
ÉÂÔ

Internet Security in the
Network Computing Framework

Marco Pistoia, Kenji Kojima, Narayan Raghu

International Technical Support Organization

http://www.redbooks.ibm.com

SG24-5220-00

International Technical Support Organization

Internet Security in the
Network Computing Framework

September 1998

SG24-5220-00

ÉÂÔ

 Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix A, “Special
Notices” on page 501.

First Edition (September 1998)

This edition applies to:

� Version 4.6.2.2 of Lotus Domino Go Webserver, North American Edition

� Version 1.0 of IBM WebSphere Application Server

� Version 5.0 of IBM DB2 Universal Database

� Version 3.2 of IBM eNetwork Firewall

for use with the AIX and NT Operating Systems.

 Warning

This book is based on a pre-GA version of a product and may not apply when the product becomes generally available. It is
recommended that, when the product becomes generally available, you destroy all copies of this version of the book that you
have in your possession.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . vii

Tables . xvii

Preface . xix
The Team That Wrote This Redbook . xix
Comments Welcome . xx

Part 1. NCF Security Components . 1

Chapter 1. An Overview of NCF Security . 3
1.1 NCF Security Architecture . 4

1.1.1 NCF and Java Security . 7
1.2 Directory Architecture . 7

Chapter 2. The New Java 1.2 Security Model 9
2.1 The Need for Java Security . 9
2.2 The Evolution of the Java Security Model 10

2.2.1 Java Security API . 13
2.3 JDK 1.2 Security Architecture . 15

2.3.1 Loading Java Programs . 15
2.3.2 Runtime Access Controls . 18
2.3.3 How To Write Privileged Code in Java 1.2 19

2.4 Getting Familiar with JDK 1.2 Security . 21
2.4.1 Keystore . 22
2.4.2 The Properties and Policy Files . 23

2.5 JDK 1.2 Security Tools . 29
2.5.1 The jar Utility . 29
2.5.2 The keytool Utility . 29
2.5.3 The jarsigner Utility . 34
2.5.4 The Policy Tool . 35

2.6 Access Restriction to Local Code with JDK 1.2 36
2.6.1 A Complete Example . 42
2.6.2 An AWT Test . 48

2.7 Applets in the New JDK 1.2 Security Model 52
2.7.1 Unsigned Applets . 54
2.7.2 Signed Applets . 56

2.8 Additive Permissions . 59

Chapter 3. Web Server Security . 69
3.1 Lotus Domino Go Webserver Security Features 69

3.1.1 SSL Overview . 69
3.1.2 Lotus Domino Go Webserver SSL Setup 71
3.1.3 Lotus Domino Go Webserver SSL Server Authentication 79
3.1.4 SSL Client Authentication . 84

3.2 Examples of Security Using HTTP and SSL 94
3.3 Access Control with Lotus Domino Go Webserver 104

3.3.1 Creating Users and Groups . 104
3.3.2 Creating Protection Setups with Basic Authentication 106

 Copyright IBM Corp. 1998 iii

3.3.3 Document Protection with SSL Authentication 109
3.3.4 Using Document Protection with IP Address of Client 112
3.3.5 Using Document Protection with Domain Name of Client 113
3.3.6 Lotus Domino Go Webserver Access Control Lists 114
3.3.7 Using ACLs with Basic Authentication 114
3.3.8 Using ACLs with SSL Client Authentication 117
3.3.9 The file Servlet in ServletExpress . 119

Chapter 4. IBM WebSphere Application Server Security 121
4.1 ServletExpress Security Management . 122

4.1.1 Realms . 125
4.1.2 Users . 128
4.1.3 Groups . 135
4.1.4 Access Control Lists . 138
4.1.5 Resources . 146

4.2 ServletExpress Advanced Security . 159
4.2.1 Calculating Permissions . 159
4.2.2 Flow of User ID and Password Information 159

4.3 Servlet Sandbox . 161
4.3.1 Remote Invocation of Servlets . 162
4.3.2 Remote Loading of Unsigned and Signed Servlets 164

Chapter 5. Client-Side Security Technical References 181
5.1 Specific Browsers and Security - General Description 181

5.1.1 Netscape Navigator . 181
5.1.2 Microsoft Internet Explorer . 195
5.1.3 Sun HotJava . 207

5.2 The Java Applet Programming Model for NCF Developers 218
5.2.1 Internet Explorer's Security Model . 219
5.2.2 Netscape Navigator's Security Model 219
5.2.3 In Summary . 220
5.2.4 Avoiding Security Hazards . 220
5.2.5 How to Test . 223
5.2.6 Code Signing on Different Platforms 224

5.3 Interacting with Signed Java Applets . 224
5.4 How to Manage Client Certificates . 232

5.4.1 Obtaining a VeriSign Evaluation Certificate 232
5.4.2 Using a Certificate to Access Secure Web Sites 238
5.4.3 Using Certificates for E-Mail . 238
5.4.4 How to Export and Import Certificates 239
5.4.5 Using Certificates with Form Signing 243

5.5 Cookie Security Implications . 250
5.6 Netscape Navigator Hidden Security Preferences 254
5.7 Applet/Server Communication Through a Firewall 258

Chapter 6. Firewall Security in an NCF Environment 269
6.1 Understanding and Using Firewall Technologies 269

6.1.1 IP Filters . 270
6.1.2 Expert IP Filters Using IBM eNetwork Firewall 3.2 271
6.1.3 Proxy Servers . 280
6.1.4 SOCKS Servers . 284
6.1.5 Understanding SSL Tunneling . 287

6.2 Understanding Firewall Architectures . 289
6.2.1 Screening Router . 289

iv Internet Security in the Network Computing Framework

6.2.2 Bastion Host . 290
6.2.3 Screened Bastion Host . 291
6.2.4 Screened Subnet . 292

Part 2. NCF Security Scenarios . 295

Chapter 7. How to Install and Configure a NCF Secure Environment . . 297
7.1 Java Development Kit 1.1.5 and 1.1.6 . 298

7.1.1 Path System Environment Variable 299
7.1.2 How the CLASSPATH System Environment Variable Works 301

7.2 Lotus Domino Go Webserver 4.6.2.2 . 302
7.3 IBM ServletExpress 1.0 . 311

7.3.1 Installation . 311
7.3.2 The CLASSPATH System Environment Variable 319
7.3.3 How to Change Administrator Password 320
7.3.4 How to Configure ServletExpress Log Files 322
7.3.5 How to Add Servlets into ServletExpress 327
7.3.6 How to Monitor Loaded Servlets with ServletExpress 332
7.3.7 How to Migrate the Servlet Classes for ServletExpress 335

7.4 IBM DB2 Universal Database 5.0 for AIX 336
7.5 IBM DB2 Client Application Enabler 5.0 for Windows NT 339

7.5.1 Installation . 339
7.5.2 DB2 CAE Connection Configuration 342

7.6 IBM Firewall 3.1.1 and IBM eNetwork Firewall 3.2 for AIX 350
7.7 Installation . 350
7.8 Basic Configuration . 352

7.8.1 Remote Configuration . 353
7.8.2 Administrator User Addition . 354

Chapter 8. Three-Tier Applications in Firewall-Protected Network
Environments . 361

8.1 Overview . 361
8.2 System Configuration . 363

8.2.1 CLASSPATH Variable and ncf.jvm.classpath Property 364
8.2.2 Servlet Registration in ServletExpress 366

8.3 Testing the Application without Using the Firewall 368
8.3.1 Setting Security with ServletExpress 379
8.3.2 DB2 Client/Server Communication Security 384

8.4 Scenario Environment Configuration . 387
8.4.1 Hardware Configuration . 387
8.4.2 Software Configuration . 388
8.4.3 Network Configuration . 388
8.4.4 Setting the Secure Network Adapter on the Firewall 389

8.5 IP Filters Configuration for Three-Tier Applications 390
8.5.1 Objects Addition . 391
8.5.2 IP Filters Configuration for the DB2 Communication Protocol 396
8.5.3 IP Filters Configuration for HTTP and SSL 416

8.6 Demonstration of the Three-Tier Application through the Firewall 431

Chapter 9. IIOP in Firewall-Protected Network Environments 435
9.1 What Is IIOP? . 436
9.2 WebSphere Application Server CORBA Support 436

9.2.1 Configuration . 436

 Contents v

9.2.2 Local Applets Security Considerations 438
9.2.3 NCF Standard and Enhanced IIOP Modes 439
9.2.4 IIOP over HTTP . 439

9.3 Increasing Security with SSL . 442
9.4 Test Environment Configuration . 443
9.5 Firewall Basic Configuration . 444

9.5.1 Setting the Secure Network Adapter on the Firewall 445
9.5.2 Domain Name Service in a Firewall Protected Network Environment 445

9.6 IP Filters for HTTP and IIOP over HTTP Scenario 451
9.6.1 How to Configure IP Filters for HTTP and IIOP over HTTP 452
9.6.2 Netscape Communicator Advanced Configuration for Using IP Filters 463
9.6.3 Testing the Application Using IP Filters 464

9.7 HTTP Proxy Server for HTTP and IIOP over HTTP Scenario 465
9.7.1 How to Configure the HTTP Proxy Server for HTTP and IIOP over

HTTP . 465
9.7.2 Client/Server Communication through an HTTP Proxy Server . . . 473
9.7.3 Netscape Communicator Advanced Configuration for Using HTTP

Proxy Server . 476
9.7.4 Testing the Application through the HTTP Proxy Server 477

9.8 SOCKS Server for HTTP and IIOP over HTTP Scenario 478
9.8.1 How to Configure SOCKS Server for HTTP and IIOP over HTTP . 478
9.8.2 Client/Server Communication through a SOCKS Server 482
9.8.3 Netscape Communicator Advanced Configuration for Using SOCKS

Server for HTTP . 483
9.8.4 Testing the Application through the SOCKS Server 484

Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios . 487
10.1 SSL Tunneling Scenario . 488

10.1.1 How to Configure SSL Tunneling 488
10.1.2 Netscape Communicator Advanced Configuration for Using SSL

Tunneling . 492
10.1.3 Testing the HTTPS Stream through the SSL Tunnel 493

10.2 SOCKS Server for HTTPS Scenario . 494
10.2.1 How to Configure SOCKS Server for HTTPS 494
10.2.2 Netscape Communicator Advanced Configuration for Using SOCKS

Server for HTTPS . 499
10.2.3 Testing the HTTPS Stream through the SOCKS Server 500

Appendix A. Special Notices . 501

Appendix B. Related Publications . 503
B.1 International Technical Support Organization Publications 503
B.2 Redbooks on CD-ROMs . 503
B.3 Other Publications . 503

How to Get ITSO Redbooks . 505
How IBM Employees Can Get ITSO Redbooks 505
How Customers Can Get ITSO Redbooks . 506
IBM Redbook Order Form . 507

Index . 509

ITSO Redbook Evaluation . 511

vi Internet Security in the Network Computing Framework

 Figures

1. The NCF Logical Three-Tier Model . 3
2. Components of the NCF Security Architecture 5
3. The JDK 1.0 Security Model . 10
4. The JDK 1.1 Security Model . 11
5. The JDK 1.2 Security Model . 12
6. Basic Object Relationships - JDK 1.0 and 1.1 16
7. Basic Object Relationships - JDK 1.2 . 16
8. Privileged Code Returning a null Value . 19
9. Privileged Code Returning a non-null Value 20

10. Privileged Code if the run() Method Throws a Checked Exception 21
11. On Typing Out a Keystore . 23
12. Default java.security File . 26
13. Creating a Keypair and a Self-Signed Certificate Using keytool 30
14. Seeing the Listed Entry in the Keystore 31
15. Viewing the Certificate Written to the File 32
16. A Self-Signed Certificate . 32
17. Inside a Certificate . 33
18. Inside the Signed JAR File . 34
19. Launching the Policy Tool with the policytool Command 35
20. Add This in Your java.policy File . 36
21. The Code for ReadFile.java . 37
22. Running Using the Policy . 38
23. Modified Version of ReadFile.java . 39
24. Running the Code Without Granting Permissions 40
25. Running the Code After Granting Permissions 40
26. ReadFile.java, Using the canRead() Method of the File Class 41
27. PermTest.java, a Long Example Code . 43
28. Policy File for TestPerm.class . 47
29. Running PermTest With All the Permissions 47
30. Running PermTest Removing Permissions and Using the Debugging Flag 48
31. The Print Job Program . 49
32. Running the GetPrintJob Program . 50
33. Clicking on the Button - With Proper Permissions 50
34. Clicking on the Button - Without the Permission 50
35. Modified Version of GetPrintJob.java - Checking the Permissions 51
36. MyApplet.java, the Applet that Attempts the Socket Operation 53
37. The HTML Page Containing the Applet - myPage.html 54
38. On the Applet Trying to Open a Socket . 55
39. Giving the Permission to Any Code from the Given URL 55
40. Trying to Open a Socket - With the Proper Permission 56
41. Modified HTML Page myPage.html Invoking the JAR File of the Applet . 56
42. Importing a Trusted Certificate, Giving an Alias to the Signer 57
43. Modification of MyApplet.java to Show Additive Permissions 60
44. Create the Keystore with a Key, and Create a Self-Signed Certificate . . 62
45. Exporting the Certificate . 62
46. Import the Certificate in the default Keystore 63
47. Creating and Signing Twice the JAR file Containing the Applet. 63
48. The Policy File to Experiment with Additive Permissions 64
49. The Applet, With All the Permissions, Opens the Socket 64
50. The Applet, With All the Permissions, Reads the File file1 65

 Copyright IBM Corp. 1998 vii

51. The Applet, With All the Permissions, Reads the File larry 65
52. Additive Permissions - With One Permission Masked 66
53. The Applet Window, With the Third Permission Masked 66
54. The Command Prompt - Showing the Stack Trace. 66
55. The Applet Window With the Second Permission Masked 67
56. The Command Prompt Shows the Corresponding Stack Trace 67
57. The Applet Window With the First Permission Masked Out 67
58. The Corresponding Command Prompt Output 68
59. How to Access the Configuration and Administration Forms 71
60. Entering User ID and Password . 72
61. Security Section in the Configuration and Administration Forms 72
62. Request Certificate . 73
63. Create Key . 74
64. Key Ring Password . 75
65. Distinguished Name . 75
66. Certificate Request . 76
67. Confirmation Window . 77
68. Receive Certificate Window . 78
69. Confirmation Window . 79
70. Security Warning Message from Netscape Communicator 80
71. Basic Information About the Web Server Certificate 80
72. Certificate Information . 81
73. Making a Security Decision about the Unknown Web Server 81
74. Warning Message . 82
75. Site Certificate Finished . 83
76. Certificate Name Check Provided by Netscape 83
77. SSL Communication . 84
78. Generate A Private Key . 85
79. Certificate Installation . 86
80. Certificate Information . 86
81. Save User Certificate . 87
82. Certificate Information . 88
83. Certificate Information . 89
84. Select a Certificate . 90
85. Netscape Error . 90
86. CA Certificate in PEM Format . 91
87. Import Certificate . 92
88. Certificate Successfully Imported . 93
89. Key Management . 94
90. The id_get.html File . 95
91. The EchoServlet Source Code . 96
92. User ID and Password . 96
93. Confidenatial Information Displayed on the URL Field 97
94. The id_post.html File . 98
95. Using the POST Method . 98
96. After Using the POST Method . 99
97. Data on Using the GET Method, at the Network Monitor 100
98. Data on Using the POST Method, at the Network Monitor 101
99. The URL on Using the POST Method, at the Network Monitor 102
100. Data on Using the GET Method with SSL, at the Network Monitor . . . 103
101. Create a New User . 105
102. The Protection Setup for the Administrator narayan 106
103. Using the Protect Directive along with the Protection Setup 106
104. The Contents of the File D:\WWW\setup_itso.acc 107

viii Internet Security in the Network Computing Framework

105. Asking for User ID and Password . 108
106. The Protected Page. 108
107. Choosing a Document to Protect, and Opting SSL. 110
108. Specifying the Client Certificate Particulars 111
109. Enabling the Server to Look up Domain Name of Requesting Clients . 113
110. Setting up ACL - Specifying the Directory 115
111. Setting Up ACL - Defining Permissions 116
112. ACL with SSL Client Authentication . 117
113. ACL with SSL - Giving the Certificate Fields 118
114. Login Page for ServletExpress . 123
115. Login Page for ServletExpress . 124
116. Administering ServletExpress . 125
117. D:\ServletExpress\realms\defaultRealm 126
118. D:\ServletExpress\realms\servletMgrRealm 127
119. D:\ServletExpess\realms\NT . 127
120. Users . 129
121. Create User . 130
122. Adding a User in the servletMgrRealm 131
123. Users . 132
124. Groups . 135
125. Add Groups . 136
126. Add to and Remove Users from Groups 137
127. Security - Access Control Lists Page . 138
128. Addition of ACLs . 139
129. Adding File Access Permissions to Users 140
130. Adding File Access Permissions to Groups 140
131. Adding File Access Permissions a Specific Computer 141
132. Adding No Servlet Permission to User admin 142
133. Adding File Post Permission to User Tintin 143
134. Adding File Permissions Get, Put and Post to User Asterix 143
135. Adding File Put Permission to Group Cartoon_Club 144
136. Adding File Permissions Put and Delete to Computer romeo 144
137. Principal Tree . 145
138. Checking Specific Permissions . 145
139. ServletExpress Resources . 147
140. Adding Resources to ACLs . 148
141. Adding a File Resource . 149
142. Adding a Servlet Resource . 150
143. The Resources Window . 150
144. The ACL Window . 151
145. Asking for Authentication . 152
146. Entering Unauthorized User ID and Password 152
147. Authorization Failed . 153
148. No Access to the Servlet for an Unauthorized User ID 153
149. Accessing the Servlet with the Proper User ID 154
150. Got Access to the Servlet . 154
151. Accessing Using the GET Method . 155
152. Access Using the GET Method, with Proper User ID 155
153. StaticServlet.java. . 156
154. Addition of StaticServlet Resource to the List. 157
155. Prompt for User ID and Password to Run a Servlet 158
156. The Output of the StaticServlet . 158
157. User ID and Password Flowing Across the Net 160
158. Netscape Error . 161

 Figures ix

159. authenti.html on Server A . 163
160. HTML Page on the Client Machine . 163
161. Remotely Invoking a Servlet . 164
162. Permit Unsigned Servlets to load. 165
163. Registering the New Servlet . 166
164. Specifying the URL for Remote Loading 167
165. Verify That the Servlet Is Indeed Running in Server B 167
166. Incoming Packet Captured at Server A (romeo) 168
167. Incoming Packet Captured at Server B (wtr05240) 169
168. New Servlet-Signer Marco Added Under the servletMgrRealm 171
169. ReadFile.java . 172
170. page.html Invoking the ReadFile Servlet 173
171. Registering the ReadFile Servlet . 174
172. Configuring the Signed Servlet To Be Loaded Remotely 175
173. Allowing Marco to Load Servlets and Read Files 176
174. Invoking and Filling the HTML Form . 177
175. The HTML Page Invoked the Remotely Loaded Signed Servlet 177
176. Error Page Displayed if the Permission to Load Servlet Is Denied . . . 178
177. ServletSecurityException if the Permission To Read Files Is Not Granted 179
178. Netscape Navigator Browser . 182
179. Netscape Navigator Advanced Preferences 182
180. Netscape Security Information Panel . 183
181. Netscape Security Info - Passwords . 184
182. Netscape Security Info - Navigator . 185
183. Certificate Information List Box . 186
184. Netscape Security Info - Messenger . 187
185. Netscape Security Info - Java/Javascript 188
186. Netscape Security Info - Certificates . 189
187. Netscape Security Info - Other People's Certificates 190
188. Netscape Certificate Signers' Certificates 191
189. Editing Properties for VeriSign Class 1 Primary CA 193
190. Web Sites' Certificates . 194
191. Netscape Cryptographic Modules Panel 195
192. Microsoft Internet Explorer . 196
193. Microsoft Internet Explorer - Internet Options 197
194. Internet Options - Zones List Box . 198
195. Internet Options - Include Sites in Intranet Zone 199
196. Internet Options - Add Sites to Intranet - Advanced 199
197. Security Settings - ActiveX Controls . 200
198. Internet Options - Content Page . 201
199. Certificate Authorities - List Box . 203
200. Certificates - Trusted Publishers for Authenticode 204
201. Advanced Internet Options - Security Section 205
202. Cookie Set Warning . 206
203. HotJava Browser - Edit - Preferences . 208
204. HotJava Browser - SSL and Certificate Settings 209
205. HotJava Browser - SSL Connection Request 210
206. HotJava Browser - Connection Error . 211
207. HotJava Browser - SSL Connection Successful 211
208. HotJava Browser - New Server Certificate Added 212
209. HotJava Browser - Certificate Details . 213
210. HotJava Browser - New Server Certificate Trusted 214
211. HotJava Browser - Basic Applet Security 215
212. HotJava Browser - Advanced Security Preferences 216

x Internet Security in the Network Computing Framework

213. HotJava Browser - Applet File Control 217
214. HotJava Browser - Network Access Control 218
215. How to Enable and Disable Privileges in Navigator and Internet Explorer 220
216. A Dangerous Public Method . 221
217. Describing the Method with in a javadoc Comment 223
218. IBM Host On-Demand Connection Screen 225
219. IBM Host On-Demand Running After Granting Permissions 226
220. Netscape Patches Download Page . 227
221. Trusted Code Warning . 227
222. Digital Certificate . 228
223. Java Security's Target Details Window 229
224. Java/JavaScript Panel - Digital Certificates Already Approved 230
225. Edit Privileges Page . 231
226. More Information About the Access Required 231
227. Netscape Security Configuration Panel 233
228. VeriSign Certificate Registration Page 234
229. VeriSign Certificate e-mail . 235
230. VeriSign Certificate Get ID Page . 236
231. Netscape Certificate Receipt . 236
232. Netscape Certificate Save Information 237
233. VeriSign Certificate Installation Complete 237
234. Certificate Export Password . 240
235. Certificate Export File - Filename . 240
236. Client Authentication - Personal Certificates 241
237. Import Personal Certificates . 241
238. Imported Certificate . 242
239. Certificate Properties . 242
240. Source Code for signedForm.html . 244
241. Web Page for Form Data Signing . 245
242. Source Code for form.pl . 246
243. Netscape Key Ring Organizer . 247
244. Source Code for signedForm.pl . 248
245. Signed Form Data . 250
246. prefs.js Preferences File for the User John Smith 255
247. Netscape Advanced Preferences Window - Cache Settings 256
248. AppletConnection.java . 259
249. AppletConnection.html . 260
250. Applet Running on the Client Machine 261
251. Contents of the Directory D:\WWW\HTML\TEST of the Web Server . . 262
252. On Opening the Java Console . 263
253. Error Message Displayed if the Browser Is Not Java-Enabled 264
254. On Running the Applet When the Two Files Have Been Removed . . . 265
255. Firewall Implementing IP Filters . 270
256. IP Filter Components in IBM eNetwork Firewall 3.2 272
257. Rule Definition with IBM eNetwork Firewall 3.2 273
258. Service Definition Using IBM eNetwork Firewall 3.2 277
259. Network Object Definition with IBM eNetwork Firewall 3.2 279
260. Connection Definition . 280
261. Proxy Servers . 281
262. HTTP Proxy Server Used for HTTP or FTP 282
263. Netscape Communicator Advanced Configuration for Using HTTP Proxy

Server . 283
264. Internet Explorer Configuration for Using HTTP Proxy Server 284
265. SOCKS Servers . 285

 Figures xi

266. SOCKS Server Configuration . 286
267. SSL Tunneling . 288
268. Screening Router . 289
269. Bastion Host . 290
270. Screened Bastion Host . 291
271. Screened Subnet between Two Screened Routers 292
272. Screened Subnet Using Three Network Adapters 293
273. Downloading the JDK 1.1.5 from the JavaSoft Web Site 298
274. JDK Installation Component List . 299
275. Modifying the Path System Environment Variable 301
276. Lotus Domino Go Webserver Installation Welcome Window 302
277. Lotus Domino Go Webserver Installed Component List 303
278. Choose Target Directory . 304
279. First Screen for Choosing Component Directories 304
280. Second Screen for Choosing Component Directories 305
281. Selecting the httpd.cnf Configuration File 305
282. Selecting the ics_pics.cnf Configuration File 306
283. Selecting the admin.pwd Administrator Password File 306
284. Choosing Configuration Parameters for Domino Go Webserver 307
285. SSL Icon . 308
286. Setup Indicates How to Start and Stop Lotus Domino Go Webserver . 308
287. The Services Dialog on Windows NT Server 309
288. Configuration Dialog for the Lotus Domino Go Webserver Service . . . 309
289. Lotus Domino Go Webserver Service Window 310
290. ServletExpress Installation Welcome Window 311
291. Webserver Plugin Selection . 312
292. Remove the Domino Go Webserver Java Servlet Component 313
293. Uninstalling Domino Go Webserver Java Servlet Component 314
294. Completing Domino Go Webserver Servlet Component Uninstallation . 314
295. Choose Destination Directory for ServletExpress Installation 315
296. Select ServletExpress Program Folder 315
297. Select the Exact Version of Lotus Domino Go Webserver 316
298. ServletExpress Setup Complete Window - Read the README file! . . 316
299. Restarting Windows NT After the Installation 317
300. JSDK Class Files Documentation . 318
301. NullPointerException Thrown by the ServletExpress Manager 319
302. Current Settings for the CLASSPATH Environment Variable 320
303. ServletExpress Manager Login . 320
304. ServletExpress Manager Main Panel . 321
305. ServletExpress Manager Properties Panel 322
306. How to Configure the Event Log File Parameters 323
307. How to Configure the Error Log File Parameters 324
308. jvm.properties File . 326
309. ServletExpress Manager Main Page . 328
310. ServletExpress - Lotus Domino Go Webserver Main Menu 329
311. ServletExpress Manager Servlets Page 330
312. Configuration Window for the SnoopServlet Servlet 331
313. Invoking the SnoopServlet Servlet . 332
314. ServletExpress Manager Monitor Window 333
315. Monitoring Loaded Servlets with the ServletExpress Manager 334
316. The ServletExpress Monitor Window Registers the SnoopServlet Servlet 335
317. DB2 Component Selection . 337
318. Creation of the DB2 Instance and of the Sample Database 337
319. User-Defined Functions Authentication Window 338

xii Internet Security in the Network Computing Framework

320. Administration Server Authentication Window 338
321. DB2 Installed Component List . 339
322. DB2 Remote Administration . 340
323. DB2 Installation Type . 340
324. Selecting the DB2 Installation Directory 341
325. DB2 CAE Confirmation Window . 341
326. DB2 CAE Completion . 342
327. DB2 Client Configuration Assistant Welcome Window 343
328. Add Database SmartGuide Window . 344
329. Protocol Page for the Add Database SmartGuide Window 345
330. TCP/IP Configuration . 346
331. Selecting the Target Database . 347
332. Database Alias . 347
333. ODBC Registration . 348
334. Available DB2 Databases . 349
335. Testing the Connection with the Command Line Processor 349
336. Language Environment Selection . 351
337. Installation of IBM Firewall Using smit 352
338. Selecting IBM Firewall Software Using smit 352
339. Logon Screen . 353
340. Users Window . 354
341. Add User Window . 355
342. Setting Password and Password Rules for the Firewall Administrator . 357
343. Setting Administration Properties . 359
344. Confirmation Screen for the New User 360
345. Graphical Representation of the Application Flow 362
346. Logical Representation of the Security Measures Applied 363
347. CLASSPATH System Environment Variable 365
348. Setting the ncf.jvm.classpath Property for ServletExpress 366
349. JDBCServlet Registration through the ServletExpress Manager 367
350. JDBCServlet Configuration Window . 368
351. JDBCServlet Access Form . 369
352. JDBCServlet Response Showing Data Retrieved 371
353. Source Code for the First Servlet Test 373
354. Source Code for the Second Servlet Test 375
355. JDBCServlet Form with User ID and Password 377
356. Result of JDBCServlet Form Using GET Method 377
357. Users Page for the ServletExpress Manager 379
358. Adding the New User Named marco . 380
359. The New User Has Been Added to the defaultRealm 380
360. ACLs List . 381
361. Adding the New Access Control List JDBCServletACL 381
362. Granting the New User marco Permission to GET 382
363. The Resources Page from the ServletExpress Manager 383
364. Adding the JDBCServlet as a New Resource in the JDBCServletACL . 383
365. Entering User ID and Password to Access the JDBCServlet 384
366. Sniffing the DB2 Client/Server Communication 386
367. Scenario Environment Configuration . 387
368. How to Add a Secure Network Adapter 389
369. How to Select a Secure Network Adapter 390
370. Network Objects in the Configuration Client Navigation Tree 392
371. Network Objects Window . 393
372. DB-server Object Definition . 394
373. 95-client Object Definition . 395

 Figures xiii

374. NT-server Object Definition . 396
375. Rules in the Configuration Client Navigation Tree 397
376. Rules List Window . 398
377. DB2 CAE 1/4 non secure Rule . 400
378. DB2 CAE 2/4 non secure Rule . 401
379. DB2 CAE 3/4 non secure Rule . 402
380. DB2 CAE 4/4 non secure Rule . 403
381. DB2 CAE Ack 1/4 non secure Rule . 404
382. DB2 CAE Ack 2/4 non secure Rule . 405
383. DB2 CAE Ack 3/4 non secure Rule . 406
384. DB2 CAE Ack 4/4 non secure Rule . 407
385. DB2 CAE Rules in the Rules List Window 408
386. Client Configuration Navigation Tree . 409
387. Connection Setup in the Configuration Client Navigation Tree 411
388. Adding a New Connection through the Connections List Window 412
389. DB2 CAE Connection . 413
390. Connection Activation in the Configuration Client Navigation Tree . . . 414
391. Connections List . 415
392. Connection Activation Window . 416
393. HTTP 1/2 non secure Rule . 418
394. HTTP 2/2 non secure Rule . 419
395. HTTP Ack 1/2 non secure Rule . 420
396. HTTP Ack 2/2 non secure Rule . 421
397. HTTP direct in Service Definition . 422
398. HTTPS 1/2 non secure Rule . 424
399. HTTPS 2/2 non secure Rule . 425
400. HTTPS Ack 1/2 non secure Rule . 426
401. HTTPS Ack 2/2 non secure Rule . 427
402. HTTPS direct in Service Definition . 428
403. Nonsecure to DMZ HTTP and SSL Connection 430
404. Query Form through the SSL Protocol with ServletExpress Access

Restriction . 432
405. Results . 433
406. Two-Tier Test Environment . 435
407. Current Settings for the CLASSPATH Environment Variable 437
408. Current Values for CLASSPATH, Path and JAVA_HOME Variables . . 438
409. Java Console for Netscape Communicator 439
410. IIOP over HTTP Communication . 440
411. IP Trace for the Initial HTTP Communication 441
412. IP Trace for the Direct IIOP Communication 441
413. Select the Secure Network Adapter . 445
414. Domain Name Server in the Configuration Client Navigation Tree . . . 447
415. Domain Name Services Window . 448
416. Security Policy in the Configuration Client Navigation Tree 449
417. How to Enable DNS Queries through the Security Policy Window . . . 450
418. The Information Panel Informs that Activation Is Necessary 451
419. Network Objects in the Configuration Client Navigation Tree 453
420. Network Objects Window . 454
421. 95-client Object Definition . 455
422. NT-server Object . 456
423. Connection Setup in the Configuration Client Navigation Tree 457
424. How to Add a New Connection . 458
425. Adding for 80 port Connection . 459
426. Selecting the HTTP direct out Service in the Services List 460

xiv Internet Security in the Network Computing Framework

427. Connections List Window . 461
428. Connection Activation Window . 462
429. HTTP direct out Service Window . 463
430. Netscape Communicator Advanced Preferences Configuration 464
431. Account Sample Application . 465
432. RS600012T0 Object Creation . 467
433. RS600012T1 Object Creation . 468
434. Secure to HTTP Proxy Connection Definition 469
435. HTTP Proxy to NT Connection Definition 470
436. HTTP in the Configuration Client Navigation Tree 471
437. HTTP Proxy Configuration . 472
438. How to Restart the HTTP Proxy Daemon 473
439. URL Connection for the AccountsUI Applet 474
440. SecurityException in the Java Console 475
441. Netscape Configuration for Using HTTP Proxy Server. 477
442. Account Sample Program Running Through HTTP Proxy Server 478
443. SOCKS Connection from the Client to the Secure Adapter of the Firewall 479
444. HTTP Connection from the Nonsecure Adapter of the Firewall to the

Server . 480
445. SOCKSified HTTP Connection from the Client to the Server 481
446. Selecting the Socks Object from the List 482
447. Netscape Communicator Configuration for Using SOCKS Server 484
448. Account Sample Program . 485
449. SSL Tunneling Service in the Services List 489
450. HHTPS Proxy out 2/2 Service Definition Window 490
451. Connection Configuration for SSL Tunneling 491
452. Netscape Communicator Configuration for SSL Tunneling 493
453. SSL Communication . 494
454. Socks in the Configuration Client Navigation Tree 496
455. Socks Objects List . 497
456. SOCKS Rule for HTTPS . 497
457. SOCKS Config for HTTPS Connection Definition 498
458. Netscape Advanced Configuration for Using SOCKS Server 499

 Figures xv

xvi Internet Security in the Network Computing Framework

 Tables

1. Evolution of the JDK Security Functionalities 13
2. The Environment in Our Test with Unsigned Servlets 165
3. The Environment in Our Test with Signed Servlets 170
4. Client/Server Scenario Environment . 261
5. Firewall Techologies and Java Classes for Network Connections 267
6. Environment Configuration . 385
7. DB2 Settings . 385
8. Hardware Configuration . 387
9. Software Configuration . 388

10. Network Configuration . 388

 Copyright IBM Corp. 1998 xvii

xviii Internet Security in the Network Computing Framework

 Preface

This redbook provides an overview of the security component of the Network
Computing Framework, as well as specific implementation examples to help explain
how to build a secure Network Computing Framework application environment. For
example, there are scenarios that show how to configure the various components
of the Framework to implement a secure NCF three-tier application. In addition,
there are examples that show multiple firewall configurations to protect client/server
communication while using the IIOP protocol.

This redbook also describes the architecture of the new Java 1.2 security model
and provides many examples of applications and applets, written in Java 1.2, to
show you how you can implement the new security features. It also gets very
specific about the security measures offered by Lotus Domino Go Webserver
4.6.2.2 and IBM WebSphere Application Server 1.0. Several examples are provided
to give you a better understanding of the technologies involved.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world working
at the System Management and Networking ITSO Center, Raleigh.

Marco Pistoia is an International Technical Support representative at the Systems
Management and Networking ITSO Center, Raleigh. He holds a degree with
honors in Pure Mathematics from the University of Rome and a master in Computer
Science. His responsibilities at the ITSO are related to all areas of the IBM
Network Computing Framework and Internet security. Before joining the ITSO, he
was a System Engineer in IBM Italy. He received an Outstanding Technical
Achievement Award in 1996.

Kenji Kojima is a network specialist in IBM Japan. He holds a degree in Material
Engineering from the University of Tsukuba. He has four years of experience in the
Internet security field. He has been with IBM for eight years. His areas of
expertise include high performance and availability in AIX. He received a Marketing
Excellent Award in 1995.

Narayan Raghu is a Software Engineer in IBM Global Services India Ltd. He has
one and a half years of experience in Internet technologies. He holds a degree in
Electronics and Communication Engineering from the University of Mysore, India.
His areas of expertise include Internet security and e-Commerce. He has worked
on IBM India's first large e-Commerce project involving Online Brokerage, and has
given several talks on Internet Security and e-Commerce in IBM India.

Thanks to the following people for their invaluable contributions to this project:

Barry D. Nusbaum
IBM, Systems Management and Networking ITSO Center, Raleigh

Michael H. Conner, Anthony J. Nadalin, Julianne Yarsa
IBM Austin

Ernest L. Evans, Kenneth J. McCauley
IBM Raleigh

 Copyright IBM Corp. 1998 xix

David K. Jackson
IBM, Advanced Technology Migration Team, Security

Andreas Weinfurter
IBM Austria

 Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

� Fax the evaluation form found in “ITSO Redbook Evaluation” on page 511 to
the fax number shown on the form.

� Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

� Send us a note at the following address:

 redbook@us.ibm.com

xx Internet Security in the Network Computing Framework

Part 1. NCF Security Components

 Copyright IBM Corp. 1998 1

2 Internet Security in the Network Computing Framework

Chapter 1. An Overview of NCF Security

IBM Network Computing Framework (NCF) for e-business is designed to help
developers to build Web-based applications quickly and easily. Through a unified
programming model based on Java and JavaBeans, it provides the underlying
services needed by network applications. Developers can leverage all of the
opportunities coming from the World Wide Web.

IBM NCF is based on a logical, three-tier model, consisting of the following parts:

 1. Client

A client in an NCF environment has the role of requesting the applications and
presenting the information, through a Graphical User Interface (GUI). NCF
clients are usually Web browsers installed on a personal computer or a network
computer. It is required that a Web browser playing the role of a client in an
NCF environment is Java-enabled.

 2. Web Server

A Web server in an NCF environment contains business logic and processes
that control reading and writing of data. A client machine usually sends a
request to the Web server. The Web server processes this request and sends
a response back to the client. This response can be static, if it does not
depend on the client's input, or dynamic, if it is dependent on the client's input
or personalized according with the client's history.

 3. Application Server

An application server in an NCF environment provides data storage and
transactional applications used by the Web server processes. A Web server
usually sends a dynamic response to a client after interacting with an
application server.

The tiers are connected through a set of industry-standard protocols, services and
software connectors.

Web Browser

Client Machine Application Server
Machine

5220\522023

Web Server Machine

Web Server

Connector

Figure 1. The NCF Logical Three-Tier Model

There are also applications that are completely based on a client/server interaction
and do not require the presence of an application server. These also can be
considered NCF applications, based on a logical two-tier model.

The rapid growth of Internet technologies has modified the nature of enterprise
networks. Today enterprise networks can pass through non-secure networks, and

 Copyright IBM Corp. 1998 3

users in non-office environments can reach the secure intranet of their companies
even through non-secure channels, without the need of building high-cost private
communication lines.

Of course these modifications have carried security risks, the number number of
which is increasing. The first security requirement for a network should be to
protect private and sensitive resources from the access of non-authorized entities.
Moreover, in an e-business environment, security problems are even higher since
data, which can also be private and sensitive, flows over non-secure channels. In
this case the risk of non-authorized entities accessing private resources on the
network is certainly greater.

1.1 NCF Security Architecture
Security architecture in an NCF environment is based on a Public Key
Infrastructure (PKI), which makes use of certificate-based authentication and
encryption. NCF enforces security on the single components of the Framework and
also ensures that communication between the NCF components is secure.

The NCF security architecture is based on the following security components, as
shown in Figure 2 on page 5.

4 Internet Security in the Network Computing Framework

Single
Logon

Secure
Communication

Data
Protection

Non-
Repudiation

Certificate
Services

Cryptography

Access
Control

Security
Audit

Directory

5220\522022

Figure 2. Components of the NCF Security Architecture

 1. Single Logon

In an NCF environment, the user should be able to access all the private
resources he or she is authorized to access after a single logon, to a single
account with a single password. After that, it is the NCF security architecture
that transparently manages all subsequent logons.

 2. Secure Communications

In order to protect user and application data flowing over untrusted network
links against intruder attacks, the NCF security architecture supports two secure
communication protocols:

a. The Secure Socket Layer (SSL) protocol grants session-level security by
authenticating server and client and by encrypting the communication. The

 Chapter 1. An Overview of NCF Security 5

two sides must agree to a session key that will be used to encrypt all the
data exchanged.

b. The Internet Protocol Security (IPSec), also known as Virtual Private
Network (VPN) or tunneling support, grants network-layer security by
providing a secure channel for data across a network. IPSec must be
configured at a firewall on both sides of the network and the two sides must
agree to the keys to use as well as the degree of security. The degree of
security can be based on an authentication header (including a checksum),
encryption or both.

3. Access Control and Auditing

The NCF security architecture supports resource access control and security
auditing in support of businesses' authorization and accountability policies.
NCF security policy information is stored and managed in the Lightweight
Directory Service Access (LDAP) directory service, which defines a reasonably
simple mechanism for Internet clients to query and manage an arbitrary
database of hierarchical attribute/value pairs over a TCP/IP communication
(you might want to see the Request For Comments RFC1777 at
http://info.internet.isi.edu/in-notes/rfc/files/rfc1777.txt).

4. Data Protection and Non-Repudiation

NCF security architecture provides data protection and non-repudiation services
which support protection of stored data and store-and-forward traffic such as
e-mail. The NCF security architecture's e-mail protection implements the
S/MIME standard on top of its basic data protection services.

 5. Certificate Services

NCF security architecture supports a series of certificate service components:

� A Certification Authority (CA), for certificate issuance and revocation

� A Registration Authority (RA), for administration of certificate issuance and
revocation

� An LDAP directory service for certificate and Certificate Revocation List
(CRL) distribution and policy management

 6. Cryptography

The NCF security architecture uses cryptographic services that make it
possible:

� To authenticate both sides of a communication

� To ascertain whether the data was corrupted in transit

� To modify the contents of a communication in such a way that only the
recipient can decipher and read the original message.

For those who are not familiar with cryptography, we recommend the IBM redbook
A Comprehensive Guide to Virtual Private Networks, Vol. I, SG24-5201, Chapter 2,
"A Short Introduction to Cryptography" or the RSA Web site http://www.rsa.com.

6 Internet Security in the Network Computing Framework

1.1.1 NCF and Java Security
Java is the foundation for the NCF architecture, since it is the only programming
language needed to access all the NCF components. The Java environment offers
several security features, which have been largely enhanced with the new Java 1.2
security model.

The NCF security architecture uses the security features offered by the Java
environment:

� The Java 1.2 security API, based on the package java.security and its
subpackages:

 – java.security.acl

 – java.security.cert

 – java.security.interfaces

 – java.security.spec

� The Java security interfaces for cryptography, based upon the Java
Cryptography Extension (JCE) package 1.2, which provides a framework for
encryption and key negotiation.

� The Java 1.2 access control model based upon the Java Naming and Directory
Interface (JNDI), which provides Java applications with a unified interface to
multiple, heterogeneous naming and directory services in the enterprise. Using
this industry-standard, directory-enabled applications become powerful and
portable.

Secure communications are provided by SSL in the Java environment.

 1.2 Directory Architecture
Even if directory services have been used for a long time, the explosion of
distributed and Internet-based computing has generated a proliferation of directory
services within organizations. A common situation is that organization often define
an employee in several directories - for e-mail systems, for networks, for
applications, etc. This way several different repositories, access controls and
management interfaces must be created and handled for each directory. An
immediate consequence is that high maintenance costs are generated for these
organizations.

The NCF networking infrastructure addresses these issues with a four-part,
standards-based directory architecture. NCF provides the following key elements of
a directory-based enterprise network:

1. APIs and Protocols

The NCF client interfaces to directory services are based on the industry
standard LDAP and JNDI specifications. These APIs and protocols enable
applications on any platform or any device to communicate with a
network-based LDAP repository.

 2. Common Schema

NCF's common schema enables applications to share the same objects, so that
the information for a person or resource is not created, stored and maintained
in multiple places across the network. Since an LDAP repository can provide a

 Chapter 1. An Overview of NCF Security 7

common schema for key objects such as users, groups, roles and network
policies, it can provide also the shared storage for multiple network
computing-based applications and allow for common/consistent application
access to these objects.

 3. Meta-Directory

NCF defines a set of meta-directory functions for synchronization of information
between network repositories in order to ensure interoperability with non-LDAP
based repositories. These meta-directory functions provide the ability to map
data that is stored in different directories and define the rules by which this data
is copied or synchronized between directories.

 4. LDAP Repository

The NCF LDAP repository provides the actual storage and retrieval
mechanisms for information about people and resources in the network.

8 Internet Security in the Network Computing Framework

Chapter 2. The New Java 1.2 Security Model

Java programming language is one of the fastest-growing technologies in use on
the Internet today. Java is an object-oriented, operating system-independent
programming language developed and distributed by JavaSoft, a Sun Microsystems
subsidiary.

In this chapter, we talk about the Java Development Kit (JDK) 1.2 security model,
to show you the most important security features that it offers. As of the writing of
this chapter, JDK 1.2 was still in beta (we used beta 3 and 4 on a Windows NT
Server 4.0 platform), and you might find some minor changes from what is
mentioned here to what might finally be released. Moreover, at the time of this
project, no Web browser, of course, was able to support Java 1.2, so you will see
that all the examples of applets that we show run inside the Applet Viewer that
comes with JDK 1.2. However, this does not affect any of the security implications
that we are going to discuss, and the same applet running on the Applet Viewer
should run in a Java 1.2-enabled Web browser, with the same security implications.

2.1 The Need for Java Security
From its inception, Java has shown that it was designed for the net. Java brought
about, for the first time on a large scale, the concept of dynamic loading of code
from a source outside the system. Though this is very powerful, and adds several
features to the system using it, it is also a grave security threat. There could be
several risks associated with loading and running remote code. The remote code
could steal memory, or CPU time; it could throw in a virus; it could read files on a
local system and transmit them to another machine, etc. However, Java is not just
for applets any more. Developers now use Java to build stand-alone,
enterprise-class applications to enable disparate clients, such as workstations, PCs
or Java-based network computers to access legacy databases and share
applications across the network. It looks immediately clear, then, that unlike other
programming languages and systems, security mechanisms must be an integral
part of Java.

Java was designed to offer the following basic security measures:

� Language design features - such as legal type conversions only, no pointer
arithmetic, bounds checking on arrays - provide strong memory protection.

� A sandbox mechanism controls what a Java program is permitted to do.

� Encryption and digital signatures are used by code owners to embed their
certificate into Java classes. In this way, the end user can ascertain who the
owner of the code is and whether the class file was altered after having been
signed by the owner's certificate.

Java security builds upon three fundamental aspects of the Java Runtime
Environment:

 � ByteCode Verifier

The ByteCode Verifier ensures proper formatting of downloaded code. It
verifies that the byte code does not violate the type safety restrictions of the
Java Virtual Machine (JVM), that internal stacks cannot over/underflow, and
that the byte code instructions will have correct typed parameters.

 Copyright IBM Corp. 1998 9

 � SecurityManager

The SecurityManager performs run-time access controls on attempts to perform
file I/O, network I/O, create a new ClassLoader, manipulate
Threads/ThreadGroups, start processes on the underlying operating system,
terminate the JVM, load non-Java libraries (native code) into the JVM, perform
certain types of windowing system operations and load certain types of classes
into the JVM. For example, the Java applet sandbox, which severely
constrains downloaded, untrusted applets to a limited set of functions that are
considered to be relatively safe, is a function of the SecurityManager.

 � ClassLoader

The ClassLoader determines how and when Java programs can load codes,
and ensures that system-level components within the run-time environment are
not replaced.

Java security functionalities, even if built and designed in the language itself, have
been changing their features over time, and their evolution has been dependent on
the major JDK releases that have been developed until now: 1.0, 1.1 and 1.2.

2.2 The Evolution of the Java Security Model
It must be noted that most of the commercial deployments in the early years of
Java was in browsers. Hence, the focus of security in Java has been greatly on
applets, and how to protect the client machine from malicious applets.

JDK 1.0 addressed this problem by running all non-local code inside a sandbox.
All local code (applications and applets) was by default trusted, and all non-local
code, by default was untrusted.

local code

remote code

JVM
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

SANDBOX

RESOURCES

5220\522019

Figure 3. The JDK 1.0 Security Model

Remote applets, though a powerful concept, were shackled by having to run inside
a sandbox, and by not being able to perform several operations. They could not
read local files and could not write to the disk. They had absolutely no access to
the system resources. Moreover they could establish a network connection only

10 Internet Security in the Network Computing Framework

with their servicing Web server. This heavily restricted the use of remote applets
for all but cosmetic functions to decorate a Web page.

This limitation was solved in JDK 1.1, when signed remote applets were permitted
access to several of the system resources that were off limits for those applets
without signatures on them. Of course, the client machine had to be informed that
certain signatures were trusted, and certain others not. This same policy was
actually applied not only to remote applets, but also to other remotely loaded code
like, say, remote servlets (see 4.3, “Servlet Sandbox” on page 161). In general,
signed remote code was given access to all the system resources, while unsigned
remote code was constrained by the Java sandbox. The local code still had
complete access to all the system resources.

signed or unsigned
local code signed unsigned

remote code

JVM
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

SANDBOX

RESOURCES

5220\522018

Figure 4. The JDK 1.1 Security Model

Though this opened up interesting possibilities, the system was still rather crude,
with all local Java applications enjoying full access to the system resources and all
remotely loaded code running inside a sandbox, unless signed by a trusted entity.

This scenario changes in JDK 1.2, where the concept of signed code has been
extended to local code as well. With the new security model, all code, whether
loaded remotely or locally, signed or unsigned, will get access to system resources
based on what is mentioned in a policy file. Now two local codes no longer have
the same access to system resources if one of them is signed, and the other is not.
The whole thing can be specified in the policy file as to what permission you wish
to grant to code residing in which code source, or what permission you wish to
grant to code signed by whom. This enables you to download and install
applications from the Web, and run them by granting them permissions for only
those things they claim is necessary. This will eliminate codes that have a hidden
agenda - such as letting you play a nice game while sending your credit card
information or your passwords to a particular server at the same time.

 Chapter 2. The New Java 1.2 Security Model 11

5220\522020

signed or unsigned
local code

signed or unsigned
remote code

JVM
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

SANDBOX

RESOURCES

Figure 5. The JDK 1.2 Security Model

Notice, however, that even if the default policy implementation is file-based,
application developers can implement their own Policy subclass, providing an
implementation of the abstract methods in the java.security.Policy class. There
could be multiple instances of the Policy class, even if only one is in effect at any
time. The currently installed Policy object can be obtained by calling the getPolicy()
method in the Policy class. Codes with permission to reset the policy can change
the currently installed Policy object by calling the setPolicy() method in the Policy
class. We will discuss this again in 2.4.2.2, “java.policy” on page 26.

Consider now an interesting scenario. You download a little tic-tac-toe program
from the Web. It is signed, and you are sure that it will not crash your system, and
so you run it. This code simply reads your address book, and sends all the e-mail
addresses you have to the database of the nearest junk mailer. Though not very
malicious, this is something we all would like to avoid. This is a very likely
situation, since more and more software is just being brought off the net, and this
trend is likely to continue for a long time. This might lead to fly-by-night software
vendors, some of whom might come up with very innovative software, but some of
whom you cannot really trust.

As of now, we do not have an option to restrict access to a code to do only certain
things. You either install the software, or you make do without it.

However, if you are running Java 1.2-enabled software, you could instruct the JVM,
through modifications in the policy file, that code loaded from a particular URL
(local or remote) and signed by a particular entity is restricted to specific local
resources. For example, you may specify in the policy file that the code in question
may read files in one particular directory and can do nothing else - cannot open
sockets, cannot write or delete any files, etc. This is the fine-grained control
mechanism offered by JDK 1.2.

12 Internet Security in the Network Computing Framework

When using JDK 1.2, you can have full control over what each of your programs
and applications is permitted to do - this was never possible till now. Similarly, you
could spell out the exact things an applet coming from a particular URL can do, or
what any programs (applets, applications, servlets) signed by a particular entity can
do. Further, if you are talking about multi-user systems, the system administrator
could have a default system policy, and each of the users of the system could have
their own policy, that permits them to do certain set of things only.

The following table shows the evolution of the security functionalities found in the
major JDK releases.

Table 1. Evolution of the JDK Security Functionalities

JDK 1.0 JDK 1.1 JDK 1.2

Local unsigned applet
resource access

Unconstrained Unconstrained Policy based

Local signed applet
resource access

Not available Unconstrained Policy based

Remote unsigned applet
resource access

Constrained by the Java
sandbox

Constrained by the Java
sandbox

Policy based

Remote signed applet
resource access

Not available Unconstrained Policy based

Application resource
access

Unconstrained Unconstrained Policy based

Lexical scoping of
privilege modification

Not available Not available Stack annotation based
with doPrivileged()

Cryptographic services
for data
confidentiality/integrity

Not available Java Cryptographic
Extensions 1.1

Java Cryptographic
Extensions 1.2

Digital signature services
for code signing

Not available Java Cryptographic
Architecture DSA
signature

Java Cryptographic
Architecture DSA
signature

2.2.1 Java Security API
As you can see in the above table, cryptographic services for data confidentiality
and integrity and digital signature services for code signing have appeared in the
scene only with JDK 1.1. The Java Security API was built around the java.security
package and its subpackages java.security.acl and java.security.interfaces. The
first release included primarily cryptography functionalities, which could be
incorporated into Java-based applications. The cryptography framework in the Java
Security API is designed so that a new algorithm can be added later on without
much difficulty and can be used in the same fashion as existing algorithms. For
example, even if Digital Signature Algorithm (DSA) is the only built-in algorithm in
this release, it is possible to use software from providers to help generate RSA
signatures and keypairs for encryption.

The first release for Java security available in JDK 1.1 includes APIs for digital
signatures, message digests, key management and Access Control Lists (ACLs).
APIs for data encryption and other functionalities, together with their
implementations, are released separately in the Java Cryptographic Extensions
(JCE) as an add-on package to JDK, in accordance with United States export

 Chapter 2. The New Java 1.2 Security Model 13

control regulations. The JCE APIs include block and stream cipher, symmetric and
asymmetric encryption and support for multiple mode of operation and multiple
encryption.

In JDK 1.2 two new subpackages have been added to the java.security package,
and they are java.security.cert and java.security.spec. These packages offer more
features to deal with X.509 certificates and to create Certificate Revocation Lists
(CRLs) and Certificate Signing Request (CSRs). In particular,
java.security.Certificate, that in JDK 1.1 was an interface of abstract methods for
managing an identity certificate, is entirely deprecated in JDK 1.2, that offers the
entire package java.security.cert to handle certificates. Moreover, the package
java.security.cert adds X.509v3 support to certificates.

 X.509 Certificates

X.509 is one of the most common formats for signed certificates. It is largely
used by JavaSoft, VeriSign, IBM and many other companies for signing e-mail
messages, authenticating program code and certifying many other types of
data. In its simplest form, an X.509 certificate contains the following data:

1. Version of the certificate format

2. Certificate serial number

3. Identifier of the signature algorithm:

 a. Algorithm ID

b. Parameters passed to the algorithm

4. Name of the signer of the certificate

5. Period of validity:

 a. Begin date

 b. End date

6. Name of the certified entity

7. Public key of the certified identity:

 a. Algorithm ID

b. Parameters passed to the algorithm

c. Public key value

8. Signature (hash code of all the preceding fields, encoded with the signer's
private key).

Thus the signer guarantees that a given entity has a particular public key. For
more information on X.509 certificates, you can see
http://www.ietf.cnri.reston.va.us/ids.by.wg/X.509.html.

As you can see in Table 1 on page 13, another security feature introduced by JDK
1.2 is the lexical scoping of privilege modification, which is a technique enforcing
the least privileged mode. In other words, this technique permits you to enable
only the piece of code that needs the privilege. You could add all the sensitive
code in one place, and define that part of the code as privileged, by calling the
doPrivileged() method.

14 Internet Security in the Network Computing Framework

2.3 JDK 1.2 Security Architecture
JDK 1.2 introduces a number of new security features which make it easier to
enforce access control of protected resources. In earlier versions of Java, JVM
resource access was enforced by the sandbox security model, which was a
function of the SecurityManager. Extensions were usually limited to features
implemented by the platform provider (such as, for example, Web browsers and
Web servers). The new JDK 1.2 permission model is much more flexible and even
permits application-defined resources to be added to the access control system.
Java programs now have the ability to define access restrictions on sensitive
resources without requiring the writing of a new SecurityManager or modifying the
underlying platform. This means that applets downloaded into a Java-enabled Web
browser, or servlets downloaded into a Java-enabled Web server, can add resource
access controls to a JVM without having to modify the underlying browser or server
implementation.

One of the notable features of the new security model is that most of the access
control implementation is contained in the Java security subsystem. Typically Java
programs (applications, applets, servlets), components (beans) and libraries
(packages) do not need to control any access control code. When a program
wants to add protected resources to the JVM, a method call can be added that will
check whether the restricted operation is permissible.

The JDK 1.2 access control subsystem introduces new concepts. The first is
CodeSource, which is the combination of a codeBase URL and a signer. A
codeBase URL represents the location from which the code is loaded. The signer
is the entity that signed the code originating from that location. A signer is
represented by a set of public keys that should be used to verify the signed code.
Each public key is represented as a java.security.PublicKey object, and each URL
as a java.net.URL object. The CodeSource is the basis for many permission and
access control decisions.

The second concept is the security policy file. The policy file contains a number of
grant entries which describe the permissions granted to a particular CodeSource.
A grant entry may contain one or more permissions. A permission is the right to
access or use a protected resource. Lastly, a ProtectionDomain is an aggregation
of a CodeSource and the permissions granted for the CodeSource as specified in
the policy database. Each class file loaded into the JVM via a ClassLoader is
assigned to a ProtectionDomain, as determined by the class' CodeSource.

2.3.1 Loading Java Programs
We have already said that the three legs of JVM security are the ByteCode Verifier,
the SecurityManager and the ClassLoader. Prior to JDK 1.2, each application had
to run its own subclasses of SecurityManager and ClassLoader.

 Chapter 2. The New Java 1.2 Security Model 15

Figure 6. Basic Object Relationships - JDK 1.0 and 1.1

JDK 1.2 simplified the development process by creating a subclass of ClassLoader,
called SecureClassLoader. SecurityManager no longer is abstract and can be
instantiated and subclassed. Most of its methods now make calls to methods in
class AccessController, which provides the access control function in the JDK 1.2.
Since most of the SecurityManager methods call AccessController, this greatly
simplifies the writing of new SecurityManager subclasses.

The following figure shows the basic object relationships in JDK 1.2, which we
explain next.

Figure 7. Basic Object Relationships - JDK 1.2

To automatically invoke the new security subsystem, a Java application is started
from a native operating system's command line with a special argument, to indicate
that the new access control features should be used. The Java runtime creates an
instance of the SecureClassLoader, which in turn is used to locate and load the
application's class file. A subclass of SecurityManager is created and installed in

16 Internet Security in the Network Computing Framework

the Java runtime. The application's main() method is then called with the command
line arguments.

The purpose of the change in the Java runtime for starting Java applications is two
fold. First, a simple SecurityManager is installed in the system that uses the new
Java security access control subsystem. Second, a SecureClassLoader is used to
safely and correctly load classes into the Java runtime.

SecureClassLoader has several important purposes. The first is to make sure that
searching for the classes is done in the correct order. When the JVM needs a
class, JVM first looks for files referenced by the JVM's classpath to see if it is
available. Files in the JVM's classpath are intended to be the completely trusted
classes that are part of the Java runtime. For example, all the code shipped with
the JVM is included in the JVM's classpath, and is therefore considered trusted
code. If not found in the JVM's classpath, then an application defined location can
be searched (for example, a Web server via a URL request). Finally, code may be
part of an application classpath that points to classes that are available in the host
file system, but are not part of the JVM's classpath. Classes in the application
classpath are typically located on the host's system disk drive (the workstation or
the Personal Computer), but the classes are not part of the JVM's fully trusted
runtime classes.

Java Classpath in JDK 1.2

As you noticed, in JDK 1.2 classpath does not necessarily indicates trusted
(system) code, as it did in JDK 1.0 and JDK 1.1. Instead, there is a
java.sys.class.path variable that defines system code locations. There are also
a java.class.path property and a CLASSPATH environment variable, but they
are used to find non-trusted (application) classes:

� The property java.class.path is used by an application to specify the
application's search path of URLs for loading application classes and
resources.

� The CLASSPATH environment variable specifies the default value of the
property java.class.path. If CLASSPATH is not set, then the default value
for java.class.path is set to the current directory.

When loading classes and resources, the ClassLoader will search in the
following order:

1. The system classpath (specified by the property java.sys.class.path)

2. The installed extensions (an extension is a group of Java packets that
implement an API extending the Java platform, as for example JavaServlet,
Java3D, JavaManagement, etc.)

3. The application classpath (specified by the property java.class.path).

The option -classpath of the java command is now shorthand for setting the
java.class.path property. Formerly this option was used in JDK 1.0 and 1.1 to
override the search path for system classes, but in the new java command
there is no longer any need to set the system classpath.

The second important purpose of the SecureClassLoader is to create and set the
ProtectionDomain information for classes loaded into the JVM. When the
SecureClassLoader loads a class into the JVM, the codebase URL and the digital

 Chapter 2. The New Java 1.2 Security Model 17

certificate used to sign the class file (if present) are used to create a CodeSource.
The CodeSource is used to locate (or instantiate) the ProtectionDomain for the
class. The ProtectionDomain contains the permissions that have been granted to
the class. Once the class file has been loaded into the JVM, SecureClassLoader
assigns the appropriate ProtectionDomain to the class. This ProtectionDomain
information, and in particular the permissions in the ProtectionDomain, is used in
determining access control during runtime.

Once a Java program starts to run, the SecureClassLoader assists the JVM in
loading other classes required to run the program. These classes are also
assigned the appropriate ProtectionDomain's based on their CodeSource.

2.3.2 Runtime Access Controls
At various points during a Java program's execution, access to protected resources
is requested. This includes network I/O attempts, local file I/O, attempts to create a
new ClassLoader or access a program defined resource. To verify whether the
running program is allowed to perform the operation, the library routine makes a
call to the method SecurityManager.checkPermission(). This method takes a
Permission object as argument and determines whether or not it is granted to the
current Thread. Each Thread in the JVM contains a number of stack frames.
Simply stated, these frames contain the method instance variables for each method
called in the current Thread. The method checkPermission() walks back to the
current Thread's stack frames, getting the ProtectionDomain for each of the classes
on the Thread's stack. As each ProtectionDomain in the Thread stack is located,
the permission to check is compared to the Permission objects contained in
ProtectionDomain. For each stack frame, if the checked permission matches one
of the Permission objects in the ProtectionDomain, testing of the permissions
continues with the ProtectionDomain of the next stack frame (class) on the stack.
This testing repeats until the end of the stack is reached. That is, all of the classes
in the Thread have the permission to perform the operation. Thus, the access
control check succeeds, typically meaning that the requested operation is able to
proceed. If the checked permission is not granted to all classes on the stack (there
is no appropriate Permission object in all of the class' ProtectionDomain objects),
then a SecurityException is thrown, and access to the resource is denied.

A wrinkle in the above scenario is when a class has a set of permissions, and does
not care who its callers may be. For example, a Java bean may be installed on a
desktop computer needing to read files from the local disk drive. The bean's class'
ProtectionDomain has a permission to read these local files. However, the program
loaded from a Web server that calls the bean has a ProtectionDomain that does not
have local file read permission. Normally, if the bean were called by the program
loaded from the Web server, the bean would be denied access to the files on the
local disk drive because the program from the Web server does not have a local
file read permission. However, if the bean calls AccessController.doPrivileged(), an
annotation is made on the Thread's stack frame indicating that when the
checkPermission() method searches for ProtectionDomains, the search stops at this
stack frame. The bean may make any number of method calls, but when the
checkPermission() method is called on another permission object, the search back
through the stack frames to find ProtectionDomain objects stops at this stack frame.
Based on the above scenario, the ProtectionDomain objects for the bean will be
checked, but the ProtectionDomain objects for the program from the Web server
are not checked since the search stopped at the stack frame for the bean.
Therefore, the file read operation will succeed.

18 Internet Security in the Network Computing Framework

A subtle aspect of the above doPrivileged() operation is that programs creating new
Threads would lose ProtectionDomain information when a new Thread is created.
That is, each new Thread creates a new run-time stack. The classes on the stack
of the parent Thread are not present in the new Thread. Important
ProtectionDomain information is no longer available when a checkPermission()
operation is performed. This would give new Threads more permissions than the
Threads that created them. To get around this apparent loss of security
information, the ProtectionDomains of the parent Thread are attached to (inherited
by) a child Thread when it is created. So, unless a doPrivileged() operation is
performed in the child Thread, the parent Thread's ProtectionDomain objects are
also checked during a checkPermission() operation.

2.3.3 How To Write Privileged Code in Java 1.2
We just mentioned in 2.3.2, “Runtime Access Controls” on page 18 that it is
possible to mark Java code as being privileged, by calling the doPrivileged()
method for the AccessController class. This class, in the beta 3 release of JDK
1.2, that we largely used in this project, did not define a doPrivileged() method for
marking a code segment as privileged. Instead, it implemented two methods,
beginPrivileged() and endPrivileged(), that encapsulated the privileged code. These
two methods were deprecated in the later beta 4 release and replaced by the
doPrivileged() method. In this section, we show you some examples of how this
security feature can be implemented.

The normal use of marking a segment of code as privileged is as follows. If you do
not need to return any value from the privileged block, you can write a piece of
code similar to the following:

normal code

class SensitiveAction implements PrivilegedAction
{
public Object run()

 {
// privileged code goes here, for example:

 System.loadLibrary("awt");
return null; // nothing to return

 }
}

... // normal code

someMethod()
{
 ... // normal code

 AccessController.doPrivileged(new SensitiveAction());

 ... // normal code
}

... // normal code

Figure 8. Privileged Code Returning a null Value

 Chapter 2. The New Java 1.2 Security Model 19

What you did with the above lines of code is to define a new class, named
SensitiveAction, that implements the PrivilegedAction interface. This interface is
part of the java.security package and it has been shipped only with JDK 1.2 beta 4
or later. It has a single method, run(), that returns an Object. The above example
shows how to create an implementation of that interface, providing a concrete
implementation for the run() method. As the comment indicates, the run() method
must contain the code that we want to be privileged. When the call to
doPrivileged() is made, an instance of the PrivilegedAction implementation is
passed to it. In general the doPrivileged() method calls the run() method from the
PrivilegedAction implementation after enabling privileges, and returns the run()
method's return value as the doPrivileged() return value. In this particular case, we
have shown how to ignore the return value and return a null value.

If you need to return a value, you can do something similar to the following:

class SensitiveAction implements PrivilegedAction
{
public Object run()

 {
// privileged code goes here, for example:

 return System.getProperty("user.name");
 }
}

... // normal code

someMethod()
{
 ... // normal code

String user = (String) AccessController.doPrivileged(new SensitiveAction());

 ... // normal code
}

... // normal code

Figure 9. Privileged Code Returning a non-null Value

The run() method returns as usual an Object, but this time the Object returned is
not null. It is instead a String object. As in the lines of code shown in Figure 8 on
page 19, this time also an instance of the PrivilegedAction implementation is
passed to the doPrivileged() method as parameter. The doPrivileged() method
calls the run() method from the PrivilegedAction implementation after enabling
privileges, and returns the run() method's return value as the doPrivileged() return
value. Notice the use of the casting operator, which is necessary to convert the
doPrivileged() method's return value to a String object.

The last case that you should consider is if the action performed in your run()
method could throw a checked exception (meaning, one of those exceptions listed
in the throws clause of a method). Then you need to use the
PrivilegedExceptionAction interface instead of the PrivilegedAction interface and
you also need to catch a PrivilegedActionException in the try{}catch(){} block, as
shown in the following example:

20 Internet Security in the Network Computing Framework

class SensitiveAction implements PrivilegedExceptionAction
{
public Object run() throws FileNotFoundException

 {
// privileged code goes here, for example:
return new FileInputStream("someFile");

 }
}

... // normal code

someMethod() throws FileNotFoundException
{
 ... // normal code

 try
 {

FileInputStream fis =
(FileInputStream) AccessController.doPrivileged(new SensitiveAction());

 }

catch (PrivilegedActionException e)
 {

throw (FileNotFoundException) e.getException();
 }

 ... // normal code
}

Figure 10. Privileged Code if the run() Method Throws a Checked Exception

Reading the source code for PrivilegedActionException, we saw that the
getException() method returns an Exception object. For this reason it was
necessary to use the casting operator to convert this Exception object to a
FileNotFoundException object, as only checked exceptions will be wrapped in a
PrivilegedActionException. In effect, PrivilegedActionException is a wrapper for an
exception thrown by a privileged action.

The PrivilegedExceptionAction interface and the PrivilegedActionException class
also did not exist in previous releases of the JDK and have been shipped only with
JDK 1.2 beta 4 or later.

We recommend that you are very careful in your use of the privileged construct,
and always remember to make the privileged code segment as small as possible.

2.4 Getting Familiar with JDK 1.2 Security
The security aspects of JDK have changed drastically from JDK 1.1 to JDK 1.2. In
this section, we will try to familiarize you with the JDK 1.2 security model.

Installing JDK 1.2 on your computer is a very simple operation and it is not very
different from installing JDK 1.1. JDK 1.2 is installed in a root directory that is
indicated as ${java.home}. For example ${java.home} could be D:\jdk1.2. When
you install JDK 1.2, two security configuration files are installed on your computer.

 Chapter 2. The New Java 1.2 Security Model 21

They are known as policy and properties files. Before examining them, we first
need to introduce the concept of keystore.

 2.4.1 Keystore
A keystore is a database of private keys and their associated certificates or
certificate chains, which authenticate the corresponding public keys.

 Certificate Chains

The CA who signed a certificate might not be a known, or trusted entity.
Hence, for verification purposes, the certificates of the CA and the CA that
certified this CA would be required. This is known as a certificate chain. You
could see a demonstration of this at http://www.thawte.com.

The default keystore can be found in Windows NT in
C:\WINNT\Profiles\Administrator\.keystore. What comes with the JDK 1.2
installation is the default implementation of the keystore, which stores all the
keypairs and certificates onto a flat file (encrypted, of course).

It is possible to change both the implementation and the location of the keystore
that comes by default with the JDK 1.2 installation, but the system must be aware
of what implementation and location have been selected.

1. The implementation of the keystore is specified, as we are going to see, in the
security properties file java.security, defined by the value of the property named
keystore.

2. The location of the keystore is in the policy file java.policy, defined by the
keystore URL entry.

If you so desire, you could create a new keystore. You might want to do so to,
say, store keys and certificates in a database. Then you need to refer to your own
keystore implementation in the java.security file and to the location of the keystore
in the java.policy file.

As we will see in 2.5.2, “The keytool Utility” on page 29, JDK 1.2 provides the
keytool command utility for viewing or listing public information about a certificate.
Since a keystore is password-protected, you need to enter a password to see that
information. However, if you register a certificate as trusted and then try to run an
applet signed by that certificate, the JVM automatically retrieves the public key from
the keystore, without your intervention and without asking for the password. The
reason for this is that all public information, such as public key and certificate, is
stored unencrypted in the keystore, and only the private key is stored
password-encrypted to provide confidentiality. The password is used for an
integrity check only, so you are prompted to verify that this has not been tampered
with.

A demonstration of this can be obtained in the following way. When you use the
type command on a keystore, amidst all the junk, you can see the values of a
certificate you knew existed in the keystore in plain text.

22 Internet Security in the Network Computing Framework

Figure 11. On Typing Out a Keystore

Note the information in the fields of a certificate being clearly visible in the data
(lou, mykey, Marco Pistoia, Cary, North Carolina, US), among all other illegible
information.

2.4.2 The Properties and Policy Files
After the installation of JDK 1.2, go to ${java.home}\lib\security. You will see two
files - java.policy and java.security. These are default files that you can modify or
rewrite. In the rest of this section we describe to you these two files. The official
source of information is the Sun Web site
http://java.sun.com/products/jdk/1.2/docs/guide/security/PolicyFiles.html.

 2.4.2.1 java.security
The java.security file, amidst all the comments and explanations, contains important
directives. These directives are all of the form:

property_variable=value

and we describe them all in the following list.

 1. Security Provider

If you are familiar with the JDK 1.1 package java.security and its subpackages,
you will be already familiar with the term provider. If you are not, we are going
to explain it to you right now.

It is possible, using the java.security package and its subpackages, to write
programs that use cryptography functions. These cryptography functions are
not part of standard JDK for various reasons, including licensing problems.
However, it is possible to install providers that are basically software vendors
who supply implementations of these cryptography algorithms and functions.
For example, if you have a program that, say, signs a file with an RSA private
key you already have, this program cannot run on a basic installation of JDK.
RSA libraries are not a part of standard JDK, and JDK supports public key
encryption only using DSA. Now, since your keys are RSA keys, you would
need a provider to be installed on your machine, to help this program to sign
your files.

 Chapter 2. The New Java 1.2 Security Model 23

It is possible in the programs to specify a particular provider alongside the
algorithm, but the programmer might choose not to do so. In such a case, the
default order of priority can be set by you in this directive.

The exact syntax of this directive is:

security.provider.n=classname

The number n is the preference order, or the order in which providers are
searched for requested algorithms. The order is 1-based, meaning that 1
indicates the most preferred, followed by 2 and so on. Each provider must
implement a subclass of the Provider class. In this directive, classname must
specify the subclass of the Provider class implemented by the specific provider.

The default provider that comes standard with JDK 1.2 is the Sun provider and
its Provider subclass, named Sun, appears in the sun.security.provider
package. For this reason the default security provider entry that you will find in
your java.security file, immediately after your installation, is:

security.provider.1=sun.security.provider.Sun

Notice that there must be at least one security provider specification in the
java.security file.

 2. Policy Provider

As mentioned before, the whole system functions on a policy that can be
specified by you. The policy that you set is read and accessed by the system
as an object. Using this directive, you can decide the name of the class that
will be instantiated to get the Policy object. If more than one entry is made for
this, JDK takes the first one in sequence that is available.

The default for this directive is:

policy.provider=java.security.PolicyFile

 3. Policy File

As we just mentioned, it is possible to have one single system-wide policy file,
and each user can have his or her own policy file in the user's home directory.
So by default you will have two entries in your java.security file:

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

You can also mention more policy URLs, but be sure to number them in
ascending order, without missing a number, or else the URLs after the first
missing number will not be read.

 4. Expand Properties

This directive specifies whether or not to expand the values given to variables
in the policy file. For example, ${java.home} could expand into D:\jdk1.2\. The
default is set to true, which means that variables will be expanded:

policy.expandProperties=true

But it can be set to false, disabling the function.

5. Allow System Property

This directive sets the value for the property policy.allowSystemProperty. By
default you will find the following entry in your java.security file:

policy.allowSystemProperty=true

24 Internet Security in the Network Computing Framework

which means that it is permissible to pass an extra policy at the command
prompt by entering:

-Djava.policy=filename

Enabling this feature is not really a security hazard, since only those who have
access to the command prompt can use this feature. Notice that in order to
disable this feature you simply have to comment out the above entry.

6. User-Defined Keystore File

Using this directive, you can specify name and location for a user-defined
keystore file, by modifying the value for the property keystore.user. By default,
this directive in the java.security file is:

keystore.user=${user.home}${/}.keystore

For example, in our environment, the default keystore was the file
C:\WINNT\Profiles\Administrator\.keystore.

7. Class to Instantiate for X.509Certificate

You might have a program that handles all your certificate-related work. This
directive is where you declare it, by modifying the value for the property
cert.provider.x509 to point to an appropriate implementation of X509Certificate.
This program will call the appropriate provider to access the cryptography
functions.

As usual, the default implementation comes with the system:

cert.provider.x5ð9=sun.security.x5ð9.X5ð9CertImpl

 8. CRL Provider

Certification Revocation Lists (CRLs) are maintained by Certification Authorities
(CAs) to provide information about the revocation of certificates issued by them.
You might wish to have a CA Setup on your system using the keystore and
some certificate providers, and so you might need to set up a CRL. This
directive lets you decide which implementation of CRL you wish to use, by
modifying the value for the property crl.provider.x509. This is the default entry:

crl.provider.x5ð9=sun.security.x5ð9.X5ð9CRLImpl

 9. Keystore

This directive lets you choose the implementation of keystore you wish to
employ on your system. The default keystore is implemented by Sun, and
stores all keys and certificates on a flat file:

keystore=sun.security.tools.JavaKeyStore

However, you might wish to have a different system, and so might want to have
your own implementation. This directive helps you specify that, by modifying
the value for the keystore property.

Here is the default java.security file that came with the installation of JDK 1.2 beta
3. Notice that we have removed all the comments from this file.

 Chapter 2. The New Java 1.2 Security Model 25

security.provider.1=sun.security.provider.Sun
policy.provider=java.security.PolicyFile
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
policy.expandProperties=true
policy.allowSystemProperty=true
keystore.user=${user.home}${/}.keystore
cert.provider.x5ð9=sun.security.x5ð9.X5ð9CertImpl
crl.provider.x5ð9=sun.security.x5ð9.X5ð9CRLImpl
keystore=sun.security.tools.JavaKeyStore

Figure 12. Default java.security File

 2.4.2.2 java.policy
As we mentioned in 2.2, “The Evolution of the Java Security Model” on page 10,
you can set a security policy for your system through a policy file. java.policy is the
default file containing policy directives that comes standard with the JDK 1.2
installation. A user could specify an arbitrary number of policy files in the
java.security properties file via the policy.urln properties (see 3 on page 24).
However, there is only one policy (meaning a set of ProtectionDomain objects) in
effect for the JVM at any given time. That policy might be the result of processing
the information from many policy files. The default policy implementation, via the
Policy class, has a public refresh() method that can be used to re-init the policy,
eventually re-reading the policy file(s). Notice that there is no automatic policy
change: refresh() must be called explicitly.

A policy file contains a list of entries or directives. It may contain first of all a
keystore entry and must contain one or more grant entries. The keystore directive
in the policy file is the URL to the keystore file. It is required if one of the grant
entries in the policy file specify signers whose certificate is stored in a keystore
different from the default one. The keystore entry in the policy file can be an
absolute URL or can be relative to the location of the policy file itself. The location
of the policy file is specified in the security properties file java.security by the
policy.url.1 property.

Here's an example of a absolute keystore URL:

keystore "file:/C:/java/keystore";

And here's an example of a relative keystore URL:

keystore "aKeystore.file";

So, if the policy.url.1 property in java.security defines the policy file as follows:

policy.url.1=http://aserver.com/policies/apolicy.file

then the keystore file will be loaded from http://aserver.com/policies/aKeystore.file.

Let's talk now about the grant directives. In JDK 1.2 you will notice several
Permission classes. All these have the same ancestor, java.security.Permission.
This is an abstract class, and is subclassed to represent specific accesses. The
specific accesses are usually a part of the package where they are most likely to
be used - for instance, the permission FilePermission is a part of the java.io
package, thus making it java.io.FilePermission, and the SocketPermission class is
part of the java.net package, so that you will find java.net.SocketPermission. Most

26 Internet Security in the Network Computing Framework

of the permissions can be instantiated by giving two parameters, the first being the
target, such as the name of the file, or the socket number, and the second being
the permitted action, like read, write, open, listen. In most cases, a set of actions
can be specified together as a comma-separated, composite string.

Notice, however, that not all of the Permission classes defined by the JDK 1.2 have
applicable actions yet and the second argument to the constructor would be null.
The only system Permission classes that do have actions are FilePermission (read,
write, execute, delete), PropertyPermission (read, write) and SocketPermission
(resolve, accept, connect, listen).

We also want to mention that a special permission class exists and it is
java.security.AllPermission. This is a permission that implies all permissions. It is
introduced to simplify the work to system administrators who might need to perform
multiple tasks that require all or numerous permissions. Of course much caution is
recommended when considering granting this permission.

The permission policy that you are setting up is to be in the java.policy file. Each
permission that you wish to grant must be a statement containing two parts: a
CodeSource and a list of permissions.

1. The CodeSource is also comprised of two parts:

 a. codeBase URL

The codeBase URL indicates where the classes originate from. This field
is obtained by the keyword codeBase followed by a quoted string indicating
the URL, for example:

codeBase "http://www.redbooks.ibm.com"

This field is optional. If omitted, then the code could be from any source.

b. Digital certificate used to sign the classes

This field is obtained by the keyword signedBy followed by a quoted string
indicating the name assigned to a digital certificate used to sign the
classes. More signers comma-separated are allowed. So, for examples,
correct entries could be:

signedBy "Julie"

or

signedBy "Julie,Tony"

This field is optional. If omitted, AccessController will not care whether the
code is signed or not.

2. Each permission of the list is comprised of four parts:

a. The keyword permission.

This field is required.

b. The fully qualified name of the Permission class.

This includes the package name, for example
java.util.PropertyPermission. This field also is required.

c. A quoted string naming the target of the Permission class.

For example, "java.version" could be the target for a PropertyPermission,
"D:\\Works\\Stats.txt" could be the target for a FilePermission. The only

 Chapter 2. The New Java 1.2 Security Model 27

Permission class that this target field is not applicable to is the special
java.security.AllPermission.

d. A quoted string naming the actions requested.

As we said, a set of actions can be specified together as a
comma-separated composite string. For example, "read" or
read,write,delete,execute" could be actions for a FilePermission,
"resolve,accept" or "listen" could be the actions for a
SocketPermission. Action fields are not applicable to all Permission
classes, but only to FilePermission, PropertyPermission and
SocketPermission.

e. The keyword signedBy followed by a quoted string naming a name that has
been assigned to a digital certificate signing the Permission class.

For example a valid entry could be

signedBy "Julie"

This field is optional. It may be necessary to prevent spoofing when the
Permission class is not resident in the Java runtime but is loaded from over
the network.

Some examples will clarify.

The following code lines, added to your java.policy file, will grant a FilePermission
to all code, regardless of the signer and the codeBase:

à ð
grant {
permission java.io.FilePermission ".tmp", "read,write";

};
á ñ

The following code lines will grant three permissions to the code that is signed by
both Tony and Larry and that comes from http://www.ibm.com:

à ð
grant codeBase "http://www.ibm.com", signedBy "Tony,Larry" {
permission java.lang.RuntimePermission "print.queueJob";
permission java.io.FielPermission "C:\\tmp\\file1", "write,delete,execute";
permission java.net.SocketPermission "9.24.1ð4.51:1345", "connect";

};
á ñ

The following code lines, added to your java.policy file, will grant a permission to
the code that is signed by both Tony and Marco, and only if the bytecodes
implementing the class com.ibm.PCPermission are genuinely signed by Julie:

à ð
grant signedBy "Tony,Marco" {
permission com.ibm.PCPermission "Token-ring", "activate", signedBy "Julie";

};
á ñ

We will see several other examples of policy files in the next sections. Notice that
the syntax of these entries is very important. Omitting even a simple comma could
create serious problems on your system.

28 Internet Security in the Network Computing Framework

Unfortunately the strings for a file path must be written in a platform-dependent
format. The above examples are appropriate on a Windows NT system. Strings
are processed by java.io.StreamTokenizer, which considers a back slash as an
escape string. So two back slashes are required to indicate one single back slash.
This is the reason why the file C:\tmp\file1 is indicated in the above statement as
C:\\tmp\\file1. However, if the policy.expandProperties in the java.security
properties file is set to true (see 4 on page 24), you can write portable policy files.
For example, the ${/} variable could be used, and it would be converted to the
correct format, dependent on the platform.

2.5 JDK 1.2 Security Tools
In order to use the new security features provided by JDK 1.2, developers need
four utilities that are automatically installed on their computers when they install the
development kit itself. Those who are already familiar with Java 1.1 should know
the jar command line tool, needed to compress one or more Java components
into one single file. This utility is shipped with the new version too. The command
line utility of JDK 1.1, javakey, has been replaced in JDK 1.2 by keytool and
jarsigner. The Policy Tool is a Graphical User Interface (GUI) that assists a user
in generating, editing, importing or exporting a security policy. It also is launched
from the command prompt, by issuing the command policytool.

We will take these utilities one by one, and see how they work.

2.5.1 The jar Utility
JAR stands for Java ARchive, and is pretty similar to tar, in the sense that it is both
a file format and a compression system. The solution is absolutely portable
between all Java platforms. Just enter jar at the command prompt to get options.
Notice that the jar tool automatically preserves the directory tree of the file
archived. For further information about the JAR files, see the IBM redbook Network
Computing Framework Component Guide, SG24-2119.

The jar function is pretty similar in JDK 1.2 to what it was in JDK 1.1. JAR files
acquire specific significance, since the old javakey, and its newer version,
jarsigner, can sign only JAR files. This technique of creating a JAR file, and then
signing it, can be effectively used for code signing, and is currently being used for
applets and servlets in JDK 1.1. However, in JDK 1.2, signed JAR files might be
required for running local applications as well, since permissions can be set for
code signed by different vendors based on the signatures.

As in JDK 1.1, you can create a JAR file in JDK 1.2 by giving the command

jar cvf myjarfile.jar component1.class component2.class

The above command generates the JAR file myjarfile.jar from the two files
component1.class and component2.class.

2.5.2 The keytool Utility
The keytool is a key and certificate management command line tool. It helps in
storing, creating and managing certificates, certificate requests and keypairs, by
interacting with a keystore.

The options that come along with keytool are explained clearly in the
documentation accompanying your JDK 1.2 installation. However, we illustrate its

 Chapter 2. The New Java 1.2 Security Model 29

options with an example. We show how to create a keystore and a self-signed
certificate. We also show how this looks when viewed by a tool that displays the
Basic Encoding Rules (BER) encoding of the certificate.

This is the command we used to create a new keystore and a keypair:

keytool -genkey

All the options that are necessary are asked for at the command prompt, and those
that are optional are given default values if no options are specified while using
keytool.

Figure 13. Creating a Keypair and a Self-Signed Certificate Using keytool

This just created a self-signed certificate for us, and placed it in a newly created
keystore. Note how all the mandatory fields were prompted for, and the optional
ones (the keyname and the validity period of the certificate) were set to default
(mykey and 9ð days).

Alternately, we could have given the long option, as described in the JDK 1.2
documentation, specifying everything, and leaving nothing to default, by giving the
following command:

keytool -genkey
-dname "CN=Narayan Raghu, OU=ITSO, O=IBM, L=Cary, S=North Carolina, C=US"
-alias narKey -keypass sw15ð4r
-keystore C:\WINNT\Profiles\Administrator\newKeyStore
-storepass sw15ð4r -validity 9ð

Note that all this will have to be entered on one line, though we have split it up for
clarity.

This command would have created for us a certificate with the domain options
given and with a validity of 90 days. It generates a key pair (a public key and
associated private key) and wraps the public key into an X.509v1 self-signed
certificate, which is stored as a single-element certificate chain. This certificate
chain and the private key are saved in the newKeyStore keystore.

Coming back to the certificate we created with those default options, this certificate
can be exported from the keystore in base64 format.

30 Internet Security in the Network Computing Framework

 base64 Format

base64 format is a commonly used Internet standard. You could encode binary
data in base64 by rearranging the bits of the data stream in such a way that
only the 6 least significant bits are used in every byte. For more details, see
RFC1421 at http://info.internet.isi.edu/in-notes/rfc/files/rfc1421.txt.

We downloaded the BERViewer tool from
http://members.xoom.com/Aram_Perez/BERViewer.htm. This tool allows you to
view certificates encoded in BER format. However BERViewer takes only binary
file inputs. With another little program (which uses BSAFE, a toolkit from RSA), we
converted base64 format to binary format, and then were able to view the certificate
with the BERViewer tool.

ASN.1 and BER

Abstract Syntax Notation #1 (ASN.1) is a formal notation of representing X.509
certificates in the format Type Length Value (TLV). The Type field, one byte
long, specifies the type of data. The type could be INTEGER, OID (OBJECT
IDENTIFIER), SEQUENCE, BIT STRING, NULL, etc. Each of these types has
a specific code associated with it. The Length field (which could be any number
of bytes so long as the most significant bit is a 1, and only one byte long if it is
0) specifies the length of the Value field. If the type is SEQUENCE, the value
contains one or more group of TLVs, and so on. Thus a tree is created, with
the topmost TLV containing all the TLVs under it, and its length being the
cumulative length of all the TLVs (not just the sum of lengths of all the TLVs).
In this sense, we say that SEQUENCE is a construct. Other constructs are
OPTIONAL and CHOICE.

ASN.1 gives then a precise definition of the structure of a certificate file. The
BER format describes precisely how to save this structure in a binary file. The
BER format, in other words, describes how to encode data of the types
specified above and constructs such as SEQUENCE, OPTIONAL and CHOICE.

We then viewed the entry associated with the key pair that has been generated, as
shown, issuing the command:

keytool -list -alias mykey

Figure 14. Seeing the Listed Entry in the Keystore

To export the certificate in base64 format, the full command given was:

keytool -export -alias mykey -file myfile.b64

It prompted us for the password, which we gave, and the output was written into
the file myfile.b64. So, we viewed the contents of the file myfile.b64 using the
keytool again. Exactly, the command entered was:

keytool -printcert -file myfile.b64

 Chapter 2. The New Java 1.2 Security Model 31

Figure 15. Viewing the Certificate Written to the File

Then we converted it to binary, and viewed it on the BERViewer program we
mentioned. At the top level, this is how the certificate looks.

Figure 16. A Self-Signed Certificate

Note the two SEQUENCEs and the BIT STRING within the upper SEQUENCE.
The first inner SEQUENCE contains the information about the certificate, and the
second, information about the signing algorithm. The BIT STRING contains the
signature. Let's pry into this some more, and see the particulars of this certificate.

32 Internet Security in the Network Computing Framework

Figure 17. Inside a Certificate

Notice how all the information we entered in the certificate is encoded in the
certificate. This is a standard X.509v1 Certificate. Note that by default, keytool
uses DSA for encryption and SHA-1 for digesting the certificate information. For
more information about these algorithms, we'd recommend the RSA FAQ Web site,
http://www.rsa.com/rsalabs/newfaq/.

There is a huge set of options along with keytool, and you could see all of them by
typing:

keytool -help 2> filename

The list of options is more than one screen, and so the redirection to a file whose
name is specified by filename. Important among them are the options to import CA
certificates and import signed certificates. However, most of the popular CAs do
not seem to be accepting the CSR that JDK 1.2 keytool generates, ostensibly
owing to the SHA1/DSA signature that is on the Certificate Signing Request (CSR),
while the de facto standard is MD5/RSA. So to really get this thing up and going,
you would need to install the software of a provider to enable you to use RSA
algorithm for public key encryption. Once that is done, you could even use keytool
to act as a Certification Authority. However, if you intend to handle RSA
signatures, you will have to use a provider's software for that.

 Chapter 2. The New Java 1.2 Security Model 33

2.5.3 The jarsigner Utility
The jarsigner utility can be used to sign JAR files, and to verify signatures on JAR
files. Here's how it works. As usual, you can enter the command:

jarsigner -help

to get a list of all the valid options.

To use jarsigner, we first created a couple of dummy text files, and jared them by
issuing:

jar cvf nuts.jar nuts.txt bingo.txt

Then we signed the resulting nuts.jar JAR file by launching the command

jarsigner nuts.jar mykey

Note how we didn't have to go through the cumbersome process of creating a
sign_directive file, and specifying a signature filename as in JDK 1.1 (see for
example the sign.direc file we created in 4.1.2, “Users” on page 128). The
signature is stored within the JAR file itself now. You will not find a nuts.jar.sig file
as you would have in JDK 1.1. Actually, the signature is added within the JAR file
itself. It's something like unjaring it, adding the signature and jaring it again.

The signature information is stored in the JAR file itself in the files MYKEY.SF and
MYKEY.DSA. The former has the digest information, and the latter, the signature,
along with the signer's certificate in BER format. You can view these entries using
the jar utility to blow up the JAR file:

jar xf nuts.jar

You will then see a directory called META-INF created in the directory where you
blew up the JAR file. You will find MYKEY.DSA and MYKEY.SF in that directory.
We verified, using the BERViewer mentioned earlier that the DSA file contains the
signature and the CA Certificate. We also typed out the content of the SF file to
verify that it contained the digest information.

Figure 18. Inside the Signed JAR File

The other file you see, MANIFEST.MF, is a standard file that is always present with
a JAR file, even in JDK 1.1. It has nothing to do with signatures. This manifest file
contains information similar to the SF file. However, SF files are used particularly
by jarsigner, and MF files are used by the jar utility. You could use the jar

34 Internet Security in the Network Computing Framework

command with the xf option against any JAR file (JDK 1.1 or 1.2) and you would
see it containing information about the files that the JAR contains.

Note here that using the xf option blows up the contents of the JAR file, and the
two original text files used to create the JAR would be overwritten. You could
move the JAR file to some other directory, or delete these constituent text files from
the working directory and try out the same thing.

2.5.4 The Policy Tool
The Policy Tool is a GUI that can be used for generating, editing, importing and
exporting a security policy. This tool can be invoked from the Command Line, by
giving the command policytool.

Figure 19. Launching the Policy Tool with the policytool Command

It is recommended that all changes to the security policy file during a real life
situation be made through this. Apart from the fact that editing the policy file
manually might cause inadvertent mistakes, which might cause havoc with granted
permissions, there is yet another reason that makes using this tool a good practice.
The policy file is a very sensitive document - in that any changes to it could
compromise the security of the whole system. Hence, in future versions of JDK,
the policy file might be encrypted, or stored in forms other than flat files. Hence, it
is a good idea to stick with the GUI that takes care of the details of how exactly the
policy file is stored.

 Chapter 2. The New Java 1.2 Security Model 35

Useful as it might seem, the Policy Tool implementation in the beta 3 version
seemed to have many bugs. Most of the text boxes we were supposed to be
entering data into had the same background and foreground color. Moreover, it
threw several NullPointerException objects for what we were sure were legitimate
actions, like adding permissions. So, notwithstanding all the recommendations, and
the advantages of using the Policy Tool, we were forced to hand edit the policy file.
Unless there have been major improvements in this tool in the version that you
have, we'd recommend you do the same - but with caution.

However, the Policy Tool is just a basic utility. The JDK is a toolkit and lisencees
to the JDK are expected to enhance the tools.

2.6 Access Restriction to Local Code with JDK 1.2
Let's start by adding the following code to our java.policy file:

grant codeBase "file:/D:/tmp/julie/" {
permission java.io.FilePermission "D:\\tmp\\narry\\file1", "read,write";
permission java.io.FilePermission "D:\\tmp\\narry\\newdir", "write";

};

Figure 20. Add This in Your java.policy File

What you have just said in this declaration is that you wish to grant the mentioned
permissions to any Java code (meaning, to any Java class file) residing at the base
file:/D:/tmp/julie/, irrespective of whether it is signed or not, or who it is signed by.
Notice that we have simply removed the directive signedBy, according with what we
said in 2.4.2.2, “java.policy” on page 26, since we want AccessController not to
care whether the code is signed or not nor who signed the code.

Moreover notice that file:/ is the protocol for finding the location. The protocol
could either be file:/ or http://.

In the beta 3 of JDK 1.2 a \ is assumed after the final / in file:/D:/tmp/julie/.
Hence, this directive really means:

grant codeBase file:/D:/tmp/julie/\

Similarly, if your directive is:

grant codeBase http://www.ibm.com

you are really meaning:

grant codeBase http://www.ibm.com/\

or, in other words, you mean http://www.ibm.com and everything below and there is
no way to limit that. For this reason the Web server administrator should be very
careful when they set up the Web server. However, this problem was then fixed in
a later beta of JDK 1.2, so now when you specify a codeBase such as
file:/D:/tmp/julie/ or http://www.ibm.com, it matches code only in that directory,
not in the directories below.

Let's now examine the permissions themselves. We are granting the permission
java.io.FilePermission with the two string parameters, D:\\tmp\\narry\\file1 and
read,write. These are the same parameters that will be given at the time of
instantiating the permission by a program, which we will show soon.

36 Internet Security in the Network Computing Framework

The directory structure for this example is as follows:

� The directory D:\tmp\julie has all the code - the Java source code and the class
files.

� The directory D:\tmp\narry has the file that we will attempt to read.

We used the default java.security file in this example.

Let's now try writing a simple program that attempts to read the file.

import java.io.\;
public class ReadFile
{
public static void main(String aa[])

 {
System.out.println("Now in the function, will attempt to read file");

 byte b;

 try
 {

File myFile = new File("D:\\tmp\\narry\\file1");
FileInputStream myStream = new FileInputStream(myFile);
b = (byte)myStream.read();

 }

 catch(Exception e)
 {

System.out.println("There was an exception, the particulars are " + e.toString());
 }

System.out.println("Exiting the function");
 }
}

Figure 21. The Code for ReadFile.java

You can then try compiling the file, entering as usual:

javac ReadFile.java

and then you can verify that it runs pretty well with:

java ReadFile

Until now, you have not invoked the security policy yet. You will be invoking the
security policy when you enter:

java -new -usepolicy:=${java.home}\lib\security\java.policy ReadFile

Just to try it out, we deleted the entries that we shown in Figure 20 on page 36
and ran it. This is what we got at the Command Prompt.

 Chapter 2. The New Java 1.2 Security Model 37

Figure 22. Running Using the Policy

The -new option has to be used along with the -usepolicy option, and it permits
you also to run a program directly out of a JAR file.

Then we tried putting back the directive in the policy file as suggested by Figure 20
on page 36 and the code was able to read the file. So now it's shown that it is
possible to restrict access to local code also. Let's now see how to write Java
code, to incorporate the new security features.

38 Internet Security in the Network Computing Framework

import java.io.\;
import java.security.\;
import java.lang.\;

public class ReadFile
{
public static void main(String aa[])

 {
System.out.println("Now in the function, will attempt to read file");

 byte b;
 Permission p;

SecurityManager sm = System.getSecurityManager();
boolean canRead = true;

 try
 {

File myFile = new File("D:\\tmp\\narry\\file1");
p = (Permission)new FilePermission("D:\\tmp\\narry\\file1", "read");

 try
 {
 sm.checkPermission(p);
 }

 catch(Exception e)
 {

System.out.println(" the permission had not been granted");
System.out.println(" the particulars are " + e.toString());
canRead = false;

 }

 if (canRead)
 {

FileInputStream myStream = new FileInputStream(myFile);
b = (byte)myStream.read();
System.out.println(" read from the file");

 }

 }

 catch(Exception e)
 {

System.out.println("The exception particulars are " + e.toString());
 }

System.out.println("Exiting the function");
 }
}

Figure 23. Modified Version of ReadFile.java

Now, notice how we have instantiated a Permission, giving the required values as
parameters. The outputs are as shown in the two following figures:

 Chapter 2. The New Java 1.2 Security Model 39

Figure 24. Running the Code Without Granting Permissions

Figure 25. Running the Code After Granting Permissions

Now, let's examine the code.

We defined a Permission p, and instantiated this Permission with the parameters
matching the permission we require to do the actual job of the program - to read
one byte from the file. We got the SecurityManager from the System class, and
checked if this Permission we just instantiated had been granted.

If it was granted, we proceeded to perform the action (reading a byte from the file),
else, we printed to the screen the reason why we are not able to proceed, and
exited the program. Note here, that we did not stop because an exception was
thrown while the required operation was being performed. We found out
beforehand if an operation is permitted at all or not, and attempted the operation
only if it was permitted.

This facility can be very useful if you are performing a series of operations that you,
as a programmer, suspect might be restricted on the final installation machine. You
might want to check all the permissions, and ascertain that all the required
permissions for the series of actions that you will be performing are granted before
beginning any of them. This would avoid an operation being aborted half way,
because one of the operations is forbidden. This will be especially valuable if
performing only some of the operations is undesirable, and you wish that either all
the operations be performed, or none.

There is another way you can check if the permission has been granted or not.
However, it relies on the target object's test methods, and might not be always
available. The same old ReadFile program can be modified into this. If you see
the API documentation of the class java.io.File, you will see that there are methods
such as canRead() and canWrite(). These methods are expected to be used
before actually attempting to read or write into the file, to see if the operating
system permits the action or not. These methods return a boolean true if the action
is permitted, and a boolean false if it is not, and throw an exception if the action is

40 Internet Security in the Network Computing Framework

forbidden by the Java SecurityManager. This feature can be utilized, though not
regularly as a programming practice, to check if the action can be performed or not.

import java.io.\;
import java.security.\;
import java.lang.\;

public class ReadFile
{
public static void main(String aa[])

 {
System.out.println("Now in the function, will attempt to read file");

 byte b;

 try
 {

File myFile = new File("D:\\tmp\\narry\\file1");

 try
 {
 if (myFile.canRead())
 {

FileInputStream myStream = new FileInputStream(myFile);
b = (byte)myStream.read();
System.out.println("have read one byte from the file");

 }
 }

 catch(Exception e)
 {

System.out.println(" the permission had not been granted");
System.out.println(" the particulars are " + e.toString());

 }
 }

 catch(Exception e)
 {

System.out.println("There was an exception, the particulars are " + e.toString());
 }

System.out.println("Exiting the function");
 }
}

Figure 26. ReadFile.java, Using the canRead() Method of the File Class

This program when run without and with the permissions, gave the type of
messages as indicated before, in Figure 24 on page 40 and Figure 25 on
page 40. Though this technique may seem pretty much simpler, we recommend
the former one, since all target objects might not have this feature, and also
because this is really an indirect way of checking for granted permissions.

 Chapter 2. The New Java 1.2 Security Model 41

2.6.1 A Complete Example
You could use the following sample code to complete the example.

42 Internet Security in the Network Computing Framework

import java.io.\;
import java.security.\;

public class PermTest
{

private void checkPerm(SecurityManager sm, Permission p)
 {

Exception exc = null;

 try
 {
 sm.checkPermission(p);
 }

 catch(Exception e)
 {

exc = e;
 }

 finally
 {
 System.out.println(p.toString());

if (exc == null)
 System.out.println("permission GRANTED");
 else
 System.out.println("permission DENIED");
 }
 }

public static void main(String[] args)
 {

PermTest pt = new PermTest();
Permission p = null;
String filename = "C:\\jdk1.2\\play\\file1";
String dirname = "C:\\jdk1.2\\play\\newdir";

// Get the default security manager. We have one because we invoked
// the java interpreter with the "-new" and "-usepolicy" flags.

SecurityManager sm = System.getSecurityManager();

if (sm == null)
System.out.println("NULL security manager!");

 else
 {

// Here are some permission queries that go directly to the
// SecurityManager's checkPermission() method, via the local

 // checkPerm() method.

Figure 27 (Part 1 of 4). PermTest.java, a Long Example Code

 Chapter 2. The New Java 1.2 Security Model 43

p = (Permission) new FilePermission(filename, "read");
 pt.checkPerm(sm, p);

p = (Permission) new FilePermission(filename, "write");
 pt.checkPerm(sm, p);

p = (Permission) new FilePermission(filename, "delete");
 pt.checkPerm(sm, p);

p = (Permission) new FilePermission(filename, "execute");
 pt.checkPerm(sm, p);

p = (Permission) new FilePermission(filename, "read,write,execute,delete");
 pt.checkPerm(sm, p);

File f = new File(filename);

if (f == null)
 System.out.println("NULL file!");
 else
 {

// Here are some permission queries that are a little more
// indirect, relying on the target object's test methods.

Exception exc = null;

// Test the read permission.

 try
 {
 f.canRead();
 }

catch (Exception e)
 {

exc = e;
 }

if (exc == null)
System.out.println(filename + " read permission GRANTED");

 else
 {

exc = null;
System.out.println(filename + " read permission DENIED");

 }

// Test the write permission.

 try
 {
 f.canWrite();
 }

catch (Exception e)
 {

exc = e;
 }

Figure 27 (Part 2 of 4). PermTest.java, a Long Example Code

44 Internet Security in the Network Computing Framework

if (exc == null)
System.out.println(filename + " write permission GRANTED");

 else
 {

exc = null;
System.out.println(filename + " write permission DENIED");

 }

// Here are some operations that will throw an exception if
// the required permission(s) are not met.

// java.io.File.exists() requires the read permission.

 try
 {
 f.exists();
 }

catch (Exception e)
 {

exc = e;
 }

if (exc == null)
System.out.println(filename + " read permission GRANTED");

 else
 {

exc = null;
System.out.println(filename + " read permission DENIED");

 }

File d = new File(dirname);

// java.io.File.mkdir() requires the write permission.

 try
 {
 d.mkdir();
 }

 catch(Exception e)
 {

exc = e;
 }

if (exc == null)
System.out.println(dirname + " write permission GRANTED");

 else
 {

exc = null;
System.out.println(dirname + " write permission DENIED");

 }

// java.io.File.delete() requires the delete permission.

Figure 27 (Part 3 of 4). PermTest.java, a Long Example Code

 Chapter 2. The New Java 1.2 Security Model 45

 try
 {
 f.delete();
 }

 catch(Exception e)
 {

exc = e;
 }

if (exc == null)
System.out.println(filename + " delete permission GRANTED");

 else
 {

exc = null;
System.out.println(filename + " delete permission DENIED");

 }
 }
 }
 }
}

Figure 27 (Part 4 of 4). PermTest.java, a Long Example Code

This example performs some basic permission checks using the
java.io.FilePermission class. The first group of checks directly calls the
java.security.SecurityManager.checkPermission() method with a specific permission.
The second group of checks calls various java.io.File methods. These methods
eventually end up calling the SecurityManager's checkPermission() method. In all
cases, if the permission is not allowed, an exception is thrown and caught and the
result is a permission DENIED message. If the permission is allowed, a permission
GRANTED message is displayed.

This code was placed in C:\jdk1.2\play. A temporary file C:\jdk1.2\play\file1 and a
temporary directory C:\jdk1.2\play\newdir were created, in accordance with what is
indicated in the source code. The only permissions needed to get all the access
checks to be granted are:

java.io.FilePermission "C:\\jdk1.2\\play\\file1", "read,write,execute,delete";

and

java.io.FilePermission "C:\\jdk1.2\\play\\newdir", "write";

Note that if you change the filename or dirname variables within the testcase, you
must change the permission targets accordingly. Also note that all the access
checks will be granted if more general permissions are granted to the codeSource
in question.

Here is the policy file we used:

46 Internet Security in the Network Computing Framework

grant codeBase "file:/C:/jdk1.2/play" {
permission java.io.FilePermission "C:\\jdk1.2\\play\\file1", "read,write,delete,execute";
permission java.io.FilePermission "C:\\jdk1.2\\play\\newdir", "write"

};

Figure 28. Policy File for TestPerm.class

 codeBase URL

We noticed that in the beta 3 and 4 releases of JDK 1.2 for Windows NT the
value for the codeBase URL is case-sensitive. Even the drive letter creates
problems if not capitalized. So for example "file:/C:/jdk1.2/play" would be
considered different from "file:/C:/JDK1.2/play". In particular
"file:/c:/jdk1.2/play" wouldn't be accepted, because the proper drive letter
is C and not c. However, this restriction didn't apply to the permission fields.

You can compile the above code by issuing, as usual:

javac PermTest.java

and then you can run it with the command:

java -new -usepolicy:=${java.home}\lib\security\java.policy PermTest

When you run PermTest with all the permissions, you should get a series of
permission GRANTED messages, as shown.

Figure 29. Running PermTest With All the Permissions

If you remove some permissions from the policy file, you will see that the
corresponding messages in the output window change to read permission DENIED.

If you wish for more information, you can add:

throws SecurityException

to the main() method and remove a denied permission from its try{} block. The
exception stack will be displayed to stderr. You can also get some info by running
the Java interpreter java with the -Djava.security.debug=true flag.

For example, if you the remove delete and execute from the policy file, it will look
like the following screen:

 Chapter 2. The New Java 1.2 Security Model 47

à ð
grant codeBase "file:/C:/jdk1.2/play" {
permission java.io.FilePermission "c:\\jdk1.2\\play\\file1", "read,write";
permission java.io.FilePermission "c:\\jdk1.2\\play\\newdir", "write"

};
á ñ

Then you can run the PermTest application with the -Djava.security.debug=true
flag. And this is what you will see in the Command Prompt window:

Figure 30. Running PermTest Removing Permissions and Using the Debugging Flag

2.6.2 An AWT Test
Let's now consider another example involving the Java Abstract Windowing Toolkit
(AWT), or the java.awt packages. Here, we are trying to get access to a
java.awt.PrintJob object using the java.awt.Toolkit.getPrintJob() method. The
program works if the following permission is set in the java.policy file:

permission java.lang.RuntimePermission "print.queueJob";

If you have not already done so, add that permission into your java.policy file (it
might also be the only permission in the policy file) and key in the following
program:

48 Internet Security in the Network Computing Framework

import java.awt.\;
import java.awt.event.\;

class GetPrintJob extends Frame implements ActionListener
{
boolean p = true;

 GetPrintJob()
 {

super("Toolkit.getPrintJob() test case");
 setSize(3ðð, 1ðð);
 setLocation(2ðð, 2ðð);

Button b = new Button("getPrintJob");
 add(b, BorderLayout.CENTER);
 b.addActionListener(this);

 show();
 }

public void actionPerformed(ActionEvent evt)
 {
 try
 {

Toolkit.getDefaultToolkit().getPrintJob(null, "PrintJob", null);
 }

 catch(Exception e)
 {

System.out.println(" there was an exception, "+ e.toString());
 p=false;
 }
 if (p)

System.out.println("No exception. Test is successful.");
 }

public static void main(String[] args)
 {
 new GetPrintJob();
 }
}

Figure 31. The Print Job Program

As you can see, the main() method simply invokes the constructor GetPrintJob().
This constructor, in turn, calls the constructor of the superclass java.awt.Frame,
passing the String

Toolkit.getPrintJob() test case

as parameter, that will be the title of the newly created Frame object.

This program does little else than display a graphical button and get the
java.awt.PrintJob object when you click the button getPrintJob . Note that once
this object is obtained, you can have access to the Graphics object using the
getGraphics() method, which renders for an appropriate print device. Note that we
have not tried instantiating permissions. We are just catching and printing the

 Chapter 2. The New Java 1.2 Security Model 49

exception. You might want to try without the try{}catch(){} block too, to see what
output it gives. Here's the output with the try{}catch(){} block.

Figure 32. Running the GetPrintJob Program

Figure 33. Clicking on the Button - With Proper Permissions

Figure 34. Clicking on the Button - Without the Permission

Now, here is a slightly more sophisticated way of doing the same thing. You have
seen a similar technique before in Figure 23 on page 39.

50 Internet Security in the Network Computing Framework

import java.awt.\;
import java.awt.event.\;
import java.security.\;
import java.lang.\;

class GetPrintJob extends Frame implements ActionListener
{
boolean p = true;

 GetPrintJob()
 {

super("Toolkit.getPrintJob() test case");
 setSize(3ðð, 1ðð);
 setLocation(2ðð, 2ðð);

Button b = new Button("getPrintJob");
 add(b, BorderLayout.CENTER);
 b.addActionListener(this);
 show();
 }

public void actionPerformed(ActionEvent evt)
 {
 Permission perm;

SecurityManager sm = System.getSecurityManager();
perm = (Permission) new RuntimePermission("print.queueJob");

 try
 {
 sm.checkPermission(perm);
 }

 catch(Exception e)
 {

System.out.println(" Permission does not exist");
System.out.println(" Particulars :" + e.toString());
p = false;

 }

 if (p)
 {

Toolkit.getDefaultToolkit().getPrintJob(null, "PrintJob", null);
System.out.println("No exception. Test is successful.");

 }
}

public static void main(String[] args)
 {
 new GetPrintJob();
 }
}

Figure 35. Modified Version of GetPrintJob.java - Checking the Permissions

This would get you largely similar results. We believe this is probably a more
systematic method of programming, and it might prove to be beneficial in the long
run to make it a practice to check for the permissions before performing any action.

 Chapter 2. The New Java 1.2 Security Model 51

2.7 Applets in the New JDK 1.2 Security Model
In this last example, we compare signed and unsigned applets.

The applet we wrote loads a pretty screen and, on clicking on button A, attempts to
open a remote socket. Here's the source code for the applet:

52 Internet Security in the Network Computing Framework

import java.applet.\;
import java.awt.\;
import java.awt.event.\;
import java.net.\;

public class MyApplet extends Applet
{
Button button[] = new Button[3];
boolean p = true;

public void init()
 {
 setBackground(Color.white);

button[ð] = new Button("A");
button[1] = new Button("B");
button[2] = new Button("C");

 add(button[ð]);
 add(button[1]);
 add(button[2]);
 }

public boolean action(Event evt, Object obj)
 {

if (evt.target == button[ð])
 {
 try
 {

Socket n = new Socket("marcop.austin.ibm.com", 44444);
 }

 catch(Exception e)
 {

System.out.println(" error -- exception " + e.toString());
 e.printStackTrace();

showStatus("there was an exception " + e.toString());
p = false;

 }

 if (p)
showStatus(" Button A was pushed ");

p = true;
 return true;
 }

if (evt.target == button[1])
 {

showStatus(" Button B was pushed ");
 return true;
 }

Figure 36 (Part 1 of 2). MyApplet.java, the Applet that Attempts the Socket Operation

 Chapter 2. The New Java 1.2 Security Model 53

if (evt.target == button[2])
 {

showStatus(" Button C was pushed ");
 return true;
 }

 return false;
 }
}

Figure 36 (Part 2 of 2). MyApplet.java, the Applet that Attempts the Socket Operation

We compiled the above source entering the command:

javac MyApplet.java

In the next two sections we will use this example to show how unsigned and signed
applets are managed in the new Java 1.2 security model.

 2.7.1 Unsigned Applets
First we examine the case of an unsigned applet. We wrote a simple HTML page,
named myPage.html, whose code is as shown:

<HTML>
<APPLET CODE=MyApplet WIDTH=2ðð HEIGHT=1ðð>

 </APPLET>
</HTML>

Figure 37. The HTML Page Containing the Applet - myPage.html

Notice that this HTML page invokes the class file of the applet MyApplet, which we
have shown in Figure 36 on page 53.

At the time of this project, as we already said several times, JDK 1.2 was available
only in beta, so no Web browser supported the 1.2 version yet. However, even if
we didn't have the opportunity to test an applet using any real Java 1.2 enabled
Web browser, we could efficiently use the JDK 1.2 Applet Viewer, which from a
security point of view offered us the possibility to reach the same conclusions as a
regular Java 1.2 browser. As you certainly know, the Applet Viewer is a tool
shipped with the JDK that is used to run applets, commonly for testing purposes. It
is launched on the command line with the command appletviewer followed by the
name of the HTML file invoking the applet. You can also specify the URL to the
HTML file. That command parses the HTML file and considers only everything
between the two tags <APPLET> and </APPLET> plus the tags themselves.
Everything else outside the two tags is completely ignored. This explains also why
we wrote such a simple HTML file.

Notice that we had not given in the java.policy file any permissions to anyone to
open any socket. When we tried to run the applet locally, with the command

appletviewer file:/D:/javacode/myPage.html

and we clicked on the button A, here's what we got:

54 Internet Security in the Network Computing Framework

Figure 38. On the Applet Trying to Open a Socket

Note the applet window displayed above the Command Prompt window. It
registered that a java.security.AccessControlException had been thrown when the
applet had tried to open a socket to a remote host.

We also tried placing the two files myPage.html and MyApplet.class on a Web
server, having IP address 9.24.104.51. We stored them in a directory named
javacode that we created under the HTML directory of the Web server. Then we
accessed the HTML file entering in the client machine the command:

appletviewer http://9.24.1ð4.51/javacode/myPage.html

And we got the same results.

These two experiments simply demonstrated that our unsigned applet was by
default untrusted. We had not granted any permission yet for unsigned code to
open any socket and our applet was not allowed to do that, whether it was local or
remote.

We can now try running this applet after giving appropriate permissions. So, in the
java.policy file, we made this entry.

grant codeBase "http://9.24.1ð4.51/javacode" {
permission java.net.SocketPermission "marcop.austin.ibm.com:44444", "connect";

}

Figure 39. Giving the Permission to Any Code from the Given URL

Here we have said that any code originating from the given URL is permitted to
connect to the particular socket on the particular machine, without any differences

 Chapter 2. The New Java 1.2 Security Model 55

between signed and unsigned code (note in fact that we omitted the signedBy
directive).

We then tried again, with the Applet Viewer, and this time there were no errors.

Figure 40. Trying to Open a Socket - With the Proper Permission

Note that, in accordance with the Java source code that we had written, the
message:

Button A was pushed

is displayed only if the socket connection was successful.

We observed that the Applet Viewer in JDK 1.2 beta 3 seems to be caching
applets, and changed permissions are not reflected immediately. This might be a
bug.

 2.7.2 Signed Applets
We can now try another thing. We could say that we will give access to any
applets that have been signed by somebody, to do this action. Here's how this can
be done.

First, we put MyApplet.class in the JAR file MyApplet.jar using the command:

jar cvf MyApplet.jar MyApplet.class

Then, we modified the HTML page on the Web server to incorporate the change in
the applet source.

<HTML>
<APPLET ARCHIVE=MyApplet.jar CODE=MyApplet WIDTH=2ðð HEIGHT=1ðð>

 </APPLET>
</HTML>

Figure 41. Modified HTML Page myPage.html Invoking the JAR File of the Applet

We then created a new keystore called louKeyStore, using the keytool utility, as
has been explained in 2.5.2, “The keytool Utility” on page 29. The command we
issued was:

56 Internet Security in the Network Computing Framework

keytool -genkey
-dname "CN=Marco Pistoia, OU=ITSO, O=IBM, L=Cary, S=North Carolina, C=US"
-alias louKey -keypass sw15ð4r
-keystore D:\javacode\louKeyStore
-storepass sw15ð4r -validity 365

We remind you that this command should be entered on a single line, even though
we have split it for clarity.

What we are trying to do here is to simulate the condition wherein the signer is on
a given machine, but the applet will run on a different machine. Ideally, it is as if
the applet were signed on one machine and run on another one, but we simulated
this situation using two different keystores on the same machine. The first one was
our default keystore, C:\WINNT\Profiles\Administrator\.keystore. The second one
was the newly created louKeyStore. The technique that we used in this example
was to sign the applet using the certificate stored in the louKeyStore, then to trust
that signature by exporting the certificate from louKeyStore and importing it in the
default keystore as trusted. In this way we perfectly simulated the presence of the
two different machines. To really run an applet signed by the certificate stored in
louKeyStore, we also need to specify in the java.policy file that the signer is trusted.
We are just going to describe all these steps.

First of all, of course, we had to generate a certificate for louKey. We did that
using the command:

keytool -selfcert -alias louKey -keystore D:\javacode\louKeyStore -storepass sw15ð4r

Then, we used that certificate to sign the JAR file MyApplet.jar containing the
applet class MyApplet.class. To do this, we entered:

jarsigner -keystore D:\javacode\louKeyStore -storepass sw15ð4r MyApplet.jar louKey

Then, we had to import the new certificate to the default keystore that we had, at
C:\WINNT\Profiles\Administrator\.keystore. We did this by first exporting the
self-signed certificate using the following command, entered on a single line:

keytool -export -keystore D:\javacode\louKeyStore -storepass sw15ð4r -alias louKey
-file louCert.cer

We then imported the certificate as a trusted root in the default keystore, using the
command:

keytool -import -file D:\javacode\louCert.cer -alias lou

This prompted the certificate, and asked us if we trusted it. As you can see in the
following screen, we entered Yes.

Figure 42. Importing a Trusted Certificate, Giving an Alias to the Signer

 Chapter 2. The New Java 1.2 Security Model 57

There is one last step. We had to enter the alias as trusted in the java.policy file.
So we added the following entry in the policy file, and deleted all the other
permissions.

à ð
grant signedBy "lou" {
permission java.net.SocketPermission "marcop.austin.ibm.com:44444", "connect";

};
á ñ

The above entry simply means that we intend to trust all the code signed by the
signer whose alias is lou, wherever that code comes from (note in fact that the
codeBase directive is omitted). And on running the applet from the Applet Viewer, it
worked fine, as shown in Figure 40 on page 56.

We also tried giving the following entry in the policy file:

à ð
grant codeBase "http://9.24.1ð4.51/javacode", signedBy "lou" {
permission java.net.SocketPermission "marcop.austin.ibm.com:44444", "connect";

};
á ñ

The above entry, in the policy file, means that we intend to trust all the Java code
signed by the signer whose alias is lou. However, this time we don't actually trust
all the code signed by lou, but only that code coming from the directory
HTML\javacode of the Web server having IP address 9.24.104.51, as the value of
the codeBase directive specifies. We then stored the applet and the HTML page
myPage.html in the directory HTML\javacode of the Web server and when we
pointed to the applet URL using the Applet Viewer, the applet worked just fine
again, as shown in Figure 40 on page 56.

Note that the machine with which the applet establishes a socket connection is not
the Web server that served the applet itself.

codeBase and Signer in a Directive

What we really did here was to identify the code using both codeBase and
signature. Note that in general permissions are additive - in the sense that if
you give permission A to codeBase XX and permission B to signedBy YY, and
use these in two separate grant directives, any applet originating from XX and
being signed by YY will have both the permissions A and B. We will
demonstrate just this in 2.8, “Additive Permissions” on page 59.

However, in the above condition, we are using the codeBase and the signature
to identify completely a set of applets that are permitted to do a certain set of
operations. Hence, in this case, permissions are not additive. Both the
codeBase and the signature together act as identifiers.

58 Internet Security in the Network Computing Framework

The Keystore URL Entry in the Policy File

Note that in the above example we have imported the signer's certificate into
the default keystore C:\WINNT\Profiles\Administrator\.keystore. Hence, we did
not need to mention the keystore in the policy file either. However, you might
want to do the whole thing using some other keystore. In such a case, you
would have to import the certificate into that particular keystore using the
-keystore option of the keytool command, and then add the following directive
in the policy file, specifying the URL of the keystore you intend to use:

keystore "file:/location/keyStoreName";

In our case, notwithstanding the default status of the keystore, we could have
chosen to be more technically correct albeit verbose, and have said in our
policy file

keystore "file:/C:/WINNT/Profiles/Administrator/.keystore";

 2.8 Additive Permissions
In this section, we describe you how the permissions work together. Consider a
modification of the MyApplet.java code as shown.

 Chapter 2. The New Java 1.2 Security Model 59

import java.applet.\;
import java.awt.\;
import java.awt.event.\;
import java.net.\;
import java.io.\;

public class MyApplet extends Applet
{
Button button[] = new Button[3];
boolean p = true;
boolean p1 = true;
boolean p2 = true;

public void init()
 {
 setBackground(Color.white);

button[ð] = new Button("A");
button[1] = new Button("B");
button[2] = new Button("C");

 add(button[ð]);
 add(button[1]);
 add(button[2]);
 }

public boolean action(Event evt, Object obj)
 {

if (evt.target == button[ð])
 {
 try
 {

Socket n = new Socket("marcop.austin.ibm.com", 44444);
 }

catch (Exception e)
 {

System.out.println(" error -- exception " + e.toString());
 e.printStackTrace();

showStatus("there was an exception " + e.toString());
p = false;

 }

 if (p)
showStatus(" Button A was pushed ");

p = true;
 return true;
 }

if (evt.target == button[1])
 {

File n = new File("D:\\tmp\\narry\\file1");

Figure 43 (Part 1 of 2). Modification of MyApplet.java to Show Additive Permissions

60 Internet Security in the Network Computing Framework

 try
 {
 n.canRead();
 }

 catch(Exception ee)
 {

System.out.println(" error -- exception " + ee.toString());
 ee.printStackTrace();

showStatus("there was an exception " + ee.toString());
p1 = false;

 }

 if (p1)
showStatus(" Button B was pushed ");

 return true;
 }

if (evt.target == button[2])
 {

File nn = new File("D:\\tmp\\tony\\larry");
 try
 {
 nn.canRead();
 }

 catch(Exception eee)
 {

System.out.println(" error -- exception " + eee.toString());
 eee.printStackTrace();

showStatus("there was an exception " + eee.toString());
p2 = false;

 }

 if (p2)
showStatus(" Button C was pushed ");

 return true;
 }

 return false;
 }
}

Figure 43 (Part 2 of 2). Modification of MyApplet.java to Show Additive Permissions

When we compiled this code, we entered:

java MyApplet.java

and we overwrote the existing MyApplet.class file.

Note that three permissions are required here - one SocketPermission permission
and two FilePermission permissions. Now we can:

1. Grant the codeBase the SocketPermission.

 Chapter 2. The New Java 1.2 Security Model 61

2. Grant all code signed by the signer lou a FilePermission for the file named
file1.

3. Create another signer in a keystore, and grant all the code signed by this new
user, a FilePermission for the file named larry.

In 2.7.2, “Signed Applets” on page 56, we showed how to create a signer, and how
to import his certificate into a keystore as a trusted certificate. Now you have to
repeat similar steps. The following screens were captured after the louKey was
imported as trusted certificate into the default keystore. We just had to create and
import another key signer into the keystore. The following screens will help you
follow the steps.

First, create the keystore D:\javacode\larryKeyStore and a self-signed certificate for
the key, by entering the command:

keytool -genkey -alias larryKey -keystore D:\javacode\larryKeyStore

followed by:

keytool -selfcert -alias larryKey - keystore D:\javacode\larryKeyStore

You can see that in this case it is the keytool command itself that prompts you with
the options to enter, if you do not enter them directly on the command line.

Figure 44. Create the Keystore with a Key, and Create a Self-Signed Certificate

We exported the certificate, issuing:

keytool -export -keystore D:\javacode\larryKeyStore -alias larryKey -file larry.cert

Figure 45. Exporting the Certificate

Then we imported the certificate as trusted root in the default keystore. The
command we used to do that was:

keytool -import -alias larryKey -file D:\javacode\larry.cert

62 Internet Security in the Network Computing Framework

Figure 46. Import the Certificate in the default Keystore

As you can see, we entered Yes when the system asked us if we intended to trust
the certificate.

Finally, we put the applet class file MyApplet.class in the JAR file MyApplet.jar as
follows:

jar cvf MyApplet.jar MyApplet.class

We signed it with both the keys by entering the command:

jarsigner -keystore D:\javacode\louKeyStore MyApplet.jar louKey

This was followed by:

jarsigner -keystore D:\javacode\larryKeyStore MyApplet.jar larryKey

as shown in the following figure:

Figure 47. Creating and Signing Twice the JAR file Containing the Applet.

In other words, we applied a signature using the certificate stored in the
louKeyStore and then, on the resulting file, still named MyApplet.jar, we applied a
second signature, using this time the certificate stored in the larryKeyStore. We
want to demonstrate, in this way, that permissions are additive in JDK 1.2.

Now wipe off all the entries in your policy file, and type a new policy file with the
following entries.

 Chapter 2. The New Java 1.2 Security Model 63

grant codeBase "http://9.24.1ð4.51/javacode/" {
permission java.net.SocketPermission "marcop.austin.ibm.com:44444", "connect";

};

grant signedBy "lou" {
permission java.io.FilePermission "D:\\tmp\\narry\\file1", "read";

};

grant signedBy "larryKey" {
permission java.io.FilePermission "D:\\tmp\\tony\\larry", "read";

};

Figure 48. The Policy File to Experiment with Additive Permissions

In summary, what we've said here is the following:

1. We wish to grant any code, originating from the directory HTML\javacode of the
Web server having IP address 9.24.104.51, the SocketPermission necessary to
connect to the machine marcop.austin.ibm.com on port 44444.

2. We wish to grant to any code signed by the public key registered with the
default keystore as lou, the FilePermission to read the file named file1.

3. We wish to grant access to any code signed by the public key registered with
the default keystore as larrykey, the FilePermission to read the file named larry.

Since our applet was signed by both these entities, and resided in the particular
location HTML\javacode of the Web server having IP address 9.24.104.51, it got all
the three permissions.

Note that if you want to use another keystore instead of the default keystore, you'll
have to add its URL in the policy file as well:

keystore "file:/location/keyStoreName";

The following three figures show the applet running in the Applet Viewer:

Figure 49. The Applet, With All the Permissions, Opens the Socket

64 Internet Security in the Network Computing Framework

Figure 50. The Applet, With All the Permissions, Reads the File file1

Figure 51. The Applet, With All the Permissions, Reads the File larry

If you read the source code for the MyApplet applet, you will see that the socket
connection and the file access actions are activated just when the buttons are
pushed.

Now you can try revoking just one of the permissions, by commenting out one of
the directives in the java.policy file. Your policy file would now look like this, in
case you want to comment out the third grant directive:

 Chapter 2. The New Java 1.2 Security Model 65

grant codeBase "http://9.24.1ð4.51/javacode/" {
permission java.net.SocketPermission "marcop.austin.ibm.com:44444", "connect";

};

grant signedBy "lou" {
permission java.io.FilePermission "D:\\tmp\\narry\\file1", "read";

};

// grant signedby "larryKey" {
// permission java.io.FilePermission "D:\\tmp\\tony\\larry", "read";
// };

Figure 52. Additive Permissions - With One Permission Masked

The results would be as expected. On clicking A and B, you would get what is
shown in Figure 49 on page 64 and Figure 50 on page 65. However, on clicking
button C, a java.security.AccessControlException would be thrown and the Applet
Viewer would register that read access is denied to the file D:\tmp\tony\larry.

Figure 53. The Applet Window, With the Third Permission Masked

You would simultaneously get a host of exceptions on the console, as shown.

Figure 54. The Command Prompt - Showing the Stack Trace.

You would find similar outputs when you try revoking one or more permissions and
running the applet.

For example, if you mask the second permission and click on B, here's the output:

66 Internet Security in the Network Computing Framework

Figure 55. The Applet Window With the Second Permission Masked

Figure 56. The Command Prompt Shows the Corresponding Stack Trace

Notice that each time the Applet Viewer and the Java console exactly register the
nature of the exception.

Similarly, here's the output when button A is pushed and the first permission is
masked.

Figure 57. The Applet Window With the First Permission Masked Out

 Chapter 2. The New Java 1.2 Security Model 67

Figure 58. The Corresponding Command Prompt Output

Thus, it has been verified that permissions work in a way to make them additive.

We would like to mention, however, a problem that we encountered with running a
class from its home directory. It seemed to be a problem with the beta 3 version
that we were using of the JDK, in that the policy file was not implemented if we run
an applet using the Applet Viewer from the same directory that contained the
particular class file of the applet. This might be a bug.

We also found a bug when we tried to add multiple PropertyPermission objects. It
appears that any PropertyPermission overwrites any preceding PropertyPermission
that applies to the same target. For example, let's consider the following policy file:

à ð
grant codeBase "file:/C:/tmp/julie" {
permission java.util.PropertyPermission "java.version", "write";

};

grant signedBy "marco" {
permission java.util.PropertyPermission "java.version", "read";

};
á ñ

The code in C:\tmp\julie and signed by marco matches both grant entries.
However, the code will not have write access to the java.version property because
the permission in the first grant entry was overwritten by the permission in the
second grant entry. PropertyPermission is the only class we found with this
problem.

68 Internet Security in the Network Computing Framework

Chapter 3. Web Server Security

Security on the server side has gained importance in recent years, owing to
well-publicized (albeit isolated) incidents of break-ins. In this chapter, we outline
the aspects of Web server security. We start off with security features offered by
Lotus Domino Go Webserver 4.6.2.2, including support for Secure Socket Layer
(SSL) and the mechanism to protect resources through Access Control Lists
(ACLs). Then, in Chapter 4, “IBM WebSphere Application Server Security” on
page 121, we give a comprehensive treatment of IBM WebSphere Application
Server security. Notice that, at the time this book went to print, IBM WebSphere
Application Server was still in its beta 3 version, and carried the name of IBM
ServletExpress. Moreover, as you can see in Chapter 2, “The New Java 1.2
Security Model” on page 9, at the time of this project the Java Development Kit 1.2
was available only in beta version, so Lotus Domino Go Webserver, ServletExpress
and all the Web browsers we used still supported JDK 1.1.

If you want to see the simple steps required to install and configure Lotus Domino
Go Webserver correctly, you can refer to 7.2, “Lotus Domino Go Webserver
4.6.2.2” on page 302.

3.1 Lotus Domino Go Webserver Security Features
Lotus Domino Go Webserver is part of the recently announced IBM WebSphere
software family. Domino Go is a secure server, with support for SSL 3.0, HTTP
1.1, JDK 1.1, Just-in-Time (JIT) compiler, Java servlets, site indexing capabilities,
advanced server statistics reporting and relational database connectivity with
Net.Data. It is available on many platforms, like OS/390, AIX, Solaris, HP-UX,
OS/2 Warp, Windows NT and Windows 95. It also has the ability to generate
certificate requests, sign certificates and even act as a Certification Authority (CA)
for an intranet with the help of the CAServlet being shipped with ServletExpress.
Domino Go Webserver is characteristically very scalable, and has hosted some of
the most heavily loaded sites like the Atlanta Summer Olympics Web site and the
Big Blue vs. Kasparov chess match site. In the next few sections, we will be
sharing with you our experiences using the security features of this Web server.

 3.1.1 SSL Overview
SSL is a standard proposed by Netscape for secure communication over the
Internet. SSL operates above the transport layer of the ISO/OSI Network Model,
and can be used to secure the communication between any of the TCP/IP suite
application layer protocols, like HTTP, telnet, FTP. The HTTPS protocol is HTTP
over SSL. The URL of a secure Web site starts with https://, rather than the
usual http://.

We are giving here a very brief description of the basic functioning of the SSL
protocol. For further information, the user is directed to the IBM redbook The
Domino Defense: Security in Lotus Notes and Internet, SG24-2109.

In its most basic form, SSL guarantees transmission of encrypted data over the net
and enables server authentication. SSL grants:

 � Confidentiality

 Copyright IBM Corp. 1998 69

All client requests and server responses are encrypted to maintain the
confidentiality of the data exchanged over the network.

 � Data integrity

Data that flows between a client and a server is protected from a third party's
tampering.

Optionally, clients may be required to authenticate to the server by providing their
own digital certificates.

When the client connects a secure server, the process known as SSL handshake
starts. The server authenticates itself to the client by first sending to the client it's
digital certificate. If the client decides to trust the server, the process goes on
involving the server and the client agreeing upon a secret session key with which to
encrypt all the messages sent either way (from the client to the server, or the other
way). This is done by the client generating a random symmetric key, encrypting it
with the server's public key, and sending it back to the server. This could well be
the SSL session key if the server agrees. Else, they negotiate till they agree upon
a single symmetric key with which to encrypt all the information sent across the
Internet. Note that a separate session is maintained for each client, and it is the
server's responsibility to maintain a mapping of client vs. session key. Also note
that even the URLs are encrypted while the request is being sent to the server.
This could be very significant while using the GET or POST HTTP methods with an
HTML form, to send some sensitive information, say, a password or a credit card
number, to the server.

The latest version of SSL, Version 3.0, enables client authentication. Actually SSL
2.0 also supported client authentication, but there were some bugs with the original
version. These bugs were subsequently fixed, but not many browsers picked up
the changes. For further details about the enhancements of SSL Version 3.0 vs.
SSL Version 2.0, see 5.1.1, “Netscape Navigator” on page 181. Using the client
authentication, the server can now be aware of who exactly the client is. The
server could, among other things, restrict access to clients based on their digital
certificates, or give them personalized information.

An example for this can be found on the VeriSign Web site
http://www.verisign.com/products/sites/job_demo/index.html. Make sure you visit
this site after collecting the trial browser certificate from
http://www.verisign.com/client/index.html (see 5.4.1, “Obtaining a VeriSign
Evaluation Certificate” on page 232). When you do so, you will see how it is
possible for the Web server to provide customized information to the user, without
requiring the user to remember yet another user ID and password, using SSL 3.0
authentication and client certificates (see 5.4.2, “Using a Certificate to Access
Secure Web Sites” on page 238).

In this chapter we will show you, among other things, how to set up Lotus Domino
Go Webserver for using SSL and how SSL server authentication works. Client
authentication, which is optional and not really necessary to activate a SSL session,
is described in 3.1.4, “SSL Client Authentication” on page 84, where you can also
find how to install a CA certificate into Lotus Domino Go Webserver.

70 Internet Security in the Network Computing Framework

3.1.2 Lotus Domino Go Webserver SSL Setup
This section shows how to configure SSL on Lotus Domino Go Webserver.
SSL-supported server authentication uses RSA public key cryptography, together
with an independent Certificate Authority (CA) for server certificate authentication.
In this section we will not use any independent CA for server authentication, but we
will use the functionality of Lotus Domino Go Webserver to be self-signed CA. This
functionality is very useful not only for testing purposes but also when the client and
the server are both hosts of the same intranet.

First of all, you must access the Configuration and Administration Forms for your
Lotus Domino Go Webserver. To do this, it is enough that you invoke the host
name or the IP address of your Web server machine from a client's browser while
Lotus Domino Go Webserver is running.

Figure 59. How to Access the Configuration and Administration Forms

Of course, you must enter the Administrator user ID and password to log on.

 Chapter 3. Web Server Security 71

Figure 60. Entering User ID and Password

Once the Configuration and Administration Forms home page for your Web server
is displayed, you should move down the scroll bar in order to find the Security
section, which is highlighted in the following screen.

Figure 61. Security Section in the Configuration and Administration Forms

72 Internet Security in the Network Computing Framework

When you select Create Keys , the following window will be displayed:

Figure 62. Request Certificate

On this page, you choose the CA from which you want to obtain the certificate. We
marked Other , because we wanted to act as our own CA for our intranet. When
we clicked Apply , we got the Other Certificate Web page, shown here divided into
four different figures. The first section is to create a key:

 Chapter 3. Web Server Security 73

Figure 63. Create Key

The second section is named Key Ring Password. A key ring is a file used to store
public keys, private keys, certificates and trusted root keys. The Key Ring
Password section is used to specify a password for the key ring and also to select
whether you want an automatic login, so that the password is automatically entered
when the server starts. We specified the password and accepted the automatic
login function, as shown in the following figure:

74 Internet Security in the Network Computing Framework

Figure 64. Key Ring Password

The third section of the Other Certificate page appears if you move down the scroll
bar. This section is named Distinguished Name. A Distinguished Name is a
unique name associated with the certificate and the public key. We filled in the
necessary fields following the directions, as shown in this figure:

Figure 65. Distinguished Name

 Chapter 3. Web Server Security 75

Finally, you can specify the e-mail address where the CA should mail the certificate
and also the e-mail address of the CA that should receive your certificate request.
Since we were acting as our own CA, we selected Don't mail .

Figure 66. Certificate Request

When we clicked Apply , we got the following Confirmation window.

76 Internet Security in the Network Computing Framework

Figure 67. Confirmation Window

You now have a certificate request and you should send it to a Certification
Authority, such as Thawte or VeriSign, to sign the certificate request. Lotus
Domino Go Webserver permits us to import the certificate request itself to generate
a self-signed certificate. To do this, we first went to the Configuration and
Administration Forms home page and clicked on the link Receive Certificate . It
took us to the following page.

 Chapter 3. Web Server Security 77

Figure 68. Receive Certificate Window

After entering the name of the file into which we wanted to store the certificate
request and entering the password, we clicked on Apply . We got the following
Confirmation page.

78 Internet Security in the Network Computing Framework

Figure 69. Confirmation Window

We pressed Configuration Page and then we restarted the Web server, as the
Confirmation window suggests. Now the server is all set to use the self-signed
certificate for secure connections with the clients.

3.1.3 Lotus Domino Go Webserver SSL Server Authentication
We will show in this section how the Web server is authenticated by Netscape
Communicator running on a client machine before an SSL session is in place. First
of all, when you invoke a secure Web server from a client's browser, the URL
should begin with https:// instead of the usual http://. You will use https:// for
HTTP URLs with SSL and http:// for HTTP URLs without SSL.

Netscape Communicator immediately displays a warning message, because
Netscape does not recognize the private CA that we set up.

 Chapter 3. Web Server Security 79

Figure 70. Security Warning Message from Netscape Communicator

Users must judge whether the certificate proposed by the Web server is
acceptable. If you click Next you can get basic information about that new
certificate and the following page is displayed:

Figure 71. Basic Information About the Web Server Certificate

Notice that the Encryption field indicates the encryption level. In this case we have:

RC4-4ð with 4ð-bit secret key

This offers us the opportunity to understand how secure the communication
between the client and the server will be or, in other words, how easy it would be
for someone to decrypt such communication.

80 Internet Security in the Network Computing Framework

In general it is advisable to get more information about a certificate that is not
immediately recognized by our browser. So you should click More Info... to get the
certificate details.

Figure 72. Certificate Information

Clicking OK, you go back to Figure 71 on page 80 and then you can press Next to
decide if you want to accept this certificate for the current session only, don't want
to accept that certificate at all, or accept it until it expires.

Figure 73. Making a Security Decision about the Unknown Web Server

 Chapter 3. Web Server Security 81

We selected the opportunity to accept this certificate for the current session only,
so we pressed Next again. Netscape Communicator displays a warning message,
reminding us that even if accepting the new certificate ensures encryption in the
transmission, this does not exclude the possibility that the Web server is
impersonating another well-known server or that the Web server will misuse the
information provided to commit fraud. You can also decide if you want to see again
this warning message in future circumstances or not.

Figure 74. Warning Message

At the end, when you press Next , Netscape verifies that the host name of the Web
server corresponds to its IP address. If the host name and the IP address match,
you will see a Confirmation message similar to the following.

82 Internet Security in the Network Computing Framework

Figure 75. Site Certificate Finished

We also wanted to experiment with the case where the host name and the IP
address of the Web server do not match. Netscape Communicator displays
another warning message, giving you a further possibility to refuse the new
certificate.

Figure 76. Certificate Name Check Provided by Netscape

We got this warning message by disabling the Domain Name Service (DNS) in our
intranet. In this case Netscape Communicator was not able to compare IP address
and host name. This is a common situation. In fact, in many intranets, DNS
lookup for external hosts is disabled. The client browser informs the user that host

 Chapter 3. Web Server Security 83

name and IP address do not match through a panel like that shown in Figure 76.
Keep in mind, however, that if the host name and the IP address do not match, it is
also possible that a spoofing or Man-In-the-Middle (MIM) attack is running, meaning
that someone is trying to intercept your communication with that Web site.

Finally, if you accept the certificate, the SSL session is established and you get the
Web page you had requested using the SSL protocol.

Figure 77. SSL Communication

In this case, it was the same Web page that you normally use to access the
Configuration and Administration Forms for your Web server. Notice the presence
of a closed lock at the bottom left corner. It indicates that an SSL secure
connection is active.

3.1.4 SSL Client Authentication
In 3.1.3, “Lotus Domino Go Webserver SSL Server Authentication” on page 79, we
have indicated how one can set up Lotus Domino Go Webserver for SSL, using the
basic server authentication. We now present to you the steps we took to
incorporate client authentication. In this case, the clients are also issued
certificates (not necessarily by the same CA who issued the certificate for the
server) and this certificate is used during the SSL handshake. This enables the
server to ascertain the identity of the client. For this reason, the server should first
trust the CA who issued the certificate to the client.

We could easily use a client certificate obtained from VeriSign (see 5.4.1,
“Obtaining a VeriSign Evaluation Certificate” on page 232). It would work very well
with Domino Go Webserver, since VeriSign's self-signed certificates are already
pre-installed in Lotus Domino Go Webserver. However we want to show you what

84 Internet Security in the Network Computing Framework

happens if the client certificate is signed by a CA whose self-signed certificate is
not installed in Domino Go Webserver or, in other words, if the CA that signed the
client certificate is not considered trusted by the Web server. For this reason we
did not want to use a client certificate issued by VeriSign.

Notice that we used Netscape Communicator 4.05 as a client. Things might be
different with Microsoft Internet Explorer, since these two browsers handle
certificates in a different way. You might want to see
http://www.microsoft.com/security.

The steps we followed are somewhat as follows. First, we went to the CA site to
get the client certificate for our browser. The CA we chose is a demo CA set up by
CryptSoft, and can be found at the URL http://www.cryptsoft.com/˜tjh/usercert.cgi.
We entered the values in the mandatory (and in some optional) fields and pressed
the Generate Client Certificate Key button. We got the following window from
Netscape:

Figure 78. Generate A Private Key

We clicked on OK to continue the process, and we got a prompt for the password
for the keys database of the Communicator. If you are generating keys for the first
time since the installation of Communicator, you will not get this prompt. Instead,
Communicator will ask you to choose a new password at the time of receiving the
certificate. We entered the keys.db password, and the certificate was generated for
us by the demo CA. In a real-life situation, it would never happen this fast. The
CA would like to first ascertain if the information the client has provided is true or
not before issuing the certificate. However, since we are using a demo CA, we get
to save a lot of time and trouble, and collect the certificate as soon as we applied
for it.

While the certificate is being written into the browser, the following window is shown
by Netscape:

 Chapter 3. Web Server Security 85

Figure 79. Certificate Installation

As we have already mentioned, collecting a certificate is not likely to happen
immediately after requesting it. Netscape provides an option to the user to view the
information in the certificate before importing it into the certificates database of
Netscape. To see this, click on More Info . On doing this, we saw the following
screen:

Figure 80. Certificate Information

After corroboration of the information, we clicked on OK to return back to the
previous window. Here, we clicked on OK again since we wanted to import the

86 Internet Security in the Network Computing Framework

certificate into our browser. The browser then popped up a window asking us if we
wanted to make a copy of the certificate (along with the private key):

Figure 81. Save User Certificate

We chose not to, since this was only for trial. We clicked on Continue . The
certificate was installed on our client. The CA server is really in no position to
indicate to the client that a certificate has been installed, since the CA can only
write into one stream at a time. Hence after the certificate has been installed, the
confirmation of the installation of the certificate, which one would normally expect
from the CA server, is given only by the client browser (by popping up the window
in Figure 81) and not by the CA server. Hence, if you are using Netscape, you will
find yourself in the same page even after installation of the certificate, and it might
seem a bit awkward. This limitation is not present in MSIE 4.0, however, since it
uses a complicated set of ActiveX components aided by VBScript to install
certificates, and hence it has the option to point the browser to a new page if the
certificate is successfully installed, and to another page if there was some foul-up.

That the certificate has indeed been installed can be ascertained by going to the
menu in Netscape, and verifying manually. Hence, to complete the loop, we went
to the Security Info page, as shown in the following screen:

 Chapter 3. Web Server Security 87

Figure 82. Certificate Information

We clicked on Certificates and then on Yours and we saw a screen like that
shown in Figure 227 on page 233, and thus ascertained that the certificate had
been successfully installed.

Now that we had a client certificate, we tried to use client authentication. This is
set up on the server side: one has to go to the Configuration and Administration
Forms of Lotus Domino Go Webserver and click on Security Configuration in the
Security section (see Figure 61 on page 72), check the Enable SSL Client
Authentication check box, and restart the server:

88 Internet Security in the Network Computing Framework

Figure 83. Certificate Information

The rest of the options given on that page are of no immediate concern to us, and
we can safely let them be. Now that the client authentication is enabled on the
server, we tried accessing the server with the Netscape client which we had just
got certified. The connection began well, with the server first presenting its
self-signed certificate to us as shown in Figure 70 on page 80 through Figure 76
on page 83.

After we choose to trust the server, the server requests the client certificate, as
shown. The next window to be popped up tells us that the server has asked the
client to present its certificate to it. We had three certificates to choose from, and
we chose the one we just installed.

 Chapter 3. Web Server Security 89

Figure 84. Select a Certificate

But on doing this, we got an error message. As you can see, the error message
was not very indicative of the problem found.

Figure 85. Netscape Error

Looking at the error log file for Lotus Domino Go Webserver, we found that it
mentioned that the SSL handshake had failed. The reason for this was that we
had not designated the CA that signed the client certificate as a trusted root.

Now, how is one supposed to do this? First, we have to obtain the self-signed
certificate from the CA. This could be done in many ways, including ftp and e-mail.
Note that VeriSign's self-signed CA certificates are pre-installed in Domino Go
Webserver. Hence, had we used VeriSign to issue a certificate for our client, we
would not have had to go through the following few steps. As we have already

90 Internet Security in the Network Computing Framework

said, we deliberately chose a demo CA so that we could illustrate installing the
CA's certificate into the server.

Domino Go Webserver expects the CA certificate to be in the Privacy Enhanced
Message (PEM) format. The certificate can then be imported into the working key
ring file, and all the clients certified by the particular CA (to be precise, by the
particular private key corresponding to the public key on the certificate) will be
trusted.

Lotus Domino Go Webserver 30-Day Trial Version

If you are working on the 30-day trial version of Domino Go, you might have the
little problem that it trusts just about all client certificates regardless of who
issued it. However, in the actual purchased version, this defect no longer
exists.

On the Demo CA page, we chose the option to give us a PEM format of the CA
certificate, and clicked on Get CA Cert to get the CA certificate in the PEM format.
The certificate is formatted as shown in Figure 86, with the dotted lines indicating
the start and end of the certificate itself. This is how the CA certificate in PEM
format would look.

-----BEGIN CERTIFICATE-----
MIICEDCCAboCAQMwDQYJKoZIhvcNAQEEBQAwgZIxCzAJBgNVBAYTAkFVMRMwEQYD
VQQIEwpRdWVlbnNsYW5kMREwDwYDVQQHEwhCcmlzYmFuZTEaMBgGA1UEChMRQ3J5
cHRzb2ZðIFBðeSBMdGQxIjAgBgNVBAsTGURFTU9OU1RSQVRJTð4gQU5EIFRFU1RJ
TkcxGzAZBgNVBAMTEkRFTU8gWkVSTyBWQUxVRSBDQTAeFwð5ODAzMDMwNzQxMzJa
FwðwODAyMjkwNzQxMzJaMIGSMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5z
bGFuZDERMA8GA1UEBxMIQnJpc2JhbmUxGjAYBgNVBAoTEUNyeXBðc29mdCBQdHkg
THRkMSIwIAYDVQQLExlERU1PTlNUUkFUSU9OIEFORCBURVNUSU5HMRswGQYDVQQD
ExJERU1PIFpFUk8gVkFMVUUgQðEwXDANBgkqhkiG9wðBAQEFAANLADBIAkEAv7QT
Z8t6PcVILB7YDaJGcy4LfPXaocinorLXCjbNlzF+3sAj5F+StatIa1+Z/MES4+st
1+6WdwLljWk1wzxFNQIDAQABMAðGCSqGSIb3DQEBBAUAAðEAZJssymEvoXmmnezy
jRfKHzoUcV2lU7BjHTðQsuS4bXtX8/2mAhzQSj+AMxs34pPch2AQJ/xL/+kJEDpG
s2Nxcg==
-----END CERTIFICATE-----

Figure 86. CA Certificate in PEM Format

This we copy-pasted onto a notepad, and saved it as ssleaycert.txt in the
D:\WWW\bin directory on the Web server machine.

We then went to the Configuration and Administration Forms, and chose Receive
Certificate which led us to the following page:

 Chapter 3. Web Server Security 91

Figure 87. Import Certificate

Note that we received the CA certificate into the working key ring. The CA
certificate has to be present in the working key ring. Our working key ring was
D:\WWW\keyfile.kyr and so we imported the CA certificate into that one.

It is important for the CA Certificate to be in the working key ring. Actually all the
certificates and key pairs needed for the SSL handshake including the server's key
pair are to be present in the working key ring. The administrator of Domino Go
Webserver could choose to change the working key ring, say, to enable the server
to use a different server certificate (probably issued by a different CA) for SSL
communications. The working key ring can be changed by selecting Security
Configuration as shown in Figure 61 on page 72.

On clicking on Apply , a confirmation message was obtained, indicating that the
certificate had been successfully imported into the key ring.

92 Internet Security in the Network Computing Framework

Figure 88. Certificate Successfully Imported

That having been done, the only thing left was to designate it as a trusted root. For
that, we went to the Configuration and Administration Forms again and chose Key
Management . In the page we got, we keyed in the Key Ring Password and opted
to designate a certificate as trusted root, using the radio button.

 Chapter 3. Web Server Security 93

Figure 89. Key Management

We then clicked Apply . On the next page, we selected the certificate and clicked
on Apply again, to designate it to be trusted root. We got a confirmation for the
action.

Now we tried accessing the Web server using the https:// URL, and the request
went through. Just a reminder: if you want to go back to the old state, you could
go to the Key Management page from the Configuration and Administration Forms
home page, and opt to Remove Trusted Root Keys . This will lead you to a page
containing all the keys that are currently trusted. You could choose to distrust any
number of them - one at a time. Also note that in your trusted CAs list will be a
series of VeriSign certificates you have not declared as trusted. These have been
put there as a default, and you would do well to remove them from the trusted list
since a couple of them are for signing trial or demo certificates.

3.2 Examples of Security Using HTTP and SSL
In this section we will illustrate the differences between the two HTTP methods,
GET and POST, that are commonly used by forms to handle the information sent to
the server. We will also see the security implications of how GET and POST
perform over plain HTTP and over SSL.

To do this, we wrote a very simple servlet that welcomes the user, with the entered
user name. This servlet is invoked from a simple HTML page, alternately using the
GET and the POST methods. The HTML code is as shown:

94 Internet Security in the Network Computing Framework

<HTML>

<HEAD>
<TITLE> The Get Method </TITLE>
</HEAD>

<BODY>

<CENTER><h2> Please enter your particulars </h2></CENTER>

<FORM Action="/servlet/EchoServlet" Method="GET">
<PRE>
User Name : <INPUT Type="TEXT" Name="userid">
Password : <INPUT Type="password" Name="passwd">
<INPUT Type="SUBMIT">
</PRE>
</FORM>

</BODY>

</HTML>

Figure 90. The id_get.html File

When the GET method is used, the filled-in form input variable names and their
values are sent to the server by simply appending them to the URL of the next
request. We show here the source code of the servlet that receives the form
values from the HTML page:

 Chapter 3. Web Server Security 95

import java.io.\;

import javax.servlet.\;
import javax.servlet.http.\;

public class EchoServlet extends HttpServlet
{

public void init(ServletConfig conf) throws ServletException
 {
 super.init(conf);
log("Echo Server Initialized");

 }

public void service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

 {
String userid = req.getParameter("userid");
ServletOutputStream ops = res.getOutputStream();

 res.setContentType("text/html");

ops.println("<HTML><HEAD><TITLE>Generated by a Servlet</TITLE></HEAD>");
 ops.println("<BODY>");

ops.println("<CENTER><H1> Hello </H1>");
ops.println("Welcome, " + userid + " how are you today");

 ops.println("
");
 ops.println("</BODY> </HTML>");
 ops.close();
 }
}

Figure 91. The EchoServlet Source Code

The following picture shows the HTML page in a browser, after entering the User
Name and Password:

Figure 92. User ID and Password

96 Internet Security in the Network Computing Framework

Note that what you type in the password field appears hidden by a sequence of
asterisks, rather than the characters you typed in. This happens to grant privacy
and security while you type your password, so that people sitting near you cannot
read what you enter. Actually, the asterisks grant only the appearance of privacy
and security, as we are going to demonstrate.

If you read through the servlet code, you'd see that the servlet will simply welcome
the person using the User Name entered, and will do nothing with the password.
We added the password field here to show how confidential information flows
between client and server when a form uses GET or POST through HTTP or SSL.
The two fields, the User Name and Password, have been used to represent public
data (that you wouldn't mind people reading) and private data (confidential data,
which you would not like any third-party members reading - such as your
passwords or credit card number). We have just shown you how apparently, on
the screen of the client machine, confidential information is treated differently from
public data.

Now let's see what happens when we click on the Submit Query button. The
information you keyed in is passed along with the URL, and this is visible in the
URL field in your browser. The password Scott too is visible as plain text. This
means that we have completely lost the privacy that was granted by the sequence
of asterisks.

Figure 93. Confidenatial Information Displayed on the URL Field

Now, let's try doing the same with the method POST. The servlet code remains
the same. In the HTML page, let us simply change the method to POST. Note
that this would not be possible with simple CGI - you would have to make some
modifications in the CGI script and recompile, unless you have taken care to put an
if condition in the script to check what method is used.

 Chapter 3. Web Server Security 97

<HTML>

<HEAD>
<TITLE> The POST method </TITLE>
</HEAD>

<BODY>

<CENTER><h2> Please enter your particulars </h2></CENTER>

<FORM Action="/servlet/EchoServlet" Method="POST">
<PRE>
User Name : <INPUT Type="TEXT" Name="userid">
Password : <INPUT Type="password" Name="passwd">
<INPUT Type="SUBMIT">
</PRE>
</FORM>

</BODY>

</HTML>

Figure 94. The id_post.html File

We can key in the same information, and here's what we get.

Figure 95. Using the POST Method

Then we click the Submit Query button.

98 Internet Security in the Network Computing Framework

Figure 96. After Using the POST Method

Notice how the passed fields are not visible, this time, as a part of the URL (or
anything else). This happens with the POST method because the form variable
names and values are sent in the HTTP request body. This implies that they are
not shown by the browser as part of the URL, which, instead, is sent in the HTTP
request header. If the GET method is used, the URL and the data both go in the
HTTP request header. This demonstrates that at least from this point of view the
POST method grants more privacy and security.

What if we try to intercept the submitted data when in transit? We tried that too.
Unless encrypted (by using, say, SSL) the data can be intercepted in transit
irrespective of the method type used for the form.

Figure 97 on page 100 shows the information we obtained from the Microsoft
Systems Management Server (SMS) Network Monitor Version 4.00, while the GET
method was used. This package, which we installed on a third machine running
Windows NT Server 4.0, can capture and display data being transmitted between
two other machines within the same LAN segment where the server running SMS
Network Monitor is attached.

 Chapter 3. Web Server Security 99

Figure 97. Data on Using the GET Method, at the Network Monitor

Note what the mouse cursor is pointing to. The user ID and password are clearly
visible, as will be visible any other form data sent to the server.

 Man-In-the-Middle Attacks

A network entity that intercepts data flowing between two machines is
commonly known as Man-In-the-Middle (MIM). Notice that a MIM could have a
more active role than just copying frames off the wire. A more dangerous MIM
attack could be accomplished by a machine that actively inserts itself in the
data flows between two legitimate systems in order to compromise the data
flowing between them. To the client, the MIM masquerades as the server and
to the server the MIM masquerades as the client. The MIM attack we are
showing in this example is less active, since in this case the MIM is merely
copying frames in transit, in order to get private information.

We again tried this with the POST method. As expected of an insecure channel,
we were able to read inside the packets.

100 Internet Security in the Network Computing Framework

Figure 98. Data on Using the POST Method, at the Network Monitor

 Chapter 3. Web Server Security 101

Figure 99. The URL on Using the POST Method, at the Network Monitor

This confirms that even if the POST method offers more privacy in that at least it
does not append information like user ID and password to the URL, a MIM would
be able to intercept private data reading inside the packets.

We now know how the form data really flows between the client and the server
using the GET and the POST method. Let's now see how it goes on a secure
channel. To see this, we accessed the same form, using SSL. We only used
server authentication, since enabling client authentication would not have changed
the result of our experiment and we wanted to keep things simple. Here's what we
found when the GET method was used:

102 Internet Security in the Network Computing Framework

Figure 100. Data on Using the GET Method with SSL, at the Network Monitor

To be sure, we checked out all the frames and they contained similar unintelligible
information. We tried the same thing with the POST method, and we found the
Network Monitor output to be similar. This confirms that no sniffing can get to the
form data if this is sent over a sufficiently strong secured channel.

Conclusion: we just ascertained in this section that if SSL is used, all information -
including URL and form data - is encrypted while being transmitted. Whether the
form handling protocol is POST or GET doesn't really matter. The data is
encrypted anyway.

Hence, for complete security, the ideal solution would be the POST method over
SSL. The GET method is lacking in that the confidential information is visible in the
browser Location field and can be seen by anyone behind the user (although the
user could always hide the Location field of the browser). Netscape Communicator
allows this by selecting Hide Location Toolbar from the View menu). Moreover,

 Chapter 3. Web Server Security 103

the URL has also a limitation on length (depending on the browser). This problem
is not security-related, but it would prevent the user from sending a very long
stream of data (confidential or not) to the server using the GET method.

3.3 Access Control with Lotus Domino Go Webserver
As has been mentioned, Lotus Domino Go Webserver has a host of security
features, not the least of which is the SSL support. In Lotus Domino Go
Webserver, one can configure several protection setups to restrict access to certain
files and directories. If used in tandem with the security ServletExpress has to
offer, one can fine-tune the restrictions placed on the usage or access of system
resources for clients. In this section, we hope to familiarize you with other security
features Domino Go Webserver has to offer.

3.3.1 Creating Users and Groups
On installation of Lotus Domino Go Webserver, a single user is automatically
created, with administration privileges and permissions to modify the settings and
entries in the httpd.cnf configuration file (see Figure 284 on page 307). If you are
running on Windows NT, you could go to the WINNT directory and view the file
admin.pwd. We saw the following entry in the file admin.pwd, immediately after
installing Lotus Domino Go Webserver and specifying pistoia as Administrator ID:

narayan:GpwCp8vRSxpqI:Administrator

This entry is of the format:

name:encrypted_password:comments

Interestingly, Domino Go Webserver seems to be encrypting each newly added
password by a different key. You can discover this by defining two users having
the same password and noticing that the same password is encrypted in two
different ways.

This administrator user can create users and groups and grant or revoke
permissions to them.

First we created a new user. To do this, we accessed the Administration and
Configuration Forms, logging on as the administrator ID, and clicked on
Administration of Users - Add User . We got the following screen. We entered
the values as shown and clicked on Apply .

104 Internet Security in the Network Computing Framework

Figure 101. Create a New User

When we did this, we had not created any file called itso.pwd or itso.grp, but, as
expected, after submitting the form and receiving the confirmation message, we
could see that the mentioned files had been created. After adding two more users
in the same way, the file C:\WINNT\itso.pwd had the following entries:

à ð
narayan:Fy5W4wtxCm8x2:user in the ITSO group
bill:g6Z688NFPuAKo:user in the ITSO group
marc:X/l/NRPT4NWVY:yet another user

á ñ

Looking inside the file C:\WINNT\itso.grp, we found one single entry:

itso: narayan, bill, marc

So that's about creating a new user in a new group. In the same page, you can
find options to delete a user, change a user's password and check if a user exists
or not. Owing to their simplicity, we have skipped them in our explanation.

 Chapter 3. Web Server Security 105

3.3.2 Creating Protection Setups with Basic Authentication
We would recommend at this stage to go to the httpd.cnf file and read the section
on protection. In fact, what we are saying here is an explanation of what is
described there.

You could create a Protection Setup that can be later used by either Protect or
DefProt directives. If you do not wish to create a Protection Setup, you could as
well define the setup in-line. Let's take these terms one by one.

A Protection Setup is written to define how a set of resources is to be protected. A
list of URL templates that activate that protection can be created. When the Web
server receives a request, it compares the request to the templates. If the request
matches one of the templates, the Web server activates the Protection as defined
by the Protection Setup associated with the matching template.

If you look at your httpd.cnf file, even before you create any users or groups you
will see the following entry for the administrator.

Protection PROT-ADMIN {
 PasswdFile C:\WINNT\admin.pwd
 Mask All@(\)
 PostMask All@(\)
 PutMask All@(\)
 GetMask All@(\)
 AuthType Basic
 ServerID Private_Authorization
}

Figure 102. The Protection Setup for the Administrator narayan

The Protect and DefProt directives define the association of a Protection Setup
with a set of resources to be protected. We show now how a Protect directive can
be created. You can see in Figure 102 that the password file is specified, and that
everything else is to be masked. Also, the type of authentication is basic - in other
words, it is based upon user ID and password (another option could have been
SSL). This Protection Setup is used with the Protect directive as shown, to effect
a protection for all the resources mentioned.

Protect /admin-bin/\ PROT-ADMIN
Protect /Usage\ PROT-ADMIN
Protect /servlet/extConfigServlet PROT-ADMIN
Protect /servlet/intConfigServlet PROT-ADMIN

Figure 103. Using the Protect Directive along with the Protection Setup

The above directives, which we found to be installed by default, tell the server to
protect the URL template /admin-bin/\ using the Protection named PROT-ADMIN.
If you access one of the pages of the Administration and Configuration Forms (see
for example Figure 101 on page 105), you can see that after the Web server name
or IP address, you have /admin-bin/ in the URL field. One of the purposes of the
Protect directives shown in Figure 103 is just to apply the Protection Setup
PROT-ADMIN to the Administration and Configuration Forms. When you enter

106 Internet Security in the Network Computing Framework

user ID and password for the administrator, you can log in only if what you typed
matches what the system finds in the password file C:\WINNT\admin.pwd.

As we said, the directives shown in Figure 103 on page 106 come with the default
installation of Lotus Domino Go Webserver. Note that two Protect directives are
referred to external and internal servlets. The reason for this is that when we
installed this copy of Lotus Domino Go Webserver we had also enabled the Java
servlet support. You wouldn't find those two directives if you had not installed the
Java servlet support or if you had disabled it, for example to install the servlet
engine provided by ServletExpress.

We are going to show you how to create similar Protection Setups. Instead of
accessing the configuration file indirectly, through the graphical Configuration and
Administration Forms, the technique we use here is editing the configuration file,
and writing our own Protection Setups manually. In this way we can also show you
how Protection Setups can be stored in separate files, and how these files must
then be specified in the configuration file httpd.cnf. However, in other examples,
we will use the GUI to configure the Web server, and so you will be able to have a
complete understanding. Here is how we did it.

We created a Protection called itso, and stored it in the access file
D:\WWW\setup_itso.acc. The file contained the following.

Protection itso {
 PasswdFile C:\WINNT\itso.pwd
 Mask All@(\)
 PostMask All@(\)
 PutMask All@(\)
 GetMask All@(\)
 AuthType Basic
 ServerID Private_Authorization
}

Figure 104. The Contents of the File D:\WWW\setup_itso.acc

You can see that it is not very original, except for the fact that we have stored it in
a file, and will be referring to it by giving the file name in the configuration file. So,
in the configuration file, we added only one line:

Protect /topsecret/\ D:\WWW\setup_itso.acc

Note that it was not really necessary to create a separate file; we could just as well
have entered the Protection Setup directly inside the httpd.cnf file, and then refer to
it by its name, for instance

Protect /topsecret/\ itso

We created a separate file to show you another possibility.

We then saved the configuration file, restarted the server, and accessed the page
http://9.24.104.176/topsecret/top_secret.html with Netscape Navigator. We got a
nice pop-up window asking for user ID and password.

 Chapter 3. Web Server Security 107

Figure 105. Asking for User ID and Password

By entering user ID and password and clicking OK we could get the protected page
top_secret.html.

Figure 106. The Protected Page.

The rest of the things behave pretty much as is expected with the normal password
authentication. On entering an incorrect user ID or password, you will be prompted
with yet another screen asking you if you want to retry. On cancelling it, you will be
denied access.

Now let's see how the DefProt directives can be used. You could use them to
have a default Protection for a certain template over which certain other special
cases ought to be dealt with using another Protection Setup. Notice that the
DefProt directive only defines a Protection Setup that should be used by default,
but does not apply this. We will explain this with an example.

We used the DefProt directive entering the following three lines in the httpd.cnf file:

108 Internet Security in the Network Computing Framework

à ð
DefProt /topsecret/\ D:\WWW\setup_itso.acc
Protect /topsecret/ccinfo/\
Protect /topsecret/purchaseinfo/\ D:\WWW\setup_pur.acc

á ñ

Note the statements:

1. The DefProt directive defines what the default Protection will be for all the files
and directories starting with the template /topsecret/.

2. The next line:

Protect / topsecret/ccinfo/\

really demonstrates how the DefProt directive can be used. In fact you can
see that we simply use the Protect directive, without specifying anything else
but the target name. Note that we have not specified any access file or any
Protection Setup names in this second line. In this case the default is taken to
be what has been used in the DefProt statement.

3. The third directive specifies both a target and an access file. Note that this
also begins with the same template /topsecret/, but the Protection specified in
the file setup_pur.acc will be applied to this overriding the default Protection
specified in the file setup_itso.acc.

We added this in the configuration file, saved it, and restarted the Web server to
get the following results:

1. To access any page in the directory WWW\HTML\topsecret\ we did not have to
give any password, since, if you remember, the DefProt only defines the
Protection Setup, but does not apply it.

2. To access any information in the directory WWW\HTML\topsecret\ccinfo\ we
had to use one of the user IDs and passwords according to the access file
setup_itso.acc. Note that the Protect directive for /topsecret/ccinfo/ does not
contain any Protection Setup, and this is the reason why the DefProt for that
template is taken as the default.

3. To access any of the files in WWW\HTML\topsecret\purchaseinfo\ we had to
use any of the IDs as specified by the file setup_pur.acc. In this case the
default Protection specified in the file setup_itso.acc has been overwritten.

3.3.3 Document Protection with SSL Authentication
All that has been discussed so far has been about basic authentication, since this
is the simplest to set up. If you are studying the security setup of Lotus Domino Go
Webserver for some intranet situation, you would probably find it easier to try things
out with user IDs and passwords than with certificates. However, all that we have
discussed so far about the basic authentication is also valid for certificates. Notice
that, to try these things out, you first need to enable SSL client authentication, and
include the CA who signed the client certificate in your working key ring (as
explained in 3.1.4, “SSL Client Authentication” on page 84). Once that is done,
you could either go through the configuration pages, or hand code the directives
yourselves. This time we chose to go the configuration page way. Here's how.

We went to the Administration and Configuration Forms, and clicked on Document
Protection . On the page we obtained, we filled in the fields as shown.

 Chapter 3. Web Server Security 109

Figure 107. Choosing a Document to Protect, and Opting SSL.

Note that we have chosen In-line , rather than creating a separated Protection file
or Protection Setup. We will see later how the httpd.cnf file will reflect this choice.

This led us to the page shown in Figure 108 on page 111 and we entered the
name of the Certificate Issuer.

110 Internet Security in the Network Computing Framework

Figure 108. Specifying the Client Certificate Particulars

Note here, that you could choose to enter any number of fields, and leave the rest
empty. What we have chosen is to trust all clients certified by DEMO ZERO
VALUE CA. Also, we have chosen not to let the ACLs override this. We will
discuss more about this when we talk about ACLs.

The entry that automatically resulted in the configuration file httpd.cnf as a result of
what we just did is shown below:

à ð
Protect /secret/\ {
IssuerName "DEMO ZERO VALUE CA"
SSL_ClientAuth client
ACLOverride Off
Mask Anybody@(\)
AuthType None
}

á ñ

Note that, when we defined the Protection settings, we chose In-line and hence, no
Protection Setup or Protection file has been created. Also note that ACLOverride is
set to Off, as we chose.

 Chapter 3. Web Server Security 111

We had a bit of trouble with the 30-day trial version of Domino Go with this
functionality. However, we verified that it works fine in the final, purchased version.

When we did all this, restarted the Web server and accessed the page starting the
URL with http:// instead of https://, we were given the following error message:

Error 4ð3 - Access Forbidden by rule

However, when we accessed the page starting the URL with https://, it first
presented the server certificate, then asked for the client certificate, and upon
verifying the certificate, presented the page to us. Note that for this method to be
effective, the Web server administrator has to install the correct CA certificate in the
key ring, and designate it as a trusted root. Otherwise, this will not work. The CA
Certificate is needed in the key ring and needs to be designated as trusted for the
server to be able to verify the issued certificate.

For more information about client certificates and client authentication, see 3.1.4,
“SSL Client Authentication” on page 84, where you will also find how a CA
certificate can be designated as trusted.

3.3.4 Using Document Protection with IP Address of Client
The document protection can be modified with the optional IP address tag, as
shown below:

à ð
DefProt /topsecret/\ itso 9.24.1ð6.57
DefProt /topsecret/\ PROT-ADMIN 9.24.1ð4.176

á ñ

This directives, added in the configuration file httpd.cnf, will accept the user ID and
password in the Protection Setups itso (see Figure 104 on page 107) or
PROT-ADMIN (see Figure 102 on page 106) depending on the client IP address.

Note that wildcard characters do not work here. If you type the following:

à ð
DefProt /topsecret/\ itso 9.24.1ð6.\
DefProt /topsecret/\ PROT-ADMIN 9.24.1ð4.\

á ñ

the system will only accept the user ID and password corresponding to
PROT-ADMIN, for all IP addresses, the same as if we had entered \.\.\.\ as the
client IP address. This indicates that you cannot add wildcard characters for this
directive. Also, it reminds us that directives are overwritten - the last value of the
directive is the one that is active. In fact, the second directive overwrote the first
one.

Remember that every modification to the configuration file httpd.cnf requires that
the Web server is restarted to take effect.

112 Internet Security in the Network Computing Framework

3.3.5 Using Document Protection with Domain Name of Client
Another possibility to protect a document is using the domain name of the client.
To do this, you must first select Look up host names of requesting clients by
marking the corresponding check box to be found in the Basic configuration page.
The Basic configuration page can be reached by clicking on Basic from the
Configuration and Administration Forms home page.

Figure 109. Enabling the Server to Look up Domain Name of Requesting Clients

Once this is done, you can use this facility by adding directives like the following to
the configuration file httpd.cnf.

à ð
DefProt /topsecret/\ itso cary.ibm.com
DefProt /topsecret/\ PROT-ADMIN raleigh.ibm.com

á ñ

The above directives when added to the configuration file will take the user IDs and
passwords specified by the Protection Setup itso (see Figure 104 on page 107) if
the client has the domain name cary.ibm.com, and that specified in the Protection
Setup PROT-ADMIN (see Figure 102 on page 106) if the client is from
raleigh.ibm.com. This is the only way you will be able to discriminate between
users from different domain names, since IP addresses do not take wildcard
characters.

 Chapter 3. Web Server Security 113

3.3.6 Lotus Domino Go Webserver Access Control Lists
Access Control Lists (ACLs) could typically be used in tandem with Protection
Setups, in the sense that a Protection Setup is usually utilized to restrict access to
directories, and ACLs to specific files within a directory already protected by a
Protection Setup. For this reason, we could say that a Protection Setup is used to
define the first level of access control and then an ACL further limits access.
However, if you want all the control to come from an ACL, you can override a
Protection Setup by marking the Allow ACL files to override protection settings
check box on the Protection Setup form (see Figure 108 on page 111).

On creating an ACL using the Graphical User Interface, you would see an ACL file
called .www_acl in the particular directory. Each directory can only have one ACL
file, and this file is read from top to bottom by the Web server before serving any
files from that directory. We will first create an ACL using the GUI, then we will
read the ACL file that is automatically generated to understand how we could
create other ACL files by ourselves, hand coding them directly.

Notice that ACLs can be applied to work either with basic authentication (based on
user IDs and passwords) or with SSL client authentication (see 3.1.4, “SSL Client
Authentication” on page 84).

3.3.7 Using ACLs with Basic Authentication
First go to the link Access Control Lists in the Administration and Configuration
Forms and enter the fully qualified directory name in the Directory field. Here is
when we entered the directory name D:\WWW\HTML\topsecret in the Access Control
Lists page.

114 Internet Security in the Network Computing Framework

Figure 110. Setting up ACL - Specifying the Directory

Notice that in the above screen the SSL client authentication is not marked, since
in this case we are experimenting with the basic authentication.

On the above screen, click Apply and then you will be prompted to enter the
permissions and the authorized users.

 Chapter 3. Web Server Security 115

Figure 111. Setting Up ACL - Defining Permissions

Remember to select Insert after for the first time, or it will give you an error.

When you have set up the ACL, you can verify if it works by going to the particular
page, secret.html, that we entered in the form, and verifying if the access is indeed
restricted. As we mentioned before, this technique can be used in tandem with the
Protection Setup mechanisms described in the earlier chapter for an optimum
situation. However, we verified that anyone in the group itso (that we had created
in 3.3.1, “Creating Users and Groups” on page 104) got access to that page, and
anyone who wasn't, didn't. To see if the ACL really works, we disabled all of the
directory protection built with Protection Setup mechanisms and associated with the
directory D:\WWW\HTML\topsecret before doing so.

Let's now see what an ACL file looks like, so that we can edit other ACL files
directly without bothering to go through the GUI pages every time. We opened the
file .www_acl, automatically created by the system in the directory
D:\WWW\HTML\topsecret, and we found it to contain only one line:

secret.html : GET,PUT : itso

Now, isn't that simple to extend on? The first entry is the file name, the second,
the permitted HTTP methods, and the third, the group (or, alternately, the user) that
is permitted to access it. Note that it is not necessary to specify the directory
where the protected file is located, since it is the same directory where the file
.www_acl is generated.

116 Internet Security in the Network Computing Framework

3.3.8 Using ACLs with SSL Client Authentication
ACLs can be configured to work with SSL client authentication rather similarly to
ALCs with basic authentication. First go to the Access Control Lists link from the
Administration and Configuration Forms. Enter the directory name, but remember
this time to check the SSL client authentication check box.

Figure 112. ACL with SSL Client Authentication

The page you will receive is pretty similar to the one you would have seen before in
Figure 108 on page 111, where you would have to enter the valid client certificate
fields. As before, you can choose to leave any of the fields empty, and fill all that
you like. Only, be sure to include the CA certificate in the working key ring, and set
it to be trusted, else there is no way for the server to authenticate the client
certificate. How to accomplish this operation is explained in 3.1.4, “SSL Client
Authentication” on page 84.

 Chapter 3. Web Server Security 117

Figure 113. ACL with SSL - Giving the Certificate Fields

Once you do this, you will be able to access the particular file that has been
protected, only by presenting a client certificate that has been signed by the DEMO
ZERO VALUE CA, which has the client common name as Narayan Raghu. This is
of course, subject to condition that the DEMO ZERO VALUE CA's certificate has
been designated as trusted root in the working key ring.

Let's now see what the ACL file looks like this time.

à ð
topsecret.html : GET,PUT,POST : !CommonName="Narayan Raghu",
!IssuerCommonName="DEMO ZERO VALUE CA"
secret.html : GET,PUT : itso

á ñ

Notice that the first two lines will really be in the same line. Hence, ACLs can thus
be used with directory permissions to get a system that has complete control over
the files and who accesses them.

118 Internet Security in the Network Computing Framework

3.3.9 The file Servlet in ServletExpress
Having said all this, we'd like to mention that if you have ServletExpress installed,
there is a way of getting around all this. Of course, there is a means of plugging
that leak, using the access control functions of ServletExpress.

If you already have ServletExpress installed, and have restricted access to the file
server_root\HTML\secret\topsecret.html, try accessing it by pointing your browser to
http://server_name/servlet/file/secret/topsecret.html and don't be surprised if the
servlet normally serves the file to you without asking for authentication.

This behavior depends on the particular servlet, named file, that is shipped with
ServletExpress and has the ability to invoke and serve any HTML page that is
appended to the URL, without using the HTTP daemon. The complete class file
name for the file servlet is com.sun.server.http.FileServlet and it is automatically
copied on your computer by the ServletExpress installation.

We mention methods to disable this servlet in 4.1.5, “Resources” on page 146.

 Chapter 3. Web Server Security 119

120 Internet Security in the Network Computing Framework

Chapter 4. IBM WebSphere Application Server Security

In this chapter we give a comprehensive treatment of IBM WebSphere Application
Server security.

IBM WebSphere Application Server consists of a Java-based servlet engine that is
independent on both the Web server on which it is installed and the underlying
operating system. This way, the goal write once, run everywhere becomes
available also for servlet development.

The WebSphere Application Server offers a choice of server plug-ins that are
compatible with the most popular server Application Programming Interfaces (APIs):

� Lotus Domino Go Webserver Version 4.6.1 or higher

� Apache Server Version 1.2.x

� Netscape Enterprise Server Version 2.01

� Netscape FastTrack Server Version 2.01

� Microsoft Internet Information Server Version 2.x, 3.x or 4.0

It supports the following operating systems:

� Microsoft Windows NT Version 4.0

� AIX Version 4.1.5 or higher

� Sun Solaris Version 2.5.1 with the Native Threads Package

In addition to a servlet engine and plug-ins, WebSphere application server provides
the following components:

� Implementations of the JavaSoft Java Servlet API, plus extensions of and
additions to the API (see 7.3, “IBM ServletExpress 1.0” on page 311).

� Sample applications that demonstrate how to use the basic classes and the
extensions (see 7.3.5, “How to Add Servlets into ServletExpress” on page 327,
Chapter 8, “Three-Tier Applications in Firewall-Protected Network
Environments” on page 361 and Chapter 9, “IIOP in Firewall-Protected
Network Environments” on page 435).

� The Application Server Manager, a Graphical User Interface (GUI) that makes it
easy to set options for loading local and remote servlets, set initialization
parameters, specify servlet aliases, create servlet chains and filters, monitor
resources used by the Application Server, monitor loaded servlets and active
servlet sessions, log servlet messages and perform other servlet management
tasks. This feature will be used several times in this chapter.

� A connection management feature that caches and reuses connections to your
Java Database Connectivity (JDBC)-compliant databases. When a servlet
needs database connections, it can go to the pool of available connections.
This eliminates the overhead required to open a new connection each time.

� Additional Java classes, coded to the JavaBeans specifications, that allow
programmers to access JDBC-compliant databases. These data access beans
provide enhanced function while hiding the complexity of dealing with relational
databases. They can be used in a visual manner in an integrated development
environment.

 Copyright IBM Corp. 1998 121

� Support for a new technology for dynamic page content called JavaServer
Pages (JSP). JSP files can include any combination of HTML tags, <SERVLET>
tags, <INSERT> tags, <BEAN> tags and NCSA tags (special tags that were the
first method of implementing the server-side includes).

� CORBA Support: an Object Request Broker (ORB) and a set of services that
are compliant with the Common Object Request Broker Architecture (CORBA).
An extensive use of the CORBA Support is shown in Chapter 9, “IIOP in
Firewall-Protected Network Environments” on page 435.

Note: At the time this book went to print, IBM WebSphere Application Server was
still in its beta 3 version and was still named ServletExpress. Hence, if you
have the final version, you might find some of the functionalities or the GUI
to be different. However, we stayed in touch with the development team all
through the writing of this book, and were not advised of any major changes
(except a modification in the directory structure), and so you can safely refer
to what we have written here about ServletExpress 1.0 beta 3 even if you
have the final version 1.0 for IBM WebSphere Application Server.

Moreover, at the time of this project, the Java Development Kit 1.2 was
available only in beta version. For this reason IBM WebSphere Application
Server did not support the new JDK 1.2 yet. To install WebSphere
Application Server, JDK 1.1.4 or 1.1.6 is required (JDK 1.1.5 has a memory
leak problem and is not recommended for any platform).

To see all the steps we followed to install and configure ServletExpress correctly,
refer to 7.3, “IBM ServletExpress 1.0” on page 311.

4.1 ServletExpress Security Management
In this section, we consider the security features that ServletExpress has to offer.

Basically, from a security point of view, ServletExpress permits the administrator to
restrict access to some or all of the resources that have been installed on the Web
server and that have been registered in ServletExpress. Access can be allowed to
some of the users based on certificates or passwords. The administrator can
create users and groups within realms, and add users to one or more groups.
Positive permissions (permit) can be set to users and groups, in the sense that,
with the permission model implemented by ServletExpress, the ServletExpress
administrator can specify who can access a given resource. As we show later
there are certain simple rules as to how conflicting permissions between users and
groups are handled.

Here's how we set up Access Control Lists (ACLs). Our considerations are based
upon our tests performed with Lotus Domino Go Webserver, installed without its
servlet support, but using the servlet engine provided by ServletExpress.

We went to the ServletExpress Manager page at http://servername:9090, we keyed
in the admin password, and logged into the system.

122 Internet Security in the Network Computing Framework

Figure 114. Login Page for ServletExpress

We got the following screen:

 Chapter 4. IBM WebSphere Application Server Security 123

Figure 115. Login Page for ServletExpress

When we clicked Manage a separate window was brought up and there we clicked
the Security button:

124 Internet Security in the Network Computing Framework

Figure 116. Administering ServletExpress

We have now logged in, and reached the Security page. Let us now understand
how the system really functions.

 4.1.1 Realms
Realms are used to organize users, groups and ACLs in a structured way to protect
Web resources. In the context of ServletExpress, realms are in particular used for
two different purposes: to authenticate a client and to decide which remote servlets
to trust. In this section, we hope to familiarize you with how these two things are
accomplished using the concept of realm.

The system has three realms built into it, in the Windows NT version:

 1. defaultRealm

 2. servletMgrRealm

 3. NT

In the AIX version, the NT realm is replaced by the UNIX realm.

Here is what we can do with these realms:

 1. defaultRealm

The users registered in this realm are given permissions to execute certain
servlets. Typically, the system administrator would include, in this realm, the
users who are expected and permitted to access the servlets on the system,

 Chapter 4. IBM WebSphere Application Server Security 125

and the resources that are to be protected. The administrator can also add
groups, and ACLs to facilitate the handling of these.

 2. servletMgrRealm

This realm contains a list of servlet-signers. The system administrator would
add into this realm certificates of those signers whose signed servlets would be
trusted to run on the server.

3. NT or UNIX realm.

This realm is used to give the users of the system who already have IDs on the
server access to the servlets through the Web. The system administrator
cannot add or delete any users from this realm. The users in this realm will
gain access to the servlets pretty much in the same way as those in
defaultRealm, with keying in similar user IDs and passwords. This has been
added to save the system administrator the trouble of creating duplicate IDs -
one for the NT or UNIX, and the other to run servlets. The system
administrator would add to this realm those resources that the users who have
a login into the server can access. Apart from the fact that the system
administrator cannot modify the user list, this realm functions pretty much in the
same way as the defaultRealm.

We went browsing through the directories to get some specific information on
where data is stored about realms. Our ServletExpress was installed in
D:\ServletExpress, and we went to D:\ServletExpress\realms, where there was one
file corresponding to each realm. We found these files to be text files, capable of
being opened by notepad, containing information about the Java class name and
the directory associated with this realm. We also saw that the defaultRealm, the
servletMgrRealm and the NT or UNIX realms, which we will be working with
extensively, have different classes associated with them.

The file name and content for the defaultRealm are given below.

@(#)defaultRealm 1.4 97/ð9/1ð
#
Configuration for the "default" realm, a low-security shared-password
realm used for demo purposes.
#

classname=com.sun.server.realm.sharedpassword.SharedPasswordRealm
directory=realms/data/defaultRealm

Figure 117. D:\ServletExpress\realms\defaultRealm

The defaultRealm is implemented using the class
com.sun.server.realm.sharedpassword.SharedPasswordRealm, which, according to
Sun's documentation, implements a very simple authentication database that stores
user passwords in a text file. We confirmed this by going to the data\defaultRealm
subdirectory as indicated in the file and opening the file named keyfile. We saw all
the users we had created in this realm, and their passwords.

126 Internet Security in the Network Computing Framework

à ð
Narayan::c3cxNTAðcg==
Tintin::c3cxNTAðcg==
jeeves::amVldmVz
Wooster::c3cxNTAðcg==
Popye::c3cxNTAðcg==
admin::YWRtaW4=
Asterix::c3cxNTAðcg==
pistoia::c3cxNTAðcg==

á ñ

The entries on the left are the user names created in the defaultRealm and the
entries on the right are their passwords, encoded, not encrypted, in base64 format.
Since the passwords can be easily decoded by any base64-to-binary converter,
access to this file should be restricted using the options available in the operating
system. Also, we tried hacking into the system, by adding a user name and a
base64-encoded password into this file, and then accessing the system as the
newly created user. It worked. Hence, this file ought to be protected at all costs by
any means available in the operating system. The consolation, however, is that
this file is in no way accessible from the Web, and any hacker must find a way to
access this file from the intranet, by logging on to the machine as a user.

The file name and content for the servletMgrRealm are given below.

@(#)servletMgrRealm 1.5 97/ð9/1ð
#
Configuration for the "servletMgr" realm, used to control the privileges
assigned through the server sandbox.
#

classname=com.sun.server.realm.certificate.CertificateRealm
certclassname=sun.security.x5ð9.X5ð9Cert
directory=realms/data/servletMgrRealm

Figure 118. D:\ServletExpress\realms\servletMgrRealm

The servletMgrRealm is implemented using the class
com.sun.server.realm.certificate.CertificateRealm, with the certificate class name
sun.security.x509.X509Cert. This, according to Sun's documentation, will provide
access to users based on their certificate, to be enrolled with it. Hence, users in
this realm will be identified by their certificates, and can thus access their
resources. Users, in this case, really means servlet-signers.

The file name and content for the NT realm are given below.

@(#)NT 1.1 97/ð6/1ð
#
Configuration for the "NT" realm, providing access to user accounts
available through the NT NetUser family of calls. Uses a local
directory to store ACLs;
#

classname=com.sun.server.realm.nt.NTRealm
directory=realms/data/NT

Figure 119. D:\ServletExpess\realms\NT

 Chapter 4. IBM WebSphere Application Server Security 127

The NT or the UNIX realms contain, as mentioned before, users that are already
present in the system - in other words, those who have logins in the NT or UNIX
machine in question. These same logins and passwords can be used to access
the services offered by ServletExpress remotely.

Also, if you open the realms directory, you would see yet another realm, called the
adminRealm, although this does not show up on the GUI. This is used to store
information pertaining to the administrator's user ID and password. We opened the
file D:\ServletExpress\realms\data\adminRealm\keyfile and we found only one line
in this file:

admin::Y3MðODAxcg==

This line represents the administrator's user ID, admin, followed by the password
encoded in base64 format.

 4.1.2 Users
The ServletExpress administrator, named admin, can create any number of users in
the system. These users are to be created under defaultRealm or
servletMgrRealm, but not under NT or UNIX, for the reason mentioned earlier. It is
not possible, using the ServletExpress Manager GUI, to add a new user under the
adminRealm, so no new administrators can be created.

If the ServletExpress administrator is spoofed, by adding another user ID and
password in the file servletexpress_root\realms\data\adminRealm\keyfile, the newly
added user can also create a user. We made this experiment: we created another
administrator by manually adding a new user name in the keyfile below the
adminRealm directory, followed by a password that we encoded in base64 format
using again the binary-to-base64 converter. When we logged in the ServletExpress
Manager as the new administrator, we were really able to add new users under the
defaultRealm and the servletMgrRealm. However, the ServletExpress development
team strictly warned us against accessing or modifying these files directly, since
these might have unpredictable effects on the functioning of the system.

The following is how to create a new user in the defaultRealm. If a user is created
under the defaultRealm, the administrator sets the password for the user, which
cannot be changed by the user. This could have some security implications, since
it is preferable to change passwords frequently. However, the only way the users
can be permitted to change their passwords directly is by having a servlet do the
password changing, and this will mean that the file storing the passwords is
accessible from the net. If you so desire, you could write a servlet that takes the
user ID and password, takes the new password, encodes it in base64 format, and
replaces the old password with the new password in the file
servletexpress_root\realms\data\defaultRealm\keyfile. This would obviate the
necessity for an administrator's intervention to change the password for those using
basic authentication.

Let us now go through the process of creating a user, the way we did it. From the
Security options, choose Users and from the drop down Realm list box, choose
defaultRealm .

128 Internet Security in the Network Computing Framework

Figure 120. Users

You can see that we have already created an interesting group of users. The way
we did it was to simply click on the Add... button at the bottom, fill in the form that
is automatically brought up, and press OK.

 Chapter 4. IBM WebSphere Application Server Security 129

Figure 121. Create User

Creating a user in the servletMgrRealm implies creating a user whose signature on
servlets is valid. In the later sections, we will be explaining how servlets can be
loaded remotely, and there you will see that it is possible to control access
permissions to remotely loaded servlets based on who signed it. For this feature, it
is important to enter all the signers in one place first. The users in
servletMgrRealm are those whose signatures on the servlet ServletExpress will
recognize.

Based on who signed the JAR file containing the servlet, the servlet will be given
permissions to perform various actions, such as reading from a file, writing to a file
or opening a remote socket. The good thing about this is that the permissions can
be controlled finely, in the sense that the administrator could decide the servlets
signed by which servletMgrRealm user to be given permissions to read system
files, and which ones are to be permitted to write to them, and which ones to be
permitted to open remote sockets, etc. Note however, that all servlets signed by a
particular user will have the same permissions.

 Servlet-Signer

Throughout this chapter, we use the terms servlet-signer and user in
servletMgrRealm interchangeably. These two refer to the same thing, really,
since a user in the servletMgrRealm is actually a signer of servlets, as we have
explained earlier.

130 Internet Security in the Network Computing Framework

To create a user in the servletMgrRealm, here's what has to be done. Note that for
saying to ServletExpress to trust all servlets signed by so-and-so to such an extent,
we first have to give ServletExpress the public key of the entity to verify the
signatures. To register a servlet-signer, you would first have to get the signer to
sign a JAR file, put it on a Web server, and give the URL of that JAR file at the
time of registering the user. Notice that we didn't say that the signed JAR file must
contain a servlet class. In fact we were also able to add a new user under the
servletMgrRealm by presenting to ServletExpress a signed JAR file containing a
simple text file.

We show you now how to create a new servlet-signer, step by step. First, we went
to the Security page under servletMgrRealm.

Figure 122. Adding a User in the servletMgrRealm

We clicked on Add... . Then we filled in the particulars as shown.

 Chapter 4. IBM WebSphere Application Server Security 131

Figure 123. Users

The URL http://9.24.1ð4.176/dumb.jar.sig that we entered pointed to the
location containing the JAR file that had been signed by the particular signer we
wanted registered. Three important points must be considered:

1. When you enter the User Name in the above panel, you don't have to type the
name that is registered in the certificate. The User Name that you enter here is
simply the name of the servlet-signer that ServletExpress identifies as the
owner of the certificate.

2. Even if the above panel has a field named Certificate URL, what
ServletExpress really expects that you type there is the URL of a JAR file
signed by the trusted user you want to add.

3. The signed JAR file is not supposed to contain a servlet class. Actually, you
could jar whatever file, even a text file, sign it and use that file to add a user
under the servletMgrRealm.

This is enough to add a user under the servletMgrRealm, but now we want to show
to you how we created the signed JAR file dumb.jar.sig to which the Certificate
URL points.

To produce the JAR file dumb.jar from the class file DumbServlet.class, we used
the command:

jar cvf dumb.jar DumbServlet.class

132 Internet Security in the Network Computing Framework

JAR Files and Signed JAR Files

A discussion on JAR files in JDK 1.2 is found at 2.5.1, “The jar Utility” on
page 29. Notice, however, that even if the Java support that our Web server
used was still 1.1 (JDK 1.2 was still beta at the time of the project), no
differences have been noticed between the jar utility of JDK 1.1 and the jar
utility of JDK 1.2. You can therefore apply the same considerations.

However, the technique to sign a JAR file changes in JDK 1.2 from what it was
in JDK 1.1. When Lotus Domino Go Webserver and ServletExpress will
support JDK 1.2, you will have to use the new security features and tools
provided by JDK 1.2. The new technique to sign JAR files in JDK 1.2 is
discussed in 2.5.3, “The jarsigner Utility” on page 34.

In order to add a servlet-signer to the servletMgrRealm, we needed to use the
javakey command line tool. The javakey.exe file comes with the JDK in the bin
directory below JAVA_HOME. It is a command line utility that can create entities,
designate them trusted or untrusted, create DSA key pairs, sign certificates, etc.
Again, type javakey to get all the possible options. We recommend the JavaSoft
Web site http://www.javasoft.com/security/usingJavakey.html, which deals with how
javakey is to be used. However, you can see how we did it now.

First of all, we created the entity narry through the following command:

javakey -cs "narry" true

We then generated a key pair for the entity:

javakey -gk "narry" DSA 512 narry_pub narry_priv

Then we created a certificate directive file as shown, and stored it in the file
cert.direc:

à ð
issuer.name=narry
issuer.cert=1
subject.name=narry
subject.real.name=Narayan Raghu
subject.org.unit=ITSO
subject.org=IBM
subject.country=US
start.date=ð2 Jun 1998
end.date=ð1 Jun 1999
serial.number=15ðð
out.file=narry.x5ð9

á ñ

Then we created a certificate using:

javakey -gc cert.direc

We had already created a JAR file, named dumb.jar, from the class file
DumbServlet.class. We then created a signature directive file like the one shown,
and stored it in sign.direc:

 Chapter 4. IBM WebSphere Application Server Security 133

à ð
signer=narry
cert=1
chain=ð
signature.file=narrySig

á ñ

Then, finally, we signed the JAR file dumb.jar, using:

javakey -gs sign.direc dumb.jar

to obtain the file dumb.jar.sig. Notice that a signed JAR file in JDK 1.1 carries the
double extension .jar.sig, but in JDK 1.2 JAR files keep the extension .jar even
when they are signed. Keep this difference in mind for when Lotus Domino Go
Webserver and ServletExpress will have a full JDK 1.2 support. You can see 2.5.3,
“The jarsigner Utility” on page 34 for further details.

Note that we used the DSA algorithm, which ships free with JDK. The common
standard for X.509 certificates is, however, RSA (though this is not required by the
standard).

In this way we have just shown you the full process necessary to create a new
user, or serlvet-signer, under the servletMgrRealm. As you can see, if you want to
add a user to servletMgrRealm, you have no other choice than to generate a
signed JAR file and then pointing to its URL, even if it is not required that the
signed JAR file contains a servlet class. As we said, a signed JAR file containing a
text file works fine anyway.

What about new users in the NT or UNIX realms? These two realms are used to
give access to users who already have an ID on the UNIX or NT machine, to the
servlet resources on the server. You will not be able to create users here, since
ServletExpress picks up information about the UNIX or NT users from the operating
system it's running on. We'll talk more about this when we talk about ACLs.

At this stage, the only form of authentication of users supported is the basic
authentication, with user ID and password, and the only realm that can be used to
store user profiles, such as which servlets the user is permitted to run, and which of
these servlets can access system resources, is the defaultRealm, unless you
wouldn't mind programming on ServletExpress using the JDK APIs.

The user that you can create in the servletMgrRealm is used only for signing
servlets that are to be remotely loaded. In more unambiguous terms, the user in
the defaultRealm is not the same as, or even similar in functionality to the user in
the servletMgrRealm, the former being a client accessing the resources the server
and the servlets have to offer, and the latter, a person whose signatures on JAR
files containing servlets the ServletExpress has been instructed to trust. At this
stage, we'd like to mention that for obvious reasons, it is not possible to create
users in the NT or UNIX realm. These users are read off the underlying operating
system.

134 Internet Security in the Network Computing Framework

 4.1.3 Groups
Let's now see how to create groups. To begin with, let's stick to defaultRealm.
Click on the Groups link, and it'll take you to the groups page, as shown.

Figure 124. Groups

As you can see, two groups have been created. You can create another one by
clicking on the Add Group... button. You can enter the name in the message box,
and press Add , as shown.

 Chapter 4. IBM WebSphere Application Server Security 135

Figure 125. Add Groups

Groups are not really entities in themselves. They are used to make it easier for
the administrator to give or revoke permissions to a number of people at the same
time. Hence, we now have to add users into groups. Note that a user can belong
to more than one group, and a group can have any number of users. In the
beginning, all the users within the realm are non-members of a newly created
group, meaning that they appear in the Non-Members list. The admin can choose
to add any number into the group by clicking on the Add button, and remove any
number by clicking on the Remove button. Note that the union of the users in the
Members list and the users in the Non-Members list is the list of users in the realm.
Also note that no user can be a member and a non-member at the same time - in
other words, the intersection of the two sets is always a null set.

136 Internet Security in the Network Computing Framework

Figure 126. Add to and Remove Users from Groups

Now, if you are as inquisitive as we were, and want to go to the file and check out
how this information is stored, go to the directory
servletexpress_root\realm\data\defaultRealm and type out the file with the same
name as the newly created group. We typed the file
D:\ServletExpress\realm\data\defaultRealm\Cartoon_Club.grp and we got a listing of
the user names we just added into the group. Notice that this file cannot be
opened by double clicking on its icon displayed by Windows NT Explorer, since .grp
is the extension of Windows Program Manager Group files, and obviously, this file
will not be in the format of a Program Manager Group file. You need to open it
with a text editor directly or, alternately, you could rename this file's extension,
double click on the icon, and be sure to change back the name before starting the
server.

You will notice that a new file is created for each group, and each new user is
added to the file named keyfile in the appropriate directory. You could try to edit
these files yourself, and try crashing the system, but we really didn't have the
inclination to do that, and so cannot predict the result. Note that groups cannot be
created in the servletMrgRealm.

 Chapter 4. IBM WebSphere Application Server Security 137

4.1.4 Access Control Lists
Now, let's tackle one of the more important parts of the ServletExpress setup - the
ACLs. The administrator can add ACLs or delete existing ACLs in a given realm.
The addition of an ACL is pretty similar to the addition of users and groups. We
now show one just for completeness. You select Access Control List from the
Security tree and then click on Add ACL... :

Figure 127. Security - Access Control Lists Page

You can type the name in the message box and then press Add .

138 Internet Security in the Network Computing Framework

Figure 128. Addition of ACLs

Now, what does one do with an ACL? One simply adds or removes permissions
for certain users and groups for certain resources in the ACL. Note that all this
happens only within the realm, and it is not possible to add a user registered under
a different realm to an ACL in this one. Let's now try to add some permissions.
Click on the button Add Permission... . You should see the following three
screens, depending on whether you have marked User , Group or Computer :

 Chapter 4. IBM WebSphere Application Server Security 139

Figure 129. Adding File Access Permissions to Users

Figure 130. Adding File Access Permissions to Groups

140 Internet Security in the Network Computing Framework

Figure 131. Adding File Access Permissions a Specific Computer

Note the file access permissions you can give to users, groups, and specified
computers on the network. The file permissions are the same as the HTTP
methods of the form handling protocol:

 1. GET

This method is used for sending form data. The data is sent to the server from
the client by appending the data in the URL field. The same stream is used for
the requested URL and the form data.

 2. PUT

This is used to put files on the server. You might not have an access to this
method from a normal browser. However, most HTML authoring tools use this
method to put an edited HTML page onto the server.

 3. POST

As the submitted form data got larger, it was found that the URL field was
inadequate to handle this data. Further, it is really not very graceful to clutter
up the URL window. The POST method is used to send data from the client to
the server. It is different from the GET method in that another stream is used
to send the data.

 4. DELETE

This option also, like the PUT method, might not be available from your normal
client. Moreover, though specified in the HTTP protocol (see
http://www.w3.org/Protocols/), most servers do not grant permission for this
action. This is used to delete a file from a server. This method might be
supported by some Web authoring clients, but, as mentioned before, might not
be supported by your server.

 Chapter 4. IBM WebSphere Application Server Security 141

Let's now add some permissions both to users and groups, and see if they work.
But before we verify if they work or not, we have to associate a resource with them.
So, let's go ahead with granting permissions first. The following screens are those
of us granting permissions to users, groups and computers. Since these are pretty
much self explanatory, you probably wouldn't like redundant sentences between
them. However, in the rest of the chapter you will see how these permissions
really work.

Figure 132. Adding No Servlet Permission to User admin

142 Internet Security in the Network Computing Framework

Figure 133. Adding File Post Permission to User Tintin

Figure 134. Adding File Permissions Get, Put and Post to User Asterix

 Chapter 4. IBM WebSphere Application Server Security 143

Figure 135. Adding File Put Permission to Group Cartoon_Club

Figure 136. Adding File Permissions Put and Delete to Computer romeo

Note that all the permissions were added in one particular ACL, the CartoonsACL
that we had defined. Now, if you come over to the main screen and look at the

144 Internet Security in the Network Computing Framework

bottom window, you can get complete information about how the access controls
are set. Users, groups and computers for which permissions were set appear in
the Principal tree.

Figure 137. Principal Tree

You must click on the plus sign (+) beside each item on the list to see the specific
permissions.

Figure 138. Checking Specific Permissions

Notice that Figure 136 on page 144 shows the particular case when you want to
allow access only from specific computers. In the Computer field, you can enter
the name of the host either as a host name or as an IP address. You can use the
wildcard character \ when entering a host name, for example \.com. Requests that
originate from hosts other than the specified one will be denied.

 Chapter 4. IBM WebSphere Application Server Security 145

Access Controls in Case of Conflict

We know now that a user can belong to more than one group. This brings
about a possibility that by the virtue of belonging to one group, the user might
get a particular privilege, and by the virtue of belonging to another, he might be
denied the same permission. So how do we solve this paradox? There is a
specific method of calculating permissions, and this is discussed under 4.1.5,
“Resources” on page 146.

Note that you cannot add ACLs in the servletMgrRealm. However, you can add
permissions to either servlets or files in the servletACL. The servletACL is the only
ACL that is available in the servletMgrRealm. This is created automatically, and
cannot be deleted. Here is where you would have to indicate what permissions you
would like to give to servlets signed by a particular user in the servletMgrRealm.
We will deal more with this in later sections.

The NT or UNIX realms, however, behave pretty much like the defaultRealm,
except for the fact that their user list cannot be modified. Notice that ACLs can be
added to NT and UNIX realms.

 4.1.5 Resources
A resource, in this context, is essentially a service the Web server has to offer,
which needs to be protected. HTML pages and servlets that needn't be protected
are not considered resources in this context. In general, to restrict access to static
HTML pages, you would have to use the facilities provided by Domino Go Web
server, or any other Web server you might be using, and you will use
ServletExpress to control access to servlets. However ServletExpress, via the
servletMgrRealm, allows the administrator to protect also the resources that
servlets can access, such as files and socket connections. This could create a
conflict with the underlying Web server, in that access to a Web page could be
denied by the Web server and allowed to a servlet by ServletExpress. In general,
the relationship between the Web server and ServletExpress about conflicting
permissions is as follows. If the Web server first denies access to a resource, then
access is denied to ServletExpress too. If the Web server permits the access, then
it is up to ServletExpress to protect the resource. In other words, it is the Web
server that takes precedence.

Put briefly, access control in the ServletExpress security model is all about how
ServletExpress gives users and groups access to several of the resources using
predefined ACLs.

The administrator of ServletExpress can add new resources, in the sense that he or
she can declare more of the existing resources to be protected. We tried this out,
and to do so, we first went to the Resources screen, which for the defaultRealm
looked like the following figure, and clicked on Add... .

146 Internet Security in the Network Computing Framework

Figure 139. ServletExpress Resources

The second screen shows the kind of resource you can add to an ACL.

 Chapter 4. IBM WebSphere Application Server Security 147

Figure 140. Adding Resources to ACLs

The screen begins by confirming that we are still in the defaultRealm. The next line
shows the type of authentication. Basic Authentication will ask the client to key in a
user ID and password, which will be sent to the server over the network. The
Digest Authentication will do the same, but the information will be sent to the server
in an encrypted form over the net. SSL Authentication, which we expect that you
will find disabled on your screen, will authenticate the user through their client
certificate. However, this is not supported in the simple installation of
ServletExpress. You could gain this functionality by writing your own realm, using
the JDK APIs.

Next is a drop down list box containing a list of all the ACLs in the realm.
ServletExpress permits us to add a particular resource to only one ACL, since if the
same resource is in more than one ACL, there might be conflicts in permissions.
We tried adding a particular resource that already belonged to one ACL, to yet
another ACL, and we found that the resource now belonged to the new ACL, but
not to the older one. In other words, status of a resource can be overwritten.

148 Internet Security in the Network Computing Framework

ServletExpress and Windows NT

Note that there is a problem with the NT version of ServletExpress. Windows
NT is not case sensitive, but ServletExpress is. So if you try to give a file
permission, and enter the complete location as d:\something\nuts.txt, you
could add yet another entry in another ACL as D:\sOmEtHiNg\NuTs.TxT.
Although this would refer to the same file in NT, it would be considered as two
separate resources by ServletExpress. This could cause several problems.

We recommend sticking to one convention while entering the file names in the
Resources form, thus ensuring that duplicate entries do not get in by mistake.

Next is the option to choose the resource to protect. The administrator can choose
between a servlet and a file. If the resource is a file or a directory containing HTML
pages, the administrator is to key in the complete path name.

Figure 141. Adding a File Resource

If the resource in question is a servlet, it can be selected from the drop down list
box.

 Chapter 4. IBM WebSphere Application Server Security 149

Figure 142. Adding a Servlet Resource

The help link from this section is very meaningful. You can read it by clicking on
the Help button.

Now let's try out the real stuff. We set an ACL called the CartoonACL, and
registered EchoServlet as a resource in the CartoonACL, as shown in Figure 142.
The Resources window looks somewhat like this:

Figure 143. The Resources Window

Further, within the CartoonACL, we gave the user Asterix permission only to POST,
and the user Popye permission only to GET. At this stage, the ACL window looks
somewhat like this:

150 Internet Security in the Network Computing Framework

Figure 144. The ACL Window

You would do well at this point to refer back to the source code of EchoServlet,
which we wrote earlier in this chapter to test the POST and GET methods (see
Figure 90 on page 95, Figure 94 on page 98 and Figure 91 on page 96).

Let's now try to access the EchoServlet, through the pages id_post.html and
id_get.html, which use, respectively, the POST and GET methods to communicate
with the Web server. We opened up the Netscape window to access the HTML
pages, and not surprisingly, there was no trouble getting to the pages themselves
(to restrict access to static pages, you'd have to use the ACL functionality
supported by Domino Go Webserver).

When we clicked on Submit from the page id_post.html, it popped up a window
asking for User Name and Password. Note that the page containing the same
fields (User Name and Password) is purely coincidental, and has nothing to do with
access restrictions at all.

 Chapter 4. IBM WebSphere Application Server Security 151

Figure 145. Asking for Authentication

We entered the user ID Popye and his password spinach. The password appeared
hidden by a sequence of asterisks. Remember that Popye had permission to GET
and the id_post.html page uses the POST method.

Figure 146. Entering Unauthorized User ID and Password

And we got the following screen:

152 Internet Security in the Network Computing Framework

Figure 147. Authorization Failed

So we understand now that the user Popye, who has no permission to POST,
cannot invoke a servlet protected by ServletExpress using the POST method.
Then we tried clicking on the Cancel button, and it gave us this result:

Figure 148. No Access to the Servlet for an Unauthorized User ID

After that, we reaccessed the id_post.html page and tried posting the information.
But this time we gave the user ID Asterix and the corresponding password.

 Chapter 4. IBM WebSphere Application Server Security 153

Figure 149. Accessing the Servlet with the Proper User ID

And since Asterix was authorized to POST, we got access to the output of the
servlet as expected.

Figure 150. Got Access to the Servlet

With that confirmed, we tried to use the GET method. We accessed the page
id_get.html, and tried submitting the information. Here's what we got.

154 Internet Security in the Network Computing Framework

Figure 151. Accessing Using the GET Method

Why was that? The browser maintains the user ID and password mapped with a
specific URL. This makes it convenient for the user, by not requiring him to key in
the user ID and password with each request. The browser, however, after getting
the user ID information from the user for the first time, stores it and sends it to the
server each time. Hence, the browser sends the same user ID information to the
server over and over again, till the server declines to accept it for some reason,
upon which it pops up the window in Figure 147 on page 153.

Note here that there is no way of telling the browser that you would like to change
the user ID, unless you would consider restarting the browser, upon which the
mapping the browser maintains between the user ID - password pair and the URL
is reset. So, getting back to using our EchoServlet, we clicked on OK, entered
Popye and his password and got regular access to the output of the servlet.

Figure 152. Access Using the GET Method, with Proper User ID

Everything worked fine with the user Popye, since we had granted to Popye
permission to GET and the HTML page id_get.html uses the GET method to
access the servlet.

 Chapter 4. IBM WebSphere Application Server Security 155

Once again, notice that the dynamic information with the GET method is always
appended to the URL in the HTTP request header, and with the POST method it is
sent through the HTTP request body (see Figure 150 on page 154).

Now let's consider an interesting case. Suppose we want to run the servlet without
the HTML page - perhaps by giving the values at the URL (as in the GET method),
or maybe we have a servlet that takes no input at all. One example for this could
be a servlet that extracts information from a client certificate and performs certain
action such as getting some information from a database or simply welcoming the
person by name. We will try to keep our example simple. So let's write a rather
simple servlet, that just says Hello without taking any inputs. We admit that we
could just as well have written a static HTML page for this functionality, but we
have mentioned the use of a no GET or POST input servlet. Here's the code of a
servlet that really does nothing but give out static information. The name we gave
to this servlet was StaticServlet.

import java.io.\;
import javax.servlet.\;
import javax.servlet.http.\;

public class StaticServlet extends HttpServlet
{
public void init(ServletConfig conf) throws ServletException

 {
 super.init(conf);

log(" Static Server Initialized ");
 }

public void service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

 {
ServletOutputStream ops = res.getOutputStream();

 res.setContentType("text/html");
ops.println("<HTML><HEAD><TITLE>Generated by a Servlet</TITLE></HEAD>");

 ops.println("<BODY>");
ops.println("<CENTER><H1> Hello </H1>");
ops.println(" Welcome, partner. How are you today");

 ops.println("
");
 ops.println("</BODY> </HTML>");
 ops.close();
 }
}

Figure 153. StaticServlet.java.

What we now need to do is to restrict access to this servlet. So we add this as a
resource in the CartoonsACL. For details, refer to 4.1.4, “Access Control Lists” on
page 138.

156 Internet Security in the Network Computing Framework

Figure 154. Addition of StaticServlet Resource to the List.

Note that we have not changed the permissions of either users or groups within the
ACL. We have just added another resource in the ACL. Asterix still has
permission only to POST, and Popye still has permission only to GET. Now which
of these do you think will be able to access the servlet? If you guessed Popye,
with the GET permission, you were right. As we have mentioned before, the GET
method uses the same stream for the form data as well as the URL. By giving
someone the permission to do a GET, you are really giving the permission to
connect using the URL stream. Obviously, if the URL stream is not read, the
particular file cannot be delivered at all. So, a GET permission is required to read
a file. Further, since GET uses the same stream for data and URL, our guess is
that the user that has permission to do a GET method can run a servlet from the
URL. We verified this, and here are the relevant screens.

After adding StaticServlet as a resource in the CartoonACL, using a browser, we
went to the servlet directly pointing to its URL http://wtr05240/servlet/StaticServlet.
On keying in the URL, and pressing Enter, we were prompted to give the user ID
and password:

 Chapter 4. IBM WebSphere Application Server Security 157

Figure 155. Prompt for User ID and Password to Run a Servlet

The system behaved pretty much as expected when we clicked on Cancel , by
giving us the page as in Figure 148 on page 153. Also, when we tried entering
the user ID as Asterix, since Asterix has the POST permission only, it gave us a
message saying Authorization failed (as in Figure 151 on page 155). However,
when we keyed in the user ID as Popye and the correct password, we got the
output of the servlet.

Figure 156. The Output of the StaticServlet

Note that all that we found to be applicable to defaultRealm, we also found to be
applicable to the NT realm, except for adding users and groups. We could add
resources under the NT realm, and create ACLs, add permissions for the users
created in the NT system, and get them to use these resources by logging on
through the browser.

158 Internet Security in the Network Computing Framework

Restricting the Access to the file Servlet

Now that we have familiarized you with restricting access to a servlet, you can
use the same or similar system to restrict access to the servlet named file
(mentioned in 3.3.6, “Lotus Domino Go Webserver Access Control Lists” on
page 114) by creating a separate ACL, adding no permission to any user in it
and adding the servlet there. This has to be done on any system that relies
extensively on the access control, and directory permission methods of Domino
Go, if the system also has a ServletExpress running.

4.2 ServletExpress Advanced Security
When Lotus Domino Go Webserver acts in tandem with ServletExpress, you use
the ServletExpress security measures to manage and restrict access to servlets. In
fact, in order to plug ServletExpress in the Web server, the servlet engine provided
by the Web server must be disabled. So you cannot use the security measures
provided by the Web server to restrict access to servlets and the only possibility is
to use the more advanced security controls that are offered by ServletExpress. We
have just seen the basic security provided by ServletExpress. We go now more in
depth.

 4.2.1 Calculating Permissions
We had mentioned earlier about the problem generated by having a user in one or
more groups, and these groups being given different permissions for an ACL by the
administrator. Here's the solution. Let's assume that the user is a member of two
groups, A and B. Hence, we have three permissions to take into consideration -
that of group A, that of group B and that of the user. If we simply put a boolean
notation for:

permitted = TRUE

and

not permitted = FALSE

the resultant permission, coming out of the three permissions in question, is their
logical OR. In other words, the user will be permitted to use the resource if either he
or she has access to it according to the corresponding ACL, or if any of the groups
to which he or she belongs has access to it in the corresponding ACL.

4.2.2 Flow of User ID and Password Information
We figured you'd be interested in how exactly the user ID and password
information flows from the client to the server. Remember that you can set the type
of authentication selecting Basic Authentication or Digest Authentication in the
Protect a Resource screen, as shown in Figure 140 on page 148. We already
commented on the fact that SSL Authentication appears disabled after the
installation of ServletExpress.

The results were not too encouraging with Basic Authentication. The Network
Monitor typically gave the following information:

 Chapter 4. IBM WebSphere Application Server Security 159

Figure 157. User ID and Password Flowing Across the Net

Observe where the cursor is pointing - the text

G9weWU6c3cxNTAðcg==

This is the base64 encoded form of

userID:password

as we verified as usual with our base64-to-binary converter.

We also tried getting rather mischievous and creating a user name with a colon in
the middle and a password that had three colons. The system took it when we
entered it, but then later it started showing up on the error log files, and then we
had a tough time deleting it. So we proscribe the use of colons in both user IDs
and passwords.

So what happens in Digest Authentication? We tried setting the same EchoServlet
to Digest Authentication, and accessing the page. The client displayed the
following error message:

160 Internet Security in the Network Computing Framework

Figure 158. Netscape Error

From various documentation we learned that in Digest Authentication, the user ID
and a digest containing an encrypted form of the password are sent to the server.
The server computes a similar digest and grants access to the protected resources
if the two digests are equal. Notice that if the Digest Authentication is enabled,
what is sent over the net is not simply an encrypted form of the password, which
could be decrypted if one had the correct key, but is a one-hash value of the
password, which cannot be decrypted. So Digest Authentication provides a higher
level of security than the base-64 encoded password.

Unfortunately, Digest Authentication is not supported by all browsers yet. We were
working on Netscape Communicator 4.05, and it didn't seem to support it (at the
time of this publication, only Sun's HotJava browser supports this protocol). When
we tried to set back the EchoServlet to Basic Authentication, keying in the same
user ID and password, it worked just fine. So, as of the release of this book, the
only mode of authentication that we were able to use with ServletExpress and
Netscape Communicator was the Basic Authentication. For security reasons, it
should be used over SSL in an Internet scenario.

 4.3 Servlet Sandbox
Servlets can be considered as server-side applets, even if they do not have a
Graphical User Interface. Like applets, servlets run inside a sandbox, which is
controlled by a SecurityManager. The servlets SecurityManager controls that
operations such as network or file access are allowed.

Servlets run on the Web server JVM. Remotely loaded servlet, like applets, also
are by default untrusted and must run inside a sandbox, so that such actions as
network or file accesses are denied. Only internal servlets (which are servlets built
into the Web server) or servlets properly installed in the servlet directory and
managed by the Web server administrator are considered trusted and are granted
all privileges.

Untrusted servlets, such as servlets that are loaded remotely, cannot accomplish
tasks like network or file access. However, sometimes it becomes necessary to
trust these remotely loaded servlets and to permit them to access system
resources. This can be achieved by signing the JAR file containing the servlet
class, and then loading it remotely.

 Chapter 4. IBM WebSphere Application Server Security 161

Local and trusted remote servlets have full access to the server's private encryption
keys, to the file system and to the network. They could even call the
java.lang.System.exit() method, which terminates the currently running JVM.

In the next sections we will consider two ways in which a remote servlet can be
run:

1. A servlet can be remotely invoked, meaning that it actually runs on the machine
where the class file originally was.

2. A servlet can be remotely loaded, meaning that the class file is transferred from
the Web server where it originally was and it runs in a destination Web server.
Running remote code has security implications that are not present when you
simply invoke a remote servlet. For this reason remotely loaded servlets have
two different behaviors depending on whether they are signed or unsigned.

We will continue our discussion using the security features of the ServletExpress
servlet engine.

ServletExpress overwrites the default implementation of the SecurityManager, so
what you will find is that even unsigned servlets can become trusted and be
granted all the permissions, provided that the same permissions are granted to the
user named unsigned under the servletMgrRealm. This way, since you cannot
distinguish where unsigned servlets originate from, all unsigned servlets will have
the same permissions in the ServletExpress security model.

Also for signed servlets we will see that the situation is slightly different from the
usual one. For example, in the ServletExpress security model it is not true that
signed servlets are by default trusted, so that they have access to all the resources
as if they were local servlets. In fact, once you have registered the servlet-signer
under the servletMgrRealm, you can control exactly what actions the servlets
signed by that user are permitted to do and what resources they are permitted to
access.

Permissions to signed and unsigned servlets can be administered through the
ServletExpress GUI.

4.3.1 Remote Invocation of Servlets
Invoking a remote servlet is not really a security risk, since in remote invocation,
the request is directly sent to a servlet on a new URL. We tried this with the
following HTML page on a server A.

162 Internet Security in the Network Computing Framework

<HTML>

<BODY>
<CENTER> <H2> Testing Remote Invocation of Servlets </H2> </CENTER>

<FORM Method=GET Action="http://9.24.1ð6.57/servlet/EchoServlet">
<pre>
User Name : <INPUT Type="text" Name="userid">
<INPUT Type="SUBMIT">
</PRE>
</FORM>

</BODY>

</HTML>

Figure 159. authenti.html on Server A

This HTML page, which we named autenti.html, when loaded from a client machine
looks like this:

Figure 160. HTML Page on the Client Machine

The servlet is the same EchoServlet we have been using for a long time now - you
could refer to it at Figure 91 on page 96. What it is more important to note is that
this page invokes the EchoServlet on a server B. The HTTP GET method is used
and the EchoServlet is registered as a protected resource on server B, requiring
authentication to access. We have the user Popye with permission to GET and
you will see that this user ID will have to be given to gain access.

The request, when the Submit Query button is pressed, flows directly from the
browser to server B, where the servlet resides. This reflects what we have
specified as the value for the Action attribute in the <FORM> tag (see Figure 159).
What is really interesting here is that server A only serves the HTML page and it is
quickly out of the scene. The authentication password and the final page flow
directly between the client and the server B. We verified this using the Network
Monitor.

 Chapter 4. IBM WebSphere Application Server Security 163

Client

Server A
Domino Go Webserver
without ServletExpress,
with authenti.html

Server B
Domino Go Webserver
with ServletExpress,
with EchoServlet.class

http request

serves the page

fill form & submit; directly goes to given URL (Server B)

challenge for user ID/password

user ID/password given

runs servlet, and
serves response

5220\522016

Figure 161. Remotely Invoking a Servlet

4.3.2 Remote Loading of Unsigned and Signed Servlets
Here, we consider the loading of a servlet in a server B from another server A.
Unlike the previous case, this time the servlet will run in server A. The servlet
should be stored in JAR format in server B and can be either signed or unsigned.

 4.3.2.1 Unsigned Servlets
For an unsigned servlet from server A to run in server B, permissions ought to be
set to reflect that the ServletExpress user named unsigned in the servletMgrRealm
(see Figure 122 on page 131) has permissions to load servlets. A remote servlet
is also treated as a resource. An unsigned servlet that is loaded from another
server is run in a sandbox and, unless explicitly stated, has several restrictions on
its functionality. We can now consider how an unsigned servlet can be loaded
remotely and function as a normal servlet.

To experiment with this, we did the following. First, we wrote a simple servlet,
called the DumbServlet. We created a JAR file from the servlet class file using the
command:

jar cvf DumbServlet.jar DumbServlet.class

This we placed on server A, which simply had an HTTP daemon running.
ServletExpress was not required on this Web server. On another server B, we had
ServletExpress too.

164 Internet Security in the Network Computing Framework

The server names and IP addresses are as follows:

Table 2. The Environment in Our Test with Unsigned Servlets

Server A - Domino Go Webserver 4.6 Server B - Domino Go Webserver
4.6.2.2

Particulars � Without ServletExpress

� Contains the JAR file of the servlet

� With ServletExpress 1.0

� Loads the JAR file of the servlet

IP Address 9.24.104.176 9.24.106.57

Server Name romeo wtr05240

We started the ServletExpress Manager on server B logging in as admin and went
to the Security - Access Control Lists screen (see Figure 127 on page 138).
We chose the servletMrgRealm and clicked on Add Permission .

We then chose the permissions for servlets. To do this, we selected the radio box
named Servlets , and checked Load servlet .

Figure 162. Permit Unsigned Servlets to load.

Notice that the selected user was unsigned .

Then we clicked on Servlets - Add and on the menu that appeared, entered the
Servlet Name, Servlet Class and clicked Add .

 Chapter 4. IBM WebSphere Application Server Security 165

Figure 163. Registering the New Servlet

On the next screen, we entered the particulars, chose the option Load Remotely:
Yes and gave the URL where we had put the JAR file containing the DumbServlet.
Then we clicked Save and Load .

166 Internet Security in the Network Computing Framework

Figure 164. Specifying the URL for Remote Loading

Save and Load

Sometimes the newly entered values will not take effect if you simply click on
Load . Hence, it is advisable to click on Save before clicking on Load every
time.

To verify that the servlet was indeed up and running in server B, we went to
Monitor and clicked on Loaded Servlets . We got the particulars of all the loaded
servlets.

Figure 165. Verify That the Servlet Is Indeed Running in Server B

 Chapter 4. IBM WebSphere Application Server Security 167

And as you can see, the DumbServlet was running and it appeared to be the only
remotely loaded servlet between all the servlets registered in ServletExpress.

Later we verified that it really worked fine, by accessing the servlet with a browser
on a client machine pointing to the server B. Also, we checked the network traffic
using the Network Monitor.

The results were as expected. Once server B loads a servlet from server A, it no
longer needs to interact with server A with regards to this servlet. Any client
requests are handled by server B, and server A does not come into the picture.
We discovered other noteworthy results, which we are going to tell you now.

We tried to capture the flow through the network when the servlet was loaded using
the Load button shown in Figure 164 on page 167. The following two screens
show respectively the incoming packets to the server A (romeo) and the incoming
packets to the server B (wtr05240).

Figure 166. Incoming Packet Captured at Server A (romeo)

168 Internet Security in the Network Computing Framework

Figure 167. Incoming Packet Captured at Server B (wtr05240)

You will notice how the servlet is requested from server A by server B in
Figure 166 on page 168, and how it flows from server A to server B in Figure 167.
Both these screens were captured immediately after the Load button was clicked.
Also, note that the servlet, once loaded onto the server B, remains in its memory till
the server is shut down. This is irrespective of whether it is subsequently
unloaded.

For experimenting, we checked on Servlets , chose DumbServlet and explicitly
unloaded it, and then reloaded it again (see Figure 164 on page 167). This activity
was not reflected at the Network Monitor, indicating that the servlet is loaded on
from a local source, and that it is loaded from the remote source only for the first
time.

 Chapter 4. IBM WebSphere Application Server Security 169

Of course, if you indicate in the options that the servlet is to be loaded
automatically on startup, it will be done, and this will obviously be indicated at the
Network Monitor every time the Web server B is started.

Unload and Reload

One serious shortcoming we found here is that if the servlet is loaded remotely,
and after loading it we change the permissions such that it forbids the loading of
unsigned remote servlets, it is not reflected in the system till the Web server is
restarted. In other words, if we are to uncheck the Load permission in
Figure 162 on page 165, then go to the Servlets and to the screen shown in
Figure 164 on page 167, unload the servlet and then reload it, it would reload,
although we had just revoked the permission to load a remote unsigned servlet.
We also tried unloading it first, and then revoking the permission, and then tried
loading it - it still worked. So we came to the conclusion that the permissions
regarding the remote loading of servlets do not affect the already loaded
servlets, and since the servlets are loaded either at startup of the server, or
after it, the new permissions can affect the already loaded servlet only on
restarting the Web server.

The feature that a remote servlet is loaded only once could have a negative
side to it, in that if the servlet on the source server changes, the local server
(server B) will never have the latest version unless it is restarted. This feature
might be changed in the subsequent release of ServletExpress, by making the
servlet to be downloaded from the remote server every time it is unloaded and
then loaded again, even without bringing down the server.

 4.3.2.2 Signed Servlets
As a final example of ServletExpress security, we will demonstrate to you how we
got a remotely loaded signed servlet to access a file on the server's disk.

The environment configuration of this scenario also includes a server A and a
server B, with the server A containing the signed JAR file of the servlet and the
server B remotely loading and then running the servlet. The following table shows
IP addresses, host names and particulars of our environment, and you can refer to
this table when you see the pictures of this section.

Table 3. The Environment in Our Test with Signed Servlets

Server A - Domino Go Webserver 4.6 Server B - Domino Go Webserver 4.6.2.2

Particulars � Without ServletExpress

� Contains the signed JAR file of the
servlet

� With ServletExpress 1.0

� Loads the signed JAR file of the servlet

IP Address 9.24.104.176 9.24.104.51

Host Name romeo wtr05366

Notice, as discussed in 4.3.2.1, “Unsigned Servlets” on page 164, that the server A
runs Lotus Domino Go Webserver without ServletExpress. In fact server A only
has to serve the signed JAR file of the servlet, so the ServletExpress servlet engine
was not considered necessary. In other words, server A only needs an HTTP
daemon running.

170 Internet Security in the Network Computing Framework

Following the same steps described in 4.1.2, “Users” on page 128, we created a
user under the servletMgrRealm in server B and we named this user Marco.
Remember that Marco is the name used by ServletExpress to identify the
servlet-signer, and the name registered in the certificate can be different.
ServletExpress picks up the real name of the servlet-signer from the certificate and
displays it in the window

Common Name: Marco Pistoia

as shown in the following screen:

Figure 168. New Servlet-Signer Marco Added Under the servletMgrRealm

Then we wrote the Java code of the ReadFile servlet, shown in the following figure:

 Chapter 4. IBM WebSphere Application Server Security 171

import javax.servlet.\;
import java.io.\;

public class ReadFile extends GenericServlet
{
 String fileParam;
 String lineIn;
 BufferedReader fileIn;

public void service(ServletRequest req, ServletResponse res) throws IOException
 {
 res.setContentType("text/plain");

ServletOutputStream os = res.getOutputStream();

 try
 {

fileParam = req.getParameter("file");
fileIn = new BufferedReader(new FileReader(fileParam));
os.println("Writing from file " + fileParam);

 os.println();
while ((lineIn = fileIn.readLine()) != null)
if (lineIn.length() > ð)

 os.println(lineIn);
 else
 os.print(lineIn);
 }

 catch(Throwable e)
 {
 os.println(e.toString());

PrintWriter pout = new PrintWriter(os);
 e.printStackTrace(pout);
 pout.flush();
 pout.close();
 }
} //end of service()

}

Figure 169. ReadFile.java

You will notice that the heart of this servlet is all in the service() method. The
ReadFile servlet simply reads a file in the server where it runs (in our case, the
server B) and displays the file name and the contents of the file on the client's
browser, or it throws and catches an exception if something didn't work out fine.

We decided that the ReadFile servlet would read a text file named narry.txt, that we
saved in the directory D:\NCF of our server B. In our experiment, it was not
necessary to write a complicate file, so our simple file contained only the sentence

this should be shown

and nothing else.

Of course, the servlet needs to know what the file name is. The file name is
actually known by the servlet through the value of the parameter named file. In the
service() method, the servlet tries to get the value of the parameter file and to
assign that value to the fileParam String variable:

172 Internet Security in the Network Computing Framework

fileParam = req.getParameter("file");

In order to let the servlet know the name of the file that you want it to read, you
have several possibilities. For example, you can establish that the servlet read that
parameter when it is loaded, and for this purpose ServletExpress provides you with
a Properties panel for each servlet you add (we discuss this possibility in the
comments regarding Figure 312 on page 331). Another chance that you have, is
to pass that parameter through the URL, appending a question mark and then
typing the string file=D:\NCF\narry.txt. Actually, even if a similar way to invoke
the servlet is permitted, it didn't work out well with us, because it requires that
particular characters of the URL, such as for example back slashes and colons, are
encoded. So we thought that for a user on a client machine, a third possibility
would be the best one: it would be easier to pass the file name as an input string
on an HTML form, rather than encoding the file name and passing it appended to
the URL.

This is the HTML file that we wrote and saved in the directory D:\WWW\HTML of
our Web server B. We simply named it page.html:

<HTML>
<BODY>

<FORM Action=/servlet/ReadFile Method=GET>

<PRE>
FILE NAME <INPUT Type="text" Name="file">
<INPUT Type="SUBMIT">
</PRE>

</FORM>

</BODY>
</HTML>

Figure 170. page.html Invoking the ReadFile Servlet

Notice that it invokes the ReadFile servlet using the GET method, so the name of
the file will be encoded anyway and then appended to the URL, but this process is
done automatically without requiring any effort by the user on the client machine.
Another particular that you should notice is that the servlet is invoked as if it were
physically stored in the servlet directory D:\ServletExpress\servlets, but in reality the
servlet will be remotely loaded from the server A and then it will only stay in the
RAM memory of the server B.

Again in 4.1.2, “Users” on page 128 you can see the simple steps that are
necessary to jar and sign a file. We compiled the ReadFile servlet entering the
command:

javac ReadFile.java

in a directory D:\WWW\HTML\pistoia that we had created in the server A. Then we
jared the class file with:

jar cvf ReadFile.jar ReadFile.class

and we signed the JAR file issuing:

javakey -gs sign.direc ReadFile.jar

 Chapter 4. IBM WebSphere Application Server Security 173

sign.direc being the signature directive file, as discussed in 4.1.2, “Users” on
page 128. The signed JAR file automatically carried the double extension .jar.sig,
so that its name was ReadFile.jar.sig.

On the server B, which had to remotely load the servlet, it was necessary to add
the servlet in the ServletExpress configuration panel. We clicked as usual on
Servlets - Add . In the window that appeared we typed the Servlet Name and the
Servlet Class and then we clicked Add , as shown here.

Figure 171. Registering the ReadFile Servlet

The next screen that appeared allowed us to enter the particulars of the new
servlet. It was in this panel that we configured the servlet to be remotely loaded,
and to do this we had to check Load Remotely: Yes and specify the signed JAR
file URL http://9.24.1ð4.176/pistoia/ReadFile.jar.sig.

174 Internet Security in the Network Computing Framework

Figure 172. Configuring the Signed Servlet To Be Loaded Remotely

We noticed that remote loading of a signed servlet also works fine if the servlet
doesn't carry the double extension .jar.sig, but only the .jar extension, provided it
has been signed and renamed. As you can see, it is not necessary that a signed
JAR file be located in the servlet directory D:\WWW\servlets\public of the server A.
In fact in this case, the Web server A simply serves the servlet to the server B, but
it is the server B that runs it.

Before invoking the servlet, it was necessary to give to the servlet-signer Marco the
adequate permissions. Remember, in fact, that in the ServletExpress security
model, a servlet, even if signed, is not necessarily granted all the permissions as if
it were a local servlet. It is up to the ServletExpress administrator to select what
permissions are granted, through the ServletExpress GUI.

In this case, the servlet needs to be loaded and it also needs to read a file in the
local hard disk. For this reason, the servlet-signer named Marco must be at least
granted to load servlets and read files. To do this, it is necessary to click on
Access Control Lists - Add Permission... . Then, in the window that appears,
you should mark the corresponding Load servlet and Read files check boxes, as
shown in the following screen:

 Chapter 4. IBM WebSphere Application Server Security 175

Figure 173. Allowing Marco to Load Servlets and Read Files

Notice that, as we already observed in 4.3.2.1, “Unsigned Servlets” on page 164, if
the ReadFile servlet has already been loaded, it remains in the memory of the Web
server even if you try to download it, so that every time you change the
permissions to the servlet-signer Marco or you upgrade the servlet in the original
Web server A, you need to restart the Web server B if you want ServletExpress to
pick up the changes.

Then we were able to invoke the HTML page from the client machine, by pointing
the browser to http://9.24.104.51/page.html. The HTML form was displayed and we
filled it out with the name of the file.

176 Internet Security in the Network Computing Framework

Figure 174. Invoking and Filling the HTML Form

When we clicked the Submit Query button, the output was displayed without any
problems:

Figure 175. The HTML Page Invoked the Remotely Loaded Signed Servlet

Reading the string that appears in the Location field, you can see that what the
GET method appends after the question mark is encoded, as we said.

What happens if the servlet-signer Marco is not granted permission to load servlets
or to read files? In this case, all the servlets signed by Marco, even if signed, do

 Chapter 4. IBM WebSphere Application Server Security 177

not have the adequate permissions. In other words, we verified that it was really
necessary to grant those permissions:

1. The permission to load servlets allows the servlet-signer to load a remote
signed servlet.

2. The permission to read files allows the servlet signed by the servletMgrRealm
user to read files on the local disk, as if it were a local servlet.

The Java source code of the ReadFile servlet had been written just to print on the
client's browser all the exceptions coming from an incorrect configuration. Denying
the servlet-signer Marco permission to load remote servlets, the browser displays
the following error page:

Figure 176. Error Page Displayed if the Permission to Load Servlet Is Denied

You can read the error message displayed by the servlet invoker for
ServletExpress:

Cannot find class for servlet ReadFile

If the servlet-signer Marco has permission to load servlets but lacks permission to
read files on the local disk, a ServletSecurityException is thrown:

com.sun.server.security.ServletSecurityException:
Servlet not allowed to read file D:\NCF\narry.txt.

The following figure shows the complete output:

178 Internet Security in the Network Computing Framework

Figure 177. ServletSecurityException if the Permission To Read Files Is Not Granted

 Chapter 4. IBM WebSphere Application Server Security 179

180 Internet Security in the Network Computing Framework

Chapter 5. Client-Side Security Technical References

This chapter describes NCF security from the client point of view. Other aspects of
client security have already been covered in other parts of this redbook. For
example we discuss Java 1.2 security in Chapter 2, “The New Java 1.2 Security
Model” on page 9 and in particular, the security implications of signed and
unsigned Java 1.2 applets are described in 2.7, “Applets in the New JDK 1.2
Security Model” on page 52. SSL client/server communication is extensively
described in Chapter 3, “Web Server Security” on page 69 and in particular you
can refer to 3.1.4, “SSL Client Authentication” on page 84 to know all the details for
the client authentication.

We describe in this chapter those aspects of client security that we have not
covered in other chapters.

We start with an overview of the security features offered by the most common
Java-enabled Web browsers: Netscape Navigator, Microsoft Internet Explorer and
Sun HotJava. In the rest of the chapter, we make extensive use of Netscape
Communicator 4.05 and JDK 1.1.6. The reason why we did not use JDK 1.2 is that
this release was still in beta at the time of this project and no browser supported
JDK 1.2 yet. In this chapter we describe also security implications related to
cookies and the Java applet programming model for NCF developers.

5.1 Specific Browsers and Security - General Description
This first section provides an overview of the security features of the Netscape,
Microsoft and Sun browsers. Enabling or disabling any of the security features in
these browsers has trade-offs associated with the decision to do so. You should
evaluate your own risk tolerance and your policies, and set up your security
accordingly.

We also find it interesting in general that each browser concentrates security
settings on the technology they created. Microsoft pays great attention to ActiveX
controls, while Netscape and Sun pay great attention to Java.

 5.1.1 Netscape Navigator
Netscape Navigator is the browser part of Netscape Communicator. We have used
the Netscape browser in other sections of this chapter and in other chapters, and
so some screen shots will be referred to, rather than repeated. What you will read
in this section is based on our experience with Netscape Navigator 4.05.

Security-related configuration information can be found in two places in Navigator.
Some items are found in the Preferences settings and some in the Security
Information panels. The Preferences are accessed from the Edit pull-down on the
menu bar and the Security Information panels can be accessed by clicking on the
lock icon on the Navigation Toolbar.

 Copyright IBM Corp. 1998 181

Figure 178. Netscape Navigator Browser

The Advanced section of the Preferences settings allows you to select whether to
enable executable files to run in the browser and whether to allow servers to set
cookies on your machine. Style sheets and Autoinstall are Netscape specific items.
Autoinstall allows Smartupdate to run from the Netscape site to install patches (see
Figure 220 on page 227). Style sheets allow uniform styles to be applied to Web
pages.

Figure 179. Netscape Navigator Advanced Preferences

182 Internet Security in the Network Computing Framework

The section related to cookies allows you to set whether to allow information to be
stored on your PC that Web sites can retrieve. A cookie is a text file that the
browser maintains in the computer hard disk. Cookies are used to set preferences
for Web sites and allow you to customize how a Web site knows you. Some Web
sites track your usage of their site so that they can show you options or products in
your interest area. A shopping Web site uses cookies for the shopping cart
function. IBM WebSphere Application Server uses cookies for session control
information. Microsoft uses them so you can have a personal Web page when you
visit their site. Cookie use is controversial from the viewpoint of allowing
information to be saved on your computer and then read by Web sites. Some
consider turning off cookies for issues of privacy. Netscape gives you here the
ability to disable cookies, allow them, or allow them only if they get sent back to the
server that originated them. There is also a check box that allows you to see a
warning if a server tries to set a cookie. See 5.5, “Cookie Security Implications” on
page 250 for further details.

Other security-related information can be configured in the Security Information
panels. Security Info is accessed by clicking on the lock icon on the Navigation
Toolbar.

Figure 180. Netscape Security Information Panel

Notice that this window is shared by all the Communicator components. It provides
access to the security features of Netscape and Netcaster as well as in e-mail and
discussion groups. This panel will tell you security information about the page you
are viewing, or the security operation that is taking place.

The following window shows the section of the Security page that you can access
by clicking on Passwords :

 Chapter 5. Client-Side Security Technical References 183

Figure 181. Netscape Security Info - Passwords

The Password panel allows you to control the passwords on your Netscape Key
Ring Organizer (KRO), the location on your computer where your digital certificates
and also public/private key pairs are stored. This is a very important password
because it protects access to digital certificates, used in cryptographic operations.
If the PC you are using is used by other people, or is stolen, this password will
protect the file that holds the certificates. It is important to consider the selection of
how often you are challenged for the certificate access password. If you are
vigilant about the use of lockup passwords when you leave your system, then you
might choose to be challenged once a session. If it is possible for someone to sit
at your computer while you are away, you may want to accept entering the
password every time a certificate is used. As the legal status of digital signatures
becomes more binding, protecting your signature should become more important.

The following window appears after selecting Navigator :

184 Internet Security in the Network Computing Framework

Figure 182. Netscape Security Info - Navigator

The Navigator panel allows you to set warnings on entering or leaving a site that
uses SSL for security, and for using encrypted information with Web servers. The
section named Certificate to identify you to a Web site gives you the possibility to
select whether Netscape will ask you which certificate you want to use in
responding to a server if you have more than one certificate. You can also select a
certificate to respond with by default. Some Web servers might only accept
certificates by specific signers or certificates exceeding a particular grade. If you
frequently transact with multiple sites that have conflicting requirements, you should
select Ask Every Time .

 Chapter 5. Client-Side Security Technical References 185

Figure 183. Certificate Information List Box

Finally, the above window gives you the ability to enable SSL Version 2 and SSL
Version 3. SSL Version 3 is the latest and most secure version of SSL. Version 2
is included for compatibility with older servers.

SSL Version 3.0 vs. Version 2.0

SSL Version 3.0 enables client authentication. Actually client authentication
was possible also in Version 2.0 but it presented some bugs. Those bugs were
subsequently fixed, but not all the browsers picked up the changes, as we
discuss in 3.1.1, “SSL Overview” on page 69. Those fixes have been
completely integrated in the new version of SSL, Version 3.0, which offers other
advantages in terms of security that were not present in Version 2.0. It uses a
more secure implementation of MD5 message authentication to detect attempts
to modify data in transit. It also implements SHA (Secure Hash Algorithm)
message authentication. SHA is a government-standardized algorithm that is
used to construct a message authentication code that detects attempts to
modify data while in transit. SHA is slower than MD5 but it is stronger.

The Messenger panel, which you access by clicking on Messenger , allows you to
set certificate options for sending secure e-mail and news group items.

186 Internet Security in the Network Computing Framework

Figure 184. Netscape Security Info - Messenger

From this window, you can select a certificate to use for your Messenger
operations. The certificate that appears highlighted in the section named Certificate
for your Signed and Encrypted Messages will be included with every e-mail that
you sign. This way, when your correspondent receives it, it is possible for them to
send you encrypted e-mail by using your public key, which is part of your digital
certificate. Clicking the Send Certificate to Directory button sends your certificate
to an LDAP directory. This makes it easily accessible for others to be able to send
you encrypted e-mail without having first received your certificate in another way.

Click the Select S/MIME Ciphers to indicate types of ciphers you prefer a
correspondent uses when encrypting and sending a message to you. Your enabled
ciphers are included in signed, outgoing messages. However, this does not
prevent a correspondent from encrypting a message to you with a type of cipher
you have disabled.

The following screen shows the section you obtain after clicking on
Java/JavaScript :

 Chapter 5. Client-Side Security Technical References 187

Figure 185. Netscape Security Info - Java/Javascript

The Java/Javascript panel shows a list of certificates, which in the above figure is
empty. A digital certificate will be listed in the Java/Javascript panel when you
receive on your browser a Java applet or a JavaScript file signed by the owner of
the certificate and you will ask Communicator to remember your choice, as we will
show in 5.3, “Interacting with Signed Java Applets” on page 224.

Each certificate represents a trusted entity, and using this panel you can review the
access permissions granted to Java applets and JavaScript files signed by those
entities. You have the ability to see each certificate, to remove it from that list and,
by clicking on Edit Privileges when a certificate in the list is highlighted, you can
choose specific privileges you want to grant for the current session only or for any
future sessions. You may also be able to deny specific privileges.

Signed applets in the JDK 1.2 security model are examined in 2.7.2, “Signed
Applets” on page 56. See also 5.3, “Interacting with Signed Java Applets” on
page 224 for more details on the JDK 1.1 security model, on which the Java Virtual
Machine (JVM) implemented on Netscape Communicator 4.05 is based.

188 Internet Security in the Network Computing Framework

Netscape Communicator JDK 1.1 Level

Note that the level of the JDK in Netscape Communicator 4.05 is still based on
a 1.1 beta version from JavaSoft. Even if the current version of the JDK is
1.1.6, Communicator is not implementing a full JDK 1.1 support.

Also note that not all base parts of the JDK are shipped with the Netscape
browser. There is a missing part that is java.security so any applications that
make use of this will not run in a Netscape JVM. This limitation causes an
overhead penalty in terms of Java portability. Since Netscape Communicator
4.05 does not ship a java.security set of classes, applets cannot depend on
these being on the platform.

However, Netscape's longer-term strategy is to move towards an open Java
API, as you can learn from the Netscape's Web site
http://developer.netscape.com/tech/java/index.html. Other third-party JVMs will
be allowed to run inside of Communicator by replacing the default Netscape's
JVM implementation. This will give more flexibility to application developers,
allowing them to use whatever JVM makes the most sense for their application.

Clicking on Certificates will display the Certificates section:

Figure 186. Netscape Security Info - Certificates

The Certificates section is used to perform functions related to receiving and using
digital certificates. Information about most of the functions in the Certificates
section follows in 5.4, “How to Manage Client Certificates” on page 232. See in
particular 5.4.1, “Obtaining a VeriSign Evaluation Certificate” on page 232 for
information on getting a certificate with the section labeled Yours. Figure 227 on
page 233 shows the feature used to export a digital certificate to a file by selecting
a certificate and clicking on the Export button. In 5.4.4, “How to Export and Import

 Chapter 5. Client-Side Security Technical References 189

Certificates” on page 239 we show the export steps with Netscape Communicator
and then the import steps with Internet Explorer.

The next certificate section is related to the certificates other people have sent to
you or ones that you have retrieved from a directory service. You can access this
section by clicking on People . When another person sends you a signed e-mail,
their certificate is sent along with it to allow Messenger to verify the signature. You
have the option to keep their certificate so that you can send them encrypted e-mail
in the future. Other People's Certificates are reviewed with the next panel.

Figure 187. Netscape Security Info - Other People's Certificates

All the certificates listed in the certificate list were sent to you in e-mail messages.
Use this section to verify, view or delete certificates in the list. Notice in particular
that verifying a certificate is an operation you might want to do to ensure that a
given certificate was issued by the signing authority the certificate claims.

As we discuss in 3.1.1, “SSL Overview” on page 69 and 3.1.3, “Lotus Domino Go
Webserver SSL Server Authentication” on page 79, the most common use of SSL
is called server authentication. Here the server sends its digital certificate to the
client browser to begin the handshake. The client generates a random number and
encrypts it in the public key received as part of the server's certificate. This is
called a challenge. If the server can successfully decrypt the random number, it
proves that the private key corresponding to the public key presented in the server
certificate is held by the server. As long as the certificate is signed by a trusted
CA, the SSL establishment will continue. What determines whether this server
certificate is trusted or not? The digital certificates of several CAs are shipped with
the browser, and referred to when the server certificate is presented. This screen
is from the Netscape browser, showing the CAs delivered with the browser. You
can access this page by clicking on Signers .

190 Internet Security in the Network Computing Framework

Figure 188. Netscape Certificate Signers' Certificates

By default, after installing Netscape Communicator 4.05, the following signers'
certificates are considered trusted:

1. AT&T Certificate Services

2. AT&T Directory Services

3. BBN Certificate Services CA Root 1

4. BelSign Class 1 CA

5. BelSign Class 2 CA

6. BelSign Class 3 CA

7. BelSign Object Publishing CA

8. BelSign Secure Server CA

9. Canada Post Corporation CA

10. CertiSign BR

11. GTE Cyber Trust Root CA

12. GTE Cyber Trust Secure Server CA

13. GTIS/PWGSC, Canada Gov. Secure CA

14. GTIS/PWGSC, Canada Gov. Web CA

15. IBM World Registry CA

16. Integrion CA

17. KEYWITNESS, Canada CA

18. MCI Mall CA

 Chapter 5. Client-Side Security Technical References 191

19. Thawte Personal Basic CA

20. Thawte Personal Freemail CA

21. Thawte Personal Premium CA

22. Thawte Server CA

23. Uptime Group Plc. Class 1 CA

24. Uptime Group Plc. Class 2 CA

25. Uptime Group Plc. Class 3 CA

26. Uptime Group Plc. Class 4 CA

27. VeriSign Class 1 Primary CA

28. VeriSign Class 2 Primary CA

29. VeriSign Class 3 Primary CA

30. VeriSign Class 4 Primary CA

31. VeriSign/RSA Commercial CA

32. VeriSign/RSA Secure Server CA

You can compare this list with the one that you have on your Netscape
Communicator to trust that these certificates have not been compromised. You can
highlight each certificate in the list and then press the Edit button to see more
details about the specific certificate and also to select one of more of the following
three options:

1. Accept this Certificate Authority for Certifying network sites

2. Accept this Certificate Authority for Certifying e-mail users

3. Accept this Certificate Authority for Certifying software developers

You can also mark the check box Warn me before sending data to sites
certified by this authority . The following figure shows what we got when we
highlighted VeriSign Class 1 Primary CA and then press the Edit button:

192 Internet Security in the Network Computing Framework

Figure 189. Editing Properties for VeriSign Class 1 Primary CA

In the above CA list you have noticed that there are several different classes of
certificates that VeriSign can sign, corresponding to different grades of security.
When an individual applies for a certificate being signed by VeriSign, in general no
VeriSign employee will meet that individual in order to authenticate their identity.
More likely, that individual just has to fill out a form from a Web page (see for
example 5.4.1, “Obtaining a VeriSign Evaluation Certificate” on page 232). Such a
form asks the requester the name, organization, country and e-mail address, plus
some more information. In general the key (or directions on how to fetch the key)
is mailed to that e-mail address. Thus you may reasonably trust that the e-mail
address is genuine, but in effect the requester could have filled in any name and
organization. With a Class 1 ID from VeriSign, that information is not verified, and
this is the reason why options 1 on page 192 and 3 on page 192 by default are
not selected for VeriSign Class 1 Primary CA, as shown in Figure 189. However
there are more stringent classes of IDs. With higher classes of IDs, VeriSign will
require the requester to appear before a notary public, will check the financial rating
of the requester, etc., and all the options shown in Figure 189 are selected for the
VeriSign CAs corresponding to classes higher than Class 1.

Other CAs may have different procedures to authenticate users. However, when
you receive an authenticated message, it is important that you know what, in effect,
has been authenticated.

Notice that if the certificate is signed by someone unknown, the user will be
prompted with a series of screens, allowing the user to decide whether or not to
trust the server connection, because the signer of the server's certificate is
unknown. We describe this entire process in 3.1.3, “Lotus Domino Go Webserver
SSL Server Authentication” on page 79.

The next time you connect with SSL to the site for whom you have accepted the
site certificate, Netscape will connect to the site using the certificate just accepted
to verify the connection. It will remember the settings chosen in the panels, and

 Chapter 5. Client-Side Security Technical References 193

warn you if you selected the option for warning before sending information to the
site. Certificates for servers you have accepted in this manner can be reviewed in
the Netscape Security Information panel, by clicking on Web Sites .

Figure 190. Web Sites' Certificates

The Cryptographic Modules section can be accessed by clicking on Cryptographic
Modules , in the Security Info panel. Cryptographic modules are loadable pieces of
software that provide a function of cryptographic services, such as smart card
support (including PCMCIA smart cards and disk-based smart cards),
hardware-accelerated cryptography and new ciphers.

194 Internet Security in the Network Computing Framework

Figure 191. Netscape Cryptographic Modules Panel

Netscape Internal PKCS #11 Module is the cryptographic module that is used and
shipped by Netscape Communicator. It is used for smart card support.

5.1.2 Microsoft Internet Explorer
We had the opportunity to work with Release 4.01 for Microsoft Internet Explorer
(MSIE).

The security information for MSIE is found in the Internet Options, accessed from
the View menu as shown next.

 Chapter 5. Client-Side Security Technical References 195

Figure 192. Microsoft Internet Explorer

Microsoft's security design for Internet Explorer is based upon the concept of
Security Zones, as you first notice on the Security page for the Internet Options:

196 Internet Security in the Network Computing Framework

Figure 193. Microsoft Internet Explorer - Internet Options

With the Security Zones approach, you can decide how much access to allow to
visitors to your computer. Web sites that you trust - such as those on you
company's intranet or from established companies in whom you have confidence -
you can assign as trusted, permitting them even to run executable content on your
computer. On the other hand, you can strictly limit Web sites that you do not want
to trust to access your computer.

Security Zones offer the advantage of providing advanced protection for your
computer and your privacy without interrupting you with repeated warnings while
you are visiting Web sites that you have already decided to trust. Moreover it is
also possible for companies to set automatic boundaries so their user do not have
to make security decisions on a case-by-case basis.

Microsoft has set four pre-defined Security Zones:

1. Local intranet zone

2. Trusted sites zone

 3. Internet zone

 Chapter 5. Client-Side Security Technical References 197

4. Restricted sites zone

These zones are visible by opening the Zone list box, as shown in the following
screen:

Figure 194. Internet Options - Zones List Box

The browser notifies you at the bottom of the screen which zone is in effect.

For each of these zones, security settings of High , Medium and Low can be
selected, but there is also an option to select your own settings for each zone with
Custom . Using this dialog box, you can set the security options you want for each
zone and then add or remove sites from the zones depending on your level of trust
in the site. In corporate environments, administrators can tailor these four zones
for users and even add or remove the authentication certificates of software
publishers that they do or do not trust in advance. This way users do not have to
make security decisions while using the Internet.

For the Local intranet zone, the default security setting is Medium. By clicking on
the Add Sites... button you can select areas to include in the Local zone.

198 Internet Security in the Network Computing Framework

Figure 195. Internet Options - Include Sites in Intranet Zone

You are able to specify sites by name and add them to the zone by clicking on the
Advanced button.

Figure 196. Internet Options - Add Sites to Intranet - Advanced

The Trusted sites, Internet and Restricted sites zones default respectively to Low,
Medium and High security settings. Notice in particular that the Restricted sites
zone is considered the high risk zone, and so the default settings is for the most
security.

 Chapter 5. Client-Side Security Technical References 199

You can add sites to these three zones by clicking on the Add Sites... button. The
dialog to add sites, similar to Figure 196, is available directly in these case, without
the Include dialog that appeared for the Local intranet zone section (see
Figure 195).

Next we will look at the Custom Settings that can be made for each zone. To get
to the Custom settings, select the Custom radio button and click on the Settings...
button (see Figure 193 on page 197). The Security Settings dialog is brought up,
as shown in Figure 197. By using the Reset custom settings button at the bottom
of the Security Settings dialog, you can also see what choices are made for the
High, Medium and Low security settings.

The first set of choices in the Security Settings deals with ActiveX controls.

Figure 197. Security Settings - ActiveX Controls

ActiveX controls are compiled system code and do not run in a sandbox like Java
applets. They can do anything to your systems that you can do. There is no
granularity of permissions in signed ActiveX controls; you can only deny or grant
them permission to run. Many sources consider ActiveX controls to be dangerous

200 Internet Security in the Network Computing Framework

when used from the internet because of the lack of a sandbox mechanism to
contain their activity. Consider carefully your choices for the Security Settings for
ActiveX controls.

The next portion of the Security Settings gives advanced users and administrators
more control over all other security options:

� Font and file downloads

 � Password protection

� The level of capabilities given to Java applets

In particular, with the password protection Security Settings, depending on which
Zone a server is in, Internet Explorer can send password information automatically,
prompt the user for user ID and password information or simply deny any login
request.

The Content page of the Internet Options has settings for the Content Advisor,
Certificates, and Personal Information. You can access this page by clicking on the
Content tab for the Internet Options window.

Figure 198. Internet Options - Content Page

 Chapter 5. Client-Side Security Technical References 201

The Content Advisor section allows you to set controls based on content ratings for
Internet pages. These are sometimes referred to as parental controls, and are
meant to stop access to Web pages of a sexual or violent nature.

The Personal Information section allows you to fill out business card type
information which can be sent along to places you choose.

To use the Certificates section, click on the Personal button and you see a dialog
that shows all your personal digital certificates (see Figure 236 on page 241 and
Figure 238 on page 242). We will show more details on how to use this section in
5.4.4, “How to Export and Import Certificates” on page 239, where we will export a
certificate with Netscape Communicator and import it with Microsoft Internet
Explorer.

Like Netscape Communicator (see Figure 188 on page 191), MSIE provides a
listing of certificates for CAs who might sign server or user certificates sent to you.
You can access the Certificate Authorities listing by clicking on the Authorities
button on the Content page, shown in Figure 198 on page 201. The CAs that
MSIE lists here are more or less the same ones that Netscape Communicator also
lists (see Figure 188 on page 191). The only difference is that Microsoft has
arranged them in groupings related to their most common usage:

1. Network server authentication

2. Network client authentication

 3. Secure e-mail

 4. Software Publishing

as shown in the following figure:

202 Internet Security in the Network Computing Framework

Figure 199. Certificate Authorities - List Box

Taking again VeriSign Class 1 Primary CA as an example, we see that Microsoft
sets all the individuals with credentials issued by this CA as untrusted for Network
server authentication and Software Publishing, as trusted for Network client
authentication and Secure e-mail.

Clicking on the Publishers button on the Content page shown in Figure 198 on
page 201 will show you the listing of the software publishers you have accepted for
remote installation using the Microsoft Authenticode identification process. The
selections listed here allow the software sent by the publisher to be installed
without your notification. As you can see, that list was empty in our configuration.

 Chapter 5. Client-Side Security Technical References 203

Figure 200. Certificates - Trusted Publishers for Authenticode

On the Advanced page of the Internet Options window are the settings for SSL
versions, cookies, and other security Internet options. You can reach the Advanced
page by pressing the Advanced tab on the top of the Internet Options window.

204 Internet Security in the Network Computing Framework

Figure 201. Advanced Internet Options - Security Section

The security Internet options are explained in the following list:

� Warn if forms submit is being redirected

If the form you are submitting is going to a different server from the one where
the form was received, checking this box will set a warning for you.

 � SSL 3.0

This is the most recent version of SSL, with security enhancements over SSL
2.0 (see 3.1.1, “SSL Overview” on page 69).

 � SSL 2.0

This is the older version of SSL. It is here only for backward compatibility
purposes.

� Warn about invalid site certificates

If the URL listed in the site certificate is different from the URL the browser is
attached to, checking this box will set a warning for you.

� Warn if changing between secure and non-secure mode

 Chapter 5. Client-Side Security Technical References 205

If you mark this check box, this warning will be given when you access or leave
an SSL session.

 � PCT 1.0

Private Communications Technology (PCT) is a Microsoft proprietary security
protocol similar in function to SSL. It was not widely accepted and is included
here only for backward compatibility purposes.

� Enable Profile Assistant

Profile Assistant will send your personal information that you entered by clicking
on the Edit Profile button on the Content page, shown in Figure 198 on
page 201. This information is sent in response to a request from a Web
server, rather than requesting that you fill out a form. According to the Help
file, the information will not be sent without your knowledge.

 � Cookies

We discussed cookies earlier in the Netscape section (see 5.1.1, “Netscape
Navigator” on page 181) and we will talk again about them in 5.5, “Cookie
Security Implications” on page 250. Figure 201 on page 205 lists the choices
you get in MSIE. If you select to be prompted before accepting cookies and a
server attempts to set a cookie on your system, you will see something similar
to the following window:

Figure 202. Cookie Set Warning

� Check for certificate revocation

206 Internet Security in the Network Computing Framework

If you check this item MSIE will check the Certificate Revocation List, managed
by the CA of a certificate, before accepting the certificate as valid.

� Do not save encrypted pages to disk

If you use MSIE from a server, or you share your PC, checking this item will
prevent secured forms (now decrypted) from being saved to the hard disk
where they could be seen by others.

� Delete saved pages when browser closed

Checking this item will clear the page cache when the browser is closed. This
is important, again, if you use MSIE from a server or if you share your PC.
Checking this box will prevent confidential information that you could have
gathered using your browser from being seen by other people.

 5.1.3 Sun HotJava
Sun's HotJava browser is a Java application. The version we tested was HotJava
1.1.2. It can be run from any platform that supports the JDK 1.1. Sun provides
specific launchers for the Windows platform so that users do not have to know the
specifics of launching it from the JDK, and Sun also provides a Java Runtime
Environment (JRE) with the browser for the Windows platforms so that the browser
can be run without the JDK. Notice that since HotJava runs on JDK 1.1, it has a
limited security model, that of JDK 1.1 (see 2.2, “The Evolution of the Java Security
Model” on page 10).

The security features are configured in HotJava by clicking Edit on the menu bar,
and then selecting Preferences , as seen in the picture below.

 Chapter 5. Client-Side Security Technical References 207

Figure 203. HotJava Browser - Edit - Preferences

The first security item on the Preferences menu is a page dealing with CA listings
for server certificates as shown below. This page is named SSL Preferences.

208 Internet Security in the Network Computing Framework

Figure 204. HotJava Browser - SSL and Certificate Settings

With the Trust as Certificate Authority check box marked, incoming certificates
for SSL connections signed by the CA specified are verified and the SSL session is
connected. SSL connections from certificates signed by these CAs are trusted
even though the Trust SSL connections check box is not marked.

Next, we show what happened when we tried to connect to our test Web server
with an SSL connection, by typing https://wtrð5ð87 on the URL line of the
browser. We received the warning shown in the next picture.

 Chapter 5. Client-Side Security Technical References 209

Figure 205. HotJava Browser - SSL Connection Request

As can be seen, we are given the opportunity to trust this self-signed certificate
now or always, by pressing Trust Now? or Trust Always? respectively. This
dialog appeared because the secure Web server we had invoked or the entity that
signed its certificate were not listed in Figure 204 on page 209. Notice that both
the entity who holds the certificate and the signer information are shown. You can
also erase the connection by clicking on Cancel . To test what would happen, we
clicked on Trust Now? the first time. We received a connection error shown
below.

210 Internet Security in the Network Computing Framework

Figure 206. HotJava Browser - Connection Error

This connection error was generated because the host name used in the URL,
wtrð5ð87, did not match the fully qualified host name WTRð5ð87.itso.ral.ibm.com
supplied in the certificate. We changed the host name request in the URL as you
can see in the next picture, and reloaded the page. Again we received the warning
message shown in Figure 205 on page 210. This time we clicked on the Trust
Always? button, and the connection was made as shown in the following picture.

Figure 207. HotJava Browser - SSL Connection Successful

Next, we returned to the SSL Preferences page to see that the certificate from our
test server had been added to the list. Neither the Trust SSL connections , nor
the Trust as Certificate Authority boxes could be checked.

 Chapter 5. Client-Side Security Technical References 211

Figure 208. HotJava Browser - New Server Certificate Added

We were advised to verify the certificate, and change the details by clicking on the
Details button below the list of CAs. The details for our test Web server certificate
are shown in the next picture.

212 Internet Security in the Network Computing Framework

Figure 209. HotJava Browser - Certificate Details

There is no program to verify the fingerprint of the certificate. You are expected to
contact the owner of the certificate and verify the certificate by some other means.
When the fingerprint of the certificate is verified, the box Fingerprint verified at the
bottom can be checked. Once the fingerprint is marked as verified, the certificate
can be marked as trusted for SSL connections, by clicking Trust SSL
connections . This is shown below.

 Chapter 5. Client-Side Security Technical References 213

Figure 210. HotJava Browser - New Server Certificate Trusted

The next time an SSL connection is made to this server, there is no warning
because the server is trusted.

Next we will look at the Applet Security Preferences window. We will notice that
the Sun HotJava browser provides the user with a more extensive capability to
configure applet security than Netscape Navigator and Microsoft Internet Explorer.
The Applet Security Preferences window is accessed from the Edit pull-down menu
as shown in Figure 203 on page 208. The next picture shows the basic Applet
Security Preferences page.

214 Internet Security in the Network Computing Framework

Figure 211. HotJava Browser - Basic Applet Security

On this page, you are allowed to set security levels for signed and unsigned
applets.

 � Untrusted

Applets are not permitted to run.

 � High Security

Applets are blocked from unsafe actions.

 � Medium Security

Applets will run with safe constraints and you are prompted for actions which
might otherwise be restricted.

 � Low Security

Applets are given the most freedom on the system with a low security setting.
You are not prompted for any applet actions. This option can be selected only
for signed applets.

The next picture shows the Advanced Security Preferences window. You get to
this page by clicking on the Advanced button at the bottom of the basic page.

 Chapter 5. Client-Side Security Technical References 215

Figure 212. HotJava Browser - Advanced Security Preferences

Here you are able to set System Permissions , Access to Files and Network
Access for applets from specific host names or from groups. In Figure 212 we
have added a host name and a group to be able to see the security settings.

You can see the types of system permissions that you can grant to applets for
access to the system in Figure 212. Next are the choices for file and directory
access.

216 Internet Security in the Network Computing Framework

Figure 213. HotJava Browser - Applet File Control

These settings allow you to specify what files and directories applets from the listed
groups or servers can access. File access can be read and write. A particular
case of write access is delete. You might want to select Warn when applet tries
to delete a file , in order to be informed before a file is removed by an applet.

In the next picture we see permissions which may be given applets for network
access.

 Chapter 5. Client-Side Security Technical References 217

Figure 214. HotJava Browser - Network Access Control

Allowing an applet to listen to a port allows it to accept an incoming connection.
Applets can also be given permission to connect to specific sites, and to accept
connections from specific sites. You can also see that warnings are set by default
for requests to connect to incoming and outgoing sessions.

5.2 The Java Applet Programming Model for NCF Developers
The Java sandbox defines a set of security restrictions within which all untrusted
code runs. Untrusted code that attempts operations outside of these constraints
causes a SecurityException to be thrown. Therefore, any code requiring
extra-sandbox privileges will need to be trusted.

Trust can be granted to code by various means, usually by being in a signed
archive (JAR for Netscape Communicator, Sun HotJava and base JDK platforms;
CAB for Microsoft Internet Explorer) or by having the classes be in the system
classpath. In Internet Explorer 4.0 and Navigator 4.0, although privileges can be
granted to code in signed archives, they are not always enabled. In Navigator, all
extra-sandbox permissions must be explicitly enabled when needed, by calling a
vendor-specific API. This is also true in Internet Explorer for calls from untrusted
sources. This includes calls from script, as well as an applet's start(), stop(), init()
and destroy() methods.

In order to enable already granted privileges, you will need to make calls to the
Microsoft and Netscape security APIs. This section will help you identify when you

218 Internet Security in the Network Computing Framework

need to make those changes, how to make them and how to avoid some security
hazards that such changes might inadvertently introduce into your code.

5.2.1 Internet Explorer's Security Model
In Microsoft Internet Explorer 4.0, applets are by default untrusted and have only
sandbox permissions. To get out of the sandbox, the classes need to be in a
signed CAB or be on the classpath. A CAB can be signed with specific requested
permissions, such as file I/O or printing, or one of three sets of permissions, called
high, medium and low.

When the HTML file is parsed and the applet is downloaded, its digital signature is
examined and, depending on which Security Zone your applet belongs to, and how
the security configuration is set for the browser, the applet is either automatically
granted these requested permissions, granted/denied based on user
acknowledgment, or automatically denied.

Note that these permissions are granted, but not necessarily enabled (ready to
use). When an attempt is made to acquire a guarded resource, it is enabled, if a
stack walk shows that all classes on the stack have also been granted that
particular permission and none has revoked that permission, or if the privilege has
been specifically asserted.

This is to prevent less-trusted code from calling more-trusted code and in doing so
gain extra privileges, preventing the so-called luring attack.

Permissions that have been granted can also be explicitly enabled by calling a
method in a class that ships with Internet Explorer 4.0:

com.ms.security.PolicyEngine.assertPermission(com.ms.security.PermissionID.MSIE_TARGET);

where MSIE_TARGET is one of several predefined values, like EXEC, FILEIO, NETIO,
PRINTING, MULTIMEDIA, etc. The complete list is at
http://www.microsoft.com/java/sdk/20/packages/security/permissions/default.htm.

When a permission is enabled in this way, access to the guarded resource is
permitted in the thread of the calling function, until the function returns.

One important twist to this is that the applet's start(), stop(), init() and destroy()
methods are all considered untrusted, since they are called by the browser. So, if
you need extra-sandbox permissions in these functions, you will need to call
PolicyEngine.assertPermission() to enable them.

5.2.2 Netscape Navigator's Security Model
Similar to Internet Explorer 4.0, Netscape Navigator 4.0 runs unsigned (untrusted)
classes in the sandbox. Although being in a signed JAR file can grant the code
additional privileges, none are automatically enabled. Netscape requires that the
applet in all cases explicitly requests extra-sandbox privileges. For example:

netscape.security.PrivilegeManager.enablePrivilege("NN_Target");

The first time the above code is executed in a session, a dialog will surface
prompting the user to approve or deny the access. The privilege remains enabled
for the calling thread until the function that requested the permission returns.
Subsequent calls to enablePrivilege() for the same target will be automatically
approved or denied (no dialog) based on the user's response to the initial dialog.

 Chapter 5. Client-Side Security Technical References 219

In the above method call, NN_Target represents a Netscape-defined System target.
The complete list of all the Netscape-defined System targets can be found at
http://developer.netscape.com/library/documentation/signedobj/targets/index.htm.

 5.2.3 In Summary
To escape the sandbox, you need to be on the classpath or in a signed archive. In
addition, Netscape requires you to explicitly enable any privileges you need before
you can exercise them. With Internet Explorer this is true only in cases where an
untrusted class is on the call stack, such as calls from script and calls from the
browser (start(), stop(), init(), destroy()).

The following lines of code show what you should do to run your applet under
Netscape Navigator and Microsoft Internet Explorer, to exercise all functionality and
throw no SecurityException exceptions.

try
{
 com.ms.security.PolicyEngine.assertPermission(com.ms.security.PermissionID.MSIE_TARGET);
 netscape.security.PrivilegeManager.enablePrivilege("NN_Target");

 ... // try to acquire the resource
}

catch(SecurityException e)
{
 ... // deny access
}

finally
{
 netscape.security.PrivilegeManager.disablePrivilege("NN_Target");
 com.ms.security.PolicyEngine.denyPermission(com.ms.security.PermissionID.MSIE_TARGET);
}

Figure 215. How to Enable and Disable Privileges in Navigator and Internet Explorer

Remember, as a security guideline, that you need to clean up all the privileges you
enabled. Don't have a path that returns from your function and leaves a privilege
enabled. Always match a call to enable with a call to disable, as shown in
Figure 215.

Moreover, you should never ask for all permissions if you only need access to a
single file, or assert permission randomly in the code, just to be safe.

Other security guidelines to get the applets to work in a trusted environment will be
shown in the next section.

5.2.4 Avoiding Security Hazards
Security hazards can be broken into four categories:

1. Integrity attacks, such as unauthorized modifications to files and threads

2. Disclosure attacks, such as revealing ordinarily private information or files

220 Internet Security in the Network Computing Framework

3. Denial of service attacks, such as crashing or hanging our applets, the JVM,
the underlying operating systems or the server

4. Annoyance attacks, such as displaying unwanted files or other mischievous
behavior

We will show now how it is possible to ensure that our applets avoid the more
common and more dangerous security hazards. This means that we will
concentrate our efforts on shallow integrity and disclosure attacks.

An attack is likely to come through the front door, meaning through public methods
on your applet's class (and public static methods on any public class). At minimum
we need to examine all such methods and classify them in one of the following four
ways:

1. The method does not need to be public, so it could be changed to private,
protected or default access.

2. The method is absolutely safe or, in other words, it does not use directly or
indirectly any extra-sandbox privileges and does not reveal private data.

3. The method is reasonably safe, so that it uses extra-sandbox privileges in a
limited fashion, constrained so as to be, in practice, safe.

4. The method allows straightforward malicious use.

You can use the javap command line utility from the JDK, with the option -public,
to generate a list of all public methods on your applet's class. If your applet is like
most, you have too many public methods. You can probably save yourself a lot of
work by simply changing some of the methods to private, protected or default
access.

For example a method like this is very dangerous:

public void deleteFile(String path)
{
 try
 {
 com.ms.security.PolicyEngine.assertPermission(com.ms.security.PermissionID.FILEIO);
 netscape.security.PrivilegeManager.enablePrivilege("UniversalFileAccess");

File file = new File(path)
 file.delete();
 }

 catch(SecurityException e)
 {
 e.printStackTrace();
 }

 finally
 {
 netscape.security.PrivilegeManager.disablePrivilege("UniversalFileAccess");
 com.ms.security.PolicyEngine.denyPermission.(com.ms.security.PermissionID.FILEIO);
 }
}

Figure 216. A Dangerous Public Method

 Chapter 5. Client-Side Security Technical References 221

Because the deleteFile() method is both public and enables its own privileges, it
can be called from untrusted malicious code, such as a script or another Java
applet on the page to get permissions it itself did not have. Because the function is
so general and powerful, it is especially dangerous. Better is to make the
deleteFile() method private or move the privilege assertions to a private function
which then calls a public deleteFile().

In case you are developing a Java bean (see the IBM redbook Network Computing
Framework Component Guide, SG24-2119), the BeanInfo interface is used to list all
the methods that your bean advertises to a builder, so these methods need to be
public. Otherwise, you may be able to reduce your exposure considerably by
constraining access for the remaining methods. Next, take a look at the remaining
public methods, identify those methods that can run in the sandbox and only call
methods that run in the sandbox. These may be considered absolutely safe,
provided these additional conditions are met:

� The method should not return sensitive data, such as the user's name, IP
address or any other personal information.

� The method should not return an object, unless all of its public methods are
also absolutely safe.

� The methods should only trust its input parameters, since they may be tainted.
For example if

setFileName(String name)

is a public method that sets an internal file name variable, but that variable is
used at shutdown as the name to save the file to, then the public method:

setFileName(String name)

is equivalent to:

saveFile(String name)

and should be treated as such.

Methods that have been deemed absolutely safe require no further treatment. For
the remaining public methods, you will need to make a judgement call and estimate
what would be the overall security risk of allowing unrestricted access to this
function from untrusted users. A security guideline could be the following: a
method is reasonably safe if it uses extra-sandbox permissions, but it can do
nothing malicious, regardless of the state of the applet as configured through input
parameters to that method, or via other public methods.

It is generally believed that a function like this:

boolean loadDocument(String name)

is reasonably safe, if all it does is make an URL from name and load it into the
applet's workspace. There is a slight privacy concern, since a malicious applet
could use it to look at your file system to see whether a file of a given name exists,
but even that could be acceptable. Other safe variations on loadDocument() are:

 � boolean loadDocument()

This variation is reasonably safe, if it brings up a file dialog, so the user has to
choose the file.

� boolean loadDocument(InputStream in)

222 Internet Security in the Network Computing Framework

This variation is absolutely safe, since the security check occurs when the
stream is opened.

A variation on the loadDocument() method that is not reasonably safe is the
following:

InputStream loadDocument(String name)

A malicious program could use this method to send data back to the server.

Once you have identified the reasonably safe methods, you have two tasks:

1. Make calls to the browser's security APIs to enable privileges for the method
(see Figure 215 on page 220).

2. Add a line to the javadoc comment for the method to indicate what privileges
the method is assuming. For example:

/\\
 \ Loads a document into the workplace
 \
 \ @param name the URL of the document to open
 \ @return true if success, false if failure
 \
 \ @exception SecurityException if you do not have permissions to read from the file
 \/

public boolean loadDocument(String name)

Figure 217. Describing the Method with in a javadoc Comment

The idea is this: if we have a signed applet with all the privileges, we want to
enable these privileges for all the reasonably safe scripting methods. However, if
the applet is untrusted, we will throw a SecurityException.

Once the reasonably safe methods have been taken care of, we move onto those
remaining methods, the potentially dangerous ones. For these, we will need to
document them in the javadoc comment, as described in Figure 217, but we will
not make calls to enable the privileges. Instead, we will require that the caller of
these methods does the enabling. Any method that could be used maliciously in a
rather transparent manner should be treated in this way. For example, as we have
already discussed, a setFileName() method that takes the name of a file and saves
to it is dangerous and falls in this category.

5.2.5 How to Test
You will want to test that, in the process of making these changes, you haven't
broken the full functionality of the applet. The following should be verified at this
point:

� In a trusted environment, all functionality should work from the user interface
with no SecurityException exceptions.

� In an untrusted environment, all script methods documented as absolutely safe
should work.

� In a trusted environment, all script methods documented as absolutely or
reasonably safe should work.

 Chapter 5. Client-Side Security Technical References 223

� In a trusted environment, all script methods, including the dangerous ones,
should work when called from another trusted (signed) applet on the page.

You also need to define exactly what, if anything, your applet does in an untrusted
environment. Once you have a functionality definition, then you will need to verify
that your applet can provide this functionality and prevent or handle user interface
requests for functionality that cannot be done in the sandbox.

The first step is to verify that all attempts to acquire a guarded resource are done in
a try{} block, with SecurityException being caught and handled (see Figure 215
on page 220). The rest is user interface work, targeted at how well you
communicate to the user, through the user interface, what functionality is available
in an untrusted environment.

5.2.6 Code Signing on Different Platforms
We want to conclude this section mentioning another problem that Java developers
must consider, in terms of code portability. The developer of a Java applet who
wants to use the trusted Java applet security model must be aware that signature
formats vary from platform to platform.

If the signed applet needs to run on Netscape's JVM implementation, then the
applet developer should put the code in a JAR file (see 2.5.1, “The jar Utility” on
page 29), signed using a VeriSign Certificate for Object Signing. The signature
format for Netscape is RSA.

If the applet is to run on a HotJava-based environment, the code must be put in a
JAR file as well, but it is signed using a self-signed certificate created by the
javakey tool. The signature format in this case would be DSA and not RSA.
Similar considerations apply for base JDK 1.1 and 1.2, unless you add the
providers to support RSA (see our discussion in 2.5.2, “The keytool Utility” on
page 29 and 4.1.2, “Users” on page 128).

If the platform where the applet will run is Microsoft Internet Explorer, the code is
put in a CAB file for Internet Explorer and it is signed using a VeriSign Certificate
for Authenticode. Note that this certificate is different from the one used with
Netscape. The signature format in this case is RSA.

These differences generate several problems for applet developers who want to
write code that is portable across the platforms. They often have to deploy three
different versions of any page hosting a trusted (or even untrusted) Java applet.

5.3 Interacting with Signed Java Applets
What we will say in this section is strictly related to Java 1.1, since at the time this
book went to print JDK 1.2 was still in beta and no Web browser supported the new
version yet. Detailed information on the Java 1.2 security model, even if based on
the beta version we worked on, can be found in Chapter 2, “The New Java 1.2
Security Model” on page 9.

We have shown in Figure 179 on page 182 that Navigator offers a simple ability to
enable or disable Java and JavaScript. Similar settings are present in Microsoft
Internet Explorer too. In the JDK 1.1 security model (see 2.2, “The Evolution of the
Java Security Model” on page 10), unsigned applets can only run in a sandbox and

224 Internet Security in the Network Computing Framework

cannot perform most file system access or file I/O routines. There are times,
however, when you might want to grant a Java applet more access to your system.
For instance you would like a specific Java applet to be granted the ability to
update certain files stored in the hard disk of your computer. For security
precautions, Netscape Communicator, Microsoft Internet Explorer and Sun HotJava
support the trusted Java applet security model, which is based on JDK 1.1. A
signed applet is one that will not be downloaded to your system unless you
approve a security digital certificate that identifies the sender of that applet.
Similarly, signed JavaScript files will not be executed until you approve the sender's
digital certificate. The digital signature process is used to show integrity and
ownership of the signed code when permission is requested. Moreover, if a Java
applet or a JavaScript file wants to perform some particular function that could be
considered risky, since it could compromise the security of your system, you will be
asked to approve this action too. A special security alert asks you to approve a
digital certificate and also to permit a specific type of access to your system.

The end user who executes the applet is given the chance to grant or deny the
permissions needed for the applet to carry out its tasks. This permission can be
granted on a one-time basis, or the JVM can remember the permissions on a
permanent basis. An example of use on a permanent basis might be IBM Host
On-Demand, the telnet 3270 client included with Netscape Communicator.

Figure 218. IBM Host On-Demand Connection Screen

The first time Host On-Demand is loaded using Netscape Communicator,
permission is asked (you will see a request similar to Figure 221 on page 227)

 Chapter 5. Client-Side Security Technical References 225

because the Java terminal emulator is being used to connect to another host. If
you grant the requested permission, the communication is established.

Figure 219. IBM Host On-Demand Running After Granting Permissions

The trusted Java applet or JavaScript file security model would allow a Java applet
on a Web page to be used to install or update an application on the end user's
hard disk.

Netscape has implemented this model for an installation program used to upgrade
the JVM level in Netscape Communicator. We connected to the Netscape Web
site and followed the links to SmartUpdate at
http://home.netscape.com/download/su1.html.

226 Internet Security in the Network Computing Framework

Figure 220. Netscape Patches Download Page

SmartUpdate is an application that requires client authentication, and so you must
register before it can be used. When we selected to upgrade the Java on our
system we received the following warning.

Figure 221. Trusted Code Warning

In the picture above, notice that the applet will tell you what it wants to do. In this
case, the alert panel will let you select among the following options:

 � Certificate

 Chapter 5. Client-Side Security Technical References 227

Click on this button to view the details about the digital certificate of the entity
that signed the code. All the information about that digital certificate will be
displayed:

Figure 222. Digital Certificate

 � Details

Click on this button to view more information about the special access this
signed code is requesting. The Java Security's Target Details window will be
brought up:

228 Internet Security in the Network Computing Framework

Figure 223. Java Security's Target Details Window

As you can see, this box lists exactly what access privileges the application is
requesting. It is a good security measure to read these privilege requests
before granting them.

 � Grant

Click on this button to grant these specific privileges only for this Communicator
session.

� Remember this decision

Mark this check box at the bottom of the page before clicking Grant , in order to
grant any signed Java applets or JavaScript files from this same originator the
specific privileges requested. In this case the digital certificate is saved to your
system and these same privileges will be granted in future Communicator
sessions as well.

 � Deny

Click this button to deny the specifically requested privileges. No Java applet
will be downloaded to your system and no JavaScript script will be executed.

We pressed the Grant button after viewing the certificate and reading the
permissions requested. Then the code proceeded to transfer the upgrade and
perform the installation. As we showed in Chapter 2, “The New Java 1.2 Security
Model” on page 9, the permissions model in the JDK 1.2 will have more granular
controls for granting or denying specific permissions to applets. Unsigned applets
also will be enabled to receive privileges, and things will be different for local code
as well, since by default it will no longer be granted all privileges.

We have seen in Figure 185 on page 188 how you can grant or deny specific
privileges to Java applets or JavaScript files signed by a particular entity, whose

 Chapter 5. Client-Side Security Technical References 229

certificate appears in the certificate list. That list was empty since no Java applet
or JavaScript file signer had been registered to our system yet. If you mark the
Remember this decision check box before granting the permission, the digital
certificate of the organization or individual distributing this signed code is saved to
your system. We tried this and we noticed that, from that moment, the digital
certificate of Netscape Communications Corporation was visible in the digital
certificate list of the Java/JavaScript panel.

Figure 224. Java/JavaScript Panel - Digital Certificates Already Approved

This list gives you the opportunity to change access privileges you granted, on a
certificate-by-certificate basis at any time. If you select a certificate from that list,
you can use the buttons on the right to do one of the following tasks:

 � View Certificate

Click this button and you will have a detailed view of the certificate, similar to
Figure 222 on page 228.

 � Remove

Click this button if you want to remove the highlighted certificate from the list.
Java applets and JavaScript files signed from this point of origin will no longer
be downloaded and executed on your system. Instead, you will be presented
again with the option of approving a digital certificate.

 � Edit Privileges

Click this button for the Edit Privileges page, shown next:

230 Internet Security in the Network Computing Framework

Figure 225. Edit Privileges Page

In this dialog box, you can select which specific privileges you want to grant for
this session only or for any future sessions. You may also be able to deny
specific privileges. Clicking the More Info... button, you will be able to get
more specific information about the permission requested:

Figure 226. More Information About the Access Required

Let's see again Figure 221 on page 227, Figure 223 on page 229 and
Figure 226. You can read that the security risks that we ran allowing a signed
code to install a new product on our system are considered by Netscape high.

 Chapter 5. Client-Side Security Technical References 231

Netscape provides three risk level categories:

 1. High risk

A major security attack is possible, permitting severe damage to your system or
data. Major violation of privacy is possible, such as reading any information
from hard disks connected to your computer. Very significant permissions may
be requested, such as establishing a connection over the network to a remote
computer.

 2. Medium risk

Major violation of privacy is possible, such as reading any information from a
hard disk connected to your computer. Some significant services may be
requested, such as writing files on a hard disk or sending e-mail on your behalf.

 3. Low risk

Minor violation of privacy is possible, such as reading your user ID. Relatively
minor services may be requested, such as writing a single file to a specified
non-critical directory on a hard disk connected to your computer.

Unfortunately this differentiation is often useless, since almost all applets want to
read or write to the hard disk, and they all would fall into the high risk category.

We recommend at this point that you read the detailed explanation on signed and
unsigned applets in the new Java 1.2 security model, that you can find in 2.7,
“Applets in the New JDK 1.2 Security Model” on page 52.

5.4 How to Manage Client Certificates
In this section we will see the main uses of client certificates.

5.4.1 Obtaining a VeriSign Evaluation Certificate
If you need a certificate to authenticate yourself on the Web and in electronic mail
messages, VeriSign offers a service that allows you to obtain free evaluation
certificates. The same certificate can also be used for form signing (see 5.4.5,
“Using Certificates with Form Signing” on page 243). Follow the steps in this
section to obtain your own personal Class 1 evaluation certificate (a discussion on
different classes of VeriSign digital IDs is in 5.1.1, “Netscape Navigator” on
page 181).

1. Click on the Security button from Netscape Navigator's main menu.

2. Click on Yours under the Certificates item in the Security Info list.

232 Internet Security in the Network Computing Framework

Figure 227. Netscape Security Configuration Panel

3. Click on Get a Certificate . Communicator connects you to
https://certs.netscape.com/client.html. The Certificate Authority Services page
offers several choices to obtain a digital certificate.

4. Click on the VeriSign link. Communicator connects you to the VeriSign home
page.

5. Select Digital ID - Browsers and then click on Go.

6. Communicator takes you to the Digital ID Center at VeriSign. Click on Enroll
Now to enroll for your trial certificate and get your VeriSign digital ID.

7. On the next Web page, you select the type of digital ID you require. Click on
the Netscape icon.

8. Communicator sends you to the Digital IDs for Browser Web page. Click on
Class 1 Digital ID to get a Class 1 evaluation certificate (valid for 60 days). If
this is not offered, try https://digitalid.verisign.com/class1Netscape.htm.

9. Next you must provide the information necessary to enroll for your certificate.

 Chapter 5. Client-Side Security Technical References 233

Figure 228. VeriSign Certificate Registration Page

10. We recommend that you do not use your preferred name. Instead, use a
similar name, but one you do not mind discarding at a later date. The reason:
when you decide to upgrade to a full-service digital ID, you will not be able to
upgrade a trial ID. Instead, you will have to enroll for a new digital ID. And
because names must be unique, you cannot use the same name for your
full-service digital ID.

11. Enter your correct e-mail address in order to receive the required reply from
VeriSign.

12. Read the Digital ID Subscriber Agreement. If you agree to be bound by the
terms and conditions, click on Accept .

13. Communicator now wants to generate a private key for your certificate. This
private key will be used along with the certificate you are requesting to identify
you to Web sites and via e-mail. During the process of generating the private
key, Communicator offers you the possibility to protect your private key with a
password.

14. Click on OK to begin the process of generating your certificate. You must
await an electronic mail message from VeriSign with your digital ID PIN.
Meanwhile, Communicator takes you to a Web page that indicates that your
enrollment is complete.

15. Wait now for an e-mail from VeriSign.

16. Reading the e-mail, when it arrives, you may now connect to
https://digitalid.verisign.com/getid.htm as instructed.

234 Internet Security in the Network Computing Framework

Figure 229. VeriSign Certificate e-mail

17. The secure Web page that you get is the Digital ID window. Notice that the
e-mail that VeriSign sends you does not contain your certificate. It wouldn't be
safe to send it via e-mail. It contains instead a unique, personal 32-character
digital ID PIN, that you must cut and paste or type in the Digital ID PIN window.
Security and confidentiality are granted by the fact that you access this Web
page through the SSL protocol and that the certificate is not issued unless you
use the same computer with which you started the process.

 Chapter 5. Client-Side Security Technical References 235

Figure 230. VeriSign Certificate Get ID Page

18. Then you can click SUBMIT. When your new user certificate is issued
successfully, you see a screen that says you have received your new
certificate.

Figure 231. Netscape Certificate Receipt

19. You can click on Show Certificate to see the particulars or OK to exit this
window.

236 Internet Security in the Network Computing Framework

20. Communicator suggests that you should make a copy of your certificate. You
can accept this security measure or click Continue to bypass this step.

Figure 232. Netscape Certificate Save Information

21. Your digital ID is now established.

Figure 233. VeriSign Certificate Installation Complete

 Chapter 5. Client-Side Security Technical References 237

Now, return via the Security button to the Security Info window and once more
click on Yours under the Certificates item. You should see the certificate just
obtained now in the list box. You can also View or Verify your certificate.

5.4.2 Using a Certificate to Access Secure Web Sites
Now that you have a digital certificate installed on your browser, you can easily
access secure Web sites using the new certificate. The following Web sites are
non-secure, but they contain links to secure Web sites, that require that both client
(your browser) and server (the Web site) present their digital IDs. If you try to
access them, you can experiment with your new certificate. Then, clicking on the
Security icon on the Navigator window, you can see the certificate provided by the
Web site you accessed.

 � http://www.verisign.com/demos/index.html

 � http://www.verisign.com/showcase/index.html

 � http://www.verisign.com/products/corporate/hr_demo/index.html

 � http://www.verisign.com/products/sites/job_demo/index.html

 � http://www.verisign.com/demos/inbox/index.html

 � http://www.virtualvin.com

 � http://www.bassandco.com/

 � http://form.netscape.com/ibd/html/ibd.html

Notice that Netscape Navigator caches security information after you access a
secure Web site and uses the cached information the next time you access the
same secure Web page. If you remove the digital certificate from your browser,
when accessing secure Web sites, you must restart Communicator to be denied
access to secure Web pages that you previously visited.

5.4.3 Using Certificates for E-Mail
Follow these steps to send a signed message to yourself:

1. Click on the Mailbox icon in the bottom-right corner of Communicator.

2. Click on the New Msg button.

3. Click on the Message Sending Options button and check the Signed check
box only.

4. Complete a message to yourself.

5. Click on the Send button.

6. When the message lands in your Inbox - Netscape Folder, open it and click on
the Signed stamp in the top, right corner of the message. Note that your
message was not encrypted but was signed as indicated in the resulting
Communicator screen.

Follow these steps to send a signed and encrypted message to yourself:

1. Once more, click on the New Msg button from within the Mailbox.

2. Through the Message Sending Options button, check the Encrypted as well
as the Signed check box.

3. Complete and send a message to yourself.

238 Internet Security in the Network Computing Framework

4. When the message lands in your Inbox - Netscape Folder, open it and click on
the Encrypted and Signed stamp.

5. Now you will see an indication that your message was encrypted and the
algorithm used to do so.

Follow similar steps to send messages to other persons.

5.4.4 How to Export and Import Certificates
When the key pair for a digital certificate is generated in the browser, the private
key of the key pair is stored in the browser's directory on the hard disk of the PC
that the browser is running on. If the user has both Netscape and Microsoft
browsers, and switches between them, a certificate created in one browser will not
be available in the other browser. There is a requirement on the user to
understand why they are not able to use an application with Netscape that they are
able to use with Internet Explorer because they received their certificate for the
application while using Internet Explorer.

However it is possible to export a certificate to a password protected file and import
that certificate to another browser. Of course the other browser can also be on
another computer, and in this case the file where you export the certificate must be
simply transferred to the other computer, and then imported to the new browser.
The tasks encountered here include:

� Exporting the certificate to a file (password required)

� Deleting the certificate export file after copying it to a diskette

� Deleting the certificate from the browser the user last left so that their certificate
is kept private

� At the new machine, gaining access to the browser Key Ring Organizer
(password required)

� Properly importing the certificate

As we will see, the certificate must be exported in the certificate format PKCS #12.

The Certificates section of the Netscape Communicator security page is used to
perform functions related to receiving and using digital certificates. You can see
5.4.1, “Obtaining a VeriSign Evaluation Certificate” on page 232 for information on
getting a certificate with the section labeled Yours. Figure 227 on page 233 also
shows the feature used to export a digital certificate to a file by selecting a
certificate and clicking on the Export button. This file is password protected so that
on the import operation, the password would be required as an additional security
measure for the certificate file. We will show the export steps next and show the
import steps with Internet Explorer 4.0, which we had installed on the same
machine. This export/import function might also be applied if you use more than
one browser, or if you must move from PC to PC.

Once you have selected the certificate to be exported and clicked on the Export
button, you may be asked for the password to the Netscape certificate database
(also known as Key Ring Organizer or KRO), depending on the options you set for
password access as shown in the configuration window in Figure 181 on
page 184. Next you will be asked for a password for the export file. This
password is very important because it will be also used to import the certificate in
Microsoft Internet Explorer.

 Chapter 5. Client-Side Security Technical References 239

Figure 234. Certificate Export Password

Then you will be asked to re-enter the password to confirm it. Next you will be
asked for a file name to export. The export files are given the .p12 extension by
default. This extension, that indicates that the certificate is in the format PKCS
#12, is the one that the import function will search for when you import your
certificate, so it is recommended that you not use a different extension.

Figure 235. Certificate Export File - Filename

When you click on the Save button the file is written, and you will see a notification
informing you that your certificate has been successfully exported. We see now
how that certificate can be imported into Microsoft Internet Explorer (MSIE). First of
all, you should open the Content page for the Internet Options configuration dialog,
as shown in Figure 198 on page 201. Then, you should click the Personal button,
found in the Certificates section, in order to see the list of all your personal digital
certificates. As you can see, we had none installed in the MSIE browser because
we had applied for and received all our certificates in the Netscape browser.

240 Internet Security in the Network Computing Framework

Figure 236. Client Authentication - Personal Certificates

When you click on the Import... button on the screen above, you are presented
with the following dialog. You are asked for the file name of the PKCS #12 file that
was created when you exported your certificate, and the password associated with
that file.

Figure 237. Import Personal Certificates

When you click on OK in the screen above, the certificate is imported and
displayed in the list of all your personal digital certificates.

 Chapter 5. Client-Side Security Technical References 241

Figure 238. Imported Certificate

If you click on the View Certificate... button, you can see the details of the
certificate in the following panel.

Figure 239. Certificate Properties

242 Internet Security in the Network Computing Framework

5.4.5 Using Certificates with Form Signing
We know that we can secure the data stream from the browser to the Web server
by using SSL to encrypt the data (see 3.1.2, “Lotus Domino Go Webserver SSL
Setup” on page 71). We can add additional authentication in this process by
requesting client side authentication and we can set Web server directives to use
client side authentication for access control to areas and pages on our Web server
(see 3.1.4, “SSL Client Authentication” on page 84). There is an overhead penalty
to pay for setting up and using SSL. The browser and server must go through the
process of authentication, and they must exchange a session encryption key. SSL
has an impact because additional data must be exchanged in terms of number of
packets and number of bytes to be transferred, which increases network traffic flow.
Recent research that shows the performance cost of implementing SSL instead of a
non-secure connection is shown at
http://www.ics.raleigh.ibm.com/capacity/example8.htm.

An alternative to encrypting the connection with SSL may be to use Form Signing.
If the information requested is not necessarily of a sensitive nature, this option may
work for you. Form Signing makes sure that the data is not changed between
origin and destination and it also ensures that it was sent by the owner of the
private key related to the digital certificate used for signing. The data from the form
is sent in clear text, and along with the form data, a signature of the data, created
in the browser, is also sent.

Beginning with Netscape Communicator 4.04, Netscape provided cryptographic
functions in the JavaScript interpreter of Communicator. Information about form
signing can be seen at
http://developer.netscape.com/docs/manuals/security/signver/index.htm.

We downloaded the zip file listed for Windows NT and we received the signature
verification tool. In the zip file were some sample HTML forms and Perl scripts to
use form signing and verification. We made some modifications in the samples to
get them to work on our Lotus Domino Go Webserver. The source of the HTML
page used is listed here.

 Chapter 5. Client-Side Security Technical References 243

<html>
<head>
<title>Form to sign</title>
<script language="javascript">
<!--
function submitSigned(form){
var signature = "";
var dataToSign = "";

 var i;

 form.action='/cgi-bin/signedForm.pl';
for (i = ð; i < form.length; i++)
if (form.elements[i].type == "text")
dataToSign += form.elements[i].value;

// alert("Data to sign:\n" + dataToSign);
signature = crypto.signText(dataToSign, "ask");
/\ alert("You cannot see this alert");
alert("Data signature:\n" + signature); \/
if (signature != "error:userCancel") {
for (i = ð; i < form.length; i++) {
if (form.elements[i].type == "hidden") {
if (form.elements[i].name == "dataToSign")
form.elements[i].value = dataToSign;

if (form.elements[i].name == "dataSignature")
form.elements[i].value = signature;

 }
 }
 form.submit();
 }
}
//-->
</script>
</head>

<body>
<form method="POST" action="/cgi-bin/form.pl">
<pre>
<input type=hidden size=3ð name=dataSignature>
<input type=hidden size=3ð name=dataToSign>
<input type=text size=3ð name=p>

<input type=text size=3ð name=q>

<input type=text size=3ð name=r>

<input type=submit value="Submit Data">
<input type=button value="Sign and Submit Data" onclick=submitSigned(this.form)
<input type=reset value=Reset>
</pre>
</form>
</body>
</html>

Figure 240. Source Code for signedForm.html

244 Internet Security in the Network Computing Framework

This form provides a Submit Data button and a Sign and Submit Data button, as
shown in the screen shot below.

Figure 241. Web Page for Form Data Signing

As you can see, this form uses the POST method. The function provided by the
Submit Data button simply retrieves the data entered in the text fields of the form
and sends it to the Web server without signing it. The Submit Data button calls
the form.pl Perl script listed here and that must be installed in the CGI-Bin directory
of the Web server. The function of form.pl just sends back to the browser the data
that you entered and some environment variables it collected from the browser.
This information is displayed on the client browser.

 Chapter 5. Client-Side Security Technical References 245

#!/perl/bin
print <<EOM;
Content-type: text/html

<html>
<head>
<title>
Sample of form processing
</title>
</head>
<body>
<pre>
EOM

$std_in = <STDIN>;
#print $std_in;
print "Server Name: , $ENV{'SERVER_NAME'},
, \n";
print "Server Port: ", $ENV{'SERVER_PORT'}, "
", "\n";
print "Server Software: ", $ENV{'SERVER_SOFTWARE'}, "
", "\n";
print "Server Protocol: ", $ENV{'SERVER_PROTOCOL'}, "
", "\n";
print "CGI Revision: ", $ENV{'GATEWAY_INTERFACE'}, "
", "\n";
print "Browser: ", $ENV{'HTTP_USER_AGENT'}, "
", "\n";
print "Remote Address: ", $ENV{'REMOTE_ADDR'}, "
", "\n";
print "Remote Host: ", $ENV{'REMOTE_HOST'}, "
", "\n";
print "Remote User: ", $ENV{'REMOTE_USER'}, "
", "\n";

print "You typed:\n";
@pairs = split (/&/, $std_in);

foreach $pair (@pairs) {
 ($key, $value) = split (/=/, $pair);
 $form_data{$key} = $value;
}

$firstline = $form_data{"p"};
$secndline = $form_data{"q"};
$thrdline = $form_data{"r"};

print "$firstline\n";
print "$secndline\n";
print "$thrdline\n";

print <<EOM;
</pre>
</body>
</html>
EOM

close OUT;

Figure 242. Source Code for form.pl

The top of the HTML source in Figure 240 on page 244 is JavaScript. This part of
the HTML is processed after pressing the Sign and Submit Data button. The
important line in the JavaScript section is

signature = crypto.signText(dataToSign, "ask");

246 Internet Security in the Network Computing Framework

This calls the JavaScript function to sign the form data before it is sent to the
signedForm.pl Perl script pointed to in

form.action='/cgi-bin/signedForm.pl';

This Perl script also must be installed in the CGI-Bin directory of the Web server.
When the Sign and Submit Data button is clicked, the browser accesses the
certificate database to use the private key for the signing operation. If the database
has not yet been accessed in this session, the user will be prompted for the
database password. The user is presented with the KRO and asked to sign the
data.

Figure 243. Netscape Key Ring Organizer

The Perl script, signedForm.pl, is listed below.

 Chapter 5. Client-Side Security Technical References 247

#!/perl/bin
#print "Content-type: text/html\n\n";
print <<EOM;
Content-type: text/html

<html>
<head>
<title>
HTML Page generated by signedForm Script
</title>
</head>

<body>
<h1>HMTL Page dynamically generated by signedForm</h1>
<pre>
EOM

sub decode {
read (STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

 print $buffer;
@pairs = split(/&/, $buffer);
foreach $pair (@pairs)

 {
($name, $value) = split(/=/, $pair);
$value =˜tr/+/ /;

$value =˜ s/%([a-fA-Fð-9][a-fA-Fð-9])/pack("C", hex($1))/eg;
$FORM{$name} = $value;

 print "name=$name value=$value
\n";
 }
}

&decode();

$dataSignature = $FORM{'dataSignature'};
$dataToSign = $FORM{'dataToSign'};

unlink("signature");
open(FILE1,">signature") || die("Cannot open file for writing\n");

print FILE1 "$dataSignature";

close(FILE1);
unlink("data");
open(FILE2,">data") || die("Cannot open file for writing\n");

print FILE2 "$dataToSign";

close(FILE2);

Figure 244 (Part 1 of 2). Source Code for signedForm.pl

248 Internet Security in the Network Computing Framework

print "
Signed Data:
", "$dataToSign", "
";

print "
Verification Info:
";

$verInfo = y./signver -D . -s signature -d data -vy;
$verInfo = y./cgi-bin/signver -D . -s signature -d data -vy;
print "$verInfo
";

print "
Signature Data:
", "$dataSignature", "
";

print "
Signature Info:
";

foreach $line (y./signver -s signature -Ay) {
foreach $line (y./cgi-bin/signver -s signature -Ay) {

 print "$line
\n";
}

print "End of Info
";

print <<EOM;
</pre>
</body>
</html>
EOM

close OUT;

Figure 244 (Part 2 of 2). Source Code for signedForm.pl

It takes the data from STDIN and parses it into variable and data elements with the
subroutine decode(). Next it writes the signature out to a file, and the data out to a
second file. This is necessary to use the verification tool. The line

$verInfo = y./signver -D . -s signature -d data -vy;

invokes signver.exe, the signing verification tool, with the files signature and data
as input. The other input variable, -D, points to the certificate data repository so
that the verification tool can retrieve the sender's certificate to use the public key.
We did get the signature and the data returned in a Web page.

 Chapter 5. Client-Side Security Technical References 249

Figure 245. Signed Form Data

Form signing is a powerful technique. It can for example be used together with a
servlet that would receive the PKCS #7 object created by the form signing
JavaScript to verify the form data as being genuine, and then act on the form. If
the digital certificate of the originator of the form was available, the public key could
be used to encrypt the information being returned. Now we could be sure that only
the person who has control of the private key related to the certificate, could view
the data.

5.5 Cookie Security Implications
In this section we will show you how cookies can be considered as a privacy
exposure rather than a security risk. What we will say in this section about cookie
security is based on information available to date. It could happen that new bugs in
some Web browsers are discovered that could make accepting cookies a danger
for your system.

Web cookies are simple pieces of information passed between the client Web
browser and the Web server during an HTTP transaction. The maximum size a
cookie can have is 4 KB.

Cookies do not contain any information about the client that the server does not
already know and they cannot do anything on the client machine that the client
itself cannot already do, provided the browser is within the specifications.

Cookies were introduced as an answer to a fundamental problem of the Web's
underlying HTTP 1.0 protocol: the lack of a state, or a persistent connection. The
way the HTTP 1.0 protocol operates is that the client initiates an HTTP transaction
by sending a request to a Web server (for example, it asks for a Web page), then
the server responds and after that the HTTP transaction is automatically closed. If

250 Internet Security in the Network Computing Framework

the client sends another request, there is no relation between the new request and
the previous one. This approach has its advantages, in that it allows a Web server
to serve many clients simultaneously, without incurring the overhead generated by
keeping several sessions opened with all the clients that initiated a request.
Moreover, since each request is independent of others, a secondary benefit is that
a page on a machine can link directly to another page on a completely different
machine, without any need for the user to log in or otherwise establish a session.
In other words, in a stateless connection model it does not matter where the
request came from or how the client found its way there. All the requests are
treated in the same way.

Unfortunately, a stateless connection does not allow a server to gather information
about the client it is responding to. For instance, in the context of a
password-protected session, a Web server cannot establish if a client has
permission to access restricted information; in the context of a shopping cart for an
online store, the Web server cannot know whether the client has selected items to
purchase; in the context of an online newspaper that allows users to specify which
types of articles they are most interested in, the Web server cannot establish if the
client has previously specified preferences.

Several solutions were constructed in order to solve this problem. Basic
authentication, for instance, enables password protection by utilizing the HTTP
header for the client to send additional information to the Web server. Various
Common Gateway Interface (CGI) scripts insert hidden information into a form
created on the fly, so that the form will return information specific to the particular
client's request. Several disadvantages exist for these approaches. For example
basic authentication is relatively easy to spoof, CGI scripts can get confused if the
user on the client machine presses the browser's Back button, etc.

A solution to this problem would be for the Web server to store the information
gathered from all the clients on some permanent storage. However this solution
was considered too expensive if implemented on the server-side, especially if a
Web site is contacted by a large number of users.

Cookies were developed to establish state by allowing the client and the server to
share exchanged information about each other. The first time a client visits a Web
site that serves cookies, the Web server sends a cookie to the client along with
some information about which URLs the cookie is valid for. The next time the client
visits one of those URLs, it knows that it has to include the current value of the
cookie in its request. This enables the server to possibly update the value of the
cookie and customize its response to the client. Since the cookie is stored on the
client machine, this solves, on the server-side, the problem of a too expensive
storage of information coming from multiple users. The cookie sent on the client is
information that allows the client and the server to establish a session. Notice that
this description is a simplification, since for example it is sometimes a JavaScript
file, running on the client machine itself, that sets the cookie on the client. In this
case, all the activity occurs on the client machine and the JavaScript file acts like a
proxy for the server.

There are several types of cookies. The first type was introduced by Netscape with
Version 2.0 of Navigator. This type of cookie is currently the most used. A slightly
different cookie is described by D. Kristol and L. Montulli in the Request For
Comments RFC2109 HTTP State Management Mechanism, that you can find at
http://info.internet.isi.edu/in-notes/rfc/files/rfc2109.txt. The basic process is the

 Chapter 5. Client-Side Security Technical References 251

same in each case: the server will set the cookie, send it to the client and then look
for it the next time the client issues a request to the same Web server. As we
mentioned, the same job done by the server can be done by a client-side script on
behalf of the server.

So, what can the security exposures be for a client when it receives a cookie from
a Web server? Cookies are pieces of information that the Web server stores in a
text file, named cookies.txt, that you can easily find under the browser directory. In
our Windows NT system, where both Netscape Communicator and Microsoft
Internet Explorer were installed, we found two files, both named cookies.txt, stored
below the Netscape and Internet Explorer root directories respectively. Cookies are
not programs that can cause the client machine to shut down, erase its hard disk,
corrupt its files or throw a virus. Furthermore, because a cookie is set by a Web
server or by a client-side script on behalf of a Web server, it doesn't contain any
information that the server (or the client-side script) does not already know or have
access to. So cookies are simply used to save some piece of information for later
retrieval. Of course, as we mentioned at the beginning of this section, what we are
saying now about the security implications of cookies is based upon current
information. It could be possible that bugs discovered in a browser, in the future,
can create problems. For example a concern about cookies was that Netscape
Navigator 2.0 allowed JavaScript to store a user's e-mail address in a cookie, which
could then be sent to a server. This was really a security exposure, since the rule
that cookies do not have to provide a server with any information about the client
that the server does not already know was bypassed. A Web server usually does
not know the e-mail address of the user on the client machine. This loophole
enabled the Web server to know something new about you and for example your
e-mail address could then be added to e-mail distribution lists you never asked to
belong to. However, this particular loophole was present in JavaScript and not in
the cookie mechanism, and it was closed with Netscape 2.01. However some
books still recommend to remove personal information, like your name and your
e-mail address, from within your Web browser before browsing the Web. If you use
your browser to access your e-mail, then you should re-enter that information into
your browser before you try to send or receive e-mail.

Problems like the one shown above have been solved, and now a cookie can only
contain the following:

� Standard information from the HTTP header, such as your IP address (that the
server already knows, since the Web server needs it to direct its response back
to the client), browser type and version and page previously visited.

� Information generated by the server or client-side script, such as a unique
session ID.

� Any additional information you have supplied in response to questions or forms,
such as items already ordered from an online shop.

Notice that all this information the server could construct with or without cookies.
Passing cookies is simply more easy, fast and convenient than maintaining and
analyzing large server logs. The convenience is for Web server administrators,
who can easily and quickly retrieve information about you and construct a
customized Web page based upon the information they retrieve. There is a
convenience for you as well, since next time you visit the same Web site that, for
example, asks you to register, you will not have to re-enter the same data: the Web
server simply retrieves the cookie it set on your computer and you are automatically
recognized. This happens for example with Microsoft's Web site,

252 Internet Security in the Network Computing Framework

http://www.microsoft.com. Before downloading code, you must register. Microsoft
stores user information in a cookie on the client machine. That information is then
retrieved the next time the user accesses their Web site.

Cookies offer another big advantage, because for multi-user machines, where a
number of people share the same IP address, cookies enable the server to
distinguish between the various browsers using that address, since each browser
maintains its own table of cookies. The same operation would be really more
complicated without the cookie support.

Most of the current concerns about cookies are related to an intrusion of privacy
that cookies seem to allow, since some advertising groups have started
constructing user activity profiles using cookies. On the basis of the data entered
by a user on a form the previous times the user visited a specific Web site, these
groups can quickly construct the user profile and send to the user customized Web
pages. For example, whenever you are at the AltaVista Web site
http://www.altavista.com and receive a cookie, it is probable that one of these
advertising groups is at work.

As mentioned above, however, all of this can be done anyway, with or without
cookies. The only difference is that with cookies this operation becomes easier and
faster.

We can conclude that cookies present a privacy exposure more than a security
risk. In order to prevent problems we recommend the following:

� Keep your browser version up to date. This is a general rule that can be
repeated in particular for cookie-related problems. Java and JavaScript, for
example, are evolving very fast and the leading browser manufacturers solve
step-by-step all the problems that arise.

� If you are concerned about your private information being distributed, do not
worry about cookies, worry about what information you provide in response to
forms or questions. Cookies will contain only that information that the server
already knows, so it's up to you not to provide untrusted Web servers with
private information.

� Rather than setting your browser to accept all cookies (which could be a
privacy exposure) or deny all cookies (which could cause you to re-enter
several times the same information, filling the same forms, etc.), you could
configure it to alert you before accepting a cookie. Notice that by default
Netscape Navigator enables all cookies. We showed how to modify the
settings for cookies in Figure 179 on page 182 for Netscape Navigator and
Figure 201 on page 205 for Microsoft Internet Explorer.

Of course it can become very annoying to receive so many warning messages
coming from all the Web sites that would like to set a cookie on your system
and ask your permission to do that. Since so many Web sites require that you
accept a cookie to access certain services, programs exist that can perform
filtering for you, allowing you to specify exactly what servers you will receive
cookies from. See for example Cookie Jar at
http://www.lne.com/ericm/cookie_jar.

� A privacy exposure for you is that if a Web site sends a cookie to your
computer, you cannot deny to have visited that Web site. The file cookies.txt
can be opened with a regular text editor. Although it carries a warning not to
edit it directly, you can safely delete entire lines and then save it if you see any

 Chapter 5. Client-Side Security Technical References 253

you do not want to keep. If you are using Netscape Communicator, just
remember to exit all the copies of Communicator currently running before
saving that file, or Communicator will overwrite the cookies.txt file when it shuts
down, deleting all your modifications.

If you edit and modify a single line of the cookies.txt file, but you do not remove
it completely, you may cause errors when you try to access Web sites that use
that cookie. It is interesting to know that if you delete the cookies.txt file, both
Netscape Communicator and Microsoft Internet Explorer will create a new copy
of the file on their next execution.

If privacy is your concern, then you should remember that not only the file
cookies.txt can keep track of all the Web sites you visited. It is well known, for
example, that to retrieve the sites you have most recently visited, it is enough to
enter

about:cache

in the Location box in Netscape Navigator. A new page will appear, showing all the
Web pages you have recently visited. If you visited Web sites containing private
information that you do not want to share with other people who use your same
machine, you should clear memory cache and disk cache before leaving your desk
or you can also set their values to ð KBytes. This operation can be done through
the Advanced Preferences window, as shown in Figure 247 on page 256. You
can also change the values for memory cache and disk cache by manually editing
the prefs.js file (see 5.6, “Netscape Navigator Hidden Security Preferences”).

5.6 Netscape Navigator Hidden Security Preferences
Netscape Navigator is the browser part of Netscape Communicator. We have
shown in 5.1.1, “Netscape Navigator” on page 181 how security-related
configuration information can be found in two places in Navigator. Some items are
found in the Preferences settings and some in the Security Information panels. We
present now a description of the so-called hidden security preferences, this name
coming from the fact that such security preferences cannot be configured through
any GUI.

For each user running Communicator, a local preferences file, named prefs.js, is
automatically installed in the directory Netscape_root\Users\user_name. This file is
a plain-text record of the user's current preferences.

The following figure shows the file prefs.js that we found under the directory
D:\Program Files\Netscape\Users\jsmith after having installed Netscape
Communicator and configured the profile for the new user John Smith:

254 Internet Security in the Network Computing Framework

// Netscape User Preferences
// This is a generated file! Do not edit.

user_pref("browser.startup.homepage_override", false);
user_pref("browser.window_rect", "ð,ð,632,48ð");
user_pref("custtoolbar.personal_toolbar_folder", "Personal Toolbar Folder");
user_pref("editor.author", "John Smith");
user_pref("ldapList.version", 1);
user_pref("ldap_1.directory1.filename", "abook.nab");
user_pref("ldap_1.directory2.filename", "XðHCMB9M.nab");
user_pref("ldap_1.directory3.filename", "XV496L8B.nab");
user_pref("ldap_1.directory3.searchBase", "c=US");
user_pref("ldap_1.directory4.filename", "Xð44F5OH.nab");
user_pref("ldap_1.directory5.filename", "XðLC7LJð.nab");
user_pref("ldap_1.directory6.filename", "XVS29DR1.nab");
user_pref("ldap_1.end_of_directories", "8778368");
user_pref("mail.identity.useremail", "jsmith@company.com");
user_pref("mail.identity.username", "John Smith");
user_pref("mail.pop_name", "jsmith");
user_pref("news.show_pretty_names", true);
user_pref("taskbar.floating", false);
user_pref("taskbar.x", 634);
user_pref("taskbar.y", 8);

Figure 246. prefs.js Preferences File for the User John Smith

Notice, however, that this figure shows the prefs.js file as soon as Communicator
has been installed and John Smith has defined himself as a Communicator user.
Once John Smith starts to configure his Communicator, this file becomes pretty
huge. For example it will contain the names or IP addresses of mail, discussion or
proxy servers and their secure port numbers. To an intruder these preferences
could offer information on both the client itself and the network. Moreover, if an
intruder were able to access this file, he could disable password protection or
automatically copy sent mail to an accessible location on the network. For this
reason, the prefs.js file should be kept protected in all the ways offered by the
operating system where Communicator has been installed.

Each preference that the user sets through the GUI of Communicator is
automatically registered in the corresponding user's prefs.js file. This is the reason
why in the first line we can read that it is a generated file. The hidden security
preferences, however, since for them no GUI was built into Communicator, can be
configured only through the prefs.js file, even if Netscape recommends that we
shouldn't edit that file directly.

For example, some network administrators consider it a security matter to make all
users in the network disable memory cache and disk cache, since cached pages
could contain copies of documents recently viewed on secure sites (such as, for
example, Payroll or Human Resources). Memory cache and disk cache can be
disabled through the Advanced Preferences window provided by Communicator:

 Chapter 5. Client-Side Security Technical References 255

Figure 247. Netscape Advanced Preferences Window - Cache Settings

Default values are 1ð24 KBytes for Memory Cache and 768ð KBytes for Disk Cache
and to disable them the user must set both those values to ð KBytes. As soon as
the default values are changed, the following two entries immediately appear in the
prefs.js file:

à ð
user_pref("browser.cache.disk_cache_size", ð);
user_pref("browser.cache.memory_cache_size", ð);

á ñ

Most of the preferences that you can set through the prefs.js file have no interface
built into Communicator, since they are not considered useful for a common end
user. But in reality there are cases where they are useful, and we also needed to
experiment with one of these hidden properties when we tried to develop an applet
communicating with its servicing Web server through a firewall.

The following list shows the preferences that Java developers should know when
they test their applications:

 1. signed.applets.local_classes_have_3ð_powers

Setting this preference to true simulates Navigator 3.0 security behavior for
local classes. This preference does not affect downloaded classes. Moreover
it does not provide local classes with file access privileges, since such
privileges are denied on Netscape Navigator 3.0. But, if that preference is
enabled, classes on the CLASSPATH can establish universal network
connections and load digital libraries.

 2. signed.applets.codebase_principal_support

256 Internet Security in the Network Computing Framework

Netscape security model for Java considers a principal as the originator of a
particular class. By default, Communicator only accepts principals that are
based on cryptographic certificates or that are based on file:/// URLs. If you
set this preference to true, an http:// codebase (which is the URL where the
class file is located) will be allowed to be a principal, meaning that the signing
stage when developing secure code is bypassed.

 3. signed.applets.verbose_security_exception

When it is set to true, this preference allows the method printStackTrace() in
class java.lang.Throwable to print a complete stack trace, and not only the
name of the exception. But in order for this preference to work properly, also
you need to disable the Just In Time (JIT) compiler. To do this, you should
rename the JIT library file Program\Java\Bin\jit3240.dll to a different name, then
shut down all the copies of Communicator already active on your platform.
Since JIT when it is active displays a message on the Java Console, next time
you start Communicator you could verify that such a message is no longer
present. If it turns out that JIT is still active, you should restart your computer.

 4. signed.applets.simulate_signature_on_system_classes

This preference must be used very carefully. If it set to true it permits the
system classes shipped with Communicator to be modified without a valid
signature is placed on the modified classes.

 5. security.lower_java_network_security_by_trusting_proxies

When an applet tries to connect back to its servicing Web server, the JVM
automatically passes the URL request to the regular browser connection for
processing. For this reason, even if a proxy server is defined in the
Communicator proxy configuration, the Java code will automatically use it. Of
course Communicator's SecurityManager only permits a running applet to
connects to its originating Web server and on the same port. For this reason, if
the Web server is invoked through its host name, the SecurityManager first of
all translates the host name of the Web server to its IP address. If this check
were not performed, it would be possible for an intruder to attack your system
associating the host name with a false IP address. There are cases, anyway,
where you do not want that the DNS look-up is done, even if such a choice can
reduce security. For example, if your Web browser is located behind a firewall,
and DNS host name resolution is not provided for names of hosts outside the
firewall, the applet will fail to make the desired connection to any Web server,
even to its servicing one, if this is located outside the firewall. Setting this
preference to true, the SecurityManager allows the applet to establish its
connection, even if DNS host name resolution is not established for names of
hosts located in the Internet. This is a hidden property that sometimes can be
considered very useful also for end users, if they are located inside an intranet.

Be sure to edit the preferences file only when Netscape Communicator is not
running, because Communicator, when it is shut down, overwrites that file and you
would lose all the modifications you have done.

 Chapter 5. Client-Side Security Technical References 257

5.7 Applet/Server Communication Through a Firewall
In this section we will show you how an end user can apply some of the hidden
security preferences that we have introduced in the last section.

We wrote a simple Java applet that, when it is downloaded in the Web browser,
tries to establish two connections to its servicing Web server. The communication
between the client and the server is controlled by a firewall. We experimented this
communication when the firewall had been configured using the following firewall
technologies:

1. IP filters for HTTP (see 6.1.1, “IP Filters” on page 270)

2. HTTP proxy server (see 6.1.3, “Proxy Servers” on page 280)

3. SOCKS server (see 6.1.4, “SOCKS Servers” on page 284)

Java applets within an HTML page are transferred using the HTTP protocol, the
same used to transfer the HTML page itself. The HTML page, as we are going to
see, must contain a tag <APPLET> to call an applet. This can specify the applet
class name as the value of the Code attribute. It is also possible and advisable,
especially when many Java classes are involved, to pack all the classes into a
compressed Java Archive (JAR) file. This file is then specified as the value of the
Archive attribute.

If the security policy for the firewall is to permit HTTP traffic to flow through the
firewall, then Java applets are permitted to reach the client machine, provided it
accepts Java. In fact, in this case, Java applets are treated as all the other
components of the Web pages.

However, one of the major problems that people have encountered with applets
and firewalls is trying to get applets to communicate back to the server through a
firewall. In this section we want to show you the difficulties that the applet finds
and what the possible solutions are.

The following figure shows the source code of the applet we wrote. We named it
AppletConnection.

258 Internet Security in the Network Computing Framework

import java.awt.\;
import java.net.\;

public class AppletConnection extends java.applet.Applet
{

int javaSize, classSize;

public void init()
 {
 try
 {

URL javaURL = new URL(getCodeBase(), getClass.getName() + ".java");
 System.out.println(javaURL);

URL classURL = new URL(getCodeBase(), getClass.getName() + ".class");
 System.out.println(classURL);

URLConnection javaURLConnection = javaURL.openConnection();
URLConnection classURLConnection = classURL.openConnection();
javaSize = javaURLConnection.getContentLength();
classSize = classURLConnection.getContentLength();

 }

 catch(Exception ex)
 {
 ex.printStackTrace();
 }

 }

public void paint(Graphics g)
 {

Font myFont = new Font("SansSerif", 3, 15);
 g.setFont(myFont);
 g.setColor(Color.black);

if (javaSize == -1)
g.drawString("I am sorry, I could not find " + getClass().getName() + ".java", 3ð, 5ð);

 else
g.drawString(getClass().getName() + ".java is " + javaSize + " bytes long.", 3ð, 5ð);

if (classSize == -1)
g.drawString("I am sorry, I could not find " + getClass().getName() + ".class", 3ð, 8ð);

 else
g.drawString(getClass().getName() + ".class is " + classSize + " bytes long.", 3ð, 8ð);

 }
}

Figure 248. AppletConnection.java

We saved this file in a directory named TEST, which we created below the public
directory of the Web server. In other words, we stored it in D:\WWW\HTML\TEST.
In the same directory, we stored also the class file of this applet, that we obtained
after compiling it entering the command:

javac AppletConnection.java

The purpose of this applet, after it has been downloaded onto the client's browser,
is to establish a URL connection with the Java file containing its source code and
another URL connection with the class file of the applet itself. Notice that both
these files are stored in the Web server. After these two connections have been
established, the applet displays on the client's browser the size of each file.

Now, let's read together the source code of this applet, so that we can understand
what it does.

First of all, we notice that this applet imports two packages:

 Chapter 5. Client-Side Security Technical References 259

1. java.awt, necessary in order for the applet to use the Graphics class in the
paint() method.

2. java.net, necessary in order for the applet to use the URL and URLConnection
classes in the init() method and to establish its connections to the Web server
that downloaded it.

The URL and URLConnection classes are used twice in the init() method. In fact
this applet tries to establish two URL connections with its servicing Web server:

1. The first connection is with the file that stores the Java source code of the
applet itself. We created a URL object, named javaURL, that should be
initialized to http://ourWebServer/TEST/AppletConnection.java.

2. The second connection is with the file that stores the Java class of the applet.
We created for this reason a second URL object, named classURL, that should
be initialized to http://ourWebServer/TEST/AppletConnection.class.

Note that ourWebServer can be either the host name or the IP address of the Web
server servicing the applet, depending on whether the client browser invokes the
Web server through its host name or through its IP address.

We then create two URLConnections objects, named javaURLConnection and
classURLConnection, and we invoke the getContentLength() method on these
objects to retrieve the size of each file. The exact number of bytes is then
displayed on the client's browser through the paint() method. Notice that the
method getContentLength() returns the content length of the resource that this
connection's URL references, or returns -1 if the content length is not known. In
our applet, the problem of an unknown content length could be generated by the
absence of the files in the directory D:\WWW\HTML\TEST where the applet looks
for the files through the two URL objects created. If the applet does not find the
files, the applet will display an error message on the client's browser.

The following figure shows the code for the HTML page through which the applet is
invoked:

<HTML>

<HEAD>
<TITLE>Applet Connection</TITLE>
</HEAD>

<BODY>

<H3>AppletConnection</H3>

<APPLET Code="AppletConnection" Width=5ðð Height=3ðð>
<H4>This area contains a Java applet, but your browser is not Java-enabled.</H4>
</APPLET>

</BODY>
</HTML>

Figure 249. AppletConnection.html

260 Internet Security in the Network Computing Framework

We named this HTML file AppletConnection.html and we stored it in the same
directory D:\WWW\HTML\TEST where we had also saved AppletConnection.java
and AppletConnection.class.

First of all we tested this applet in a normal client/server scenario, where we had
also installed a Domain Name Service. The configuration of the two machines
involved is shown in the following table:

Table 4. Client/Server Scenario Environment

Client - Netscape Communicator 4.05 Server - Domino Go Webserver 4.6.2.2

IP Address 192.168.51.2 192.168.50.2

Host Name wtr05366 wtr05218

To invoke the HTML page AppletConnectio.html, it was therefore possible to enter
the URL specifying either the IP address 192.168.50.2 or the host name wtr05218
of the Web server machine. We started by pointing the browser to the URL
http://192.168.50.2/TEST/AppletConnection.html and the result is shown in the
following figure:

Figure 250. Applet Running on the Client Machine

The we tried again, but this time we specified the host name of the Web server
machine. So we pointed our browser to the URL

 Chapter 5. Client-Side Security Technical References 261

http://wtr05218/TEST/AppletConnection.html and the result was the same as shown
in Figure 250.

Notice that the size of the two files was displayed correctly, since
AppletConnection.java was really 1418 bytes long and AppletConnection.class was
really 2160 bytes long, as the following screen demonstrates:

Figure 251. Contents of the Directory D:\WWW\HTML\TEST of the Web Server

We wanted to open the Java Console of the Netscape Navigator browser. If you
read again the source code of the applet AppletConnection, you will see that there
are two calls to the System.out.println() method, and the two URL objects javaURL
and classURL are passed as parameters. Notice that the println() method
automatically converts an Object to a String, using the toString() method. This is
what the Java Console registered:

262 Internet Security in the Network Computing Framework

Figure 252. On Opening the Java Console

As you can see, the getCodeBase() method of the applet returns the IP address of
the Web server if you invoked the HTML page through the Web server IP address.
It returns the host name if you invoked the HTML page through the Web server
host name.

Notice that the browser will display an error message if it was configured to refuse
Java applets. In other words, if the Enable Java check box is not marked (see
Figure 179 on page 182), the following error message appears in the client's
browser when the HTML page is downloaded:

 Chapter 5. Client-Side Security Technical References 263

Figure 253. Error Message Displayed if the Browser Is Not Java-Enabled

We also verified that, if we removed the Java and the class files from the TEST
directory, the applet displayed the error message that we had programmed.

264 Internet Security in the Network Computing Framework

Figure 254. On Running the Applet When the Two Files Have Been Removed

Notice, however, that the class file must be in the TEST directory; otherwise, it is
not loaded. So, in order to see that error message, we had to remove the class file
from the TEST directory after downloading the applet and reloading the
AppletConnection.html Web page.

So, everything worked as we had figured out. We got the same successful result
using a firewall implementing IP filters for HTTP (see 8.5.3, “IP Filters Configuration
for HTTP and SSL” on page 416) in the same client/server environment described
in Figure 406 on page 435. The reason is that IP filters for HTTP simply permit
the HTTP protocol to flow between the client and the server, allowing a TCP/IP
connection between a TCP port greater than 1023 on the client and the HTTP port
80 on the Web server. The client and the server can speak to each other directly
through the filter, since the firewall routes the traffic, but does not act on behalf of
the client.

After this, we wanted to test our applet when the communication between the client
and the server was controlled by a firewall acting as an HTTP proxy server.

We found problems only if in our network environment no Domain Name Service
had been configured to translate host names to IP addresses for hosts located in
the non-secure network (see 9.5.2, “Domain Name Service in a Firewall Protected
Network Environment” on page 445), or if the firewall had been configured to
disable DNS queries (see Figure 417 on page 450).

 Chapter 5. Client-Side Security Technical References 265

This is a common situation, because the DNS is often configured to only translate
host names of hosts behind the firewall. What happens is that, if you invoke the
HTML page using the host name of the Web server, the checkConnect() method in
the class SecurityManager implemented by the Web browser tries to translate the
host name to an IP address, but behind the firewall this operation fails if the DNS
has not been configured. An unexpected SecurityException is thrown and your
Web browser displays an error message.

This problem is not present if you point your browser to the HTML file specifying
the IP address of the Web server, rather than its host name. However, a
SecurityException is thrown also if you use the IP address in the URL, but the
applet developer hardcoded the Web server host name in the Java applet file,
something like:

URL javaURL = new URL("http://wtrð5218/TEST/AppletConnection.java");
URL classURL = new URL("http://wtrð5218/TEST/AppletConnection.class");

Notice, however, that this solution is certainly less portable than the one we
adopted in our code using the getCodeBase() method.

Now, how can you solve this problem and have your applet running in your Web
browser? It is very simple, even if this solution affects the security of your system.
You should shut down all the copies of Communicator currently running on your
client machine, edit the prefs.js file (see Figure 246 on page 255) and add the line:

user_pref("security.lower_java_network_security_by_trusting_proxies", true);

With this preference enabled (see 5 on page 257), if the DNS lookup performed by
the Communicator's SecurityManager fails, then the host name of the Web server
is relied upon, rather than having a stricter DNS/IP address equivalence.

Notice that this is one of the hidden security preferences which end users in some
intranets may need to enable. However, it impacts the security of the system,
since it disables the DNS lookup performed by the SecurityManager to prevent
spoofing attacks.

To disable that security preference, you can, after shutting down Communicator,
either set it to false or completely remove that entry from the prefs.js file.

The situation was very similar when the firewall implemented a SOCKS server and
the applet was able to connect its servicing Web server if a DNS in our network
environment had been configured to translate host names into IP addresses for
hosts located outside the firewall.

We made an experiment also with an applet trying to implement a connection to its
servicing Web server via the java.net.Socket class. What we saw was that the
applet was able to establish a successful connection only without the firewall or if
the firewall simply routed the IP traffic, through appropriate IP filters for HTTP. But
the connection failed if the firewall was implementing an HTTP proxy server or a
SOCKS server. The problem for HTTP proxy servers is that support for proxy is
part of the protocol that you are using over HTTP (in this case, HTTP). It is
therefore not possible to encapsulate the proxy-specific stuff at the socket layer.
Instead, with the way SOCKS works, it should be possible to put SOCKS support in
the java.net.Socket code, resulting in an encapsulating of the SOCKS protocol layer
and allowing the enforcement of the security policy without undue negative impact
on applications running behind the firewall. This has been done in JDK 1.0.2, but
unfortunately not in Netscape. So, if your network environment has a SOCKS

266 Internet Security in the Network Computing Framework

server, then everything works fine as long as you use the Applet Viewer or
java.net.URLConnection, but using java.net.Socket under Netscape with a SOCKS
server between the client and the server will give you a SecurityException.

Notice that on the OS/2 operating system (at least Warp 4) the basic TCP/IP stack
already contains support for SOCKS. In other words, the TCP/IP stack is
SOCKSified (see 6.1.4, “SOCKS Servers” on page 284). Therefore, on this
operating system, you should be able to use java.net.Socket under Netscape even
if you are behind a SOCKS server.

The following table summarizes our conclusions with the three types of firewall
technologies we worked on (IP filters for HTTP, HTTP proxy server and SOCKS
server) and the two Java classes we used to permit the network connection
between the applet and the Web server (java.net.URLConnection and
java.net.Socket):

Table 5. Firewall Techologies and Java Classes for Network Connections

java.net.URLConnection java.net.Socket

IP Filters for HTTP Connection permitted Connection permitted

HTTP Proxy Server Connection permitted Connection denied

SOCKS Server Connection permitted � Netscape - Connection denied
(except under OS/2)

� Applet Viewer - Connection permitted

 Chapter 5. Client-Side Security Technical References 267

268 Internet Security in the Network Computing Framework

Chapter 6. Firewall Security in an NCF Environment

IBM Network Computing Framework supports several security measures, like user
identification and authentication, access controls to resources and services,
confidentiality, integrity, security management, key recovery, Java security and
firewalls. This chapter provides a general description of firewall technologies and
architectures that are commonly used in an NCF environment. Examples of how
these firewall technologies can be implemented are shown in Chapter 8,
“Three-Tier Applications in Firewall-Protected Network Environments” on page 361,
Chapter 9, “IIOP in Firewall-Protected Network Environments” on page 435 and
Chapter 10, “SSL Tunneling and SOCKS Server for HTTPS Scenarios” on
page 487. For further information, see the IBM redbooks Protect and Survive
Using IBM Firewall 3.1 for AIX, SG24-2577, and A Comprehensive Guide to Virtual
Private Networks, Vol. I, SG24-5201.

We would like to mention that some of the examples of the use of IBM eNetwork
Firewall Version 3.2 that we will present in this chapter and in Chapter 8,
“Three-Tier Applications in Firewall-Protected Network Environments” on page 361,
Chapter 9, “IIOP in Firewall-Protected Network Environments” on page 435 and
Chapter 10, “SSL Tunneling and SOCKS Server for HTTPS Scenarios” on
page 487 are based upon the AIX version of this product. Things could be slightly
different on a Windows NT platform.

For example, the NT version of IBM eNetwork Firewall 3.2 supports SOCKS V5,
while the AIX version still supports only SOCKS V4. The HTTP proxy server
implemented on the NT version is based upon HTTP 1.1 and has user
authentication, while the HTTP proxy server implemented on the AIX version is
based upon HTTP 1.0 and does not have user authentication. Also, the Windows
NT version has Network Address Translation (NAT) only starting from the recently
announced 3.2.1.1 version, while the AIX version has NAT already in the 3.2
version.

6.1 Understanding and Using Firewall Technologies
This section will describe the most important firewall technologies that are
commonly used in an NCF environment, like IP filters, proxy servers, SOCKS
servers and SSL tunneling.

We discuss in Chapter 8, “Three-Tier Applications in Firewall-Protected Network
Environments” on page 361 how to use IP filters for HTTP and HTTPS between a
client machine and a Web server and also for the DB2 proprietary protocol over
TCP/IP between the Web server and a DB2 server. Examples of how to implement
proxy servers and SOCKS servers for HTTP, HTTPS and also IIOP over HTTP are
shown in Chapter 9, “IIOP in Firewall-Protected Network Environments” on
page 435 and Chapter 10, “SSL Tunneling and SOCKS Server for HTTPS
Scenarios” on page 487, where you can also find how to implement SSL tunneling.

 Copyright IBM Corp. 1998 269

 6.1.1 IP Filters
IP filters are tools to filter packets at the session level.

Firewall

5220\522021

Secure Network Nonsecure Network

Figure 255. Firewall Implementing IP Filters

The machine where the firewall is installed requires two or more network adapters,
each in a separate network or subnetwork. One set of interfaces must be declared
non-secure, while the remaining set is declared secure.

Using IP filters, the firewall administrator can permit or deny IP traffic to flow in and
out of each adapter, basing their decision upon the following criteria:

� Source and destination IP addresses and masks

� Type of IP protocol

� Source and destination port numbers

 � Traffic direction

 � Network interface

� Whether the traffic is routed through the firewall or not

� Whether the IP packet is fragmented or not

Notice that when IP filters are used along with other firewall technologies like HTTP
proxy or SOCKS server, the firewall grants security to the protected network by
performing the necessary work on behalf of the secure user, that in this way is
hidden, in that the non-secure network cannot know that the secure user even
exists.

If you set up your firewall in order to simply filter the traffic between the secure and
the non-secure network, this means that the firewall is not acting on behalf of the
secure user. The secure and the non-secure user can speak directly to each other
and this can create a security risk. In fact, unless Network Address Translation
(NAT) is used, the secure host's IP address will be exposed to the non-secure
network. For this reason, firewall implementations completely based upon IP filters
are indicated only in those cases where you want to separate, within the same
intranet, a low-level security subnetwork from a high-level security subnetwork.

Even if the traffic between the intranet and the Internet is filtered by the firewall, IP
filters maintain a direct connection between a secure user and non-secure hosts. A
client Web browser in the intranet must be aware of this and for this reason it must

270 Internet Security in the Network Computing Framework

be properly configured. Refer to 9.6.2, “Netscape Communicator Advanced
Configuration for Using IP Filters” on page 463 to see how to implement this
configuration with Netscape Communicator. If your client browser is Microsoft
Internet Explorer, it is enough that the check box Use Proxy Server in the Internet
Properties window (see Figure 264 on page 284) is not marked.

6.1.2 Expert IP Filters Using IBM eNetwork Firewall 3.2
IP filters are the basic way to implement a firewall. Proxy technology needs a
proxy server for every application protocol. If you want your proprietary application
protocol to pass through the firewall using the proxy technology, you must create a
proxy server program for that specific protocol. SOCKS technology requires that
the source code of a client program be re-compiled and re-linked. It may happen
that, if you do not own the source code of that program, you cannot use the
SOCKS technology (unless your client runs a SOCKSified TCP/IP stack, as we will
see in 6.1.4, “SOCKS Servers” on page 284). Therefore, IP filter technology is
important to implement a firewall.

Building IP filters can be difficult and needs a lot of network skills and experience.
There are cases in which it can be very hard to build, maintain, manage and extend
IP filters. IBM eNetwork Firewall 3.2 provides an easy way to perform these
operations. IP filters in IBM eNetwork Firewall 3.2 consist of four main
components:

 1. Network objects
 2. Rules
 3. Services
 4. Connections

 Chapter 6. Firewall Security in an NCF Environment 271

Network Objects Socks Templates

Connection Configuration

Rule

Rule
Source Object

Destination Object

Rule

Rule TemplatesServices

Time

5220\522005

Figure 256. IP Filter Components in IBM eNetwork Firewall 3.2

According to IBM eNetwork Firewall 3.2 architecture design, each connection
associates network objects and services and establishes if a specific type of IP
traffic between a source network object and a destination network object is
permitted or denied.

Network objects are representations of entities that already exist in the network,
such as hosts, networks, routers, Virtual Private Networks (VPNs) or users. They
are used to designate the source and the destination of a service when you create
a connection.

A service defines the type of IP traffic that is permitted or denied between two
network objects. Notice that, unlike a connection, a service does not distinguish
the source network object from the destination network object.

A service is composed of a set of rules. Each rule forces the firewall to permit or
deny IP packets based upon their specific attributes.

272 Internet Security in the Network Computing Framework

We understand now how rules, services, objects and connections are used to
define an IP filter using IBM eNetwork Firewall 3.2. Several examples of how to
implement these technologies are shown in Chapter 8, “Three-Tier Applications in
Firewall-Protected Network Environments” on page 361 and Chapter 9, “IIOP in
Firewall-Protected Network Environments” on page 435. We will see in detail how
these technologies can be applied through the IBM Firewall Configuration Client.

 6.1.2.1 Rule Templates
The following figure shows the window that IBM eNetwork Firewall 3.2 provides to
define new rules:

Figure 257. Rule Definition with IBM eNetwork Firewall 3.2

Rules are the basic units in IP filter definitions. A rule does not include the source
or destination objects. This means that the rule does not depend on them and can
be recycled for other services. Moreover this means that you do not need to
consider the flow of the protocol when you define a new rule. However a rule
depends on a protocol and when you define a new rule you can specify only one
protocol. This is the list of the protocols you can select:

 Chapter 6. Firewall Security in an NCF Environment 273

 1. all

Any protocol will match this rule.

 2. tcp

The packet protocol must be TCP to match this rule.

 3. tcp/ack

The packet protocol must be TCP with acknowledgment (ACK) to match this
rule. Selecting this protocol is a security measure that is usually needed to
prevent undesired connections with the secure network being established from
the Internet, as shown several times in Chapter 8, “Three-Tier Applications in
Firewall-Protected Network Environments” on page 361.

 4. udp

The packet protocol must be UDP to match this rule.

 5. icmp

The packet protocol must be Internet Control Message Protocol (ICMP) to
match this rule.

 6. ospf

The packet protocol must be Open Shortest Path First (OSPF) protocol to
match this rule.

 7. ipip

The packet protocol must be IP-in-IP (IPIP) protocol to match this rule.

 8. esp

The packet protocol must be Encapsulating Security Protocol (ESP) to match
this rule.

 9. ah

Authentication Header (AH) is the packet protocol used by the Virtual Private
Network for sending IP packets which have an associated authentication token.

As you have seen, application protocols such as HTTP, FTP and telnet are not
present in the above list. Most applications run on top of those protocols. You
may need to combine multiple protocols along with application source and
destination ports, to define a filter service for a specific TCP/IP application, as
shown in 6.1.2.2, “Services” on page 276. In cases like these, you will include a
multiprotocol combination in the service definition.

The rule template contains other properties that you have to select in order to have
your firewall properly configured:

 � Action

You can select whether you want to permit or deny access to the firewall.

� Source Port and Destination Port

The source port is the port number (or range of port numbers) used on the
machine from which the packets are flowing. The destination port is the port
number (or range of port numbers) used on the machine where the packets
arrive. Port numbers must always be in the range 1 through 65535.
Remember that port numbers less than 1024 are considered privileged and are

274 Internet Security in the Network Computing Framework

used by specific applications. When you are configuring your firewall in order
to let a client machine in the secure network communicate with a server
machine in the non-secure network, you usually select a port on the client
Greater than 1ð23, since the exact value on the client, even if greater than
1023, is dynamically determined when the communication takes place, while
the port on the server will be Equal to the specific value used by the server
application. For example 80 is the value reserved for a Web server
communicating via HTTP and 443 is used if the communication is via SSL.

Assigned Port Numbers

A list of all the assigned port numbers is provided by the Networking
Working Group in the Request for Comments RFC1700, at
http://info.internet.isi.edu/in-notes/rfc/files/rfc1700.txt.

If you are defining a rule for which the source port is on the non-secure
network, remember that in general you should also select the protocol as
tcp/ack , meaning that only packets with the ACK flag set will be permitted to
flow through the firewall. In this way, since the ACK flag is not set only in the
first packet of a TCP communication, you can prevent unauthorized
connections with the secure network being established from the Internet. We
show several examples of how to use the tcp/ack protocol in Chapter 8,
“Three-Tier Applications in Firewall-Protected Network Environments” on
page 361 and Chapter 9, “IIOP in Firewall-Protected Network Environments”
on page 435.

 � Interface Settings

When you define a new rule, the Interface Settings section allows you to select
the type of interface through which the flow passes. You have four options:

 1. both

For packets coming or going on either the secure or the non-secure
network interface.

 2. secure

For packets coming or going on the secure interface.

 3. nonsecure

For packets coming or going on the non-secure interface.

 4. specific

For packets coming or going on the network interface that you must specify
in the Interface Name field.

 � Routing

This property specifies if and how the firewall routes the traffic. You have three
different options:

 1. both

This option applies to all traffic.

 2. local

This option means that packets are local to the firewall host. This implies
that:

 Chapter 6. Firewall Security in an NCF Environment 275

– Incoming packets are packets that are received by the interface but will
remain in the firewall host. Their destination is local and they will not
be routed to other machines.

– Outgoing packets are transmitted through the interface to another
machine, but their origin is local, meaning that they have been
originated in the firewall machine itself.

 3. route

This option means that packets are not local to the firewall host, but are
routed by it. This implies that:

– Incoming packets are packets that are received by the interface and
are destined to another host. Their destination is remote, not local.
Those packets will not remain in the firewall.

– Outgoing packets are transmitted through the interface to another
machine but their origin is remote, meaning that they were originated
by another machine and the firewall is routing them.

 � Direction

You can use this property to select the direction of the protocol through the
network interface. You have again three different options:

 1. both

Select this option for packets going out from or into the interface.

 2. inbound

Select this option for packets coming into the selected interface from the
network.

 3. outbound

Select this option for packets going out from the selected interface to the
network.

 6.1.2.2 Services
You can collect more than one defined rule into a service. When you add one or
more rules to a service, you must specify the Flow property for each rule. In fact,
even if a service does not include yet the concepts of source and destination
objects, each service will be added to a connection, where a source and a
destination object will be defined. So, each time you add a rule to a service, you
should think if that rule will have to be applied from the source to the destination
object or from the destination to the source object. Depending on this decision, you
must change the direction of the arrow that appears near the rule name:

� An arrow going from left to right indicates that the rule in the service will be
applied from the source to the destination object of the connection.

� An arrow going from right to left indicates that the rule in the service will be
applied from the destination to the source object of the connection.

The following window is provided by IBM eNetwork Firewall 3.2 to define a new
service:

276 Internet Security in the Network Computing Framework

Figure 258. Service Definition Using IBM eNetwork Firewall 3.2

Notice that the Time Controls section allows you to select when you want that the
service you are defining to be activated or deactivated at specified times.

 6.1.2.3 Network Objects
Network objects represent components that exist in the network, like hosts,
networks, firewalls, routers, interfaces, Virtual Private Networks and users. If you
create new network objects, you can then use them to define a new connection,
since the source and the destination object of a connection are network objects.

 Chapter 6. Firewall Security in an NCF Environment 277

A network object is identified by a type, a name and a description. Possible types
that you can select when defining a new network object are:

 1. Host

A particular node on your network with a mask of 255.255.255.255.

 2. Network

A collective range of network addresses that is characterized by an address
range and a specific subnet mask.

 3. Firewall

A single machine with a firewall installed on it with a mask of 255.255.255.255.

 4. Router

A host that routes traffic between two or more networks with a mask of
255.255.255.255.

 5. Interface

A network adapter on a machine with a mask of 255.255.255.255. It does not
have to be an adapter on the firewall.

 6. VPN

A Virtual Private Network on the other side of a tunnel.

 7. User

A remote client without an IP address or subnet mask defined. The user
definition is used for a remote client who will be dynamically assigned an IP
address at connect time.

When you define a new network object, you must specify its IP address also. So,
when you add this network object to a connection definition, as the source or the
destination object, you will simply have to select the name of the network object,
without the need to specify the IP address or the subnet mask.

In all the examples provided in this book, we always define network objects whose
type is Host. Each time we enter a subnet mask of 255.255.255.255, because this
is the correct subnet mask to enter when you want to define a single Host object.
If you specify 255.255.255.0 as subnet mask in a network object, you are defining a
network object corresponding to a maximum number of 254 Host objects.

The following window shows how to define a new network object with IBM
eNetwork Firewall 3.2:

278 Internet Security in the Network Computing Framework

Figure 259. Network Object Definition with IBM eNetwork Firewall 3.2

 6.1.2.4 Connections
You can collect more than one defined service to create a new connection,
specifying also the source and the destination object to which the services apply.
The following figure shows how a connection can be easily defined by using IBM
eNetwork Firewall 3.2:

 Chapter 6. Firewall Security in an NCF Environment 279

Figure 260. Connection Definition

 6.1.3 Proxy Servers
Proxy servers are tools that run at the application level of the ISO/OSI network
model. For this reason they are also known as application level gateways.

280 Internet Security in the Network Computing Framework

Application

Session

Presentation

Transport

Network

Datalink

Physical

Intranet Internet

5220\522007

http
proxy

ftp
proxy

telnet
proxy

IP Routing

disconnect

IP Routing

Figure 261. Proxy Servers

When a firewall acts as a proxy server, it performs the necessary work on behalf of
the secure user. The client must send its request to the proxy server and not to
the server directly. The connection is broken at the proxy server, which sends the
client's request to the server without any computer on the non-secure network
knowing that the secure client even exists. Using this firewall technology, the client
and the server do not speak directly to each other, but through the proxy server, so
that the client located in the intranet remains hidden to the rest of the world. Proxy
servers do not involve packet routing at all. The IP address of the client machine
on the intranet from which the IP session was established will never appear on the
Internet, and attackers and intruders cannot use addresses of the protected
network to gain information about the structure of the intranet.

Proxy servers also allow other security measures:

� Telnet and FTP proxy servers can be configured in order to perform
authentication and authorization checks.

 Chapter 6. Firewall Security in an NCF Environment 281

� Requests for Internet sites can be logged along with addresses of the
requesting machines.

� Requests for certain Web sites can be banned.

HTTP proxy servers support several protocols, like FTP, HTTP, HTTPS (which is
HTTP over SSL), Gopher and WAIS. The following screen shows, as an example,
how you can use the same HTTP proxy server that you have configured to use with
your browser, to download the Java Development Kit using either the HTTP
protocol or the FTP protocol:

Figure 262. HTTP Proxy Server Used for HTTP or FTP

When we worked with the IBM eNetwork Firewall 3.2 for AIX, we noticed that an
HTTP proxy server on this platform could not be configured to perform user
authentication, so it is advisable to use IP filters together with an HTTP proxy
server on the firewall, in order to allow access from the secure network only.
Notice that on Windows NT, the HTTP proxy does have user authentication.

The client browser must be configured to forward each request to the HTTP proxy
server, or it will try to establish a direct connection to the Web server machine
located in the Internet. Netscape Communicator 4.05 can be configured through
the Preferences window. Opening the Edit menu, select Preferences... . The
Preferences window will be brought up. You should select Advanced from the
Category tree and then Proxy . In the Proxies section, mark the radio box Manual
proxy configuration and then click View . You will then be able to fill the HTTP
field with the IP address or the host name of the system running the proxy software
and the port number for HTTP protocol access (usually 80). When these
parameters are set correctly, you will be able to access Web pages and sites

282 Internet Security in the Network Computing Framework

through the HTTP proxy server. If you want, you can use the same window to
enter the IP addresses or the host names, and the TCP port, of the systems
running the FTP proxy software. When these values are set correctly, you will be
able to access anonymous FTP sites.

Figure 263. Netscape Communicator Advanced Configuration for Using HTTP Proxy Server

You can put entries for multiple hosts in each field, separated by commas.
Wildcards are not allowed for multiple addresses. Since HTTP proxy servers
support several protocols like HTTP, FTP, HTTPS, Gopher and WAIS, it is possible
to enter the IP address or the host name of the same machine in those fields in the
above figure. If all the parameters are set correctly, the client browser will be able
to access Web pages and sites, anonymous FTP sites, Gopher menus, WAIS
databases through the same proxy server.

Microsoft Internet Explorer 4.0 allows a similar configuration, by double clicking the
Internet icon from the Control Panel and entering the IP address or host name of
the HTTP proxy server in the Internet Properties window:

 Chapter 6. Firewall Security in an NCF Environment 283

Figure 264. Internet Explorer Configuration for Using HTTP Proxy Server

Notice that with both Communicator and Internet Explorer you can select a set of IP
addresses or host names located in your intranet for which you want to bypass the
HTTP proxy server. This is very useful to reduce useless network traffic.

 6.1.4 SOCKS Servers
SOCKS technology involves a SOCKS server running on the firewall machine. The
client machine uses a TCP protocol named SOCKS to communicate with the
SOCKS server.

284 Internet Security in the Network Computing Framework

Transport

Network

Datalink

Physical

Intranet Internet

5220\522008

Socks
Server

IP Routing

disconnect

IP Routing

Figure 265. SOCKS Servers

SOCKS technology provides security by encapsulating any TCP protocol in the
SOCKS protocol. This operation is provided on the client machine, so that each
packet is encapsulated within a SOCKS packet and then it is transmitted to the
SOCKS server on the firewall. Then the SOCKS server extracts the proper
information from each packet, like destination address and port number, and sends
the data. Once again, as it happened with proxy server technologies, the session
is broken by the firewall and once again the secure user is hidden to the Internet,
so non-secure hosts cannot know that a secure user even exists and the source IP
address that will get exposed to the Internet will be that of the SOCKS server itself.
The IP address or host name of the machine from which the request actually
started is not exposed to the non-secure network. Intruders and hackers cannot
access internal information from your intranet.

When a non-secure host must send a response back to a secure client, actually it
sends the response back to the SOCKS server, which will encapsulate the packets
in the SOCKS protocol and then will send them back to the client machine in the
secure network.

SOCKS technology has become very popular since it offers a big advantage. In
fact the firewall administrator can simply allow any TCP/IP connection (any TCP
protocol and any port number) between the firewall itself and the non-secure
network, protecting the secure network by denying all the connection to the secure
network that have been initiated from the Internet.

From the above description, it looks clear that modifications are required on the
client side in order for the client machine to be able to use the SOCKS protocol and

 Chapter 6. Firewall Security in an NCF Environment 285

communicate with the SOCKS server on the firewall machine. There are two
possibilities to accomplish this function:

The first possibility is to re-compile the client software in order to link the network
client code with the SOCKS libraries. If you follow this option, you will obtain a
SOCKSified client code. Of course you need to have the source code of the
network client application in order to re-compile and re-link it. Fortunately a lot of
client applications, like Netscape Communicator and Microsoft Internet Explorer,
already offer built-in support for communicating with a SOCKS server using the
SOCKS protocol. It is enough that you configure them specifying the SOCKS
server's IP address or host name, then all the client requests will be passed to that
server using the SOCKS protocol. Of course the TCP port used on the SOCKS
server must be specified too. Its value is usually 1080. The following figure shows
the configuration page for Netscape Communicator in order to use the SOCKS
protocol to reach a SOCKS server :

Figure 266. SOCKS Server Configuration

You can access this page by opening the Edit menu and selecting Preferences... .
When the Preferences window is brought up, you should select Advanced from the
Category tree, and then Proxy . Remember that you do not have to fill both the
HTTP and Socks fields in Figure 266, specifying simultaneously an HTTP proxy
server and a SOCKS server, or each request starting from your browser will be

286 Internet Security in the Network Computing Framework

sent to the SOCKS server first and from there to the proxy server, causing useless
network traffic.

Unfortunately a SOCKSified version of a client program is not always available and
you not always own the source code of that application, so you cannot re-compile
or re-link it. A recent approach, and this is the second possibility, is to replace the
dynamically linked libraries, that implement the TCP calls, with a SOCKSified
version, named SOCKSified TCP stack. The SOCKSified TCP stack can be used
with any client application, without the need to modify the code. In this case also it
is required that the client program is aware of the SOCKS server's IP address or
host name.

6.1.5 Understanding SSL Tunneling
SSL tunneling is a new firewall technology that is used to pass SSL through a
firewall. We use SSL tunneling in Chapter 10, “SSL Tunneling and SOCKS Server
for HTTPS Scenarios” on page 487. You can refer to 10.1, “SSL Tunneling
Scenario” on page 488 to see all the implementation details.

The Secure Socket Layer (SSL) protocol was designed by Netscape
Communications Corporation to provide security in a client/server environment and
to avoid any type of Man-In-the-Middle (MIM) attack. For this reason, the SSL
protocol cannot pass through a traditional proxy server, because SSL would
consider a proxy server like a MIM.

A first solution to this problem is to configure the firewall through appropriate IP
filters. We have already explained how IP filter technology provides security by
controlling source and destination IP addresses and masks, type of IP protocol,
source and destination port numbers, traffic direction, network interfaces, etc. The
advantage of IP filters when using the SSL protocol is that when the firewall
implements IP filters without acting as a proxy, the secure host can speak directly
with the non-secure host in the Internet, since the communication is not broken by
the firewall. You could open the reserved port 443 on the firewall to pass SSL and
the client and the server could establish a direct connection. The risk of this
solution is that an internal attacker could try to use the same 443 TCP port without
using SSL and there would be no possibility to block a similar attack.

A more secure alternative is to use a firewall that supports the SSL tunneling
CONNECT extension method, as described at
http://www.netscape.com/newsref/std/tunneling_ssl.html.

 Chapter 6. Firewall Security in an NCF Environment 287

Figure 267. SSL Tunneling

The client connects to the firewall and uses the CONNECT method to specify the
host name and the port number to connect to. This information is passed within
the CONNECT header and the host name and the port number must be separated
by a colon, something like Server:port. The port number that Web servers usually
set for SSL communication is 443, since this is the reserved number that the
Networking Working Group has assigned to SSL in the Request for Comments
RCF1700.

Using SSL tunneling, the client initiates an SSL secure connection via HTTP, then
handshakes and creates a secure connection to the server. The firewall has
access to the client proxy request headers, but the session is encrypted. As soon
as the handshake has taken place, the firewall simply copies bytes back and forth
to each side of the transaction. In this way the firewall can monitor the request but
not the traffic.

So, in order to support SSL tunneling, an HTTP proxy server does not need to
implement its own SSL, but only needs the support for the SSL tunneling
CONNECT extension method. Anyway the HTTP proxy server cannot access any
private data, like for example client and server's certificates, the shared ciphering
key and the application data exchanged during the SSL connection. Moreover the
HTTP proxy server does not cache the SSL traffic.

Notice that when a firewall is configured in order to permit the SSL protocol, it is
usually configured to permit the HTTP protocol. It is in fact very common to access
an https:// URL from a Web page that had been accessed through an http://
URL, while it is rare that a user on a client browser accesses a secure Web site
directly pointing to an https:// URL (see 8.5.3, “IP Filters Configuration for HTTP
and SSL” on page 416, 10.1.1, “How to Configure SSL Tunneling” on page 488
and 10.2.1, “How to Configure SOCKS Server for HTTPS” on page 494).

The Web browser application needs to be properly configured in order to use SSL
tunneling. The HTTP and Security fields in the Manual Proxy Configuration window
provided by Netscape Communicator must be filled with the name of the HTTP
proxy server implementing the SSL tunneling CONNECT extension method, as
shown in Figure 452 on page 493.

288 Internet Security in the Network Computing Framework

6.2 Understanding Firewall Architectures
In this section we will provide a description of the most common firewall
architectures.

 6.2.1 Screening Router
This firewall architecture is the first level of defense that is usually implemented
when protecting a network against invasions from the Internet. The intranet is
separated from the non-secure network by using a router.

Intranet

Filter Rules

Screening
Router

5220\522013

IP Routing Establishment

Internet

Figure 268. Screening Router

A screening router filters all IP packets that pass through. It can prevent access to
machines or ports in the secure network, but it can also do the opposite operation,
in the sense that it can prevent a machine in the secure network from accessing
the Internet.

A screening router performs its packet filtering at the network and data-link layers,
so it does not consider the application level of the ISO/OSI network model. For this
reason, a screening router does not offer complete protection. Network traffic is
controlled by screening routers without changing any client or host application.
Since the action performed by a screening router is restricted to the network and
data-link layers of the TCP/IP protocol, a screening router can have access to
information like IP addresses, port numbers and TCP flags, but nothing more than
this, so there is no possibility to understand what happens at the application layer.

 Chapter 6. Firewall Security in an NCF Environment 289

Anyway screening routers are often used in conjunction with other tools as security
building blocks.

 6.2.2 Bastion Host
A bastion is simply a machine having two or more network adapters, placed
between an intranet and the Internet and not allowing any IP forwarding. In other
words, a direct IP connection is denied through this machine and no IP packet can
flow directly between the secure and the non-secure network.

Internet

Bastion Host

IP Routing

disconnect

IP Routing

5220\522011

log in

Intranet

log in

Figure 269. Bastion Host

The only machine from which users can have access to both the intranet and the
Internet is the bastion itself. No computer in the secure network can access the
Internet without passing through the bastion and no computer in the Internet can
access the secure network without passing through the bastion.

Since IP forwarding is denied, only users having an account on the bastion, with
two identifications (one for the bastion and one for the remote host), can have
access to both networks.

This configuration presents some advantages, because all network access is
centralized in only one machine and for this reason it becomes easier to manage
network security. But, because the only way to access both networks is to be a
user on the bastion, this machine must be able to support many users. Moreover a
security risk is that a cracker who is able to impersonate an user would also be
able to have full access to the secure network. For this reason password controls
must be enforced.

One solution to this problem is offered by SOCKS servers, which implement more
general purpose bastion applications. They do not require that users log in and this
way the load on the machine is reduced.

290 Internet Security in the Network Computing Framework

6.2.3 Screened Bastion Host
It often happens that firewall administrators combine a screening router with a
bastion on the same machine and obtain what is called a dual-homed gateway.
The advantage is that you can protect a dual-homed gateway from external attacks
with filtering. The disadvantage is that managing this machine becomes very
difficult and in case an attacker penetrates this machine it could take a lot of time to
discover it.

A better solution is to use two separate machines: one is a bastion and the other is
a screening router. The screening router is for protecting the bastion from external
attacks. The firewall architecture you obtain in this case is called a screened
bastion host.

Filter Rules

Bastion Host

Internet

Screening
Router

IP Routing Establishment

5220\522012

Intranet

Figure 270. Screened Bastion Host

For a screened bastion host the same considerations that we made for a general
bastion can be applied, so it still holds true that this machine denies IP forwarding
between the intranet and the Internet and that each user who wants to have access
to both networks must have an account on the bastion with two identifications. The
presence of the router protecting the bastion host, however, offers more security,
because it becomes very difficult for a cracker to penetrate the secure network.

In this case also it is possible to configure the bastion as a SOCKS server, in order
to avoid that the bastion supports many users.

 Chapter 6. Firewall Security in an NCF Environment 291

 6.2.4 Screened Subnet
Another common firewall architecture that combines bastion hosts and screening
routers is called screened subnet. In this case the subnetwork between the bastion
and the screening router, which is also known as Demilitarized Zone (DMZ), is
used as a site for application services, like for example a Web server. The reason
why these machines are placed in this subnetwork rather than in the intranet itself
is that in this way, while they are widely available, they also get protection from the
external network. Another advantage from a security point of view is that this
architecture can hide the intranet from the non-secure network, since each
communication between the two networks needs to pass through the DMZ.

Usually each machine in the subnetwork performs only simple tasks, and the
number of these machines depends on the number of bastions you have.

The following figure shows an example of screened subnet, obtained with two
routers and two bastion hosts:

Bastion Host

Filter Rules

Bastion Host

Intranet Internet

Screening
Router

Screening
Router

DMZ

Filter Rules

IP Routing

disconnect

IP Routing

5220\522010

Figure 271. Screened Subnet between Two Screened Routers

A disadvantage of this architecture is its cost. In effect, dedicating a single
machine to each component of the firewall design can be really expensive. A
common solution, that we also apply in Chapter 8, “Three-Tier Applications in

292 Internet Security in the Network Computing Framework

Firewall-Protected Network Environments” on page 361, is to provide the firewall
machine with three network adapters. The architecture that you obtain is logically
the same, but physically different, since you need only one firewall machine. The
following figure shows just how a screened subnet can be obtained using a single
router with three network adapters:

Bastion Host

Filter Rules

Bastion Host

Filter Rules

DMZ

IP Routing

disconnect

IP Routing

Intranet Internet

Screening
Router

5220\522009

Figure 272. Screened Subnet Using Three Network Adapters

In this case the DMZ is still in the area where network traffic never flows between
the intranet and the Internet. Refer to Chapter 8, “Three-Tier Applications in
Firewall-Protected Network Environments” on page 361 to see all the
implementation details.

 Chapter 6. Firewall Security in an NCF Environment 293

294 Internet Security in the Network Computing Framework

Part 2. NCF Security Scenarios

 Copyright IBM Corp. 1998 295

296 Internet Security in the Network Computing Framework

Chapter 7. How to Install and Configure a NCF Secure
Environment

This chapter shows how to install and set up the key products that are commonly
used in an NCF secure environment on the Windows NT and AIX platforms. We
will show you all the steps that we followed to install the components for the NCF
secure environment that we used to build the NCF scenarios described in this
redbook. An NCF environment can be based on a two-tier model, if it involves only
a client/server interaction (see Chapter 9, “IIOP in Firewall-Protected Network
Environments” on page 435 and Chapter 10, “SSL Tunneling and SOCKS Server
for HTTPS Scenarios” on page 487), or it can be based on a three-tier model if it
involves an application server too (see Chapter 8, “Three-Tier Applications in
Firewall-Protected Network Environments” on page 361). In order to grant security
in our NCF environment, we also used a firewall machine.

Before going on with this chapter, it would be good to have a general idea of how
we installed and configured our NCF environment. The following list shows the
operating system and software we used.

� Client (IBM ThinkPad 560E - Operating System Microsoft Windows 95)

– Netscape Communicator 4.05

� Server (IBM PC 365 - Operating System Microsoft Windows NT 4.0)

– Java Development Kit 1.1.5 and 1.1.6

– Lotus Domino Go Webserver 4.6.2.2

– IBM WebSphere Application Server 1.0 beta 3 (still named ServletExpress)

– IBM DB2 Client Application Enabler 5.0

� Application Server (IBM RS/6000 43P - Operating System IBM AIX 4.3)

– IBM DB2 Universal Database Workgroup Edition 5.0

� Firewall (IBM RS/6000 370 - Operating System AIX 4.2.0 and 4.2.1)

– IBM Firewall 3.1.1 and IBM eNetwork Firewall 3.2

As we said in Chapter 1, “An Overview of NCF Security” on page 3, the client tier
in an NCF environment only has the role of requesting the applications and
presenting the information, through a GUI represented by a Java-enabled Web
browser. In the NCF environment that we used for our scenarios, the client
machine had been installed with Netscape Communicator 4.05 as Web browser.
We will not show here how to install Communicator, since its installation is very
simple. The client platform in our scenarios was Windows 95. Notice however that
the operating system where a Java-enabled Web browser runs is not relevant in an
NCF environment and does not impact the configuration of the other tiers, since
HTML and Java are platform-independent languages.

As we will explain in 7.6, “IBM Firewall 3.1.1 and IBM eNetwork Firewall 3.2 for
AIX” on page 350, we had the opportunity to work with IBM Firewall 3.1.1
(requiring AIX 4.2.0) and IBM Firewall 3.2 (requiring AIX 4.2.1). This is the reason
why in the above list the firewall entry shows two different versions for the
operating system and for IBM firewall.

 Copyright IBM Corp. 1998 297

7.1 Java Development Kit 1.1.5 and 1.1.6
This section describes how to configure the Java Development Kit (JDK) 1.1.5
properly. During the project JDK 1.1.6 became available, we installed it and made
several tests using this new release. All the considerations that you read in this
section about Version 1.1.5 can be applied to Version 1.1.6. Notice that we
couldn't use Version 1.2, since it was still in beta at the time of the project and it
was not supported by any Web browser or Web server yet (see Chapter 2, “The
New Java 1.2 Security Model” on page 9).

The JDK can be downloaded for free from the JavaSoft Web site
http://www.javasoft.com, as shown in the following window:

Figure 273. Downloading the JDK 1.1.5 from the JavaSoft Web Site

The installation of JDK was very easy. This tool is available for several platforms,
but we installed it on a test machine running Windows NT Version 4.0 with Service
Pack 3 as our base, and that was the same machine where later we installed also
the Web server.

The JDK Version 1.1 contains four main components:

1. The Java Core Classes. They are stored in a zip file named classes.zip, that
must not be unzipped. It must remain zipped for the compiler and interpreter to
access the class files within it properly. This file contains all of the compiled
class files for the JDK.

2. Java tools needed by developers (compiler, interpreter, Applet Viewer,
debugger, documentation generator, Java Archive Tool, Digital Signing Tool,
etc.). For our purposes, we used the Java compiler javac, that compiles Java
programs into bytecodes, and the Java interpreter java, that executes Java
bytecodes.

3. Java documentation and demos.

298 Internet Security in the Network Computing Framework

4. Java source files, provided to developers for information purposes only, to help
them learn, use and understand Java. These files come inside the zip file
src.zip and they should not be modified.

We installed the following Java components:

 a. Program Files

b. Library and Header Files

 c. Demo Applets

as shown in the following picture:

Figure 274. JDK Installation Component List

As you can see, the component named Java Sources was not installed in our
environment, since we did not consider it necessary to install the Java source files
in our test environment.

7.1.1 Path System Environment Variable
We installed JDK 1.1.5 on Windows NT Server 4.0, so we changed the value for
the Path system environment variable. In fact all the main Java tools run from the
MS-DOS command line and you can specify the path to a tool either by typing the
path in front of the tool each time you launch it or by modifying the value of the
Path system environment variable. For example, if the JDK is installed in
C:\jdk1.1.5, to run the compiler on a file myfile.java, go to a DOS shell and execute:

C:\jdk1.1.5\bin\javac myfile.java

or add C:\jdk1.1.5\bin to your Path statement and then simply type:

javac myfile.java

whatever the current directory is.

 Chapter 7. How to Install and Configure a NCF Secure Environment 299

The second choice is more convenient and can be accomplished in the following
way:

1. Open the Control Panel by selecting Settings from the Start menu.

2. Double click on the System icon.

3. Click the Environment tag at the top of the System window.

4. Select the Path environment variable and append C:\jdk1.1.5\bin to the
current value into the Value box.

5. Click the Set button.

6. Click either Apply or OK.

 Note

In Windows NT, all the changes made in the System Properties window to the
system environment variables do not apply to applications currently running.
So, for example, your changes to the Path variable will not impact an MS-DOS
Command Prompt window that was already open and entering the command

javac myfile.java

in a directory different from C:\jdk1.1.5\bin will fail. However opening a new
MS-DOS Command Prompt window will force the system to read the new
configuration and the command

javac myfile.java

will work, whatever the current directory is.

The following picture shows how you can have access to the Path statement
through the System Properties window:

300 Internet Security in the Network Computing Framework

Figure 275. Modifying the Path System Environment Variable

7.1.2 How the CLASSPATH System Environment Variable Works
The CLASSPATH tells the JVM (Java Virtual Machine) and other Java applications,
which are located in the jdk1.1.5\bin directory, where to find the class libraries such
as the file classes.zip, which is in the lib directory. By default, the java tools
temporarily append the following to whatever CLASSPATH you have explicitly set
in your startup file:

.;bin\..\classes;bin\..\lib\classes.zip

where bin substitutes the absolute path to the jdk1.1.5\bin directory. Therefore, if
you keep the bin and lib directories at the same directory level (that is, if they have
a common parent directory), the Java executable files will find the classes. You
need to set the CLASSPATH variable only if you move classes.zip or want to load
a different library such as one you developed. For example we needed to set the
CLASSPATH when we installed ServletExpress, because this application comes
with its own classes.

 Chapter 7. How to Install and Configure a NCF Secure Environment 301

The CLASSPATH system environment variable can be created (if it does not
already exist) or modified through the System Properties window, shown in
Figure 275.

7.2 Lotus Domino Go Webserver 4.6.2.2
Installing Lotus Domino Go Webserver is very simple. You should only remember
that you do not need to enable the Java Servlet support if you want to use the
servlet engine provided by ServletExpress, as shown in Figure 277 on page 303.

We installed Lotus Domino Go Webserver on a Windows NT Server 4.0 machine
where Service Pack Version 3 had been applied. After launching the installer
program, we got the following window:

Figure 276. Lotus Domino Go Webserver Installation Welcome Window

Beside the Web server itself, we installed the following components for Lotus
Domino Go Webserver:

 � Security Files

 � NT Service

as shown in the following figure:

302 Internet Security in the Network Computing Framework

Figure 277. Lotus Domino Go Webserver Installed Component List

The Security Files component was very important for our scenarios since it included
the support for enabling the Web server to use the Secure Socket Layer (SSL)
protocol. The NT Service component is also very important since it allows Lotus
Domino Go Webserver to run as a Windows NT service. We will see that a
consequence of this choice is, for example, that Lotus Domino Go Webserver can
be started and stopped by interacting with the Services dialog for Windows NT (see
Figure 287 on page 309).

We did not consider it necessary to install the Webserver Search Engine and also
we did not need the Java Servlet component because we installed the more
powerful servlet engine provided by IBM ServletExpress.

The Lotus Domino Go Webserver installation directory is usually named WWW and
we had Setup create it on the D drive, as shown in the next dialog:

 Chapter 7. How to Install and Configure a NCF Secure Environment 303

Figure 278. Choose Target Directory

We could also confirm the directories where the specific components of Lotus
Domino Go Webserver were installed, as shown in Figure 279 and Figure 280 on
page 305.

Figure 279. First Screen for Choosing Component Directories

304 Internet Security in the Network Computing Framework

Figure 280. Second Screen for Choosing Component Directories

Since we had already installed Lotus Domino Go Webserver Version 4.6.1, we
were informed by the installation program that existing configuration files httpd.cnf
and ics_pics.cnf were found in the directory C:\WINNT, as Figure 281 and
Figure 282 on page 306 show:

Figure 281. Selecting the httpd.cnf Configuration File

 Chapter 7. How to Install and Configure a NCF Secure Environment 305

Figure 282. Selecting the ics_pics.cnf Configuration File

We pressed the No button in both of the above dialogs, since we were installing
the new Version 4.6.2.2 for Lotus Domino Go Webserver and we wanted to get its
new configuration files. However you won't get the above screens if not upgrading
a previous version of Lotus Domino Go Webserver.

Similarly, we were informed that an existing administrator password file, named
admin.pwd, was found in the directory C:\WINNT, as you can see in the following
dialog:

Figure 283. Selecting the admin.pwd Administrator Password File

We pushed No in this case also and then we had to enter a user ID and a
password for the Administrator of the Web server, as shown in the following
window:

306 Internet Security in the Network Computing Framework

Figure 284. Choosing Configuration Parameters for Domino Go Webserver

Your decision about this password is very significant from a security point of view,
because this password is an important string of characters that you use to protect
the access to your Web server. You should select these characters carefully and
never apply a simple string as your password. If you need to use the password in
order to manage your Web server through the Internet, we recommend that you
make an SSL connection using an https:// URL between a control workstation
and a Web server machine. The reason for our recommendation is that the
password is transmitted encoded to the Web server, but not encrypted, and could
be easily decoded by a Man-In-the-Middle. If you have already configured SSL,
you can connect to your Web server securely by simply pointing your control
workstation's Web browser to the secure URL https://yourservername, where
yourservername is the fully qualified name of your Web server machine. The
following figure shows that, in case you are communicating across a secure
connection, a closed lock appears in the bottom-left corner of the Netscape browser
window:

 Chapter 7. How to Install and Configure a NCF Secure Environment 307

Figure 285. SSL Icon

That lock is the security icon used by Netscape to inform the user that a secure
SSL connection is in place. Otherwise that lock appears open. You can enforce
further security by setting your Web server to request client authentication, as
shown in 3.1.4, “SSL Client Authentication” on page 84.

At the end of the installation process, we were informed by the InstallShield
application that Lotus Domino Go Webserver in the NT environment can be started
and stopped using the Services dialog in the Control Panel, since it is a Windows
NT service.

Figure 286. Setup Indicates How to Start and Stop Lotus Domino Go Webserver

Another possibility would be to enter the following commands at an MS-DOS
command prompt to start and stop Lotus Domino Go Webserver:

1. net start "Lotus Domino Go Webserver"

2. net stop "Lotus Domino Go Webserver"

However it is convenient to use the Services dialog at least once. In fact, after you
open the Services dialog, you can select Lotus Domino Go Webserver , as shown
in the following screen:

308 Internet Security in the Network Computing Framework

Figure 287. The Services Dialog on Windows NT Server

Then you click on the Startup... button and you get the configuration dialog for the
Lotus Domino Go Webserver service. Check the box named Allow Service to
Interact with Desktop , as this figure indicates:

Figure 288. Configuration Dialog for the Lotus Domino Go Webserver Service

By default, that box is not marked. If you select it, from now on, every time you
start Lotus Domino Go Webserver, you will also get the following window:

 Chapter 7. How to Install and Configure a NCF Secure Environment 309

Figure 289. Lotus Domino Go Webserver Service Window

This window allows you to interact with the service. You can monitor activities,
accesses, errors and traces by clicking on the corresponding tabs. You can also
restart the Web server by clicking on Restart from the File menu. This will force
Lotus Domino Go Webserver to read new configurations without completely
shutting down the server.

Notice that selecting Automatic in the configuration dialog shown in Figure 288 on
page 309 will cause Lotus Domino Go Webserver to start automatically every time
the system starts.

At the end of the Lotus Domino Go Webserver installation, no modification needs to
be made to the CLASSPATH system environment variable. That would be
necessary only if we had installed the Java Servlet support provided by Lotus
Domino Go Webserver. The file icsclass.zip contains all the Java class files
necessary to compile basic Java servlets in the Domino Go Webserver
environment. Notice that this file will come in the directory CGI-Bin, below the root
directory WWW, even if you have not selected to install the Java Servlet support.

Lotus Domino Go Webserver can be configured to use the SSL protocol. Moreover
it is also possible to enable SSL client authentication. We used both these security
features for our scenarios. If you want to repeat our steps, you can refer to 3.1.2,
“Lotus Domino Go Webserver SSL Setup” on page 71, 3.1.3, “Lotus Domino Go
Webserver SSL Server Authentication” on page 79 and 3.1.4, “SSL Client
Authentication” on page 84.

310 Internet Security in the Network Computing Framework

7.3 IBM ServletExpress 1.0
ServletExpress consists of a very powerful Java-based servlet engine that is
independent of your Web server. It also provides a component named CORBA
Support.

Note: As we specified in Chapter 4, “IBM WebSphere Application Server Security”
on page 121, ServletExpress, at the time of this project, was still in its beta version.
It has since been incorporated in the recently announced IBM WebSphere
Application Server. However, no major modifications have been applied and you
can safely refer to this section if you want to see how to install and configure this
product. Only notice that the directory structure has been modified.

In our scenarios we did not use the basic servlet support that comes with Lotus
Domino Go Webserver 4.6.2.2. We considered it better to use the full servlet
support provided by ServletExpress 1.0. At the time of this project, the beta
Release 2.1 for ServletExpress 1.0 was available. We also had the opportunity to
use the beta 3 release, that was made available during the project.

 7.3.1 Installation
We installed ServletExpress on the Windows NT 4.0 machine where we had
already installed Lotus Domino Go Webserver. The installation of ServletExpress is
not difficult. You should only remember two points:

1. Log on as Administrator or make sure that the account you are installing from
has administrative privileges.

2. Shut down the Web server, if it is running.

As soon as you run the installer program for ServletExpress, you will get a
Welcome screen.

Figure 290. ServletExpress Installation Welcome Window

 Chapter 7. How to Install and Configure a NCF Secure Environment 311

Click on Next and you will get another dialog where you must select the plugin
module which corresponds to your platform. We selected Domino Go Webserver
Version 4.6.1 or greater , since we wanted to integrate the servlet engine provided
by ServletExpress with Domino Go Webserver Version 4.6.2.2.

Figure 291. Webserver Plugin Selection

It is very important that no other servlet support is active when you install
ServletExpress. If you had previously installed the Java Servlet component for
Lotus Domino Go Webserver (see Figure 277 on page 303), you have to uninstall
it before running the setup program for ServletExpress. You have two choices:

1. Open the Add/Remove Program Properties window from the Control Panel,
select Lotus Domino Go Webserver and click on the Add/Remove button, as
shown in the following screen:

312 Internet Security in the Network Computing Framework

Figure 292. Remove the Domino Go Webserver Java Servlet Component

Then you should remove only the Java Servlet component for Lotus Domino
Go Webserver. This operation can be accomplished successfully only if Lotus
Domino Go Webserver is currently not running.

2. Launch the ServletExpress installer program and go on until it detects by itself
the Java Servlet component for Domino Go Webserver. The InstallShield will
then prompt you with the uninstallation process for the Java Servlet component
for Domino Go Webserver:

 Chapter 7. How to Install and Configure a NCF Secure Environment 313

Figure 293. Uninstalling Domino Go Webserver Java Servlet Component

Both these processes should let you successfully uninstall the Java Servlet
Component for Lotus Domino Go Webserver:

Figure 294. Completing Domino Go Webserver Servlet Component Uninstallation

We were allowed to confirm the directories where the ServletExpress files had to
be installed and the program folder where the InstallShield had to add the
ServletExpress icon.

314 Internet Security in the Network Computing Framework

Figure 295. Choose Destination Directory for ServletExpress Installation

Figure 296. Select ServletExpress Program Folder

We installed the ServletExpress files in the directory D:\ServletExpress. Then we
clicked on Next to go ahead with the installation accepting the default
ServletExpress program folder.

 Chapter 7. How to Install and Configure a NCF Secure Environment 315

You should also select the version of Lotus Domino Go Webserver currently
installed on your machine. We selected Domino Go Webserver 4.6.1 .

Figure 297. Select the Exact Version of Lotus Domino Go Webserver

Be sure to read the README file before running the program. The InstallShield
application will prompt you with this possibility at the end of the installation.

Figure 298. ServletExpress Setup Complete Window - Read the README file!

316 Internet Security in the Network Computing Framework

Then restart your computer before running ServletExpress.

Figure 299. Restarting Windows NT After the Installation

The README file will provide you with very important information related to known
defects and configuration tips. At the time of this project, ServletExpress Version
1.0 was available only in beta release. We discovered the following problems in
the beta 2.1 release. However these problems will not be present in future
releases of the product.

1. ServletExpress Manager is the user interface for managing servlets. In
Windows NT, if you use a text editor instead of the ServletExpress Manager to
edit the properties files, you should use WordPad or the edit command line
utility instead of Notepad. If you use Notepad and save the files, you might not
be able to later use ServletExpress Manager to edit the same files.

2. If the ServletExpress Manager is running when you try to run a servlet, the
Domino Go Webserver will core dump. To avoid this problem, do not run the
ServletExpress Manager and servlets at the same time. After you finish using
the ServletExpress Manager, be sure to log off before you run any servlets.

3. If you want to develop servlets, you will need to use the Java Servlet
Development Kit (JSDK) Version 1.1 class files. ServletExpress includes those
class files in its libraries, but you should refer to the JavaSoft Web site if you
want to obtain the related documentation. The following figure shows how you
can retrieve it:

 Chapter 7. How to Install and Configure a NCF Secure Environment 317

Figure 300. JSDK Class Files Documentation

4. To run the ServletExpress Manager applet, you simply point your Java-enabled
Web browser to the URL http://yourWebserver:9090/, where yourWebserver is
the fully qualified name of your Web server machine and 9090 is the default
port for the ServletExpress Manager. You will need an Applet Viewer or a Web
browser that fully supports JDK 1.1. Netscape Communicator 4.04 does not
have a full JDK 1.1 support and if you try to run the ServletExpress Manager,
after entering the user ID and password for the administrator, a
java.lang.NullPointerException will be thrown.

318 Internet Security in the Network Computing Framework

Figure 301. NullPointerException Thrown by the ServletExpress Manager

If you want to run the ServletExpress Manager with Netscape Communicator
4.04, you should upgrade the JVM level in the browser, as indicated in 5.3,
“Interacting with Signed Java Applets” on page 224. In order to upgrade the
JVM level in Netscape Communicator 4.04, you could also download the
404awt.zip file from Netscape's Web site
http://developer.netscape.com/software/jdk/download.html and unzip it as
indicated in the same Web page. However you will not need to install any
upgrade if you use a later version of Netscape Communicator (we used Version
4.05) as well as Microsoft Internet Explorer Version 4.0 or Sun HotJava Version
1.1.

7.3.2 The CLASSPATH System Environment Variable
As soon as you install ServletExpress, you should update the value for the
CLASSPATH system environment variable, so that it includes all the class files
necessary to develop advanced servlets using the powerful servlet engine provided
by ServletExpress. The following window shows what value the CLASSPATH
environment variable had in our environment:

 Chapter 7. How to Install and Configure a NCF Secure Environment 319

.;
D:\jdk1.1.5\lib\classes.zip;
D:\ServletExpress\lib\servexp.jar;
D:\ServletExpress\lib\jst.jar;
D:\ServletExpress\lib\jsdk.jar;
D:\ServletExpress\lib\x5ð9v1.jar;
D:\ServletExpress\lib;
D:\ServletExpress\web\classes\ibmjbrt.jar;
D:\WWW\CGI-Bin\icsclass.zip;
D:\ServletExpress\servlets;

Figure 302. Current Settings for the CLASSPATH Environment Variable

The zip file icsclass.zip could also be removed from the CLASSPATH. It was used
to develop servlets using the servlet engine provided by Lotus Domino Go
Webserver. If you want to keep it in the CLASSPATH variable, be sure that it is
placed after the ServletExpress JAR files.

When we upgraded JDK 1.1.5 to the next release 1.1.6, we edited the
CLASSPATH variable again, changing the second entry to
D:\jdk1.1.6\lib\classes.zip.

7.3.3 How to Change Administrator Password
The first panel you receive after loading the ServletExpress Manager is the login.
The default Administrator ID is admin and the default password is admin. You can
see this information noted on the following screen:

Figure 303. ServletExpress Manager Login

After the login is complete, the main panel for the ServletExpress Manager is
shown. This panel shows ServletExpress running on Lotus Domino Go Webserver.

320 Internet Security in the Network Computing Framework

Figure 304. ServletExpress Manager Main Panel

The first thing to do after accessing the ServletExpress Manager should be to
change the default administrator password from admin to something private. This
is not required by the application, but it is good security practice. It is very
dangerous to continue to use the default value especially if your environment is
connected to the Internet. Whoever has access as the ServletExpress
administrator can manage your servlets. You get a dialog to change the password
by pressing the Properties button at the top of the screen shown in Figure 304.

 Chapter 7. How to Install and Configure a NCF Secure Environment 321

Figure 305. ServletExpress Manager Properties Panel

7.3.4 How to Configure ServletExpress Log Files
ServletExpress gives you the ability to view all servlet events and errors through
two types of log files:

� The event log lists server tracing events (for example, a startup or shutdown)
and servlet log information.

� The error log lists internal server errors and is useful for troubleshooting.

Event and error log files parameters can be configured through the Setup page of
the ServletExpress Manager. The following two screens show how you can
configure the kind of messages you want to log, how you can store and display the
log files and how you can set the file size limit for each log file:

322 Internet Security in the Network Computing Framework

Figure 306. How to Configure the Event Log File Parameters

 Chapter 7. How to Install and Configure a NCF Secure Environment 323

Figure 307. How to Configure the Error Log File Parameters

The service log directories are all stored in the directory servletexpress_root\logs,
servletexpress_root being the root directory where you installed ServletExpress (in
our case it was D:\ServletExpress).

The ServletExpress engine supports two other types of logging:

1. Native DLL logging: log messages produced by the Web server C code before
entering Java.

2. Java standard out logging: any System.out and System.err prints go to this log.

These log files are very helpful for troubleshooting, but logging is not enabled by
default. For this release of ServletExpress, you must manually edit the
jvm.properties file, stored in the
servletexpress_root\properties\server\ServletExpress\servletservice directory, to
control these two types of logging.

How to Edit the jvm.properties File

As we have already said, if the platform where you installed ServletExpress is
Windows NT, you must be sure to use WordPad or the command line utility
edit instead of Notepad to edit the jvm.properties files.

To control native DLL logging:

1. Open the jvm.properties file.

324 Internet Security in the Network Computing Framework

2. To enable logging:

� Set the property ncf.native.logison=true (notice that by default this
property is set to false).

� Set the property
ncf.native.logfile=servletexpress_root\logs\native.log.

� Restart your Web server.

3. To disable logging:

� Set the property ncf.native.logison=false (default value).

� Restart your Web server.

To control Java standard out logging:

1. Open the jvm.properties file.

2. To enable logging to a file:

� Set the property ncf.jvm.stdoutlog.enabled=true (by default it would be
set to false).

� Set the property ncf.jvm.stdoutlog.file=true (by default this property
also is set to false).

� Set the property
ncf.jvm.stdoutlog.filename=servletexpress_root\logs\ncf.log.

3. To enable logging to a Java console window:

� Set the property ncf.jvm.stdoutlog.enabled=true (default would be false).

� Set the property ncf.jvm.stdoutlog.file=false (default value).

4. To disable logging:

� Set the property ncf.jvm.stdoutlog.enabled=false (default value).

� Set the property ncf.jvm.stdoutlog.file=false (default value).

The following figure shows the jvm.properties file after we have modified it to
enable native DLL logging to the log file D:-ServletExpress\logs\native.log and Java
standard out logging to the log file D:\ServletExpress\logs\ncf.log. We have also
modified the ncf.jvm.classpath variable to the value that we will need to run the
applications of the scenarios that we describe in Chapter 8, “Three-Tier
Applications in Firewall-Protected Network Environments” on page 361 and
Chapter 9, “IIOP in Firewall-Protected Network Environments” on page 435. The
items that we changed are highlighted with numbers from .1/ to .6/.

 Chapter 7. How to Install and Configure a NCF Secure Environment 325

System Properties
ServletExpressVersion=1.ð.ð
server.root=D:/ServletExpress/
server.name=ServletExpress
java.compiler=symcjit

NCF Properties
ncf.service.name=servletservice
ncf.service.class=com.ibm.ServletExpress.service.SEServlet
ncf.plugin.classname=com.ibm.ServletExpress.ServletSystem

Logging is off by default
.1/ ncf.native.logison=true

#
Turn logging off by default
#
.2/ ncf.jvm.stdoutlog.enabled=true
.3/ ncf.jvm.stdoutlog.file=true

NCF - Admin Service Properties for BasicNCFConfig Applet
.4/ ncf.jvm.classpath=D:\jdk1.1.5\lib\classes.zip;
 D:\ServletExpress\lib\servexp.jar;
 D:\ServletExpress\lib\jst.jar;
 D:\ServletExpress\lib\jsdk.jar;
 D:\ServletExpress\lib\x5ð9v1.jar;
 D:\ServletExpress\web\classes\ibmjbrt.jar;
 D:\ServletExpress\web\classes\ibmjbde.jar;
 D:\WWW\CGI-Bin\icsclass.zip;
 D:\ServletExpress\servlets;

ncf.jvm.libpath=D:\jdk1.1.5\bin
ncf.jvm.path=D:\jdk1.1.5\bin
ncf.jvm.use.system.classpath=false

Max Java Heap Size
ncf.jvm.mx=671ð8864

#
Properties for Netscape webserver V2.ð1 on AIX or SOLARIS
#
#ncf.native.outofproc.runscript=/usr/bin/servlet_eng_runner.sh
#ncf.native.outofproc.port=8ð9ð
#ncf.native.outofproc.idstring="servexp"
#ncf.native.outofproc.netscapemime=<netscape_root>/config/mime.ty pes

#
Properties for Apache webserver on AIX or SOLARIS
#
#ncf.native.apache.outofproc.runscript=/usr/bin/apache_servlet_en g_runner
#ncf.native.apache.outofproc.port=8ð82
#ncf.native.apache.outofproc.idstring="apache-servlet-engine"

Figure 308 (Part 1 of 2). jvm.properties File

326 Internet Security in the Network Computing Framework

Properties for IIS
ncf.native.iis.extensionloc=/sePlugins/iis2ð.dll

Properties for Domino Go
ncf.native.httpd.cnf.path=c:\rsant\etc\httpd.cnf
.5/ ncf.native.logfile=D:\ServletExpress\logs\native.log
.6/ ncf.jvm.stdoutlog.filename=D:\ServletExpress\logs\ncf.log

Figure 308 (Part 2 of 2). jvm.properties File

When we upgraded JDK 1.1.5 to the next release 1.1.6, we edited the
jvm.properties file again, changing all the occurrences of jdk1.1.5 to jdk1.1.6.

7.3.5 How to Add Servlets into ServletExpress
Before you can use a servlet, you must copy or move its class file in the servlets
directory, that is servletexpress_root\servlets.

Then, using your Web browser, you can access the management page of
ServletExpress by pointing your browser to the following URL:
http://yourservername:9090/, yourservername being the fully qualified name of your
Web server machine.

The ServletExpress Manager applet starts and displays the login page (see
Figure 303 on page 320).

If you have just installed ServletExpress you should simply type admin in the User
Name and Password fields and then click the Log in button. We have already
mentioned, however, that you should change the administrator password the first
time you log in, even if this operation is not mandatory. One very common attack
is to access using default installation user IDs and passwords.

After you click the Log in button, you will get the page below:

 Chapter 7. How to Install and Configure a NCF Secure Environment 327

Figure 309. ServletExpress Manager Main Page

Select ServletExpress - Lotus Domino Go Webserver/4.6.2.2 (this string is
entirely visible only if you widen the Services column) and then click on the
Manage button. The following window will be displayed:

328 Internet Security in the Network Computing Framework

Figure 310. ServletExpress - Lotus Domino Go Webserver Main Menu

Click on the Servlets icon and the Servlets page will be brought up:

 Chapter 7. How to Install and Configure a NCF Secure Environment 329

Figure 311. ServletExpress Manager Servlets Page

Select Add and enter the Servlet Name and Servlet Class for your servlet into this
window:

1. The Servlet Name is the unique name of the servlet you are adding.

2. The Servlet Class is the name of the associated class file for the servlet you
are adding, but you don't have to specify the .class extension.

After you have entered these values, press the Add button. As an example, we
show how to add a servlet named snoop, whose Java class file name is
SnoopServlet.class (but the extension .class is not specified in the Servlet Class
field). This is a sample servlet that comes with the installation of ServletExpress.
You will find both the java and class files for this example already stored in the
servlet directory, so you won't need to move any file. If you follow these steps,
snoop will be the name used by ServletExpress to identify the SnoopServlet servlet.
Moreover you will be able to invoke this servlet by calling it SnoopServlet or simply
snoop.

The ServletExpress Manager allows you to specify configuration and properties
parameters for this servlet. In the Configuration window you can enter a
description of your servlet and you can decide when and how that servlet must be
loaded, as you can see in the following screen:

330 Internet Security in the Network Computing Framework

Figure 312. Configuration Window for the SnoopServlet Servlet

Pressing the Load button would force the Web server to load the SnoopServlet
servlet. Otherwise, that servlet will be loaded as soon as the first user invokes it
from his Web browser.

Clicking the Properties tag, you can then set the initialization parameters for the
servlet, by specifying the name of each parameter and its value. However, the
SnoopServlet does not need any initialization parameter, so we did not use the
Properties window.

This sequence of operations is exactly what you need to add a servlet to
SerlvetExpress. From now on, you will be permitted to invoke the SnoopServlet
servlet by pointing your Web browser to the URL
http://yourservername/servlet/snoop or http://yourservername/servlet/SnoopServlet,
where yourservername is the fully qualified name for your Web server machine.
Notice that servlet is the symbolic servlet location that the Web server replaces with
the actual servlet directory, while snoop is the name that we gave to the
SnoopServlet servlet. The following window demonstrates this result:

 Chapter 7. How to Install and Configure a NCF Secure Environment 331

Figure 313. Invoking the SnoopServlet Servlet

7.3.6 How to Monitor Loaded Servlets with ServletExpress
You can monitor loaded servlets by using ServletExpress Manager. All you have to
do is press the Monitor button for the ServletExpress Manager Configuration
window (see Figure 312 on page 331) and you will get the following screen:

332 Internet Security in the Network Computing Framework

Figure 314. ServletExpress Manager Monitor Window

Then you should select Loaded Servlets . Let's suppose that, since you started up
your Web server, no user has invoked the SnoopServlet servlet that you added to
ServletExpress in 7.3.5, “How to Add Servlets into ServletExpress” on page 327.
The ServletExpress Monitor window shows this situation, since SnoopServlet does
not appear among the currently loaded servlets, as you can see in the following
figure:

 Chapter 7. How to Install and Configure a NCF Secure Environment 333

Figure 315. Monitoring Loaded Servlets with the ServletExpress Manager

As soon as the Web server loads the SnoopServlet (either by pressing the Load
button in the Configuration window for the SnoopServlet servlet or by pointing a
Web browser to the URL http://yourservername/servlet/SnoopServlet), the
ServletExpress Manager Monitor window will register it among the loaded servlets,
as you can see in the following screen:

334 Internet Security in the Network Computing Framework

Figure 316. The ServletExpress Monitor Window Registers the SnoopServlet Servlet

We could also have invoked the SnoopServlet servlet by using its servlet name
snoop. In that case, the ServletExpress Manager Monitor window would register
the servlet loaded as snoop.

7.3.7 How to Migrate the Servlet Classes for ServletExpress
If you already have your servlet programs running on the servlet API support
function of Lotus Domino Go Webserver, you should first deactivate the servlet
support of Lotus Domino Go Webserver before installing ServletExpress (see
Figure 293 on page 314). Then you will need to move the Servlet and Eservlet
directives stored in the servlet.cnf file to the ServletExpress configuration. Notice
that the installation of Lotus Domino Go Webserver does not generate the file
servlet.cnf if you do not select Java Servlet in the installed component list (see
Figure 277 on page 303).

The migration of servlet classes can be accomplished as described in the following
list:

1. Print or view the Servlet and Eservlet directives, which are stored in the
servlet.cnf file.

2. Connect to port 9090 to open the ServletExpress Manager by using a
Java-enabled Web browser with an adequate Java 1.1 support.

3. Log in by entering the user ID and password for the ServletExpress
administrator.

 Chapter 7. How to Install and Configure a NCF Secure Environment 335

4. Each Servlet and Eservlet directive will need to be added, then configured.
ServletExpress does not distinguish between internal and external servlets like
Lotus Domino Go Webserver does. To see how you can add servlets to
ServletExpress, you can refer to 7.3.5, “How to Add Servlets into
ServletExpress” on page 327.

5. You will also need to move the servlets from their current location
server_root\servlets\public (in our platform server_root was D:\WWW) or
another previously specified directory to servletexpress_root\servlets directory
(in our case servletexpress_root was D:\ServletExpress).

6. Once this is done, restart the Web server. ServletExpress can only be run with
one Web server at a time.

However we didn't need to test this procedure, since we installed Lotus Domino Go
Webserver without its Java Servlets component (see Figure 277 on page 303) and
for this reason, when we installed ServletExpress, it was not necessary to migrate
the Java Servlet support.

7.4 IBM DB2 Universal Database 5.0 for AIX
IBM DB2 Universal Database (UDB) is a relational database management system.
We used IBM DB2 UDB Version 5.0 Workgroup Edition for AIX in the backend
server tier of our test environment, where we created the sample database
provided with the installation. The machine where we installed the database was
an IBM RS/6000 43P and its operating system was IBM AIX 4.3.

The Workgroup Edition for the IBM DB2 UDB provides functions to create and
manage databases in LAN servers and it is designed for use by small departments
and groups. This is the reason why, for our test environment, we decided to install
the Workgroup Edition rather than the Enterprise Edition, which provides also a
gateway to access Distributed Relational Database Architecture (DRDA) application
servers.

We also installed, in the same machine, IBM DB2 Client Application Enabler (CAE)
Version 5.0 for AIX to test the connection to the DB2 UDB server locally.

When we entered the db2setup command to start the DB2 Installer, we got the
following window:

336 Internet Security in the Network Computing Framework

Figure 317. DB2 Component Selection

We selected the following items:

� DB2 Client Application Enabler

� DB2 UDB Workgroup Edition

Then we pressed OK.

We defined the information to create a DB2 instance in the following window:

Figure 318. Creation of the DB2 Instance and of the Sample Database

An important decision that we had to make was the choice of a password for the
DB2 instance we were going to create. By default, the password for the db2inst1
instance is set to ibmdb2. You should change it as soon as possible; otherwise,
you would have a security hole in your environment.

Figure 318 shows that we selected also the option Create a sample database for
DB2 Instance . The sample database provided by IBM DB2 UDB Version 5.0
requires approximately 9 MB of disk space. You should increase your disk space

 Chapter 7. How to Install and Configure a NCF Secure Environment 337

before installing the sample database, if it it less than 9 MB. The sample database
is by default named SAMPLE.

Application developers often need to create their own suite of functions specific to
their application or domain. User-Defined Functions (UDFs) make this possible,
expanding the scope of DB2 to include, for example, customized business or
scientific functions. UDFs can operate over all database types. Fenced UDFs are
particular UDFs that ensure data integrity.

We had to define Authentication information to use fenced UDFs. For this reason,
we created a user and a group for fenced UDFs to execute under. We did this in
the following window:

Figure 319. User-Defined Functions Authentication Window

Once again, as you can see, the choice of the password is very important. You
must pay attention to the password also when you enter User Name and Group
Name for the Administration Server in the following window:

Figure 320. Administration Server Authentication Window

338 Internet Security in the Network Computing Framework

7.5 IBM DB2 Client Application Enabler 5.0 for Windows NT
The IBM DB2 CAE provides a run-time environment that enables client applications
to access remote databases. We used the DB2 CAE as a connector. We installed
it in the middle tier machine of our test environment, the same NT 4.0 machine
where we installed also the JDK, Lotus Domino Go Webserver and ServletExpress.
The CAE module had a key role in our environment, because it interfaced to JDBC
and DB2 local protocols and transferred data between the Web server and the DB2
server application.

 7.5.1 Installation
When we ran the installation program in our middle tier Windows NT Server
machine, we had to select the DB2 products we wanted to install, as shown in the
following figure:

Figure 321. DB2 Installed Component List

We only selected DB2 Client Application Enabler , because the middle tier
machine only needs this application the CAE to connect with the DB2 UDB server.

We were then prompted with the option to install the components required to
administer remote servers. We did not select this option, since we did not need to
administer any remote DB2 server through our middle tier machine.

 Chapter 7. How to Install and Configure a NCF Secure Environment 339

Figure 322. DB2 Remote Administration

When we had to decide what type of installation we wanted to do, we selected
Typical , since we just needed to install the default set of DB2 components.

Figure 323. DB2 Installation Type

All the DB2 installation files are usually installed in a directory named SQLLIB, that
the DB2 installer program automatically creates in the drive that the user specifies.
We selected the D drive and accepted the creation of the SQLLIB directory.

340 Internet Security in the Network Computing Framework

Figure 324. Selecting the DB2 Installation Directory

Figure 325. DB2 CAE Confirmation Window

At the end of the DB2 CAE installation, it was enough to restart our machine. The
next step will be to start the Client Configuration Assistant (CCA) to configure the
connection between the DB2 client and server (see 7.5.2, “DB2 CAE Connection
Configuration” on page 342). Setup offers you also the ability to reboot and
automatically start the Client Configuration Assistant, which is what we did.

 Chapter 7. How to Install and Configure a NCF Secure Environment 341

Figure 326. DB2 CAE Completion

7.5.2 DB2 CAE Connection Configuration
In order to run a NCF three-tier scenario involving the DB2 sample database
installed on the application server machine, it was necessary to connect the DB2
CAE in the Web server NT machine with the remote database that we had created
in the application server AIX machine. This operation was very simple, since we
used the Client Configuration Assistant (CCA) provided by DB2 CAE for Windows
NT.

If you did not select the option to reboot your system and automatically start the
CCA, you will need to launch the CCA manually. This operation, on Windows NT,
can be accomplished by clicking on Start on the Taskbar. Then you should select
Programs and DB2 for Windows NT . At that point click on Client Configuration
Assistant and the following Welcome window will appear:

342 Internet Security in the Network Computing Framework

Figure 327. DB2 Client Configuration Assistant Welcome Window

We pressed the Add Database... button and the Add Database SmartGuide
window was automatically opened:

 Chapter 7. How to Install and Configure a NCF Secure Environment 343

Figure 328. Add Database SmartGuide Window

First of all, we had to select the source database. The Source tab on the top of the
window was selected. We marked the radio button named Manually Configure a
Connection to a DB2 Database and then we pressed the Next button.

The Protocol page for the Add Database SmartGuide window was automatically
selected:

344 Internet Security in the Network Computing Framework

Figure 329. Protocol Page for the Add Database SmartGuide Window

This page had options to select the network protocol which the DB2 CAE would
use to communicate with the remote database. Of course we marked TCP/IP and
then we pressed Next again.

Once the TCP/IP page was displayed (see Figure 330 on page 346), we had to fill
out some fields related to the TCP/IP configuration. The field named Hostname
could be filled with the IP address, and we entered the IP address of the DB2
server machine. There was also a field named Port number, and we had to fill in
that field with the port number associated with the DB2 instance containing the
target database in the DB2 server machine. This is the port where the DB2 server
will be listening in order to accept connection requests from a DB2 client using
TCP/IP. For this reason this port is named main connection port. Its default value
is 50000. A discussion on how port numbers are assigned is presented in 6.1.2,
“Expert IP Filters Using IBM eNetwork Firewall 3.2” on page 271 and in 8.5, “IP
Filters Configuration for Three-Tier Applications” on page 390.

Actually there is also another port named interrupt port. The DB2 server uses the
interrupt port to handle interrupt requests from DB2 clients. The interrupt port
number is one number greater than the main connection port number, so by default
it is 50001.

It is possible to customize the value for the main connection port since it is one of
the parameters in the DB2 Manager Configuration File.

 Chapter 7. How to Install and Configure a NCF Secure Environment 345

DB2 Manager Configuration File

The DB2 Manager Configuration file is named db2systm. On AIX, it is stored in
the sqllib subdirectory for the instance of the database manager. On NT, it is in
the directory SQLLIB\DB2. The main connection port is configured through a
variable named svcename, found in the DB2 Manager Configuration file. If you
want to modify the value for the svcename variable or for another variable
handled by the DB2 Manager Configuration file, you cannot directly edit the
db2systm file, or you will corrupt it, making your system unusable. You should
instead use the DB2 Control Center or the DB2 Command Line Processor.

We filled the Port number field with the default value assigned to the main
connection port and so we typed 5ðððð. We didn't fill the Service name field, which
was optional. The following figure summarizes all our selections:

Figure 330. TCP/IP Configuration

We pressed the Next button and saw the Target Database page:

346 Internet Security in the Network Computing Framework

Figure 331. Selecting the Target Database

We typed SAMPLE in the Target database field, since this was the name that had
been automatically given to the sample database created in the DB2 server
machine (see Figure 318 on page 337). Then we clicked the Next button, opening
the Alias page for the Add Database SmartGuide window:

Figure 332. Database Alias

 Chapter 7. How to Install and Configure a NCF Secure Environment 347

This page contained a field named Database alias. You can use that field to
assign a different name to the remote database with which you connect. The new
name will be used only locally by all the applications running on the workstation
where the DB2 CAE is installed. For example, a servlet running on your Web
server machine will use the database alias to connect to a remote database
through the CAE. We accepted the value SAMPLE that the CCA assigned by default,
as it was also the name of the remote database. Since the Description field was
optional, we didn't fill that field and we pressed the Next button again.

The last page of the Add Database SmartGuide window is used to register the
database you are configuring for Open Database Connectivity (ODBC) applications:

Figure 333. ODBC Registration

We didn't select the option to register our SAMPLE database for ODBC
applications, since we intended to use it with JDBC applications. Once we pressed
Done , we got the confirmation that the connection configuration for the SAMPLE
database had been added successfully and then we saw the following window:

348 Internet Security in the Network Computing Framework

Figure 334. Available DB2 Databases

We could then test the connection by using the Command Line Processor (CLP) for
DB2 CAE. This tool can be launched by selecting Command Line Processor
from the DB2 for Windows NT menu. As soon as the tool was available, we
entered the command:

connect to sample user db2inst1 using ibmdb2

where db2inst1 was the DB2 instance name and ibmdb2 was the default password
in the DB2 UDB server (see Figure 318 on page 337). The result was successful,
as you can see in the following window:

Figure 335. Testing the Connection with the Command Line Processor

 Chapter 7. How to Install and Configure a NCF Secure Environment 349

7.6 IBM Firewall 3.1.1 and IBM eNetwork Firewall 3.2 for AIX
Until now we have shown how to install all the software products on the machines
that would be part of our scenarios. In order to grant security, a firewall machine
was integrated in our scenarios. This section describes now how to install and
configure the IBM Firewall. We installed this product on an IBM RS/6000 370
machine running AIX as operating system.

IBM Firewall 3.1.1. and 3.2

When the project began, Version 3.1.1 was available for the IBM Firewall. We
installed it on AIX 4.2.0 and made several experiments on that platform. These
experiments are documented in the book.

During the project, Version 3.2 for the IBM eNetwork Firewall became available,
so we uninstalled the old version, built the operating system AIX 4.2.1
necessary to run the new version of the firewall and installed IBM eNetwork
Firewall 3.2. We made several experiments using this platform too, and they
are documented in the book as well.

With both versions of this product, our experiments were successful. However,
we found it easier to use the new Version 3.2 to configure SSL tunneling, since
3.1.1 requires a fix to be installed (see 10.1, “SSL Tunneling Scenario” on
page 488).

This explains why some of the tests that are described in this book use Version
3.1.1 of the IBM Firewall on AIX 4.2.0 while others use Version 3.2 on AIX
4.2.1.

 7.7 Installation
Before you install the IBM Firewall, you must set what language environment you
will use on your machine. In our environment, we did not use the C (POSIX)
language environment, which is the default language environment of AIX. To
change the language environment, we entered the command:

smitty mle_cc_cust_hdr

on an aixterm window. We selected ISO8859-1 (en_US) as our language
environment, as you can see in the following screen:

350 Internet Security in the Network Computing Framework

Figure 336. Language Environment Selection

You also need to install the following filesets:

1. For IBM Firewall 3.1.1 on AIX 4.2.0:

 � bos.net.tcp.server 4.2.0.0

 � bos.acct 4.2.0.0

 � bos.sysmgt.sysbr 4.2.0.0

 � X11.base.lib 4.2.1.0

 � bos.net.tcp.client 4.2.0.11

 � bos.rte.libc 4.2.0.11

 � bos.rte.libs 4.2.0.8

2. For IBM eNetwork Firewall 3.2 on AIX 4.2.1:

 � bos.net.tcp.server 4.2.1.0

 � bos.acct 4.2.1.0

 � bos.sysmgt.sysbr 4.2.1.0

 � bos.net.tcp.client 4.2.1.0

 � Java.rte 1.1.2

 � fw320aixprereqs.tar.Z package

Before installing the above filesets, you should enter the command:

lslpp -l

to see if they are already installed on your machine. If they are needed, you can
then use the command:

smitty install_latest

to install them.

When this operation has been accomplished, you simply use smit to install the IBM
Firewall, as shown in the following figure:

 Chapter 7. How to Install and Configure a NCF Secure Environment 351

Figure 337. Installation of IBM Firewall Using smit

Pressing the F4 key, we could see all the software to install and we had the ability
to select IBM Firewall by pressing the F7 key:

Figure 338. Selecting IBM Firewall Software Using smit

 7.8 Basic Configuration
In order to configure the IBM Firewall, you have to set the secure network adapter,
activate the remote configuration and add the administration user. In this section
we will describe how to activate the remote configuration and how to add the
administration user. The configuration of the secure network adapter may depend
on the particular scenario that you want to implement and it can change depending
on whether the scenario is based on a three-tier model or on a two-tier model. For
this reason, you can refer to 8.4.4, “Setting the Secure Network Adapter on the
Firewall” on page 389 and 9.5, “Firewall Basic Configuration” on page 444 to see
how to set a network adapter on the firewall as secure.

352 Internet Security in the Network Computing Framework

 7.8.1 Remote Configuration
IBM Firewall can be configured remotely. For this reason, you can install the
Configuration Client on a remote machine, without the need to install the whole IBM
Firewall package. Every time you install the IBM Firewall, the Configuration Client
is automatically installed locally, so that you can configure the firewall on the same
firewall machine.

We used the fwconfig program to configure the firewall, since it offers an easy
Graphical User Interface (GUI) that makes the configuration easier. You could also
use smit, but it is more difficult than fwconfig and it does not offer the same
graphical facilities. The fwconfig program is launched in an aixterm window by
entering the fwconfig command.

As soon as you enter the fwconfig command, the Logon page for the configuration
program is displayed:

Figure 339. Logon Screen

We logged on as root to start the configuration. In fact, once the firewall is
installed, root is the only user that has administrative privileges on the firewall.
Logging on the Configuration Client as root, you can designate other users as
firewall administrators, since root is the only user enabled to create new firewall
administrators.

 Chapter 7. How to Install and Configure a NCF Secure Environment 353

7.8.2 Administrator User Addition
The fwconfig program allows you to define a new firewall administrator. Aftern
launching the fwconfig command, you should log on as root and select Users from
the Configuration Client navigation tree (see Figure 370 on page 392). You will
get the window below:

Figure 340. Users Window

Then select NEW and click on Open... . The Add User window will be brought up:

354 Internet Security in the Network Computing Framework

Figure 341. Add User Window

This dialog box is used to define the properties of the new administrator.
Figure 341 shows the Add User window after we made all our choices.

The Authority Level field by default is set to Socks/Proxy User, but in this case the
user wouldn't have administrative privileges. We opened the pull-down menu and
selected Firewall Administrator . Also we typed kkojima in the User Name field
and Kenji Kojima in the User Full Name field.

The Environment section of the Add User window allows you to select the Secure
Interface Shell, which is the shell program that will run when the user kkojima logs

 Chapter 7. How to Install and Configure a NCF Secure Environment 355

in from the secure network, and the Non-Secure Interface Shell, which is the shell
program that will run when the user kkojima logs in from the network connected to
the non-secure network interface. We opened the pull-down menu and selected
/bin/ksh for both.

The Add User window also has a number of fields for the Authentication section.
By default these fields are set to deny , meaning that the IBM Firewall forbids
access to the server. As you can see in Figure 341 on page 355, we kept the
default values only for Non-Secure Telnet, Secure IP and Non-Secure IP, but we
changed it for all the other fields, selecting password , meaning that for those
services the server asks for your password before letting you proceed. That
password will not be displayed and it is the same password with which the user
was added.

The Session Control section of the Add User window has two fields: Warning Time
and Disconnect Time. Warning Time is the maximum time in minutes that a user
can remain idle before a warning message is issued. We set this value to 20.
Disconnect Time is the maximum time in minutes that a user can remain idle before
the user is disconnected. We set this value to 30. Of course the value in the
Disconnect Time field must be greater than the value in the Warning Time field

After all these fields were filled, we clicked the Password tab on the top of the Add
User window:

356 Internet Security in the Network Computing Framework

Figure 342. Setting Password and Password Rules for the Firewall Administrator

You should select a password carefully, especially if you have permitted to
configure the firewall remotely. However, the new administrator user that you have
defined will have to change the password the first time they log on.

The Password Rules section gives you the possibility to set eleven password rules:

 1. Login retries

2. Number of days to warn the user before the password expires

3. Number of passwords before reuse

 Chapter 7. How to Install and Configure a NCF Secure Environment 357

4. Weeks before password expiration

5. Weeks before password lockout

6. Maximum age of the password

7. Minimum length of the password

8. Minimum alphabetic characters

9. Minimum other characters

10. Maximum number of repeated characters

11. Minimum number of different characters

We changed the default values as shown in Figure 342 on page 357. Then we
pressed the Administration tab on the top of the Add User window:

358 Internet Security in the Network Computing Framework

Figure 343. Setting Administration Properties

We accepted all default values in this window and then we clicked OK. The
following window confirmed that the user kkojima had been added successfully:

 Chapter 7. How to Install and Configure a NCF Secure Environment 359

Figure 344. Confirmation Screen for the New User

360 Internet Security in the Network Computing Framework

Chapter 8. Three-Tier Applications in Firewall-Protected
Network Environments

This chapter describes how to build a three-tier secure application in an NCF
environment protected by a firewall.

 8.1 Overview
The three-tier architecture in our test environment, shown in Figure 345 on
page 362, consisted of three machines:

 1. Client tier

This machine was a Windows 95 IBM ThinkPad installed with the Netscape
Communicator 4.05 Web browser.

 2. Server tier

This machine was a Windows NT Server 4.0 IBM Personal Computer. It was
installed with Lotus Domino Go Webserver Version 4.6.2.2; IBM ServletExpress
Version 1.0 beta 2.1 had the role of servlet engine and IBM DB2 Client
Application Enabler Version 5.0 was installed as connector. Sun Java
Development Kit 1.1.6 was also installed on this machine.

3. Application server tier

In our scenarios, IBM DB2 Universal Database Version 5.0 for AIX was
installed on the third-tier machine, which was an IBM RISC/6000.

The tiers were connected through a set of standard protocols:

1. HTTP, HTTPS and TCP/IP were used between the client and the server tier.

2. IBM DB2 local protocol over TCP/IP was used between the server tier and the
application server tier machine.

In view of building the firewall, we consider the simple case which supposes that an
employee needs to retrieve corporate information through the Internet, perhaps
from a foreign country. The user can connect with the corporate system using the
nearby access point of a service provider, as if they were working in their office.
But the corporate system must be protected against hackers and intruders and we
need to build a firewall to provide this security service. A firewall is a tool
combining hardware and software that separates a protected network from an
unprotected network. The default rule for a firewall is to deny any traffic flow
between a secure and a non-secure network. Our basic policy was to select a set
of protocols that were permitted to pass through the firewall and a list of services
that we wanted to run on our firewall. Then we set the type of permissions we
wanted to guarantee for each service (direction of the connection, list of machines
where a connection can be issued and eventually others). In other words, we
defined a set of connections that allow specific types of IP traffic to flow between
secure and non-secure networks, under certain conditions.

The user contacts the Web server using a Web browser installed on a client
machine. The interaction between the client machine and the DB2 server is
handled by the server tier, where Lotus Domino Go Webserver is installed. A Java
servlet running in the Web server is automatically activated by the user's request.

 Copyright IBM Corp. 1998 361

Since the purpose of this chapter is to demonstrate how to use different
technologies in a three-tier model environment to grant security, we did not write
the code for a new application, but we built this scenario using the JDBCServlet
sample application provided by ServletExpress 1.0.

Note: Although ServletExpress has been incorporated in the IBM WebSphere
Application Server 1.0, you can safely refer to what we describe here to build an
NCF secure three-tier application using the JDBCServlet, since no major
modifications have been applied. Only notice that the directory structure has been
modified.

The flow of our application is described in the following list:

1. The user accesses the application page on the Web site of his company using
a common Web browser.

2. The Web server sends to the browser an HTML page containing a form.

3. The user fills out the form and submits it.

4. The Web server invokes the Java servlet specified by the HTML form.

5. The Java servlet, based upon the JDBC protocol, connects to the DB2 CAE
client application located on the same machine by using the JDBC driver.

6. The DB2 CAE forwards the request coming from the servlet to the DB2 UDB
database server application, located on the backend server machine.

7. The DB2 UDB database server application sends the requested data back to
the DB2 CAE database client application.

8. The DB2 CAE database client application inside the Web server machine
passes the retrieved data back to the servlet by using the JDBC driver.

9. The Java servlet dynamically formats the response in an HTML page and
passes it to the Web server.

10. The Web server sends the dynamic HTML page back to the client tier, that
displays the retrieved data on the Web browser.

Server

10 7

63

2

1

Client

Netscape
Communicator

Application
Server

DB2 UDB

Lotus Domino
Go Webserver

DB2 CAE

5

JDBCServlet

4

89

ServletExpress

5220\522017

Figure 345. Graphical Representation of the Application Flow

In order to grant security in our firewall-based scenario, we used all the security
measures listed below:

362 Internet Security in the Network Computing Framework

� SSL with client authentication

� IP filters for HTTP and SSL in the client/server communication

� IP filters for the DB2 communication protocol over TCP/IP used between the
IBM DB2 CAE client and the IBM DB2 UDB server application

� WebSphere access control

� DB2 access control based on user ID and password

The following figure offers a logical representation of the security measures we
applied to our environment:

SSL Server
Authentication

Client
Firewall

IP Filters for
HTTP and SSL

SSL Client Authentication
WebSphere Access Control

Web Server Firewall

IP Filters for the
DB2 Local Protocol

DB2 Access Control Based
on User ID and Password

Application
Server

HTTP, SSL

5220\522024

DB2 Local
Protocol

Figure 346. Logical Representation of the Security Measures Applied

Actually we used only one firewall machine with three network adapters, as shown
in Figure 367 on page 387, and we connected it to the three tiers of our scenario.
This solution is logically equivalent to implementing two firewalls, as explained in
6.2.4, “Screened Subnet” on page 292.

The JDBCServlet that we used in this scenario is invoked from a static HTML page
that, as you will see, does not have a sensitive nature. For this reason, we didn't
protect access to that HTML page by using the access control features provided by
Lotus Domino Go Webserver. Instead, we concentrated our efforts on protecting
access to the JDBCServlet, and to do this we used the security measures offered
by ServletExpress. If your application requires access control for Web pages, you
can set it up by following the steps we described in 3.3, “Access Control with Lotus
Domino Go Webserver” on page 104 and 3.3.6, “Lotus Domino Go Webserver
Access Control Lists” on page 114.

In order to see how to install and configure the key products that were used in this
scenario, you can refer to Chapter 7, “How to Install and Configure a NCF Secure
Environment” on page 297.

 8.2 System Configuration
This section describes the operations we did after installing all the products, in
order to configure the environment and to have the JDBC application run in our
three-tier scenario.

We configured the environment before the firewall was activated.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 363

8.2.1 CLASSPATH Variable and ncf.jvm.classpath Property
IBM DB2 CAE includes Java class files that are necessary to implement
applications that interface to DB2. In particular, the JDBCServlet application that
we were going to install interfaces to the DB2 CAE through the JDBC protocol and
it uses the JDBC driver COM.ibm.db2.jdbc.app.DB2Driver.class. We can
understand this if we look at these few lines of code for the JDBCServlet.java file:

à ð
try
{
// register the driver with DriverManager

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
}
catch (ClassNotFoundException e)
{
 e.printStackTrace();
}

á ñ

Once the Class.forName method is invoked, the string
COM.ibm.db2.jdbc.app.DB2Driver is passed to it as a parameter. In this way the
forName() method locates, loads and links the class DB2Driver, which is the JDBC
driver, in the package COM.ibm.db2.jdbc.app.

This Java class is part of the file D:\SQLLIB\java\db2java.zip, so we needed to
include this zip file in the CLASSPATH environment variable in order for the Java
compiler javac to find the DB2Driver class and we also needed to add the same
zip file in the ncf.jvm.classpath property for the jvm.properties file (see Figure 308
on page 326). This value represents the Java classpath that the servlet engine will
use to make a servlet run.

To modify the value for the CLASSPATH system environment variable, we opened
the System Properties window for Windows NT (in 7.1.1, “Path System
Environment Variable” on page 299 we explained how to have access to the
System Properties window), we added D:\SQLLIB\java\db2java.zip to the current
value of the CLASSPATH variable (see Figure 302 on page 320) and clicked the
Apply button:

364 Internet Security in the Network Computing Framework

Figure 347. CLASSPATH System Environment Variable

It was then possible to run the Java compiler javac against the file
JDBCServlet.java. To do this, we opened an MS-DOS Command Prompt window
and entered the command:

javac JDBCServlet.java

when D:\ServletExpress\web\resources\en_US\JDBCServlet was the current
directory.

To modify the ncf.jvm.property for the jvm.properties file, it is still possible to open
that file with a text editor different from Notepad and edit the property, as we did in
7.3.4, “How to Configure ServletExpress Log Files” on page 322 to enable native
DLL logging and Java standard out logging. ServletExpress gives you also the
possibility to edit that property through the ServletExpress Manager. It is enough to
select the Basic item for the Setup menu and to click on Save after having added
D:\SQLLIB\java\db2java.zip to the current value of the Java Classpath variable:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 365

Figure 348. Setting the ncf.jvm.classpath Property for ServletExpress

8.2.2 Servlet Registration in ServletExpress
The JDBCServlet application, that ServletExpress includes as a sample servlet in
the directory servletexpress_root\web\resource\en_US\JDBCServlet, was the
application that we used to test our firewall-based security scenario. Since the
servlet engine used by Lotus Domino Go Webserver was provided by
ServletExpress, we had to use the ServletExpress Manager to register the
JDBCServlet as a new servlet.

First of all, we had to compile the servlet as indicated in 8.2.1, “CLASSPATH
Variable and ncf.jvm.classpath Property” on page 364 and then we had to copy or
move the resulting class files JDBCServlet.class and ConInfo.class into the servlet
directory servletexpress_root\servlets. The Web Programmer's Guide provided with
ServletExpress 1.0 suggests compiling each sample servlet in its own individual
directory and only then to copy or move the resulting class files. This is important
in order for the Java compiler javac to find all the packages that are imported. If
you move the java file in the servlet directory and then you compile it, you run the
risk that the Java compiler does not find the necessary packages. We noticed that
the JDBCServlet.java file can be compiled without problems in the servlet directory.

We also had to run the Java compiler javac against the messages resource file
samples_en_US.java, that comes in the servletexpress_root\web\resources\en_US
directory. We simply entered the command:

javac samples_en_US.java

366 Internet Security in the Network Computing Framework

in an MS-DOS Command Prompt window.
servletexpress_root\web\resources\en_US was the current directory. Then the
samples_en_US.class file also had to be copied or moved into the servlet directory.
Notice that the JDBCServlet does not work if the samples_en_US.class file is not in
the servlet directory.

Once these installations are completed, you should launch the Web server and
then the ServletExpress Manager. Following all the steps that we explained in
7.3.5, “How to Add Servlets into ServletExpress” on page 327, you should be able
to register the JDBCServlet servlet in ServletExpress using the ServletExpress
Manager.

Figure 349. JDBCServlet Registration through the ServletExpress Manager

After having entered the Servlet Name and the Servlet Class both as JDBCServlet,
we pressed the Add button. Then the servlet appeared in the list of all the
available servlets and the Configuration window appeared:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 367

Figure 350. JDBCServlet Configuration Window

We accepted the default values displayed in the Configuration window. Since this
servlet does not have any initial parameters, we did not have to click on the
Property tag on the top of the window to enter a name and value for each
parameter.

8.3 Testing the Application without Using the Firewall
After the parts were installed on the three systems for the scenario, it was time to
test our work before proceeding with the firewall installation. We had been making
configuration decisions all along the way, and we were able to test some of them,
but the real test would be a Web page, a servlet and a database.

The JDBCServlet.class file is called from an HTML form also supplied as a sample.
Its name is JDBCServletForm.html. After installing ServletExpress, the file
JDBCServletForm.html is placed in the directory
servexp_root\web\resources\en_US\JDBCServlet.

368 Internet Security in the Network Computing Framework

If you examine the Lotus Domino Go Webserver configuration file, named httpd.cnf,
you will find the following mapping rules added by the ServletExpress installation:

à ð
Pass /ServletExpress/resources/\ d:\ServletExpress\web\resources\en_US\\
Pass /ServletExpress/\ d:\ServletExpress\web\\

á ñ

For our test, the HTML source would be referred to as
http://ourwebserver/servletexpress/resources/JDBCServlet/JDBCServletForm.html
Pointing the Web browser on the client machine to this URL, we saw the HTML
form displayed:

Figure 351. JDBCServlet Access Form

Our first attempt to use the form produced an error from DB2. The sample
database was created with user ID and password security. The DB2 error told us
that we had not presented a user ID and password. We examined with a text
editor the JDBCServlet.java source code file for the JDBCServlet servlet and there
were no provisions for a user ID and password. One possibility to solve this
problem was to hard code a user ID and a password into the JDBCServlet.java file.
The code lines we added are shown in the following screen:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 369

à ð
 :::
String userid = "db2inst1";
String password = "ibmdb2";

try
{

// connect with default user ID and password
conð = DriverManager.getConnection(url, userid, password);
con1 = DriverManager.getConnection(url, userid, password);

}

catch (Exception e)
{
 :::

á ñ

We then recompiled the JDBCServlet.java file in its original directory
servexp_root\web\resources\en_US\JDBCServlet and then copied the resulting
class files to the servlet directory.

We restarted the Web server to make sure that the new servlet was activated.
Because we had not selected to have the JDBCServlet loaded when
ServletExpress starts (see Figure 350 on page 368), stopping and restarting the
Web server had only the effect of stopping the servlet. Then the servlet would be
reloaded when the first client invoked it.

We could have also restarted the servlet by using the ServletExpress Manager. In
fact in the JDBCServlet Configuration window (see again Figure 350 on page 368)
the Load button changes to read Unload if you press it and then Unload changes
to read Load if you press the button again. In this way, you can restart only the
servlet, without completely shutting down the Web server and ServletExpress.

The following test of the form was successful and resulted in the return of the data
in the HTML page:

370 Internet Security in the Network Computing Framework

Figure 352. JDBCServlet Response Showing Data Retrieved

Putting the user ID and password for the database access into the Java source
code showed us that the HTML form and servlet combination would work, and that
we configured the major pieces of our application properly. If you implement this
solution, you give access to the database to whomever accesses the servlet, since
DB2 automatically authenticates and authorizes the user. You should then use the
security features provided by ServletExpress to protect your servlet and give
access to it only to authorized users.

We wanted to change the implementation a little for security purposes by allowing
the Web page user to put their user ID and password into the form and have the
servlet pick up those values and pass them along to the database. This would
allow us to have DB2 security from the second-tier Web server to the third-tier
database server.

We needed to make changes to the HTML form and to the Java source code to
accomplish this goal. We added the following lines of code to the HTML form:

à ð
<p>
User ID

<INPUT Type="text" Name="userid" Size="8">

<p>
Password

<INPUT Type="password" Name="passwd" Size="8">

á ñ

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 371

The changes to the java code were a little more complex. We needed to have the
servlet get the field data from the HTML incoming stream. In the first test of our
source code we set the values of the String instances to the values of the user ID
and password, and then made a connection instance. This was all carried out in
the init() method. A section of the two source code files for the Java servlet is
shown next. Only the sections of the source code that were changed from the
original example are shown, so these listings are not complete. The full source is
available as a sample with ServletExpress 1.0.

372 Internet Security in the Network Computing Framework

/\
 \ This servlet connects to the DB2 Sample database using JDBC and prints out the
 \ query result set to the browser page. The servlet is invoked from an HTML page
 \ form's Submit button. The HTML form is used to dynamically specify the query
 \ parameters. The parameters are parsed by the servlet from the query string sent
 \ from the form and used to build an SQL query that is executed on the database
 \ via the JDBC driver. The servlet also opens two connections to the database that
 \ it keeps open and cycles use for service method calls.
 \/

import java.io.\;
import javax.servlet.\;
import javax.servlet.http.\;
import java.sql.\;
import java.util.\;
import java.text.\;
import com.sun.server.util.\;

/\\
 \ This is an example of a JDBC Database Servlet that dynamically builds an SQL
 \ query, executes it on the database, then prints out the result set returned.
 \/

public class JDBCServlet extends HttpServlet
{

// ResourceBundle class constant
public final String BASENAME = "samples";

// con is initialized at startup of servlet
static String url=null;
static String userid=null;
static String password=null;
static int [] Constat = {ð,ð};
static Connection conð;
static Connection con1;

 static
 {
 try
 {

// register the driver with DriverManager
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

 }
catch (ClassNotFoundException e)

 {
 e.printStackTrace();
 }
 }

Figure 353 (Part 1 of 2). Source Code for the First Servlet Test

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 373

public void init(ServletConfig sc)
 {
 try
 {
 super.init(sc);
 }

catch (ServletException e)
 {
 e.printStackTrace();
 }

// URL is jdbc:db2:dbname .1/
url = "jdbc:db2:SAMPLE"; .2/
userid = "db2inst1"; .3/
password = "ibmdb2"; .5/

 try .6/
 {

// connect with default id/password .7/
conð = DriverManager.getConnection(url, userid, password); .8/
con1 = DriverManager.getConnection(url, userid, password); .9/

 } .1ð/

catch(Exception e) .11/
 { .12/
 e.printStackTrace(); .13/
 } .14/

} // init

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
ResourceBundle rb = null;
MessageFormat mf = null;
ServletOutputStream out = null;
String qry, qs, qryStr, state;
String [] vars = {""};
String tbl = null, col = null;
String colStr = null;
Object colVal = null;
String [] qArgs = new String [6];
PrintWriter pw = null;

 res.setContentType("text/html");
out = res.getOutputStream();
pw = new PrintWriter(out);

Figure 353 (Part 2 of 2). Source Code for the First Servlet Test

In the changes made to accept the user ID and password from the HTML form, the
block of code to set the value of the String instances and create the connection
was moved to the service() method to be able to make use of the getParameter()
method for the HttpServletRequest req object. The lines of code that were moved
from the init() to the service() method are marked with highlighted numbers from

374 Internet Security in the Network Computing Framework

.1/ to .14/. Look for the changes in the way that the user ID and password String
instances were handled, and for the way they were moved from the init() method to
the service() method. Again, only a section of the source code in which changes
were made follows.

/\
 \ This servlet connects to the DB2 Sample database using JDBC and prints out the
 \ query result set to the browser page. The servlet is invoked from an HTML page
 \ form's Submit button. The HTML form is used to dynamically specify the query
 \ parameters. The parameters are parsed by the servlet from the query string sent
 \ from the form and used to build an SQL query that is executed on the database
 \ via the JDBC driver. The servlet also opens two connections to the database that
 \ it keeps open and cycles use for service method calls.
 \/

import java.io.\;
import javax.servlet.\;
import javax.servlet.http.\;
import java.sql.\;
import java.util.\;
import java.text.\;
import com.sun.server.util.\;

/\\
 \ This is an example of a JDBC Database Servlet that dynamically builds an SQL
 \ query, executes it on the database, then prints out the result set returned.
 \/

public class JDBCServlet extends HttpServlet
{

// ResourceBundle class constant
public final String BASENAME = "samples";

// con is initialized at startup of servlet
static String url=null;
static String userid=null;
static String password=null;
static int [] Constat = {ð,ð};
static Connection conð;
static Connection con1;

 static
 {
 try
 {

// register the driver with DriverManager
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

 }
catch (ClassNotFoundException e)

 {
 e.printStackTrace();
 }
 }

Figure 354 (Part 1 of 2). Source Code for the Second Servlet Test

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 375

public void init(ServletConfig sc)
 {
 try
 {
 super.init(sc);
 }

catch (ServletException e)
 {
 e.printStackTrace();
 }

} // init

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

 {
ResourceBundle rb = null;
MessageFormat mf = null;
ServletOutputStream out = null;
String qry, qs, qryStr, state;
String [] vars = {""};
String tbl = null, col = null;
String colStr = null;
Object colVal = null;
String [] qArgs = new String [6];
PrintWriter pw = null;

 res.setContentType("text/html");
out = res.getOutputStream();
pw = new PrintWriter(out);

// URL is jdbc:db2:dbname .1/
url = "jdbc:db2:SAMPLE"; .2/
userid = req.getParameter("userid"); .3/
password = req.getParameter("passwd"); .4/

 try .5/
 { .6/

// connect with default id/password .7/
conð = DriverManager.getConnection(url, userid, password); .8/
con1 = DriverManager.getConnection(url, userid, password); .9/

 } .1ð/
catch(Exception e) .11/

 { .12/
 e.printStackTrace(); .13/
 } .14/

Figure 354 (Part 2 of 2). Source Code for the Second Servlet Test

The result of these changes was the addition of user ID and password fields to the
form and the possibility for the servlet to pick up the values entered. This allowed
us to set security on the database and implement that security in our application.

376 Internet Security in the Network Computing Framework

Figure 355. JDBCServlet Form with User ID and Password

Now, if you look closely at the following picture you will see the user ID and
password for the database imbedded in the URL string.

Figure 356. Result of JDBCServlet Form Using GET Method

The form created for the Web page and the associated servlet use the HTTP GET
method for sending data from the Web page to the servlet. The form calls the

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 377

servlet and passes the data arguments on the same URL in a data element named
QUERY_STRING. This presents two or three problems.

1. The URL may get truncated, losing data that is necessary for the application to
operate properly.

2. If someone is near the user, the data in the URL may be seen and written
down, or recovered in some other fashion.

3. If there is a Man-in-the-Middle (MIM), the data in the URL may be intercepted,
and in this case a user ID and password is exposed, unless encryption is used.

This application design violates the integrity of our environment. How can we
change the application so that the security is intact? The use of the POST method
would solve part of these problems by sending the data stream to the servlet on a
separate data stream which is not appended to the URL. Information entered in a
form will still be visible by a MIM, but this problem would be solved by using SSL.
You can refer to 3.2, “Examples of Security Using HTTP and SSL” on page 94 for
the security implications of using GET and POST over HTTP or SSL.

Rather than changing the Java source code to permit our servlet to handle the
POST method, we thought that the best solution would be to hard code a user ID
and password in the servlet (so the user ID and password are no longer passed
through the URL) and set security on the Web server, utilizing the security features
provided by ServletExpress.

ServletExpress offers very powerful security measures, so it is not a bad idea to set
security on it and hard code user ID and password. By the way, at the end of this
project, the next Release 1.0 beta 3 became available for ServletExpress and we
noticed that the source code of the JDBCServlet in the new release had been
changed in the same way we had changed it, so that now, before compiling the
Java file, you are forced to open and modify it by hard coding the user ID and
password.

Of course this choice has security implications, since it means that now the class
file contains the user ID and password and, if the bytecode is decompiled, this
information could be retrieved. However Lotus Domino Go Webserver protects the
class file of a servlet, so it cannot be retrieved remotely.

Alternatively user ID and password could be specified as initialization parameters to
be read in by the servlet when the servlet is loaded. The initialization parameters
of a servlet can be read in the servlet's init() method using the two methods
getInitParameterNames() and getInitParameters(). This technique is described in
the IBM redbook Network Computing Framework Component Guide, SG24-2119,
Chapter 5, "Servlets" on page 157. User ID and password, retrieved as
initialization parameters, can then be used to create a connection specification,
allowing the servlet to be more generic. This way, user ID and password are the
same for any access, so it is not necessary to pass this information over the
Internet, and access control can be set using ServletExpress. Nonetheless user ID
and password are not hard coded and the risk of a hacker retrieving such private
information by decompiling the servlet class file is eliminated.

378 Internet Security in the Network Computing Framework

8.3.1 Setting Security with ServletExpress
ServletExpress considers servlets as resources and offers the possibility to protect
access to them. We want to show you what we did to protect access to the
JDBCServlet. This is very important since we have hard coded a user ID and
password in the JDBCServlet. Whoever accesses the JDBCServlet, also accesses
the database. In order to grant security, we must limit access to the JDBCServlet
so that only authorized users can retrieve sensitive information. For further details
about ServletExpress security, refer to 4.1, “ServletExpress Security Management”
on page 122 and 4.2, “ServletExpress Advanced Security” on page 159.

In order to protect the JDBCServlet as a ServletExpress resource, first of all
JDBCServlet must be one of the servlets managed by ServletExpress. In other
words, it must be added to the list of all the servlets managed by ServletExpress.
This is what we did in 8.2.2, “Servlet Registration in ServletExpress” on page 366.

The second step is to decide which users can have access to that servlet. Let's
say that we want to define a new user, named marco, and grant marco access to
the JDBCServlet. For this reason, we opened the ServletExpress Manager,
pressed the Security button and then selected Users .

Figure 357. Users Page for the ServletExpress Manager

Notice that we were going to add the new user under the defaultRealm. It didn't
make sense, in this case, to add a user under the servletMgrRealm, since users in
the servletMgrRealm are considered servlet-signers. The NT realm also was not
good for our purposes, since it requires that each user is also a user for the
underlying operating system, so adding a new user would require defining a new

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 379

user for the operating system itself. The defaultRealm is the best choice when you
want to control access to a servlet.

Clicking the Add::: button we then accessed the page to add a new user.

Figure 358. Adding the New User Named marco

When we clicked OK, the new user was visible among all the other users defined
under the defaultRealm.

Figure 359. The New User Has Been Added to the defaultRealm

380 Internet Security in the Network Computing Framework

Of course it is also possible to make the new user a member of a group and then
grant the whole group access to the JDBCServlet. We didn't perform this
operation, because we just wanted to test this scenario with only one user.

Selecting Access Control Lists from the Security tree, the list of all the defined
ACLs appears.

Figure 360. ACLs List

We wanted to create a new, specific ACL, in order to control access to the
JDBCServlet only. For this reason, we clicked Add ACL::: and in the new dialog
box that appeared we entered the name of the new ACL we were going to define.
We named it JDBCServletACL.

Figure 361. Adding the New Access Control List JDBCServletACL

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 381

Clicking Add we got the JDBCServletACL as a new entry in the ACLs list. We
then pressed Add Permission::: and then we were able to grant the new user
marco permission to GET.

Figure 362. Granting the New User marco Permission to GET

The user marco only needs permission to GET in order to run the JDBCServlet
from the JDBCServletForm, since that form uses the GET method to invoke the
JDBCServlet.

We then selected the Resources item from the Security tree.

382 Internet Security in the Network Computing Framework

Figure 363. The Resources Page from the ServletExpress Manager

We clicked Add::: to add the JDBCServlet as a new resource in the
JDBCServletACL, as shown in the following figure:

Figure 364. Adding the JDBCServlet as a New Resource in the JDBCServletACL

These steps were enough to place security on the Web server machine, using the
security measures offered by ServletExpress. From now on, the JDBCServlet will

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 383

be considered a protected resource by ServletExpress. Access to the JDBCServlet
will be limited to the user marco, who has permission only to GET. This user will
only be allowed to invoke the JDBCServlet through the GET method, that is the
method used by the JDBCServletForm.html Web page to call the JDBCServlet.

Each time any users on the client machine try to access the JDBCServlet, they will
be prompted with a dialog box, where they will have to enter the defined user name
and password:

Figure 365. Entering User ID and Password to Access the JDBCServlet

You can see that the lock icon in the bottom-left corner of the window is open.
This means that a secure SSL communication is not in place yet. In fact this initial
test was performed without adding SSL security. Later in this chapter, you will see
how we will enforce the security measures step-by-step in order to run a secure
application.

8.3.2 DB2 Client/Server Communication Security
Before setting security with the firewall, we wanted to make another experiment to
see how secure the communication between the DB2 client and the DB2 server
was.

For this reason, we acted as a MIM and we sniffed the network while the DB2
client was connecting a database on the DB2 server. As we mentioned in 3.2,
“Examples of Security Using HTTP and SSL” on page 94, this also can be
considered a MIM attack, even if in this case the MIM is simply copying frames in
transit, trying to get sensitive information. In a more severe MIM attack, to the

384 Internet Security in the Network Computing Framework

server the MIM masquerades as the client and to the client the MIM masquerades
as the server, in order to compromise the data flowing between them.

These are the particulars of the test environment:

Table 6. Environment Configuration

DB2 Client DB2 Server

Host Name romeo wtr05218

IP Address 9.24.104.176 9.24.104.210

And these are the DB2 settings:

Table 7. DB2 Settings

Database Name on the DB2 Server SAMPLE

Database Alias on the DB2 Client SAMPLE1

User ID pistoia

Password sw1504r

As soon as the user on the DB2 client connects the database on the server by
entering the command:

connect to sample1 user pistoia using sw15ð4r

on a DB2 Command Line Processor, this is what a MIM can see:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 385

Figure 366. Sniffing the DB2 Client/Server Communication

We used the Microsoft Systems Management Server Network Monitor Version 4.00
to capture these frames. This utility was installed on another Windows NT Server
system located in the same intranet as the DB2 client and server.

Look at what the mouse arrow is pointing to: you will notice that user ID, database
name on the DB2 server, password and database alias on the client are transmitted
in clear text.

From a security point of view, this could be a problem. User ID and password are
clearly visible, either hard coded in the servlet or dynamically entered by the user
on the client machine. We solved this problem by designing an appropriate
architecture for our environment, where the Web server machine, which is also the
DB2 client, is placed in the DMZ and the DB2 server is located in the secure
network. The firewall will prevent intruders from retrieving private information when
this is transmitted between the DB2 client and the DB2 server.

Another solution could have been to use Distributed Computing Environment (DCE)
Security Services to authenticate users, since DCE provides:

� Centralized administration of users and passwords

386 Internet Security in the Network Computing Framework

� No transmission of clear text passwords and user IDs

� A single sign-on for users

For more information on how to use DCE Security Services to authenticate DB2
users, refer to IBM DB2 Universal Database Administration Guide Version 5.

8.4 Scenario Environment Configuration
The flow of the application that we described in 8.1, “Overview” on page 361
involved three machines: client, server and application server. The protocol
connection between these machines was controlled by a firewall, so our
environment was composed of four machines, as shown in the following figure:

95 Client
Object

Netscape
Communicator

DB Server
Object

107

Ethernet

Firewall

40 1

tr1

2

DMZ Token-Ring

Domino Go Webserver
ServletExpress

NT Server
Object

1Intranet

9.24.105.0DB2

Token-Ring

Internet

tr0
en0

192.168.51.0
2

5220\522004

Figure 367. Scenario Environment Configuration

This section describes the particulars of hardware, software and network
configuration for the scenario environment.

 8.4.1 Hardware Configuration
Here we briefly state the hardware configuration of our test environment through
the following table:

Table 8. Hardware Configuration

Machine Model Memory Network Adapters

Client IBM ThinkPad 560E 48 MB Token-ring

Web Server IBM PC 365 64 MB Token-ring

Application Server IBM RS/6000 43P 192 MB Ethernet

Firewall IBM RS/6000 370 128 MB � Token-ring

 � Token-ring

 � Ethernet

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 387

 8.4.2 Software Configuration
The software configuration of our test environment is described in the following
table:

Table 9. Software Configuration

Operating System Software

Client Microsoft Windows 95 Netscape Communicator 4.04

Web Server Microsoft Windows NT Server 4.0 � Sun JDK 1.1.6

� Lotus Domino Go Webserver 4.6.2.2

� IBM ServletExpress 1.0 beta 2.1

� IBM DB2 CAE 5.0

Application
Server

IBM AIX 4.3 IBM DB2 UDB 5.0

Firewall 1. IBM AIX 4.2.0

2. IBM AIX 4.2.1

1. IBM Firewall 3.1.1

2. IBM eNetwork Firewall 3.2

As we explained in 7.6, “IBM Firewall 3.1.1 and IBM eNetwork Firewall 3.2 for AIX”
on page 350, when the project began, Version 3.1.1 was available for the IBM
Firewall and we installed it on the operating system AIX 4.2.0. When Version 3.2
became available, we rebuilt the system with AIX 4.2.1, necessary to run the new
version of the firewall, and we installed IBM eNetwork Firewall 3.2.

This is the reason why the previous table indicates two different versions for the
AIX operating system and for the IBM Firewall installed on the firewall machine.

 8.4.3 Network Configuration
The following table explains the network configuration for our environment:

Table 10. Network Configuration

Host Name IP Address Network Adapter Subnet Mask

Client 192.168.51.2 Token-ring 255.255.255.0

Web Server 192.168.50.2 Token-ring 255.255.255.0

Application
Server

AIXNCF157E 9.24.105.107 Ethernet 255.255.255.0

Firewall RS600012E � 9.24.105.40

 � 192.168.50.1

 � 192.168.51.1

 � Ethernet

 � Token-ring

 � Token-ring

 � 255.255.255.0

 � 255.255.255.0

 � 255.255.255.0

As you can see in Table 10, we made the Ethernet adapter of the firewall machine
the secure network interface, since we assumed that it was connected to the
internal secure network. Its two token-ring adapters are non-secure network
interfaces, since they connect the firewall machine to the untrusted non-secure
network. The following section shows how we set the Ethernet adapter as secure.

388 Internet Security in the Network Computing Framework

8.4.4 Setting the Secure Network Adapter on the Firewall
Once you have installed the firewall, you need to distinguish the secure network
adapters from the non-secure ones. This is very important, because a secure
network adapter is for communicating with an Intranet, while a non-secure network
adapter is used to communicate with the Internet or with any untrusted network.

In order to identify a network interface as secure, we used the smit fast path:

smitty fw_set_secure_adapter

and the Secure Interface window immediately came up:

Figure 368. How to Add a Secure Network Adapter

We selected Add and then we pressed the Enter key of the keyboard. To set an
adapter as secure in your environment, you need to specify the qualified IP address
corresponding to the network adapter itself. In this scenario, we used only the
Ethernet adapter for the firewall as secure. That adapter had IP address
9.24.105.40 (see 8.4.3, “Network Configuration” on page 388), so we selected that
value in the following window:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 389

Figure 369. How to Select a Secure Network Adapter

This procedure finished successfully and at the end we got a confirmation window
informing us that our configuration had been accepted.

8.5 IP Filters Configuration for Three-Tier Applications
This section shows how to use the IP filter firewall technology to enable three-tier
applications to pass through the firewall (see Figure 367 on page 387). Later on,
we will often speak of connections, network objects, services and rules. To have a
general description of each of these concepts, you can refer to 6.1.2, “Expert IP
Filters Using IBM eNetwork Firewall 3.2” on page 271.

Before building the IP filters, we had to define the network protocol flow which our
three-tier application would use in this scenario (see 8.1, “Overview” on page 361).
The following list summarizes objects and connections that took part in our scenario
environment:

1. Objects (Type: Host)

 � 95-client

This object was a mobile IBM ThinkPad computer located in the Internet. A
Web browser was installed on this machine. This object played the role of
the client tier in this scenario.

 � NT-server

This object was an IBM Personal Computer having the key role of the
middle tier. In this machine we had installed Lotus Domino Go Webserver,
with the servlet engine provided by IBM ServletExpress, and IBM DB2 CAE
as connector. This object was located in the DMZ.

 � DB-server

This object was the legacy system where we had installed IBM DB2 UDB
as backend server tier. This machine was an IBM RISC/6000 located in
the intranet.

 2. Connections

� DMZ to Secure DB2

390 Internet Security in the Network Computing Framework

This connection was defined to permit the DB2 CAE protocol from the
NT-server object to flow to the DB-server object in order to grant the DB2
communication.

� Non-secure to DMZ HTTP and SSL

This connection was defined to permit the HTTP and SSL protocols from
95-client object to NT-server object in order to grant secure Web
communication.

See 8.4.3, “Network Configuration” on page 388 for further details.

Notice that we did not need to consider any firewall object in this scenario, because
the firewall simply had to route the traffic between the three objects that we had
defined, without performing any other action. Had we had to implement a firewall
technology different from IP filters, like for example proxy server, then the traffic
would have been broken by the firewall and three firewall objects should have been
defined, one for each firewall network adapter. We will see several examples of
this technique in Chapter 9, “IIOP in Firewall-Protected Network Environments” on
page 435.

 8.5.1 Objects Addition
We defined and configured the three objects that we have just described using the
fwconfig program.

After entering the fwconfig command, this time we had the possibility to log on as
the new firewall administrator user that we had created (the Logon window was
shown in Figure 339 on page 353). Then we selected Network Objects from the
Configuration Client navigation tree:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 391

Figure 370. Network Objects in the Configuration Client Navigation Tree

The Network Objects window was brought up. We selected NEW, and then we
clicked the Open::: button:

392 Internet Security in the Network Computing Framework

Figure 371. Network Objects Window

We had to define the three new objects called 95-client, NT-server and DB-server.
We started by defining the DB-server object, as shown in the following screen:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 393

Figure 372. DB-server Object Definition

The other two objects were defined through very similar windows, setting every
time the Object Type to Host and Subnet Mask to 255.255.255.255 and entering
the IP address for that specific object (see 8.4.3, “Network Configuration” on
page 388). This is the window that we used to define the 95-client object:

394 Internet Security in the Network Computing Framework

Figure 373. 95-client Object Definition

And Figure 422 on page 456 is the window with which we defined the NT-server
object:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 395

Figure 374. NT-server Object Definition

8.5.2 IP Filters Configuration for the DB2 Communication Protocol
We now describe the steps we followed to configure IP filters for the DB2
communication protocol over TCP/IP. IP traffic for this protocol flowed between the
DB2 server AIX machine and the Web server NT machine, which in this case
played the role of a DB2 client.

IBM Firewall provides a lot of predefined default services and rules that you can
use for your purposes. In other words, you do not need to create new services and
rules if among the default services and rules you find what you need for your
environment. However, we did not find default services and rules matching our
needs and for this reason we had to create new services and rules.

8.5.2.1 New Rules Creation
We started by selecting Rules from the Configuration Client navigation tree. This
item can be accessed only after selecting Traffic Control and Connection
Template , as you can see in the following figure:

396 Internet Security in the Network Computing Framework

Figure 375. Rules in the Configuration Client Navigation Tree

When we got the Rules List page, we double clicked NEW, in order to create new
rules, and we pressed the Open::: button:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 397

Figure 376. Rules List Window

As we said in 7.5.2, “DB2 CAE Connection Configuration” on page 342, on the
DB2 server-side there are two specific port numbers associated with the DB2
instance containing the target database in the DB2 server machine. These port
numbers are used for the communication with the DB2 CAE client application.
Default values are:

1. 50000 for the main connection port (see Figure 330 on page 346).

2. 50001 for the interrupt port (the interrupt port number is always one number
greater than the main connection port number).

We explained in 7.5.2, “DB2 CAE Connection Configuration” on page 342 that it is
possible to customize the main connection port number on the server through the
DB2 Manager Configuration File. The port number used on the client-side is
greater than 1023, in accordance with the convention that port numbers below 1023
are considered privileged and commonly used by applications having root authority.
But beside this limitation there is no specific port used on the client. The DB2
client simply asks TCP for a free port that is dynamically assigned and there is no
way to customize the client port number.

As we have already explained, we did not find any predefined services and rules
that could be used to build the connections we needed. For this reason, we had to
define a set of new rules, add these rules to a service and then generate the
proper connection using the new service. We started by creating exactly eight new
rules. The following list describes these eight new rules:

1. DB2 CAE 1/4 non secure

This rule was defined to permit the inbound IP routing using tr1 (which was the
DMZ network interface) from a TCP port greater than 1023 to the TCP port
50000.

2. DB2 CAE 2/4 non secure

This rule was defined to permit the outbound IP routing using en0 (which was
the secure network interface) from a TCP port greater than 1023 to the TCP
port 50000.

398 Internet Security in the Network Computing Framework

3. DB2 CAE 3/4 non secure

This rule was defined to permit the inbound IP routing using tr1 (which was the
DMZ network interface) from a TCP port greater than 1023 to the TCP port
50001.

4. DB2 CAE 4/4 non secure

This rule was defined to permit the outbound IP routing using en0 (which was
the secure network interface) from a TCP port greater than 1023 to the TCP
port 50001.

5. DB2 CAE Ack 1/4 non secure

This rule was defined to permit the outbound IP routing using tr1 (which was
the DMZ network interface) from the TCP port 50000 to a TCP port greater
than 1023.

6. DB2 CAE Ack 2/4 non secure

This rule was defined to permit the inbound IP routing using en0 (which was
the secure network interface) from the TCP port 50000 to a TCP port greater
than 1023.

7. DB2 CAE Ack 3/4 non secure

This rule was defined to permit the outbound IP routing using tr1 (which was
the DMZ network interface) from the TCP port 50001 to a TCP port greater
than 1023.

8. DB2 CAE Ack 4/4 non secure

This rule was defined to permit the inbound IP routing using en0 (which was
the secure network interface) from the TCP port 50001 to a TCP port greater
than 1023.

The following screen captures from Figure 377 on page 400 through Figure 384
on page 407 show the windows we used to define these eight new rules. In case
you want to repeat our scenario, you can consider these screens as an example to
build your own rules.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 399

Figure 377. DB2 CAE 1/4 non secure Rule

400 Internet Security in the Network Computing Framework

Figure 378. DB2 CAE 2/4 non secure Rule

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 401

Figure 379. DB2 CAE 3/4 non secure Rule

402 Internet Security in the Network Computing Framework

Figure 380. DB2 CAE 4/4 non secure Rule

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 403

Figure 381. DB2 CAE Ack 1/4 non secure Rule

404 Internet Security in the Network Computing Framework

Figure 382. DB2 CAE Ack 2/4 non secure Rule

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 405

Figure 383. DB2 CAE Ack 3/4 non secure Rule

406 Internet Security in the Network Computing Framework

Figure 384. DB2 CAE Ack 4/4 non secure Rule

As soon as these eight new rules were created, they were immediately registered
and displayed by the Rules List window, as we show in the following figure:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 407

Figure 385. DB2 CAE Rules in the Rules List Window

Notice that for the last four rules that we defined, in the Protocol field we selected
tcp/ack (see Figure 381 on page 404 through Figure 384 on page 407) instead of
tcp . This means that we permitted only TCP packets having the Acknowledgment
(ACK) flag set to flow from the DB2 server machine to the DB2 client machine. In
general this choice has security implications. In fact the ACK flag in a TCP session
is used by one end of a session to inform the other end that the previous packet
was received correctly. For this reason, in a TCP session, only the first packet,
which is responsible for establishing the session, does not have the ACK flag set.
Since the DB2 server never initiates a connections with the DB2 client, only
packets with the ACK flag set should flow from the DB2 server to the DB2 client.
The tcp/ack Protocol specification prevents an undesired TCP session from being
established, since it blocks the first packet.

8.5.2.2 New Service Creation
This section describes how we added the eight new rules to a new service that we
named CAE direct in. This service defined what type of IP traffic we wanted to
permit between the two network objects NT-server and DB-server.

First of all, we selected Services in the Client Configuration navigation tree,
displayed in the following screen:

408 Internet Security in the Network Computing Framework

Figure 386. Client Configuration Navigation Tree

Notice that in order to select Services , you first need to select Traffic Control and
Connection Template .

Once the Services List page is displayed, you should click NEW, in order to add a
new service, and then press the Open::: button, as shown in the following figure:

The Add Service window will be displayed. We used this window to add the new
service. We entered the service name CAE direct in and then typed in the
Description field Permit CAE from DMZ directly to DB2. Then we added the new
rules. To add rules during a service definition, you should click the Select::: button
in the Service Composition section. The Rules List window is brought up and you
can pick up the rules that you need for your service definition. The result is shown
in the following window:

You can see that we did not modify the sections Service Override Values or Time
Controls for the Add Service window. You should have noticed the presence of an
arrow beside each rule name. That arrow can go from left to right or from right to
left and it is to specify the flow. After selecting a rule, you can change the direction
of one arrow to the opposite by clicking the Flow button.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 409

1. A left to right arrow indicates to the firewall that when that service is added to a
connection, where the source and the destination objects are specified, the rule
will be applied to the traffic that flows from the source object to the destination
object.

2. A right to left arrow indicates to the firewall that when that service is added to a
connection, where the source and the destination objects are specified, the rule
will be applied to the traffic that flows from the destination object to the source
object.

The connection that we were going to build would have NT-server as its source
object and DB-server as its destination object. But for the four rules for which we
had selected tcp/ack as Protocol specification (see Figure 381 on page 404
through Figure 384 on page 407), it was supposed that the IP traffic would flow
from the destination object to the source object. For this reason we marked these
four rules with right to left arrows. For the other four rules, for which we had
selected tcp as Protocol specification (see Figure 377 on page 400 through
Figure 380 on page 403), we kept the default left to right arrows, since they would
apply to the IP traffic flowing from the source object to the destination object for the
connection.

If you make a mistake when you add the rules to the Add Service page, and you
want to remove a rule, you can do this by simply selecting the wrong rule and then
clicking Remove .

The order with which the rules are listed in the Add Service window is also very
important from a security point of view, since when IBM Firewall receives a packet,
it compares that packet to the rules for that service in the same order with which
they have been added, and stops comparing only when the first match is found.
After that, it executes the action described in the matching rule. We added the
eight rules in the same order with which we had created them (see 8.5.2.1, “New
Rules Creation” on page 396). You can change the order with which you added
the rules to your service by selecting a rule and clicking Move Up or Move Down .

 8.5.2.3 Connection Configuration
After clicking OK in the Add Service window, we needed to add the new service to
a new connection that we named DMZ to Secure DB2. To do this, we selected
Traffic Control and then Connection Setup in the Configuration Client navigation
tree:

410 Internet Security in the Network Computing Framework

Figure 387. Connection Setup in the Configuration Client Navigation Tree

The Connections List window was brought up:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 411

Figure 388. Adding a New Connection through the Connections List Window

We selected NEW and then we pressed the Open::: button. The Add a
Connection window appeared. We set Name to DMZ to Secure DB2 and
Description to From NT to DB2. Then we selected NT-server as source network
object and DB-server as destination network object. Also we selected CAE direct
in as the only service for this connection. The Add a Connection window looked
like the following screen:

412 Internet Security in the Network Computing Framework

Figure 389. DB2 CAE Connection

Then we simply pressed OK. This connection was to permit the IP communication
between DB2 client and server to flow through the firewall. In order for this
connection to work, we needed to activate it. To do this, we selected Traffic
Control and then Connection Activation in the Configuration Client navigation
tree, as shown in the following window:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 413

Figure 390. Connection Activation in the Configuration Client Navigation Tree

Once the Connection List window appeared, we could activate the new connection
we had built, DMZ to Secure DB2, by clicking on the Activate... button.

414 Internet Security in the Network Computing Framework

Figure 391. Connections List

Remember that the connections that appear in this list when you click Activate...
will all be activated, not only the highlighted one, so you should have in this window
only the connections that you really want to activate. If you had created other
connections, perhaps for testing purposes, make sure that you remove them from
the Connections List window, by clicking on Delete , before the activation takes
place. This way you will limit the connections allowed through the firewall and only
the necessary connections will be activated.

The Connection Activation window was brought up. Here we selected the item
Regenerate Connection Rules and Activate and then we clicked Execute .

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 415

Figure 392. Connection Activation Window

8.5.3 IP Filters Configuration for HTTP and SSL
We describe now the steps that we followed to configure IP filters for HTTP and
SSL. IP traffic for these two protocols flowed between the Windows 95 machine,
where we had installed a Web browser, and the Windows NT Server machine,
where we had installed the Web server application. We had configured on the Web
server the HTTP port number, setting it to its default value 80, and the SSL port
number, setting it to its default value 443 (see Figure 284 on page 307). The
HTTP port number used on the client has a dynamic value always greater than
1023, since port numbers below 1024 are in the assigned port range, as we
explained in 8.5.2.1, “New Rules Creation” on page 396. Keeping this in mind, we
started to create rules and services in order to pass the HTTP and SSL protocols
through the firewall.

416 Internet Security in the Network Computing Framework

8.5.3.1 New Rules Creation for HTTP
In order to create new rules, we selected Rules from the Configuration Client
navigation tree (see Figure 375 on page 397). When we got the Rules List page
(see Figure 376 on page 398), we clicked NEW and then we pressed the Open:::
button. We could then create four new rules for the HTTP protocol, that we
describe now through the following list:

1. HTTP 1/2 non secure

This rule was defined to permit the inbound IP routing using tr0 (which was the
non-secure network interface) from a TCP port greater than 1023 to the TCP
port 80.

2. HTTP 2/2 non secure

This rule was defined to permit the outbound IP routing using tr1 (which was
the DMZ network interface) from the TCP port 80 to a TCP port greater than
1023.

3. HTTP Ack 1/2 non secure

This rule was defined to permit the inbound IP routing using tr1 (which was the
DMZ network interface) from the TCP port 80 to a TCP port greater than 1023.

4. HTTP Ack 2/2 non secure

This rule was defined to permit the outbound IP routing using tr0 (which was
the DMZ network interface) from the TCP port 80 to a TCP port greater than
1023.

For each rule of the above list, we show now the screens that we used for the rule
definitions from Figure 393 on page 418 through Figure 396 on page 421. You
can consider these screens as an example in case you want to build a scenario
similar to ours.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 417

Figure 393. HTTP 1/2 non secure Rule

418 Internet Security in the Network Computing Framework

Figure 394. HTTP 2/2 non secure Rule

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 419

Figure 395. HTTP Ack 1/2 non secure Rule

420 Internet Security in the Network Computing Framework

Figure 396. HTTP Ack 2/2 non secure Rule

Once these four new rules were created, they became available and were
immediately displayed in the Rules List window, as also we saw for the DB2 CAE
rules in Figure 385 on page 408. Notice that the last two rules we created had the
Protocol specification set to tcp/ack (see Figure 395 on page 420 and
Figure 396). This is a security feature that we already explained in 8.5.2, “IP
Filters Configuration for the DB2 Communication Protocol” on page 396. In this
case it is to permit only TCP packets having the ACK flag set to flow from the Web
server machine to the client, preventing that unwanted TCP session are
established.

8.5.3.2 New Service Creation for HTTP
The next step was to add the four new rules just built for the HTTP protocol to a
new service that we called HTTP direct in. To do this, we selected the Services
item from the Configuration Client navigation tree, as shown in Figure 386 on
page 409. To define this new service, we followed similar steps as those
described in 8.5.2.2, “New Service Creation” on page 408. The result is shown in
the following window:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 421

Figure 397. HTTP direct in Service Definition

Notice that we typed the Service Name and also we provided a description for the
service in the Description field. Moreover we added the four rules in the same
order as we created them.

The connection that we built had 95-client as source object and NT-server as
destination object. For this reason, we had to select in the above window the two
rules marked with the tcp/ack protocol specification and change their Flow property
by clicking the Flow button. Left to right arrows changed immediately into right to
left arrows. This operation was necessary, because for those two rules it was

422 Internet Security in the Network Computing Framework

supposed that the IP traffic would flow from the destination to the source network
object.

Then we clicked OK to accept the new service as we had defined it.

8.5.3.3 New Rules Creation for SSL
Similarly, we had to create new rules for the SSL protocol, in order to include them
in a new service and then build a new connection for HTTP and SSL between the
95-client and the NT-server objects.

As usual, we needed to select Rules from the Configuration Client navigation tree
(see Figure 375 on page 397). Then we highlighted NEW in the Rules List
window (see Figure 376 on page 398) and we pressed the Open::: button.

The following list describes the four rules that we built for the SSL protocol:

1. HTTPS 1/2 non secure

This rule was defined to permit the inbound IP routing using tr0 (which is the
non-secure network interface) from a TCP port greater than 1023 to the TCP
port 443.

2. HTTPS 2/2 non secure

This rule was defined to permit the outbound IP routing using tr1 (which was
the DMZ network interface) from a TCP port greater than 1023 to the TCP port
443.

3. HTTPS Ack 1/2 non secure

This rule was defined to permit the inbound IP routing using tr1 (which was the
DMZ network interface) from the TCP port 443 to a TCP port greater than
1023.

4. HTTPS Ack 2/2 non secure

This rule was defined to permit the outbound IP routing using tr0 (which was he
non-secure network interface) from the TCP port 443 to a TCP port greater
than 1023.

The screens from Figure 398 on page 424 through Figure 401 on page 427 show
how we defined the rules for SSL listed above. As usual, you can consider these
rules as an example to build the rules for your own environment.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 423

Figure 398. HTTPS 1/2 non secure Rule

424 Internet Security in the Network Computing Framework

Figure 399. HTTPS 2/2 non secure Rule

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 425

Figure 400. HTTPS Ack 1/2 non secure Rule

426 Internet Security in the Network Computing Framework

Figure 401. HTTPS Ack 2/2 non secure Rule

As soon as these four new rules were created, they became immediately available
and appeared in the Rules List window (see Figure 376 on page 398).

You should have noticed that, building these new rules, we selected as usual
tcp/ack as the Protocol specification for both the rules for which the IP traffic is
supposed to flow from the NT-object to the 95-object (see Figure 400 on page 426
and Figure 401).

8.5.3.4 New Service Creation for SSL
The next step was to add the four new rules just built for SSL to a new service that
we called HTTPS direct in. First of all, we selected the Services item from the
Configuration Client navigation tree, as shown in Figure 386 on page 409. To
define this new service, we followed similar steps as those described in 8.5.2.2,
“New Service Creation” on page 408. The result is shown in the following window:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 427

Figure 402. HTTPS direct in Service Definition

As usual, we entered the Service Name and also we filled the Description field with
an appropriate description for the new service. The four new rules were added in
the same order as they were created.

The connection that we built had 95-client as source object and NT-server as
destination object. For this reason, we had to select in the above window the last
two rules, which we had marked with the tcp/ack protocol specification, and change
their Flow property by clicking the Flow button. Left to right arrows turned into right
to left arrows. We did this, because for those two rules the IP traffic would flow

428 Internet Security in the Network Computing Framework

from the destination to the source network object. After clicking OK, the new
service became available.

 8.5.3.5 Connection Configuration
In this section we describe how we added the two services created for HTTP and
SSL to a new connection, that we named Nonsecure to DMZ HTTP and SSL. To do
this, we selected Traffic Control and then Connection Setup in the Configuration
Client navigation tree (see Figure 387 on page 411). The Add a Connection
window appeared. We set Name to Nonsecure to DMZ HTTP and SSL and
Description to From 95 to NT. Then we selected 95-client as source network
object and NT-server as destination network object. Also we selected HTTP direct
in and HTTPS direct in as the two services for this connection. Then the Add a
Connection window looked like the following screen:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 429

Figure 403. Nonsecure to DMZ HTTP and SSL Connection

Then we simply pressed OK. This connection permits secure communication
between the Web client and the Web server to pass through the firewall. Notice
that when this connection is activated, both protocols, HTTP and SSL, will be
allowed to pass through the firewall. Each time that you configure a firewall to let
the SSL protocol pass through, you should also configure it to let HTTP pass
through the firewall, since https:// URLs are often activated as links from http://
URLs.

In order for this connection to work, we needed to activate it. To do this, we
selected Traffic Control and then Connection Activation in the Configuration
Client navigation tree, as shown in Figure 390 on page 414. Once the

430 Internet Security in the Network Computing Framework

Connections List window appeared, we were able to activate the new connection
we had built, Nonsecure to DMZ HTTP and SSL , in a similar way as we showed
in Figure 391 on page 415.

To activate this connection, it was enough to press the Activate::: button. The
Connection Activation window was brought up (see Figure 392 on page 416). We
selected the item Regenerate Connection Rules and Activate and then we
clicked Execute .

In order to run our three-tier application through the firewall, both connections we
built, DMZ to Secure DB2 and Nonsecure to DMZ HTTP and SSL, should be activated
together, so that these should be the two connections present in the Connections
List window when the button Activate::: is clicked.

8.6 Demonstration of the Three-Tier Application through the Firewall
We used the sample application named JDBCServlet provided by ServletExpress
1.0. You can find how to configure the JDBCServlet in 8.2.2, “Servlet Registration
in ServletExpress” on page 366 and 8.3, “Testing the Application without Using the
Firewall” on page 368. Of course, before testing our scenario, we had to set up
Lotus Domino Go Webserver to use the SSL protocol. To enforce the security
measures, we also enabled SSL client authentication. In order to see how to
configure the SSL protocol on Lotus Domino Go Webserver, refer to 3.1.2, “Lotus
Domino Go Webserver SSL Setup” on page 71. You can also read 3.1.4, “SSL
Client Authentication” on page 84 to see how to enable client authentication. To
run the JDBCServlet over SSL, it was enough to point the Web browser of our
client machine to the following URL:
https://192.168.50.2/ServletExpress/resources/JDBCServlet/JDBCServletForm.html.

We got the query form, which we used to send DB2 requests from the Internet,
where we supposed our client machine was located, to the Web server machine,
located in the DMZ. The following window shows the query form that we obtained
using the SSL protocol and the security measures provided by ServletExpress:

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 431

Figure 404. Query Form through the SSL Protocol with ServletExpress Access Restriction

If you compare this picture with Figure 365 on page 384, you will notice that the
SSL protocol this time is used since the lock represented at the bottom-left corner
of the window is closed now, but it was opened when we had tested the application
on HTTP. The closed lock is the security icon that the Netscape browser uses to
inform the user that an SSL connection is in place. Notice that we had to enter the
user ID and password for the user marco, since access to the JDBCServlet had
been restricted to this user through the security measures provided by
ServletExpress.

The following window is the result of our query. It demonstrates that our three-tier
application using SSL was able to pass through the firewall:

432 Internet Security in the Network Computing Framework

Figure 405. Results

This time too the lock icon informed us that an SSL connection was in place (see
also the difference with Figure 352 on page 371), so that we made sure that all the
communication between the client and the server was encrypted by the SSL
protocol.

 Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments 433

434 Internet Security in the Network Computing Framework

Chapter 9. IIOP in Firewall-Protected Network Environments

In this chapter we will show how to grant security for client/server applications
running in an intranet. The IBM Network Computing Framework calls this kind of
application a two-tier model. In particular we will focus on applications using the
IIOP protocol.

The intranet will be divided by a firewall into two subnetworks:

1. A high-level security subnetwork, corresponding to the client machine

2. A low-level security subnetwork, corresponding to the server machine

The following figure shows a graphical representation of our test environment:

95 Client
Object

Netscape
Communicator

Domino Go Webserver
ServletExpress

2

Firewall

1 1

tr0

A low-level
security network

192.168.50.0
2

5220\522014

NT Server
Object

tr1

A high-level
security network

192.168.51.0

Figure 406. Two-Tier Test Environment

Our application will distribute over the Internet Inter-ORB Protocol (IIOP) using
ServletExpress CORBA Support. We will show how to build the firewall within the
intranet and what the implications are with IIOP.

Note: The considerations that you read in this chapter are related to our
experience with ServletExpress Version 1.0 beta 3. As we mentioned in
Chapter 4, “IBM WebSphere Application Server Security” on page 121, the servlet
engine and CORBA Support piece provided by ServletExpress are now
incorporated in the recently announced IBM WebSphere Application Server Version
1.0. Notice that the directory structure changed for the servlet engine and for the
CORBA Support piece. For the rest, you can safely refer to what we have written
here about ServletExpress and refer the same experience to WebSphere
Application Server Version 1.0. We stayed in touch with the development team all
through the writing of this redbook and were informed of one single major change,
which we will describe in 9.7.2, “Client/Server Communication through an HTTP
Proxy Server” on page 473 and 9.8.2, “Client/Server Communication through a
SOCKS Server” on page 482.

It would be good to have a general description of the IIOP protocol and
ServletExpress CORBA Support before continuing the description of our scenario.

 Copyright IBM Corp. 1998 435

9.1 What Is IIOP?
IIOP is a communications protocol based on the Common Object Request Broker
Architecture (CORBA) specifications provided by the Object Management Group
(OMG). You will find further information about the Object Management Group at
the OMG home page http://www.omg.org/.

An application is enabled to use distributed objects by using the Object Request
Broker (ORB). The ORB transparently forwards remote object requests (for
example, a method invocation) to the appropriate server objects, dispatches the
requests and returns the results (for example, a method return value).

IIOP is the standard protocol supported by the IBM Network Computing Framework
for remote method call support. It allows client communication with Business
Object Framework objects on a remote server. By using the CORBA/IIOP protocol,
a Java applet running in a client machine can communicate with a servlet running
in the Web server and supporting IIOP as well. IIOP is much more efficient than
communicating over HTTP, since IIOP may reuse a single connection for multiple
requests. That is the reason why the applet and the servlet can exchange method
calls in both directions, along the same connection.

9.2 WebSphere Application Server CORBA Support
WebSphere Application Server CORBA Support is a CORBA-compliant ORB and
an extensive feature set that enables the development of Web-based Java
applications. As we have mentioned several times, we worked with the beta 3
release of WebSphere Application Server, that still carried the name of
ServletExpress. For this reason, for the rest of this section, we will continue
referring to the CORBA Support piece as ServletExpress CORBA Support.

 9.2.1 Configuration
ServletExpress CORBA Support is automatically enabled as soon as you install and
configure ServletExpress properly, as indicated in 7.3, “IBM ServletExpress 1.0” on
page 311. However, some modifications are required in your computing
environment when you are going to develop ServletExpress CORBA applications.

First of all, you should define a system environment variable named JAVA_HOME
and set its value to the directory containing bin/javac.exe. If you followed the
default installation for the JDK, that directory is usually the root directory of the
Java Development Kit. In our Windows NT environment, it was D:\jdk1.1.6, so we
opened the System Properties window from the Control Panel, defined a new
system environment variable named JAVA_HOME and set its value to D:\jdk1.1.6.

Furthermore, during the installation of ServletExpress, two CORBA Support Java
archives, named ibmjbrt.jar and ibmjbde.jar, were placed in the directory tree
servexp_root\web\classes (where servexp_root is the ServletExpress installation
directory, in our case D:\ServletExpress). The run-time archive ibmjbrt.jar, contains
classes for all CORBA Support features, less the compilers. It is the development
archive ibmjbde.jar that contains classes for all the compilers. The CLASSPATH
system environment variable must now include these two archives, in order for
ServletExpress CORBA Support to work correctly. The full path
servexp_root\web\classes for these two Java archives must be included in the

436 Internet Security in the Network Computing Framework

CLASSPATH system environment variable as well. The AccountsUI applet does
not compile if you do not add that directory too.

Considering all the modifications that we have already done to the CLASSPATH
variable to enable the servlet engine provided by ServletExpress (see Figure 302
on page 320) the CLASSPATH current value must include the following:

.;
D:\jdk1.1.6\lib\classes.zip;
D:\ServletExpress\lib\servexp.jar;
D:\ServletExpress\lib\jst.jar;
D:\ServletExpress\lib\jsdk.jar;
D:\ServletExpress\lib\x5ð9v1.jar;
D:\ServletExpress\web\classes\ibmjbrt.jar;
D:\ServletExpress\web\classes\ibmjbde.jar;
D:\ServletExpress\web\classes;
D:\WWW\CGI-Bin\icsclass.zip;
D:\ServletExpress\servlets;

Figure 407. Current Settings for the CLASSPATH Environment Variable

More about the CLASSPATH System Environment Variable

The CORBA Support development team recommends that you include the two
Java archives ibmjbrt.jar and ibmjbde.jar, plus the full path
servexp_root\web\classes for these two files, in the CLASSPATH system
environment variable, but only during development (for example, during building
of the sample applications) or on development machines. There are cases
where leaving those two files and the class directory in the CLASSPATH at all
times actually causes problems, and we explain the reason of this in 9.2.2,
“Local Applets Security Considerations” on page 438. So both the Java
archives ibmjbrt.jar and ibmjbde.jar, plus the classes directory should be
removed from the CLASSPATH at deployment time, or on deployment
machines.

If you have installed and configured ServletExpress properly, you should have
already appended the JDK bin directory (in our case D:\jdk1.1.6\bin) to the Path
variable of your computing environment. No new action is required on the Path
variable to enable ServletExpress CORBA Support. It is convenient, however, that
the full path to the file nmake.exe is added to the value of Path. This program
comes with the installation files of ServletExpress CORBA Support and it is very
useful for fast access to that executable when you are developing applications.
The command line utility nmake is automatically installed in the directory
servexp_root\web\classes\com\ibm\jbroker\samples\nmake, so it is enough that you
add this directory to the current value of the Path variable.

By entering the set command at an MS-DOS command prompt followed by the
name of the environment variable, you can verify whether that variable is set
correctly. The following figure summarizes all the system environment settings that
were necessary to use the ServletExpress CORBA Support on our Windows NT
platform:

 Chapter 9. IIOP in Firewall-Protected Network Environments 437

Figure 408. Current Values for CLASSPATH, Path and JAVA_HOME Variables

9.2.2 Local Applets Security Considerations
We want to mention in this section a problem we encountered while implementing
our two-tier application. Sometimes, for testing purposes, one installs the Web
server and ServletExpress on the client machine and then uses the client's browser
to connect to the Web server. This is what we did. But similar configurations can
easily generate errors. In fact, in order to configure Lotus Domino Go Webserver
and ServletExpress to run on a machine, you need to make some changes to the
CLASSPATH system environment variable. Each time you modify the
CLASSPATH environment variable on a computer that plays also the role of the
client, you must be careful because that variable is checked by Netscape
Communicator when it needs to load an applet from the network. If an applet with
the same file name and the same package name is found in the local
CLASSPATH, that local applet is loaded using the file protocol instead of the
remote applet. Moreover the SecurityManager implemented by Netscape
Communicator does not allow an applet loaded with the file protocol to connect a
machine in the network by using an URL connection with the HTTP protocol. For
this reason a SecurityException is thrown.

After installing ServletExpress on the client machine, we included the directory
D:\ServletExpress\web\classes in the CLASSPATH variable and, exactly under that
directory, Netscape's SecurityManager found the applet
com.ibm.jbroker.samples.account.AccountsUI, having the same class file name and
package name as the applet on the Web server. For this reason, the local applet
was downloaded in place of the remote one, but as soon as it tried to connect the
Web server the following error message appeared on the bottom of the browser
window:

Applet com.ibm.jbroker.samples.account.AccountsUI can't start: ERROR

and the Java Console, that you can open from the Communicator pull-down menu,
immediately registered an unexpected SecurityException:

438 Internet Security in the Network Computing Framework

Figure 409. Java Console for Netscape Communicator

The SecurityManager reminded us that an applet from local disk cannot access the
network through the HTTP protocol. This problem was caused by the CLASSPATH
variable configuration, since it included the directory D:\ServletExpress\web\classes
too. It is worth knowing that similar errors can be generated, for example when you
use for testing purposes the same machine as both client and server. In this case,
you should include the above directory in the CLASSPATH variable when you
develop your CORBA applications (for example, the AccountsUI applet does not
compile if that directory is not included) and remove it when you run that
application.

9.2.3 NCF Standard and Enhanced IIOP Modes
IBM Network Computing Framework provides two possibilities to add distribution to
Java and Web-centric applications using the IIOP protocol:

1. A standard IIOP mode, which ensures inter-operability between different ORBs
through the Internet distributing objects to remote servers. This is
accomplished by passing objects by reference.

2. An enhanced IIOP mode, which ensures that a client can use a local copy of a
remote object. This is accomplished by passing objects by value rather than by
reference. In this way the overhead of object interactions involving remote
method invocations is no longer incurred.

9.2.4 IIOP over HTTP
The communication between server and client in ServletExpress CORBA Support
can use two connection methods:

1. Direct IIOP connection (independent on the Web server)

2. IIOP over HTTP (through the Web server)

The flow of both is described in the following list:

1. The applet is downloaded from a Web server machine to a Java-enabled Web
browser of a client machine by using a typical HTML page.

2. The applet automatically activates a client ORB within itself.

3. The applet sends an HTTP request to the Web server in order to load and run
the servlet.

4. The servlet will then activate the server ORB inside itself.

5. The client ORB controls IIOP communication with the server.

 Chapter 9. IIOP in Firewall-Protected Network Environments 439

a. IIOP communication between client and server uses a long-running socket
connection directly from the client to the object server port if ServletExpress
CORBA Support can successfully activate a direct IIOP connection. This
socket is used for the entire period the client is connected to the server.

b. IIOP communication between client and server uses short-running socket
connections to the Web server port (usually port 80) if ServletExpress
CORBA Support uses IIOP over HTTP. In this mode, a new connection is
used for each IIOP request encoded over HTTP, and that connection is
closed at the end of each reply from the server.

Once the IIOP communication is established, object activations and method calls
on those objects may occur back and forth using either direct IIOP connection or
IIOP over HTTP, depending on what type of connection ServletExpress CORBA
Support activated.

Notice that it is the client ORB that decides whether to use a direct IIOP connection
or revert to IIOP over HTTP (see 5 on page 439). The client will use the best
quality of service available: it tries to make a direct IIOP connection first and, if that
doesn't work, it uses IIOP over HTTP.

The following picture represents the flow, as it was described in the above list,
when IIOP is carried over HTTP.

IIOP over HTTP

Client WWW Server

1

3

5

2

Servlet
Express

Lotus
Go

Webserver

4

5220\522015

Figure 410. IIOP over HTTP Communication

In one of the tests that we did without the firewall, we captured the IP trace on the
Web server, that was a Windows NT Server 4.0 machine. The tool that we used to
capture the IP trace was Systems Management Server (SMS) Network Monitor
Version 4.00, that can be installed on Windows NT Server 4.0. This test was very
meaningful. It demonstrated that the client/server communication uses HTTP to
download the applet and to activate the servlet (see 1 on page 439 and 3 on
page 439). The following window shows that the HTTP port used on the server in
this communication is the standard TCP port 80:

440 Internet Security in the Network Computing Framework

Figure 411. IP Trace for the Initial HTTP Communication

Then a direct IIOP communication is established between the client and the server
ORBs over a separate socket (see 5a on page 440). The IP trace shows that the
TCP port used on the client is 1104 and the TCP port used on the server is 1812:

Figure 412. IP Trace for the Direct IIOP Communication

The TCP port values are dynamically assigned with IIOP: different tests
demonstrated that different ports are involved. However, we had the opportunity to
verify what we stated in 5a on page 440. That is, once activated, a direct IIOP
connection uses the same socket for the entire period the client is connected to the
server.

 Chapter 9. IIOP in Firewall-Protected Network Environments 441

The firewall technologies that we used in our tests did not permit a direct IIOP
connection and so ServletExpress CORBA Support automatically activated IIOP
over HTTP. In that case the IP trace demonstrated that only the HTTP port 80 on
the server was involved in the communication with the client. For this reason, in
our scenario, we did not need additional modules like the IIOP Proxy Plug-in to
adapt our firewall to IIOP, as it was supported by the current version of
ServletExpress, since the IIOP protocol was carried over regular HTTP sessions.

9.3 Increasing Security with SSL
In order to guarantee security in our firewall-based scenario and control the HTTP
and IIOP over HTTP communication, we used all the firewall technologies listed
below, depending on the particular test we had to do:

� IP filters for HTTP and IIOP over HTTP

� HTTP Proxy Server for HTTP and IIOP over HTTP

� SOCKS Server for HTTP and IIOP over HTTP

We also tried to ensure security by encrypting the IIOP over HTTP communication
through the SSL protocol, in order to have IIOP over HTTPS. What we were able
to get in this case was the possibility to encrypt the HTTP initial communication
between the client and the server. So for example the applet that activates the
client ORB is downloaded through an encrypted flow. But the WebSphere CORBA
Support does not offer yet the possibility to encrypt the IIOP over HTTP
communication between the client and the server ORBs.

Why? We were informed by the WebSphere CORBA Support development team
that the client ORB, which is responsible for controlling the IIOP communication
with the server ORB (see 5 on page 439), activates an IIOP over HTTP
communication with the server ORB by using a URLConnection object and
specifying http:// as the protocol. In order to encrypt the IIOP over HTTP
communication over SSL, the client ORB should specify https:// rather than
http://. This is certainly possible, and so an IIOP over HTTPS communcation can
be achieved, but there would need to be a mechanism in place for the server to be
able to instruct the client whether http:// or https:// should be used. In fact
there should always be the possibility to encrypt some connections but not others.
This mechanism has not been implemented yet in the current version of
WebSphere Application Server. Future releases of the WebSphere CORBA
Support will probably offer this feature. Currently, when it uses HTTP tunneling, the
client ORB always uses http:// as the specified protocol when the
URLConnection is opened.

A brute force solution to get this feature in place would be to implement an ORB
property (passed in as a parameter to the ORB init() method) that forces to always
use the https:// method for all the connections during that use of the ORB. But of
course in this way the possibility to switch between HTTP and HTTPS is lost.

442 Internet Security in the Network Computing Framework

SOCKS Server for HTTPS and SSL Tunneling

Once it is possible to encrypt IIOP over HTTP using SSL, it will also be possible
to control the resulting IIOP over HTTPS flow through the firewall, implementing
firewall technologies such as SSL tunneling and SOCKS Server for HTTPS.
See 10.1, “SSL Tunneling Scenario” on page 488 and 10.2, “SOCKS Server for
HTTPS Scenario” on page 494 for further details.

9.4 Test Environment Configuration
The two-tier scenario that we implemented involved three machines:

1. The client tier was a Windows 95 machine where Netscape Communicator
Version 4.05 was installed as Java-enabled Web browser.

2. The server tier was a Windows NT Server 4.0 machine where Lotus Domino
Go Webserver Version 4.6.2.2 was installed. The servlet engine was provided
by ServletExpress Version 1.0 beta 3, which included ServletExpress CORBA
Support. Java Development Kit 1.1.6 was also installed on this machine.

3. The firewall was an AIX Version 4.2 machine, where IBM Firewall Version 3.1.1
was installed. After IBM eNetwork Firewall Version 3.2 was generally available,
we installed it on an AIX Version 4.2.1 machine.

You will find detailed information about how to set up the environment in
Chapter 7, “How to Install and Configure a NCF Secure Environment” on
page 297. The only difference is that now you do not need to install and configure
any database client or server, since a DB2 server machine is not present in this
two-tier model environment.

We used two IP subnetworks in our scenario, corresponding to the high-level and
low-level security subnetworks of our intranet. Figure 406 on page 435 provides a
graphical representation of the hardware, software and network configuration of the
NCF secure environment that we built.

The purpose of this scenario is to investigate how to use firewall technologies like
IP filters, HTTP proxy server and SOCKS server in the CORBA environment
provided by ServletExpress. We built this test environment assuming that the client
machine, in the high-level security subnetwork of the intranet, communicates with a
CORBA application running on the Web server machine, which is located in the
low-level security subnetwork of the intranet.

In this scenario we used the sample application named Account that comes with
the installation files of ServletExpress. ServletExpress CORBA Support includes all
the files related to the Account application in the directory
servexp_root\web\classes\com\ibm\jbroker\samples\account, servexp_root being the
root directory where ServletExpress was installed (in our case it was
D:\ServletExpress). To compile and install the Account application properly, you
need to follow some simple directions:

1. Open an MS-DOS Command Prompt window and let
servexp_root\web\classes\com\ibm\jbroker\samples\account be the current
directory.

2. Build the Account application.

 Chapter 9. IIOP in Firewall-Protected Network Environments 443

a. Edit the file makefile.nt, also stored in the account directory, changing the
value for the ServletExpress_ROOT variable from the default
C:\ServletExpress to the actual ServletExpress root directory (for example,
in our case, we changed it into D:\ServletExpress). Notice that in the
account directory you will find another makefile, named makefile.unix, that
can be used only in AIX or Sun Solaris environments.

b. Provided that you have already set CLASSPATH, Path and JAVA_HOME
properly, launch the following command on the MS-DOS Command Prompt
window you have opened:

nmake -f makefile.nt all

This command will build the application, because it will force the Java
compiler javac to compile all the Java files that are stored in the account
directory.

3. Install the Account application.

a. Run the following command:

nmake -f makefile.nt install

from an MS-DOS Command Prompt window, in order to copy the HTML file
in the right location known by the Web server, according to what is
specified in the httpd.cnf configuration file for Lotus Domino Go Webserver.

b. Point your Java-enabled Web browser to
http://ourwebserver/ServletExpress/resources/CORBA/account.html where
ourwebserver is the fully qualified name of the Lotus Domino Go
Webserver machine.

The Account application maintains two bank account objects in the server, and the
clients use these two objetcs to make deposits and withdrawals and check the
balance. From the client's point of view these accounts are a checking account
and a savings account. The client applet can update either account.

First of all, we tested the application without using the firewall, simply pointing the
client's browser to the URL
http://192.168.50.2/ServletExpress/resources/CORBA/Account.html. The test was
successful and then we configured the firewall to protect the high-level security
subnetwork of our intranet.

9.5 Firewall Basic Configuration
In this section we will show the simple steps necessary to configure the secure
network adapter on the firewall and a Domain Name Service in our network
environment. The steps we followed to install IBM Firewall 3.1.1 and IBM eNetwork
Firewall 3.2 are described in 7.7, “Installation” on page 350. To see how to do the
other basic firewall configuration steps, you can refer to 7.8.1, “Remote
Configuration” on page 353 and 7.8.2, “Administrator User Addition” on page 354.
Notice that the operating system on which we selected to install the firewall was
AIX. Things could be different on the Windows NT platform.

444 Internet Security in the Network Computing Framework

9.5.1 Setting the Secure Network Adapter on the Firewall
In order to configure a network interface as a secure network adapter, we entered
the following smit fast path command:

smitty fw_set_secure_adapter

on an aixterm window. Then we selected Add and pressed Enter , as shown in the
following screen:

Figure 413. Select the Secure Network Adapter

The New Secure Interface Address section appeared and there we selected
192.168.51.1, which was the Token-ring adapter that we wanted to configure as
secure (see Figure 406 on page 435) and then we pressed Enter . This procedure
completed successfully and we got a Confirmation message.

9.5.2 Domain Name Service in a Firewall Protected Network
Environment

When we performed the scenarios described in this chapters, we also provided our
environment with a Domain Name Service (DNS). Even if it is not strictly
mandatory that a DNS be installed and configured, its presence in a
firewall-protected network environment is very important. In general DNS allows
secure users to access all the domain name services of the non-secure network but
provides no information to hosts outside the secure network. Moreover the
presence of DNS has important consequences in how Java applets can establish
network connections through a firewall.

To accomplish its functionality, DNS in a firewall protected network environment
requires that three domain name servers are set up:

1. One on the IBM Firewall

2. One inside the secure network

3. One inside the non-secure network

Actually, the role of the domain name server installed on the firewall is named
caching-only nameserver, because the firewall's domain name server should not
contain any database files. For this reason the firewall is in general configured to

 Chapter 9. IIOP in Firewall-Protected Network Environments 445

act like a gateway between the domain name servers for the secure network and
that for the non-secure network. The installation process for the IBM eNetwork
Firewall will set up the name server successfully for the firewall.

In our environment, we used the firewall machine itself also as domain name server
for our secure subnetwork and we used the Windows NT Server machine as
domain name server for the low-level security subnetwork. In order to configure a
Windows NT Server machine as a domain name server, you have to install and
configure Microsoft DNS Server, which is one of the network services for Windows
NT.

In general, when a firewall is to separate an intranet from the Internet, using the
firewall as domain name server for the secure network can be a dangerous
operation, because secure-side information, for example all the database files that
would normally reside on the secure server, would get stored in the firewall and so
the intranet security would be more exposed to possible attacks. Moreover this
configuration can generate workload for the firewall, because the firewall gets
involved each time a name must be resolved and not only when a request from the
secure side must be forwarded to the non-secure side. In fact if the firewall is the
domain name server for the secure network, this means that all the machines of the
protected area will point to the firewall as their domain name server. Anyway,
considering that in our scenario we were not supposing to interface an intranet to
the Internet, but two subnetworks of the same intranet, this configuration did not
create any problems.

In order to configure DNS when working with the IBM Firewall, you will have to
access and modify the DNS configuration, selecting System Administration from
the Configuration Client navigation tree. When the view is expanded, you should
be able to click Domain Name Services , as shown in the following figure:

446 Internet Security in the Network Computing Framework

Figure 414. Domain Name Server in the Configuration Client Navigation Tree

The Domain Name Services window is displayed (see Figure 415 on page 448)
and you can fill and modify the following three fields:

1. Secure Domain Name

This field identifies the domain name that the firewall will append to all
unqualified host names. We set this field to test.ibm.com.

2. Secure Domain Name Server (IP Address)

This field identifies the IP address of the server that is to resolve names and IP
addresses for all the secure hosts. We set this field to 192.168.51.1, which
was the IP address corresponding to the secure network interface on the
firewall.

3. Non-Secure Domain Name Server (IP Address)

This field identifies the IP address of the server that is to resolve names and IP
addresses for all the hosts located on the non-secure network. We set this
field to 192.168.5ð.2, which was the IP address of the Web server machine.

The following figure summarizes our selections:

 Chapter 9. IIOP in Firewall-Protected Network Environments 447

Figure 415. Domain Name Services Window

To see how to configure the domain name server on the firewall for the secure
network, refer to IBM eNetwork Firewall for AIX User's Guide.

If you want to enable your firewall to use the DNS that you have installed and
configured, you should select System Administration from the Configuration Client
navigation tree and then double click Security Policy , as shown in the following
figure:

448 Internet Security in the Network Computing Framework

Figure 416. Security Policy in the Configuration Client Navigation Tree

The Security Policy window is brought up. You simply have to mark the box
Permit DNS queries and then press the OK button.

 Chapter 9. IIOP in Firewall-Protected Network Environments 449

Figure 417. How to Enable DNS Queries through the Security Policy Window

Then you are automatically informed by the system that your changes require
activation, in order to take effect:

450 Internet Security in the Network Computing Framework

Figure 418. The Information Panel Informs that Activation Is Necessary

If you click Yes, a Connection Activation window (see Figure 428 on page 462) will
be brought up and you simply have to check the box Regenerate Connection
Rules and Activate and click Execute . You will be able to disable this function
later, if you want, unselecting the option Permit DNS queries in the Security Policy
window (see Figure 417 on page 450).

9.6 IP Filters for HTTP and IIOP over HTTP Scenario
This section focuses on how to use the IP filter technology to enable IIOP over
HTTP to pass through the firewall. We performed this test using both the Versions
3.1.1 and 3.2 for IBM Firewall.

IP filter technology allows you to control the traffic through the firewall. The
decision whether to permit or deny a packet is based on options like protocol types,
port numbers and IP addresses. In general a firewall is configured to act also as a
proxy or SOCKS server. In this case it performs the necessary work on behalf of
the secure user, and the non-secure host will never know that the secure host
exists. In this first implementation, we did not use a proxy or SOCKS gateway;
therefore, the firewall had to route the necessary traffic. If the firewall simply routes
the traffic, then the secure host and the non-secure host will speak directly to each
other, unless Network Address Translation (NAT) is used (for further information,
read the Request for Comments RFC1918 at
http://info.internet.isi.edu/in-notes/rfc/files/rfc1918.txt). We did not use NAT in our
environment, since we assumed that the client and the server were part of the
same intranet, even if the server was located in a low-level security subnetwork and
the client in a high-level security subnetwork. But if you assume that the client is
located in your intranet and the server in the Internet, then you should use NAT;
otherwise, the secure host's IP address will be exposed to the network. You can
find more information about IP filters in 6.1.2, “Expert IP Filters Using IBM
eNetwork Firewall 3.2” on page 271.

In 8.5, “IP Filters Configuration for Three-Tier Applications” on page 390 we saw
that sometimes you have to define new rules and services, when you want to
configure IP filters and the predefined rules and services that IBM Firewall provides

 Chapter 9. IIOP in Firewall-Protected Network Environments 451

do not match your needs. In this chapter we will see how the configuration is
easier and faster when predefined rules and services can be applied.

Notice that predefined rules and services allow a secure adapter on the firewall to
have access to a non-secure adapter. For this reason we could configure the
adapter corresponding to the client machine as secure and use all predefined rules
and services provided by IBM Firewall. This configuration would match also our
choice to consider the client machine as located in the high-level security
subnetwork of our intranet.

9.6.1 How to Configure IP Filters for HTTP and IIOP over HTTP
IP filters are tools capable of permitting or denying IP packets from passing through
the firewall. In 6.1.2, “Expert IP Filters Using IBM eNetwork Firewall 3.2” on
page 271, we discussed connections, network objects, services and rules.

In this section we will describe how we implemented the IP filter firewall technology
for HTTP and IIOP over HTTP in our scenario environment. First of all, we had to
define two new objects and one new connection for our scenario:

1. Objects (Type: Host)

 � 95-client

This object was a Windows 95 IBM ThinkPad located in the secure
subnetwork of our intranet. Netscape Communicator 4.05 was installed on
this machine as Java-enabled Web browser. This object played the role of
the client in this scenario. The applet and the client side ORB ran on this
machine.

 � NT-server

This object was a Windows NT Server 4.0 IBM Personal Computer, located
in the low-level security subnetwork. Lotus Domino Go Webserver 4.6.2.2
was installed on this machine and ServletExpress 1.0 beta 3 provided the
servlet engine. This object played the key role of the Web server in this
scenario. The sample servlet and the server-side ORB ran on this
machine.

 2. Connection

� for 80 port

We created a new connection in order to pass the HTTP protocol from the
95-client object to the NT-server object through the firewall.

We used the fwconfig command to configure the firewall (see 7.8.1, “Remote
Configuration” on page 353). We logged on as indicated in 7.8.1, “Remote
Configuration” on page 353 and then we selected Network Objects from the
Configuration Client navigation tree, as shown in the following figure:

452 Internet Security in the Network Computing Framework

Figure 419. Network Objects in the Configuration Client Navigation Tree

The Network Objects window was brought up. We selected NEW and then clicked
the Open... button, in order to add new network objects, as you can see in the
following screen:

 Chapter 9. IIOP in Firewall-Protected Network Environments 453

Figure 420. Network Objects Window

The window that you get is to define new network objects and their properties. We
defined two network objects named 95-client and NT-server. The type of these
objects was Host and we also provided a brief description for the two new objects,
the IP address and subnet mask. The following two pictures show how we added
the two objects 95-client and NT-server:

454 Internet Security in the Network Computing Framework

Figure 421. 95-client Object Definition

 Chapter 9. IIOP in Firewall-Protected Network Environments 455

Figure 422. NT-server Object

To finish, we pressed the OK button to register the two new objects. Notice that
the network interfaces on the firewall did not need to be registered as network
objects, since the flow is direct between the client and the server when the firewall
simply routes the traffic, as happens in this case.

We went back to the Configuration Client navigation tree. We then selected
Connection Setup in order to configure the new connection between the two new
network objects that we had defined. Notice that you can access the Connection
Setup item only after selecting Traffic Control . The following figure shows this
situation:

456 Internet Security in the Network Computing Framework

Figure 423. Connection Setup in the Configuration Client Navigation Tree

The Connections List window appeared. We selected NEW and pressed the
Open... button, in order to create a new connection, as shown in the following
picture:

 Chapter 9. IIOP in Firewall-Protected Network Environments 457

Figure 424. How to Add a New Connection

As soon as we pressed the Open... button, the Add a Connection window was
brought up and we filled all its fields with the appropriate values:

458 Internet Security in the Network Computing Framework

Figure 425. Adding for 80 port Connection

As you can see from the above figure, we set Name to for 8ð port and
Description to between 95 and NT. Then we had to select the source and the
destination objects. For both these items, it was enough to click on the Select...
button and make the appropriate choices in the Network Objects list that was
brought up (see Figure 420 on page 454). We selected 95-client and NT-server ,
the two Network Objects that we had created.

 Chapter 9. IIOP in Firewall-Protected Network Environments 459

Also we had to select the services for this connection, by pushing the Select...
button for the Connection Services frame. You should create a new service only if
the service that you want is not included in the services list provided by IBM
Firewall for the connection you are going to add. In this scenario we simply
needed the service which permits the HTTP protocol to pass between the client
object and the server object. Because ServletExpress CORBA Support can also
carry IIOP over HTTP sessions to make ORBs communicate, there is no need for
the firewall to consider the IIOP protocol and no new service had to be created.
For this reason, we could select HTTP direct out , which is the predefined service
that comes standard with the IBM Firewall and is already configured to allow the
HTTP protocol. We highlighted HTTP direct out from the services list provided by
IBM Firewall and then pressed OK, as shown in the following screen:

Figure 426. Selecting the HTTP direct out Service in the Services List

The connection definition is saved by pressing the OK button in the Add a
Connection window, as shown in Figure 425 on page 459.

If you follow all these steps, the new connection will appear between all the current
connections in the Connections List window. Be sure that this connection is
actually the only connection in that list (eventually you can delete the other ones by
clicking Delete), so that the Connection List window will look like the following
figure:

460 Internet Security in the Network Computing Framework

Figure 427. Connections List Window

Then you can activate this connection by pressing the Activate... button. This
operation brought up the Connection Activation window. We simply had to mark
the check box Regenerate Connection Rules and Activate . Then we pressed
the Execute button, as shown in the following screen:

 Chapter 9. IIOP in Firewall-Protected Network Environments 461

Figure 428. Connection Activation Window

This action forced IBM Firewall to create IP filters according to our connection
definition.

Since we simply had to pick up a predefined service from the services list, in order
to build the new connection, it was not necessary for us to open its defining
window. It is useful anyway to see that window in order to have a better
understanding of the HTTP direct out service. You can access this window by
double clicking on the service name HTTP direct out from the services list:

462 Internet Security in the Network Computing Framework

Figure 429. HTTP direct out Service Window

9.6.2 Netscape Communicator Advanced Configuration for Using IP
Filters

We could then test the Account sample application provided by ServletExpress
CORBA Support. In order to pass normal HTTP and IIOP over HTTP through the
firewall using the IP filter technology, we had to make a very simple configuration
for our Web browser on the client machine. We selected Preferences... from the
Edit menu for the Netscape Communicator window. The Preferences window
appeared. In the Category tree, on the left, we selected Advanced and then

 Chapter 9. IIOP in Firewall-Protected Network Environments 463

Proxy and we made sure that the box named Direct connection to the Internet
was marked, as shown in the following screen:

Figure 430. Netscape Communicator Advanced Preferences Configuration

Then we saved this configuration on the browser by pressing OK. This step is
important if you have configured the firewall to simply route the traffic, without
acting as a proxy or SOCKS server. This means that the firewall does not have to
perform any work on behalf of the client. For this reason, the client and the server
can speak directly inside your network and you should only be sure that the client's
Web browser is configured properly for this.

9.6.3 Testing the Application Using IP Filters
This firewall configuration was IP filters-based and only permitted that a TCP port
greater than 1023 on the 95-client object connected to port 80 on the NT-server
object. No other port could be accessed on the Web server. This granted security
but this is also the reason why an IIOP direct connection was not permitted.

When we tried to run the Account application, the experiment was successful and
we saw the following window on the client's browser:

464 Internet Security in the Network Computing Framework

Figure 431. Account Sample Application

9.7 HTTP Proxy Server for HTTP and IIOP over HTTP Scenario
This section focuses on how to use the HTTP proxy server technology to enable
HTTP and IIOP over HTTP to pass through the firewall. We performed this test
using both Versions 3.1.1 and 3.2 of the IBM Firewall.

HTTP proxy server is a firewall technology capable of handling browser requests to
the Web server. It works on the application layer of the ISO/OSI network model
and for this reason it is also known as an application level gateway. If a user
wants to connect the Web server machine from the client machine through a
firewall implementing proxy server technology, that user must connect to the proxy
server first and then request the proxy to connect the destination Web server. In
this way the connection between the client and the server is broken, since the
proxy acts on behalf of the secure client. You can find more information about the
HTTP proxy server firewall technology in 6.1.3, “Proxy Servers” on page 280.

In this scenario, we had to guarantee that the client and the server, using regular
HTTP first and then IIOP over HTTP in the CORBA 2.0 environment provided by
ServletExpress, can communicate through the the HTTP proxy server running on
the firewall machine.

9.7.1 How to Configure the HTTP Proxy Server for HTTP and IIOP over
HTTP

This section describes how to configure the firewall to implement the HTTP proxy
server technology.

The following list shows the network objects and connections that we needed to
configure in order for the firewall to act as an HTTP proxy server:

 Chapter 9. IIOP in Firewall-Protected Network Environments 465

1. Objects (Type: Host)

 � 95-client

This object was a Windows 95 IBM ThinkPad located in the secure
subnetwork of our intranet. Netscape Communicator 4.05 was installed on
this machine as Java-enabled Web browser. This object played the role of
the client in this scenario. The applet and the client side ORB ran on this
machine.

 � NT-server

This object was a Windows NT Server 4.0 IBM Personal Computer, located
in the low-level security subnetwork. Lotus Domino Go Webserver 4.6.2.2
was installed on this machine and ServletExpress 1.0 beta 3 provided the
servlet engine. This object played the key role of the Web server in this
scenario. The sample application and the server side ORB ran on this
machine.

 � RS600012T0

This object is the non-secure network interface on the firewall machine to
which IP address 192.168.50.1 was assigned.

 � RS600012T1

This object is the secure network interface on the firewall machine to which
IP address 192.168.51.1 was assigned.

 2. Connections

� HTTP Proxy to NT

We created this new connection in order to pass the HTTP protocol from
the RS600012T0 object to the NT-server object through the firewall.

� Secure to HTTP Proxy

We created this new connection in order to pass the HTTP protocol from
the 95-client object to the RS600012T1 object through the firewall.

We already described in 9.6.1, “How to Configure IP Filters for HTTP and IIOP over
HTTP” on page 452 how to add the two network objects 95-client (see Figure 421
on page 455) and NT-server (see Figure 422 on page 456). Following the same
steps, we could define the two additional network objects RS600012T0 and
RS600012T1 that we mentioned in the above list. The following two windows show
how we added them:

466 Internet Security in the Network Computing Framework

Figure 432. RS600012T0 Object Creation

 Chapter 9. IIOP in Firewall-Protected Network Environments 467

Figure 433. RS600012T1 Object Creation

These two network objects are necessary because the communication between the
client and the server is broken on the firewall when a proxy server is running.

We show now how we created the two new connections to enable the HTTP proxy
server for IIOP over HTTP. The services list for IBM Firewall (see Figure 426 on
page 460) already provides the two services that we need for these two
connections:

1. HTTP proxy out 1/2

This service permits the HTTP proxy protocol from the client to the secure
adapter of the firewall.

2. HTTP proxy out 2/2

This protocol permits the HTTP protocol from the non-secure adapter of the
firewall to the server.

So it was very simple to create the two connections using these predefined
services. First of all, we had to select Traffic Control and then Connection Setup
from the Configuration Client navigation tree, as shown in Figure 423 on page 457.
The Connections List window was brought up (see Figure 424 on page 458), we
selected NEW and then we pressed the Open... button in order to create a new
connection. Once this operation was accomplished, we could see the Add a
Connection window. We entered Secure to HTTP Proxy as the name for this

468 Internet Security in the Network Computing Framework

connection and From 95 to FW HTTP Proxy as its description, as shown in the
following window:

Figure 434. Secure to HTTP Proxy Connection Definition

Notice that the source network object for this connection is 95-client (the Windows
95 client machine) while the destination one is RS600012T1 (the secure network
adapter on the firewall). In general you can pick up the source and destination
network objects by clicking Select... and then choosing the object you want from
the Network Objects list (see Figure 420 on page 454). A similar procedure is
used to include a service in the connection. In this case, we simply pressed
Select... and then we were able to pick up HTTP proxy out 1/2 from the Services
list (see Figure 426 on page 460). Then, when we finished filling the fields in the
Add a Connection window, we pressed OK and the new connection appeared in
the Connections List window.

 Chapter 9. IIOP in Firewall-Protected Network Environments 469

Following identical steps, we defined the second connection, naming it HTTP Proxy
to NT, selecting RS600012T0 (the non-secure network adapter on the firewall) as
source network object, NT-server (the Web server machine) as the destination
object and HTTP proxy out 2/2 as the only service for this connection. Then we
pressed OK, as shown in the following picture:

Figure 435. HTTP Proxy to NT Connection Definition

You can double click HTTP from the Configuration Client navigation tree:

470 Internet Security in the Network Computing Framework

Figure 436. HTTP in the Configuration Client Navigation Tree

Then you can configure the HTTP proxy functionality through the HTTP Proxy
Configuration window:

 Chapter 9. IIOP in Firewall-Protected Network Environments 471

Figure 437. HTTP Proxy Configuration

We accepted all the default values for this configuration, except that we changed
the value for the Idle Thread Timeout field. This value specifies how many minutes
the firewall should keep an idle thread available. Default is forever, meaning that
the proxy never closes any idle threads. We changed this value to 5 minutes.
Notice that by default the Proxy Port Number is 8080.

Once you finish setting up a new connection, it is necessary to activate it. To do
this, the Connection Activation panel is automatically brought up (see Figure 428
on page 462).

In order for our firewall to work properly, we had to start the HTTP proxy daemon
on our AIX firewall machine and so we simply entered the command

/usr/sbin/phttpd

472 Internet Security in the Network Computing Framework

It is also possible to start the HTTP proxy daemon at boot time. If you want to
activate this function, you need to modify the /etc/rc.tcpip file: open that file and
uncomment the line

/usr/sbin/phttpd

Note: In order to stop and restart the HTTP proxy daemon, you should follow
these steps:

1. Discover what PID was assigned to the HTTP proxy daemon, by
entering the command

ps -ef | grep phttpd

2. Kill that process using the kill command followed by the HTTP proxy
daemon PID.

3. Enter the command

/usr/sbin/phttpd

in order to launch the HTTP proxy daemon again.

The following figure shows this sequence of commands:

Figure 438. How to Restart the HTTP Proxy Daemon

Notice that on the Windows NT platform we would have spoken of an HTTP proxy
service rather than an HTTP proxy daemon and the way we would have started
and stopped it would have been different. Moreover, the parameters shown in
Figure 437 on page 472 would have been slightly different on a Windows NT
platform.

9.7.2 Client/Server Communication through an HTTP Proxy Server
The AccountsUI applet is downloaded through the HTTP proxy server without any
problem, since it is treated as any other component of the account.html Web page
and it is transferred on the client machine because the HTML flow is permitted by
the HTTP proxy server. Netscape Communicator informs us that the applet has
been loaded without problems and the message

Applet com.ibm.jbroker.samples.account.AccountsUI loaded

is displayed at the bottom of the browser window.

What happens when the applet tries to connect back the Web server machine?
Let's read the following code lines for the AccountsUI.java Java applet file:

 Chapter 9. IIOP in Firewall-Protected Network Environments 473

// The object server servlet is assumed to be on the same machine as this applet
// was downloaded from, that is, host=AppletHost and port=AppletPort.
// The servlet name here is com.ibm.jbroker.GenericObjectServlet.

URL serverUrl = new URL("http", orb.getAppletHost(), orb.getAppletPort(),
 "/servlet/com.ibm.jbroker.GenericObjectServlet");

Figure 439. URL Connection for the AccountsUI Applet

These code lines and the associated comments show that the serverUrl object is
created by invoking the URL() constructor that takes four parameters:

1. String protocol - the name of the protocol

2. String host - the name of the remote host

3. int port - the port number

4. String file - the host file

The serverUrl object is used by the AccountsUI applet to invoke the
GenericObjectServlet servlet in the Web server machine. The four parameters
resolve as follows:

1. The protocol is HTTP.

2. The host is the same Web server machine from which the applet was
downloaded. The method orb.getAppletHost() returns either the IP address or
the host name of the Web server, depending on whether you invoked the
account.html Web page by using the IP address of the Web server or its host
name.

3. The port number is the same port number servicing the client applet. In our
case, orb.getAppletPort() returned 80.

4. The host file is the fully qualified name of the servlet, that is
com.ibm.jbroker.GenericObjectServlet.

This implies that the AccountsUI applet invokes the GenericObjectServlet servlet
through one of the following URLs:

 � http://wtr05218:80/servlet/com.ibm.jbroker.GenericObjectServlet

if the HTML page was invoked through the host name of the Web server
machine.

 � http://192.168.50.2:80/servlet/com.ibm.jbroker.GenericObjectServlet

if the HTML page was invoked through the IP address of the Web server
machine.

Notice that this applet makes use of the URL class from the java.net package in
order to establish a network connection to the Web server from which it was
downloaded.

But how can the applet request pass through the firewall when a proxy is defined?
We demonstrated that this is possible (see 5.7, “Applet/Server Communication
Through a Firewall” on page 258). If the DNS in your network environment is
configured to translate host names into IP addresses for hosts located outside the
firewall, this connection does not give any problem.

474 Internet Security in the Network Computing Framework

If no DNS has been configured in your network environment to translate host
names into IP addresses for hosts located in the non-secure network, or if simply
the firewall has been configured to disable DNS queries, then you can invoke the
remote server only through its IP address. In fact in this situation, the applet will
normally fail to make the desired connection and the SecurityManager throws an
UnknownHostException, which is turned into a java.lang.SecurityException. If you
disable DNS on your firewall, by unchecking Permit DNS queries in the Security
Policy window (see Figure 417 on page 450), the following error message appears
at the bottom of the browser window:

Applet com.ibm.jbroker.samples.account.AccountsUI can't start:
security violation: security checkexit: 1

The Java Console for Netscape Communicator immediately registers this exception,
as the following figure demonstrates:

Figure 440. SecurityException in the Java Console

Notice that for three times the SecurityManager tried a connection, but each time it
launched a SecurityException, as we can read in the Java Console:

SecurityException: Couldn't resolve IP for host wtrð5218 or for 192.168.5ð.2.

This problem does not depend on the CORBA support used by our scenario, but it
is generated each time an applet, invoked through the host name of the Webserver,
tries an URL connection from behind a firewall acting like a proxy that does not
provide host name resolution. In this situation, if you want to invoke the Web
server through its host name, then your Netscape Communicator should be
configured in order to disable the DNS lookup performed by the SecurityManager.
As we explained in 5.7, “Applet/Server Communication Through a Firewall” on
page 258, this operation can be performed by adding the following line to the
prefs.js file

user_pref("security.lower_java_network_security_by_trusting_proxies", true);

when no copies of Communicator are currently running.

We have explained how the AccountsUI applet, running on the client machine, can
invoke the GenericObjectServlet servlet, running on the Web server machine, and
pass through a firewall implementing the HTTP proxy server technology.

 Chapter 9. IIOP in Firewall-Protected Network Environments 475

The same considerations can be applied to the communication between the client
and the server ORBs. We were informed by the WebSphere CORBA Support
development team that in WebSphere Application Server Version 1.0 the client
ORB uses an URLConnection object to establish a connection with the server ORB,
as we already mentioned in 9.3, “Increasing Security with SSL” on page 442.
When an URLConnection object is used to establish a connection with the Web
server, this request is enabled to pass through a firewall implementing the HTTP
proxy server technology (see 5.7, “Applet/Server Communication Through a
Firewall” on page 258).

When we tested this CORBA application through the firewall, we were using the
beta 3 release of ServletExpress, that presented a bug, in that the client/server
ORB connection was performed via the class java.net.Socket, rather than
java.net.URLConnection. As we explained in 5.7, “Applet/Server Communication
Through a Firewall” on page 258, a Socket connection cannot be performed
through a firewall implementing a proxy server. The problem is that support for
proxies is part of the protocol that you are using above TCP/IP (such as HTTP,
FTP, Gopher, etc.). It is therefore not possible to encapsulate the proxy specific
stuff at the socket layer. For this reason our tests with the HTTP proxy server did
not work correctly. The AccountsUI applet was able to connect the
GenericObjectServlet (see Figure 439 on page 474), since in this case the
URLConnection object was used, but the client ORB failed to connect the server
ORB via the Socket class. So, in order for this application to work through a
firewall, it became necessary in the ServletExpress beta 3 CORBA Support to add
the IP filter connection for 8ð port (see 2 on page 452 and Figure 425 on
page 459) beside the HTTP proxy server connections (see 2 on page 466). The
client/server HTTP communication passed through the HTTP proxy server running
on the firewall, but the IIOP over HTTP communication between the two ORBs
bypassed the HTTP proxy server entirely and used the direct for 8ð port
connection.

As we have mentioned, in the WebSphere CORBA Support Version 1.0 code, this
problem has been fixed and the client ORB invokes the server ORB via the
URLConnection class, rather than the Socket class. In this new version, opening
up the HTTP port 80 through the firewall is no longer necessary. The new code
works correctly through a firewall implementing an HTTP proxy server. Several
tests have been done also by the CORBA Support development team and they
have all been successful.

9.7.3 Netscape Communicator Advanced Configuration for Using
HTTP Proxy Server

After the firewall configuration was in place, we were almost ready to run the
sample Account application. In order to pass HTTP through the firewall using the
HTTP proxy server, the client's browser must be configured properly, so that, when
it invokes the Web server using the standard HTTP port 80, this request is captured
by the HTTP proxy daemon on the firewall machine, that submits it on behalf of the
client.

To configure Netscape Communicator 4.05, it is enough to open the Edit menu and
select Preferences... . The Preferences window comes up. Select Advanced and
then Proxy in the Preferences tree. Check the Manual Proxy Configuration radio
button and click View . You will then be permitted to fill the HTTP proxy server field

476 Internet Security in the Network Computing Framework

by entering the IP address of the firewall machine that you intend to use as HTTP
proxy server, as we did in the following window:

Figure 441. Netscape Configuration for Using HTTP Proxy Server.

Notice that the HTTP proxy server was configured to listen on port 8080 (see
Figure 437 on page 472) and this value had to be typed in the Port field. After this
simple step, you simply have to click OK.

9.7.4 Testing the Application through the HTTP Proxy Server
When all the described configurations were in place, we were finally able to launch
the Account application and to test how it worked through the HTTP proxy server
we had implemented.

The result was successful and in fact we got the following window on the client
machine:

 Chapter 9. IIOP in Firewall-Protected Network Environments 477

Figure 442. Account Sample Program Running Through HTTP Proxy Server

9.8 SOCKS Server for HTTP and IIOP over HTTP Scenario
This section describes how to use SOCKS server firewall technology to enable
HTTP and IIOP over HTTP to pass through the firewall. We experimented with this
technology with both Versions 3.1.1 and 3.2 of IBM Firewall. You will find more
information about the SOCKS server technology in 6.1.4, “SOCKS Servers” on
page 284.

9.8.1 How to Configure SOCKS Server for HTTP and IIOP over HTTP
We now show the steps we followed to configure our firewall to act as a SOCKS
server.

First of all, we needed to specify objects and connections in this scenario. We had
already defined the correct four network objects listed in 1 on page 466. It was
possible to keep those definitions for this scenario.

However we had to define and use three new connections:

� Secure To SOCKS

We created this new connection in order to pass the SOCKS protocol from the
95-client object to the RS600012T1 object.

� SOCKS To Nonsecure

We created this new connection in order to pass the HTTP protocol from the
RS600012T0 object to the NT-server object.

� SOCKS Config for HTTP

We created this new connection in order to pass the SOCKSified HTTP
protocol from the 95-client object to the NT-server object.

478 Internet Security in the Network Computing Framework

The SOCKSified HTTP protocol that we mentioned when introducing the SOCKS
Config for HTTP connection is used to wrap the HTTP protocol with the SOCKS
protocol. We described this process in 6.1.4, “SOCKS Servers” on page 284.

We created these new connections by selecting NEW in the Connections List
window, as shown in Figure 424 on page 458.

As usual, we had to select the appropriate source and destination network objects
and the appropriate services, before actually adding the new connections. The two
following windows show how we added the two new connections named Secure To
SOCKS and SOCKS To Nonsecure.

Figure 443. SOCKS Connection from the Client to the Secure Adapter of the Firewall

 Chapter 9. IIOP in Firewall-Protected Network Environments 479

Figure 444. HTTP Connection from the Nonsecure Adapter of the Firewall to the Server

After that, we added the connection to pass the SOCKSified protocol from the client
to the server through the firewall, as you can see in the following screen:

480 Internet Security in the Network Computing Framework

Figure 445. SOCKSified HTTP Connection from the Client to the Server

It is important to notice that IBM Firewall already provides the predefined SOCKS
object that must be included in this connection in order to permit the SOCKSified
protocol through the firewall. In the above window, it was enough to press Select...
in the Socks section. The following window appeared:

 Chapter 9. IIOP in Firewall-Protected Network Environments 481

Figure 446. Selecting the Socks Object from the List

We simply selected HTTP in the Socks Objects list and then we clicked OK. The
HTTP SOCKS object appeared as shown in Figure 445 on page 481 and then we
pressed OK. We were then permitted to add the new connections.

Notice that by default the SOCKS server on the firewall machine listens on TCP
port 1080.

Once the three new connections that we have described had been created, they
also had to be activated. To do this, make sure that these three connections are
the only ones that appear in the Connections List window and then activate them
through the Connection Activation window, as we have done several times in this
chapter.

9.8.2 Client/Server Communication through a SOCKS Server
When a firewall implements the SOCKS server technology, the situation is very
similar to that for proxies (see 9.7.2, “Client/Server Communication through an
HTTP Proxy Server” on page 473). If the client applet or ORB activates a
connection through the java.net.URLConnection class - as happens with the
WebSphere CORBA Support Version 1.0 - there is no negative impact on users
behind the firewall.

However, as we mentioned in 9.7.2, “Client/Server Communication through an
HTTP Proxy Server” on page 473, we did not have the opportunity to use Version
1.0 of WebSphere Application Server. Our experiments were based upon
ServletExpress Version 1.0 beta 3. In that case the connection between the
AccountsUI applet and the GenericObjectServlet worked correctly, since it was
accomplished through the URLConnection class, but the client ORB was not able to
connect the server ORB, since this connection was implemented via the
java.net.Socket class. For this reason it was not possible to control the IIOP over
HTTP stream with the SOCKS server technology and it became necessary to open
up TCP port 80 through the firewall in order to permit the IIOP over HTTP
communication. The IP filter connection named for 8ð port, described in 2 on
page 452 and defined in Figure 425 on page 459, had to be added beside the
three SOCKS connections that we had defined.

482 Internet Security in the Network Computing Framework

This problem, as we mentioned in 9.7.2, “Client/Server Communication through an
HTTP Proxy Server” on page 473, has been removed in the WebSphere CORBA
Support coming with WebSphere Application Server Version 1.0. The
java.net.URLConnection class is now used also by the client ORB to activate a
connection to the server ORB, so that opening up the HTTP port 80 through the
firewall should no longer be necessary.

As we mentioned in 5.7, “Applet/Server Communication Through a Firewall” on
page 258, with the way SOCKS works it should be possible to put SOCKS support
in the java.net.Socket code, resulting in an encapsulation of the SOCKS protocol
layer and allowing the enforcement of the security policy without undue negative
impact on applications running behind the firewall, when the firewall acts as a
SOCKS server. This has been done for JDK 1.0.2, but unfortunately not in
Netscape. So, if your network environment has a SOCKS server, then everything
works fine as long as you use the Applet Viewer or java.net.URLConnection, but
using java.net.Socket under Netscape will give you a SecurityException. This is
what we also tested in our network environment.

9.8.3 Netscape Communicator Advanced Configuration for Using
SOCKS Server for HTTP

Netscape Communicator must be configured to use the SOCKS server on the
firewall machine. You should open the Manual Proxy Configuration window as
indicated in 9.7.3, “Netscape Communicator Advanced Configuration for Using
HTTP Proxy Server” on page 476 and then fill the Socks field by typing in either
the IP address or the host name of the firewall machine. We typed in
191.168.51.1, which was the IP address assigned to the secure network adapter
on the firewall machine. It is also necessary to specify the exact port used by the
SOCKS server, which is by default 1080. We typed this value in the Port field
related to Socks, then we pressed OK, as shown in the following screen:

 Chapter 9. IIOP in Firewall-Protected Network Environments 483

Figure 447. Netscape Communicator Configuration for Using SOCKS Server

9.8.4 Testing the Application through the SOCKS Server
The application worked correctly as soon as we pointed the client's browser to the
URL http://192.168.50.2/ServletExpress/resources/CORBA/account.html. Of
course, the IP address of the Web server machine could have also been replaced
by the host name, because DNS had been configured in our intranet.

The Account application ran successfully through the firewall that we had
configured as SOCKS server and we got the following window on the client's
machine:

484 Internet Security in the Network Computing Framework

Figure 448. Account Sample Program

 Chapter 9. IIOP in Firewall-Protected Network Environments 485

486 Internet Security in the Network Computing Framework

Chapter 10. SSL Tunneling and SOCKS Server for HTTPS
Scenarios

This chapter will describe how to implement the security firewall technologies SSL
tunneling and SOCKS server in network environments where client/server
communication is encrypted via the SSL protocol. In order to permit SSL to flow
through the firewall, you could also implement an IP filter-based configuration of the
firewall. This is shown in Chapter 8, “Three-Tier Applications in Firewall-Protected
Network Environments” on page 361.

The hardware, network and software configuration that we use here is the same as
in Chapter 9, “IIOP in Firewall-Protected Network Environments” on page 435.
You can refer to 9.5, “Firewall Basic Configuration” on page 444 and Figure 406
on page 435 to see all the details. However, we could not use the SSL protocol to
encrypt the IIOP over HTTP stream and get IIOP over HTTPS, since both
ServletExpress beta 3 and WebSphere Application Server Version 1.0 do not allow
the IIOP over HTTP flow to be encrypted through the SSL protocol (see 9.3,
“Increasing Security with SSL” on page 442). We used the SSL protocol to encrypt
only the HTTP communication between client and server in a two-tier NCF
environment.

SSL Setup, Web Server Authentication and Client Authentication

In order to use the SSL protocol, it was necessary to set up Lotus Domino Go
Webserver as a secure Web server, meaning that it had to be able to use the
SSL protocol and present its certificate to each user that invoked a secure
communication through an https:// URL. We describe the process to set up
Domino Go Webserver for using SSL in 3.1.2, “Lotus Domino Go Webserver
SSL Setup” on page 71, while in 3.1.3, “Lotus Domino Go Webserver SSL
Server Authentication” on page 79 we show how the Web server can be
authenticated by the client. Both these operations are necessary if you want
encrypted client/server communication using the SSL protocol.

Actually, SSL Versions 2.0 and 3.0 also provide support for client authentication
to the Web server. This process is not mandatory and a secure connection
between client and server can be established anyway, even if the server does
not request client authentication. To enforce the security measures of this
scenario, we set up our Web server to request client authentication. You can
refer to 3.1.4, “SSL Client Authentication” on page 84 to see how to configure
Lotus Domino Go Webserver to request client authentication.

Notice that the operating system where we had installed the firewall was AIX.
Some of the considerations that you read in this chapter are then AIX-specific and
could be different on a Windows NT platform.

 Copyright IBM Corp. 1998 487

10.1 SSL Tunneling Scenario
When a Web browser on a client machine connects using an https:// URL to a
secure Web server that is equipped with the SSL function, client/server
communication uses the SSL protocol to encrypt the HTTP flow. If the two
machines are located in different networks separated by a firewall, it is necessary
to pass SSL through the firewall. In general, to do this, we can use SOCKS
technology or SSL tunneling. In this section we will see how to use the SSL
tunneling technology to pass SSL through the firewall. If you want to see how to
use the SOCKS technology, refer to 10.2.1, “How to Configure SOCKS Server for
HTTPS” on page 494.

SSL tunneling is a famous technology provided by Netscape Communications
Corporation. Netscape Communicator 4.05 (which is the version of Communicator
that we used in our scenario) supports SSL tunneling. You can find more
information about SSL tunneling in 6.1.5, “Understanding SSL Tunneling” on
page 287.

In this scenario we used IBM eNetwork Firewall 3.2, which supports SSL tunneling.
You can also use IBM Firewall 3.1.1, which supports SSL tunneling provided you
apply the fix IR36656 downloadable from
http://www.ics.raleigh.ibm.com/firewall/fixes.htm.

10.1.1 How to Configure SSL Tunneling
In order to use SSL tunneling, we needed to define the following objects and
connections:

1. Objects (Type: Host)

 � 95-client

This object was a Windows 95 IBM ThinkPad located in the secure
subnetwork of our intranet. Netscape Communicator 4.05 was installed on
this machine as Java-enabled Web browser. This object played the role of
the client in this scenario. The applet and the client side ORB ran on this
machine.

 � NT-server

This object was a Windows NT Server 4.0 IBM Personal Computer, located
in the low-level security subnetwork. Lotus Domino Go Webserver 4.6.2.2
was installed on this machine and ServletExpress 1.0 beta 3 provided the
servlet engine. This object played the key role of the Web server in this
scenario. The sample application and the server side ORB ran on this
machine.

 � RS600012T0

This object is the non-secure network interface on the firewall machine to
which IP address 192.168.50.1 was assigned.

 � RS600012T1

This object is the secure network interface on the firewall machine to which
IP address 192.168.51.1 was assigned.

 2. Connections

� HTTP Proxy to NT

488 Internet Security in the Network Computing Framework

We created this new connection in order to pass the HTTP protocol from
the RS600012T0 object to the NT-server object through the firewall.

� Secure to HTTP Proxy

We created this new connection in order to pass the HTTP protocol from
the 95-client object to the RS600012T1 object through the firewall.

� HTTP Proxy to NT for SSL

We created this new connection to permit the SSL protocol from the
RS600012T0 to the NT-server object.

The two connections HTTP Proxy to NT and Secure to HTTP Proxy had already
been defined (see Figure 434 on page 469 and Figure 435 on page 470). We
used those two connections to implement the HTTP proxy server technology on our
firewall machine and we are restoring these two connections now because, even if
we want SSL to be tunneled through the firewall, we also want to permit HTTP to
flow through the firewall. The reason for this is because a lot of times https://
URLs are hit from Web pages that have been accessed through http:// URLs,
and you might want users in the protected network to be able to use the HTTP
protocol.

In other words, our firewall will act as an HTTP proxy server using the two
connections HTTP Proxy to NT and Secure to HTTP Proxy, but it will also be able to
tunnel SSL using the connection HTTP Proxy for NT to SSL that we still have to
define.

IBM eNetwork Firewall 3.2 provides a predefined service for SSL tunneling in the
services list. This service is named HTTPS Proxy out 2/2 :

Figure 449. SSL Tunneling Service in the Services List

The following figure shows the definition page for this service:

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 489

Figure 450. HHTPS Proxy out 2/2 Service Definition Window

Notice that the TCP port number involved in the SSL communication on the Web
server machine is 443, which is the default port number for SSL communication
that we accepted when we installed Lotus Domino Go Webserver (see Figure 284
on page 307).

So it was not difficult to configure IBM eNetwork Firewall 3.2 to implement the SSL
tunneling technology. We only had to create the new connection named HTTPS
Proxy to NT for SSL including the predefined service HTTPS Proxy out 2/2. The

490 Internet Security in the Network Computing Framework

source object was the non-secure network adapter on the firewall and the
destination object was the Web server machine. The permitted port on the firewall
was 443. The following figure shows the Add a Connection window that we used
to create the needed connection:

Figure 451. Connection Configuration for SSL Tunneling

Make sure that the three connections that you need to implement SSL tunneling
are the only ones that appear in the Connections List window and then activate
them by clicking Activate... . As usual, the Connection Activation window is brought

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 491

up. You must check the box Regenerate Connection Rules and Activate and
then click Execute (see Figure 428 on page 462).

Before the firewall configuration can be considered complete, you should access
the HTTP Proxy Configuration page as indicated in Figure 437 on page 472 and
then launch the HTTP proxy daemon through the command

/usr/sbin/phttpd

if it is not already running.

10.1.2 Netscape Communicator Advanced Configuration for Using
SSL Tunneling

Netscape Communicator must be configured for using SSL tunneling. You should
open the Manual Proxy Configuration window as indicated in 9.7.3, “Netscape
Communicator Advanced Configuration for Using HTTP Proxy Server” on page 476
and then fill the HTTP and Security fields with the IP address of the proxy server
you want to use. In our case, we therefore typed the IP address of the secure
network adapter of our firewall. The Port fields corresponding to HTTP and
Security also have to be filled with the port number to which the HTTP Proxy server
will listen. We typed 8ð8ð, which is the default value that we had accepted when
we had configured the HTTP proxy server on our firewall. The following figure
summarizes all our selections:

492 Internet Security in the Network Computing Framework

Figure 452. Netscape Communicator Configuration for SSL Tunneling

10.1.3 Testing the HTTPS Stream through the SSL Tunnel
Our test was very simple. Since our purpose was to describe how to implement
the SSL tunneling firewall technology, we did not test it using a complex
application. It was enough to point the Web browser on the client machine to the
URL of the secure Web server https://192.168.50.2 and what we got was the
Configuration and Administration Forms home page for Lotus Domino Go
Webserver.

Of course, the IP address of the Web server machine could have been replaced by
the host name of the same computer, since DNS was in place in our network
environment (see 9.5.2, “Domain Name Service in a Firewall Protected Network
Environment” on page 445). It is important anyway that you invoke the home page
by starting the URL with https://, since in this way you can establish a secure
client/server communication using HTTPS.

The following figure shows the result we obtained:

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 493

Figure 453. SSL Communication

Notice that a closed lock appears in the bottom-left corner of the browser window.
It means that a secure SSL session is running. That lock would appear open if the
communication used the HTTP protocol.

The way we configured our firewall also permitted normal HTTP connection. It is
possible to access an https:// URL by linking it from a Web page accessed
through an http:// URL.

10.2 SOCKS Server for HTTPS Scenario
In this section we will show how the SOCKS server firewall technology can be used
successfully to let HTTPS pass through the firewall. Of course, an HTTPS
communication between the client and the server takes place only if the Web
server is enabled to use SSL and if an SSL session has been activated (see 3.1.2,
“Lotus Domino Go Webserver SSL Setup” on page 71, 3.1.3, “Lotus Domino Go
Webserver SSL Server Authentication” on page 79 and 3.1.4, “SSL Client
Authentication” on page 84).

10.2.1 How to Configure SOCKS Server for HTTPS
This section describes how we configured the firewall machine to pass HTTPS
using the SOCKS server technology. We performed this test using IBM eNetwork
Firewall 3.2 for AIX.

First of all, we needed to specify objects and connections in this scenario. We had
already defined objects in 1 on page 488. It was possible to keep those same

494 Internet Security in the Network Computing Framework

definitions for this scenario also. The following list shows the five connections that
we needed for this scenario:

� Secure To SOCKS

We created this new connection in order to pass the SOCKS protocol from the
95-client object to the RS600012T1 object.

� SOCKS To Nonsecure

We created this new connection in order to pass the HTTP protocol from the
RS600012T0 object to the NT-server object.

� SOCKS Config for HTTP

We created this new connection in order to pass the SOCKSified HTTP
protocol from the 95-client object to the NT-server object.

� HTTP Proxy to NT for SSL

We created this new connection to permit the SSL protocol to pass from the
RS600012T0 to the NT-server object.

� SOCKS Config for HTTPS

We created this new connection to pass SOCKSified HTTPS from the 95-client
object to the NT-server object through the firewall.

We have already shown how to define all these connections except the one named
SOCKS Config for HTTPS (see 9.8.1, “How to Configure SOCKS Server for HTTP
and IIOP over HTTP” on page 478 and 2 on page 488).

IBM eNetwork Firewall 3.2 does not provide a predefined HTTPS SOCKS rule that
could be used for this purpose and we explain here how to create such a rule.
Notice that implementing these connections will implicitly restore the SOCKS server
technology for controlling the HTTP flow between the client and the server. In fact
we want to continue granting the possibility for client and server to communicate
through the HTTP protocol, since an https:// page is often accessed as a link
from an http:// page.

To define the new HTTP SOCKS rule needed to implement the new connection,
you should first select Socks from the Configuration Client navigation tree, as
shown in the following figure:

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 495

Figure 454. Socks in the Configuration Client Navigation Tree

The Socks Objects list is displayed:

496 Internet Security in the Network Computing Framework

Figure 455. Socks Objects List

You need to select NEW and click on Open... because you want to add a new
SOCKS rule. As soon as we did that, a new window was brought up, so that we
had the opportunity to fill its fields, as shown in the following figure:

Figure 456. SOCKS Rule for HTTPS

We named the new SOCKS rule https and we filled in the Description field with
permit socksified https. Notice that the HTTPS protocol uses by default the
TCP port 443 on the Web server. This was the value that we typed in the Port #
field.

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 497

Once this new rule was created, we added the new connection named SOCKS
Config for HTTPS. We selected 95-client as source object and NT-server as
destination object. Moreover, when we had to add a rule to this connection, we
could select https , the new SOCKS rule that we just created. At the end, the
connection window appeared as shown in the following figure:

Figure 457. SOCKS Config for HTTPS Connection Definition

The firewall configuration can be considered finished as soon as you activate the
five connections. You must be sure that these five connections are the only ones
that appear in the Connections List window. If necessary you have to remove other
connections. You can activate the five connections as usual through the
Connection Activation window (see Figure 428 on page 462).

498 Internet Security in the Network Computing Framework

10.2.2 Netscape Communicator Advanced Configuration for Using
SOCKS Server for HTTPS

Netscape Communicator must be configured to use the SOCKS server on the
firewall machine. Its configuration in this case is independent of whether you are
using HTTPS or HTTP, so the steps that we are going to describe here are very
similar to the HTTP case (see 9.8.3, “Netscape Communicator Advanced
Configuration for Using SOCKS Server for HTTP” on page 483).

You should open the Manual Proxy Configuration window as indicated in 9.7.3,
“Netscape Communicator Advanced Configuration for Using HTTP Proxy Server”
on page 476 and then fill the Socks field by typing either the IP address or the host
name of the firewall machine. We typed 191.168.51.1, which was the IP address
assigned to the secure network adapter on the firewall machine. It is also
necessary to specify the exact port used by the SOCKS server, which is by default
1080. We typed this value in the Port field related to Socks, then we pressed OK,
as shown in the following screen:

Figure 458. Netscape Advanced Configuration for Using SOCKS Server

 Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios 499

10.2.3 Testing the HTTPS Stream through the SOCKS Server
The experiment that we tried here was the same as we tried in 10.1.3, “Testing the
HTTPS Stream through the SSL Tunnel” on page 493, and we simply invoked the
Configuration and Administration Forms home page for Lotus Domino Go
Webserver, installed on the Web server machine. It was enough to point the
browser on the client machine to the URL https://192.168.50.2 or https://wtr05218,
since DNS was in place in our network environment (see 9.5.2, “Domain Name
Service in a Firewall Protected Network Environment” on page 445). Our test was
successful and we obtained a result similar to the window shown in Figure 453 on
page 494. The Netscape security icon - a closed lock - appeared in the bottom-left
corner of the browser window. This demonstrated that we were able to have
HTTPS pass through the firewall using the SOCKS server firewall technology.

It is very important to notice that in this case, as also in the SSL tunneling test, the
URL must start with https://, so that a secure SSL session is activated.

Moreover the firewall had been configured to permit direct HTTP communication
between the client and the server. Such configuration allows a user to access an
https:// URL through a Web page previously accessed via an http:// URL,
rather than pointing directly to an https:// URL.

500 Internet Security in the Network Computing Framework

 Appendix A. Special Notices

This publication is intended to help customers, system engineers and application
developers to implement a secure Network Computing Framework environment.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by Lotus Domino Go Webserver, IBM
WebSphere Application Server, IBM DB2 Universal Database and IBM eNetwork
Firewall. See the PUBLICATIONS section of the IBM Programming Announcement
for Lotus Domino Go Webserver, IBM WebSphere Application Server, IBM DB2
Universal Database and IBM eNetwork Firewall for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop
1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including

 Copyright IBM Corp. 1998 501

these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX DB2
DB2 Universal Database Distributed Relational Database Architecture
eNetwork IBM
Net.Data OS/2
OS/390 RS/6000
ThinkPad

502 Internet Security in the Network Computing Framework

 Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 505.

� Network Computing Framework Component Guide, SG24-2119

� Protect and Survive Using IBM Firewall 3.1 for AIX, SG24-2577

� The Domino Defense: Security in Lotus Notes and Internet, SG24-2109

� A Comprehensive Guide to Virtual Private Networks, Vol. I, SG24-5201

B.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

 B.3 Other Publications
These publications are also relevant as further information sources:

� IBM eNetwork Firewall for AIX User's Guide, GC31-8419

� IBM DB2 Universal Database Administration Guide Version 5, S10J-8157

 Copyright IBM Corp. 1998 503

504 Internet Security in the Network Computing Framework

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

� Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

� PUBORDER — to order hardcopies in the United States

 � Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

� REDBOOKS Category on INEWS

� Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 505

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

� Online Orders — send orders to:

 � Telephone Orders

� Mail Orders — send orders to:

� Fax — send orders to:

� 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

� On the World Wide Web

 Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

Redbooks Web Site http://www.redbooks.ibm.com/
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

506 Internet Security in the Network Computing Framework

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Ø Invoice to customer number

Ø Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

 How to Get ITSO Redbooks 507

508 Internet Security in the Network Computing Framework

 Index

Special Characters
${/} variable 29
${java.home} variable 21

A
Abstract Syntax Notation #1 (ASN.1) 31
Abstract Windowing Toolkit (AWT) 48
access control 6
AccessControlException 66
AccessController 16, 19
acknowledgment (ACK) flag 274, 408
ActiveX controls 200
allow system property 24
AllPermission 27
annoyance attack 221
applet

communicationwith the server 258
local applet security 438
programming model 218
sandbox 218
security 214
signed applet 224

Applet Viewer 54
application classpath 17
application server 3
Application Server Manager 121
assigned port numbers 275
auditing 6

B
base64 format 31
Basic Encoding Rules (BER) 30, 31
basic object relationships 16
bastion host 290
beginPrivileged() method 19
bibliography 503
browser security 181
ByteCode Verifier 9, 15

C
CAB format 218
caching-only nameserver 445
certificate chain 22
Certificate Revocation List (CRL) 6, 14, 25
certificate services 6
Certificate Signing Request (CSR) 14, 33
Certification Authority (CA) 6, 22, 33, 193, 232
checkPermission() method 18, 46

class to instantiate for X.509Certificate 25
ClassLoader 10, 15, 16, 18
CLASSPATH system environment variable 17, 301,

319, 364, 436, 438
client 3
client certificate 232

export 239
for e-Mail 238
import 239
secure Web site 238

client-side security 181
client/server communication 473
code signing 224
codeBase 58, 61
codeBase URL 15, 27, 47
CodeSource 15, 27
Common Object Request Broker Architecture

(CORBA) 436
confidentiality 69
connection 272, 279

configuration 410, 429
connection 271
definition 280

cookie security 183, 206, 250
cryptographic module 194
cryptography 6

D
data integrity 70
data protection 6
DB2

CAE, connection configuration 342
Client Application Enabler (CAE) 336, 339
Client Configuration Assistant (CCA) 342
client/server communication security 384
communication protocol 396
local protocol 361
Manager Configuration file 346
Universal Database (UDB) 336
User-Defined Functions (UDFs) 338

DELETE method 141
Demilitarized Zone (DMZ) 292
Digital Signature Algorithm (DSA) 13
direct IIOP connection 439
directory architecture 7
directory services 7
disclosure attack 220
disk cache 255
Distinguished Name 75
Distributed Computing Environment (DCE) Security

Services 386

 Copyright IBM Corp. 1998 509

DNS host name resolution 257
DNS look-up 257
document protection

client's domain name 113
client's IP address 112
SSL authentication 109

Domain Name Service (DNS) 445
doPrivileged() method 18, 19, 20
dynamic page content 122

E
endPrivileged() method 19
expand properties 24
expert IP filters 271

F
FilePermission 26, 27
firewall

administrator 354
architectures 289
basic configuration 444
network interface security 270
port number security 270
remote configuration 353
security 269
traffic direction security 270

form signing 243
FTP proxy server 281

G
GET method 94, 141, 150
getException() method 21
Gopher 282

H
Host On-Demand 225
HTTP

over SSL 282
protocol 94
proxy server 258, 282
request body 99
request header 99

http:// URL 79
HTTPS 282, 443
https:// URL 79

I
IBM eNetwork Firewall Version 3.2 350
IBM Firewall Version 3.1.1 350
integrity attack 220
Inter-ORB Protocol (IIOP) 435

direct connection 439

Inter-ORB Protocol (IIOP) (continued)
enhanced mode 439
over HTTP 439
over HTTPS 442
standard mode 439

internal servlet 161
Internet Protocol Security (IPSec) 6
IP filter 258, 270, 273
IP filter configuration 390, 396, 416
IP forwarding 290

J
jar command 29, 63
JAR file 34, 63, 131, 133

signed 132, 133
jarsigner command 29, 34, 63
Java

1.2 security API 7
1.2 security model 9
basic object relationships 16
classpath 17
extension 17
least privileged mode 14
privileged code 19
security 7
security API 13
Servlet API 121

Java Archive (JAR) format 218
Java Cryptographic Extensions (JCE) 13
Java Database Connectivity (JDBC) 121
Java Development Kit (JDK) 298

1.0 security model 10
1.1 security model 11
1.2 access control 15
1.2 security 21
1.2 security model 12
1.2 security tools 29
1.2, additive permissions 59
1.2, applets 52
1.2, local code 36
1.2, signed applets 52, 56
1.2, unsigned applets 52, 54
security functionalities 13

Java Naming and Directory Interface (JNDI) 7
JAVA_HOME variable 133, 436
java.class.path property 17
java.sys.class.path variable 17
JavaBeans 121
javakey command 29
JavaScript file security model 226
JavaServer Pages (JSP) 122
jvm.properties file 324, 364

510 Internet Security in the Network Computing Framework

K
key pair 30
key ring 74, 92
Key Ring Organizer (KRO) 184, 247
keystore 22, 25

user-defined keystore file 25
keystore URL 26, 59
keytool command 29, 30, 31, 33, 56, 57, 62

L
LDAP repository 8
least privileged mode 14
Lightweight Directory Service Access (LDAP) 6
Lotus Domino Go Webserver 69, 302

access control 104
ACLs 114
ACLs, basic authentication 114
ACLs, SSL client authentication 117
group 104
Protection Setup, basic authentication 106
security features 69
user 104

M
Man-In-the-Middle (MIM) 100, 287, 378
MD5/RSA standard 33
memory cache 255
meta-directory 8
Microsoft Authenticode 203
Microsoft Internet Explorer (MSIE) 195, 239, 283

security APIs 218
security model 219
Security Zones 197

N
NCF

common schema 7
security architecture 4, 5

ncf.jvm.classpath property 364
Netscape Communicator 161, 181, 239, 282

Java Console 262
JDK 1.1 level 189
prefs.js 254
security APIs 218
SecurityManager 257

Netscape Navigator 181
hidden security preferences 254
security model 219
SSL security icon 308

network object 271, 272, 277, 279
non-repudiation 6
non-secure network adapter 389

O
Object Management Group (OMG) 436
Object Request Broker (ORB) 436
objects addition 391

P
Path system environment variable 299, 437
PEM format 91
Permission 27, 28
Policy class 12
policy file 11, 15, 23, 24, 26, 35, 54, 59, 65
policy provider 24
Policy Tool 29
POST method 94, 141, 150
PrivilegedAction 19, 20
PrivilegedActionException 20, 21
PrivilegedExceptionAction 20, 21
properties file 23
PropertyPermission 27, 68
ProtectionDomain 17, 18, 19
proxy server 280
Public Key Infrastructure (PKI) 4
PUT method 141

R
Registration Authority (RA) 6
remotely loaded servlet 161
RSA 134
RSA algorithm 33
RSA signature 33
rule 271, 272

creation 396, 417, 423
definition 273
template 273

Runtime Access Controls 18

S
sandbox 9
screened bastion host 291
screened subnet 292
screening router 289
secure network adapter 389, 444
Secure Socket Layer (SSL) 5, 94, 208

client authentication 84
overview 69
server authentication 79
session key 70
setup 71
Version 2.0 70, 186
Version 3.0 70, 186

SecureClassLoader 16, 17
security file 22, 23, 25, 26

 Index 511

security hazards 220
security provider 23
SecurityException 18
SecurityManager 10, 15, 16
self-signed certificate 30
service 271, 272, 276

creation 408, 421, 427
definition 277

service attack 221
servlet

directory 161
local servlet 162
remote invocation 162
remote loading 164
sandbox 161
security 161
SecurityManager 161, 162
signed 170
unsigned 164
untrusted 161

ServletExpress 119, 122, 311, 362
CORBA Support 435
file servlet 119
log files 322
Manager 122
Manager monitor 333
security 379

SHA1/DSA signature 33
single logon 5
Socket 266
SocketPermission 27, 61
SOCKS

protocol 285
rule 495
server 258, 284
server for HTTPS 494

SOCKSified client code 286
SSL client authentication 84, 109, 114, 115
SSL tunneling 287, 443, 488
SSL tunneling, CONNECT extension method 287
stack trace 257
StreamTokenizer 29
Sun HotJava 161, 207
system classpath 17

T
telnet proxy server 281
Thread 18
three-tier model 3
time control 277
trusted remote servlet 162
trusted root key 74
Type Length Value (TLV) format 31

U
URLConnection 267

V
Virtual Private Network (VPN) 6, 277

W
WAIS 282
Web server 3
Web server JVM 161
Web server security 69
WebSphere Application Server 121, 311, 362, 435

ACLs 122, 138
ACLs, permission conflict 146
administrator 128
advanced security 159
Basic Authentication 159, 161
certificate URL 132
CORBA Support 122, 436
defaultRealm 125, 126, 128, 135
Digest Authentication 159, 160, 161
file POST permission 143
file PUT Permission 144
file resource 149
file servlet 159
group 135
Members list 136
Non-Members list 136
NT realm 125, 126, 127, 128, 146
permission conflict 159
realm 125
resources 146
security 121
security management 122
security model 162
servlet permission 142
servlet resource 150
servlet-signer 126, 130
servletMgrRealm 125, 126, 127, 128
UNIX realm 125, 126, 128, 146
user 128
user, admin 128

X
X.509 certificate 14, 134

512 Internet Security in the Network Computing Framework

ITSO Redbook Evaluation

Internet Security in the Network Computing Framework
SG24-5220-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

� Use the online evaluation form found at http://www.redbooks.ibm.com
� Fax this form to: USA International Access Code + 1 914 432 8264
� Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 513

S
G

24
-5

22
0-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

Internet Security in the Network Computing Framework SG24-5220-00

ÉÂ
Ô

	 Contents
	 Figures
	 Tables
	 Preface
	Part 1. NCF Security Components
	Chapter 1. An Overview of NCF Security
	Chapter 2. The New Java 1.2 Security Model
	Chapter 3. Web Server Security
	Chapter 4. IBM WebSphere Application Server Security
	Chapter 5. Client-Side Security Technical References
	Chapter 6. Firewall Security in an NCF Environment
	Part 2. NCF Security Scenarios
	Chapter 7. How to Install and Configure a NCF Secure Environment
	Chapter 8. Three-Tier Applications in Firewall-Protected Network Environments
	Chapter 9. IIOP in Firewall-Protected Network Environments
	Chapter 10. SSL Tunneling and SOCKS Server for HTTPS Scenarios
	 Appendix A. Special Notices
	 Appendix B. Related Publications
	 Index
	ITSO Redbook Evaluation

