

ibm.com/redbooks

Draft Document for Review November 6, 2002 2:37 pm SG24-6573-00

IBM WebSphere V5.0
Security Handbook
WebSphere Handbook series

Peter Kovari
Derek Carpenter

Paul Creswick
Floyd Langley

David Leigh
Rao Maheshwar
Piotr Kisielewicz

Stephen Pipes

WebSphere Application Server security
in details

End-to-end security design with
Patterns for e-business

Security integration with
Tivoli Access Manager

Front cover

This book is a draft document (Redpiece). It is mostly
based on an early build (BETA3) of WebSphere V5; as
the product develops the book gets updated. The book is
expected to be published in its final stage when
WebSphere V5 is released, and will be based on the final
product.
Please note that the book has not been edited by ITSO
editors. It has been published only to provide early
information to the technical community. You will find
grammar, style and formatting errors through the book,
please ignore them and do not send comments on these.
Comments and reviews are more than welcome, send an
e-mail to the project leader Peter Kovari
(peter.kovari@us.ibm.com).

IBM WebSphere V5.0 Security Handbook
WebSphere Handbook series

August 2002

International Technical Support Organization

Draft Document for Review November 6, 2002 2:37 pm 6573edno.fm

SG24-6573-00

6573edno.fm Draft Document for Review November 6, 2002 2:37 pm

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (August 2002)

This edition applies to V5 of WebSphere Application Server V5 Base Application Server and
Network Deployment Package for use with the Red Hat Linux 7.2, AIX 4.3.3, AIX 5L, Windows
2000 Server.

This document created or updated on November 6, 2002.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page ix.

Draft Document for Review November 6, 2002 2:37 pm 6573TOC.fm
Contents

Special notices . ix

IBM trademarks . x

Preface . xi
The team that wrote this redbook. .xi
Notice . xiv
Comments welcome. xiv

Chapter 1. Introduction . 1
1.1 How to read this book . 2

Chapter 2. Security fundamentals . 5
2.1 Security . 6

2.1.1 Physical security . 6
2.1.2 Logical security . 7
2.1.3 Security policy . 7

2.2 Security fundamentals . 7
2.2.1 Authentication . 8
2.2.2 Authorization . 10
2.2.3 Public Key Infrastructure (PKI) . 11

2.3 Security in use. 17

Part 1. WebSphere security . 19

Chapter 3. J2EE application security . 21
3.1 J2EE Application . 22
3.2 Security Roles . 23
3.3 J2EE Container Based Security . 24

3.3.1 Declarative Security . 25
3.3.2 Programatic Security . 25

3.4 Application Deployment Descriptor . 26
3.5 J2EE Application Security Configuration. 28
3.6 Modify applications . 34

Chapter 4. Securing Web components . 37
4.1 Static components. 38

4.1.1 Authentication with the Web server. 38
4.1.2 Authorization with the Web servera . 43
4.1.3 Other Web server security aspects . 44
© Copyright IBM Corp. 2002 iii

6573TOC.fm Draft Document for Review November 6, 2002 2:37 pm
4.2 Web module security . 45
4.2.1 Configuring Web module security . 45

4.3 Securing Web components . 49
4.3.1 Static content . 49
4.3.2 Servlets, JSPs. 51

4.4 Security role reference . 54
4.5 Login facilities . 57

4.5.1 Form based login . 58
4.5.2 Custom login . 61
4.5.3 Form based logout . 67

4.6 Additional security guidelines . 68
4.7 Where to find more information . 70

Chapter 5. Securing EJBs . 73
5.1 Securing EJBs. 74
5.2 Defining J2EE roles for EJB modules . 75
5.3 Assigning EJB Method Permissions . 76
5.4 Security role references . 81
5.5 Delegation policy . 84

5.5.1 Bean Level Delegation . 85
5.5.2 Method Level Delegation . 89

5.6 Run-as mapping . 93
5.7 Where to find more information . 95

Chapter 6. Securing Java clients . 97
6.1 Java clients . 98
6.2 CSIv2 and SAS . 100
6.3 Configuring the Java client . 103
6.4 Identity Assertion. 106

6.4.1 Scenarios . 108
6.5 J2EE application client . 121
6.6 Java thin application client . 122
6.7 Where to find more information . 124

Chapter 7. Securing Enterprise Integration components 125
7.1 Web Services security . 126

7.1.1 Digital Certificates . 126
7.1.2 HTTP Basic Authentication . 143
7.1.3 WS-Security . 146
7.1.4 Security with the Web Services Gateway . 155

7.2 Messaging security . 159
7.2.1 Messaging security . 159
7.2.2 Messaging support for WebSphere Application Server 161
7.2.3 Security for WebSphere Embedded JMS Provider 162
iv IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573TOC.fm
7.2.4 Security for WebSphere MQ (external provider) 166
7.3 J2C Security . 169

7.3.1 Securing adapters . 169
7.3.2 Java 2 Connector Security . 171

7.4 Where to find more information . 178

Chapter 8. Programmatic security . 179
8.1 Programmatic security. 180
8.2 J2EE API . 180

8.2.1 EJB security methods . 180
8.2.2 Servlet security methods. 182

8.3 CustomRegistry SPI . 183
8.4 Custom Trust Association Interceptor . 190
8.5 Java 2 Security . 195

8.5.1 Java 2 security in WebSphere . 203
8.6 JAAS . 204

8.6.1 Implementing security with JAAS . 204
8.6.2 How is JAAS security working ? . 206

8.7 Programmatic login . 207
8.7.1 JAAS in WebSphere . 209
8.7.2 Client-side login with JAAS . 209
8.7.3 Server-side login with JAAS . 212

8.8 Where to find more information . 213

Chapter 9. WebSphere Application Server Security 215
9.1 WebSphere security model . 216

9.1.1 WebSphere security in operating environment 216
9.1.2 WebSphere security in distributed environment 217
9.1.3 Java Management Extension Architecture (JMX) 220

9.2 Websphere Application Server security architecture. 221
9.2.1 Extensible security architecture model . 223
9.2.2 WebSphere Application Server security components 224

9.3 Performance considerations . 230
9.4 Authentication summary . 230

Chapter 10. Administering WebSphere security 233
10.1 Administration tools . 234
10.2 WebSphere Global Security . 235
10.3 Administrative roles . 239

10.3.1 Cos Naming roles . 242
10.4 Configuring a user registry . 243

10.4.1 LocalOS . 244
10.4.2 LDAP. 245
10.4.3 Custom Registry . 247
 Contents v

6573TOC.fm Draft Document for Review November 6, 2002 2:37 pm
10.5 SWAM . 249
10.6 LTPA . 249

10.6.1 Single Sign-On . 249
10.6.2 Configuring LTPA for WebSphere. 251
10.6.3 Generate LTPA keys. 252
10.6.4 Enable LTPA Authentication for WebSphere 253

10.7 JAAS Configuration . 254
10.7.1 Application Login Information . 254
10.7.2 J2C Authentication Data Entries . 256

10.8 Configuring SSL . 257
10.8.1 SSL configurations . 258

10.9 Demo keyfile . 260
10.9.1 Generating a self-signed certificate. 263
10.9.2 Requesting a certificate signed by a CA . 269
10.9.3 Using the Java keytool . 274
10.9.4 Configuring WebSphere to use a key store 274

10.10 SSL between the Web client and the Web server 276
10.10.1 Generating a digital certificate. 277
10.10.2 Configuring the IBM HTTP Server . 279
10.10.3 Client-side certificate for client authentication 287

10.11 SSL between the Web server and WebSphere. 300
10.12 SSL between the Java client and WebSphere 308

10.12.1 Creating the key stores . 308
10.12.2 Server side configuration . 309
10.12.3 Configuring the Java client . 312

10.13 Connecting to directory servers (LDAP) . 315
10.13.1 IBM SecureWay Directory Server V3.2.2 315

10.14 JMX MBean security . 334
10.15 Cell Security . 335

10.15.1 Configuring security for the Cell . 337
10.15.2 Configuring security for an individual server 340

Part 2. End-to-end security . 345

Chapter 11. Security in patterns for e-business . 347
11.1 Patterns for e-business . 348

11.1.1 Patterns and solution design process . 350
11.2 Selecting application patterns for ITSOBank. 351
11.3 Creating common runtime pattern for the ITSOBank application 354
11.4 Product mappings . 360
11.5 Security guidelines in Patterns for e-business 363
11.6 More information on patterns for e-business. 365

Chapter 12. Tivoli Access Manager . 367
vi IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573TOC.fm
12.1 End to End Security. 368
12.2 Network Identity and Centralized Security Services 369
12.3 Tivoli Access Manager . 371

12.3.1 Environment for the scenarios . 375
12.4 Scenarios . 377
12.5 Scenario 1: Shared user registries . 377

12.5.1 Single Sign-On with WebSEAL . 382
12.5.2 Forms Authentication Single Sign-On . 404
12.5.3 Tivoli Access Manager plug-in for WebSphere Edge Server 407

12.6 Scenario 2: Protecting Web resources . 409
12.6.1 Tivoli WebSEAL . 409

12.7 Scenario 3: Tivoli’s WebSphere plug-in . 428
12.7.1 Access Manager For WebSphere Application Server 428
12.7.2 Migration of Applications . 433

12.8 Scenario 4: Using the aznAPI . 437

Part 3. Appendixes . 439

Appendix A. Sample application . 441
Sample application . 442

Application architecture brief. 442
Security roles . 446
Deploying the sample application. 446

Setup the database server . 447
Setup the database client . 448
Configuring the user registry for the ITSOBank sample 449
Configuring WebSphere Application Server for the ITSOBank sample . . 450

Importing the sample application into the development environment 454
12.9 Where to find more information . 455

Appendix B. LDAP configurations . 457
SecureWay Directory Server . 458
IBM Directory Server . 458
Lotus Domino . 458
iPlanet Directory Server . 467
Microsoft Active Directory. 481
Testing LDAP connections . 486

Appendix C. Single Sign-On with Lotus Domino 487
WebSphere-Domino SSO scenarios . 488
Using SecureWay Directory Server for user registry 488
Using Domino LDAP for user registry . 505

Appendix D. Using wsadmin scripting for security configuration 509
 Contents vii

6573TOC.fm Draft Document for Review November 6, 2002 2:37 pm
wsadmin scripting. 510
Preparing and testing the wsadmin client. 511
Sample scripts . 512

Appendix E. Additional material . 517
Locating the Web material . 517
Using the Web material . 517

System requirements for downloading the Web material 518
How to use the Web material . 518

Abbreviations and acronyms . 519

Related publications . 521
IBM Redbooks . 521

Other resources . 521
Referenced Web sites . 521
How to get IBM Redbooks . 521

IBM Redbooks collections. 522

Index . 523
viii IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573spec.fm
Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2002 ix

6573spec.fm Draft Document for Review November 6, 2002 2:37 pm
IBM trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX 5L™
AIX®
Balance®
BookMaster®
DB2 Universal Database™
DB2®
Domino™
e (logo)®
Everyplace™

FAA®
IBM®
Lotus Notes®
Lotus®
LPDA®
MQSeries®
Notes®
Perform™
RACF®

Redbooks (logo)™
Redbooks™
SecureWay®
SP™
Tivoli®
WebSphere®
z/OS™

Other company trademarks
The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or
other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by
SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of
others.
x IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573pref.fm
Preface

This IBM Redbook provides IT Architects, IT Specialists, application designers,
application developers, application assemblers, application deployers and
consultants with informaiton to design, develop and deploy secure e-business
applications using WebSphere Application Server V5.

Part 1, “WebSphere security” on page 19 provides a detailed overview of
WebSphere Application Server V5 Security. It starts up with J2EE security, goes
into details with the modules and components of a J2EE enterprise application;
you can also read about programmatic security techniques. The last chapter of
this part shows all the security related administrtive items in WebSphere
Application Server V5.

Part 2, “End-to-end security” on page 345 offers details about end-to-end
security solutions where WebSphere Application Server V5 is part of an
enterprise solution. You will find an introduction of Patterns for e-business, in
which security is in focus. A very important chapter of this part will discuss the
integration between WebSphere Application Server V5 and Tivoli Access
Manager.

The “Appendixes” on page 439 provides additional information related to
chapters from Part 1 and Part 2 and also describes the sample application
available together with the book.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2002 xi

6573pref.fm Draft Document for Review November 6, 2002 2:37 pm
The IBM Redbook team (left to right: Stephen Pipes, David Leigh, Piotr Kisielewicz, Rao
Maheshwar, Paul Creswick, Peter Kovari)

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Derek Carpenter has nearly 3 years with IBM, where he has been a member of
the Developer Relations - Technical Services & Support (DR-TS&S) located in
Dallas. Since joining IBM he has spanned his product knowledge by providing
developer support for WebSphere Application Server, WebSphere Voice Server,
WebSphere Studio Application Developer, WebSphere Studio, VisualAge for
Java. Derek is currently working with Tivoli Security and Storage, and IBM
Directory Services software platforms.

Paul Creswick is an infrastructure architect with Westpac Banking Corporation,
Australia. He has worked in the design, development and implementation of
several e-business applications utilizing WebSphere and Tivoli Access Manger
including online Loan Originations Systems and Business Banking Portals.
Currently he is implementing a security and network identity architecture to
provide enterprise services utilizing Tivoli Access Manager.
xii IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573pref.fm
Floyd Langley is an Advisory Software Engineer in IBM Developer Relations
Technical Support. I currently provide support for IBM Tivoli Access Manager,
and IBM Directory Server. I have a degree in Computer Science from the
University of Kansas. I was in development in IBM on a variety of products for 13
years, and have been in technical support for the last 3. I currently hold
certifications as a Microsoft MCSE - NT 4.0, IBM Certified Specialist - AIX 4.3
System Administration, Tivoli Certified Consultant - Tivoli Public Key
Infrastructure V3.7.1, Tivoli Certified Consultant - IBM Tivoli Access Manager for
eBusiness V3.9, and Tivoli Certified Consultant - IBM Tivoli Access Manager for
Business Integration V3.8.1. My current areas of expertise are security and
LDAP.

David Leigh is a Advisory Software Engineer in IBM Software Group's
Websphere Platform System House organization, located in Research Triangle
Park, North Carolina. He has six years of experience providing internal network
application services and support. His areas of expertise include application and
server security, high-availability, monitoring, problem determination, IBM AIX,
and DCE/DFS.

Rao Maheshwar is a WebSphere Consultant with iS3C Consultancy Services
Ltd, Inc. He worked as a J2EE programmer, designer, analyst and an architect
for many web related projects. He did his engineering in Computer Science. He
is experienced in Websphere Commerce Server, WebSphere Apps. server
scalability, IBM DB2 UDB clustering using HACMP, WebSphere Edge Server for
IBM HTTP Server load-balancing, WebSphere MQ and Web Services. Currently
focussing on XML based web services and web security implementations.

Piotr Kisielewicz works as Advisory IT Specialist in IBM Global Services BIS
Poland in e-business integration group. He is primarily responsible for
architecting web based solution in the areas of integration and security. His
expertise include web system design based on WebSphere and Domino as well
as integration through various middleware technologies. Before joining IBM, he
worked for a business partner as communication specialist. He holds an MSc
degree in electronics from Technical University of Wroclaw and MBA from Ecole
de Mines de Saint Etienne (France).

Stephen Pipes is a WebSphere consultant for IBM HS&T based in Hursley,
England. He has several years of programming experience with Java and has
worked for three years in the Java Technology Center, in Hursley before moving
to the WebSphere development group. Stephen works with a number of
customers providing technical support and education on a variety of WebSphere
Application Server and Java topics.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Raleigh Center
 Preface xiii

6573pref.fm Draft Document for Review November 6, 2002 2:37 pm
Cecilia Bardy
Gail Christensen
Mark Endrei
Carla Sadtler
Margaret Ticknor
Jeanne Tucker

A special thank goes to the WebSphere Security development team in Austin,
Texas for their invaluable help during the whole project: Peter Birk, Ching-Yun
Chao, Carlton Mason, Anthony Nadalin, Nataraj Nagaratnam (Raleigh),
Steward Ouyang, Ajay Reddy, Vishwanath Venkataramappa, Yi-Hsiu Wei.

Thanks to the following people for their contributions to this project:

Keys Botzum, Software Services for WebSphere
Axel Buecker, ITSO Austin

Notice
This publication is intended to help IT Architects, IT Specialists, application
designers, application developers, application assemblers, application deployers
and consultants to design, develop and deploy secure e-business solutions using
WebSphere. The information in this publication is not intended as the
specification of any programming interfaces that are provided by WebSphere
Application Server V5.0, Tivoli Access Manager 3.9. See the PUBLICATIONS
section of the IBM Programming Announcement for WebSphere Application
Server V5.0, Tivoli Access Manager 3.9 for more information about what
publications are considered to be product documentation.

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
xiv IBM WebSphere V5.0 Security Handbook

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Draft Document for Review November 6, 2002 2:37 pm 6573chIntro.fm
Chapter 1. Introduction

This chapter is a short introduction to the book. It gives a description of the
organization of the book, and how to read the book according to your interest.

The book provides help to identify the chapters and sections to find, which J2EE
role should read certain sections in the book.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

6573chIntro.fm Draft Document for Review November 6, 2002 2:37 pm
1.1 How to read this book
There are really two approaches to discuss security for WebSphere:

� From the application point of view

� From the system point of view

If you are an application designer or developer then Part 1, “WebSphere security”
on page 19 is for you, then you should get the big picture in Part 2, “End-to-end
security” on page 345.

If you are a system architect and you want to calculate with security in advance
then start with Part 2, “End-to-end security” on page 345, then you should read
Part 1, “WebSphere security” on page 19 to see how the applications will work in
the system.

In the book you will find the name WebSphere at numerous places. Although it is
the name of a product family in this book WebSphere refers to the WebSphere
Application Server product.

The development environment for the WebSphere product family, based on the
Eclipse framework, is referred as WebSphere Studio in this book. Although
WebSphere Studio has multiple different editions, the following editions can be
used with this book, to accomplish the development tasks:

� WebSphere Studio Application Developer
� WebSphere Studio Application Developer Integration Edition
� WebSphere Studio Enterprise Developer

J2EE roles
Incorporating with Sun’s J2EE roles defined in the J2EE Platform Specification,
this book provides some additional information for those who would like to follow
Sun’s recommendations.

You will find icons on the side of the pages through the book supplementing
section titles. Those icons are indicating the related J2EE roles for certian
sections.

This icon represents the Application Assembler role. The section
noted with this icon provides information for application assemblers,
for those who package the application from the components provided
by the developers.
2 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chIntro.fm
This icon represents the Deployer role. The section noted with this
icon provides information for application deployers, for those who
deploy the application(s) provided by the application developers and
application assemblers.

This icon represents all the developer roles. The section noted with
this icon provides information for developers. It is a collection of
developer roles, not identifying any particular role.

This icon represents the EJB developer role. The section noted with
this icon provides information for EJB developers.

This icon represents the Java developer role. The section noted with
this icon provides information for Java developers. It is really a
collection of roles, because the majority of the developers in a J2EE
environment are Java developers.

This icon represents the Web developer role. The section noted with
this icon provides information for Web developers for those who
develop Web pages, servlets, Java beans, access beans for EJBs
and so on...

This icon represents the system administrator role. The section noted
with this icon provides information for system administrators.

Indicating the roles for particular chapters and sections does not mean that
others cannot read those parts in the book. Actually you are encouraged to read
the whole book or any part that you are interested in.

The intention of the icons introduced above is to provide a mapping between the
J2EE roles and the context of the book. It is quite difficult and does not really
make sense to organize the book according to the J2EE roles, although the
concept of J2EE roles is a good concept. Hopefully this approach will help to
identify the tasks and to-dos for the reader, and adds more value to the book.
 Chapter 1. Introduction 3

6573chIntro.fm Draft Document for Review November 6, 2002 2:37 pm
4 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
Chapter 2. Security fundamentals

This chapter is a short introduction to security. It discusses security in a very
general form, in order to have a common understanding on the topic.

The very basic security terms and definitions are covered in this chapter,
independently from the rest of the book. Although you will not find any application
server security or J2EE security in this chapter, it is still a good start and
reference for later discussions.

2

© Copyright IBM Corp. 2002 5

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
2.1 Security
As new business practices emerge, most enterprises are finding that their
existing security infrastructure is not capable of meeting the rapidly changing and
more rigorous demands of business over the Internet. The demands of network
security have now gone far beyond simply managing user accounts and
restricting access between internal and external networks. These demands now
require a sophisticated system that allows fine-grained access control to
resources, yet is manageable enough to be tailored to protect systems from
many types of security threats.

Security is a fairly vast topic; everything involves security to some extent, in a
certain format. There are two main areas which have to be discussed separately:

� Physical security
� Logical security

Systems have to be protected both from outsiders and insiders. Do not forget
that not every intrusion or attack is intentional; misuse of a system or improper
administration can also cause damage.

2.1.1 Physical security
Physical security means protection against physical actions. It involves every
physical element around:

� The machine(s) where the application is running.

� The room where the machines are operating.

� The building where the machines are installed.

� The site where the company is located.

The listed elements have to be secured against intrusion and damage, whether
intentional or not.

Physical security also includes the protection of communication channels:

� Ground lines

� Wireless connection

The communication network has to be protected against eavesdropping and
damage to the connection (cutting the line).

The subject of physical security goes much further than the objective of this book
allows. This short section is only intended as a reminder of the concept of logical
security.
6 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
2.1.2 Logical security
Logical security is related to particular IT solutions: the IT architecture and
applications, including the business processes.

Communication
Network communication must be protected not only on a physical but on a logical
level as well. Most of the companies’ networks are connected to public networks.
Therefore, applications are accessible from the outside world. Network level
security must prevent unauthorized access.

Application
Securing an application is done on different levels. Security is designed from the
very beginning of the implementation, when the processes and flows are
designed.

� Securing the resources

This implies protecting the resources on an application level and exercising
the security features of the runtime platform (authentication and
authorization).

� Implementing the business processes securely

The processes have to be designed in a way that no weakness in logic can be
found.

2.1.3 Security policy
Security policies are guidelines for an organization; they can be part of a widely
accepted standard (ISO) or implemented by a certain organization or company.

Policies can define processes for different areas in an organization. Security
policies focus on security related processes, for example, how to request a new
password, how to renew a password, and so on.

These guidelines are very important in implementing a robust security for the
whole system organization-wide.

2.2 Security fundamentals
This section will discuss two fundamental security services also supported by
WebSphere Application Server:

� Authentication
 Chapter 2. Security fundamentals 7

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
� Authorization

2.2.1 Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either an end user, a machine or an
application.

The authentication process involves gathering some unique information from the
client.

There are three major groups of secure authentication used to gather this unique
information:

� Knowledge-based - user name and password, for example.

� Key-based - physical keys, encryption keys, key cards.

� Biometric - finger prints, voice patterns or DNA.

Other authentication mechanisms can combine these; an example is digital
certificates, where key-based and knowledge-based authentication are
exercised.

Figure 2-1 Base authentication mechanisms

The following paragraphs will discuss some of the authentication mechanisms
used in IT systems.

Definition: A realm is a collection of users that are controlled by the same
authentication policy.

key based

knowledge
based

biometric

digital certificates

harware key

user name/password

retinal images

voice password

finger print

symmetric encription

base
authentication
mechanisms
8 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
User name and password
User name and password are the common method for authentication. The user
who wants to access the system provides a user name and a password for login,
which will be compared with the values stored in the system.

Physical keys
Physical keys are objects that can be used to prove the identity of the object
holder. Physical keys can be a piece of metal used to unlock your computer, a
hardware device that is plugged into the computer to execute certain programs
or smart cards that have a memory or microprocessor embedded.

Biometric authentication
Biometric authentication is the use of physiological or behavioral characteristics
used to verify the identity of an individual. The biometric authentication consists
of comparing the physical characteristics of an individual against the values of
those characteristics stored in a system.

Delegation
Delegation is the ability to leave an intermediary to do the work initiated by a
client according to a delegation policy.

For example, in a distributed object environment, a client can request the method
of an object on Server A. The method request results in invoking another method
of an object in server B. Server A performs the authentication of the identity of
the client and passes the request to server B. Server B assumes that the client
identity has been verified by server A and responds to that request as shown in
Figure 2-2.

Figure 2-2 Delegation mechanism

Depending on the application environment, the intermediary can have one of the
following identities when making a request to another server:

Server A
authenticates

the client

Server B
authorizes

client's
request and
performs the

operation

request request

client

ID: user01

ID: ServerA

ID: user01

ID: otheruser

options
 Chapter 2. Security fundamentals 9

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
� Client identity: the identity under which the client is making the request to the
intermediary.

� System identity: the identity of the intermediary server.

� Specified identity: identity specified through configuration.

2.2.2 Authorization
Authorization is the process of checking whether the authenticated user has
access to the requested resource. There are two fundamental methods for
authorization:

Access Control List
Each resource has associated with it a list of users and what each can do with
the resource (for example: use, read, write, execute, delete or create).

Usually, an Access Control List specifies a set of roles allowed to use a particular
resource and also designates the people allowed to play these roles.

For example, in a bank account object, we can have different methods (transfer,
deposit, getBalance, setInterest, etc.). The access right can be granted on the
basis of the roles of the users within the organization. A bank teller can have
access to the getBalance method but not to setBalance, while a manager can
access to both methods.

Table 2-1 Example of a Role Access Control List

Capability list
Associated with each user is a list of resources and the corresponding privileges
held for the user.

In this case, the holder is given the right to perform the operation on a particular
resource.

In the previous example of the bank account object, the access right is granted to
the user if the resource is listed in the user’s capability list.

Table 2-2 Example of a capability list

Resources Bank teller role Manager role

getBalance method yes yes

setBalance method no yes

Roles getBalance method setBalance method

Bank teller role yes no
10 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
You will find the two tables shown above very similar, but the rows and the
columns are switched. Actually, this is the difference between the two
approaches. We have two sets: roles and resources. In the first case, roles are
mapped to resources, while in the second case resources are mapped to roles.

The access control list is exercised generally, because managing security for
certain resources is easier and more flexible than mapping resources to roles.

Role Based Security
Roles are different levels of security that relate to a specific application. For
example, in a banking scenario, different employees have different roles, so the
security access that each employee will require to complete the tasks in a web
application will also be different. In a roles based authorization model, the roles
for a given application are developed as an application is developed. As a user
base for the application is established, one of three things happen.

� users are mapped directly to specifc security roles

� groups are formed, users are defined as members of a group, and the groups
are defined to specific security roles

� a combination of user/group mapping to security roles is used to handle any
exceptions

2.2.3 Public Key Infrastructure (PKI)
This section provides a brief overview of the Public Key Infrastructure (PKI). PKI
is a part of IT security and today‘s security needs bring it into focus.

PKI is closely related to cryptography. Although it seems complicated, it is not.
We do not need to use low-level mathematical algorithms, but we do need to
understand the background involved.

Secret key cryptography
The secret key algorithms were invented earlier than were the public key
algorithms. They use one key to encrypt and decrypt the data.

Manager role yes yes

Roles getBalance method setBalance method
 Chapter 2. Security fundamentals 11

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 2-3 Symmetric key encryption

Figure 2-3 illustrates the concept of symmetric key cryptography. The algorithms
used provide a great advantage: they are faster than the public key cryptography
introduced later. They have a considerable disadvantage as well: the same key is
needed for encryption and decryption, and both parties must have the same
keys. In today‘s cryptography, the secret keys do not belong to persons but to
communication sessions. At the beginning of a session, one of the parties
creates a session key and delivers it to the other party; they can then
communicate securely. At the end of the session, both parties delete the key and,
if they want to communicate again, they must create another key.

The following section will discuss how to secure the delivery of the session key.

Public key cryptography
The first imperative of public key cryptography is the ability to deliver the session
keys securely. It has many more benefits than secret key cryptography, as we will
see in the following section.

Public key cryptography involves the use of different keys for encrypting and
decrypting functions. If you encrypt something with key 1, you can only decrypt it
with key 2, as shown in Figure 2-4.

Figure 2-4 Public key concept

This architecture allows the use of one of the keys as a private key. This means
that nobody can have access to this key except the owner. The other key can be
used as a public key. If a user wants to send an encrypted message to another
person, he or she will get the other person‘s public certificate, encrypt the
message and send it. The message can be decrypted only by the owner of the
private key.

Plain text Encryption Cipher text Decryption Plain text

Plaintext Encryption Ciphertext Decryption Plaintext

Key 1 Key 2
12 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
Figure 2-5 Using private key cryptography

Figure 2-5 shows a sample communication between two persons: Alice and Bob.

1. Alice wants to communicate with Bob but she does not want anybody to read
the messages. She will use Bob‘s public key to encrypt the message.

2. Alice sends the message to Bob.

3. Bob uses his private key to decrypt the message.

If Bob wants to answer, he should use Alice‘s public key for encryption.

The example above is not suitable for the encryption of large amounts of data,
because public key algorithms are very slow. We use the secure key algorithms
to transmit large amounts of data. The session keys must be delivered with the
public key algorithm and will be used during the communication.

It is the concept that SSL is following to estabilish a secure communication.

Certificates
A certificate is a document from a trusted party which proves the identity of a
person. PKI certificates work in a similar fashion; if someone has a certificate
from a trusted party, we can make sure of his or her identity.

Encrypted text
Plain text Plain text

Alice BobB B

Plain text
Plain text

Alice
Bob

AA
Encrypted text

1 3

public private

private public

2

 Chapter 2. Security fundamentals 13

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
Signatures
Signatures also work as in everyday life. Signatures used in the PKI environment
work as follows: the information encrypted with a person’s (the sender) private
key will be unique to this person. Anybody can decode the message, and the
source will be identified, because only one public key can open the message: the
sender’s public key. This message is almost good enough to be used for a digital
signature; the only problem is that we would like to sign documents, and an
encrypted document is too long to be a signature.

Signatures are not enough for identification. For example, if someone wants to
travel by air, a passport will have to be shown as proof of identification.

The certificate, similar to a passport, is issued by a trusted authority. It should
contain information about the owner and should be signed by the authority.

There is a standard defining the form of a certificate, called X.509. This standard
also defines the attributes of a certificate, for example: X.500 name, issuer’s
name, distinguished name, serial number, and so on...

Elements of a certification authority system
A PKI system completes the tasks related to public key cryptography. These
tasks should be separate, meaning that a PKI system should have some
well-defined units to execute the different tasks. In some cases, the PKI
implementation must separate the different functions physically (for example, in a
commercial CA system). In this case , the elements listed below are located on
different servers.

The logical elements of a PKI system are:

� Certificate Authority (CA)

� Registration Authority (RA)

� Certificate Repository (CR)

Certificate Authority (CA)
The CA component is the heart of a PKI system, it provides the “stamp” to the
certificate. In some implementations, the CA component is issued together with
the Registration Authority (RA) component. It stores its private key and can sign
the certificate requests with it. This private key should be kept in a very secure
place. If this key is corrupted, the whole certification tree will be unusable. It is
possible to store this key on separate hardware.

Registration Authority (RA)
This component is responsible for the registration process. It is an optional
component of a PKI system but, in most cases, it is implemented. The main RA
task is the verification of client requests.
14 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
Certificate Repository (CR)
This component is often called a certificate directory. The users of a PKI system
use the issued certificates to authenticate themselves. If someone receives a
signed message, the receiver will check the signature. If the signature was
issued by a trusted party the message will be considered a trusted message.
Otherwise, there is a problem. The certificate could have been revoked for
certain reasons (the owner left the company, owner’s private key was corrupted,
etc.). In this case, the certificate should not be considered to be a trusted one.
This problem is solved by publishing certificates in the certificate repository.
When a user receives a message with a certificate, the validity of the certificate
can be verified.

The list of revoked certificates is called Certificate Revocation List (CRL) and is
usually stored in the Certificate Repository (CR). The most common way of
implementing a CR is to use the Lightweight Directory Access Protocol (LDAP)
standard (RFC2587).

Certification process
Usually, there are two methods to issue certificates. The difference between the
processes is the location where the client’s private key will be generated.

1. In the first case, the client key pair is generated on the client side (on the
client machine). The client will create a certificate request. The certificate
request contains some information about the client (public key, name, e-mail
address, key usage, some optional extensions, and so on). The request is
signed with the private key of the client and sent to the server. The server
identifies the client before issuing the certificate. The first step is to verify
whether or not the signature at the end of the request is valid (the public key
in the request can be used for validation). If no error is encountered, then
either the certificate can be issued or another client validation process can be
started. The most secure method of client validation is for the client to appear
personally and certify themselves at the authority location. If the client
certification is successful, the certificate for the public key is created with the
desired key usage. The client can download the certificate into his/her
browser registry or onto a smart card.

2. The other way to issue certificates is to execute the key generation process
on the server side. This means that private keys should be created on the
server side. This solution presents some problems:

– The key generation requires a lot of computing power. There should be
very powerful computers applied as Certificate Authority (CA) machines or
key generation will be very slow (in case of multiple requests).

– The private key must be issued and sent to the client, creating a weak
point in the security.
 Chapter 2. Security fundamentals 15

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
There are situations when this method is better for issuing certificates. For
example, let us imagine a research institute with a few hundred employees.
The institute wants to make the entrance of the building more secure and also
wants the computers to be used by the right persons. The company considers
using smart cards for solving both problems. A PKI system can be
implemented and every employee can get a smart card with a certificate and
a private key. Obviously, the company will not establish a Web registration
module for the employees (because of the fixed and small number of
certificates to issue), but it will create the keys and certificates, install them on
the cards and issue the cards to the customers. This process does not have
any weak points, because the cards will be given personally to each proper
person. Smart cards usually do not allow the exporting of private keys, so
they cannot be corrupted (unless the card is stolen).

Infrastructure
A Public Key Infrastructure (PKI) system acts as a trusted third party
authentication system. It issues digital certificates for the communication parties
(for users and applications). Some of its tasks are:

� Issuing of certificates

� Revoking of certificates

� Renewal of certificates

� Suspension and resumption of certificates

� Management of issued certificates

� Issuing a list of revoked certificates

� Protection of the private key

The following diagram Figure 2-6 on page 17 shows three different certification
scenarios on one picture.
16 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecFund.fm
Figure 2-6 Simple certification scenarios

The certification scenarios depicted above:

� When User A wants to talk to User B, both of their certificates are issued and
signed by the same Certificate Authority (Organization A), they can trust each
other, the secure communication will build up based on the trust.

� When User A or User B wants to talk to User C, their certificates are coming
from the same Root Certificate Authority (Root A), they can trust each other
again. This scenario shows the hierarchy of the certificates, where the
certificate has been signed by a chain of CAs. As long as the two parties have
mutual Certificate Authorities along the line they can trust each other.

� When User D wants to talk to User A or User B or User C, their certification
paths are different. To resolv the problem, the two root Certificate Authority
(Root A, Root B) can set up a trust between each other, by setting up a cross
certification. Once the two parties have cross certified CAs along the path,
they can trust each other.

2.3 Security in use
Since security is a complex and diversified topic, it is important to keep it simple.

The following list will show the basic security areas. These areas have to be
taken into account and their requirements must always be fulfilled.

Secured communication

User A User B

Organization A
Certificate
Authorty

Organization B
Certificate
Authorty

Root A
Certificate
Authorty

User CUser D

Organization C
Certificate
Authorty

Root B
Certificate
Authorty

cross
certification
 Chapter 2. Security fundamentals 17

6573chSecFund.fm Draft Document for Review November 6, 2002 2:37 pm
� Authentication / Identification - Measures designed to protect against
fraudulent transmission and imitative communications by establishing the
validity of transmission, message, station or individual.

� Access Control - The prevention of improper use of a resource, including the
use of a resource in an unauthorized manner.

� Privacy / Confidentiality - Assurance that information is not made available
or disclosed to unauthorized individuals, entities, or processes.

� Integrity - The correctness of information, of the origin of the information, and
of the functioning of the system that processes it.

� Accountability / Non-repudiation - Assurance that the actions of an entity
may be traced uniquely to the entity. This ensures that there is information to
prove ownership of the transaction.

� Administration / Configuration - Methods by which security policies are
incorporated into the architecture and the functionality that the system
architecture needs to support.

� Assurance / Monitoring - Confidence that an entity meets its security
objectives; this is usually provided through an Intrusion Detection System.

� Security Management - Assurance that an entity meets its security
management objectives, processes and procedures.

If you keep this list in mind during design and development, security will be well
implemented.
18 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573pWSSec.fm
Part 1 WebSphere
security

Part 1
© Copyright IBM Corp. 2002 19

6573pWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
20 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
Chapter 3. J2EE application security

This chapter introduces the primary security aspects of J2EE platform, including:

� Introduction to Security Roles

� Discussion of the J2EE Container Based Security model

� How J2EE application security policies are administered in WebSphere
during application assembly and during application deployment.

3

© Copyright IBM Corp. 2002 21

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
3.1 J2EE Application
The Java 2 Enterprise Edition (J2EE) specification defines the building blocks
and elements of a J2EE application that builds an enterprise application. The
specification also provides details on security related to the different elements.

The J2EE application consists of multiple modules, and components; these
elements are in connection with each other, and they communicate via certain
protocols. This section only discusses the connection on the application level,
without going into details on protocols.

The purpose of the following diagram is to depict most of the elements in a J2EE
application and their relation. You can find several “arrows” indicating
connections between elements; these are the connections, connection groups,
that have to be secured in a J2EE application.

Figure 3-1 J2EE application

For example: the user accesses a JSP page on the application server; this JSP
is a secured resource. In this situation the application server has to authenticate
the user and decide whether the user is authorized to access the page or not. In
this case the connection between the user’s browser and the JSP page requires
security.

 HTML Page

 JSP Page

 Media files

 Servlet

LEGACY
APPLICATION

 Messaging

 Database

 Entity EJB

 Session EJB

 Message EJB

 Browser
Client

 Application
Client

 Application

 User

 User

 Group

www
 Web Service
22 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
In another example a servlet in the Web container on the application server
accesses an EJB in the EJB container on the application server. Same thing
happens like the previous example; the application server has to authenticate the
servlet’s request on behalf of the EJB; then check the authorization.

When you design an enterprise application or security for an application you will
have a similar, but more detailed diagram for your solution. Make sure that you
have taken every connection into consideration between each element and
module. Security in this context consists of two major parts: authentication and
authorization. Make sure that the access is always authenticated or the security
credentials are propagated; also make sure that the access is authorized and
prepare with an action if authorization is not granted.

For more information read the security related sections of the Java 2 Platform
Specification v1.3 at http://java.sun.com/j2ee/docs.html.

3.2 Security Roles
The J2EE specification defines a security role as: “A logical groupings of users
that are defined by an Application Component Provider or Assembler”. Security
roles provide a mechanism whereby application developers determine the
security policies for an application by creating named sets of users (for example:
managers, customers, employees, and so on) that will have access to secure
resources and methods. At application assembly time, these sets of users, or
security roles, are not tied to any real users or groups of users. Instead, they are
placeholders which are later mapped to real users and groups at application
deployment time, during a process called security role mapping.
 Chapter 3. J2EE application security 23

http://java.sun.com/j2ee/docs.html

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 3-2 Security Roles

This two-phase security administration approach allows for a great deal of
flexibility and portability. Deployers of an application have full control over how
their local users and groups are mapped to the application’s security roles, and
over what authorization and authentication mechanisms are used to determine
role membership.

At deployment time, security roles can be mapped to users, groups of users, or
Special Subjects. There are two special subjects in WebSphere Version 5:

� All Authenticated Users

� Everyone

3.3 J2EE Container Based Security
J2EE Containers are responsible for enforcing access control on component
objects and methods. Containers provide two types of security:

� Declarative Security

Web Component Resources

JSPs

Servlets

Static
Content

EJB Methods

Consultant

Manager

Accountant

Clerk

Security Roles
Principals and Groups

Fred

Mary

Department XYZ

Security Role
Mapping
24 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
� Programatic Security

3.3.1 Declarative Security
Declarative security is the means by which an application’s security policies can
be expressed externally to the application code. At application assembly time,
security policies are defined in an application’s deployment descriptor. A
deployment descriptor is an XML file which includes a representation of an
application’s security requirements, including the application’s security roles,
access control, and authentication requirements.

When using declarative security, application developers are free to write
component methods that are completely unaware of security. By making
changes to the deployment descriptor, an application’s security environment can
be radically changed without requiring any changes in application code.

3.3.2 Programatic Security
Programatic security is used when an application must be “security aware”. For
instance, a method might need to know the identity of the caller for logging
purposes, or it might perform additional actions based on the caller’s role. The
J2EE Specification provides an API which includes methods for determining both
the caller’s identity and the caller’s role.

The EJB methods are:

� isCallerInRole

� getCallerPrincipal

The HttpServlet methods are:

� isUserInRole

� getUserPrincipal

The use of these methods will be discussed in Chapter 8, “Programmatic
security” on page 179.
 Chapter 3. J2EE application security 25

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
3.4 Application Deployment Descriptor

There are two deployment descriptor files used for security role mapping:

Table 3-1 Role mappings in deployment descriptors

In the application.xml file, all security roles used in the application must be
named, with an optional description. The following example shows the XML
elements required to define six security roles: manager, consultant, clerk,
accountant, allauthenticated, and everyone:

Example 3-1 Security Role Definitons in application.xml

<security-role id="SecurityRole_1">
 <description>ITSOBank manager</description>
 <role-name>manager</role-name>
<security-role>
<security-role id="SecurityRole_2">
 <description>ITSOBank consultant</description>
 <role-name>consultant</role-name>
</security-role>
<security-role id="SecurityRole_3">
 <description>ITSOBank clerk</description>
 <role-name>clerk</role-name>
</security-role>
<security-role id="SecurityRole_4">
 <description>ITSOBank accountant</description>
 <role-name>accountant</role-name>
</security-role>
<security-role id="SecurityRole_5">
 <description>All authenticated users</description>
 <role-name>allauthenticated</role-name>
</security-role>

Note: This section contains information about deployment descriptor
elements which pertain to all J2EE components. Descriptions and examples
of the deployment descriptor elements which pertain to specific J2EE
Components can be found in Chapter 4, “Securing Web components” on
page 37, and in Chapter 5, “Securing EJBs” on page 73.

File Name Purpose Mandatory?

application.xml Security Roles Defined yes

ibm-application-bnd.xmi Security Roles Mapped No. Security Roles can be
mapped during or after
installation
26 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
<security-role id="SecurityRole_6">
 <description></description>
 <role-name>everyone</role-name>
</security-role>

In the ibm-application-bnd.xmi file, security roles are mapped to users or groups
in the User Registry. The next example shows how the security roles defined
above would be mapped in the following way:

Table 3-2 Role mappings

The following example is a code snippet from the ibm-application-bnd.xml file,
that holds the binding information for the J2EE roles.

Example 3-2 Security Role Mappings in the ibm-application-bnd.xmi file

<authorizationTable xmi:id="AuthorizationTable_1">
 <authorizations xmi:id="RoleAssignment_1">
 <role href="META-INF/application.xml#SecurityRole_1"/>
 <groups xmi:id="Group_1" name="managergrp"/>
 </authorizations>
 <authorizations xmi:id="RoleAssignment_2">
 <role href="META-INF/application.xml#SecurityRole_2"/>
 <groups xmi:id="Group_2" name="consultantgrp"/>
 </authorizations>
 <authorizations xmi:id="RoleAssignment_3">
 <role href="META-INF/application.xml#SecurityRole_3"/>
 <groups xmi:id="Group_3" name="clerkgrp"/>
 </authorizations>
 <authorizations xmi:id="RoleAssignment_4">
 <role href="META-INF/application.xml#SecurityRole_4"/>
 <groups xmi:id="Group_4" name="accountantgrp"/>
 </authorizations>
 <authorizations xmi:id="RoleAssignment_5">
 <specialSubjects xmi:type="applicationbnd:AllAuthenticatedUsers"
xmi:id="AllAuthenticatedUsers_1" name="AllAuthenticatedUsers"/>

Security Role Mapped to

manager managergrp

consultant consultantgrp

clerk clerkgrp

accountant accountantgrp

allauthenticated All Authenticated Users (special subject)

everyone Everyone (special subject)
 Chapter 3. J2EE application security 27

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
 <role href="META-INF/application.xml#SecurityRole_5"/>
 </authorizations>
 <authorizations xmi:id="RoleAssignment_6">
 <specialSubjects xmi:type="applicationbnd:Everyone" xmi:id="Everyone_1"
name="Everyone"/>
 <role href="META-INF/application.xml#SecurityRole_6"/>
 </authorizations>
</authorizationTable>

3.5 J2EE Application Security Configuration
There are two aspects of application security administration which apply to all
secured J2EE application components: Defining security roles (performed at
application assembly time), and Security role mapping (performed at deployment
time). Additional application security administration tasks which apply to specific
J2EE components will be discussed in later chapters.

Defining security roles can be performed using either of two WebSphere tools:

� Application Assembly Tool

� WebSphere Studio Application Developer

Security role mapping can be performed using either of the above tools, or can
be performed using the WebSphere Administrative Console as part of application
installation.

The following sections describe in detail how security roles are defined and
mapped using each of these tools.

Defining Security Roles in the Application Assembly Tool
This section will show how to define J2EE roles on the application level. Normally
roles are defined in the individual modules and then collected automatically into
the application descriptor.

It is still useful to define security roles for the application, when the application
design and assembly follows the top-down design line or multiple assemblers are
putting together the application and there is a lead assembler who conducts the
assembly process. Security roles can be defined for the application and then can
be used on the module level, in this case the application will not end up using
different role names for the same role. Actually in the WebSphere Application
Assembly Tool you can copy and paste roles back and forth between the
application and its modules without creating them one-by-one.
28 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
The next steps will describe how to create the J2EE security roles for the
application using the Application Assembly Tool.

1. Open the ear file, in the Application Assembly Tool.

2. Right-click the Security Roles item.

3. Select New from the pop-up menu.

4. A new window appears with the role details, fill out the fields according to the
following screen capture.

Figure 3-3 New J2EE role for the application

5. In case you want to do the role mapping you can switch to the Bindings tab
and assign users, groups or special subjects to the role. It is not
recommended to do the role mapping in application development or assembly
time. Special subjects can be mapped to J2EE roles, they are static subject,
they will not change on any platform or with any type of user registry.

6. Click OK to finish the form.

7. Create all the J2EE roles for your application repeating the steps above.

8. Save the .ear file.

Security Role Mapping in the Application Assembly Tool
After a security role has been created in an EJB or Web module, the new security
role will appear in the list of application-level security roles which can be seen by
clicking on the application’s Security Roles as shown in Figure 3-4.
 Chapter 3. J2EE application security 29

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 3-4 Application-level Security Roles

In the Application Assembly Tool, security role mappings are made in the
Bindings tab in the application security roles view. To map the Managers security
role to the Managergrp group, do the following:

1. Open the application-level Security Roles view (see Figure 3-4), and click
the Bindings tab.

2. The Bindings tab contains fields for adding groups, users, and/or special
subjects to a security role. Click the Add... button below the Groups heading
to bring up the Add Groups dialog.

3. Enter the name of the real group, Managergrp and click OK.

4. The group mapping will now appear in the list of groups mapped to the
manager security role.

Note: As security roles are added to EJB or Web modules, these new roles
will appear in the list of application security roles, but they will not appear in
other modules. This behavior is different from that in WebSphere Application
Server Version 4. In Version 5, a module’s security roles definitions are
independent from other modules’ definitions.
30 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
Defining Security Roles in the WebSphere Studio
The method for adding security roles in the WebSphere Studio Application
Developer differs depending on whether security roles are being added to the
Web Module or the EJB module. See Chapter 4, “Securing Web components” on
page 37, or Chapter 5, “Securing EJBs” on page 73 for details and examples.

Security Role Mapping in the WebSphere Studio
In the WebSphere Studio Application Developer,security role mapping is done as
follows:

1. From the Resource Perspective, navigate to the application’s deployment
descriptor file, application.xml, and double-click this file.

2. Switch to the Security tab, and you should see a window similar to that in
Figure 3-5.

3. Click the Gather... button to import all security roles that have been defined in
EJB and Web modules into the list of security roles in the deployment
descriptor.

4. Select the security role you wish to map, and check either one of the special
subjects, Everyone or All authenticated users, or check Users/Groups to
enter a user or group.

5. If entering a user or group, click the appropriate Add... button and enter the
user or group name.

Figure 3-5 Security Role Mapping using the WebSphere Studio Application Developer

Security Role Mapping in the Administrative Console
Security roles mapped can be performed from the WebSphere Administrative
console during application installation, or at any time once the applcation has
been installed.
 Chapter 3. J2EE application security 31

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
When installing an application using the WebSphere Administrative Console, one
of the installation steps is to verify or define security role mapping. If security role
mapping has been previously defined in the application’s deployment descriptor,
the console will display that mapping and allow it to be modified.

After an application has been installed, the security role mapping console can be
accessed by:

1. Click Applications -> Manager Applications.

2. Click the name of the application you wish to modify.

3. Under Additional Properties, click Map Security Roles to Users/Groups.

The Security Role mapping console appears as shown in Figure 3-6 on page 33.
In this example, the manager role is mapped to managergrp, the clerk,
consultant, accountant roles are also mapped to the according groups; the
mdbuser role is mapped to a user: mdbuser; allauthenticated role is mapped to
the All Authenticated special subject; and the everyone role is mapped the
Everyone special subject.

Note: If no security roles are defined in the application deployment desciptor,
this stop is omitted from the application installation steps.

Note: Assign the special subjects, All Authenticated and Everyone, as the last
settings before you click Next, then you will not lose these settings when you
lookup users or groups.
32 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
Figure 3-6 Security Role mapping in the WebSphere Administrative Console

To map the manager role to the group managergrp in the LDAP user registry, do
the following:

1. Check the box next to the manager role and click Lookup groups.

2. Enter *managergrp* into the search string field and click Search.

3. Select the group you wish to add to the role in the left-hand column, and click
the right-arrow button “>>”. The group will appear in the right-hand column as
shown below.

On the following screen capture, Figure 3-7, the application server is
configured to use the LDAP user registry.

Note: This example assumes that the user registry currently in use contains a
group called: managergrp.
 Chapter 3. J2EE application security 33

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 3-7 Searching for the manager group

4. Click OK to accept the changes and close the group lookup window

5. Click OK to accept and close the Security role mapping window.

6. Save the WebSphere configuration to make the changes effective.

3.6 Modify applications
This section discusses two simple scenarios:

� Modifying the security role mapping for an enterprise application after
deployment.

� Redeploying a secured application.

Modifying the security role mapping
There are certain situations when the role mapping needs to be changed after
deployment or cannot be performed during deployment. WebSphere Application
Server V5 lets the administrator to perform the sercurity role mapping on a
deployed application using the Administrative Console.
34 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chJ2EESec.fm
If you want to edit the security role mapping for an application open the
Administrative Console, and navigate to the Applications -> Enterprise
Applications. Select the application, for example: ITSOBank, to get to the
application details page. Select the Map security roles to users/groups link,
which will bring up the same mapping page what you see during deployment.

You can do the security role mapping or you can change the actual mapping.
After you are done with it, you have to restart only the enterprise application. The
application will pick up the new mappings and will run with the new settings.

Redeploying an application
If you have a deployed and working enterprise application and you have to do
some minor changes on the code or the application. This would be a case in a
test environment or an application on a staging server. Redeploying the whole
application every time you do some change is time consuming and unnecessary.

There is a fastpath for modifying and redeploying an application without loosing
the deployment information. Here is how to do it:

1. Start the Administrative Console.

2. Select the enterprise application under Applications -> Enterprise
Applications, then click Export.

3. Save the deployed application in a directory of your choice.

4. You can either modify the application using the Application Assembly Tool, or
import it into WebSphere Studio and do the modifications there.

5. Once you are done with the modifications, go and redeploy the application in
your WebSphere Application Server. During the deployment you will not have
to do any new binding or mapping, unless you have changed something
related to mapping and binding, just go to the last step, hit Finish and you are
done.
 Chapter 3. J2EE application security 35

6573chJ2EESec.fm Draft Document for Review November 6, 2002 2:37 pm
36 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
Chapter 4. Securing Web components

This chapter will discuss the security settings for Web components of the Web
applications.

Web components such as static HTML pages, JSPs and servlets can be secured
either by the HTTP server or by WebSphere.

In Section 4.1, “Static components” on page 38 we will discuss how to use the
IBM HTTP Server mechanisms and settings to provide authentication and
authorization for static pages.

In Section 4.2, “Web module security” on page 45 and following sections we will
show how to secure static components belonging to WebSphere Application
Server. We will demonstrate WebSphere Assembly Tool that comes with
WebSphere.

4

© Copyright IBM Corp. 2002 37

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
4.1 Static components
WebSphere Application Server can only secure components that it owns. Any
static pages that are served from the Web server can not be protected by
WebSphere tools. They will require to use Web server related security
mechanisms and will be transparent to WebSphere.

Most Web servers are able to secure the files that they serve. For example,
IBMHTTP Server can protect its own resources, using:

� HTTP basic authentication uses user identity in the network or the user ID
and password the user submits. The authentication can also be made based
on combination of these elements.

� HTTP digest Authentication uses MD5 hash function to hash passwords and
other data. Main idea of digest authentication is that the Web server does not
store the users password in its authentication files but stores hashed
(encoded) combination of strings that contain user ID, password and the
authentication realm name.

� Digital certificate authentication using SSL uses SSL certificates to implement
transport layer security for the TCP/IP protocol.

In Section 4.1.1, “Authentication with the Web server” on page 38, we provide an
example of how to configure IBM HTTP Server to secure static content with
HTTP basic authentication when user registry is stored in LDAP directory. In
Section 4.1.2, “Authorization with the Web servera” on page 43, we explain how
access to these static content can be managed using .htaccess configuration file.

Describing all the possible options for managing security in IBM HTTP Server is
not in scope of this book. For detailed information see the product documentation
for appropriate release.

External products may also be used to provide end-to-end security infrastructure.
For information on how Tivoli Access Manage fits into this scenario see
Chapter 12, “Tivoli Access Manager” on page 367.

4.1.1 Authentication with the Web server
It is possible to configure HTTP basic authentication for IBM HTTP Server (IHS)
using the following user registries:

� Files: group names, user names and encrypted passwords are stored in files.

� Databases DBM and DB type database files are supported.
38 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
� LDAP directories: users and groups are defined in an LDAP server, such as
IBM SecureWay Directory Server. This can be the same LDAP server that
WebSphere uses for its user registry.

In this section will present simple scenario of how to implement basic HTTP
authentication for the Web server when user registry is stored in LDAP directory.

To test the scenario we have used the following products:

� IBM HTTP Server, version 1.3.24, comes with WebSphere Application Server
V5.0

� IBM Secure Way Directory Server, Version 3.2.2, comes with Tivoli Access
Manager 3.9

� IBM DB2 v7.2 FP5

All products have been installed on a single server. In a case when LDAP server
and database server are on a different machines client access software for DB2
and LDAP server will be necessary. The LDAP client software can be
downloaded for from
http://www-4.ibm.com/software/network/directory/downloads.

We will enable security for all the static Web components in the
C:\IBMHttpServer\htdocs\en_us directory.

The following instructions assume that all the software is installed and you
already have an LDAP server populated with users. See Section 10.13.1, “IBM
SecureWay Directory Server V3.2.2” on page 315 for details on how to do this.

The following steps will show you how to enable basic authentication for IBM
HTTP Server.

Prepare necessary configuration files
The following steps will show you which files need to be defined for the Web
server; and also how to use those files.

1. ldap.prop is an LDAP configuration file for the Web server. It is stored in the
conf directory of the server (in our case it is c:\IBMHttpServer\conf). Sample
LDAP configuration file with explanation of each directive is supplied with
Web server software. For basic authentication the following entries are
included.

Example 4-1 LDAP configuration for IBM HTTP Server

ldap.realm=LDAP Realm
ldap.URL=ldap://websrv01/o=itso
ldap.transport=TCP
ldap.application.authType=Basic
 Chapter 4. Securing Web components 39

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
ldap.application.DN=cn=wasadmin,o=itso
ldap.application.password.stashFile=ldap.sth
ldap.user.authType=Basic
ldap.group.name.filter=(&(cn=%v1)(|(objectclass=groupofnames)(objectclass=group
ofuniquenames)))
ldap.group.memberAttributes=member uniquemember
ldap.idleConnection.timeout=600
ldap.waitToRetryConnection.interval=300
ldap.search.timeout=10
ldap.cache.timeout=600

where,

– ldap.URL is of the form ldap://<hostName>/<BaseDN>

– ldap.application.DN is the DN by which the Web server authenticates
itself to the LDAP Server.

2. ldap.sth is a stash file containing encrypted password for the Web server to
authenticate with LDAP. You need to decide with which user name and
password Web server will connect to LDAP. To create the stash file enter at
the command prompt:

C:\IBMHTTPServer\ldapstash <password> C:\Program
Files\IBMHTTPServer\ldap.sth

Configure your Web Server to use LDAP for authentication
The following steps will describe how to configure the IBM HTTP Server to use
LDAP for authentication.

1. Add the LDAP module to the Web server configuration. From a Web browser,
go to the IHS server configuration. Go to http://localhost then select
Configure server. When prompted, enter your Web server administration ID
and password.

2. At the IBM Administration Server Interface select Basic Settings -> Module
Sequence. Make sure that the Scope is set to <GLOBAL>. Click the ADD
button.

Note: If you have not set up an administration ID, then from a command
prompt, enter:

C:\Program Files\IBMHTTPServer\htpasswd -c C:\Program Files\IBM
HTTPServer\conf\admin.passwd <adminName>

When prompted, enter your chosen password and verify it. Stop and
restart both Web server services to make the changes effective.
40 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
3. From the Select module to add drop-down list select ibm_ldap
(IBMModuleLDAP.dll) and click Apply button.

4. Click Submit button. You should see ibm_ldap module added in the
Prioritezed list of active server modules window, as in the picture below.

Figure 4-1 Adding LDAP server module into HTTP server configuration

5. Next, set the scope and type of the authentication. As mentioned before all
documents that are under htdocs\en_us will be secured. From the Web server
administration console, select Access Permissions -> General Access.
Click the Scope button and select <Directory
C:\IBMHttpServer\htdocs\en_us>.

Figure 4-2 Defining authentication scope for LDAP basic authentication

6. Now select LDAP as the authentication type and enter the name of the
configuration file you created in step 1 above,
 Chapter 4. Securing Web components 41

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
c:/IBMHttpServer/conf/ldap.prop. Enter an authentication realm name; we
used LDAP Realm.

Figure 4-3 Finalizing LDAP Configuration

7. Click Submit.

8. Close your browser from which you were administering the server. When you
start your browser again and go to http://<hostname>, which in our case was
http://locahost, you should be prompted with HTTP basic authentication
window. Enter valid user name and password to be allowed to view the index
page.

Note: Configuration changes you have made through the Web Server
Administration Interface added the following lines in the httpd.conf file in the
section <Directory "C:/IBMHttpServer/htdocs/en_US">:

ConfigFile "c:/ibmhttpserver/conf/ldap.prop"
AuthName LDAP Realm
AuthType basic
Require valid-user
42 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
4.1.2 Authorization with the Web servera
By default the Web server configuration and access control directives are
handled by Web server administrator by modifying the httpd.conf file. The
appropriate section of the file enforces these settings.

Example 4-2 Enforcing access control management by settings in httpd.conf file

<Directory "C:/IBMHttpServer/htdocs/en_US">
AllowOverride None
Options None

</Directory>

Directive AllowOverride None tells the Web Server not to look for any other
access control definition files within given directory scope. In a default httpd.conf
configuration file shipped with IBM HTTP Server this directive is included in every
<Directory> container.

However in many cases this is a limiting factor and may require administrator’s
intervention in case of simple changes to the file. Second, you might want to give
to an individual user or group of people the possibility to configure their own area
of the Web site. This is not possible with the default httpd.conf settings.

If there is a need to set an access control on per-directory basis, overriding the
settings in httpd.conf file, IBM HTTP Server uses .htaccess files for every
directory over which the user wants to have such control.

The use of .htaccess files adds possibility to dynamically configure security
components for static portion of the Web site. Changes done to any .htaccess file
do not require restart of the Web server or any other administrator’s intervention
since the file is read every time every time a resource is fetched from that
directory.

A .htaccess file placed in one directory applies to all its subdirectories. In such a
case it is equivalent to a <Directory> section in httpd.conf file. If there is more
than one access files in a directory tree, the directives set in a file for
subdirectory take precedence over the directives in the parent directory.

There is a number of directives that can overridden. When dealing with security
we are interested in AuthConfig category of directives that will allow the use of
authorization directives such as AuthUserFile, AuthGroupFile,
AuthDBMGroupFile and others. To override this category, change the directive in
httpd.conf file to:

Example 4-3 Security configuration in httpd.conf

<Directory "C:/IBMHttpServer/htdocs/en_US">
 Chapter 4. Securing Web components 43

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
AllowOverride AuthConfig
Options None

</Directory>

For more information on how to use .htaccess see the Apache tutorial at
http://apache-server.com/tutorials/ATusing-htaccess.html

The drawback of using .htaccess files is a negative impact on a performance of
the Web server. As mentioned before, when the use of .htaccess files is enabled,
for any resource requested from one directory, Web server also checks all parent
directories for .htaccess files and tries to merge the configuration in order to
decide whether the user is entitled to read the resource or not.

The other problem with the .htaccess files is the system management. It is
difficult to maintain them especially in a centralized security infrastructure.

4.1.3 Other Web server security aspects
This book is not decicated fully to discuss Web server security, and only sample
scenario has been chosen to show how to secure Web server uisng LDAP user
registry. This LDAP server can be shared with applicaion server in order to
manage user’s authorisation to specific Web application resources. This is
discussed in the following chapters.

However when writing about Web server security it not necessary to mention
other possible means that can be used to secure either Web server daemon
process or user access to Web server resources. Below is a short list of what you
can take into account for securing the Web server when designing the system to
run secure Web applications:

� Runnig daemon as root: when the HTTPD daemon starts it uses root account.
Then it initilizes a number of threads that actually serves end-user requests.
These threads are managed by the root's controller thread and are not
responsible for administration and control procedures. The StartServer
directive of the httpd.conf file sets the users and groups that own running Web
server process. You have to set these directives to the users and groups that
you define to run a Web server. Never run Web server as root user.

� Digest authetiction: basic authentication does not scure user passwords that
are passed from Web browser to the server in plain text. In order to encypt or
encode password some servers have additional modules that can implement
MD5 encoding. Both your server and your browser should support MD5
digest authentication. In digest authentication password is not send acrooss
the network. On a client side, the Web browser creates a MD5 encoded string
using user password and AuthRealm. Web server creates its own string
44 IBM WebSphere V5.0 Security Handbook

http://apache-server.com/tutorials/ATusing-htaccess.html

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
based on the information stored in httpd.conf file and compares it with the
infomrmation sent by the client's browser.

� Kerberos authetication: Kerberos is third party authetication system which
allows secure authentication and communication of clients and servers over
the network. It uses DES algoritm for encryption. Refer to your Web server
documentation for required modules in order to run Kerberos system.

� Chroot: many operating system offers chroot command that tells the
application to treat a given directory as it would have been a root directory.
This allows to hide the file system that is above that directory from every
process of the executing application. One drawback of using chroot command
is that all the executable code and modules used by the application should be
placed within the directory that is visible to the application.

There is many other possible security option that may be used in your solution.
Everything is higly dependent on the selected architecture and application
requirements.

4.2 Web module security
In a J2EE application architecture Web module of the enterprise application is
comprised of one or more related servlets, Java Server Pages (JSP files), XML
and HTML files that can be managed as a one integrated unit. The files in Web
module are related together in a sense that they perform a common business
logic function.

The Web modules of the enterprise application running within the Web container
of the application server. Web container, as a run time environment for the Web
application, is responsible for handling requests for servlets, JSP files and other
components running at the server-side. The Web container creates servlet
instances, loads and unloads servlets, creates and manages requests and
response objects and performs other servlet management tasks. The Web
server plug-in provided by the WebSphere Application server is responsible to
redirect the client’s request to the application server.

This section describes the process and tools of WebSphere Application Server to
configure security for the Web module of enterprise application.

4.2.1 Configuring Web module security
One of the tools used to configure security settings for a Web module is the
Application Assembly Tool (AAT).
 Chapter 4. Securing Web components 45

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
Authentication method
The authentication method defines how the user will be authenticated by the
Web application. Before any authorization constraint will be applied the user will
need to pass authentication process using configured mechanism. The possible
options are:

� Basic authentication

The user name and password are encoded by the browser and included in
the HTTP request. This mechanism does not provide server authentication.
The Web server sends to the client a request containing realm name in which
the user will be authenticated.

� Client certificate authentication

The client certificate is transported across an SSL secured connection to the
Web server. The Web server then extracts the credentials from the certificate
and forwards them to WebSphere along with the request.

� Form-based authentication

This method allows the developer to control the authentication process. By
default, the values that the end user supplies in the form are transmitted in
clear text as parameter values in the HTTP request. To secure the user
information during transmission, the connection should be encrypted.

The Application Assembly Tool has an option for digest authentication, but this
option is not supported by WebSphere at this moment. If a security constraint
has been set but no authentication method for a Web module has been
configured, the default is to use basic authentication.

To set up an authentication method for Web application:

1. Load your Web application module into Application Assembly Tool in our
example: itsobank.ear.

2. Click itsobank -> Web Modules to expand the tree.

3. Right-click the itsobankWeb Module and from the pop-up menu select
Properties.

4. Select the Advanced tab.

5. Check the Login Configuration check-box, select appropriate authentication
method and provide the Realm name that will be used by the Web server
during the authentication.

6. Click OK to approve the changes.
46 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
Figure 4-4 Login Method Configuration for itsobank application

Security roles
WebSphere implements the roles based security from the J2EE specification.
Security role is a logical grouping of princpals. Access to a specific part of the
application is granted based on the role, which is then mapped during
development or deployment phase to specific user registry entries. It gives a
certain level of transparency for the application development process. The
developer needs not to bother about the different user privilegies that can be
defined for the application.

The security roles for the ITSOBank application were defined in Appendix A,
“Sample application” on page 441. As noted there, security roles defined for a
Web module are visible at the Enterprise application level. The following steps
will describe how to define a role for the Web module with the Application
Assembly Tool.

1. Open the itsobank.ear file in the Application Assembly Tool.

2. Right-click the itsobank -> Web Modules -> itsobankWeb -> Security
Roles item.

3. Select New from the pop-up menu.
 Chapter 4. Securing Web components 47

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
4. Fill out the fields according to the following screen capture.

Figure 4-5 New role for the Web module

5. Click OK.

6. Repeat the steps above to create all the necessary roles for the Web module.

7. Save the .ear file.

Defining security constraints
Providing an authentication mechanism for global application security does not
provide the mechnisms to control access to the Web resources.

Security constraints declare how the content of the application is protected. For a
given security constraint three things should be defined:

� One or more Web resources that define actual application components that
are to be protected by the security constraint. Web resource is a set of URL
patterns and HTTP methods in those resources. All requests that that will be
matced with the pattern defined for a given Web resource will be subject to a
security constraint.

� Authorization constraint that defines roles which will be provided access to
the Web resources existing within security constraint. An authorization
constraint is a set of roles that the user must be granted in order to have
access to a Web resource collection existing wiithin a security constraint. In
order to have access to the Web resource user shoud be granted at least one
of the roles that are defined within the Authorization constraint.

� Used Data Constraint idicates the transport layer setting for client/server
communication in order to satisfy given security constraint. This settings
should guarenatee either content integrity (preventing tampering in transit) or
confidentiality (preventing reading data during transfer). User data constraint
may override standard security settings for the application. For example
access to some functions of the application may require just basic login using
user ID and password, and in the same time some functions may require
48 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
higher level of protection. User Data Constraint allows an applicaiton deployer
to introduce such protection.

If global security is enabled, and a security constraint is set for a particular
resource, then the resource is secured.

4.3 Securing Web components
This chapter presents simple scenarios of how to secure different Web
components. We assume that that the roles are defined for the application as in
the ITSOBank sample application.

4.3.1 Static content
Static resources of the enterprise application can be secured only if they are
served by WebSphere. WebSphere can not manage access to the static content
that resides on Web server. All the static content that needs to be protected by
WebSphere Application Server must be packaged into the Web module (.war,
Web Archive file). Static HTML pages can be served by the servlet that
implements file serving behaviour.

Following instructions shows how to set up security constraint to protect static
content for the Web application module using the Application Assembly Tool.
This section will only provide information for the the Application Assembly Tool,
since securing static contents within WebSphere does not differ from securing
dynamic content in WebSphere, the book will provide information for WebSphere
studio in the next section where dynamic components will be secured.

1. Start Application Assembly Tool and load the ITSOBank sample enterprise
application archive file (itsobank.ear).

2. Expand itsobank -> Web Modules -> itsobankWeb and select Security
Constraints.

3. Right-click Security Constraints and select New, A dialog window New
Security Constraint will be opened.

4. Enter the security constraint name Constraints for bank access. Click Add
next to the Roles area. You will be presented with with a dialog box listing the
security roles that are defined for your application.

5. Select Everyone and click OK. You should be presented with the window like
the one below.
 Chapter 4. Securing Web components 49

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 4-6 Completed New Security Constraint Window

Note: User Data Constraint of this window allows you to chose a Transport
guarantee, which defines how the communication between the client and the
server is to be protected. There are three options to choose from:

� None

No constraint indicates that the application does not require any transport
guarantee.

� Integral

This ensures that data cannot be changed in transit. In practice, this
means that a request must be transmitted over an SSL encrypted channel.

� Confidential

This ensures that data cannot be viewed in transit. In practice, this means
that the request must be transmitted over an SSL encrypted channel. See
“Configuring the Web Server to support HTTPS” on page 239 for more
information on configuring SSL.
50 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
4.3.2 Servlets, JSPs
WebSphere Application Server can secure dynamic resources such as servlets
using role based declarative security mechanisms. This means that logical
application security structure is defined independently from the application itself.
The logical security structure is stored in deployment descriptors of the
application.

For servlets WebSphere Application Server allows to protect the resources on
the method level. For example, the POST method of a servlet can be part of a
different security constraint than the GET method. The full list of predefined
methods that can be secured is:

� GET

� POST

� PUT

� DELETE

� HEAD

� OPTION

� TRACE

Using method level security constraints for servlets you may want to separate
dynamic content that all the users can view from the administrative functions that
only privileged users will be allowed to access. In WebSphere Application Server
this is done using different security constraints for the different servlet methods.

Configuring Security Constraints with the Application
Assembly Tool

The following steps will show, how to define security constraints with the
Application Assembly Tool.

1. Load the itsobank.ear application file into the Application Assembly Tool.

2. Expand the itsobank -> Web Modules -> itsobankWeb and select Security
Constraints. Right click Security Constraint and select New. You will be
presented with the New Security Constraint window.

3. In the Authorization Constraints section panel, next to Roles, click Add. You
will be presented with a dialog box listing all the security roles that are defined
for your Web module of ITSOBank application. Select the clerk and the
Manager role and click OK.

4. Click OK to save security constraint. You should see your new security
constraint listed in a Constraints panel.
 Chapter 4. Securing Web components 51

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
5. In the left-hand pane, expand the new constraint and select Web Resource
Collections. Right-click Web Resource Collections and select New. You
will be presented with the New Web Resource Collection entry window.

6. Enter the Web Resource Name: Customer transfer.

7. Next to HTTP Methods click Add. You will be presented with the Add HTTP
methods dialog box.

8. Add the GET and POST HTTP methods to the list.

9. Next to URLs , click Add. You will be presented with the Add URLs entry
box.

10.Add the following URL patterns:

/transfer/customertransfer.html
/transfer/transferresults.jsp
/serlvets/Transfer

Click OK.

Final result of the resource collection for the security constraint definition is
presented on the picture below.

Figure 4-7 Security constraints resource collection definition

Securing components using WebSphere Studio
The approach to define security constraints in WebSphere Studio Application
Developer is very similar to the one described above. In order to peform the
same task for Transfer servlet security constraint, follow the steps:
52 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
1. Open or select the J2EE perspective, and switch to the J2EE Hierarchy view.

2. Open the Web Modules folder, then double-click the itsobankWeb item. This
will open the editor with the Web deployment descriptor. Switch to the
Security tab.

3. Define a new security constraint, select Security Constraints tab at the top
of the editor, then click the Add button under the Security Constraints
window list-box; a new item appears in the box, and one under the Web
Resource collections section.

4. Select the (New Web Resource Collection) in a Web Resource
Collections section and click Edit button. This should open Web Resource
Collection dialog box.

5. In the Name field enter customer transfer.

6. In the HTTP Methods window check the boxes for the POST and GET
methods.

7. In URL patterns window type the following entries:

/transfer/customertransfer.html
/transfer/transferresults.jsp
/serlvets/Transfer

Click OK, this should update the entry in Web Resource Collection section.

8. In the Athorized Roles section click the Edit button, the Select Auth
Constraints dialog box should be opened.

9. Check the box for manager and clerk role and click the OK button.
 Chapter 4. Securing Web components 53

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 4-8 Security constraints editor in Studio

4.4 Security role reference
During the development phase of the application the actual role names for
security constraints may not be known to the groups of developers. From the
other hand the actual role names in a deployed runtime environement may not
be known until the Web application and EJB modules are ready and assembled
into the .ear file. Therefore the role names used during development are
considered to be “logical roles”. These logical roles are then mapped by the
application deployer into the actual runtime roles during the application assembly
and deployment phase.

Security role references provide a level of indirection to isolate roles used during
development and actual runtime roles. They link the names of the roles used oin
the module to the corresponding name of the role in the encompassing
application.
54 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
The definition of the "logical" roles and the mapping to the actual runtime
environment roles are specified in the <security-role-ref> element of both the
Web application and the EJB jar file deployment descriptors, web.xml and
ejb-jar.xml respectively. The Application Assembly Tool (AAT) and WebSphere
Studio Application Developer can be used to both define the role-name and map
them to the actual runtime roles in the environment with the role-link element.

Security Role References with Application Assembly Tool
Example below provides instructions on how to define role references using the
Application Assembly Tool.

1. Start the Application Assembly Tool, open the itsobank.ear archive.

2. On the right hand side expand the tree: itsobank -> Web modules ->
itsobankWeb -> Web components -> TransferServlet -> Security Role
References.

3. Right-click the Security Reference node, then select New.

4. A window pops up with the settings. A Name specifies the name of a security
role reference used in the application code; type in RoleRef.

5. Link specifies the name of a security role defined in the encompassing
application, in our example it is a application Web module; select manager
here.

6. You can write a description for the entry if you need to, actually this might be a
good place to put a description for future references.

7. Click OK.
 Chapter 4. Securing Web components 55

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 4-9 Defining Security role references in Applicaiton Assembly Tool

Security Role References with WebSphere Studio
The following steps will show, how to define Security Role references for the Web
module in WebSphere Studio Application Developer.

1. Open to the Web perspective in Studio, select the J2EE Navigator

2. Expand itsobankWeb tree and double click Web deployment descriptor.
This will open the editor with the web.xml file.

3. Switch to the Servlets tab.

4. Select TransferServlet in a Servlets and JSP section.

5. In the Authorized Roles section click Edit. This will open Select Authorized
Roles dialog box.

6. Select the role that you want to add, for example: manager and clerk.

This performs the reference a bit differently than the Application Assembly
Tool; in this case, the name in the source code and the link to the application
roles will automatically have the same reference name; in our example the
reference to manager is manager, the reference to clerk is clerk. You can
check the entry in the web.xml source by searching for the following tag:
<security-role-ref>. This is not the case in Application Assembly tool, where
actual reference name and link name can be different.
56 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
7. Save and close the web.xml file.

Figure 4-10 Defining security roles references in Studio

4.5 Login facilities
J2EE specification defines the following types of types of authentication
methods.

� Basic authentication

� Digest authentication

� Form based authetication

� Client Certificate based authetication

For a brief description of each type of authentication see Chapter 4.2.1,
“Configuring Web module security” on page 45.

Note: Roles visibility within .ear file

In the notion of roles WebSphere 5 differs from WebSphere 4 in the subject of
roles visibility. Each module can have independent logical roles. This means
that if we define runtime roles on the application level they do tor roll down and
are not visible in any application module. However roles defined for modules
will roll up and be visible on the application level. This wil allow to create global
references from the application down to the Web and EJB modules.
 Chapter 4. Securing Web components 57

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
For any types of authetnication methods to work, at least one security constraint
should be defined for the requested Web resources and Global Security must be
enabled for the application server.

For instructions of how to define security constraints for Web resources see
Chapter 4.2.1, “Configuring Web module security” on page 45.

For instructions of how to enable Global Security on the server please refer to
Section 10.2, “WebSphere Global Security” on page 235.

When developing WebSphere applications you can configure authentication
methods using either WebSphere Studio or Webpshere Application Assembly
Tool. This chapter presents basic scenarios of how to set up login Authetication
methods for the ITSObank application.

4.5.1 Form based login
One of the login challanges defined in J2EE specification is Form Based Login. It
enables the application developer to customize login process and present an
application specific form by making use of the Form Login Authentication
Method.

Form Login works in the following manner:

1. Unauthenticated user request a resource protected by Form Login
authentication type.

2. The application server redirects the request to the Login Form defined before
in the Web deployment descriptor.

3. On the HTML login form user enters the user ID and password and submits
the form.

4. The action triggered by form submission runs a special WebSphere
Application servlet j_security_check. Web container after receiving a
request for the j_security_check servlet dispatches the request into another
WebSphere servlet that authenticates the user.

5. If the servlet authenticates the user succesfully, originaly requested resource
is displayed.

If you select LTPA as the authentication mechanism under global security
settings and use form login in any Web applications, you must also enable Single
Sign-On (SSO). If SSO is not enabled, authentication during form login fails with
a configuration error. SSO is required because it generates an HTTP cookie that
contains information representing the identity of the user at the Web browser.
This information is needed to authorize protected resources when a form login is
used.
58 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
Form Login Configuration
The following steps shows how to configure form based login using the
Application Assembly Tool and Studio.

Using Application Assembly Tool
Detailed steps for the Application Assembly Tool:

1. After importing the itsobank.ear file into AAT expand the tree itsobank->Web
Modules and right-click the itsobankWeb Web module.

2. In a pop-up menu select Properties.

3. Switch to the Advanced tab.

4. Check the box Login Configuration.

5. Click drop-down list Authentication Method and select FORM.

6. In the Realm Name field enter ITSOBank

7. in the Login page field enter /login.html

8. in the Error page field enter /loginerror.html

9. Click OK to close Web Modules Properties window.

Using WebSphere Studio
Detailed steps for WebSphere Studio Application Developer.

1. Expand the tree itsobankWeb -> Web Content -> WEB-INF and double click
the file web.xml. A Web Deployment Descriptor should be opened in a
deployment descriptor editor window.

2. Select Pages tab then modify the Login section:

a. Write realm name, we have used ITSOBank.

b. Click the drop-down list and select FORM as the Authentication method.

c. In Login page click browse and select login.html.

d. In Error page click browse and select loginerror.html (we have used the
same page for login and error. You can define custom error.jsp page that
will present actual error code and error message).

3. Click File -> Save Deployment Descriptor.

Setting Authentication Method for the application Web module will create
<login-config> section in a Web deployment descriptor XML file. See example
below.

Example 4-4 Login-config section of the Web deployment descriptor

<login-config>
<auth-method>FORM</auth-method>
 Chapter 4. Securing Web components 59

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
<realm-name>Webbank realm</realm-name>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/loginerror.html</form-error-page>

</form-login-config>
</login-config>

Simple Form based login does not require any extra code development on the
server side. Servlet j_security_check used by WebSphere Application Server
enforces only the name of the input fields that the developer should put on the
custom Login Form.

These fields are:

� j_username should be the input field in which a user will write the user ID.

� j_password should be the input filed into which user will write the password.

The action required for the HTTP POST method is j_security_check. Simple
HTML code for custom Login Form is givent in the Example 4-5 on page 60.

Example 4-5 Sample custom login form from the ITSOBank application

<!-- -->
<form method="post" action="/itsobank/j_security_check">
<table width="80%"><tr><td width="20%" align="right">
Userid:</td><td><input size="20" type="text" name="j_username" maxlength="25">
</td></tr><tr><td align="right">
Password:</td><td><input size="20" type="password" name="j_password"
maxlength="25">
</td></tr><tr><td></td><td>
<input type="submit" name="action" value="Login"> <input type="reset"
name="reset" value="Clear">
</td></tr></table>
</form>
<!-- -->

Note: The j_security_check servlet will not work when global security is
disabled, the application server will return a page not found error.

It is also true for the ibm_security_logout servlet, which you will see later.
60 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
4.5.2 Custom login
There are situations when the login facility, using the j_security_check servlet,
provided by WebSphere does not fulfil all the requirements for the application. In
these cases developers can extend the login facility and develop an extension to
the existing code.

In the earlier versions of WebSphere Application Server, developers could use
the Custom Login facility of WebSphere; which has been deprecated since
version 4 of the WebSphere Application Server.

According to the new programming model, developers should use servlet filters
to implement pre-login or post-login processes.

The following section will give a short introduction of servlet filters then it will
provide a sample filter to do post-login processing for the application.

Using servlet filters to modify login process
Java Servlet API version 2.3 introduces a new object called filter that can
transform a request or modify a response or header information. Filters can be
chained together to act on the input and output of a specified resource or group
of resources. They do not usually create a response. The main role of filters is to
modify or adapt the response. Typical use of filters inculdes:

1. Logging information.

2. Transforming the content on the fly (image transformation, encryption, XML
transformation, compression, and so on).

3. MIME type filters (funtionaly equivalent to the old-style servlet chaining).

4. Customized authetication of Web resources.

5. Caching information.

Filter can be configured to act upon a certain request. A difference between
JSP/Servlet and filter processing is that filter can be mapped and work across
the subset (or all) of the URLs served by application.

Filters lifecycle is very similar to servlets’. Configuration of all filetrs in a given
Servlet conatainer is kept in the FilterConfig object. Each filter can access this
object in order to get the initialization parameters, a reference to the
ServletContext and to load the information necessary to perform filter processing
(for example data needed for filtering functions).

Each object that will be used as a filter should implement the Filter interface. This
interface defines three methods:

� public void init(FilterConfig filterConfig)
 Chapter 4. Securing Web components 61

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
A method called by Web container to initialize FilterConfig object for the filer
and to ensure that the filter is being instantiated.

� public void doFilter(final ServletRequest request, final
ServletResponse response, FilterChain chain)

A method called every time when the request/response pair is passed
through the filters.

� public void destroy()

A method called by the container to clear the instatnce of the filter. This
method can be used to clean up all the resources that were kept for filter
processing tasks.

When planning a scenario for filters you need to take into account the way how
filters work.

Actions performed by servlet filter maybe executed before and/or after the actual
servlet, or JavaServer Page. When thinking about login process, servlet filter
may perform some pre-login functions before sending the request to the
authentication servlet. From the other hand it may take the result of the
authentication servlet and perform additional checking for example in external
databases in order to send customized response to the client’s browser.

As mentioned in Chapter 4.5.1, “Form based login” on page 58 WebSphere
Application Server uses the special j_security_check servlet to perform
authetication when form based authentication is selected for the Web
application.

This section will present a sample filter that is assigned to j_security_check
servlet to perform additional LDAP lookup and in order to retrieve attributes for
the user who logged in.

This scenario assumes:

1. WebSphere Application Server is configured with security enabled. The type
of user registry used for that scenario does not make any difference to this
implementation, any user registry can be used with the sample, however
when other user registry is used than LDAP, make sure that each user from
the user registry of your choice exist in the LDAP directory for the additional
lookup.

2. Servlet filter will communicate with LDAP server in order to get certain user
attributes. User description in LDAP server contains employee type attribute
that will be checked by servlet filter. The value of the employeeType will be
stored as a session attribute and used by other Web components. Specify the
employeetype attribute for the application users in the LDAP directory.

3. It assumes that LDAP is configured to accept anonymous access.
62 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
4. The example implemented in this book have the users defined in both local
operating system user registry and in LDAP server. Users are registered
under the o=itso suffix.

Developing the LDAP query code
The example filter included in the application code contains the following java
files.

� LDAPAttr.java, is utilized to connect to the LDAP server and retrieve user
attributes. Parameters that are passed to the class are set up in the filter
configuration section in Web deployment descriptor and are passed to the
construcor of the class while it is created. The class implements the simpliest
way to read user attributes from LDAP server.

� PostLoginFilter.java is the actual filter code that uses the LDAPAttr to
access certain attributes in the LDAP directory. This class implements the
doFilter(request, response, filterchain) method. In this method the actual filter
action is performed, it is also the method that upstream filter calls in order to
pass the processing to the next filter in a chain. FilterChain object provides
the information about the next filter to call.

The sample doFilter method does the following:

a. Checks if Web container successfuly initialized the filter. Web container
calls init method of the filter to instantiate it.

b. Reads the init parameters of the filter that have been provided in the
<filter> section of the Web deployment descriptor.

c. Gets the user name from the HTTP request object and creates the session
attribute in the HttpSession object. This attribute is initally set to
UNDEFINED.

d. The filter lets the j_security_check to perform the actions by calling
doFilter method.

e. After returning from j_security_check, the PostLoginFilter performs an
LDAP search for the user name that was provided in the HTTP request to
the login form.

f. After succesfull search the user in LDAP directory, the employeeType
attribute is read for the user and session object is updated with the result.

Any other Web component during the session can access the object to get
the attribute.

Part of the Java code for PostLoginFilter represents the steps described
above.

Example 4-6 PostLoginFilter sample code

public void doFilter(ServletRequest request,ServletResponse response,
 Chapter 4. Securing Web components 63

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
FilterChain chain)
//.....
// Create attribute in HttpSession object and set its value to "UNDEFINED"
HttpSession session = ((HttpServletRequest) request).getSession();
session.setAttribute("userTYPE", "UNDEFINED");

//let the j_security_check to do it's work
chain.doFilter(request, response);

//.....
//perform LDAP retrieval
userLDAPAttributes = new LDAPAttr(cfg_server, cfg_port, cfg_basedn);
userLDAPAttributes.SetUser(userName, cfg_attr);

if (userLDAPAttributes.RetrieveLDAPAttributes() == 0) {
user_attr = userLDAPAttributes.GetUserAttr();
//Update session object attribute
session.setAttribute("userTYPE", user_attr);
System.out.println("Attrbute in the session object was set to: "

+ (session.getAttribute("userTYPE")).toString());
else {

filterConfig.getServletContext().log(
"Problems retrieving attributes for " + userName);

}
//.....

In the filter source code, extensive comments have been provided in order to
clearly explain the filter behavior. Please refer to the filter code in the
application for more information.

Filter configuration
We have used WebSphere Studio Application Developer in order to install and
configure the filter in the Web deplyment descriptor.

1. Open the Web deplyment descriptor in WebSphere Studio.

2. Select the Filters tab and click Add under the Filters section. The Filter Type
Selection windows should be opened.

3. From the Filter Type Selection window select the PostLogin filter class and
click OK. PostLogin filter should now appear. Details section should contain
the full name for the filter class.

4. In the URL Mappings section click ADD then write /j_security_check.

5. In the initialization section enter the following parameters:

ServerName: ldap://dirsrv01, replace with your directory server’s URL.

ServerPort: 389
64 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
BaseDN: o=itso (This is the context root where the filter will look for the user)

UserAttr: employeetype (this is the attribute that the filter will check)

Finally your Filters tab should look like the picture below.

Figure 4-11 Filter configuration window in Studio

Saving the file should update filter configuration section in the Web depolyment
descriptor, web.xml, file.

Testing the application
First of all, modify the LDAP user entries to store the employee type value. If you
are using SecureWay Directory Server start the Directory Management Tool
(DMT). Rebind the connection using authentication, and login as cn=root. Find
the manager01 user entry in the directory tree and double-click it. Change the
emplyee type to: regular employee, then click OK.
 Chapter 4. Securing Web components 65

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 4-12 LDAP user entry

Do the same modification for the other users, according to the following table.

Table 4-1 Employee type settings for users

As a next step you have to make sure that the application is using the right LDAP
settings for the filter. Actually, you will have to change them in the .ear file and
redeploy the ITSOBank application in WebSphere. In order to avoid all the
security mappings you can simply export the application from WebSphere and do
the modifications on the exported .ear file.

Username Employee type

accountant01 partner

clerk01 contractor

consultant01 regular employee
66 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
Open the ITSOBank application in the Application Assembly Tool and select the
itsobank -> Web modules -> itsobankWeb -> Filters -> PostLoginFilter ->
Initialization Parameters. Modify the filter initialization settings: BaseDN,
ServerName, ServerPort, UserAttr to reflect your runtime configuration, then
click Apply then save the .ear file. Use this latest version of the .ear file and
deploy it in WebSphere.

To test the custom login implemented in this section, open the sample ITSOBank
application, that comes with the book, in your browser at
http://<your_server>/itsobank.

Select the link on the main page which says: Modified Customer Transfer.
When you have security enabled the application returns the login page first.
Once you have logged in with the right user, you will see the employeeType
value at the bottom of the customertransfer.jsp page.

4.5.3 Form based logout
One of the IBM’s extensions to J2EE specification is the form based logout. After
logging out, the user is required to re-authenticate to have access to protected
resources again. This logout form can be on any page with caling a POST action
on the ibm_security_logout servlet. This form must exist within the same Web
application to which the user gets redirected after logging out.

Example 4-7 Sample logout form from the ITSOBank application

<form method="post" action="ibm_security_logout" name="logout">
<input type="submit" name="logout" value="Logout">
<input type="hidden" name="logoutExitPage" value="login.html">
</form>

Today’s e-business Web applications require strict and well-designed security,
providing the logout function is one of the important functions. Obviously closing
the browser and destroying the session is always an option for the user, but it is
not the most intelligent solution to finish a session with an application.

Combining the logout function with programmatic security, one can implement
step-up re-authentication, where the user can change credentials and can get
higher authority in the application.

Note: The previously introduced logout only works together with form-based
login. When the application is configured to use Basic Authentication (BA) the
credentials are stored in the client’s browser and the browser will send the
user name and password to the server together with every request. The only
way to log out is to break the session by closing the browser.
 Chapter 4. Securing Web components 67

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
4.6 Additional security guidelines
This section provides some useful information or gives some thoughts on
security considerations and issues. These short articles, paragraphs cover the
following topics:

� Security constraints for the Web module

� Struts security

� Page expiration

Security constraints for the Web module
There are multiple approaches to set authorization rules for resources. In this
case we will investigate the possibilities for Web resource protection using Web
security constraints in the Web module.

The first approach would be to map resources to roles, and define what
resources a role can access. If you design your Web security constraints to use
one constraint for every role and you have the same resource accessible by
multiple roles, the security will not work correctly because of bad design.

According to the Java Servlet 2.3 specification, exact or logest path match is
used to get the required roles for a given URL. Let’s consider the following
situation:

We have two roles defined for the application: A and B.

We have the following Web resources in the Web module:

– /helloworld/helloEurope.html

– /helloworld/helloAfrica.html

We have the following Web security constraints in the Web module:

– Constraint ‘X’: role: ‘A’ can access the resource(s): /dir/*

– Constraint ‘Y’: role: ‘B’ can access the resource(s): /dir/helloEurope.html

If user in role 'A' accesses /helloworld/helloEurope.html gets an authorization
error saying that the user is not in role of 'B', however we set that role ‘A’
should be able to access everything under /helloworld.

User in role ‘A’ can still access the /helloworld/helloAfrica.html resource, and
user in role ‘B’ can access /helloworld/helloEurope.html

As you see Constraint ‘Y’ overrules Constraint ‘X’ in the previous situation.

The other approach would be to map roles to resources, and define the
authorized roles for each resource. Obviously this is not a feasible solution since
an application probably has more resources than we want to set up one-by-one.
68 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
A solution can be, the same we applied to the ITSOBank sample application, is
to reuse the use cases for the application and follow them to define security
constraints. In this approach each constraint covers a use case, the roles are the
identified actors for the use case and the resources are the resources involved in
the use case.

For example, the ITSOBank sample application has a use case: customer
transfer. The actors that can use this use case: manager and clerk. The
resources are: transfer/customertransfer.html, servlet/Transfer,
transfer/transferresults.jsp. The listed elements can define the appropriate
resource collection for the right group of roles. Of course it is only one approach
and it might not be the best in every case.

The purpose of this section is to point out the problem with the first two
approaches and make you think about this issue.

You can also protect your resources based on URL patterns using a security
reverse proxy in your infrastructure, for example: Tivoli Access Manager’s
WebSEAL.

Struts security
Struts is a very powerful framework to implement the Model-View-Controler
design pattern for a Web application. The framework at this stage does not
provide security functions, it leaves the issue to the J2EE Web module to handle
security. Struts does not carry any security problems, but there are certain
considerations or thoughts you have to keep in mind.

The reason why the security issue rises is because Struts is a single access
point under the cover, for multiple application functions. One single servlet
handles all actions implementing the command pattern.

Struts supports multiple mechanisms to map URIs for different actions; there are
two common approaches to define the URIs that will be processed by the
controller servlet - prefix matching and extension matching.

� Prefix matching means that you want all URI that start with a particular value
to be passed to this servlet, for example:
http://www.xyz.com/myapp/execute/myaction.

� Extension mapping, on the other hand, matches request URIs to the action
servlet based on the fact that the URI ends with a period followed by a
defined set of characters. For example, the JSP processing servlet is mapped
to the *.jsp pattern so that it is called to process every JSP page that is
requested. In case of struts we can map actions to the .do extension, that
implies, “to do something”; the URL looks like the following:
http://www.xyz.com/myapp/myaction.do
 Chapter 4. Securing Web components 69

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
In any cases the actions are differentiated based on URIs, although only one
servlet performs the action. You have to make sure that you protect all the
required URIs for your application for all the actions with Struts. Because you will
only have only one servlet mapping, that does not mean you only have to set up
one constraint. The only difficulty with Struts and with these approaches is that
you have to design and administer your security constratints for your Web
application very carefully; just like in any other case of security design. It is easy
not to secure or set wrong access control to a sensitive resource and leave a
security hole in your application.

You can also protect your resources based on URL patterns using a security
reverse proxy in your infrastructure, for example: Tivoli Access Manager’s
WebSEAL.

Page expiration
This short paragraph is only a useful tip that you might want to keep in mind. The
pages that are served from application servers are cached at least on the client
side, no matter if the resource was secured or not.

It will be a problem in a live system, where sensitive information can be found in
the cache.

It is definitely a problem during development, when security settings were
changed for the Web module but the Web browser is still showing the pages from
the cache without going out to the server and get the latest content, therefore no
authentication or authorization check is performed. In this case you can simply
set your browser to not to cache pages and always send a request.

As a universal solution for the problem, you can set expiration time, for example:
“0” (zero) that means no caching, for all the secured pages on your application
server. The following HTML code at the beginning of your page takes care of
page expiration.

<META HTTP-EQUIV="expires" CONTENT="0">

The following code tells the Web browser not to cache the page:

<META HTTP-EQUIV="cache-control" CONTENT="no-cache">

4.7 Where to find more information
For more information about J2EE, servlets and JSPs, refer to Sun’s Java Web
site at http://java.sun.com.

� The J2EE 1.3 specification is available at:
http://java.sun.com/j2ee/docs.html
70 IBM WebSphere V5.0 Security Handbook

http://java.sun.com
http://java.sun.com/j2ee/docs.html

Draft Document for Review November 6, 2002 2:37 pm 6573chSecWeb.fm
� The Servlet 2.3 specification and the JSP 1.2 specification is also available at
the previous URL.
 Chapter 4. Securing Web components 71

6573chSecWeb.fm Draft Document for Review November 6, 2002 2:37 pm
72 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
Chapter 5. Securing EJBs

This chapter focuses on security aspects of the EJB container, including:

� An overview of EJB security.

� How to protect EJB methods by assigning method permissions.

� How to assign and use security role references for EJBs.

� How to allow EJBs to make calls using a delegated identity.

5

© Copyright IBM Corp. 2002 73

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
5.1 Securing EJBs
EJBs, or Enterprise Java Beans are J2EE components which implement the
business logic of an application. They typically have access to sensitive data,
and it is very important to understand how security is applied to these resources.

There are three types of EJBs:

1. Session Beans, which represent clients inside the J2EE server. Clients call
session bean methods to access an application.

2. Entity Beans, which represent persistent business objects in an application’s
relational database. Typically, each entity bean has an underlying table in the
database, and each instance of the bean corresponds to a row in that table.

3. Message-Driven Beans, which allow J2EE applications to process messages
asynchronously. Message-driven beans’ methods are invoked by the
application server runtime as part of message queue processing.

Security can be applied to EJBs in the following ways:

� Access control can be applied to individual session and entity bean methods
so that only callers who are members of particular security roles can call
those methods.

� Session and entity bean methods which need to be aware of the role or
identity or the caller can programmatically call the J2EE API methods
isCallerInRole and getCallerPrincipal to determine a caller’s role and
principal, respectively. When using isCallerInRole, security role references
are used, which are later mapped to security roles.

Important: Since queued messages generally do not have any
authentication information associated with them, authentication information
is unavailable to message-driven beans’ methods. As a result, securing
message-driven beans from unauthorized access is really a matter of
securing the message queue.

Note: If Websphere security is not enabled, or if the EJB is not a protected
resource, isCallerInRole will return false and getCallerPrincipal will return
UNKNOWN.

Note: See below for details on how security role references are
administered for EJBs. Programmatic security is covered in detail in
Chapter 8, “Programmatic security” on page 179.
74 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
� Session, entity, and message-driven bean methods can be delegated to
execute under the identity of either the caller (default), the EJB server, or a
specific security role. This is refered to as the Delegation Policy or Run-As
Mode Mapping.

In the next sections, each of these methods of applying security to EJBs will be
discussed in detail.

5.2 Defining J2EE roles for EJB modules
The method for defining security roles for EJBs and Web Components in the
Application Assembly Tool is the same. For example, to add a role named
manager to the EJB component, do the following:

1. Open the .ear file of the application, in our example: itsobank.ear.

2. Open the EJB Modules folder for your application, and select Security
Roles .

3. If no security roles have previously been defined for EJBs, the box on the
right will be empty. Right-click in the space under Name, and you will see the
pop-up menu shown in Figure 5-1. Select New to create a new security role.

Figure 5-1 Creating a new Security Role

4. In the New Security Role dialog, see Figure 5-2, enter the name of the role,
Manager, and (optionally) a description of the role.
 Chapter 5. Securing EJBs 75

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-2 Application Assembly Tool - New Security Role Dialog

5. Click Apply if you wish to add more security roles to the EJB component, or
click OK to close the New Security Role Dialog.

5.3 Assigning EJB Method Permissions
Session and entity bean methods can be secured by preventing access to all but
members of the security roles which need to access those methods. These
method permissions can be applied using either the Application Assembly Tool
or the Websphere Studio.

The method permissions are included in the application deployment descriptor
file ejb-jar.xml. For example, the following example shows the XML elements
which would allow members of the manager role to call all methods in the
BranchAccount EJB, all Local Home methods in the CustomerAccount EJB, as
well as the create() and remove() methods in the Consultation EJB.

Example 5-1 Method Permissions in the ejb-jar.xml file

<method-permission id="MethodPermission_1">
 <description>manager method permissions:+:</description>
 <role-name>manager</role-name>
 <method id="MethodElement_1">
 <ejb-name>Consultation</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>create</method-name>
 <method-params></method-params>
 </method>
 <method id="MethodElement_2">
 <ejb-name>BranchAccount</ejb-name>
 <method-name>*</method-name>
 </method>
 <method id="MethodElement_3">
 <ejb-name>Consultation</ejb-name>
76 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
 <method-intf>Home</method-intf>
 <method-name>remove</method-name>
 <method-params>
 <method-param>javax.ejb.Handle</method-param>
 </method-params>
 </method>
 <method id="MethodElement_4">
 <ejb-name>CustomerAccount</ejb-name>
 <method-intf>LocalHome</method-intf>
 <method-name>*</method-name>
 </method>
</method-permission>

Assigning Method Permissions in the Application Assembly
Tool

To set up these method permissions using the Application Assembly Tool, do the
following:

1. Open the EJB Modules folder for your application, and select Method
Permissions.

2. If no method permissions have previously been defined for EJBs, the box on
the right will be empty. Right-click in the space under Name, and you will see
a pop-up menu. Select New to create a new set of method permissions.

3. In the New Method Permission dialog, you may enter a Method
permission name and Description, although these are optional.

4. To add methods, click the first Add... button and you will see the Add
Methods dialog. By opening the folders, you can see all methods in all the
application’s EJBs. To select multiple methods, hold down the control key as
you select methods. All EJB methods of a given type, or all methods for a
given EJB can be selected by selecting the parent folders as shown in
Figure 5-3.

5. Click OK when done.
 Chapter 5. Securing EJBs 77

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-3 Add Methods Dialog

6. To assign the selected methods to a security role, click the Add... button next
to the Role Name list. You will see a list of all security roles that have been
defined in the EJB module. For information about adding security roles, see
Section , “Defining Security Roles in the Application Assembly Tool” on
page 28.

7. Select the manager security role and click OK. Now, the New Method
Permissions dialog will appear as in Figure 5-4, and the resulting deployment
descriptor will contain the XML code shown in Example 5-1 on page 76.
78 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
Figure 5-4 New Methods Permission Dialog

Assigning Method Permissions in WebSphere Studio
To set up these method permissions using the Application Assembly Tool, do the
following:

1. From the Resource Perspective, navigate to the EJB deployment descriptor
file, ebj-jar.xml, and double-click this file.

2. Click the Assembly Descriptor tab to see the method permissions.

3. If no security roles have been defined for EJBs, click the Add... button below
the Security Roles box, to see the Add Security Role dialog. Enter a Name
and (optionally) a Description and then click Finish. Repeat to add all
necessary security roles to the EJB module.

4. click the Add... button below the Method Permissions box to see the Add
Method Permissions dialog. Select one or more security roles, as shown in
Figure 5-5.
 Chapter 5. Securing EJBs 79

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-5 Choosing Security Roles

5. Click Next... to see the list of EJBs. Select one or more EJBs from the list.

6. Click Next... to see the list of methods. Select one or more methods, using
the wildcards (*) if desired to include all methods of a given type or all
methods for a given EJB.

7. Click Finish when done.

Assigning Roles to Unprotected Methods
During application installation, the WebSphere Administrative Console allows
you to specify what method permissions are applied to session and entity EJB
methods that are not explicitly secured in the deployment descriptor. If all session
and entity EJB methods are protected, this step is omitted.

These unprotected methods can have one of three permissions applied:

Note: When assigning roles to EJB methods, methods can be specified using
several types of wildcards to select all home methods, local methods, local
home methods, remote methods, and so on. When installing an EJB
containing methods that are protected using one method-type wildcard (for
example the home methods wildcard) but whose other methods are
unprotected, the WebSphere Application Server does not prompt for how
unprotected methods are to be secured. Instead, they are unchecked.
80 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
1. Unckeck. This is the default, and indicates that unprotected methods should
be left unprotected. Anyone can call these methods.

2. Exclude. Unprotected methods are unavailable to all callers.

3. Role. Unprotected methods are available only to members of a specific
security role.

Figure 5-6 Assigning roles to unprotected EJB methods

5.4 Security role references
Security role references are used to provide a layer of indirection between
security roles named in EJB Java code and security roles that are defined at
application assembly time. This allows security roles names to be modified
without requiring changes in the application code.

When an EJB uses the IsCallerInRole(Java.lang.String roleName) J2EE API
method to determine whether or not the caller is a member of a particular role,
roleName is a security role reference which is later linked to a defined security
role in the EJB descriptor file, ejb-jar.xml. For example, the following Java code
shows how a security role referenced might be used.

Note: This behavior is different than in previous WebSphere versions. In
Websphere Application Server Version 4, the default was to grant access to all
EJB methods when no methods were explicitly protected, and to deny access
to all EJB methods (by default) when at least one EJB method was protected.

Most importantly, the default in Version 5 is for methods that are not explicitly
unprotected to be unchecked.
 Chapter 5. Securing EJBs 81

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Example 5-2 Security Role Reference Example

public String isInRole() {
 if (mySessionCtx.isCallerInRole("RoleRef")) {
 return "Caller is a member of the referenced role";
 } else {
 return "Caller is NOT a member of the referenced role";
 }
}

The following XML code shows how the security role reference RoleRef would be
linked to the security role manager.

Example 5-3 Security Role Reference in ejb-jar.xml

<security-role-ref>
 <description>security role reference RoleRef is linked to security role
manager</description>
 <role-name>RoleRef</role-name>
 <role-link>manager</role-link>
</security-role-ref>

For a security role reference to work, the security role to which it is linked must
be a security role that is defined in the deployment descriptor and mapped to one
or more users, groups, or special subjects.

Security Role References in the Application Assembly Tool
To link the RoleRef security role reference to the manager security role using the
Application Assembly Tool, do the following:

1. Open the EJB Modules folder for your application, and navigate to the
Security Role References view for the EJB containing the method which
calls isCallerInRole.

2. If no security role references have previously been defined for EJBs, the box
on the right will be empty. Right-click in the space under Name, and you will
see a pop-up menu. Select New to create a new security role reference.

3. In the New Security Role Reference dialog (see Figure 5-7), enter the
reference’s Name. This is the string that is passed to isCallerInRole() in the
Java code.
82 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
Figure 5-7 New Security Role Reference Dialog (Application Assembly Tool)

4. Select the desired security role from the Link pull-down menu. Only security
roles which have previously been defined in the EJB module are shown in this
menu.

5. Optionally, enter a Description for this security role reference.

6. Click OK to apply the changes and close the window.

Security Role References in the Websphere Studio
To link the RoleRef security role reference to the manager security role using the
Websphere Studio, do the following:

1. From the Resource Perspective, navigate to the EJB deployment descriptor
file, ebj-jar.xml, and double-click this file.

2. Click the References tab.

3. Select the bean containing the method which calls isCallerInRole() and click
Add...

4. In the Add Reference dialog, select Security Role Reference and click Next.

5. In the Add Security Role Reference dialog, see Figure 5-8, enter the
reference’s Name. This is the string that is passed to isCallerInRole() in the
Java code.
 Chapter 5. Securing EJBs 83

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-8 Add Security Role Reference Dialog in Websphere Studio

6. Select the desired security role from the Link pull-down menu. Only security
roles which have previously been defined in the EJB module are shown in this
menu

7. Optionally, enter a Description for this security role reference.

8. Click OK to apply the changes and close the window.

5.5 Delegation policy
When an EJB calls a method in another EJB, the identity of the caller of the first
EJB is, by default, propagated to the next. In this way, all EJB methods in the
calling chain would see the same principal if they were to call
getCallerPrincipal(). Occasionally, however, it is desireable for one EJB to call
another with a previously defined identity, for instance one that is a member of a
specifc role.

One example is in the case of a message-driven bean’s onMessage() method
which calls a protected method in an entity bean. Since message-driven beans’
onMessage()methods are executed with no caller identity, this method cannot
call the protected entity bean method. By delegating the onMessage() method to
run as a specific role, and adding this role to the protected entity bean method’s
access permissions, the onMessage() method can successfully access the
protected method.
84 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
5.5.1 Bean Level Delegation
The EJB 2.0 Specification defines delegation at the EJB bean level using the
<run-as> element which allows the application assembler to delegate all
methods of a given bean to run as a member of a specific security role. At
deployment time, a real user that is a member of the specified role must be
mapped to this role, through a process which is called run-as role mapping. All
calls to other EJBs made by the delegated bean will be called using the identity
of this mapped user.

Figure 5-9 Run as Caller vs. Run as Role

Important: Although this feature is commonly referred to as the Run-as Mode,
it does not have any noticable effect on the bean to which it is applied. A bean
configured to run as a member of a given security role actually executes using
the identity of the caller. It is only when calling methods in other EJBs that the
run as mode applies. These methods are called using the delegated identity.

EJB1

identity=caller01

EJB2

identity=caller01
caller01

Run As Role = Role01

EJB1

identity=caller01

EJB2

identity=caller02

caller01

Role01username = caller02
password = xxxxxxx

Run As
Mapping

Run As Caller (Default)

Run As Role
 Chapter 5. Securing EJBs 85

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-9 demonstrates EJB delegation in contrast to the default run as caller
mode. In the top scenario, the identity of the caller, caller01, is propagated from
EJB1 to EJB2. In the bottom scenario, EJB1 is delegated to run as role01.
During run-as mapping, another user, caller02, is mapped to role01, and
therefore it is effectively caller02 that calls EJB2. If, in the bottom scenario, EJB2
were to call EJB3, EJB3 would also appear to have been called by caller02.

The following example shows the XML code in the ejb-jar.xml deployment
descriptor file for the default mode (run as caller):

Example 5-4 ejb-jar.xml code for non-delegated EJB

<security-identity>
 <description>This bean requires no delegation</description>
 <use-caller-identity />
</security-identity

The next example shows the XML code in the ebj-jar.xml file for a bean which
has been delegated to run a a member of the mdbuser security role:

Example 5-5 ebj-jar.xml code for EJB that is delegated to run as role: mdbuser

<security-identity>
 <description>This message-driven bean calls protected methods in other
beans.</description>
 <run-as>
 <description>The methods of this bean run as a member of the mdbuser
role</description>
 <role-name>mdbuser</role-name>
 </run-as>
</security-identity>

Assigning Bean-level Run-as Delegation Policies in
Application Assembly Tool

Bean-level delegation policies can be assigned using either the Application
Assembly Tool, or the Websphere Studio. To assign a Run-as Role to an EJB
using the Application Assembly Tool, do the following:

1. Open the EJB Modules folder for your application, and navigate to the
particular EJB to which you want to assign a delegation policy.

2. Click the Security tab to see the Run-as mode settings.

3. The default Run-As Mode is UseCallerID. Choose UseSpecificID to assign
a Run-as Role.
86 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
4. The Role Name option menu will contain the list of defined security roles for
the EJB module. Select the desired role.

5. Enter an optional description for the Run-as Role.

6. Click Apply to save the delegation policy.

Figure 5-10 Assigning bean-level Run-as Role in the Application Assembly Tool

Assigning Bean-level Run-as Delegation Policies in
WebSphere Studio

To assign a bean-level Run-as role to an EJB using the Websphere Studio, do
the following:

1. From the Resource Perspective, navigate to the EJB deployment descriptor
file, ebj-jar.xml, and double-click this file.

2. Click the Access tab.

3. In the Security Identity (Bean Level) box, select the EJB to which you want to
assign the delegation policy, and click Add...

4. Select Use identity assigned to a specific role (below)

5. In the Role name box, select the desired role from the option list. This list will
contain all security roles which have been defined in the EJB module.

6. Enter an optional Role Description.
 Chapter 5. Securing EJBs 87

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
7. Enter an optional Security identity description.

Figure 5-11 Adding bean-level run-as role in Websphere Studio

8. Click Next.

9. In the Enterprise Bean Selection dialog, select one or more beans that should
use this delegation policy, and click Finish.

Note: In the Security Identity (Bean Level) box, a bean’s security identity is
listed as server identity when the bean is set to Run-as caller (the default).
When a bean is assigned a run-as role, its security identity is listed as caller
identity, and the assigned role appears in the User Specified Identity box at
the right.

Also, the Remove... button does not work. To remove a bean-level run-as
role, simply add a run-as caller policy to the EJB.
88 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
5.5.2 Method Level Delegation
In addition to the bean-level delegation policy defined by the EJB 2.0
Specification and described above, the Websphere Application Server provides
the capability to do method-level EJB delegation. This works in the same way as
bean-level delegation, but can be applied to specific EJB methods, rather than to
the bean as a whole. This finer degree of delegation granularity allows
application assemblers to delegate different methods of the same EJB to
different security roles.

In addition, method-level delegation provides an additional delegation option: run
as Server. This option indicates that the method should make calls to other EJBs
using the identity of the application server itself.

Method-level delegation policies are defined in the ibm-ejb-jar-ext.xmi file. The
following example shows the XML code for an onMessage() method which is
delegated to run as the application server.

Example 5-6 Method-level run as server

<runAsSettings xmi:id="SecurityIdentity_3" description="Run this method using
the identity of the server">
 <methodElements xmi:id="MethodElement_3" name="onMessage"
parms="javax.jms.Message" type="Unspecified">
 <enterpriseBean xmi:type="ejb:MessageDriven"
href="META-INF/ejb-jar.xml#MessageDriven_1"/>
 </methodElements>
 <runAsMode xmi:type="ejbext:UseSystemIdentity"
xmi:id="UseSystemIdentity_2"/>
</runAsSettings>

The following example shows the XML code for an onMessage() method which is
delegated to run as a member of the mdbuser security role:

Example 5-7 Method-level run as role

<runAsSettings xmi:id="SecurityIdentity_4" description="This message-driven
bean calls protected methods in other beans.">
 <methodElements xmi:id="MethodElement_4" name="onMessage"
parms="javax.jms.Message" type="Unspecified">
 <enterpriseBean xmi:type="ejb:MessageDriven"
href="META-INF/ejb-jar.xml#MessageDriven_1"/>
 </methodElements>
 <runAsMode xmi:type="ejbext:RunAsSpecifiedIdentity"
xmi:id="RunAsSpecifiedIdentity_1">
 <runAsSpecifiedIdentity xmi:id="Identity_1" roleName="mdbuser"
description="The methods of this bean run as a member of the mdbuser role."/>
 </runAsMode>
 Chapter 5. Securing EJBs 89

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
</runAsSettings>

Assigning Method-level Run-as Delegation Policies in
Application Assembly Tool

Delegation policies as the EJB method level can be assigned using either the
Application Assembly Tool or the Websphere Studio Application Developer.

To assign a run-as policy to an EJB method using the Application Assembly Tool,
do the following:

1. Open the EJB Modules folder for your application, and navigate to the
Method Extensions view for the EJB containing the method which you want
to delegate.

2. Select the method(s) to which you want to assign the delegation policy.
Wildcards (*) can be used to select all methods of a given type.

3. Click the Advanced tab and select the Security Identity checkbox to enable
the Run-as mode selections.

4. Enter an optional Description

5. Select one of the following Run-as mode options:

g. Use identity of caller (this is the default)

h. Use identity of server

i. Use identity assigned to specific role.

6. If assigning a run-as role, select the desired role from the Role Name
selection list. This list will contain all roles which have been defined in the EJB
module. The role description is optional

7. Click Apply to keep the policy settings.
90 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
Figure 5-12 Method-level run-as role in the Application Assembly Tool

Assigning Method-level Run-as Delegation Policies in
WebSphere Studio

To assign a run-as policy to an EJB method using the Websphere Studio
Application Developer, do the following:

1. From the Resource Perspective, navigate to the EJB deployment descriptor
file, ebj-jar.xml, and double-click this file.

2. Click the Access tab.

3. In the Security Identity (Method Level) box, select the EJB to which you want
to assign the delegation policy, and click Add...

4. In the Add Security Identity dialog, select the desired Run-as mode.

5. If using Run-as role, select the Role Name from the list of security roles
previously defined in the EJB module. The description of the role mapping is
optional.

6. Enter an optional description for the delegation policy.
 Chapter 5. Securing EJBs 91

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 5-13 Method-level run-as role policy in Websphere Studio

7. Click Next.

8. In the Enterprise Bean Selection dialog, select the EJBs containing the
methods to which you want to assign this delegation policy, then click Next.

9. In the Method Elements dialog, select the EJB methods to which this
delegation policy should be assigned.
92 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
Figure 5-14 Selecting methods for the methods permission in WebSphere Studio

10.Click Finish when done.

5.6 Run-as mapping
Run-as mapping refers to the process of assigning a real user from the user
registry that is a member of the specified security role to the bean-level or
method-level delegation policies. Run-as mapping is very different from, but
easily confused with, security role mapping. The following table compares these
two concepts:

Run-as Mapping vs. Security Role Mapping

Run-as Mapping Security Role Mapping

Run-as mapping is used to determine
the principal from the user registry that
will be used as the caller identity when a
delegated EJB makes calls.

Security role mapping is used to
determine the users and groups from
the user registry that will be considered
members of the security role.

Run-as mapping associates a single
user that is a member of the specified
security role with a delegation policy

Security role mapping associates one or
more users or groups with a security
role.
 Chapter 5. Securing EJBs 93

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
When installing an application which defines either a bean-level or method-level
run-as role delegation policy, one of the steps will be to map the run-as role(s) to
a real user, as in Figure 5-15.

1. Select the Role that you wish to map.

2. Enter a valid username and password of a user in the registry that is a
member of the specified security role.

3. Click Apply to authenticate the user and associate that identity with the
run-as role policy.

4. Once all run-as roles have been mapped to real users, click Next to continue
installation.

Figure 5-15 Run-as role mapping

A single user name and password for
the mapped identity is stored in the
deployment descriptor.

One or more user names and/or group
names are stored in the deployment
descriptor.

Authentication done at installation time. Authentication done at runtime.

Run-as mapping is performed using the
Websphere Administrative Console
only.

Security role mapping is performed
using the Application Assembly Tool,
the Websphere Studio, or the
Websphere Administrative Console.

Cannot be modified after application
installation

Can be modified after applicaiton
installation using the Websphere
Administrative Console.

Run-as Mapping Security Role Mapping
94 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEJB.fm
If one or more method-level delegation policies specify run-as system, one of the
installation steps will be to verify this policy. The dialog appears as in
Figure 5-16, and for each method that specifies run-as system, the application
deployer can do one of the following:

� Do nothing, and allow the method to make calls using the system identity

� Assign the method a run-as role, and map the role to a user from the registry.

Figure 5-16 Verifying Run-as System

To override the run-as system mapping and assign a run-as role, do the
following:

1. Select the methods to which you want to assign the run-as role.

2. Select the desired Role from the drop-down list of defined security roles.

3. Enter a valid username and password of a user in the registry that is a
member of the specified security role.

4. Click Apply to authenticate the user and associate that identity with the the
run-as role policy.

5. Click Next to continue with installation.

5.7 Where to find more information
For more information about J2EE, servlets and JSPs, refer to Sun’s Java Web
site at http://java.sun.com.

� The J2EE 1.3 specification is available at:
http://java.sun.com/j2ee/docs.html

� The EJB 2.0 specification is also available at the previous URL.
 Chapter 5. Securing EJBs 95

http://java.sun.com
http://java.sun.com/j2ee/docs.html

6573chSecEJB.fm Draft Document for Review November 6, 2002 2:37 pm
96 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Chapter 6. Securing Java clients

This chapter discusses how a variety of Java clients may be configured to
access a secured server-based application. A Java client, in this context, is one
which acts as an EJB client. The Java client may be operating on the same
machine or a different machine to the EJB container and CORBA is used as the
marshalling mechanism between client and server.

Relevant aspects of the OMG Common Secure Interoperability (CSIv2)
specification are documented with regard to the Security Attribute Service (SAS)
protocol that allows for interoperable authentication, delegation and privileges.

A description of how a Java client should be configured to make use of the
security features follows with a look at the options available.

Programmatic login is discussed next with examples.

6

© Copyright IBM Corp. 2002 97

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
6.1 Java clients
A client is a generic term used to refer to the process typically responsible for
requesting a service. The service is provided by the server. A client container
may be used to provide the necessary environment in which the client can issue
a request for service.

With version 5, the Application Server consists of five application client models.

� ActiveX application client.

� Applet application client

� J2EE application client

� Pluggable application client

� Thin application client

The ActiveX application client makes use of the Java Native Interface (JNI) to
provide programmatic access to the Java Virtual Machine (JVM). The JVM exists
in the same process space as the ActiveX application, which may be written in
Visual Basic, VBScript or Active Server Pages (ASP). Java objects contained in
the JVM can be accessed, via a proxy, from the ActiveX application. Thus, using
the J2EE client programming model, the ActiveX application client can gain
access to EJB’s residing in the Application Server. However, due to the nature of
ActiveX applications, this model is only available on the Windows platform.

The applet application client makes use of a JVM embedded in the Web browser
that the applet is running in. There are no tools provided to aid the programmer in
developing the applet, generating the client-side bindings and deploying the
code, although the applet application client will provide the runtime to support
communication with the server. None-the-less, this model provides a lightweight
client that can be readily downloaded and installed and there is no need to
distribute the applet to the client machine since this operation is performed by the
Web browser.

The J2EE application client operates in its own JVM which provides access to
some J2EE APIs, such as JNDI, JDBC, RMI-IIOP and JMS. The application
client is written in Java and relies on the application runtime to configure its
environment. Tools are provided to aid the development, assembly, deployment
and launching of a J2EE application client. Another benefit of this model is the
use of short names in the deployment descriptor to identify remote and local
resources.
98 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
The pluggable application client provides a lightweight Java client environment
without the J2EE APIs. The pluggable application client requires access to the
CosNaming or JNDI interfaces for EJB or CORBA object resolution. As with the
applet application client, tools are not provided to aid development and
installation. A non-IBM JRE must be installed and the pluggable application client
must be distributed to the client machine.

The thin application client also provides a lightweight Java client environment in
much the same way that the pluggable application client does. No tools are
provided for the development and installation of the thin application client. Short
names may not be used in the deployment descriptor to identify remote and local
resources.

Shown below is a table listing the functionality of each of the application clients.

Table 6-1 Application client functions

Available functions ActiveX
client

Applet
client

J2EE
client

Pluggabl
e client

Thin
client

Provides all the
benefits of a J2EE
platform

Yes No Yes No No

Portable across all
J2EE platforms

No No Yes No No

Provides the
necessary runtime to
support
communication
between client and
server

Yes Yes Yes Yes Yes

Allows the use of short
names in the
deployment descriptor

No No Yes No No

Supports use of
RMI-IIOP

Yes Yes Yes Yes Yes

Supports use of HTTP Yes Yes No No No

Enables development
of client apps that can
access EJB references
and CORBA object
references

Yes Yes Yes Yes Yes
 Chapter 6. Securing Java clients 99

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
This chapter will concentrate on securing the J2EE application client and thin
application client.

6.2 CSIv2 and SAS
The Common Secure Interoperability (CSI) security specification is defined by
the OMG (see http://www.omg.org). Currently in its second version, the
specification defines the Security Attribute Service (SAS) protocol to address the
requirements of CORBA security for interoperable authentication, delegation and
privileges. The SAS protocol is designed to exchange its protocol elements in the
service context of GIOP request and reply messages that are communicated
over a connection-based transport. The protocol is intended to be used in
environments where transport layer security, such as that available via Secure
Sockets Layer (SSL)/ Transport Layer Security (TLS) or Secure InterORB
Protocol (SECIOP), is used to provide message protection (that is, integrity and
or confidentiality) and server-to-client authentication. The protocol provides client
authentication, delegation, and privilege functionality that may be applied to
overcome corresponding deficiencies in an underlying transport. The SAS
protocol facilitates interoperability by serving as the higher-level protocol under
which secure transports may be unified.

The SAS protocol is divided into two layers:

� The authentication layer is used to perform client authentication where
sufficient authentication could not be accomplished in the transport.

� The attribute layer may be used by a client to deliver security attributes, such
as identity and privilege, to a target where they may be applied in access
control decisions.

Enables initialisation of
client app’s runtime
environment

No No Yes No No

Supports
authentication to local
resources

No No Yes No No

Requires app is
distributed to client
machine

No No Yes Yes Yes

Available functions ActiveX
client

Applet
client

J2EE
client

Pluggabl
e client

Thin
client
100 IBM WebSphere V5.0 Security Handbook

http://www.omg.org

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
The attribute layer also provides the means for a client to assert identity
attributes that differ from the client’s authentication identity (as established in the
transport or SAS authentication layers). This identity assertion capability is the
basis of a general-purpose impersonation mechanism that makes it possible for
an intermediate to act on behalf of some identity other than itself. This can
improve the performance of a system since the authentication of a client is
relatively expensive. The server can validate the request by checking its trust
rules.

In order to invoke an EJB method that has been secured, a protocol is required
to determine the level of security and type of authentication to be agreed upon by
the client and server. During the method invocation, the protocol must coalesce
the server’s authentication requirements, which is determined by the object’s
IOR, with the client’s authentication requirements, which is determined by the
client’s configuration and select the appropriate policy.

The Application Server can be configured to support both CSIv2 and IBM’s
Secure Association Service (SAS). In fact, both protocols can be supported
simultaneously; that is to say the Application Server may receive a request using
one protocol and then receive another request using the other protocol. IBM’s
SAS is the protocol used in previous versions of the Application Server and
although deprecated, is provided in version five for interoperability with older
clients and servers. CSIv2, which is the focus of this chapter, allows vendors to
securely interoperate and provides a greater number of features over SAS.

CSIv2 and SAS are add-on IIOP services, where IIOP is the communications
protocol used to send messages between two ORBs. In preparation for a request
to flow from client to server, a connection between the two ORBs must be
established over TCP/IP. The client ORB will invoke the authentication protocol’s
client connection interceptor which is used to read the tagged components in the
IOR of the server-based object being requested. This is how the authentication
policy is established. Once the policy has been established, the ORB will make
the connection, with the optional addition of the SSL cipher.

The client ORB invokes the client request interceptor once the connection has
been established and sends security information other than what was
established by the transport. This may include a user ID and password token,
which is authenticated by the server, an authentication mechanism-specific
token, which is validated by the server or an identity assertion token, which
allows an intermediate to act on behalf of some identity other than itself. This
additional security information is sent with the message in a GIOP service
context.
 Chapter 6. Securing Java clients 101

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Upon receiving the message, the server ORB invokes the authentication
protocol’s server request interceptor, which finds the service context added by
the client’s request interceptor and invokes a method in the Security server to
authenticate the client’s identity. If the client is authentic, the Security server will
return a credential containing additional client information which it retrieved from
the user registry in order to allow for authorisation decisions to be made when
the EJB method corresponding to the client request is invoked.

Should the server’s request interceptor find no service context, it will look at the
transport connection information to see if a client certificate was supplied when
the SSL connection between client and server was established. If such a
certificate is found, the Distinguished Name (DN) is extracted and is mapped to
an identity in the user registry. In the case of LTPA, the DN is used; for SWAM or
Kerberos, the Common Name (CN) portion of the DN is used.

If identity information is not available, an unauthenticated credential will be
created and applied in order to determine if the request is authorised to invoke
the required method.

Figure 6-1 Authentication Protocol Flow

Follow the steps on the flow diagram above:

1. Client ORB calls the connection interceptor to create the connection.

2. Client ORB calls the request interceptor to get client security infromation
,send_request().

3. Server ORB calls the request interceptor to receive the security information,
authenticate and set the received credential, receive_request().

transport connection

service context:
user name: user01
password: userpwd

Request
foo.getCoffee()

Reply
Coffee

service context:
steteful request
valid

Client Request
Interceptor

Server Request
Interceptor

1

2

3

4
5

Client
Connection
Interceptor

invocation credential:
user name: user01
password: userpwd

invoked method:
foo.getCoffee()

Client ORB

received credential:
security token

EJB implementation:
Foo

Server ORB
102 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
4. Server ORB calls the request interceptor to allow security to send information
back to the client along with the reply, send_reply().

5. Client ORB calls the request interceptor to allow the client to cleanup and set
the session status as validor invalid, receive_reply().

The SAS protocol supports the establishment of both stateless and stateful
security contexts. Stateless contexts exist only for the duration of the GIOP
request that was used to establish the context. Stateful contexts endure until they
are discarded and can be referenced for use with subsequent requests. The SAS
protocol includes a simple negotiation protocol that defines a
least-common-denominator form of interoperability between implementations
that support only stateless contexts and those that support both stateless and
stateful forms. Whilst the J2EE specification requires that only stateless mode is
implemented, the Application Server implements both in order to improve the
performance of a multiple message application. This is achieved by invoking the
server request interceptor when the EJB method has completed and sending a
new reply service context to client containing the outcome. This extra step is only
necessary for the first request in the session.

6.3 Configuring the Java client
It is necessary to configure the Java client in order that it can access secured
applications. It must be made aware of certain properties, such as the security
settings for the client ORB. The properties are provided in a file called
sas.client.props. The JVM in which the application client will run should be set to
use this property file by adding the directive:
com.ibm.CORBA.ConfigURL=<URL_ of_the_properties_file>.

So, to start the JVM, enter:

java -Dcom.ibm.CORBA.ConfigURL=file:/<WAS_ROOT>/properties/sas.client.props
com.abc.myJavaApp

where <WAS_ROOT> should be replaced with the directory in which the
Application Server was installed, for example C:\WebSphere\AppServer on a
Windows machine.

The sas.client.properties file
The CORBA authentication options (with the valid values / default value in
brackets) in the client property file are listed below.

� com.ibm.CORBA.securityEnabled (true, false / true) - determines if client
security has been enabled
 Chapter 6. Securing Java clients 103

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
� com.ibm.CSI.protocol (ibm, csiv2, both / both) - determines which
authentication protocol the client is permitted to use

� com.ibm.CORBA.authenticationTarget (BasicAuth) - determines type of
authentication mechanism to use. The user name and password will be
communicated to the server. In this case, SSL should be enabled in order to
encrypt this information.

� com.ibm.CORBA.validateBasicAuth (true, false / true) - determines if the user
details are authenticated immediately or deferred until the first method
request is communicated to the server. Requires the
com.ibm.CORBA.authenticationTarget property to be set to BasicAuth

� com.ibm.CORBA.authenticationRetryEnabled (true, false / true) - determines
if a failed login should be retried. This also applies to stateful CSIv2 sessions
and validations that have failed due to an expired credential. Only those
failures which are known to be correctable will be retried

� com.ibm.CORBA.authenticationRetryCount (an integer within the range 1
and 10 / 3) - determines how many retries will be attempted. Requires
com.ibm.CORBA.authenticationRetryEnabled to be set to true

� com.ibm.CORBA.loginSource (prompt, key file, stdin, none, properties /
prompt) - determines how the authentication request interceptor will log in if it
does not find a invocation credential set. Requires
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword
properties to be set. Prompt will display a window requesting user name and
password, key file will extract the user details from the file specified by
com.ibm.CORBA.keyFileName, stdin will display a command line prompt
requesting user details, none should be selected only if the client uses
programmatic login (see Chapter 8, “Programmatic security” on page 179)
and properties will retrieve the user details from the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword
properties

� com.ibm.CORBA.loginUserid (user ID / blank) - determines the user ID when
the com.ibm.CORBA.loginSource property is set to properties. Requires
com.ibm.CORBA.loginPassword property to be set and CSIv2 message layer
authentication in use

� com.ibm.CORBA.loginPassword (password / blank) - determines the user
password when the com.ibm.CORBA.loginSource property is set to
properties. Requires com.ibm.CORBA.loginUserid property to be set and
CSIv2 message layer authentication in use

� com.ibm.CORBA.keyFileName (path to keyfile /
<WAS_INSTALL_ROOT>/properties/wsserver.key) - determines location of
the key file that contains a list of realm/userid/password combinations. Used
when the com.ibm.CORBA.loginSource property is set to key file
104 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
� com.ibm.CORBA.loginTimeout (an integer within the range 0 and 600 / 300) -
determines the amount of time, in seconds, that the login prompt will be
available before the login will be considered invalid

The SSL configuration options are listed below.

� com.ibm.ssl.protocol (SSL, SSLv2, SSLv3, TLS, TLSv1 / SSL) - determines
which variety of the SSL and TLS protocols are used to perform
transport-layer encryption

� com.ibm.ssl.keyStoreType (JKS, JCEK, PKCS12 / JKS) - determines the
format of the SSL key store file

� com.ibm.ssl.keyStore (path to key store /
<WAS_INSTALL_ROOT>/etc/DummyClientKeyFile.jks) - determines location
of SSL key store file, which is used personal certificates and private keys.
Dummy client and server key stores files are provided to aid development of
applications that use key stores, without the need to generate keys or create
a Certification Signing Request (CSR)

� com.ibm.ssl.keyStorePassword (the key store password / default password
for DummyClientKeyFile.jks) - determines the password with which the key
store file is protected

� com.ibm.ssl.trustStoreType (JKS, JCEK, PKCS12 / JKS) - determines the
format of the SSL key trust file

� com.ibm.ssl.trustStore (path to trust store /
<WAS_INSTALL_ROOT>/etc/DummyClientTrustFile.jks) - determines
location of SSL key trust file

� com.ibm.ssl.trustStorePassword (the key trust password / default password
for DummyClientTrustFile.jks) - determines the password with which the key
trust file is protected

� com.ibm.CORBA.standardClaimQOPModels (low, medium, high / high) -
determines the quality of protection (in other words, the security level). If the
server and client values differ then the highest value will be chosen and the
connection will be initialised with this QOP property. A list of supported
ciphers for each level of QOP are provided in the InfoCenter

The CSIv2 configuration properties are listed below. Certain security properties
have supported/required property pairs. If the required property is enabled then
communication with the server must satisfy this property.

� com.ibm.CSI.performStateful (true, false / true) - determines if the
authentication request should result in a stateful reply returning from the
server

� com.ibm.CSI.performTLClientAuthenticationRequired (true, false / false) and
com.ibm.CSI.performTLClientAuthenticationSupported (true, false / false) -
 Chapter 6. Securing Java clients 105

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
determines if transport-layer client authentication is required or supported.
This will involve the client sending a digital certificate to the server during the
authentication stage. If the Required property is set to true, the client will only
authenticate with servers that support transport-layer client authentication

� com.ibm.CSI.performTransportAssocSSLTLSRequired (true, false / false)
and com.ibm.CSI.performTransportAssocSSLTLSSupported (true, false /
true) - determines if the client can use SSL to communicate with the server. If
the Required property is set to true, the client will only communicate with
servers that support SSL

� com.ibm.CSI.performClientAuthenticationRequired (true, false / true) and
com.ibm.CSI.performClientAuthenticationSupported (true, false / true) -
determines if message layer client authentication is required or supported.
The com.ibm.CORBA.authenticationTarget property determines the type of
authentication mechanism

� com.ibm.CSI.performMessageIntegrityRequired (true, false / true) and
com.ibm.CSI.performMessageIntegritySupported (true, false / true) -
determines if a connection secured by a 40-bit cipher is supported or
required. If the Required property is set to true then the connection will fail if
the server does not support 40-bit ciphers. This property is only valid when
SSL is enabled

� com.ibm.CSI.performMessageConfidentialityRequired (true, false / false) and
com.ibm.CSI.performMessageConfidentialitySupported (true, false / true) -
determines if a connection secured by a 128-bit cipher is supported or
required. If the Required property is set to true then the connection will fail if
the server does not support 128-bit ciphers. This property is only valid when
SSL is enabled.

For a more complete list of directives refer to the WebSphere Application Server
InfoCenter for more details.

The Application Server should also be configured to communicate with a client in
the required fashion. If a Java client requires that client certificates are
transmitted via SSL, for example, then the server must be set to expect this.
Details on the configuration of the Application Server can be found in Chapter 10,
“Administering WebSphere security” on page 233.

6.4 Identity Assertion

Definition: Identity assertion is basically the process when the invocation
credential is asserted to the downstream server during a call.
106 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
When a client authenticates to a server, the received credential is set. When
authorization checks the credential to see if it is allowed access, it will also set
the invocation credential so that if the EJB method calls another EJB method
located on other servers, the invocation credential can be used as the identity to
invoke the downstream method. Depending on the RunAs mode for the EJB, the
invocation credential will be set as the originating client identity, the server's
identity, or a specified different identity. Regardless of the identity that is set,
when Identity Assertion is enabled, it is the invocation credential that is asserted
to the downstream server.

The invocation credential identity is sent to the downstream server in an identity
token. In addition, the sending server's identity including password or token, is
sent in the client authentication token. Both are needed by the receiving server to
accept the asserted identity. The receiving server does the following to accept
the asserted identity.

1. First it is determined if the sending server's identity is on the trusted principal
list of the receiving server. That is, is the sending server one which is allowed
to send an identity token to the receiving server.

2. Second, once we have determined that the sending server is on the trusted
list, we need to make sure it truly is the sending server by authenticating it.
This could be simply comparing the user ID and password from the sending
server to that of the receiving server. Or it could require a real authenticate
call.

3. If the sending server's credentials are authenticated and on the trusted
principal list, then evaluation of the identity token can proceed. Evaluation of
the identity token consists of the following. There are four formats of identities
which can be present in an identity token:

– principal name

– distinguished name

– certificate chain

– anonymous identity

The WebSphere Application Servers that receive authentication information
typically support all four identity types. The sending server decides which one
will be chosen based on how the original client authenticated. The type that is
present depends on how the client originally authenticates to the sending
server. For example, if the client uses SSL client authentication to
authenticate to the sending server, then the identity token to the downstream
server will contain the certificate chain. This is important because it allows the
receiving server to perform it's own mapping of the certificate chain. It
enables more interoperability with other vendors and platforms.
 Chapter 6. Securing Java clients 107

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
4. Once the identity format is understood and parsed, the identity is simply
mapped to a credential. All identity token types map to the user ID field of the
active user registry. It is done by mapping Distinguished Name to
Distinguished Name and using filters to allow administrators to control the
mapping.

5. Some user registry methods are called to gather additional credential
information used by authorization. In a stateful server, this is done one time
for the sending server/receiving server pair where the identity tokens are the
same. Subsequent requests will be made via a session ID.

6.4.1 Scenarios
The following sections will describe five different cases where identity assertion
is utilized to propagate credentials to downstream servers.

Sample application for the scenarios
A testing application is also distributed with this book, besides the ITSOBank
sample application. It is the Identity Assertion sample application made for
testing purposes for the following scenarios (Scenario 1, 2, 3 and 4).

The application is very simple, it consists three modules:

� a J2EE client,

� an EJB module for the front-end server,

� an EJB module for the back-end server.

The application does the following:

1. The client sends a message to the front-end server.

2. On the front-end server the PassThrough session EJB captures the message,
then passes the message to the back-end server.

3. On the back-end server the Bouncer session EJB captures the message,
attaches its own message with the caller’s user name, and returns the
message to the front-end server.

4. The PassThrough session EJB gets the response, attaches its own message
together with the caller’s user name, client is the caller.

5. The client gets the response back from the front-end server and dumps it out
to the standard out.

Note: Identity Assertion is only available using the CSIv2 protocol.
108 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Figure 6-2 Identity Assertion application

There is a .properties file for the application, that stores the information for the
EJB clients, where to find the EJB server. It is stored in the
IDAssertionCommon.jar file, called: ejblocations_en_US.properties. You can
modify the settings using the Application Assembly Tool, WebSphere Studio or
editing the file in the deployed application. Specify the following properties for the
application, for example:

ejb.front.server.hostname=server01
ejb.front.server.port=2809
ejb.back.server.hostname=server02
ejb.back.server.port=2809

Leave the bean names unchanged.

The sample application is running in a three machine environment, scenario 2
might require a second client machine, unless you re-configure the first client.

In this environment the client machine is running the WebSphere Client runtime,
installed form the WebSphere Client CD, while the other two systems are running
the WebSphere Application Server base server.

Figure 6-3 Test environment for Identity Assertion

 Bean J
J2EE client

PassThrough

 Bean

Bouncer

Server01
EJB server

J

Server02

EJB server
Client01
Java client
 Chapter 6. Securing Java clients 109

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Scenario 1: BasicAuth and Identity Assertion
This is an example of a pure java client, Client01, accessing a secure EJB on
Server01 via user "user01". The EJB code on Server01 accesses another EJB
on Server02. This configuration uses Identity Assertion to propagrate the identity
of "user01" to the downstream server Server02. Server02 will trust that "user01"
has already been authenticated by Server01 because it trusts Server01. To gain
this trust, the identity of Server01 also flows to Server02 simultaneously and
Server02 will validate the identity by checking the trustedPrincipalList to ensure it
is a valid server principal. Server02 also authenticates Server01.

Figure 6-4 Scenario 1: BasicAuth and Identity Assertion

The following shows the steps for configuring Client01, Server1 and Server2.

Configuring Client01
Client01 requires message layer authentication with an SSL transport, follow the
steps to configure Client01.

1. The client needs to point to the sas.client.props file using the property in the
command line, see Section 6.3, “Configuring the Java client” on page 103 for
more information on this; you can use the following parameter:
com.ibm.CORBA.ConfigURL=file:/c:/websphere/appclient/properties/sas.clie
nt.props.

2. All further configuration involves setting properties within the sas.client.props
file, open it in a text editor at the <WEBSPHERE_CLIENT_ROOT>/properties
directory.

3. Enable SSL for the connection, in this case, SSL will be supported but not
required: com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false.

Server01
EJB server

J

Server02

EJB server

invocation
credential:
user01

received
credential:
user01

message layer

transport layer

user01/userpwd

SSL

message layer

transport layer

server01/serverpwd

SSL

identity assertion layer

user01

Client01
Java client
110 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
4. Enable client authentication at the message layer. In this case, client
authentication is supported but not required:
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=true.

5. Use all of the rest of the defaults in the sas.client.props file. Save the file then
close it.

Configuring Server01
In the Web Console, Server01 will be configured for incoming requests to
support message layer client authentication and incoming connections to support
SSL without client certificate authentication. Server01 will be configured for
outgoing requests to support identity assertion. Follow the steps to configure
Server01:

1. Configure Server01 for incoming connections. Start the Administrative
Console for Server01, then navigate to the Security -> Authentication
Protocol section.

a. Select CSIv2 Inbound Authentication.

i. Enable Basic Authentication, by selecting Supported.

ii. Disable Client Certificate Authentication by selecting Never.

iii. Disable Identity Assertion.

b. Select CSIv2 Inbound Transport.

i. Enable SSL, by selecting SSL-Supported.

2. Configure Server01 for outgoing connections.

a. Select CSIv2 Outbound Authentication.

i. Disable Basic Authentication, by selecting Never.

ii. Disable Client Certificate Authentication by selecting Never.

iii. Enable Identity Assertion.

b. Select CSIv2 Outbound Transport.

i. Enable SSL, by selecting SSL-Supported.

Configuring Server02
In the Web Console, Server02 will be configured for incoming requests to
support identity assertion and to accept SSL connections. Complete the following
to configure incoming connections.

Configuration for outgoing requests and connections are not relevant for this
scenario. Follow the steps to configure Server02:
 Chapter 6. Securing Java clients 111

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
1. Configure Server02 for incoming connections. Start the Administrative
Console for Server02, then navigate to the Security -> Authentication
Protocol section.

2. Select CSIv2 Outbound Authentication.

a. Disable Basic authentication, by selecting Never.

b. Disable Client Certificate Authentication by selecting Never.

c. Enable Identity Assertion.

3. Select CSIv2 Outbound Transport.

a. Enable SSL, by selecting SSL-Supported.

Testing the scenario
To test this scenario, simply launch the Identity Assertion J2EE clinet on the
client machine using the following command:

launchClient IDAssertion.ear

The client should be configured already to know where to find the WebSphere
Application Server, server01.

Provide the username, password and realm name when the client asks for it.

After running the client, you should see the messages from the different servers
in your console. Check if you see the message from the PassThrough bean, and
from the Bouncer bean, together with the caller user names.

You can also turn on tracing for the WebSphere Application Servers then check
the trace file and see what happened during the process.

Scenario 2: BasicAuth, Identity Assertion and Client
Certificates

This scenario is the same as Scenario 1 except for the interaction from client
Client02 to server Server02. Therefore, the configuration of Scenario 1 still
needs to be in place, but we have to modify server Server02 slightly and add a
configuration for client Client02. We will not be modifying the configuration for
Client01 or Server01; follow the steps from Section , “Scenario 1: BasicAuth and
Identity Assertion” on page 110.

Note: When you installed the Client Runtime, WebSphere asked for the
server name and the port number.
112 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Figure 6-5 Scenario 2: BasicAuth, Identity Assertion and Client certificates

Configuring Client02
Client02 requires transport layer authentication using SSL client certificates, to
accomplish this follow the steps below:

1. The client needs to point to the sas.client.props file using the property
com.ibm.CORBA.ConfigURL=file:/c:/websphere/appclient/properties/sas.clie
nt.props.

2. All further configuration involves setting properties within the sas.client.props
file, open it in a text editor at the <WEBSPHERE_CLIENT_ROOT>/properties
directory.

3. Enable SSL fo the connection, in this case, SSL will be supported but not
required: com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false.

4. Disable client authentication at the message layer.
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=false.

5. Enable client authentication at the transport layer. Here we are supporting it
and not requiring it:

Server01
EJB server

J

Server02
EJB server

invocation
credential:
user01

received
credential:
user01

message layer

transport layer

user01/userpwd

SSL

message layer

transport layer

server01/serverpwd

SSL

identity assertion layer

user01

Client01
Java client

J
Client02

Java client

transport layer

SSL: cn="user01",o=itso
 Chapter 6. Securing Java clients 113

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
com.ibm.CSI.performTLClientAuthenticationRequired=false,
com.ibm.CSI.performTLClientAuthenticationSupported=true.

6. Save the file then close it.

Configuring Server02
In the Web Console, Server02 will be configured for incoming requests to SSL
client authentication and Identity Assertion. Configuration for outgoing requests
is not relevant for this scenario. Follow the steps below to configure Server02.

Configure Server02 for incoming connections.

1. Configure Server02 for incoming connections. Start the Administrative
Console for Server02, then navigate to the Security -> Authentication
Protocol section.

2. Select CSIv2 Incoming Authentication.

a. Disable Basic authentication, by selecting Never.

b. Enable Client Certificate Authentication by selecting Supported.

c. Enable Identity Assertion.

3. Select CSIv2 Incoming Transport.

a. Enable SSL, by selecting SSL-Supported.

Scenario 3: Client certificate and RunAs system
This is an example of a pure java client, Client01, accessing a secure EJB on
Server01. Client01 authenticates to Server01 using SSL client certificates.
Server01 maps the cn of the DN in the certificate to a user in the local registry.
The user in this case will be "user01". The EJB code on Server01 accesses
another EJB on Server02. Because the RunAs mode is system, the invocation
credential is set as "Server01" for any outbound requests.

Note: An important concept to grasp is that these configuration options can be
mixed and matched. However, there is a precedence to which authentication
features will become the identity in the received credential. The order of
precedence is as follows:

1. Identity assertion
2. Message layer client authentication (BasicAuth or token)
3. Transport layer client authentication (SSL certificates)
114 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Figure 6-6 Scenario 3: Client certificate and RunAs system

Configuring Client01
Client01 requires transport layer authentication (SSL client certificates). Follow
the steps below to configure Client01.

1. The client needs to point to the sas.client.props file using the property
com.ibm.CORBA.ConfigURL=file:/c:/websphere/appclient/properties/sas.clie
nt.props.

2. All further configuration involves setting properties within the sas.client.props
file, open it in a text editor at the <WEBSPHERE_CLIENT_ROOT>/properties
directory.

3. Enable SSL for the connection, in this case, SSL will be supported but not
required: com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false.

4. Disable client authentication at the message layer.
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=false.

5. Enable client authentication at the transport layer. Here we are supporting it
and not requiring it:
com.ibm.CSI.performTLClientAuthenticationRequired=false,
com.ibm.CSI.performTLClientAuthenticationSupported=true.

6. Save the file then close it.

Server01
EJB server

J

Server02
EJB server

invocation
credential:
user01
RunAs:
System

received
credential:
Server01

transport layer

SSL: cn=user01,o=itso

message layer

transport layer

server01/serverpwd

SSL

Client01
Java client
 Chapter 6. Securing Java clients 115

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Configuring Server01
In the Web Console, Server01 will be configured for incoming connections to
support SSL with client certificate authentication. Server01 will be configured for
outgoing requests to support message layer client authentication. Follow the
steps below to configure Server01:

1. Configure Server01 for incoming connections. Start the Administrative
Console for Server01, then navigate to the Security -> Authentication
Protocol section.

a. Select CSIv2 Inbound Authentication.

i. Disable Basic Authentication, by selecting Never.

ii. Enable Client Certificate Authentication by selecting Supported.

iii. Disable Identity Assertion.

b. Select CSIv2 Inbound Transport.

i. Enable SSL, by selecting SSL-Supported.

2. Configure Server01 for outgoing connections.

a. Select CSIv2 Outbound Authentication.

i. Disable Basic Authentication, by selecting Never.

ii. Enable Client Certificate Authentication by selecting Supported.

iii. Disable Identity Assertion.

b. Select CSIv2 Outbound Transport.

i. Enable SSL, by selecting SSL-Supported.

Configuring Server02
In the Web Console, Server02 will be configured for incoming requests to
support message layer authentication over SSL. Configuration for outgoing
requests is not relevant for this scenario. Follow the steps below to configure
Server02:

1. Configure Server02 for incoming connections. Start the Administrative
Console for Server02, then navigate to the Security -> Authentication
Protocol section.

2. Select CSIv2 Outbound Authentication.

a. Enable Basic authentication, by selecting Supported.

b. Disable Client Certificate Authentication by selecting Never.

c. Disable Identity Assertion.

3. Select CSIv2 Outbound Transport.

a. Enable SSL, by selecting SSL-Supported.
116 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Scenario 4: TCP/IP Transport using VPN
This scenario illustrates the ability to choose TCP/IP as the transport when it's
appropriate to do so. In some cases, when two servers are on the same VPN, it
may be appropriate to select TCP/IP as the transport for performance reasons
since the VPN already encrypts the message.

Figure 6-7 Secnario 4: TCP/IP Transport using VPN

Configuring Client01
Client01 requires message layer authentication with an SSL transport. follow the
steps below to configure Client01.

1. The client needs to point to the sas.client.props file using the property
com.ibm.CORBA.ConfigURL=file:/c:/websphere/appclient/properties/sas.clie
nt.props.

2. All further configuration involves setting properties within the sas.client.props
file, open it in a text editor at the <WEBSPHERE_CLIENT_ROOT>/properties
directory.

3. Enable SSL for the connection, in this case, SSL will be supported but not
required: com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false.

4. Enable client authentication at the message layer. In this case, client
authentication is supported but not required:
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=true.

5. Save the file then close it.

Server01

EJB server

J

Server02

EJB server

invocation
credential:
user01

received
credential:
user01

message layer

transport layer

user01/userpwd

SSL

message layer

transport layer

token

TCP/IP

Client01

Java client

VPN
 Chapter 6. Securing Java clients 117

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Configuring Server01
In the Administrative console, Server01 will be configured for incoming requests
to support message layer client authentication and incoming connections to
support SSL without client certificate authentication. Server01 will be configured
for outgoing requests to support identity assertion. Follow the steps below to
configure Server01:

1. Configure Server01 for incoming connections. Start the Administrative
Console for Server01, then navigate to the Security -> Authentication
Protocol section.

a. Select CSIv2 Inbound Authentication.

i. Enable Basic Authentication, by selecting Supported.

ii. Disable Client Certificate Authentication by selecting Never.

iii. Disable Identity Assertion.

b. Select CSIv2 Inbound Transport.

i. Enable SSL, by selecting SSL-Supported.

2. Configure Server01 for outgoing connections.

a. Select CSIv2 Outbound Authentication.

i. Enable Basic Authentication, by selecting Supported.

ii. Disable Identity Assertion.

b. Select CSIv2 Outbound Transport.

i. Disable SSL, by selecting TCPIP.

Configuring Server02
In the Administrative onsole, Server02 will be configured for incoming requests to
support identity assertion and to accept SSL connections. Configuration for
outgoing requests and connections are not relevant for this scenario. Follow the
steps below to configure Server02:

1. Configure Server02 for incoming connections. Start the Administrative
Console for Server02, then navigate to the Security -> Authentication
Protocol section.

2. Select CSIv2 Outbound Authentication.

a. Enable Basic authentication, by selecting Supported.

b. Disable Client Certificate Authentication by selecting Never.

Note: It is possible to enable SSL for inbound connections and disable SSL
for outbound connections. The same is true in reverse.
118 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
c. Disable Identity Assertion.

3. Select CSIv2 Outbound Transport.

a. Disable SSL, by selecting TCPIP.

Scenario 5: Interoperability with WebSphere Application
Server 4.x

The purpose of this scenario is to show how secure interoperability can take
place between different releases simultaneously while using multiple
authentication protocols (SAS and CSIv2). For a WebSphere V5 server to
communicate with a WebSphere V4 server, the WebSphere V5 server must
support either IBM or BOTH as the protocol choice. By choosing BOTH, that
WebSphere V5 server can also communicate with other WebSphere v5 servers
which support CSI. If the only servers in your security domain are WebSphere
V5, it is recommended to choose CSI as the protocol since this will prevent the
IBM interceptors from loading. However, if there's a chance that any server will
need to communicate with a previous release of WebSphere, select the protocol
choice of BOTH.

Figure 6-8 Scenario 5: Interoperability with WebSphere Application Server 4.x

Server01

user01/userpwd

messa
ge layer

SSL

tra
nsport l

ayer
Server02

Server03

SSL
transport layer

user01/userpwd

message layer

WebSphere V5
SAS and CSIv2

WebSphere V4
SAS only

WebSphere V5
SAS or CSIv2
 Chapter 6. Securing Java clients 119

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Configuring Server01
Server01 requires message layer authentication with an SSL transport. Also, the
protocol for Server01 must be BOTH. Configuration for incoming requests for
Server01 is not relevant for this scenario. Follow the steps below to Configure
Server01.

1. Configure Server01 for outgoing connections. Start the Administrative
Console for Server01, then navigate to the Security -> Authentication
Protocol section.

2. Select Global Security.

a. Select CSI and SAS for active protocol.

3. Select CSIv2 Outbound Authentication.

a. Enable Basic Authentication, by selecting Supported.

b. Disable Client Certificate Authentication by selecting Never.

c. Disable Identity Assertion.

4. Select CSIv2 Outbound Transport.

a. Enable SSL, by selecting SSL-Supported.

Configuring Server02
All previous releases of WebSphere Application Server only support the SAS
authentication protocol. There are no special configuration steps needed other
than enabling global security on server (Server02).

Configuring Server03
In the Administrative console, Server03 will be configured for incoming requests
to message layer authentication and to accept SSL connections. Configuration
for outgoing requests and connections are not relevant for this scenario. follow
the steps below to configure Server03.

1. Configure Server03 for outgoing connections. Start the Administrative
Console for Server03, then navigate to the Security -> Authentication
Protocol section.

2. Select Global Security.

a. Select CSI and SAS or CSI for active protocol.

3. Select CSIv2 Outbound Authentication.

a. Disable Basic Authentication, by selecting Never.

b. Disable Client Certificate Authentication by selecting Never.

c. Enable Identity Assertion.

4. Select CSIv2 Outbound Transport.
120 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
a. Enable SSL, by selecting SSL-Supported.

6.5 J2EE application client
A J2EE application client operates in a similar fashion to a J2EE server-based
application and has access to some of the J2EE API’s. The application client will
perform a JNDI lookup to retrieve a home interface as per usual J2EE
programming practices. The process for developing and assembling a J2EE
application client is documented in the InfoCenter.

The ITSOBank application provided with this book has a J2EE application client
which requests service from an EJB operating in the remote EJB container. The
EJB’s home interface is called com.ibm.itsobank.ejbs.ConsultationHome which
the client accesses be querying the JNDI namespace. The source code for the
server and client components is included in the application EAR file. The client
does not contain any code for logging in since this mechanism is provided by the
client runtime environment.

The launchclient command (which is located in the <WAS_INSTALL_ROOT>/bin
directory) will configure the J2EE application client environment by examining the
application client’s deployment descriptor (application-client.xml) which is
provided with the application client. The client runtime environment must provide
access to the EJB JAR files that contain the classes used by the client. These
JAR files should be referenced in the client’s MANIFEST.MF file. The
recommendation is to provide the application EAR file, which will contain the
classes for the entire application.

ITSOBank J2EE client
The ITSOBank application uses a Java application with a graphical interface to
retrieve balance information for the accounts. The following steps describe how
to start the application client in order to access the secured resources.

1. Use the following command to launch the J2EE client.

launchclient itsobank.ear -CCBootstrapHost=<AppServer_hostname>
-CCBootstrapPort=<AppServer_port>

If you do not specify host name and port number the client will connect to the
localhost using the default port 2809.

2. If Global Security has been enabled, a window should appear requesting user
details (see Figure 6-9 on page 122).

Note: If Server03 is only communicating with WebSphere Application Server
Version 5.0 servers, it is recommended to choose the CSI protocol. Otherwise,
choose a protocol of BOTH.
 Chapter 6. Securing Java clients 121

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 6-9 J2EE client challenge

3. Enter the user name and password of a user in the consultant group.

4. Click OK.

Once the client has been authenticated, the appropriate remote method will be
invoked.

The client runtime determines which method to use to collect the user details by
checking the com.ibm.CORBA.loginSource property in the sas.client.props file.
The default value is prompt which causes the window to appear. However,
changing this to stdin will cause the client runtime to request the details on the
command line.

If the wrong user details are entered four times, the Application Server will throw
a javax.naming.NoPermissionException exception with a
com.ibm.websphere.security.auth.AuthenticationFailedException as the
reason.

6.6 Java thin application client
The thin application client phrase refer to the Java client that is not running within
the J2EE client container. It is a standalone Java application, that implements
EJB clients connecting to an EJB container of WebSphere Application Server.

The clients usually run on a client machine separated from the application server.
In order to connect to the server you have to provide the connection information
for the EJB client, including the server name and the port number (the default
port number for WebSphere Application Server V5 is 2809).

There are certain configurations you have to set for the JVM in order to operate
in a secure environment. These settings are the followings:

� Djava.security.auth.login.config - tells the JVM where to find the JAAS login
configuration file. For example:
122 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecCli.fm
Djava.security.auth.login.config=file:properties/wsjaas_client.conf

� Dcom.ibm.CORBA.ConfigURL - points to the file containing the client SAS
settings for IBM SAS and CSIv2. For example:

Dcom.ibm.CORBA.ConfigURL=file:properties/sas.client.props

There are libraries also you have to include in your classpath when running a
Java thin client in a secure environment. You will need the following .jar files from
the WebSphere library at <WebSphere_root>/libs:

� wssec.jar

� namingclient.jar

� lmproxy.jar

� sas.jar

� ecutils.jar

As an additional library do not forget to add the EJB client code, home and
remote classes of the EJB, to your classpath.

In your thin Java application you can leave the authentication challenge to the
WebSphere code; or you can program your own login module with your own
callback implementation.

The libraries included in the classpath contain the necessary code for the client
to perform the authentication for WebSphere. The default source for login is the
GUI login panel, you can change it to something else in the SAS client
configuration file.

For more information about the programmatic login for thin Java clients refer to
8.7.2, “Client-side login with JAAS” on page 209.

Unzip the itsobankThinClient.zip file to a directory of your choice. You will find the
source and compiled classes in the directory. There are also supporting
properties files and key files for the secure connection.

In order to run the client, use the following syntax:

runclient server_name server_port [login]

The server_name and the server_port defines the remote application server
location for the remote EJB connection. The optional login parameter tells the
application to use programmatic login instead of the built in login mechanism.

The following example runs the application using WebSphere’s login challenge:

runclient appsrv01 2809
 Chapter 6. Securing Java clients 123

6573chSecCli.fm Draft Document for Review November 6, 2002 2:37 pm
6.7 Where to find more information
For more information on the security aspects of J2EE, see the following
documents:

� The Java 2 Platform Specification v1.3 at
http://java.sun.com/j2ee/docs.html

� The Object Management Group (OMG) specification about CSIv2 at
http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv
2

124 IBM WebSphere V5.0 Security Handbook

http://java.sun.com/j2ee/docs.html
http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Chapter 7. Securing Enterprise
Integration components

This chapter consists of the discussion of three enterprise integration
components security:

� Web services

� Messaging Services

� Java 2 Connectors (J2C)

These are all major areas in the context of application server, however from the
security point of view this book will discuss them under one chapter.

7

© Copyright IBM Corp. 2002 125

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
7.1 Web Services security
Web Services became a hot area in relation with Web applications, it is a fairly
new technology with remarkable promises. There are areas in Web Services yet
to be solved or refined; like security, it is an essential part of Web Services, but
the recommendations have been just worked out recently and it will take time to
get mature.

This book will not introduce the concept Web Services, and it will not discuss the
Web Services architecture; for a good introduction and more deatils on this topic
read the IBM Redbook: Web Services Wizardry with WebSphere Studio
Application Developer SG24-6292.

In this section you will find information, how to create a secured Web Service
using digital certificates in WebSphere Studio. You will find an introduction to the
WS-Security recommendation, that provides the security fundamentals for Web
Services. At the end a few sections will discover how the Web Services Gateway
is involved in Web Services security.

7.1.1 Digital Certificates
Digital signatures provide integrity, signature assurance and non-repudiation
over Web data. Such features are especially important for documents that
represent commitments such as contracts, price lists, and manifests. In view of
recent Web technology developments, the proposed work will address the digital
signing of documents (any Web resource addressable by a URI) using XML
syntax. This capability is critical for a variety of electronic commerce applications,
including payment tools.

Developing secure Web Services with WebSphere Studio
Now we are going to write a secured Web service to provide customer account
balance details.

There is one pattern of evolving Web Services from an existing Web Server
applications known as “Browser to Server Pattern”. This pattern wraps an
existing application as a service using a SOAP message as the service
invocation. The Web server provides a runtime execution container that definies
its own security model with policy information derived from a deployment
descriptor configured by the deployer of the Web server application. This pattern
typically includes a mechanism for associating the identity of the invoking entity
(the browser client) with the executing application instance and allows the
application to continue to function as it did before.
126 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
We already have a ConsultationHelper class that provides this information and
we are going to convert this as the Web Service.

Generating the secure Web Service
In this section, a new secure Web Service will be added to the ITSOBank sample
application; for development WebSphere Studio Application Developer(WSAD)
V5.0 is used.

1. Select to the J2EE perspective, switch to the J2EE Navigator and select the
ConsultationHelper.java as indicated on the picture below Figure 7-1.

Figure 7-1 ConsultationHelper.java

2. Developers can look for this class in the package com.ibm.itsobank.helpers.
You might want to have a look at the code for this ConsultaionHelper class
before we generate a secured Web service for this component.

3. Select File -> New -> Other from the menu to create a new Web services in
WebSphere Studio.
 Chapter 7. Securing Enterprise Integration components 127

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 7-2 Creating a new Web Service

4. Select Web Services in the left-hand pane, then select Web Services in the
right-hand pane. Click Next to start the Web services wizard.
128 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-3 Selecting Web Service type and client proxy type

5. In the Service section for Web service type select Java bean Web servcie
from the drop-down list. Also click Generate a proxy checkbox and Generate
a sample. click Next
 Chapter 7. Securing Enterprise Integration components 129

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 7-4 Web Service Deployment Settings

6. For Web Service Deployment Settings, select Use Defaults that uses
Run-time protocol selection as IBM SOAP version 2.3 and Server selection
as ITSOBank which we already creatred.

Figure 7-5 Web Service JavaBean selection

7. In Selecting JavaBean window the class name should come up as indicated.
If not then click Browse Classes and select ConsultationHelper, then click
Next.
130 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-6 Web Service Java Bean identity

8. In Web Service Java Bean Identity window, change WebServcice URI to
urn:ConsultationHelper and make sure you check the Use secure SOAP
check box as shown in Figure 8-6. Click Next.
 Chapter 7. Securing Enterprise Integration components 131

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 7-7 Web Service Java Bean Methods

9. On the Web Service Java Bean Methods window, select only
getBranchBalance() and getCustomerBalance() methods. To check the
type mappings you may like to click Show server (Java to XML) type
mappings. Click Next.

Figure 7-8 Web Service Binding Proxy Generation
132 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
10.On the Web Service Binding Proxy Generation window, change the Class to
com.ibm.itsobank.wsproxy.ConsultationHelperProxy. Also make sure Use
secure SOAP(WebSphere Only) is checked. Click Next.

Figure 7-9 Web Service Test Client

11.In Web Service Test Client window, do not select Launch the Universal Test
Client. click Next.

Figure 7-10 Web Service Sample Generation
 Chapter 7. Securing Enterprise Integration components 133

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
12.As shown in the Figure 7-10 on page 133, in Web Service Sample Generation
window, make sure Generate Web Services sample JSPs, Generate a
sample and the two methods are selected. Click Next.

Figure 7-11 Web Service Publication

13.We reached the end of the Web services wizard. Since we will not publish this
Web Service leave both the check boxes unselected. Click Finish.

After completing the last window of the wizard, it will take a couple of minutes for
WebSphere Studio to generate all the code depending on your machine’s
performance. Once it has finished, the WebSphere Test Environment in
WebSphere Studio Application Developer will start automatically.

Looking at the generated code
After generating the code for the Web service, the following files will appear in

the project:

Table 7-1 Generated files for the new Web service

File name Purpose

admin/* Administering the Web services

conf/sig-config.dtd DTD for the signature header handler

conf/ver-config.dtd DTD for the verification header handler

conf/cl-editor-config.xml Client’s envelope editor descriptor

conf/cl-sig-config.xml Client’s signature header handler

conf/cl-ver-config.xml Client’s verification header handler

conf/sv-editor-config.xml Server’s envelope editor

conf/sv-sig-config.xml Server’s signature header handler
134 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Testing the Web Service
After generating the code, you may want to test the code.

conf/sv-ver-config.xml Server’s verification header handler

key/SOAPclient Client’s keyring file in JKS

key/SOAPserver Server’s keyring file in JKS

key/sslserver.p12 Keyring file for the SSL connection in
PKCS12 format

log/dummy.log Dummy file in the log directory

sample/Consultation/* Sample application for testing purposes

wsdl/Consultation-binding.wsdl WSDL binding configuration file

wsdl/Consultation-service.wsdl WSDL binding service file

dds.xml Deployment descriptor for all the services

soap.xml SOAP server configuration file

WEB-INF/classes/com/ibm/itsobank/wspr
oxy/ConsultationHelperProxy.class

SOAP Client for sample application

WEB-INF/isd/java/com/ibm/itsobank/wspr
oxy/Consultation.isd

Deployment descriptor for the
particularservice

WEB-INF/lib/* Java libraries required for Web services

Important: The generated code has two JKS key files, one for the SOAP
server and one for the SOAP client. The keys provided are out of date,
unfortunately they will not work. The keys provided with the ITSOBank sample
are new, updated keys for testing purposes.

For your runtime environment you will want to use your own key files.

Note: The test client has been removed from the ITSOBank sample
application, although you will find some of the code in one of the functions
implemented using the Web Services.

File name Purpose
 Chapter 7. Securing Enterprise Integration components 135

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Follow the steps below to use the generated test client in order to test the Web
Service.

1. Open the Server perspective or switch to it if you have it already opened.

2. Find the following ConsultationHelper folder by clicking itsobankWeb -> Web
Content -> sample -> ConsultationHelper.

3. Right-click the TestClient.jsp file, then select Run on Server. A Web browser
opens with the requested URL.

A window appears with three frames. In the leftmost frame, the following
methods should be listed:

– setEndPoint

– getEndPoint

– getBranchBalance

– getCustomerBalance

4. Click the getBranchBalance link.

5. The upper-right frame changes: a text filed appears for you to input the
branch ID. Type raleigh into the field, then click invoke.

6. After invocation the result frame changes and, after a couple of seconds and
several messages on the console, the result should appear in the frame.

7. Check the getCustomerBalance method also, with the following parameters:

– Customer ID: johnd

– Account Number: 11223344-12345678

If the code is working, you should see the proper numbers under the result
frame after invoking the methods with the parameters.

XML-SOAP Admin Tool
The Web services Admin tool is provided for the sample Web services and is
generated automatically with the code. Start a browser, then enter the following
URL:

http://<your_server>/itsobank/admin/index.html

Click the list all services link to see all the available services for this sample; you
should see the picture shown in Figure 7-12.
136 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-12 XML-SOAP Admin

The service listing shows one service available: urn:ConsultationHelper.

The services can be stopped or started under the related links within the
XML-SOAP Admin tool.

Developing the ITSOBank Web service client
You will find a Web Service sample client developed based on the sample client
code generated by the Web Services wizard.

The main code for the sample client came from the results.jsp file; most of the
code was reused from there and modified to fit into the sample application. There
are only two pages used for the Web Services client sample, find them under the
Web module, websvc directory. The query.html file collects the input for the Web
Service invocation on a HTML form; the websvcresult.jsp contains the code to
invoke the Web service and present the results on the resulting page. For more
information open the files and check the comments in the source.

If global security is enabled the Web service client will not work as it is, because
the Web resources for the client (query.html, websvcresult.jsp, rpcrouter) are not
secured, no user authentication is performed, no credentials are propageted
while invoking the service. In order to resolve this problem, either you can
disable global security for testing purposes or you can secure the Web resources
listed previously by following the same process from Section 7.1.2, “HTTP Basic
Authentication” on page 143.
 Chapter 7. Securing Enterprise Integration components 137

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Using the ITSOBank Web service client
You can access the ITSOBank Web service client from the index page, by
selecting the Consultation Client link. On the next page set the endpoint in case
you need to, by default the Web service is hosted on the same system where the
client is running.

You can get the balance either for a customer account or a branch account, by
filling out the input fields and submitting your request.

The returning result page should show the account balance of your choice.

Tracing SOAP Requests / Checking the logs
For better understanding, let us check SOAP request and SOAP response by
monitoring TCP/IP packets that are exchanged between the server and the
client.

1. Go to the Server Perspective.

2. Create a new server and a server configuration as depicted below.
138 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-13 TCP/IP Monitoring Server

3. Click Finish.

4. Open Server configuration for the newly created TCP/IP monitoring server.

5. Set Local Port and Remote Port. For us, Remote Port will be 9080 and Local
Port is 8080. Local Port is the port TCP/IP Monitoring Server will work on and
Remote Port is the one on which the actual server is running on.

6. Save this configuration and start the TCP/IP Monitoring Server.

Make changes of the port number for the test client of the Web service pointing to
TCP/IP Monitoring Server instead of the actual server. Using setEndPoint
method change the rpcrouter URL also to TCP/IP Monitoring Server URL. When
you test getBranchBalance method, you will see the SOAP request as below.

Example 7-1 SOAP Request with certificate

POST /itsobank/servlet/rpcrouter HTTP/1.0
Host: localhost:9080
 Chapter 7. Securing Enterprise Integration components 139

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Content-Type: text/xml; charset=utf-8
Content-Length: 3933
SOAPAction: ""
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Header>
<SOAP-SEC:Signature SOAP-ENV:actor=""
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:mustUnderstand="1"
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"><Signature
xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo Id="sig">
 <CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>P5yoY11dxamU3aeMkYHqNm/XstE=</DigestValue>
 </Reference>
 <Reference Type="http://www.w3.org/2000/09/xmldsig#SignatureProperty"
URI="#timestamp">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>/vhLHTEeNcI7058053YIFvTQwmw=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 WNYOBJzuDlAcMAh+DgHENluKRLt4CqcvqaQ4FMDbctRjrX1afovzg9SKJ1wfA/rBm8jKJ9hI
 nvhbeqkZqmMcaRl7ztWFpMPjXxRT8BiYl71pLAERavIaFmwddWteYhMBgEXOYkR2w1cGjaPq
 VAZJxGSn/SkvrmL3x2adXThXMmw=
 </SignatureValue>
 <KeyInfo>
 <KeyName>soaprequester</KeyName>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
 zLc99nWY+GsSwG9iI64iU9XdSKzljLqGbGjZjBgLac0ME/MqyVZSL9D58r4M11jooQ
 ea4OtxVwSZrjwn1fVrlq9GWSxB8qm0qhWfh4HKzaL/CTDLNCENoWOLv38y+dNFbwRX
 L30U0rDg8WeE6h7W2UNw0G4gf98i4Y7P0SVNX58=
 </Modulus>
140 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 <X509Data>
 <X509Certificate>
MIIDQTCCAqqgAwIBAgICAQQwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAPBgNVBAgT
...
xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097dmz09RosDKkLlM
 </X509Certificate>
 </X509Data>
 </KeyInfo>
 <Object>
 <SignatureProperties>
 <SignatureProperty SOAP-SEC:id="timestamp" Target="#sig">
 <timestamp>Mon Jul 15 10:56:05 EDT 2002</timestamp>
 </SignatureProperty>
 </SignatureProperties>
 </Object>
</Signature></SOAP-SEC:Signature>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:getBranchBalance
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:ConsultationHelper">
<branchID xsi:type="xsd:string"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">raleigh</branchID>
</ns1:getBranchBalance>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP Response will be something similar as the following example.

Example 7-2 SOAP Response

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Set-Cookie: JSESSIONID=0000WWF02LRYHHRFWJHFO4DEJYQ:-1;Path=/
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Content-Type: text/xml; charset=utf-8
Content-Length: 3743
Content-Language: en-US
Connection: close
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
 Chapter 7. Securing Enterprise Integration components 141

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
<SOAP-SEC:Signature
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
SOAP-ENV:actor="" SOAP-ENV:mustUnderstand="1"><Signature
xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo Id="sig">
 <CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"></CanonicalizationMe
thod>
 <SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></SignatureMethod>
 <Reference URI="">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></Transform>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
 <DigestValue>oVD/QxRYXFg02v6rK53DZKntqlI=</DigestValue>
 </Reference>
 <Reference Type="http://www.w3.org/2000/09/xmldsig#SignatureProperty"
URI="#timestamp">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></Transform>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
 <DigestValue>/vhLHTEeNcI7058053YIFvTQwmw=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 MpazDPPD1QIk7n5ledad0YC85DXnFIZHD9/jquVQdkj3q35yMLfflZLLtliO7byRt+WQpyEO
 JvIF7jHG1tN9Vueh2FANmhd5y5CI68uZHouXqEBU8rXIRJB0mI4xK5ZUYa0NzL6rsNXbEvHr
 7hQcz9nkAtc65JC8Hak+yLhQqf0=
 </SignatureValue>
 <KeyInfo>
 <KeyName>soapprovider</KeyName>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
 raakNJ1JzkPUuvPdXRvPOOCl12nBwmqvt65dk/x+QzxxarDNwH+eWRbLyyKcrAyd0X
 GV+Zbvj6V3O9DSVCZUCJttw6bbqqeYhwAP3V8s24sID77tk3gOhUTEGYxsljX2orL2
 6SLqFJMrvnvk2FRS2mrdkZEBUG97mD4QWcln4d0=
 </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 <X509Data>
 <X509Certificate>
142 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
MIIDQDCCAqmgAwIBAgICAQUwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAPBgNVBAgT
...
Ss47F4D6woPsAd2ubg/YhMaXLTSyGxPdV3VqQsutuSgDUDoqWCA=
 </X509Certificate>
 </X509Data>
 </KeyInfo>
 <Object>
 <SignatureProperties>
 <SignatureProperty Target="#sig" SOAP-SEC:id="timestamp">
 <timestamp>Mon Jul 15 10:56:05 EDT 2002</timestamp>
 </SignatureProperty>
 </SignatureProperties>
 </Object>
</Signature></SOAP-SEC:Signature>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns1:getBranchBalanceResponse xmlns:ns1="urn:ConsultationHelper"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:int">99800</return>
</ns1:getBranchBalanceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Another way to look at these details is through checking the log files. Under
itsobankWeb project -> Web Content -> log the SOAPVHH-all-sv.log file
contains all the log entries of the SOAP requests with certificates that comes to
the server and the SOAPVHH-all-cl.log contains the SOAP responses.
SOAPVHH-fail-cl.log and SOAPVHH-fail-sv.log contains all the failed requests
and responses.

7.1.2 HTTP Basic Authentication
The following sections will explain how to enable security in WebSphere
Application Server V5 using the Administrative Console.

HTTP Basic Authentication
The following steps show how to secure the rpcrouter servlet in the enterprise
application and use Basic Authentication for authentication purposes.

1. In WebSphere Studio go to the Server perspective.

2. In the Server Configuration expand the Server Configurations double-click
the ITSOBank server. This opens the server configuration window.

3. In that window, under Security -> Cell Settings select the Enable Security
check box.
 Chapter 7. Securing Enterprise Integration components 143

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
4. Below that check box, for Local OS Authentication provide the details of
Server ID, Server Password and Confirmed Password.

5. Save this configuration.

6. Open web.xml (Web Deployment Descriptor) under the itsobankWeb ->
Web Content -> WEB-INF folder.

7. Click pages tab of the deployment descriptor view.

8. In this view, under Login in the drop down list for Authentication method
select Basic. You can give a name to this Realm in the text box provided for
Realm name.

9. In the same window, switch to the Security tab.

10.Add a new Security Role, for example: webservicesrole.

11.And click Security Constraints button just below the Securiy heading.

12.Now Add a Security Constraints. Now under Web Resource Collections
you should see an entry named (New Web Resource Collection). Select
that and click Edit. This opens a new window called Web Resource
Collections.

13.Under HTTP Methods select GET and POST. We need to protect the URLs
by HTTP Basic Authentication. First let us protect the rpcrouter servlet. For
that add /servlet/rpcrouter to the URL section.

14.Save the Web deployment descriptor.

15.Under itsobank -> META-INF open application.xml.

16.Switch to the security tab, click Gather, this will gather all the security roles
defined for all the modules.

17.Now click the security role that we have defined, webservicesrole, then under
WebSphere Bindings select All authenticated users.

18.Save and close the configuration.

Go to server perspective to re-start the server. This is done so that the server
picks up the security information that we have defined.

We also need to modify the code that is generated by WebSphere Studio to
make this HTTP Basic Authentication work for us. For this create a new proxy
client without WebSphere Security for better understanding. Please refer to the
redbook Web Services Wizardy with WebSphere Studio Application Developer
SG24-6292 for more information.

Modify the Web services proxy code generated by the wizard to put basic
authentication credentials.
144 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Open the Web Service proxy client that is generated by WebSphere Studio
Application Developer. In this class, you will see the methods that we exposed as
Web services, for example in our case you would see getBranchBalance and
getCustomerBalance methods, add the following lines to the code.

Example 7-3 Setting user name and password for the SOAP transport

SOAPHTTPConnection soaptransport = new SOAPHTTPConnection();
soaptransport.setUserName("your-userName");
soaptransport.setPassword("your-Password");
call.setSOAPTransport(soaptransport);

Save the proxy class and re-start the test environment server. Now when you
test your Web Service again, if you use TCP/IP Server to chech the SOAP
request, the SOAP Header will consist of user credentials. But this information is
by default encrypted using Base64 encryption algorithm. So you won’t be able to
read the user name and password.

HTTP Basic Authentication with SSL
It is very easy to use these Web Services, we developed, using SSL. Make sure
you have HTTPS port enabled for your test environment in WebSphere Studio by
checking it on server configuration page.

We know the URL for our test Web service sample as
http://localhost:9080/itsobank/sample/ConsultationHelper/TestClient.jsp
. For using SSL we just need to change the port number from 9080 to 9443 in the
above URL and check
http://localhost:9443/itsobank/sample/ConsultationHelper/TestClient.jsp
in the browser, you should see the certificate appear.

Secured and non-secured services together
It is possible many times that we need to secure some services and we do not
need to secure some services. Even for the services we secure, if all those
services are accessed using the same URL then if a user supplies the
credentials for one service, with that the user can access any service. To protect
this, we need to create different URLs for each secured service and allow them
for different users, groups and roles.

For example create two servlet URLs, one is protected and one is not. If you see
the web.xml sample below, you will find that this is very simple, as you just have
to create another URL for services. And this security configuration is defined in
the above sections.

Example 7-4 Secured and non-secured Web Services together

<servlet>
 Chapter 7. Securing Enterprise Integration components 145

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
<servlet-name>unprotectedRPCRouter</servlet-name>
<display-name>unprotectedRPCRouter</display-name>
<servlet-class>com.ibm.soap.server.http.WASRPCRouterServlet</servlet-class>
<init-param>

<param-name>FaultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>protectedRPCRouter</servlet-name>
<display-name>Apache-SOAP RPC Router</display-name>
<description>no description</description>
<servlet-class>com.ibm.soap.server.http.WASRPCRouterServlet</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>

This security configuration can even be done using Application Assembly
Tool(AAT). For more information you can look at Chapter 10, “Administering
WebSphere security” on page 233

7.1.3 WS-Security
The Web Services Security specification (WS-Security) provides a set of
mechanisms to help developers of Web Services secure SOAP message
exchanges. Specifically,WS-Security describes enhancements to the existing
SOAP messaging to provide quality of protection through the application of
message integrity, message confidentiality, and single message authentication to
SOAP messages. Additionally, WS-Security describes how to encode binary
security tokens(security token represents a collection of claims like name,
identity, key, group, privilege, capability and so on) and attach them to SOAP
messages.

Security tokens assert claims which can be coupled with digital signatures to
provide mechanisms for demonstrating evidence of the sender’s knowledge of
the keys described by the security token. In addition the definition of a SOAP
header element provides a mechanism for "binding" or "associating" the
signature with the claims in the security token.

WS-Security describes enhancements to SOAP messaging to provide quality of
protection through message integrity, message confidentiality, and single
message authentication. These mechanisms can be used to accommodate a
wide variety of security models and encryption technologies.
146 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
WS-Security also provides a general-purpose mechanism for associating
security tokens with messages. No specific type of security token is required by
WS-Security. It is designed to be extensible, for example: support multiple
security token formats, or a client might provide proof of identity and proof that
they have a particular business certification.

Additionally, WS-Security describes how to encode binary security tokens. The
specification describes how to encode X.509 certificates and Kerberos tickets as
well as how to include opaque encrypted keys. It also includes extensibility
mechanisms that can be used to further describe the characteristics of the
credentials that are included with a message.

Web Services security specifications
WS-Security only provides foundation for other security specifications. Layered
on this we have a policy layer model (WS-Policy), a trust model (WS-Trust), and
a privacy model (WS-Privacy). These specifications provide us the foundation to
establish secure interoperable Web Services across the domain. The follow-on
specifications include secure conversation (WS-SecureConversation), federated
trust (WS-Federation), and authorization (WS-Authorization). All these
specifications should provide security framework specifications related to
auditing, management, and privacy.

Figure 7-14 Web Services Security Specifications

The following sections will provide more details on the initial specifications.

WS-Policy
WS-Policy describes the capabilities and constraints of the security policies on
intermediaries and endpoints. This way senders and receivers can define their
requirements and capabilities.

SOAP Foundation

WS-Security

WS-
SecureConversation

WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

Follow-On Specifications

Initial Specifications

WS-Security

SOAP Foundation
 Chapter 7. Securing Enterprise Integration components 147

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
WS-Policy will be fully extensible and will not place limits on requirements and
capabilities that may be described. However the specification will likely identify
several basic service attributes, encoding formats, security token requirements
and supporting algorithms. This specification will define a generic SOAP policy
format, which can support more than just security policies. This specification will
also define a mechanism for attaching service policies to SOAP messages.

WS-Trust
WS-Trust describes a framework for trust models that enables Web Services to
securely interoperate. This establishes the model for both direct and brokered
trust relationships.

WS-Trust specification will describe how existing direct trust relationships may be
used as the basis for brokering trust through the creation of security token
issuance services. These security token issuance services build on WS-Security
to transfer the requisite security tokens in a manner that ensures the integrity and
confidentiality of those tokens. This specification will also describe how several
existing trust mechanisms may be used in conjunction with this trust model.

Finally, the trust model will explicitly allows for, but will not mandate, delegation
and impersonation by principals. Note that delegation is consistent with
impersonation, but provides additional levels of traceability.

WS-Privacy
WS-Privacy describes a model for how Web Services and requesters state
subject privacy preferences and organizational privacy practice statements.

By using a combination of WS-Policy, WS-Security, and WS-Trust, organizations
can state and indicate conformance to stated privacy policies. This specification
will describe a model for how a privacy language may be embedded into
WS-Policy descriptions and into WS-Security.

Web Services security model
SOAP message acts as a requester to the Web Service and the response from
the Web Service is also a SOAP message. So protecting the message content
from illegally accessed (confidentiality) or illegally modified (integrity) are the
primary security concerns of Web Services.

Today's Web service application topologies include a broad combination of
mobile devices, gateways, proxies, load balancers, demilitarized zones (DMZs),
outsourced data centers, and globally distributed, dynamically configured
systems. All of these systems rely on the ability for message processing
148 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
intermediaries to forward messages. Specifically, the SOAP message model
operates on logical endpoints that abstract the physical network and application
infrastructure and therefore frequently incorporates a multi-hop topology with
intermediate actors.

Point-to-Point Configuration
The available Security solutions like Secured Socket Layer (SSL) / Transport
Layer Security (TLS) and IPSec like network layer solutions provide features like
authentication, data integrity and data confidentiality. But the main problem is
that these solutions enable only point-to-point secure sessions.

Figure 7-15 Point-to-Point Configuration

End-to-End Configuration
When data is received and forwarded on by an intermediary beyond the transport
layer both the integrity of data and any security information that flows with it
maybe lost. This forces any upstream message processors to rely on the security
evaluations made by previous intermediaries and to completely trust their
handling of the content of messages. What is needed in a comprehensive Web
service security architecture is a mechanism that provides end-to-end security.
Successful Web service security solutions will be able to leverage both transport
and application layer security mechanisms to provide a comprehensive suite of
security capabilities.

Figure 7-16 End-to-End Configuration

Security Token Service Model
Following explains the Security Token Service Model to enable us to achieve
end-to-end security goals. Figure 7-17 explains us that any requester may also
be a service, and that the Security Token Service may also fully be a Web
service, including expressing policy and requiring security tokens.

Requester Intermediary Web Service

Security Context{ Security Context{

Requester Intermediary Web Service

Security Context
 Chapter 7. Securing Enterprise Integration components 149

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 7-17 Security Token Service Model

A Web service can require that an incoming message prove a set of claims (for
example: name, key, permission, capability, and so on). If a message arrives
without having the required claims, the service may ignore or reject the message.
We refer to the set of required claims and related information as policy

A requester can send messages with proof of the required claims by associating
security tokens with the messages. Thus, messages both demand a specific
action and prove that their sender has the claim to demand the action.

When a requester does not have the required claims, the requester or someone
on its behalf can try to obtain the necessary claims by contacting other Web
services. These other Web services, which we refer to as security token
services, may in turn require their own set of claims. Security token services
broker trust between different trust domains by issuing security tokens.

Scenarios
The following sections discuss some of the WS-Security scenarios. There are
only a few of the possible scearions are covered here, those that will give you an
introduction to the topic and an easy understandig of the topic.

Direct Trust using basic authentication and Transport-Level
Security

In this scenario the requester opens a connection to the Web Service by
exchanging a public key pair to establish a secure channel over an HTTP
connection. Then the server prompts for user ID and password through an HTTP
message exchange and these user credentials are carried through the HTTP
headers.

Requester

Security
Token

Security
Token

Service
Policy

Claims
Web

Service

Policy

Policy

Security
Token

Security
Token

Claims

Claims
150 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-18 Direct Trust using basic authentication and Transport-Level Security

The client opens a connection to the Web Service using secure transport. It
sends its request and includes a security token that contains its username and
password. The service authenticates the information, processes the request and
returns the result.

Figure 7-19 Sequence of events for Scenario using <UsernameToken>

In this scenario, the message confidentiality and integrity are handled using
existing transport security mechanisms.

Figure 7-19 shows the sequence of events for this scenario.

1. The client opens a connection to the Web Service using a secure transport
such as SSL.

2. The client constructs a SOAP message. There is a <UsernameToken>
element in the <Security> header, this element contains the client's username
and password for the service. The password can be sent in as plain text
because the transport layer is secure.

3. The message is sent to the service.

4. The service extracts the <UsernameToken> element and validates the user
name and password.

5. Since the validation succeeded, the service processes the request and
returns the result.

Requester
Web

Service
 Chapter 7. Securing Enterprise Integration components 151

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Direct Trust using Security Tokens
This scenario illustrates the use of a security token that is directly trusted by a
Web service.

Figure 7-20 Direct Trust using Security Tokens

Here direct trust means that the requester's security token (or its signing
authority) is known and trusted by the Web service. This scenario assumes that
the two parties have used some mechanism to establish a trust relationship for
use of the security token. This trust may be established manually, by configuring
the application, or by using a secure transport to exchange keys. By secure
transport of keys we mean that a transport such as SSL (or other mechanism or
process) can be used as a way for a trusted party to assert the validity of a key or
security token to a recipient party. No assumption is made about the
organizational relationship between the parties.

Figure 7-21 Sequence of events for using Direct Trust using Security Tokens

Figure Figure 7-21 shows the sequence of events for this scenario. As you can
see there is no SSL handshake as it happened in the previous scenario.

1. The client sends a message to a service and includes a signed security token
and provides proof-of-possession of the security token.

2. The service verifies the proof and evaluates the security token.

3. If the signature on the security token is valid and is directly trusted by the
service then it processes the request and returns a result.

Security Token Acquisition
In some cases, the security token used is not passed as part of the message.
Instead, a security token reference is provided that can be used to locate and
acquire the token.

Requester
Web

Service
152 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-22 Security Token Acquisition

Figure 7-23 shows the main events in the scenario of using Security Token
Acquisition.

Figure 7-23 Scenario using Security Token Acquisition

Following are the series of events that happens in this scenario.

1. The client constructs the SOAP message.

2. The client computes a signature for the key elements of the message using
XML Signature.

3. The client's X.509 certificate is at a specific Web location. Consequently,
rather than pass it in the message, the client provides a reference to its X.509
certificate using the <SecurityTokenReference> element in the <Security>
header.

4. The client sends the request to the service.

5. The service extracts the reference to X.509 certificate from <Security>
header.

Requester
Web

Service

Security
Token

Service
 Chapter 7. Securing Enterprise Integration components 153

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
6. The service fetches the certificate from the specified URL location.

7. The service verifies the certificate, its validity and its signature.

8. When the service authenticates the certificate it processes the message and
returns a result.

Firewall Processing
Firewalls remain a critical component of the Web Services security architecture
and WS-Security Specifications also addresses security on Firewall.

Figure 7-24 Firewall processing

As shown in the Figure Figure 7-25 firewall processes the incoming SOAP
messages and only allows those from authorized clients to penetrate the firewall.

Figure 7-25 Scenario using Firewall Processing

In this scenario, firewall observes the security tokens used to sign the message.
If the signature is valid, and the signing the authority for the security token is
trusted to authorize messages into the firewall, and then message is allowed;
otherwise it is rejected. In some cases, a signature may specifically reference the
firewall as a SOAP actor.

Requester
Web

Service

Authorized
Requester

Unauthorized
Requester
154 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
This scenario would operate as follows:

1. The client constructs a SOAP message and sends it to a Web Service.

2. The message passes through a firewall prior to arriving to the Web Service.

3. The firewall examines the security token(s) and signatures in the <Security>
header.

4. Firewall makes an assessment on the validity of the message and possibly
using external data, makes a determination as to whether or not to authorize
the message passing through the firewall.

When the SOAP message is without any encryption the firewall will be able to
examine the message headers for authorization, but what if it is encrypted? As
an end-to-end security SOAP message is encrypted. However it can still validate
message as follows:

1. After signing and encrypting the message, the client adds an additional
<Security> header with the firewall listed as the SOAP actor. Into this header
block the client places a <ds:Signature> element containing a signature over
the encrypted data. Also using <BinarySecurityToken> the signature is
prepended.

2. From <Security> header firewall reads and validated security token and
signature.

3. The firewall then makes a determination, possibly using external data, as to
whether or not to authorize the message to pass through the firewall.

7.1.4 Security with the Web Services Gateway
WebSphere Web Services GateWay is bundled with WebSphere Application
Server V5 Network Deployment package. After installing Network Deployment,
we need to install the wsgw.ear and wsgwsoap1.ear on the application server.

Gateway Security Implementation
Web Services GateWay provides HTTP Basic Authentication and authorization
mechanism based upon the security features provided by WebSphere
Application Server.

Security can be applied at two levels:

Important: Gateway-level authentication must be enabled for enabling
operational-level authentication. You must do the same even before installing
channels. When we enable gateway-level authentication, filters will have
access to the requesto’s authentication information.
 Chapter 7. Securing Enterprise Integration components 155

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
� Enable gateway-level authentication

� Enable operation-level authorization

Enable gateway-level authentication
Providing gateway-level authentication is actually nothing but protecting the
URLs /axisengine and /soaprpcrouter with HTTP Basic Authentication. And
these URLs are of the channel application wsgwsoap1.ear and wsgwsoap2.ear.
We need to modify the web.xml files of these EAR files. Extract EAR files, again
extract wsgwsoap1.war, wsgwsoap2.war files and finally extract web.xml files to
modify.

Example 7-5 BASIC security enabling for wsgwsoap1.ear and wsgwsoap2.ear

<!-- Define a Security Constraint on this Application -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SOAP Entry Servlets</web-resource-name>
 <url-pattern>/axisengine</url-pattern>
 <url-pattern>/soaprpcrouter</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <!-- Anyone with one of the listed roles may access this area -->
 <role-name>your role name - for example "meterable"</role-name>
 </auth-constraint>
 </security-constraint>
 <!-- Define the Login Configuration for this Application -->
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>your realm name - for example "WSGW Metered Access
Area"</realm-name>
 </login-config>
 <!-- Define the Security Role to use -->
 <security-role>
 <description>your security role - for example "WSGW meterable
role"</description>
 <role-name>your role name</role-name>
 </security-role>

Make sure to enable Global Security for HTTP Basic Authentication in
WebSphere Application Server using Admin Console as mentioned in “HTTP
Basic Authentication” on page 143

Note: Make a copy of the wsgwsoap1.ear and wsgwsoap2.ear before
modifying them for enebling gateway-level authentication.
156 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Enable operation-level authorization
First of all, make sure you have enabled Gateway-level authentication before
enabling operation-level authorisation. The operation-level authorization is only
possible for those Web Services that are deployed onto Web Services GateWay
(WSGW) with the option Authorization Policy-Control access to this service
selected.

Providing Operation-level authorization is also nothing but extending the
WebSphere security for the beans to Web services. That is the reason why
operation-level authentication is also called as Web Service Security - Role-based
authorization.

The implementation consists of writing a wrapper enterprise bean for the actual
Web service component, making sure that the method calls are matching. Now
implementing WebSphere Application Server's authorization methodology into
the wrapper enterprise bean will make sure that the Web service component is
invoked only when the caller has appropriate authorization levels. We need to
protect the service component and the enterprise bean in the .ear file and apply
authorization rules to the EAR file.

Following procedure will show you how to implement operation-level
authorization:

1. Create EAR File:

a. Go to <WSGW_root>/scripts/auth folder in the command prompt.

b. Run the following command:

WSGWAuthGen <location> <your_service>

Where the <location> is the URL for the gateway and <your-service> is
the Name of the service as deployed onto the gateway (Case-sensitive).

For example:

WSGWAuthGen http://myserver:port_number/wsgw Calendar

c. The your_service.ear file should now be created in the
<WSGW_root>/scripts folder.

2. Assign roles to protect methods:

a. In WebSphere Application Assembly Tool (AAT), select File -> Open and
find the file wsgwauth.ear file under
<WebSphere_ND_root>/installableApps.

b. Following steps will import the your_service.ear archive into the
wsgwauth.ear archive.

i. On the navigation pane, open the pop-up menu for EJBModules and
select Import.
 Chapter 7. Securing Enterprise Integration components 157

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
ii. Browse to select as file <WSGW_root>/scripts/your_service.ear. The
Select modules to import window opens.

iii. Select your_service.ear and click OK.

iv. Click OK for confirmation.

v. On the navigation panel, expand EJB Modules to make sure that
your_service.ear has been imported.

c. Expand EJBModules -> Your_service.ear and select Security Roles.

d. For every security role that we need to create, we need to perform the
following steps repeatedly:

i. Select New from the pop-up menu for Security Roles.

ii. Type name and description of the new security role and click OK.

e. Expand EJBModules -> Your_service.ear and select Method
Permissions.

f. For every defined role that we need to a Web Service method, we need to
perform the following steps repeatedly:

i. Select New from the pop-up menu for Method Permissions.

ii. Type the name of the new method permission and click Add for
methods.

iii. In the Add methods window, expand the tree for remote methods and
select the method to be protected. Click OK, then the Add Methods
window closes.

iv. In the New Method Permission window, click Add for Roles. Select a
previously defined role from the list then click OK.

g. Set the EJBReferences to ensure that the authorization enterprise bean
can refer the newly imported enterprise bean. Complete the following
steps:

i. In the navigation pane, expand WSGW Authorization group ->
Session Beans -> Authorization and select EJB References.

ii. To open a new EJB Reference window, select New from the pop-up
menu for EJB References.

iii. In the New EJB Reference window, under the General tab, type a
name for the reference then use the Link combination box to select the
newly-imported EJB (all the other fields on this tab are populated
automatically).

iv. In the New EJB Reference window, under the Bindings tab, type the
JNDI name as it appears in the bindings tab of the service enterprise
158 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
bean, this should be in the form
websphere/WSGW/Security/your_service.

v. Click OK.

h. From Application Assembly Tool file menu, select File -> Save to save the
file wsgwauth.ear.

i. Close Application Assembly Tool.

3. Install updated wsgwauth.ear:

a. Start Administrative Console of WebSphere Application Server.

b. On the navigation pane, select Applications -> Install an Application.

c. Use Install New Application to install wsgwauth.ear.

d. Go through the deployment process for the enterprise application. Select
the users or groups to be assigned to the roles when prompted.

e. At the end, Finish the deployment and save the configuration for
WebSphere.

7.2 Messaging security
This chapter explains how to provide messaging security for the WebSphere
Application Server. WebSphere Application Server V5 ships with an Embedded
JMS Provider which simplifies messaging for the application server. At the same
time WebSphere Application Server provides the flexibility to use any other JMS
Providers like WebSphere MQ or JMS providers from other vendors.

This chapter provides useful information about how to configure security when
using Embedded JMS Provider and even WebSphere MQ as the JMS Provider.

7.2.1 Messaging security
Java Messaging Service (JMS) is a Java API that allows applications to create,
send, receive, and read messages. JMS API in the J2EE platform has the
following features.

� Application clients, Enterprise JavaBean components and Web components
can send or synchronously receive a JMS message. Application clients can in
addition receive JMS messages asynchronously.

� A new kind of enterprise bean, the message-driven bean, enables the
asynchronous consumption of messages. A JMS provider may optionally
implement concurrent processing of messages by message-driven beans.

� Message sends and receives can participate in distributed transactions.
 Chapter 7. Securing Enterprise Integration components 159

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
The JMS specifications does not discuss the security and encryption of the
message that is getting transfered using the JMS provider. Instead specifications
leave the security implementation to the JMS provider. Here in this section later
we are going to discuss WebSphere MQ as a JMS provider.

Security Services
This section will investigate the five security services for messaging.

� Authentication is a mechanism to check whether the application or the user
is genuine or not. In WebSphere MQ context, when a message channel
starts, it is possible for the message channel agent (MCA) at each end of the
channel to authenticate its partner, known as mutual authentication. For the
sending MCA, this provides assurance that the partner it is about to send
messages to is genuine. And for the receiving MCA there is a similar
assurance that it is about to receive messages from a genuine partner.

The application that handles the massaging has to do the authentication; for
example: when a servlet sends a message WebSphere has to authenticate
the user if he/she can run the servlet. Since there is no message level
security (who can send what type of message) message level should be
considered during application design.

� Authorization for the WebSphere MQ objects are stored in MQ (actually in a
special queue). WebSphere MQ uses normal operating system user name
and group authorizations to protect WebSphere MQ applications and
WebSphere MQ Administration.

Access Control (ACL) can be defined for each objects. This Access Control
service protects critical resources in a system by limiting access only to
authorized users and their applications. It prevents the unauthorized user of
an object. For example, you can define access controls so that it only allows
that particular application to connect to a queue manager only if the user ID
associated with the application is authorized to do so.

� Confidentiality: many times you need to protect the message from
unauthorized disclosure and you do not want to ignore the message content
confidentiality when the message is travelling over an insecure network like
Internet. In such cases, there is no help that we can get from access control
definitions. What we need here is message encryption. For example, after
sending the message MCA gets it from the transmission queue, the message
is encrypted before it is sent over the network to the receiving MCA. At the
other end of the channel, the message is decrypted before the receiving MCA
puts it on its destination queue.

� Data integrity service describes more about unauthorized modification of the
data. Such a modification of data is possible in two different cases, through
hardware and transmission errors or because of deliberate attack.
160 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Many hardware products and transmission protocols now have mechanism to
detect and correct hardware and transmission errors. So, for our messaging
security this may not be a threat or concern. But this is not the same with
deliberate attacks.

Access control mechanism can contribute to data integrity to an extend as
data cannot be modified if access is denied. So Data Integrity service can be
used to detect whether the contents of the message have been modified
while it was travelling over the network. This can also be helpful while
messages are stored in a local queue, the access control mechanism
provided by WebSphere MQ might be sufficient to prevent deliberate
modification of the contents of the message. However, for a greater level of
security, a data integrity service can be used to detect whether the contents of
a message have been deliberately modified between the time the message
was put on the queue and the time it was retrieved from the queue.

� Non-repudiation is more about providing with a proof of origin that the
message was sent by one particular individual and providing with a proof of
delivery that can provide the sender with undeniable evidence that the
message was received by that particular individual.

For implementation neither IBM WebSphere MQ nor Tivoli Policy Director for
MQSeries provides a non-repudiation as part of its base function. However
can be achieved by writing your own exit programs within WebSphere MQ
environment.

7.2.2 Messaging support for WebSphere Application Server
Messaging provider support for WebSphere Application Server V5.0 can be done
mainly in three ways.

1. Using Embedded JMS Provider

2. External JMS provider WebSphere MQ V5.3

3. External Generic JMS providers

Embedded JMS provider does not have the same of security support compared
to what we have in WebSphere MQV 5.3. The rest of this section will explore the
security features for these two JMS Provider options with WebSphere
Application Server.
 Chapter 7. Securing Enterprise Integration components 161

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
7.2.3 Security for WebSphere Embedded JMS Provider
This section discusses the security related features of the Embedded JMS
Provider that comes with WebSphere Applicaiton Server V5.

Add/Remove queues to Embedded JMS Provider
The following steps describe, how to add and remove queues with the embedded
WebSphere JMS provider.

1. In the navigation pane, select Servers -> Application Servers. Here you
should be seeing the list of application servers.

2. In the content panel, click the name of the application server. In our case, it is
server1, this displays the properties of the chosen application server.

3. In the content panel, under Additional Properties, select Server
Components -> JMSServer, this displays the JMS properties.

4. If you want to add or remove queues, you can remove it from here. While
adding you must follow the naming convention of WebSphere Embedded
JMS Provider naming convention.

5. Save the configuration then restart the application server, to make the
changes effective.

This creates the required queues in the Embedded JMS Provider for
WebSphere.

Implement Security for WebSphere Embedded JMS Provider
The following steps describe, how to configure security for the embedded JMS
provider.

1. Configure authentication settings owned by the internal JMS Provider.
Authorization to access JMS resources owned by the internal JMS provider is
controlled by settings in the XML file:
<websphere_root>/config/cells/<your_cellname>/internal-jms-authorisations.
xml. For queues and topics this file is the source of authorisation information.
This file consists of which user has what permissions. For example,

Attention: Message Driven Bean is a new functionality introduced in EJB 2.0
Specifications. A Message Driven Bean is a stateless component that is
invoked by the container as a result of the arrival of a JMS message. Invoking
the getCallerPrincipal and isCallerInRole methods is disallowed in the
message-driven bean methods because the container does not have client
security context. The Container will throw the java.lang.IllegalStateException if
either of these methods is invoked.
162 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
internal-jms-authorisation.xml can grant read, write permissions on queues
and Pub, Sub and Persist permissions on topics.

2. Edit the <queue-admin-userids> item in the XML file to create a list of user
IDs who has administrative access over all queues. Administrative access is
needed to create queues and perform other administrative operations on
queues.

Example 7-6 Queue Administrators Configuration

<queue-admin-userids>
<userid>quser01</userid>
<userid>quser02</userid>

</queue-admin-userids>

In this example, quser01 and quser02 have administrative rights over all
queues.

3. Edit <queue-default-permissions> section to define the default permissions
for all queues. If this section is not defined then security constraints are valid
only for those user IDs we define explicitly. This configuration will be
overridden for a specific queue if <queue> section is created for that
particular queue.

Example 7-7 Queue Default Permissions

<queue-dafault-permissions>
<permission>read</permission>

</queue-default-permissions>

4. To define access permissions at the queue level, in the XML file create a
<queue> node. and define the following elements.

– <name> is the name of the queue.

– <public> defines the default public access permissions. If you dont specify
security constraints for a particular use, then these public attributes would
apply.

– <authorize> defines the access permissions for each user ID.

• <userid> is the user ID you want to assign specific attributes.

• <permission> is an access permission for the associated user ID.

Example 7-8 Queue Permissions

<queue>
<name>WQ_ITSOQueue</name>

<public>
</public>
<authorize>
 Chapter 7. Securing Enterprise Integration components 163

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
<userid>quser01</userid>
<permission>read</permission>
<permission>write</permission

</authorize>
<authorize>

<userid>quser02</userid>
<permission>read</permission>

</authorize>
</queue>

In the above example, user quser01 has both read and write access to the queue
WQ_ITSOQueue where as user quser02 is having read-only permission to the
messages in the queue.

5. To configure access permissions for the topic we need to update the <topic>
section. In topic access permissions, inheritance of properties is applicable,
which means that, if for a particular user access permissions are not explicitly
specified then permissions are first inherited from the public permissions,
then from parent of that topic and it continues till the root topic from which the
root permissions are assumed.

The structure of <topic> has the following elements:

– <name> is the name of the topic.

– <public> is the default access permissions for that topic.

– <authorize> defines the access permissions for a specific user.

• <userid> is the user that we want to assign access permissions.

• <permission> is the type of access permission. The following
permissions are applicable to a topic:

+pub: Grant Publish permission.

+sub: Grant Subscribe permission.

+persist: Grant Persist permission.

-pub: Deny Publish permission.

-sub: Deny Subscribe permission.

-persist: Deny Persist permission.

6. To define default permissions for a topic we need to configure topic node in
the XML file as follows:

Example 7-9 Topic Default Permissions

<topic>
<name></name>
<public>
164 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
<permission>+pub</permission>
</public>

</topic>

Keeping the <name> element empty signifies that this configuration is the default
topic configuration.

7. To define permissions for a specific topic we need to configure topic node in
the XML file as follows:

Example 7-10 Topic Permissions

<topic>
<name>ITSOTopic</name>
<public>

<permission>+pub</permission>
</public>
<authorize>

<userid>tuser01</userid>
<permission>+pub</permission>
<permission>+sub></permission>

</authorize>
</topic>

8. Save and close the internal-jms-authorizations.xml file.

Security for the WebSphere embedded JMS provider operates as part of
WebSphere Application Server global security. That means to enable Embedded
JMS Security we need to enable Global Security of the application server. When
the security is enabled all the JMS connections to the JMS provider are all
authenticated and access to JMS resources owned by JMS provider are
controlled by access authentications. Also all JMS connections to JMS provider
must provide user name and password for authentication.

We define this user name and password when we create a connection factory. In
the administrative console,

1. Click Resources -> WebSphere JMS Provider.

2. In the Additional Properties click WebSphere Queue Connection Factory.

3. Click New. In this page of the Administrative Console set the following fields:

– Component-managed Authentication Alias, select an authentication alias
entry for this field. If no alias is available you need to create one.

– Container-managed Authentication Alias, select an authentication alias
entry for this field. If no alias is available you need to create one.

If this authentication fails JMS Connections will not be created.
 Chapter 7. Securing Enterprise Integration components 165

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
4. Save the configuration.

7.2.4 Security for WebSphere MQ (external provider)
This section will briefly describe how to manage security using an external
messaging provider, in this case WebSphere MQ.

Use the Administrative Console of WebSphere Application Server for this
configuration,

1. Navigate to Resources -> WebSphere MQ JMS Provider, click the
Additional Properties.

2. Here you can configure JMS Queue Connection Factories and also Queue
Destinations.

3. Select the scope for the configuration, in our case: server, then click Apply.

4. Click MQSeries Queue Connection Factory.

5. On the next page click New. Similarly to the Embedded JMS provider, specify
the following fields beside the other non-security related fileds:

– Component-managed Authentication Alias, select an authentication alias
entry for this field. If no alias is available you need to create one.

– Container-managed Authentication Alias, select an authentication alias
entry for this field. If no alias is available you need to create one.

6. Click Apply.

7. Go back to WebSphere MQ JMS Provider and click WebSphere MQ Queue
Destinations.

8. Click New which opens a new page, define the fields for the new queue
destination.

9. Save the configuration.

Each time, a connection factory is created it first gets authenticated by the
security information we have provided.

Important: The user name and password specified here depends on the type
of global security. Specify the OS user name and password when LocalOS is
used as user registry; use an LDAP user name and password when using
LDAP as user registry.
166 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-26 WebSphere Application Server and WebSphere MQ

As shown on the picture above, there are two areas where security is an issue
for messaging.

1. Messaging security between two WebSphere MQ servers.

2. Messaging security between WebSphere Application Server, JMS Client and
WebSphere MQ Server.

We are only going to discuss the security related to WebSphere Application
Server, JMS Client and WebSphere MQ Server. Security between two
messaging servers is out of the scope of this book. You can find all details about
WebSphere messaging security in the IBM WebSphere MQ version 5.3 Security
product documentation.

To administer WebSphere MQ the user should be a member of mqm group. The
user ID mqm is created at the product installation time. On UNIX, all WebSphere
MQ objects are owned by the user mqm. But on Windows platform members of
Administrators group can also administer any Queue Manager.

Security Administrators add users to who need to administer WebSphere MQ to
the mqm group. This includes the root user on UNIX systems.

Security checks are made for a typical application when connecting to the Queue
Manager (MQCONN and MQCONNX calls), Opening an object (MQOPEN and
MQPUT1 calls), putting and getting messages (MQPUT and MQGET calls) and
closing the object (MQCLOSE).

Access Controls
Access controls can put restrictions on the user for authority to administer
WebSphere MQ objects, authority to work with WebSphere MQ objects. When
we are integrating WebSphere MQ with WebSphere Application Server then the
application server should have all the previliges required to work with
WebSphere MQ objects. On distributed platforms, the authorization service
provides the access control when an application issues an MQ call to access a
WebSphere MQ object that is a queue manager, queue etc. This includes check
for alternate user authority and authority to set or pass context information.

WebSphere Application
Server V5

EJB Container

JMS
client WebSphere MQ

(JMS Provider)
 MDB

 Messaging
WebSphere MQ
(JMS Provider)

 Messaging
 Chapter 7. Securing Enterprise Integration components 167

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
The authority service component provided with WebSphere MQ is called the
Object Authority Manager (OAM). The OAM is automatically enabled for each
queue manager. If you do not want any authority checks, you can disable the
OAM.

The OAM maintains an access control list (ACL) for each WebSphere MQ object
it is controlling access to. On UNIX systems only group IDs can appear in an
ACL. This means that all members of a group have the same authority. On
Windows both user IDs and group IDs can appear in an ACL. This means that
authorities can be granted to individual users as well as groups. The control
command setmqaut grants and revokes authorities and is used to maintain ACL.
You can specify any number of authorizations in a single command. For
example, the list of authorizations to permit a user or group to put messages on
the queue and to browse them, but to revoke access to get messages is

+put +browse -get

The following example shows how to use the setmqaut command to grant and
revoke permissions to use an object.

setmqaut -m QM1 -t queue -n ITSO.QUEUE -g ITSOGROUP +put +browse -get

In this example:

� QM1 is the Queue Manager.

� queue is the object type.

� ITSO.QUEUE is the object name.

� ITSOGROUP is the identifier of the group whose authorizations are to change.

� +put +browse -get is the authorization list for the specified queue:

– +put adds authorization to put (MQPUT) messages on the queue

– +browse adds the authorization to browse messages on the queue (to
issue MQGET with the browse option)

– -get removes authorization to get (MQGET) messages from the queue.

SSL Support
Many times, it is required to secure data transmitting over an insecure network.
WebSphere MQ supports SSL Version 3.0 on UNIX (installed with WebSphere
MQ), Windows (Windows 200 has SSL support integral to the operating
systems) and z/OS (SSL support is integral to the z/OS operating system).

Message channels and MQ channels can use the SSL protocol to provide link
level security. A caller MCA is an SSL client and a responder MCA is an SSL
server. You can specify the cryptographic algorithms that are used by the SSL
protocol as part of the channel definition.
168 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
At each end of a message channel, and at the server end of an MQ channel, the
MCA acts on behalf of the queue manager to which it is concerned. During the
SSL handshake, the MCA sends the digital certificate of the queue manager to
its partner MCA at the other end of the channel. The MCA at the client end of an
MQI channel acts on behalf of the user of the WebSphere MQ client application.
During the SSL handshake, the MCA sends the user’s digital certificate to its
partner MCA at the server end of the MQ channel.

Digital certificates are stored in a key repository. The queue manager attribute
SSLKeyRepository specifies the location of the key repository that holds the
queue manager’s digital certificate. On a WebSphere MQ client system, the
MQSSLKEYR environment variable specifies the location of the key repository
that holds the user’s digital certificate. Alternatively, a WebSphere MQ client
application can specify its location in the KeyRepository field of the SSL
configuration options structure, MQSCO, for an MQCONNX call.

To create your own certificates for the SSL communication, use IBM’s ikeyman
tool.

7.3 J2C Security
This section briefly describes the J2EE Connector Architecture in WebSphere
Application Server V5 and the security considerations related to connectors.

When using connectors the application requests data from the connector and the
connector gets the data from the resource and returns it to the application. But
Enterprise Information Systems are generally very important applications and
are protected from unauthorised access. So it requires authentication information
to be passed while requesting a connection.

7.3.1 Securing adapters
Connectors in WebSphere let you connect to resources such as data or an
application on a remote server. These resources are called as “Enterprise
Information System” (EIS). Typically connector accesses non-relational data and
is used by developers to developers to complement the other means of
accessing Relational DataBase Management Systems (RDBMS) data. Basically,
your application request reaches the connector, connector talks to the EIS, and
return the results back to the requestor application.
 Chapter 7. Securing Enterprise Integration components 169

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
J2EE Connector architecture establishes contracts amongst the application, the
resource adapter and the application server, where the application will enentually
be deployed. These contracts imply that all the participating components are
J2EE Connector architecture compliant for the sake of working together. The
application contract is nothing but the definition for the communication between
connector and the application.

The system contract defines the connection management, transaction
management and the security management.

Figure 7-27 J2EE Connector Architecture

The security contract enables the application server to connect to an Enterprise
Information System using security properties. The application server
authenticates with the EIS system by using the security properties the user
credentials.

There are two different methods the application server can authenticate to an
Enterprise Information System.

� Container-managed sign-on, the security properties are configured when
the resource adapter is deployed on the application server. Again there are
several ways to configure security properties here. With Configured Identity
all resource adapter connections use the same identity when connecting to
the Enterprise Information System. With Principal Mapping the principal used
when connecting to the Enterprise Information System based on a
combination of the current principal in the application server and the mapping.
With Caller Impersonation principal used in the Enterprise Information

Application

Connector
or Resource

Adapter

Enterprise
Information

System (EIS)

Application Server

Container
contract

Application
Contract

EIS-specific
interface

System contract
-Connection
management
-Transaction
management
-Security management

Connection
Manager

Transaction
Manager

Security
Manager
170 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
System exactly matches the principal in the application server. With
Credentials Mapping the type of credentials must be mapped from application
server credentials to Enterprise Information System credentials.

Though it is easy to have container-managed sign-on, but there is only little
flexibility as it is not possible to change the security properties in runtime.

� Component-managed sign-on allows you to pass security configuration
properties each time a connection is acquired from the resource adapter.

7.3.2 Java 2 Connector Security
Enterprise Information System stores very important information and the
information must be protected from unauthorized users. Java 2 Connector
architecture is designed to address the security of connection to Enterprise
Information System. The application server and the Enterprise Information
System collaborate to ensure the proper authentication of a resource principal
which establishes a connection to an underlying entreprise information system.
Connector architecture supports the following authentication mechanisms:

– BasicPassword: Basic username-password based authentication
mechanism specific to enterprise information sysytem.

– Kerbv5: Kerberos version 5 based authentication model

WebSphere Application Server V5 Java 2 Connector supports basic password
model currently. Kerberos authentication model will be supported in the near
future.

The user ID and password for the target EIS is either supplied by applications or
by the application server. WebSphere Application Server uses the JAAS
pluggable authentication mechanism to perform principal mapping to convert
WebSphere principal to resource principal. WebSphere Application Server
provides a DefaultPrincipalMapping LoginModule, which basically converts any
authenticated principal to the pre-configured EIS resource principal and
password. Subsequently, you can plug in your own principal mapping
LoginModule using the JAAS plug-in mechanism.

The user ID and password can either be configured using the Administrative
Console or can be sent to the Enterprise Information System programmatically.

Using J2C Authentication Data Entries for Datasource
First you will have to create a new J2C entry for WebSphere. In order to create
the appropriate entry for this section follow the configuration steps from
Section 10.7.2, “J2C Authentication Data Entries” on page 256.
 Chapter 7. Securing Enterprise Integration components 171

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
As a next step, the following list will explain how to configure a data source with
J2C authentication in WebSphere Application Server V5 using the Administrative
Console. This uses the J2C Authentication Data Entry created in the previous
step.

1. In the Administrative Console navigate to Resources -> JDBC Providers.

2. Select the scope for the new provider, in our case Server, then click Apply.

3. Click New to create a new JDBC provider.

4. Choose DB2 JDBC Provider from the drop-down list provided and click OK.

5. In the DB2 JDBC Configuration page, make sure the classpath has the
correct path for db2java.zip file.

6. Click Apply.

7. Open this panel once again, at the bottom of the page in Additional
Properties section, click Data Sources.

8. Click New.
172 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-28 Data Sources configuration using J2C Authentication Data Entry

9. Create a J2C authentication entry for the new resource, following the steps
from Section 10.7.2, “J2C Authentication Data Entries” on page 256.

10.Enter the following details from below:

Name is the name of the data source itsobankds.

JNDI Name is the JNDI Name for this resource jdbc/itsobankds.
 Chapter 7. Securing Enterprise Integration components 173

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Container Manager Persistence, if you want this data source to be used for
the container managed persistence of EJBs then select this check box. This
will create a corresponding CMP connection factory which corresponds to this
datasource to be created for the relational resource adapter.

Component-managed Authentication Alias, in this drop-down list, you
should see the J2C Authentication Data Entry that we created, which is
itsobankds_auth. Select itsobankds_auth from the list.

Component-managed Authentication Alias, select itsobankds_auth from
the list again.

11.Click Apply.

12.Save the configuration.

Connection Management for J2C adapters
In WebSphere Application Server V5 connection manager covers both JDBC
and J2C connections.

Figure 7-29 WebSphere Application Server V5 Connection Manager

The Persistance Manager uses the Common Client Interface (CCI) to connect to
Resource Adapters, which provides access from J2EE clients, such as EJBs,
JSPs, Servlets to an Enterprise Information System (EIS), so that the developer
need not worry about the underlying semantics.

Resource Adapter is a system level software driver used by a Java application to
connect to the Enterprise Information System. The resource adapter plugs into
the application server to provide connectivity between application server and the
Enterprise Information System.

CMP EJB 2.0

Persistence Manager

Datastore Adapter

Relational
Resource
Adapter

Procedural
Resource
Adapterl

JDBC / J2C
Connection

Manager

SPI

CCI
174 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
JDBC usage of JCA connection manager
In WebSphere Application Server V5 JDBC Connection Manager architecture is
slightly different from that of WebSphere Application Server V4.

EJB 2.0 Persistence Manager is based on J2C connections. It requires J2C style
connection factory, interactions, cleanup and so on for JDBC connections. That
means in WebSphere Application Server V5 a J2C Relational Resource Adapter
is handling the JDBC connections.

WebSphere Application Server V5 supports both J2EE 1.2 and J2EE 1.3
applications.

Figure 7-30 J2EE 1.2 Application

Between Figure 7-30 and Figure 7-31 the main difference is the introduction of
generalised Connection Handle Manager and Connection Manager. Based on
the type of request, Connection Manager will pass the request either to relational
datasource or procedural connection factory for Enterprise Information Systems.

 Database

EIS System

 Bean

EJB Container Web Container

J2EE 1.2 Application

Datasource
Wrapper

J2C
Connection
Factory

JDBC
Connection
Manager

J2C
Connection
Manager

Datasource Managed
Connection
Factory

 Web components
 Chapter 7. Securing Enterprise Integration components 175

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 7-31 J2EE 1.3 Application

Accessing data using a JCA connectors
According to JCA specifications, each Enterprise Information System needs to
implement a Resource Adapter and a Connection Factory.

 Database

EIS System

 Bean

EJB Container Web Container

J2EE 1.3 Application

Datasource
Wrapper

J2C
Connection
Factory

Datasource Managed
Connection
Factory

 Web components

Connection
Handle
Manager

Connection
Manager Core
176 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chSecEIntegration.fm
Figure 7-32 Connection to a resource

WebSphere Studio can generate the deployment descriptor and code for you.
For each connection follow the steps below:

1. Declare the connection factory resource reference in the application
component’s deployment descriptor.

Example 7-11 Connection factory resource reference in the deployment descriptor

<resource-ref>
 <description>description</description>
 <res-ref-name>eis/myConnection</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The <res-auth> element specifies whether the enterprise bean code signs on
programmatically to the resource manager, or the Container will sign on to the
resource manager on behalf of the bean. In the latter case, the Container
uses information that is supplied by the deployer. The value of this element
must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

JNDI

Connection ConnectionFactory

Connector or
Resource Adapter ConnectionManager

Enterprise
Information System

Application Server

Application

1. Request for
connection

2. JNDI returns
ConnectionFactory

Connector
provides data to

application

Connection
returned

Connector sends and
receives data from server
 Chapter 7. Securing Enterprise Integration components 177

6573chSecEIntegration.fm Draft Document for Review November 6, 2002 2:37 pm
2. Configure each resource adapter and associated connection factory through
the Admin Concole.

3. In the application component, perform JNDI lookup to find the corresponding
connection factory and get the connection.

Example 7-12 Accessing data using a JCA connector

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
connectionFactory = (javax.resource.cci.ConnectionFactory)
ctx.lookup("java:comp/env/eis/myConnection");
// create a connection
connection = connectionFactory.getConnection();
// Create Interaction and an InteractionSpec
interaction = connection.createInteraction();
interactionSpec = new InteractionSpec();
interactionSpec.setFunctionName("GET");
// Create input record
inRec = new javax.resource.cci.Record();
// Execute an interaction
interaction.execute(interactionSpec, inRec, outRec);
// Process the output...
// close the interaction and connection
interaction.close();
connection.close();

4. Create an InteractionSpec object from the Connection object.

5. Create a Record object for the input / output data used by the functions.

6. Execute the functions through the Interaction object, process Record data
and close the connection.

7.4 Where to find more information
For more information on the security aspects of J2EE, see the following
documents:

� The Java 2 Platform Specification v1.3 at
http://java.sun.com/j2ee/docs.html

� The specification for JCA (Java Connector Architecture) and JMS (Java
Message Service) is also available at the previous URL.

� W3C Web site hosts most of the Web services related specifications,
recommendateions and notices at http://www.w3c.org.
178 IBM WebSphere V5.0 Security Handbook

http://java.sun.com/j2ee/docs.html
http://www.w3c.org

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Chapter 8. Programmatic security

Programmatic security comes handy when the application server provided
security infrastructure cannot provide all the functionalities needed for the
application.

Using the Java APIs for security can be the way to implement security for the
whole application without using the application server security functions at all.

Programmatic security also gives the option to implement dynamic security rules
for your applications.

8

© Copyright IBM Corp. 2002 179

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
8.1 Programmatic security
J2EE security can be applied declaratively or programmatically. This chapter will
focus on the latter. Programmatic security can be used by security aware
applications when declarative security alone is not sufficient to express the
security model of the application.

As an example, the ITSOBank application supplied with this book is configured
such that only managers and employees (clerks and accountants) can transfer
funds but anyone could check their balance. This is possible because the
method permissions for the getCustomerBalance method on the Consultation
EJB allows the necessary role (in this case, Consultant) access. The request
simply passes the account key as a parameter.

8.2 J2EE API
WebSphere provides a security infrastructure for application security which is
transparent to the application developer. That is, the developer does not need to
code for security, since it will all be handled at deployment and runtime.

Having said that, when developing servlets and EJBs, there are a few security
calls available if the developer wants greater control of what the end user is
allowed to do than is provided by the infrastructure.

8.2.1 EJB security methods
The EJB 2.0 specification defines two methods that allow programmatic access
to the caller’s security context, javax.ejb.EJBContext.

� java.security.Principal getCallerPrincipal()

The getCallerPrincipal method allows the developer to get the name of the
current caller. To do this, you need to call getName() on the
java.security.Principal object returned.

EJBContext ejbContext;
...
// get the caller principal
java.security.Principal callerPrincipal =
ejbContext.getCallerPrincipal();
// get the caller’s name
String callerName = callerPrincipal.getName();

The Principal.getName() method returns the login name of the user.

� Boolean isCallerInRole(String roleName)
180 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
The isCallerInRole method allows the developer to make additional checks
on the authorization rights of a user which are not possible, or more difficult,
to perform through the deployment descriptor of the EJB.

EJBContext ejbContext;
...
if (ejbContext.isCallerInRole(““))

// Perform some fuction
else

// Throw a security exception

The isCallerInRole(String role) method returns true if the user is in the
specified role, and false if it is not. The role name specified in the method is
really a security role reference, not a role. If the security role reference is not
defined for the EJB, the method will return null.

Sample usage of security methods
The following example is a modified code snippet from the ITSOBank sample
application. You can find the similar code in the TransferBean.java in the
transferBranch2Customer() method. For more details check the comments in the
source below, or in the original sample application.

Example 8-1 Sample code using the EJB security methods

// getting the environment variables for restricted role
// and for maximum transferable amount
restrictedRole=(String)environment.lookup("RestrictedRole");
maxEJBTransferAmount=(Integer)environment.lookup("MaxEJBTransferAmount");
// checking if the user is restricted to a certain amount of transfer
if(mySessionCtx.isCallerInRole(restrictedRole) &&
transferAmount>maxEJBTransferAmount.intValue()) {

// the user cannot transfer the requested amount
return false;

}
// get the caller principal, then the user name
java.security.Principal callerPrincipal=mySessionCtx.getCallerPrincipal();
String callerName =callerPrincipal.getName();
// print out the user information about the EJB method invocation
System.out.println("... method was invoked on the Transfer EJB by:
"+callerName);

With the security methods the EJB will not let the user in a restricted role to
submit a transfer greater than the maximum transferable amount.
 Chapter 8. Programmatic security 181

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
8.2.2 Servlet security methods
The Servlet 2.3 specification defines three methods that allow programmatic
access to the caller’s security information of HttpServletRequest interface.

� String getRemoteUser()

The getRemoteUser method returns the user name that the client used to log
in.

String user = request.getRemoteUser()

� Boolean isUserInRole(String roleName)

The isUserInRole method allows the developer to perform additional checks
on the authorization rights of a user which are not possible, or more difficult,
to perform through the deployment descriptor of the servlet.

if (request.isUserInRole("Manager")) {
// the user is in the manager role
// ...

}

� java.security.Principal getUserPrincipal()

The getUserPrincipal method allows the developer to get the name of the
current caller. To do this, you need to call getName() on the
java.security.Principal object returned.

Principal principal=request.getUserPrincipal();
String username=principal.getName();

Sample usage of security methods
The following example is a modified code snippet from the ITSOBank sample
application. You can find the similar code in the TransferServlet.java in the
doPost() method. For more details check the comments in the source below or in
the sample application.

Example 8-2 Sample code using the servlet security methods

// getting the environment variables for restricted role
// and for maximum transferable amount
restrictedRole=(String)environment.lookup("RestrictedRole");
maxWebTransferAmount=(Integer)environment.lookup("MaximumWebTransferAmount");
// checking if the user is restricted to a certain amount of transfer

Important: The methods getRemoteUser() and getUserPrincipal() return
null as a result even if the user is logged in, unless the servlet or the JSP
itself is secured.
182 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
if(request.isUserInRole(restrictedRole) &&
transferAmount>maxWebTransferAmount.intValue()) {

// create an error message
// the user cannot transfer the requested amount
// forward the request to the response page with the message

}
// get the principal from the request
Principal principal=req.getUserPrincipal();
// print out the user information about the servlet invocation
System.out.println("Transfer Servlet was invoked by user:
"+req.getRemoteUser()+", principal: "+principal.getName());

With the security methods the servlet will not let the user in a restricted role to
submit a transfer greater than the maximum transferable amount.

8.3 CustomRegistry SPI
WebSphere supports the use of user registries in order to lookup user and group
details for authentication purposes. Three registries are provided by default,
although only two are likely to be commonly used. These are the local OS
registry, an LDAP server and a filesystem-based registry called
FileRegistrySample. The FileRegistrySample registry is not to be used in
production environments due to its lack of scalability, but is included as an
example of how a custom registry might operate. In fact, it is possible to develop
integration with any type of custom registry that supports the notion of users and
groups by implementing WebSphere’s UserRegistry interface. The UserRegistry
interface is provided so that the application server may make use of a user
registry that would otherwise be inaccessible. This interface is defined in the
com.ibm.websphere.security package.

The provision of this interface ensures that a variety of user registries may be
used such as relational databases, files stored on directly on the filesystem or
integration products such as WebSphere MQ. A combination of multiple
registries may be used such as LDAP and RACF. A demonstration custom
registry that uses flat files as the data store is supplied with the application
server.

The UserRegistry interface defines a general set of methods to allow the
application server to obtain user and group information from the regsitry. The
registry can operate as a process running remotely to the application server and
so it is necessary for each registry to implement the java.rmi.Remote interface.
 Chapter 8. Programmatic security 183

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
One point worth noting regard to the difference between the initialisation of a
WebSphere Application Server V5 custom registry and a WebSphere Application
Server V4 custom registry. With Version 4, it was possible to use other WAS
components to initialise the custom registry. For example, a datasource might
have been used to connect to a database-based custom registry or one may
have made use of a deployed EJB. However, in Version 5, both of these
examples are not possible because, unlike in version 4, the security mechanism
is initialised before other components such as containers and therefore these
facilities are not available when the security component is started.

Figure 8-1 Authentication registry mechanisms

Developing a custom registry
A sample custom registry implementation is provided with the application server.
The custom registry class is called FileRegistrySample. The source code is also
provided for reference purposes. Refer to the InfoCenter for details on
configuring the application server to use this.

Some points should be taken into consideration when developing a custom
registry.

� The com.ibm.websphere.security.UserRegistry interface must be
implemented. By implementing this interface, the super-interface,
java.rmi.Remote, will also be implemented

� The implementation should be compiled by adding the wssec.jar and idl.jar
files to the classpath. These files can be found in the <WAS_HOME>/lib
directory. The following command should be used to compile the registry

<WAS_HOME>/java/bin/javac -classpath
<WAS_HOME>/lib/wssec.jar:<WAS_HOME>/lib/idl.jar <source_file>

W e b S p h e re

S e c u r ity
S e rv e r

A u th e n tic a te
C a lls

LT P A
in te r fa c e

L o c a l O S
in te r fa c e

P lu g g a b le
c u s to m
re g is try

L D A P
u s e r

re g is t ry

L o c a l O S
u s e r

re g is t ry

C u s to m
re g is t ry
184 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
This will generate some classes that should be referenced in the application
server’s classpath. Alternatively, move the classes to the
<WAS_HOME>/classes directory.

The application server must be configured to make use of the custom registry.

1. From the navigation panel in the Administrative Console, select Custom User
Registry under User Registries in the Security Center.

Figure 8-2 User registry configuration

2. Enter the user name and password of an identity under which the custom
registry will operate. Enter the class name for the custom registry. For
example, the supplied sample registry is
com.ibm.websphere.security.FileRegistrySample. Click Apply.

3. Click Custom Properties and add the properties necessary to initialise the
registry. These properties will be passed to the initialize method of the custom
registry. For the supplied FileRegistrySample code, enter the following
properties.

Table 8-1 FileRegistrySample initialisation properties

Name Value

usersFile users.props

groupsFile groups.props
 Chapter 8. Programmatic security 185

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 8-3 Custom Registry properties

Refer to the Infocenter, for details regarding the format of these files.

4. Be sure to save the changes to the master configuration before proceeding.

5. In the case of WebSphere Application Server Network Deployment, the
custom registry class, classpath settings and properties will need to be
applied to all of the application servers in the cell. The FileRegistrySample
registry is already installed on each application server and so does not need
distributing.

6. To activate the custom registry, Global Security must be enabled. Go to the
Global Security panel, click the Enabled check box and ensure the Active
User Registry is set to Custom. Click OK.

7. If the validation passes then the changes should be saved to the master
configuration and the server restarted for the security changes to take effect.

The UserRegistry interface
The list below includes all the methods defined in the UserRegistry interface.
Each method must be implemented by the custom registry.

Table 8-2 WebSphere’s UserRegistry interface

Method signature Use

void initialize(java.util.Properties props)
throws CustomRegistryException,
RemoteException

Initializes the registry. This method is
called when creating the registry.
186 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
String checkPassword(String
userSecurityName, String password)
throws PasswordCheckFailedException,
CustomRegistryException,
RemoteException

Checks the password of the user. This
method is called to authenticate a user
when the user's name and password are
given.

String mapCertificate(X509Certificate[]
cert) throws
CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException

Maps a Certificate (of X509 format) to a
valid user in the Registry. This is used to
map the name in the certificate supplied
by a browser to a valid userSecurityName
in the registry.

String getRealm() throws
CustomRegistryException,
RemoteException

The realm is a registry-specific string
indicating the realm or domain for which
this registry applies. For example, for
OS400 or AIX this would be the host name
of the system whose user registry this
object represents. If null is returned by this
method realm defaults to the value of
"customRealm".

Result getUsers(String pattern, int limit)
throws CustomRegistryException,
RemoteException

Gets a list of users that match a pattern in
the registy. The maximum number of
users returned is defined by the limit
argument.

String getUserDisplayName(String
userSecurityName) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the display name for the user
specified by userSecurityName.

String getUniqueUserId(String
userSecurityName) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the UniqueId for a
userSecurityName. This method is called
when creating a credential for a user.

String getUserSecurityName(String
uniqueUserId) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the name for a user given its
uniqueId.

Method signature Use
 Chapter 8. Programmatic security 187

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
boolean isValidUser(String
userSecurityName) throws
CustomRegistryException,
RemoteException

Determines if the userSecurityName
exists in the registry.

Result getGroups(String pattern, int limit)
throws CustomRegistryException,
RemoteException

Gets a list of groups that match a pattern
in the registy. The maximum number of
groups returned is defined by the limit
argument.

String getGroupDisplayName(String
groupSecurityName) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the display name for the group
specified by groupSecurityName.

String getUniqueGroupId(String
groupSecurityName) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the Unique id for a group.

List getUniqueGroupIds(String
uniqueUserId) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the Unique ids for all the groups
that contain the UniqueId of a user. Called
during creation of a user's credential.

String getGroupSecurityName(String
uniqueGroupId) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Returns the name for a group given its
uniqueId.

boolean isValidGroup(String
groupSecurityName) throws
CustomRegistryException,
RemoteException

Determines if the groupSecurityName
exists in the registry.

Result getUsersForGroup(String
groupSecurityName, int limit) throws
NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException

Gets a list of users in a group. The
maximum number of users returned is
defined by the limit argument.

Method signature Use
188 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Sample custom registry
The following documents the implementation of a DB2 custom registry. The DB2
registry uses JDBC to communicate with the database. Although this registry
was tested with DB2, it should be possible to modify it to work with other
relational databases. The source code (DB2Registry.java) is shown below and is
also included in the ITSOBank application, along with the database structure.

Open the DB2Registry.java source in WebSphere Studio and check the
comments in the source code. You will find all the required methods for the
UserRegistry interface implemented. Look for the SQL queries in the code and
see what each method does with the database,

The DB2Registry.class file must be copied to a directory accessible by the
application server, that is a directory that is in the application server’s classpath.
For example, <WAS_HOME>/lib. Alternatively, update the application server’s
classpath to refer to the directory that contains the class file.

A simple custom registry test utility that runs from the command line is included
which can be used to test if the custom registry is working as required. The tool
allows the developer to be sure that the custom registry is functioning before
configuring the application server to use it. The tool will ask for some user and
group information and use this information to query the custom registry. It will
also ask for a X.509 certificate file, although the response can be empty (just
press Enter). In this case, the certificate check will not be made. For details on
creating a digital certificate, refer to Section 10.9.1, “Generating a self-signed
certificate” on page 263.

public List getGroupsForUser(String
userSecurityName) throws
EntryNotFoundException,
CustomRegistryException,
RemoteException

Gets all the groups the given user is a
member of.

Credential createCredential(String
userSecurityName) throws
NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException

Throw the NotImplementedException for
this method.

Method signature Use
 Chapter 8. Programmatic security 189

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
8.4 Custom Trust Association Interceptor
The application server can be configured to use a third-party product to provide
authentication services, whilst continuing to perform authorisation. These
products are often referred to as reverse proxy servers. To delegate the role of
authentication to a reverse proxy, two conditions must be met.

� The reverse proxy must provide a Trust Association Interceptor, which
WebSphere will use to receive requests from the reverse proxy server.

� A trust association between WebSphere and the reverse proxy must be
established.

In order to provide an interceptor, the
com.ibm.websphere.security.TrustAssociationInterceptor interface, which
defines three methods, must be implemented.

� public boolean isTargetInterceptor(HttpServletRequest) throws
com.ibm.websphere.security.WebTrustAssociationException

Determines whether the request originated with the proxy server associated
with the interceptor. The implementation code must examine the incoming
request object and determine if the proxy server forwarding the request is a
valid proxy server for this interceptor.

� public void validateEstablishedTrust(HttpServletRequest) throws
com.ibm.websphere.security.WebTrustAssociationFailedException

Determines if the proxy server from which the request originated is trusted or
not. This method is called after the isTargetInterceptor method. The
implementation code must authenticate the proxy server. The authentication
mechanism is proxy-server-specific.

� public String getAuthenticatedUsername(HttpServletRequest) throws
com.ibm.websphere.security.WebTrustAssociationUserException

The application server has accepted the proxy server's authentication of the
request and must now authorise the request. This method extracts the
request’s user name from the HTTP header to allow for authorisation.

Configuring the Interceptor
In order to make an inteceptor configurable, it is necessary for it to extend
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor.
Three methods must be implemented.

� public int init(java.util.Properties)

Accepts a Properties object which contains the necessary interceptor
configuration information.

� public int init(String)
190 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Accepts a filename for a file that contains the necessary interceptor
configuration information. The format of the properties file is specified in the
Infocenter.

� public void cleanup()

Prepares the interceptor for termination.

Configuring WebSphere to use the Interceptor
Once the interceptor has been installed and the trust association is configured,
the application server may receive requests from the reverse proxy server. The
authentication method used must be LTPA and authentication cannot be
delegated to a reverse proxy server if the user registry is LocalOS. For
information regarding the configuration of WebSphere for LTPA, refer to
Section 10.6, “LTPA” on page 249 and Trust Association Interceptors, refer to
Section 12.5.1, “Single Sign-On with WebSEAL” on page 382.

Custom Trust Association Interceptor
This section will provide information on how to develop your own Trust
Association Interceptor, how to configure a new interceptor for WebSphere and
finally how to test it.

Developing the custom Trust Association Interceptor
The Trust Association Interceptor (TAI) for this book was developed using the
WebSphere Studio.

Required libraries from WebSphere for development: j2ee.jar, security.jar,
securityimpl.jar, wssec.jar.

This sample is a sub-class of the WebSphereBaseTrustAssociationInterceptor,
for more information about the code open the CustomTAI,java source in
WebSphere Studio and check the comments. You will find all the required
methods implemented for the TrustAssociationInterceptor interface.

Note: The InfoCenter provides information regarding the setup of Tivoli
WebSEAL as a reverse proxy and the application server includes an
implementation of the TAI for this product. Also, refer to Section 12.6.1, “Tivoli
WebSEAL” on page 409.

Important: The custom trust association interceptor here is only provided to
show how to develop a custom interceptor. The interceptor provided here is
not secure enough to use in any real environment.
 Chapter 8. Programmatic security 191

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
For more information on Custom Trust Association Interceptors refer to the
article on the IBM developerWorks Web site, Third-party security servers and
WebSphere at
http://www-106.ibm.com/developerworks/library/it-expertprog_tpss/index.
html.

Configuring the custom Trust Association Interceptor
For testing purposes this example will use Tivoli Access Manager WebSeal as a
security reverse proxy.

Figure 8-4 Environment for testing the custom trust association interceptor

The following configuration steps assume that you have already enabled global
security, set the authentication mechanism to LTPA, and enabled Single
Sign-On.

For testing purposes it is recommended to turn on the tracing facility for
WebSphere, in order to do that follow the steps from Section , “Security trace” on
page 235.

1. Move the .jar file with the custom association interceptor to the
<WebSphere_root>/classes directory, next time you restart the server, it will
pick up the .jar file and insert it into the classpath.

2. Register the new interceptor with the Administrative Console, navigate to the
Security -> Authentication Mechanisms -> LTPA item.

3. Select TrustAssociation, then click New.

4. Provide the name for the class, in this case:
com.ibm.itsobank.tai.CustomTAI.

5. Click OK.

6. Select the new interceptor, then click the Custom Properties link.

7. Create the following custom properties from the table below.

Client
with a Web browser

Security reverse proxy
a 3rd party implementation

WebSphere Application Server
with the Custom Trust Association Interceptor

client
request

proxy
request
192 IBM WebSphere V5.0 Security Handbook

http://www-106.ibm.com/developerworks/library/it-expertprog_tpss/index.html
http://www-106.ibm.com/developerworks/library/it-expertprog_tpss/index.html

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Table 8-3 Custom properties for the interceptor

Save the configuration for WebSphere to make the changes effective.

8. You will have to modify the application to use basic authentication for the Web
application. You can either export the ITSOBank application, modify with the
Application Assembly Tool, then redeploy it; or stop the server open the
deployed application with the Application Assembly Tool (AAT) by selecting
the ITSOBank.ear directory in AAT, do the modification, then restart the
server.

9. Restart the application server.

10.Create a junction for the WebSeal proxy using the following command in the
pdamin administration client:

server task webseald-wsl01 create -t ssl -h appsrv01 -p 9443 -B -U
“wsl01user” -W “password” -c all /customtai

Where wsl01 is the name of the proxy server, appsrv01 is the name of the
WebSphere application server, 9080 is the port number for the embedded
WebSphere HTTP server, wsl01user is a user registered with the password in
the user registry that will be used to authenticate the proxy server to the
application server.

Testing the custom Trust Association Interceptor
Open a browser on the client machine, then access the ITSOBank application via
the proxy at the following address: https://wsl01/customtai/itsobank

Provide the user name and password for a valid ITSOBank user, for example
manager01 and password.

Property name value

proxyserver wsl01

proxyport 443

proxyuser wsl01user

proxypassword password

Note: This custom trust association interceptor only works with basic
authentication.

Note: You need to create the wsl01user in the user registry and set the
password to password.
 Chapter 8. Programmatic security 193

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
Access the Customer transfer link, then submit a transfer. If you can access the
page with the form with the transfer details that means, the custom trust
association interceptor is working.

To make sure that the interceptor was working, open the trace.log file in the
<WebSphere_root>/logs/server1 directory, then search for the CustomTAI
string. After the request for the customertransfer.html page, you should find
something similar to the following trace:

Example 8-3 Invocation of the custom trust association interceptor

[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.WebAuthenticator org=IBM prod=WebSphere
component=Application Server
 handleTrustAssociation
[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.WebAuthenticator org=IBM prod=WebSphere
component=Application Server
 TrustAssociation is enabled.
[9/25/02 18:03:14:312 EDT] 41ab0df5 > UOW=
source=com.ibm.ws.security.web.TrustAssociationManager org=IBM prod=WebSphere
component=Application Server
 getInterceptor
[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.TrustAssociationManager org=IBM prod=WebSphere
component=Application Server
 Check if target interceptor ...
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : isTargetInterceptor invocation
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : via header:HTTP/1.1 wsl01:443
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : request via host:wsl01 ,request via port:443
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : request is coming through our proxy, we can accept it
[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.WebAuthenticator org=IBM prod=WebSphere
component=Application Server
 A TrustAssociation interceptor is available for this request.
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : validateEstablishedTrust invocation
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 WebCollaborator.pnAuthorization:Authorization
194 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : request user name:wsl01user ,request password:password001
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : authentication for the proxy was successful
[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.WebAuthenticator org=IBM prod=WebSphere
component=Application Server
 TrustAssociation has been validated successfully.
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : getAuthenticatedUsername invocation
[9/25/02 18:03:14:312 EDT] 41ab0df5 O UOW= source=SystemOut org=IBM
prod=WebSphere component=Application Server
 CustomTAI : user name picked-up:manager
[9/25/02 18:03:14:312 EDT] 41ab0df5 d UOW=
source=com.ibm.ws.security.web.WebAuthenticator org=IBM prod=WebSphere
component=Application Server
 Username retrieved is [manager]

As you follow the trace from the beginning you will find how the trust association
interceptor handles the request and retieves the user name from the original
request.

8.5 Java 2 Security
The earlier Java implementations, prior to Java V1.2, only had the sandbox
model, which provided a very restricted environment. In Java V1.2 a new security
model has been introduced.

For more information refer to the official Java Sun site at
http://java.sun.com/security/index.html, or the Java 2 Platform Security
Architecture V1.0 paper from Sun.

The following diagram depicts the new security model for Java V1.2.
 Chapter 8. Programmatic security 195

http://java.sun.com/security/index.html

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 8-5 Java 2 Platform Security Model

The new model supposed to provide the following security features for the Java
Virtual Machine:

� Fine-grained access control. It was available in earlier version using
programmatic access control security.

� Easy configuration of security policy. It was available also as the previous
features, and again using programmatic security.

� Easy extension for the access control structure. The new architecture allows
typed security permissions and provides automatic handling for them.

� Extension of security checks to all Java programs (both applications and
applets). Every Java code is under security control, which means no local
code is trusted by default anymore.

The fundamental concept and an important building block in system security is
the protection domain.

Definition: A domain can be scoped by the set of objects that are currently
directly accessible by a principal, where a principal is an entity in the computer
system to which permissions are granted.

Classes that have the same permissions but are from different code sources
belong to different domains.

(From the Java 2 Platform Security Architecture V1.0 paper by Sun
Microsystems)

resources

JVM

sandbox

class loadersecurity policy

local or remote code (signed or not)

application

application

application
196 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
There are two distict categories of protection domains:

� system domain

� application domain

Figure 8-6 Protection domains

Protection domains are determined by the policy currently in effect. The Java
application environment maintains the mapping between code, their protection
domains and their permissions.

Figure 8-7 Class - Domain - Permission mapping

As a rule of thumb, a less “powerful” domain cannot gain additional permissions
as a result of calling or being called by a more “powerful” domain.

Definition: A principal is an entity in the computer system to which
permissions (and as a result, accountability) are granted.

(From the Java 2 Platform Security Architecture V1.0 paper by Sun
Microsystems)

System Domain

application
1

application
2

application
n

Net I/O file I/O AWT

. . .

. . .

security policy

domain A permissionsa.class
b.class
c.class
d.class

domain B permissions

runtime
classes
 Chapter 8. Programmatic security 197

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
To call a piece of trusted code to temporarily enable access to more resources
than are available directly to the application the doPrivileged method can be
used. It comes handy when for example an application wants to

The domains, either system or application, can also implement additional
protection of their internal resources within the domain boundary.

Security management
The security manager defines the outer boundaries of the Java sandbox. The
fact that the security manager is customizable, it allows the security manager to
establilish custom security policies for an application. The concrete
SecurityManager provided with the Java version 1.2 allows you to define your
custom policy not in Java code, but in an ASCII file called the policy file.

The security manager is not automatically loaded when an application is running,
in order to activate the manager, the user has to specify the
-Djava.security.manager command-line argument for the Java runtime.

A custom security manager class can be also specified in the command-line:
-Djava.security.manager=com.mycompany.MySecurityManager; if nothing is
specified then the default security manager will be initialized for the application.

Access control
The java.security.ProtectionDomain class represents a unit of protection within a
Java application environment and is typically associated with a concept of
principal.

The java.security.AccessController class is used for the following purposes:

� to decide whether an access to a critical resource is allowed or denied, based
on the security policy currently in effect,

� to mark code as being privileged,

� to obtain a snapshot of the current calling context to support access-control
decisions from a different context.

Any code that controls access to system resources sould invoke
AccessControler methods if it wishes to use the specific security model and
access control algorithm utilized by these methods.

Security permissions
The permission classes represent access to system resources. The
java.security.Permission class is an abstract class and is subclassed to
represent specific accesses.
198 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
The list of permissions in Java V1.2:

� java.security.Permission

This abstract class is the anchestor of all permissions.

� java.security.PermissionCollection

It holds a collection of the same type of permissions (homogeneous).

� java.security.Permissions

It holds a collection of any type of permissions (heterogeneous).

� java.security.UnresolvedPermission

When the policy is initialized and the code that implements a particular
permission has not been loaded or defined in the Java application
environment; in this case the UnresolvedPermission holds the “unresolved”
permissions.

� java.security.UnresolvedPermissionCollection

It holds a collection of UnresolvedPermission.

� java.io.FilePermission

Holds permission definitions for file resources, actions on a file can be: read,
write, delete and execute.

� java.security.SocketPermission

This permission represents access to network sockets; actions on a socket
can be: accept, connect, listen, resolve.

� java.security.BasicPermission

It extends the Permission class and can be used as the base class for other
permissions.

� java.util.PropertyPermission

This class targets the Java properties as set in various property files; actions
can be: read, write.

� java.lang.RuntimePermission

The target for this permission can be represented by any string and there is
no action associated with the targets. For details on the targets, refer to Sun’s
Java 2 Platform Security Architecture document.

� java.awt.AWTPermission

Similar to the previous permission, but it is related to targets in AWT. For
details on the targets, refer to Sun’s Java 2 Platform Security Architecture
document.

� java.net.NetPermission
 Chapter 8. Programmatic security 199

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
It controls the Net related targets, no actions associated. For details on the
targets, refer to Sun’s Java 2 Platform Security Architecture document.

� java.lang.reflect.ReflectPermission

This is a Permission class for reflective operations; it has no actions; it works
like the RuntimePermission. For details on the targets, refer to Sun’s Java 2
Platform Security Architecture document.

� java.io.SerlializablePermission

It controls the serialization related targets, no actions associated. For details
on the targets, refer to Sun’s Java 2 Platform Security Architecture document.

� java.security.SecurityPermission

It controls access to security related objects; no actions associated. For
details on the targets, refer to Sun’s Java 2 Platform Security Architecture
document.

� java.security.AllPermission

This permission implies all permissions.

Policy files
The policy can be specified within one or more policy configuration files; where
the files indicate what permissions are allowed for codes from specified code
sources.

The keystore can be defined according to the following grammar:

keystore “keystore_URL”, “keystore_type”;

A grant entry can be defined according to the following grammar:

grant [SignedBy “signer_names”] [, CodeBase “URL”] {
permission permission_class_name [“target_name”] [, “action”]

[,SignedBy “signer names”];
...

};

Important: no one except Sun Microsystems should extend the permissions
that are built into the Java 2 SDK.

(From the Java 2 Platform Security Architecture V1.0 paper by Sun
Microsystems)

Definition: a policy configuration file essentially contains a list of entries. It
may contain a keystore entry, and contains zero or more grant entries.
200 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Each grant entry consists of a CodeSource and its permissions, where a
CodeSource conists of a URL and a set of certificates and the grant entry
includes a URL and a list of signer names.

Property expansion is possible in the policy files and in the security properties
file.

Example 8-4 Sample policy file

keystore “c:\keystores\mykey.jks”, “jks”

grant codeBase “http://java.sun.com/*“, signedBy “WebDeveloper” {
permission java.io.FilePermission “/files/*”, “read”;
permission java.io.FilePermission “${user.home}”, “read,write”;

}

When the JVM is loading a new class, the following algorithm is used to cehck
the policy settings for that particulas class:

1. Match the public keys, if code is signed

2. If a key is not recognized in the policy, ignore the key. If every key is ignored,
treat the code as unsigned.

3. If the keys are matched, or no signer was specified, try to match all URLs in
the policy for the keys.

4. If either key or URL is not matched, use built-in default permission, which is
the original sandbox permission.

Policy files in runtime
The following list will show, how the policy files can be specified for a Java
runtime; and where those policy files are located.

� System policy file is located at:

{java.home}/lib/security/java.policy

� User policy file is located at:

{user.home}/.java.policy

� Policy file locations are also specified in the security properties file, located at:

{java.home}/lib/security/java.security

� It is also possible to specify additional or different policy file when invoking
execution of an application, using the appropriate command line arguments,
for example:

java -Djava.security.manager -Djava.security.policy=MyPolicyURL
MyApplication
 Chapter 8. Programmatic security 201

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
When the policy file is specified by using double equals, then the specified
policy file will be used exclusively; for example:

-Djava.security.policy==MyOnlyPolicyURL

Security Exceptions
The following exceptions ship with the Java V1.2 SDK:

� java.security.SecurityException

This exception and its subclasses should be runtime exceptions (unchecked,
not declared) that are likely to cause the execution of a program to stop. Such
an exception is thrown when security violation is detected. For example:
trying to access an unauthorized resource.

� java.security.GeneralSecurityException

This is a subclass of java.lang.Exception (must be declared or caught) that is
thrown in other cases. Such an exception is thrown when security related but
not vital problem is detected. For example: passing an invalid key.

Secure class loading
The dynamic class loading is one of the strength of the Java platform, because it
provides the ability to install components at runtime. It is also critical in providing
security because the class loader is responsible for locating and fetching the
class file, consulting the security policy, and defining the class object with the
appropriate permissions.

The java.security.SecureClassLoader is a subclass and an implementation of the
abstract java.lang.ClassLoader class. Other classloaders subclass the
SecureClassLoader to provide different class loading facilities for various
applictions.

Debugging security
Use the -Djava.security.debug=access,failure argument in the virtual machine.
This flag will dump the name of permission checks that are failing.

For example: start with minimal security permissions, then run a test and check
what permissions are failing. Add the necessary permissions to the policy file
then run your test again for re-checking. Repeat these steps until you have all the
necessary permissions set. Note that thiss will only help you to identify the
persmissions you have to set, it will not help to find the right settings for the
permissions.
202 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Security Tools for Java
The Java 2 SDK provides three tools that assist in the deployment of the new
security features.

For more information refer to the documents under the Java 2 SDK directory in
/docs/tooldocs/.

Key and certificate management tool
keytool is a key and certificate management utility, similar to IBM’s ikeyman
utility. Tha major difference is that the keytool is only a command line utility
without graphical interface; but keytool allows to create certificates for any
Distinguished Name (dn) that you require; unlike ikeyman which has a
predefined dn schema. For online help launch the keytool with the -help option:

keytool -help

Policy file editing tool
The policytool with a nice GUI assists the user in specifying, generating, editing,
exporting or importing a security policy. The application can be launched from the
command line with the policytool command.

The policytool utility depends on the keystore that is managed by keytool.

JAR signing and Verification tool
The jarsigner tool can be used to digitally sign Java archives (JAR files) and to
verify such signetures. The jarsigner tool can be used from the command-line by
isuing the jarsigner command.

The jarsigner tool depends on the keystore that is managed by keytool.

8.5.1 Java 2 security in WebSphere
The WebSphere Application Server V5 also supports the Java 2 security in order
to harden the Java Virtual Machine runtime environment.

By default, WebSphere Application Server installs a Java 2 SecurityManager and
Java 2 Security is enforced via a default set of policies. The default policies are
those recommended in the J2EE Platform specification.

Java 2 security can be enabled on the Global Security panel under the
WebSphere Administration Console, by enabling the checkbox. For more
information on Java 2 Security configuration refer to Section 10.2, “WebSphere
Global Security” on page 235.

As a default, when Global security is enabled for WebSphere the Java 2 security
is disabled.
 Chapter 8. Programmatic security 203

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
WebSphere also maintains a set of policy files for the application server runtime.
These files are listed below:

� <WebSphere_root_directory>\java\jre\lib\security\java.policy

� <WebSphere_root_directory>\properties\

– was.policy

– client.policy

– server.policy

� <WebSphere_root_directory>\config\cells\<your_cell>\filter.policy

� <WebSphere_root_directory>\config\cells\<your_cell>\nodes\<your_node>

– app.policy

– library.policy

– spi.policy

� was.policy for the applications under each installed application in the
META-INF directory.

8.6 JAAS
JAAS (Java Authentication and Authorization Services) is a standard extension
to the Java 2 SDK v1.3 and it is part of Java 2 SDK v1.4. The current version for
JAAS is 1.0. The WebSphere Application Server V5 also implements and uses
JAAS for security purposes.

The best way to learn JAAS is to start with the sample application that comes
with JAAS v1.0; download the extension fron Sun’s Java site:
http://java.sun.com/products/jaas.

8.6.1 Implementing security with JAAS
This section will explain how JAAS is generally used to implement security in
Java.

Secured application
Talking about security, here we will investigate how security works within an
application. The secured application has two parts:

Note: JAAS does not require Java 2 security to be enabled. JAAS can be
configured and used without Java 2 security.
204 IBM WebSphere V5.0 Security Handbook

http://java.sun.com/products/jaas

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
� The main application that handles the login procedure and runs the secured
code under the authenticated subject.

� The action that is invoked from the main application under a specific subject.

Supporting Components
The following objects are required for a secured application using JAAS:

� Principal that is part of a Subject.

First of all, the Subject has to be explained. In JAAS the Subject is some
identity. This identity will be authenticated and permissions will be assigned to
it.

A Subject can have relationship with several different authorities. In JAAS
these multiple interactions with authorities are represented by objects that are
implmenting the java.security.Principal interface. The principal objects are
listed under a subject.

� A callback handler that implements the CallbackHandler interface. This class
is a client provided set of interfaces for entering authentication information.
These interfaces decouple the service provider from the particular input
devices being used.

The following callbacks are provided for user interaction:

– ChoiceCallback: collects choice information

– ConfirmationCallback: collects confirmation information

– LanguageCallback: collects the language information

– NameCallback: collects the user name for login

– PasswordCallback: collects the password for the login

– TextInputCallback: collects simple text information

– TextOutputCallback: provides text information

– WSRealmNameCallbackImpl: collects the realm for the login. It is an IBM
proprieary callback type.

Definition: What is callback ?

Developers conversant in event-driven programming model of Microsoft
Windows and X Window are accustomed to passing function pointers that
are invoked when something happens. The invocation part of the process
is the “callback”. However Java does not support method pointers, Java
interfaces provide a solution to implement callbacks.
 Chapter 8. Programmatic security 205

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
– WSCredTokenCallbackImpl: collects the token for the login. It is an IBM
proprieary callback type.

� A class that implements the LoginModule interface, which does the login
process effectively.

Three descriptor (configuration) files are also required for JAAS:

� The subject-based access control policy for the application, passed along
with the -Djava.security.auth.policy= parameter to the JVM.

� The access control policy file for the application, passed along with the
-Djava.security.policy= parameter to the JVM.

� Login configuration for the application, passed along with the
-Djava.security.auth.login.config= parameter to the JVM.

8.6.2 How is JAAS security working ?
All you need to do is to start the client in the virtual machine with the correct
configuration.

The following system properties configure JAAS for the Java Virtual Machine.

� -Djava.security.auth.policy=jaas.policy defines the JAAS policy for the virtual
machine

� -Djava.security.auth.login=login.conf provides the configuration file for
LoginContext, what login class to use for authentication.

Running the application with specific JAAS configuration look like the following
example:

java -Djava.security.auth.policy=jaas.policy
-Djava.security.auth.login=login.config com.mycompany.MyApplication

JAAS requires a configuration file for the login module definition for example:
login.config.

Example 8-5 login.config

WSLogin {
com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
delegate=com.ibm.ws.security.common.auth.module.WSLoginModuleImpl;

};
206 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
The configuration file can have multiple definitions, each definition has an alias
name, that can be used in the application to set the login module. The entry
defines the Java class for the login module; the "required" means that this class's
approval is necessary for login to succeed. The entry can optionally define a
delegation class for the login module.

There can be a policy file for JAAS defined, similar to the policy files used in Java
2 security. Actually, the Java 2 Security and JAAS policy files can be merged in
the next release of Java, in J2EE V1.4. This policy file is optional.

Example 8-6 jaas.policy

grant Principal SamplePrincipal "user01" {
permission java.util.PropertyPermission
"user.home", "read";

};

The policy file defines the access policy for the resources in an application. The
policy defines the principal for the resources.

8.7 Programmatic login
When you want to implement your own login mechanism for your application you
might want to use JAAS and implement the required programmatic login.

The following diagram,Figure 8-8, shows the activity diagram for JAAS how the
different components are working together during a login process.
 Chapter 8. Programmatic security 207

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 8-8 JAAS sequence diagram

The step-by-step process is described below:

1. The application starts the login process using JAAS.

2. The LoginContext gets initialized.

3. During the login process, executed in the LoginContext, a Principal will be
authenticated using the specified callback handler.

4. If the authentication was successful the LoginContext commits the login, the
Principal gets assigned to the Subject.

5. The application gets the Subject from the LoginContext.

6. The doAs method attempts a secured operation under the acquired Subject.

application CallbackHandlerLoginContext LoginModule Principal Action

instantiate

login

reads the login_config
to find the
LoginModule
implementations

put nameCallback

put passwordCallback

handle Callbacks

get password

get username

verify username/password

newadd principal
to subject

subject.doAS
208 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
8.7.1 JAAS in WebSphere
In the previous version of WebSphere, WebSphere Application Server V4.0,
other mechanisms were used to perform programmatic login. There was a
distinction between server-side and client-side programmatic login. One was
using the LoginHelper class together with CORBA authentication methods, while
the other was utilizing the ServerSideAuthenticator class. In WebSphere V5.0
these classes together with the mechanism are deprecated; use the JAAS
programmatic login instead.

With JAAS the client-side and server-side login works the same way, however the
challenge for authentication works a bit different. On the client-side any challenge
mechanism can bu used that is compatible with the client’s runtime environment;
while on the server side there is no place to pull up an authentication challenge
window or provide a command line prompt for username, password. On the
server-side, credentials have to be collected in the code then provided to the
JAAS login facility.

8.7.2 Client-side login with JAAS
Client-side login is useful when the user needs to login into the security domain
on a remote system using the client application. In this case the client application
has to collect the login information for authentication purposes. WebSphere
provides built-in mechanisms to collect the necessary information: user name,
password, realm.

There are two scenarios in this client-side login section, one is an example for
J2EE Java applications, and the other is for thin Java applications. For more
informaiton about Java client security refer to Chapter 6, “Securing Java clients”
on page 97.

J2EE Java application
The following code snippet shows how to perfrom various types of login using
character-based console (stdin), graphical user interface, and direct login without
login prompt.

Example 8-7 Client side login in the ITSOBank J2EE client

...
private static void loginClient() {

LoginContext lc = null;
try {

// using the console (stdin) to collect the login information
if(logintype.equals("stdin")) {

System.out.println("Performing stdin login...");
 Chapter 8. Programmatic security 209

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
lc=new LoginContext("ClientContainer", new
WSStdinCallbackHandlerImpl());

}
// using the graphical interface to collect the login information
if(logintype.equals("gui")) {

System.out.println("Performing GUI login...");
lc=new LoginContext("ClientContainer", new WSGUICallbackHandlerImpl()

);
}
// collecting the login information from command line and
// login directly without prompting for user name, password and realm
if(lc==null) {

System.out.println("Performing silent login...");
lc=new LoginContext("ClientContainer", new

WSCallbackHandlerImpl(loginuid,loginrealm,loginpwd));
}

// exception handling
} catch (LoginException le) {

System.out.println("Cannot create LoginContext. " + le.getMessage());
// insert error processing code
return;

} catch (SecurityException se) {
System.out.println("Cannot create LoginContext." + se.getMessage());
se.printStackTrace(System.out);
// Insert error processing
return;

}
// performin login based on the login context
try {

lc.login();
// exception handling
} catch (LoginException le) {

System.out.println("Fails to create Subject. " + le.getMessage());
le.printStackTrace(System.out);
return;

}
}
...

Beside the J2EE container the client requires a properties file for the JAAS login
configuration; a configuration file for CSIv2 and IBM SAS configuration; keystore
files for SSL communicaiton.
210 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
Running the client-side login sample
To test the client-side login scenario, launch the ITSOBank J2EE client
application from the command line. The client is packaged with all the application
modules in the enterprise archive. Normally you will only need the client
application, the utility JARs, and some of the EJB classes for client access.

launchclient itsobank_secured.ear [stdin | gui | username password realm]

The following example launches the client using the character-based console to
collect login information:

launchclient itsobank_secured.ear stdin

The following example launches the client passing the login information as
parameters:

launchclient itsobank_secured.ear manager01 password dirsrv:389

If you are running the client from a remote terminal, you have to specify the
server hostname and eventually the server port for the connection:

launchclient -CCBootstrapHost=appsrv01 -CCBootstrapPort=2809
itsobank_secured.ear

Thin Java application
The thin Java application also has to use a login mechanism to log in to the
application server. WebSphere Application Server V5 supports JAAS as the
authentication mechanism for programmatic login. In order to perform a log in to
access a remote EJB you have to do the followings:

1. Initialize the ORB for the CORBA connection. The following code snippet
shows the ORB initialization.

Example 8-8 ORB initialization

...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.ORB");
props.put("com.ibm.CORBA.ORBInitRef.NameService","corbaloc:iiop:" + serverName
+ ":" + serverPort + "/NameService");
props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot","corbaloc:iiop:"+
serverName + ":" + serverPort + "/NameServiceServerRoot");
ORB _orb = ORB.init((String[]) null, props);
...

2. Perform the programmatic login using JAAS; this part is very similar to the
login process introduced before.

3. Initialize the Context for the EJB lookup, then lookup the EJB.

4. Acquire the remote object through the EJB’s home interface.
 Chapter 8. Programmatic security 211

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
This sample application uses a callback handler called:
ITSOBankCallbackHandler implementing the CallbackHandler interface. It is a
simple implementation collecting the login information from a character-based
console. It is only provided to show how to implement a callback handler and use
it with JAAS. For more information about the handler, see the comments in the
source of ThinAccountViewer, it is at the end of the file.

Running the client-side login sample
To test the client-side login scenario, launch the ITSOBank thin Java client
application from the command line. The client is provided together with the
ITSOBank sample application as a separate package.

The following example launches the client using the character-based console to
collect login information:

runclient appsrv01 2809 login

The application will collect the login information: user name, password and realm
on the character-based console; for example: manager01, password,
dirsrv:389.

After a successful authentication the client application GUI comes up, where you
can collect balance information for customers and branches.

8.7.3 Server-side login with JAAS
Server-side login is used when the application has to log the users into the
security domain by providing authenticaiton data and login information on the
server side. In these situations a server-side component, for example: servlet,
EJB, performs authentication for the application.

For authentication purposes the Java Authenticaiton and Authorization Services
(JAAS) is used on the server-side. Similar to the client-side login the login is
performed programatically coded in the component. The user details can be
collected in any format and have to be presented through the login context during
the login process. The main difference between server-side and client-side login
is that on the server-side it is not possible to collect the login information through
user interaction. It is not possible to pull-up a graphical window or
character-based console to ask for user name and password. The login
information (user name, password, realm) is passed directly to the login context.

Note: Without initializing the ORB, JAAS will not be able to perform the login.
The application will perform the authentication challenge as it is set in the SAS
client configuration file, it is the GUI login panel by default.
212 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chProgSec.fm
The following example is a code snippet from the ITSOBank application,
performing server-side login for the TransferServlet servlet. Note, that the
callback handler at this time is the WSCallbackHandlerImpl class, and the login
information is passed to the handler as parameters.

Example 8-9 Server-side login in the ITSOBank TransferServlet servlet

...
try {

LoginContext lc=new LoginContext("WSLogin",new
WSCallbackHandlerImpl(loginusername,loginrealm,loginpassword));

lc.login();
} catch (LoginException le) {

// handling the exception
}
...

The other difference with server-side login is that the login.properties defined
under the <WebSphere_root>/properties/ directory is used to configure JAAS.

Running the server-side login sample
In order to test the server-side login function in the ITSOBank sample
application, launch a Web browser and access the http://localhost/itsobank
application.

Select the Modified Customer Transfer 2. - using Server-Side Login link. Fill
out the next form with the required information, do not forget to provide the realm,
for example: dirsrv01:389 if you are using an LDAP directory on host: dirsrv01
at port: 389.

Submit the transfer, then wait for the response page. When the transfer is done,
go and check out the SystemOut.log file under the
<WebSphere_root>/logs/server1 directory. Go to the end of the file and look for
the identities who initiatied the transfer and who invoked the bean methods.

8.8 Where to find more information
For more information on the security aspects of J2EE, see the following
documents:

� The Java 2 Platform Specification v1.3 at
http://java.sun.com/j2ee/docs.html

� The specification for Java Authentication and Authorization Service (JAAS)
and Java 2 Security is also available at the previous URL.
 Chapter 8. Programmatic security 213

http://java.sun.com/j2ee/docs.html

6573chProgSec.fm Draft Document for Review November 6, 2002 2:37 pm
214 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
Chapter 9. WebSphere Application
Server Security

This chapter is an introduction, presenting the big picture of the WebSphere
Application Server V5 security concepts.

It covers the security architecture and the basic security settings for the server,
and can serve as a quick overview of all the security features and services within
WebSphere. Details on different security subjects are presented in the
appropriate chapters.

9

© Copyright IBM Corp. 2002 215

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
9.1 WebSphere security model
The IBM WebSphere Application Server V5 is a J2EE 1.3 compliant Java
application server; it implements the required security services as they are
specified. The security components are essential parts of the application server
architecture. The following description will give a high-level overview of these

9.1.1 WebSphere security in operating environment
Thought it is not the subject of that book, when discussing security of enterprise
application run under WebSphere Application Server we should first take a closer
look at the environment under which the server will run. This may have a strong
influence on the WebSphere security configuration (that is stored in file system)
and the overall application runtime security environment.

Figure 9-1 WebSphere environment security layers

IBM WebSphere Application Server security sits on top of the operating system
security and the security features provided by other components, including the
Java language, as shown in figure above.

� Operating system security should be considered in order to protect sensitive
WebSphere configuration files and to authenticate users when operating
system user registry is used for authentication. This is extremely important in

Operating System Security

JVM 1.3

Java 2 Security

Corba Security / CSIv2

J2EE Security API

WebSphere Security

Naming
User Registry
JMX MBeans

HTML
Servlet / JSP
EJBs
WebServices

Access Control

WebSphere Application resources

WebSphere Security

Java Security

Platform Security
216 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
a distributed WebSphere environment when potentially different operating
systems and different user registries might be involved. Keeping the users
(and their passwords) and groups in sync across many different machines
might be a problematic administration task.

� Standard Java language security is provided through the Java Virtual
Machine (JVM) used by WebSphere and the Java security classes.

� Java 2 security enhances standard Java Virtual Machine security by
introducing fine grained access, easily configurable security policy, extensible
access control structure and security checks for all Java programs (including
applets).

� Common Secure Interoperability protocol adds additional security features
that enable interoperable authentication, delegation and privileges in CORBA
environment. It support interoperability with EJB 2.0 specification and can be
used with SSL.

� J2EE security uses the security collaborator to enforce J2EE-based security
policies and support J2EE security APIs. APIs are accessed from WebSphere
applications in order to access security mechanisms and implement security
policies.

WebSphere Application Server V5 security relies and enhances all the above
mentioned layers. It implements security policy for in unified manner for both
Web and EJB resources.

9.1.2 WebSphere security in distributed environment
In a distributed environment Websphere Application Server may be installed in
the Network Deployment configuration, where WebSphere creates a network of
application servers instances supporting clustering, caching and efficient
utilization of shared resources. Picture below presents a general architecture of
the WebSphere deployment configuration.
 Chapter 9. WebSphere Application Server Security 217

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 9-2 Overview of Websphere Network Deployment configuration

Follow the description for the elements on the diagram above:

� Node is a logical grouping of application server processes. A node often
corresponds to physical server machine with IP address assigned to it.
Application server processes located on one node are managed by a single
node agent. On each mode there is local copy of cell configuration repository
managed by a node agent. This repository may be modified through
deployment manager during publish/activate configuration processes. Node
agent has also access to the configuration repository of each process running
on a node.

� Cell is logical configuration concept that associates WebSphere server nodes
with one another. Administrators may freely define the cell according to
whatever criteria they will take to group the servers (organizational aspects,
application aspects, and so on). A cell is managed by one deployment
manager process.

� Node Agent is administrative process that manages application server
processes on a single node. Node Agent routes administrative requests
issued from deployment manager to a particular application server. It is purely

Node Agent

Node cfg.

Process
A

Node Agent

(App Server)

Process
B

Publish/Activate

Process B cfg.

Node B

Process A cfg.

Cell-wide
configuration

repository

Process A cfg.

Cell cfg.

Configuration
Node A

Commands

Deployment
Manager

Publish/Activate

Node cfg.

Process
BProcess B cfg.

Cell cfg.

Process
A

(JMS Server)

(App Server)

(App Server)
218 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
administration process participating in the network deployment configuration
and is not involved in serving applications.

� Deployment manager is an administrative process that controls processes
and manges load balancing between the nodes connected to the cell.
Administrative access to any node in a cell is governed by deployment
manager processes. This means that deployment manager hosts
administrative console for entire cell.

In the WebSphere Network Deployment configuration one computer is
designated to be central Deployment Manager. This central machine controls
other systems that work under its supervision.

Figure 9-3 below presents architectural building blocks of cell in a network
deployment manager configuration.

Figure 9-3 Architectural building blocks for WebSphere Network Deployment

Config
repository

(file)

Master
repository

(file)

Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node Agent

Node

Java
client

Client container

Application
Database

A
d

m
in

 s
er

vi
ce

Admin
UI

Scripting
client

C
us

to
m

er

ap
pl

ic
at

io
n

(e
ar

)

HTTP server

WebSphere
plug-in

Embedded
HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server

Cell

Deployment Manager

Admin
application

(.ear) Name Server (JNDI)

Admin Service

Admin Service

Session
Database

Web Services
Gateway (.ear)

UDDI registry
(.ear)

Application Server
 Chapter 9. WebSphere Application Server Security 219

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
From the security point of view each application server process may be
configured to have a local or a remote Security Server. This notion of local or
remote is relative to the application server process. Deployment Managers and
Node Agent processes always have a Security Server and are used to perform
authentication and authorization for the Deployment Manager, Node Agent, and
for those application servers that were configured to use a remote Security
Server.

On some operating systems, like unix for example, running security server will
require the highest user priority. This is because of the access to the operating
system functions in order to perform authentication based on local operating
system user registry requires root privilege.

Many customers will not want to run application server processes with the root
privilege because this implies that all application components (like servlets) will
have this privilege. In such cases you have to consider how to configure security
and when to place security server before deploying an application.

9.1.3 Java Management Extension Architecture (JMX)
Java Management Extension is a set of new interfaces and Java Beans that
allows to perform configuration and management of WebSphere Application
Server components from custom applications without using the Administrative
Console or the wsadmin program.

JMX uses Tivoli implementation scheme and provides client interface and
sripting facility that allows the use of MBeans to manage Websphere Application
Server. It is used for overall WebSphere system management tasks.

Distributed administrative processes that run on each node have separated
administrative repository. Deployment manager that controls a group of nodes
provides the scope of visibility of the administrative processes in cell. This is
done through node managers as described in the section above. Below is a
conceptual diagram of how JMX MBeans are used to perform different
administrative tasks.
220 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
Figure 9-4 JMX Beans in a system management concepts

9.2 Websphere Application Server security architecture
WebSphere Application Server v5.0 is a J2EE 1.3 compliant Java application
server, it uses declarative security model in which application expresses security
constraints in a form that is external to the application. This external form of the
constraint allows the application to be independent on the chosen security
mechanism. Security mechanisms are defined and configured as a part of the
global application server security.

� Global Security specifies global security configuration for a managed
domain and applies to all applications running on WebSphere Application
Server. It determines whether security will be applied at all, sets up the user
registry against which the authentication will take place, defines
authentication mechanisms and so on. Global security is managed from the
Administrative Console. You will notice that many of the values for global
security act as defaults.

MBean

Connector
(SNMP)

WebSphere MBean
XML Descriptors
File (static data)

Connector
(JMS) Connector

(RMI)

activateMBean

RMI
proxy

create

AdminService

SNMP Agent

MBean

Runtime
Collaborator

Administrative Scripting Application

queue
SOAP
proxy

Admin
Console
WebApp

Connector
(SOAP)

Server runtime

WebSphere
MBeanFactory

registerMBean

MBean

Runtime
Collaborator

Runtime
Collaborator

JMX MBeanServer

AdminInitializer

Admin Client Library

Managed Process

Connector
(HTTP)

browser
 Chapter 9. WebSphere Application Server Security 221

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
� Application Security determines application specific requirements. In some
cases these values may override global security settings but in most cases
they complement it. Application security includes such elements as: method
for authenticating the users, mechanism for authorizing the users into
application specific resources, roles based access control to these resources,
roles to user/user groups mapping and so on. Application security is
administered during assembly phase using application assembly tool (AAT)
and during deployment phase using WebSphere administrative console and
wsadmin client program.

Diagram below presents a general overview of building blocks that of single
application server and how they interact in a Java client and Web browser
communication. For more detailed description of the security communication flow
please refer to section , “Other security components” on page 226.

Figure 9-5 Single Application Server building blocks

This section presents general overview of security components of the
Websphere Application Server and how they are used to create flexible
pluggable architecture.

Config
repository

(file)Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node
Agent

Node

Java
client

Client container

Application
Database

A
dm

in
ap

pl
ic

at
io

n

A
d

m
in

 s
er

vi
ce

Admin
UI

Scripting
client

C
us

to
m

er

ap
pl

ic
at

io
n

(e
ar

)

HTTP server

WebSphere
plug-in

Embedded
HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server
222 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
9.2.1 Extensible security architecture model
A diagram below presents general view of the logical layered security
architecture model of WebSphere Application Server 5.0.

Flexibility of that architecture model lies in pluggable modules that can be
configured according to the requirements and existing IT resources.

Interface layer allows to connect different modules responsible for authentication,
authorization and user registry.

Pluggable user registry allows to configure different databases to store user IDs
and passwords that are used for authentication. Detailed information on how to
interface to custom registry using UserRegistry interface please refer to
Chapter 8, “Programmatic security” on page 179.

Figure 9-6 WebSphere V5 extensible security architecture

Pluggable authentication module allows to chose whether WebSphere will
authenticate the user or will accept the credentials from external authentication
mechanisms. On how to configure WebSphere to use credentials from IBM Tivoli
Access Manager please refer to Chapter 12, “Tivoli Access Manager” on
page 367. In the future this authentication interface will be extended to include
other external authentication systems.

Pluggable authorization interfaces will allow to use different authorization
mechanisms for WebSphere applications. In a current version, JAAS is
supported and Tivoli Access Manager as an external authorization system.

IBM

CSIv2

WebSphere Application Server

Pluggable User
Registry

Pluggable
Authentication

Pluggable
Authorization

NT/Unix
user

registry

LDAP
user

registry

Custom
user

registry
SWAM LTPA JAAS

Tivoli
Access

Manager

CSIv2

IBM

other
vendor's

ORB
z/OS
 Chapter 9. WebSphere Application Server Security 223

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
9.2.2 WebSphere Application Server security components
Find the WebSphere Application Server security components listed below.

User registry
User registry stores user and group names for authentication and authorization
purpose. Authentication mechanisms configured for WebSphere Application
Server consults the user registry to collect user related information when creating
credentials which are then used to represent the user for authorization. The
options for user registries to set up include:

� Local operating system user registry - when configured WebSphere uses
the operating system’s users and groups for authentication. When configuring
Websphere Application Server in Windows NT or Windows 200 platforms that
are connected to a Windows domain you should be aware that domain user
registry takes precedence over local machine’s user registry.

� LDAP user registry - in many solutions LDAP user registry is recommended
as the best solution for large scale Web implementations. Most of the LDAP
servers available on the market are well equipped with security mechanisms
that can be used to securely communicate with WebSphere Application
Server. WebSphere supports a few LDAP server: IBM SecureWay Directory,
Netscape LDAP Server, Lotus Domino LDAP Server, Microsoft Active
Directory. There is also a possibility to use other LDAP servers. Flexibility of
search parameters that administrator can set up to adapt WebSphere to
different LDAP schemas.

� Custom user registry - this leaves open door for any custom implementation
of user registry database. Websphere API provides the UserRegistry Java
interface that you should use to write custom registry. This interface may be
used to access virtually any relational database, flat files and so on.

WebSphere authentication mechanism can not be configured to use more than
one user registries at a time. Only one single active registry is supported and it is
set up when configuring Global Security settings using the Administration
Console.

Authentication mechanisms
An authentication mechanism defines rules about security information, for
example, whether a credential is forwardable to another Java process, and the
format of how security information is stored in both credentials and tokens.

Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either an end user, a machine, or an
application.
224 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
An authentication mechanism in WebSphere typically collaborates closely with a
User Registry. The User Registry is the user and groups accounts repository that
the authentication mechanism consults with when performing authentication. The
authentication mechanism is responsible for creating a credential which is a
WebSphere internal representation of a successfully authenticated client user.
Not all credentials are created equal. The abilities of the credential are
determined by the configured authentication mechanism.

Although WebSphere provides several authentication mechanisms, only a single
“active” authentication mechanism can be configured at once. The active
authentication mechanism is selected when configuring WebSphere global
security.

WebSphere provides two authentication mechanisms; Simple WebSphere
Authentication Mechanism (SWAM) and Lightweight Third Party Authentication
(LTPA). These two authentication mechanisms differ primarily in the distributed
security features each supports.

� SWAM (Simple WebSphere Authentication Mechanism)

The SWAM authentication mechanism is intended for simple, non-distributed,
single application server type runtime environments. The single application
server restriction is due to the fact that SWAM does not support forwardable
credentials. What this means is that if a servlet or EJB in application server
process 1, invokes a remote method on an EJB living in another application
server process 2, the identity of the caller identity in process 1 is not
transmitted to server process 2. What is transmitted is an unauthenticated
credential, which, depending on the security permissions configured on the
EJB methods, may cause authorization failures.

Since SWAM is intended for a single application server process,
single-sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments,
software development environments, or other environments that do not
require a distributed security solution.

SWAM relies on the session id, it is not as secure as LTPA, therefore using
SSL with SWAM is strongly recommended.

� LTPA (Light Weight Third Party Authentication)

Lightweight Third Party Authentication (LTPA) is intended for distributed,
multiple application servers and machine environments. It supports
forwardable credentials and SSO. LTPA is able to support security in a
distributed environment through the use of cryptography. This permits LTPA
to encrypt and digitally sign and securely transmit authentication related data
and later decrypt and verify the signature.
 Chapter 9. WebSphere Application Server Security 225

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
LTPA requires that the configured User Registry is a central shared repository
such as LDAP or a Windows Domain type registry.

The following table summarizes the Authentication Mechanism capabilities and
user registries used with LTPA.

Table 9-1 Authenitcation mechanisms

Future versions of WebSphere will support the Kerberos authentication
mechanism to provide broader selection and an industry standard mechanism for
authentication.

Authorization mechanisms
Websphere Application Server standard authorization mechanisms are based on
J2EE security specification and Java Authentication and Authorization Services.
JAAS extends the security architecture of the Java 2 Platform with additional
support to authenticate and enforce access controls upon users.

JAAS programming models permits the developer to design application
authentication in a pluggable fashion, which makes the application independent
from the underlying authentication technology.

Java 2 security architecture uses security policy to specify who is allowed to
execute a code of the application. Code characteristics, like code signature,
signer id, source server, decide whether the code will be granted access to be
executed or not. JAAS extends this approach with role based access control.
Permissions to execute a code is granted not only on the code characteristics but
also on the user, who is running it.

For each authenticated user a Subject class is created and set of Principals are
included in the subject in order to identify that user. Security policies are granted
based on possessed principals.

Other security components
The list below will show you other security components within the WebSphere
Application Server V5.

AuthC
mech.

Forwardable
user
credentials

SSO Local OS
user registry

LDAP user
registry

Custom user
registry

SWAM no no yes yes yes

LTPA yes yes yes yes no
226 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
Security server
Security server is a component of Websphere Application Server that runs in
each application server process. If multiple application server instances are
executed on a single node, then multiple security servers exist on that node

Security Server component is responsible for managing authentication and
authorization, it collaborates with authorization engine and User Registry.

Security collaborators
Security collaborators are application server processes responsible for enforcing
security constraints specified in deployment descriptors. They communicate with
security server every time when authentication and authorization actions are
required. The following security collaborators are identified:

� Web security collaborator residing in the Web container.

Web collaborator provides the following services to the application:

– checks authentication

– performs authorization according to the constraint specified in deployment
descriptor

– logs security tracing information

� EJB security collaborator residing in the EJB container.

EJB collaborator uses CSIv2 and SAS to authenticate Java client requests to
enterprise beans. It works with the security server to perform the following
functions:

– check authorizations according to specified security constraint

– support communication with local user registry

– log security tracing information

– communicates external ORB using CSIv2 when request for a remote bean
is issued

JMX MBeans
Java Management Extension Beans is used in Websphere Application Server
V5.0 for management and administration related tasks. Please refer to9.1.3,
“Java Management Extension Architecture (JMX)” on page 220 for more detailed
architecture view.

Example below briefly presents how these components interact in three different
communication scenarios.
 Chapter 9. WebSphere Application Server Security 227

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 9-7 Websphere Application Server security components communication

Web browser communication
The steps below describe the interaction of the components from a security point
of view when a Web browser sends a request to a WebSphere application.

1. Web users request a Web resource protected by WebSphere application
server.

2. Web server receives the request and recognizes that requested resource is
on the application server and using WebSphere plug-in redirects the request.

3. Authentication occurs depending on the authentication method selected for
the application. WebSphere plug-in passes the user credentials to the Web
collaborator which performs user authentication

4. After successful authentication original Web request reaches Web container,
which uses Web collaborator to communicate with Security Server for
Authorization.

5. Web collaborator passes user’s credentials and security information read
from deployment descriptor to the security server and gets the response
whether access to specified resource is allowed or denied.

J

HTTP Server

RMI/IIOP
with CSI v2

HTTP / HTTPS

HTTP / HTTPS

EJB module WEB module
J2EE Application

WebSphere Application Server

Administration requests

RMI /IIOP or SOAP

JMX MBeans

Admin Server

 IIOP EJB Container

EJB Collaborator

Web Container

Web Collaborator

 DD DD

AuthC
engine

AuthZ
engine

Security
Server

Embedded HTTP Server

WebSphere plug-in

SOAP
RMI / IIOP

HTTP / HTTPS

SOAP
RMI / IIOP
228 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
6. On subsequent request only authorizations checks are performed either by
Web collaborator or EJB collaborator depending on what the user is
requesting. Users credentials are extracted from established security context.

Administrative tasks
The steps below follow the process how the administration tasks are exectuted.

1. Administrative tasks are issued using either the Web based Administrative
Console or the wsadmin scripting tool.

2. Administration client generates a request that reaches server side ORB and
JMX MBeans, JMX MBeans represent managed resources and are part of
the management interface system for components. Default communication
protocol is SOAP. It can be changed either by giving parameter to the
wsadmin program or modifying administration settings through the
Administrative Console.

3. JMX Beans contact security server for authentication and authorization
purpose. JAMX beans have dedicated roles assigned and do not use user
registry for authentication and authorization.

Java Client communication
The steps below describe how a Java client interacts with a WebSphere
application.

1. Java clients generates a request that reaches server side ORB. Request may
got through CSIv2 interceptor if the client’s request is generated using CSIv2.

2. Server side ORB passes then the request to EJB container.

3. Authentication is done by the ORB, before client gets access to protected
resources.

4. After submitting a request to access protected EJB method EJB container
passes the request to the EJB collaborator.

5. EJB collaborator reads deployment descriptor from the .ear file and users
credential from security context.

6. Credentials and security information is passed to security server that
validates user access right and passes this information back to the
collaborator.

7. After receiving a response from Security server EJB collaborator authorizes
or denies access for the user to requested resource.

For more detailed information on securing particular J2EE application modules
please refer to appropriate sections.
 Chapter 9. WebSphere Application Server Security 229

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
9.3 Performance considerations
From the performance point of view there are few things to consider when
designing a secure solution.

The authorization process brings additional load to the application server. In a
distributed environment authorization server should be put onto separate
machine in order to off load application processing. The following three settings
can help to fine-tune the security related configurations to enhance performance.

� Security Cache Timeout

It is set to indicate how long WebSphere should cache information related to
permission and security credentials. When the cache timeout expires, all
cached information becomes invalid. Subsequent requests for the information
result in a database lookup. Sometimes, acquiring the information requires
invoking an LDAP-bind or native authentication, both of which are relatively
costly operations in terms of performance.

� HTTP Session timeout

This parameter specifies how long a session will be considered active when it
is unused. After the timeout the session expires and another session object
will need to be created. With high volume Web sites this may influence the
performance of the server.

� Registry and database performance

Databases and registries that WebSphere Application Server is using have
an influence on WebSphere Application Server performance. Especially in
distributed environment when Authorization process uses LDAP server you
have to consider tuning LDAP database and LDAP server for performance
before starting to tune WebSphere.

9.4 Authentication summary
The following diagram is a summary of the authentication mechanisms for the
different kind of clients (clients here is used as the most general term).
230 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chWASSec.fm
Figure 9-8 Authentication mechanisms overview

At the bottom of this diagram are the different types of clients. These programs
can implement EJB clients to access the EJBs.

At the top of the diagram are two containers provided by the application server:
the Web container and the EJB container. The clients try to access the assets
served by the containers (HTML pages, servlet, JSPs, EJBs).

At the center of the diagram are the authentication mechanisms.

The clients can use authentication mechanisms listed in the center to reach the
appropriate container.

browser
J2EE

application
client

Thin Java
application

Java
applet

servlet
JSP

EJB

40
1

pr
om

pt

ce
rt

ifi
ca

te

fo
rm

 lo
gi

n

cu
st

om
 s

er
vl

et

se
cu

rit
y

pr
ox

y

tr
us

t a
ss

oc
ia

tio
n

Web container EJB container

cl
ie

nt
 s

id
e

lo
gi

n

pr
op

er
tie

s
fil

e

st
an

da
rd

 in
pu

t

pr
om

pt

se
rv

er
 s

id
e

lo
gi

n

se
rv

er
-s

id
e

lo
gi

n

ke
y

fil
e

WebSphere Application Server

de
le

ga
tio

n

LT
P

A
 to

ke
n

K
er

be
ro

s
to

ke
n

id
en

tit
y

as
se

rt
io

n

 Chapter 9. WebSphere Application Server Security 231

6573chWASSec.fm Draft Document for Review November 6, 2002 2:37 pm
232 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Chapter 10. Administering WebSphere
security

This chapter describes in further detail the steps necessary to configure security
and secure communication between the various components in WebSphere V5.

The discussion follows the navigation from the Administrative Console to
introduce all the security settings and configurations for WebSphere Application
Server.

You will find sections in the book referring to sections of this chapter instead of
duplicating administrative tasks and configuration aspects.

The topics covered in this chapter essential resource for system adminstrators,
system managers and WebSphere administrators.

10
© Copyright IBM Corp. 2002 233

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
10.1 Administration tools
WebSphere allows administration in many different ways. It provides a good
browser based GUI application, a command line utility called wsadmin, and a
programmatic API allowing custom Tools development.

� Administrative Console

Administrative Console for V5.0 is a browser based GUI application which is
more sophisticated, much better, very useful and easy for even remote
administration than previous versions of Administrative Consoles. Though
remote invocation of Administrative Console of the previous versions Java
application was also possible but it was not easy to use because of the slow
response, and problematic firewall configurations.

The URL for the Administrative Console is https://<serverName>:9090/admin.
WebSphere Application Server V5.0 Administrative Console is more secured
than the previous versions Administrative Console, now we can define
role-based access for Administrative Console, it supports four different roles:
Monitor role, Operator role, Administrator role, and Configurator role. When
Global Security is enabled, we can define users for the different roles
WebSphere allows.

� wsadmin scripting tool

WebSphere Application Server V5.0 wsadmin is a command line utility for
administration and configuration. wsadmin uses the Bean Scripting
Framework(BSF) and supports the JACL scripting language. wsadmin scripts
use Java Objects for application management, configuration, operational control,
and for communication with MBeans running in WebSphere server process.

Please refer to Appendix D, “Using wsadmin scripting for security configuration”
on page 509 for security configuration for some examples for wsadmin scripts.

� Custom Tools developed by using Programmatic API

Note: use the fully qualified name of the server when you access the
Administrative Console with a Web browser (for example:
wassrv01.itso.ral.ibm.com). When Single Sign-On is enabled it requires the
fully qualified name to identify the domain. If the domain suffix is not specified
you will not be able to login to the administrative application.

TEST WITH FINAL RELEASE, WITH AND WITHOUT CONFIGURING DNS
234 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
JMX Management API in WebSphere allows the user to create any resource
programmatically without using GUI. Using this API you are allowed to write
applications that can perform configuration of WebSphere Application Server
V5.0.

Please refer to <WebSphere_root>\web\apidocs\index.html for API
documentation for JMX Management.

Security trace
To trace the security processes in WebSphere Application Server V5, enable
tracing for WebSphere and set the following trace conditon, in addition to your
own settings:

com.ibm.ws.security.*=all=enable:SASRas=all=enabled:

Once the server is restarted with the new settings you will find a trace.log file in
your server’s log directory.

10.2 WebSphere Global Security
What does WebSphere mean by security? A secure application, for instance, will
demand certain information is presented before responding to a request for
service and given a lack of appropriate information will not be prepared to
perform as requested. An application may consist of several parts, or
components, and WebSphere implements the means for securing each part.
Chapter 4, “Securing Web components” on page 37, Chapter 5, “Securing EJBs”
on page 73 and Chapter 6, “Securing Java clients” on page 97 covers how to
start securing the common elements of a J2EE application and describes how
the information necessary to access a secured service is gathered.

Security is also required during communication between the service requestor,
the client, and the service provider, the server. Configuring security, in this sense,
can be a complex process. It is necessary to apply appropriate measures at each
point of a network and to ensure that they are functioning as required. Every
component in an end-to-end solution, from client to server must be capable of
providing enough security to ensure that information that passes through that
point cannot be compromised.

A Web browser, for instance must be capable of sending HTTP requests in a
secure fashion since this data may travel over an insecure connection to the
server, that is a connection liable to eavesdropping or other interference. The
server, upon receiving a request must be able to summon the appropriate
resources in order to respond without revealing information unnecessarily to
either the resource or a third-party.
 Chapter 10. Administering WebSphere security 235

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
As a request passes from one component to another, the opportunities for the
interception and exposure of information increases and ultimately the overall
security of a system directly relates to the weakest, or least secure, point.
WebSphere and indeed J2EE does not implicitly provide a secure means of
communication but rather relies on an additional service, typically a
transport-layer digital encryption algorithm, called Secure Sockets Layer, (SSL)
and Transport Layer Security (TLS). This section describes how to configure
WebSphere to use SSL to protect information as it is communicated from the
client to the server and back.

Security Center
The Security Center is the focal point for the configuration of WebSphere
security. It is accessible from the Admin Console. After logging in, click the
Security Center link in the naviagtion pane.

WebSphere security can be enabled and disabled in its entirety by selecting a
single switch. This is the Global Security Enabled switch which is accessible from
the Administrative Console under Security -> Global Security.
236 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-1 Global Security configuration

Enabling security refers to activating the security settings for the particular
Security Server. For a simple overview of the Security Server, refer to Chapter ,
“Other security components” on page 226.

To enable Global Security, certain criteria must be met.

� An authentication mechanism must be selected. The Application Server
supports two authentication mechanisms by default, SWAM and LTPA and
SWAM is selected initially. Refer to Section , “Authentication mechanisms” on
page 224 for a description of WebSphere’s authentication mechanisms. LTPA
 Chapter 10. Administering WebSphere security 237

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
requires some additional configuration, which is documented in Section 10.6,
“LTPA” on page 249.

� A user registry must be selected. The Application Server supports the
concept of a custom registry, which makes the integration of WebSphere with
any type of appropriate registry fairly straight-forward. LocalOS and LDAP are
the two types of registry provided by default and LocalOS is selected initially.
Refer to Section , “User registry” on page 224 for a description of
WebSphere’s user registries. For information regarding the development of a
custom registry, look at Chapter 8.3, “CustomRegistry SPI” on page 183.
Additional configuration is required for the user registry, which is documented
in Chapter 10.4, “Configuring a user registry” on page 243.

Other configuration options on the Global Security page are:

� Enforce Java 2 Security. This option is disabled by default, but may be
enabled by checking this option. Refer to Chapter 8.5, “Java 2 Security” on
page 195 for details regarding Java 2 security managers.

� User Domain Qualified User IDs. If this option is enabled, user names will
appear with their fully-qualified domain attribute when retreived
programmatically.

� Cache Timeout. When the timeout is reached the Application Server clears
the security cache and rebuilds the security data. Since this affects
performance, this value should not be set too low.

� Issue Permission Warning. The filter.policy file contains a list of permissions
that an application should not have according to the J2EE 1.3 Specification. If
an application is installed with a permission specified in this policy file and this
option is enabled, a warning will be issued.

� Active Protocol. Determines which ORB-based authentication protocols are
accepted by the Application Server. Refer to Chapter 6.2, “CSIv2 and SAS”
on page 100 for a description of the CSI specification.

Once Global Security is enabled, user identification must be provided to start and
stop WebSphere.

� If the startServer script is started from the WebSphere service, then provide
the identity in the server entry.

� If the startServer and stopServer scripts are started from the command line
with no additional options, then the identity that the command line shell is

Note: Global Security must be enabled in order for any of the security
mechanisms to operate. Disabling Global Security has the effect of turning off
all security checks, including checks made when accessing the Admin
console.
238 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
operating under will be used to start the server. Therefore it is necessary to
ensure that this identity has the authority to start and stop WebSphere (see
below).

� If the startServer and stopServer scripts are started from the command line
with username and password options, then WebSphere will start under the
supplied identity. For example:

stopserver server1 -username <admin_name> -password <admin_password>

It is also necessary to provide appropriate details to log into the Administrative
Console. To gain access to the Administrative Console, the user must either

� log in as a user that is a member of one of the four WebSphere administrative
roles (see Chapter 10.3, “Administrative roles” on page 239 for details)

� log in under the identity supplied in the user registry panel.

Figure 10-2 The Administrative Console requires a valid administrative identity

10.3 Administrative roles
The J2EE role-based authorization concept has been extended to protect the
WebSphere Administrative subsystem. Four roles are defined for performing
administrative tasks.
 Chapter 10. Administering WebSphere security 239

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Table 10-1 WebSphere Administrative roles

The identity that is specified when enabling Global Security is automatically
mapped to the Administrator role. Therefore, it is not necessary to manually add
this identity to the administrator role.

Users and groups, as defined by the user registry, may be mapped to
administrative roles. To enable a new mapping, it is necessary to save the
changes to the master configuration and restart the server. For this reason, it is
advisable to map groups to administrative roles so that users may be added to
the groups appropriately (and hence the users are mapped to administrative
roles) without the need to restart the WebSphere server.

Mapping a user to an administrator role
In order for a user to perform an administrative action, its identity must be
mapped to an administrative role.

1. From the Admin Console, click System Administration -> Console Users.

2. Click Add.

3. Enter a user name in the User text box. This user must be defined in the user
registry that will be active when Global Security is enabled.

4. Select the appropriate administrative role; more than one role may be
selected.

5. Click OK. If the user cannot be found in the registry, then a error will occur.

6. Ensure the new mapping is in the Console Users list.

7. Save the change to the master configuration using the link provided at the top
of the window and restart the server.

Role Description

monitor Least privileged that allows a user to view
the WebSphere configuration and current
state

configurator Monitor privilege plus the ability to change
the WebSphere configuration

operator Monitor privilege plus the ability to change
runtime state, such as starting or stopping
services

administrator Operator plus configurator privilege

Note: The Admin roles are effective only when Global Security is enabled.
240 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-3 Mapping a user to an Administrative role

Mapping a group to an administrator role
As mentioned earlier, it is advisable to map groups to roles rather than users.
Mapping a group is similar to mapping users.

1. From the Admin Console, click System Administration -> Console Groups

2. Click Add.

3. Either a specific group may be mapped or a special subject.

To map a specific group, enter the group name in the Specify group text box.
This group must be defined in the user registry that will be active when Global
Security is enabled

To map a special subject, select the Select from special subject option and
select the appropriate subject from the drop-down list. A special subject is a
generalization of a particular class of users. The AllAuthenticated special
subject means that the access check of the admin role ensures that the user
making the request has at least been authenticated. The Everyone special
subject means that anyone, authenticated or not, can perform the action, as if
no security were enabled.

4. Select the appropriate administrative role; more than one role may be
selected.

5. Click OK. If the group cannot be found in the registry, then an error will occur.

6. Ensure the new mapping is in the Console Groups list.

7. Save the change to the master configuration using the link provided at the top
of the window and restart the server.
 Chapter 10. Administering WebSphere security 241

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-4 Mapping a group to an Administrative role

10.3.1 Cos Naming roles
The J2EE role-based authorization concept has been extended to protect the
WebSphere CosNaming service. CosNaming security offers increased
granularity of security control over CosNaming functions, which affect the content
of the WebSphere Name Space. There are generally two ways in which client
programs will make a CosNaming call. The first is through the JNDI interfaces.
The second is CORBA clients invoking CosNaming methods directly. Four roles
are defined.

Table 10-2 CosNaming roles

Role Description

Cos Naming Read Users who have been assigned the
CosNamingRead role will be allowed to do
queries of the WebSphere Name Space,
such as through the JNDI lookup method.
The special-subject, Everyone, is the
default policy for this role.

Cos Naming Write Users who have been assigned the
CosNamingWrite role will be allowed to do
write operations such as JNDI bind,
rebind, or unbind, plus CosNamingRead
operations. The special-subject,
AllAuthenticated, is the default policy for
this role.
242 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Mapping a user to a CosNaming role
The process of mapping a user to a CosNaming role is the same as mapping
users to the admin role. The difference is that you have to navigate to the
Environment -> Naming -> CORBA Naming Service Users from the Security
Center. The roles are also different that you can apply to a user.

Mapping a group to a CosNaming role

The process of mapping a group to a CosNaming role is the same as mapping
groups to the admin role. The difference is that you have to navigate to the
Environment -> Naming -> CORBA Naming Service Groups from the Security
Center. The roles are also different that you can apply to a group.

10.4 Configuring a user registry
Configuring a user registry for the application server is tightly related to security,
although we have to notice that global security does not have to be enabled in
order to use a user registry configured for WebSphere. For example: you can
deploy your application and assign groups and users from the actual user
registry without security being enabled for the application server.

Cos Naming Create Users who have been assigned the
CosNamingCreate role will be allowed to
create new objects in the Name Space
through such operations as JNDI
createSubcontext, plus CosNamingWrite
operations. The special-subject
AllAuthenticated is the default policy for
this role.

Cos Naming Delete Users who have been assigned
CosNamingDelete role will be able to
destroy objects in the Name Space, for
example using the JNDI
destroySubcontext method, as well as
CosNamingCreate operations. The
special-subject AllAuthenticated is the
default policy for this role.

Note: The CosNaming roles are effective only when Global Security is
enabled.

Role Description
 Chapter 10. Administering WebSphere security 243

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
A brief description covering user registries is provided in Chapter , “User registry”
on page 224. For information regarding the development of a custom registry,
refer to Chapter , “Developing a custom registry” on page 184.

When WebSphere performs authentication, it sends a request to the appropriate
registry. This authentication request may be sent under an identity that differs
from that which WebSphere is currently running under. This request identity must
be set in the Administrative Console as part of the configuration process.

WebSphere Application Server V5.0 provides three types of user registries:

� Local OS User Registry

� LDAP User Registry

� Custom User Registry

10.4.1 LocalOS
To configure WebSphere to use the local Operating System’s registry, open the
Admin Console and select Security -> User Registries -> Local OS.

1. Enter a user name and password. This is the identity under which the request
is sent to the registry. The LocalOS registry requires an identity for a user that
has administrative capabilities, as defined by the LocalOS registry.

2. Click OK. (It should not be necessary to set any custom properties for the
LocalOS registry).

Figure 10-5 LocalOS registry user name and password

3. If there are no errors at this stage, select Security -> Global Security.
Ensure that the Active User Registry option is set to LocalOS and that Global
244 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Security is enabled. If this is not the case, make the necessary changes and
then click OK.

Figure 10-6 LocalOS is set for Global Security

4. The changes will need to be saved and WebSphere restarted.

10.4.2 LDAP
To define WebSphere’s LDAP configuration perform the following steps:

1. In the Admin Console, select Security -> User Registries -> LDAP.

2. Provide the details for the fileds on the Configuration panel as listed below.

Server Id: This is the WebSphere administrator id. Here we use
cn=wasadmin,o=itso as the administrator id.

Server Password: This is the WebSphere administrator password. Specify
your password. Specify the same password that is there in the LDAP registry.

Type: This is the type of LDAP server. Here we are using IBM SecureWay
Directory, so select the SecureWay from the drop-down list given.

Host: Specify the hostname of the LDAP server host name.

Port: This is the port number LDAP server is running on, by default it is 389.

Base DN: Specify the base DN of your LDAP configuration. In our case we
set the Base DN to o=itso.

Bind DN: This is the distinguished name for the application server to use to
bind to the LDAP server. In our case it is cn=root.

Bind Password: This is the password for the application server to use to bind
to the LDAP server. In our case it is password.

Reuse Connection: Generally this value should be checked. In rare situations
when you use a router to spray the requests to multiple LDAP servers and
this router does not support affinity, we disable this checkbox.
 Chapter 10. Administering WebSphere security 245

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-7 LDAP Settings for WebSphere Application Server

3. Click Apply.

4. Save the configuration for WebSphere.

5. We need to define the configuration for Global Security in the Administrative
Console.Administrative Console, navigate to Security -> Global Security.

6. In the Configuration tab provided, fill up the following values as mentioned
below.

7. For Active User Registry drop-down list select LDAP as the active user
registry when security is enabled.
246 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-8 LDAP is the Active User Registry

8. Click Apply, that will validate the settings.

9. Save the configuration for WebSphere then restart the server.

Testing the connection
When the server starts, launch the Administrative Console, it should ask for the
user name and password for authentication. This is because Global Security is
enabled. Provide the user name and password as cn=wasadmin,o=itso and
password as password. If you are able to login successfully that means your
configuration is working fine.

For the IBM SecureWay Directory configuration and sample user and group
registration refer to Section 10.13, “Connecting to directory servers (LDAP)” on
page 315.

10.4.3 Custom Registry
WebSphere can be configured to use a type of user registry other than LocalOS
and LDAP. This registry is referred to as a Custom Registry. It will be necessary
to provide a Java class that provides WebSphere with a standard interface in
order for WebSphere to communicate with the registry in an appropriate fashion.
Refer to Chapter 8.3, “CustomRegistry SPI” on page 183 for information
regarding the development of such an interface.

Open the Custom Registry window in the Admin console by selecting Security
-> User Registries -> Custom.

Figure 10-9 Custom Registry is set for Active User Registry

Note: In case the validation fails for any reason, go back to the LDAP
configuration panel and check your settings again.

Note: if the uid field is set for the user in the LDAP directory, then you can use
the uid for user name for authentication, in this case: wasadmin.
 Chapter 10. Administering WebSphere security 247

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
1. Enter a user name and password. This is the identity under which the request
is sent to the registry

2. Click OK.

Figure 10-10 Custom Registry user name and password

3. If the custom registry requires properties to be set, then click the Custom
Properties link

4. Click New.

5. The name of the property and its value must be added although additional
information may also be added as required. The information entered here will
be passed to the custom registry implementation during initialisation.

6. Click OK.

7. If there are no errors at this stage, select Security -> Global Security.
Ensure that the Active User Registry option is set to Custom and that Global
Security is enabled. If this is not the case, make the necessary changes and
then click OK.

8. The changes will need to be saved and WebSphere restarted.
248 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.5 SWAM
The SWAM (Simple WebSphere Authentication Mechanism) is intended for
simple, non-distributed, single application server type runtime environments. The
single application server restriction is due to the fact that SWAM does not
support forwardable credentials. For more information on authentication
mechanisms, refer to Section , “Authentication mechanisms” on page 224.

Using SWAM does not require further configuration for WebSphere Application
Server V5, you can simply select SWAM as the authentication mechanism on the
global security page, as shown on Figure 10-11.

Figure 10-11 Configuring SWAM for the application server

Once you enable security, WebSphere Application Server will use the currently
set authentication mechanism.

10.6 LTPA
Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple
application server and machine environments. It supports forwardable
credentials therefore it supports Single Sign-On. LTPA is able to support security
in a distributed environment through the use of cryptography.

LTPA requires that the configured User Registry is a central shared repository
such as LDAP or a Windows Domain type registry.

For more information on authentication mechanisms, refer to Section ,
“Authentication mechanisms” on page 224.

10.6.1 Single Sign-On
Single Sign-On is the process wherein users provide their credentials, user
identity, password and/or token, once within a session. These credentials are
available to all enterprise applications for which Single Sign-On was enabled
without prompting the user to reenter user name and password.
 Chapter 10. Administering WebSphere security 249

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
The goal is for an enterprise to be able to have one network identity per user
allowing the centralized management of the various roles the user may have in
different applications, so correct rules can be applied without duplication of either
user data or requiring multiple identities for the one user.

In practise, network identity management is not yet mature enough within most
enterprises to achieve a single user registry, particularly when legacy
applications are exposed to the Web. Different application servers have typically
implemented their own security or utilized the operating environment security of
the platform on which they have been deployed. The task is then to authenticate
a user and provide, within the current session, a credential which can be passed
through to, and understood by each application.

IBM has previously developed The Lightweight Third Party Authentication,
(LTPA) mechanism enabling Single Sign-On between various application
servers. A token, the transient cookie LtpaToken, is generated by the
authenticating server, for this book we configured WebSphere, WebSeal and
Domino in different scenarios to provide the LTPA token for Single Sign-On. The
cookie is encrypted using LTPA keys which must be shared amongst all Single
Sign-On participating servers, and contains user authentication information, the
network domain in which it is valid for Single Sign-On and an expiry time.

The token is issued to the Web user in a cookie called a transient cookie; this
means that the cookie resides in the browser memory, is not stored on the user’s
computer system and expires when the user closes the browser. This cookie is
easily recognized by its name: LtpaToken.

The public domain has largely adopted Kerberos technology to provide the same
functionality.

Tivoli Access Manager, with its reverse proxy security sever, WebSeal, provides
a more robust mechanism for Single Sign-On which can be used in conjunction
with LTPA and TAI (Trust Association Interceptor) provided as the Trust
Association Mechanism (TAM). Access Manager can integrate most back-end
applications servers using the Global Sign-On mechanism to third party user
registries or extensions to the TAM schema to include legacy user identities and
passwords.

In a scenario presented in this chapter we will use LTPA for enabling single
sign-on. For how to use Tivoli Access Manager WebSeal together with LTPA
please refer to Chapter 12, “Tivoli Access Manager” on page 367. The
requirements for enabling Single Sign-On using LTPA are:

� All Single Sign-On participating server have to use the same user registry (for
example LDAP server).
250 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
� All Single Sign-On participating servers must be in the same DNS domain
(cookies are issued with a domain name and will not work in another domain
than for which it was issued).

� All URL requests must use domain names. No IP addresses or hostnames
are allowed as this will cause the cookie not to work properly.

� Browser must be configured to accept cookies.

� Servers time and time zone must be correct. Single Sign-On token expiration
time is absolute.

All servers participating in the Single Sign-On scenario must be configured to
share LTPA keys.

10.6.2 Configuring LTPA for WebSphere
The following steps will show you how to configure LTPA for WebSphere
Application Server.

1. Open LTPA configuration panel. Launch WebSphere Administrative Console
and expand the tree Security -> Authentication Mechanisms -> LTPA.

2. Specify the following attributes:

Password is the password to protect LTPA keys. You will need this password
in order to import the keys into any other SSO enabled server. Confirm the
password by retyping it in the Confirm Password field.

Timeout specifies the amount of time in minutes for which LTPA token will be
valid without re-authentication. For the purpose of the test you can leave this
field default. We have entered the value 30.

Click OK to accept configuration, Key file name you will specify after setting
up Single Sign-On attributes.

3. Save the configuration for WebSphere to make the changes effective.

4. Configure the Single Sign-On panel by clicking the link Single sign-on (SSO)
at the bottom of the LTPA page.
 Chapter 10. Administering WebSphere security 251

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-12 SSO Configuration panel for LTPA

5. Check the Enabled box, if it is not already checked.

6. Leave the Require SSL check box unchecked for now.

7. Specify the Domain Name, in our example we have set this field to ibm.com.
This domain is used when HTTP cookie is created for Single Sign-On and
determines the scope to which Single Sign-On applies.

8. Click OK to approve changes.

9. Save the configuration for WebSphere.

10.6.3 Generate LTPA keys
The following steps will show you how to generate the LTPA keys for the
WebSphere Application Server.

1. On the LTPA Configuration panel click the button Generate Keys. This will
launch key generation process in the background. You will be prompted to
save the configuration after the process is completed.

2. Save the configuration for WebSphere to have the generated keys stored in
the WebSphere configuration, they will appear in the security.xml file.

3. Re-open LTPA configuration page.

4. Specify the Key File Name which is the name of the file where LTPA keys will
be stored when you export them. You need to export the keys in order to

Important: Remember that all SSO enabled servers must be in the same
DNS domain. All URLs must use domain name and not IP addresses.
252 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
enable Single Sign-On on another server. Specify the full path name for the
key file. We have used c:\WebSphere\Appserver\etc\SSO_ltpakeys.

5. Click Export Keys, Keys that have been exported in our scenario are
presented in the example below.

Example 10-1 Contents of the key file generated from WebSphere LTPA panel

#IBM WebSphere Application Server key file
#Tue Aug 13 18:25:07 EDT 2002
com.ibm.websphere.CreationDate=Tue Aug 13 18\:25\:07 EDT 2002
com.ibm.websphere.ltpa.version=1.0
com.ibm.websphere.ltpa.3DESKey=FDspFou4xxe1m4Il84JmAk+EXLb1QclZp7ji+BJPSDM\=
com.ibm.websphere.CreationHost=wassrv01
com.ibm.websphere.ltpa.PrivateKey=9qo7ytSCbTf/62bvAyExobRikGAwF4vE/vKnKe7K80eJa
/jUoiAtyeo6rQumiUw/otwCBSaGWWvAHAwpTKR3CP7oJm4CAxyj0UVNF2B2iSZspH+ekZ+fS62Amp64
HT+ppljshfmyjX4WZAOxRQdKpvHvX3BUMU1BjuRnlpQqp2Pov/VlBqpnSJI5vcLRrXZDCNUEA4Kd0CH
cKyq5H22Iox4PiZ4rvpZ5UCXdjxfcA0rUbw+5KK1eZdVQLrcxHb/ufBQ51RrA6m2R8PCZua26RUOJwi
x1Y0JpGBuwKNeKDCq/pY4l70K4nkyOEXrq7EBl0VkhtC7JEsR4o5Mbc1JSbuyCJsRamjgX5/plEFZSB
HE\=
com.ibm.websphere.ltpa.Realm=dirsrv01.itso.ibm.com\:389
com.ibm.websphere.ltpa.PublicKey=AO/uOSd3vL4zo7VUN3k8VSw9F+zpgwbRnDHmi8G8gmm5Tb
CKGonK4Hl+gQ9dzSDNgkDJ3BWYJEkrCj77oZsI4RCZZk1RexDqLByEO9ffR/WyT7PR4FaMMFaZo0Iha
DX3GyF3yHov6l3/DcsrvYCLgO3Fc+SPsX/QnHPDQOXyKZ6lAQAB

As you can see in the example, three types of keys have been generated for
LTPA.

� The private key, used for the LTPA server to sign the LTPA Token.

� The public key, used to verify the digital signature.

� A shared key, used to encrypt/decrypt those tokens.

10.6.4 Enable LTPA Authentication for WebSphere
The following steps will show you how to enable LTPA for WebSphere
Application Server.

1. Select Security -> Global Security in the Administrative Console.

2. Make sure that Active Authentication Mechanism is set to LTPA (Light
weight Third Party Authentication).

During the previous steps we assumed that the user registry is already
configured for LDAP. Configuring the User Registry is covered in previous
sections. LTPA also works with other user registries, only this example is
using LDAP, however for Single Sign-On scenarios you might want to use
centralized user registries.
 Chapter 10. Administering WebSphere security 253

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
3. Save the configuration for WebSphere.

Your WebSphere Application Server is now configured to use LTPA
authentication mechanism. You will need to log out from the Administrative
Console and restart the server in order for the changes to take effect.

10.7 JAAS Configuration
JAAS for WebSphere Application Server can be configured using the
Administrative Console. JAAS provides the pluggable authentication mechanism
for WebSphere. If you want to know more about JAAS refer to Section 8.6,
“JAAS” on page 204.

10.7.1 Application Login Information
WebSphere allows you to configure the pluggable authentication module for your
application server.

1. Launch the Administrative console then login with administrative privileges.

2. Select Security -> JAAS Configuration -> Application Logins, to get to the
page show on Figure 10-13.

Note: The generation of the LTPA keys must be performed when the LDAP
server settings are configured; this guarantees that the LDAP host name is
present in the exported file, as shown in bold in the previous example.
Domino needs this information during the Web SSO Configuration
Document creation process.
254 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-13 Application Login Configuration

3. Each Login module defines a module class which is the implementation of the
JAAS login module itself. Select a login module, WSLogin for example, then
click the JAAS Login Modules link, to get the following picture Figure 10-14.

Figure 10-14 JAAS login module configuration

When you create your own login module you will have to create a new entry and
configure it as it was shown in the previous steps.

The JAAS configuration for the server includes another element, which is the
wsjaas.conf file under the <WebSphere_root>\properties direcotry. It defines the
JAAS login modules for the JVM according to the JAAS specification; for
example:

WSLogin {
 Chapter 10. Administering WebSphere security 255

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy
required delegate=com.ibm.ws.security.common.auth.module.WSLoginModuleImpl;
};

The example above tells the JVM which is the login module for the WSLogin
alias. The Java code in the application will refer to this alias to invoke the login
module defined for JAAS.

There is another configuration file provided for the Java clients, the
wsjaas_client.conf file under the <WebSphere_root>\properties directory.

10.7.2 J2C Authentication Data Entries
J2C Authentication entries provide an easy way of administering user name and
password pairs for authentication purposes for any resources in WebSphere
Application Server V5. These entries associated with alias names; where the
alias names can be used in the resource definitions to refer to a certain user
name and password pair.

Following steps will explain how to set up a J2C Authentication Data Entry using
the Administrative Console.

1. Click Security -> JAAS Configuration -> J2C Authentication Data Entries.

2. When you click New, the page will appear, specify the user ID and password
that may be used by Java 2 Connector or WebSphere Application Server
V5.0 DataSource.

3. Each user ID and password set is identified by a unique alias name. Enter
itsobankds_auth as the alias, dbuser is the user ID and password is the
password.
256 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-15 J2C Authentication entry in the Administrative Console

4. Save the configuration.

The J2C Authentication Entries are stored in the security.xml file under the
<WebSphere_root>\config\cells\<your_node> directory. The password fields are
encoded in the file.

For more information on J2C security refer to Section 7.3, “J2C Security” on
page 169.

10.8 Configuring SSL
The SSL implementation used by the application server is the IBM Java Secure
Sockets Extension (JSSE). The JSSE is a set of Java packages that enable
secure Internet communications. It implements a Java version of the SSL and
TLS protocols and includes functionality for data encryption, server
authentication, message integrity and client authentication. Configuring JSSE is
very similar to configuring most other SSL implementations (for example, GSKit);
however, a few differences are worth noting.

� JSSE allows both signer and personal certificates to be stored in a SSL key
file, but it also allows a separate file to be specified called a trust file. A trust
file can contain only signer certificates. Therefore, all personal certificates can
be stored in an SSL key file and all signer certificates stored in a trust file

� JSSE does not recognize the proprietary SSL key file format that is used by
the plug-in (.kdb files); instead, it recognizes standard file formats such as
 Chapter 10. Administering WebSphere security 257

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
JKS (Java Key Store). As such, SSL key files cannot be shared between the
plug-in and application server and a different implementation of the key
management utility (ikeyman) must be used in order to manage application
server key and trust files

10.8.1 SSL configurations
The first step in configuring SSL is to define an SSL configuration repertoire. A
repertoire contains the details necessary for building an SSL connection, such as
the location of the key files, their type and the available ciphers. WebSphere
provides a default repertoire called DefaultSSLSettings.

From the Admin console, select Security -> SSL to see the list of SSL
repertoires.

The appropriate repertoire is referenced during the configuration of a service that
sends and receives requests encrypted using SSL, such as the Web and EJB
containers.

Follow the steps below to configure a new entry in the SSL repertoire.

1. From the SSL Configuration Repertoires page, click New.

2. Enter an alias by which this configuration will be know.

3. Cick OK.

4. Select the new SSL entry by clicking the link and then click the Secure
Sockets Layer (SSL) link in Additional Properties.

The new configuration details can be entered in the window that appears.
258 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-16 An SSL configuration window

5. Enter the location of the key file name. For details regarding key files, refer to
Chapter 10.9, “Demo keyfile” on page 260.

6. Enter the password for the key file.

7. Select the appropriate key type.

8. Enter the location of the trust file name. For details regarding trust files, refer
to Chapter 10.9, “Demo keyfile” on page 260.

9. Enter the password for the trust file.

10.Select the appropriate trust type.

11.If client authentication is supported by this configuration, then check the
Client Authentication box. This will only affect HTTP and LDAP request. In
 Chapter 10. Administering WebSphere security 259

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
order to support client authentication for IIOP requests refer to Chapter 10.12,
“SSL between the Java client and WebSphere” on page 308.

12.The appropriate security level must be set. Valid values are low, medium and
high. Low specifies only digital signing ciphers (no encryption), medium
specifies only 40-bit ciphers (including digital signing), high specifies only
128-bit ciphers (including digital signing).

13.If the preset security level does not define the required cipher, it can be
manually added to the cipher suite option.

14.Check the Cryptographic Token box is hardware or software cryptographic
support is available. Refer to the InfoCenter for details regarding
cryptographic support.

15.Additional properties can be added by selecting the Custom Properties link in
the Additional Properties section.

16.Click OK to apply the changes.

17.If there are no errors, save the changes to the master configuration and
restart WebSphere.

More details can be found on using the SSL definitions in Chapter 10.11, “SSL
between the Web server and WebSphere” on page 300 for HTTP requests and
Chapter 10.12, “SSL between the Java client and WebSphere” on page 308 for
IIOP requests.

10.9 Demo keyfile
SSL relies on the existence of digital certificates. A digital certificate reveals
information about its owner, such as their identity. During the initialisation of an
SSL connection, the server must present its certificate to the client in order for
the client to determine the servers identity. The client may also present the server
with its own certificate in order for the server to determine the clients identity.
SSL is, therefore, a means for propagating identity between components.

The Application Server provides a set of certificates that may be used for testing
purposes. However, the identities contained in the certificates are generic and
the expiration dates are set artifically low. This section describes the process for
creating digital certificates that are tailored for use in a production system.

A client can trust the contents of a certificate if that certificate has been digitally
signed by a trusted third party. Certificate Authorities (CA) act as a trusted third
party and will signed certificates on the basis of their knowledge of the certificate
requestor.
260 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
WebSphere supports the concept of two types of key store which are refered to
as a key file and a trust file. A key file contains a collection of certificates, each
one of which may be presented during an SSL connection initiation in order to
prove identity. Incidently, a key file will also contain the associated private key for
each certificate. A server will manage at least one key file, although a client may
also manage one. A trust file contains a collection of certificates that are
considered trustworthy and with which the presented certificate will be matched
against during an SSL connection initiation in order to assure identity. A client will
typically manage at least one trust file, although a server may also manage one.
See Figure 10-17 on page 261.

Splitting the certificates into two files: key file and trust file; increases security.
The certificate stores are essential parts of the secure communication since the
certificates provide the base for trust. The most sensitive element is the private
certificate, the one that is presented for identification. This certificate must be
secured carefully, and once it is stored in the keystore protected by a password it
should not be opened again. While on the other side there is the list of signer
certificates subject to change, new signers or trust parties may need to be
added, which means that the store needs to be opened.

Figure 10-17 Correlation between server and client key stores

Whilst this demonstrates how the two types of key store may be used, it is also
possible to combine the key and trust files. WebSphere provides the following
key stores in the <WAS_ROOT>/etc directory.

Table 10-3 WebSphere default key stores

File Description

DummyServerKeyFile.jks server-based key file

DummyServerTrustFile.jks server-based trust file

WebSphere V5.0 Client

Signing CA

Private
Key

Private
Key

Key File

Signing CA

Private
Key

Public
Key

Signing CASigning CA

Trust File

Signing CA

Private
Key

Public
Key

WebSphere V5.0 Server

Signing CA

Key File

Signing CA

Private
Key

Private
Key

Signing CA

Trust File

Public
Key

Public
Key
 Chapter 10. Administering WebSphere security 261

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
The key store type in this case is Java Key Store (JKS), a format that is
supported by both WebSphere and the supplied key generation utility, ikeyman.
This utility will be used in the section to generate a new certificate. There are,
generally, two options when deciding how to create a new certificate.

� Request that a CA generates the certificate on your behalf. This will probably
involve providing enough information so that the CA can validate the identity
of the certificate requestor. The CA will create a new certificate, digitally sign it
and then deliver it to the requestor in, presumably, a secure fashion. Popular
Web browsers are pre-configured to trust certificates that are signed by
certain CA's and so no further client configuration is necessary in order for a
client to connect to the server (that this certificate relates to) via an SSL
connection. Therefore, CA-signed certificates are useful where configuration
for each and every client that will access the server is impractical

� Generate a self-signed certificate. This may well be the quickest option and
will probably require fewer details in order to create the certificate. However,
the certificate will not be signed by a CA. This may prove troublesome in
certain cases. Every client that is likely to receive this certificate, in other
words any client that will connect to this server over an SSL connection, will
need to be configured to trust the signer of this certificate. Since the certificate
has been self-signed, the signature is not likely to be in the client's trust file
and so must be added. If access to every client is impractical then this
configuration will simply not occur. Therefore, self-signed certificates are only
useful when each of the clients can be configured to trust the certificate

The file used by a Java client to refer to a key store is the SAS properties file.
Refer to Chapter , “The sas.client.properties file” on page 103 for details on the
client SAS file. The WebSphere server, on the other hand, stores the key store
information in the repository and the key stores are referred to in the security.xml
file. Therefore, all server-side configuration should be done through the
administration tools, such as the Administrative Console.

DummyClientKeyFile.jks client-based key file

DummyServerTrustFile.jks client-based trust file

Note: It is technically possible in some cases to present a self-signed
certificate to an untrusting client. In some Web browsers, for instance, when
the certificate is received and is found to not match any of those listed in the
client's trust file, a prompt will appear asking if the certificate should be trusted
for the connection (or even added to the trust file).

File Description
262 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.9.1 Generating a self-signed certificate
The process for creating a self-signed certificate is relatively straight-forward. An
understanding of public/private key pairs and of PKI will be useful. The result of
this process is a key store that will replace the temporary key store provided by
WebSphere, on both server and client side.

The server's key file
The following steps will describe how to generate a new self-signed certificate
with the IBM ikeyman utility.

1. Launch the ikeyman tool. It may be started from the command line in the bin
directory as ikeyman.bat (on Windows platforms) or ikeyman.sh (on UNIX
platforms)

Figure 10-18 ikeyman key management utility

2. From the menu bar, select Key Database File -> New

3. Ensure that the Key database type is set to JKS. This section will use the
following file names to represent the appropriate key stores

WASV5ServerKeyFile.jks - server key file

WASV5ServerTrustFile.jks - server trust file
 Chapter 10. Administering WebSphere security 263

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
WASV5ClientKeyFile.jks - client key file

WASV5ClientTrustFile.jks - client trust file

4. Enter WASV5ServerKeyFile.jks as the file name

5. Enter the directory that will hold the key file as the location, in this case:
c:\was\etc.

6. Click OK.

Figure 10-19 Saving the new key store

7. A password prompt will appear. Enter a password and repeat to confirm. This
password will be required to read from or write to this file in the future, so do
not forget it. The password strength is determined by the variety of the
characters used in the password.

8. Click OK.

Figure 10-20 Preventing unauthorised access to key store with a password

9. A list of signer certificates should appear which represents the identities of a
selection of CA's. This list is not needed and so can be deleted by selecting
each certificate, clicking Delete and confirming.
264 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-21 The detault list of signer certificates

10.Now a self-signed certificate can be generated. From the menu bar, select
Create -> New Self-Signed Certificate.

11.A window will appear requesting information in order to generate the
certificate. Enter WASV5IntSec as the Key Label. Ideally, spaces should not
be used in the key label.

12.Select X509 V3 as the Version and 1024 as the Key Size.

13.The first two fields of the Distinguished Name, those being Common Name
and Organization, are mandatory. The WebSphere server name might be
entered as the Common Name, for example: wassrv01.

14.Whilst Organization Unit, Locality and State/Province are optional fields, it is
recommended that appropriate values are entered; for example: ITSO,
Raleigh, NC.

15.Select the appropriate Country, in our case: US.

16.Enter 365 as the Validity Period.

17.Click OK.
 Chapter 10. Administering WebSphere security 265

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-22 Provide details for the new self-signed certificate

18.The new self-signed certificate should be added to the Personal Certificates
list.
266 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-23 The new self-signed certificate

19.It is necessary to extract this certificate so it can be later added to the client's
trust file. Click Extract Certificate.

20.Select Base64-encoded ASCII data as the Data type.

21.Enter WASV5IntSecPubCert.arm as the Certificate file name.

22.Enter the directory that will hold the extracted certificate as the Location, in
our case: <WebSphere_root>\etc.

23.Click OK.

Figure 10-24 Extract certificate facility
 Chapter 10. Administering WebSphere security 267

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
24.From the menu bar, select Key Database File -> Close. This will close the
current key store.

The server's trust file
To create the server’s trust file, repeat the first nine steps from Chapter , “The
server's key file” on page 263 (up to the clicking OK on the password prompt)
with a file name of WASV5ServerTrustFile.jks. It is not necessary to populate the
trust file with any certificates at this stage.

The client's key file
The client's key file provides a client certificate during the SSL connection
initialisation. This certificate contains the identity of the caller that is not
necessarily restricted to establishing an SSL connection but may also be used
for authentication purposes at a J2EE level. The creation of this key file is very
similar to that of the server’s key file and so refer to Chapter , “The server's key
file” on page 263 for details. The file name of the key file is
WASV5ClientKeyFile.jks in this sample, the certificate label is WASV5ClientSec
and the extracted certificate is WASV5ClientSecPubCert.arm. The client
certificate can be added to the server’s trust file.

1. Open WASV5ServerTrustFile.jks in ikeyman.

2. Select Signer Certificates from the Key Database Content drop-down menu

3. Click Add.

4. Enter the details for the client certificate (WASV5ClientSecPubCert.arm)

5. Click OK.

6. Enter the label for the certificate which is WASV5ClientSec.

7. Click OK. The certificate should be added to the list of signer certificates.

8. Close the file.

The client's trust file
To create the client’s trust file, repeat the first nine steps from Chapter , “The
server's key file” on page 263 (up to the clicking OK on the password prompt)
with a file name of WASV5ClientTrustFile.jks. It will be necessary to add the
server’s extracted certificate as a signer certificate. The process for this is
documented in “The client's key file” previous section.

There should now be the four key stores called:

� WASV5ServerKeyFile.jks

� WASV5ServerTrustFile.jks

� WASV5ClientKeyFile.jks
268 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
� WASV5ClientTrustFile.jks

There should also be two extracted certificates called

� WASV5IntSecPubCert.arm

� WASV5ClientSecPubCert.arm

10.9.2 Requesting a certificate signed by a CA
The ikeyman tool can be used to generate a certificate request. A certificate will
be required for the server and one for each client. The process documented
below is for the server’s key file although the process will be similar for every
certificate with only minor changes needed between each.

1. Launch the ikeyman tool. It may be started from the command line in the bin
directory as ikeyman.bat (on Windows platforms) or ikeyman.sh (on UNIX
platforms)

2. From the menu bar, select Key Database File -> New.

3. Ensure that the Key database type is set to JKS. This section will use the
following file names to represent the appropriate key stores

– WASV5ServerKeyFile.jks - server key file

– WASV5ServerTrustFile.jks - server trust file

– WASV5ClientKeyFile.jks - client key file

– WASV5ClientTrustFile.jks - client trust file

4. Enter WASV5ServerKeyFile.jks as the file name.

5. Enter the directory that will hold the key file as the location, in this case:
c:\WebSphere\Appserver\etc.

6. Click OK.

7. A password prompt will appear. Enter a password and repeat to confirm. This
password will be required to read from or write to this file in the future, so do
not forget it. The password strength is determined by the variety of the
characters used in the password

8. Click OK.

9. From the menu bar, select Create -> New Certificate Request.

10.Enter a Key Label which will identify this key. It is recommended that spaces
are not used. The value used in this section is WASV5IntSecPubCert.

11.Select the appropriate key size. 1024 is an appropriate default value.
 Chapter 10. Administering WebSphere security 269

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
12.Enter a common name, which may be the name of the WebSphere server
that this certificate will be owned by. It is important that the common name
contains the fully-qualified name for the server.

13.Enter an Organization, for example: IBM.

14.Organization Unit, Locality and State/Province are optional but it is
recommended that values are provided, for example: ITSO, Raleigh, NC.

15.Select the appropriate country, in this case: US.

16.The file name in which the certificate request is to be stored in should be
entered in the last field. The value used in this section is
<WebSphere_root>\etc\servcertreq.arm (for a Windows machine).

17.Click OK. A message confirming the creation of the certificate request should
be returned.

Figure 10-25 A certificate request information window

18.Click OK.

Figure 10-26 Certificate request confirmation message
270 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Viewing the contents of the certificate request file (servcertreq.arm in this
sample) shows that a certificate has been generated.

Example 10-2 A certificate request generated by ikeyman

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBmzCCAQQCAQAwXDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk5DMRAwDgYDVQQHEwdSYWxlaWdo
MQwwCgYDVQQKEwNJQk0xDTALBgNVBAsTBElUU08xETAPBgNVBAMTCG1rYTJ2YWxvMIGeMA0GCSqG
SIb3DQEBAQUAA4GMADCBiAKBgHHsF7RWcLXGF6DPY3KnFJTHn0Nmf/Ni2lhURbJkgnSTl2x2vECe
rrQ5qhYI7mXX4v1zL4FSDM9TzMCz8V4P5FXAwjyJRlPODfSxMP9h/kIJWiAx2n1X2FnHiKcVAz17
EE27hVObMTfj47Ww4ydQ7JMQFy1C7pZnHuJL3Ga1qBZLAgMBAAGgADANBgkqhkiG9w0BAQQFAAOB
gQAmzZ+9bsrqLjCw8tsxkUJHG7SMCspv1UCmc447aRubkM717j6nnw0zr9QgCO8bxzvOD6C35Liv
MDPrc5ML+CT9KVHtXnV9mpOKx9+3d1A4YDAdEoQA0cPYXu9n6aDfG69ZIdwjBMlohsy7q8qPlnGd
yqfmhhEbFcn+PlW86bhnjg==
-----END NEW CERTIFICATE REQUEST-----

It is clear that the process of creating a certificate request actually creates the
certificate. That means the public/private keypair exist in the JKS file. The
certificate request is actually requesting that this certificate is signed by the CA.
This certificate request can be view in ikeyman by selecting Personal Certificate
Requests from the Key Database Content drop-down box.

Note: Consult the documentation from your chosen CA prior to completing the
certificate request fields. For example, VeriSign Server IDs stipulate that the
Command Name (CN) must represent the fully qualified server name.
 Chapter 10. Administering WebSphere security 271

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-27 A personal certificate request

Of course, the CA will need to validate the identity claimed by the certificate
before signing it. The certificate request should be copied into the form provided
by the CA, usually on their Web site and submitted.

Some CA’s offer a convenient service for generating test certificates. These are
certificates that are valid for a short period of time, such as a month and are
intended for testing purposes only. If the certificate request used in this section is
submitted to Thawte, a well-known CA, the reply is in Base64 encoded format.

Note: Don’t destroy this certificate request. It must be present in the key store
in order for the certificate to be added once it has been signed by the CA.

Note: Be sure to submit the request in its original form. If the request is being
pasted from a text editor, then ensure that extra characters, such as spaces,
have not been added to the ends of the lines. If the request is not submitted
correclty, the reply may not import correctly.
272 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Example 10-3 Certificate reply from Thawte

-----BEGIN CERTIFICATE-----
MIICgDCCAemgAwIBAgIDLqKsMA0GCSqGSIb3DQEBBAUAMIGHMQswCQYDVQQGEwJa
...
..
.
XmYOnq8HX/fj0il6NQxW48bp3O8=
-----END CERTIFICATE-----

This reply should be save into a plain text file, then import into the key store that
created the original certificate request.

1. Ensure that ikeyman has the relevant key file open and select Personal
Certificates from the Key Database Content dropdown list.

2. Click Receive.

3. Enter the file name of the reply from the CA.

4. The reply will probably be encoded with Base64, so ensure Base64-encoded
ASCII data is selected from the Data Type drop-down list.

5. Click OK.

Figure 10-28 Importing a CA reply

Assuming that the appropriate certificate request can be found, the personal
certificate will be added to the personal certificate list. Its contents can be viewed
by clicking View/Edit.

Note: As with the request, ensure that the CA’s reply is copied to a file
correctly. Ensure there are no additonal characters appended to the end of
lines that would otherwise affect the import process.
 Chapter 10. Administering WebSphere security 273

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
10.9.3 Using the Java keytool
Another way to create self-signed keys, create certificate requests is to use the
Java keytool command line utility that comes with the Java Development Kit from
Sun. The Java keytool utility gives your more flexibility to create your own
customized certificate request with the DN (Distinguished Name) of your choice.

For more information about Java keytool, refer to the documentation at
http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

10.9.4 Configuring WebSphere to use a key store
Once a key store has been configured, either by creating a self-signed certificate
or by creating a certificate request and importing the reply, WebSphere can be
configured to make use of the certificates. WebSphere will use the certificate in
order to establish a secure connection with a client via SSL.

It is necessary to define an SSL Configuration, which will be used to determine
how SSL connections are established with the appropriate WebSphere
components.

Using the Administrative Console
The following steps will create a new SSL definition entry for WebSphere using
the Administrative Console, follow the steps from Section 10.8.1, “SSL
configurations” on page 258 using the values below:

1. Enter WASV5IntSec as the Alias.

2. Select the new WASV5IntSec link.

3. Select Secure Socket Layer (SSL).

4. Enter the location of the server's key file in the Key File Name text area:
c:\WebSphere\Appserver\etc\WASV5ServerKeyFile.jks in this example .

5. Enter the key file password in the Key File Password text area

6. Ensure that JKS is the selected Key File Format

7. Enter the location of the server's trust file in the Trust File Name text area, in
our case: c:\WebSphere\Appserver\etc\WASV5ServerTrustFile.jks.

8. Enter the trust file password in the Trust File Password text area

9. Ensure that JKS is the selected Trust File Format

Note: Before making changes to the sas.client.props file, it is recommended to
make a copy for restoration purposes if the need arises.
274 IBM WebSphere V5.0 Security Handbook

http://java.sun.com/

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.Ensure the Client Authentication is enabled. This is optional and is enabled in
this example.

11.Ensure the Security Level is set to High.

12.Ensure that the Cryptographic Token box is not ticked.

13.It is not necessary to provide any custom properties. Click OK.

14.Save the changes to the master configuration by selecting the link at the top
of the window.

The password is stored in a file called security.xml in
<WebSphere_root>/config/cells/<your_cell> and is protected with an Base64
ASCII encoding.

Example 10-4 Excerpt from security.xml

<repertoire xmi:id="SSLConfig_3" alias="WASV5IntSec">
<setting xmi:id="SecureSocketLayer_1"
keyFileName="C:\WebSphere\AppServer\etc\WASV5ServerKeyFile.jks"
keyFilePassword="{xor}KzosK25tbA==" keyFileFormat="JKS"
trustFileName="C:\WebSphere\AppServer\etc\WASV5ServerTrustFile.jks"
trustFilePassword="{xor}KzosK25tbA==" trustFileFormat="JKS"
clientAuthentication="true" securityLevel="HIGH"
enableCryptoHardwareSupport="false"/>

</repertoire>

The appropriate WebSphere components may now be set to use the
newly-defined SSL configuration. It might also be necesary to configure some
non-WebSphere components, such as a Web server in order to ensure a secure
connection between all components. Typically, a digital certificate will be created
for each component. In a Web server scenario, for instance, the WebSphere
server will own a certificate and the Web server will own another. The certificates
will identify the particular component it is owned by.

Note: Although the password appears as a series of asterisks in the Admin
console, it will be stored in an easily readable string in the repository. It is a
simple task for an eavesdropper to decode this string and recover the
password and so it is important to protect the respository from unauthorised
users
 Chapter 10. Administering WebSphere security 275

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-29 How certificates are distributed during an SSL connection initialisation

Figure 10-29 shows how certificates are exchanged during an SSL handshake.
An SSL handshake occurs whilst the connection between the two components is
being established and it is during this time that the identities of the server and the
client, should this option be selected, are transferred. A single SSL connection
will not span multiple servers and so the first SSL connection in this example
exists between the Web browser and the Web server. The second SSL
connection, which initiates a second handshake, exists between the Web server
and the WebSphere Application Server. During the first handshake, the Web
server’s and Web browser’s certificates are exchanged and during the second
handshake, the Application Server’s and Web server’s certificates are
exchanged.

Using wsadmin
It is possible to add an SSL configuration to the repository using the wsadmin
tool, rather than the Administrative Console. Refer to Chapter D, “Using wsadmin
scripting for security configuration” on page 509 for further information on this
topic and some sample scripts.

10.10 SSL between the Web client and the Web server
IBM's HTTP Server (IHS), as of version 1.3.24, supports SSL version 3 and
version 2 and TLS version 1. Whilst IHS is based on the Apache Web server, it is
necessary to use the IBM-supplied SSL modules, rather than the OpenSSL
varieties. This section will describe configuration of the IHS, although it is entirely
possible that another supported Web server is used in its place.

SSL is disabled by default and it is necessary to modify a configuration file and
generate a server-side certificate using the ikeyman tool provided with IHS in
order to enable SSL.

Web server WebSphere
Application

server

Web browser
client

Web server's certificate

Browser's certificate

Application server certificate

Web server's certificate

SSL connection #1 SSL connection #2
276 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.10.1 Generating a digital certificate
The use of ikeyman to create a digital certificate has been documented in
Chapter 10.9, “Demo keyfile” on page 260. However, the version of ikeyman
provided with the IBM HTTP Server supports the CMS Key Database format
(KDB) which is not supported with the IBM JSSE-based ikeyman tool provided
with WebSphere. The KDB format is required by the IBM HTTP Server and
therefore the ikeyman usage differs slightly to begin with. The differences will be
documented in this section.

Be sure to start the correct version of ikeyman, do not start the JSSE version
provided by WebSphere. The process for starting ikeyman differs depending on
the type of operating system used.

For UNIX systems, the process is as follows.

1. issue the following command: export JAVA_HOME=/usr/jdk_base

2. From the <IHS_ROOT>/bin directory, run ./ikeyman

For Windows systems, the process is as follows.

1. From the Start menu, select Programs -> IBM HTTP Server 1.3.24 -> Start
Key Management Utility

Note: This is a different version of the ikeyman utility. It works with different
type of key stores.

You can see the difference between the two applications, the IBM HTTP
Server ikeyman does not have the small icon with the human shape.
 Chapter 10. Administering WebSphere security 277

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-30 The IBM HTTP Server ikeyman utility

2. From the menu bar, select Key Database File -> New

3. Select CMS key database file from the Key database type drop-down menu

4. Enter a file name for the new key store, IHS1324Certs.kdb in this example

5. Enter a path in the Location text area, c:\IBMHttpServer\conf\keys in this
example.

6. Click OK.

7. Enter a password in the Password text area and again in the Confirm
Password area.

8. Enable the Stash the password to a file option, which will allow IBM HTTP
Server to make use of the password to gain access to the certificates
contained in the key store.

9. Click OK.

10.Click OK to confirm that the password has been stashed.
278 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Once the key store file has been created, the process is the same as
documented in Chapter 10.9, “Demo keyfile” on page 260, which explains
how to use the ikeyman utility to create self-signed certificates (see
Chapter 10.9.1, “Generating a self-signed certificate” on page 263) and
certificate requests that should be submitted to a CA (see Chapter 10.9.2,
“Requesting a certificate signed by a CA” on page 269).

11.Once the required certificates have ben generated and exported, close the
ikeyman utility.

In addition to the key database files and the previously generated Certificate
Signing Request (CSR) file, if this option was taken, the .sth suffixed file, which
contains the password stash and the .crl and .rdb files, which contain internal
information specific to the CSR should all be copied as a precautionary measure.

10.10.2 Configuring the IBM HTTP Server
The following section will show you how to enable security for IBM HTTP Server
using the Administration console. You can also edit the httpd.conf file manually to
enable SSL and do other modifications.

The steps described below only work for IBM HTTP Server, other Web servers
have different administration interfaces and different implementations of
administering security; however the process and the to-dos should be the same
for every Web server.

The httpd.conf file
This file, located in the <ihs_root>/conf directory, provides configuration
information for the Web server, such as the location of specific files and modules
to be loaded. The IBM SSL module will need to be refered to in this file. This file
will have been largely configured during the installation of WebSphere and so
few changes need to be made.

Note: Another file called http.conf.sample is provided in the same directory
which contains many more configuration options than the original httpd.conf
file, including a reference to the IBM SSL module. It is recommended,
assuming that no changes have already been made to the original httpd.conf
file, to copy the http.conf.sample file to httpd.conf and then make changes as
required.
 Chapter 10. Administering WebSphere security 279

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
The IBM HTTP Server Administration console
A alternative mechanism for configuring the IHS is to the supplied Administration
utility. This section describes how to configure SSL using this utility, which is
Web-based. Before accessing the tool, it may be necessary to set an
administration user name and password.

1. From the command line, change to the <ihs_root> directory

2. Check for the existence of the admin.passwd file in the conf directory and if it
does not exist, run

htpasswd -c conf/admin.passwd <admin_user>

where <admin_user> is the user name of the administrative user, for
example: ihsadmin.

3. Enter the administrator's password and repeat to confirm.

4. Start the IBM HTTP Server. On windows issue the apache command on UNIX
systems run the apachectl script from the IBM HTTP Server bin directory.

5. Open a Web browser and enter the following URL

http://<server_name>

where <server_name> is the host name of the server running the IHS
process.

6. The IBM HTTP Server splash screen comes up; select the Configure Server
link.

7. Enter the IBM HTTP Server administrator's user name and password in the
dialog box; Click OK.
280 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-31 Administrative Console for IBM HTTP Server

8. Once the Web interface has loaded, select Basic Settings -> Core Settings
in the left hand frame.

9. Ensure the Server Name contains a valid fully-qualified host name. If it does
not, enter the relevant value and click Submit which can be found at the
bottom of the window.

10.Select Basic Settings -> Advanced Properties.

11.In the Specify additional ports and IP addresses section, click Add.

12.Enter 443 in the Port text area. This is the default server port for SSL
connections.

13.Click Apply.

14.Click Submit at the bottom of the window.
 Chapter 10. Administering WebSphere security 281

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
15.Select Basic Settings -> Module Sequence. This presents a list of modules
loaded by the IBM HTTP Server and should include the IBM WebSphere
AppServer module, which is probably at the top of the list. It is necessary to
add the IBM SSL module.

16.Click Add.

17.From the Select a module to add drop-down list, select
ibm_ssl(IBMModuleSSL128.dll).

18.Ensure that the Module dynamic link library is set to
modules/IBMModuleSSL128.dll.

19.Click Apply. This will add the module to the list.

20.Click Submit.

21.Every operation so far has been performed at the Global level. Now a new
VirtualHost will be created specifically for SSL connections. Select
Configuration Structure -> Create Scope.

22.Select VirtualHost from the first drop-down list.

23.Enter a fully-qualified name or IP address in the Virtual host name text area;
in our example: websrv01.itso.ibm.com.

24.Enter 443 in the Virtual host port text area.

25.Enter the server name in the Server name text area, in our case:
websrv01.itso.ibm.com.

26.For the server path, enter the path to the <ihs_root>/htdocs directory

27.Click Submit. A new VirtualHost entry should appear in the right-hand frame.

28.Select Security -> Server Security.

29.Ensure the scope is set to Global. If not, click Scope and select Global.

30.Enable SSL by clicking Yes.

31.Enter the path and name of the key store created with the ikeyman utility.

32.Enter an SSL version 2 session ID timeout of 100.

33.Enter an SSL version 3 session ID timeout of 1000.

34.Click Submit.

35.Select Security -> Host Authorization.

36.Ensure the Scope is set to the VirtualHost defined previously: websrv01.

37.Enable SSL by clicking Yes.

38.Click Submit.

39.Restart the IBM HTTP Server. This can be performed from the command line
or by clicking the Restart Server icon in the top-right corner of the
282 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Administrative Server's main window. Ensure that there are no error
messages, which will need resolving before starting the next stage.

This concludes the basic IBM HTTP Server configuration for SSL. The result can
be tested by loading a Web browser and entering the URL:
https://<server_name> ; where <server_name> is the host name of the server.

A message may appear from the browser explaining that the Web browser is
attempting to establish a secure link with the server, like on the next picture
Figure 10-32 in Microsoft Internet Explorer.

Figure 10-32 Preparing for a secure connection in Internet Explorer

During the initilisation of the secure connection, the IBM HTTP Server will
provide a certificate to the Web browser. If this certificate has not been signed by
any of the CA's known to the Web browser, then a message may appear
providing details of the certificate and requesting if the certficate should be
trusted.

Figure 10-33 Unauthenticated certificate

To see the details of the certificate provided by the server, click the View
Certificate button. In the details you will find information about the certificate
itself, who issued the certificate and to whom; also you can follow the certificate
path of the issuers.
 Chapter 10. Administering WebSphere security 283

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
In the case of a self-signed certificate, like in our example, the issued to and the
issued by fields will be the same, and the certificate path only has one level
indicating that the root certificate is untrusted. Realistically these certificates
should not be trusted; however, for testing purposes it should be acceptable to
trust the certificate.

Proceed by accepting the certificate and the Web page should load.

IBM HTTP Server Cipher Support
To ensure the Web server operates at the highest possible level of security, SSL
connections should be restricted to specific ciphers. The mod_ibm_ssl library
supports the following cipher specifications. For more details on the cipher
support refer to the configuration file, httpd.conf.sample in the
<IHS_ROOT>\conf directory. You will find the following cipher suites listed there:

SSL Version 2 Cipher Specifications in the format of: short name (HEX code),
long name, description

27, SSL_DES_192_EDE3_CBC_WITH_MD5, Triple-DES (168-bit)
21, SSL_RC4_128_WITH_MD5, RC4 (128-bit)
23, SSL_RC2_CBC_128_CBC_WITH_MD5, RC2 (128-bit)
26, SSL_DES_64_CBC_WITH_MD5, DES (56-bit)
22, SSL_RC4_128_EXPORT40_WITH_MD5, RC4 (40-bit)
24, SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5, RC2 (40-bit)

SSL Version 3 Cipher Specifications in the format of short name (HEX code),
long name, description

3A, SSL_RSA_WITH_3DES_EDE_CBC_SHA, Triple-DES SHA (168-bit)
33, SSL_RSA_EXPORT_WITH_RC4_40_MD5, RC4 SHA (40-bit)
34, SSL_RSA_WITH_RC4_128_MD5, RC4 MD5 (128-bit)
39, SSL_RSA_WITH_DES_CBC_SHA, DES SHA (56-bit)
35, SSL_RSA_WITH_RC4_128_SHA, RC4 SHA (128-bit)
36, (See SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, RC2 MD5 (40-bit)
32, SSL_RSA_WITH_NULL_SHA
31, SSL_RSA_WITH_NULL_MD5
30, SSL_NULL_WITH_NULL_NULL

TLS Version 1 Cipher Specifications in the format of short name (HEX code),
long name, description

62, TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, RC4 SHA(56 Bit)
64, TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA, DES SHA(56 bit)

Configuring the IBM HTTP Server to use specific ciphers is a matter of adding
the required ciphers to the cipher specification list. From the IHS Administration
utility, following these steps.

1. Select Security -> Host Authorization
284 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
2. Click Scope and select the VirtualHost configured earlier: websrv01.

3. Click the Add button associated with the Cipher Specification list.

4. Select the required cipher and click Apply.

5. Repeat until all required ciphers have been added to the list. More than one
cipher specification may be added in order to make the chances of a secure
connection with a client more likely.

6. Click Submit at the bottom of the window.

7. Restart the Web server to ensure the changes will take effect.

Figure 10-34 Selecting ciphers

Note: If the Cipher Specification list is empty, then the IHS will have all
specifications available to use as required.
 Chapter 10. Administering WebSphere security 285

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
A Web browser may be used to test the cipher specifications. If the Web browser
does not support one of the ciphers in the Cipher Specification list, an error may
be displayed and the Web page will not load.

Some Web browsers provide the ability to view the type of cipher used to secure
the connection.

If the Web browser is Internet Explorer, once the Web page has loaded, from the
menu bar, select File -> Properties. The connection details are mentioned on
the appearing panel.

Figure 10-35 Certificate properties

Note: If the Web browser has SSL and TLS disabled, it will not be able to
establish a secure link with the IHS. In the case of Internet Explorer, SSL can
be enabled.

� From the menu bar, select Tools -> Internet Options

� Click the Advanced tab and scroll down to the Security section

There should be an option to enable SSL 2.0, SSL 3.0 and TLS 1.0. By
default, SSL versions 2 and 3 are enabled.
286 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.10.3 Client-side certificate for client authentication
This section discusses, how to use client side certificates with your Web server
and with your WebSphere Application Server. It will also show how to configure
your servers to support client-side certificates and use them as a base of user
authentication.

Obtaining a personal certificate
The Web client may also provide a digital certificate in order to assert an identity
during an SSL initialisation. Typically, the creation of a client-side certificate
involves a CA. Alternatively, the IBM Tivoli SecureWay PKI package or a similar
product from another vendor may be used to implement a PKI solution. This
involves the overhead of managing the PKI infrastructure, as well as creating the
individual certificates for each authenticating user.

The process for requesting and installing a personal client-side certificate on
Windows is documented in this section.

For demonstration purposes, the free Personal Certificate Program offered by
Thawte Consulting was used. The process for requesting a personal certificate
will differ from CA to CA, with each providing different facilities.

From the Thawte Web site, http://www.thawte.com, select the option to receive
a free personal email certificate and fill out the necessary forms. Be sure to
request an X.509v3 certificate and that the email address entered is valid and
can be used. The process is relatively straight-forward and a certificate will be
issued within a matter a minutes of registration; we got the certificate issued, a
notification was sent by Thawte about the fact, we went to the Thawte Web site
to pick up the certificate. At the end of the process we installed the certificate into
the Web browser, which was Microsoft Internet Explorer in this case.

Make sure that the certificate is installed and you have the right certificate. The
following steps will show how to check the certificate in Microsoft Internet
Explorer.

1. From the Internet Explorer menu bar, select Tools -> Internet Options ->
Content -> Certificates.

2. Select Client Authentication from the Intended purpose drop-down list.

3. Click the Personal tab. The certificate should be displayed in the list.
 Chapter 10. Administering WebSphere security 287

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-36 A personal certificate

4. Select the certificate and click View. This displays the certificate’s properties,
including the certificate path. The path shows that Thawte Personal Freemail
CA is the top-level CA and since this is a trusted root CA the certificate can be
easily accepted during an SSL connection initialisation.
288 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-37 The certificate chain

The following checks are also recommended on any certificate installed into
Microsoft Internet Explorer, for use as a client side certificate. Double-click any
certificate entry and verify the following details.

� Under the General tab, the certificate’s intended use includes: Proving your
identity to a remote computer (required)

� Under the General tab: You have a private key that corresponds to this
certificate (required)

� Under the Certificate Path, the Certificate status is given. If you are presented
with the message:

This CA Root certificate is not trusted because it is not in the Trusted Root
Certification Authorities Store

then you must install the corresponding signing root CA certificate in the
Certification Authorities Store.

Figure 10-38 show the resulting personal certificate generated when using the
Thawte Freemail Certificate Program. The certificate subject Distinguished
Name (DN) includes two components; the e-mail entity (E) and the Common
Name (CN) Thawte Freemail Member.
 Chapter 10. Administering WebSphere security 289

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-38 Certificate details

This certificate may be enabled in order to provide a client certificate when
accessing Web pages over an SSL connection, with the https:// URL prefix.

LDAP advanced security settings
Certificate based authentication requires either that WebSphere map the entire
certificate subject Distinguished Name (DN) to a like LDAP Distinguished Name
or that WebSphere certificate filtering be used to map a certificate subject
Distinguished Name to a specific LDAP field for a given LDAP user.

Using the WebSphere LDAP Certificate Filter option
This section assumes that you have successfully installed a personal certificate
into a client Web browser and that you have previously enabled WebSphere
Global Security authenticating users against a remote LDAP Directory Server. It
is anticipated that the personal certificate subject Distinguished Name (DN) does
not necessarily match, in any way, your LDAP Distinguished Name (DN).

Note: As structure and hierarchy are of concern when managing an LDAP
directory, it is not always possible to use the same Distinguished Name (DN)
that is supported by the client side certificates.
290 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
In the following sample we will use Thawte’s personal certificate requested
through the Free Certificate Program.

Take a look at the certificate details in Figure 10-38 on page 290, the Subject
attribute of the certificate equates the certificate SubjectDN, and the value in our
case is:

E = testwebclient@yahoo.com
CN = Thawte Freemail Member

If you used an alternative PKI solution, the subjectDN will be different, but equally
unique, with the issuer (signer) value being different.

Another alternative to see the SubjectDN for a certificate is using the Java
keytool utility. Export the public certificate form the browser using the Base-64
encoded format for the export, then run the following command:

keytool -printcert -file <exported_certificate_file>

The result for our example was:

Owner: EmailAddress=testwebclient@yahoo.com, CN=Thawte Freemail Member
Issuer: CN=Personal Freemail RSA 2000.8.30, OU=Certificate Services,
O=Thawte, L=Cape Town, ST=Western Cape, C=ZA
Serial number: 8183a
Valid from: Thu Aug 15 10:56:15 EDT 2002 until: Fri Aug 15 10:56:15 EDT
2003
Certificate fingerprints:

 MD5: C5:55:B4:CD:42:19:3D:A2:54:F0:66:E7:20:31:CE:3D
 SHA1: D0:14:77:5F:8E:0B:FB:80:57:CD:F7:7E:49:DF:7C:52:FE:20:2B:67

The SubjectDN is the value of the Owner attribute, which is:

EmailAddress=testwebclient@yahoo.com, CN=Thawte Freemail Member

The next step is to modify WebSphere LDAP filtering rules to map the certificate
subjectDN field to the IBM SecureWay LDAP uniqueIdentifier field for a given
user. You do not necessarily have to use the SecureWay LDAP uniqueIdentifier
field. However, you should ensure that the data type of the field selected is
capable of handling the specific value and the certificate attribute selected for
authentication is unique between certificates.

Also ensure that WebSphere has the right to search such a field when
performing authentication.

Configure WebSphere to use certificate mapping
The following steps will show you how to configure WebSphere Application
Server to use the certificate filter as required.

1. Login to the WebSphere Administration Console.
 Chapter 10. Administering WebSphere security 291

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
2. Select Security -> User Registries -> LDAP.

3. Select the Advanced LDAP Settings at the bottom of the LDAP page.

4. Set the following fields on the Configuration panel:

Certificate Map Mode: CERTIFICATE_FILTER

Certificate Filter: uniqueIdentifier=${SubjectDN}

5. Click OK, then save the configuration for WebSphere.

6. You have to stop and start the application server to implement the advanced
LDAP modifications.

Configure the directory server to use certifcate mapping
The directory server storin your user registry has to be updated to reflect the new
values to use certificate mapping. Basically the uniqueIdentifier field has to
contain the SubjectDN for each user, the SubjectDN value can be extracted from
the public certificate of the user.

In the following steps we will use the IBM SecureWay LDAP Directory.

1. Launch the SecureWay Directory Management Tool.

2. Rebind as an Authenticated User with adequate privileges to modify user
credentials.

3. Expand the directory tree and select the user entity against which you wish to
authenticate the personal client certificate. In this example let us use the user:
manager.

4. click Edit, switch to the Other tab and find the uniqueIdentifier field.

5. Enter the SubjectDN value for the uniqueIdentifier from the certificate. Use
the value returned by the Java keytool utility, in this case:

EmailAddress=testwebclient@yahoo.com, CN=Thawte Freemail Member
292 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-39 Setting the uniqueIdentifier for the user

6. Click OK when you are done.

7. Repeat this step for each individual user against which you wish to perform
client side certificate authentication, setting the appropriate certificate string in
the uniqueIdentifier field each time.

Modifying the Web server to support client certificates
You must ensure that the selected Web server is configured to request client side
certificates. In the following example we will use the IBM HTTP Server to show
how to configure SSL for the Web server to force the clients to send their
certificates.

1. The Web server requires SSL enabled andconfigured in order to use client
side certificates. Follow the steps in Section 10.10.2, “Configuring the IBM
HTTP Server” on page 279 to enable SSL for your IBM HTTP Server if you
have not done it yet.

2. There are two possibilities to set client-side certificates required: using the
Administrative console for IBM HTTP Server; or editing the httpd.conf file
manually, which is the fastest way, considering that we only need to add one
more directive.
 Chapter 10. Administering WebSphere security 293

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
3. If you decide the use the IBM HTTP Server Administrative Console. Login to
the IBM HTTP Server Administrative Console as it is documented in
Section 10.10.2, “Configuring the IBM HTTP Server” on page 279.

4. Select Security -> Host Authorization from the left side navigator.

5. click the Scope button, and select you virtual host from the list that appears in
a new window, in our case: <VirtualHost websrv01.itso.ibm.com:443>. The
new setting should appear next to the Scope button.

6. Change the Mode of client authentication to use to Required.

7. Submit the changes with the button at the bottom.

8. Restart the Web server.

9. WebSphere Application Server does not support the port 443 by default, you
have to modify the default host configuration. Login to the WebSphere
Administration Console, then select: Environment -> Virtual Hosts, then
click default host.

10.Select Host aliases, click New, then provide the following values:

Host Name: *

Port: 443

Click OK when you are finished.

11.Save the configuration for WebSphere.

12.You have to stop and start the server to make the changes effective.

Testing the client side certificate
The best way to test the client certificate is to use the Default Application that
ships with WebSphere and use the snoop servlet by accessing it with you Web
browser. Access the following address from the client:
https://<your_server_name>/snoop, to determine if your browser is correctly
passing a client certificate.

Note: If you choose to edit the httpd.conf file manually; open it with your
favorite browser from the <IHS_ROOT>\conf directory then find the SSL
configuration part. It should start with the definition of a new VirtualHost, for
example: <VirtualHost wassrv01.itso.ibm.com:443>. Find the SSLEnable
directive then insert the following directive:

SSLClientAuth required

Save the httpd.conf file, then close it and finally restart the Web server.
294 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-40 Response from Snoop using HTTPS and providing a client certificate

In Figure 10-40 above, the personal certificate installed in Microsoft Internet
Explorer has successfully been passed to WebSphere. In the case that a client
fails to pass a certificate, WebSphere will only return the Cipher suite
specification as used in the HTTPS connections. If this occures, check that the
client browser has a valid certificate installed and that your Web server is set to
request client certificates.

A correctly configured implementation will prompt the client Web browser user to
select a personal certificate when accessing a protected resource if the
SSLClientAuth directive is set.

Open a new browser, if you have your browser open, then close it and open a
new one. You will have to start the test with a completly new session. Go to the
URL inyour browser: http://<your_server/itsobank, then follow the Customer
Transfer link. The browser will present you will warn you that it was required to
present the certificate; in case you have more than one certificate installed in
your browser, then you wil have to select the right one for the Web site. Once you
passed the certifiacte presentation part, you should be able to access the
customer transfer page. In case the configuration is wrong or the certifiacte is not
the right one you should get an Authorization error message.

You can follow the operation of the authentication if you have the tracing enabled
for security. You should be able to find something similar in your trace.log file as
the following example.

Example 10-5 trace.log

...
 Chapter 10. Administering WebSphere security 295

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
[10/14/02 18:35:21:764 EDT] 4461d823 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 mapCertificate
[10/14/02 18:35:21:764 EDT] 4461d823 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 search
[10/14/02 18:35:21:764 EDT] 4461d823 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 DN: o=itso
[10/14/02 18:35:21:764 EDT] 4461d823 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 Search scope: 2
[10/14/02 18:35:21:764 EDT] 4461d823 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 Filter: uniqueIdentifier=EmailAddress=testwebclient01@yahoo.com,
CN=Thawte Freemail Member
...
[10/14/02 18:35:21:774 EDT] 4461d823 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 search
[10/14/02 18:35:21:774 EDT] 4461d823 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 mapCertificate
[10/14/02 18:35:21:774 EDT] 4461d823 < UOW=
source=com.ibm.ws.security.registry.UserRegistryImpl org=IBM prod=WebSphere
component=Application Server
 mapCertificate parm1=cn=accountant01,o=itso
[10/14/02 18:35:21:774 EDT] 4461d823 d UOW=
source=com.ibm.ws.security.server.SecurityServerImpl org=IBM prod=WebSphere
component=Application Server
 Credential is a Certificate Credential. The user is =
cn=accountant01,o=itso
[10/14/02 18:35:21:774 EDT] 4461d823 > UOW=
source=com.ibm.ws.security.registry.UserRegistryImpl org=IBM prod=WebSphere
component=Application Server
 createCredential parm1=cn=accountant01,o=itso
...
296 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Using the exact Distinguished Name
Using the Disinguished Name (DN) from the certificate to lookup the user means
that the directory structure where the user can be found has to match with the
DN. For example, the user DN is cn=user01,ou=ITSO,o=IBM,c=US; then the
user01 has to be under the ITSO organizational unit (ou), IBM organization, US
country (c) in this order.

This section provides information on how to use the exact distinguished name
from the certificate to map the user to an LDAP user entry.

Acquiring a personal certificate
In this example we will use the Java keytool utility from sun to create the
certifiacte request and then import it into a JKS keystore. Using the Java keytool,
gives the flexibility to submit a request with the DN of our choice; IBM’s ikeyman
utility does not provide this flexibility at this moment.

Follow the steps below to acquire a new certificate from a CA.

1. Create the keystore for the user manager.

keytool -genkey -keyalg RSA -dname "cn=manager01,o=itso" -alias manager01
-keypass password -keystore testkeyring.jks -storepass password

2. Create a certificate request for the user.

keytool -v -certreq -alias manager01 -file managerReq.csr -keypass password
-keystore testkeyring.jks -storepass password

3. Send the request to the CA. This step requires some additional steps from the
reader, where the managerReq.csr certificate request has to be sent to the CA
for signing.

4. Get the CA public certificate. This step is a bit more complex, the user has to
acquire the CA public certificate and import it into the keystore. The public
certificate is either available as part of the Java Development Kit, or can be
downloaded from the CA’s Web site.

keytool -import -alias "Trusted CA Certificate" -file CACert.cer -keystore
testkeyring.jks -storepass password

5. Pick-up the certificate from the CA. This is again a bit more complex process,
where the user has to get the signed certificate from the CA, save it in a
simple text file under the name of managerRespCert.arm.

keytool -import -trustcacerts -alias manager -file managerRespCert.arm
-keystore testkeyring.jks -storepass password

6. You can use the JKS ikeyman tool to export the certificate in PKCS#12
format, in order to import it into the Web browser of your choice. When the
Web site requires the user to present the certificate the user can pick the right
one from the browser’s keystore.
 Chapter 10. Administering WebSphere security 297

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Configuring WebSphere to use exact DN mapping
The following steps will show you how to configure WebSphere Application
Server to use Exact Distinguished Name (DN) mapping.

1. Login to the WebSphere Administration Console.

2. Select Security -> User Registries -> LDAP.

3. Select the Advanced LDAP Settings on the LDAP page.

4. Set the Certificate Map Mode to EXACT_DN on Configuration panel.

5. Make sure that the Certificate Filter field is empty.

6. Click OK, save the configuration for WebSphere.

7. Stop and start the server to make the changes available.

For testing use the same steps described before with the certificate filter option
at Section , “Testing the client side certificate” on page 294.

You can follow the operation of the authentication if you have the tracing enabled
for security. You should be able to find something similar in your trace.log file as
the following example.

Example 10-6 trace.log

...
[10/14/02 19:39:38:318 EDT] 7a376025 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 mapCertificate
[10/14/02 19:39:38:318 EDT] 7a376025 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 search
[10/14/02 19:39:38:328 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 DN: CN=manager01, O=itso
...
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 securityName = parm1=CN=manager01, O=itso
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 attributes = parm1={uid=uid: manager01, objectclass=objectclass:
inetOrgPerson, ePerson, organizationalPerson, person, top, cn=cn: Joe,
manager01}
298 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 userName = parm1=manager01
[10/14/02 19:39:38:348 EDT] 7a376025 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 getUserDisplayName
[10/14/02 19:39:38:348 EDT] 7a376025 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 getUniqueGroupIds parm1=CN=manager01, O=itso
[10/14/02 19:39:38:348 EDT] 7a376025 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 getGroupsForUser
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 filter = parm1=(|(&(objectclass=groupofnames)(member=CN=manager01,
O=itso))(&(objectclass=accessgroup)(member=CN=manager01,
O=itso))(&(objectclass=groupofuniquenames)(uniquemember=CN=manager01, O=itso)))
[10/14/02 19:39:38:348 EDT] 7a376025 > UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 search
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 DN: o=itso
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 Search scope: 2
[10/14/02 19:39:38:348 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 Filter: (|(&(objectclass=groupofnames)(member=CN=manager01,
O=itso))(&(objectclass=accessgroup)(member=CN=manager01,
O=itso))(&(objectclass=groupofuniquenames)(uniquemember=CN=manager01, O=itso)))
...
[10/14/02 19:39:38:348 EDT] 7a376025 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 search
[10/14/02 19:39:38:358 EDT] 7a376025 d UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 Number of groups returned = 1
 Chapter 10. Administering WebSphere security 299

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
[10/14/02 19:39:38:358 EDT] 7a376025 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 getGroupsForUser
[10/14/02 19:39:38:358 EDT] 7a376025 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 getUniqueGroupIds
[10/14/02 19:39:38:358 EDT] 7a376025 < UOW=
source=com.ibm.ws.security.registry.ldap.LdapRegistryImpl org=IBM
prod=WebSphere component=Application Server
 createCredential parm1=CN=manager01, O=itso
...

10.11 SSL between the Web server and WebSphere
This section documents the configuration necessary to instantiate a secure
connection between the Web server plugin and the embedded HTTP server in
the WebSphere Web container. By default, this connection is not secure, even
when Global Security is enabled. The documentation will cover the configuration
for the IBM HTTP Server 1.3.24, however the Web server related configuration in
this situation is not specific to any Web server.

Set authentication mechanism as client-cert.

The following steps are mandatory for generating the certificates for SSL
communicationbetween the two differing peers.

1. Create a self-signed certificate for the Web server plug-in

2. Create a self-signed certificate for the WebSphere embedded HTTP Server
(Web Container)

3. Exchange the public keys between the two peers.

4. Modify the Web server plugin-cfg.xml file to use SSL/HTTPS.

5. Modify the WebSphere embedded HTTP Server (Web Container) to use
SSL/HTTPS.
300 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-41 Certificates

Figure 10-41 illustrates the exchange of the public certificate keys associated
with each peer participating in the secure SSL communication.

Generating a self-signed certificate for the Web server plug-in
The Web server plug-in requires a keyring to store its own private and public
keys and to store the public certificate from the Web container’s keyfile.

The following steps will guide you through the process of generating a
self-signed certificate for the Web server plug-in.

1. Create a suitable directory on the Web server host for storing the keyring file
referenced by the plug-in and associated files; for example: <IHS_root>/ssl.

2. Launch the IBM ikeyman tool that ships as part of GSKit and supports the
CMS key database format. This version of the ikeyman tool comes with the
IBM HTTP Server. Note that it is not the version of ikeyman that comes with
the WebSphere Application Server V5.

3. From the ikeyman menu, select: Key Database File -> New.

4. Set the following settings then click OK when you are done:

Key database file: CMS Key Database File

File name: WASplugin.kdb

Location: c:\IBMHttpServer\conf\keys\ (or the directory of you choice)

5. At the password prompt, enter the password of your choice; for our example
use: password. Set the Stash the password to a file box, and the password will
be saved to the stash file, so the plug-in can use the password to gain access
to the certificates contained in the key database.

6. As we are only going to be implementing a peer-to-peer SSL connection
between the Web server plug-in and the embedded HTTP server of any given
Web container, we are not concerned with the signer certificates of the

Web Container

KeyFile.jks

Private
Key

Public
Key

TrustFile.jks

Private
Key

Public
Key

Keys

Web server plug-in

Keyring.kdb

Public
Key

Private
Key

Private
Key

Public
Key

Signer CertificatesPersonal Certificates
 Chapter 10. Administering WebSphere security 301

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
publicly circulating root certificate authorities (CAs). In this case, optionally
delete all of the CA trusted signer certificates.

7. From the ikeyman menu select: Create -> New Self-Signed Certificate to
create a new self-signed certificate key pair. The following options then need
to be specified; you may choose to complete all of the remaining fields for the
sake of completeness:

Key Label: WASplugin

Version: X509 V3

Key Size: 1024

Common Name: websrv01.itso.ibm.com

Organization: IBM

Country: US

Validity Period: 365

Click OK when you are finished.

8. Extract the public self-signed certificate key, as this will be used later by the
embedded HTTP server peer to authenticate connections originating from the
plug-in.

9. Select Personal Certificates in the drop-down menu and select the
WASplugin certificate that just was created.

10.Click the Extract Certificate button, ensuring that WASplugin remains
selected. Extract the certificate to a file:

Data type: Base64-encoded ASCII data

Certificate file name: WASpluginPubCert.arm

Location: c:\IBMHttpServer\conf\keys (or the directory of your choice)

Click OK when you are finished.

11.Close the key database and quit ikeyman when you are finished.

Generating a self-signed certificate for the Web Container
The following steps will show how to generate a self-signed certificate for the
WebSphere Web Container.

1. Launch the IBM JKS capable ikeyman version, that ships under the
WebSphere bin directory. On Windows systems start it with the ikeyman.bat
command, on UNIX systems run the ikeyman.sh script.

2. From the ikeyman menu select Key Database File -> New.

3. Set the following settings, then click OK when you are done:

Key database file: JKS
302 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
File name: WASWebContainer.jks

Location: c:\WebSphere\Appserver\etc\ (or the directory of your choice)

4. At the password prompt window, enter the password of your choice, for this
sample use: password.

5. Optionally delete all the public Certificate Authority (CA) certificates under the
Signer Certificates.

6. From the ikeyman menu select: Create -> New Self-Signed Certificate.
Specify the fields with your values, the followings were used fo this samle:

Key Label: WASWebContainer

Version: X509 V3

Key Size: 1024

Common Name: wassrv01.itso.ibm.com

Organization: IBM

Country: US

Validity Period: 365

Click OK when you are finished.

7. Extract the public self-signed certificate key, as it will be used later by the Web
server plug-in peer to authenticate connctions originating from the embedded
HTTP server in WebSphere.

8. Select Personal Certificates from the drop-down list, then select the
WASWebContainer certificate that was just created.

9. click the Extract Certificate button, ensuring that the WASWebContainer
remains selected. Extract the certificate to a file:

Data type: Base64-encoded ASCII data

Certificate file name: WASWebContainerPubCert.arm

Location: c:\WebSphere\Appserver\etc

Click OK when you are finished.

10.Close the database and quit ikeyman when you are finished.

Exchanging public certificates
The following two sections will describe how to exchange certificates between
the Web Container keystore and the Web server plug-in keyfile.

In order to import the certificates into the keystores as described in the next two
sections, you will have to copy over the two certificates, the extracted .arm files,
to both machines, Web server, WebSphere server.
 Chapter 10. Administering WebSphere security 303

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
1. Copy the WASpluginPubCert.arm from the Web server machine to the
WebSphere machine. The source directory in our case is c:\ihs\conf\keys,
while the destination is: c:\WebSphere\Appserver\etc.

2. Copy the WASWebContainerPubCert.arm from the WebSphere machine to
the Web server machine. The source directory in our case is c:\was\etc, while
the destination is: c:\IBMHttpServer\conf\keys.

Importing the certificate into the Web server plug-in keyfile
1. On the Web server machine launch the ikeyman utility that supports the CMS

key database format.

2. From the ikeyman menu select Key Database File -> Open and select the
previously created key database file: WASplugin.kdb.

3. At the password prompt window, enter the password then click OK.

4. Select Signer Certificates from the drop-down list, then click the Add button.
This will allow you to import the public certificate previously extracted from the
embedded HTTP server/Web Container keystore.

Data type: Base64-encoded ASCII data

Certificate file name: WASWebContainerPubCert.arm

Location: c:\WebSphere\Appserver\etc\

Click OK when you are finished.

5. You will be prompted for a label name by which the trusted signer public
certificate will be known. Enter a label for the certificate: WASWebContainer.

6. Close the key database and quit ikeyman when you are finished.

Importing the certificate into the Web Container keystore
1. On the WebSphere machine, launch the IBM JKS capable ikeyman version

that ships under the WebSphere bin directory.

2. From the ikeyman menu, select: Key Database File -> Open and select the
previously created WASWebContainer.jks file.

3. At the password prompt, enter the password for the keyfile then click OK.

4. Select Signer Certificates in the drop-down list and click the Add button.
This will allow you to import the public certificate previously extracted from the
Web server plug-in keyfile.

Data type: Base64-encoded ASCII data

Certificate file name: WASpluginPubCert.arm

Location: c:\WebSphere\Appserver\etc\

Click OK when you are finished.
304 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
5. You will be prompted for a label name by which the trusted signer public
certificate will be known. Enter a label for the certificate: WASplugin.

6. Close the key database and quit ikeyman when you are finished.

Modifying the Web server plug-in file
The plug-in config file must be modified to reference the plug-in keyring and the
password stash file. This allows the transport protocol to be changed from HTTP
to HTTPS, using the certificates stored in the keyring.

A standard non-secure HTTP connection in the configuration looks like the
following:

<Transport Hostname="wassrv01" Port="9080" Protocol="http"/>

The same entry, but secured, looks like the following:

<Transport Hostname="wassrv01" Port="9080" Protocol="https">
<Property name="keyring"

value="c:\IBMHttpServer\conf\keys\WASplugin.kdb"/>
<Property name="stashfile"

value="c:\IBMHttpServer\conf\keys\WASplugin.sth"/>
</Transport>

Transport protocol and SSL key properties can be specified for each transport. In
the previous example the simple HTTP transport had been secured. However it
does not make much sense, since the communication from the client to the Web
server and the plug-in is not secured. The secure port for the WebSphere
Application Server 9433 is already defined in the plugin configuration, and it is
configured to use SSL/HTTPS.

It might be useful for production environment to replace the original
plugin-key.kdb file with your own key file for the secure transport definition, port
9443.

Modifying the Web Container to support SSL
To complete the configuration between Web server plug-in and Web Container,
the WebSphere Web Container must be modified to use the previously created
self-signed certificates.

The following steps document the required Web Container modifications.

1. Start the WebSphere Administration Console then after login, select:
Security -> SSL.

Note: the Transport XML tag has a body and a closing tag, make sure you
remove the slash ‘/’ from the end of the opening tag.
 Chapter 10. Administering WebSphere security 305

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
2. Click New to create a new entry in the repertoire. Provide the following values
to fill out the form:

Alias: Web Container SSL

Key File Name: c:\WebSphere\Appserver\etc\WASWebContainer.jks

Key File Password: password

Key File Format: JKS

Trust File Name: c:\WebSphere\Appserver\etc\WASWebContainer.jks

Trust File Password: password

Trust File Format: JKS

Client Authentication: unchecked

Security Level: HIGH

click OK when you have finished.

3. Save the configuration in the WebSphere Administration Console.

4. Select the Servers -> Application Servers, then select the server you want
to work with, in this case: server1.

5. Select the Web Container under the server.

6. Select HTTP Transport under the Web Container.

7. Select the entry for the transfer you want to secure, click the item under the
Host column. Select the * (asterisk) in this case in the line where 9080 is the
Port.

8. On the configuration panel, check-in the Enable SSL box, and select the
desired SSL entry from the repertoire from the SSL drop-down list in our case
the Web Container SSL.

9. click OK, then save the configuration for WebSphere.

Testing the secure connection
To test the secure connection use your favorite Web browser and access a Web
application on WebSphere Application Server using the port 9080, for example:
https://wassrv01.itso.ibm.com:9080/itsobank.

Make sure you use the https protocol, if not, the returned page will look like the
following.

Note: in case you want mutual SSL between the two parties, check the
Client Authentication check-box.
306 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-42 False HTTP response

In order to test the secured connection when client side certification is required,
the right certificate with public and private key has to be imported into the
browser.

1. On the Web server machine, launch the ikeyman utility that can handle the
CMS key database file.

2. Open the keyfile for the plugin, in our example:
c:\IBMHttpServer\conf\keys\WASplugin.kdb. Provide the password when it
is prompted.

3. Selec the WASplugin certificate under the Personal Certificates, then click
Export.

4. Save the certificate in PKCS12 format to a file,
c:\IBMHttpServer\conf\keys\WASplugin.p12. Provide a password to secure
the PKCS12 certificate file, then on the next panel select Weak encryption
(browser compatible).

5. Close the keyfile and quit ikeyman when you are done.

6. Copy the saved WASplugin.p12 file to the client machine where you want to
access the WebSphere server from.

7. Import the PKCS12 file into your favorite browser. In Microsoft Internet
Explorer, select Tools -> Internet Options ... from the menu. Switch to the
Content tab then click Certificates. Import the WASplugin.p12 certificate by
using the Import... button; provide the password for the file where it is
necessary. The new certificate should appear under the personal tab. Close
the certificates and the options dialog.

8. In the browser access the WebSphere application again, for example:
https://wassrv01.itso.ibm.com:9080/itsobank.

9. The browser will ask, which personal certificate to use for the connection,
select the certificate then continue the connection.
 Chapter 10. Administering WebSphere security 307

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
10.The Web page should come up with the right content.

Once the browser test with the direct WebSphere access was successful, test
the connection through the Web server. Open a Web browser and access the
Web application using the normal port settings (port 80), for example:
http://wassrv01.itso.ibm.com/itsobank. The Web page should appear with
the right content.

10.12 SSL between the Java client and WebSphere
SSL may be used to secure a connection between two ORBs. When a Java
client invokes a method on a remote EJB, the client and server ORBs will
communicate information in the clear. SSL can protect information being passed
over the IIOP protocol in the same way that it protects information being passed
over other protocols.

In order to establish an inter-ORB connection, WebSphere demands that the
identity of the client is provided. This has no relation to the role-based security
used to protect the J2EE application, although the identity passed during the SSL
initialisation sequence can be used for authorisation purposes.

10.12.1 Creating the key stores
In order to secure the ORB communication you will need to create the key file
and trust file pairs for the server and the client, then you also have to exchange
the certificates between the two parties.

Follow the steps in Section 10.9, “Demo keyfile” on page 260 to create the key
store, trust store file pairs. Use the following file and keylabel names and save
them in a directiry where you will find them, for example: <WebSphere_root>\etc.

� Server key file: ServerKeyFile.jks

� Server certificate label: ServerKey

� Server trust file: ServerTrustFile.jks

� Client key file: ClientKeyFile.jks

� Client certificate label: ClientKey

� Client trust file: ClientTrustFile.jks

Exchange the certificates between the two parties, export the ServerKey from
the ServerKeyFile.jks and import into the ClientTrustFile.jks; export the ClientKey
from the ClientKeyFile.jks and import into the ServerTrustFile.jks.
308 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.12.2 Server side configuration
The Application Server must be configured to support SSL. An SSL configuration
should exist that describes the type of key stores used to establish the secure
connection and their location. Refer to Chapter 10.9.4, “Configuring WebSphere
to use a key store” on page 274 for details on key stores.

Create a new SSL entry in the SSL Repertoire, following the steps in
Section 10.8.1, “SSL configurations” on page 258 using the following values for
the attributes:

SSL alias: ORB SSL

Key file: C:\WebSphere\Appserver\etc\ServerKeyFile.jks

Key file password: password

Trust file: C:\WebSphere\Appserver\etc\ServerTrustFile.jks

Trust file password: password

The authentication protocol must be configured to use the correct SSL settings.

1. Login to the WebSphere Admin console, select Security -> Authentication
Protocol -> CSI -> Authentication -> Inbound.

2. Ensure that Basic Authentication is supported, at the very least. It is also valid
to set Basic Authentication to Required.

3. Client Certificate Authentication may be set to Supported or Never. A client
certificate is not required in order to establish an SSL connection between the
client and WebSphere.

4. Uncheck Identity Assertion since this option is not required.

5. Ensure there are no trusted servers listed.

Note: The sas.server.props configuration file used in WebSphere Application
Server, version 4 is no longer used in version 5. However, the file remains in
the properties directory. The server security configuration is contained in a file
called security.xml whose default location is
<WebSphere_root>/config/cells/BaseApplicationServerCell.

Note: When required is set to true for an attribute, where supported is also an
option, the supported attribute will not be used by the server.

It is true for every attributes within CSI also.
 Chapter 10. Administering WebSphere security 309

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
6. Check the Stateful checkbox as this provides a useful increase in
performance due to the fact that the client only needs to authenticate once
per session.

7. Click OK.

Figure 10-43 CSIv2 authentication configuration - redo

8. Select Security -> Authentication Protocol -> CSI -> Transport ->
Inbound

9. Ensure that the transport is set to either SSL-Required or SSL-supported, in
our case set it to SSL-Required in order to force SSL connection.

10.Select the pre-defined SSL configuration from the SSL Settings list, in our
case select ORB SSL.

11.Click OK.
310 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-44 CSIv2 transport configuration - redo

This completes the configuration necessary for CSIv2-based connections.
However, some Java client may not support CSIv2 and in this case WebSphere
will need to provide backwards-compatibility with version 4 in the form of IBM’s
SAS protocol. Configuring this protocol to use SSL is relatively straight-forward.

12.Select Security -> Authentication Protocol -> IBM -> Inbound.

13.Select the appropriate SSL configuration from the SSL Settings list, in our
case select ORB SSL.

14.Click OK.
 Chapter 10. Administering WebSphere security 311

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-45 IBM SAS configuration - redo

15.The changes should be saved and WebSphere restarted.

Of course, it is necessary for Global Security to be enabled for SSL to operate
and so ensure that this is the case.

10.12.3 Configuring the Java client
A J2EE application client environment provides the necessary libraries to
connect via SSL and so no additional effort from the client application developer
is required. Configuration is provided in the sas.client.props file which is located
in WebSphere’s properties directory, by default. For details regarding the options
available in this file, consult Chapter 6.3, “Configuring the Java client” on
page 103.

Before commencing configuration of the Java client, it is recommended to
backup the current sas.client.props file.

To allow for a secure connection to WebSphere, the following settings are
necessary.
312 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Table 10-4 sas.client.props configuration

Once the sas.client.props file has been updated, it should be saved to the
filesystem.

Testing the configuration involves starting a Java client with the launchclient tool.
Information regarding the launchclient tool can be found in Chapter 6.5, “J2EE
application client” on page 121.

An addtion requirement is that the client provides a certificate in order to
establish its identity, rather than a user name and password. Java clients can be
configured to provide a certificate and in this case, several additional steps are
necessary.

The sas.client.props file must be updated to reflect the addition of the client trust
store.

Table 10-5 sas.client.props configuration

Property Value

com.ibm.CORBA.securityEnabled true

com.ibm.ssl.protocol SSL

com.ibm.CSI.performTransportAssocSSLTLSSupported true

com.ibm.CSI.performTransportAssocSSLTLSRequired true

com.ibm.CSI.performMessageIntegritySupported true

com.ibm.CSI.performMessageConfidentialitySupported true

Property Value

com.ibm.ssl.keyStoreType JKS (if ikeyman is used)

com.ibm.ssl.keyStore <location of key file>

com.ibm.ssl.keyStorePassword <password for key file>

com.ibm.ssl.trustStoreType JKS

com.ibm.ssl.trustStore <location of trust file>

com.ibm.ssl.trustStorePassword <password for trust file>

com.ibm.ssl.protocol SSLv3

com.ibm.CSI.performTLClientAuthenticationSupported true
 Chapter 10. Administering WebSphere security 313

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
It is possible to configure keystores each for CSIv2 and IBM SAS connections. In
this case the com.ibm.ssl properties shown in the table above should be
replaced with the following.

For CSIv2-based connections.

Table 10-6 CSIv2-specific sas.client.props configuration

For IBM SAS-based connections.

Table 10-7 IBM SAS-specific sas.client.props configuration

com.ibm.CSI.performClientAuthenticationRequired false (to ensure that the
client certificate is being
used)

Property Value

com.ibm.ssl.csiv2.outbound.keyStore <location of client CSIv2
key file>

com.ibm.ssl.csiv2.outbound.keyStorePassword <password for client CSIv2
key file>

com.ibm.ssl.csiv2.outbound.keyStoreType JKS

com.ibm.ssl.csiv2.outbound.trustStore <location of client CSIv2
trust file>

com.ibm.ssl.csiv2.outbound.trustStorePassword <password for client CSIv2
trust file>

com.ibm.ssl.csiv2.outbound.trustStoreType JKS

com.ibm.ssl.csiv2.outbound.protocol SSLv3

Property Value

com.ibm.ssl.sas.outbound.keyStore <location of client SAS key
file>

com.ibm.ssl.sas.outbound.keyStorePassword <password for client SAS
key file>

com.ibm.ssl.sas.outbound.keyStoreType JKS

com.ibm.ssl.sas.outbound.trustStore <location of client SAS
trust file>

Property Value
314 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Once SSL is configured, use the launchclient tool provided with WebSphere to
test the connection. It may be feasible to run a packet monitoring tool to be sure
that the information passing from client to server is, in fact, encrypted. Only the
server and client certificates should be sent in the clear and then only during the
initialisation stage. In any case, these certificates are considered to be viewable
by the public in general as they do not contain any private information.

Should an error occur, the likelihood is that a Java exception trace will appear in
the client console. Often the errors refer to CORBA problems which is the
underlying marshalling mechanism with which the ORBs operate. Most CORBA
exceptions are difficult to interpret due to their somewhat terse messages.
Tracing can also provide a useful insight to the events that led up to the error.

10.13 Connecting to directory servers (LDAP)
This section will discuss the LDAP User Registry configuration for the
WebSphere Application Server. The user registry we used to show the
configuration steps is the IBM SecureWay Directory Server V3.2.2. This section
will tell you how to configure your LDAP server for this sample, how to create a
sample user and a sample group entry in the directory. Tha major part of the
section is to give an example how to configure WebSphere to use a given LDAP
server over a normal LDAP connection then using SSL for LDAP (LDAPS).

For other LDAP servers refer to Appendix B, “LDAP configurations” on page 457.

10.13.1 IBM SecureWay Directory Server V3.2.2
The following detailed configuration will show, how to configure WebSphere
Application Server V5 to use the IBM Secureway Directory Server V3.2.2. There
are two scenarios, where the second build upon the first one;

� The first scenario covers the basic LDAP configuration with WebSphere
Application Server.

� The second scenario covers how to enable the connection to use SSL for
LDAP (LDAPS) providing security to WebSphere LDAP communication.

com.ibm.ssl.sas.outbound.trustStorePassword <password for client SAS
trust file>

com.ibm.ssl.sas.outbound.trustStoreType JKS

com.ibm.ssl.sas.outbound.protocol SSLv3

Property Value
 Chapter 10. Administering WebSphere security 315

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Before going for securing the connection between WebSphere and LDAP
communication using SSL, we recommend that we first configure LDAP
configuration for WebSphere.

Configuring basic LDAP connection
The following steps will show a basic configuration for WebSphere Application
Server V5 to use IBM SecureWay Directory Server as the user registry.

Configuring the IBM SecureWay Directory Server
Once the installation and basic configuration for the directory server is finished,
proceed to add new data entries into the directory. The following steps will guide
you through the basic configuration of IBM SecureWay Directory Server.

Before you can add entries to the database, it is necessary to define a suffix for
that directory. A suffix is the starting point in the directory and specifies the
Distinguished Name (DN) for the root of that tree. The LDAP server must have at
least one suffix defined and can have multiple suffixes. Each entry added to the
directory contains in their fully Distinguished Name (DN) a suffix that matches
one of the server’s suffixes defined on the server.

To define a valid suffix, it is possible to use the X.500 naming structure that will
set the root of the directory to a specific organization in a specific country or to a
specific organization and organizational unit:

o=ibm,c=us

where “o” represents Organization and “c” represents Country, and

ou=raleigh,o=ibm

where “ou” represents Organizational Unit and “o” represents Organization.

It is also possible to use the DNS naming model by using the domainComponent
attribute:

dc=ibm.com

where “dc” represents a domain component, for example:

dc=itso,dc=ral,dc=ibm,dc=com

To add a suffix in the directory, follow these steps:

1. Open a Web browser, then access the URL for the Server Administration:
http://<your server>/ldap .
316 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
2. Once logged in as an administrator, click the Add Suffixes link at the top of the
page or expand the Settings -> Suffixes folder then click Add Suffixes.

Figure 10-46 Create a Siffixes in IBM SecureWay Directory Server Administration

For our example, using the X.500 methodology, we set the following suffix:
o=itso. Click Update, and the Suffix table list will be updated with the new
suffix. At this point, it contains no data.

3. Restart the server by clicking the Restart the Server link on the top of the
page so that the changes may take effect.

Create a user entry
To add new user entries in the directory, use the Directory Management Tool tool
Follow the steps below to add a new user:

1. Open the Directory Management Tool by clicking Start -> Programs -> IBM
SecureWay Directory -> Directory Management Tool.

2. Click the Add Server button. The Add Server fields are displayed. Type in the
Server Name and Port and then select Simple in the Authentication Type.
Log on as the cn=root user and click OK.

3. A Warning message box will be displayed, notifying you that the suffix created
previously (itso) does not contain any data. Click OK.
 Chapter 10. Administering WebSphere security 317

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
4. To add a new entry in the directory select the ldap://<your_ldap_server>:389
itam and click the Add button in the toolbar. Select Organization as the Entry
Type and o=itso as the Entry RDN (Relative Distinguished Name), as shown
in Figure 10-47.

Figure 10-47 Adding an organization

5. Click OK and a new window appears for setting attributes to the new RDN
entry. All the fields marked in bold style are mandatory, in this case it is only
the “o” filed, which already has a value assigned.

6. Click Add. The new organization entry should appear in the directory tree
after clicking Directory -> Refresh Tree as shown in Figure 10-48.

Note: If an authenticated user is not introduced during the Add Server
process, you will only have anonymous privileges; this means that it is only
possible for you to browse the directory, but not to modify it. To authenticate
yourself, select Server -> Rebind from the menu in the left-hand pane.
318 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-48 New Organization in the Directory after refreshing

7. Now, proceed to add new users to the new organization created previously.
We are going to add a new administrative user in order to set a Security
Server ID in the WebSphere Global Security settings, for use as the user ID
under which the server runs for security purposes.

Select the country o=itso and click the Add button on the tool bar. Select
User as the Entry Type and type cn=wasadmin as the Entry RDN.

Figure 10-49 Adding a new user

8. Click OK; a new window appears for setting attributes to the new RDN entry,
as shown in Figure 10-50.
 Chapter 10. Administering WebSphere security 319

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
The Distinguished Name (DN) is the fully qualified name for the user. The
default DN is the Parent DN plus the Entry RDN. Enter the Last Name
(required for adding new users) and a password further below. Include any
other information in the Business and Personal tabs.

Figure 10-50 Setting attributes to the new user

9. Switch to the Other tab and supply the UID to allow the user to authenticate
himself with this value instead of using the full DN, type in: wasadmin.

10.Click Add. The new user entry should appear in the directory tree beneath
the organization entry (o=itso) after clicking Directory -> Refresh Tree.

Create a group entity
To add new groups in the directory, it is possible to use the DMT (Directory
Management Tool) or provide the data in an LDIF (LDAP Data Interchange
Format) file. To add new groups, follow these next steps:

1. Select the organization o=itso and click the Add button in the toolbar.

2. Select Group as the Entry Type and type cn=admingrp as the Entry RDN as
seen in Figure 10-51; then click OK.
320 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-51 Adding a new Group

3. The next window is used for setting attributes for the new RDN entry, as
shown in Figure 10-52.

Figure 10-52 Setting Groups attributes

The member (Group member) field is mandatory; assign the following group
member to the group: cn=wasadmin, o=itso.

4. After creating all the users and groups for the application and clicking
Directory -> Refresh Tree the directory structure should appear as it is
shown for the ITSOBank applicaiton on the picture below.
 Chapter 10. Administering WebSphere security 321

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-53 LDAP directory with users and groups for the ITSOBank sample

Mass data load
As mentioned before, it is possible to add users and groups using an LDIF file, a
standard format for representing LDAP entries in text form. This will be useful
when the number of entries to add is very large. An example of an LDIF file is
shown below.

Example 10-7 Sample LDIF File (code snippet)

version: 1

dn: o=itso
objectclass: top
objectclass: organization
o: itso

dn: cn=wasadmin,o=itso
objectclass: top
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: person
objectclass: ePerson
uid: wasadmin
userpassword: {iMASK}>1E6ViLtjfRnaIvsM9gJYbK5u3X/FqvrAAKQuhmmr47OFebq5EJyZ76u5
322 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
 ayIfX+qeEFcWEpDWEHEWCEGc0sRADuWtbzl5FxHpt3uoPT88v0G8gGo/0gmHkq0P88xU9NmaAt+h
 GKqCqr76TeJcmkUwejjnPb8pAoIYCq<
sn: wasadmin
cn: wasadmin

dn: cn=admingrp,o=itso
objectclass: groupOfNames
objectclass: top
cn: admingrp
member: cn=wasadmin,o=itso

To import the file, perform the following steps:

1. Open the browser and access the URL for Server Administration using the
format http://<your server>/ldap. Once logged as a root , check that the
Directory server is running.

2. Select Database -> Import LDIF.

3. Enter the name of the LDIF file on the LDAP server from which you want to
import directory data, then click Import.

4. Wait until a message appears indicating that the entries have been
successfully added.

5. Use the DMT tool to verify the new entries.

Configuring WebSphere to use LDAP User registry
In order to use the LDAP directory of your choice as the user registry,
WebSphere has to be configured in a proper way.

1. Launch the Administrative Console for WebSphere.

2. Select Security -> User Registries -> LDAP, this page will provide the
settings for the LDAP configuration.

3. Provide all the information shown on Figure 10-54 on page 324 according to
your system settings.
 Chapter 10. Administering WebSphere security 323

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-54 WebSphere LDAP Configuration panel

4. Click Apply to keep the settings.

5. For special LDAP search settingd click the Advanced LDAP Settings link on
the bottom of the page to get to the following page, Figure 10-55 on
page 325.
324 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-55 LDAP Advanced settings Configuration panel

6. The settings here are correct for the chosen SecureWay Directory Server.
The settings will change accordingly whenever the type of the directory is
changed on the main LDAP configuration page. You can also configure your
own custom LDAP search strings on this page.

7. Once finished with the LDAP configuration save the settings to make it
available for WebSphere.

8. You will need to restart the application server in order to make the changes
effective.

Configuring secure LDAP (LDAPS) connection
This section requires to configure LDAP connection for WebSphere Application
Server V5 by following the previous steps from Section , “Configuring basic
LDAP connection” on page 316.

Note: Even if global security is not enabled you can set the user registry to
LDAP for WebSphere. There are cases when a user registry is needed even
without security, it will let you to do role mapping during application
deployment, or use LDAP users for J2C authentication entries for the
datasource adapter.
 Chapter 10. Administering WebSphere security 325

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Creating the certificates for SSL
This section provides information for the keyring settings needed for the secure
LDAP connection over SSL.

Creating a self-signed certificate for the SecureWay LDAP peer, follow the steps
in Section 10.10.1, “Generating a digital certificate” on page 277.

� Use the following information for the new LDAP keyring file:

Key database file: CMS Key database file

File name: LDAPKey.kdb

Location: C:\LDAP\etc

� Use the following information to create the LDAP key entry:

Key label: LDAP SSL

For the rest of the fields use your own settings according to your server and
location.

� For extracting the certificate from the LDAP keyring file use the following
details:

Data type: Base64-encoded ASCII data

Certificate file name: SecurewayDAPCert.arm

Location: C:\LDAP\etc

Creating a Key database for the WebSphere LDAP SSL peer, follow the steps
from Section 10.9.1, “Generating a self-signed certificate” on page 263.

� Use the following information for creating the new key database:

Key Database File: JKS

File Name: WASLDAPKeyring.jks

Location: C:\WebSphere\AppServer\etc

� Use the following information to create a new self-signed certificate for LDAP:

Key label: LDAPSSL

For the rest of the fields use your own settings according to your server and
location.

� For extracting the certificate, use the following information:

Data type: Base64-encoded ASCII data

Certificate file name: WebSphereLDAPCert.arm

Location: C:\WebSphere\AppServer\etc
326 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
To exchange the certificates between the two keyrings follow the steps from
Section , “Exchanging public certificates” on page 303. using the following
details:

� LDAP certificate file C:\LDAP\etc\SecurewayDAPCert.arm has to be copied to
the WebSphere server, then imported into the
C:\WebSphere\AppServer\etc\WASLDAPKeyring.jks file.

� WebSphere certificate C:\WebSphere\AppServer\etc\WebSphereLDAPCert.arm
has to be copied to the LDAP server, then imported into the
C:\LDAP\etc\LDAPKey.kdb file.

Configuring the IBM SecureWay Directory Server
After successfully generating and exchanging the SecureWay public key, both
the SecureWay Directory Server and WebSphere must be configured to support
SSL. The assumption is made that you have previously installed and configured
the SecureWay LDAP Directory for authenticating WebSphere users, albeit
without SSL.
 Chapter 10. Administering WebSphere security 327

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-56 Configure SSL for SecureWay Directory Server

Complete the following steps to enable LDAP SSL communication.

1. Launch the SecureWay Web-based administration console in your chosen
Web browser. Open the URL http://<ldap_servername>/ldap.

2. Complete the LDAP Administrator ID and Password fields when prompted to
authenticate yourself to the Directory Server. Typically, the Distinguished
Name (DN) cn=root is used here. However, any user with sufficient privileges
can perform this task.

3. From the Directory Server topology tree in the left pane, select the SSL
Settings tab found under the Security heading. Figure 10-56 on page 328
shows the corresponding SSL Settings window that will be displayed in the
right-hand-side pane.

4. You must complete the following fields to enable LDAP communication over
SSL:
328 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
SSL status: select SSL On or SSL Only if you wish to prevent non-SSL
LDAP connections.

Authentication method: select Server Authentication. You may choose to
select Server and Client Authentication, in which case you need to ensure
that the public certificate key associated with any authenticating client is
resident in your (LDAP) certificate key database.

Secure port: select 636 which is the Internet standard for secure LDAP
communication. You may choose any port that is not in use. On Unix, only the
root has access to the ports below 1024 by default.

Key database path and file name: specify the fully qualified file name of the
CMS key database previously created. In our example, this is set to
C:/LDAP/config/SecureWayLDAP.kdb . SecureWay does not support the Java
Key Store (JKS) type certificate key database.

Key label: as a key database can contain multiple certificates, specify the
label name of the certificate used for authenticating the LDAP Directory
Server. In our example this is set to LDAPSSL.

Key password: specify the key database password if you did not generate a
password stash file when creating the certificate key database originally. This
password will be used by SecureWay to gain access to the certificate
database.

5. Click the Update button when you have completed all of the above fields.

6. For the changes to be included into the runtime, you must stop and restart the
LDAP Directory Server. Once restarted, you can check the status of the
Directory by expanding the Current State and Server Status menus. If the
Directory fails to start, check the Error logs. Unix users can also check that
the Directory is listening for incoming SSL LDAP connections by using the
netstat -a command and “grepping” for port 636.

If you are concerned with the level of SSL support offered by the SecureWay
LDAP Directory Server, you can choose to restrict the permitted encryption
algorithms. For example, you may decide that (40-bit) encryption is inadequate
for your SSL implementation. In this case, the (40-bit) encryption method can be
deselcted, as shown below in Example 10-57.
 Chapter 10. Administering WebSphere security 329

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-57 SSL Encryption settings for SecureWay Directory Server

Bear in mind that each SSL peer must support the same encryption
method/cipher suite to be able to establish an encrypted session. The encryption
methods supported by WebSphere are classified into three categories high ,
medium and low , and are configured via the Security level setting on the LDAP
SSL Configuration window as shown in Figure 10-58 on page 331

Configuring WebSphere Application Server V5
The following steps will guide you through the basic configuration of WebSphere
Application Server V5.

SSL Configuration
We need to configure the keyring for SSL we previously created in Section ,
“Creating the certificates for SSL” on page 326, using Administrative Console for
WebSphere Application Server V5. Following are the steps:
330 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-58 Configuring SSL Certificate using Administrative Console

1. Click Security -> SSL.

2. Fill in the configuration values as follows:

Key File Name: specify the fully qualified file name of the Java Key Store
(JKS) key database previously created. In our example this is set to
C:\WebSphere\AppServer\etc\WASLDAPKeyRing.jks .

Key File Password: state the password used to protect the Java Key Store
(JKS) certificate key database above.

Key file format: ensure that JKS is selected.
 Chapter 10. Administering WebSphere security 331

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Trust file name: potentially, you can set this to point at a second Java Key
Store (JKS) used for holding trusted certificate keys. However, if you choose
not to differentiate between personal keys and trusted keys, and opt to use a
single key database for both tasks, this field should be set to the same value
as the Key file name. In our example, this is set to
C:\WebSphere\AppServer\etc\WASLDAPKeyRing.jks.

Trust file password: state the password used to protect the Java Key Store
(JKS) certificate key database above.

Trust file format: ensure that JKS is selected.

Security level: setting this to High will ensure that the strongest SSL
encryption algorithms are used for secure communication. The setting must
be compatible with algorithms supported by the SSL peer.

3. Click OK when you are done.

LDAP User Registry
Here, the assumption is again made that you have previously configured
WebSphere to successfully authenticate users against the SecureWay LDAP
Directory Server without using SSL for securing the WebSphere-to-LDAP
connection. The LDAP Distinguished Name (DN) and LDAP topology structure
do not need to be modified in any way to support SSL.

Note: If you are using the Default SSL settings for securing the LDAP
connection, you have to restart the server before you can enable SSL for the
LDAP User Registry for WebSphere Application Server V5.
332 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-59 LDAP User Registry Configuration

1. Launch the Administrative Console http://<serverName>:9090/admin. Click
Security -> User Registries -> LDAP.

2. On the right hand frame, fill up the Configuration fields with as follows:

Port: specify 636 which corresponds to the TCP/IP port listening for SSL
enabled LDAP queries on the remote SecureWay LDAP Directory.

SSL Enabled: select this check box to enable SSL.

SSL Configuration: From the drop-down list you should see the LDAP SSL
Entry we created previously, select it.

3. Click Apply.

4. Save the configuration.
 Chapter 10. Administering WebSphere security 333

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
5. Re-start WebSphere so that changes can be included next time.

Testing the connection
When the server starts, go to the Administrative Console, it should ask you for
the user name and password for authentication. This is because Global Security
is enabled. Give the user name and password as wasadmin (or
cn=wasadmin,o=ibm,c=us) and password as password. If you are able to login
successfully that means your configuration is working fine.

Disabling SecureWay Anonymous LDAP searches
In a production environment, it is envisaged that you may wish to prevent
anonymous LDAP searches of the WebSphere user space, although such
searches typically only reveal non-sensitive information about a user. The very
act that any user information can be retrieved at all may pose a security risk.

The Netscape Address Book or Microsoft Outlook Address Book can be used to
demonstrate this argument. With a little knowledge about the remote LDAP
server, it is possible to retrieve the WebSphere authentication user registry.

10.14 JMX MBean security
Managed resources in WebSphere are represented by JMX MBeans. All these
management interfaces in WebSphere are protected by security role based
access control. All the MBean information is defined in the MBean XML
descriptor file. This XML file is used to register these MBeans with WebSphere
MBean Server. At runtime MBean descriptor information is processed and saved
into ModelMBeanInfo instance.

WebSphere administrative subsystem supports four security roles: Monitor role,
Operator role, Configurator role and Administrator role.

Table 10-8 Administrative roles

Role Activity

Monitor role View configuration information and status

Operator role Trigger runtime state changes, such as start an application
server or stop an application server

Configurator role Modify configuration information but can not change runtime
state

Administrator role Operator as well as Configurator
334 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Since most of the MBeans existing in WebSphere deal with runtime operations
and runtime attributes and they only require monitor, operator or administrator
role. Very few MBeans deal with configuration and would require monitor,
administrator and configurator role.

Every method of MBean is categorized into one of the four types: INFO(read only
like), ACTION(read and write), ACTION_INFO(read and write), and
UNKNOWN(unknown nature).

Table 10-9 MBean method categories

MBean deployment descriptor XML file is very similar to EJB depoyment
descriptor even though it does not support featues of EJB 2.0 such as
unchecked method, excluded list , and run-as element. Run-as is not supported
because administrative security is used to protect sensitive system resources
and definitely it requires more privileges.

10.15 Cell Security
The Cell Security name refers to the scenario where security is enabled for a
multi-server environment. In this environment WebSphere Application Servers
are integrated into a Cell using the WebSphere Network Deployment (ND)
package.

A sample scenario is depicted below.

Category Operation

INFO Read only

ACTION read and write

ACTION_INFO read and write

UNKNOWN of unknown nature
 Chapter 10. Administering WebSphere security 335

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 10-60 WebSphere cell with one deployment manager and two application servers

There are differences in the runtime environment from the security and from the
system management point of view, when you federate your application servers
under one cell, managed by a Network Deployment manager.

� The administrator application disappears, gets uninstalled, from the individual
nodes. All the management happens from the Network Deployment manager
providing one single access point for administration.

� The embedded JMS servers are detached from the application servers. While
the embedded JMS server depends on the application server when running a
base application server; in a federated cell, the embedded JMS server is
running separate from the application server, they are managed individually.

� In a federated cell only LTPA (Lightweight Third Party Authentication) is
available as authentication mechanism for the individual servers. The main
point is, that SWAM (Simple WebSphere Authentication Mechanism) cannot
work anymore, because we need to pass credental information between
servers.

CSIv2 takes care of passing credentials between EJB containers.

LTPA takes care of passing credentials between Web containers by enabling
Single Sign-On for the Cell.

� Configuration files for the cell will be created and the configuration files for
individual servers will change.

ndsrv01.itso.ral.ibm.com

 WebSphere Network Deployment
 running server dmgr

appsrv01.itso.ral.ibm.com appsrv01.itso.ral.ibm.com

 WebSphere Application Server
 running NodeAgent

 running server1

 WebSphere Application Server
 running NodeAgent

 running server1

client01.itso.ral.ibm.com

 Administration client
 running server Web browser
336 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
10.15.1 Configuring security for the Cell
There are three levels in the application server organization in WebSphere from
the configuration point of view (starting from the lowest organizational level)

� Server, represents the application servers, JMS servers.

� Node, represents the node in the architecture, in teh network. From the
administration point of view the Node is responsible to manage the multiple
servers on the Node.

� Cell, represents multiple nodes collected into one centrally managed unit.
From the administration point of view the Cell is responsible to manage the
multiple nodes and servers in the Cell.

Security configuration, just like other configurations, can be defined on these
levels. Although most of the settings apply to the server and cell level.

Administration
Once a node is attached to a cell, the servers are running within the cell, they can
be only configured from the deployment manager. To configure any server in the
cell go to the URL: https://<deployment_manager>:9090/admin, where
<deployment_manager> is the host name of the deployment manager machine.

Security configurations in a cell
The following table is a collection of security items and settings in a WebSphere
cell. You can read out from the table, where you can specify certain settings and
what is the scope of these settings when administering a cell.

Table 10-10 Security settings in a cell

Item Cell Node Server Appl.

Enabling global security X X

Enabling Java 2 security X X

User registry X

Authentication Protocol X

CSIv2 protocol settings X X

IBM SAS protocol settings X X

JAAS Logon Modules configuration X (C)* X (A)**

CosNaming Roles X

Administrative Role mappings X
 Chapter 10. Administering WebSphere security 337

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
(C)* means that the item was configured on a particular level and it is available
on a different one.
(A)** means that the item is available on a particular level and it was configured
on a different level.

Global security
The global security settings for a cell is almost the same as the global security
settings for a server (not being in a cell). The difference is that only LTPA is
available as authentication mechanism. The reason is that SWAM is not capable
for passing credentials between multiple application servers, therefore we need
an authentication mechanism that supports us with this feature, at this time LTPA
is the only that gives us this function. As an alternative you can develop and use
your own authentication mechanism, or in future releases Kerberos might
provide this functionality.

For all the other global security settings refer to Section 10.2, “WebSphere
Global Security” on page 235.

SSL settings
The SSL Repertoire entries are exactly the same as for a server (not being in a
cell).

The entries defined for a cell are synchronized between the application servers
attached to the cell, therefore the entries are available for the whole cell or for
individual servers, see the individaul server settings later.

User to role mapping X

J2C Authentication Data entries X (C)* X (A)**

SSL Repertoire entries X (C)* X (A)**

Note:

J2C Authentication Data Entries are also used in the Resource Adapter
Settings.

The SSL Repertoire entries are also used in the Web container security,
CSIv2 and IBM SAS transport protocol security.

Item Cell Node Server Appl.
338 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Configuring the SSL settings, adding a new entry on a cell level will be reflected
in the server’s security settings; but only the configuration is synchronized. It is
the administrator’s responsibility to make sure that the keys are copied to the
right location for the application servers. Very important, that the SSL settings
refer to certain directory paths, that are not the same on each server, simply
because the WebSphere root direcotry is not or might not be the same on every
machine, especially when heterogenous (UNIX, Windows) platforms are
attached to the cell.

The solution for this problem is to use the WebSphere environment variables in
path definitions on the server level and specify the platform and installation
dependent directories there. Once an environment variable with the same name
is defined for each server, you can refer to that variable on the cell level. This is
what happens when you use to the ${WAS_ETC_DIR} variable for example.

For SSL settings refer to Section 10.8, “Configuring SSL” on page 257.

User registries
The user registry configured for the cell will be the user registry for each server in
the cell.

The user registry for the cell should be a centralized repository, an LDAP
Directory, OS users from a domain, or a custom user registry reading from a
centralized, common, user repository.

For user registry settings refer to Section 10.4, “Configuring a user registry” on
page 243.

Authentication Mechanisms
As mentioned before, in a cell LTPA is the only available authentication
mechanism at this moment.

When you configure LTPA for the cell at the deployment manager, you will have
to generate the LTPA key and secure it with a password. The LTPA private and
public keys are stored in the security configuration, security.xml, file. Since the
configurations in this file are synchronized, you do not have to worry about
distributing the LTPA keys on each server, the deployment manager will take
care of that.

For information on LTPA configuration refer to Section 10.6, “LTPA” on page 249.
 Chapter 10. Administering WebSphere security 339

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
JAAS configuration
The JAAS configuration settings, as Application Login Settings and J2C
Authentication Data, are propagated to the servers and they are available on
each end-point.

For more information about JAAS Configuration refer to Section 10.7, “JAAS
Configuration” on page 254.

Authentication protocol
The authentication protocols configured for CSIv2 and IBM SAS:

� CSIv2 Inbound Authentication
� CSIv2 Outbound Authentication
� CSIv2 Inbound Transport
� CSIv2 Outbound Transport
� SAS Inbound
� SAS Outbound

These settings are also propagated to the servers, and they are available at the
end-points.

For authentication protocol configuration refer to Section 10.12, “SSL between
the Java client and WebSphere” on page 308.

After configuring security for the cell
Once security is enabled for the cell, you will have to restart all your components
in the following order:

1. Stop the application servers.

2. Stop the node agents.

3. Restart the deployment manager.

4. Start the node agents.

5. Start the application servers.

10.15.2 Configuring security for an individual server
Servers in a cell can still have separate settings for security in a certain extent.
Not all the security settings are available for a server when it is in a cell, some of
the configurations are inherited, and can only be inherited from the cell. In order
to configure security individually for a server, perform steps below.

1. Navigate to the Servers -> Application Servers.

2. Select the individual server you want to administer, for example: server1.
340 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
3. Click the link Server Security at the bottom of the page.

Figure 10-61 Server security settings in a cell

The following sections provide some more details on each settings available on
the server level.

Use Cell Security
The Use Cell Security button will update the security settings for the server with
the security settings from the cell; and remove all the individual settings.

Use Cell CSI
The Use Cell Security button will update the CSI settings for the server with the
CSI settings from the cell; and remove all the individual settings.

Use Cell SAS
The Use Cell SAS button will update the IBM SAS settings for the server with the
IBM SAS settings from the cell; and remove all the individual settings.
 Chapter 10. Administering WebSphere security 341

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
Individual CSI and SAS settings
The CSI and IBM SAS authentication and transport settings can be configured
for each server individually. The following configurations can be individually set
for a server.

� CSI Authentication -> Inbound
� CSI Authentication -> Outbound
� CSI Transport -> Inbound
� CSI Transport -> Outbound
� SAS Transport -> Inbound
� SAS Transport -> Outbound

These settings are the same as for a server (not in a cell). For more information
about CSIv2 and IBM SAS settings, refer to Section 10.12, “SSL between the
Java client and WebSphere” on page 308.

When configuring the transport for CSIv2 you can specify the SSL settings you
want to use. The SSL settings available here are the list of SSL entries
configured for the cell. For more information on the SSL settings for the cell, refer
to Section , “SSL settings” on page 338.

Server level (global) security
Global security settings can also be configured for servers individually, although
not all the configuration options are available on server level.

Select the Server Level Security from the Server Security page, you will get the
panel as on Figure 10-62.
342 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAdminWSSec.fm
Figure 10-62 Server level security settings

The server security settings available here are the same as global security for a
server (not in a cell).

The available security settings on the server security panel are:

� Enabled
� Enforce Java 2 security
� Use Domain Qualified User IDs
� Cache Timeout
 Chapter 10. Administering WebSphere security 343

6573chAdminWSSec.fm Draft Document for Review November 6, 2002 2:37 pm
� Issue Permission Warning
� Active Protocol

For more information about global security settings refer to Section 10.2,
“WebSphere Global Security” on page 235.
344 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573pE2ESec.fm
Part 2 End-to-end
security

Part 2
© Copyright IBM Corp. 2002 345

6573pE2ESec.fm Draft Document for Review November 6, 2002 2:37 pm
346 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Chapter 11. Security in patterns for
e-business

This chapter discusses the security considerations for end-to-end solutions in the
context of the Patterns for e-business.

First a very short introduction to Patterns for e-business is given, describing what
sort of patterns are used on what solution development stages. Then based on
the ITSOBank sample application a high level solution design life cycle is
presented based on selected patterns. All assumptions and decision drivers has
been documented at each design stage.

At the end of the chapter final system architecture was proposed as a result of
the process.

11
© Copyright IBM Corp. 2002 347

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
11.1 Patterns for e-business
Patterns for e-business is a group of reusable assets developed to facilitate and
speed up the process of solution design for e-business application.

Patterns in a solution design process can be considered as an incomplete
architecture. Depending on the pattern used, we can talk about logical (based on
conceptual modules and building blocks) or physical / runtime architectures.

Difference between a pattern and an architecture is in the goal.

Pattern is usually used as a generic type of solution that can address a family of
problems. It needs tailoring to make it effective solution and must be customized
to include all the aspects that exist in the IT environment where it will be used.

Architecture describes the structure of a particular system that will be completed
over time. Architecture is developed individually for each client as opposed to a
pattern, which must be tailored to each client.

A number of different patterns has been developed and is still being extended for
e-buiness applications. The layered model of patterns is depicted on the
following diagram.

Figure 11-1 Layered model of Patterns for e-business

Open Standards

Customer requirements

Composite patterns

Integration patternsBusiness patterns

Application patterns

Runtime patterns

Runtime product mappings

IBM Software infrastructure blueprint

M
ethodology
348 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Business patterns
This is the view of the CIO on the business problem. It defines business
processes and rules, actors of the system, user roles, existing and future support
modules as “architectural” building blocks.

In this category we may identify following patterns:

� Self-Service

� Collaboration pattern

� Information aggregation

� Extended enterprise

Integration Patterns
This view defines how the business actors interact with business processes and
supporting tools. It describes what kind of integration is required in front-end and
back-end applications combining in this way the business patterns to form a solid
solution. Integration patterns are often used as a “glue” between different
business patterns. They are not directly related to a specific business processes.

In this category we may identify the following types of patterns:

� Access Integration: Single Sign-On, personalization, content adaptation and
so on.

� Application Integration: all kinds of interaction between applications and
applications and data.

Composite Patterns
Composite Patterns are a combination of Business and Integration Patterns. This
combination sometimes forms a advanced e-business application and therefore
it has been introduced as a separate pattern that can be used as a starting point
for design process.

Among different composite patterns we may identify:

� Corporate portal patterns

� E-commerce patterns

� Application Service Provider patterns

Application and Runtime Patterns
Application and Runtime patterns are driven by the customer's requirements,
they describe the shape of applications and the supporting runtime needed to
build the e-business solution. In fact they define how to implement the combined
Business and Integration patterns.
 Chapter 11. Security in patterns for e-business 349

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
Application patterns are chosen after selecting business, integration or
composite patterns and they lead to runtime patterns. Runtime patterns are
introduced to group functional groups into physical nodes. The nodes are
interconnected to solve the initial business problem.

For more information on patterns refer to other documents at Section 11.6, “More
information on patterns for e-business” on page 365.

11.1.1 Patterns and solution design process
The full solution life cycle process should include the review and selection of
each Business, Integration and Composite patterns and adaptation to the
customer needs. The process can be often shortened, when we already know
many details about the solution. In such a case we can jump directly to a specific
design level.

As the main subject of this book is security, we will not go through the full life
cycle process starting from business requirements and integration aspects. We
will skip these subjects and will go directly to the selection of appropriate
business and integration patterns. However few assumptions need to be made to
consolidate our understanding and lead our future decisions.

Basic business drivers
A few business driver that has been addressed on the implementation level in
the ITSOBank sample applicaiton, provided with this book.

� Application end users need to interact directly with business process provided
by the application.

� There are multiple applications taking part in the solution; these applications
need to be integrated.

� Application interface is Web based.

� Single delivery channel is provided for the Web application that enables
business process.

Note: The ITSOBank sample application presented in this book is a simple
example of a J2EE application, focusing mostly on the technology and
security features, used to access customer account and transfer funds. We
will use this example throughout the chapter to present patterns related
aspects in the design process. Although it can not be considered as real life
solution reference and should not be used as a reference. It does not take into
account many customers related aspects and custom requirements that may
significantly influence the final design approach.
350 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
� Business process latency must be reduced to minimum, back-end integration
will be necessary to support Web enabled business processes.

IT drivers
A few IT drivers that has been addressed on the implementation level in the
ITSOBank sample applicaiton, provided wit this book.

� System provides Single Sign-On across different applications.

� Application is structured in layers, with separate presentation logic, business
logic, and data and enterprise integration logic.

� Users directory is centralized and accessible for all applications.

� Security context is propagated across entire business process.

� Administration and maintenance costs should be as little as possible.

Based on these drivers first decision that we made is that the base for the
sample application isa combination of the Self Service Business Pattern and
Extended Single Sign-On Integration Pattern.

11.2 Selecting application patterns for ITSOBank
Application patterns show principal layout of the application, focusing on the
shape of the application, the application logic and associated data. This section
summarizes decision made for selecting application patterns from business point
of view and IT / technology point of view.

Application pattern for Self Service Business pattern
A decision was made to use Directly Integrated Single Channel application
pattern for the ITSOBank sample application.

Figure 11-2 Directly Integrated Single Channel Application Pattern

Synchronous
Application

Application 1

Application 2

Client
Tier

Synchronous

Asynchronous
 Chapter 11. Security in patterns for e-business 351

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
The primary business driver that directed the use of this pattern is to reduce
business process latency by providing direct access to back-end application and
data from the Web enabled business process.

Besides, this pattern provides a structure for point to point connection from client
browser to one or more applications.

We do not need multiple channel integration mechanism. Although this
application pattern can be used to implement any one of the delivery channels
we only focus our design on Web delivery channel.

This application pattern requires applications to be divided into three different
logical tiers: presentation, Web application and back-end business logic. Data
can be accessed from both Web and business tiers. We can think of any typical
J2EE structure while selecting this pattern.

� Presentation tier is responsible for all the application presentation logic.

� In Web application tier some of the application business logic is done and all
the communication to the back-end business logic is implemented.

� Back-end application logic in our case covers data access functions of the
ITSOBank application. Here are all the application integration interfaces
implemented as well.

All the communication between tiers, as it was presented in the picture is either
synchronous or asynchronous.

Application pattern for Extended Single Sign-On Integration
Pattern

Main goal of the Access Integration Pattern is to give users consistent and
seamless front-end access mechanism to multiple business applications that
reside on multiple servers, each with its own access mechanism.

In our ITSOBank example we have chosen the Extended Single Sign-On
application pattern.
352 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Figure 11-3 Extended Single Sign-On application pattern

The Extended Single Sign-On Pattern enhances the Web Single Sign-On Pattern
with propagation of the security context. In a Web Single Sign-On pattern sign-on
functions are performed in Web tier. In Extended Single Sign-On, as shown in the
picture above sign-on functions are externalized and almost always are based on
central user registry. This introduces more flexibility in fulfilling privacy and
security auditing requirements.

Main drivers that directed our decisions were:

� Users will have seamless access to WebSphere and Domino based
applications and data without being prompted for login name and password
by each application separately.

� External authentication and authorization system will authenticate the user
and set up security context that can be propagated through the entire
business process from the Web tier down to the business logic and back-end
tier.

� Reduced maintenance and administration costs for authentication and
authorization system thanks to the centralization of the user registry and
security policy database.

� Reduced total cost of ownership thanks to the simplification and improved
efficiency of the users' and security policy management.

The following tiers can be distinguish in this pattern:

� Client tier - similarly to Self-Service Application Pattern this tier represents
end user interface used to interact with the application. In the case of ITSO it
will be Web browser interface.

� Single Sign-on tier, which from the security point of view is the main
component of the solution design. It is responsible for authenticating users
and establishing security credentials, as well as ensuring seamless sign-on
capability across multiple applications. In this tier security administration and
policies are implemented. Sign-On tier uses centralized users' and policy
database. In the case of ITSOBank it is a LDAP server user registry.

Single
Sign-On

Application 1

Application 2

Client
Tier

Security
Integration

Enterprise
Application
 Chapter 11. Security in patterns for e-business 353

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
� Application tier may represent a new or existing application that will be part of
the Single Sign-On domain. In our case these applications are WebSphere
J2EE ITSOBank application and a simple domino application used with
ITSOBank.

11.3 Creating common runtime pattern for the
ITSOBank application

As mentioned in previous sections runtime patterns define functional nodes that
underpin an Application pattern. Runtime patterns represent very high level
physical solution architecture, where networks and nodes are identified but no
product selection has been done. Most runtime patterns will consist of the core
set of nodes used for Web application design with additional nodes specific to the
customer situation.

In this section we briefly describe runtime pattern for both Self-Service and
Extended Single Sign-On application. At the end of this section we will provide a
possible runtime pattern for the ITSOBank sample application. This combined
runtime pattern will be used in the next section also to map certain products and
to describe the security flow between the nodes.

Runtime pattern for Self Service application pattern
Our runtime pattern for Self Service application is based on a simple three tier
architecture where the Web server is separated from Web application server.
The Web server resides in the demilitarized zone and is responsible for the Web
presentation logic. Application server runs application business logic and
communicates with the back-end systems and databases.

The LDAP directory is installed behind the domain firewall and is used to store
user information related to authentication and authorization.
354 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Figure 11-4 Runtime pattern for s Self-Service application pattern

The main nodes of the pattern are listed below, and described from a security
point of view.

� The protocol firewall prevents unauthorized access from the Internet to the
demilitarized zone. The role of this node is to allow the internet traffic access
only on certain ports and block other ports.

� Web Server Redirector; in order to separate Web server from application
server, Web server redirector has been introduced. Its job is to redirect the
application requests to the application server node. Advantage of using Web
server redirector is that we can move application server and all the application
business logic behind the domain firewall

� The domain firewall prevents unauthorized access from the demilitarized
zone to internal network. The role of this firewall is to allow the network traffic
originated only from the demilitarized zone and not from the Internet.

� Application server provides the infrastructure to run application logic and
communicate with internal back-end systems and databases.

� Directory services provides the information about the users and theirs rights
for the Web application. The information may contain user’s IDs passwords,

Outside World Demilitarized Zone
(DMZ)

Internal Network

Existing
application

and data

Client

Web Server
Redirector

Application
ServerIP Network

P
ro

to
co

l f
ir

ew
al

l

D
om

ai
n

fi
re

w
al

l

Directory
Services Public Key

Infrastructure
 Chapter 11. Security in patterns for e-business 355

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
certificates, access groups etc. This node supplies the information to the
security services the authentication and authorization service.

� The existing application and data node depicts the back-end systems and
databases that are accessible from the Web application.

For more detailed description of run time pattern variation for Self Service
application pattern please refer to 11.6, “More information on patterns for
e-business” on page 365.

Runtime pattern for Extended Single Sign-On application
pattern

The key consideration in choosing runtime pattern for Single Sign-On solution is
diversity of e-business environment, types of application servers used and
security management.

We have made a decision to use two different application servers for different
functions of the application. This implies that we need to have an external
security server, that will serve as a security proxy, which intercepts a request in
order to map/transform user’s credentials into the appropriate credential format
acceptable by application servers. To support this part of our design we can use
runtime pattern for heterogeneous servers with external authentication and
authorization servers presented on the picture below.
356 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Figure 11-5 Single Sign-On runtime pattern for heterogeneous application servers

Another decision that was made was credential propagation from the Web-tier
down to business logic tier and back-end applications. This will enable
non-repudiation of back-end transactions initiated by Web users. We can
achieve this by using the same security server to manage the Web tier and
business logic and back-end applications. No credential mapping or
transformation is required; this might be an option if separate security
mechanisms would be used in different application tiers. Security context is
presented all the way from the Web down to the back-end resources.

This approach significantly simplifies user’s and policy management by unifying
user profile across entire business process supported by Web application. It
however requires sometime complex configurations and usage of security
servers that are supported by the chosen application servers.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Client

Application
ServersIP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
ServerPublic Key

Infrastructure

Existing
application

and data

Security
Proxy

Single
Sign-On

Application 1

Application 2

Client
Tier

Registry
data
 Chapter 11. Security in patterns for e-business 357

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
Diagram below presents runtime pattern for extended Single Sign-On solution
where heterogeneous application servers are used and an external security
server provides security management for all application tiers.

Figure 11-6 Extended Single Sign-On runtime pattern for central security service

Nodes used in this last runtime pattern are:

� Security Proxy; the role of the security proxy is to intercept incoming request
and map or transform user credentials into the format acceptable by the
application server that was the original target of the request. The security
proxy is used to implement Single Sign-On between heterogeneous Web
application servers.

� Application Server - this node includes the application server that runs the
application logic for the solution. It can be installed in the same machine with
the Web server or separated by a domain firewall as described in the
Self-Service runtime pattern section.

� The Directory and Security Server provides the information about the users
and theirs rights for the application. The information may contain user’s IDs
passwords, certificates, access groups and so on. This node supplies the

Outside World Demilitarized Zone
(DMZ)

Internal Network

Client

Application
ServersIP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 fi

re
w

al
l

Directory &
Security
ServerPublic Key

Infrastructure

Existing
application
and data

Security
Proxy

Registry
data

Existing
application

and data

Application
Server

Single Sign-On Application 1

Application 2

Client
Tier

Security
Integration

Enterprise
Application
358 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
information to the security services like authentication and authorization
service.

Combined runtime pattern for the ITSOBank sample
application

The ITSOBank sample application has only a few function, it was designed to
show the security capabilities of a J2EE application, WebSphere Application
Server V5 and some of the end-to-end security design considerations.

Please note that functionality of the application as implemented in this book does
not fully reflect the real world scenarios. Therefore this section should be rather
used as a reference to implement similar solutions.

Figure 11-7 Runtime pattern for ITSOBank application

The sample application fit into the runtime application pattern from Section ,
“Runtime pattern for Extended Single Sign-On application pattern” on page 356.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Application
ServersIP Network

P
ro

to
co

l f
ir

ew
al

l

D
om

ai
n

 fi
re

w
al

l

Directory &
Security
Server

Existing
application

and data

Authentication
Proxy

Registry
data

Existing
application

and data

Application
Server

Client
 Chapter 11. Security in patterns for e-business 359

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
11.4 Product mappings
This section presents an example of product mappings for the runtime pattern
that we have shown in the previous sections. We will focus only on the customer
based flow. We will not cover other flows that should be considered when
working on real life solution, like employees flow and partners flow.

Product mappings for the ITSOBank sample application
Product mappings used in the scenario is presented in the diagram below.

Figure 11-8 Product mappings for ITSOBank application scenario

The products depicted on the picture above are:

� Tivoli Access Manager’s WebSEAL

Outside World Demilitarized Zone
(DMZ)

Internal Network

Application
ServersIP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
Server

Existing
application

and data

Authentication
Proxy

Registry
data

Application
Server

Client

Netscape / Internet
Explorer

Tivoli Access
Manager WebSEAL

3.9 on Windows 2000

IBM eNetwork
Firewall 4.2 on

Windows NT 4.0

IBM SecureWay
Directory 3.2.2 on

Windows 2000

IBM DB2 UDB 7.2
Workgroup Edition
on Windows 2000

IBM DB2 UDB 7.2 FP
5 Enterprise Edition on

AIX 5L

Tivoli Access
Manager V3.9 on

Windows 2000

WebSphere
Application Server

V5 on Windows 2000

Lotus Domino 5.08a
on Windows 2000

IBM eNetwork
Firewall 4.2 on

Windows NT 4.0
360 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
WebSeal is a security reverse proxy that is used to authenticate the user,
create and maintain a session with the user and provide URL level
authorization. It also hides the internal structure of Web resources through
URL mapping. WebSeal supports multiple types of authentication and
implements stepping up to stronger authentication type if necessary.

� IBM HTTP Server

The Tivoli Access Manager can protect any static content on the Web server
including the server itself, so that non authenticated users will not be able to
communicate with the Web server behind the security reverse proxy,
WebSEAL.

� WebSphere Application Server V5

This server runs a main application logic of the ITSOBank sample application.
For passing credentials between multiple application servers, other
WebSphere servers and Domino, WebSphere is using LTPA tokens.

� Lotus Domino Application Server

Domino Server runs a component of the ITSOBank sample application.
WebSphere and Domino estabilish the Single Sign-On using LTPA tokens.

� SecureWay Directory Server

Access Manager supports a number of LDAP directories. The IBM
SecureWay LDAP Directory is shipped with the Tivoli Access Manager; it
stores user information and user privileges; besides other application
information.

� IBM DB2

Internal systems are represented in our scenario by application database that
is stored on DB2 server.

� Tivoli Access Manager

Tivoli Access Manager consists of the following runtime components:

– Management Server

The Management Server is used to manage the Access Manager security
policy. The Management Server receives updates from the console,
Administration API or Administration command line interface.

– Authorization Server
 Chapter 11. Security in patterns for e-business 361

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
The Authorization Servers are used by applications in remote mode.
Remote mode means that the application sends a request to the server to
answer the question “Can the user perform the action on the resources”.
Local mode means that the application has an in-memory cache of the
policy so the application can check this for a decision without sending a
message outside the application; for example: WebSEAL works in local
mode.

For more information on the Tivoli Access Manager product and integration
with WebSphere Application server please refer to the Chapter 12, “Tivoli
Access Manager” on page 367.

The next steps provide a simple technical walkthrough for user authentication in
the sample application, that you can also follow on Figure 11-8 on page 360.

1. Customer (application end user) will be using a browser to locate the Web
application from the Web.

2. The request hits the protocol firewall that only allows appropriate traffic. From
here, the traffic is passed to security reverse proxy. An extension to this can
be to implement network dispatcher that would select the Web reverse proxy
that is most available at a time.

3. The security reverse proxy is responsible for authentication and for session
establishment and maintenance. The proxy will authenticate the user if it is
required for the resource, then establishes the session. Authentication is
checked against the LDAP user registry.

4. Once a session is established the security reverse proxy will authorize the
user based on the URL the user is trying to access. This authorization is
coarse grained as it can only affect the URL requested.

5. If the request is authorized then it is forwarded to the Web server. The reverse
proxy may perform load balance across the Web servers. An extension can
be introduced here for managing the load between Web servers by
introducing load balancer between the security reverse proxy and the Web
servers.

6. The request is then sent through the second firewall to the application
servers. The Web application servers execute business logic and call on the
authorization service for finer grained control. This authorization service will
be accessible via an API or through standard J2EE security. If the request is
authorized then a function will be executed on behalf of the authenticated
user. If the function communicates with back-end system through integration
server, then it is up to the design of the integration layer to call authorization
service for further, finer, levels of authorization.
362 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
11.5 Security guidelines in Patterns for e-business
The Patters for e-business design approach also provides guidelines for solution
design. The guidelines consist of technology options, application design and
development, security, performance and availability, system management. The
following short sections will point out some common security guidelines that
should be taken into considertion while designing an e-business solution.

Securing connections in a solution
On the architecture level, as opposed to the application level, connections
between nodes should be secured. For information in relation with this topic; on
the application level, where secure connections should be ensured between
modules; refer to the Section 3.1, “J2EE Application” on page 22.

The purpose of securing the communication is to prevent non authorized
persons and systems to listen the communication or to participate in the
interaction.

The following diagram depicts the commonly used and highly recommended
secure communication lines between nodes.

Figure 11-9 Secure connection between nodes

The following secure communications are identified on the diagram above:

Outside World Demilitarized Zone
(DMZ)

Internal Network

Application
ServersIP Network

P
ro

to
co

l f
ir

ew
al

l

D
om

ai
n

fir
ew

al
l

Directory &
Security
Server

Existing
application
and data

Authentication
Proxy

Registry
data

Existing
application

and data

Application
Server

Client

 HTTPS HTTPS HTTPS IIOP / SSL

 LDAPS
 LDAPS

 LDAPS

SSL SSL

SSL

 HTTPS

 HTTPS
 Chapter 11. Security in patterns for e-business 363

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
� HTTPS is the secure HTTP connection using SSL. Nodes, that are
communication via TCP/IP using HTTP protocol, should use secure SSL
communication. The level of security depends on the options set for the
connection.

� LDAPS is the secure LDAP connection to a directory server using SSL. Since
LDAP direcotries store essential and sensitive applications, business
information; the communication should be secured.

� IIOP/SSL (IIOPS) is the secure communication for IIOP connections using
SSL. Two application servers are mostly communicating via IIOP, for example
EJB client and EJB container.

� SSL is a transport layer security protocol, that can be applied to most of the
protocols in use with an e-business application. On the diagram above other
connections without named protocols can use also SSL to secure the
communication.

Other communication channels between nodes can be secured on a transport
layer, for example using IPSEC.

System hardening
Beside securing the communication that secures the nodes from being attacked
from outside; systems have to be secured from inside attacks as well. Operating
Systems security is an essential part of every system and provided as
mandatory. System hardening is a global philosophy of system security that
focuses strongly not only on detection, but also on prevention. It involves
removing unnecessary services from the base operating system, restricting user
access to the system, enforcing password restrictions, controlling user and group
rights, and enabling system accounting.

System administrators are responsibile to follow the system and corporate
guidelines to ensure security on every level. System security has to be
maintained and set correctly. Part of system security is to harden the system and
prevent attacks from both inside and outside.

System hardening relies on the system management guidelines and the
advanced security settings and functions provided by the system.

Note: Two application servers can also communication via HTTP with
SOAP using the Web Services technology. The HTTP communication
should be secured using SSL.
364 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chPatterns.fm
Applications have to be in sync with the system security. Although sometimes the
applications require some flexibility from the security side; the reason can be
unresolved design issue or special requirements. These cases can open security
holes or can weaken the system security if they are not monitored not maintained
correctly.

11.6 More information on patterns for e-business
The most valuable source of information about patterns is the book Patterns for
e-business: A Strategy for Reuse by Jonathan Adams, George Galambos,
Srinivas Koushik, and Guru Vasudeva, ISBN 1931182027.

For more information about Access Integration security, refer to the following IBM
Redbook Applying the Patterns for e-business to Domino and WebSphere
Scenarios, SG24-6255.

For more information about Patterns for e-business, see the following Web site:
http://www-106.ibm.com/developerworks/patterns, or refer to the following
IBM Redbooks:

� Applying the Patterns for e-business to Domino and WebSphere Scenarios,
SG24-6255

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

� User-to-Business Pattern Using WebSphere Personalization Patterns for
e-business Series, SG24-6213

� Self-Service applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator Patterns for e-business Series, SG24-6160

� e-commerce Patterns for Building B2C Web Sites, Using IBM WebSphere
Commerce Suite V5.1, SG24-6180

� Access Integration Pattern using IBM WebSphere Portal Server, SG24-6267

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259
 Chapter 11. Security in patterns for e-business 365

http://www-106.ibm.com/developerworks/patterns

6573chPatterns.fm Draft Document for Review November 6, 2002 2:37 pm
366 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Chapter 12. Tivoli Access Manager

This chapter will attempt to address some concerns of end-to-end security, not
just for a single WebSphere-hosted application but also for an enterprise’s total
e-business offering.

� Security considerations around the infrastrural design supporting an
application, including operational and personnel issues.

� Architectural considerations around enterprise user registries and the
externalization of security services and policies.

Tivoli Access Manager can address both sets of considerations. As a security
management application, it offers centralized authentication and authorization for
WebSphere-hosted applications which may be leveraged to provide at least a
stepping stone on the path to the Holy Grail of Enterprise Single Sign-On.

We will also look some possibilities for integrating WebSphere Application Server
and Access Manger infrastructural components in order to provide a common
security policy across an enterprise.

12
© Copyright IBM Corp. 2002 367

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
12.1 End to End Security
This part of the book largely concentrates on securing WebSphere hosted
applications, however the application is only one part of the e-business
infrastructure which provides the services to support the publication of
applications to their intended user audience.

In order to provide a secure solution the entire infrastructure and the flow of data
through the infrastructure must be examined for possible breeches. Best
practices require that a complete Risk Analysis be carried out and Risk Mitigation
processes implemented with the remaining risks proactively monitored and the
entire system regularly audited.

Security needs to be addressed at several levels, physical access, network
access, platform operating system(s), application services throughout the
infrastructure, for example: Web server software, middleware connectors and
messaging infrastructure, and trusted operational personnel.

Each level must be addressed both independently of and together with the
others. The most trivial example being a system where all other levels had been
addressed except the personnel.

Corrupt and/or malicious employees with authorized access to a system are the
single greatest security threat and apart from proactive auditing there is little that
can be effective from a technological solution.

Often overlooked, access to the physical elements of a system can open a
system to attack both by intruders, people who should not have physical access
and in the more common case by otherwise authorized personnel. Once direct
access to either the servers or the network devices, for example the hub/switch
to which clustered application servers are connected, is obtained then all the
other methods of attack become so much easier.

If the platform operating systems have not been “hardened” then free range
administrative and diagnostic tools installed by default can be used both to cause
damage and compromise information, either by changing or stealing it.
“Hardening” systems at this level must include file permissions and passwords.
Particular care must be taken with “remote” administration tools, be they browser
or thick client accessed.

The network level is popularly thought to be most often attacked, at least as
represented in the popular media. After all the point of e-business applications is
to publish them so that Internet access for intended audience is available.
Attacks such as Denial of Service (DoS), where the server is relentleSSLy
bombarded with thousands of spurious requests with the intention of flooding the
368 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
bandwidth to and from the server until it can no longer handle legitimate
requests, are not strictly in the baliwick of security as no information is changed
or stolen. Real time operational performance reporting and pre-arranged
re-routing procedures are the only real defense. IP spoofing, impersonating
another legitimate connection and thereby by passing the IP and protocol filters
of firewalls is of more concern and so IP address alone cannot be reliably used to
identify authorized connections unless you are absolutely certain you have a
trusted path between both the source machine and the target.

Where physical access is compromised, network sniffing, inserting a device or
software which reads all the traffic between two points for later analysis or even
real time substitution becomes possible. Virtual Private Networks (VPN) and
cryptographic technologies can address some of these issues on a point to point
basis between pieces of the infrastructure. A “trusted path”, i.e. an un-encrypted
or non-certificate passed connection can only be considered within Region 2
DMZ’s when physical access and personnel are absolutely controlled, for
example: a crossover cable from a firewall port to a security proxy.

Exploitation of bugs in the software services throughout the infrastructure are
very real. In order to secure systems from this kind of attack, operational
procedures to keep patches and fixes up to date must be in place and the
implementation of a “defense in depth” architecture such as illustrated in
Figure 12-1 on page 372, where there are multiple physical and logical layers
that an attack must compromise each in turn before gaining access to the
application and its information.

Each segment of the infrastructure which supports an e-business application
must be analyzed for possible risk and the overall design of your system include
risk mitigation methods at each point.

12.2 Network Identity and Centralized Security Services
Tivoli Access Manager for e-business V3.9 is the current name for what in
immediately previous versions has been Tivoli SecureWay Policy Director.
Access Manager is a collected suite of security management services with a
variety of distributed blades and plug-ins for the infrastructure components of
e-business applications.

The rename is significant as it highlights one of the overriding concerns for any
enterprise with multiple Web based applications - how do you control access
across your entire e-business infrastructure without multiple and possibly
conflicting security policies?
 Chapter 12. Tivoli Access Manager 369

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
There is a business wide change in focus from implementing application specific
security in order to prevent inappropriate users from accessing resources
towards attempting to develop both a common and consistent security policy and
base its implementation on common reusable security services and
infrastructure.

This is about controlling Network Identity; correctly identifying a user once, i.e.
Authentication and passing that identity together with credentials through to the
other components of the e-business infrastructure, applications included. Then
the permissions for that identity can be tested locally and access given
dependent on the security policy for those resources, i.e. Authorization.

The externalized security provided by Access Manager includes strategies to
include legacy applications in Single Sign-On solutions through integration with
pre-existing user registries and authorization databases.

If regardless of which application a user accesses within an enterprise, they
always log on with the same id and password, (albeit there may be the
requirement for stronger or re-authentication, perhaps token or certificate based
around particularly sensitive information or high value transactions) then that
consistent user experience appears from the user’s viewpoint at least, as Single
Sign-On. Attempting to ensure users have only a single identity within your
network increases the likelihood of leveraging existing infrastructure to actually
provide it.

The central definition and management/administration of security policies
provides a number of benefits.

� Reduced security risk through ensured consistency from a services based
security architecture.

� Lower administration costs due to centralized administration of a reduced
number of security systems. This also allows for the “de-skilling” of support
staff as the security policies are based on a single application suite rather,
than as in many current examples, the multiple and different operating
systems of chained infrastructure platforms.

� Faster development and deployment with a common services based
architecture.

� Reduced application development and maintenance costs from increased
efficiency and productivity by saving on isolated system and/or application
specific security development efforts

� For those industries where legislative compliance impacts security,for
example privacy requirements, centralized architecture provides a more
responsive environment as well as a single point to apply policy.
370 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
� All of these benefits contribute to enabling an enterprise to be faster to market
with new applications and features.

A down side here, of having implemented a single security solution which is
based on a single technology or product, is that any product specific security
exploitation results in an enterprise wide vulnerability. It does however let you
concentrate your defences rather than being forced to dissipate your efforts
across multiple platforms and products.

12.3 Tivoli Access Manager
While this book is not the place for a full blown “how to” install a Tivoli Access
Manager Security Domain, the strength and flexibility of the solution will be
indicated by the breadth of available components in the Tivoli suite and an
enterprise strength design idealized for the leverage of WebSphere-hosted
applications within a Single Sign-On environment will be described.

The Access Manager Secure Domain provides a secure computing environment
in which Access Manager enforces security policies for authentication,
authorization, and access control. Ignoring performance, redundancy and
availability considerations which must be addressed in production systems, the
essential components can be see in Figure 12-1 on page 372.

Note: For installation instructions see the original product documentation that
comes with the package or read the documentation at
http://www.tivoli.com/support/public/Prodman/public_manuals/td/AccessMana
gerfore-business3.9.html.
 Chapter 12. Tivoli Access Manager 371

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-1 Typical Three-Tier infrastructure supporting e-business applications

Access Manager requires a User Registry and can be configured to use a variety,
including Microsoft Active Directory and iPlanet but ships with IBM SecureWay
LDAP Directory V 3.2.2. underpinned by IBM DB2 Universal Database.

The Access Manager Policy Server maintains the master authorization policy
database which contains the security policy information for all resources and all
credentials information of all participants within the secure domain, both users
and servers. A secure domain contains physical resources requiring protection.
These resources include programs, files and directories. A virtual representation
of these resources, protected by attaching ACL and POP policies is stored by the
Policy Server.

User Registry

Customers

Policy Store

WebSeal Reverse
Proxy

 Authentication
 Authorization
 Audit

 Web Server

WebSphere
Application Server

 Authorization
 Audit

Middleware
Application Server

 Authorization
 Audit

Back Office
Systems

 Authorization

Security Proxy

Management
Server

Authorization
Server

Web Portal
Manager

Access Manager DMZ

Internet DMZ Region 1 DMZ Region 2 Intranet

Internet
372 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
The Policy Server replicates this database to all the local authorization servers,
including WebSEAL, throughout the domain, publishing updates as required. The
Policy Server also maintains location information about the other Access
Manager and non-Access Manager servers operating in the secure domain.
There can be only one Policy Server active within a domain.

Access Manager provides C and Java authorization APIs which can be used
programmatically within other applications and clients. Client calls for
authorization decisions, through the Access Manager Run-time service, which
must be on every server participating in the secure domain, are always referred
to an Authorization Server. Programatically made calls can be local or remote
Authorization Server. When running local node API, the application
communicates to the security server (Access Manager), no authorization sever is
required.

Authorization servers are the decision-making servers that determines a client's
ability to access a protected resource based on the security policy. Each server
has a local replica of the policy database. There must be at least one within a
Secure Domain.

Web Portal Manager, a WebSphere-hosted application is provided to enter and
modify the contents of the policy store as well as the user registry. There is also a
command line utility, pdadmin, which extends the available commands available
to include the creation and registration of authentication blades such as
WebSEAL which will be described a little later.

Access Manager can be configured to integrate with many of the WebSphere
branded products and ships with explicit plug-ins for the following products:

� WebSphere Application Server.

� WebSphere Edge Server

� BEA Robotic Application Server

� Web Server Plug-in which supports IIS 5.0 for a Windows 2000
Server/Advanced Server environment, iPlanet 6.0 for Solaris Operating
Environment 7 (sparc) and IHS 1.3.19 for an AIX 5L environment.

The list of point products and components that are shipped in the Tivoli Access
Manager V3.9 package can be found in the following table Table 12-1 on
page 374.
 Chapter 12. Tivoli Access Manager 373

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Table 12-1 Access Manager Components as shipped with Version

Server Required Component

IBM Secureway LDAP Directory V3.2.2 SecureWay Directory Server

SecureWay Directory Client

DB2 Universal Database Edition

Global Security Toolkit

HTTP Server

Tivoli Access Manager Policy Server
V3.9

Access Manager Runtime

Access Manager policy Server

Global Security Toolkit

SecureWay Directory Client

Tivoli Access Manager Authorization
Server

Access Manager Authorization Server

Access Manager Runtime

Global Security Toolkit

SecureWay Directory Client

Tivoli Access Manager Runtime Server
(The minimum install on an application
server to utilize the programmatic API’s)

Access Manager Runtime

Global Security Toolkit

SecureWay Directory Client

Tivoli Access Manager Web Portal
Manager

Web Portal Manager (WebSphere
enterprise application)

WebSphere Application Server

Global Security Toolkit

SecureWay Directory Client

Access Manager Runtime

Tivoli Access Manager Application
Development Kit
(This is for a development environment
may also include an installation of TAM’s)

Access Manager ADK

Access Manager Runtime

Global Security Toolkit

Web Portal Manager and/or WebSEAL SecureWay Directory Client
374 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
These were the installed components for an Access Manager Secure Domain
built on a platform running Microsoft Windows 2000 Advanced Server as shown
in Figure 12-2 on page 376, with the exception of an AIX BD2 Database server
for the ITSOBank sample application.

12.3.1 Environment for the scenarios
The following Figure 12-2 shows the lab setup for this particular project. This
diagram is provided as a reference for later sections, discussing the different
Tivoli Access Manager scenarios. It also gives a better understanding of the
project architecture.

Tivoli Access Manager WebSEAL
Server

Access Manager WebSEAL Server

Access Manager Runtime

Global Security Toolkit

SecureWay Directory Client

Access Manager Java Runtime
Environment (If you have developed a
CDAS using the Access Manager JRE
then it is required)

Tivoli Access Manager for WebSphere
Application Server
(These 4 components are optional and
together build an Access Manager
Authorization Server which will optimize
performance if installed on the same host)

WebSphere Application Server V5

Access Manager Java Runtime
Environment

Access Manager for WebSphere Module

Access Manager Authorization Server

Access Manager Runtime

Global Security Toolkit

SecureWay Directory Client

Server Required Component
 Chapter 12. Tivoli Access Manager 375

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-2 Lab Setup for the redbook project

The following table shows the different servers with the applications listed
running on each machine.

Table 12-2 Application Servers as shown in Figure 2

Sever Name Application Servers Running

secsrv01 IBM Secureway LDAP Directory V3.2.2

Tivoli Access Manager Policy Server V3.9

Tivoli Access Manager Authorization
Server V3.9

wsl01 Tivoli Access Manager WebSEAL Server
V3.9

Tivoli Access Manager Application
Development Kit V3.9

secwpm01 Tivoli Access Manager Web Portal
Manager V3.9

 dbsrv01 appsrv02 appsrv01

 secsrv01secwpm01 wsl01

 secclient01

 WebSphere Application Server
Windows 2000

WebSphere Application Server
AIX 5L

 Database Server
AIX 5L

 WebSEAL
server

 Web Portal
Manager

 LDAP Policy and
Authorization Server

net
376 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
12.4 Scenarios
This chapter covers four different scenarios with Tivoli Access Manager related
to WebSphere Application Server integration.

� Scenario 1: Shared user registries

� Scenario 2: Protecting Web resources

� Scenario 3: Tivoli’s WebSphere plug-in

� Scenario 4: Using the aznAPI

The scenarios are starting from the easiest level where the integration is not very
tight, then it goes into closer integration between the two products.

12.5 Scenario 1: Shared user registries
This scenario will discover, how to share user registries between Tivoli Access
Manager V3.9 and WebSphere Application Server V5.0 is in the use of a
common user registry. By using the same repository for users, you can share
user identities with both Access Manager and WebSphere.

IBM Directory Server
In this section, we will cover the necessary steps to configure WebSphere with
IBM Directory Server V3.2.2. IBM Directory Server was installed using the
Access Manager ezinstall script for Windows. In addition, we have also installed
the Access Manager Policy Server on the same system.

appsrv01, appsrv02 WebSphere Application Server V5

IBM HTTP Server

Tivoli Access Manager for WebSphere
Application Server V3.9

Tivoli Access Manager Authorization
Server V3.9

dbsrv01 DB2 Server for ITSOBank

Sever Name Application Servers Running
 Chapter 12. Tivoli Access Manager 377

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
In order to configure WebSphere for access to the IBM Directory Server, we must
first define a user entry for WebSphere to use when binding to the directory. The
user entry must also have permission to perform directory-searches on the areas
of the ldap tree where WebSphere user and group entries will be stored and
allow it to populate these entries in the directory. We are going to create a user
entry, wasadmin, for this purpose, using the administration gui, Web Portal
Manager, provided with Access Manger.

The Web Portal Manager (WPM) is a Web based GUI that provides the
administration of users, groups, and the object space of Access Manager. By
using the Web Portal Manager, we can add users to the directory which can be
used by both WebSphere and Access Manger in one step.

1. To begin, login with your favorite browser to the Web Portal Manager at
https://<your_WPM_server>/pdadmin.

Tip: From a battle scarred veteran

When using the native installation method for Access Manager and installing
Access Manager components on the same system as the IBM Directory
Server, you must first install the GSKIT component manually. This step is
required because the GSKIT component supplied with the IBM Directory
Server is at a lower level than the level required for Access Manager. If you do
not perform a native installation of the Access Manager GSKIT component
before beginning the native installation of the IBM Directory Server, then you
will not be able to perform installation of any Access Manager components on
that system without uninstalling the IBM Directory Server and all of its
components. For details on performing a native installation of the GSKIT
component for Access Manager, refer to the Access Manager for eBusiness
V3.9 Base Installation Guide.

For those of you rereading this section, it is safe to assume that you did not
read the above tip the first time. It is Friday night, and while your office
co-workers are enjoying happy hour at your favorite local establishment, you
are working alone in the lab. So now you are not only working late and missing
happy hour, you are also missing out on the latest office gossip, and won’t
have any idea what anyone is talking about Monday. Take heart, however. I
am quite sure that in the future you will pay very close attention to tips in
Redbooks, and you won’t miss happy hour again.
378 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
2. As a next step add a user entry for wasadmin. Select User -> Create from
the navigation bar, then provide the following information:

User ID: wasadmin

Password and Confirm Password: password

Description: WAS LDAP admin ID

First Name: WebSphere

Last Name: Administrator

Registry UID: cn=wasadmin,o=itso

Check the Is Account Valid, No Password Policy and Is Password Valid
check boxes.

Once you have finished making the above entries, click the Create button.
The user will be added to the directory, and WPM will display a confirmation
message indicating that the user entry has been created.

3. Now that the wasadmin user is added to the registry, we must set the
appropriate access rights for it in the IBM Directory Server. To do this, we use
the Directory Management Tool (DMT), which is included in the IBM Directory
Server client component. Click the Add Server button on the DMT panel,
provide the following connection information, then click OK.

Server name: dirsrv01

Port: 389

Authentication type: Simple

User DN: cn=root

User password: password

4. We will now proceed to add the access rights for the user wasadmin. Select
the suffix under which your user entries are defined for WebSpherein this
case: o=itso.

5. Click the ACL button, the Edit an LDAP ACL panel will display.

Note: We access the Web Portal Manager using an SSL connection.
When the Web Portal Manager is configured, it disables http access to the
system; only https connections are allowed.
 Chapter 12. Tivoli Access Manager 379

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-3 Edit an LDAP ACL panel

a. Select the Owners tab, and follow the next steps.

b. Select the access-id radio button.

c. In the Distinguished Name (DN) field enter the DN for wasadmin:
cn=wasadmin,o=itso.

d. Click Add.

e. Click OK.

The DMT main panel will now be redisplayed. By assigning the wasadmin id
owner authority, we have provided all access rights to the suffix o=itso in our
directory server. If you have multiple suffixes within your directory that contain
WebSphere users, then you will need to repeat the above steps for each suffix
you have defined in your directory.

Configuring WebSphere access to IBM Directory Server
The next step is to configure WebSphere to use the IBM Directory Server as its
user registry.

Follow the steps from Section 10.4.2, “LDAP” on page 245 from the
Administering WebSphere security Chapter. You can follow and use the same
settings that are introduced in the section.

As an additional step the search filter for LDAP search has to be changed
according to the Tivoli Access Manager settings.

1. In the Administrative Console navigate to the Security -> User Registries ->
LDAP item, then select Advanced LDAP Settings at the bottom of the page.
380 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
2. Modify the User filter field by adding the (objectclass=inetOrgPerson) part
to reflect the following configuration:
(&(uid=%v)(objectclass=inetOrgPerson)(objectclass=ePerson))

3. Modify the Group filter field by adding the (objectclass=accessGroup) item
to reflect the following configuration:
(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=accessGroup)(o
bjectclass=groupOfUniqueNames)))

4. Modify the Group Member ID Map field by adding the accessGroup:member
item to reflect the following configuration:
groupOfNames:member;accessGroup:member;groupOfUniqueNames:uniq
ueMember

5. Save the configuration for WebSphere. If you are planning to enable SSL for
the LDAP connection go ahead and configure it following the instructions form
the next section; if not then restart WebSphere to make the changes live.

Configuring WebSphere SSL access to IBM Directory Server
Now that we have WebSphere configured to use the IBM Directory Server, you
need to decide whether you need to secure the message traffic between
WebSphere and the directory server. Using non-SSL for our connection, all
message traffic between WebSphere and the directory server will not be
encrypted, meaning that someone could capture the data flowing between
WebSphere and the directory, and could find our user ids and their passwords.
For a development environment this is probably fine, but once we move our
application into a production environment, we may find this to be less than
desirable.

During the installation of the IBM Directory Server, using the
ezinstall_ldap_server script for Access Manager, we chose to enable SSL
connections between IBM Directory Server and our Access Manager
components to ensure that our message traffic was secure.

1. First you have to configure your WebSphere Application Server’s LDAP
settings to support SSL for the LDAP connection. Follow the steps from
Section , “Configuring secure LDAP (LDAPS) connection” on page 325.

2. In order to provide SSL access between WebSphere and the directory server,
we must establish a trusted relationship between them. This requires that
WebSphere, when binding to the directory server, must have a means to
identify the directory server. We are going to accomplish this by placing the
directory servers public certificate into the WebSphere trusted servers keyring
file. It is a similar scenario to Section 10.11, “SSL between the Web server
and WebSphere” on page 300, and the difference here is that SSL between
the LDAP server and WebSphere. IBM Directory Server used the same
keystore type, KDB, that IBM HTTP Server uses.
 Chapter 12. Tivoli Access Manager 381

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Extract the certificate from the Access Manager’s directory server ,IBM
Directory Server. During the installation we selected the default option for the
keystore; which means that the keystore can be found on the Access
Manager server at C:\keytabs\pd_ldapkey.kdb. Use the password: gsk4ikm
to open the keystore; and export the PDLDAP certificate from it.

Save the certificate to the C:\keytabs\ldapcert.arm file.

You can use the last steps from Section , “Generating a self-signed certificate
for the Web server plug-in” on page 301 for help.

3. Import the extracted certificate into WebSphere’s server trust file, we were
using the Dummy keyfile sets, so import the certificate into the
<WebSphere_root>\etc\DummyServerTrustFile.jks, the password is
WebAS to open the Dummy keystore.

The entry name when you import the certificate is: PDLDAP.

You can use the last steps from Section , “Importing the certificate into the
Web Container keystore” on page 304 for help.

4. Once the certificate is imported into WebSphere, the IBM Directory Server
must be configured in a way that it can use SSL with 128 bit encryption.
Follow the steps from Section , “Configuring the IBM SecureWay Directory
Server” on page 327 to do the configuration. The steps are the same for the
IBM Directory Server as for the IBM SecureWay LDAP Directory.

5. Stop and restart you WebSphere server. You are now using SSL to
communicate between your WebSphere server and the directory server.

12.5.1 Single Sign-On with WebSEAL
When using a reverse proxy such as WebSEAL to authenticate users in the
DMZ, it is desireable that WebSphere, as well as other back-end applications
and services, trust the authentication that has been performed and the identity
that is being presented by the reverse proxy. If this trust can be established,
users then need only authenticate once to the reverse proxy in order to have
access to all authorized services located behing that proxy. This is commonly
known as Reverse Proxy Single Sign-On, or RPSS.

There are two ways to establish a trust relationship between WebSphere and
WebSEAL:

Note: If you are not using the Dummy keystore for your LDAP SSL
connection, you will have to import the certificate into the Server Trust file
of your SSL entry that is used for secure LDAP connection. You can
configure this for LDAP using the Administrative Console, under Security
-> User Registries -> LDAP at the SSL Configuration field.
382 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
1. Using Lightweight Third Party Authentication (LTPA) tokens

2. Using a Trust Association Interceptor(TAI)

Each of these mechanisms of estabilishing trust will be discussed in detail below.

Lightweight Third-Party Authentication
An LTPA token is an encrypted string that contains a userID, an expiration time,
and a digital signature. By returning a cookie containing this string (known as an
LTPA cookie) to client browsers upon successful authentication, other servers
which trust the issuer of the LTPA cookie can request the cookie, read the LTPA
token and determine the authenticated userID. The basis of trusting the issurer of
the LTPA cookie is that the LTPA token contains the correct digital signature.

LTPA does not necessarily require that a reverse proxy be involved in
authentication. For example, a user can receive an LTPA cookie from a Domino
server after successful authentication, and then use that cookie when
communicating with a WebSphere Application Server which trusts the LTPA
token issued by the Domino server. In real-world applications, however,
authentication is usually performed by a reverse proxy, and the rest of this
discussion will assume that scenario, as shown in Figure 12-4.

Note: The third party referred to in the name Lightweight Third-Party
Authentication refers to the server which performed the user authentication
and issued the LTPA token. Third party, therefore, does not refer to the
registry being used to authenticate principals. Servers which trust the third
party authenticator are said to have delegated authentication to this third
party. Confusingly, some documents refer to the user registry as the third party
in an LTPA environment.

Note: LTPA is an IBM technology that is currently understood only by IBM
producs such as WebSphere Application Server, WebSEAL, and Lotus
Domino. LTPA has not received industry-wide acceptance.
 Chapter 12. Tivoli Access Manager 383

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-4 LTPA Information flow

1. An unauthenticated client issues a request for a secure resource which is
intercepted by the reverse proxy (WebSEAL).

2. WebSEAL issues an HTTP authentication challenge to the client. Note that
WebSEAL could be configured to provide a login form instead, but the overall
flow of information would remain the same.

3. The client responds to the authentication challenge with a new request
containing the client’s userid (c_user) and password (c_pwd) in the HTTP
Basic Authenticaion (BA) Header.

4. WebSEAL authenticates the user against the user registry using c_user and
c_pwd.

5. WebSEAL constructs an LTPA token and attaches it to an LTPA cookie which
is associated with the request sent to the WebSphere Application Server.
WebSEAL can (and should) filter the client’s username and password out of
the BA Header in the request sent to WebSphere because WebSphere will
not need this information. When WebSphere requests the LTPA cookie from
WebSEAL, it decrypts the LTPA token and verifies that the signature is
correct. Then it trusts that the identity of the request is c_user, as specified in
the LTPA token.

6. WebSphere sends output to WebSEAL.

7. WebSEAL sends the output to the client. WebSEAL does not send the LTPA
cookie to the client, but rather the cookie is stored in WebSEAL’s LTPA cache.
This is advantageous since LTPA tokens, if sent to the client over the Internet,
could be decrypted over time. Because the LTPA signature never changes,

c_user
c_pwd

Client

BA Header:
c_user:c_pwd

WebSEAL

WebSphere
Application Server

User Registry

3. Challenge
Response

7: Response 6: Response

LTPA

1. Request

2. Auth. Challenge

LTPAToken:
User: c_user

LTPA
Cookie

5: Request

user:
c_user

4. Authenticate
384 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
intercepting LTPA cookies and cracking LTPA tokens would be an easy and
effective way to breach an otherwise secure environment.

Configuring an LTPA-enabled WebSEAL Junction
The following procedure will describe the steps necessary to configure
WebSphere to trust LTPA tokens that are issued by WebSEAL. This involves
generating an LTPA key file on the WebSphere server, copying the key file to the
WebSEAL server, and using the key file when configuring the WebSEAL
junction.

1. On the WebSphere Administrative Console, click Security -> Authentication
Mechanisms -> LTPA to see the LTPA configuration panel, as shown in
Figure 12-5.

2. Change the password if necessary.

3. Click the Generate Keys button.

4. In the Key File Name field, enter the full path of a file on the WebSphere
server where the key file should be placed.

5. Click Export Keys to create the exported key file. The LTPA key file is a text
file which will look something like the one shown in Example 12-1.

Example 12-1

#IBM WebSphere Application Server key file
#Thu Aug 15 14:28:47 EDT 2002
com.ibm.Websphere.CreationDate=Thu Aug 15 14\:28\:47 EDT 2002
com.ibm.Websphere.ltpa.version=1.0
com.ibm.Websphere.ltpa.3DESKey=/VrD4i4I8XIiXK6AF/ELOiM9YRgH8IVdp7ji+BJPSDM\=
com.ibm.Websphere.CreationHost=appsrv02
com.ibm.Websphere.ltpa.PrivateKey=5TXFvlm/vs1BNh+fqbrogwve8+NDJzQvlxbzD8i/vRvjT
oWSRrrWQPvBtjKKCv1KBeL/+/RkxsUZdWugVV+SH4WyTL7lIko3P+xjV/B53Ikrdu+fMJOSXm9B3lVM
JtuRPnHxTBQhkK0YgjgkvXw59AbKnaV9gOvhacmzK80V5DcMngPYpn5eo3mdqVnMw70ecwr7O53xSdU
5AQ4/02Yp3NLy7nqrnnOJejgVYy715ekG4k1VjscsPupvykvv8/flDeU8nfInNiiz6K4APtC77SC9mg
MvA3XoEhVxcs3m1KDvH4WvcOo34DK64UDSNiPFDYQ2cmIZZN50l7L4BmX0LqBNgmEn+0nR6mbA4sWGv
Sg\=
com.ibm.Websphere.ltpa.Realm=secsrv01\:389
com.ibm.Websphere.ltpa.PublicKey=AKYNppCJNZsoPcC8NmgSo6P8c+zb08Nm4tG08EFNO0kjUm
kb6614czbsxN7GAy0/6jr4FkOPf3vWiIe955iLVInE9eLtgJcTFa8dVi9LgK0MKgPkFh02J/wLcMBJB
PzSJ2A7YtfB/2+gMSRLumptQmIu4e0c3OJTIIAkUcPOdfXpAQAB

Note: The first time that security is enabled with LTPA as the
authentication mechanism, LTPA keys are automatically generated with
the password entered in the panel. In this procedure, however, LTPA keys
will be generated manually so that they can be immediately exported and
copied to the WebSEAL server.
 Chapter 12. Tivoli Access Manager 385

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
6. Click Apply to accept the changes to the LTPA configuration.

Figure 12-5 LTPA Configuration Panel

7. Under the Additional Properties heading, click Single Signon (SSO)

8. In the Single Sign-On (SSO) panel, check the Enabled box and click OK to
accept the changes, as shown in Figure 12-6.

Figure 12-6 Single Signon (SSO) panel
386 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
9. On the Global Security Panel, change the Active Authentication
Mechanism to LTPA (Light weight Third Party Authentication).

10.Click Save to save the changes to the WebSphere repository.

11.Copy the LTPA key file to the WebSEAL server. Note that this file should be
kept very secure, otherwise the LTPA trust relationship may be compromised.

12.Now we can create the junction. In this example, the WebSEAL server’s
identification is Webseald-wsl01, the LTPA key file is located at
c:\keytabs\ltpa.txt, the LTPA key file password is password, the
WebSphere server’s IP address is 10.30.10.52, and the WebSEAL and
WebSphere servers communicate over the junction using SSL. This
configuration requires that the root certificate of the CA which signed the
WebSphere server’s certificatie be added to the WebSEAL certificate keyfile
(pdsvr.kdb). Using pdadmin on the WebSEAL server, execute the
followingcommand:

server task Webseald-wsl01 create -t SSL -b filter -A -F
“c:\keytabs\ltpa.txt” -Z “password” -h 10.30.10.52 -p 9443 /ltpabank

Trust Association Interceptor (TAI)
The Trust Association Interceptor feature is another way to establish trust
between WebSphere and a reverse proxy in order to achieve Single Sign-On.
Rather than relying on a pre-defined token as in the case of LTPA, The Trust
Association Interceptor feature defines an API which allows WebSphere to use
any available method to validate the input stream.

A trust association interceptor is a Java class which implements the
com.ibm.Websphere.security.TrustAssociationInterceptor interface, and
each implementation of a Trust Association Interceptor is specific to the
characteristics of the reverse proxy being used. The interceptor is responsible for
validating the request and providing the authenticated userid to the WebSphere
security runtime. The WebSphere security runtime then maps the username to a
valid LTPA credential that is used internally for authorization purposes.
Section 8.4, “Custom Trust Association Interceptor” on page 190 describes the
Trust Association Interceptor API in detail. The rest of this section will focus on
the WebSEAL Trust Association Interceptor.

Note: While it is not required that the junction be confiured to use SSL, it is
highly recommended unless the channel between WebSEAL and WebSphere
is otherwise secured.
 Chapter 12. Tivoli Access Manager 387

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
The WebSEAL Trust Association Interceptor, running on the WebSphere server,
validates the WebSEAL request by authenticating a special user ID and
password which is attached to the HTTP Basic Authentication (BA) header of the
request.

After successful authentication of this special userid, the interceptor returns the
real client’s userid in the IV_USER header.

Figure 12-7 TAI Information Flow

1. An unauthenticated client issues a request for a secure resource which is
intercepted by the reverse proxy (WebSEAL).

2. WebSEAL issues an HTTP authentication challenge to the client. Note that
WebSEAL could be configured to provide a login form instead, but the overall
flow of information would remain the same.

3. The client responds to the authentication challenge with a new request
containing the client’s userid (c_user) and password (c_pwd) in the HTTP
Basic Authenticaion (BA) Header.

4. WebSEAL authenticates the user against the user registry using c_user and
c_pwd.

5. WebSEAL modifies the BA Header so that the userid (tai_user) and password
(tai_pwd) are those expected by the Trust Association Interceptor. It attaches

Note: If the WebSEAL interceptor mutualSSL property is set to true, this
authentication step is skipped (See below).

WebSphere
Application Server

User Registry

TAI

WebSEALClient
c_user
c_pwd

BA Header:
c_user:c_pwd

3. Challenge
Response

8: Response
7: Response

1. Request

2. Auth. Challenge

iv_user: c_user
iv_groups: c_groups
iv_creds: c_creds

BA Header:
tai_user:tai_pwd

5: Request

user:
c_user

4. Authenticate

tai_user
tai_pwd

6.
 A

ut
he

nt
ic

at
e

388 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
the client’s userid and, optionally, group membership and credentials into an
additional HTTP headers (iv_user, iv_groups, and iv_creds) that are sent
along with the request to WebSphere.

6. WebSphere’s Trust Association Interceptor authenticates the userid and
password contained in the BA header(tai_user:tai_pwd) in order to establish
trust, and then extracts the client’s identity (c_user) from the iv_user header.
WebSphere then handles the request as comming from c_user.

7. WebSphere sends output to WebSEAL.

8. WebSEAL sends the output to the client.

Configuring a TAI-enabled WebSEAL Junction

The WebSEAL Trust Association Interceptor is configured by assiging values to
the properties shown in the table below. The WebSphere server must be
restarted whenever the interceptor properties are modified.

Table 12-3 com.ibm.WebSphere.security.Webseal.id properties

Property key Value

com.ibm.Websphere.security.Webseal.hostname A comma-delimited list of
hostnames from which the
interceptor can receive HTTP
requests. Requests originating
from other hosts will be ignored. If
this property is not specified,
HTTP requests will be accepted
from all hosts.

com.ibm.Websphere.security.Webseal.ports A comma delimited list of ports
from which HTTP requests must
originate to be processed.
Requests originating from other
ports will be ignored. If this
property is not specified, HTTP
requests will be accepted from all
originating ports.
 Chapter 12. Tivoli Access Manager 389

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
com.ibm.Websphere.security.Webseal.id This property specifies the HTTP
header elements which must be
contained in each request
received by the interceptor.
Requests which do not contain
the specified HTTP header
elements are ignored by the
interceptor. This property must
contain either or both of the
following values (comma
delimited):
� iv_user
� iv_creds

com.ibm.Websphere.security.Webseal.loginID This property specifies the userID
(e.g. tai_user in the scenario
above) which will be
authenticated, using the
password appearing in the HTTP
Basic Authentication (BA) header
to validate the incomming
request. If this property is used,
the userID appearing in the BA
header is ignored. If this property
is not used, the interceptor
authenticates using both the
userID and password appearing
in the BA header. This property
has no effect when the
mutualSSL property is set to true.

com.ibm.Websphere.security.Webseal.mutualSSL If this property is set to true, the
WebSEAL interceptor implicitly
trusts that the WeEAL junction
has been secured through the
use of one of WebSEAL’s
mutually authenticated SSL
junction capabilities. When this
property is set to true, the
interceptor skips the
authentication step in the
validation of the request.

Property key Value
390 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
It follows that there are three ways of using the HTTP Basic Authentication (BA)
headers to validate the WebEAL server and thereby trust its authentication of the
client’s identity:

1. Send both a userID and password in the BA header. This would be configured
by doing the following:

a. Configure the junction using -B -U ”tai_user” -W ”tai_pwd”

b. Set the mutualSSL property to false.

c. Do not define the loginID property.

2. Send only a password in the BA header. This would be configured by doing
the following:

a. Set the loginID property to a specical userID (e.g. tai_user).

b. Add the password for tai_user to the basicauth-dummy-passwd variable in
the Webseald.conf file.

c. Configure the junction using -b supply,or alternatively use -B -U
”dummy_userID” -W ”tai_pwd”. The dummy_userID value in the BA
header will be ignored.

3. Send nothing in the BA header. This would be configured b doping the
following:

a. Set the mutualSSL property to true

b. Enable the junction to be a mutually authenticated SSL junction by using a
client certificate to authenticate WebSEAL to the back-end server.

The following procedure details the steps necessary for creating a WebSEAL
junction using Single Sign-On based on the Trust Association Interceptor. The
interceptor will be configured to validate the request by authenticating a special
userID and password supplied in the BA header by WebSEAL.

Important: Setting the mutualSSL property to true effectively disables one of
the mechanisms of validating the WebSEAL server and its authentication of
the client’s identity. In some instances, it may be sufficient for the interceptor to
validate the request on the basis of the originating hostname and port, but in
general this should be done with caution.

Important: If the interceptor ignores or fails to validate a request, the
WebSphere security runtime will proceed to handle the request as if the
interceptor had not been enabled. In other words, requests that are not
handled by the interceptor are not rejected, but rather are passed unchanged
to the security runtime.
 Chapter 12. Tivoli Access Manager 391

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Create a userid in the registry that the interceptor will use to validate the request.
In this example we will assume the userid tai_user with passoword tai_pwd has
been created in the registry.

Configure WebSphere to use TAI
The following steps will show, how to configure WebSphere to use TAI for
authentication.

1. On the WebSphere Administrative Console, click Security -> Authentication
Mechanisms -> LTPA to view the LTPA configuration panel.

2. Under Additional Properties, click Trust Association to see the Trust
Association Panel shown in Figure 12-8

Figure 12-8 Trust Association Panel

3. Click the Trust Association Enabled checkbox to enable Trust Association

4. Click OK and then click Interceptors in the Additional Properties section.

5. On the Interceptors panel, click the WebSEAL interceptor,
com.ibm.ws.security.Web.WebSealTrustAssociationInterceptor

6. On the interceptor configuration pnel, verify that the Interceptor Classname
field contains the value:
com.ibm.ws.security.Web.WebSealTrustAssociationInterceptor

7. The next step is to configure properties for the WebSEAL interceptor. click
Custom Properties under Additional Properties.

Note: There are two ways to pass properties to the interceptor: By using a
properties file, and by seting custom properties in the WebSphere
Administrative Console. At the time of this writing, the properties file was
not fully implemented, so the custom properties mechanism was used
instead.
392 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
8. On the Interceptor Custom Properties panel, create the following key and
value pairs. In this example, it is assumed that the WebSEAL server ‘s
hostname is wsl01, and that the WebSEAL server will be communicating with
the client browser over port 443.

– com.ibm.Websphere.security.Webseal.id = iv_user

– com.ibm.Websphere.security.Webseal.hostnames = wsl01

– com.ibm.Websphere.security.Webseal.ports = 443

– com.ibm.Websphere.security.Webseal.loginId = tai_user

– com.ibm.Websphere.security.Webseal.mutualSSL = false

9. Now we can create the junction. In this example, the WebSEAL server’s
identification is Webseald-wsl01, Using pdadmin on the WebSEAL server,
execute the followingcommand:

server task Webseald-wsl01 create -t SSL -B -U“tai_user” -W”tai_pwd” -h
10.30.10.52 -p 9443 /taibank

Configuring TAI with WebSEAL
In this scenario, we will be configuring the Access Manager for eBusiness V3.9
WebSEAL component to connect to our WebSphere server using TAI. To
perform the configuration, follow the steps below.

1. To begin configuring WebSphere for TAI support, start the WebSphere
Administrators console, and login. Once the Administrators console main
panel is displayed, on the left pane, select Security -> Authentication
Mechanisms -> LTPA. The following panel will then display.
 Chapter 12. Tivoli Access Manager 393

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-9 WebSphere LTPA panel

2. We will first configure LTPA authentication. To do so, enter a password to
use with LTPA in the Password and Confirm Password fields, and then click
the OK button. The Global Security panel will then display. Return to the LTPA
panel, and select Trust Association. The following panel will then be
displayed.

Figure 12-10 WebSphere Trust Association panel

3. Check the Trust Association Enabled box, and then click the OK button.
You will be returned to the LTPA panel. Select Trust Association again, and
394 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
return to this panel. Select the Interceptors link, the Interceptors panel will
then be displayed.

4. On the Interceptors panel, select the WebSEAL interceptor,
com.ibm.security.Web.WebSealTrustAssociationInterceptor. The
com.ibm.security.Web.WebSealTrustAssociationInterceptor panel will then be
displayed.

5. On the WebSealTrustAssociationInterceptor panel, click Custom Properties.
From this panel, we will define the properties for our WebSEAL TAI
connection.

6. In this example, we will define the trust association properties using custom
properties. To begin, click the New button.

7. From this panel, we will define our properties. In the Name field, enter
com.ibm.Websphere.security.Webseal.id. This property defines the HTTP
header value WebSphere is to use to obtain the actual user id for this request.
In the Value field, enter iv-user. If you wish, you may also enter a description
in the Description field. When done, select OK.

8. Repeat the previous two steps and add the following properties:

Table 12-4 Trust Association Interceptor properties

Note: These properties can also be defined in a properties file.

Property value

com.ibm.Websphere.security.Webseal.id iv-user

com.ibm.Websphere.security.Webseal.hostname wsl01
the name of the WebSEAL server

com.ibm.Websphere.security.Webseal.ports 443
Because we are using an SSL
connection
 Chapter 12. Tivoli Access Manager 395

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
9. Once you have completed entering your properties, on the left pane, select
Security -> Global Security.

10.The Enabled box should already be selected. If you have not yet configured
security for your WebSphere Server, you should go back and do so now,
before continuing. Assuming you already have security enabled, scroll down
the right pane, and in the Active Authentication Mechanism field, select LTPA.
Select the OK button, and save your configuration.

11.Finally restart your WebSphere server to continue.

Configure the WebSEAL Server
Now that you have WebSphere configured for TAI support to WebSEAL, we must
get our WebSEAL server set up and configured. To do so, we must first set up
our trust association between WebSEAL and WebSphere. To do this, follow
these next steps.

1. In our example, we are using the sample keyring files installed with
WebSphere. Note that if you have obtained certificates for your WebSphere
server, you may skip this step, and proceed to step 5 below to import the
signer certificate for WebSEAL. To begin, start the ikeyman utility for
WebSphere, and open the server key file for WebSphere. Open the
DummyServerKeyFile.jks in the <WebSphere_root>\etc directory. You will
be prompted for the keyfile password; if using the dummy file, this is WebAS.
The IBM Key Management panel will then be displayed. Select Personal
Certificates, and the following panel will be displayed.

2. We now need to extract our WebSphere certificate. Select the Websphere
dummy server certificate, and then click the Export/Import... button. The
following panel will then be displayed.

3. For Data type, select Base64-encoded ASCII data. For Certificate file name,
enter the file name for the certificate. In our example, we used
WebSphereServerCert.arm. In the Location field, enter the path to the
directory you wish to store the certificate in. In our example, we stored the

Tip: From a battle scarred veteran

WebSphere, when receiving a connection request over a TAI connection, uses
this value when validating security credentials. To do this, it uses only the
hostname of the requestor, and not the fully qualified DNS name. If you enter
the full DNS name here, you will find that the request will not be processed by
WebSphere TAI, and the user identity used for the request will be that of the
WebSEAL server. This is probably not the result you wish to achieve.

If you chose yet again to ignore my advice, then I must assume that you really
like the company of your lab machines.
396 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
certificate in etc directory of the WebSphere root. Once you have completed
your entries, click the OK button.

4. Once you have saved your certificate, you will need to transfer it to your
WebSEAL server. Note that if you have defined your own keyfiles for
WebSphere, and have obtained a certificate from a CA, that you can use the
root CA’s certificate which signed your WebSphere certificate in the following
steps instead.

5. To set up the trust relationship between WebSphere and WebSEAL, we now
need to import the certificate just saved, or the signing root CA certificate for
our WebSphere server. This will establish a trust relationship for WebSEAL.
Note that if you wish to use mutual SSL authentication, you will also need to
setup the trust relationship for WebSphere in a similar matter.

6. To begin, on your WebSEAL server, start the GSKIT GUI. Open your
WebSEAL key database. We are using the WebSEAL default database, and
selected <WebSEAL_root>\www\certs\pdsrv.kdb. You will then be
prompted for the key database password. The password for the default
WebSEAL database is pdsrv. Once the database is opened, select Signer
Certificates. The following panel will then be displayed.

7. Select the Add... button. The following panel will then be displayed.

8. For Data type, select Base64-encoded ASCII data. In the Certificate file
name field, enter the name of the certificate. In our example, this is
WebSphereServerCert.arm. In the Location field, enter the path to the
directory that you have stored your certificate file. In our example, we entered
<WebSphere_root>\etc. Once you have finished your entries, select the OK
button. You will then be prompted for a label name to store your certificate
with. Enter a name that will make it easy for you to identify that this certificate
is for your WebSphere server. The IBM Key Management panel will then be
displayed, and the certificate you just added will now be displayed as the
label name you specified. You may now close the IBM Key Management
utility. We now have established the trust relationship for our WebSEAL
server.

Now that we have configured WebSphere for TAI support, and we have set up
the trust relationship for our WebSEAL server, we can now define our SSL
junction between WebSEAL and WebSphere. Note that when using TAI, you
must define an SSL junction. TAI support is not provided by WebSphere on a
non-SSL connection.

We can now define a junction for our WebSEAL server to connect to WebSphere
using TAI. Create a user id and password in the user registry you are using for
WebSphere, for example: tai_user with the password: tai_pwd. Issue the
following command, with the right parameters for your environment, in pdadmin
to create your junction:
 Chapter 12. Tivoli Access Manager 397

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
server task Webseald-WebSEALServer create -t SSL -c iv_user -B -U “WebSEALid”
-W “WebSEALpassword” -h WebSphereServerName -p SSLport /JunctionName

� WebSEALServer: the hostname of your WebSEAL server, for example:
wsl01.

� WebSEALid: the user id you have created for your WebSEAL server. Note
that if you have set the com.ibm.Websphere.security.Webseal.loginid, then
you should specify a dummy id, and not the actual WebSEAL user id.

� WebSEALpassword: the password for your WebSEAL server.

� WebSphereServerName: the hostname of your WebSphere server, for
example: appsrv01.

� SSLport: the port number defined in WebSphere for SSL connections, for
exmaple: 9443.

� JunctionName: the name for this junction, for example: /tai.

After defining your junction, you will now be able to connect to WebSphere from
WebSEAL. When you login to WebSEAL, and access your WebSphere server
over your TAI junction, the Access Manager user id will be passed to, and used
by, WebSphere when invoking your application. Your users will no longer see a
basic authentication challenge from your application; instead, the user
credentials passed by WebSEAL over the TAI junction will be used by
WebSphere, and your users will not have to perform a second login.

If you are reading on, something has probably gone wrong, and it appears that
your TAI junction is not working. Never fear, your battle scarred veteran is here to
lend a hand. We will need to turn on tracing in WebSphere to narrow down the
problem. To begin, we will need to enable tracing, in order to perform this step,
follow the instructions at Section , “Security trace” on page 235.

Once your server has restarted, the first thing to look at is to see if TAI is actually
enabled. In the example below we have included a portion of the trace file.

Example 12-2 WebSphere Security initialization

8/22/02 7:40:44:482 CDT] 7822e45 SASRas A JSAS0001I: Security
configuration initialized.
[8/22/02 7:40:44:723 CDT] 7822e45 SASRas A JSAS0002I: Authentication
protocol: CSIV2/IBM
[8/22/02 7:40:44:735 CDT] 7822e45 SASRas A JSAS0003I: Authentication
mechanism: LTPA
[8/22/02 7:40:44:747 CDT] 7822e45 SASRas A JSAS0004I: Principal name:
dirsrv01.itso.ral.ibm.com:389/wasadmin
[8/22/02 7:40:44:925 CDT] 7822e45 SASRas A JSAS0005I: SecurityCurrent
registered.
[8/22/02 7:40:44:938 CDT] 7822e45 SASRas A JSAS0006I: Security
connection interceptor initialized.
398 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
[8/22/02 7:40:45:014 CDT] 7822e45 SASRas A JSAS0007I: Client request
interceptor registered.
[8/22/02 7:40:45:192 CDT] 7822e45 SASRas A JSAS0008I: Server request
interceptor registered.
[8/22/02 7:40:45:509 CDT] 7822e45 SASRas A JSAS0009I: IOR interceptor
registered.

During the initialization for WebSphere security, we should see that LTPA is
being used as the Authentication mechanism, as above. If in fact SWAM is being
used, this is our problem. In this case, we need to go back and check our LTPA
configuration, and on the Global Security panel, ensure that LTPA has been
selected as the Authentication mechanism.

If it appears that LTPA is properly defined, then the next thing we need to check
is that TAI is being initialized. The following portion of our trace file illustrates
what we should see next.

Example 12-3 Trace of TrustAssociation initialization

7822e45 TrustAssociat > initialize
[8/22/02 7:41:32:021 CDT] 7822e45 TrustAssociat A SECJ0121I: Trust Association
Init class com.ibm.ws.security.Web.WebSealTrustAssociationInterceptor loaded
successfully
[8/22/02 7:41:32:034 CDT] 7822e45 TrustAssociat d Trust Properties=
 {com.ibm.Websphere.security.Webseal.ports=443,
com.ibm.Websphere.security.Webseal.hostnames=wsl01,
com.ibm.Websphere.security.Webseal.id=iv-user}
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA > Initializing
WebSealTrustAssociationInterceptor...
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA > getElements
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA < getElements
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA > getElements
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA < getElements
[8/22/02 7:41:32:035 CDT] 7822e45 WebSealTrustA > getElements
[8/22/02 7:41:32:036 CDT] 7822e45 WebSealTrustA < getElements
[8/22/02 7:41:32:036 CDT] 7822e45 WebSealTrustA d WebSeal Login ID = null
[8/22/02 7:41:32:045 CDT] 7822e45 WebSealTrustA > addASource
[8/22/02 7:41:32:045 CDT] 7822e45 WebSealTrustA d WebTAInterceptor: Added
source = wsl01:443
[8/22/02 7:41:32:045 CDT] 7822e45 WebSealTrustA < Exiting addASource
[8/22/02 7:41:32:045 CDT] 7822e45 WebSealTrustA < Exiting initialization:
SUCCESS
[8/22/02 7:41:32:045 CDT] 7822e45 TrustAssociat A SECJ0122I: Trust Association
Init Interceptor signature: WebSeal Interceptor Version 1.1
[8/22/02 7:41:32:064 CDT] 7822e45 TrustAssociat A SECJ0120I: Trust Association
Init loaded 1 interceptor(s)
[8/22/02 7:41:32:076 CDT] 7822e45 TrustAssociat < initialize
 Chapter 12. Tivoli Access Manager 399

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Here we see TAI being initialized. We need to look at the Trust Properties line in
the trace to verify that the property values being used are the ones we think we
set. If we see an error here with one of the properties, then we need to go back to
our property definition, either in the properties file, or our custom property entries
in TAI, and provide the correct values. If the property values are correct, and we
see, as above, that the WebSealTrustAssociation is being initialized properly,
then we know that we have properly configured TAI. In this case, we now need to
access our WebSEAL junction from a browser, and login to WebSEAL. The next
example shows what should appear in the trace file if all is well.

Example 12-4 Trace file http header from WebSEAL

[8/22/02 7:42:44:163 CDT] 277a2e5c EJSWebCollabo d Http Header names and
values:
authorization=[Basic d2Vic2VhbHM6cGFzc3dvcmQx]
iv-groups=["managergrp"]
via=[HTTP/1.1 wsl01:443]
user-agent=[Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)]
host=[seccli.itso.ral.ibm.ibm.com:9443]
accept=[image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*]
connection=[close]
accept-language=[en-us]
iv-user=[manager]
iv-creds=[Version=1,
BAKs3DCCA-YMADCCA-AwggPsAgIDkDBsMCkwHgIE48b7FgIDAKe5AgIR1gICAKUCASQEBgBAqsIqTAw
...
0YTFCUlowRkJRVUU5BAA=]
referer=[https://wsl01.itso.ral.ibm.com/tai/itsobank/]
accept-encoding=[gzip, deflate]
cookie=[msp=2; IV_JCT=/tai]
[8/22/02 7:42:44:163 CDT] 277a2e5c EJSWebCollabo d VirtualHost is :
default_host
[8/22/02 7:42:44:163 CDT] 277a2e5c WebSecurityCo > WebAccessContext
[8/22/02 7:42:44:163 CDT] 277a2e5c WebSecurityCo < WebAccessContext
[8/22/02 7:42:44:163 CDT] 277a2e5c WebCollaborat >
SetUnauthenticatedCredIfNeeded
[8/22/02 7:42:44:163 CDT] 277a2e5c WebCollaborat d Invoked and received
Credential are null, setting it anonymous/unauthenticated.
[8/22/02 7:42:44:163 CDT] 277a2e5c WebCollaborat <
SetUnauthenticatedCredIfNeeded:true
[8/22/02 7:42:44:164 CDT] 277a2e5c EJSWebCollabo d Request Context
Path=/itsobank, Servlet Path=/, Path Info=transfer/branchtransfer.html
[8/22/02 7:42:44:164 CDT] 277a2e5c WebCollaborat > authorize
[8/22/02 7:42:44:164 CDT] 277a2e5c WebCollaborat d URI requested:
/transfer/branchtransfer.html
[8/22/02 7:42:44:164 CDT] 277a2e5c WebAppCache d Okay, I found the entry for
[default_host:/itsobank]
[8/22/02 7:42:44:164 CDT] 277a2e5c WebAccessCont > WebAccessContext
400 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
In this example, the first portion shows a snapshot of the HTTP header of the
request received by WebSphere from WebSEAL. Here, we need to look at iv
fields being passed to WebSphere from WebSEAL. In our example, we used the
-c all junction option in WebSEAL. This means that we should see all of the iv
header fields being passed to WebSphere from WebSEAL. In our example, you
can in fact see that the iv fields were passed. For iv-user, we have manager,
which is our Access Manager/WebSphere user id, and is the id with which we
want to use in our itsobank application. In addition, you can see that iv-creds and
iv-groups were also passed. If, when looking at the HTTP header trace entry, you
do not see the iv field which you have configured TAI to use in WebSphere, then
the problem is probably in the creation of your WebSEAL junction. In this case,
you should go back and redefine your WebSEAL junction, using the correct
parameter that you require with the -c option.

The next set of trace entries show the invocation of TAI to obtain the user
credentials passed by WebSEAL, and the authentication of the WebSEAL
server. Note that only the relevant portions are presented.

Example 12-5 WebSEAL Trust Association trace

8/22/02 7:42:45:223 CDT] 277a2e5c WebAuthentica d A cookie was received. The
name is LtpaToken and the value is NULL
[8/22/02 7:42:45:223 CDT] 277a2e5c WebAuthentica < handleSSO: (null)
[8/22/02 7:42:45:514 CDT] 277a2e5c WebAuthentica d handleTrustAssociation
[8/22/02 7:42:45:515 CDT] 277a2e5c WebAuthentica d TrustAssociation is enabled.
[8/22/02 7:42:45:586 CDT] 277a2e5c TrustAssociat > getInterceptor
[8/22/02 7:42:45:586 CDT] 277a2e5c TrustAssociat d Check if target interceptor
...
[8/22/02 7:42:46:397 CDT] 277a2e5c WebSealTrustA > getCheckID
[8/22/02 7:42:46:397 CDT] 277a2e5c WebSealTrustA < getCheckID
[8/22/02 7:42:46:397 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=authorization
[8/22/02 7:42:46:397 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=iv-groups
[8/22/02 7:42:46:397 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=via
[8/22/02 7:42:46:398 CDT] 277a2e5c WebSealTrustA d isTargetInterceptor:
VIA=HTTP/1.1 wsl01:443
[8/22/02 7:42:46:515 CDT] 277a2e5c WebSealTrustA > checkVia for wsl01:443
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA < getCheckID: 0
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=user-agent
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=host
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=accept
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=connection
 Chapter 12. Tivoli Access Manager 401

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=accept-language
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=iv-user
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=iv-creds
[8/22/02 7:42:46:516 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=referer
[8/22/02 7:42:46:517 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=accept-encoding
[8/22/02 7:42:46:517 CDT] 277a2e5c WebSealTrustA d isTargetInteceptor: header
name=cookie
[8/22/02 7:42:46:517 CDT] 277a2e5c WebSealTrustA d Yes, it is via WebSeal.
[8/22/02 7:42:46:517 CDT] 277a2e5c WebAuthentica d A TrustAssociation
interceptor is available for this request.
[8/22/02 7:42:46:838 CDT] 277a2e5c WebSealTrustA > Entering
validateEstablishedTrust...
[8/22/02 7:42:46:878 CDT] 277a2e5c WebSealTrustA d Going to authenticate
tai_user.
[8/22/02 7:42:46:973 CDT] 277a2e5c WebAuthentica > basicAuthenticate
...
[8/22/02 7:42:47:448 CDT] 277a2e5c ltpaLoginModu > login()
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe > copyCredToken(credToken)
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe d credential token is null
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe < copyCredToken(credToken)
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe > copyCredToken(credToken)
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe d credential token is null
[8/22/02 7:42:47:448 CDT] 277a2e5c CredentialsHe < copyCredToken(credToken)
[8/22/02 7:42:47:448 CDT] 277a2e5c ltpaLoginModu d uid = tai_user
[8/22/02 7:42:47:448 CDT] 277a2e5c ltpaLoginModu d realm = null
[8/22/02 7:42:47:448 CDT] 277a2e5c ltpaLoginModu d password = XXXXXXXX
[8/22/02 7:42:47:448 CDT] 277a2e5c Util > toString(array)
[8/22/02 7:42:47:449 CDT] 277a2e5c Util d array is null
[8/22/02 7:42:47:449 CDT] 277a2e5c Util < toString(array)
[8/22/02 7:42:47:449 CDT] 277a2e5c ltpaLoginModu d cred token = <null>
[8/22/02 7:42:47:449 CDT] 277a2e5c ltpaLoginModu d Successfully gathered
authentication information
[8/22/02 7:42:47:449 CDT] 277a2e5c ltpaLoginModu d Using uid and password for
authentication
[8/22/02 7:42:47:449 CDT] 277a2e5c ltpaLoginModu d Authenticating
"null/tai_user"
[8/22/02 7:42:47:449 CDT] 277a2e5c LTPAServerObj > authenticate
[8/22/02 7:42:47:449 CDT] 277a2e5c LTPAServerObj < authenticate
[8/22/02 7:42:47:449 CDT] 277a2e5c UserRegistryI > checkPassword
[8/22/02 7:42:47:449 CDT] 277a2e5c LdapRegistryI > checkPassword
[8/22/02 7:42:47:449 CDT] 277a2e5c LdapRegistryI d Authenticating
 tai_user
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI d Searching for users
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI > getUsers
402 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
 tai_user
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI > search
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI d DN: o=itso
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI d Search scope: 2
[8/22/02 7:42:47:450 CDT] 277a2e5c LdapRegistryI d Filter:
(&(uid=tai_user)(objectclass=inetOrgPerson))
...
[[8/22/02 7:42:47:453 CDT] 277a2e5c LdapRegistryI d Found user
 cn=tai_user,o=itso
[8/22/02 7:42:47:453 CDT] 277a2e5c LdapRegistryI > checkStopped
[8/22/02 7:42:47:453 CDT] 277a2e5c LdapRegistryI < checkStopped
[8/22/02 7:42:47:486 CDT] 277a2e5c LdapRegistryI d Time elapsed to open/close
DirContext: 33
[8/22/02 7:42:47:486 CDT] 277a2e5c LdapRegistryI d Authenticated with
 cn=tai_user,o=itso
[8/22/02 7:42:47:486 CDT] 277a2e5c LdapRegistryI < checkPassword
 cn=tai_user,o=itso
[8/22/02 7:42:47:486 CDT] 277a2e5c UserRegistryI d user cn=tai_user,o=itso
password checks ok

In this section of the trace, we see that TAI is processing the header information
provided by our WebSEAL server, and is authenticating the WebSEAL server,
using the user id and password provided with the -B option. If the id or password
you set in your junction is invalid, this will show up as an authentication error. In
this example, the id passed to WebSphere is tai_user, and WebSphere was able
to successfully authenticate the WebSEAL server.

In this final section of the trace, once WebSphere has authenticated our
WebSEAL server, the user identity passed by WebSEAL will be used for this
request. In our example, the user ID passed is manager. WebSphere will locate
the user ID passed in the user registry, and then use this identity to process the
user request. If for some reason the user id passed by WebSEAL is not
contained in the user registry being used by WebSphere, you will instead see an
error. In this case, you need to check your WebSphere user registry to determine
why that user ID can not be found.

Example 12-6 WebSphere security trace for TAI

8/22/02 7:42:49:791 CDT] 277a2e5c Authenticatio d
publicName:dirsrv01.itso.ral.ibm.com:389/tai_user
[8/22/02 7:42:49:791 CDT] 277a2e5c Authenticatio d
realm:dirsrv01.itso.ral.ibm.com:389;userName:tai_user
[8/22/02 7:42:49:791 CDT] 277a2e5c Authenticatio d
accessId:user:dirsrv01.itso.ral.ibm.com:389/cn=tai_user,o=itso
[8/22/02 7:42:49:792 CDT] 277a2e5c WebAuthentica < basicAuthenticate
[8/22/02 7:42:49:792 CDT] 277a2e5c WebSealTrustA d Successful authentication
for validateEstablishedTrust.
 Chapter 12. Tivoli Access Manager 403

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
[8/22/02 7:42:49:792 CDT] 277a2e5c WebAuthentica d TrustAssociation has been
validated successfully.
[8/22/02 7:42:50:002 CDT] 277a2e5c WebSealTrustA > getAuthenticatedUsername
[8/22/02 7:42:50:006 CDT] 277a2e5c WebSealTrustA < Exiting
getAuthenticatedUsername: manager
[8/22/02 7:42:50:006 CDT] 277a2e5c WebAuthentica d Username retrieved is
[manager]
[8/22/02 7:42:50:006 CDT] 277a2e5c WebAuthentica d Map credentials for manager.
[8/22/02 7:42:50:074 CDT] 277a2e5c SecurityServe > mapCredential
[8/22/02 7:42:50:074 CDT] 277a2e5c SecurityServe d Credential is a Trusted
Credential
...
[[8/22/02 7:42:50:075 CDT] 277a2e5c Credential < getUserName() -> manager
[8/22/02 7:42:50:075 CDT] 277a2e5c UserRegistryI > createCredential
 manager
[8/22/02 7:42:50:076 CDT] 277a2e5c LdapRegistryI > createCredential
 manager
[8/22/02 7:42:50:076 CDT] 277a2e5c LdapRegistryI > getUserDisplayName
 manager
[[8/22/02 7:42:51:073 CDT] 277a2e5c LdapRegistryI d Found user
 cn=manager,o=itso
...
[8/22/02 7:42:51:654 CDT] 277a2e5c LTPAValidatio d LTPAValidationCache (cache
enabled): validation = 181 millis
[8/22/02 7:42:51:654 CDT] 277a2e5c Authenticatio > extractCredentialAttributes
[8/22/02 7:42:51:654 CDT] 277a2e5c Authenticatio d
publicName:dirsrv01.itso.ral.ibm.com:389/manager
[8/22/02 7:42:51:654 CDT] 277a2e5c Authenticatio d
realm:dirsrv01.itso.ral.ibm.com:389;userName:manager
[8/22/02 7:42:51:654 CDT] 277a2e5c Authenticatio d
accessId:user:dirsrv01.itso.ral.ibm.com:389/cn=manager,o=itso
[8/22/02 7:42:51:655 CDT] 277a2e5c WebAuthentica < validate
[8/22/02 7:42:51:655 CDT] 277a2e5c WebAuthentica d Mapped credential for
TrustAssociation was validated successfully.
[8/22/02 7:42:51:655 CDT] 277a2e5c WebAuthentica < handleTrustAssociation: OK
[8/22/02 7:42:51:655 CDT] 277a2e5c WebAuthentica d Successful authentication
[8/22/02 7:42:51:700 CDT] 277a2e5c WebAuthentica > createCookie LtpaToken
QNu+31OoJ9pOIKcC+IcAuAubI5rFE4JedMHq2YlKJVOcQsNWkC

12.5.2 Forms Authentication Single Sign-On
With the Single Sign-On solution provided with Access Manager, you have the
ability to provide your users with the capability to access your WebSphere
applications transparently, without them being aware that Access Manager is
handling authentication for them to your applications. Up until now, if your
existing applications require the use of a login form to authenticate, it was still
404 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
necessary for your users to login again to your applications, after performing a
login to Access Manager. Howerver, with the release of V3.9 of Access Manager
for eBusiness, it is now possible to acheive a Single Sign-On solution to your
applications, even for those applications which require the use of a login form.

Tivoli Access Manager for eBusiness V3.9 provides support to login an Access
Manager user to a WebSphere application using HTML forms for authentication.
When you enable Single Sign-On forms authentication, the WebSEAL
component of Access Manager will intercept the login form from your
WebSphere application, and will supply the authentication information required
back to the application. Your back end WebSphere application will be unaware
that the response is from WebSEAL, and not the user, and the user will be
unaware that a second login occured.

To enable Single Sign-On forms authentication to a backend application, the
Access Manager administrator must do two things. First, a configuration file must
be created defining to WebSEAL how to identify a login form when it is received
from the back end application, and second, a junction must be created to the
back end Web server using the -S option, which specifies the location of the
configuration file. Once this is completed, WebSEAL will provide login support for
Access Manager users to the back end WebSphere application.

For further information on enabling single-sign on forms authentication, refer to
the Access Manager for eBusiness WebSEAL Administrators Guide.

Creating the Single Sign-On forms authentication configuration file
The purpose of the configuration file for Single Sign-On forms authentication is to
define the following to WebSEAL:

� A pattern which WebSEAL can use to identify the URI which indicates a
request to the back end application for a login form.

� A pattern which WebSEAL can use to identify the login form with a page
returned from the back end application

� A list of fields within the login form which WebSEAL is to provide the values
for, and where these values are to be obtained.

Consider our sample application, ITSOBank sample application. It requires that a
user login, using a login form. Below is the HTML source for our login page.

Example 12-7 ITSOBank sample application login form

<form method="post" action="/itsobank/j_security_check">
<table width="80%">
<tr>
<td width="20%" align="right">Userid:</td><td><input size="20" type="text"
name="j_username" maxlength="25"></td>
 Chapter 12. Tivoli Access Manager 405

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
</tr>
<tr>
<td align="right">Password:</td><td><input size="20" type="password"
name="j_password" maxlength="25"></td>
</tr>
<tr>
<td></td>
<td>
<input type="submit" name="action" value="Login"> <input type="reset"
name="reset" value="Clear">
</td>
</tr>
</table>
</form>

In our form, there are two input fields, j_username and j_password. These are
the two fields which WebSEAL will need to fill in. The next example shows the
Single Sign-On forms configuration file we created.

Example 12-8 Single Sign-On forms authentication configuration file

[forms-sso-login-pages]
login-page-stanza = login-itsobank
[login-itsobank]
login-page = /itsobank/login/login.html
login-form-action = *
gso-resource = was50
argument-stanza = args-for-login-itsobank
[args-for-login-itsobank]
j_username = gso:username
j_password = gso:password

In this example, we have configured one login form page, login-itsobank. The
URI for our login form is /itsobank/login/login.html. This entry defines for
WebSEAL the URI that should be intercepted. When a request is received for
this URI, WebSEAL will intercept the form, and will return to our ITSOBank
application the GSO user ID and password defined for this Acess Manager user
in the was50 GSO resource. If the user does not have a GSO ID and password
defined for was50, then WebSEAL will return an error page to the user to inform
them that they can not login to the itsobank application.

We now need to create a junction to our back end WebSphere server, using the
-S parameter. Once we have done this, Single Sign-On forms authentication will
be enable. The syntax of the junction command is:

pdadmin> server task Webseald-WebSEALServer create -f -t tcp -p portnumber -h
WebSphereServerName -S path/filename.conf /JunctionName
406 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Where the following arguments are defined:

� WebSEALServer is the host name of your WebSEAL server, for example:
wsl01.

� portnumber is the port number to connect to WebSphere, for example: 9443.

� WebSphereServerName is the host name of your WebSphere server, for
example: appsrv01.

� path/filename.conf is the full path and name of your configuration file.

� JunctionName is the name you with to assign to this junction, for example:
/tai.

After creating your junction, any request which causes the itsobank application to
present the login.html form will be intercepted by WebSEAL, and WebSEAL will
provide the users id and password back to the ITSOBank sample application.
The end user will never be aware that a login to ITSOBank sample application
was performed on his behalf.

12.5.3 Tivoli Access Manager plug-in for WebSphere Edge Server
The WebSphere Edge Server is a collection of applications designed to improve
Web and application server performance and availability by load balancing
servers, intelligently caching static content, and by moving content delivery as
close to the users, from a network perspective, as possible. The “edge of the
network” is normally the DMZ between an organization’s intranet and the public
Internet, and it is into this DMZ that the WebSphere Edge Server components
are deployed.

The Edge Server Caching Proxy component can act as a reverse proxy, very
similar to the WebSEAL reverse proxy (which, incidently, also does document
caching). Also similar to the WebSEAL reverse proxy, the Edge Server Caching
Proxy can be made to authenticate and authorize users against a Tivoli Access
Manager security domain via the Tivoli Access Manager Plug-in for Edge Server.

The Plug-in for Edge Server incorporates an Access Manager runtime into the
Caching Proxy, which allows the proxy to perform authentication and
authorization based on ACLs and POPs in the Access Manager Object Space.

Because the authenticating reverse proxy functionality provided by WebSEAL is
more feature-rich than that provided by the Tivoil Access Manager Plug-in for
Edge Server, and because WebSEAL provides similar load balancing and
content caching functions to the Edge Server, using WebSEAL is the preferred
way to incorporate Tivoli Access Manager based security into the DMZ.
However, the Tivoli Access Manager Plug-in for Edge Server provides an easy
 Chapter 12. Tivoli Access Manager 407

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
way to integrate Tivoli Access Manager based security into any existing
infrastructure which features an Edge Server caching proxy. In addition, the Edge
Server’s caching proxy provides a much more flexible set of caching options than
does WebSEAL.

The following sections compare the security related aspects of the Tivoli Access
Manager Plug-in for Edge Server with WebSEAL.

Access Control
In WebSEAL, as described previously, access control can be assigned at the
junction level. Additionally, if more finely grained access control is needed, it can
be signed to objects below the junction. The query_contents command is used
with pdadmin to create these objects in the Access Manager Object Space.

When using the Plug-in for Edge Server, there is no junction object. Instead,
access control is always applied directly to the objects which represent the
server’s content. Here also, the query_contents command is used, this time in
conjunction with the wesosm command to create these objects in the Access
Manager Object Space.

User Login Methods
WebSEAL provides a complete set of standard user login methods, and
additonal methods are supported through customization.

The Plug-in for Edge Server is limited to Basic, Forms-based, and
Certificatie-based authentication methods

Single Sign-On to WebSphere Applications
WebSeal supports Single Sign-On to WebSphere Applications via the following
mechanisms:

� WebSEAL can forward modified or unmodified HTTP Basic Authentication
(BA) headers to WebSphere. WebSEAL can also forward new headers based
on Global Sign-on (GSO) user mapping.

� WebSphere can be made to trust the authentication performed by WebSEAL
through the use of TAI or LTPA.

� When the application requires forms-based authentication, WebSEAL can
submit the authentication form on behalf of the user.

In contrast:

� The Plug-in for Edge Server also supports Single Sign-On via HTTP Basic
Authentication headers, however with a more limited set of filtering options.
Global Sign-on usename mapping is not supported.
408 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
� The Plug-in for Edge Server supports trust relationships using LTPA cookies.
TAI is not supported.

� Forms-based Single Sign-On is not supported by the Plug-in for Edge Server.

In summary, WebSEAL provides a more flexible and customizable layer of
security to a WebSphere environment, when compared to the Edge Server
Caching Proxy configured with the Access Manager Plug-in for Edge Server. In
some cases, this may be outweighed by the more flexible caching capabiliteis of
the Edge Server Caching Proxy.

For more information on the Access Manager Plug-in for Edge Server, see the
following documents:

� IBM WebSphere Edge Server: New Features and Functions in Version 2,
SG24-6511-00.

� Plug-in for Edge Server User’s Guide, GC23-4685-00.

12.6 Scenario 2: Protecting Web resources
This scenario discovers the different techniques to protect Web resources in
WebSphere using the Tivoli Access Manager.

12.6.1 Tivoli WebSEAL
WebSEAL is Access Manger’s authentication engine. It is a multi-threaded Web
server capable of applying security policy through Access Control Lists, ACLs, to
URLs and servlets on junctioned Web servers within Access Manager's
protected Web object space. WebSEAL is also where Access Manager provides
Single Sign-On solutions and it is an integral part of the “defense in depth”
strategy when used in its role as a reverse proxy server.

A reverse proxy server is placed in front of all other presentation layers of an
application and interrupts the session flow from client Web browser to the Web
server and the application servers behind them. In this role WebSEAL appears
as a Web server to browser clients and appears as a Web browser to the
junctioned back-end servers it is protecting.

Browser clients access what they are told by published URL, is the content
server for an application. In fact this URL is a reverse proxy server. The reverse
proxy is configured to hold the client session and open a new session, acting as
the client with the real content server. This server will never be exposed to the
real client as reverse proxy’s configuration hides the contents server’s name, IP
address, which is also certainly a private internal and firewalled network and can
remap URLs from what is published to the Web space as it actually is on the
 Chapter 12. Tivoli Access Manager 409

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
content server. This remapping works both ways so any URLs listed in the
headers being returned to the client are intercepted and rewritten to conform to
the published format thus preventing external clients from getting redirection
URLs to the internal content server.

In combination with Firewalls constructing DMZs to filter and direct traffic, as well
as the possibility of VPNs within DMZ’s there are several network designs which
can strengthen the defense of an e-business Application. Decisions such as
placing WebSEAL in a DMZ on its own with all the other infrastructure, Web
servers, application servers and Access Manager Secure Domain servers in the
second region, or placing the Web servers in the region 1 DMZ behind WebSEAL
(best protected by VPNs) will be driven by both security and real production
infrastructure concerns.

Figure 12-11 on page 411 shows WebSEAL functioning as a reverse proxy with
the most simple model of physical network security. This server should always
have dual interfaces, the first, A, is connected only to the Internet Firewall and
the second, B, is connected only to the Intranet Firewall. OS level routes on the
WebSEAL box should direct traffic through the intranet firewall only to those
specific server that WebSEAL will need to contact, the user registry, (for
authentication calls), the Policy Server (for policy database updates) and
explicitly junctioned Web servers. All other traffic must be routed through
interface A to the Internet Firewall.

Similar and supporting routing rules and filters must be placed on the Firewalls.
The Internet Firewall must allow through traffic only to and from WebSEAL
interface A and further if the site was to have only secure items then HTTPS only
traffic should be also enforced. The Internet Firewall allows traffic between
WebSEAL interface B and the LDAP Server, the Policy Server and the Web
Server(s).
410 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-11 WebSEAL Basic Infrastructure and request flow

WebSEAL in the DMZ Region 1 between the Internet and Intranet firewalls
receives client requests for resources of the Web server or WebSphere
application server. There are five security options between WebSEAL and the
Web and application servers. In each case WebSEAL authenticates users by
querying the LDAP Server before connecting to any other resource.

1. WebSEAL authenticates the user, passing mapped credentials to
WebSphere. WebSphere performs authorization with its own user registry.

2. WebSphere and WebSEAL, (Access Manager) use the same user registry
here a common LDAP.

3. WebSEAL may also authorize the user’s access to protected resources
based on running a CGI program (query_contents) that accesses directory
contents to determine protected files, or specific ACL lists for URLs and
servlets built with pdadmin or Web Portal Manager. Authorization decisions
are made from the local copy of the policy store on the WebSEAL server.

4. WebSEAL authenticates the user passing mapped credentials to
WebSphere, and WebSphere-hosted applications using the Access Manager
Java PDPermission or Access Manager JAAS classes which ask Access
Manager for authorization.

5. WebSEAL authenticates the user passing mapped credentials to
WebSphere, and WebSphere Application Server containers can delegate
authorization to Access Manager through the Access Manager for
WebSphere module which relies on classes in Access Manager Java
Runtime and communicates with the Access Manager authorization server
using the Java API. Access Manger stores role-to-user mapping only as
role-to-method mapping is not yet provided.

 Protocol (Internet)
Firewall

 Domain (Intranet)
Firewall

 LDAP
Server

 Web Server

 WebSEAL
Reverse Proxy

 Client
browser

 WebSphere
Application Server

 Policy/Authorization
Server
 Chapter 12. Tivoli Access Manager 411

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
WebSEAL Junctions
WebSEAL’s connections with the back end Web servers have constantly been
referred to as “junctions”. This Tivoli proprietary technology requires further
description in order to better understand the scenarios above.

All WebSEAL junction are TCP/IP connections between a front-end WebSEAL
server and a back-end Web server which may be another WebSEAL server and
may go via another proxy server. Only the HTTP and HTTPS protocols are
supported and WebSEAL to WebSEAL must be over a SSL connection.

A junction is where the back-end server Web space is connected to the
WebSEAL server at a specially designated mount point in the Access Manager
Web space created in the Policy Sever database by apropriate use of the
pdadmin command. In order to produce representations of resources on some
third party back end servers within the Access Manager object space, these
junctions may require configuration such that the querry_contents.cgi program
be loaded and accessible to be run by the Policy Server on the back end servers,
themselves. This utility ships with Access Manager.

The junction is then a logical Web object space, normally on another Web server,
rather than the physical file and directory structure of the proxied Web server.
Junctions define an object space that reflects organizational structure rather than
the physical machine and directory structure commonly encountered on standard
Web servers.A browser client never knows the physical location of a Web
resource as WebSEAL translates requested URL addresses into the physical
addresses that a back-end server expects without ever exposing them to the
client. Web objects can be moved from server to server without affecting the way
the client accesses those objects.

WebSEAL attempts to pass the request to the back end server by referencing the
object in Access Manager’s protected object space. If it encounters an ACL or
Policy of Protection, POP on that object which requires authentication before the
request can be authorized, then the client will be challenged. WebSEAL is
configurable for several different challenge mechanism including the default of
Basic Authentication, forms based logon from a junctioned application and
comes with an Application Developers Kit with which to build customized Cross
Domain Authentication Services.

WebSEAL junctions can also be configured to enable the creation of Single
Sign-On solutions allowing users to access resources, somewhat regardless of
what security domain controls those resources, following their initial
authentication logging on to through WebSEAL. The GSO, Global Sign On
junction option allows for a third party user registry to be referenced to supply
that junction with the appropriate user id and password. Other options involve
manipulation and perhaps additions to the underlying Access Manger schema of
412 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
inetOrg.Person as each junction can be configured to supply all and any
attributes from the schema through to the back end server. If the logon identity
and passwords from the user registries of several legacy applications can be
migrated into extra attributes then those applications can be accessed through
WebSEAL using only one initial login. Any further login requirements from
back-end servers are handled transparent to the user.

Completing the Single Sign-On picture are Cross Domain Single Sign-On and
e-Community Single Sign-On. These solutions allow for the transfer of Access
Manager user credentials across multiple secure domains. Please reference the
Tivoli documentation at
http://www.tivoli.com/support/public/Prodman/public_manuals/td/AccessMa
nagerfore-business3.9.html should you wish to know more.

Creating Access Manager Groups
The ITSOBank sample application requires to create four groups and four users;
Groups: managergrp, clerkgrp, accountgrp, consultantgrp. Users: manager01,
clerk01, accountant01, consultant01, mdbuser01.

1. Open a browser and point it to the Web Portal Manager,
https://secwpm01/pdadmin and logon as the Access Manager administrator,
sec_master.
 Chapter 12. Tivoli Access Manager 413

http://www.tivoli.com//AccessManagerfore-business3.9.html
http://www.tivoli.com//AccessManagerfore-business3.9.html

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-12 Web Portal Manager Login

Which brings up the Web Portal Manager Interface,
414 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-13 Web Portal Manager Menu

2. Click Group -> Create from the Task List on the left and enter these values
against the named fields,

Group Name: managergrp

Description: ITSOBank Managers

Common Name: managergroup

Registry GID: cn=managergrp,o=itso

Object Container: (can be left blank)

3. Click Create, a message will appear confirming group creation.

4. Repeat the process for each of the other three groups.
 Chapter 12. Tivoli Access Manager 415

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-14 Group Creation

Creation of Access Manger Users
The following process will show, how to create a new user with the Portal
Manager.

1. Click User -> Create from the Task List on the left and enter these values
against the named fields,

User ID: manager01

For Password use password for this example; then confirm the password.

Description: Manager user

First Name: Joe

Last Name: Black

Registry GID: cn=manager01,o=itso
416 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Check the boxes for Is Account Valid, Is Password Valid, No Password
Policy and Is GSO User; although this last is not specifically required for
these examples.

2. Click List to bring up the Group pick list window, highlight managergrp and
click Apply.

Figure 12-15 Group Pick List

Once the group is selected for the user, multiple groups can be selected, the
group membership window will disappear. A banner message appears to confirm
that the user has been created.

Note: By checking the Is Password Valid check-box, the administrator
agrees, that the password will not be checked against Tivoli Access
Manager’s password policy; and it reduces protection.
 Chapter 12. Tivoli Access Manager 417

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-16 Create user

3. Click Create to create the user in the registry.

Create the other three users in a like manner. Creation of either users or groups
can be confirmed by clicking either Search User or Search Group, both of which
produce screens which will show memberships and members respectively.

The pdadmin command line utility could have been used to perform all group
and user creation - see Access Manager Base Administrator’s Guide V3.9,
Appendix A for the syntax.
418 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Creating Access Manager Junctions
At this point the configuration of the WebSphere Application Servers themselves
needs some further description.

There are two separate application servers, one of which is fully configured with
the secured form of the sample application with Access Manager for WebSphere
installed, appsrv01. The setup and configuration of this instance will be gone
into later in this chapter. The other has the security roles for the ITSOBank all
mapped to everyone, appsrv02, rendering it effectively unsecured.

The two junctions needs to be created, one for each server. pdadmin is required
to create the junctions.

1. Start the pdadmin command line and when the prompt appears log on as
sec_master with the right password to the Access Manager Secure Domain
using the login command.

2. Create a new TCP junction with the following command:

server task WebSEALd-wsl01 create -f -t tcp -h appsrv01.itso.ral.ibm.com -p
9080 /junction1

This created a TCP junction (-t option) of name junction1 on the WebSEAL
server wsl01 connected to the WebSphere Application Server appsrv01
default host at port 9080 (-p option).

A similar junction, appsrv02 with /junction2 URI is also created to the
WebSphere Application Server appsrv01.

3. Log on to Web Portal Manger, select Object Space, then click WebSEAL in
the tree to reveal all the objects in the WebSEAL space.Both Junctions are
shown.
 Chapter 12. Tivoli Access Manager 419

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-17 Junctions shown in Object Space Tree

4. click either one of the junctions to bring up the Protected Object Properties
and the full name of the junction in the object space are shown, for example:
/WebSEAL/wsl01/junction1 and /WebSEAL/wsl01/junction2 respectively.
420 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-18 Protected Object Properties show full Junction Name

Creating ACLs
The following procedure will create ACLs (Access Control List) for the ITSOBank
Web components.

1. Click ACL -> Create ACL from the Task LIst and in the Create ACL form
which appears

2. Enter against New ACL Name: ITSOBank, description: ITSOBank ACL and
click the Create button from the centre of the form to bring up the ACL
Properties form. This shows one rule entry, the default permissions for
sec_master. In a production environment you would very carefully consider
your security model before allowing this to remain as this is exactly the kind of
administrative back door discussed earlier.
 Chapter 12. Tivoli Access Manager 421

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-19 ACL Properties

3. On the page click Create New Entry to bring up the Create ACL Entry form,
leaving the Entry Type at Group, enter against Enter Name: managergrp
and check the boxes against (T) Traverse, (r) Read and (x) Execute, then
click the button Create Entry.
422 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-20 Create an ACL Entry

4. This returns to the Create ACL form with an entry for managergrp. This
process should be repeated for each of the other three groups.
 Chapter 12. Tivoli Access Manager 423

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-21 ITSOBANK ACL Properties

5. In order to attach the ACL to the appropriate junction, if not already at the
ACL Properties form above, from the Task List click ACL -> List ACL and
click the ACL ITSOBANK from the list to display the ACL Properties form.

6. Now click Attach to open the Attach ACL form. Enter the full junction name
in the Object Path: /WebSEAL/wsl01/appsrv01 and click Attach which
returns to the ACL Properties form.

7. The attachment can be checked by clicking Find on the ACL properties page,
which opens the ACL Find Results form which returns all the junctions to
which any ACL is attached.

8. Clicking any objects in this list will open the Protected Object Properties form
which allows further attachment and detachments of ACLs and POPs to and
from the object.
424 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Testing the junctions
The following tests will help to make sure that the junctions are set correctly. The
first tests will be performed on the appsrv02 server.

1. Point a browser at http://appsrv02/itsobank and the ITSOBank welcome
screen is displayed. Click any of the functions of the application, they are
available without challenge for identity.

2. Point a new browser session at https://wsl01/junction2/itsobank/ and
after the normal certificate warnings, (accept the certificate) a Basic
Authentication challenge is presented which can be answered with any of the
users created earlier to show the ITSOBank Welcome screen. All functionality
is again available as it is only the junction which is protected.

The next two steps will access the application on the appsrv01 server.

1. Point a browser at http://appsrv01/itsobank and you are again presented
with the welcome screen. However attempting to use either function requires
a vali Access Manager identity to be authorized.

2. Point a new browser session at http://wsl01/junction1/itsobank results a Basic
Authentication challenge before the ITSOBank welcome screen is shown. It is
not until you attempt to access one of the protected funtions that you are
challenged again for a valid identity. The welcome screen which is not
protected by the application is in effective a static resource which can be
independently protected by WebSEAL.

Protecting WebSphere URIs
Access Manger can secure WebSphere servlets and JSPs but not EJBs or
individual methods, only URIs. If the application you wish to secure is of a simple
enough design then this may be all you need.

This sample will use the index.jsp page provided with the ITSOBank sample
application. The index.jsp is available for everyone, the resource is not protected,
access is granted for the Everyone special subject to be exact. This sample will
use Tivoli Access Manager WebSEAL to protect this resource and only give
access to the user accountant01 in the accountantgrp group. You can try to
access the index.jsp at http://<your_server>/itsobank/index.jsp.

1. Start the pdadmin tool to administer Tivoli Access Manager, and login with the
sec_master user.

2. Create a junction to the Web space.

pdadmin> server task Webseald-wsl01 create -f -t tcp -h appsrv01 -p 9080
/itsobankURItest

3. Create a new ACL for the index.jsp resource.

acl create itsobankURItestACL
 Chapter 12. Tivoli Access Manager 425

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
4. Modify the ACL to add the accountantgrp user group with the Trx
permissions.

acl modify itsobankURItestACL set group accountantgrp

5. Attach the ACL to the index.jsp resource in the object space.

acl attach /WebSEAL/wsl01/itsobankURItest/itsobank/index.jsp
itsobankURItestACL

6. Double check the ACL settings and attachment using the acl show
itsobankURItestACL command then the acl find itsobankURItestACL. The
result should be similar to the following:

pdadmin> acl show itsobankURItestACL
 ACL Name: itsobankURItestACL
 Description:
 Entries:
 User sec_master TcmdbsvaBl
 Group accountantgrp Trx
pdadmin> acl find itsobankURItestACL
/WebSEAL/wsl01/itsobankURItest/itsobank/index.jsp

To test the protected resource access the index.jsp through the WebSEAL server
using the following URL pattern:
https://wsl01/itsobankURItest/itsobank/index.jsp. After a confirmation of
accepting the server certificate, you will be presented with the browser’s basic
authentication challenge panel. Use accountant01 / password for user
name/password to access the page. The page you get is shown on the next
screen capture.
426 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-22 Successful access to index.jsp

Close the browser and access the same URL again, but use another user when
prompted, for example: manager01 with password. You should get the following
page.

Figure 12-23 Unsuccessful access to index.jsp
 Chapter 12. Tivoli Access Manager 427

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
It is possible to set up a hierachy of access based on the representation of the
Web Server’s resources in the Tivoli Access Manager Object Space. Rights and
permissions cascade within the space and so each higher level will have
increasing more generic protection but it is mandatory that any group or user
given access at the lowest level, for example the resource must also be
presented in an entry within any other ACLs higher in the object space. In this
example if the entry for accountantgrp is removed form the ITSOBANK attached
to the object /WebSEAL/wsl01/itsobankURItest, from the previous sample, then
any attempt by accountant01 to access a resources deeper in the object space,
here /WebSEAL/wsl01/itsobankURItest/itsobank/index.jsp despite the
itsobankURItestACL attached to this object, will fail as the Transverse right for
accountantgrp group is discontinuous at the higher level.

12.7 Scenario 3: Tivoli’s WebSphere plug-in
This scenario documents, how to use the WebSphere plug-in from Tivoli Access
Manager to control WebSphere security from the Tivoli Access Manager.

12.7.1 Access Manager For WebSphere Application Server
An extension of Access Manager Version 3.9 provides container-based
authorization and centralized policy management for IBM WebSphere
Application Server applications. Effectively Access Manager provides a J2EE
Authorization Module which when installed correctly replaces WebSphere’s own
security for user role based authorization decisions.
428 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
Figure 12-24 Access Manager for WebSphere beta Model

When a user requests a protected resource, WebSEAL authenticates the user
against the Access Manager user registry. Junction configuration defines the
type and number of credentials then forwarded to the application server.

The container examines the request for access to a protected resource and from
the J2EE application deployment descriptor, determines the required role that the
user must have to be granted authorization. The container then hands off to the
integrated Access Manager module.

The Access Manager module requests an authorization decision from an
Access Manager authorization server which checks with its local replica of the
Access Manager policy database. Replicas are normally updated on a pull basis
from the single Access Manager Policy Master within the Security Domain.

While these calls can be made to a remote server, without the embedded Access
Manager promised for the final WebSphere Application Server V5, performance
and scalability require that an Access Manager Authorization server be installed
on the same platform as WebSphere. Of course this means that the performance
burden is passed to the platform hardware which must be capable of bearing
both loads.

Having returned the access decision, granted or denied, to the container,
WebSphere then acts on it.

WebSEAL
Authenticated Users

before forwarding
requests for protected

resources

Access Manager's
LDAP User Registry

Access Manager's
Policy Server

WebSphere Application Server

Container integrated
with Access Manager

J2EE Application
Deployment
Descriptor

Access Manager
Authorization Server
 Chapter 12. Tivoli Access Manager 429

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
Without an Access Manager authentication blade such as WebSEAL, a Web
server with an Access Manager plug-in or WebSphere Edge Server with the
Access Manager plug-in, the WebSphere container would request authentication
of the user from the user registry directly. The authorization process would
however then be identical.

The advantages of externalizing the control of the security model have been
discussed earlier. The specific advantage of the integrated Access Manager
module is that J2EE applications do not require coding changes to take
advantage of the dynamic flexibility allowing changes to user and group
mappings to roles without stopping and starting an application through the
manipulation of Access Manager ACLs.

The highest prefix to all J2EE roles defined for WebSphere applications is the
Access Manager protected object for “WebAppServer” together with the child
object “deployedResources”. Both these object names are created the first time
the Access Manager application migration tool is run.

Figure 12-25 Access Manager Protected Object Name Space

Figure 12-25 shows the Access Manager name space to which users and groups
are associated with roles and applications and optionally, down to the cell, host
or server. ACLs can be placed at any point in this name space determining which
J2EE roles any principal governed by those ACLs has been assigned. The
Access Manager migration tool, automatically attaches the ACLs at the
“AppName” level. As with all ACLs in the object space, the permissions must be
continuos and the lower level ACL over rides a higher ACL.

/

"WebAppServer"

"deployedResources"

<RoleName>

<AppName>

<CellName>

<HostName>

<ServerName>
430 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
At the same time, the tool creates a “WebAppServer” action group with the
invoke (i) action, and a group called “pdwas-admin” representing WebSphere
Application Server administrators. The tool adds the WebSphere Application
Server administrator user to the pdwas-admin group.

Installation and configuration of Tivoli Access Manager for
WebSphere

Install the Access Manager for WebSphere application on the WebSphere
machine. There is no ez_install script provided for this component, you have to
install it from the product CD. The Access Manager for WebSphere can be found
in the following directory: windows\policy director\disk images\disk1\pdwas\disk
images\disk1. Run the setup.exe to install the product. In this sample Tivoli
Access Manager components were installed under the C:\Tivoli direcotry.

The following configuration steps are required in WebSphere Application server
in order to perform further configurations and use Access Manager for
WebSphere.

1. The WebSphere Application Server must be configured to share the same
user registry as the Access Manager Security Domain it is joining.

2. The Access Manager for WebSphere module must be installed and
configured.

3. J2EE Applications requiring security must be migrated.

4. All user ids which had been used with WebSphere, wasadmin (the server id),
and the other Access Manager users and groups required by the sample
application had been created with Web Portal Manager so no migration of
WebSphere only LDAP users was required.

5. Confirm that Access Manger and WebSphere were accessing the same Java
runtime was confirmed by running the pdjretecfg utility, under Windows in a
command prompt.

cd C:\Tivoli\sbin
pdjrtecfg -action config -java_home %WAS_HOME%\java\jre.

Note: At the time of writing this book Tivoli Access Manager V3.9 was only
available. This version of Access Manager was not developed to be used with
WebSphere Application Server V5, therefore we had to do some
customization and work arounds to make certain scripts and functions work in
this environment.

Tivoli Access Manager V3.9 is available after the book is published and it
works with and supports WebSphere Application Server V5.
 Chapter 12. Tivoli Access Manager 431

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
6. The next step is to run the PDWASCFG utility for which there are a number of
inputs.

A user account to be the user identity for the Access Manager for
WebSphere application: wasadmin.

The sec_master password and the fully qualified name of the Access
Manager server- password and secsrv01.itso.ral.ibm.com respectively.

And the name of the Authorization Server that WebSphere would be
accessing, here the same server WebSphere was running on,
appsrv02.itso.ral.ibm.com.

Opening a Windows command prompt window the following commands were
executed:

cd C:\Tivoli\sbin
set PDWAS_HOME=C:\Tivoli\pdwas
set WAS_HOME=C:\WebSphere\AppServer
set
CLASSPATH="%PDWAS_HOME%\sbin";"%PDWAS_HOME%\lib\PDWASAuthzManager.jar";"%PD
WAS_HOME%\lib";"%CLASSPATH%"
java -Dpdwas.home="%PDWAS_HOME%" -Dwas.home=%WAS_HOME% -cp %CLASSPATH%
PDWAScfg -action config -remote_acl_user "cn=wasadmin,o=itso"
-sec_master_pwd password -pdmgrd_host secsrv01.itso.ral.ibm.com
-pdacld_host appsrv02.itso.ral.ibm.com

The success of the action was confirmed by checking the existence of the
PdPerm Properties file, c:\WebSphere\Appserver\java\jre\PdPerm.properties

Configure the Access Manager authorization component for WebSphere
Application Server. The meanings of the parameters for the PDWAScfg utility:

– action specifies the command to perform. It is either configuration or
unconfiguration. The valid values for this option are config or unconfig.

– remote_acl_user is the full DN of the remote acl user, used for the SSL
connection with the Access Manager authorization server.

– sec_master_pwd is the password of the sec_master user.

– pdmgrd_host contains the hostname of the Access Manager policy
server.

– pdacld_host contains the hostname of the Access Manager
authorization server.

– pdmgrd_port the port number of the Access Manager policy server can
be specified if it has been configured as different from the standard port.

– pdacld_port the port number of the Access Manager authorization server
can be specified if it has been configured as different from the standard
port. Note that pdmgrd_port must also be specified if this option is used.
432 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
– rspfile is the fully qualified name of the response file to use during silent
installation. This is an optional option.

For more information about the parameters and using the PDWAScfg utility
refer to the original product documentation.

12.7.2 Migration of Applications
In order for the Access Manager module to perform the authorization functions
for J2EE applications deployment descriptors security information needs to be
migrated into Access Manager’s object space. The migrateear.jar tool which
ships with Access Manager functions as did the PDWAScfg tool - a standalone
Java application using Access Manager Java Admin APIs. It creates a tree of
roles, see Figure 12-25 on page 430 and ACLs of users and groups and maps
the invoke permission from the WebAppServer object to these ACLs.

1. Start the pdadmin administration application.

2. Logon to pdadmin as sec_master and create an Access Manger action and
action group as follows.

action group create WebAppServer
action create i invoke “Invoke WebAppServer”

3. Then exit from pdadmin but remain in the windows command prompt and
change directory to %PDWAS_HOME%/bin.

set PDWAS_HOME=C:\Tivoli\pdwas
set WAS_HOME=C:\WebSphere\AppServer
set XML_PARSER_JAR=%PDWAS_HOME%\lib\xerces.jar

Important:

Because Tivoli Access Manager V3.9 is not fully prepared to work with
WebSphere Application Server V5, there are some additional steps and
tweaking required to make it work.

The version of xerces.jar shipped with WebSphere Application Server
Version 4 was copied to the %PDWAS_HOME%\lib directory.

The appliaction_1_2.dtd and application_1_3.dtd were copied from
%WAS5_HOME%\deploytool\itp\plugins\com.ibm.etools.j2ee\dtds to the
%PDWAS_HOME%\etc directory.

Note: When performing the following step WebSphere Application Server
should not be running.
 Chapter 12. Tivoli Access Manager 433

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
set JDK_DIR=%WAS_HOME%\java\jre
set PDWAS_JAR=%PDWAS_HOME%\lib\migrate.jar
set CLASSPATH="%XML_PARSER_JAR%";"%PDWAS_JAR%";"%CLASSPATH%"

4. The first appliaction to be migrated is the adminconsole itself.

java -Dpdwas.lang.home=%WAS_HOME%\lib;%PDWAS_HOME%\nls\java -cp %CLASSPATH%
com.tivoli.pdwas.migrate.Migrate -j
%WAS_HOME%\installedApps\appsrv01Node\adminconsole.ear -a sec_master -p
password -w wasadmin -d o=itso -c
file:/%WAS_HOME%/java/jre/PdPerm.properties

The migration utilty created the four roles as defined in the Admin Console
application and the AppName, Admin Console attached an automatic ACL to
this level. See details on how to check the created objects later in this section.

5. As a next step the console role ACLs need to be attached to relevant groups
in Access Manager. The following example attaches the pdwas-admin group
to the
_WebAppServer_deployedResources_administrator_Admin_20_Console_AC
L ACL. Login to the pdadmin administration utility as sec_master, then
perform the following commands:

pdadmin> acl modify
_WebAppServer_deployedResources_administrator_Admin_20_Conso
le_ACL set group pdwas-admin Ti
pdadmin> acl show
_WebAppServer_deployedResources_administrator_Admin_20_Console
_ACL

ACL Name:
_WebAppServer_deployedResources_administrator_Admin_20_Console_ACL

Description: Generated by the PDWAS Migration Tool
Entries:

User sec_master TcmdbsvaBl
Group pdwas-admin Ti

6. Do the same with the other console ACLs:

_WebAppServer_deployedResources_monitor_Admin_20_Console_ACL
_WebAppServer_deployedResources_operator_Admin_20_Console_ACL
_WebAppServer_deployedResources_configurator_Admin_20_Console_ACL
_WebAppServer_deployedResources_administrator_Admin_20_Console_ACL

7. Restart the WebSphere Server before migrating any other aspplications.

8. The next appliaction migrated was the ITSOBank sample application.

java com.tivoli.pdwas.migrate.Migrate -j
\WebSphere\AppServer\installedApps\appsrv01Node\ITSOBank.ear -a sec_master
-p password -w wasadmin -d o=itso -c
file:/%WAS_HOME%/java/jre/PdPerm.properties

The meanings of the parameters for the migration utility:
434 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
– -a <Access Manager administrative user

For example: -a sec_master.

– -c <URI location of the PDperm.properties>

– -d <user registry domain suffix>

– -j <absolute pathname to the application EAR file>

– -p <administrative user password>

– -r <root object space and action group name>

The default value for the root object space is WebAppServer. The action
group name matches the root object space name. Thus, the action group
name is automatically set when the root.

– -t <Secure Sockets Layer timeout>

The maximum should not exceed the Access Manager SSL-v3-timeout
value. The default value for SSL-v3-timeout is 120 minutes.

– -w <WebSphere administrative user>

9. After migrating the applications check the objects created for Access
Manager. Issue the following commands to see the objects in the
objectspace:

pdadmin> login
Enter User ID: sec_master
Enter Password:

pdadmin> objectspace list
/Management
/WebSEAL
/WebAppServer/deployedResources

pdadmin> object list /WebAppServer/deployedResources
/WebAppServer/deployedResources/accountant
/WebAppServer/deployedResources/administrator
/WebAppServer/deployedResources/allauthenticated
/WebAppServer/deployedResources/clerk
/WebAppServer/deployedResources/configurator
/WebAppServer/deployedResources/consultant
/WebAppServer/deployedResources/manager
/WebAppServer/deployedResources/monitor
/WebAppServer/deployedResources/operator

List the ACLs in Access Manager and check if you have all the console role
ACLs and ACLs for each J2EE role in your application(s).

pdadmin> acl list
default-webseal
default-root
 Chapter 12. Tivoli Access Manager 435

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
_WebAppServer_deployedResources_monitor_Admin_20_Console_ACL
_WebAppServer_deployedResources_operator_Admin_20_Console_ACL
default-gso
itsobank
itsobankURItestACL
_WebAppServer_deployedResources_consultant_ACL
_WebAppServer_deployedResources_configurator_Admin_20_Console_ACL
default-policy
_WebAppServer_deployedResources_accountant_ACL
_WebAppServer_deployedResources_clerk_ACL
default-config
_WebAppServer_deployedResources_manager_ACL
default-management
_WebAppServer_deployedResources_administrator_Admin_20_Console_ACL
_WebAppServer_deployedResources_allauthenticated_ACL
default-replica

You can check the details on one of the ACLs using the following command:

pdadmin> acl show
_WebAppServer_deployedResources_monitor_Admin_20_Console_ACL

ACL Name: _WebAppServer_deployedResources_monitor_Admin_20_Console_ACL
Description: Generated by the PDWAS Migration Tool
Entries:

User sec_master TcmdbsvaBl
Group pdwas-admin Ti

For further detials, check the objects which the ACL is attached to.

pdadmin> acl find
_WebAppServer_deployedResources_monitor_Admin_20_Console_ACL
/WebAppServer/deployedResources/monitor/Admin Console

For more information about the parameters and using the migration utility refer to
the original product documentation.

After Migration
Once an appliaction is migrated, its security is in the province of the enterprise
security model and should be controlled using Access Manager, either Web
Portal Manager or the pdadmin utility. This is especialy true for the modification
of existing or the creation of new roles.

Do not make changes the deployment descriptors of an application from within
WebSphere. They are not reflected in the EAR file and can not be captured by
Access Manager. Thus it behooves you to ensure that if you are migarting
existing appliactions designed before the enterprise security model was in place
that the EAR file you migrate accurately reflects the application’s current security
configuration.
436 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573chAccMan.fm
The migration of an EAR file to the Access Manager protected object space
creates ACLs attached to those objects. If these ACLs are used elsewhere within
the object space they cannot be removed while attached to any object.

12.8 Scenario 4: Using the aznAPI
The IBM Tivoli Access Manager Java runtime component includes a Java
version of a subset of the Access Manager authorization API. The authorization
API consists of a set of classes and methods that provide Java applications with
the ability to interact with Access Manager to make authentication and
authorization decisions.

Application developers should use the Javadoc information provided with the
Access Manager Application Developer Kit (ADK) to add Access Manager
authorization and security services to new or existing Java applications.

The authorization API classes are installed as part of the Access Manager Java
runtime component. These classes communicate directly to the with the Access
Manager authorization server by estabilishing an authenticated SSL session with
the authorization server process.

The aznAPI Java classes are basically Java wrappers for the original C API.

The aznAPI can be used together with Java 2 security; where Java 2 security
consists of the policy-based permission model and the JAAS extension for
authentication. Access Manager functions as a back-end for normal Java 2
permission checks by providing:

� A custom JAAS LoginModule that manufactures authentication credentials.

� A custom permission class that knows how to locate and call Access
Manager.

Important: The aznAPI install as the Application Development Kit of Tivoli
Access Manager. When you use the ezinstall for Access Manager to install the
product it will not install the authorization API for you.

In order to get the API installed on your system, you have to install it manually
from the Tivoli Access Manager CD. You can find the install image called:
PDJRTE, which installs the Java Runtime component for Tivoli Access
Manager. On the Windows platform the PDJRTE is at:
\windows\PolicyDirector\Disk Images\Disk1\PDJRTE.
 Chapter 12. Tivoli Access Manager 437

6573chAccMan.fm Draft Document for Review November 6, 2002 2:37 pm
For more information refer to the Authorization Java Classes Developer’s
Reference documentation that comes with the rest of the Tivoli Access Manager
3.9 documentation.
438 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573pAppx.fm
Part 3 Appendixes

Part 3
© Copyright IBM Corp. 2002 439

6573pAppx.fm Draft Document for Review November 6, 2002 2:37 pm
440 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
Appendix A. Sample application

This appendix introduces the ITSOBank sample application used in this book to
show the security settings in WebSphere Application Server V5.

Here you will find detailed information about the application itself, the application
design and building blocks.

The most important is the installation procedure that guides you through the
installation steps for the sample application.

A

© Copyright IBM Corp. 2002 441

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
Sample application
The pupose of the sample application is to show the security functions and
capabilities of WebSphere Application Server V5. You will not find this application
in a real-life scenario, it has been developed only for this book and is not a
realistic implementation of any banking application.

The sample that you can download toghether with the book has all the security
features built in, that was discussed in the book. All security settings are fully
configured for the application too.

Application architecture brief
This section provides a brief introduction for the sample application used in this
book. The source code is also provided with the code, and it is well commented.
You will find it easy to understand every components and parts.

The following diagram is a collection of the application resources used by the
ITSOBank sample.

Figure 12-26 Application Resources

Instead of providing component and class diagrams, the application is so simple
that you will understand it better by going through a couple technical
walkthroughs.

The first walkthrough descibes the “customer transfer” process, as it is depicted
on Figure 12-27.

 Database::ITSOBANK

 Queue::itsobankTransferQ

 Schema::ITSOBANK

 Table::BranchAccount Table::CustomerAccount

branchid varchar(8) not null primary key
branchaddress varchar(40)
branchname varchar(30)
balance int

customerid varchar(8) not null
accountnumber varchar(20) not null
customername varchar(40)
accounttype varchar(1)
balance int
primary key (customerid,accountnumber)

 Messaging provider
442 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
Figure 12-27 Customer transfer process

The process flows as described below:

1. User selects the “customer transfer” link on the main page (index.html) of the
application.

2. After filling out the details on the transfer form, the user submits the transfer to
the Transfer servlet.

3. The transfer servlet is the controller between the presentation and the
business logic represented by enterprise Java beans (EJB). The servlet
processes the request. You will find multiple functions and features
implemented in this simple servlet, these functions will be executed according
to the request. You can find more information about these functions in the
book where specific security features are discussed and you will find a
reference to the source in the code.

4. The servlet uses a singleton helper class (TransferHelper) to lookup and store
the reference to the Transfer session EJB. The Transfer EJB is a stateless
session EJB, it implements the business processes and handles the transfer
between the accounts. It follows the facade pattern, and hides the transfer
logic between multiple entity EJBs.

 html::index

 html::customertransfer

 Servlet::Transfer

 Bean::TransferHelper

 Stateless Session EJB::Transfer

 Entity EJB::BranchAccount

JSP::transferresults

1

2

3

5a

4

5b

6

 Entity EJB::CustomerAccount
 Appendix A. Sample application 443

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
5. The Transfer EJB uses two entity EJBs: CustomerAccount and
BranchAccount to make the transfer between accounts and update the
back-end system, which is a database in our case.

6. After the transfer the Transfer servlet sends the response back to the client
using a JSP.

The next process depicted on Figure 12-28 is a transfer between two branches,
and JMS messaging is used to process the request.

The first four steps are the same as with the “customer transfer”.

Figure 12-28 Branch transfer process

The process flows as described below:

1. User selects the “customer transfer” link on the main page (index.html) of the
application.

2. After filling out the details on the transfer form, the user submits the transfer to
the Transfer servlet.

 html::index

 html::customertransfer

 Servlet::Transfer

 Bean::TransferHelper

 Stateless Session EJB::Transfer

JSP::transferresults

1

2

3

4

6

 Entity EJB::BranchAccount

5a 5b

 Queue::itsobankTransferQ

 MDB::IncomingTransfer

 Stateless Session EJB::Transfer

 Entity EJB::BranchAccount

7
8

9

444 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
3. The transfer servlet is the controller between the presentation and the
business logic represented by enterprise Java beans (EJB). The servlet
processes the request.

4. The servlet uses a singleton helper class (TransferHelper) to lookup and store
the reference to the Transfer session EJB.

5. The Transfer EJB updates the branch account at the back-end using the
BranchAccount entity EJB, then sends a message to the queue,
itsobankTransferQ, to update the other branch account.

6. Same as “customer transfer”.

7. The message triggers the IncomingTransfer message-driven bean (MDB) that
picks up the message to process the account update for the branch account.

8. The MDB does not perform business logic, it uses the Transfer EJB for this
purpose.

9. The Transfer EJB uses the BranchAccount entity EJB to update the back-end
database.

The last process described here is the account balance query. A J2EE client
application is also distributed with the sample, that performs the query process. It
is a simple GUI application that the user can use to interact with the J2EE
application running on the server.

Figure 12-29 Account balance query process

The process flows as described below:

 Bean::ConsultationHelper

 Stateless Session EJB::Consultation

2

 J2EE Application::AccountViewer

1

 Entity EJB::BranchAccount

 Entity EJB::CustomerAccount

3 3
 Appendix A. Sample application 445

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
1. The user provides the account name for the customer or the branch then
clicks the query button. The application uses a singleton helper class
(ConsultationHelper) to lookup and store the reference to the Consultation
session EJB.

2. The Consultation EJB is a stateless session EJB, it performs the query on the
server side. IT follows the facade pattern to hide the logic at the back-end.

3. The Consultation EJB performs a query on one of the accounts using either
the BranchAccount or CustomerAccount entity EJBs, and returns the result to
the application.

To follow the processes in the runtime, you can check the log file for the
application server, SystemOut.log. The detailed runtime information about the
application can only be found there, for example: the branch account update
using JMS messaging, or detailed information about the client’s subject.

Security roles
The following roles are defined for the secured ITSOBank sample:

� manager

� clerk

� accountant

� consultant

� mdbuser

� AllAuthenticated

� Everyone

Deploying the sample application
This section provides step-by-step instructions on how to deploy the ITSOBank
applications.

Note: MDBUser is created to be used for delegation. The IncomingTransfer
MDB is using this role to call the Transfer Session Bean.

There should be one user mapped to this role; that user will be used to do the
run-as mapping.
446 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
Setup the database server
The ITSOBank sample, like any other enterprise application, requires a
database.

1. Create a user in the operating system with the username: dbuser and
password: password. this user will perform the database access for the
sample application.

2. Install the DB2 UDB Server on the database server machine.

3. Stop all the DB2 services and daemons, you can use the command: db2stop.

4. Open a console, go to the DB2 UDB Client install directory, then go to the
java12 directory there. Execute the usejdbc2.bat (on Windows) or the
usejdbc2.sh (on UNIX) to switch to JDBC 2.

5. Start the database server, you can use the command: db2start.

6. Bind the necessary packages it is required for JTA drivers, from a DB2
console, you can use the following commands to bind the packages on the
server.

connect to itsobank user dbuser using password
bind ‘<db2 install path>\bnd\@db2cli.lst’
bind ‘<db2 install path>\bnd\@db2ubind.lst’
disconnect itsobank

Where <db2 install path> is the install path for DB2, replace with the correct
path.

7. Open a console for DB2 command execution, and run the following
commands:

db2 attach to db2 user db2admin using db2admin
db2 create database itsobank
db2 create schema itsobank
db2 connect to itsobank
db2 grant dbadm on database to user dbuser
db2 disconnect current
db2 connect to itsobank user dbuser using password
db2 -vf itsobank.sql

In case you have any problems setting up the server, refer to the official product
documentation of IBM DB2 UDB.

Note: in the previous commands the following assumptions were made:

� The database instance is called: DB2

� There is a user called dbuser with the password password, this user will bu
used for the database connection in the datasource.
 Appendix A. Sample application 447

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
Setup the database client
In case the application server is running separate from the database server the
database client has to be installed on the application server’s machine. It is
optional to have the application server separate, however it is recommended.

You can download the clients from here. First you have to select the directory for
the platform and versoin you are looking for; for example: db2aixv7 (AIX Version
7.x). Go down to the client then to the runtime sub-directory. There you will find a
bunch of files, one for each fix-pack, download the one you need; for example:
FP7_U482564_rtclnt.tar.Z (fixpack 7). For AIX, DB2 Version 7, fixpack 7, the full
URL for the file is:

ftp://ftp.software.ibm.com:21/ps/products/db2/fixes/english-us/db2sunv7/client/
runtime/FP7_U482564_rtclnt.tar.Z

Instructions to setup the database client for the sample application.

1. Install the DB2 Database Client on the machine.

2. Open a console, go to the DB2 UDB Client install directory, then go to the
java12 directory there. Execute the usejdbc2.bat (on Windows) or the
usejdbc2.sh (on UNIX) to switch to JDBC 2.

3. On Windows 2000/NT start the Client Configuration Assistant application.

4. Configure the remote database using the following settings:

a. Manually configure a connection to a database

b. TCP/IP Protocol

c. Host name is the name of the database server

d. Port number: 50000

e. Database name: ITSOBANK

f. Do not set up ODBC datasource (switch off the flag)

5. Before adding the connection, test the connection; use the
username/password: dbuser/password.

6. Once the connection is configured and tested, close the Client Configuration
Assistant application.

The remote access to the database is configured at this point.

Note: Where you can download the DB2 client:

ftp://ftp.software.ibm.com/ps/products/db2/fixes/english-us
448 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
On other systems, where the graphical Client Configuration Assistant application
is not available, open a console for DB2 command execution and use the
following commands:

db2 catalog tcpip node <node_name> remote <remote_hostname> server
<service_name>
db2 catalog db <db_name> as <alias_db_name> at node <node_name>

In case you have any problems setting up the client, refer to the official product
documentation of IBM DB2 UDB.

Configuring the user registry for the ITSOBank sample
Setup the following groups and users in your user registry. The user registry can
be either local OS, LDAP directory or a custom directory.

Table 12-5 Registry for the ITSOBank sample

You will have to use the user name and the associated password to login to the
application.

You have to have the dbuser defined in the local OS user registry; DB2 will do
the authentication through the local OS.

Note: Where

� <node_name> is the name of the client machine
� <remote_hostname> is the name of the remote database
� <service_name> is the name associated with the service (find the name in

the services file)
� <db_name> is the name of the database on the remote machine
� <alias_db_name> is the name of the local database, the alias

Group name User name

managergrp manager01

consultantgrp consultant01

accountantgrp accountant01

clerkgrp clerk01

- mdbuser

- dbuser

- jmsuser
 Appendix A. Sample application 449

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
You might want to map the groups to the roles defined for the application; instead
of the users. It makes the access management easier.

Configuring WebSphere Application Server for the ITSOBank sample
The following procedure will guide you through the installation of the ITSOBank
sample.

The sample application requires a couple of settings to be made for the
application. To do the configurations follow the steps below:

1. Open the WebSphere Application Server V5 Administrative Console in the
browser; https://yourserver:9090/admin.

2. Login with the administrator username and password. We are assuming that
global security is enabled at this stage. For more information about enabling
global security refer to Section 10.2, “WebSphere Global Security” on
page 235.

3. Configure the embedded JMS server for WebSphere Application Server.

a. Select Servers -> Manage application Servers.

b. click the server1 link on the list of the servers.

c. Go down on the configuration page and select the Server Components
link.

d. Select the JMSServer from the components list.

e. Change the initial state to Started.

f. Add the JMS destination queue for the application to the queueNames list,
type in: itsobankTransferQ into the text area.

g. Then click OK.

4. Save the configuration; note that you will have to confirm the save action.

5. To have the embedded messaging running you have to stop then restart the
application server.

6. In order to have the queues working with the embedded JMS server when
global security is enabled, authorization has to be set up for the queues.

a. Open the integral-jms-authorizations.xml file under the <WebSphere
install path>\config\cells\<your cell name> then do the following
modifications.

b. Add a user to the <queue-admin-userids> node, for example: wasadmin.
This has to be a user in the local operating system. At the end, the
configuration should look like:

<queue-admin-userids>
450 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
<userid>wasadmin</userid>
</queue-admin-userids>

c. Add a queue authorization definition to the root node
<integral-jms-authorizations>, for the sample application:

<queue>
<name>WS_itsobankTransferQ</name>
<public></public>
<authorize>

<userid>mdbuser</userid>
<permission>read</permission>
<permission>write</permission>

</authorize>
</queue>

d. Save the file and close.

7. Create a J2C Authentication entry; select: Security Center ->
JAASConfiguration -> J2C Authentication Data Entries.

8. click New to create a new entry, fill out the fields with the following values:

– Alias: itsobankds_auth

– User ID: dbuser

– Password: password

9. Create the following J2C authentication alias

Table 12-6 J2C Authentication Alias

10.Save the configuration changes.

11.Setup a the JDBC provider and the DataSource; select: Resources ->
Manage JDBC Providers

a. Select the Server - server1 radio button, then click Apply; this will switch
the scope to the server level.

b. click New.

c. Select the DB2 JDBC Provider (XA) for JDBC Provider. You will need to
use the XA version of the driver to support the transactions in the
application.

d. Click OK, then JDBC provider configuration panel appears.

e. Set the classpath to the correct value to reach the db2java.zip library, for
example: c:/sqllib/java/db2java.zip.

Alias name username password

itsobankjms_auth jmsuser password
 Appendix A. Sample application 451

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
f. Click OK, then the list of the JDBC providers appear on the page.

g. To create the datasource, select the DB2 JDBC Provider (XA) item, you
have just created.

h. Go down on the Configuration page and click the Data Sources link.

i. click New to create a new Data source.

j. Fill out the fields with the following values:

Name: itsobankds

JNDI Name: jdbc/itsobankds

Use this DataSource in container managed persistence (CMP): Yes. This
will create a CMP_Connection_Factory for the WebSphere Relational
Resource Adapter with the name: itsobankds_CF, and with the JNDI
name: eis/jdbc/itsobankds_CMP.

Description: ITSOBank data source

Category: itsobank

Container-managed Authentication Alias: itsobankds_auth (select from
the list).

Component-managed Authentication Alias: itsobankds_auth (select from
the list).

k. click OK to add the new data source, then you will see the list of available
datasources.

l. click the itsobankds link to open the configuration.

m. Go down on the page and click the Custom Properties link. You will see a
list of properties set for the data source.

n. Change the databaseName property with the value: SAMPLE; click the
link, then change the value to ITSOBANK. Click OK when done.

o. Delete the serverName and portNumber properties.

12.Setup the JMS resources: QueueConnectionFactory and Queue; select
Resources -> Configure WebSphere JMS Providers

a. Select the Server - server1 radio button, then click Apply; this will switch
the scope to the server level.

b. click the WebSphere Queue Connection Factory link, that will bring up
the list of the queue connection factories.

c. click New to add a new factory. The configuration page will appear, then fill
out the fields with the following values:

Name: itsobankQCF

JNDI Name: jms/itsobankQCF
452 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
Container-managed Authentication alias: itsobankjms_auth

Component-managed Authentication alias: itsobankjms_auth

Set the connection factory to use transactions: XA Enabled.

Leave the rest of the settings as they are.

d. Click OK to submit the configuration.

e. Select Resources -> Configure WebSphere JMS Providers again, and
create a WebSphere Queue Destination for the server1 server.
Configure the queue with the following values:

Name: itsobankTransferQ

JNDI Name: jms/itsobankTransferQ

Leave the rest of the settings as they are.

f. Click OK.

13.Setup a ListenerPort for the Message-Driven Bean; select Servers ->
Manage application Servers.

a. click the server1 link on the list of the servers.

b. Go down on the configuration page and select the Message Listener
Service link.

c. On the Message Listener Service page, switch on the Startup box, then
click Apply.

d. Select the Listener Ports link, which will show the list of the available
listener ports. Add a new port by clicking on the New button, then fill out
the fields with the following values:

Name: IncomingTransferPort

Initial state: Started

Connection Factory JNDI Name: jms/itsobankQCF

Destination JNDI Name: jms/itsobankTransferQ

e. Click OK to submit the configuration.

14.Save the configuration before installing the ITSOBank sample application.
click Save on the Administrative Console menubar, then confirm it again with
Save.

15.Install the ITSOBank sample application.

a. Select the Applications -> Install New Application item.

b. Browse for the itsobank.ear archive on the system, then click Next. Wait
until the file is loaded, an animated progressbar appears during the
process.
 Appendix A. Sample application 453

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
c. Navigate through the installation pages clicking Next on the pages.

d. When you get to the Role Mapping page, map the users or groups to the
roles. The following roles have to be mapped:

• manager role maps to managergrp group

• accountant role maps to accountantgrp group

• consultant role maps to consultantgrp group

• clerk role maps to clerkgrp group

• mdbuser role maps to mdbuser user

Note that the allauthenticated role is already mapped to the
AllAuthenticated special role.

e. click Finish on the last page, that will start installing the ITSOBank sample
application. The animated progressbar appears during the process again.

f. Wait until the application gets installed and the report page appears. Go
down to the end of the report page and select the Save Configuration
link. Confirm the save again with the Save button on the next page.

g. Now the application is saved, but not ready to start.

16.Select Environment from the navigation menu, then regenerate the plugin for
the HTTP server.

17.Logout.

To make the changes effective stop the server by issuing the command:
stopserver server1 under the WebSphere Application Server V5 base bin
directory, then starting it with the startserver server1 command.

Importing the sample application into the development
environment

The ITSOBank sample application provided together with the book contains not
only the compiled code for the runtime but the source code for the development
environment as well.

1. After you decompressed the additional material you will find the itsobank.ear
enterprise archive. Start your WebSphere Studio Application Developer V5
with a new project folder, where you can import the ITSOBank sample
application.

Note: for errors look at the SystemOut.log file under the WebSphere
Application Server V5 base logs/server1 directory.
454 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axSample.fm
2. Open or switch to the J2EE perspective then select File -> Import from the
menu.

3. Select the EAR file from the Wizard, then click Next.

4. On the next panel browse for the itsobank.ear file, find the directory where
you have unpacked the additional material. Provide a project name, for
example: itsobank. Click Next.

5. Click Next again, unless you want to change the project location for the
import.

6. The next panel is only information about the EAR file, click Next.

7. On the last panel click on Finish and waint until the project gets imported, it
might take several minutes.

Optionally you can import a couple other projects onto your workspace, they are:

� itsobankCustomRegitry.zip is an implementation of a custom user registry
using the DB2 database.

� itsobankThinClient.zip is a thin Java client to access application functions
from a client machine.

� TrustAssociationInterceptor.zip is an implementation of a trust association
interceptor.

� IDAssertion.ear is a test application for identity assertion, and requires three
machines for the runtime.

12.9 Where to find more information
For more information about the sample application, refer to the different chapters
and sections in the book, that discusses a particular function or module.

You can also find detailed information in the source code of the application.
 Appendix A. Sample application 455

6573axSample.fm Draft Document for Review November 6, 2002 2:37 pm
456 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Appendix B. LDAP configurations

This appendix covers step-by-step configuration settings for different LDAP
servers to use with WebSphere Application Server V5.

Each LDAP configuration consist two scenarios, one with non-secure directory
access and one with secure directory access, using SSL. Microsoft Active
Directory is an exception there is no SSL configuration for that scenario.

The directory servers described here are:

� Lotus Domino Server

� Netscape’s iPlanet Directory Server

� Microsoft Active Directory Server

B

© Copyright IBM Corp. 2002 457

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
SecureWay Directory Server
The configuration WebSphere using the SecureWay Directory Server V3.2.2 as
LDAP user registry is covered in Section 10.13, “Connecting to directory servers
(LDAP)” on page 315.

IBM Directory Server
IBM Directory Server 4.1 does not differ much from the SecureWay Directory
Server V3.2.2. The configurations for IBM Directory Server are the same as for
the SecureWay Directory Server in Section 10.13, “Connecting to directory
servers (LDAP)” on page 315.

Lotus Domino
This section covers the LDAP configurations for Lotus Domino V5.06a.

Configuring Websphere to use Domino LDAP
In order to set up WebSphere security settings using the Domino Directory as the
LDAP server, it is necessary to specify a Security Server ID, that is, the user ID
under which the server runs for security purposes. This user ID should be any
user registered in the Domino Directory (Notes or Internet/intranet users) with an
Internet password set. We recommend that you create a new specific user in the
registry to be used by WebSphere.

For that purpose, start the Domino R5 Administration with a notes ID having at
least author access for creating new documents in the Domino Directory; make
sure the UserCreator role is selected and follow these instructions:

1. Open the Domino Server from the left server bookmark pane and select the
People and Groups tab.

2. Click the Add Person button.

3. Add a new user as shown in figure below with the Short Name/UserID and
Internet password set.
458 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-30 Websphere Administration Person document in Domino Directory

4. Save and Close the document.

Before configuring WebSphere to use domino LDAP make sure that LDAP task
is running on Domino Server. In order to check it, from the Domino Administrator
select Server tab and then Status. You should see the window similar to the one
below.

Figure 12-31 Checking for Domino LDAP server task

You can alternatively issue show task command at the server console and look
for LDAP task. If the task is not running issue the command load LDAP at the
console or modify ServerTasks line in server notes.ini file to include LDAP task,
and restart server.
 Appendix B. LDAP configurations 459

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Ensure that Domino using the LDAP protocol and users are listed in the direcotry
and can be found under the right suffixes. Domino provides a command-line
search utility that allows you to use LDAP to search entries in the Domino
Directory on a server that runs the LDAP service, or search entries in a
third-party LDAP directory.

This tool is included in the Domino server and Notes client software.

Configuring WebSphere to use Domino LDAP
To configure WebSphere to use Domino as its user registry, follow the steps
below.

1. Start the WebSphere Administrator’s Console.

2. Expand the tree Security -> User Registries -> LDAP. You will see the
LDAP configuration panel open in the main window.

3. Fill in the following configuration settings:

Server User ID: this field must contain the value specified in the Short
Name/User ID field in the Person Document of the Domino Directory created
in the steps above for the WebSphere administrator. This is the user ID that
will have to be used for login to start the WebSphere Administrator’s Console
once security is enabled, for example: wasadmin.

Server User Password: enter the Internet password set for the wasadmin
user in this document.

Type: Domino

Host: name for the Domino (directory) server, for example: dominosrv

Port: 389

Base Distinguish Name: this is the base distinguished name of the directory
service, indicating the starting point for LDAP searches of the directory
service. As we defined all our users and groups under /ITSO, we have
entered o=itso for this field.

Note: To use the ldapsearch tool for searching against a Domino Directory,
the LDAP task in the Domino Server must be started and the notes.ini file
must be included in the machine system’s Path environment variable where
ldapsearch will be executed.

To search for wasadmin user in Domino LDAP issue the following command at
the command prompt:

ldapsearch -v -h <your ldap server hostname> “uid=wasadmin”
460 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Bind Distinguish Name: distinguished name used when WebSphere binds
with the Domino server. If no name is specified, the administration server will
bind anonymously.

Bind Password: if a user is specified in the Bind Distinguished name, include
the corresponding password here.

Other fields you may leave default. Our settings from the ITSOBank scenario
are presented in the picture below.

Note: Leaving this field empty, in our scenario resulted a Java exception
while performing searches for users and groups to mapped to application
roles. The exception message that appeared was:

[8/15/02 19:25:03:303 EDT] 2c771047 SecurityAdmin E SECJ0234E: An
unexpected exception occurred when trying to get groups from the User
Registry with pattern * and limit 20. The exception is
com.ibm.websphere.security.CustomRegistryException: null: [LDAP: error
code 34 - The search base null appears to have an incorrect syntax]
 Appendix B. LDAP configurations 461

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-32 Domino LDAP Settings in WebSphere Administrative Console

4. Click OK at the bottom of the configuration panel.

5. Save the configuration for WebSphere.

6. Now you need to enable LDAP user registry in Global Security section; select
Security -> Global Security.

7. Enable global security, select LDAP for the Active User Registry.

8. Click OK at the bottom of the configuration panel, WebSphere will validate the
server user against the user registry.

9. Save the configuration WebSphere.
462 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
10.You will now need to restart your WebSphere Application Server to make the
changes effective. Logout from the Administrative Console and restart your
WebSphere Application Server.

11.When you log on to the Administrative Console for the next time you will be
prompted for user name and password. Enter the values that you have
provided in LDAP configuration panel in Server User ID and Server User
Password.

Your WebSphere is now configured to use Domino LDAP directory.

Configuring Websphere for secure LDAP connection
This section describes the steps to perform in order to secure the connection
between the WebSphere Application Server and the Domnio LDAP server.

Configuring Domino to use SSL
To configure Domino for secure communication for LDAP, Domino requires a
keyring, .kyr file, and password stash, .sth file, on the server side. In order to
create the keyring use Domino’s built in Certificate Authority (CA) application.

1. The CA application installs with Domino, you should be able to find it under
the directory c:\lotus\domino\data. Open the database in Lotus Notes.

Note: Do not open the CA application in the administation application,
because it will not work.
 Appendix B. LDAP configurations 463

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-33 Domino CA application

2. Select the Create Key Ring with Self-Certified Certificate.

3. Fill out the certificate request as indicated on the following screen.

Important: Make sure that the keyfile and the certificate is saved under the
Domino data directory, for example: c:\lotus\domino\data.
464 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-34 Creating a self-certified certificate

4. click the Create Key Ring with Self-Certified Certificate and Domino will
generate the keyring with the stash file and save it in the Domino data
directory.

5. Close the CA application in Lotus Notes.

6. Start the ikeyman tool that comes with the IBM HTTP Server, capale of
reading the .kyr files, and open the keyring file you have just created:
LDAPSSLServer.kyr.

7. Export the Key Pair certificate under the name: LDAPSSLServer.arm, to the
Domino data directory, c:\lotus\domino\data.

8. Close the ikeyman application.

Enable SSL on Domino Server
Enable SSL for the Domino server by modifying the Server document stored in
the server’s Notes Name & Address Book.

1. Make sure you have the keyring file, LDAPSSLServer.kyr, and password stash
file, LDAPSSLServer.sth,in the server’s data directory, c:\lotus\domino\data.
 Appendix B. LDAP configurations 465

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
2. Launch Domino Administrator, and make sure that Use directory on field
point to your Domino Server.

3. Select Configuration tab.

4. On the left panel expand Server section and click Current Server
Document. You will be presented with server document from your server’s
Name and Address Book.

5. Click Edit Server and select the Ports / Internet Ports tab.

6. In the SSL key file name field put your key ring file name that you have
created before. In our case the file name was LDAPSSLServer.kyr

7. click the Directory tab and modify the following fields:

SSL port number: 636

SSL port status: Enabled

8. Other fields you can leave default. Picture below presents our server
document from the scenario tested in this book.

Figure 12-35 Domino LDAP SSL configuration

9. Click Save and Close on the top of the server document.

10.You should restart your server in order for the changes to take effect.
466 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
After your server restarts you can verify if the LDAP server is listening on port
636. After issuing the command sh ta at the server console a message appears,
similar to the following one.

Look for the line on the console:

LDAP Server Listen for connect requests on TCP Port:389 SSL Port:636

This line will tell you that the LDAP server is running and listens on the
non-secure and on teh secure port.

Configuring WebSphere to use SSL
WebSphere Application Server has to have the LDAP server certificate, in ordert
to participate in the SSL connection. For this reason, you have to import the
LDAP server’s SSL certificate into WebSphere’s server trust file.

1. Open the ikeyman tool that comes with WebSphere, capable to handle the
.jks files, open the server trust store file, if you are using the dummy keystore,
open the <WebSphere_root>\etc\DummyServerTrustFile,jks.

2. Import the LDAPSSLServer.arm as a signer certificate; use the file from the
Domino server, you will have to copy the .arm file to your WebSphere server
machine.

3. Close the ikeyman utility.

To create a new SSL entry and configure WebSphere to use it to connect to the
LDAP server, follow the steps from Section , “Configuring secure LDAP (LDAPS)
connection” on page 325 using the following information.

iPlanet Directory Server
In this section, we will cover the steps required to configure WebSphere with
NetScape iPlanet Directory Server V5.0. In this scenario, we have installed
Access Manager using the native installation method.

Configuring WebSphere to use iPlanet Directory Server
In order to configure WebSphere’s access to iPlanet Directory Server, we must
first define a user entry for WebSphere to use for binding to the directory, as we
did for IBM Directory Server.

The only change we have made is that we are now using a directory suffix of
o=tamral,c=us instead of o=itso.

After you have created your user entry, WebSphere is ready to be configured to
use iPlanet Directory Server as it’s user registry.
 Appendix B. LDAP configurations 467

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
1. Start the WebSphere Administrator’s Console. Once you have started the
console, login, and select Security -> User Registries -> LDAP. This will
display the LDAP User Registry panel.

2. Fill out the LDAP configuration page as follows:

Server User ID: enter either the fully qualified Distinguished Name (DN) for
the WebSphere server ID user, we used the DN:
cn=wasadmin,o=tamral,c=us.

Server User Password: enter the password for your user ID.

Type: Netscape.

Host: enter the fully qualified DNS name of your iPlanet Directory Server. In
our configuration, our host name is tivoli9.svo.dfw.ibm.com.

Port: 389

Base Distinguished Name: enter the suffix under which your user entries for
WebSphere will be defined in your directory. In our configuration, this was
o=tamral,c=us. This value is the base from which all user searches will be
conducted.

Click OK at the end.
468 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-36 LDAP configuration for iPlanet LDAP server
 Appendix B. LDAP configurations 469

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
3. WebSphere will validate your entries and display the Global Securty page,
Enable global security.

4. Scroll down the Configuration panel and select LDAP for the Active User
Registry selection.

5. Click the OK button. Once WebSphere validates your configuration, and
returns with no errors, save your current configuration. You will then need to
stop and restart your WebSphere server before proceeding.

Once you have restarted your WebSphere server, open the WebSphere
Administrative Console in your browser. You will now see, in addition to a user ID
field, a Password field is displayed. To login, use a valid user ID and password.
You have now successfully configured WebSphere to use the NetScape iPlanet
Directory Server as its user registry.

Configuring WebSphere SSL access to iPlanet Director Server
Now that we have configured WebSphere, we will now proceed, as we did with
the IBM Directory Server, to secure our connection using SSL. As with the IBM
Directory Server scenario, we need to establish a trusted relationship between
WebSphere and our iPlanet Directory Server. Unlike IBM Directory Server,
however, the iPlanet Directory Server does not allow us to generate a self-signed
key for use with its server. We will have to obtain a server certificate from a
Certificate Authority (CA). In our scenario, we used our own CA to generate the
certificates being used. In your environment, you may well be using a
commercial CA to accomplish this task. Regardless, the steps are basically the
same; only the details as to how to obtain your certificate, and your root CA
certificate will differ.

Obtaining a server certificate for iPlanet Directory Server
In order to obtain a digital certificate for our iPlanet Server, we must first build a
certificate request to send to a CA. This certificate request will contain the
identity information of our iPlanet Directory Server, as well as the public key for
the corresponding private key that the Directory Server will generate for our
request. The process of obtaining a certificate from our CA is what establishes
trust; the CA will verify by some means the identity of the requestor for a
certificate, and will sign the certificate, establishing its authenticity. Thereafter,
any entity which receives the certificate, can, by virtue of the signing CA,
establish that the certificate is indeed valid, presuming of course that the
recipient also trusts the signing CA.

Note: In our case, we used the user ID and password we defined for the
Server User ID on the LDAP User Registry’s panel . Under the Security
Center, you could select Manage Console Users to define additional user ID’s,
however, they must first be defined in your directory server.
470 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
To request, and generate, a server certificate for iPlanet Directory Server, follow
these steps:

1. Open your iPlanet console, and highlight your iPlanet server as shown below:

Figure 12-37 iPlanet Directory Server console

2. On the upper right side of the pane, click the Open button.

3. The Directory Server Management panel will display. On this panel, click
Manage Certificates to display the Manage Certificates panel. If this is the
first time you have selected this task, the Set Security Device panel will
display. At this time, chose a password to protect your directory server
keystore. And be sure you remember it.
 Appendix B. LDAP configurations 471

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-38 iPlanet Directory Server Manage Certificates panel

4. Select the Server Certs tab as shown, and then click the Request... button.
This will start the Certificate Request Wizard.

5. We are going to request our certificate manually. click the Request
certificate manually button as shown below:

Figure 12-39 iPlanet Certificate Request Wizard panel 1

6. click the Next > button. The second panel of the wizard, Requestor
Information, will then display, as follows.
472 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-40 iPlanet Certificate Request Wizard panel 2

7. On this panel, we will enter the information required by our CA to identify our
directory server. The actual values you enter will be specific to your CA. The
Server name field is required, and must match the DNS name of your director
server. This name must be the fully qualified DNS name, and not just the host
name. Depending on your environment, enter the values required and when
finished, click Next >.

Figure 12-41 iPlanet Certificate Request Wizard panel 3

8. The Token Password panel will then be displayed. in the Enter the password
to access token field, enter a password to use to install your certificate once
you have received it from your CA. After entering a password, click the Next >
button, and the following panel will be displayed.
 Appendix B. LDAP configurations 473

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-42 iPlanet Certificate Request Wizard panel 4

9. On the Request Submission panel, you can select to either copy the
certificate request to the clipboard, or save the request to a file. Depending on
your CA, you will chose one or the other option. The CA we are using requires
us to paste the certificate request into a browser window, so we chose Copy
to Clipboard. After storing your certificate request in the format you require
for your CA, click Done. This will close the Certificate Request Wizard.

10.After saving your certificate request, you now need to send the request to
your CA. As we stated earlier, the CA we are using uses a browser interface
to paste the request into. Some CA’s will require you to email the request. In
either case, at some point the CA will generate a public certificate for our
request, and will have some process for obtaining the certificate from them. In
our case, we downloaded the certificate from our CA once it was approved.
Some CA’s will send an email. In either case, once we receive our certificate
back from the CA, we next need to install it. To do this, we must return to the
Manage Certificates panel for our iPlanet Directory Server. Once there, click
the Install.. button. The first panel of the Certificate Install Wizard will then
display, as shown below.
474 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-43 Certificate Install Wizard panel 1

11.To install our certificate, we must first specify the location. In our environment,
we download the certificate, so we chose in this local file. If you have placed
your certificate into the clipboard, then select in the following encoded text
block, and click the Paste from Clipboard button. Once you have entered
the certificate location or pasted it into the panel, click the Next> push button,
and the following panel will be displayed.

Figure 12-44 Certificate Install Wizard panel 2

12.On this panel, the details of our new certificate are displayed. Note that the
certificate is issued to our iPlanet Directory Server, and that it has been
issued by our CA. click the Next> button, and the third panel of the wizard will
display as follows.
 Appendix B. LDAP configurations 475

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-45 Certificate Install Wizard panel 3

13.On this panel, we need to enter a name for the certificate. The name entered
will be used in the iPlanet Directory Server certificate database to identify this
certificate. We have chosen to name our certificate WAS50-SSL-cert. Note
that the Certificate type is Server Certificate. Once you have entered the a
name for your certificate, click the Next> button, and the next panel will
display.

Figure 12-46 Certificate Install Wizard panel 4

14.On this panel, we need to enter the token password we specified above when
we made our certificate request. In the Enter the password to access the
token: field, enter the password you specified, and then click the Done push
button to complete the certification installation. The Manage Certificates
476 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
panel, shown below will then be redisplayed. The new certificate we just
installed is now shown, displaying the certificate name we specified above.

Figure 12-47 Manage Certificates panel with installed certificate

Now that we have our server certificate for our directory server, we are ready to
begin configuring WebSphere to use an SSL connection to our iPlanet Directory
Server.

Configuring iPlanet Directory Server for SSL access
Wow, was that a lot of work. But it was worth it. We are now ready to configure
our iPlanet Directory Server for SSL access. To begin, select the Configuration
tab on your iPlanet console. Then on the configuration panel, select the
Encryption tab. The following panel will be displayed.
 Appendix B. LDAP configurations 477

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-48 iPlanet Encryption settings

On this panel, we will configure our iPlanet Directory Server to allow SSL access.
Select the Enable SSL for this server check box. Also select the Use this
cipher family RSA check box. In the Security Device: field, ensure that the
security device in which you installed your server certificate is selected. We used
the default device, internal (software) as shown. For the Certificate field, we
need to select the server certificate we just finished installing. In our case, that
was WAS50-SSL-cert. Now, click the Settings button, and the Cipher
Preference panel will be displayed as shown below.
478 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-49 Cipher Preference panel

Select the SSL 3.0 tab, and verify the cipher keys are selected as shown above.
Then click the OK button. The Encryption settings panel will then be redisplayed.
The Allow client authentication radio button under Client Authentication is
selected by default, which we accepted for our configuration. Once you have
completed your configuration settings, click the Save button. We have now
configured iPlanet Directory Server to allow SSL access.

WebSphere SSL configuration
We are now ready to begin the configuration of WebSphere for SSL access to
our iPlanet Directory Server. To begin, we must first set up the trust relationship
to our directory server. To do this, we are going to set up a new keystore file for
use by WebSphere. In this keystore, we are going to add the CA certificate from
the CA that issued the server certificate for our iPlanet Directory Server as a
trusted signer. When we do this, it means that for any certificate that WebSphere
receives using this keystore, it will trust that certificate because it is signed by our
CA.

Before proceeding, we need to obtain the public certificate from our CA.
Depending on the CA you are using, the method used will vary. In our case, we
had the option to download the CA using a browser, and saved it on our
WebSphere system. You will need to do the same before proceeding. Note that
some CA’s will give you an option as to what format to use when obtaining its
certificate. In this case, request the Base64-encoded format.
 Appendix B. LDAP configurations 479

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
To create our keystore file, follow the steps from Section , “Generating a
self-signed certificate for the Web Container” on page 302.

Create a new key database using the following information:

Key database type: JKS

File name: iPlanet.jks

Location: /usr/WebSphere/AppServer/etc

Import the certificate using the following information:

Certificate format: Base64-encoded ASCII data

Certificate file name: export_Tivoli10.cer

Location: /tmp

Now that we have our keystore file, we are now ready to begin the configuration
of WebSphere for SSL access to our directory server. To begin, login to your
WebSphere Administrative Console from your browser, and follow these steps.

1. The first thing we need to do is to define the SSL settings to use our keystore
file. Follow the steps from Section 10.8.1, “SSL configurations” on page 258
using the information below:

Alias: iPlanetssl

Key File Name: /usr/WebSphere/AppServer/etc/iPlanetkey.jks

Key File Password: type in the password for the key file

Key File Format: JKS

Trust File Name: /usr/WebSphere/AppServer/etc/iPlanetkey.jks

Trust File Password: type in the password for the key file

Trust File Format: JKS

Security Level: High

Tip: from a battle scarred veteran protigy “grasshopper”.

You really, really need to create a new keystore file. If you don’t, you will get to
spend this Friday night in the lab, like those poor IBM Directory Server folks
who ignored my tip got to do last Friday night. Of course, you didn’t read my
tip to them, did you? That makes perfect sense, as you are working with
iPlanet Directory Server. May I suggest that you refer to my tip in their section.
Then you can decide how you want to spend this Friday night.
480 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
2. Select Security -> User Registries -> LDAP and provide the following
information for the LDAP configuration:

Server User ID: enter the DN for your WebSphere server id. In our example,
this is cn=wasadmin,o=tamral,c=us.

Server User Password field: enter the password for your server id.

Type: Netscape

Host: enter the DNS name of your iPlanet Directory Server. In our example,
we entered tivoli9.svo.dfw.ibm.com.

Port: 636

Base Distinguished Name (DN): enter the directory suffix under which your
WebSphere users are stored in your directory server. In our example
o=tamral,c=us as our suffix.

Select the SSL Enabled checkbox.

SSL Configuration: iPlanetssl

After finishing your entries, click OK.

3. The global security settings will appear, check the Enable button for security.
Select LDAP in the Active User Registry field, in case you have not done yet.
Click OK.

4. Once WebSphere validates your new configuration, you will need to save the
configuration, and restart your WebSphere server. If any errors are found, go
back and check your entries before saving.

Once you have restarted your WebSphere server, you will now be using SSL to
communicate with your iPlanet Directory Server.

Microsoft Active Directory
In this section, we will cover the steps required to configure WebSphere
Application Server V5 to use Microsoft Active Directory as its user registry. To
use Active Directory, you must have a Windows 2000 domain in your
environment. To configure your WebSphere server to use Active Directory as its
user registry, follow these steps.

1. To begin, start the Active Directory Administration console by selecting Start
-> Programs -> Administrative Tools -> Active Directory Users and
Computers. The following panel will display.
 Appendix B. LDAP configurations 481

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-50 Active Directory Users and Computers console

2. On the left pane, select the Active Directory domain for you environment. In
our scenario, this is tivoli.svo.dfw.ibm.com. We are now going to create an
organizational unit. Select Action -> New -> Organizational Unit. The
following panel will be displayed.

Figure 12-51 Active Directory New Ob ject panel

3. Enter the name for your organizational unit. In our example, we used tamral.
click the OK button. The Active Directory console will then be displayed, and
our new organizational unit will now be listed in the left pane. To add the
482 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
WebSphere administrators id to Active Directory, select our new
organizational unit. Then select Action -> New -> User. The following panel
will then be displayed.

Figure 12-52 Active Directory New User panel

4. On this panel, we will define our administrator ID for WebSphere. In the First
name and Last name fields, enter a value to identify this id as the WebSphere
administrator id. We used Websphere for First name and Administrator for
Last name. In the User logon name field, enter the id for the WebSphere
administrators ID, we used wasadmin. After making your entires, click the
Next> button. The following panel will be displayed.
 Appendix B. LDAP configurations 483

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-53 New User password panel

5. On this panel, enter the password for the wasadmin ID in the Password and
Confirm password fields, and select the Password never expires check box.
After completing your entries, select the Next> button.

6. On the next panel, click the Finish button. Our WebSphere administrator ID
has now been created.

To view our new user, refresh the Active Directory console panel, and highlight
our organizational unit, tamral. The following panel will be displayed.
484 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axLDAPconf.fm
Figure 12-54 New Websphere administrator user in Active Directory

Configuring WebSphere to use Active Directory
Now that we have created our WebSphere administrator ID, we can configure
WebSphere to use Active Directory as its user registry. To configure Active
Directory as the user registry for WebSphere, follow these steps.

1. Start the WebSphere Administrators console, and login. Select Security ->
User Registries -> LDAP.

2. Provide the following information on the LDAP configuration page:

Server User ID: enter your Active Directory user id. We entered wasadmin (this
is the same ID created in the Active Directory registry in the previous section).

Server User Password: enter the password for your administrator ID.

Tyep: Active Directory

Port: 389

Base Distinguished Name: enter the location within Active Directory that your
WebSphere users will be defined. For Active Directory, you must use this field
to define the starting point for WebSphere to use when doing searches. In our
example, we entered dc=tivoli,dc=svo,dc=dfw,dc=ibm,dc=com, the base
suffix for our Windows domain tivoli.
 Appendix B. LDAP configurations 485

6573axLDAPconf.fm Draft Document for Review November 6, 2002 2:37 pm
Bind Distinguished Name: enter the DN of your WebSphere administrator
user. This field is required when using Active Directory as a user registry. By
default, Active Directory does not allow anonymous users to access group
membership, and other group and user information which WebSphere
requires access to. For our administrator, the fully qualified DN we entered is
cn=Websphere Administrator,ou=tamral,dc=tivoli,dc=svo,dc=dfw,dc=ibm,
dc=com.

Bind Password: enter the password for your WebSphere administrator.

Click OK.

3. The Global Security panel will be displayed, Enable global security, scroll
down and in the Active User Registry field, select LDAP.

4. Click the OK button.

5. Your updates will now be validated, if no errors are found, save your
configuration.

6. Restart your WebSphere server, and start the WebSphere Administrative
Console. You will now be prompted to enter a user ID and password.

You have now completed the configuration of WebSphere using Active Directory
as its user registry.

Testing LDAP connections
There are cases when you can run into difficulties when configuring WebSphere
to use LDAP directory as a user registry. In these cases the first step is to isolate
the problem by testing your LDAP connection.

For testing you should try to connect to the LDAP server from the WebSphere
machine. Test the LDAP connection without security, then test the connection
with security (LDAPS) if you are planning to use that.

For testing purposes you can use any LDAP client on the server machine,
ldapsearch command line utility from the IBM Directory Server distribution (part
of the client), ldapsearch command line utility from Lotus domino, Netscape or
Mozilla’s address book search, or Microsoft Outlook (Express) address book
search.

When you are testing the connection make sure you provide the binding dn with
the password. When testing the secure connection (LDAPS) make sure you
have the LDAP server’s public certificate installed or provided as a paramater for
the client; if client-side authentication is configured, import the client certificate
into the LDAP server’s keyring.
486 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Appendix C. Single Sign-On with Lotus
Domino

This chapter discusses Single Sign On Scenarios between IBM WebSphere
Application Server 5.0 and Lotus Domino Application Server. Scenarios
presented here include:

� WebSphere Application Server and Lotus Domino Application Server based
on user registry stored in IBM SecureWay Directory

� WebSphere Application Server and Lotus Domino Application Server based
on user registry stored in Domino LDAP directory.

C

© Copyright IBM Corp. 2002 487

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
WebSphere-Domino SSO scenarios

In scenarios presented in here we have used the following software products:

� Windows 2000 with Service Pack 2.

� IBM SecureWay Directory Server V3.2.2 for Windows.

� IBM DB2 Universal Database V7.2 fp5 for Windows.

� IBM HTTP Server 1.3.24 for Windows as the Web server installed on the
same machine as the WebSphere server.

� Lotus Domino Server R 5.06a.

� WebSphere Application Server V5.0

� Microsoft Internet Explorer 5.5

There are two different scenarios discussed in this Appendix:

� Using SecureWay Directory Server for user registry

� Using Domino LDAP for user registry

Using SecureWay Directory Server for user registry
Scenario described in this chapter was based on LDAP schema used also in
Tivoli Access Manager examples. Please refer to Chapter 12, “Tivoli Access
Manager” on page 367 from more details. Make sure that users defined in LDAP
directory are properly mapped into user roles in ITSOBank application. We have
tested the scenario with users defined under o=itso suffix. Picture below presents
LDAP directory structure used in this scenario.
488 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Figure 12-55 Sample SSO Domino - WebSphere using IBM SecureWay Directory

1. A Web user requests a protected resource from the Web server. In case of
Domino Server the request is to enter a comment into ITSOBankComments
database. In case of a WebSphere user requests a bank transfer.

2. The Web server prompts the user for the authentication information.

3. The user responds to the challenge by supplying the information (user name
and password or certificate).

4. The Web Server contacts the LTPA server (Domino or WebSphere) which
connects with the IBM SecureWay Directory to verify the authentication
information.

5. If the information supplied for the user is correct, the IBM SecureWay
Directory responds to the LTPA server with the validated information.

6. The LTPA server uses the returned values to check whether the user has
access to the requested resource and issues an LTPA token for the user. The
Web server sends the token to the user as an HTTP cookie, which is stored in
the user’s browser, and serves the requested resource (opening the
ITSOBankComments database in the case of Domino or
CustomerTransfer.html in the case of WebSphere).

7. Once the user is authenticated and has the cookie available, the user can
request another protected resource to Domino or WebSphere.

LDAP
DB2

LDAP server

webbank
database

Domino server WebSphere
server

Webbank
application

SSO Domino - WebSphere

LDAP
DB2

LDAP server

webbank
database

Domino server WebSphere
server

Webbank
application

SSO WebSphere - Domino

8
7

1
2

3
6

4

5

1
2

3
6

7

8

4

5

 Appendix C. Single Sign-On with Lotus Domino 489

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
8. Domino or WebSphere validates the token provided for the user and tells the
Web server to send the requested resource to the browser (as long as the
user has access to that resource) without prompting again for user
information.

Next sections assume that you have installed and configured WebSphere
Application Server with Global Security, LTPA and LDAP user registry enabled.
For more information how to do that please refer to Chapter 10, “Administering
WebSphere security” on page 233.

Enabling Single Sign-On for WebSphere
In order to configure global security setting for SSO go through the following
steps:

1. Configure your WebSphere Application Server to user LDAP user registry

We assume that WebSphere server is configured to use LDAP user registry.
We will not describe detail configuration steps in this chapter. For more
information on how to use WebSphere with LDAP user registry please refer to
Section 10.13, “Connecting to directory servers (LDAP)” on page 315.

Our LDAP user registry for WebSphere has been configured with the
following attributes:

Server User ID: cn=wasadmin,o=ITSO

Server User Password: password for wasadmin

Type: SecureWay

Host: secsvr01.security.itso.ibm.com

Port: 389

Base Distinguished Name (DN): o=ITSO

Bind Distinguished Name (DN): cn=root

Bind Password: cn=root user’s password

Search Time-out: 60

Other parameters you can leave as default.

2. To enable LTPA for WebSphere follow the steps from Section 10.6.2,
“Configuring LTPA for WebSphere” on page 251.

3. To generate the LTPA keys for Single Sign-On follow the steps from
Section 10.6.3, “Generate LTPA keys” on page 252.

4. To enable LTPA authentication for WebSphere follow the steps from
Section 10.6.4, “Enable LTPA Authentication for WebSphere” on page 253.
490 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Configuring Domino to use IBM SecureWay Directory
To authenticate Web users using the credentials included in the IBM SecureWay
Directory, perform the following steps:

1. Create the Directory Assistance Database.

Domino uses this database to perform searches in other LDAP-compliant
directories (such as secondary Domino directories or other LDAP Directory
Servers like IBM SecureWay Directory).

To create a new Directory Assistance database, start the Domino R5
Administration client with a Notes administrator ID, then from the Domino
Administrator menu:

2. Choose File -> Database -> New. The new database Dialog Box is
displayed.

3. Select the server where you want to create the new database. You need to
create this database on the server. If You are running Administration Client
from your local workstation do not left this field set to Local.

4. Enter a title for the database, for example, Directory Assistance.

5. Enter a file name for the database, for example, da.NSF.

6. Click the Template Server... button and select the Domino server that stores
the Directory Assistance template (DA50.NTF); highlight it. Make sure that
Inherit future design changes is selected, then click OK. The New
Database window from our scenario is presented on the picture below.

Figure 12-56 Creating Directory Assistance database in Lotus Notes

7. Click OK to create a database.
 Appendix C. Single Sign-On with Lotus Domino 491

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
8. If more than one Domino server is going to use that database you will need to
replicate it to all these servers.

9. Identify the directory assistance database on the server that will use it. In the
Domino Administrator, switch to the Configuration tab.

10.In the Use Directory on field, choose the server whose Domino Directory you
want to modify. In our case it was Domino1/ITSO.

11.On the left panel click Server -> Current Server Document, this will open
document describing your server.

12.Edit the document and on the Basic tab enter the file name of your Directory
Assistance database into the Directory Assistance Database Name field. (If
the Directory Assistance database is in a subdirectory, provide the path
relative to the data directory, for example: DIRECTORIES\DA.NSF).

13.Save and close your Server Document. Server document from scenario
presented in this book is shown below.

Figure 12-57 Identify directory assistance database on the server

14.In the same place, on the left pane select Directory -> Directory Assistance
and click Add Directory Assistance button to create a new entry for
directory assistance.

15.When directory assistance document is opened specify the following settings
on the Basic tab:

Domain type: LDAP

Domain name: the name of the domain this entry will describe. Domain
name must be unique. In our scenario we used SecureWay.
492 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Company name: the name of the company associated with this directory,
We have used IBM in the example.

Search order: specifies the order in which this directory is searched
relative to other directories in Directory Assistance database. Because we
do not have more directories to search we can leave this field blank.

Group Expansion: select Yes to allow Directory Assistance to verify Web
user membership when a group is included in a database ACL.

Nested Group Expansion: select Yes to allow a lookup of names in groups
nested within LDAP directory groups.

Enabled: select Yes to enable directory assistance for this entry.

Basic settings from the scenario presented in this book are shown below.

Figure 12-58 Basic settings for Directory Assistance entry

On the Rules tab specify the following settings:

You can specify one or more naming rules that correspond to the
hierarchical names of entries in the directory. Directory assistance uses
naming rules to determine the order in which to search directories when
users provide hierarchical names. For our example, we set the rule
//*/*/*/* to search for all names in the directory. For more information on
Naming Rules and Directory Assistance please refer to Domino R5
Administration Help and Administrator’s Guide.

Enable: select Yes to enable this specific rule.

Trusted for Credentials: select Yes to allow Domino to authenticate only
web clients with names that match the rule.

On the LDAP tab specify the following settings:

Hostname: specify DNS Host name for the IBM SecureWay directory, for
example secsvr01.security.itso.ibm.com
 Appendix C. Single Sign-On with Lotus Domino 493

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
Optional Authentication Credential: the user name and password of the
user that Domino server will use when binding to LDAP server. If you do
not specify here anything, domino will attempt to bind as anonymous user.
In our example we have used cn=root user name.

Base DN for search: enter the starting point for LDAP searches. This field
is required for SecureWay Directory. In our example we have use o=itso.

Perform LDAP searches for: Notes Clients/Web Authentication.

Channel encryption: choose None to allow Domino server to connect to
LDAP without SSL.

Port: 389

Timeout: 60

Maximum number of entries returned: 100.

LDAP tab settings from the scenario tested in this book are presented in the
picture below.

Figure 12-59 LDAP settings for directory assistance entry.

Note: The name and password must correspond to a valid name and
password in the directory of the LDAP directory server. If you did not
enter a name and password, the Domino server attempts to connect to
the LDAP directory server anonymously.

We also recommend using a Notes secret encryption key to encrypt the
Directory Assistance document so that only administrators with the
encryption key can see the contents of the User name and Password
fields; for more details, refer to the Domino R5 Administration Help and
Administrator’s Guide.
494 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
16.Save the document.

17.Make sure that the IBM SecureWay Directory is running by checking the list of
Windows services on the SecureWay machine and using the TCP/IP ping
command to test the connection to the SecureWay Directory machine from
the Domino Server machine.

18.Restart the Domino server by entering the restart server command in the
Domino Console.

Enabling Single Sign-On for Domino
Setting up Single Sign-On for the Domino Server involves two main steps:

� Creating a Web SSO Configuration Document.

� Enabling Single Sign-On.

Follow these steps to enable SSO for Domino:

1. Create a new Web SSO Configuration Document in the Domino Directory
database.

This action is only required once (it is only possible to create a Web SSO
Configuration document once in your domain) and it should be replicated to
all servers participating in the Single Sign-On domain. This document is
encrypted for all the participating servers and contains the LTPA keys used to
authenticate user credentials.

2. Open the Domino Directory and select Server -> Servers to display the view.
Click the Web action button and select Create Web SSO Document in the
context menu.

3. A new Document will be displayed with Token Name field set to LtpaToken.
This name cannot be modified.

4. Enter the DNS domain in the Token Domain Field. This value must coincide
with the value specified in the Domain field in WebSphere when you have
configured Single Sign-On panel. This domain name is used when the HTTP
cookie is created for Single Sign-On, and determines the scope to which
Single Sign-On applies. For our example, we set this domain to
security.itso.ibm.com.

5. Choose the Domino servers that are going to participate in the SSO scenario
(group names are not allowed), for example: Domino1/ITSO.

6. In the Expiration field enter the maximum number of minutes that the issued
token will be valid field. The Default is 30 minutes. In a real life scenario you
should match this value with expiration times set on others Single Sign-On
participating servers.
 Appendix C. Single Sign-On with Lotus Domino 495

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
7. Click the Keys... Action and select Import WebSphere LTPA Keys from the
drop-down menu.

8. In a dialog box specify the full path name for the WebSphere LTPA keys file
exported previously from WebSphere.

9. Click OK. A new dialog box will appear, prompting the user for the LTPA
password specified when the keys were generated.

10.Enter the password and click OK button. When import process completes a
confirmation will be displayed.

11.A new WebSphere Information section will appear in the document, as shown
in figure below.

Figure 12-60 WebSphere Information in the Web SSO configuration document

The LDAP realm is read from the WebSphere Import File and specifies the
LDAP host name included in the WebSphere LDAP settings. This name must
also coincide with that in the Host Name field specified in the LDAP
configuration settings in the Directory Assistance database. When a port is
specified in the WebSphere LDAP configuration settings, it will be included in
the LTPA key export file in the following format:

<full dns host name>\:389.

In our example the line was as follows:

secsvr01.security.itso.ibm.com\:389.

But when the LTPA keys are imported in Domino in the LDAP Realm Name,
the backslash disappears:

secsvr01.security.itso.ibm.com:389.

Make sure you add a backslash (\) prior to the colon (:) and replace the value
above with the following: secsvr01.security.itso.ibm.com\:389.

The LTPA version denotes the version of the WebSphere LTPA
implementation. It is read from the LTPA importing file.
496 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
12.Click the Save and Close button. The document will be saved. To check if the
document is present in the Domino Directory, select Server -> Web
Configurations View and expand the * - All Servers - section. The new
document created should be displayed as Web SSO configuration for
LtpaToken.

13.You have now completed the configuration steps for Single Sign-On on
Domino. Now we need to tell the server to use this configuration and enable
Single Sign-On in Domino server. Open the Server document and select
Ports -> Internet Ports -> Web tab. Make sure that in the Server document,
the TCP/IP port status is enabled and the Anonymous Authentication
option is set to No, as shown below.

Figure 12-61 TCP/IP port status settings for Server Document

14.Configure the Domino HTTP session support by selecting the Domino Web
Engine tab (Internet Protocols -> Domino Web Engine) of the Domino
server Document.

15.In the Session Authentication field select Multi-Server. Selecting this
option allows the Web user to log on once in the Domino Server and then gain
 Appendix C. Single Sign-On with Lotus Domino 497

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
access to another Domino Server or WebSphere server without logging on
again.

16.Keeping the Server document open switch to the Security tab. Go to the Web
server access section and select Fewer name variations with higher
security in the Web Server Authentication field.

Selecting this level of restriction makes Domino servers less vulnerable to
security attacks by refining how Domino searches for names in the LDAP
directory. This option requires users to enter the following user name formats
in the user name and password dialog box:

Using LDAP Directory for authentication
DN (Full Distinguished Name)
CN (Common Name)
UID or UID with UID= prefix

17.Save the Domino Server document.

18.Restart the HTTP server task by entering the tell http stop and load http
commands or the tell http restart command in the Domino Console. A
new message will appear in the console.

Figure 12-62 Restarting Domino http task with SSO enabled

If a server enabled for SSO cannot find a Web SSO Configuration Document
or if it is not included in the Server Names field of the SSO document, so the
document cannot be encrypted, the following message should appear in the
Domino Server console:

HTTP:Error Loading Web SSO configuration.Reverting to single-server session
authentication.
498 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
This completes configuration of the Domino Server for Single Sign-On with
WebSphere. We will now describe what changes you need to provide to
ITSOBankComments database in order to test the configuration using ITSOBank
application.

Configuring the ITSOBank Domino Application
To test Single Sign-On scenario using ITSOBank application and
ITSOBankComments database the Database Access Control List (ACL) needs
to be modified by adding the LDAP Users.

1. To add new user names or groups to the ACL, use the LDAP format for the
name, but use forward slashes (/) as delimiter rather than commas (,). For
example, if the name of a user in the LDAP directory is:

cn=clerk01,o=ITSO

then you should enter in the database ACL:

cn=clerk01/o=ITSO

2. To add the name of a non-hierarchical LDAP directory group into an ACL, do
not include the name of an attribute as part of the entry, but only the value for
the attribute. For example, if the name of the LDAP group is: cn=managergrp,
in the ACL enter only: managergrp. However, if the name of the group is
hierarchical like: cn=managergrp,o=ITSO, then you should enter:
cn=managergrp/o=ITSO.

3. To add users and groups to the ACL database, make sure that you have
manager access to the database and perform the following tasks:

a. From the Notes Client right-click database icon on the workspace and
select Database -> Access Control.

b. This will open access control dialog box.

c. Set the following ACL for the ITSOBankComments Application database.
Table shows only entries related to the application we do not specify here
all the entries as presented in the next picture. Similarly we did not change
default authorizations to test the scenario. That is why Authorization
column is left blank.

Note: When the LDAP attributes correspond with the attributes used in
Notes (for example: cn,ou,o,c), the ACL will not display the attributes. For
example: cn=manager01/o=ITSO appears in the ACL as manager/ITSO
 Appendix C. Single Sign-On with Lotus Domino 499

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
Table 12-7 Access control list specified for ITSOBankComments application.

Figure 12-63 ITSOBankComments application ACL

Testing Single Sign-On
We demonstrate the Single Sign-On between Domino and WebSphere in the
following scenarios:

� Testing Single Sign-On between Domino and WebSphere

� Testing Single Sign-On between WebSphere and Domino

Testing SSO between Domino and WebSphere
The Web user wants to create a new Comment Document in the
ITSOBankComments application database, specifying the database URL in its
browser. In our case, this is:

http://dominosrv.security.itso.ibm.com/ITSOBank.nsf/Comments?OpenForm

People, servers,
groups

User type Access level Authorization

Default Unspecified NoAccess None

clerk01/ITSO Person Author

accountant01/ITSO Person Author

manager01/ITSO Person Author
500 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
As we have defined non anonymous access both to the server and database,
Domino will present default server login page, as shown in the picture below.

Figure 12-64 Default Domino server login page

When user enters his user name and password and clicks Login button, Domino
will start to perform searches in LDAP and verifying user and group membership.

After successfully authenticating the user Domino server finds that he has Editor
access to the ITSOBank database. It creates LTPA token and sends it to web
browser as HTTP cookie. You can view this cookie by typing the following
command it the address bar (URL) of the web browser:

javascript:alert(document.cookie)

The cookie returned by the Web browser is presented on the picture below.

Figure 12-65 LTPA token cookie

As a result of the successful login, user clerk should receive a Comments form
from ITSOBankComments application.
 Appendix C. Single Sign-On with Lotus Domino 501

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-66 ITSOBank Domino application

Form field From should be filled already with the name clerk01. After entering
subject, comments and pressing Submit button, Domino Server will save
comments document into a database and present a “Thank you” page to the
Web user.
502 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Figure 12-67 Successful submission of comments

By clicking on the link “Return to our Public web site” user should be redirected to
index.html page running on WebSphere Application Server. Then after selecting
Customer Transfer link user clerk should not be prompted for user name and
password.

When requesting Internal bank transfer, the user will be presented with
“Authorization error” page as the user is not entitled to perform internal transfers.

Testing Single Sign-On between WebSphere and Domino
In this case, the user wants to make a new bank transfer specifying the
ITSOBank application URL in its browser. In our case, this is:

http://appsrv02.security.itso.ibm.com/itsobank/index.html

1. When clicking the link Customer Transfer the server prompts the user for
authentication information.
 Appendix C. Single Sign-On with Lotus Domino 503

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
Figure 12-68 ITSOBank login page

2. The user responds to the challenge by supplying the information (user name
and password) and clicking the Login button.

3. WebSphere will connect with the IBM SecureWay Directory Server to verify
the authentication information. If the information supplied is correct, the
directory server responds to WebSphere with the valid information.

4. WebSphere uses the returned values to check whether the user has access
to the requested resource (customertransfer.html) and issues an LTPA token
for the user.

5. The Web server sends the token to the user as an HTTP cookie, then opens
the customertransfer.html page

6. At this point, the user can type in the data for the transfer and submit it, go
into the domino server to submit comments.

7. When user enters the Comments URL:

http://dominosrv.security.itso.ibm.com/ITSOBank.nsf/Comments?OpenForm

he should not be presented with the Domino server login page. Domino
Opens Comments form with the From field already set to “clerk01”

This completes testing of Single Sign-On between Domino and Websphere when
user registry is stored in SecureWay directory.
504 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Using Domino LDAP for user registry
Following diagram presents a scenario for testing Single Sign-On when Domino
LDAP server is used a s common user registry.

Figure 12-69 Scenario Domino-WebSphere Single Sign-On using Domino LDAP

Log in with WebSphere
The followings steps will describe the Single Sign-On process between Domino
and WebSphere, when the user logs into WebSphere first.

1. A Web user submits a request to the Web server (HTTP Server) for a
protected resource, to make a new bank transfer.

2. The Web server prompts the user for the authentication information.

3. The user responds by supplying the information (user name and password or
certificate).

4. Then the Web server contacts the LTPA server (WebSphere), which connects
with the Domino Directory to verify the authentication information.

5. If the information supplied for the user is correct, Domino responds to the
WebSphere server with the validated information.

6. The server uses the returned values to check whether the user has access to
the requested resource, then issues an LTPA token for the user. The Web
server sends the token to the user as an HTTP cookie, which is stored in the

webbank
database

Domino server WebSphere
server

Webbank
application

SSO Domino - WebSphere SSO WebSphere - Domino

Domino
directory
database

6
5

1
2

3
4

webbank
database

Domino server WebSphere
server

Webbank
application

Domino
directory
database

7

5

1
2

3

4

8
6

 Appendix C. Single Sign-On with Lotus Domino 505

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
user’s browser and serves the requested resource (the
CustomerTransfer.html page in case of WebSphere ITSOBank application).

7. Once the user is authenticated and the cookie is available, that user can
request another protected resource from Domino or WebSphere.

8. Domino/WebSphere validate the token provided for the user and tell the Web
server to send the requested resource to the browser, as long as the user has
proper access to that resource, without prompting again with the challenge
information.

Log in with Domino
The followings steps will describe the Single Sign-On process between Domino
and WebSphere, when the user logs into Domino first.

1. A Web user submits a request to the Web server (Domino) for a protected
resource, to create a new Comment document in the ITSOBankComments
Application database.

2. Domino prompts the user for the authentication information.

3. The user responds by supplying the information (user name and password or
certificate).

4. Domino then verifies the authentication information in the Domino directory,
checks whether the user has rights to access to database and issues an
LTPA token for the user as an HTTP cookie, which is stored in the user’s
browser. It then serves the requested resource (it opens the new Comment
document).

5. Once the user is authenticated and the cookie is available, that user can
request another protected resource from Domino/WebSphere.

6. Domino/WebSphere validate the token provided for the user and tell the Web
server to send the requested resource to the browser, as long as the user has
proper access to that resource, without prompting again with the challenge
information.

The necessary steps to set up Single Sign-On between WebSphere and Domino
involves:

� Configuring Websphere to use Domino LDAP

� Enabling Single Sign-On for the WebSphere Application Server

� Enabling Single Sign-On for the Domino Server

Configuring WebSphere LDAP
For the detailed configuration information refer to the Section , “Lotus Domino” on
page 458 and follow the instructions from there.
506 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axDominoSSO.fm
Enabling Single Sign-On for WebSphere
After configuring WebSphere Application Server to use Domino LDAP, SSO
configuration is identical to the one discussed in previous section. Please refer to
, “Enabling Single Sign-On for WebSphere” on page 490 for details. Remember
that you should generate LTPA keys always after successful configuration of
LDAP user registry.

Enabling Single Sign-On for Domino
When using Domino directory as a user registry, Domino Server does not need to
use directory assistance as described in the previous section. After putting all the
application users and groups into your Domino directory, you can follow the
instruction from section , “Enabling Single Sign-On for Domino” on page 495 for
importing LTPA keys and enabling Single Sign-On for the Domino Server.

For our example scenario we have defined the following users and groups in
Domino Directory:

Table 12-8 Users and groups defined in domino directory for ITSO application

We have mapped Domino directory groups to a corresponing user roles in ITSO
bank application, and accordingly modified ACL in ITSOBankCopmments
application database.

If your server is already configured to use Single Sign-On, please remember that
reconfiguration does not mean creating new Web Single Sign-On Configuration
document. On a server it may only be one Web Single Sign-On Configuration
Document. So, if you have one already, you should edit it and import new LTPA
keys.

Testing Single Sign-On
For testing this scenario you can follow testing instructions from previosu section.
Please refer to , “Testing Single Sign-On” on page 500.

Important: Do not forget to enter domain name in the Single sign-on section
of the LTPA configuration panel.

Group name Group members

managergrp/ITSO manager01/ITSO

clerkgrp/ITSO clerk01/ITSO

accountantgrp/ITSO accountant01/ITSO

consultantgrp/ITSO consultant01/ITSO
 Appendix C. Single Sign-On with Lotus Domino 507

6573axDominoSSO.fm Draft Document for Review November 6, 2002 2:37 pm
508 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axAdminScript.fm
Appendix D. Using wsadmin scripting for
security configuration

This appendix gives a short introduction of WebSphere Application Server’s new
administrative scripting language and then provides some sample scripts.

The sample scripts provided here come handy when security changes need to
be performed on the system.

Please note that the scripts are very basic and not very intelligent, they will only
work in a single server environment and some information might be hard-coded
in the source.

With little modification you can change the scripts to take parameters from the
command line and perform modification according to the given parameters; or
change them to make it work in a cell not only on one application server.

D

© Copyright IBM Corp. 2002 509

6573axAdminScript.fm Draft Document for Review November 6, 2002 2:37 pm
wsadmin scripting
WebSphere Application Server 5.0 provides new administration scripting engine
that can be used to manage and deploy applications. Scripts are executed under
new tool wsadmin. The wsadmin client uses the Bean Scripting Framework
(BSF), and is based on JMX.

This appendix introduces scripting language and presents few simple examples
that can be customized for different purpose.

In WebSphere Application Server V4.0 wscp commands were used for both
configuration queries and updates, and operational commands. In V5.0, a
distinction is made between configurational and operational commands.

� Configuration functions - deal WebSphere Application Server V5.0 installation
and configuration

� Operational functions - deal with management of currently running objects in
WebSphere Application Server V5.0 installations.

Scripts deal with both categories of objects. For example, an application server is
divided into two distinct entities. One entity represents the configuration of the
server, which resides persistently in a repository on permanent storage. You can
create, query, change, or remove this configuration without starting an
application server process. The second entity represents the running instance of
an application server by a Java Management Extensions (JMX) MBean. This
instance can have attributes that you can interrogate and change, and
operations that you can invoke. These operational actions taken against a
running application server do not have an effect on the persistent configuration of
the server. The attributes that support manipulation from an MBean differ from
the attributes the corresponding configuration supports. The configuration can
include many attributes that you cannot query or set from the live running object.

When you run wsadmin in an environment where global security is enabled, you
will need to supply authentication information in order to communicate with
server. The user’s name and password may be specified either in command line
arguments for wsadmin or in sas.client.props file. Changes introduced into the
properties file will depend on whether RMI or SOAP connector is used to
communicate with the server. Remember that if you specify user’s name and
password in command line, it will override these information in properties file.

JACL language that is used in scripts allows to create procedures. Procedures
may be grouped into a profile files that can be passed to wsadmin in a command
line to create a custom environment for wsadmin execution. These procedures
can then be used as normal JACL commands. For more information about how
to create profiles please refer to WebSphere Application Server info center.
510 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axAdminScript.fm
Preparing and testing the wsadmin client
The wsadmin scripting tool can run with a command prompt where the user can
feed the commands to the interpreter and execute tem from a console; or
wsadmin can run in a silent mode where users can pass a script file as a
parameter to the tool and execute a whole sequence of commands.

The scripts provided below can be saved in files and feed then to the wsadmin
tool or you can also start wsadmin as a command line interpreter and run the
commands line-by-line from the scripts.

Since the wsadmin tool is basically a Java application accessing the WebSphere
Application Server, when global security is enabled the application has to provide
the right user name and password to be able to run the scripts.

There are different ways to pass the username and passwod, in the command
line or modifying the sas.client.props file.

Running the script with command line parameters
Issue the wsadmin command with the following parameters:

� -username <administrator_user_name>

� -password <administrator_password>

For example:

wsadmin -username cn=wasadmin,o=itso -password password myscript.jacl

Editing the sas.client.props file
Follow the steps to provide the user name and password in the properties file for
the client.

1. Open sas.client.props file in your text file editor, The file is located in
<WAS_INSTALL>/properties directory

2. Go to the section Authentication Configuration and find # JMX SOAP
connector identity

3. In the line com.ibm.SOAP.loginUserid= write your security server user ID (the
same that you have entered while configuring Global Security. If you are
using LDAP distinguished names do not put names in quotes, just write as
they are defined in LDAP server. For our test we have used LDAP user
cn=wasadmin,o=itso.

4. In the line com.ibm.SOAP.loginPassword= put the password for that user.

5. save the file and run wsadmin client without any parameters, You should get
the output similar to the presented below.
 Appendix D. Using wsadmin scripting for security configuration 511

6573axAdminScript.fm Draft Document for Review November 6, 2002 2:37 pm
Example 12-9 Example output after successful connection from wsadmin client

C:\>wsadmin

WASX7209I: Connected to process "server1" on node mka0klfc using SOAP
connector;
 The type of process is: UnManagedProcess
WASX7029I: For help, enter: "$Help help"
wsadmin>

Now you are ready to start writing scripts.

Sample scripts
This section lists some useful scripts to make the configuration more convenient
for WebSphere.

Each script will show and teach something new with the scripting language, and
at the end you will learn how to create your own scripts based on these. Also you
can always refer to the InfoCenter for scripting references and more scripting
samples.

Setting global security
The following script can enable or disable global security for the application
server depending on the parameter value passed to the interpreter. For more
information on this script check the comments in teh source below.

Example 12-10 globalsecurity.jacl

global security
usage: wsadmin globalsecurity.jacl [enable | disable]
store the pointer to the security object
set security_item [$AdminConfig list Security]
store the parameter from the command line
set argv0 [lindex $argv 0]
initialize the value variable
set value null
checking the parameter passed to the script
setting the value according to the parameter
if {[regexp $argv0 enable]} { set value true }
if {[regexp $argv0 disable]} { set value false }
if {[regexp $value null]} {
 puts "Wrong parameter, use enable / disable"
 return
}
modifying the attribute in the configuration
512 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axAdminScript.fm
$AdminConfig modify $security_item [list [list enabled $value]]
saving the configuration
$AdminConfig save
this will dump the current security settings for testing
$AdminConfig show $security_item

As you see, the script assumes that only one application server is defined for the
node since it expects only one secuirty object returning from the query.

Configuring user registry
The following script wil change the user registry to LDAP.

Example 12-11 changeUR.jacl

change user registry
the type of the user registry is hardcoded to LDAP
it also assumes that there is an entry already with the name of LDAP defined
for the security object
set user_regName "LDAP"
get the security object
set security_item [$AdminConfig list Security]
list all the user registries defined
set user_regs [$AdminConfig list UserRegistry]
find the one that starts with the name we set at the beginning of the script
foreach user_reg $user_regs { if {[regexp $user_regName $user_reg]} { set
new_user_reg $user_reg; break }}
modify the user registry attribute for the security object
$AdminConfig modify $security_item [list [list activeUserRegistry
$new_user_reg]]
saving the configuration
$AdminConfig save

You can also set the user registry to local OS or custom use registry. WebSphere
Application Server has all three user registry entries predefined you just have to
provide the right name for the script in line #5. You can list the user registry
objects by running the following command:

$AdminConfig list UserRegistry

The result should look like the following example:

(cells/appsrv01Node:security.xml#CustomUserRegistry_1)
(cells/appsrv01Node:security.xml#LDAPUserRegistry_1)
(cells/appsrv01Node:security.xml#LocalOSUserRegistry)

Then use the name of one of the listed objects: LocalOSUserRegistry,
LDAPUserRegistry_1, CustomUserRegistry_1.
 Appendix D. Using wsadmin scripting for security configuration 513

6573axAdminScript.fm Draft Document for Review November 6, 2002 2:37 pm
Since the condition is not doing an exact match it is enough to provide only part
of the name, like: Local, LDAP, Custom.

Creating a new SSL entry
The following script will create a new SSL entry. Note that the file names and
passwords are hard-coded in the file, you have to modify the values or change
the script to take parameters.

Example 12-12 addSSLentry.jacl

new SSL entry in the SSL repertoire
setting the security object
set security_root [$AdminConfig list Security]
setting the variables for the entry
set ssl_alias "new SSL entry"
set ssl_clientAuthentication [list clientAuthentication false]
set ssl_enableCryptoHardwareSupport [list enableCryptoHardwareSupport false]
set ssl_keyFileFormat [list keyFileFormat "JKS"]
set ssl_keyFileName [list keyFileName "c:\\was\\etc\\clientkeyfile.jks"]
set ssl_keyFilePassword [list keyFilePassword "password"]
set ssl_securityLevel [list securityLevel "HIGH"]
set ssl_trustFileFormat [list trustFileFormat "JKS"]
set ssl_trustFileName [list trustFileName "c:\\was\\etc\\trustkeyfile.jks"]
set ssl_trustFilePassword [list trustFilePassword "password"]
this long line puts the attributes for the object together from the variables
and values
set ssl_def [list $ssl_clientAuthentication $ssl_enableCryptoHardwareSupport
$ssl_keyFileFormat $ssl_keyFileName $ssl_keyFilePassword $ssl_securityLevel
$ssl_trustFileFormat $ssl_trustFileName $ssl_trustFilePassword]
defining the whole SSL object
set ssl_entry [list [list alias $ssl_alias] [list setting $ssl_def]]
creating the new entry
$AdminConfig create SSLConfig $security_root $ssl_entry repertoire
saving the configuration
$AdminConfig save

Creating a J2C Authentication Entry
The following script is very similar to the previous one, Creating a new SSL entry.
This one will create a new J2C authentication entry for WebSphere.

Example 12-13 newJ2Centry.jacl

create a new J2C authentication entry
set the security object
set security_root [$AdminConfig list Security]
set the attributes for the new object
set auth_alias [list alias "itsobankds_auth"]
514 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573axAdminScript.fm
set auth_descr [list description "ITSOBank DataSource authentication alias"]
set auth_userId [list userId "dbuser01"]
set auth_password [list password "password"]
put the new object together
set auth_entry [list $auth_alias $auth_descr $auth_userId $auth_password]
create the new object
$AdminConfig create JAASAuthData $security_root $auth_entry
saving the configuration
$AdminConfig save

Assign a J2C entry to a DataSource
Once you have at least one J2C authentication entry in your system you can
assign them to certain objects like: DataSource.

Example 12-14 assignJ2Centry.jacl

change authentication alias for DataSource
usage: wsadmin assignJ2Centry.jacl datasource_name alias_name
storing the parameters
set ds_arg [lindex argv 0]
set alias_arg [lindex argv 1]
finding the datasource based on name
set datasources [$AdminConfig list DataSource]
foreach datasource $datasources {if {[regexp $ds_arg $datasource]} { set
datasource_root $datasource; break }}
modify the authentication alias attribute for the datasource
$AdminConfig modify $datasource_root [list [list authDataAlias $alias_arg]]
saving the configuration
$AdminConfig save
 Appendix D. Using wsadmin scripting for security configuration 515

6573axAdminScript.fm Draft Document for Review November 6, 2002 2:37 pm
516 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573addm.fm
Appendix E. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24????

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24????.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

E

© Copyright IBM Corp. 2002 517

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

6573addm.fm Draft Document for Review November 6, 2002 2:37 pm
SG246573.zip contains the ITSOBank sample application with security
enhancements.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Windows 2000 with Service Pack 3 or AIX 5L with

Maintenance Level 1
Processor: 500MHz or higher
Memory: 512MB or more

How to use the Web material
Create a subdirectory (folder) on your workstation, for example:
C:\temp\sg246573, and unzip the contents of the Web material zip file into this
folder.

Refer to Appendix A, “Sample application” on page 441 for instructions on how to
deploy the sample application in the runtime environment.

The book itself will refer to the sample application at several places, and almost
everywhere when some kind of sample is shown.
518 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573abrv.fm

acronyms
AAT Application Assembly Tool

AC Administrator’s Console

ACL Access Control List

AE Advanced Edition

API Application Programmer’s
Interface

CA Certificate Authority

CN Common Name

CRL Certificate Revocation List

CSI Common Secure
Interoperability

CSR Certificate Signing Request

DD Deployment Descriptor

DMZ De-Militarized Zone

DN Distinguished Name

DNS Domain Name Server

EAR Enterprise Application
Archive

EJB Enterprise Java Bean

GSO Global Sign-On

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IHS IBM HTTP Server

IIOP Internet Inter ORB Protocol

IOR Interoperable Object
Reference

IT Information Technology

ITSO International Technical
Support Organization

Abbreviations and
© Copyright IBM Corp. 2002
J2EE Java 2 Enterprise Edition

JCE Java Cryptography Extension

JDBC Java Database Connectivity

JKS Java Key Store

JSP JavaServer Page

JVM Java Virtual Machine

KDB Key Database, file extension
for IBM’s iKeyman

LDAP Lightweight Directory Access
Protocol

LDIF LDAP Data Interchange
Format

LTPA Lightweight Third Party
Authentication

ORB Object Request Broker

OS Operating System

OU Organizational Unit

PD Policy Director

PID Process ID

PKI Public Key Infrastructure

QOP Quality Of Protection

RA Registration Authority

RFC Request For Comments

RMI Remote Method Invocation

RPC Remote Procedure Call

RPSS Reverse Proxy Security
Server

SAS Secure Association Service
(IBM propriatery)

SAS Security Attribute Service
(OMG CSI)

SOA Service Oriented Architecture

SOAP Simple Object Access
Protocol
 519

6573abrv.fm Draft Document for Review November 6, 2002 2:37 pm
SPI Service Provider Interfaces

SSL Secure Socket Layer

SSO Single Sign-On

SWAM Simple WebSphere
Authentication Mechanism

UDDI Universal Description,
Discovery, Integration

URI Unified Resource Identifier

URL Unified Resource Locator

VPN Virtual Private Network

WAR Web Application Archive

WAS WebSphere Application
Server

WSAD WebSphere Studio
Application Developer

WSCP WebSphere Control Program

WSDL Web Services Description
Language

XML eXtensible Markup Language
520 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 521.

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Other resources
These publications are also relevant as further information sources:

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Referenced Web sites
These Web sites are also relevant as further information sources:

� Description1

http://????????.???.???/

� The Java 2 Platform Specification v1.3 at

http://java.sun.com/j2ee/docs.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2002 521

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

6573bibl.fm Draft Document for Review November 6, 2002 2:37 pm
You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
522 IBM WebSphere V5.0 Security Handbook522 IBM WebSphere V5.0 Security Handbook

Draft Document for Review November 6, 2002 2:37 pm 6573IX.fm
Index

A
Application designer’s approach 2

G
getUserPrincipal() 182

I
Interoperable Object Reference 519

L
Logical security 6

P
Physical security 6

R
Redbooks Web site 521

Contact us xiv

S
Security

policy 7
symmetric key cryptography 12
System architect’s approach 2
© Copyright IBM Corp. 2002
 523

6573IX.fm Draft Document for Review November 6, 2002 2:37 pm
524 IBM WebSphere V5.0 Security Handbook

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using

P
lainfield opaque 50# sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the

.5” spine. N
ow

 select the S
pine w

idth for the book and hide the others: S
p

ecial>
C

o
n

d
itio

n
al Text>

S
h

o
w

/H
id

e>S
p

in
eS

ize(-->
H

id
e:)>S

et

D
raft D

ocum
ent for R

eview
 N

ovem
ber 6, 2002 2:37 pm

6573sp
in

e.fm
525

(0.1”spine)
0.1”<->

0.169”
53<

->89 pages

(0.2”spine)
0.17”<->0.473”

90<->249 pages

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

(1.5” spine)
1.5”<->

 1.998”
789 <

->1051 pages

IBM
 W

ebSphere V5.0 Security Handbook W
ebSphere

IBM
 W

ebSphere V5.0 Security
Handbook

IBM
 W

ebSphere V5.0 Security
Handbook
W

ebSphere Handbook series

IBM
 W

ebSphere V5.0 Security Handbook W
ebSphere Handbook

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using

P
lainfield opaque 50# sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the

.5” spine. N
ow

 select the S
pine w

idth for the book and hide the others: S
p

ecial>
C

o
n

d
itio

n
al Text>

S
h

o
w

/H
id

e>S
p

in
eS

ize(-->
H

id
e:)>S

et

D
raft D

ocum
ent for R

eview
 N

ovem
ber 6, 2002 2:37 pm

6573sp
in

e.fm
526

(

(2.0” spine)
2.0” <->

 2.498”
1052 <

-> 1314 pages

(2.5” spine)
2.5”<->

nnn.n”
1315<->

 nnnn pages

IBM
 W

ebSphere V5.0
Security Handbook
W

ebSphere Handbook

IBM
 W

ebSphere V5.0
Security Handbook
W

ebSphere Handbook

®

SG24-6573-00 ISBN

Draft Document for Review November 6, 2002 2:38 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere V5.0
Security Handbook
WebSphere Handbook series

WebSphere
Application Server
security in details

End-to-end security
design with Patterns
for e-business

Security integration
with Tivoli Access
Manager

This IBM Redbook provides IT Architects, IT Specialists,
application designers, application developers, application
assemblers, application deployers and consultants with
informaiton to design, develop and deploy secure e-business
applications using WebSphere Application Server V5.

The WebSphere security part provides a detailed overview of
WebSphere Application Server V5 Security. It starts up with
J2EE security, goes into details with the modules and
components of a J2EE enterprise application; you can also
read about programmatic security techniques. The last
chapter of this part shows all the security related
administrtive items in WebSphere Application Server V5.

The End-to-end security part offers details about end-to-end
security solutions where WebSphere Application Server V5 is
part of an enterprise solution. You will find an introduction of
Patterns for e-business, in which security is in focus. A very
important chapter of this part will discuss the integration
between WebSphere Application Server V5 and Tivoli Access
Manager.

Finally the Appendixes provide additional information related
to chapters from the previous two parts and also describes
the sample application available together with the book.

Back cover

	Front cover
	Contents
	Special notices
	IBM trademarks
	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Chapter 1. Introduction
	1.1 How to read this book

	Chapter 2. Security fundamentals
	2.1 Security
	2.1.1 Physical security
	2.1.2 Logical security
	2.1.3 Security policy

	2.2 Security fundamentals
	2.2.1 Authentication
	2.2.2 Authorization
	2.2.3 Public Key Infrastructure (PKI)

	2.3 Security in use

	Part 1 WebSphere security
	Chapter 3. J2EE application security
	3.1 J2EE Application
	3.2 Security Roles
	3.3 J2EE Container Based Security
	3.3.1 Declarative Security
	3.3.2 Programatic Security

	3.4 Application Deployment Descriptor
	3.5 J2EE Application Security Configuration
	3.6 Modify applications

	Chapter 4. Securing Web components
	4.1 Static components
	4.1.1 Authentication with the Web server
	4.1.2 Authorization with the Web servera
	4.1.3 Other Web server security aspects

	4.2 Web module security
	4.2.1 Configuring Web module security

	4.3 Securing Web components
	4.3.1 Static content
	4.3.2 Servlets, JSPs

	4.4 Security role reference
	4.5 Login facilities
	4.5.1 Form based login
	4.5.2 Custom login
	4.5.3 Form based logout

	4.6 Additional security guidelines
	4.7 Where to find more information

	Chapter 5. Securing EJBs
	5.1 Securing EJBs
	5.2 Defining J2EE roles for EJB modules
	5.3 Assigning EJB Method Permissions
	5.4 Security role references
	5.5 Delegation policy
	5.5.1 Bean Level Delegation
	5.5.2 Method Level Delegation

	5.6 Run-as mapping
	5.7 Where to find more information

	Chapter 6. Securing Java clients
	6.1 Java clients
	6.2 CSIv2 and SAS
	6.3 Configuring the Java client
	6.4 Identity Assertion
	6.4.1 Scenarios

	6.5 J2EE application client
	6.6 Java thin application client
	6.7 Where to find more information

	Chapter 7. Securing Enterprise Integration components
	7.1 Web Services security
	7.1.1 Digital Certificates
	7.1.2 HTTP Basic Authentication
	7.1.3 WS-Security
	7.1.4 Security with the Web Services Gateway

	7.2 Messaging security
	7.2.1 Messaging security
	7.2.2 Messaging support for WebSphere Application Server
	7.2.3 Security for WebSphere Embedded JMS Provider
	7.2.4 Security for WebSphere MQ (external provider)

	7.3 J2C Security
	7.3.1 Securing adapters
	7.3.2 Java 2 Connector Security

	7.4 Where to find more information

	Chapter 8. Programmatic security
	8.1 Programmatic security
	8.2 J2EE API
	8.2.1 EJB security methods
	8.2.2 Servlet security methods

	8.3 CustomRegistry SPI
	8.4 Custom Trust Association Interceptor
	8.5 Java 2 Security
	8.5.1 Java 2 security in WebSphere

	8.6 JAAS
	8.6.1 Implementing security with JAAS
	8.6.2 How is JAAS security working ?

	8.7 Programmatic login
	8.7.1 JAAS in WebSphere
	8.7.2 Client-side login with JAAS
	8.7.3 Server-side login with JAAS

	8.8 Where to find more information

	Chapter 9. WebSphere Application Server Security
	9.1 WebSphere security model
	9.1.1 WebSphere security in operating environment
	9.1.2 WebSphere security in distributed environment
	9.1.3 Java Management Extension Architecture (JMX)

	9.2 Websphere Application Server security architecture
	9.2.1 Extensible security architecture model
	9.2.2 WebSphere Application Server security components

	9.3 Performance considerations
	9.4 Authentication summary

	Chapter 10. Administering WebSphere security
	10.1 Administration tools
	10.2 WebSphere Global Security
	10.3 Administrative roles
	10.3.1 Cos Naming roles

	10.4 Configuring a user registry
	10.4.1 LocalOS
	10.4.2 LDAP
	10.4.3 Custom Registry

	10.5 SWAM
	10.6 LTPA
	10.6.1 Single Sign-On
	10.6.2 Configuring LTPA for WebSphere
	10.6.3 Generate LTPA keys
	10.6.4 Enable LTPA Authentication for WebSphere

	10.7 JAAS Configuration
	10.7.1 Application Login Information
	10.7.2 J2C Authentication Data Entries

	10.8 Configuring SSL
	10.8.1 SSL configurations

	10.9 Demo keyfile
	10.9.1 Generating a self-signed certificate
	10.9.2 Requesting a certificate signed by a CA
	10.9.3 Using the Java keytool
	10.9.4 Configuring WebSphere to use a key store

	10.10 SSL between the Web client and the Web server
	10.10.1 Generating a digital certificate
	10.10.2 Configuring the IBM HTTP Server
	10.10.3 Client-side certificate for client authentication

	10.11 SSL between the Web server and WebSphere
	10.12 SSL between the Java client and WebSphere
	10.12.1 Creating the key stores
	10.12.2 Server side configuration
	10.12.3 Configuring the Java client

	10.13 Connecting to directory servers (LDAP)
	10.13.1 IBM SecureWay Directory Server V3.2.2

	10.14 JMX MBean security
	10.15 Cell Security
	10.15.1 Configuring security for the Cell
	10.15.2 Configuring security for an individual server

	Part 2 End-to-end security
	Chapter 11. Security in patterns for e-business
	11.1 Patterns for e-business
	11.1.1 Patterns and solution design process

	11.2 Selecting application patterns for ITSOBank
	11.3 Creating common runtime pattern for the ITSOBank application
	11.4 Product mappings
	11.5 Security guidelines in Patterns for e-business
	11.6 More information on patterns for e-business

	Chapter 12. Tivoli Access Manager
	12.1 End to End Security
	12.2 Network Identity and Centralized Security Services
	12.3 Tivoli Access Manager
	12.3.1 Environment for the scenarios

	12.4 Scenarios
	12.5 Scenario 1: Shared user registries
	12.5.1 Single Sign-On with WebSEAL
	12.5.2 Forms Authentication Single Sign-On
	12.5.3 Tivoli Access Manager plug-in for WebSphere Edge Server

	12.6 Scenario 2: Protecting Web resources
	12.6.1 Tivoli WebSEAL

	12.7 Scenario 3: Tivoli’s WebSphere plug-in
	12.7.1 Access Manager For WebSphere Application Server
	12.7.2 Migration of Applications

	12.8 Scenario 4: Using the aznAPI

	Part 3 Appendixes
	Appendix A. Sample application
	Sample application
	Application architecture brief

	Security roles
	Deploying the sample application
	Setup the database server
	Setup the database client
	Configuring the user registry for the ITSOBank sample
	Configuring WebSphere Application Server for the ITSOBank sample

	Importing the sample application into the development environment
	12.9 Where to find more information

	Appendix B. LDAP configurations
	SecureWay Directory Server
	IBM Directory Server
	Lotus Domino
	iPlanet Directory Server
	Microsoft Active Directory
	Testing LDAP connections

	Appendix C. Single Sign-On with Lotus Domino
	WebSphere-Domino SSO scenarios
	Using SecureWay Directory Server for user registry
	Using Domino LDAP for user registry

	Appendix D. Using wsadmin scripting for security configuration
	wsadmin scripting
	Preparing and testing the wsadmin client
	Sample scripts

	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

