL record
	Chapter 12. Defining a map
	Specifying the map title
	Specifying a prompted entry field
	Specifying a variable message field
	Adding a constant field
	Defining a map array
	Previewing and saving the map

	Chapter 13. Running an intermediate test
	Setting a breakpoint
	Starting the test
	Making changes or fixing a problem while testing
	Viewing the trace entries

	Chapter 14. Defining the working storage record
	Chapter 15. Defining the processing logic
	Completing the main function
	Completing the functions
	Completing the remaining functions

	Chapter 16. Preparing for generation
	Chapter 17. Building a visual part using VisualAge for Java
	Before you start
	Creating a new bean
	Adding a VAGen Record to the visual part
	Defining the CUSTOMER VAGen Record Part
	Customer Information window
	Adding and connecting labels and fields
	Adding the Find and Cancel buttons

	Arranging visual parts
	Using the bounding box

	Adding an action to the Cancel button
	Testing the Customer Information window
	Defining the address panel
	Creating a reusable bean
	Adding parts to the address panel
	Promoting features of the reusable part

	Defining a VAGen server program
	Embedding a reusable visual part
	Adding a VAGen Program to the visual part

	Defining the VAGen server application
	Defining the CUSTINFO record

	Building parameters for the program
	Testing the bean
	Summary

	Chapter 18. Building a visual part using VisualAgeGenerator Developer on Smalltalk
	Before you start
	Creating a new visual part
	Adding a VAGen Record to the visual part
	Defining the CUSTOMER VAGen Record Part
	Customer Information window
	Arranging visual parts
	Using the bounding box

	Adding an action to the cancel push button
	Testing the view
	Optional exercises
	Setting the focus on a field
	Making a push button the default
	Testing the application

	Defining a reusable visual part
	Creating an embeddable visual part
	Adding the Group Box
	Populating the Address Group Box
	Laying out the Group Box
	Promoting features of the reusable part

	Defining a VAGen server program
	Embedding a reusable visual part
	Adding a VAGen program to the visual part

	Defining the VAGen server application
	Defining the CUSTINFO record

	Building parameters for the program
	Testing the view
	Summary

	Part 3. Appendixes
	Appendix A. Installing samples for VisualAge GeneratorDeveloper on Smalltalk
	Importing and loading applications
	Importing and loading configuration maps
	Importing database tables
	Binding to a database

	Appendix B. Installing samples for VisualAge GeneratorDeveloper on Java
	Importing and loading projects and packages
	Importing database tables
	Binding to a database

	Appendix C. Samples in repositories
	Associated files

	Index
	Readers’ Comments — We'd Like to Hear from You

