
VisualAge Generator

Generation Guide

Version 4.5

SH23-0263-01

���

Note

Before using this document, read the general information under “Notices” on page ix.

Fourth Edition (April 2001)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 4 Release 4
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 503, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices ix

Trademarks xi

Terminology used in this document . . . xiii
Terminology differences between Java and
Smalltalk xiv

About this document xv
How to use this document xv
Documentation provided with VisualAge
Generator xv

Part 1. Introducing generation . . . 1

Chapter 1. Introducing program generation 3
Generating C++, Java, and COBOL programs . 5
Preparing C++, Java, and COBOL programs. . 6

Part 2. Generating C++ programs. . 9

Chapter 2. Inputs to C++ program
generation 11
Inputs for C++ generation 11
Generation options parts 12
Linkage table parts. 12
Resource associations part 13
Conversion tables 13

Chapter 3. Outputs of C++ program
generation 15

Chapter 4. Preparation process for C++
generation 17
Preparing C++ programs. 17
Analyzing preparation errors 18

Common preparation errors. 18

Chapter 5. Command interface for C++
generation 21
GENERATE subcommand syntax for C++
generation 21

GENERATE subcommand examples for
C++. 24

START subcommand syntax. 26
STOP subcommand syntax 27
VALIDATE subcommand syntax for C++
generation 27

Part 3. Generating Java programs 29

Chapter 6. Inputs to Java server program
generation 31
Inputs for Java generation 31
Generation Options parts 32
Linkage table parts. 32
Resource associations part 32
Conversion tables 33

Chapter 7. Outputs of Java program
generation 35

Chapter 8. Preparation process for Java
generation 39
Preparing Java programs 39
Analyzing preparation errors 40

Common preparation errors. 40

Chapter 9. Command interface for Java
generation 43
GENERATE subcommand syntax for Java
generation 43

GENERATE subcommand examples for
Java 45

START subcommand syntax. 46
STOP subcommand syntax 46
VALIDATE subcommand syntax for Java
generation 47

Part 4. Generating COBOL
programs 49

Chapter 10. Inputs to COBOL generation 51
Inputs for COBOL generation 51
Generation options parts 53

© Copyright IBM Corp. 1980, 2001 iii

Linkage table parts. 53
Link edit parts 53
Reserved-word file 53
Conversion tables 55
BIND control parts 55
Resource associations part 56

Chapter 11. Templates for COBOL
generation 57
Types of templates 58

Preparation templates 58
Preparation JCL for MVS or VSE 62
Preparation CL for OS/400 67
Preparation REXX for VM 70
BIND command templates 71
Link-edit templates 71
Link-edit templates for VM 71
CICS table templates 72
JOB statements 74
Run-time file templates 74
File and database allocation templates . . 80
File and database allocation placeholder
templates 81

Modifying templates 82
Reasons to modify templates 83
Modifying templates and procedures for
MVS environments. 84
Modifying templates for the OS/400
environment 92
Modifying templates for VSE environments 93
Modifying preparation templates and
EXECs for VM environments 97

SQL preprocessing for VM 102
Required SQL/DS VM options 104
Setting additional SQL preprocessor
options 104

Setting COBOL run-time options for VM . . 104
Modifying LE user exits 105

Examples of modifying templates 106
Adding a qualifier to the end user data
set names 106
Deleting COBOL source code from the
workstation after preparation 113
Deleting COBOL source on an MVS or
VSE host 114
Modifying a PSB name to match a batch
program name 115
Routing output to a system printer for an
MVS/TSO CLIST 116

Suppressing Personal Communications
messages during file transfer 117
Creating COBOL compile and link listings
for CICS for OS/2. 118
Initializing the environment for CICS for
OS/2 119
Suppressing CICS translator, COBOL
compile, and link messages for CICS for
OS/2 119

Processing templates 120
EFK2MPCB before modification 120
Values for the symbolic parameters . . . 120
Preparation JCL created from the
EFK2MPCB template. 121

Chapter 12. Symbolic parameters . . . 123
Part-related symbolic parameters. 123
File-related symbolic parameters 130
User-defined symbolic parameters 131

Creating user-defined symbolic
parameters 134
Assigning values to user-defined
symbolic parameters 135

Chapter 13. Outputs of COBOL
generation 137
Objects generated for all part types 138

Listing file 141
Preparation script 141
Preparation JCL for MVS and VSE
environments 142
Preparation REXX for VM and CICS for
OS/2 environments 143
Program and transaction definitions for
MVS and VSE environments 143

Objects generated for programs 144
COBOL program 144
Sample run-time CLIST 145
Sample run-time JCL. 145
Sample run-time REXX for VM and CICS
for OS/2 146
BIND command file 146

Objects generated for map groups 147
Map group format module. 148
Batch print services COBOL program . . 148
Online print services COBOL program 149
MFS print services COBOL program . . 149
MFS control blocks 149
COBOL copybook for MFS MID/MOD
layout. 150

iv VisualAge Generator: Generation Guide

Objects generated for tables 150
Table COBOL program 151
Binary table 151

Modifying generation output 151

Chapter 14. Preparation process for
COBOL generation 153
Preparing parts for MVS, VSE, VM, CICS for
OS/2 systems 153

Preparation script file contents 154
Additional preparation steps 159
Getting ready for MVS preparation . . . 160
Transferring files to MVS systems . . . 161
Getting ready for VSE preparation . . . 161
Transferring files to VSE systems. . . . 161
Preparing parts for OS/400 161
Preparing parts for CICS for OS/2 . . . 162
Analyzing preparation errors 164

Chapter 15. Command interface for
COBOL generation 167
GENERATE subcommand syntax for
COBOL generation 167

GENERATE subcommand examples . . 171
PREPARE subcommand syntax for COBOL
generation 175
START subcommand syntax 176
STOP subcommand syntax. 177
VALIDATE subcommand syntax for COBOL
generation 177

Part 5. Generating Web
transaction programs. 179

Chapter 16. Inputs to Web transaction
program generation 181

Chapter 17. Outputs of Web transaction
program generation 183
Outputs of generating Web transaction
program parts 183
Java generation outputs 183

Chapter 18. Preparation for Web
transaction program generation 185
Preparation requirements 185
Preparing Web transaction Java parts . . . 185

Chapter 19. Command interface for Web
transaction program generation 187
GENERATE subcommand syntax for Web
transaction program generation 187

GENERATE subcommand example for
Web transaction 189

Syntax of other HPTCMD subcommands 189

Part 6. Generating JavaBeans
wrappers and session beans . . 191

Chapter 20. Inputs to Java wrapper
generation 193
Inputs for JavaBeans wrapper generation 193

Generation options 193
Linkage table options 194

Chapter 21. Outputs of Java wrapper
generation 195
Beans for servers 196
Beans for record parameters 198
Beans for record array rows 199

Chapter 22. Command interface for Java
wrapper generation 201
GENERATE subcommand syntax for Java
wrapper generation 201
START subcommand syntax 202
STOP subcommand syntax. 203
VALIDATE subcommand syntax for Java
wrapper generation 204

Chapter 23. Generating session beans 205

Part 7. Reference information 207

Chapter 24. Generation options parts . . 209
Creating generation options parts 209

Making the default generation options
part available during generation 210

Establishing default generation options . . 210
Default generation options parts with
NOOVERRIDE. 210
Default generation option part without
NOOVERRIDE. 211

Using multiple levels of generation options
parts 212

Determining generation option resolution
order 212

Contents v

Using the sample generation options parts 213
Sample generation options default part 213
Sample generation options parts 213

Using symbolic parameters in generation
option specifications 214
Generation options that are not valid . . . 215
Overriding a value to use the default value 215
Guidelines for setting generation options 215

Chapter 25. Linkage tables 217
Creating a linkage table 217
Specifying CALL linkage (CALLLINK). . . 218

Definitions for CALLLINK 220
Valid parameter formats and linkage
combinations by platform 231
Interfaces requiring a linkage table . . . 232
Specifying CREATX linkage (CRTXLINK) 234
Specifying DXFR linkage (DXFRLINK) 237
Interfaces requiring a linkage table . . . 239
Specifying File linkage (FILELINK) . . . 239
Sample linkage table entries 242

Chapter 26. Link edit parts 245
Link-editing static COBOL calls 245
Defining a link edit part 245

Linkage Editor control statements for
MVS environments 246
Linkage Editor control statements for VM
environments 250
Linkage Editor control statements for VSE
environments 253
Specifying AMODE and RMODE . . . 255
Error return codes on static links. . . . 256

Chapter 27. BIND control parts 257
Defining BIND control parts 257
Considerations for plan definition 258

Naming CICS for MVS/ESA program
plans 258
Naming MVS/TSO and MVS batch
program plans 258
Naming IMS program plans 259
Effects of XFER, DXFR, CALL,
CONVERSE, and the /RT generation
option on plans 259
Using host services CICS for MVS/ESA
DBRMs 259
Using MVS/TSO and MVS batch DBRMs 259
Using IMS/VS DBRMs 260

Additional BIND command keywords . . . 260

Sample BIND commands 260
Binding when the first program uses SQL 260
Binding when the first program does not
use SQL 262

Binding packages instead of plans 262
Error return codes on BIND commands . . 264
Binding OS/2 program plans 264
Binding for VSE, OS/400, and VM programs 264

Chapter 28. Resource associations part 265
Creating resource associations parts 265
Using multiple resource associations for a
file 266
Resource association part syntax 266

Sample resource associations part . . . 274
File types supported by environment and
record organization 274

File types supported by CICS
environments 276
File types supported for MVS/TSO . . . 286
File types supported for IMS BMP,
IMS/VS, and MVS batch 287
File types supported by OS/400 289
File types supported for VM CMS and
VM batch 290
File types supported for VSE batch . . . 292

Chapter 29. Generation command and
option descriptions 297
HPTCMD commands 297

HPTCMD command 297
HPTCMD subcommands 297

Required parameters for subcommands . . 298
filename 298
partname 298
/CONFIGMAPNAME 298
/CONFIGMAPVERSION 299
/PROJECT 299
/SYSTEM 299

Optional parameters for subcommands . . 300
/ANSISQL (ANSI SQL statements) . . . 300
/BIND (Bind Control) 301
/CHECKTYPE (Substructured data items) 302
/CICSDBCS (CICS translator supports
DBCS) 303
/CICSENTRIES (CICS entries) 303
/COMMENTLEVEL (Comment level)
(COBOL). 304
/COMMENTLEVEL (Generate comments)
(C++) 305

vi VisualAge Generator: Generation Guide

/CONTABLE (Conversion table) 306
/CREATEDDS (Create DDS files) . . . 306
/CURRENCY (Currency Symbol) . . . 306
/DATA (Data) 306
/DBMS (Database management system) 307
/DBPASSWORD (Password) 308
/DBUSER (User ID) 308
/DEBUGTRACE (Debug trace
information) 308
/DESTACCOUNT (Account) 309
/DESTDIR (Directory) 309
/DESTHOST (Name) 310
/DESTLIB (Target library) 310
/DESTPASSWORD (Password) 310
/DESTUID (User ID). 311
/DXFRCANCEL (Cancel program after
DXFR) 311
/DXFRXCTL (Implement DXFR as an
XCTL) 311
/EJBGROUP (Enterprise Java Bean
Group) 311
/ENDCOMMAREA (End COMMAREA
with FFFF) 312
/ERRDEST (Error destination) 312
/FASTPATH (Run as a fast-path program) 313
/FOLD (Fold to uppercase) 313
/FTPTRANSLATIONCMDDBCS (FTP
DBCS Translation Command) 313
/FTPTRANSLATIONCMDSBCS (FTP
SBCS Translation Command) 314
/GENAUTHORTIMEVALUES 314
/GENHELPMAPS (Help map group) . . 314
/GENMAPS (Map group) 315
/GENOUT (Generated output directory) 315
/GENPROPERTIES 316
/GENRESOURCEBUNDLE (Generate as
resource bundle) 317
/GENRET (Issue RETURN IMMEDIATE) 318
/GENTABLES (Tables) 319
/GENUIRECORDS 319
/GROUPNAME (Group name) 319
/INEDIT (Input edit) 320
/INITADDWS (Initialize additional
working storage records) 320
/INITRECD (Initialize records) 321
/JAVADESTDIR (Java directory) 321
/JAVADESTHOST (Name) 322
/JAVADESTPASSWORD (Password) . . 322
/JAVADESTUID (User ID) 323
/JAVASYSTEM (Java target system). . . 323

/JOBCARD (JOB card) 323
/JOBNAME (Job name) 324
/JSPRELDIR 324
/LEFTJUST (Left justify) 324
/LINEINFO (Line trace information) . . 325
/LINES (Lines per page) 325
/LINKAGE (Linkage table) 326
/LINKEDIT (Link edit) 326
/LISTING /LISTINGONERROR,
/NOLISTING (Generation listing) . . . 326
/LISTINGONERROR 326
/LOCVALID (Local data items) 327
/LOG (Log identifier) 327
/MATH (Math) 327
/MFSDEV 328
/MFSEATTR (MFS extended attribute) 329
/MFSEATTRNCD. 329
/MFSIGNORE (Include IGNORE for
SOR) 329
/MFSTEST (Use test library) 330
/MSGTABLEPREFIX. 330
/MSP (Mapping service program) . . . 330
/NOANSISQL 331
/NOCICSDBCS 331
/NOCREATEDDS 331
/NODXFRCANCEL 331
/NODXFRXCTL 331
/NODEBUGTRACE 331
/NOENDCOMMAREA 331
/NOFASTPATH 331
/NOFOLD 331
/NOGENAUTHORTIMEVALUES . . . 332
/NOGENHELPMAPS 332
/NOGENMAPS 332
/NOGENPROPERTIES 332
/NOGENRESOURCEBUNDLE 332
/NOGENRET 332
/NOGENTABLES. 332
/NOGENUIRECORDS 332
/NOINITADDWS. 332
/NOINITRECD 332
/NOLEFTJUST. 332
/NOLINEINFO 332
/NOLISTING, /LISTING,
/LISTINGONERROR 332
/NOLOCVALID 332
/NOLOG 332
/NOMFSEATTR 332
/NOMFSIGNORE 333
/NOMFSTEST 333

Contents vii

/NONULLFILL 333
/NONUMOVFL 333
/NOPREP 333
/NOPREPFILE. 333
/NORECOVERY 333
/NORUNFILE 333
/NOSETFULL 333
/NOSPZERO 333
/NOSQLVALID 333
/NOSYNCDXFR 333
/NOSYNCXFER 333
/NOUNLOAD. 333
/NOSYSCODES 333
/NULLFILL (Fill map field) 334
/NUMOVFL (Numeric overflow) . . . 334
/OPTIONS (Generation options) 334
/PACKAGENAME (Package Name) . . 335
/POSSIGN (Positive Sign Indicator). . . 335
/PREP (Start preparation command file) 335
/PREPFILE (Create preparation command
file) 336
/PRINTDEST (Print destination) 336
/PROJECTID (Project ID) 337
/RECOVERY (Recover current error
message) 337
/RESOURCE (Resource associations) . . 338
/RESOURCEBUNDLELOCALE 339
/RESVWORD (Reserved words) 340
/RT (Return or Return transaction ID) 341
/RUNFILE (Create sample run-time JCL,
Create a sample clist, or Create a sample
REXX exec) 342
/SENDTRANSLATIONCMDDBCS (Send
DBCS Translation Command) 342
/SESSION (Session ID) 342
/SETFULL (Set map item FULL) 342
/SP (Issue CICS SET/INQUIRE) 343
/SPA (SPA) 343
/SPZERO (Interpret spaces as zero in
NUM and NUMC data items). 343
/SQLDB (SQL database) 344
/SQLID (SQL userid) 345
/SQLPASSWORD (password) 345
/SQLVALID (SQL statements). 345
/SYMPARM 346
/SYNCDXFR (Set sync points for DXFRs) 347
/SYNCXFER (Set sync points for XFERs) 347
/SYSCODES (Use system return codes) 348
/TARGNLS (Target NLS) 348
/TEMPLATES (Templates directory) . . 350

/TRACE (Runtime trace) 350
/TRANSFERTYPE (Transfer method) . . 351
/TRANSID (Transaction IDs) 352
/TWAOFF (TWA offset). 353
/UNLOAD (Unload parts) 353
/VALIDMIX (Validate mixed field moves) 354
/VMLOADLIB (VM Load Library) . . . 354
/LIB (VSE Library) 355
/WORKDB (Work database) 356

Chapter 30. Java properties files 359
Resource association properties 359
Database default properties 361
JVM command property 362
Java server communication properties . . . 362
NLS Properties. 364
Linkage properties 364

Chapter 31. Analyzing return codes and
errors 367
Analyzing generation errors 367

Analyzing return codes 367
Locating generation error messages . . . 367
Analyzing messages 367

Analyzing preparation errors 368
Analyzing return codes 368
Locating preparation error messages . . 368
Analyzing messages 369

Chapter 32. Serviceability 371

Part 8. Appendixes 373

Appendix A. List of valid generation
options for each environment 375

Appendix B. Implementing a generation
server 381
Setting up the client 382
Setting up the server 383
Setting up Object REXX support on
Windows NT 384
LAN generation setup 385

Setup on the generation server 385
Setup on the client 386

Appendix C. Reading syntax diagrams 389

Index 391

viii VisualAge Generator: Generation Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2001 ix

x VisualAge Generator: Generation Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries:
v ACF/VTAM
v AD/Cycle
v AIX
v AS/400
v C Set ++
v CICS
v CICS OS/2
v CICS/ESA
v CICS/MVS
v CICS/VM
v CICS/VSE
v CICS/400
v CICS/6000
v COBOL/2
v COBOL/400
v DB2
v IBM
v IBMLink
v IMS
v IMS/ESA
v Language Environment
v MVS
v MVS/ESA
v Operating System/2
v OS/2
v OS/400
v SAA
v SQL/DS
v SQL/400
v VisualAge
v VisualGen
v VM/ESA
v VSE/ESA
v WebSphere

The following are trademarks of other companies:

C++ American Telephone & Telegraph
Company

© Copyright IBM Corp. 1980, 2001 xi

HP-UX Hewlett-Packard Company

Oracle Oracle Corporation

Microsoft, Windows, Windows NT, the Windows 95 logo, and the Windows 98
logo are trademarks or registered trademarks of Microsoft Corporation.

Solaris, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be the trademarks or service
marks of others.

xii VisualAge Generator: Generation Guide

Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.
v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for

AIX, CICS for Windows NT, and CICS for Solaris.
v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.
v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to

message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:
– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.

© Copyright IBM Corp. 1980, 2001 xiii

v References to VM batch apply to any batch facility running on VM.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.
v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal

Database (UDB) for AIX Version 5.
v Windows applies to Windows 95, Windows 98, Windows NT, and

Windows 2000.
v Unless a specific version of Windows NT is referenced, statements

regarding Windows NT also apply to Windows 2000.

Terminology differences between Java and Smalltalk

VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

xiv VisualAge Generator: Generation Guide

About this document

This document provides information needed to prepare and generate
programs for the AIX, HP-UX, SCO OpenServer, Solaris, Microsoft Windows,
MVS, OS/2, OS/400, VM, and VSE environments using VisualAge Generator.

This document contains the following information:
v An introduction to the generation processes, including the following:

– The target environments
– The VisualAge Generator generation process to prepare COBOL, C++,

and Java programs
v Sections about using VisualAge Generator to generate COBOL, C++, Java,

Web transaction, and JavaBeans wrapper programs
v A section containing information that applies to all types of programs

For a list of related publications, see “Documentation provided with
VisualAge Generator”. Refer to the appropriate document for information
about running generated programs for your target environment.

For information about client generation and generating VAGen run-time code,
see the VisualAge Generator User’s Guide.

How to use this document

This document describes the tasks that are required to generate VisualAge
Generator source into an executable format. The outputs from generation vary
depending on the target environment. The following types of output can be
produced:
v COBOL
v C++
v Java

You should read the sections of this book that correspond to the type of
output.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.

© Copyright IBM Corp. 1980, 2001 xv

v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is
used to view the manuals online and to print desired pages.

v HTML files (.htm) on the product CD-ROM and from the VisualAge
Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

4. This document is included when you order the VisualAge Generator Server product CD.

xvi VisualAge Generator: Generation Guide

Part 1. Introducing generation

© Copyright IBM Corp. 1980, 2001 1

2 VisualAge Generator: Generation Guide

Chapter 1. Introducing program generation

The generation process uses VisualAge Generator (VAGen) part definitions,
which are created using VisualAge Generator Developer and are stored in the
repository. The part definitions and control files are used to generate COBOL
or C++ programs, depending upon the target environment.

You can generate programs, tables, and maps from the user interface or from
the command line using the HPTCMD command.

Figure 1 shows the Generate window where you can select the target system.

Figure 1. Generate package/application

© Copyright IBM Corp. 1980, 2001 3

The generation options part enables you to customize the generation process
for specific target environments. You can specify generation options using the
following methods:
v By entering values using the VisualAge Generator Developer user interface
v As options on the command interface when you are using the GENERATE

subcommand
v By setting values for these options in generation options parts

Figure 2 shows the Generation Options window where you set generation
options such as validation parameters.

Generation options are stored in generation options parts, which enable
developers working on the same project to share generation options. You can
specify a default generation options part using the /OPTIONS option on the

Figure 2. Generation Options

4 VisualAge Generator: Generation Guide

GENERATE subcommand. A generation options part can also specify the
/OPTIONS option, creating a succession of generation options parts.

For C++, Java, and COBOL programs, the generation process consists of the
following processes:

Generation
Generation includes the following steps:

Validation
Collects definition information from parts for the object being
generated. Validation also includes cross-checking the parts to
ensure that the definitions are complete and correct.
Information and error messages are issued when problems are
detected. The generation process stops if there are errors. You
can validate the parts without generating the program.

Production
Builds the source code and related program objects from the
part definitions during this phase.

Preparation
Preparation includes the following steps:
v Transferring parts to the target environment
v Running precompilers, compilers, and linkers on the target system

The generation and preparation processes work together. On the development
system, generation produces source code and related program objects. Then,
on the target system, the preparation process prepares the generated source to
run.

Generating C++, Java, and COBOL programs

The generation process transforms programs, maps, map groups, and tables
into source code and related program objects. Outputs are created based on
the selected generation options and target environment.

During generation, the VAGen part definitions are transformed into C++, Java,
or COBOL programs and related program objects. Outputs are created based
on the generation options selected.

You can generate a program using the batch command interface or the user
interface. Refer to the VisualAge Generator Developer online help system for
information about the user interface.

The VisualAge Generator Developer command interface syntax is specified by
the command HPTCMD, followed by a subcommand. The VALIDATE

Chapter 1. Introducing program generation 5

subcommand specifies that you want validation only, and the GENERATE
subcommand specifies that you want both validation and production. Using
the VisualAge Generator Developer command interface, you can issue
HPTCMD commands one at a time by specifying them on the command line,
or you can create a command file to issue multiple HPTCMD commands.

The generation process produces several output files, some of which can be
modified. The outputs of generation must be transferred to the target system
and prepared (for example, compiled and linked) on the target system before
they can be used.

Preparing C++, Java, and COBOL programs

After generating a program, you must prepare it for the run time
environment. The preparation process uses the outputs from the generation
process to prepare the source objects for run time.

Preparation can be started as part of the generation process or run
independently. The preparation process is automatically started by generation
unless you specify the /NOPREP option on the GENERATE subcommand.

To run the preparation process independently of the generation process,
specify the PREPARE subcommand. The PREPARE subcommand can only be
issued through the command interface.

The steps involved in the preparation process differ according to the target
system.
v If the development and target system are the same OS/2 system, the

preparation process performs the compile and link steps. If the target
system is a remote OS/2 system, the preparation process transfers the
source objects from the source to the OS/2 target system and begins the
compile and link process on the target system.

v If the development and target system are the same Windows NT system,
the preparation process performs the compile and link steps. If the target is
a remote Windows NT system, the preparation process transfers the source
objects from the source machine to the Windows NT target machine, but
the compile and link steps cannot be started automatically. The compile and
link steps must be started manually by invoking the preparation command
on the Windows NT target machine.

v If the target system is MVS, VM, VSE, or OS/400, the preparation process
transfers the source objects from the workstation to the target system and
begins the compile and link process on the target system.

v If the target system is AIX, HP-UX, SCO, or Solaris, the preparation process
transfers the source objects from the development machine to the AIX,

6 VisualAge Generator: Generation Guide

HP-UX, SCO, or Solaris target machine and compiles and links on the AIX,
HP-UX, SCO, or Solaris target machine.

Chapter 1. Introducing program generation 7

8 VisualAge Generator: Generation Guide

Part 2. Generating C++ programs

© Copyright IBM Corp. 1980, 2001 9

10 VisualAge Generator: Generation Guide

Chapter 2. Inputs to C++ program generation

The C++ program generation process uses inputs from several different
sources:
v VisualAge Generator part definitions that define the program, map group,

or table, and its associates.
Refer to the VisualAge Generator Developer online help system for more
information about defining parts.

v Generation control files and parts, which are predefined. The generation
control files and parts for C++ are described in the following sections:
– “Linkage table parts” on page 53

Refer to the VisualAge Generator Client/Server Communications Guide
document for information about linkage tables.

– “Chapter 24. Generation options parts” on page 209
– The resource associations part is used as an input of generation when the

target environment is CICS for AIX, CICS for Solaris, or CICS for
Windows NT.

These control parts and files contain installation and project-level
conventions that specify how the C++ programs and related objects are
generated. Generation control parts and files are usually specified at an
installation or project level, but they can be specified at any level. You can
modify the contents of the generation control parts and files.

Note: The resource associations part is used during the generation process for
C++ programs only when the target environment is CICS for AIX, CICS
for Solaris, or CICS for Windows NT. C++ programs running on OS/2,
AIX, HP-UX, SCO, Solaris, and Windows NT use resource association
files at run time. The contents of the resource association file indicate
where the physical files used by the program are located.

Refer to the VisualAge Generator Server Guide for Workstation Platforms
document for information about the resource association file and
supported file types for the OS/2, AIX, HP-UX, SCO, Solaris, and
Windows NT environments.

Inputs for C++ generation

The following tables list the inputs for C++ generation.

© Copyright IBM Corp. 1980, 2001 11

Table 2 lists the C++ inputs for the supported environments.

Table 2. Inputs for C++ generation

Element
File name and
extension Environment Description

Part definition Stored in repository All

Environment
variables

Set in the hpt.ini All Variables that can
affect the generation
process

User-defined option
files

Stored in repository All

Linkage table Stored in repository All Optional table

Conversion tables ELAxxxxx AIX, CICS for AIX,
HP-UX, SCO,
Solaris, CICS for
Solaris, OS/2,
Windows NT, CICS
for Windows NT

Resource association
part

Stored in repository CICS for AIX, CICS
for Solaris, CICS for
Windows NT

Generation options parts

C++ generation uses generation options parts. See “Chapter 24. Generation
options parts” on page 209 for information about generation options parts.

Linkage table parts

Linkage table parts are required if the program contains external calls to
non-VisualAge Generator programs. A linkage table specifies the following:
v The linkage conventions to be used for calling a program
v Whether a CICS CREATX service call starts a local or remote CICS

transaction
v The linkage conventions to be used for implementing a DXFR transfer

between host programs
v Whether a CICS file is to be accessed as a local or remote file

Refer to the VisualAge Generator Client/Server Communications Guide for
information about linkage tables.

12 VisualAge Generator: Generation Guide

Resource associations part

The resource associations part is used to generate C++ programs for CICS for
AIX, CICS for Solaris, and CICS for Windows NT.

See “Chapter 28. Resource associations part” on page 265 for details.

Note: The resource association part is used during the generation process for
C++ programs only when the target environment is CICS for AIX, CICS
for Solaris, or CICS for Windows NT. When the target environment is
OS/2, AIX, HP-UX, SCO, Solaris, or Windows NT, C++ programs use
resource association files at run time. The contents of the resource
association file indicate where the physical files used by the program
are located.

Refer to the VisualAge Generator Server Guide for Workstation Platforms for
information about the resource association file and supported file types
for the OS/2, AIX, HP-UX, SCO, Solaris, and Windows NT
environments.

Conversion tables

Conversion tables are used to convert data across OS/2 ASCII, Windows
ASCII, UNIX ASCII, and EBCDIC systems when generating binary objects
(tables). Conversion tables are specified using the /CONTABLE generation
option. See “Chapter 29. Generation command and option descriptions” on
page 297 for more information about the /CONTABLE generation option and
about conversion tables.

Refer to the VisualAge Generator Client/Server Communications Guide for
information on how to define a custom conversion table for use with code
pages associated with other languages for client/server programs.

Chapter 2. Inputs to C++ program generation 13

14 VisualAge Generator: Generation Guide

Chapter 3. Outputs of C++ program generation

The outputs of the generation process are C++ source and related objects
needed to prepare and run your program. These outputs contain the
information necessary to transfer files and start the appropriate compile and
link processes.

If you are generating a Web transaction program, output includes Java source
and related objects. For more information on the generated files, refer to
“Chapter 17. Outputs of Web transaction program generation” on page 183.

Depending on whether the program uses SQL or not, certain interim
preparation steps occur. Table 3 include the preparation steps and the outputs
of generation.

Table 3. Generation outputs for AIX, CICS for AIX, HP-UX, SCO OpenServer, Solaris, CICS for Solaris,
OS/2, Windows NT, and CICS for Windows NT

Element File name and extension Uploaded Environment

C++ source for each map
group and program
generated

xxxxxxx.CPP¹ Yes All

Binary source for each
table generated

xxxxxxx.TAB Yes All

Preparation file for each
program generated

xxxxxxx.CMD² No All

Command file for each
program generated;
starts the make file

xxxxxxxZ.CMD Yes OS/2

File transfer protocol
(FTP) control file

xxxxxxx.FTP No AIX, CICS for AIX, HP-UX,
SCO, Solaris, CICS for Solaris,
Windows NT, CICS for
Windows NT, and OS/2 if
development and target
systems differ

UNIX script file
containing the make
process used on the
remote machine

xxxxxxxZ.scr Yes AIX, CICS for AIX, HP-UX,
SCO, Solaris, and CICS for
Solaris

UNIX script file for CICS
program and transaction
definitions

xxxxxxxC.scr Yes CICS for AIX and CICS for
Solaris

© Copyright IBM Corp. 1980, 2001 15

Table 3. Generation outputs for AIX, CICS for AIX, HP-UX, SCO OpenServer, Solaris, CICS for Solaris,
OS/2, Windows NT, and CICS for Windows NT (continued)

Element File name and extension Uploaded Environment

Command file for each
program generated;
starts the make file

xxxxxxxZ.BAT Yes Windows NT, CICS for
Windows NT

Command file
containing CICS
program and transaction
definitions

xxxxxxxC.BAT Yes CICS for Windows NT

Dynamic link library /
Shared library files

xxxxxxx.dll Yes AIX, OS/2, Windows NT

xxxxxxx.ibmcpp Yes CICS for Windows NT and
CICS for AIX

Shared library files

xxxxxxx.sl Yes HP-UX

xxxxxxx.so Yes SCO and Solaris

xxxxxxx.cpp Yes CICS for Solaris

Notes:

¹xxxxxxx indicates a 7-character file name.

²xxxxxxxZ indicates an 8-character file name with Z required as the last character of the name.

Generated objects are stored in the directory specified on the /GENOUT
generation option. If /GENOUT specifies a location that is not valid or if
/GENOUT is not specified, the generation objects are stored in the directory
where the server process is running.

16 VisualAge Generator: Generation Guide

Chapter 4. Preparation process for C++ generation

When generation is completed, the generated outputs must be prepared for
run time, just as you prepare programs you might write yourself.

Preparation takes place automatically unless you specify the /NOPREP
option. If you specify the /NOPREP option, preparation takes place as a
separate process. The /PREP option is the default.

The preparation process includes the following steps:
v Transferring parts to the target environment, if needed
v Unicode conversion, if needed
v Running precompilers, compilers, and linkers

When you specify the /PREPFILE generation option without the /PREP
generation option, the PREPARE subcommand can be used to prepare the
generation output.

The PREPARE subcommand can also be used to restart preparation if the
preparation process is not successful in a manner that does not require the
parts be generated again. The PREPARE subcommand is used for preparing
programs generated using any VisualAge Generator Developer.

A .CMD file is generated for each program, table, or map group being
generated. The .CMD file is run unless the /NOPREP option is specified. The
.CMD file uses the FCEBUILD.EXE to control preparation processing.

See “Chapter 31. Analyzing return codes and errors” on page 367 for
information about preparation errors.

Preparing C++ programs

The FCEBUILD.EXE does the following processing:
1. If the development machine is different from the target machine, the

pgm.FTP file is used to control transfer of all the required files to the
target machine. This transfer includes the pgmZ.scr for AIX, CICS for AIX,
HP-UX, SCO, Solaris, and CICS for Solaris, the pgmZ.CMD file for OS/2,
and the pgmZ.BAT file for Windows NT and CICS for Windows NT. The
transfer also includes the generated outputs of any tables, maps, and map
groups used by the program.

2. To start the make process, the pgmZ.scr is run on the AIX, CICS for AIX,
HP-UX, SCO, Solaris, or CICS for Solaris machine, the pgmZ.CMD is run

© Copyright IBM Corp. 1980, 2001 17

on the OS/2 machine, or the pgmZ.BAT is run on a local Windows NT or
CICS for Windows NT machine. The make process includes the following
steps:
a. Precompiles each SQL program
b. Compiles each program and map group
c. Links the files to create the dynamic link library or shared library

If the target machine is a remote Windows NT or CICS for Windows NT
machine, the pgmZ.BAT must be run manually to start the make process.

For non-CICS environments, use the FCWRUN.EXE file to run the dynamic
link library or shared library that is created.

When the target environment is CICS for AIX, CICS for Solaris, or CICS for
Windows NT, the program transaction files must be defined to CICS for AIX,
CICS for Solaris, or CICS for Windows NT before the program can run. Refer
to the VisualAge Generator Server Guide for Workstation Platforms for information
on how set up your CICS for AIX, CICS for Solaris, or CICS for Windows NT
system and how to run your prepared program.

Analyzing preparation errors

When you analyze the preparation errors for the OS/2, AIX, HP-UX, SCO,
Solaris, or Windows NT environments, do the following:
1. Verify that the pgmZ.CMD, pgmZ.BAT, or pgmZ.SCR file contains the

correct compile information for your program.
2. Use the SET command to display information about environment variables

settings for an OS/2, AIX, HP-UX, SCO, Solaris, or Windows NT session.

Common preparation errors
The most common errors during preparation are these:
v Errors accessing the database
v FCWMAKE not found
v The preparation jobs do not run on the AIX, HP-UX, SCO, or Solaris target.

Errors accessing the database
The database on your development system might not match the database you
are using on the target system. The default database name might be different,
or the USERID and passwords might be different. Modify your environment
variables or generation options to use the correct values for your target
environment.

FCWMAKE not found
The example below shows which SET statement in your CONFIG.SYS file to
check if the preparation job cannot find FCWMAKE.

set fcwmake=directory

18 VisualAge Generator: Generation Guide

Where directory is the location of VisualAge Generator Server for OS/2 or
VisualAge Generator Server for Windows NT.

Preparation jobs do not run on the target system
Preparation jobs cannot run successfully on the target system when any of the
following requirements are not satisfied:
v Because the AIX, HP-UX, SCO, and Solaris environments are case sensitive,

be sure to verify the case for the specified values for the following options:
/DBPASSWORD
/DBUSER
/DESTDIR
/DESTHOST
/DESTUID
/DESTPASSWORD

v The user specified on the /DESTUID option must have read and execute
authority to the target machine (specified by the /DESTHOST option) and
must also have write authority to the target directory (specified by the
/DESTDIR option).
The example below shows the command you type at a command prompt
where you are running the generator to check for read and execute
authority.

rexec <desthost> -l <destuid> -p <destpassword> df

You can check for write authority by doing the following:
1. Log on to the AIX, HP-UX, SCO, or Solaris machine using the values

you are specifying for the /DESTUID and /DESTPASSWORD options.
2. Change to the directory you are specifying on the /DESTDIR option

using the cd command.
3. Test your access by creating a file.

The example below shows an example command that lists the files and
redirects the list to a file. This is one way to create a file.

ls -la > temp.file

If you are able to create the file, you have write authority.

Note: You can specify relative or full path names for the /DESTDIR option,
but fully qualified path names are recommended.

v Verify the case for the values assigned to the sqlDefaultDatabase key in the
HPT.INI file.

v If your program uses SQL, the database application development software
(DB2 SDK for DB2 or Oracle Programmer/2000 for Oracle) must be
installed on the preparation machine.

Chapter 4. Preparation process for C++ generation 19

v The correct value must be set for SQL validation and the correct database
must be used.
Either of the following combinations are valid:
– If you have DB2 installed on your development system, but are

generating and preparing a job for an AIX, HP-UX, SCO, or Solaris target
system, you must specify the /NOSQLVALID generation option.

– If you have DDCS installed on your development system, but are
generating and preparing a job for an AIX, HP-UX, SCO, or Solaris target
system, you can specify the /SQLVALID generation option. You must
define the AIX, HP-UX, SCO, or Solaris database to DB2 as a remote
database.

v Preparation for C++ for OS/2 requires OS/2 Warp 4.0 or later.
v Tables must all be specified in lowercase. For dynamic link libraries (DLLs)

or shared libraries, the file name must be all uppercase, but the file
extension must be lowercase. The example below shows some examples for
file names for tables and DLLs.

mytable.tab
MYAPP.dll
MYMAPS.dll

If you use your own preparation process, be sure to name the files correctly.
If you use the preparation process provided with VisualAge Generator, it
moves the files to the target environment. You must be sure to name the
files correctly. If you do not specify the /NOPREP generation option, the
VisualAge Generator Developer moves the files for you and correctly names
them.

20 VisualAge Generator: Generation Guide

Chapter 5. Command interface for C++ generation

You can issue the VisualAge Generator Developer subcommands from a
system prompt or from within a command file. The command HPTCMD
implements the command interface. Subcommands are specified with the
HPTCMD command and are followed by any required keywords and options.
Comments can be imbedded in the commands. Comments begin with the
characters /* and end with the characters */.

Command processing can be started explicitly by issuing the START
subcommand or implicitly by issuing any other VisualAge Generator
Developer subcommand. The command continues running until it is ended,
either by issuing the STOP subcommand or by closing the Generation Monitor
window.

Starting the command opens a Generation Monitor window. The Generation
Monitor window displays the command currently being processed and
provides information showing what stage of generation the process has
reached. You can cancel the currently processing command from the
Generation Monitor window. Closing the Generation Monitor window ends
any command currently being processed.

If you are generating programs using a generation server, refer to the
VisualAge Generator System Development Guide for information about starting
and stopping the Generation Monitor.

Note: If you are generating a program that uses DBCS, you must run the
commands on a machine that is DBCS-enabled.

GENERATE subcommand syntax for C++ generation

For C++ generation, the GENERATE subcommand enables you to generate a
program, table, or map group. You can also specify options that affect how a
part is generated.

The following syntax diagram shows the options required for the GENERATE
subcommand.

Note: The /CONFIGMAPNAME, /CONFIGMAPVERSION, and /SYSTEM
options require a value when you generate from the command interface
by using VisualAge Generator on Smalltalk. The /PROJECT and
/SYSTEM options require a value when you generate from the
command interface using VisualAge Generator on Java.

© Copyright IBM Corp. 1980, 2001 21

!! HPTCMD GENERATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

NONE
/CHECKTYPE= LOW

ALL

!

!
NONE

/CICSENTRIES= RDO
MACRO

1
/COMMENTLEVEL= 0

/CONTABLE=table name
!

!
/CURRENCY=currency symbol DBMS= DB2

ODBC
ORACLE

/DBPASSWORD=database password
!

!
/DBUSER=database userid /DESTDIR=directory

!

!
/DESTHOST=TCP/IP name or address /DESTPASSWORD=USERID /DESTUID=USERID

!

!
/NOENDCOMMAREA

/ENDCOMMAREA

/GENHELPMAPS

/NOGENHELPMAPS
!

!
/GENMAPS

/NOGENMAPS

/GENTABLES

/NOGENTABLES /GENOUT=directory
!

!
/GROUPNAME=group name ALL

/INEDIT= INONLY
55

/LINES= 0
number

!

!
/LINKAGE=partname

/NOLISTING

/LISTING
/LISTINGONERROR

/NOLOCVALID

/LOCVALID

/NUMOVFL

/NONUMOVFL
!

22 VisualAge Generator: Generation Guide

!
/PREP

/NOPREP

/PREPFILE

/NOPREPFILE /RESOURCE=partname /RT=transaction ID
!

!
/SQLDB=SQL database name

/NOSQLVALID

/SQLVALID

*

/SYMPARM=symbol,'value'
!

!
/TARGNLS=language code

!

!
/TRANSID= primary

primary , restart
,restart

/WORKDB= AUX
MAIN

UNLOAD

NOUNLOAD
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 3 illustrates the GENERATE subcommand for C++ program generation;
at an OS/2 command prompt it must be entered in one continuous line. If
you are using VisualAge Generator on Java, use /PROJECT instead of
/CONFIGMAPNAME and /CONFIGMAPVERSION.

The AIX, HP-UX, and Solaris environments are case sensitive. Verify the case
for the specified values for the following options:

/DBPASSWORD
/DBUSER

HPTCMD GENERATE MYPGM
/CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=AIX
/COMMENTLEVEL=0
/DESTDIR='/u/pancho'
/DESTHOST=quixote.cary.ibm.com
/DESTPASSWORD=mypassword
/DESTUID=pancho
/OPTIONS=MYOPT
/GENOUT=D:\pancho\gen /NUMOVFL
/TRACE=PROCESSES

Figure 3. GENERATE subcommand for C++

Chapter 5. Command interface for C++ generation 23

/DESTDIR
/DESTHOST
/DESTUID
/DESTPASSWORD

See “Chapter 24. Generation options parts” on page 209 for information about
setting generation options.

See “Chapter 31. Analyzing return codes and errors” on page 367 for
information about generation return codes.

GENERATE subcommand examples for C++
Each example in this section illustrates different uses of the GENERATE
subcommand and includes the GENERATE syntax that is used. The examples
display as several lines because of the formatting limitations of this document,
but they must be entered as one command line.

Generating for AIX
Figure 4 shows an example that generates a program for use in the AIX
environment.

Generating for HP-UX
Figure 5 shows as example that generates a program for use in the HP-UX
environment.

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=AIX
/LINKAGE=linktbl
/DESTDIR='/u/sleepy/genout'
/DESTHOST=xmaster
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 4. Generating for AIX

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=HP
/LINKAGE=linktbl
/DESTDIR='/u/sleepy/genout'
/DESTHOST=xmaster
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 5. Generating for HP-UX

24 VisualAge Generator: Generation Guide

Generating for SCO OpenServer
Figure 6 shows as example that generates a program for use in the SCO
environment.

Generating for Solaris
Figure 7 shows as example that generates a program for use in the Solaris
environment.

Generating for CICS for AIX
Figure 8 shows an example that generates a program for use in the CICS for
AIX environment.

Generating for OS/2
Figure 9 on page 26 shows example that generates a program for use in the
OS/2 environment.

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=SCO
/LINKAGE=linktbl
/DESTDIR='/u/sleepy/genout'
/DESTHOST=xmaster
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 6. Generating for SCO OpenServer

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=SOLARIS
/LINKAGE=linktbl
/DESTDIR='/u/sleepy/genout'
/DESTHOST=xmaster
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 7. Generating for Solaris

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=AIXCICS
/LINKAGE=linktbl
/RESOURCE=fcwrsc
/DESTDIR='/u/sleepy/genout'
/DESTHOST=xmaster
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 8. Generating for CICS for AIX

Chapter 5. Command interface for C++ generation 25

Generating for Windows NT
Figure 10 shows as example that generates a program for use in the
Windows NT environment.

START subcommand syntax

The START subcommand starts the server process that runs HPTCMD
subcommands.

!! HPTCMD START !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

If you do not issue the START subcommand and the server process is not
already running, any HPTCMD subcommand you issue, except for the STOP
subcommand, starts the server process automatically.

Note: If you do not issue the START subcommand and you direct your
output to a location other than STDOUT, the server process inherits the
STDOUT location. This causes the STDOUT file to be locked by the
server until an HPTCMD STOP command is issued. To avoid this,
always issue an HPTCMD START command, either at the command
line or by placing the command at the beginning of your command file.

Example

The following is an example of how to use the START subcommand:

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=OS2
/LINKAGE=linktbl

Figure 9. Generating for OS/2

HPTCMD GENERATE PRGM1 /PROJECT="myproject","27.8"
/SYSTEM=WINNT
/LINKAGE=linktbl
/DESTDIR=c:\vggenout
/DESTHOST=nthost1
/DESTUID=sleepy
/DESTPASSWORD=secret

Figure 10. Generating for Windows NT

26 VisualAge Generator: Generation Guide

HPTCMD START

STOP subcommand syntax

The STOP subcommand stops the server process that runs HPTCMD
subcommands.

!! HPTCMD STOP !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

The server process continues to run until it receives a STOP subcommand or
until the Generation Monitor window is closed. When you specify the STOP
subcommand, the server process completes all previously issued
subcommands before stopping. If the server process is stopped as a result of
the Generation Monitor window closing, the stop occurs immediately, ending
any subcommand currently being processed.

Example

The following is an example of how to use the STOP subcommand:
HPTCMD STOP

VALIDATE subcommand syntax for C++ generation

The VALIDATE subcommand enables you to validate your VisualAge
Generator program without actually generating code.

!! HPTCMD VALIDATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

NONE
/CHECKTYPE= LOW

ALL

!

Chapter 5. Command interface for C++ generation 27

!
/GENOUT=directory 55

/LINES= 0
number

/LINKAGE=partname
!

!
/NOLISTING

/LISTING
/LISTINGONERROR

/NOLOCVALID

/LOCVALID /RESOURCE=partname
!

!
/SQLDB=SQL database name

/NOSQLVALID

/SQLVALID /TARGNLS=language code
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 11 illustrates how to use the VALIDATE subcommand for C++
validation.

HPTCMD VALIDATE MYGEN /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8" /SYSTEM=AIX

Figure 11. C++ validation

28 VisualAge Generator: Generation Guide

Part 3. Generating Java programs

© Copyright IBM Corp. 1980, 2001 29

30 VisualAge Generator: Generation Guide

Chapter 6. Inputs to Java server program generation

The Java server program generation process uses inputs from several different
sources:
v VisualAge Generator part definitions that define the program and its

associates.
Refer to the VisualAge Generator Developer online help system for more
information about defining parts.

v Generation control files and parts, which are predefined. The generation
control files and parts for Java are described in “Part 7. Reference
information” on page 207.
These control parts and files contain installation and project-level
conventions that specify how the Java server programs and related objects
are generated. Generation control parts and files are usually specified at an
installation or project level, but they can be specified at any level. You can
modify the contents of the generation control parts and files.

If you elect to create a properties file when you generate Java server
programs, values from generation options files, linkage tables, and resource
association files are built into a properties file that can be accessed by the
program at run time. If you do not generate a properties file during
generation you can modify the settings in the default properties file,
vgj.properties, or use it as an example to create your own properties file.

Settings generated into the properties file control NLS defaults, database
defaults, linkages, and resource associations.

Note: Currently, Java server programs can only be generated for
Windows NT. A properties file is used to control the run-time behavior
of the Java program. See “Chapter 30. Java properties files” on page 359
for more information on properties files.

Refer to the VisualAge Generator Server Guide for Workstation Platforms
document for information about resource association properties and
supported file types for the Windows NT environment.

Inputs for Java generation

The following tables list the inputs for Java generation.

© Copyright IBM Corp. 1980, 2001 31

Table 4 lists the Java inputs for the supported environments.

Table 4. Inputs for Java generation

Element File name and extension Environment

Part definition Stored in repository Windows NT

User-defined option files
(e.g. generation options file)

Stored in repository Windows NT

Linkage table Stored in repository Windows NT

Conversion tables ELAxxxxx Windows NT

Resource association part Stored in repository Windows NT

Generation Options parts

When you generate Java server programs, the generation options you select
define your generation output. You can set generation options using the
Generation Options notebook or you can create a Generation Options part. If
you create a Generation Options part, you can specify some options that are
not available from the notebook. See “Chapter 24. Generation options parts”
on page 209 for information about generation options parts.

Linkage table parts

Linkage table parts are required if the program contains calls to VAGen and
non-VAGen programs. Refer to the VisualAge Generator Client/Server
Communications Guide for information about linkage tables.

Resource associations part

The contents of the resource association file specifies the attributes of accessed
resources such as, location, system, file type, data set name, etc. to be used by
the program when it accesses those resources.

Properties from the resource associations part, used at runtime by generated
Java programs, are stored in a Java properties file during generation if you
specify the Properties file (/GENPROPERTIES) option.

See “Chapter 30. Java properties files” on page 359 for a list of related
properties. Refer to the VisualAge Generator Server Guide for Workstation
Platforms for information about resource association settings in Java properties
files and supported associate file types for the Windows NT environments.

32 VisualAge Generator: Generation Guide

Conversion tables

Java server programs can access sequential data stored as a record.
Conversion tables specified in the properties file are used to convert data
when the record’s data comes from a message queue. That conversion table
may be specified in the MQ file’s entry in resource association properties.

Refer to the VisualAge Generator Client/Server Communications Guide for
information on how to define a custom conversion table for use with code
pages associated with other languages for client/server programs.

Chapter 6. Inputs to Java server program generation 33

34 VisualAge Generator: Generation Guide

Chapter 7. Outputs of Java program generation

The outputs of the generation process are Java source and related objects
needed to prepare and run your program. These outputs contain the
information necessary to transfer files and start the appropriate link processes.

If you are generating a Web transaction program, output includes Java source
and related objects. For more information on the generated files, refer to
“Chapter 17. Outputs of Web transaction program generation” on page 183.

Unlike Java GUI clients, Java server programs are not generated into the
ENVY library. Instead they are generated as .java files and stored in the
specified directory. Files that might be outputs of generation are shown in
Table 5.

Table 5. Generation outputs for Windows NT.

Element Method name Class File name Uploaded Environment

Java source for
each program
generated

progname progname.java¹ Yes Windows NT

Java source for
each function
generated

funcF² progname progname.java Yes Windows NT

Java source for
flow statements
for each
function
generated

flowF² progname progname.java Yes Windows NT

Java source for
each working
storage record

VGWkgW³ VGWkgW.java Yes Windows NT

Java source for
each file record

VGFileR⁴ VGFileR.java Yes Windows NT

Java source for
each SQL record
(JDBC)

VGJdbcJ⁵ VGJdbcJ.java No Windows NT

Java source for
each UI record

VGUirU⁶ VGUirU.java No Windows NT

Java source for
each MQ record

VGMsgM⁷ VGMsgM.java Yes Windows NT

© Copyright IBM Corp. 1980, 2001 35

Table 5. Generation outputs for Windows NT. (continued)

Element Method name Class File name Uploaded Environment

Java source for
each redefined
record

VGRedC⁸ VGRedC.java Yes Windows NT

Java source for
each DLI recrod

VGDliD⁹ VGDliD.java Yes Windows NT

Java source for
each table

VGTblT10 VGTblT.java,
VGDataT.tab

Yes Windows NT

Preparation file
for program
progname

prognamejs.cmd Yes Windows NT

Build command
that places the
generated .java
files prior to
compile

prognamelsz.bat No Windows NT

Batch command
file that invokes
the Java
compiler

prognamejsz.bat Yes Windows NT

File transfer
protocol (FTP)
control file

prognamejs.ftp No Windows NT

Properties file progname.properties Yes Windows NT

36 VisualAge Generator: Generation Guide

Table 5. Generation outputs for Windows NT. (continued)

Element Method name Class File name Uploaded Environment

Notes:

¹progname indicates the component of the class name; it is the same as name of the program being
generated.

²F indicates a component of the method name and is the same as the function name.

³W indicates a component of the class name and the file name; it is the same as the working storage
record name.

⁴R indicates a component of the class name and the file name; it is the same as the file record name.

⁵J indicates a component of the class name and the file name; it is the same as the SQL (JDBC) record
name.

⁶U indicates a component of the class name and the file name; it is the same as the UI record name.

⁷M indicates a component of the class name and the file name; it is the same as the MQ record name.

⁸C indicates a component of the class name and the file name; it is the same as the redefined record
name.

⁹D indicates a component of the class name and the file name; it is the same as the DL/I record name.

10T indicates a component of the class name and the file name; it is the same as the table name.

Generated objects are stored in the directory specified on the /GENOUT
generation option. If /GENOUT specifies a location that is not valid or if
/GENOUT is not specified, the generation objects are stored in the directory
where the server process is running.

Chapter 7. Outputs of Java program generation 37

38 VisualAge Generator: Generation Guide

Chapter 8. Preparation process for Java generation

When generation is completed, the generated outputs must be prepared for
run time, just as you prepare programs you might write yourself.

Preparation takes place automatically unless you specify the /NOPREP
option. If you specify the /NOPREP option, preparation takes place as a
separate process. The /PREP option is the default.

The preparation process includes the following steps:
v Transferring parts to the target environment, if needed
v Unicode conversion, if needed
v Running the compiler

The PREPARE subcommand can also be used to restart preparation if the
preparation process is not successful in a manner that does not require the
parts be generated again. The PREPARE subcommand is used for preparing
programs generated using any VisualAge Generator Developer.

A .cmd file is generated for each program, table, or UI record being generated.
A .cmd file is run unless the /NOPREP option is specified.

Preparing Java programs

The FCEJBLD.EXE does the following processing:
1. If the development machine is different from the target machine, the

prognamejs.ftp file is used to control transfer of all the required files to the
target machine. The prognamejsz.cmd starts preparation for the server
program. The prognamelsz.bat copies the necessary files to the package
directory. The prognamejsz.bat file invokes the Java compiler. The transfer
includes the generated output of any tables, UI records used by the
program as well as any generated properties files, which contain settings
from generation options, resource associations, linkages stored in the
properties file..

2. To start the compile process, the prognamejsz.bat is run on the
Windows NT. The compile process compiles each program and UI record.

If the target machine is a remote Windows NT the prognamejsz.bat must be
run manually to start the make process.

© Copyright IBM Corp. 1980, 2001 39

Refer to the VisualAge Generator Server Guide for Workstation Platforms for
information on how set up your Windows NT system and how to run your
prepared program.

Analyzing preparation errors

When you analyze the preparation errors for the Windows NT environment,
do the following:
1. Verify that the prognamejsz.bat file contains the correct compile information

for your program.
2. Use the SET command to display information about environment variables

settings (e.g. CLASSPATH) for a Windows NT session.

Common preparation errors
The most common preparation problem is that thethe preparation job will not
run on the target system.

Preparation jobs cannot run successfully on the target system when any of the
following requirements are not satisfied:
v Because Java is case sensitive, be sure to verify the case for the specified

values for the following options:
/DESTDIR
/DESTHOST
/DESTUID
/DESTPASSWORD

v The user specified on the /DESTUID option must have read and execute
authority to the target machine (specified by the /DESTHOST option) and
must also have write authority to the target directory (specified by the
/DESTDIR option).
The example below shows the command you type at a command prompt
where you are running the generator to check for read and execute
authority.

rexec <desthost> -l <destuid> -p <destpassword> df

You can check for write authority by doing the following:
1. Log on to the Windows NT machine using the values you are

specifying for the /DESTUID and /DESTPASSWORD options.
2. Change to the directory you are specifying on the /DESTDIR option

using the cd command.
3. Test your access by creating a file.

The example below shows an example command that lists the files and
redirects the list to a file. This is one way to create a file.

dir * > temp.file

40 VisualAge Generator: Generation Guide

If you are able to create the file, you have write authority.

Note: You can specify relative or full path names for the /DESTDIR option,
but fully qualified path names are recommended.

If you use your own preparation process, be sure to name the files correctly. If
you use the preparation process provided with VisualAge Generator, it moves
the files to the target environment. You must be sure to name the files
correctly. If you do not specify the /NOPREP generation option, the
VisualAge Generator Developer moves the files for you and correctly names
them.

Note: Ensure that the appropriate prerequisites are properly installed. See
http:/www.ibm.com/software/ad/visgen for additional information.

Chapter 8. Preparation process for Java generation 41

42 VisualAge Generator: Generation Guide

Chapter 9. Command interface for Java generation

You can issue the VisualAge Generator Developer subcommands from a
system prompt or from within a command file. The command HPTCMD
implements the command interface. Subcommands are specified with the
HPTCMD command and are followed by any required keywords and options.
Comments can be imbedded in the commands. Comments begin with the
characters /* and end with the characters */.

Command processing can be started explicitly by issuing the START
subcommand or implicitly by issuing any other VisualAge Generator
Developer subcommand. The command continues running until it is ended,
either by issuing the STOP subcommand or by closing the Generation Monitor
window.

Starting the command opens a Generation Monitor window. The Generation
Monitor window displays the command currently being processed and
provides information showing what stage of generation the process has
reached. You can cancel the currently processing command from the
Generation Monitor window. Closing the Generation Monitor window ends
any command currently being processed.

If you are generating programs using a generation server, refer to the
VisualAge Generator System Development Guide for information about starting
and stopping the Generation Monitor.

Note: If you are generating a program that uses DBCS, you must run the
commands on a machine that is DBCS-enabled.

GENERATE subcommand syntax for Java generation

For Java generation, the GENERATE subcommand enables you to generate a
program, table, or UI record. You can also specify options that affect how a
part is generated.

The following syntax diagram shows the options required for the GENERATE
subcommand.

Note: The /CONFIGMAPNAME, /CONFIGMAPVERSION, and /SYSTEM
options require a value when you generate from the command interface
using VisualAge Generator on Smalltalk. The /PROJECT and /SYSTEM
options require a value when you generate from the command interface
using VisualAge Generator on Java.

© Copyright IBM Corp. 1980, 2001 43

!! HPTCMD GENERATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

NONE
/CHECKTYPE= LOW

ALL

!

!
DBMS= JDBC /DBPASSWORD=database password /DBUSER=database userid

!

!
/DESTDIR=directory /DESTHOST=TCP/IP name or address /DESTPASSWORD=USERID

!

!
/DESTUID=USERID /PACKAGENAME=packagename

/GENTABLES

/NOGENTABLES
!

!
/GENOUT=directory /LINKAGE=partname

/NOLOCVALID

/LOCVALID

/PREP

/NOPREP
!

!
/RESOURCE=partname /SQLDB=SQL database name

/NOSQLVALID

/SQLVALID
!

!
/TARGNLS=language code

/NOGENPROPERTIES

/GENPROPERTIES
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 12 on page 45 illustrates the GENERATE subcommand for Java
program generation; at a command prompt it must be entered in one
continuous line. If you are using VisualAge Generator on Java, use /PROJECT
instead of /CONFIGMAPNAME and /CONFIGMAPVERSION.

44 VisualAge Generator: Generation Guide

Verify the case for the specified values for the following options:
/DESTDIR
/DESTHOST
/DESTUID
/DESTPASSWORD

See “Chapter 24. Generation options parts” on page 209 for information about
setting generation options.

See “Chapter 31. Analyzing return codes and errors” on page 367 for
information about generation return codes.

GENERATE subcommand examples for Java
The example in this section illustrates how you use the GENERATE
subcommand and includes the GENERATE syntax that is used. This example
is shown as having several lines so that it will fit page limitations, but the text
must be entered as one line when you use the command.

Generating for Windows NT
Figure 13 shows as example that generates a program for use in the
Windows NT environment.

HPTCMD GENERATE MYPGM
/CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=JAVAWINNT
/COMMENTLEVEL=0
/DESTDIR='/u/pancho'
/DESTHOST=quixote.cary.ibm.com
/DESTPASSWORD=mypassword
/DESTUID=pancho
/OPTIONS=MYOPT
/GENOUT=D:\pancho\gen /NUMOVFL
/PACKAGENAME="my.pkg"

Figure 12. GENERATE subcommand for Java

HPTCMD GENERATE PRGM1 /PROJECT="myproject","27.8"
/SYSTEM=JAVAWINNT
/LINKAGE=linktbl
/DESTDIR=c:\vggenout
/DESTHOST=nthost1
/DESTUID=sleepy
/DESTPASSWORD=secret
/PACKAGENAME="my.pkg"

Figure 13. Generating for Windows NT

Chapter 9. Command interface for Java generation 45

START subcommand syntax

The START subcommand starts the server process that runs HPTCMD
subcommands.

!! HPTCMD START !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

If you do not issue the START subcommand and the server process is not
already running, any HPTCMD subcommand you issue, except for the STOP
subcommand, starts the server process automatically.

Note: If you do not issue the START subcommand and you direct your
output to a location other than STDOUT, the server process inherits the
STDOUT location. This causes the STDOUT file to be locked by the
server until an HPTCMD STOP command is issued. To avoid this,
always issue an HPTCMD START command, either at the command
line or by placing the command at the beginning of your command file.

Example

The following is an example of how to use the START subcommand:
HPTCMD START

STOP subcommand syntax

The STOP subcommand stops the server process that runs HPTCMD
subcommands.

!! HPTCMD STOP !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

The server process continues to run until it receives a STOP subcommand or
until the Generation Monitor window is closed. When you specify the STOP
subcommand, the server process completes all previously issued
subcommands before stopping. If the server process is stopped as a result of
the Generation Monitor window closing, the stop occurs immediately, ending
any subcommand currently being processed.

46 VisualAge Generator: Generation Guide

Example

The following is an example of how to use the STOP subcommand:
HPTCMD STOP

VALIDATE subcommand syntax for Java generation

The VALIDATE subcommand enables you to validate your VisualAge
Generator program without actually generating code.

!! HPTCMD VALIDATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

NONE
/CHECKTYPE= LOW

ALL

!

!
/GENOUT=directory 55

/LINES= 0
number

/LINKAGE=partname
!

!
/NOLISTING

/LISTING
/LISTINGONERROR

/NOLOCVALID

/LOCVALID /RESOURCE=partname
!

!
/SQLDB=SQL database name

/NOSQLVALID

/SQLVALID /TARGNLS=language code
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 14 on page 48 illustrates how to use the VALIDATE subcommand for
Java validation.

Chapter 9. Command interface for Java generation 47

HPTCMD VALIDATE MYGEN /PACKAGENAME="my.pkg" /CONFIGMAPVERSION="27.8" /SYSTEM=JAVAWINNNT

Figure 14. Java validation

48 VisualAge Generator: Generation Guide

Part 4. Generating COBOL programs

© Copyright IBM Corp. 1980, 2001 49

50 VisualAge Generator: Generation Guide

Chapter 10. Inputs to COBOL generation

The COBOL program generation process uses inputs from several different
sources:
v VisualAge Generator part definitions that define the program, tables,

processes, statement groups, records, generation options, linkage tables,
resource associations, link edit controls, and BIND controls. Refer to the
VisualAge Generator Developer online help system for more information
about defining parts.

v Generation control files. The generation control files for COBOL include
templates, reserved word files, and conversion tables.

Inputs for COBOL generation

Table 6 shows the inputs to COBOL generation, including control parts, files
and templates, and the outputs from generation that are used to prepare the
generated parts for running on the target system.

Table 6 lists the inputs for the supported COBOL environments.

Table 6. Inputs for COBOL generation

Element File name and extension Environment Notes

Programs, maps, map
groups, tables

Stored in repository All

Variables Set in the hpt.ini file All Variables that can affect
the generation process.
Refer to the VisualAge
Generator Installation
Guide for a description
of environment
variables.

Generation options parts Stored in repository All

Linkage table parts Stored in repository All

© Copyright IBM Corp. 1980, 2001 51

Table 6. Inputs for COBOL generation (continued)

Element File name and extension Environment Notes

Link edit parts Stored in repository IMS BMP
IMS/VS
MVS batch
CICS for MVS/ESA
MVS/TSO
VM batch
VM CMS
VSE batch
CICS for VSE/ESA

Reserved word file xxxxxxxx.RSV¹ All

Conversion tables ELACNxxx².CTB³
ELACNxxx.DLL⁴

IMS BMP
IMS/VS
MVS batch
CICS for MVS/ESA
MVS/TSO
VM batch
VM CMS
VSE batch
CICS for VSE/ESA
CICS for OS/2

Bind control part Stored in repository IMS BMP
IMS/VS
MVS batch
CICS for MVS/ESA
MVS/TSO

Resource associations
part

Stored in repository All

Templates xxxxxxxx.TPL All

Notes:

¹xxxxxxxx indicates an 8-character file name.

²xxx indicates a 3-character mnemonic for a language, such as jpn for Japanese.

³ ELACNxxx.CTB is used when you develop on an OS/2 system.

⁴ ELACNxxx.DLL is used when you develop on a Windows NT system.

Depending upon the environment and use of the COBOL program, certain
interim preparation steps occur. For further information on the preparation
steps, see “Chapter 14. Preparation process for COBOL generation” on
page 153.

52 VisualAge Generator: Generation Guide

Generation options parts

You can optionally specify generation options parts to customize generation of
COBOL programs. See “Chapter 24. Generation options parts” on page 209 for
information about generation options parts.

Linkage table parts

Linkage table parts are required if a program contains external calls or you
want to change the default “call linkage” type. A linkage table specifies the
following:
v The linkage conventions to be used for calling a program
v Whether a CICS CREATX service call starts a local or remote CICS

transaction
v The linkage conventions to be used for implementing a DXFR transfer

between host programs
v Whether a CICS file is to be accessed as a local or remote file

External calls are calls to non-VisualAge Generator programs or calls to
VisualAge Generator server programs on remote systems. Refer to the
VisualAge Generator Client/Server Communications Guide for information about
linkage tables.

Link edit parts

Link edit parts are used for the MVS, VSE, and VM environments. Preparation
templates shipped with VisualAge Generator contain default linkage editor
control statements for generated programs. You must also define additional
linkage editor control statements in a link edit part if a program calls or is
called by other programs using static COBOL calls.

For further information, see “Chapter 26. Link edit parts” on page 245.

Reserved-word file

The reserved word file contains names that are considered reserved by the
generation process. If a name used in a program matches an entry in the
reserved word file, the name is assigned an alias in the generated source.
However, an alias cannot be used for the following:
v Programs
v Tables
v Map groups
v File names

Reserved words can be used for a file name in the following cases:

Chapter 10. Inputs to COBOL generation 53

v When the target system is a CICS environment
v When the target system is not a CICS environment and the /FILETYPE

option is not one of the following:
– OS2COBOL
– SEQ
– VSAM

At installation time, the reserved word file contains reserved words for
COBOL, SQL, CICS, and VisualAge Generator. Your system administrator can
add new reserved words to the file if required. Most installations do not need
to modify this file.

The file contains two types of records:

Comment statements
A statement with an asterisk (*) in column one. You can add
additional comment statements to the file.

Reserved-word statement
A statement with a word starting in column one. The word extends to
the first blank. You can add additional reserved word statements to
the file.

If a program, map group, table, or file name matches a reserved word,
generation ends with an error. Any other part name that matches a
reserved word is assigned an alias in the generated object.

In addition to specific reserved words, the default file contains the
following generic reserved words:
v DFH*
v EIB*
v SQL*

When the reserved word ends in an asterisk, any name whose initial
characters match the string preceding the asterisk is assigned an alias.
These generic reserved words are used to avoid conflict between
program variable names and program variable names assigned by the
CICS translator and DB2, DB2/2, DB2/VSE, or SQL/DS VM
precompilers.

The default reserved word file is EFK2RSV.RSV. You can specify a different
file name using the /RESVWORD generation option. See “Chapter 29.
Generation command and option descriptions” on page 297 for more
information on specifying a reserved word file name using the /RESVWORD
generation option.

The file name must be specified in one of the following ways:

54 VisualAge Generator: Generation Guide

v A fully qualified OS/2 or Windows NT file name. Symbolic parameters are
permitted in the directory specification. See “Chapter 12. Symbolic
parameters” on page 123 for more information about symbolic parameters.

v The name of a file located in a directory specified in the DPATH
environment variable of the server process. See “Chapter 15. Command
interface for COBOL generation” on page 167 for more information about
the server process.

If you want to modify the reserved word file, make a copy of the file and edit
the copy. After the copied file is modified, use the /RESVWORD generation
option to point to the modified file.

Conversion tables

Conversion tables are used to convert ASCII data text to EBCDIC data in
generated objects when objects are transferred from the workstation to MVS,
OS/400, VM, or VSE systems for preparation. They are also used to convert
OS/2 ASCII to the corresponding Windows or UNIX ASCII or to convert
Windows ASCII to the corresponding OS/2 or UNIX ASCII. Conversion tables
are specified using the /CONTABLE generation option. See “Chapter 29.
Generation command and option descriptions” on page 297 for more
information about the /CONTABLE generation option and about conversion
tables.

Refer to the VisualAge Generator Client/Server Communications Guide for
information on how to define a custom conversion table for use with code
pages associated with other languages for client/server programs.

BIND control parts

BIND control parts are only required for DB2 programs generated for MVS
systems.

Whenever a DB2 program is prepared for run time, there are two steps
included in the preparation JCL or preparation REXX procedure:

DB2 precompiler step
Creates a file called a database request module (DBRM) for the
program

BIND step
Binds the DBRM with the DBRMs of other programs into DB2 plans.

The DBRMs for all programs or non-VisualAge Generator programs
that run together as one transaction or one batch job must be bound
into a single DB2 plan.

Chapter 10. Inputs to COBOL generation 55

For further information on the BIND control part, see “Chapter 27. BIND
control parts” on page 257.

Resource associations part

See “Chapter 28. Resource associations part” on page 265 for information on
the resource associations part.

56 VisualAge Generator: Generation Guide

Chapter 11. Templates for COBOL generation

Templates are needed to generate files used to prepare parts for run time and
to run a program. All of the template files required for generation are shipped
with VisualAge Generator Developer. See “Types of templates” on page 58 for
the templates provided with VisualAge Generator.

The file extension for template files is TPL. During installation, these sample
template files are placed in the directory C:\Program Files\Vast\bin for the
Smalltalk version of VisualAge Generator or C:\IBMVJava\IDE\program for
the Java version. The installation procedure updates the OS/2 environment
variable DPATH or the Windows NT environment variable PATH to include
this directory.

If the /TEMPLATES generation option is specified, only the specified
directory is searched for templates. The specified directory must contain
copies of all the templates. If the /TEMPLATES generation option is not
specified, the directories listed by the DPATH or the PATH environment
variable of the process currently running the HPTCMD command are the
directories that are searched for templates.

The templates contain symbolic parameters, which are indicated by the %
symbols. Values can be dynamically defined and substituted in place of these
symbolic parameters. The substitution values are derived from any of the
following sources:
v Definitions of the parts being generated
v Generation options
v /SYMPARM values

See “Chapter 12. Symbolic parameters” on page 123 for more information
about symbolic parameters.

In addition to symbolic parameters, some program-related templates contain
control statements that indicate the points at which information, like file
definitions or program commands, is to be inserted in the output file. The
inserted information can also be generated from templates (file definitions) or
provided by the program user (BIND commands or link-edit statements).

The control statement indicating an insertion point has the format
?KEYWORD?, where the keyword indicates the type of information to be
produced at that point. The following control statement keywords are
supported:

?DD? Insert MVS DD statements

© Copyright IBM Corp. 1980, 2001 57

?ALLOC?
Depending on the environment, whether MVS/TSO, VM CMS, or VM
batch, appropriate allocation statements are inserted

?DLBL?
Insert VSE DLBL statements

?LINK?
Insert link-edit control statements

Types of templates

Templates can be modified to meet installation requirements for preparing
and running programs. A system administrator or project leader usually does
these modifications. See “Modifying templates” on page 82 for all the detailed
information about modifying templates and for examples of how the
templates are processed during generation.

See the following sections for detailed information about the different types of
templates provided with the VisualAge Generator Developer.

Preparation templates
If you specify the /PREPFILE generation option in VisualAge Generator, a
preparation script is created. The name of the script is partname.PRP. The
command file EFKPREP.CMD will always be called for preparation. This
command file calls the program that interprets the .PRP control file, then
uploads the necessary files and submits the preparation procedure.

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information about the preparation process.

Preparation script templates
When you generate COBOL programs, the preparation script is created which
contains control keywords to transfer the generated source files and
preparation files to the target system.

The following preparation files are created for each target system:

Table 7. Preparation executable for each target system

Target system Preparation executable

MVS JCL

VSE JCL

VM REXX

OS/2 CICS REXX

OS/400 CL

58 VisualAge Generator: Generation Guide

The profile templateslisted in Table 8 contain information on the following:
v Environment-specific information for the transfer
v How each part type is to be moved to the preparation system

The template EFK2OPCA.TPL is the preparation script template for all the
environments. The only tag that is in the template is the :CONTROL tag. This
template is repeated in the preparation script for each part generated.

The templates EFK2OPPx.TPL are divided into three sections. Each section is
delimited by a tag. The tags are :PROFILE, :TYPE, and :MESSAGES. Each
section contains keywords, which must remain in their respective sections or a
preparation syntax error will occur.

Table 8. Preparation template description

Section Keyword Default E
FK

2O
P

P
4.

T
P

L
(A

S
/4

00
)

E
FK

2O
P

P
C

.T
P

L
(V

M
)

E
FK

2O
P

P
V

.T
P

L
(V

S
E

)

E
FK

2O
P

P
M

.T
P

L
(M

V
S

)

E
FK

2O
P

P
O

.T
P

L
(O

S
/2

C
IC

S
)

E
FK

2O
P

C
A

.T
P

L
(a

ll
)

:PROFILE TRANSFER_TYPE %ezetransfertype% X X X X X

GENOUT %ezegenout% X X X X X

SYSTEM %ezeenv% X X X X X

PREP_SYSTEM %mvs; for %mvs;, OS2 for OS/2,
OS400 for OS/400, VM for VM,
VSE for VSE

X X X X X

CONVERSION_TABLE %ezeconversiontable,ELAO2437%
for OS/2,
%ezeconversiontable,ELACNENU%
for all others

X X X X X

ENTRY_POINT 1 X X X X X

DELETE_FILES N X X X X X X

PREP D X X X X X X

SESSION %ezeprepsession% X X

SENDFILE_OPTIONS null string (’’) X X X X X

QUIET N X X X X X X

DESTPASSWORD %ezeprepdestpassword% X X X X

Chapter 11. Templates for COBOL generation 59

Table 8. Preparation template description (continued)

Section Keyword Default E
FK

2O
P

P
4.

T
P

L
(A

S
/4

00
)

E
FK

2O
P

P
C

.T
P

L
(V

M
)

E
FK

2O
P

P
V

.T
P

L
(V

S
E

)

E
FK

2O
P

P
M

.T
P

L
(M

V
S

)

E
FK

2O
P

P
O

.T
P

L
(O

S
/2

C
IC

S
)

E
FK

2O
P

C
A

.T
P

L
(a

ll
)

DESTACCOUNT %ezeprepdestaccount% X X X X

DESTUID %ezeprepdestuid% X X X X

DESTHOST %ezeprepdesthost% X X X X

OS2_DESTDIR %ezeprepdestdir% X

OS400_DESTLIB %ezedestlib% X

VM_FMODE %vmfmode, A% X

VM_DISK_ADDR %vmdiskaddr, 191% X

MVS_ALLOC_OPTIONS X

PROJECTID %ezepid% X

VSE_LIB %ezevselib% X

:TYPE PART_TYPE X X X X X

WORKSTATION_EXT X X X X X

WORKSTATION_EXT_ALT X

IS_BINARY X X X X X

PREP_SUBMIT X X X X X

SENDFILE_OPTIONS Null string (’’) X X X X X

CNV_RECORD_LENGTH 80 X X X X X

USE_CSO_CONVERSION Y X X X X X

OS400_FILENAME X

OS400_FILENAME_SUFFIX X

MVS_EXT X

MVS_ALLOC_OPTIONS X

VM_FTYPE X

VM_FTYPE_SQL X

VM_RECFM X

60 VisualAge Generator: Generation Guide

Table 8. Preparation template description (continued)

Section Keyword Default E
FK

2O
P

P
4.

T
P

L
(A

S
/4

00
)

E
FK

2O
P

P
C

.T
P

L
(V

M
)

E
FK

2O
P

P
V

.T
P

L
(V

S
E

)

E
FK

2O
P

P
M

.T
P

L
(M

V
S

)

E
FK

2O
P

P
O

.T
P

L
(O

S
/2

C
IC

S
)

E
FK

2O
P

C
A

.T
P

L
(a

ll
)

VM_LRECL X

VSE_FTYPE X

:MESSAGESMSGCGxxx X X X X X

:CONTROL HAS_DBCS %ezedbcsenv, N% X

NAME %ezembr% X

TYPE %ezeptype% X

HAS_SQL %ezesql, N% X

USE_EXT_ALT X

Preparation Rexx for CICS for OS/2
If you specify the /PREPFILE option and your target system is CICS for
OS/2, a preparation REXX file (partname.RXP) is created. The preparation
REXX file contains the preparation commands for preparing the parts you
have requested.

VisualAge Generator provides templates that are partial REXX files. These
templates are used during generation to produce a REXX file that performs
the preparation steps required for a program, table, or map group. The
VisualAge Generator /PREPFILE function uses the following templates to
produce the REXX preparation REXX file:

EFK2OPXP
This preparation prologue template for CICS for OS/2 preparation
contains the following information:
v Function of the /PREPFILE template
v How to change the preparation prologue template

EFK2OPXC
This preparation control template for CICS for OS/2 preparation

Chapter 11. Templates for COBOL generation 61

contains a REXX array that is initialized with information about the
part to be prepared. It is repeated in the preparation REXX file for
each part generated.

EFK2OPXF
This preparation function template contains the REXX function code
that uses the preparation control template for preparing a part for
execution.

You can change the preparation process by changing the information in the
EFK2OPXP or EFK2OPXF templates. However, changes to the EFK2OPXP
template are not recommended. See “Procedure name and symbolic
parameters” on page 86 for information about required preparation options
that should not be changed.

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information about preparation.

Preparation JCL for MVS or VSE
A preparation JCL file (mbrname.JCP) is created if you specify the /PREPFILE
option, and your target system is MVS or VSE.

For VSE generation, the preparation JCL file also contains end-of-job
information.

The templates used for creating the preparation JCL file are selected according
to the following criteria:
v Type of part being generated
v Target run-time environment
v Types of databases used in the generated program
v Existence of program-specific BIND (prgmname) part for MVS or link-edit

(prgmname) part for VSE

Note: For MVS environments, the templates for BIND commands are only
used if you have not created a program-specific BIND control part.

For VSE environments, the templates for link-edit statements are only
used if you have not created a program-specific link-edit part.

Program templates
Table 9 on page 63 shows the program templates and procedures used for
CICS for MVS/ESA, MVS/TSO, and MVS batch preparation. The templates
and procedures are selected based on the following information:
v The environment
v Use of DB2 in the program
v Use of DL/I in the program

62 VisualAge Generator: Generation Guide

Table 9. Program templates used for CICS for MVS/ESA, MVS/TSO, and MVS batch
preparation

Environment DB2 DL/I Template Procedure
DB2 BIND
template

CICS for
MVS/ESA

Yes * EFK2MPCA ELAPTCLB EFK2MBDA

CICS for
MVS/ESA

No * EFK2MPCB ELATCL

MVS/TSO Yes No EFK2MPTB ELAPCLB EFK2MBDD

MVS/TSO No * EFK2MPTA ELACL

MVS batch Yes Yes EFK2MPBB ELAPCLB EFK2MBDA

MVS batch Yes No EFK2MPBC ELAPCLB EFK2MBDD

MVS batch No * EFK2MPBA ELACL

*No entry in the DL/I column indicates that DL/I use does not affect the selection of
this template.

See “Template for statically linked programs” for more information.

Template for statically linked programs
Table 10 shows the template and the procedure used with statically linked
programs for the MVS environment.

Table 10. Templates used with statically linked programs on MVS environments

Template JCL Procedure Called Function

EFK2MPRE ELARLINK Link-edit MVS programs
that use static COBOL calls

See “Link edit parts” on page 53 for more information about Linkage Editor
control statements.

More about DL/I usage in MVS/TSO and MVS batch
In the MVS/TSO or MVS batch environments, DL/I use is indicated only if
the program includes at least one of the following attributes or functions:
v Database PCB, other than for the ELAWORK or ELAMSG synonyms,

included in the PSB
v EZEDLPCB or EZEDLPSB special function word passed on a CALL

statement
v EZEDLPCB or EZEDLPSB special function word received as a parameter

for a called program
v CSPTDLI call

Chapter 11. Templates for COBOL generation 63

v AUDIT call with PSB specified for program
v EZEDLPCB reference
v GSAM file association (MVS batch only)

Program templates for IMS/VS and IMS BMP preparation
Table 11 shows the program templates and procedures used for IMS
preparation. The templates and procedures are selected based on the
following information:
v The environment
v Use of DB2 in the program
v Specification of a DB2 work database

Note: DL/I is always used in the IMS/VS and IMS BMP environments.

Table 11. Program templates used for IMS preparation

Environment DB2
DB2 Work
Database Template Procedure

DB2 BIND
template

IMS/VS Yes Yes EFK2MPIE ELAPCLB EFK2MBDB

IMS/VS Yes No EFK2MPIE ELAPCLB EFK2MBDA

IMS/VS No Yes EFK2MPID ELACLB EFK2MBDC

IMS/VS No No EFK2MPIC ELACL

IMS BMP Yes EFK2MPIB ELAPCLB EFK2MBDA

IMS BMP No EFK2MPIA ELACL

Program templates for CICS for VSE/ESA and VSE batch preparation
Table 12 shows the program templates and procedures used for VSE
preparation. The templates and procedures are selected based on the
following information:
v The environment
v Use of SQL in the program
v Use of DL/I in the program

Table 12. Program templates used for VSE preparation

Environment SQL DL/I Template Procedure
Link-edit
template

CICS for
VSE/ESA

Yes Yes EFK2VPCB ELACUSTP
ELASQLP

EFK2VLCD

CICS for
VSE/ESA

Yes No EFK2VPCB ELACUSTP
ELASQLP

EFK2VLCC

CICS for
VSE/ESA

No Yes EFK2VPCA ELACUSTP EFK2VLCB

64 VisualAge Generator: Generation Guide

Table 12. Program templates used for VSE preparation (continued)

Environment SQL DL/I Template Procedure
Link-edit
template

CICS for
VSE/ESA

No No EFK2VPCA ELACUSTP EFK2VLCA

VSE batch Yes Yes EFK2VPBC ELACUSTP
ELASQLP
ELADLIP

EFK2VLBD

VSE batch Yes No EFK2VPBD ELACUSTP
ELASQLP

EFK2VLBC

VSE batch No Yes EFK2VPBB ELACUSTP
ELADLIP

EFK2VLBB

VSE batch No No EFK2VPBA ELACUSTP EFK2VLBA

Map group templates
Table 13 shows the map group templates and procedures used for MVS
preparation. The templates and procedures are selected based on the
following information:
v The environment
v The type of object being generated
v Generation options affecting generation of that object type

Table 13. Map group templates used for MVS preparation

Environment
Generated
object type

Generation
option Template Procedure

CICS for
MVS/ESA

Online print
services COBOL
program

EFK2MMCA ELACL

CICS for
MVS/ESA

Map group
format module

EFK2MMTF ELAL

MVS/TSO Online print
services COBOL
program

EFK2MMCA ELACL

MVS/TSO Map group
format module

EFK2MMTF ELAL

MVS batch Batch print
services COBOL
program

/MSP=
(SEQ|GSAM)

EFK2MMCA ELACL

Chapter 11. Templates for COBOL generation 65

Map group templates for IMS/VS and IMS BMP preparation
Table 14 shows the map group templates and procedures used for IMS
preparation. The templates and procedures are selected based on the
following information:
v The environment
v The type of object being generated
v Generation options affecting generation of that object type

Table 14. Map group templates used for IMS preparation

Environment
Generated
object type

Generation
option Template Procedure

IMS/VS MFS print
services COBOL
program

EFK2MMCB ELACL

IMS/VS MFS source /MFSTEST EFK2MMST MFSTEST

IMS/VS MFS source /NOMFSTEST EFK2MMSU MFSUTL

IMS BMP MFS print
services COBOL
program

/MSP=
(MFS|ALL)

EFK2MMCB ELACL

IMS BMP MFS source /MFSTEST EFK2MMST MFSTEST

IMS BMP MFS source /NOMFSTEST EFK2MMSU MFSUTL

IMS BMP Batch print
services COBOL
program

/MSP=
(SEQ|GSAM|ALL)

EFK2MMCA ELACL

Map group templates for CICS for VSE/ESA and VSE batch preparation
Table 15 shows the map group templates and procedures used for VSE
preparation. The templates and procedures are selected based on the
following information:
v The environment
v The type of object being generated
v Generation options affecting generation of that object type

Table 15. Map group templates used for VSE preparation

Environment
Generated
object type

Generation
option Template Procedure

CICS for
VSE/ESA

Online print
services COBOL
program

EFK2VTCL ELACUSTP

CICS for
VSE/ESA

Map group
format module
program

EFK2VMFM ELACUSTP

66 VisualAge Generator: Generation Guide

Table 15. Map group templates used for VSE preparation (continued)

Environment
Generated
object type

Generation
option Template Procedure

VSE batch Batch print
services COBOL
program

/MSP=SEQ EFK2VTCL ELACUSTP

Note: The link-edit information for map groups generated for VSE is imbedded
directly in the template. There is not a separate link-edit template for VSE map group
generation.

Table templates
Table 16 shows the map group templates and procedures used for table
preparation. The templates and procedures are selected based on the
following information:
v The environment
v The type of object being generated

Table 16. Table templates used for preparation

Environment
Generated object
type Template Procedure

All MVS
environments

Table program EFK2MMCA ELACL

All VSE
environments

Table program EFK2VTCL ELACUSTP

Note: The link-edit information for tables generated for VSE is imbedded directly in
the template. There is not a separate link-edit template for VSE table generation.

VisualAge Generator tables generated as COBOL programs are system
dependent but not environment dependent. A table generated and prepared
for one environment can be used in another environment on the same system
without generating the table again.

VSE end-of-job template
The VSE end-of-job template is named EFK2VPEJ.TPL. This template is
appended to the preparation JCL stream at the end of the generation process.
This template indicates to the VSE/POWER queue that generation is
complete, and provides a place for the VSE/POWER end-of-job statement.

Preparation CL for OS/400
The VisualAge Generator Developer default templates produce OS/400
control language (CL) programs to manage the task of compiling and binding
ILE COBOL programs. The CL programs have an extension of CLP and CLJ in
the generation output directory. When the CL programs are transferred to

Chapter 11. Templates for COBOL generation 67

OS/400, they are placed in the files QVGNCLS and QVGNJOB in the library
named on the /DESTLIB generation option. Each generated member for
QVGNCLS or QVGNJOB has the same name as the program part from which
it was generated. The submitted batch job (.CLJ) compiles and calls the .CLP
file that prepares the generated programs. When the CL program is run,
generated VisualAge Generator programs are prepared for run time.

All of the templates have the file-name extension .TPL and are originally
installed in the directory C:\Program Files\Vast\bin for the Smalltalk version
of VisualAge Generator or C:\IBMVJava\IDE\program for the Java version.
The following are the templates for the OS/400 environment and their
functions:

EFK24PBC
Establishes CL program entry and global error monitoring during
preparation of one VisualAge Generator part type

EFK24PCL
Provides CL to compile and bind ILE COBOL/400 when the
VisualAge Generator part is a CALLED (non-SQL) program type

EFK24PEC
Provides an epilogue to the CL preparation program, such as general
purpose error handling, during preparation of one VisualAge
Generator part type

EFK24PMN
Provides CL to compile and bind ILE COBOL/400 when the
VisualAge Generator part is a MAIN (non-SQL) program type

EFK24PPM
Provides CL to compile and bind ILE COBOL/400 when the
VisualAge Generator part is a map group containing printer maps
(mapping services program)

EFK24PSC
Provides CL to DB2/400 pre-compile, COBOL compile, and bind ILE
COBOL/400 when the VisualAge Generator part is a CALLED
program type containing SQL statements

EFK24PSM
Provides CL to DB2/400 pre-compile, COBOL, compile, and ILE
COBOL/400 when the VisualAge Generator part is a MAIN program
type containing SQL statements

EFK24WCL
Provides CL to compile and bind ILE COBOL/400 when the
VisualAge Generator part is a Web transaction (non-SQL) program
type

68 VisualAge Generator: Generation Guide

EFK24WSC
Provides CL to DB2/400 pre-compile, COBOL compile, and bind ILE
COBOL/400 when the VisualAge Generator part is a Web transaction
program type containing SQL statements

The message file CL used for the OS/400 environment has the file-name
extension .MSG. CL for the message file is similar to the preparation for
VisualAge Generator program and map group print map part types. The
message file preparation CL that is produced from templates prepares a
VisualAge Generator message table part when started. During the preparation
phase, message table parts are converted to OS/400 message file objects to be
used by VisualAge Generator programs. CL message templates are used for
the OS/400 environment as follows:

EFK24TCM
Provides CL to create the message file

EFK24TAM
Provides CL to add a message to the message file

EFK24TEM
Provides an epilogue to the CL preparation program, such as general
purpose error handling, during preparation of one VisualAge
Generator part type

The run-time file CL, used for client/server programs in the OS/400
environment, has the file extension .CLR. During the preparation phase, the
run-time CL source is copied to the file QVGNCLS in the destination library,
with the name of prgmname_R. It is then compiled.

EFK24EBC
Provides the CL to add libraries to the client/server job and to start
commitment control if this is the first server program called by a
client. Customize this template to add any libraries that the server
program needs for data or programs.

EFK24EEC
Provides an epilogue to the run-time CL to handle errors that occur.

Batch jobs used for the OS/400 environment have the file extension .CLJ.
OS/400 batch jobs are used to create and then run the preparation CL
programs previously defined by the CL templates. The batch job stream is
produced from the following templates:

EFK24PBJ
Establishes the database batch job entry. This template must contain
the //BCHJOB command. This template is similar to the MVS JOB
card template. This template can also contain job setup commands,
such as library list alterations and job value changes.

Chapter 11. Templates for COBOL generation 69

Note: The generation option /JOBCARD= value can be used to
override this template name with one of your own choosing,
enabling easy customization to batch job parameters that
control the job definition.

EFK24TMJ
Provides CL commands to create the message CL preparation
program, and then runs it. This template is used when the VisualAge
Generator part is a message file.

EFK24PEJ
Provides CL commands to create the program CL preparation
program, and then runs it. This template is used when the VisualAge
Generator part is a program or a print map.

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information about the preparation process.

Preparation REXX for VM
If you specify the /PREPFILE option and your target system is VM CMS or
VM batch, a preparation REXX exec file (partname.RXP) is created. The
preparation REXX exec contains the preparation commands for preparing the
parts you have requested.

The parts can be any of the following:
v Programs
v Map groups
v Tables

VisualAge Generator provides templates that are partial REXX files. These
templates are used during generation to produce a REXX file that performs
the preparation steps required for a program, table, or map group. The
VisualAge Generator /PREPFILE function uses the following templates to
produce the VM REXX preparation REXX file:

EFK2CPXP
This preparation prologue template for VM preparation contains the
following information:
v Function of the /PREPFILE template
v How to change the preparation prologue template

EFK2CPXC
This preparation control template for VM preparation contains a
REXX array that is initialized with information about the part to be
prepared. It is repeated in the preparation REXX exec for each part
generated.

70 VisualAge Generator: Generation Guide

EFK2CPXF
This preparation function template contains the REXX function code
that uses the preparation control template for preparing a part for
execution.

You can change the preparation process by changing the information in the
EFK2CPXP or EFK2CPXF templates. However, changes to the EFK2CPXC
template are not recommended. See “Procedure name and symbolic
parameters” on page 86 for information about required preparation options
that should not be changed.

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information about the preparation process.

BIND command templates
BIND commands are required only for DB2 programs.

BIND command templates are used to build a default BIND command file
(prgmname.BND) for a program if a program-specific bind control part does
not exist.

Link-edit templates
Link-edit templates are required for VSE and VM programs.

VSE programs have separate templates containing link-edit information. For
VSE map groups and tables, the link-edit information is included in the
regular templates.

MVS programs do not have separate link-edit templates. For MVS programs,
the link-edit information is included in the cataloged procedures shipped with
VisualAge Generator Server for MVS, VSE, and VM. VM programs, map
groups and tables have separate templates containing link-edit information.
See “Link-edit templates for VM” for more information.

See “Program templates for CICS for VSE/ESA and VSE batch preparation”
on page 64 for more information about which link-edit template is used.

Link-edit templates for VM
The link-edit templates used to create default linkage editor control statements
when generating for VM target environments are listed in Table 17.

Table 17. Linkage Editor control statement templates for VM programs

Environment SQL Template

VM CMS
VM batch

Yes EFK2CLKD

Chapter 11. Templates for COBOL generation 71

Table 17. Linkage Editor control statement templates for VM programs (continued)

Environment SQL Template

VM CMS
VM batch

No EFK2CLKC

The name of the linkage editor control statement file templates used to
generate the default linkage editor control statements for map groups and
tables are listed in Table 18.

Table 18. Linkage Editor control statement templates for tables and map groups

Object type Template

Map group format module EFK2CLKA

Map group object module EFK2CLKB

Table object module EFK2CLKB

CICS table templates
CICS table templates enable automatic updating of the program and
transaction control table entries that define programs to CICS for the CICS for
MVS/ESA, CICS for VSE/ESA, and CICS for OS/2 environments.

See “Templates for CICS table definition” on page 73 for information on the
templates used for CICS table generation.

Automatic update of program and transaction tables is not available for the
CICS for OS/2 environment. The CICS definitions must be updated before
using the generated programs. See “CICS for OS/2 table entries” on page 163
for information on modifications needed for the CICS for OS/2 table entries.
CICS tables are generated for the CICS for OS/2 environment when the
/CICSENTRIES generation option is specified with a value other than NONE.
The same format is used for CICS for OS/2 table generation whether you
specify RDO or MACRO for the /CICSENTRIES generation option.

For CICS for MVS/ESA and CICS for VSE/ESA environments, the table
entries are transferred to the host by the preparation process. The CICS tables
on the host are not automatically updated with the generated definitions. The
generated definitions might need to be modified before being used. Substitute
the actual transaction name in place of the symbol in the template. You are
responsible for adding the definitions to the appropriate CICS tables on the
host systems where the program is run.

Different templates support generation of either macro or resource definition
online (RDO) definitions for CICS for MVS/ESA and CICS for VSE/ESA. The

72 VisualAge Generator: Generation Guide

value specified for the /CICSENTRIES generation option lets you select the
format used for CICS table generation. The following values are valid:

MACRO
Generates a program properties table (PPT) entry for each COBOL
program and FM module. In addition, a program control table (PCT)
entry is generated for each program with type main transaction or
main batch, and for the transaction ID specified as the segmented
transaction ID specified at generation. The table entries are generated
from templates.

The MACRO option can be specified for any CICS for MVS/ESA or
CICS for VSE/ESA environment. It is recommended that you use
RDO whenever possible.

RDO Generates resource definition online (RDO) definitions containing
program properties information for each COBOL program and FM
module. In addition, the definition for programs with type main
transaction or main batch also contains program control and group
information for the transaction associated with the program.

The RDO option can be used with CICS for VSE/ESA systems and
with CICS/ESA systems on MVS. CICS for MVS/ESA V2 systems do
not support using a batch job to add RDO table entries. For CICS for
MVS/ESA V2, RDO table entries must be added online.

It is recommended that you use RDO whenever possible.

NONE
Does not generate CICS program and transaction definitions.

The generated table entries are written to files with the name of the part as
specified on the GENERATE subcommand, and the following extensions:
v PPT
v PCT

Templates for CICS table definition
Table 19 shows the templates used for CICS table generation:

Table 19. Templates used for CICS table generation

Object type System Format
Program
template

Transaction
template

COBOL MVS MACRO EFK2MCPA EFK2MCCM

Map group
format module

MVS MACRO EFK2MCPB

COBOL MVS RDO EFK2MCPC EFK2MCCR

Chapter 11. Templates for COBOL generation 73

Table 19. Templates used for CICS table generation (continued)

Object type System Format
Program
template

Transaction
template

Map group
format module

MVS RDO EFK2MCPD

COBOL VSE MACRO EFK2VCPA EFK2VCCM

Map group
format module

VSE MACRO EFK2VCPB

COBOL VSE RDO EFK2VCPC EFK2VCCR

Map group
format module

VSE RDO EFK2VCPD

COBOL OS/2 CICS for OS/2 EFK2OCPA EFK2OCCT

COBOL OS/2 CICS for OS/2 EFK2OCPP

Note: Transaction templates are used only when generating main transaction or main
batch programs.

JOB statements
The JOB statement file contains the JOB statement used for jobs that prepare
programs for run-time and for sample run-time JCL. Like other templates, the
JOB statement file can contain symbolic parameters that can be substituted
with values specified using the /SYMPARM generation option. However, JOB
statements differ from other template files in the way you specify use of a
non-default file. To use a JOB statement file other than one of the supplied
default files, you specify the JOB statement file name using the /JOBCARD
generation option.

Your system administrator or project leader can tailor the JOB statements to
implement local naming conventions or program preparation processes.

The system administrator or project leader can also insert new symbolic
parameters into the JOB statements. If new symbols are added, you can
provide the values for these symbols by specifying the values using the
/SYMPARM generation option.

For MVS environments, the default JOB statement file name is
EFK2MJOB.TPL; for VSE environments, EFK2VJOB.TPL.

Run-time file templates
If you specify the /RUNFILE generation option for program generation, and
your target system is MVS batch, IMS BMP, or VSE batch, the generation
function creates sample JCL for running the program. The file name is
prgmname.JCX.

74 VisualAge Generator: Generation Guide

If you specify the /RUNFILE generation option for program generation, and
your target system is MVS/TSO, the generation function creates a sample
CLIST file. The file name is prgmname.CLX.

If you specify the /RUNFILE generation option for program generation, and
your target system is VM, the generation function creates a sample REXX exec
for running the program. The file name is prgmname.RXX.

The templates used for creating these sample run-time files are selected
according to the following criteria:
v The environment
v Whether the program is a main or called program
v Use of DB2, DB2/VSE, or SQL/DS VM in the program
v Use of DL/I in the program

Note: The /RUNFILE generation option is valid only for the following
environments:

v MVS/TSO
v MVS batch
v IMS BMP
v VM CMS
v VM batch
v VSE batch

JCL templates
Table 20 shows the JCL templates and procedures used for running MVS batch
programs. The templates and procedures are based on the following
information:
v The environment
v Whether the program is a main or called program
v Use of SQL in the program
v Use of DL/I in the program

Table 20. Templates used for running MVS batch programs

Environment Program SQL DL/I Template

Procedure
called by
template

MVS batch Main Yes Yes EFK2MEBB DLIBATCH

MVS batch Main Yes No EFK2MEBD

MVS batch Main No Yes EFK2MEBC DLIBATCH

MVS batch Main No No EFK2MEBE

Chapter 11. Templates for COBOL generation 75

Table 20. Templates used for running MVS batch programs (continued)

Environment Program SQL DL/I Template

Procedure
called by
template

MVS batch Called * * EFK2MEBA

*The use of the template is not affected by either SQL or DL/I usage.

Each of the JCL templates contains a ?DD? line that starts in column one. This
line indicates where the generation function is to insert the DD statements for
files and databases used by the program. Move this line within the JCL
template to control where the DD statements are placed. If you remove the
line that contains ?DD?, the DD statements are not included in the generated
JCL.

EFK2MEBA
For called programs, only DD statements are generated. These
statements can be incorporated into the sample run-time JCL of any
main program that calls the program.

More about DL/I use for MVS batch: In the MVS batch environment, DL/I
usage is indicated if the program includes at least one of the following
attributes or functions:
v Database PCB, other than for the ELAWORK or ELAMSG synonyms,

included in the PSB
v EZEDLPCB special function word passed on a CALL statement
v EZEDLPSB special function word passed on a CALL statement
v EZEDLPCB or EZEDLPSB special function word received as a parameter

for a called program
v CSPTDLI call
v AUDIT call with PSB in program
v EZEDLPCB special function word reference
v GSAM file association

Run-time JCL templates for IMS BMP: Table 21 on page 77 shows the JCL
templates and procedures used for running IMS BMP programs. The
templates and procedures are selected based on the following information:
v The environment
v Whether the program is a main or called program
v Use of SQL in the program

76 VisualAge Generator: Generation Guide

Note: DL/I is always present in the IMS BMP environment.

Table 21. Templates for running IMS BMP

Environment Program SQL Template

Procedure
called by
template

IMS BMP Main Yes EFK2MEIA IMSBATCH

IMS BMP Main No EFK2MEIB IMSBATCH

IMS BMP Called * EFK2MEBA

* The use of the template is not affected by SQL usage.

Each of the JCL templates contains a ?DD? line that starts in column one. This
line indicates where the generation function is to insert the DD statements for
files and databases used by the program. Move this line within the JCL
template to control where the DD statements are placed. If you remove the
line that contains ?DD?, the DD statements are not included in the generated
JCL.

Run-time JCL templates for VSE batch: Table 22 shows the JCL templates
used for running VSE programs. The templates are selected based on the
following information:
v The environment
v Whether the program is a main or called program
v Use of SQL in the program
v Use of DL/I in the program

Note: Procedures are not called by JCL templates for running VSE programs.

Table 22. JCL templates used for running VSE programs.

Environment Program SQL DL/I Template

VSE batch Main Yes Yes EFK2VEBC

VSE batch Main Yes No EFK2VEBD

VSE batch Main No Yes EFK2VEBB

VSE batch Main No No EFK2VEBE

VSE batch Called * * EFK2VEBA

*The use of the template is not affected by SQL or DL/I usage.

Each of the JCL templates contains a ?DLBL? line that starts in column one.
This line indicates where the generation function is to insert the DLBL
statements for files and databases used by the program. Move this line within

Chapter 11. Templates for COBOL generation 77

the JCL template to control where the DLBL statements are placed. If you
remove the line that contains ?DLBL?, the DLBL statements are not included
in the generated JCL.

EFK2VEBA
For called programs, only DLBL statements are generated. These
statements can be incorporated into the sample run-time JCL of any
main program that calls the program.

More about DL/I usage for VSE batch: In the VSE batch environment, DL/I
usage is indicated if the program includes at least one of the following
attributes or functions:
v Database PCB, other than for the ELAWORK or ELAMSG synonyms,

included in the PSB
v EZEDLPCB special function word passed on a CALL statement
v EZEDLPCB or EZEDLPSB special function word received as a parameter

for a called program
v CSPTDLI call
v EZEDLPCB special function word reference

REXX templates for VM
Table 23 shows the REXX templates used for running VM programs. The
templates are selected based on the following information:
v The environment
v Whether the program is a main or called program
v Whether SQL is used by the program

Table 23. REXX templates used for running VM programs.

Environment Program Template
EXECs called by
template

VM CMS
VM batch

Main
Called

EFK2CERB
EFK2CERA

ELASETUP
ELARUN
ELACLEAN

Templates EFK2CERA and EFK2CERB contain a ?ALLOC? line that starts in
column one. This line indicates where the generation function is to insert calls
to ELACALLC EXEC to do the FILEDEF and DLBL commands for files used
by the programs. Move this line within the templates to control where
ELACALLC EXEC statements are placed. If you remove the line that contains
?ALLOC?, the calls to ELACALLC EXEC are not included in the generated
run-time exec.

78 VisualAge Generator: Generation Guide

CLIST templates for MVS/TSO
Table 24 shows the CLIST templates and procedures used for MVS/TSO run
time. The templates and procedures are selected based on the following
information:
v The environment
v Whether the program is a main or called program
v Use of SQL in the program
v Use of DL/I in the program

Table 24. CLIST templates and procedures used for MVS/TSO run time

Environment Program SQL DL/I Template
CLIST called
by template

MVS/TSO Called Yes No EFK2META

MVS/TSO Called No * EFK2META

MVS/TSO Main Yes No EFK2METC ELATALC

MVS/TSO Main No Yes EFK2METB ELATALC

MVS/TSO Main No * EFK2METD ELATALC

*The use of the template is not affected by DL/I usage.

Each of the CLIST templates contains an ?ALLOC? line that starts in column
one. This line indicates where the generation function is to add the allocate
(ALLOC) commands for files and databases used by the program. Move this
line within the CLIST template to control where the commands are placed. If
you remove the line that contains ?ALLOC?, the ALLOC commands are not
included in the generated CLIST procedures.

For a called program, only ALLOC commands are generated. The CLIST for
the called program can be run from the CLIST for the calling program.

More about SQL and DL/I use: In the MVS/TSO environment, DL/I usage
is indicated if the program includes at least one of the following attributes or
functions:
v Database PCB, other than for ELAWORK or ELAMSG, is included in the

PSB
v EZEDLPCB passed on a CALL statement
v EZEDLPCB or EZEDLPSB received as a parameter for a called program
v CSPTDLI call
v EZEDLPCB reference

Chapter 11. Templates for COBOL generation 79

EFK2META
For called programs, only ALLOC commands are generated. The CLIST for
the called program can be run by the CLIST for the calling program.

File and database allocation templates
Some of the files or databases used by a program require file or database
templates for generating file allocation statements. Table 25 shows the
template selected based on the following information:
v The type of record organization
v Whether the record is input or output
v The associated file types

Table 25. Templates for generating file allocation statements

Record
organization

Input or
output

Associated
file type

CLIST
template for
MVS/TSO

JCL template
for MVS
batch or
IMS BMP

JCL template
for VSE
batch

REXX EXEC
template for
VM

DL/I
segment

Input or
output

EFK2MTDL EFK2MDLI EFK2VDLI

Indexed
Relative
Serial

Input VSAM,
VSAMRS

EFK2MTVI EFK2MVSI EFK2VVSI EFK2CVVI

Indexed
Relative
Serial

Output VSAM,
VSAMRS

EFK2MTVO EFK2MVSO EFK2VVSO EFK2CVVO

Serial Input SEQ, SEQRS EFK2MTSI EFK2MSDI EFK2VSEI EFK2CVSI

Serial Output SEQ, SEQRS EFK2MTSO EFK2MSDO EFK2VSEO EFK2CVSO

Serial Input GSAM EFK2MGSI,
EFK2MIMS

Serial Output GSAM EFK2MGSO,
EFK2MIMS

Note: The statements generated from file and database templates are included at points marked by the
?DD?, ?ALLOC?, or ?DLBL? lines in the program template.

EFK2VDLI
The EFK2VDLI template has the DLBL statement commented out. The
VisualAge Generator Developer does not collect the resource association
information needed to build this statement. You must provide the final
tailoring of these DLBL statements in the sample run-time JCL after the
program has been generated.

80 VisualAge Generator: Generation Guide

EFK2MTDL
The EFK2MTDL template has the ALLOC command commented out. The
VisualAge Generator Developer does not collect the resource association
information needed to build this statement. You must provide the final
tailoring of these ALLOC commands in the sample CLIST after the program
has been generated.

EFK2MDLI
The EFK2MDLI template is only included if the target environment is MVS
batch. For the IMS BMP target environment, the database should already be
allocated to the IMS control region.

This template has the DD statement commented out. The VisualAge Generator
Developer does not collect the resource association information needed to
build this statement. You must provide the final tailoring of these DD
statements in the sample run-time JCL after the program has been generated.

EFK2MIMS

The EFK2MIMS template is an extra template for GSAM. For IMS BMP jobs,
if any of the serial files is associated with a GSAM file, the template
EFK2MIMS is also included.

File and database allocation placeholder templates
The generated sample run-time files for programs must be modified to
include DD statements, DLBL statements, ALLOC, or FILEDEF commands for
files referenced using the EZEDEST or EZEDESTP special function words, or
for files and databases used by programs that are called or transferred-to from
the base program.

Table 26 shows the templates that generate comments in the sample run-time
files to indicate the place where DD statements, DLBL statements, ALLOC, or
FILEDEF commands can be included.

Table 26. Templates that generate comments in sample run-time files

Program function

CLIST
template for
MVS/TSO

JCL template
for MVS
batch or
IMS BMP

JCL template
for VSE
batch

REXX EXEC
template for
VM

Program uses an XFER or
DXFR statement with
EZEAPP

EFK2MTEA EFK2MEZA EFK2VEZA EFK2CVEA

Chapter 11. Templates for COBOL generation 81

Table 26. Templates that generate comments in sample run-time files (continued)

Program function

CLIST
template for
MVS/TSO

JCL template
for MVS
batch or
IMS BMP

JCL template
for VSE
batch

REXX EXEC
template for
VM

Program uses a CALL,
XFER, or DXFR statement
to a specific program, or
the /RT generation option
indicates a transfer to a
specific program

EFK2MTCL,
page 82

EFK2MCAL EFK2VCAL EFK2CVCL,
page 82

Program sets the
EZEDEST or EZEDESTP
special function word

EFK2MTED EFK2MEZD EFK2VEZD EFK2CVED

EFK2MTCL
The EFK2MTCL template generates an EXEC statement to run the CLIST
generated for the called or transferred-to program. The CLIST for the base
program does not have to be modified to include the ALLOC commands for
called or transferred-to programs.

EFK2CVCL
The EFK2CVCL template generates an EXEC statement to run the run-time
REXX exec generated for the called or transferred-to program. The run-time
REXX exec for the base program does not have to be modified to include the
FILEDEF or DLBL commands for called or transferred-to programs.

Modifying templates

During the installation process, the default templates are moved to
C:\Program Files\Vast\bin for the Smalltalk version of VisualAge Generator
or C:\IBMVJava\IDE\program for the Java version.

Templates can be modified to meet installation requirements for preparing
and running programs. These modifications are usually done by a system
administrator or project leader. See “Reasons to modify templates” on page 83
for detailed reasons to modify templates.

To modify the templates, create a new directory and copy all the templates
from the default templates directory (C:\Program Files\Vast\bin for the
Smalltalk version of VisualAge Generator or C:\IBMVJava\IDE\program for
the Java version). Because different projects can require the use of different
templates, set up separate template directories for each project. Each directory
must contain copies of all the templates. Make your changes to these copies of
the templates. To use templates that you have placed in directories other than

82 VisualAge Generator: Generation Guide

the default templates directory, specify the directory name using the
/TEMPLATES generation option. Use a standard editor to modify the
templates.

User-defined symbolic parameters can also be inserted in templates. The
values for user-defined symbols are specified at generation time using the
/SYMPARM generation option. When you use symbolic parameters in a
template for MVS, VSE, or VM programs, ensure that the generated statement
does not go past column 71 when the largest possible values are substituted
for the symbol. Statements longer than 71 columns in host templates are
truncated. The length restriction for templates does not apply for OS/2
programs. Also, be sure your changes result in the generation of valid syntax.
The generation facility does not check the syntax.

If you modify the templates, you might need to modify the corresponding
cataloged procedures. Conversely, if you modify the cataloged procedures,
you might need to modify the corresponding templates. Cataloged procedures
are shipped with VisualAge Generator Server for MVS, VSE, and VM and
installed on the target system where preparation is to take place. Cataloged
procedures can also be tailored. The system administrator can change the
name of the cataloged procedure being started, assign parameter values, and
override DD statements or ALLOC commands.

If you modify the templates for the VM environment, you might need to
modify the corresponding REXX execs provided with VisualAge Generator
Server for MVS, VSE, and VM. Conversely, if you modify the REXX execs
provided with the VisualAge Generator Server for MVS, VSE, and VM, you
might need to modify the corresponding templates for the VM environment.
The REXX execs are shipped with VisualAge Generator Server for MVS, VSE,
and VM and installed on the target system where preparation is to take place.
The REXX execs provided with VisualAge Generator Server for MVS, VSE,
and VM can also be tailored. The system administrator can change the name
of the REXX execs being started, assign parameter values, and override
FILEDEF and DLBL commands.

See “Examples of modifying templates” on page 106 for examples showing
how to modify templates.

Reasons to modify templates
You do not need to modify templates often. If changes need to be made to a
template, your system administrator or project leader usually makes them.
Some reasons why templates might need to be modified include these:
v Implementing installation data set naming conventions
v Changing the name of the cataloged procedure being called
v Changing the preparation process

Chapter 11. Templates for COBOL generation 83

v Assigning parameter values
v Adding DD statements to the STEPLIB concatenation
v Overriding DD statements
v Overriding ALLOC statements
v Overriding DLBL statements
v Overriding FILEDEF statements

Additional reasons for modifying templates include the following:
v Adding override DD statements for S1.SYSPRINT to the EFK2MMSU and

EFK2MMST JCL templates to prevent printing the MFS listings
v Adding the OWNER or EXPLAIN option to templates EFK2MBDA,

EFK2MBDB, EFK2MBDC, or EFK2MBDD
v Adding or changing the REGION parameter for a step
v Including a JES2 JOBPARM or JES3 //*MAIN statement after the JOB

statement in the JOB statement file to change the PROCLIB referenced
when the preparation job runs

v Adding a JES3 //*MAIN SYSTEM=xx statement, where xx is the name of
the target system, after the JOB statement in the JOB statement file to direct
a preparation job to a specific system

v Adding the XDEST parameter on the VSE/POWER JOB statement to direct
a preparation job to a specific system

v Adding symbols for AMODE and RMODE in the link-edit steps of the
templates. Specify AMODE(31) and RMODE(ANY) for most generated
programs; use AMODE(24) and RMODE(24) only if the generated program
must be statically linked with a non-VisualAge Generator program that
requires AMODE(24) and RMODE(24).

v Adding additional parameters on the call to ELAPREP in the generated
preparation REXX execs for VM

Modifying templates and procedures for MVS environments
Preparation templates for MVS systems run cataloged procedures to perform
program preparation. You can tailor the procedures to meet your installation’s
requirements.

The default procedures are shipped with VisualAge Generator Server for
MVS, VSE, and VM. If you change these procedures, you might need to make
changes in the corresponding templates.

Table 27 on page 85 shows the naming convention used for the preparation
procedures, with the exception of ELARLINK.

84 VisualAge Generator: Generation Guide

Table 27. Procedure naming convention

Text Description

ELA The prefix for all procedures

P DB2 precompile

T Translate

C COBOL compile

L Link

B DB2 bind

Preparing programs on a single system
Table 28 shows the procedures run by the generated preparation JCL. If you
are preparing the program on an MVS environment, you can use these
procedures. If you change these procedures, you might need to make changes
in the corresponding JCL templates.

If you use ANSI SQL instead of DB2, modify the procedures to use your ANSI
SQL processor, if any.

Table 28. Procedures for preparation JCL for an MVS environment

Procedure Purpose

ELAB DB2 bind. This procedure is used for moving a program to a second
system.

ELACL COBOL compile and link

ELACLB COBOL compile, link, and DB2 bind. This procedure is used for
programs that do not have any SQL statements, but have specified a
DB2 work database for the IMS/VS environment.

ELAL Link-edit the map group format module

ELAPCLB DB2 precompile, COBOL compile, link, and DB2 bind

ELAPTCLB DB2 precompile, CICS translate, COBOL compile, link, and DB2 bind

ELARLINK Relink modules that require static linkage

ELATCL CICS translate, COBOL compile, and link

Preparing programs on different systems
Table 29 on page 86 shows the preparation procedures you can use when you
compile on a development system and link on a different production system,
or generate on one system and compile and link on another.

Chapter 11. Templates for COBOL generation 85

Table 29. Preparation procedures for preparing on different systems

Procedure Purpose

ELAC COBOL compile

ELAL Link only

ELALB Link and DB2 bind

ELAPC DB2 precompile and COBOL compile

ELAPTC DB2 precompile, CICS translate, and COBOL compile

ELATC CICS translate and COBOL compile

Procedure name and symbolic parameters
If you modify the procedure name, be sure to change the JCL templates used
to run the procedure to use the new name.

If you modify the symbolic parameters defined in the procedure, be sure to
change the symbolic parameters in the JCL templates that use the procedure.
If you add or delete symbolic parameters for a procedure, review the JCL
templates that run the procedure to determine if you need to change the
templates.

See “Chapter 12. Symbolic parameters” on page 123 for more information on
symbolic parameters.

Required DB2 options
The following options are required for DB2 usage. These options are included
in the cataloged procedures. Do not remove these options:
v HOST(COB2)
v APOSTSQL
v QUOTE

CICS-required conversion options
The following options are required for CICS conversion. These options are
included in the cataloged procedures. Do not remove these options:
v COBOL2
v NOSEQ
v QUOTE

CICS/ESA Version 3 Release 2 or higher requires the SP translator option.

86 VisualAge Generator: Generation Guide

DBCS translator option for CICS/ESA
Double-byte character set (DBCS) or mixed data requires the DBCS translator
option and CICS/ESA Version 3 Release 1 Modification 1 or higher. The DBCS
option is included in the preparation procedures based on the value of the
EZEDBCS symbolic parameter.

Setting COBOL run-time options for MVS
You might need to set additional COBOL run-time options, depending on the
run-time library in use and the options your program requires.

LE run-time options: The following run-time options are required when you
use the LE run-time library:
v STORAGE(00,...)
v CBLPSHPOP(ON).

For the DATA(31) COBOL option, specify the ANYWHERE suboption for the
HEAP run-time option. Otherwise, all COBOL and VisualAge Generator
Server for MVS, VSE, and VM storage is allocated with a 24-bit address.

The TRAP and TERMTHDACT run-time options control error condition
handling. The LE documentation indicates TRAP(OFF) must be specified if
programs use CBLTDLI or ASMTDLI interfaces. CBLTDLI and ASMTDLI are
used by generated programs and host services.

TERMTHDACT controls the amount of information reported on a severe error
detected by TERMTHDACT. TERMTHDACT(DUMP) produces an LE dump
in addition to an LE message.

You can either set the LE installation defaults to these values or modify the
link-edit templates to link in program-specific options in CSECT CEEUOPT.

Refer to the COBOL Programming Guide (SC26-4767) for more information on
specifying LE run-time options.

Modifying LE user exits: In addition to setting appropriate LE run-time
options, you can modify the LE assembler user exit (CEEBXITA) to request an
ABEND instead of an error return for all abend codes for programs that can
have updates to databases or for recoverable files that have not been
committed. An ABEND forces a rollback; a return with an error code commits
updates to the database.

To use a different copy of the user exit for different programs, you can modify
the link-edit templates to link the user exit with the program load module.

Refer to the LE Programming Guide (SC26-4818) for more information on
condition handling and the assembler user exit.

Chapter 11. Templates for COBOL generation 87

COBOL compiler options for MVS
You might need to set additional COBOL run-time options, depending on the
run-time library in use and the options your program requires.

Required options: The preparation procedures include the required compiler
options. These options do not have to match the default options at your
installation. Do not remove these options from the preparation procedures.

The following are the required COBOL compiler options:
v NODYNAM
v RENT
v RES
v TRUNC(BIN)
v NUMPROC(NOPFD)
v NOSEQ
v LIB
v QUOTE
v NOCMPR2

NODYNAM compiler option: The NODYNAM compiler option is required to
enable static linking of the VisualAge Generator Server for MVS, VSE, and
VM interface stub program with the generated program. Calls to other
programs can be dynamic depending on whether the COBOL call is generated
as a CALL IDENTIFIER or CALL LITERAL. CALL IDENTIFIER and CALL
LITERAL calls are used as follows:

CALL IDENTIFIER
This dynamic call is generated by VisualAge Generator Developer for
a CALL or DXFR statement when you use the default linkage in
non-CICS environments. CALL IDENTIFIER is also used for calls to
mapping services programs and table programs. This enables printer
map groups and tables to be generated independent of the programs
that use them.

CALL LITERAL
This is either a dynamic or static call based on the compiler option
used. VisualAge Generator Developer generates this type of call for a
CALL or DXFR statement when you request static linkage. The
VisualAge Generator Developer also generates this type of call for
calls to VisualAge Generator Server for MVS, VSE, and VM modules.
The statically linked VisualAge Generator Server for MVS, VSE, and
VM modules contain the following:
v A few modules that are used frequently
v A stub module that dynamically links to the major run-time

functions

88 VisualAge Generator: Generation Guide

VisualAge Generator requires that the NODYNAM compiler option be
specified so that all CALL LITERAL statements are treated as static calls.

DBCS compiler option: If you use double-byte character set (DBCS) or mixed
data, the DBCS compiler option is required. The DBCS option is included in
the preparation procedures based on the value of the EZEDBCS symbolic
parameter.

RES compiler option: The RES option can be omitted for COBOL because
COBOL supports only the RES option function.

Included compiler options: Several COBOL compiler options might be
useful to you. The following options are included in the preparation
procedures, but are not required. You can remove these options if you do not
need them.

OFFSET
Produces a cross-reference listing of the hexadecimal offsets in the
module and the COBOL statement number. This is recommended to
help you while you are debugging your program.

OPTIMIZE
Can significantly increase the compile time performance, but might
also give faster run-time performance. Therefore, it might be beneficial
to use the NOOPTIMIZE option during testing and the OPTIMIZE
option when moving the program to production.

Additional compiler options: Other compiler options that are not included
in the cataloged procedures that you might find useful follow:

TEST The use of the TEST compiler option varies depending on the COBOL
debug facility you use.
v COBOL Debug Facility

If you plan to test your program using the COBOL debug facility
before putting the program into production, you can specify the
TEST compiler option. TEST forces the NOFDUMP option. Before
putting the program into production, compile again with the
NOTEST option. Using the NOTEST option reduces the load
module size.

v CODE/370; Debugger

If you plan to test your COBOL program using the CODE/370;
Debugger before putting the program into production, you can
specify the TEST compiler option. Before putting a program into
production, compile again with the TEST(NONE,SYM) or NOTEST
option. LE provides a formatted dump with either option. Specify
the SYM suboption of the TEST compiler option to have symbolic
variables included in the formatted dump.

Chapter 11. Templates for COBOL generation 89

NOFDUMP
Using NOFDUMP prevents COBOL from giving a formatted dump on
an abend. However, specifying FDUMP causes significantly larger
load modules. You must determine what is important to you—better
performance due to smaller load modules, or the additional
information provided if the program is not successful.

SSRANGE
Specify SSRANGE if you want run-time subscript checking.
NOSSRANGE eliminates run-time subscript checking. Because using
NOSSRANGE can result in better performance, specify NOSSRANGE
when you move the program to production.

DATA(xx)
The VisualAge Generator Developer /DATA generation option enables
you to specify whether the preparation JCL uses the DATA(31) or the
DATA(24) compiler option. This option controls whether data areas
are acquired above or below the 16MB (MB equals 1048576 bytes)
boundary.

DATA(31) is the default for CICS programs. DATA(24) is the default
for non-CICS programs. The preparation procedures cause the
generated programs to be linked with AMODE(31), RMODE(ANY) for
all environments.

For CICS for MVS/ESA and CICS for VSE/ESA, you can only specify
24-bit addressing if the dynamic storage required by the generated
COBOL program, mapping services program, or table is less than
64KB.

Use the following rules when generating or linking programs, tables,
and map groups:
v Specify 24-bit addressing for the following:

– Any program that calls a program or program linked
AMODE(24)

– The first program in the run unit if any generated program in
the run unit is linked AMODE(24) or if any program that uses
DL/I is generated with /DATA=24

– Tables and map groups if any program that uses the table is
linked AMODE(24)

– Any DL/I program in VSE batch or in non-CICS environments
on MVS if IMS/ESA is not installed

v If you specify 31-bit addressing for DL/I programs in the MVS
batch or MVS/TSO environments, you must install IMS/ESA and
you must specify the VisualAge Generator Server for MVS, VSE,
and VM IMSESA installation option as IMSESA=’Y’. Refer to the

90 VisualAge Generator: Generation Guide

VisualAge Generator Server Guide for MVS, VSE, and VM for
information about the IMSESA installation option.

Refer to your COBOL documentation for more information about the compiler
options.

Compiler options that are not supported: The compiler option NAME is not
supported.

Modifying the MVS JOB card
Figure 15 shows the default JOB statement for MVS.

You can change the JOB statement file to use your own symbolic parameters
for the following:
v JOB name
v Accounting information
v Class
v Notify ID

Refer to the VisualAge Generator Installation Guide for information about
changing the notify value using the EZEUSRID environment variable and for
information about modifying values in the hpt.ini file.

To minimize the amount of overriding you must do, the system administrator
or project leader can create different JOB statements or modify the default JOB
statement to meet the standards or requirements of your installation.

Other modifications that you can make to the JOB statement in the
preparation JCL include changing the PROCLIB and directing the job to run
on a specific system.

Changing the PROCLIB: Figure 16 on page 92 shows an example of what
you can add to the statement following the JOB statement to use a different
library when the job runs.

//%EZEJOB% JOB (MYACCT),CLASS=A,MSGCLASS=A,NOTIFY=%EZEUSRID%

Figure 15. Default JOB statement for MVS

Chapter 11. Templates for COBOL generation 91

Directing the job to run on a specific system: You might want the
preparation job to run on a specific system. For example, you might have the
COBOL compiler and DB2 installed on only one system. Figure 17 shows the
statement you can add after the JOB statement to direct the preparation job to
the particular system.

Modifying templates for the OS/400 environment
You can modify the following templates:
v EFK24PCL
v EFK24PMN
v EFK24PSC
v EFK24PSM
v EFK24TCM
v EFK24TAM
v EFK24PEJ
v EFK24EBC

Do not modify the following templates:
v EFK24PBC
v EFK24PEC
v EFK24TEM
v EFK24TMJ
v EFK24EEC

You can modify the OS/400 preparation command file template to do the
following:
v Delete source and intermediate files
v Change the default drive for the shared folder
v Suppress the transfer messages

Refer to the prologues and comments in the templates for more information
about changing templates in the OS/400 environment.

JES2 JOBPARM

or

JES3 //*MAIN

Figure 16. Changing the PROCLIB

//*MAIN SYSTEM=xx

Figure 17. Directing to a single system

92 VisualAge Generator: Generation Guide

Modifying templates for VSE environments
Preparation templates for VSE run the following procedure to perform
program preparation:

ELACUSTP
This procedure sets up the program user libraries, product libraries,
and SQL preprocessor options.

If you change this procedure, you might need to make changes in the
corresponding templates.

An additional procedure is run if you specify single program user mode for
preparing DB2/VSE programs. Programs that set the value of the SQLSTMDE
symbolic parameter to SINGLEUSER must also customize the procedure
ELASQLDB, which starts the DB2/VSE database.

SQL preprocessing for VSE
When a generated SQL program is prepared for running on VSE, an SQL
preprocessor step is included in the preparation JCL. The preprocessor step
creates a package (access module) that is stored in the DB2/VSE database.

The templates are used to generate the preprocessor step. See any of the
following for more information on which templates are used, based on
environment and database usage:
v “Program templates for CICS for VSE/ESA and VSE batch preparation” on

page 64
v “Map group templates for CICS for VSE/ESA and VSE batch preparation”

on page 66
v “Run-time JCL templates for VSE batch” on page 77

The project leader determines a set of standard preprocessor options that are
needed for a project. Changes to options can be made in the default processor
options file for VSE preparation, ELASQLPR, which is stored in the host
services library. The preparation process can also be directed to use a different
options file by setting the value of the symbolic parameter SQLPROPT to the
new options file name.

Starting SQL preprocessing mode: The default file containing DB2/VSE
startup options is named ELASQLST. ELASQLST is stored in the host services
sublibrary, PRD2.EZELIB. If you want to specify a different DB2/VSE startup
options file, use the SQLSTOPT symbolic parameter. If the new DB2/VSE
startup options file is stored in a sublibrary other than the host services
sublibrary, use the VUSERLIB symbolic parameter to specify the sublibrary.

Chapter 11. Templates for COBOL generation 93

Figure 18 shows how to change the DB2/VSE startup options file to
MYSQLST. The file MYSQLST is stored in sublibrary PRD5.OBJLIB.

The SQL preprocessor step can be started in DB2/VSE multiple program user
mode or single program user mode. The default template for preparation runs
in DB2/VSE multiple program user mode. Multiple program user mode and
single program user mode are used as follows:
v Multiple program user mode is used if the relational database is shared

among CICS users or batch jobs, or both. The system operator must have
started DB2/VSE before a job can run in multiple program user mode.

v Single program user mode is used if no other CICS transactions or batch
jobs need to access the relational database while the job runs. In single
program user mode, the job control starts DB2/VSE and starts the
DB2/VSE preprocessor.

If you plan to use single program user mode, you must modify the procedure
ELASQLDB. The preparation process uses this procedure to start the
DB2/VSE database.

To change from multiple program user mode to single program user mode,
use the SQLSTMDE symbolic parameter to change the value.

Figure 19 shows how to change the DB2/VSE startup mode to single program
user mode.

Required DB2/VSE options: The following options are required for
DB2/VSE usage. These options are included in ELQSQLPR.A, which is
shipped with VisualAge Generator Server for MVS, VSE, and VM and stored
in the host services sublibrary, PRD2.EZELIB. Do not remove these options:
v COB2
v QUOTE

Setting additional SQL preprocessor options: Review the SQL preprocessor
options in the DB2/VSE program programming document for your version of
DB2/VSE. You can add the following two parameters to the default
preprocessor parameters. These parameters are specified in the file

/SYMPARM=SQLSTOPT,'MYSQLST'
/SYMPARM=VUSERLIB,'PRD5.OBJLIB'

Figure 18. Changing the DB2/VSE startup options file

/SYMPARM=SQLSTMDE,'SINGLEUSER'

Figure 19. Changing the DB2/VSE startup mode

94 VisualAge Generator: Generation Guide

ELASQLPR, which is shipped with VisualAge Generator Server for MVS, VSE,
and VM and stored in the host services library.

ISQL(CS)
Cursor stability isolation level

EXPLAIN(YES)
Places information about the structure and run-time performance for a
DELETE, INSERT, or SELECT statement into one or more user-defined
explain tables. The EXPLAIN preprocessor option is available for
DB2/VSE version 3.4 or higher.

Naming DB2/VSE program packages: The default package name for VSE
DB2/VSE program packages is the program name. If you want to specify a
different package name, use the SQLPKGNM symbolic parameter to change
the package name.

Figure 20 shows an entry made to a generation options file to set the value of
the SQLPKGNM symbolic parameter to NEWPGM. The resulting DB2/VSE
package name is NEWPGM.

Setting COBOL run-time options for VSE
You might need to set additional COBOL run-time options, depending on the
run-time library in use and the options your program requires.

See any of the following for information about compiler options:
v “Required options” on page 88
v “Included compiler options” on page 89
v “Additional compiler options” on page 89
v “Compiler options that are not supported” on page 91

Modifying the VSE JOB card
Figure 21 shows the default JOB statement for VSE.

You can change the JOB statement file to use your own symbolic parameters
for the following:
v JOB name
v Class
v Notify ID

/SYMPARM=SQLPKGNM,'NEWPGM'

Figure 20. Changing the SQLPKGNM symbolic parameter

* $$ JOB JNM=%EZEGMBR%,CLASS=%PWRCLAS,0%,DISP=D,NTFY=(%NODUSRID,YES%)

Figure 21. The default JOB statement for VSE

Chapter 11. Templates for COBOL generation 95

To minimize the amount of overriding you must do, the system administrator
or project leader can create different JOB statements or modify the default JOB
statement to meet the standards or requirements of your installation.

You might want to make some of the following modifications to the JOB
statement in the preparation JCL.

Changing the PROC library name: Figure 22 shows the statement that you
might change.

Figure 23 shows a symbolic parameter definition you can add to your
generation options that changes the library name.

Directing the job to run on a specific system: You might need to run the
preparation job on a specific VSE system. For example, if you have the
COBOL compiler and DB2/VSE installed on only one system, you can specify
the following statements, depending on whether the destination system
changes:
v If the destination system is not likely to change, you can add the XDEST=xx

parm to your VSE/POWER JOB statement to direct the job to a specific
system. Figure 24 shows an example of this statement, where xx is the
destination system node name.

v If the destination system might change, you can use a symbolic parameter
to specify the destination. This enables you to override the specified value
during generation. Figure 25 shows an example of using a symbolic
parameter in the JOB card to set the destination system.

// LIBDEF PROC,SEARCH=

Figure 22. Library name statement

/SYMPARM=PROCLIB,'library name'

Figure 23. Changing the library name using a symbolic parameter

* $$ JOB JNM=TEST,XDEST=xx

Figure 24. Setting the destination system

* $$ JOB JNM=TEST,XDEST=%NODED%

Figure 25. Using a symbolic parameter to set the destination system in the JOB card

96 VisualAge Generator: Generation Guide

Figure 26 shows how you then set the symbolic parameter in the
generations options defaults file.

This parameter directs the job to run on system VSESYS1. If you want to
direct the job to a different system, you can define a new value for the
symbolic parameter NODED. You do not need to change the JOB card.

Modifying preparation templates and EXECs for VM environments

Overview of program preparation for VM
The VisualAge Generator generates a preparation REXX file for each program.
It contains a preparation step for each object that needs to be prepared for
execution in the VM environment (see “Chapter 13. Outputs of COBOL
generation” on page 137 for information about the types of objects that are
generated). The preparation REXX file, which is created from the templates
that are described in “Preparation REXX for VM” on page 70, is transferred to
VM along with other files that it needs to prepare the object.

The preparation REXX calls the following execs that are shipped with
VisualAge Generator Server for MVS, VSE, and VM.
v The ELASETUP EXEC is called to link and access the minidisk or SFS

directory that contains the VisualAge Generator Server for MVS, VSE, and
VM code.

v The ELACLEAN EXEC is called to release and detach the minidisk or SFS
directory that contains the VisualAge Generator Server for MVS, VSE, and
VM code.

v The ELAPREP EXEC is called for each object that needs to be processed.

ELAPREP processes each object differently based on the parameters that are
passed to it. For programs and tables that are COBOL source code, the
COBOL compiler and the CMS LKED command are used to process the
object. If the program contains SQL statements, ELAPREP calls ELASQLAA
EXEC to perform SQL/DS VM preprocessing. For map group format modules,
only the CMS LKED command is called to link-edit the object.

Because the preparation REXX exec is generated from templates, you can
modify the templates in order to customize the preparation REXX exec.

ELAPREP parameters
The ELAPREP EXEC supports many keyword parameters that control which
part it processes and how that part is processed. The preparation REXX exec
that is generated sets some of the ELAPREP parameters specifically for the

/SYMPARM=NODED,'VSESYS1'

Figure 26. Setting symbolic parameter

Chapter 11. Templates for COBOL generation 97

part that is being generated. Do not change the value of these parameters:
MBR=, ENV=, COBOLTYPE=, DBCS=, PARTTYPE=, and SQL=.

ELAPREP uses the installation variable information that was set during
VisualAge Generator Server for MVS, VSE, and VM installation. ELAPREP
must know the location of the COBOL compiler and names of maclibs and
txtlibs. Some ELAPREP parameters allow you to override installation
variables. Do this carefully. The following ELAPREP parameters can be used
to override installation variables: COBLIB=, COBLOC=, COBLKED=,
COBLKEDLOC=, SQLLOC=, ELAMACLIB=, ELAMACLOC=,
ELALOADLIB=, and ELALOADLOC=.

Other ELAPREP parameters can be changed or added to the generated
preparation REXX exec. These ELAPREP parameters can be added to the
templates so that they are included whenever a program is generated. The
following sections discuss ELAPREP parameters that can be used to control
the preparation process.

COBOL compiler options for VM
ELAPREP calls the COBOL compiler with options that satisfy most objects
and environments. ELAPREP uses the installation variable information that
was set during VisualAge Generator Server for MVS, VSE, and VM
installation to determine which COBOL compiler to use and where it is
located. This section discusses the compiler options that ELAPREP uses and
options that you might want to change.

Required options: ELAPREP uses some compiler options that are required
by VisualAge Generator. These options do not have to match the default
options at your installation. Do not remove these options:
v NODYNAM
v RENT
v RES
v TRUNC(BIN)
v NUMPROC(NOPFD)
v NOSEQ
v LIB
v QUOTE
v NOCMPR2

NODYNAM
The NODYNAM compiler option is required to enable static linking
of the VisualAge Generator Server for MVS, VSE, and VM interface
stub program with the generated program. Calls to other programs
can be dynamic depending on whether the COBOL call is generated
as a CALL IDENTIFIER or CALL LITERAL. CALL IDENTIFIER and
CALL LITERAL calls are used as follows:

98 VisualAge Generator: Generation Guide

CALL IDENTIFIER
This dynamic call is generated by VisualAge Generator for a
CALL or DXFR statement when you use the default linkage.
CALL IDENTIFIER is also used for calls to mapping services
programs and table programs. This enables printer map
groups and tables to be generated independent of the
programs that use them.

CALL LITERAL
This is either a dynamic or static call based on the compiler
option used. VisualAge Generator generates this type of call
for a CALL or DXFR statement when you request static
linkage. It also generates this type of call for calls to
VisualAge Generator Server for MVS, VSE, and VM modules.

The statically linked VisualAge Generator Server for MVS,
VSE, and VM modules contain the following:
v A few modules that are used frequently
v A stub module that dynamically links to the major run-time

functions

VisualAge Generator requires that the NODYNAM compiler
option be specified so that all CALL LITERAL statements are
treated as static calls.

RES The RES option is required if COBOL is being used. ELAPREP
determines if you are using COBOL and includes the RES
option if necessary by using the installation variable
information that was set during VisualAge Generator Server
for MVS, VSE, and VM installation.

Optional compiler options: ELAPREP uses several COBOL compiler options
that can be changed based on your requirements. ELAPREP can be passed
additional parameters to control which compiler options are used. Unless
otherwise noted, you can modify the VisualAge Generator templates to
automatically include these parameters or edit the generated preparation
REXX exec.

DISK/PRINT/NOPRINT
The ELAPREP COBLIST= parameter can be used to control the
generation of a program listing from the COBOL compiler.
COBLIST=NOPRINT is the default and suppresses the generation of
any listing. COBLIST=DISK generates a listing to the same file mode
that contains the COBOL source. COBLIST=PRINT generates a listing
to your virtual printer. The user-defined symbolic parameter COBLIST
can be used to specify the value of the ELAPREP COBLIST=
parameter.

Chapter 11. Templates for COBOL generation 99

LIST/OFFSET
The COBOL compiler option OFFSET includes a condensed procedure
division listing, global tables, literal pools, and information about
working-storage that is used by your program. The COBOL compiler
option LIST includes an assembler-language expansion of your source
code in addition to the items produced by the OFFSET option. Specify
the ELAPREP COBASM=Y parameter if you want the COBOL
compiler option LIST to be used. By default, ELAPREP uses
COBASM=N, which causes the OFFSET compiler option to be used.

DBCS If you use double-byte character set (DBCS) or mixed data, the DBCS
compiler option is required. Parameter DBCS=Y is automatically
included on the call to ELAPREP if the generator determined your
program used DBCS or mixed data.

DATA(XX)
The VisualAge Generator /DATA generation option enables you to
specify whether the preparation exec uses the DATA(31) or the
DATA(24) compiler option. This option controls whether data areas
are acquired above or below the 16MB (a megabyte (MB) equals
1,048,576 bytes) boundary. DATA(31) is the default.
OPTIMIZE/NOOPTIMIZE NOOPTIMIZE can significantly increase
the compile time performance, but OPTIMIZE might give faster
run-time performance. Therefore, it might be beneficial to use the
NOOPTIMIZE option during testing, and use the OPTIMIZE option
when moving the program to production. Specify the ELAPREP
COBOPT=Y parameter if you want the COBOL compiler option
OPTIMIZE to be used. By default, ELAPREP uses COBOPT=N, which
causes the NOOPTIMIZE compiler option to be used.

TEST The use of the TEST compiler option varies depending on the COBOL
debug facility you use.
v COBOL DEBUG FACILITY

If you plan to test your program using the COBOL debug facility
before putting the program into production, you can specify the
TEST compiler option. TEST forces the NOFDUMP option. Before
putting the program into production, compile again with the
NOTEST option. Using the NOTEST option reduces the load
module size.
Specify the ELAPREP COBTEST=Y parameter if you want the
COBOL compiler option TEST to be used. By default, ELAPREP
uses COBTEST=N, which causes the NOTEST compiler option to be
used. You can modify the template to specify the value of this
ELAPREP parameter.

v CODE/370; Debugger

100 VisualAge Generator: Generation Guide

If you plan to test your COBOL program using the CODE/370;
Debugger before putting the program into production, you can
specify the TEST compiler option. Before putting a program into
production, compile again with the TEST(NONE,SYM) or NOTEST
option. LE provides a formatted dump with either option. Specify
the SYM suboption of the TEST compiler option to have symbolic
variables included in the formatted dump.
Specify the ELAPREP COBTEST=Y parameter if you want the
COBOL compiler option TEST(ALL,SYM) to be used. By default,
ELAPREP uses COBTEST=N, which causes the TEST(NONE,SYM)
compiler option to be used. You can modify the template to specify
the value of this ELAPREP parameter.

Additional compiler options: Other compiler options that are not included
in ELAPREP that you might find useful are:

NOFDUMP/FDUMP
Using NOFDUMP prevents COBOL from giving a formatted dump on
an abend. However, specifying FDUMP causes significantly larger
load modules. You must determine what is important to you—better
performance due to smaller load modules, or the additional
information provided if the program is not successful.

SSRANGE/NOSSRANGE
Specify SSRANGE if you want run-time subscript checking.
NOSSRANGE eliminates run-time subscript checking. Because using
NOSSRANGE can result in better performance, specify NOSSRANGE
when you move the program to production.

Refer to your COBOL documentation for more information about these and
other compiler options.

Compiler options that are not supported: The compiler option NAME is not
supported.

Other ELAPREP parameters
In addition to the parameters that ELAPREP uses for COBOL compilation,
ELAPREP supports other parameters to control the preparation process.

VMFMODE
The ELAPREP VMFMODE= parameter is used to specify the CMS file
mode where the object that is being processed resides. It is also the
file mode of the loadlib in which the created module is stored. It must
be a single alphabetic character. The file mode must be accessed in
R/W mode. The default file mode is A. The user-defined symbolic
parameter VMFMODE can be used to specify the ELAPREP
VMFMODE parameter.

Chapter 11. Templates for COBOL generation 101

VMLOADLIB
The ELAPREP VMLOADLIB parameter is used to specify the file
name of a CMS loadlib in which the created module is stored. The
default is EZEAPPL. The generator option /VMLOADLIB can be used
to specify the ELAPREP VMLOADLIB parameter.

AMODE/RMODE
When ELAPREP uses the CMS LKED command to link-edit the
generated program, it uses AMODE(31) and RMODE(ANY). You can
specify AMODE=24, AMODE=ANY or RMODE=24 on the call to
ELAPREP to override the defaults.

Use the following rules when generating or linking programs, tables,
and map groups:
v Specify 24-bit addressing for the following:

– Any program that calls a program linked AMODE(24)
– The first program in the run unit if any generated program in

the run unit is linked AMODE(24)
– Tables and map groups if any program that uses the table is

linked AMODE(24)

ERASETEXT
The ELAPREP ERASETEXT parameter is used to indicate whether
ELAPREP should erase the text deck that was created by the COBOL
compiler after ELAPREP uses it. The default is ERASETEXT=Y, which
erases the text deck.

USERLKED
The USERLKED parameter is used to specify the name of user txtlibs
that will be used during the link edit step of the ELAPREP. This is
useful when your VisualAge Generator program needs to use static
linkage for a non-VisualAge Generator object deck. More than one
txtlib can be specified by separating the txtlib names with a /. The
minidisks or SFS directories containing the txtlibs must be accessed
before calling ELAPREP. By default, ELAPREP will not use any user
txtlibs.

SQL preprocessing for VM

When a generated SQL program is prepared for running on VM, ELAPREP
calls ELASQLAA EXEC to perform an SQL/DS VM preprocessor step. The
preprocessor step creates a package (access module) that is stored in the
SQL/DS VM database.

If you use ANSI SQL format (generation option /ANSISQL) for the SQL
statements in the VisualAge Generator program, you may need to modify
ELASQLAA to call your SQL preprocessor.

102 VisualAge Generator: Generation Guide

The SQL preprocessor step can be started in SQL/DS VM multiple program
user mode or single program user mode. The default template for preparation
runs in SQL/DS VM multiple program user mode. Multiple program user
mode and single program user mode are used as follows:

Multiple program user mode
This is used if the relational database is shared among VM users,
batch jobs, or both. The system operator must have started SQL/DS
VM before the database can be used.

Single program user mode
This is used if the SQL/DS VM system and one or more programs
run in the same virtual machine. In single program user mode, the
run-time REXX exec starts SQL/DS VM and the SQL/DS VM
preprocessor.

To change from multiple program user mode to single program user mode,
use the SQLSTMDE symbolic parameter to alter the value.

You can customize the SQL/DS VM preprocessing. The project leader
determines a set of standard SQL/DS VM preprocessor options that are
needed for a project. Changes to options can be made in the default
preprocessor options file for VM preparation, ELASQLPO PREPPP, which is
stored on the VisualAge Generator Server for MVS, VSE, and VM disk. The
preparation process can also be directed to use a different options file by
setting the value of the symbolic parameter SQLPROPT to the new options
file name. In VM, the SQL/DS VM preprocessor options file always has a file
type of PREPPP.

If you specify single program user mode for preparing SQL/DS VM programs
(user-defined symbolic parameter SQLSTMDE equals SINGLEUSER), then you
can customize the ELASQLSO SQLPARM file, which is used to start the
SQL/DS VM database. The ELASQLSO SQLPARM file is stored on the
VisualAge Generator Server for MVS, VSE, and VM disk. If you want to
specify a different SQL/DS VM startup options file, use the SQLSTOPT
symbolic parameter. In VM, the SQL/DS VM startup options file always has a
file type of SQLPARM.

The default package name for the SQL/DS VM program is the program name.
If you want to specify a different package name, use the SQLPKGNM
user-defined symbolic parameter.

In addition to SQLSTMDE, SQLPROPT, SQLSTOPT, and SQLPKGNM, other
user-defined symbolic parameters that can be used to control the SQL/DS VM
preprocessing step are SQLDBNAM and SQLUSRPW. See “Chapter 12.
Symbolic parameters” on page 123 for more information.

Chapter 11. Templates for COBOL generation 103

Required SQL/DS VM options
The following options are required for SQL/DS VM usage. These options are
included in the ELASQLPO PREPPP file, which is shipped with VisualAge
Generator Server for MVS, VSE, and VM. Do not remove these options:
v COB2
v QUOTE

Setting additional SQL preprocessor options
Review the SQL preprocessor options in the SQL/DS VM program
programming document for your version of SQL/DS VM. In addition, the
following parameters are specified in the file ELASQLPO PREPPP, which is
shipped with the VisualAge Generator Server for MVS, VSE, and VM and
stored on the host services disk; these options can be modified or removed:

ISOL(CS)
Cursor stability isolation level

CTOKEN(YES)
Consistency token is stored in the expanded source and the package.

Setting COBOL run-time options for VM

You might need to set additional COBOL run-time options depending on the
run-time library in use and the options your program requires.

COBOL run-time option
The WSCLEAR run-time option is required when using the COBOL
run-time library. The WSCLEAR option is set during VisualAge
Generator Server for MVS, VSE, and VM installation.

LE run-time options
LE run-time options for COBOL program programs are specified in
the CSECT CEEUOPT. The LE product ships a sample file called
CEEUOPT ASSEMBLE that can be used to override the LE product or
installation defaults (CSECT CEEDOPT). VisualAge Generator Server
for MVS, VSE, and VM ships a modified version of CEEUOPT that is
called ELAEUOPT ASSEMBLE. It contains run-time options that are
necessary for the VM environment. You can add additional LE
run-time options to this file. If you do, you must assemble it and store
the resulting text file on a file mode that is accessed when the
preparation REXX exec is run. The file mode must be accessed before
the VisualAge Generator Server for MVS, VSE, and VM disk because
an ELAEUOPT TEXT file is located there.

The link-edit templates that are shipped with VisualAge Generator have a
statement that includes ELAEUOPT. If ELAPREP determines that you are
using COBOL, ELAPREP will include the ELAEUOPT TEXT file in the

104 VisualAge Generator: Generation Guide

generated program. If COBOL is being used, the INCLUDE ELAEUOPT
statement in the link-edit file will have no effect because ELAPREP will set
the FILEDEF for ELAEUOPT to DUMMY.

VisualAge Generator programs require that run-time option STORAGE(00,...)
be used if the LE run-time library is utilized. ELAEUOPT ASSEMBLE
specifies STORAGE=(00,NONE,NONE,8K). This overrides the LE product
default of STORAGE=(NONE,NONE,NONE,8K).

For the DATA(31) COBOL option, specify the ANYWHERE suboption for the
HEAP run-time option. Otherwise, all COBOL and VisualAge Generator
Server for MVS, VSE, and VM storage is allocated with a 24-bit address.
ELAEUOPT specifies HEAP=(32K,32K,ANYWHERE,KEEP,8K,4K). You may
need to modify this based on your use of the DATA COBOL compiler option.

The TRAP and TERMTHDACT run-time options control error condition
handling. TRAP specifies how LE routines handle abends and program
interrupts. The LE documentation indicates that TRAP(ON) must be in effect
in order for programs to run successfully. The ELAEUOPT ASSEMBLE file
specifies TRAP=(ON) to ensure this setting.

TERMTHDACT controls the amount of information reported on a severe error
detected by TERMTHDACT. TERMTHDACT(DUMP) produces an LE dump
in addition to an LE message. ELAEUOPT ASSEMBLE file specifies
TERMTHDACT=(DUMP).

Refer to the COBOL Programming Guide (SC26-4767) and the LE Programming
Reference (SC26-3312) for more information on specifying LE run-time options.

Modifying LE user exits
In addition to setting appropriate LE run-time options, you can modify the LE
assembler user exit (CEEBXITA) to request an ABEND instead of an error
return for all abend codes from programs that can have updates to databases
or for recoverable files that have not been committed. An ABEND forces a
rollback; a return with an error code commits updates to the database.

The LE product ships a sample file called CEEBXITB ASSEMBLE that shows
how to code a LE assembler user exit. VisualAge Generator Server for MVS,
VSE, and VM ships a modified version of CEEBXITB that is called ELABXITB
ASSEMBLE. It contains additional code to request an ABEND instead of an
error return for all abend codes. You can add additional user exit processing
to this file. If you do, you must assemble it and store the resulting text file on
a file mode that is accessed when the preparation REXX exec is run. The file
mode must be accessed before the VisualAge Generator Server for MVS, VSE,
and VM disk because an ELABXITB TEXT file is located there.

Chapter 11. Templates for COBOL generation 105

The link-edit templates that are shipped with VisualAge Generator have a
statement that includes ELABXITB. If ELAPREP determines that you are using
COBOL, ELAPREP will include the ELABXITB TEXT file in the generated
program. If COBOL is being used, the INCLUDE ELABXITB statement in the
link-edit file will have no effect because ELAPREP will set the FILEDEF for
ELABXITB to DUMMY.

Refer to the LE Programming Guide (SC26-4818) for more information on
condition handling and the assembler user exit.

Examples of modifying templates

Examples showing how to modify templates and related procedures for
specific tasks appear throughout the rest of this chapter. Before making any
modifications to templates, copy all of the templates to a different directory
and make your changes to these copies. You can edit template files using a
standard editor.

When possible, samples of the modified templates have been included, with
the modifications highlighted in bold. The detailed examples show how to
modify the templates and procedures to accomplish the following tasks:
v “Adding a qualifier to the end user data set names”
v “Deleting COBOL source code from the workstation after preparation” on

page 113
v “Deleting COBOL source on an MVS or VSE host” on page 114
v “Modifying a PSB name to match a batch program name” on page 115
v “Routing output to a system printer for an MVS/TSO CLIST” on page 116
v “Suppressing Personal Communications messages during file transfer” on

page 117
v “Creating COBOL compile and link listings for CICS for OS/2” on page 118
v “Initializing the environment for CICS for OS/2” on page 119
v “Suppressing CICS translator, COBOL compile, and link messages for CICS

for OS/2” on page 119

Adding a qualifier to the end user data set names
You can change the JCL to add qualifiers to the program user data set names.
For example, you can add a code level or project identifier to the data set
names where the output of the preparation job is sent. Symbolic parameters
can represent these qualifiers in the JCL. To add an installation-defined
symbolic parameter to represent a level qualifier in the program user data set
names, create a symbolic parameter named LEVEL and add it to the following
files:
v The preparation JCL templates on page 107

106 VisualAge Generator: Generation Guide

v The preparation procedures on page 108
v The run-time templates on page 111
v The preparation process template on page 113

You supply the value for the LEVEL symbolic parameter at generation time
using the /SYMPARM generation option. The LEVEL symbolic parameter can
represent test and production levels for a project, driver levels, or any other
version of the product code that has meaning for your installation.

Adding a qualifier to a preparation template
Figure 27 shows how to add the LEVEL symbolic parameter to the
preparation JCL templates. Make the change to copies of the preparation
templates.

You can modify the EFK2MPCB template for preparing CICS for MVS/ESA
programs without database access to add a LEVEL symbol.

Figure 28 shows the EFK2MPCB template after the LEVEL symbol is added.
The modified lines shown in the following appear in bold.

Figure 29 on page 108 shows how the developer provides the value for the
LEVEL symbol using the /SYMPARM generation option when generating a
program that uses the modified template.

Change the string:
CGHLQ='%EZEPID%'
to the string:

CGHLQ='%EZEPID%',LEVEL='%LEVEL%'

Figure 27. Adding a qualifier to a preparation template

//**
//** EFK2MPCB - PREPARE MVSCICS PROGRAM WITH NO DB2 ACCESS
//** CICS TRANSLATE, COMPILE AND LINK
//** MODIFIED PRH, 11/21/91, ADD LEVEL SYMBOL
//**
//TCL EXEC ELATCL,MBR=%EZEMBR%,ENV=%EZEENV%,DATA=%EZEDATA%,
// CGHLQ='%EZEPID%',LEVEL='%LEVEL%'
//L.SYSIN DD *
INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI)
NAME %EZEMBR%(R)
/*

Figure 28. EFK2MPCB template after the LEVEL symbol is added

Chapter 11. Templates for COBOL generation 107

Figure 30 shows the resulting preparation JCL statements.

Adding a qualifier to a preparation procedure
Figure 31 shows how to add the LEVEL symbolic parameter to preparation
procedures that currently have a CGHLQ symbol, by adding a default symbol
definition to the PROC statement.

The EFK2MPCB template uses procedure ELATCL. Figure 32 on page 109
shows the modification made to procedure ELATCL. The modified lines
appear in bold.

/SYMPARM=LEVEL,'TEST'

Figure 29. Using a symbolic parameter to set the value for LEVEL during generation

//**
//** EFK2MPCB - PREPARE MVSCICS PROGRAM WITH NO DB2 ACCESS
//** CICS TRANSLATE, COMPILE AND LINK
//** MODIFIED PRH, 11/21/91, ADD LEVEL SYMBOL
//**
//TCL EXEC ELATCL,MBR=MYAPPL,ENV=MVSCICS,DATA=31,
// CGHLQ='PROJ100',LEVEL='TEST'
//L.SYSIN DD *
INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI)
NAME MYAPPL(R)
/*

Figure 30. Resulting JCL statements

LEVEL='TEST',
And change all occurrences of the following string:

&CGHLQ..
to:

&CGHLQ..&LEVEL..

Figure 31. Adding a qualifier to a preparation procedure

108 VisualAge Generator: Generation Guide

//**
//** ELATCL - CICS TRANSLATOR, COBOL COMPILE AND LINK-EDIT
//* MODIFIED, PRH, 11/21/91- ADDED LEVEL QUALIFIER
//**
//*
//ELATCL PROC CGHLQ='USER',
// LEVEL='TEST'
// COBCICS='COB2.COB2CICS',
// COBCOMP='COB2.COB2COMP',
// COBLIB='COB2.COB2LIB',
// ELA='ELA110',
// DATA='31',
// DFHLOAD='CICS211.LOADLIB',
// ENV='IMSVS',
// MBR=TEMPNAME,
// RESLIB='IMSVS.RESLIB',
// RGN=4096K,
// SOUT='*',
// SUFF='1$',
// SP=,
// DBCS=,
// WSPC=500
//*
//* PARAMETERS:
//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
//* LEVEL = DRIVER LEVEL QUALIFIER
//* COBCICS = COBOL CICS RUN TIME LIBRARY
//* COBCOMP = COBOL COMPILER LIBRARY
//* COBLIB = COBOL RUN TIME LIBRARY
//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE
//* ABOVE 16M LINE
//* DFHLOAD = CICS LOAD LIBRARY
//* ELA = VisualAge Generator Server for MVS, VSE, and VM HIGH LEVEL QUALIFIER
//* ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER
//* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)
//* MBR = SOURCE NAME
//* RESLIB = IMS RESLIB LIBRARY
//* RGN = REGION SIZE
//* SOUT = SYSOUT ASSIGNMENT
//* SUFF = CICS PROGRAM NAME SUFFIX
//* SP = CICS/ESA SYSTEM PROGRAMMING TRANSLATOR OPTION
//* DBCS = DOUBLE BYTE CHARACTER SUPPORT
//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION
//*

Figure 32. Changes to ELATCL (Part 1 of 2)

Chapter 11. Templates for COBOL generation 109

//**
//* CICS TRANSLATOR
//**
//*
//T EXEC PGM=DFHECP&SUFF,REGION=&RGN,
// PARM='COBOL2,QUOTE,NOSEQ&SP&DBCS'
//STEPLIB DD DISP=SHR,DSN=&DFHLOAD
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSPUNCH DD DISP=(MOD,PASS),DSN=&&SYSCIN,UNIT=VIO,
// SPACE=(800,(&WSPC,&WSPC))
//SYSIN DD DISP=SHR,DSN=&CGHLQ..&LEVEL..&ENV..EZESRC(&MBR)
//*
//**
//* COMPILE THE COBOL PROGRAM
//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS
//**
//*
//C EXEC PGM=IGYCRCTL,COND=(5,LT),REGION=&RGN,
// PARM=(NOSEQ,QUOTE,OFFSET,LIB,RES,RENT,NODYNAM,OPT&DBCS,
// 'TRUNC(BIN)','NUMPROC(NOPFD)',NOCMPR2,'DATA(&DATA)')
//STEPLIB DD DISP=SHR,DSN=&COBCOMP
//SYSIN DD DISP=(OLD,DELETE),DSN=&&SYSCIN
//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,
// SPACE=(800,(&WSPC,&WSPC))
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//*
//**
//* LINK-EDIT THE COBOL PROGRAM
//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS
//**
//*
//L EXEC PGM=IEWL,COND=(5,LT),REGION=&RGN,
// PARM='RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)'
//SYSLIB DD DISP=SHR,DSN=&DFHLOAD
// DD DISP=SHR,DSN=&COBCICS
// DD DISP=SHR,DSN=&COBLIB
// DD DISP=SHR,DSN=&RESLIB
//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&LEVEL..&ENV..LOAD(&MBR)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO
//* PEND REMOVE * FOR USE AS INSTREAM PROCEDURE

Figure 32. Changes to ELATCL (Part 2 of 2)
110 VisualAge Generator: Generation Guide

Adding a qualifier to a run-time CLIST template
Figure 33 shows what changes to make to copies of the run-time CLIST
templates to add the LEVEL symbolic parameter.

The EFK2METD template is used to generate a run-time CLIST for MVS/TSO
main programs that do not use DL/I or DB2 databases.

Figure 34 on page 112 shows the modifications made to add a level qualifier to
the data set name, which contains the executable load module in the
EFK2METD template. The modified template is shown with changed lines
appearing in bold.

%EZEPID%
to the string:

%EZEPID%.%LEVEL%

Figure 33. Changes to add a qualifier to a run-time CLIST template change the string:

Chapter 11. Templates for COBOL generation 111

/**/
/* EFK2METD - EXECUTE TSO PROGRAM
/* CALLED PROGRAM: %EZEMBR%
/* TARGET ENVIRONMENT: %EZEENV%
/* GENERATION DATE: %EZEGDATE%
/* GENERATION TIME: %EZEGTIME%
//** MODIFIED PRH, 11/21/91, ADD LEVEL QUALIFIER
/**/
PROC 0 ALLOCATEONLY(NO)
CONTROL NOLIST NOFLUSH MSG
GLOBAL ELAAPPS
SET NAMESTART = &SYSINDEX(%EZEMBR%,&ELAAPPS) /*IS PRGM NAME IN STRING?*/
/* IF NAME FOUND, CLIST ALREADY RAN ONCE */
IF &NAMESTART > 0 THEN +

EXIT /* EXIT IF ALREADY BEEN HERE */
ELSE +

SET ELAAPPS = &ELAAPPS..%EZEMBR% /* ADD PROGRAM NAME TO */
/* LIST, SEPARATED BY PERIOD */

/**/
/* ERROR EXIT
/**/
ERROR DO

WRITE
WRITE SYSPCMD = &SYSPCMD
WRITE LASTCC = &LASTCC
WRITE
EXIT

END
IF &ALLOCATEONLY NE YES THEN DO /* EXIT IF ONLY ALLOCATION REQUEST */

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..ELAPRINT ELAPRINT SYSDA FBA 0 1330 TRACKS 2 1 OLD'

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..ELASNAP ELASNAP SYSDA VBA 0 4096 CYLINDERS 2 1 OLD'

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..EZEPRINT EZEPRINT SYSDA VBA 0 4096 TRACKS 5 2 OLD'

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..SYSABOUT SYSABOUT SYSDA FB 0 0 TRACKS 5 2 OLD'

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..SYSOUT SYSOUT SYSDA FB 0 0 TRACKS 5 2 OLD'

END
/**/
/* FILE ALLOCATIONS FOR THIS PROGRAM, TRANSFERRED-TO PROGRAMS
/* AND CALLED PROGRAMS.
/**/
?ALLOC?
IF &ALLOCATEONLY EQ YES THEN EXIT /* EXIT IF ONLY ALLOCATION REQ.*/
CALL '%EZEPID%.%LEVEL%.%EZEENV%.LOAD(%EZEMBR%)'
EXIT

Figure 34. Adding a qualifier for a run-time CLIST template

112 VisualAge Generator: Generation Guide

Adding a qualifier to a preparation process template
This section shows how to add the LEVEL symbolic parameter to the
preparation process templates.

The EFK20PPM.TPL template is the preparation control template for
preparation for the MVS environments.

Figure 35 shows the modifications made to the EFK20PPM.TPL template. The
modified template is shown with changed lines appearing in bold.

Deleting COBOL source code from the workstation after preparation
Because you make many changes to your program by using VisualAge
Generator Developer rather than by editing the generated COBOL code, and
because storage is often a concern, you might want to delete the source code
from the workstation after each compilation. The preparation templates
include code to make it easy for you to delete source code after preparation is
completed successfully. Figure 36 shows code that is included in the
EFK2OPP4.TPL, EFK2OPPM.TPL, EFK2OPPV.TPL, EFK2OPPC.TPL, and
EFK2OPPO.TPL templates.

If you want to delete source code and intermediate files stored on the
workstation after successful preparation of a part, make the following change:
1. If your target system is an MVS, VM, or VSE environment, edit a copy of

the EFK2OPCA.TPL template.
If your target system is CICS for OS/2, edit a copy of the EFK2OPXP.TPL
template. If your target system is OS/400, edit a copy of the
EFK2OPP4.TPL template.

2. Change the value of DELETE_FILES from N to Y.

MVS_TEMP_UPLOAD='Y'
MVS_TSO_ALLOC='N'
MVS_RECLENG='80'
MVS_BLKSIZE='6160'
MVS_RECFM='F'
MVS_UNIT='CYLINDER'
MVS_SPACE='1,1'
PROJECTID='%ezepid%.%LEVEL%'
MVS_TIMEOUT='1'

Figure 35. Modified template

DELETE_FILES='N'

Figure 36. REXX sample for deleting COBOL source code on the workstation

Chapter 11. Templates for COBOL generation 113

Deleting COBOL source on an MVS or VSE host
This section shows how to modify the templates to delete COBOL source from
a MVS/TSO system after successfully compiling, or compiling and linking,
the source. The PREPARE process consists of several different templates. Each
of these templates must be edited to ensure that the COBOL code is deleted.

The following steps show how to edit one of the preparation templates. The
same procedure is used for each of the templates:
1. Edit a copy of the EFK2MPTA.TPL template.

Note: This is the preparation template for compiling and linking an
MVS/TSO program.

2. Figure 37 shows what to add after the /*.

These JCL statements delete the COBOL source part when the previous
steps, which perform the compile and link, complete with a return code
between 0 and 4, indicating successful completion.

Figure 38 on page 115 shows the modifications made to the EFK2MPTA.TPL
template. The modified template is shown with changed lines appearing in
bold.

//DELETE EXEC PGM=IDCAMS,COND=(5,LT)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE %EZEPID%.%EZEENV%.EZESRC(%EZEMBR%)

Figure 37. REXX Sample for deleting COBOL source code on an MVS or VSE host

114 VisualAge Generator: Generation Guide

Modifying a PSB name to match a batch program name
The default run-time JCL templates for IMS BMP and MVS batch DL/I
programs set the PSB name to the name of the PSB part specified for the
program. Similarly, the default run-time CLIST template for MVS/TSO DL/I
programs sets the PSB name to the name of the PSB part specified for the
program. If your naming conventions require the DL/I PSB name to be the
same as the batch program name, you can modify the DL/I batch run-time
templates and change string %EZEPSB% to the string %EZEMBR%.

Figure 39 on page 116 shows the required modifications to template
EFK2MEBC with the changed lines appearing in bold.

//**
//** EFK2MPTA - PREPARE TSO PROGRAM WITH NO DB2 ACCESS
//** COMPILE AND LINK
//**
//CL EXEC ELACL,MBR=%EZEMBR%,ENV=%EZEENV%,DATA=%EZEDATA%,
// CGHLQ='%EZEPID%'
//L.SYSIN DD *
CHANGE ELAAPPL(%EZEMBR%)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
ENTRY %EZEENTRY%
NAME %EZEMBR%(R)
/*
//DELETE EXEC PGM=IDCAMS,COND=(5,LT)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE %EZEPID%.%EZEENV%.EZESRC(%EZEMBR%)

Figure 38. Modifications to EFK2MPTA.TPL

Chapter 11. Templates for COBOL generation 115

Routing output to a system printer for an MVS/TSO CLIST
The templates for run-time CLIST procedures route the printer output to data
sets. Figure 34 on page 112 shows an example of the EFK2METD template
with modifications. Figure 40 shows two statements from that template.

These two statements use the ELATALC CLIST to allocate output data sets for
ELAPRINT (the error information from VisualAge Generator Server for MVS,
VSE, and VM) and for EZEPRINT (printer map output from the program).

Figure 41 on page 117 shows modifications to make to the template if you
prefer that this information always be routed to the system printer rather than
a data set.

//**
//** EFK2MEBC - EXECUTE MVSBATCH PROGRAM WITH DLI ACCESS
//**
//** PROGRAM: %EZEMBR%
//** TARGET ENVIRONMENT: %EZEENV%
//** GENERATION DATE: %EZEGDATE%
//** GENERATION TIME: %EZEGTIME%
//** MODIFIED, PRH, 12/5/91 - SET DL/I PSB NAME TO PROGRAM NAME
//**
//*
//%EZEMBR% EXEC DLIBATCH,DBRC=Y,
// MBR=%EZEMBR%,PSB=%EZEMBR%,BKO=Y,IRLM=N
//G.STEPLIB DD
// DD
// DD DSN=%COB2LIB,COB2.COB2LIB%,DISP=SHR
// DD DSN=%ELA,ELA110%.SELALMD,DISP=SHR
// DD DSN=%EZEPID%.%EZEENV%.LOAD,DISP=SHR
//* DFSVSAMP IS REQUIRED IF VSAM DATABASE - REPLACE PART WITH ONE
//* THAT HAS VALID BUFFER POOL SIZES FOR YOUR PROGRAM.
//G.DFSVSAMP DD DSN=%ELA,ELA110%.ELASAMP(ELAVSAMP),DISP=SHR
//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
?DD?

Figure 39. Modifications to template EFK2MEBC

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..ELAPRINT ELAPRINT SYSDA FBA 0 1330 TRACKS 2 1 OLD'

EXEC '%ELA,ELA110%.ELACLST(ELATALC)' +
'&SYSUID..EZEPRINT EZEPRINT SYSDA VBA 0 4096 TRACKS 5 2 OLD'

Figure 40. Lines from EFK2METD to allocate output data sets for EZEPRINT

116 VisualAge Generator: Generation Guide

If the map group contains DBCS printer maps, BLKSIZE(658) and LRECL(654)
are required for EZEPRINT. If the map group does not contain any DBCS
printer maps, BLKSIZE(141) and LRECL(137) are required.

To set the output class for SOUT (for example, SOUT(A)) in the PROC
statement of the CLIST template, you must add a default value.

You can make similar changes to the ELASNAP, SYSABOUT, and SYSOUT
allocation commands and to the other CLIST templates. Use the allocation
command changes for ELAPRINT as a guide for changes to the other
templates.

Suppressing Personal Communications messages during file transfer
During the preparation process, generation output files are transferred
automatically to the host when the target environment is MVS, VM, or VSE.
The Personal Communications session issues information and error messages
during this transfer. You can suppress these messages by editing the following
preparation templates for the MVS, VM, and VSE environments if you are
using a SNA transfer method:

Table 30. Templates used to transfer to target system

Template name Target environment

EFK2OPPM MVS

EFK2OPPV VSE

EFK2OPPC VM

The following steps show how to modify the template:
1. Edit a copy of the template for your environment.
2. Figure 42 on page 118 shows the lines to change.

/* ALLOCATE ELAPRINT */
ALLOC FI(ELAPRINT) SYSOUT(&SOUT) BLKSIZE(1330) LRECL(133) + RECFM(F,B,A) REUSE
/* ALLOCATE EZEPRINT */
ALLOC FI(EZEPRINT) SYSOUT(&SOUT) BLKSIZE(658) LRECL(654) + RECFM(V,B,A) REUSE

Figure 41. Routing output to a system printer

Chapter 11. Templates for COBOL generation 117

3. Change the value of QUIET from 'N' to 'Y'.

Creating COBOL compile and link listings for CICS for OS/2
Preparation for CICS for OS/2 includes performing a COBOL compile and
link. An abbreviated COBOL compile listing is produced by the preparation
process. If you want to produce a complete COBOL compile listing, you can
edit the CICS for OS/2 preparation template, EFK2OPXP.TPL. You can
generate a complete listing by performing the following steps:
1. Edit a copy of the EFK2OPXP.TPL template.
2. Figure 43 shows a statement that generates the listing.

3. Change the value of ezecobol_list from '' to ’Y″ to create the complete
COBOL compile listing.

During CICS for OS/2 preparation, a link listing file is produced with the
default name of prgmname.MAP. You can change the name of the link listing
file by editing the CICS for OS/2 preparation template, EFK2OPXP.TPL.
Perform the following steps to change the link listing file name:
1. Edit a copy of the EFK2OPXP.TPL template.
2. Figure 44 shows a statement that sets the name of the link listing file.

QUIET = 'N' /* Set session parm QUIET option */
/* specifies whether Personal */
/* Communication messages will be issued */
/* during the Prepare process. The */
/* default is to issue these messages, */
/* but can be changed to 'Y' suppress */
/* display of these types of messages. */

Figure 42. Lines to change to suppress messages

ezecobol_list = '' /* Specifies whether a complete COBOL compile listing */
/* is desired in the prgmname.LST file. */
/* This variable is initially set to NULL, which indicates */
/* that the abbreviated listing will be created. Set this */
/* variable to 'Y' to create the complete listing. */

Figure 43. Creating the listing file

ezelink_list = '' /* Link listing file - default of */
/* applname.MAP in GENOUT path can be */
/* overridden. Change '' to 'example' */
/* to obtain example.MAP in GENOUT */
/* path. */

Figure 44. Naming the link listing file

118 VisualAge Generator: Generation Guide

3. Change the value of ezelink_list from '' to the name of the link listing file
you want created.

Initializing the environment for CICS for OS/2
During CICS for OS/2 preparation, the functions performed include
initializing the environment variables for VisualAge Generator Server, CICS
for OS/2, and COBOL.

You might not want the environment variables initialized for you. You can
modify the CICS for OS/2 preparation template, EFK2OPXP.TPL, to suppress
this function. To suppress the initialization, perform the following steps:
1. Edit a copy of the EFK2OPXP.TPL template.
2. Figure 45 shows a statement that determines whether to initialize the

environment.

3. Change the value of call_elaenv from '1' to '0'.

Suppressing CICS translator, COBOL compile, and link messages for
CICS for OS/2

During CICS for OS/2 preparation, the preparation process issues messages.
The CICS translator, COBOL compiler and linker can also issue messages.
Sometimes you might not want to see those messages. You can modify the
CICS for OS/2 preparation template, EFK2OPXP.TPL, to suppress messages
from the CICS translator, COBOL compiler, and linker. To suppress the issuing
of these messages, perform the following steps:
1. Edit a copy of the EFK2OPXP.TPL template.
2. Figure 46 shows a statement that suppress the messages.

3. Change the value of ezemsg_mode from '' to '>>NUL'.

call_elaenv = '1' /* 1 specifies that ELAENV.CMD is */
/* be called to initialize Generator */
/* Server, CICS OS/2, and COBOL */
/* environment variables. Can be */
/* changed to 0 to suppress the call. */

Figure 45. Initialize the environment statement

ezemsg_mode = '' /* CICS translator, compile, and LINK */
/* informational message output mode */
/* The default, ', directs these */
/* types of messages to STDOUT. To */
/* suppress these types of messages */
/* change '' to '>>NUL' */

Figure 46. Suppress CICS translator, COBOL compiler and linker messages

Chapter 11. Templates for COBOL generation 119

Processing templates

This section shows an example of how a template is automatically processed.
The sample template produces JCL when processed.

Template EFK2MPCB is selected as the template for automatically generating
preparation JCL for a program that has only file access (no database access)
and uses the CICS for MVS/ESA environment as the target environment.

This example section includes the following:
v The sample of the template before modification
v The values of the symbolic parameters for this example
v The resulting JCL

EFK2MPCB before modification
Figure 47 shows EFK2MPCB before modification.

The template contains symbolic parameters delimited by percent signs (%).

The values that are automatically substituted for the symbolic parameters are
based upon the type of part being generated. See “Chapter 12. Symbolic
parameters” on page 123 section for detailed information about symbolic
parameters.

Values for the symbolic parameters
Table 31 shows the values of the symbolic parameters for this part as defined
for this example.

Table 31. Values of the symbolic parameters for the example

Symbol Value Source of value

EZEMBR MYAPPL Program for which JCL is being generated

EZEENV MVSCICS Target environment

//**
//** EFK2MPCB - PREPARE MVSCICS PROGRAM WITH NO DB2 ACCESS
//** CICS TRANSLATE, COMPILE AND LINK
//**
//TCL EXEC ELATCL,MBR=%EZEMBR%,ENV=%EZEENV%,DATA=%EZEDATA%,
// CGHLQ='%EZEPID%'
//L.SYSIN DD *
INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI)
NAME %EZEMBR%(R)
/*

Figure 47. EFK2MPCB before modification

120 VisualAge Generator: Generation Guide

Table 31. Values of the symbolic parameters for the example (continued)

Symbol Value Source of value

EZEDATA 31 /DATA generation option

EZEPID PROJ100 /PROJECTID (program user data set qualifier) generation
option

The resulting JCL is used to prepare the generated part for run time. The JCL
was created from the template and symbolic parameters. The generated JCL
starts cataloged procedure ELATCL to prepare the generated program using
the CICS translator, the COBOL compiler, and the linkage editor.

Preparation JCL created from the EFK2MPCB template
Figure 48 shows preparation JCL created from the EFK2MPCB template.

See “Modifying templates” on page 82 section for information on customizing
a template.

//**
//** EFK2MPCB - PREPARE MVSCICS PROGRAM WITH NO DB2 ACCESS
//** CICS TRANSLATE, COMPILE AND LINK
//**
//TCL EXEC ELATCL,MBR=MYAPPL,ENV=MVSCICS,DATA=31,
// CGHLQ='PROJ100'
//L.SYSIN DD *
INCLUDE SELALMD(ELARSINC)
INCLUDE SYSLIB(DFHEAI)
NAME MYAPPL(R)
/*

Figure 48. Preparation JCL created from the EFK2MPCB Template

Chapter 11. Templates for COBOL generation 121

122 VisualAge Generator: Generation Guide

Chapter 12. Symbolic parameters

Symbolic parameters are names that are substituted with values at generation
time. Symbolic parameters can be used in the following places:
v Templates
v Specific generation and association options

The following generation and association options are valid for using symbolic
parameters: /BIND, /GENOUT, /LINKAGE, /LINKEDIT, and /RESOURCE.

There are two types of symbolic parameters: predefined and user-defined.

Predefined symbols

The substitution values for predefined symbols are automatically set at
generation. You do not define values for these symbols. The values for
predefined symbols are derived from the following sources:
v Generation option values
v The type of program being generated
v Environment variable values
v The associated objects being generated
v The target environment
v System values
v File-related information

Predefined symbols start with the prefix EZE. An error is issued if a symbolic
parameter beginning with the letters EZE is defined using the /SYMPARM
generation option.

If a symbol is found in a template where it cannot be used, the symbol is
deleted from the generated output line and a message is issued.

User-defined symbols

You can add your own symbolic parameters to templates. User-defined
symbols enable you to specify substitution values at generation using the
/SYMPARM generation option.

Part-related symbolic parameters

The following list contains the names and values of predefined symbolic
parameters related to the part being generated.

© Copyright IBM Corp. 1980, 2001 123

EZECOBOLTYPE
The value is CALLEDAPPL, MAPGROUP, MAINAPPL, or TABLE,
depending on the type of part being generated.

EZEDATA
The value 24 or 31 indicates the value of the DATA COBOL compile
option. A value of 24 causes all storage to be placed below the 16MB
boundary. A value of 31 enables storage above the 16MB boundary to
be used. The value is set from the /DATA generation option. The
maximum length for the symbolic parameter value is 2.

EZEDBCS
The value Y or N indicates whether double-byte characters are
included. This value is set to Y if any DBCS characters are found in
the part currently being generated. The maximum length for the
symbolic parameter value is 1.

EZEDESTLIB
The value specifies the 1- to 10-character OS/400 library name where
objects created during generation are placed when they are transferred
by the preparation process.

EZEDESTNAME
The value specifies the 1- to 8-character Communication Manager
(CM/2) PLU alias name for the AS/400 system you want to use when
you transfer generated files to the host if the /PREP option is
specified.

EZEDLI
The value Y or N indicates whether the program uses DL/I. This
value is only set when you are generating programs. The maximum
length for the symbolic parameter value is 1.

EZEENTRY
The value is the name of the primary entry point for the load module
that is linked for the program being generated. For main programs in
MVS/TSO, MVS batch, VM CMS, VM batch, and IMS BMP
environments, the name is ELARMAIN. For all other programs, map
groups, or tables, the name is the name of the program. EZEENTRY is
set only when you are generating preparation JCL or the preparation
REXX exec. The maximum length is 8.

Note: EZEENTRY cannot be used in the job statement.

EZEENV
The value identifies the target environment. The maximum length for
the symbolic parameter value is 8.

124 VisualAge Generator: Generation Guide

EZEGDATE
The value is the generation date in the format MM/DD/YY. The
maximum length for the symbolic parameter value is 8.

EZEGENOUT
The value is the path name of the directory where the generated part
is placed. The value is set using the /GENOUT generation option. The
maximum length for the symbolic parameter value varies depending
on the actual directory names and the file system currently installed.

EZEGMBR
The value is the name of the program, map group, or table specified
in the GENERATE subcommand. The maximum length for the
symbolic parameter value is 8.

If you have specified multiple parts on the GENERATE command,
each part has a setting for EZEGMBR.

EZEGTIME
The value is the generation time in the format HH:MM:SS. The
maximum length for the symbolic parameter value is 8.

EZEMBR
The value is the name of the part currently being generated. The
value might be different from the symbolic parameter EZEGMBR;
EZEGMBR always contains the name of the part specified on the
GENERATE subcommand. The maximum length for the symbolic
parameter value is 8.

EZEMBRPATH
The value is the path name of the directory where the generated part
is placed. The value is set using the /GENOUT generation option
when preparation is local and the target directory (/DESTDIR) of the
preparation is remote. The maximum length for the symbolic
parameter value varies depending on the actual directory names and
the file system currently installed.

EZEMSG
The value is the identifier for the VisualAge Generator message table.
The value is only set when generating programs. The maximum
length for the symbolic parameter value is 4.

EZEPID
The value is the data set high-level qualifier from the /PROJECTID
generation option. The maximum length for the symbolic parameter
value is 60.

EZEPREPDESTACCOUNT
The value is the account value required by TCP/IP when the remote

Chapter 12. Symbolic parameters 125

system requires an account value. This value is set using the
/DESTACCOUNT generation option.

EZEPREPDESTHOST
The value is the name or numeric TCP/IP address of the target
machine on which the target directory resides. This value is set using
the /DESTHOST generation option.

EZEPREPDESTDIR
The value is the name of the directory on a remote machine that
generated source code will be transferred to. This value is set using
the /DESTDIR generation option.

EZEPREPDESTPASSWORD
The value is the password of the USERID that will be logged on to
the target machine. This value is set using the /DESTPASSWORD
generation option.

EZEPREPDESTUID
The value is the password of the USERID that will be logged on to
the target machine specified by the /DESTHOST generation option.
This value is set using the /DESTUID generation option.

EZEPREPFTPCMDSBCS
The value is set when you are transferring data that contains SBCS
characters using FTP. This value sets the translation tables for the
transfer of your preparation data. The default value that is run is
ASCII. This value is set using the /FTPTRANSLATIONCMDSBCS
generation option. By default, this option is not used by the
generation process, because conversion automatically takes place
locally when needed. If you want to use this option, you must edit
EFKSND.REX and the preparation script.

EZEPREPFTPCMDDBCS
The value is set when you are transferring data that contains DBCS
characters using FTP. This value sets the translation tables for the
transfer of your preparation data. This value is set using the
/FTPTRANSLATIONCMDDBCS generation option. By default, this
option is not used by the generation process, because conversion
automatically takes place locally when needed. If you want to use this
option, you must edit EFKSND.REX and the preparation script.

EZEPREPSENDCMDDBCS
The value is set when you are transferring data that contains DBCS
characters using the SEND command. This value is set using the
/SENDTRANSLATIONCMDDBCS generation option. By default, this
option is not used by the generation process, because conversion
automatically takes place locally when needed. If you want to use this
option, you must edit EFKSND.REX and the preparation script.

126 VisualAge Generator: Generation Guide

EZEPREPSESSION
The value is the session ID of the host emulator session you want to
use when generated files are transferred to the host. This value is set
using the /SESSION generation option.

EZEPREPSP
The value is set using the /SP generation option.

EZEPREPSQLDB
The value is the name of the database you want to use for SQL
statement validation and for SQL preprocessing on CICS for OS/2
systems. This value is set using the /SQLDB generation option.

EZEPREPWORKDB
The value is the type of work database you want to use for the
generated program. This value is set using the /WORKDB generation
option.

EZEPSB
The value is the PSB name that is specified for the program being
generated. The value is only set when generating programs. The
maximum length for the symbolic parameter value is 8.

EZEPTYPE
The value is the part type value that is generated for generation
output files. You can use the part type value to control the preparation
steps when it is specified in the preparation templates.

When using VisualAge Generator only, you can use the part type
value for the following:
v Store generation outputs in different directories when specified for

the /GENOUT generation option
v Put the part type in the data set name when specified in a JCL

template

Table 32 shows the valid part type values and their associated parts.

Table 32. Valid part type values and associated parts

Part type value Associated parts

EZEBND SQL BIND files

EZECLJ Preparation CL job source

EZECLP Preparation CL source

EZECLX Run-time CLIST file

EZECPY COBOL copybook

EZEDDS Data description specifications

EZEDLL DLL files

Chapter 12. Symbolic parameters 127

Table 32. Valid part type values and associated parts (continued)

Part type value Associated parts

EZEFMT Map group format module

EZEJCP Preparation JCL file

EZEJCX Run-time JCL file

EZELED Link-edit control files

EZELNK Link-edit control files

EZELST Listing file

EZEMFS MFS control blocks

EZEMGF CL for message file preparation program

EZEPCT CICS macro format transactions

EZEPPT CICS macro format programs

EZEPRP Preparation command file

EZERDO CICS RDO format

EZERXP REXX preparation command file

EZERXX Sample REXX exec for run time

EZESRC COBOL source files

EZETAB Binary image tables

EZESQL
The value Y or N indicates whether SQL processes are used in the
program. The value is only set when you are generating programs.
The maximum length for the symbolic parameter value is 1.

EZETBLNAME
The value is the name of the message table that is generated into the
OS/400 message file.

EZETPROC
The value is set to 8 characters in length where:

position 1-4
EZEUSRID (characters 1-4) is set from the VAGen —Test
General Preferences tab or from machine name in
C:\IBMLAN\IBMLAN.INI if the Preference is not set. If
EZEUSRID is fewer than 4 characters, it will be padded with
Zs.

position 5-8
MMSS (min,min,sec,sec) obtained from the system-generated

128 VisualAge Generator: Generation Guide

time For example, if EZEUSRID is set to USERID and the
program is generated at 08:45:29, SYMPARM EZETPROC will
be set to USER4529.

EZETRAN
The value is the transaction ID.
v For IMS programs, the value is the VisualAge Generator program

name. The maximum length for the symbolic parameter value for
IMS programs is 8.

v For CICS programs, the value is specified as the primary value for
the /TRANSID generation option. If a primary value is not
specified for the /TRANSID generation option, the first 4 characters
of the VisualAge Generator program name are used for EZETRAN.
The maximum length for the symbolic parameter value for CICS
programs is 4.

EZETRANSFERTYPE
The value is the type of transfer used to transfer to the remote system.
This value is set using the /TRANSFERTYPE generation option.

EZEUSRID
The value is the host user identifier, which is set from the VAGen
—Test General Preferences tab. If EZEUSRID is not specified, the
default is the computer name value, which is set in the
C:\IBMLAN\IBMLAN.INI file.

EZEVMLOADLIB
The VM loadlib where the target load module is placed. This value is
set by using the /VMLOADLIB generation option. The maximum
length for the symbolic parameter value is 8.

EZEVSELIB
The library where the target load module is placed. This value is set
by using the /LIB generation option. The maximum length for the
symbolic parameter value is 16.

EZEXAPP
The name of a program that receives control from the program that is
being generated. Control is passed by using a CALL, DXFR, or XFER
statement or the /RT generation option.

The VisualAge Generator Developer uses EZEXAPP to set the name of
the transferred-to program in the following situations:
v When ?DD? occurs in the run-time JCL template, the template

insert control statement EFK2MCAL is included one time for each
transferred-to or called program.

Chapter 12. Symbolic parameters 129

v When ?DLBL? occurs in the run-time JCL template, the template
insert control statement EFK2VCAL is included one time for each
transferred-to or called program.

v When ?ALLOC? occurs in the run-time CLIST template, the
template insert control statement EFK2MTCL is included once for
each transferred-to or called program. When ?ALLOC? occurs in the
run-time REXX exec template, the template insert control statement
EFK2CVCL is included once for each transferred-to or called
program.

Templates EFK2MCAL, EFK2VCAL, EFK2MTCL, and EFK2CVCL use
EZEXAPP to refer to the name of the transferred-to or called program.
Each time the templates are used, EZEXAPP is reset to the name of
the current transferred-to or called program. The maximum length for
the symbolic parameter value is 8.

Note: You can use EZEXAPP in templates EFK2MCAL, EFK2VCAL,
and EFK2MTCL only.

File-related symbolic parameters

Symbolic parameters related to files are set only for templates that are used in
the following instances:
v To generate DD or DLBL statements for program files in run-time JCL
v For ALLOC commands for program files in CLIST procedures
v For FILEDEF or DLBL commands in VM REXX execs

The following list describes file-related symbolic parameters and their values.

EZEBLK
The value is the file block size. For a fixed length record, it is set to
the record length. For a variable length record, set to the record length
plus 8 bytes. The maximum length for the symbolic parameter value
is 5. Valid file types are SEQ, SEQRS, and GSAM.

EZEDBD
The value is the database name from the VisualAge Generator PSB.
The maximum length for the symbolic parameter value is 8. This
value is set for DL/I records.

EZEDD
The value is the DD name set from the record definition file name.
The maximum length for the symbolic parameter value is 8. Valid file
types are SEQ, SEQRS, GSAM, VSAM, and VSAMRS.

EZEDLBL
The value is the VSE DLBL or TLBL name set from the record

130 VisualAge Generator: Generation Guide

definition file name. The maximum length for the symbolic parameter
value is 7. Valid file types are SEQ, VSAM, and VSAMRS.

EZEDSN
The value is the MVS data set, VSE library name set, or the VM CMS
file name from the system resource name that is specified at
generation. The maximum length for the symbolic parameter value is
56. Valid file types are SEQ, SEQRS, GSAM, VSAM, and VSAMRS.

EZELRECL
The value is the file logical record length. For a fixed length record,
this symbol is set to the record length. For a variable length record,
this symbol is set to the record length plus 4 bytes. The maximum
length for the symbolic parameter value is 8. Valid file types are SEQ,
SEQRS, and GSAM.

EZERECFM
The value is the file record format. For a fixed length record, this
symbol is set to FB. For a variable length record, this symbol is set to
VB. The maximum length for the symbolic parameter value is 2. Valid
file types are SEQ, SEQRS, and GSAM.

User-defined symbolic parameters

The following is a list of user-defined symbols and their values. You can also
define your own symbols.

COB2LIB
The value is the name for the LE run-time library used with COBOL.
The default value is CEE.SCEERUN. The maximum length for the
symbolic parameter value is 60.

COBLIST
The value indicates whether the COBOL compiler listing is printed.
This is used for the VM environment only. Refer to the compiler
documentation for your compiler for valid values for compile listings.

ELA The value is the high-level qualifier of the product data sets for
VisualAge Generator Server for MVS, VSE, and VM for MVS. The
default value is ELA.V1R2M0. The maximum length for the symbolic
parameter value is 60.

DBDLIB
The value is the name of the IMS/VS DBD library. The default value
is IMS.DBDLIB. The maximum length for the symbolic parameter
value is 60.

Chapter 12. Symbolic parameters 131

DSNLOAD
The value is the name of the DB2 load library. The default value is
DSN.SDSNLOAD. The maximum length for the symbolic parameter
value is 60.

DSYS
The value is the name of the DB2 subsystem. If an MVS system has
more than one version of DB2 installed, the DSN system command
uses this value to indicate which DB2 version to use for the current
job. This value is used in the MVS batch preparation and run-time
templates and the MVS/TSO run-time CLIST. The default value is
DSN. The maximum length for the symbolic parameter value is 4
characters.

EZUAUTH
The value sets the value for the COBOL program AUTHOR statement.
The maximum length for the symbolic parameter value is 60
characters.

EZUINST
The value sets the value for the COBOL program INSTALLATION
statement. The maximum length for the symbolic parameter value is
60 characters.

PSBLIB
The value is the name of the IMS PSB library. The default value is
IMS.PSBLIB. The maximum length for the symbolic parameter value
is 60.

PROCLIB
The value is the name of the library where VisualAge Generator
Server for MVS, VSE, and VM procedures for VSE are stored. The
default value is PRD2.EZELIB. The maximum length for the symbolic
parameter value is 16.

PWRCLASS
The value is the class that is used in all POWER job entry control
language (JECL) statements. The default value is 0. The maximum
length for the symbolic parameter value is 2.

RESLIB
The value is the name of the IMS RES library. The default value is
IMS.RESLIB. The maximum length for the symbolic parameter value
is 60.

SQLDBNAM
The value is the name of the DB2/VSE or SQL/DS VM database that
is used during the preparation process. The default value for
DB2/VSE is SQLDB_340. The default value for SQL/DS VM in single
program user mode is SQLDBA. The default value for SQL/DS VM in

132 VisualAge Generator: Generation Guide

multiple program user mode is the database specified on the last
SQLINIT EXEC processed on the virtual machine.

SQLPKGNM
The value is the name that is used as the DB2/VSE or SQL/DS VM
package name. You can specify the name fully qualified with the
owner name. If you do not specify the name fully qualified, the
default value for the owner name is the user ID specified in the
SQLUSRPW symbolic parameter. The default value is the current
program name. The maximum length for the symbolic parameter
value is 17.

SQLPROPT
The value is the name of the part that contains the DB2/VSE
precompiler options or the name of the file containing the SQL/DS
VM precompiler options. The VSE part can be in any library in the
source chain. The VM CMS file must have a file type of PREPPP. In
VM CMS, the first file found with the specified file name and a file
type of PREPPP will be used. The default value for VSE is
ELASQLPR. The default value for VM is ELASQLPO. The maximum
length for the symbolic parameter value is 8.

SQLSTMDE
The value is the DB2/VSE or SQL/DS VM startup mode that is used
by the preparation process. Valid values are MULTIUSER and
SINGLEUSER. The default value is MULTIUSER.

SQLSTOPT
The value is the name of the DB2/VSE part or the file name of the
SQL/DS VM file that contains the startup options that are used when
starting DB2/VSE or SQL/DS VM in the SINGLEUSER mode. The
part can be in any library in the source chain. In VM, the file must
have a file type of SQLPARM; the first file found with the specified
file name and a file type of SQLPARM will be used. The default value
for VSE is ELASQLST. The default value for VM is ELASQLSO. The
maximum length for the symbolic parameter value is 8.

SQLUSRPW
The value is the DB2/VSE or SQL/DS VM user ID and password. The
following example shows the format of the password:
user ID/password

The default value for VSE is SQLDBA/SQLDBAPW. The default value
for SQL/DS VM is the VM user ID for the SQL/DS VM user. The
maximum length for the symbolic parameter value is 8 characters for
the user ID and 8 characters for the password. These are separated by
a slash (/), which results in a total maximum length of 17 for the
symbolic parameter value.

Chapter 12. Symbolic parameters 133

VMFMODE
The value is the target VM file mode that will be used by the program
generator when it transfers files to the host. This value is also set in
the preparation REXX exec and is passed as a parameter to the
ELAPREP exec. It is the file mode that tells ELAPREP where the input
files for preparation exist and where to store the output of the
preparation. The default value is 'A'. The maximum length of the
symbolic parameter value is 1.

VMDISKADDR
The value is the target VM disk address used when transferring files
to the host using FTP. The default value is 191.

VUSERLIB
The value is the name of an additional library that is used for
link-editing elements for VSE programs with statically linked parts.
This library can also be specified by adding it to the templates used
for VSE or by making the library part of the permanent LIBDEF
search chain. The default value is PRD2.EZELIB. The maximum length
for the symbolic parameter value is 16.

Creating user-defined symbolic parameters
User-defined symbolic parameters can be from 1- to 8-alphanumeric
characters and cannot begin with the letters EZE. You can define a new
symbol and its value. You can also define values for symbols used in the
default templates that are provided by the VisualAge Generator Developer.
See “User-defined symbolic parameters” on page 131 for a list of the symbols
used in the default templates.

Symbolic parameters are delimited by the percent sign (%). A default value
can be defined in a template for an instance of a symbol by placing a comma
and the default value after the symbol name.

Figure 49 shows an example of defining a default value for a symbolic
parameter.

The first line shows how to define a symbolic parameter with no default
value. On the second line, the default value PROJECT1 is assigned to the
user-defined symbol.

If a template that is used in generation contains a symbol that has not been
assigned a value using the /SYMPARM generation option, the default value is

%MYSYMBOL%
%MYSYMBOL,PROJECT1%

Figure 49. Defining a default value

134 VisualAge Generator: Generation Guide

used. If a default value has not been defined, an informational message is
issued and generation continues. No value is substituted for the symbol, and
the symbol is removed from the generated output.

Note: If you define a default value for a symbolic parameter, the default
value is used only for that occurrence of the symbolic parameter. If you
use the same symbolic parameter again, the default value is not used. If
you want to use a symbolic parameter multiple times with the same
default value, you must specify the default value every time you want
the default value to be used.

Assigning values to user-defined symbolic parameters
Substitution values for user-defined symbolic parameters are specified using
the /SYMPARM generation option. Values can contain special characters.
Values specified for the /SYMPARM generation option are enclosed in single
quotation marks ('). To include a single quotation mark in the symbolic
parameter value, the quotation mark must be specified twice.

Figure 50 shows an example of including single quotation marks in symbolic
parameter values.

In this example, the value of the ELA symbolic parameter is set to TEST’S.

During generation, the templates are searched for symbol names that match
the symbols defined using the /SYMPARM option. If a match is found, the
name in the template is replaced with the value from the /SYMPARM option.

/SYMPARM=ELA,'TEST''S'

Figure 50. Including single quotation marks

Chapter 12. Symbolic parameters 135

136 VisualAge Generator: Generation Guide

Chapter 13. Outputs of COBOL generation

The output of generation is COBOL source. Generation also creates related
objects needed to prepare and run your program. These outputs contain the
information necessary to transfer files and start the appropriate compile and
link processes.

If you are generating a Web transaction program, output includes Java source
and related objects. For more information on the generated files, refer to
“Chapter 17. Outputs of Web transaction program generation” on page 183.

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information on preparing these outputs.

VisualAge Generator produces the following types of COBOL:
v COBOL for MVS, VM, and VSE environments
v ILE COBOL/400 for the OS/400 environment
v IBM VisualAge for COBOL for OS/2 for the CICS for OS/2 32-bit

environment

The COBOL source code is compatible with the IBM COBOL compiler, the
AD/Cycle COBOL compiler, and the LE run-time library. Generated program
and map group objects are environment dependent. All program or map
group objects are generated for one environment and cannot be used in
another environment.

Tables can be generated as COBOL programs or as binary tables. Tables
generated as COBOL programs for MVS, VM, and VSE are system dependent,
but not environment dependent. A table generated and prepared for one
environment can be used in another environment on the same system without
generating the table for that environment again.

Tables generated for the CICS for OS/2 environment and the OS/400
environment are generated as binary tables. Binary tables are complete tables
that do not require any preparation.

Generated objects are stored in the directory specified on the /GENOUT
generation option. If /GENOUT is not specified, the generation objects are
stored in the directory where the server process is running.

© Copyright IBM Corp. 1980, 2001 137

Objects generated for all part types

Table 33 shows the objects generated for program, map group, and table part
types. Descriptions of these generated objects follow the table.

In all the environments listed, the preparation script is used in conjunction
with preparation JCL, REXX, or CLJ to upload the files that need to be used in
the COBOL compile step. The preparation JCL, REXX, and CLJ contain
instructions to prepare the source for the load modules.

Table 33. Objects for all part types

Object type File name Run-time
environments

Generation options
controlling
production

Modifiable
after
generation

Listing file partname.LST ALL /LISTING
/LISTINGONERROR

NO

Preparation
script

partname.PRP ALL /PREPFILE YES

Preparation
JCL

partname.JCP MVS and VSE
environments

/PREPFILE YES

Program and
transaction
definitions

partname.PPT
partname.PCT

CICS for MVS/ESA
CICS for VSE/ESA
CICS for OS/2

/CICSENTRIES Review and
possible
modification
required

Table binary
image

tblname.TAB OS/400 /GENTABLES NO

Data
definition
specification

partname.DDS OS/400 /CREATEDDS YES

Message file partname.MSG OS/400MSG /GENTABLES YES

Preparation
CL

partname.CLP OS/400CLP /PREPFILE YES

Preparation
job stream

partname.CLJ OS/400 /PREPFILE YES

Message file
job stream

tblname.CLJ OS/400 /GENTABLES YES

Preparation
REXX

partname.RXP CICS for OS/2
VM
environments

/PREPFILE YES

See “Chapter 29. Generation command and option descriptions” on page 297
for detailed information about options used on the subcommands.

138 VisualAge Generator: Generation Guide

Table 34 shows the generation outputs for the MVS environments.

Table 34. Generation outputs for MVS

Element
File name and
extension Uploaded Environment

COBOL source xxxxxxxx.CBL¹ Yes All

Listing file xxxxxxxx.LST No All

Preparation script xxxxxxxx.PRP No All

Preparation REXX xxxxxxxx.RXP No All

Preparation JCL file xxxxxxxx.JCP Yes All

Sample run-time
JCL

xxxxxxxx.JCX Yes MVS batch,
IMS BMP

Program definitions xxxxxxxx.PPT Yes CICS for MVS/ESA

DB2 binding
statements

xxxxxxxx.BDC Yes All

Sample run-time
CLIST

xxxxxxxx.CLX Yes MVS/TSO

Transaction
definitions

xxxxxxxx.PCT Yes CICS for MVS/ESA

Linkage control xxxxxxxx.LNK Yes All

Format objects xxxxxxxx.FMT Yes IMS/VS, CICS for
MVS/ESA, TSO

MFS source xxxxxxxx.MFS Yes IMS/VS, IMS BMP

COBOL copybook xxxxxxxx.CPY Yes IMS/VS, IMS BMP

¹xxxxxxxx indicates an 8-character file name.

Table 35 shows outputs for the VSE environments.

Table 35. Generation outputs for CICS for VSE/ESA and VSE batch

Element
File name and
extension Uploaded Environment

COBOL source xxxxxxxx.CBL¹ Yes All

Listing file xxxxxxxx.LST No All

Preparation script xxxxxxxx.PRP No All

Preparation JCL file xxxxxxxx.JCP Yes All

Sample run-time
JCL

xxxxxxxx.JCX Yes VSE batch

Program definitions xxxxxxxx.PPT Yes CICS for VSE/ESA

Chapter 13. Outputs of COBOL generation 139

Table 35. Generation outputs for CICS for VSE/ESA and VSE batch (continued)

Element
File name and
extension Uploaded Environment

Transaction
definitions

xxxxxxxx.PCT Yes CICS for VSE/ESA

Linking files xxxxxxxx.LNK Yes All

Format objects xxxxxxxx.FMT Yes CICS for VSE/ESA

¹xxxxxxxx indicates an 8-character file name.

Table 36 shows the generation outputs for the VM environments.

Table 36. Generation outputs for VM CMS and VM batch

Element
File name and
extension Uploaded Environment

COBOL source xxxxxxxx.CBL¹ Yes All

Listing file xxxxxxxx.LST No All

Preparation script xxxxxxxx.PRP No All

Preparation REXX xxxxxxxx.RXP Yes All

Sample run-time
REXX exec

xxxxxxxx.RXX Yes All

Linking files xxxxxxxx.LNK Yes All

Format objects xxxxxxxx.FMT Yes VM CMS

¹xxxxxxxx indicates an 8-character file name.

Table 37 shows the generation outputs for the CICS for OS/2 environments.

Table 37. Generation outputs for CICS for OS/2

Element File name and extension

COBOL source for print map programs xxxxxxxx.CBL¹

COBOL source for program programs xxxxxxxx.CCP

Listing file xxxxxxxx.LST

Preparation script xxxxxxxx.PRP

Preparation REXX xxxxxxxx.RXP

Program definitions xxxxxxxx.PPT

Transaction definitions xxxxxxxx.PCT

Table binary image xxxxxxxx.TAB

140 VisualAge Generator: Generation Guide

Table 37. Generation outputs for CICS for OS/2 (continued)

Element File name and extension

Format objects xxxxxxxx.OBJ

¹xxxxxxxx indicates an 8-character file name.

Table 38 shows the COBOL generation outputs for OS/400.

Table 38. Generation outputs for OS/400

Element
File name and
extension Uploaded

COBOL source xxxxxxxx.CBL¹ Yes

Server CL setup program xxxxxxxx.CLR Yes

Messages table xxxxxxxx.MSG Yes

Listing file xxxxxxxx.LST No

Preparation script xxxxxxxx.PRP No

Preparation job stream xxxxxxxx.CLJ Yes

Data definition specification xxxxxxxx.DDS Yes

Table binary image xxxxxxxx.TAB Yes

Map group binary image xxxxxxxx.FMT Yes

¹xxxxxxxx indicates an 8-character file name.

Listing file
If the /LISTING generation option is specified, a source listing of the part
being generated and its associates, including resource associations, generation
options, and linkage table entries used, is produced. This listing is also
produced if the /LISTINGONERROR generation option is specified and errors
occur during generation.

Preparation script
A preparation script (partname.PRP) is generated when the part is generated
with the /PREPFILE generation option specified.

The preparation script produced by a GENERATE subcommand contains logic
to prepare the generated parts. If the generated program includes tables or
maps, the logic for preparing them is contained in the preparation script.

The preparation script is used to control preparation. The following
preparation files are created for each target system for each environment:

Chapter 13. Outputs of COBOL generation 141

Table 39. Preparation executable for each target system

Preparation executable Target environment

MVS JCL

VSE JCL

VM Rexx

CICS for OS/2 Rexx

OS/400 CL

One preparation script is created for each GENERATE subcommand issued,
even if the GENERATE subcommand generates multiple parts.

EFK2OPCA is the preparation script template for all environments. This
template is repeated in the preparation script for each part generated.

The following profile templates contain information on the following:
v Environment-specific information for the transfer
v How each part type is to be moved to the preparation system

Table 40. Templates used to transfer to target system

Template name Target environment

EFK2OPP4 AS/400

EFK2OPPM MVS

EFK2OPPV VSE

EFK2OPPC VM

EFK2OPPO OS/2 CICS

See “Chapter 14. Preparation process for COBOL generation” on page 153 for
more information on the preparation script file.

Preparation JCL for MVS and VSE environments
A preparation JCL file (partname.JCP) is generated when the /PREPFILE
generation option is specified. VisualAge Generator produces JCL statements
to start the appropriate precompile, translate, compile, bind, and linkage
editor job for the generated programs. Table 41 shows the required steps
included in the JCL depending upon the program type.

Table 41. Required steps in the JCL for MVS and VSE

Program type Environment Required step

SQL programs MVS DB2 precompile and bind steps

SQL programs VSE DB2/VSE precompile step

142 VisualAge Generator: Generation Guide

Table 41. Required steps in the JCL for MVS and VSE (continued)

Program type Environment Required step

CICS programs CICS CICS conversion and must link with CICS
modules

DL/I programs MVS Must link with the appropriate DL/I
modules

MFS control blocks IMS Require an MFS assemble and link

Map group format
modules

VSE and MVS Require a link step

COBOL programs VSE and MVS Must compile and link

Only one preparation JCL file is created for each GENERATE subcommand
issued, even if the GENERATE subcommand generates multiple parts. The
JCL is produced from templates that you can modify to meet your
requirements for preparation.

See “Modifying templates” on page 82 for more information.

Preparation REXX for VM and CICS for OS/2 environments
A preparation REXX file (partname.RXP) is generated when the /PREPFILE
generation option is specified for CICS for OS/2 and VM environments.
VisualAge Generator produces a REXX file that contains commands to start
the appropriate precompile, compile, and linkage editor steps for the
generated programs. Table 42 shows the required steps included in the REXX
exec, depending upon the program type.

Table 42. Required steps in the REXX File

Program type Required step

SQL programs Requires SQL precompile, COBOL
compile, and link edit

Map group format modules Requires a link step

COBOL programs Must compile and link

Only one preparation REXX file is created for each GENERATE subcommand
issued, even if the GENERATE subcommand generates multiple parts. The
REXX file is produced from templates that you can modify to meet your
requirements for preparation. See “Modifying preparation templates and
EXECs for VM environments” on page 97 for more information.

Program and transaction definitions for MVS and VSE environments
Sample table entries are generated for CICS environments.

Chapter 13. Outputs of COBOL generation 143

Sample program and transaction definitions for CICS systems are generated as
specified in the /CICSENTRIES options. The definitions can be generated
using macro level or RDO format.

Objects generated for programs

Table 43 shows the objects generated for programs. Descriptions of these
objects follow the table.

Table 43. Objects generated for programs

Object type File name
Run-time
environments

Generation options
controlling
production

Modifiable
after
generation

COBOL
program

prgmname.CBL MVS
VM
VSE
OS/400

None NO

COBOL
program

prgmname.CCP¹ CICS for OS/2 None NO

Sample
run-time
CLIST

prgmname.CLX MVS/TSO /RUNFILE Review and
possible
modification
required

Sample
run-time
CLIST

prgmname.JCX IMS BMP
MVS batch
VSE batch

/RUNFILE Review and
possible
modification
required

BIND
command
file

prgmname.BND IMS BMP
IMS/VS
CICS for MVS/ESA
MVS/TSO
MVS batch

None Review and
possible
modification
required

Sample
Run-time
REXX

prgmname.RXX VM CMS
VM batch
CICS for OS/2

/RUNFILE Review and
possible
modification
required

¹The extension CCP indicates a COBOL file that requires CICS conversion.

See “Chapter 29. Generation command and option descriptions” on page 297
for information about generation options.

COBOL program
The COBOL program is generated for programs.

144 VisualAge Generator: Generation Guide

The generated program is a COBOL program that contains the following
information:
v Program control logic
v Logic for program processes, statement groups, and I/O operations
v Data for both the program and program control

The program control logic performs the following functions for a program, as
needed:
v Initialization
v Termination
v Error reporting
v Segmentation support, including environment saving and restoration
v Transfer of control

Sample run-time CLIST
Sample run-time CLISTs are generated when the /RUNFILE generation option
is specified. VisualAge Generator produces a sample run-time CLIST for
running a program in the MVS/TSO environment.

The CLIST is produced from templates that can be modified. See “Modifying
templates” on page 82 for more information.

The generated CLIST might not be complete and must be reviewed and
modified if necessary before being used. For example, the CLIST for the
generated program does not contain file allocations for programs that are
started using EZEAPP on the XFER or DXFR statements. Comments in the
CLIST indicate where the allocation commands for these programs need to be
added. To build the final CLIST needed to run a set of programs in a run unit,
you must edit the CLIST for the first main program and include commands to
run the run-time CLISTs for any programs transferred-to using EZEAPP on a
DXFR or XFER statement.

Refer to the VisualAge Generator Server Guide for MVS, VSE, and VM for
information on tailoring run-time CLISTS.

Sample run-time JCL
Sample run-time JCL is generated when the /RUNFILE generation option is
specified.

VisualAge Generator produces sample JCL for running programs in the
IMS BMP, MVS batch, and VSE batch environments. The JCL does not contain
a JOB statement; each person using the JCL must provide a JOB statement.

The JCL is produced from templates that can be modified. See “Modifying
templates” on page 82 for more information on modifying the sample
templates.

Chapter 13. Outputs of COBOL generation 145

The generated JCL might not be complete, and, if necessary, you must review
and modify the JCL before using it. For example, the JCL for the generated
program does not contain any DD or DLBL statements for data sets used by
other programs that can be started by CALL, DXFR, or XFER statements.
Comments in the JCL indicate where DD or DLBL statements for these
programs need to be added. To build the final JCL needed to run a set of
programs as a run unit, you must edit the JCL for the first main program and
include the DD or DLBL statements for any program called using CALL,
DXFR, or XFER.

Refer to the VisualAge Generator Server Guide for MVS, VSE, and VM for
information on tailoring the run-time JCL.

Sample run-time REXX for VM and CICS for OS/2
VisualAge Generator produces a sample run-time REXX for running programs
in the VM CMS, VM batch, and CICS for OS/2 environments when the
/RUNFILE generation option is specified. The run-time REXX is produced
(with a file type of EXECX) from templates that can be modified. The exec
contains commands to set up the program environment and a section that
contains calls to generate FILEDEF or DLBL commands. This section calls the
ELACALLC exec to generate either a FILEDEF or DLBL command for every
file identified in the resource association file for the program.

The generated run-time REXX might not be complete and must be reviewed,
and modified if necessary, before you use it. A few examples of why you
might modify the REXX include:
v The REXX for the generated program does not contain file allocations for

programs that are started using EZEAPP on the XFER or DXFR statements.
Comments in the REXX indicate where the invocations of ELACALLC
EXEC or FILEDEF/DLBL commands need to be added.

v Non-VisualAge Generator programs called directly by name are treated as
VisualAge Generator program calls. An invocation of a run-time REXX for
the non-VisualAge Generator program (whether or not it exists) is
generated in the run-time REXX for the VisualAge Generator program. You
must either create the to handle the call for the non-VisualAge Generator
program or delete the call.

Each run-time REXX file type must be renamed to EXEC. Before you invoke
the main run-time REXX that is needed to run a set of programs as a run unit,
review and tailor all run-time REXX for that run unit.

BIND command file
A BIND command file is generated for programs that use DB2. The default
BIND command file is produced either from templates shipped with

146 VisualAge Generator: Generation Guide

VisualAge Generator or from a BIND control part specified during generation.
The BIND command file is transferred to the host during the preparation
process.

You might want to review and modify the contents of this file.

Objects generated for map groups

Table 44 shows the objects generated for map groups. Descriptions of the
object types follow the table.

Table 44. Objects generated for map groups

Object type File name
Run-time
environments

Generation
options
controlling
production

Modifiable
after
generation

Map group
format
module

mapgnameFM.FMT

Represents the
map group name

IMS/VS
CICS for MVS/ESA
MVS/TSO
OS/400
VM CMS
CICS for VSE/ESA

/GENMAPS
/GENHELPMAPS

NO

Map group
format
module

mapgnameFM.OBJ CICS for OS/2 /GENMAPS
/GENHELPMAPS

NO

Batch print
services
COBOL
program

mapgnameP1.CBL IMS BMP
MVS batch
VSE batch

/MSP
/GENMAPS
/GENHELPMAPS

NO

Batch print
services
COBOL
program

mapgnameP1.CBL VM batch /GENMAPS
/GENHELPMAPS

NO

Online
print
services
COBOL
program

mapgname.CBL CICS for MVS/ESA
MVS/TSO
OS/400
VM CMS
CICS for VSE/ESA
CICS for OS/2

/GENMAPS
/GENHELPMAPS

NO

MFS print
services
COBOL
program

mapgname.CBL IMS/VS
IMS BMP

/MSP
/GENMAPS
/GENHELPMAPS

NO

Chapter 13. Outputs of COBOL generation 147

Table 44. Objects generated for map groups (continued)

Object type File name
Run-time
environments

Generation
options
controlling
production

Modifiable
after
generation

MFS control
blocks

mapgname.MFS IMS/VS
IMS BMP

/MSP
/GENMAPS
/GENHELPMAPS

NO

COBOL
copybook
for MFS
MID/MOD
layout

mapgname.CPY IMS/VS
IMS BMP

/MSP
/GENMAPS
/GENHELPMAPS

NO

See “Chapter 29. Generation command and option descriptions” on page 297
for information about generation options.

Map group format module
The map group format module is generated for map groups. The map group
format module is a generated structure that describes the map layout for
terminal maps in the map group. VisualAge Generator builds the structure as
an object module of the proper type for the target environment. The map
group format module is produced only if the map group contains terminal
maps.

Batch print services COBOL program
The batch print services COBOL program is generated for map groups that
contain print maps.

The batch print services program is a COBOL program that formats data for
line printers and writes the data to either the printer output file (directly to
the printer, a VSE/POWER LST queue member, or QSAM file) or to a
generalized sequential access method (GSAM) file. The batch print services
program also performs SET map CLEAR and EMPTY functions for print
maps. This program is used with programs that run in the IMS BMP, MVS
batch, VM batch or VSE batch environments.

In VSE batch, the printer output file can be either a sequential file associated
with a system logical unit number or a VSE/POWER LST queue member. The
batch print services COBOL program contains support for both types of files
and can be shared by multiple programs. When the printer output file is
shared among multiple programs, you must consider the following:
v If the map group is generated by itself, a default value is generated for the

system logical unit number for sequential printer output.

148 VisualAge Generator: Generation Guide

v If the map group is generated with a program, the resource association file,
if one exists, determines the value of the system logical unit number.

v The value of the system logical unit number at run time is determined by
the way the map group was most recently generated.

If you specify the generation option /MSP=ALL for either the IMS BMP or
the MVS batch environment, the batch print services COBOL program
includes support for both sequential and GSAM files. If the batch print
services COBOL program is used by more than one program, the resource
association information for that program determines the type of support used.

Online print services COBOL program
The online print services COBOL program is generated for map groups that
contain print maps. The online print services program is a COBOL program
that performs printer I/O, SET map CLEAR and EMPTY functions for print
maps in CICS, MVS/TSO, OS/400 and VM CMS environments.

MFS print services COBOL program
The message format service (MFS) print services COBOL program is
generated for map groups that contain print maps. In IMS/VS and IMS BMP
environments, MFS is used to build the terminal and printer data stream. The
MFS print services program is a COBOL program that provides print support
by building MFS message output descriptors (MODs). The program also
supports SET map EMPTY and CLEAR functions for print maps.

MFS control blocks
The message format service (MFS) control blocks are generated for map
groups for the IMS/VS and IMS BMP target environments using MFS utility
control statements. The following control blocks are generated:
v Device output format and device input format (DOF/DIF). These control

blocks describe the messages that MFS sends to or receives from the display
device. One format (FMT) is generated for each map group. One device
(DEV) statement is generated for each 3270-type device that has a screen
size large enough to contain one of the display maps defined in the map
group. A DEV statement is generated for each printer device that has a
line-length long enough to support any of the printer maps defined in the
map group.
If all maps contain double-byte character set (DBCS) or mixed fields, only
DBCS devices are supported. Single-byte maps are supported on both
non-DBCS and DBCS devices.
Individual map formats are described as device pages (DPAGE) within the
format.

v Message input descriptor (MID). This control block describes how MFS
formats the input message so that the generated program can process it. A

Chapter 13. Outputs of COBOL generation 149

MID is generated for each map group. The input message associated with
an individual map is defined as a logical page (LPAGE).

v Message output descriptor (MOD). This control block describes the output
message that the generated program sends to MFS. A MOD is generated for
each map group. The output message associated with an individual map is
defined as a logical page.

Refer to the IMS documentation for your system for additional information
about the MFS control blocks.

COBOL copybook for MFS MID/MOD layout
The COBOL copybook for message format service (MFS) message input
descriptor/message output descriptor (MID/MOD) layout is generated for
map groups that contain terminal maps.

For terminal maps, a COBOL copybook is generated that defines the layout of
the MFS message input and message output descriptors. This copybook can
be used by non-VisualAge Generator programs that perform deferred message
switching to or from VisualAge Generator programs. One copybook is
generated for each map group.

Objects generated for tables

Table 45 shows objects generated for tables. Descriptions of the object types
follow the table.

Table 45. Objects for tables

Object type File name
Run-time
environments

Generation options
controlling
production

Modifiable
after
generation

Table
COBOL
program

tblname.CBL¹ CICS for MVS/ESA
MVS/TSO
MVS batch
IMS/VS
IMS BMP
VM CMS
VM batch
CICS for VSE/ESA
VSE batch

/GENTABLES NO

Binary table tblname.TAB CICS for OS/2
OS/400

/GENTABLES NO

Notes:

¹tblname represents the table name.

150 VisualAge Generator: Generation Guide

See “Chapter 29. Generation command and option descriptions” on page 297
for information about generation options.

Table COBOL program
The table COBOL program is generated for tables in the following
environments:
v IMS BMP
v IMS/VS
v MVS batch
v CICS for MVS/ESA
v MVS/TSO
v VM CMS
v VM batch
v VSE batch
v CICS for VSE/ESA

The table program is a COBOL program that contains the table contents
defined in program working storage. This enables tables to be generated
independently of programs when the contents of a table need to be changed.

Binary table
A binary table is generated for tables in the following environments:
v CICS for OS/2
v OS/400

The binary table is a file containing the contents of the table. No preparation
is required for tables generated for the CICS for OS/2 environment.

Modifying generation output

Do not modify the programs generated by VisualAge Generator Developer.

If you need to report problems in the generated program to the IBM Support
Center, you might be asked to provide the COBOL program source generated
with the generation option /COMMENTLEVEL, along with any inputs used
during the generation process. You also might be asked for the external source
format export files for the VisualAge Generator parts that were used to
generate the program.

If you need to extend the logic of the program with your own code, write the
extension as a separate program that interfaces with the generated program
through a CALL statement or a transfer statement.

Do not copy or use VisualAge Generator Server service calls in your own
non-VisualAge Generator programs. The service calls are not programming

Chapter 13. Outputs of COBOL generation 151

interfaces available to customers. They are intended only for use in programs
generated by VisualAge Generator Developer.

Refer to the VisualAge Generator Design Guide for information about the
services available for use in your non-VisualAge Generator programs.

152 VisualAge Generator: Generation Guide

Chapter 14. Preparation process for COBOL generation

When generation is completed, the generated outputs must be prepared for
run time, just as you prepare programs you might write yourself.

Preparation takes place automatically unless you specify the /NOPREP
option. If you specify the /NOPREP option, preparation takes place as a
separate process. The /PREP option is the default.

The preparation process includes the following steps:
v Transferring parts to the target environment, if needed
v Unicode conversion, if needed
v Running precompilers, compilers, and linkers

When you specify the /PREPFILE generation option without the /PREP
generation option, the PREPARE subcommand can be used to prepare the
generation output.

The PREPARE subcommand can also be used to restart preparation if the
preparation process is not successful in a manner that does not require the
parts be generated again. The PREPARE subcommand is used for preparing
programs generated using any VisualAge Generator Developer.

See “Inputs for COBOL generation” on page 51 for tables showing the inputs
and outputs.

Preparing parts for MVS, VSE, VM, CICS for OS/2 systems

The preparation script (partname.PRP) controls the transfer and preparation on
the target system. To create the preparation script, specify the /PREPFILE
generation option. For MVS and VSE target systems, a preparation JCL file
(partname.JCP) is also created. For VM and CICS for OS/2 target systems, a
preparation REXX (partname.RXP) is created. For OS/400 target systems, a
preparation CL file (partname.CL and partname.CLP) are created. These files are
submitted to the server as batch jobs to compile them.

When you generate for MVS and VSE, the preparation script contains
instructions to transfer the source files and preparation JCL file to the target
system. If the generated source contains DBCS characters and the
programmable workstation you are using is DBCS-enabled, options are set on
the SEND command to correctly transfer these characters. The preparation
command file contains logic to submit the preparation JCL file to the MVS
internal reader or VSE/POWER queue to start preparation processing. The

© Copyright IBM Corp. 1980, 2001 153

preparation JCL file contains the preparation job stream. It also contains
statements to reference the previously transferred source.

When you generate for CICS for OS/2 and VM, the preparation script
contains instructions to transfer the source files and the preparation REXX to
the target system. The preparation script contains logic to execute the
preparation REXX to start preparation processing for the program.

When you generate for OS/400, the preparation script contains instructions to
transfer the source files and the preparation .CL and .CLP files to the target
system. The preparation script contains logic to execute the preparation files
to start preparation processing for the program.

Note: Preparation of a DBCS program must be performed on a DBCS-enabled
programmable workstation.

For CICS for MVS/ESA and CICS for VSE/ESA environments using
VisualAge Generator, the table entries are transferred to the host by the
preparation process. The CICS tables on the host are not automatically
updated with the generated definitions. The generated definitions might need
to be modified before being used. The actual transaction name must be
substituted in place of the symbol in the template. You are responsible for
adding the definitions to the appropriate CICS tables on the host systems
where the program is run.

Preparation script file contents
You can use the templates shipped with VisualAge Generator or you can
create your own script file. See “Preparation script templates” on page 58 for
information on the contents of the templates.

The preparation script file is divided into four sections. Each section is
preceded by a tag. The tags are :PROFILE, :TYPE, :MESSAGES, and
:CONTROL. Each section contains keywords that can be assigned values. The
keywords are immediately followed by an equals sign (=) and the value
associated with the keyword.

Preparation script file restrictions
v An asterisk (*) in column 1 indicates a comment line.
v A colon (:) in column 1 indicates a tag.
v The assignment operator is the equals sign. (for example,

TRANSFER_TYPE=’SNA’).
v A space cannot precede or follow an assignment operator.
v The assigned values must be enclosed between two single quotation marks

(’).
v A line can contain multiple assignments, but they must be separated by a

space (for example, SYSTEM=’OS400’ GENOUT=’X:\GENOUT’).

154 VisualAge Generator: Generation Guide

Preparation script sections and keywords
Table 46 describes each section and their keywords. An invalid keyword in a
preparation file will cause the preparation to fail.

Table 46. Preparation script file contents

Section Keyword Default Environment Description

:PROFILE All Sets the general parameters for the
transfer program

TRANSFER_TYPE
(required)

All What protocol to use to transfer
generated files to host. SNA is valid
only for transfer to MVS, VM, and
VSE. TCPIP is valid for all. LOCAL
is valid only for OS/2.

GENOUT (required) All Path where generated files reside

SYSTEM (required) All Host generation environment

PREP_SYSTEM (required) All The remote environment (OS400,
OS2, VM, VSE, or MVS), which
indicates to the script program
which routine to run. For more
details, see “Customizing the
preparation process” on page 159.

CONVERSION_TABLE All Conversion table to be used for the
remote machine

ENTRY_POINT 1 All A version of the routine. This is
used to indicate to the script
program which procedure to run.
For more details, see “Customizing
the preparation process” on
page 159.

DELETE_FILES N All Whether source and intermediate
files should be deleted if
preparation was successful. Deleting
source files will require you to
regenerate to run the prepare
process again.

PREP D All Where a preparation exec will be
submitted. The default value ’D’
will submit the preparation exec
using the host default (foreground
for VM and background for all
other environments).

SESSION All SNA ONLY - Session that is
connected to the host

Chapter 14. Preparation process for COBOL generation 155

Table 46. Preparation script file contents (continued)

Section Keyword Default Environment Description

SENDFILE_OPTIONS null
string
(’’)

All SNA ONLY. Additional options for
sending files. For more information,
see the documentation for the SEND
command.

QUIET N All Whether Personal Communication
messages should be issued during
preparation execution. This can be
particularly helpful when
debugging upload failures.

DESTPASSWORD All Password for host. A password is
needed when transferring files via
TCPIP

DESTACCOUNT All Account on destination host

DESTUID All Host user ID

DESTHOST All Host to connect to when using
TCPIP

OS2_DESTDIR OS/2 Destination directory

OS400_DESTLIB OS/400 OS400 destination library. If no
library is specified in EZEDESTLIB,
QGPL is used, if specified in the
template.

VM_FMODE VM (SNA) The default VM file mode used for
uploads to a VM session.

VM_DISK_ADDR VM (TCPIP) The default VM disk address used
for uploads to a VM session

MVS_ALLOC_OPTIONS MVS The following information:

v Record length for temporary file

v Block size for temporary file

v Record format for temporary file

v Unit for allocation of the
temporary file used for EZESRC.

v Primary and secondary space
quantities for the temporary file
used for EZESRC.

MVS_PROJECTID MVS Project identifier

VSE_LIB VSE VSE library name

:TYPE All Sets the parameters for each file
type

156 VisualAge Generator: Generation Guide

Table 46. Preparation script file contents (continued)

Section Keyword Default Environment Description

PART_TYPE (required) All File type being processed. Valid
values are: EZEJCP, EZEJCX,
EZECLX, EZESRC, EZEPPT,
EZEPCF, EZEMFS, EZEFMT,
EZEFMS, EZECLR, EZECLJ,
EZEMGF, EZEDDS, EZETAB

WORKSTATION_EXT
(required)

All File extension on the workstation

WORKSTATION_ EXT_ALT All Alternate file extension on the
workstation

IS_BINARY N All Whether the type of file being
processed is binary

PREP_SUBMIT N All Whether the job should be
submitted after preparation is
complete

SENDFILE_OPTIONS Null
string
(’’)

All Options to be appended to the
options specified by
SENDFILE_OPTIONS in the
:PROFILE section

CNV_RECORD_LENGTH 80 All The resulting record length per line
after conversion. Use 0 to indicate
variable length records, where end
of record is denoted by a carriage
return.

USE_CSO_CONVERSION Y All Whether a text file should be
converted by the conversion
program.

OS400_FILENAME OS/400 File name on OS/400

OS400_FILENAME_SUFFIX OS/400 Suffix to append to the OS/400 file

MVS_EXT MVS File extension on MVS

MVS_ALLOC_OPTIONS MVS Options that overwrite the options
specified by
MVS_ALLOC_OPTIONS in the
:PROFILE section

VM_FTYPE VM File type on VM

VM_FTYPE_SQL VM Whether the file contains SQL

VM_RECFM VM Record format on VM

VM_LRECL VM Record length

VSE_FTYPE VSE File type on VSE

Chapter 14. Preparation process for COBOL generation 157

Table 46. Preparation script file contents (continued)

Section Keyword Default Environment Description

:MESSAGES MSGCGxxx All Sets the messages issued by the
transfer program

:CONTROL All The information about the
generation outputs to be sent

HAS_DBCS N All Whether file contains DBCS

NAME (required) All Name of file

TYPE (required) All File type

HAS_SQL N All Indicates whether file contains SQL

USE_EXT_ALT N All Whether the alternate workstation
file extension is used

The options MVS_TEMP_UPLOAD and MVS_TSO_ALLOC in previous
release are replaced by the option ENTRY_POINT. MVS_TEMP_UPLOAD
specifies whether or not source and other files uploaded during the
preparation phase are initially loaded into a temporary file. By first uploading
to a temporary file, you can avoid contention problems associated with use of
MVS partitioned data sets. MVS_TSO_ALLOC is used only if
MVS_TEMP_UPLOAD is set to Y. This specifies whether the file is to be
created by EHLAPPI(’N’) or by a modifiable TSO allocated command. Note
that this applies only to SNA transfer.

Use Table 47 to determine which ENTRY_POINT value to use in the
preparation script.

Table 47. Preparation script ENTRY_POINT values

MVS_TEMP_UPLOAD
MVS_TSO_ALLOC

N Y

N 2 (invalid combination)

Y 1 3

The option MVS_TIMEOUT is no longer used. If the system you are running
is extremely slow, or if you are transferring large files, you can modify the
value of pref.MVS_setPauseLen and pref.MVS_setLoopAmt within the
efksnd.rex script. Setting a higher value of pref.MVS_setPauseLen increases
the amount of time before the program checks the system again for ready.
Setting a higher pref.MVS_setLoopAmt increases the number of times that the
program checks the system for ready.

158 VisualAge Generator: Generation Guide

Setting PROFILE keywords on the command line
You can use the command line to set the profile key words. The keywords set
on the command line override the values in the preparation script file. The
syntax is as follows:
efkprep xxxx.prp /DESTUID='myuserid' /DESTPASSWORD='secret' /GENOUT='X:\MYDIR\GENDIR'

Customizing the preparation process
To customize your preparation process, you can modify the file efksnd.rex
directly. Efksnd.rex is a rexx program that takes the generated preparation
script as input. According to the assigned values retrieved, it first determines
which routine to call. Then from within that routine, it issues file transfer
commands to the remote system as well as issuing a preparation submit. Each
routine is separated according to the remote system as well as the transfer
type. Different versions of the routine are indicated by the last value at the
end of the routine name.

The routine name is composed as follows:
prep_system.transfer_type
.entry_point

where prep_system is the value assigned to the keyword PREP_SYSTEM, and
similarly, for transfer_type and entry_point. For example, using version 2 of the
routine for transferring to an MVS system using SNA transfer protocol will
result in routine MVS.SNA.2 being evoked. We suggest that you add another
version of the routine into efksnd.rex customization.

To customize the preparation process, take the following steps:
1. Make an backup copy of efksnd.rex.
2. Make an copy of the routine closest to what you need within efksnd.rex.

You can put this routine at the end of the file or after the EXIT keyword
within the file.

3. Create the proper name for this routine by using the naming convention
described above. Choose a version value that has not been used. This will
be the value that is entered as the ENTRY_POINT in the preparation
template.

4. Modify and test the routine as needed.
5. Modify the appropriate preparation template so that the generated

preparation script uses the newly added ENTRY_POINT value. For more
information on template customization, see “Chapter 11. Templates for
COBOL generation” on page 57.

6. Use the modified template to generate from VisualAge Generator.

Additional preparation steps
Additional preparation steps might be required before a program can be used.
For example, you might need to do some of the following steps:

Chapter 14. Preparation process for COBOL generation 159

v Verify that the preparation steps completed successfully
v Modify run-time JCL, CLISTs, or the Run-time REXX
v Define transactions and programs to IMS or CICS

Refer to the VisualAge Generator Server Guide for MVS, VSE, and VM or
VisualAge Generator Server Guide for Workstation Platforms for more information
on preparation processing.

Getting ready for MVS preparation
Before running a preparation job stream on an MVS system, you must ensure
that the data sets you need have been allocated. A CLIST file, named
ELA110.ELACLST(ELACUSER), is provided by VisualAge Generator Server
for MVS, VSE, and VM to do the allocation. The ELACUSER CLIST file
allocates data sets for each user ID it is run under.

Figure 51 shows the naming conventions for the allocated data sets.

The values are substituted as follows:

HLQ The high-level qualifier. This value defaults to the user ID.

GENV
The generated target environment. Valid values follow:
v MVSCICS
v TSO
v MVSBATCH
v IMSVS
v IMSBMP

TYPE The value for TYPE can be any of the following:

EZEBIND BIND command file

EZECLST Run-time CLIST file

EZECOPY COBOL copybooks

EZEFOBJ Map group format module

EZEJCLP Preparation JCL

EZEJCLX Run-time JCL

EZELINK Link-edit control file

'&HLQ..&GENV..TYPE'

Figure 51. Naming conventions

160 VisualAge Generator: Generation Guide

EZEMFS MFS control blocks

EZEPCT CICS program control table

EZEPPT CICS program properties table

EZESRC COBOL source code

You can also allocate data sets to a specific project by passing a
MVS_PROJECTID value to the ELACUSER CLIST file. Refer to the VisualAge
Generator Server Guide for MVS, VSE, and VM or the prologue of the
ELACUSER CLIST file for more information on allocating data sets and how
to pass a MVS_PROJECTID value to the ELACUSER CLIST file.

Transferring files to MVS systems
Preparation processes for MVS environments include transferring the files
associated with the following:
v DB2 BIND command file (all MVS environments with DB2)
v Link-edit control statements (all MVS environments static link)
v COBOL copybook for MFS MID/MOD layout (IMS/VS and IMS BMP)
v Preparation JCL (all MVS environments)
v Sample run-time JCL (MVS batch and IMS BMP)
v Generated message format service (MFS) control block (IMS/VS and

IMS BMP)
v COBOL source (all MVS environments)
v Map group format module (CICS for MVS/ESA, MVS/TSO, and IMS/VS)
v Sample run-time CLIST (MVS/TSO)
v CICS program definitions (CICS for MVS/ESA)

Getting ready for VSE preparation
The sublibrary PRD2.EZELIB is defined during installation of VisualAge
Generator Server for MVS, VSE, and VM. This is the default library for
preparation on VSE. You can specify a different library using the /LIB
generation option.

Transferring files to VSE systems
Preparation processes for VSE environments include transferring the files
associated with the following:
v Preparation JCL (all VSE environments)
v Sample run-time JCL (VSE batch)
v COBOL source (all VSE environments)
v Map group format module (all VSE environments)
v CICS program definitions (CICS for VSE/ESA)

Preparing parts for OS/400
The preparation script (partname.PRP) produces output on the target system
for the generated parts by the preparation process. To create the preparation

Chapter 14. Preparation process for COBOL generation 161

script, specify the /PREPFILE generation option. For the OS/400 target
system, a preparation CLJ file is also created.

Note: You must prepare a DBCS program on a DBCS-enabled programmable
workstation.

Additional preparation steps
Verify that the preparation steps completed successfully by examining the
compile listing and job log listing in the output queue on the OS/400 system.
The output queue name is specified by the //BCHJOB command during
preparation or by the job description used to define the batch job.

Refer to the VisualAge Generator Server Guide for AS/400 document for more
information about additional preparation steps.

Getting ready for OS/400 preparation
The default library for preparation is QGPL. You can specify a different
library using the /DESTLIB generation option. Before you can use a library
specified by the /DESTLIB generation option, you must copy the QVGN* files
from QGPL to this library.

Transferring files to OS/400
Preparation processes for OS/400 environments include transferring the
following files:
v Preparation CL
v Run-time CL
v Job stream CL
v COBOL source
v Map group format module
v Message CL
v Data Description Specifications (DDS)
v Tables

Preparing parts for CICS for OS/2
The preparation script (partname.PRP) produces output on the target system
for the generated parts during the preparation process. To create the
preparation script, specify the /PREPFILE generation option. For CICS for
OS/2 target systems, a preparation REXX (partname.RXP) is created.

The preparation script contains all of the instructions necessary to prepare the
generated parts. If a step in the preparation command file is not needed for a
specific part, the step is ignored.

If you are developing on Windows NT and your target system is OS/2 or if
you are developing on OS/2 and your target system is another OS/2 machine,
the preparation REXX is executed on the target machine. If you are
developing on your target machine, the REXX is executed locally.

162 VisualAge Generator: Generation Guide

Additional preparation steps
Additional preparation steps, such as the following, might be required before
a program can be used:
v Verify that the preparation steps completed successfully.
v Define transactions and programs to CICS.

Outputs of CICS for OS/2 preparation
The outputs of CICS for OS/2 preparation are placed in the directory
specified using the /GENOUT generation option.

The following files are produced during the preparation process:
v The .CBL file contains the translated COBOL source that was output from

the CICS for OS/2 translator
v For DB2 programs generated for VisualAge for COBOL for OS/2, the .SQB

file contains the translated COBOL source that was output from the CICS
for OS/2 translator. This file is input to the DB2/2 Preprocessor, which
produces the .CBL file and the .BND file.

v The .TRL file contains CICS translator messages
v The .OBJ file contains output from the COBOL compile
v The .DEF file contains the input to the link step
v The .MAP file contains the output from the link step

These files are not necessary for running a program and can be deleted
automatically by modifying the EFK2OPXP template. See “Deleting COBOL
source code from the workstation after preparation” on page 113 for
information on modifying the template to delete the COBOL source.

The final outputs of the preparation process are the following:
v The .DLL file or files containing the executable program file
v The .BND file containing the SQL BIND commands
v The modified .PCF file, containing information on all parts generated and

prepared for the program

Note: Abbreviated listing files are produced by default. If you want a
complete listing file, you can modify the EFK2OPXP template. See
“Creating COBOL compile and link listings for CICS for OS/2” on
page 118 for information on modifying the template.

CICS for OS/2 table entries
Automatic update of program and transaction tables is not available for the
CICS for OS/2 environment. Only sample entries are generated for the
processing program table (.PPT) and program control table (.PCT). The
program user must update the CICS definitions before using the generated
program.

Chapter 14. Preparation process for COBOL generation 163

The following additions must be made to the table entries:
v A program control table (PCT) entry for each program that is to be run as a

main transaction
v A processing program table (PPT) entry for each online print mapping

services program. Define the mapping services program to be a temporary
resident program

v A file control table (FCT) entry for each VSAM file
v A destination control table (DCT) entry for each file assigned to a transient

data queue
v A PPT entry for each program distributed using CICS for OS/2 CAIM and

CAEX transactions
v Additional table entries are required for programs that call remote

programs
Refer to the CICS for OS/2 documentation for more information.

Analyzing preparation errors
The HPTCMD PREPARE subcommand issues return codes and messages to
indicate the success of preparation.

Analyzing return codes
The return codes for preparation are as follows:

0 The preparation process was successful.

4 The preparation was successful, but some information messages were
issued.

8 The preparation was not successful.

12 The command syntax is not valid.

16 The NLS identifier is not valid.

Locating preparation error messages
If preparation was automatically started by specifying the /PREP option,
preparation messages go to the same destination as messages returned by the
GENERATE subcommand.

If you use the PREPARE subcommand, messages are written to the STDOUT
destination for OS/2 commands. The default STDOUT destination is the
current OS/2 session.

To route the messages to a file instead of displaying them in the current OS/2
session, add the following to the end of the PREPARE subcommand:
> filename 2>&1;

164 VisualAge Generator: Generation Guide

where filename is the file to write the preparation messages to. This is the
standard OS/2 technique for routing command messages to a file.

Analyzing messages
If the preparation was not successful, do the following:
1. Review the messages to determine the cause of the failure.
2. Correct the problem.
3. If the messages indicate a problem in the generated parts, run the

generation process again. You can automatically start the preparation
process from generation by using the /PREP option.

4. If the problem was in the preparation process, you can start the
preparation process again using the PREPARE subcommand.

Refer to the VisualAge Generator Messages and Problem Determination Guide for
more information about the messages returned by the PREPARE
subcommand.

Chapter 14. Preparation process for COBOL generation 165

166 VisualAge Generator: Generation Guide

Chapter 15. Command interface for COBOL generation

You can issue the VisualAge Generator Developer subcommands from a
system prompt or from within a command file. The command HPTCMD
implements the command interface. Subcommands are specified with the
HPTCMD command and are followed by any required keywords and options.
Comments can be imbedded in the commands. Comments begin with the
characters /* and end with the characters */.

Command processing can be started explicitly by issuing the START
subcommand or implicitly by issuing any other VisualAge Generator
Developer subcommand. The command continues running until it is ended,
either by issuing the STOP subcommand or by closing the Generation Monitor
window.

Starting the command opens a Generation Monitor window. The Generation
Monitor window displays the command currently being processed and
provides information showing what stage of generation the process has
reached. You can cancel the currently processing command from the
Generation Monitor window. Closing the Generation Monitor window ends
any command currently being processed.

If you are generating programs using a generation server, refer to the
VisualAge Generator System Development Guide for information about starting
and stopping the Generation Monitor.

Note: If you are generating a program that uses DBCS, you must run the
commands on a machine that is DBCS-enabled.

GENERATE subcommand syntax for COBOL generation

You use the GENERATE subcommand to generate a program, table, or map
group. You can also specify options that affect how a part is generated.

The following syntax diagram shows the required command syntax. The
subsequent section contains the syntax for each option that you can also
specify on this command.

Note: The /CONFIGMAPNAME, /CONFIGMAPVERSION, /PROJECT, and
/SYSTEM options require a value when you generate from the user
interface.

© Copyright IBM Corp. 1980, 2001 167

!! HPTCMD GENERATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

/NOANSISQL

/ANSISQL /BIND=partname
!

!
NONE

/CHECKTYPE= LOW
ALL

/NOCICSDBCS

/CICSDBCS NONE
/CICSENTRIES= RDO

MACRO

!

!
1

/COMMENTLEVEL= 0
/CONTABLE=table name

/NOCREATEDDS

/CREATEDDS
!

!
/DATA= 24

31

/NODEBUGTRACE

/DEBUGTRACE /DESTACCOUNT=target account name
!

!
/DESTDIR=directory path name /DESTHOST=target host name /DESTLIB=library

!

!
/DESTPASSWORD=destination target password /DESTUID=destination user id

!

!
/NODXFRCANCEL

/DXFRCANCEL

/NODXFRXCTL

/DXFRXCTL

/NOENDCOMMAREA

/ENDCOMMAREA /ERRDEST=destid
!

!
/NOFASTPATH

/FASTPATH

/NOFOLD

/FOLD /FTPTRANSLATIONCMDDBCS=host FTP command
!

!
/FTPTRANSLATIONCMDSBCS=host FTP command

/GENHELPMAPS

/NOGENHELPMAPS

/GENMAPS

/NOGENMAPS
!

168 VisualAge Generator: Generation Guide

!
/GENOUT=directory

/NOGENRET

/GENRET

/GENTABLES

/NOGENTABLES ALL
/INEDIT= INONLY

!

!
/INITADDWS

/NOINITADDWS

/INITRECD

/NOINITRECD
!

!
/JOBCARD=filename /JOBNAME=name

/LEFTJUST

/NOLEFTJUST

/NOLINEINFO

/LINEINFO
!

!
55

/LINES= 0
number

/LINKAGE=partname /LINKEDIT=partname
!

!
/NOLISTING

/LISTING
/LISTINGONERROR

/NOLOCVALID

/LOCVALID
!<

!!
/NOLOG

/LOG=nn COBOL
/MATH= CSPAE

!

!

*

,

/MFSDEV= (’ad device’,’mfs device’)
, EATTR

NOEATTR
NCD

!

!
/MFSEATTR

/MFSEATTRNCD
/NOMFSEATTR

/NOMFSIGNORE

/MFSIGNORE

/NOMFSTEST

/MFSTEST

*

,

/MSP= ALL
GSAM
MFS
SEQ

!

Chapter 15. Command interface for COBOL generation 169

!
/NULLFILL

/NONULLFILL

/NUMOVFL

/NONUMOVFL F
/POSSIGN= C

/PREP

/NOPREP
!

!
/PREPFILE

/NOPREPFILE EZEPRINT
/PRINTDEST= TERMID

/PROJECTID=projectid
!

!
/RECOVERY
/NORECOVERY

/RESOURCE=partname /RESVWORD=filename
!

!
/RT=transaction ID

!

!
/RUNFILE

/NORUNFILE /SENDTRANSLATIONCMDDBCS=SEND command /SESSION=session
!

!
/SETFULL

/NOSETFULL

/NOSP

/SP 0
/SPA= size

,ADF
,position

,,position

!

!
/NOSPZERO

/SPZERO /SQLDB=SQL database name /SQLID=SQL userid
!

!
SQLPASSWORD=SQL password

/NOSQLVALID

/SQLVALID

*

/SYMPARM=symbol,'value'
!

!
/SYNCDXFR

/NOSYNCDXFR

/NOSYNCXFER

/SYNCXFER

/NOSYSCODES

/SYSCODES /TARGNLS=language code
!

!
/TEMPLATES=directory

!<

170 VisualAge Generator: Generation Guide

!!

*

,
NONE

/TRACE= SQLERR
SQLIO

STMT

/TRANSID= primary
primary,restart
,restart

!

!
/TRANSFERTYPE=

None

TCPIP

SNA

/TWAOFF=offset

UNLOAD

NOUNLOAD
!

!
/VALIDMIX

/NOVALIDMIX /VMLOADLIB=loadlib /LIB=library.sublibrary
!

!
/WORKDB= DLI

SQL
AUX
MAIN

!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the options illustrated in the syntax
diagram.

GENERATE subcommand examples
This section contains examples of different uses of the GENERATE
subcommand. Each example shows the GENERATE syntax used, along with
associated information. Associated information can be the generation options
part and resource associations. The examples appear on several lines because
of the formatting of this document, but they must be entered as one command
line.

Generating for CICS for MVS/ESA
Figure 52 on page 172 shows an example for generating a program for the
CICS for MVS/ESA environment.

Chapter 15. Command interface for COBOL generation 171

If you are generating with VisualAge Generator on Smalltalk, use
/CONFIGMAPNAME and /CONFIGMAPVERSION instead of /PROJECT.

Generating for MVS batch
Figure 53 shows an example for generating a program for use in the MVS
batch environment.

Figure 54 shows the contents of the specified options part, OPTIONSMBAT.

Generating for MVS/TSO
Figure 55 shows an example for generating a program for use in the
MVS/TSO environment.

Figure 56 on page 173 shows the contents of the specified generation options
part, A24X105.

HPTCMD GENERATE PRGM1 /PROJECT="myproject","27.8"
/SYSTEM=MVSCICS
/PROJECTID=USER1
/JOBCARD=D:\JOBCARD.JCL
/TEMPLATES=C:\EFKGEN /SYMPARM=DSYS,'DSNA'
/LINKAGE=LINKMVSCICS

Figure 52. Generating for CICS for MVS/ESA

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=MVSBATCH
/PREP
/OPTIONS=OPTIONSMBAT
/RESOURCE=WORKRAP
/GENOUT=D:\WORK\GENOUTMBAT

Figure 53. Generating for MVS batch

/NOFOLD /LINES=55 /NOSQLVALID /NOLOCVALID /SESSION=A
/GENMAPS /GENHELPMAPS /GENTABLES /JOBCARD=EFK2MJOB.JCL
/PROJECTID=USER1 /LISTING
/SYMPARM=COB2LIB,'SYS1.COB2LIB'
/MSP=SEQ /SYMPARM=ELA,'ELA.V3R1M0'

Figure 54. OPTIONSMBAT

HPTCMD GENERATE A24X105 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=TSO
/OPTIONS=A24X105

Figure 55. Generating for MVS/TSO

172 VisualAge Generator: Generation Guide

Figure 57 shows the contents of the specified resource association file,
A24X105.

Generating for CICS for OS/2
Figure 58 shows an example for generating a program for use in the CICS for
OS/2 environment.

Generating for VM CMS
Figure 59 shows an example for generating a program for use in the VM CMS
environment.

Figure 60 on page 174 shows the contents of the specified generation options
part, OPTIONSVMCMS.

/MSP=SEQ
/CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/PREP
/SESSION=B
/GENMAPS
/GENTABLES
/TEMPLATES=C:\EFKGEN
/JOBCARD=EFK2MJOB.JCL
/RESOURCE=A24X105
/PROJECTID=USER1
/GENOUT=D:\WORK\A24X105\TSO
/SYMPARM=ELA,'ELA.V3R1M0'

Figure 56. A24X105

ASSOCIATE FILE=FXRA01 /SYSNAME='USER1.TSOMSL75' /FILETYPE=VSAMRS /SYSTEM=TSO
ASSOCIATE FILE=FRRA01 /SYSNAME='USER1.TSOMSL75' /FILETYPE=VSAMRS /SYSTEM=TSO
ASSOCIATE FILE=FSRA01 /SYSNAME='USER1.TSOMSL75' /FILETYPE=VSAMRS /SYSTEM=TSO

Figure 57. A24X105

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=OS2CICS
/TEMPLATES=C:\EFKGEN
/LINKAGE=LINKCICSOS2

Figure 58. Generating for the CICS for OS/2 environment

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=VMCMS
/OPTIONS=OPTIONSVMCMS

Figure 59. Generating for VM CMS

Chapter 15. Command interface for COBOL generation 173

Generating for VM batch
Figure 61 shows an example for generating a program for use in the VM batch
environment.

Generating for VSE batch
Figure 62 shows an example for generating a program for use in the VSE
batch environment. In this example, the SQL program is running in
single-user mode, and has print maps associated with the program.

Generating for CICS for VSE/ESA
Figure 63 on page 175 shows an example for generating a program for use in
the CICS for VSE/ESA environment.

/DATA=24
/NOSYNCXFER
/SYSTEM=VMCMS
/SYMPARM=VMFMODE,'C'
/VMLOADLIB=APPL1

Figure 60. OPTIONSVMCMS

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=VMBATCH
/DATA /NOSYNCXFER /SYMPARM=VMFMODE,'D'
/SYMPARM=SQLPKGNM,'SQLAPPL' /SYMPARM=SQLSTMDE,'MULTIUSER'
/SYMPARM=SQLDBNAM,'APPL1DB' /SYMPARM=SQLUSRPW,'SQLUSRID/SQLPWD'

Figure 61. Generating for the VM batch environment

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=VSEBATCH
/NOFOLD /LINES=55 /SQLVALID /NOLOCVALID /SESSION=A
/GENMAPS /GENTABLES /JOBCARD=EFK0VJOB.JCL
/LISTING /LIB=PRD2.USERLIB /MSP=SEQ
/SYMPARM=SQLSTMDE,'SINGLEUSER' /SYMPARM=VUSERLIB,'PRD5.PROJLIB'
/SYMPARM=SQLPKGNM,'SQLAPPL' /SYMPARM=PROCLIB,'PRD5.PROCLIB'
/SYMPARM=PWRCLASS,'5'

Figure 62. Generating for the VSE batch environment

174 VisualAge Generator: Generation Guide

PREPARE subcommand syntax for COBOL generation

The PREPARE subcommand calls a program to interpret the preparation script
(partname.PRP), which is created when the /PREPFILE option is specified
during generation.

!! *

,

HPTCMD PREPARE partname
/DESTACCOUNT=account name

!

!
/DESTHOST=TCP/IP name or address /DESTPASSWORD=password

!

!
/DESTUID=user ID

!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

You can also start the preparation process by specifying the /PREP generation
option. If the /PREPFILE generation option is specified without the /PREP
generation option, the PREPARE subcommand is used to prepare the
generation output. The PREPARE subcommand is also used to restart

HPTCMD GENERATE PRGM1 /CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=VSECICS
/PROJECTID=USER1
/LINKAGE=LINKVSECICS
/TEMPLATES=C:\EFKGEN
/GENOUT=D:\AG2\GENOUT
/JOBCARD=D:\AG2\JOBCARD.VSE
/RESOURCE=VSECICS
/SESSION=C
/PREP
/PREPFILE
/GENMAPS
/GENTABLES
/NONUMOVFL
/SYMPARM=PWRCLASS,'5'
/SYMPARM=NODUSRID,'HOST,USER1'
/LIB=PRD5.CUSTVAL
/CICSENTRIES=RDO
/SYMPARM=CRSLIB,'PRD5.CRS220B'
/SYMPARM=PROCLIB,'PRD2.EZELIB'
/SYMPARM=SQLUSRPW,'FIN/FIN'

Figure 63. Generating for the CICS for VSE/ESA environment

Chapter 15. Command interface for COBOL generation 175

preparation if the preparation process is not successful in a manner that does
not require the parts to be generated again.

The PREPARE subcommand causes different results, depending on the
environment.
v For MVS and VSE programs, files are transferred from the workstation to

the host using a script contained in the partname.PRP file. The partname.PRP
file also contains a script to submit the preparation JCL generated for the
program.

v For OS/400 programs, files are transferred from the workstation to the
OS/400 environment using the script contained in the partname.PRP file.
The partname.PRP file also contains a script to submit the preparation job
stream generated for the program.

v For VM and CICS for OS/2 programs, files are transferred using the script
contained in the partname.PRP file. The partname.PRP file also contains the
script to invoke the preparation REXX generated for the program.

Example

This example illustrates how to prepare generated part PRGM1. In this case,
the GENERATE subcommand specified a value of D:\MYDIR\OUTPUT for
the /GENOUT option:
HPTCMD PREPARE D:\MYDIR\OUTPUT\PRGM1

Note: The values returned by the PREPARE subcommand only indicate the
status of the preparation process itself. The values do not indicate
whether any jobs submitted by the PREPARE subcommand are
successful.

START subcommand syntax

The START subcommand starts the server process that runs HPTCMD
subcommands.

!! HPTCMD START !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

If you do not issue the START subcommand and the server process is not
already running, any HPTCMD subcommand you issue, except for the STOP
subcommand, starts the server process automatically.

176 VisualAge Generator: Generation Guide

Note: If you do not issue the START subcommand and you direct your
output to a location other than STDOUT, the server process inherits the
STDOUT location. This causes the STDOUT file to be locked by the
server until an HPTCMD STOP command is issued. To avoid this,
always issue an HPTCMD START command, either at the command
line or by placing the command at the beginning of your command file.

Example

The following is an example of how to use the START subcommand:
HPTCMD START

STOP subcommand syntax

The STOP subcommand stops the server process that runs HPTCMD
subcommands.

!! HPTCMD STOP !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

The server process continues to run until it receives a STOP subcommand or
until the Generation Monitor window is closed. When you specify the STOP
subcommand, the server process completes all previously issued
subcommands before stopping. If the server process is stopped as a result of
the Generation Monitor window closing, the stop occurs immediately, ending
any subcommand currently being processed.

Example

The following is an example of how to use the STOP subcommand:
HPTCMD STOP

VALIDATE subcommand syntax for COBOL generation

The VALIDATE subcommand enables you to validate your VisualAge
Generator program without actually generating code.

!! HPTCMD VALIDATE *

,

partname !

Chapter 15. Command interface for COBOL generation 177

! /CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″
/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

NONE
/CHECKTYPE= LOW

ALL

!

!
/GENOUT=directory 55

/LINES= 0
number

/LINKAGE=partname
!

!
/NOLISTING

/LISTING
/LISTINGONERROR

/NOLOCVALID

/LOCVALID /PROJECTID=projectid /RESOURCE=partname
!

!
/SQLDB=SQL database name /SQLID=current SQL ID

/NOSQLVALID

/SQLVALID
!

! *

.

/SYMPARM=symbol,'value' /TARGNLS=language code
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

The following is an example of how to use the VALIDATE subcommand for
COBOL validation. Enter the following as one continuous line at the OS/2
command prompt:
HPTCMD VALIDATE MYAPP

/CONFIGMAPNAME="myconfig"
/CONFIGMAPVERSION="27.8"
/SYSTEM=OS2CICS
/CHECKTYPE=ALL
/SQLVALID
/LOCVALID

178 VisualAge Generator: Generation Guide

Part 5. Generating Web transaction programs

Generating a Web transaction program produces both server source code in
C++, Java, or COBOL, as well as Java gateway source code. Server code for
Web transaction programs is created using the C++, Java, or COBOL
generator.

Refer to Part 2. Generating C++ programs, Part 3. Generating Java programs,
and Part 4. Generating COBOL programs. Java gateway code and related files
are created when you generate a Web transaction program, a user interface
record, or a table.

This part contains the following chapters:
v “Chapter 16. Inputs to Web transaction program generation” on page 181
v “Chapter 17. Outputs of Web transaction program generation” on page 183
v “Chapter 18. Preparation for Web transaction program generation” on

page 185
v “Chapter 19. Command interface for Web transaction program generation”

on page 187

For further details on Web transaction programs, see the Web Transaction
Development Guide.

© Copyright IBM Corp. 1980, 2001 179

180 VisualAge Generator: Generation Guide

Chapter 16. Inputs to Web transaction program generation

Inputs to generating Web transaction programs include the inputs needed for
C++, Java, or COBOL generation. For a complete list, refer to “Chapter 2.
Inputs to C++ program generation” on page 11, “Chapter 6. Inputs to Java
server program generation” on page 31, or “Chapter 10. Inputs to COBOL
generation” on page 51.

When generating Web transaction programs, user interface records, or tables
for the gateway, review the following generation options, as described in
“Optional parameters for subcommands” on page 300:
v /GENAUTHORTIMEVALUES
v /GENOUT
v /GENRESOURCEBUNDLE
v /GENUIRECORDS
v /JAVADESTHOST, /JAVADESTUI, /JAVADESTDIR, and

/JAVADESTPASSWORD: Specify those four if you want the Java code and
related files to be transferred to a remote Java target machine. All four must
be valid for the transfer to occur.

v /JAVASYSTEM
v /JSPRELDIR
v /MSGTABLEPREFIX
v /PACKAGENAME
v /RESOURCEBUNDLELOCALE
v /TARGNLS

© Copyright IBM Corp. 1980, 2001 181

182 VisualAge Generator: Generation Guide

Chapter 17. Outputs of Web transaction program
generation

This chapter describes the Java gateway outputs of Web transaction program
generation.

Outputs of generating Web transaction program parts

In addition to Java gateway outputs, outputs of generating Web transaction
programs include the outputs produced by C++, Java, or COBOL generation.
For a complete list, refer to “Chapter 3. Outputs of C++ program generation”
on page 15, “Chapter 7. Outputs of Java program generation” on page 35, or

“Chapter 13. Outputs of COBOL generation” on page 137.

Java gateway code and related files are stored in the /GENOUT directory on
the generation machine and then transferred to the Java target machine if
necessary.

Java output files are based on the name of the member being generated.
However, if the member name contains characters other than alphanumeric
characters and underscores, those characters are replaced with xyyyy where
yyyy is the hexadecimal representation of the character. For example, files
generated from a member named ″UI-RCD″ would contain ″UIx002DRCD″ in
their names.

Java generation outputs

Table 48 identifies the Java outputs that result from generating Web
transaction program parts.

Table 48. Java generation outputs

Element File name and extension Environment

Java source for each user interface
record generated

VGUirxxxxxxx.java¹ All

Java source for each user interface
record bean generated

xxxxxxxBean.java All

Java source for each resource bundle
generated for a UI record when
/GENRESOURCEBUNDLE is specified

uirnameRBundle.java² or
uirnameRBundle_locale.java³

All

Java source for each resource bundle
generated for a message table

ppppRBundle.java⁴ or
ppppRBundle_locale.java³

All

© Copyright IBM Corp. 1980, 2001 183

Table 48. Java generation outputs (continued)

Element File name and extension Environment

Java source for each edit table
generated

VGTblxxxxxxx.java All

Binary table contents for each edit
table generated

VGDataxxxxxxx.tab All

Java source for each edit function
local-storage record generated

VGWkgxxxxxxx.java All

JSP for each user interface record
generated

xxxxxxx.jsp All

Preparation file xxxxxxxJ.cmd All

File transfer protocol (FTP) control file xxxxxxxJ.ftp All

Batch command file that invokes the
Java compiler on either a local or
remote target machine

xxxxxxxJZ.bat (for
Windows NT) or
xxxxxxxJZ.cmd (for OS/2)

Windows NT,
OS/2

Batch command file for a member
generated for a local target machine;
copies files to the package directory
prior to compilation

xxxxxxxLZ.bat (for
Windows NT) or
xxxxxxxLZ.cmd (for OS/2)

Windows NT,
OS/2

Script file that invokes the Java
compiler on the remote target machine

xxxxxxxJ.scr Any UNIX
platform; or
OS/400

Notes:
¹ xxxxxxx indicates a 7-character member name.
² uirname indicates a UI record name.
³ locale indicates a Java locale of the form ll, ll_ll, or ll_ll_ll, where l is a letter.
⁴ pppp indicates a 4-character message table prefix.

184 VisualAge Generator: Generation Guide

Chapter 18. Preparation for Web transaction program
generation

This chapter describes how to prepare the Java gateway parts of a Web
transaction program. For information on how to prepare the C++, Java, or
COBOL parts, see “Chapter 4. Preparation process for C++ generation” on
page 17, “Chapter 8. Preparation process for Java generation” on page 39, or
“Chapter 14. Preparation process for COBOL generation” on page 153.

When generation is complete, preparation takes place automatically unless
you specify the /NOPREP option. The preparation process comprises the
following steps:
1. Transferring parts to the Java target environment, if needed
2. Unicode conversion, if needed
3. Compiling the Java code

Preparation requirements

If you want the Java compiler classes to be copied to somewhere other than to
the location specified by /JAVADESTDIR or /GENOUT, you must set the
HPTCLASSDIR and HPTJSPDIR environment variables. HPTCLASSDIR is the
root of the Java package directory to which you want to deploy your tab files
and Java class files on your Java target system. It should be included in your
classpath. Thus, if my.pkg is the package name then HPTCLASSDIR should be
set to the directory that contains the \my\pkg directory. HPTJSPDIR is the
directory to which you want to deploy your JSP files.

A .cmd file is generated for each Web transaction program, user interface
record, or Java table being generated. That file uses FCEJBLD.EXE to control
preparation processing.

See “Chapter 31. Analyzing return codes and errors” on page 367 for
information about preparation errors.

Preparing Web transaction Java parts

FCEJBLD.EXE does the following processing:
1. If the generation machine is different from the Java gateway machine, the

xxxxxxxJ.ftp file is used to transfer all the required files to the Java
gateway machine. For a Web transaction program or user interface record,
this transfer includes the Java source for the following items:
v UI record beans

© Copyright IBM Corp. 1980, 2001 185

v UI record objects
v Resource bundles
v Edit function local-storage record definitions
v Edit table definitions
v Edit table contents

This transfer also includes JSP files and the following, as appropriate:
v For OS/2, the files xxxxxxxJZ.cmd and xxxxxxxLZ.cmd
v For OS/400 and the UNIX environments, the file xxxxxxxj.scr
v For Windows NT, the files xxxxxxxJZ.bat and xxxxxxxLZ.bat

2. If the Java target system is a local Windows NT (or OS/2) machine,
FCEJBLD.EXE runs the file xxxxxxxLZ.bat (or xxxxxxxLZ.cmd) to copy the
Java code to the package directory, which is a subdirectory of /GENOUT.
FCEJBLD.EXE then runs the xxxxxxxJZ.bat (or xxxxxxxJZ.cmd) to do the
following:
v Perform Unicode conversion, if necessary
v Compile the Java code
v Copy the class and tab files to the directory HPTCLASSDIR
v Copy the JSP files to the directory specified by HPTJSPDIR

If the Java target system is a remote Windows NT (or OS/2) machine, the
file xxxxxxxJZ.bat (or xxxxxxxJZ.cmd) must be run manually.

If the Java target system is a UNIX environment or OS/400, FCEJBLD.EXE
runs xxxxxxxj.scr to perform the same tasks as xxxxxxxJZ.bat.

186 VisualAge Generator: Generation Guide

Chapter 19. Command interface for Web transaction
program generation

You can issue the VisualAge Generator Developer subcommands from a
system prompt or from within a command file. The command HPTCMD
implements the command interface. Subcommands are specified with the
HPTCMD command and are followed by any required keywords and options.
Comments can be imbedded in the commands. Comments begin with the
characters /* and end with the characters */.

Command processing can be started explicitly by issuing the START
subcommand or implicitly by issuing any other VisualAge Generator
Developer subcommand. The command continues running until it is ended,
either by issuing the STOP subcommand or by closing the Generation Monitor
window.

Starting the command opens a Generation Monitor window. The Generation
Monitor window displays the command currently being processed and
provides information showing what stage of generation the process has
reached. You can cancel the currently processing command from the
Generation Monitor window. Closing the Generation Monitor window ends
any command currently being processed.

If you are generating programs using a generation server, refer to the
VisualAge Generator System Development Guide for information about starting
and stopping the Generation Monitor.

Note: If you are generating a program that uses DBCS, you must run the
commands on a machine that is DBCS-enabled.

GENERATE subcommand syntax for Web transaction program generation

You use the GENERATE subcommand to generate a Web transaction program,
user interface record, or table. You can also specify options that affect how a
part is generated.

The following syntax diagram shows the options for the GENERATE
subcommand for Web transaction program generation. If you are also
generating COBOL code, see “GENERATE subcommand syntax for COBOL
generation” on page 167. If you are also generating C++ code, see

© Copyright IBM Corp. 1980, 2001 187

“GENERATE subcommand syntax for C++ generation” on page 21. If you are
also generating Java server code, see “GENERATE subcommand syntax for
Java generation” on page 43.

Note: The /CONFIGMAPNAME, /CONFIGMAPVERSION, and /SYSTEM
options require a value when you generate from the command interface
by using VisualAge Generator on Smalltalk. The /PROJECT and
/SYSTEM options require a value when you generate from the
command interface using VisualAge Generator on Java.

!! HPTCMD GENERATE *

,

partname !

!

*

/CONFIGMAPNAME= ″ configuration map name ″ /CONFIGMAPVERSION= ″ map version ″

/PROJECT= ″ project name ″ , ″ project version ″

!

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

COBOL options
C++ options

!

!
/GENAUTHORTIMEVALUES

/NOGENAUTHORTIMEVALUES /GENOUT=directory

/GENRESOURCEBUNDLE

/NOGENRESOURCEBUNDLE
!

!
/GENUIRECORDS

/NOGENUIRECORDS /JAVADESTDIR=directory
!

!
/JAVADESTHOST=TCP/IP name or address /JAVADESTPASSWORD=password

!

!
/JAVADESTUID=userid /JAVASYSTEM=target system

!

!
/JPSRELDIR=relative directory /LINKAGE=partname

!

!
/MSGTABLEPREFIX=prefix string /PACKAGENAME=package name

!

!
/RESOURCEBUNDLELOCALE=Java locale

!<

188 VisualAge Generator: Generation Guide

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

GENERATE subcommand example for Web transaction
Figure 64 illustrates the GENERATE subcommand for Java program
generation; at an OS/2 command prompt it must be entered in one
continuous line.

The last six lines set specifications for generation of Java parts for the
GatewayServlet. The others pertain to C++ server generation.

The AIX, HP-UX, and Solaris environments are case sensitive.

For information about setting generation options, see “Chapter 24. Generation
options parts” on page 209.

For information about generation return codes, see “Chapter 31. Analyzing
return codes and errors” on page 367.

Syntax of other HPTCMD subcommands

For information about the command interface for other HPTCMD
subcommands, see “Chapter 15. Command interface for COBOL generation”
on page 167 or “Chapter 5. Command interface for C++ generation” on

page 21.

HPTCMD GENERATE MYPGM
/CONFIGMAPNAME="myconfig" /CONFIGMAPVERSION="27.8"
/SYSTEM=WINNT
/COMMENTLEVEL=0;
/DESTDIR='\u\pancho'
/DESTHOST=quixote.rtp.ibm.com
/DESTPASSWORD=mypassword
/DESTUID=pancho
/OPTIONS=MYOPT
/GENOUT=D:\pancho\gen
/TRACE=PROCESSES
/JAVADESTDIR='/home/jasper/javagen/genout'
/JAVADESTHOST=quixote.rtp.ibm.com
/JAVADESTPASSWORD=javapw
/JAVADESTUID=don
/JAVASYSTEM=AIX
/PACKAGENAME=my.pkg

Figure 64. GENERATE subcommand for Java

Chapter 19. Command interface for Web transaction program generation 189

190 VisualAge Generator: Generation Guide

Part 6. Generating JavaBeans wrappers and session
beans

This part describes how to generate JavaBeans wrappers and session beans. A
session bean is a type of Enterprise Java Bean (EJB).

The ability to generate JavaBeans wrappers for a server program is available
only in VisualAge Generator Developer on Java. Because VisualAge Generator
Developer on Java is not available for the OS/2 platform, JavaBeans wrappers
can be generated only in a Windows NT development environment.
Generated JavaBeans wrappers can be run on any supported client platform.

An Enterprise Java Bean session bean can be generated to invoke a server
program.

This part contains the following chapters:
v “Chapter 20. Inputs to Java wrapper generation” on page 193
v “Chapter 21. Outputs of Java wrapper generation” on page 195
v “Chapter 22. Command interface for Java wrapper generation” on page 201
v “Chapter 23. Generating session beans” on page 205

© Copyright IBM Corp. 1980, 2001 191

192 VisualAge Generator: Generation Guide

Chapter 20. Inputs to Java wrapper generation

The Java program generation process uses inputs from several different
sources:
v VisualAge Generator part definitions that define the program, and its

associates.
Refer to the VisualAge Generator Developer online help system for more
information about defining parts.

v Generation control files and parts, which are predefined. The generation
control files and parts for Java are described in the following sections:
– “Linkage table parts” on page 53

Refer to the VisualAge Generator Client/Server Communications Guide
document for information about linkage tables.

– “Chapter 24. Generation options parts” on page 209

These control parts and files contain installation and project-level conventions
that specify how the Java program’s wrappers are generated. Generation
control parts and files are usually specified at an installation or project level,
but they can be specified at any level. You can modify the contents of the
generation control parts and files.

Inputs for JavaBeans wrapper generation

JavaBeans wrappers can be generated for VisualAge Generator server (called
batch) programs. The inputs to wrapper generation are the program member
and the members defined in the called parameter list. All parameter types are
supported except for maps.

Generation options
To generate JavaBeans wrapper classes for a VisualAge Generator server
(called batch) program, specify /SYSTEM=JAVAWRAPPER as the target
run-time system when generating the server program.

Following are other options that you can specify when generating Java
wrappers:
v /EJBGROUP=
v /LINKAGE=
v /OPTIONS=
v /PACKAGENAME=
v /PROJECT=

© Copyright IBM Corp. 1980, 2001 193

The following is an example of a batch generation command for generating
JavaBeans wrappers for program STAFFMN:
hptcmd generate staffmn /PROJECT="Staff","R45.0" /SYSTEM=JAVAWRAPPER

/PACKAGENAME=StaffPkg /LINKAGE=staff.lkg

This generation statement assumes that all parts required by program
STAFFMN are in the Staff project. If there are referenced parts in more than
one project, there must be a /PROJECT option specified for each project
required. (If generating wrappers from the interactive generation user
interface, all referenced parts must be in projects loaded in the image.) The
wrappers would be generated into the StaffPkg package. The package
specified by the /PACKAGENAME generation option must be contained in a
project named by a /PROJECT option, and the edition of the package in the
named project must be an open edition.

Linkage table options
The linkage table entry for the called batch program defines how the program
should be called from the JavaBeans wrapper. Linkage table options are
supported as documented in the VisualAge Generator Client/Server
Communications Guide except as noted in the following sections.

Generation or run-time binding for linkage options
If REMOTEBIND=GENERATION is specified for the server program when the
Java wrapper is generated, the linkage table options are generated into the
server program wrapper.

If REMOTEBIND=RUNTIME is specified, only the program name and linkage
table name are generated into the server program wrapper. The linkage table
is read again at run time on the Web server (for applets), on the client system
(for programs), or on the Web application server for servlets and JavaServer
Pages (JSPs).

194 VisualAge Generator: Generation Guide

Chapter 21. Outputs of Java wrapper generation

VisualAge Generator generates beans for wrappering calls to the server
program. The following types of classes are generated:
v “Beans for servers” on page 196
v “Beans for record parameters” on page 198
v “Beans for record array rows” on page 199

Each generated class is stored in the VisualAge for Java repository in the
package with the name specified by the /PACKAGENAME generation option.
The package name must exist. For batch generation, the package name must
be contained by a project named by a /PROJECT option. For interactive
generation, the package must be contained in a project loaded into the current
image. The edition of the package in the project specified must be an open
edition.

The developer can use the Javadoc tool to build a classname.html file once the
the class has been compiled. The HTML file describes the public interfaces for
the class.

The following sections give a short description of what is generated for each
class. The descriptions include the HTML descriptions of the classes built for
server program STAFFMN. Figure 65 on page 196 lists the VisualAge
Generator External Source Format (ESF) definition of STAFFMN from which
the classes were generated.

© Copyright IBM Corp. 1980, 2001 195

Beans for servers

A bean generated for a server program includes the following:
v The private instance variables for each parameter. The Java data type for

each item parameter is generated as shown in Table 49 on page 197.
v The get and set methods for each parameter. For data item parameters, the

set methods signal parameter changes using the PropertyChange event as
defined for beans. If other beans are ″listening″ for changes in parameters,
you must use the set methods to change the parameters rather than directly
assigning new values to them.

v An execute method for calling the server program using the class instance
variables of the server program wrapper as parameters.

v A call method for calling the server with an argument defined
corresponding to each parameter in the program called parameter list.

v The AddPropertyChangeListener and removePropertyChangeListener
methods enable signaling of other beans when parameter values are
changed by a set method or on return from a server call. These methods are
inherited from the CSOServerProgram class.

The developer can use the server program as a bean by using the set methods
to set parameter values prior to calling the server, the execute method to call
the server program, and the get methods to retrieve the returned parameter

:appl name = STAFFMN type = CALLBATCH.
:mainprc name = STAFFMN-MAIN.
:emainprc.
:callparm name = BUTTON-PRESSED type = ITEM.
:callparm name = STAFF-MAINT type = RECORD.
:eappl.
:record name = STAFF-MAINT org = WORKSTOR scope = LOCAL.
:recditem name = ROWS-FETCHED type = NUM bytes=4.
:recditem name = SQL-CODE type = NUM bytes=8.
:recditem name = FETCH-LIMIT type = NUM bytes=4.
:recditem name = STAFF-DATA type = CHA bytes=28 occurs=10.
:recditem name = ID type = BIN bytes=2 level=20.
:recditem name = NAME type = CHA bytes=9 level=20.
:recditem name = DEPT type = BIN bytes=2 level=20.
:recditem name = JOB type = CHA bytes=5 level=20.
:recditem name = YEARS type = BIN bytes=2 level=20.
:recditem name = SALARY type = PACK bytes=4 decimals=2 level=20.
:recditem name = COMM type = PACK bytes=4 decimals=2 level=20.
:erecord.
:item name = BUTTON-PRESSED type = CHA bytes=1.
:eitem.

Figure 65. ESF for example server program STAFFMN

196 VisualAge Generator: Generation Guide

values after calling the server program. The listener methods enable another
bean to be notified whenever the data values are changed.

The developer can also treat the server call as a function call, passing the
parameters as arguments on the call method. If the call method is used, then
get methods must be used to retrieve the values returned for data item
parameters, since Java primitive parameters are always passed by value.

When /PACKAGENAME=StaffPkg is specified at generation, Class
StaffPkg.Staffmn is the server class generated for sample program STAFFMN.
For more information, see the VisualAge Generator Client/Server Communications
Guide.

Table 49 shows the derivation of Java data types from VisualAge Generator
item definitions.

Table 49. Derivation of Java data types from VisualAge Generator item definitions

VisualAge
Generator
Data Type

Length in
chars or
digits

Length in
bytes Decimals

Java Data
Type

Maximum
precision in
Java

CHA 1-32767 1-32767 NA String NA

MIX 1-32767 1-32767 NA String NA

DBCS 1-16383 1-32767 NA String NA

UNICODE 1-16383 1-32767 NA String NA

HEX 2-75534 1-32767 NA Byte[] NA

BIN 1-4 2 0 Short 4

BIN 5-9 4 0 Int 9

BIN 10-18 8 0 Long 18

BIN 1-4 2 >0 Float 4

BIN 5-9 4 >0 Double 15

BIN 10-18 8 >0 Double 15

NUM,
NUMC

1-4 1-4 0 Short 4

NUM,
NUMC

5-9 5-9 0 Int 9

NUM,
NUMC

10-18 10-18 0 Long 18

NUM,
NUMC

1-6 1-6 >0 Float 6

NUM,
NUMC

7-18 7-18 >0 Double 15

Chapter 21. Outputs of Java wrapper generation 197

Table 49. Derivation of Java data types from VisualAge Generator item
definitions (continued)

VisualAge
Generator
Data Type

Length in
chars or
digits

Length in
bytes Decimals

Java Data
Type

Maximum
precision in
Java

PACK, PACF 1-3 1-2 0 Short 4

PACK, PACF 4-9 3-5 0 Int 9

PACK, PACF 10-18 6-10 0 Long 18

PACK, PACF 1-5 1-3 >0 Float 6

PACK, PACF 7-18 4-10 >0 Double 15

Beans for record parameters

A bean generated for a record includes the following:
v Public instance variables, such as the following:

– Java primitives for each low-level item that is not within a substructured
array.

– Java primitive arrays for item arrays
– An object array for each substructured array item

The Java data type associated with each record item type is shown in
Table 49 on page 197.

v Get and Set methods for each instance variable, enabling the record class to
be used as a JavaBean. The Set methods signal instance variable changes
using the PropertyChange event as defined for JavaBeans. If other
JavaBeans are ″listening″ for changes in parameters, you must use the Set
methods to change the instance variables rather than directly assigning new
values to them.

v AddPropertyChangeListener and removePropertyChangeListener methods
that enable signaling of other beans when parameter values are changed by
a set method or on return from a server call. These methods are inherited
from the Record class.

v Nonpublic methods for marshalling record data on a server call occurring
structure in the record on a server call.

If a parameter is an SQL row record, then get and set methods are generated
to allow you to query and set the null indicator for each data item of the
record. For example, for a data item named PHONE, the method
getPhoneNullIndicator() queries whether the value for PHONE is null.

When /PACKAGENAME=StaffPkg is specified at generation, class
StaffPkg.StaffMaint is the record class generated for record parameter

198 VisualAge Generator: Generation Guide

STAFF_MAINT in the sample program STAFFMN (see Figure 65 on page 196).
For an example of the Java documentation generated for a record class, see
the file staffmnP.StaffMaint.html in the com.ibm.vgj.cso package
documentation. For more information, see the VisualAge Generator Client/Server
Communications Guide.

Beans for record array rows

A bean generated for a multiply occurring substructure in a parameter record
includes the following:
v Public instance variables defined as Java primitives for each low-level item

in the substructure. The Java data type associated with each record item
type is shown in Table 49 on page 197.

v Get and Set methods for each instance variable, allowing the class to be
used as a JavaBean. The Set methods signal instance variable changes using
the PropertyChange event as defined for JavaBeans. If other JavaBeans are
″listening″ for changes in parameters, you must use the Set methods to
change the instance variables rather than directly assigning new values to
them.

v If a parameter is an SQL row record, then get and set methods are
generated to allow you to query and set the null indicator for each data
item of the record. For example, for a data item named PHONE, the
method getPhoneNullIndicator() queries whether the value for PHONE is
null.

v The AddPropertyChangeListener and removePropertyChangeListener
methods enable signaling of other beans when parameter values are
changed by a set method or on return from a server program call. These
methods are inherited from the CSORecord class.

v Non-public methods for marshalling record data on a server call.

When /PACKAGENAME=StaffPkg is specified at generation, class
StaffPkg.StaffMaint_StaffData is the record array row class generated for
multiply occurring substructure STAFF_DATA in record STAFF_MAINT. For
more information, see the VisualAge Generator Client/Server Communications
Guide.

Chapter 21. Outputs of Java wrapper generation 199

200 VisualAge Generator: Generation Guide

Chapter 22. Command interface for Java wrapper
generation

You can issue the VisualAge Generator Developer subcommands from a
system prompt or from within a command file. The command HPTCMD
implements the command interface. Subcommands are specified with the
HPTCMD command and are followed by any required keywords and options.
Comments can be imbedded in the commands. Comments begin with the
characters /* and end with the characters */.

Command processing can be started explicitly by issuing the START
subcommand or implicitly by issuing any other VisualAge Generator
Developer subcommand. The command continues running until it is ended,
either by issuing the STOP subcommand or by closing the Generation Monitor
window.

Starting the command opens a Generation Monitor window. The Generation
Monitor window displays the command currently being processed and
provides information showing what stage of generation the process has
reached. You can cancel the currently processing command from the
Generation Monitor window. Closing the Generation Monitor window ends
any command currently being processed.

If you are generating programs using a generation server, refer to the
VisualAge Generator System Development Guide for information about starting
and stopping the Generation Monitor.

Note: If you are generating a program that uses DBCS, you must run the
commands on a machine that is DBCS-enabled.

GENERATE subcommand syntax for Java wrapper generation

You use the GENERATE subcommand to generate a program, table, or map
group. You can also specify options that affect how a part is generated.

The following syntax diagram shows the options for the GENERATE
subcommand.

Note: The /SYSTEM option requires a value when you generate from the
user interface. (You must specify a target environment from a
drop-down menu before you can generate code.)

© Copyright IBM Corp. 1980, 2001 201

!! HPTCMD GENERATE *

,

partname !

! * /PROJECT= ″ project name ″ , ″ project version ″ !

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

/EJBGROUP=EJB group name
!

!
/LINKAGE=partname /PACKAGENAME=package name

!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 66 illustrates the GENERATE subcommand for Java program
generation; at an OS/2 command prompt it must be entered in one
continuous line.

See “Chapter 24. Generation options parts” on page 209 for information about
setting generation options.

See “Chapter 31. Analyzing return codes and errors” on page 367 for
information about generation return codes.

START subcommand syntax

The START subcommand starts the server process that runs HPTCMD
subcommands.

!! HPTCMD START !<

HPTCMD GENERATE MYPGM
/PROJECT="myconfig","27.8"
/SYSTEM=JAVAWRAPPER
/OPTIONS=MYOPT

Figure 66. GENERATE subcommand for Java

202 VisualAge Generator: Generation Guide

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

If you do not issue the START subcommand and the server process is not
already running, any HPTCMD subcommand you issue, except for the STOP
subcommand, starts the server process automatically.

Note: If you do not issue the START subcommand and you direct your
output to a location other than STDOUT, the server process inherits the
STDOUT location. This causes the STDOUT file to be locked by the
server until an HPTCMD STOP command is issued. To avoid this,
always issue an HPTCMD START command, either at the command
line or by placing the command at the beginning of your command file.

Example

The following is an example of how to use the START subcommand:
HPTCMD START

STOP subcommand syntax

The STOP subcommand stops the server process that runs HPTCMD
subcommands.

!! HPTCMD STOP !<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

The server process continues to run until it receives a STOP subcommand or
until the Generation Monitor window is closed. When you specify the STOP
subcommand, the server process completes all previously issued
subcommands before stopping. If the server process is stopped as a result of
the Generation Monitor window closing, the stop occurs immediately, ending
any subcommand currently being processed.

Example

The following is an example of how to use the STOP subcommand:
HPTCMD STOP

Chapter 22. Command interface for Java wrapper generation 203

VALIDATE subcommand syntax for Java wrapper generation

The VALIDATE subcommand enables you to validate your VisualAge
Generator program without actually generating code.

!! HPTCMD VALIDATE *

,

partname !

! /PROJECT = ″ project name ″ , ″ project version ″ !

! /SYSTEM= target system
/OPTIONS= partname
/SYSTEM= target system /OPTIONS= partname

/LINKAGE=partname
!<

See “Chapter 29. Generation command and option descriptions” on page 297
for the detailed information about the syntax diagram.

Example

Figure 67 illustrates how to use the VALIDATE subcommand for Java wrapper
validation.

HPTCMD VALIDATE MYGEN /PROJECT="myconfig","27.8" /SYSTEM=JAVAWRAPPER

Figure 67. Java wrapper validation

204 VisualAge Generator: Generation Guide

Chapter 23. Generating session beans

A session bean is a type of Enterprise Java Bean (EJB). To generate a session
bean to invoke a server program, specify the following generation options:
1. /SYSTEM=JAVAWRAPPER

2. /EJBGROUP=ejbgroup where ejbgroup is the name of an EJB group created in
VisualAge for Java. The EJB group must exist, and the loaded edition of it
must be an open edition.

3. /LINKAGE=linkageTableName where linkageTableName is the name of a
linkage table part containing an entry for the server program that is being
generated. The linkage table entry for the program must meet the
following criteria:
a. It must specify the LINKTYPE=SESSIONEJB attribute. If this attribute is

not specified, only Java wrappers for the program and its record
parameters will be generated.

b. It may specify the providerURL attribute to identify the Java Naming
and Directory Interface (JNDI) server to be used to locate the session
bean when deployed. This attribute is required only if the JNDI name
server resides on a different machine than the client that invokes the
session bean.

c. It may specify REMOTEBIND=GENERATION if the generated server program
wrapper is used to invoke the session bean, the server program will
always be invoked through a session bean, and it is never necessary to
determine at run time other linkage attributes such as where the server
program resides and how to invoke it. There is a performance benefit
in not having to read a linkage table at run time to figure out how to
implement a call.

For information on using Java wrappers and session beans and on deploying
session beans in an enterprise Java server, refer to the VisualAge Generator
Client/Server Communications Guide.

© Copyright IBM Corp. 1980, 2001 205

206 VisualAge Generator: Generation Guide

Part 7. Reference information

© Copyright IBM Corp. 1980, 2001 207

208 VisualAge Generator: Generation Guide

Chapter 24. Generation options parts

Generation options enable you to customize part generation. You can specify
generation options using the following methods:
v By selecting values before generation by using the Options notebook in the

VisualAge Generator Developer product
v As options on the batch command when you are using the GENERATE

subcommand
v By setting values for these options in generation options parts

Generation options are stored in generation options parts, which enable
developers working on the same project to share generation options. You can
specify a generation options part using the /OPTIONS option on the
GENERATE subcommand.

Creating generation options parts

You can create and edit a generation options part using the Generation
Options Editor in VisualAge Generator Developer. You can enter options and
values in this editor in uppercase or lowercase. The entries in a generation
options part can extend across multiple lines, and more than one generation
option can be specified on a line.

Comments are permitted anywhere in the part. Begin comments with the
characters /* and end them with the characters */.

Option values can be specified only one time in a generation options part,
except for the /SYMPARM option. Any subsequent specification of an option
within the same generation options part is ignored, and a message is not
issued. The /SYMPARM option can be specified multiple times in a
generation options part.

The example below shows a sample generation options part.
/* PROJECT: CSAT - CUSTOMER SATISFACTION SURVEY */
/* VisualAge Generator GENERATOR OPTIONS DEFAULTS PART */
/MATH=COBOL /PROJECTID=CSAT /NONUMOVFL
/LOCVALID /LISTINGONERROR
/COMMENTLEVEL=INFO
/SETFULL

The generation options part is specified using the /OPTIONS generation
option.

© Copyright IBM Corp. 1980, 2001 209

Making the default generation options part available during generation
You can use one of the following methods to make the default generation
options part available to the program during generation:
1. Create a package/application and release it into a configuration map or

project that is to contain parts that are to be used for each generation. Do
one of the following:
v Specify the configuration map as a required map of each configuration

map used for generating a program, table, or map group.
v Specify the project used for generating a program, table, or map group.

2. Copy and save the workspace/image used to load the VisualAge
Generator Developer feature after the initial load. Develop the default
generation options part in a package/application, and save this
workspace/image. Use the workspace/image in which the default
generation options part was saved to do each generation.

3. Create the default generation options part in a package/application and,
before each generation, load the package/application containing the
default generation options part into the workspace/image used for
generation before invoking the generator.

Establishing default generation options

The default generation options part is a special type of generation options
part. The default generation options part has two main purposes:
v Setting default generation values other than those predefined by VisualAge

Generator Developer
v Restricting the use of specific generation options

Default generation options parts with NOOVERRIDE
The NOOVERRIDE parameter can follow the specification of any option in a
default generation options part. If NOOVERRIDE is specified for an option,
the value of that option cannot be overridden. If an attempt is made to define
the option value again, a message is issued.

Using the NOOVERRIDE parameter in the default generation options part
enables the system administrator or project leader to restrict the ability to
change the definition of default generation options. If NOOVERRIDE is not
specified for an option, the value of that option can be overridden. You can
specify values for the option in other generation options parts or through the
VisualAge Generator Developer user interface. You can also specify values for
options using the GENERATE subcommand.

You can specify a generation options part as the default options part by
setting the defaultGenerationOptions value in the hpt.ini file.

210 VisualAge Generator: Generation Guide

For example, the system administrator might want the program developers to
always use the /MATH=CSPAE option. The system administrator can create a
generation options default file to contain the default generation option
specification for the /MATH option. By specifying NOOVERRIDE for the
/MATH option, the system administrator prevents any later definition of the
/MATH option from replacing the default definition. Suppose the system
administrator creates a generation options defaults file and names it
DEFAULTOPT. The example below shows the definition in the default
generation options part with NOOVERRIDE.
/MATH=CSPAE NOOVERRIDE

The system administrator instructs the developers to specify DEFAULTOPT
for the defaultGenerationOptions value in the hpt.ini file. Because the /MATH
option is defined with the NOOVERRIDE parameter, any later values
specified for /MATH are not accepted, and a message is issued.

Default generation option part without NOOVERRIDE
Generation options defined in the default generation options part without the
NOOVERRIDE parameter can be overridden.

For example, your system administrator might want developers to use a
specific linkage table. The system administrator can specify the linkage table
name in the default generation options part, but still permit program
developers to override this specification. Suppose the system administrator
creates a generation options part and names it DEFAULTOPT. The
recommended linkage table for development is DEFAULTLKG. The example
below shows a sample linkage table specification in the default generation
options part.
/LINKAGE=DEFAULTLKG

The system administrator instructs the developers to specify DEFAULTOPT
for the defaultGenerationOptions value in the hpt.ini file. However, because the
/LINKAGE option does not have NOOVERRIDE specified, developers can
specify a different linkage table, or they can specify /LINKAGE='' if they do
not want to use any linkage table.

By specifying a different value for the /LINKAGE option in a generation
options part or by using the GENERATE subcommand itself, developers can
override the linkage table specified in the default generation options part. The
example below shows a sample generation options default file. In this
example, the system administrator defined values for the /MATH,
/PROJECTID, /NUMOVFL, /OPTIONS, /INITADDWS, and /INITRECD
generation options. All other generation options default to values set by the
VisualAge Generator Developer. The /MATH, /OPTIONS, /INITADDWS, and

Chapter 24. Generation options parts 211

/INITRECD options are defined with the NOOVERRIDE parameter. If a
developer specifies values for these options, the option specification is
ignored, and a message is issued.
/* PROJECT: CSAT - CUSTOMER SATISFACTION SURVEY */
/* VisualAge Generator GENERATOR OPTIONS DEFAULTS PART */
/MATH=COBOL NOOVERRIDE
/PROJECTID=CSAT /NONUMOVFL
/OPTIONS=SYSOPTS NOOVERRIDE
/INITADDWS NOOVERRIDE /INITRECD NOOVERRIDE

Using multiple levels of generation options parts

Generation options parts can contain default options for a company, a project,
an environment, a single program, or a user. Multiple levels of options files
can be set up so that options can be overridden by options specified in
higher-level files.

For example, suppose the system administrator has set up a default
generation options part, IMSOPT, to contain the company standard generation
options for IMS programs. The project leader for the new project, P1, wants to
use all the standard options for IMS, except the project leader wants the
developers to store the generated objects in project-related directories and
partitioned data sets. The example below shows a sample options part named
IMSOPTP1 created by the project leader.
/GENOUT=W:\P1 /PROJECTID=P1 /OPTIONS=IMSOPT

The project leader instructs the developers to specify the generation options
part IMSOPTP1 when generating IMS programs for project P1. The
/GENOUT and /PROJECTID options override the corresponding options in
IMSOPT. All other options values are used from IMSOPT. The generated
objects are stored in the P1 directory. Prepared objects on the MVS host are
stored in partitioned data sets with the P1 project qualifier.

Note: In this case, the system administrator decided not to use a generation
options defaults part. If the system administrator had instructed the
developers to specify IMSOPT for the defaultGenerationOptions value in
the hpt.ini file, IMSOPT would be the generation options defaults part
for the project. Then the project leader would not have to set the
/OPTIONS generation option in the IMSOPTP1 options file to point to
IMSOPT.

Determining generation option resolution order
When there are multiple specifications for the same option, the value used is
determined in the following sequence:
1. Options defined in the defaultGenerationOptions part specified in the

hpt.ini file if NOOVERRIDE is specified for the option

212 VisualAge Generator: Generation Guide

2. Options explicitly selected in the Generation Options notebook
3. Options from one of the following:

a. Generation Options part explicitly specified in the Generation Options
notebook

b. Generation Options part explicitly specified in the VisualAge
Preferences notebook

4. Options from generation options parts specified using the /OPTIONS
chain

5. Options from the defaultGeneraitonOptions part specified in the hpt.ini file
if NOOVERRIDE is not specified for the option

Within a single generation options part, the first-found specification for an
option is used.

See “Establishing default generation options” on page 210 for more
information on using the NOOVERRIDE parameter.

Using the sample generation options parts

During product installation, sample environment-related generation options
parts are placed in the directory C:\Program Files\Vast. You can use these
generation options parts and generation options defaults files as a basis for
creating generation options parts that are customized to meet the specific
needs of your organization.

The sample generation options parts are templates for you to modify. The
values specified for the options in the sample generation options parts are
usually the default values. If you do not want to change the values from the
default values listed, you do not need to use options parts.

Sample generation options default part
Table 50 shows the sample generation options default files.

Table 50. Sample generation options default files

File name Description

EZEOPVAL.OPT Sample default options part for the validation phase

EFKOPDFT.OPT Sample default options for the production phase

Sample generation options parts
Table 51 on page 214 shows the sample generation options parts. These names
might have been modified during product installation to meet the needs of
your organization.

Chapter 24. Generation options parts 213

To make these parts available to your program, read the file in using the
Generation Options Part editor.

Table 51. Sample generation options parts

Environment File name

AIX FCEDFLT.OPT

CICS for AIX FCEDFLT.OPT

HP-UX FCEDFLT.OPT

IMS BMP, including /MFSDEV options that require
customization

EFKOPBMP.OPT

IMS/VS, including /MFSDEV options that require
customization

EFKOPIMS.OPT

MVS batch EFKOPBAT.OPT

CICS for MVS/ESA EFKOPMCS.OPT

MVS/TSO EFKOPTSO.OPT

CICS for OS/2 EFKOPOCS.OPT

OS/2 (C++) FCEDFLT.OPT

OS/400 EFKOPOS4.OPT

VM CMS EFKOPVM.OPT

VM batch EFKOPVMB.OPT

VSE batch EFKOPVBA.OPT

CICS for VSE/ESA EFKOPVCS.OPT

Windows NT FCEDFLT.OPT

CICS for Windows NT FCEDFLT.OPT

Using symbolic parameters in generation option specifications

Many of the generation option values are file names, directory names, or
identifiers. You can specify symbolic parameters as part of these option
values. The symbolic parameter delimiter is the percent sign (%). However, if
you are specifying a symbolic parameter in a command file, you must use
two percent signs (%%) as the delimiter. The example below shows the
/GENOUT generation option if you specify the symbolic parameter EZEENV
as part of the value in a generation options part.
/GENOUT=D:\MYOUT\%EZEENV%

The example below shows the /GENOUT generation option if you specify the
symbolic parameter EZEENV as part of the value in a command file.
/GENOUT=D:\MYOUT\%%EZEENV%%

214 VisualAge Generator: Generation Guide

Generation options that are not valid

Options that do not apply to the target system are ignored, and a message is
not generated. Messages are only generated when the value specified for an
option is not valid, regardless of whether the option itself applies to the target
system.

Overriding a value to use the default value

The following example shows how to specify an option to set it back to the
default value.
/LINKEDIT=''

This setting specifies that any previous value set for the /LINKEDIT option is
not to be used and that the default value is to be used instead.

Guidelines for setting generation options

Except for the AIX, HP-UX, SCO, and Solaris environments, you must use the
following guidelines when specifying a value for an option that requires a
name, such as a file or directory name:
v The first character must be one of the following:

– The letters a–z or A–Z
– The numbers 0–9
– The characters @ # $ *

v Characters other than the first one can be any character that is valid for a
file name except the following:
– , () or a space character

Note: If you are specifying a file or directory name that contains these
characters, you must enclose the value in single quotation marks
(') or double quotation marks (").

For the AIX, HP-UX, SCO, and Solaris environments, you must use the
following guidelines when specifying a value for generation options:
v The AIX, HP-UX, SCO, and Solaris environments are case sensitive. Verify

the case for the specified values for the following options:
/DBPASSWORD
/DBUSER
/DESTDIR
/DESTHOST
/DESTUID
/DESTPASSWORD

v The AIX, HP-UX, SCO, and Solaris environments use a slash in path names.
Use the following guidelines when specifying a value for /DESTDIR:

Chapter 24. Generation options parts 215

– Verify the case.
– Enclose the value in single quotes.
– If you are specifying a fully qualified path, begin with a forward slash.

The following example shows how to specify /DESTDIR in the AIX,
HP-UX, SCO, and Solaris environments.

/DESTDIR='/u/mydir/genout'

216 VisualAge Generator: Generation Guide

Chapter 25. Linkage tables

A linkage table is an optional control file used during generation, test, and by
the client run-time environments. The entries in the table control the following
functions:

CALLLINK Specifies linkage conventions to be used for calling a program.

CRTXLINK Specifies whether a CICS CREATX service call starts a local or
remote CICS transaction.

DXFRLINK Specifies linkage conventions to be used for implementing a
DXFR transfer between host programs.

FILELINK Specifies whether a CICS file is to be accessed as a local or
remote file.

The file name for the linkage table file used during test is specified on the test
facility general preferences window. The file used during generation is
specified using the /LINKAGE generation option.

Creating a linkage table

Use a standard editor or the Repository/ENVY library to create a linkage
table. In this file or part, you can enter data in uppercase or lowercase. The
syntax of the file is validated when the file is used by test or generation.

The entries in the linkage table file are coded using a tag language. Valid tags
are CALLLINK, CRTXLINK, DXFRLINK, and FILELINK. Each tag has
attributes that enable you to modify the tag. You can enter attributes for a tag
in any order.

Tags and attributes can appear on separate lines or you can have multiple
entries per line. The same attribute cannot be specified more than once for a
tag.

Comments begin with the characters /* and end with the characters */.

If the program or file name specified in a linkage table entry ends with an
asterisk, the entry applies to all programs or files whose name begins with the
characters preceding the asterisk. For example, consider a program name
specified as:
:calllink applname=myapl* ...

© Copyright IBM Corp. 1980, 2001 217

This table entry is used for any call to a program and for any called program
that has MYAPL as the first 5 characters of the program name.

If multiple entries are valid for a name, the first table entry that matches the
name is used. For example, consider a program name specified as:
:calllink
applname=* ...

This entry applies to all called programs. You can use an entry like this
following all other :calllink entries to override the default linkage options for
all :calllink entries.

Specifying an asterisk is not allowed for program names on the :dxfrlink
statement.

Specifying CALL linkage (CALLLINK)

The calllink tag specifies the type of linkage to be used for a call from one
program to another. The tag affects how test facility and client run times call
an external program and how the generator generates both the called and
calling programs.

Note: In a GUI program, a call can be defined by coding a CALL statement or
by drawing an event-to-action connection from an event to the execute
action of a callable function object that represents the called (target)
program. The linkage table description for CALL statements from GUI
programs applies to both types of calls. If the linkage information is
specified in the properties of the event-to-action connection, then the
linkage information from the properties is used instead of the linkage
table.

The following diagram shows the attributes you can specify for the calllink
tag:

!! :calllink applname=program name
32

bitmode= 16

!

218 VisualAge Generator: Generation Guide

!
library=library name linktype= DYNAMIC

STATIC
CICSLINK
REMOTE
CSOCALL
SESSIONEJB

!

!
externalname=applname parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

!

!
remotecomtype= APPCIMS

CA400
CICSCLIENT
DCE
DCESECURE
DIRECT
EXCI
IPC
JAVA400
LU2
TCPIP

remoteapptype= VG
NONVG
ITF
VGJAVA

!

!
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

!

!
serverid= server identifier CLIENT

luwcontrol= SERVER

!

!
GENERATION

remotebind= RUNTIME
INTEL

binform= HOST
providerURL=URL

!

!
package=packagename .

!<

Chapter 25. Linkage tables 219

Definitions for CALLLINK

applname
Specifies the name of the called program as specified on the CALL
statement in the calling program.

You can use an asterisk (*) as a global substitution character in the
program name parameter; however, it is only valid as the last or only
character.

bitmode
Specifies whether a called DLL program runs in 16- or 32-bit mode.

This option is effective only for DLL programs
(LINKTYPE=DYNAMIC PARMFORM=OSLINK) called from GUI
programs.

The default is 32-bit mode.

Calls from C++ programs are always done in 32-bit mode. Test facility
dynamically determines whether a DLL uses 16- or 32-bit mode prior
to making the call.

library
Specifies the name of the library that contains the called program.

This option is effective only for programs (linktype=DYNAMIC
parmform=OSLINK) called from GUI or C++ programs or the test
facility, or for remote calls to OS/400 servers.

The meaning of the name depends on the called program
environment as shown in Table 52:

Table 52. Linktype for Called Program Environment

Linktype
Called Program
Environment Library Type

DYNAMIC OS/2, Windows DLL

DYNAMIC AIX, HP-UX, Solaris Shared library

REMOTE OS/400 OS/400 program library

CSOCALL OS/400 (with Java400
protocol)

OS/400 program library

CSOCALL,
remotecomtype=DIRECT

OS/2, Windows DLL

CSOCALL,
remotecomtype=DIRECT

AIX, HP-UX, Solaris Shared library

The default value is the program name.

220 VisualAge Generator: Generation Guide

Note: In prior releases, the keyword was DLLNAME instead of the
system independent term LIBRARY. For compatibility,
DLLNAME is treated as a synonym for LIBRARY.

linktype
Specifies the type of linkage being generated.

DYNAMIC
For generated COBOL program calls, specifies that a dynamic
COBOL call is to be performed.

For calls from GUI, C++ or programs or the test facility,
specifies that a standard C call to a DLL is to be performed. A
run-time error occurs if the DLL specified in the applname
attribute cannot be loaded. A search for an executable (CMD
or EXE file) is not done. If the applname attribute specified is
not a valid DLL name because it contains an asterisk (*),
specify the library attribute to limit the search to DLLs only.

For calls from Java server programs, a call to a local Java
server program is to be performed.

This value is the default value for non-CICS environments.

STATIC
For generated COBOL programs call, specifies that a static
COBOL call is to be performed

For calls from C++ programs, Java programs, or the test
facility, treated like linktype=DYNAMIC.

This value is required for calls to PL/I programs in non-CICS
host environments.

CICSLINK
For calls from CICS programs, specifies that an EXEC CICS
command is to be performed.

This value is the default value for programs generated for
CICS environments and is valid only for CICS environments.
This value is required for calls to PL/I programs in the CICS
environment.

CSOCALL and REMOTE
Specifies that the program is a remote or local program and
the call is routed through the VisualAge Generator
middleware.

The remote program (LINKTYPE=REMOTE) and the csocall
program (LINKTYPE=CSOCALL) are equivalent for all

Chapter 25. Linkage tables 221

platforms except Java GUIs. CSOCALL may be used instead
of REMOTE wherever REMOTE is valid. Java GUIs can only
specify CSOCALL.

CSOCALL and REMOTE are valid only for calls to server
programs from CICS, GUI, C++ or Java programs, or from the
test facility. CSOCALL and REMOTE are typically used when
the called program runs on a different system, thus utilizing
the middleware to provide the necessary communications and
any data conversion between the different systems. If the
client and server reside on the same system, the middleware
provides a variety of benefits such as the ability to call a
VisualAge Generator server program residing in the
Repository/ENVY library, the capability of each call to be an
independent server-controlled unit of work, or increased
control at run time via the linkage table.

If the caller is a CICS program, a CICS distributed program
link statement is performed with actual data being passed in
the CICS COMMAREA control block.

If the caller is a GUI, C++, or Java program, or the test facility,
the protocol used is determined by the REMOTECOMTYPE
attribute.

SESSIONEJB
Specifies that the program is to be invoked from a session
bean generated for the program. The generated session bean
must be deployed on an enterprise Java server, and the name
server used to locate the session bean must either reside on
the same machine as the enterprise Java server, or the
PROVIDERURL attribute must be used to identify where the
name server resides. In order for a client to make a call to a
server program through a session bean, the client must be
generated using a linkage table whose entry for the server
program contains the LINKTYPE=SESSIONEJB attribute. You
cannot wait until run time to specify this attribute in a
run-time linkage table. LINKTYPE=SESSIONEJB is only
applicable for Java clients calling server programs.

When LINKTYPE=SESSIONEJB is specified, middleware Java
classes locate the session bean and invoke its call method. The
session bean then calls the server program just as if
LINKTYPE=CSOCALL had been specified. If
REMOTEBIND=RUNTIME is specified, the session bean
attempts to locate the linkage table on the machine where it is

222 VisualAge Generator: Generation Guide

deployed to obtain information about where the server
program resides and on what protocol to use to pass data to
the program.

externalname
The name of the program that is called. The name must be equal to
the APPLNAME in all cases except for DYNAMIC or STATIC calls
from C++ programs and for remote calls to OS/400 servers. The
EXTERNALNAME value can be more than 8 characters long in these
cases.

The default value is the APPLNAME.

parmform
Specifies the format in which parameters are passed on the call.

For remote programs (linktype=REMOTE or linktype=CSOCALL),
parameter format is determined by the run-time protocol. The format
is OSLINK for OS/400 servers accessed using CA/400 and for IMS
servers. Otherwise, the format is COMMDATA for remote programs.
Either COMMDATA or COMMPTR can be specified for calls to
non-VisualAge Generator CICS programs.

OSLINK
Specifies that the program parameters are passed using
standard parameter passing conventions.

If a DLL or load module is being called, parameters are
passed by reference. If a CMD or EXE is being called, the
parameters are moved to the command line buffer separated
by blanks.

When OSLINK is specified for CICS environments, the called
program must not contain any CICS commands and the called
program cannot be a generated COBOL program.

COMMPTR
Specifies that the program parameters are passed using a
pointer list in the COMMAREA consisting of one 4-byte
pointer for each parameter.

In MVS CICS and VSE CICS systems, the high-order bit of the
last pointer to set to 1.

For CICS OS/2, CONTABLE=NONE is required when
COMMPTR is used.

This value is valid only in CICS environments. This value is
the default value for CICS environments for the DYNAMIC,
STATIC, and CICSLINK link types.

Chapter 25. Linkage tables 223

COMMDATA
Specifies that the parameters are passed in a single buffer. In
CICS programs the buffer is in the COMMAREA

Each parameter value is moved to the buffer adjoining the
previous value without regard for boundary alignment. If
variable length records are passed, space is reserved for the
maximum length defined for the record. If a variable length
record with a record length item is passed, the item must be
defined within the variable length record structure.

The called program returns the parameter values in the
COMMAREA in the same order in which it received them.
The calling program moves the returned parameter values in
the COMMAREA back to the original parameters.

The EZEDLPSB and EZEDLPCB parameters receive special
handling. When EZEDLPSB is passed, the 12-byte PSB
structure (PSB name plus user interface block (UIB) pointer) is
moved to the buffer. If EZEDLPCB is passed, a four-byte
pointer to the PCB is moved to the buffer.

The COMMDATA value is valid for calls to CICS and remote
programs.

CICSOSLINK
Specifies that the parameters are passed by reference using
standard COBOL parameter passing conventions. The CICS
EIB and COMMAREA are always passed as the first two
parameters followed by the program parameters.

This value is valid only in CICS environments and only with
a link type of STATIC or DYNAMIC. For MVS environments,
DYNAMIC linkage can only be used with CICS Version 3 or
later systems.

remotecomtype
Specifies the communication protocol for use by GUI clients, C++
programs, Java programs, or the test facility for calls to remote
programs.

APPCIMS LU 6.2 connection to IMS message processing region

CA400 Client Access/400

CICSCLIENT CICS Client ECI

DCE Unauthenticated Distributed Computing Environment
(DCE) Remote Procedure Call (RPC). Use only if in
the server program is not designated as a secure
program.

224 VisualAge Generator: Generation Guide

DCESECURE Authenticated DCE RPC call. The server checks
whether the client’s active DCE login identifier is
authorized to run the server program. There is extra
overhead associated with performing authenticated
RPC calls so DCESECURE should not be used unless
it is necessary. Valid only for OS/2, Windows NT, and
AIX platforms.

DIRECT VisualAge Generator middleware using a direct local
call for client and server programs residing on the
same system. The advantages of using this protocol
are documented along with the client configuration
information where the protocol is supported. For
example, see the VisualAge Generator Client/Server
Communications Guide.

EXCI Extended CICS Interface is used to start MVS CICS
transactions from generated Java wrappers. Use this
value only when calling server programs from Java
applets or Java applications. For details on starting
MVS CICS transactions from Java wrappers, see the
VisualAge Generator Client/Server Communications Guide.

IPC VisualAge Generator VisualAge Generator middleware
using inter-process communications for client and
server programs residing on the same system. The
advantages of using this protocol are documented
along with the client configuration information where
the protocol is supported. For example, see the
VisualAge Generator Client/Server Communications Guide.

Java400 Protocol to connect to remote AS/400 servers by using
AS/400 Toolbox for Java. Use this value only when
calling a server program from a Java applet or Java
GUI applications. For more information, see the
VisualAge Generator Client/Server Communications Guide.

LU2 VisualAge Generator middleware using the LU2
protocol

TCPIP VisualAge Generator middleware using the TCP/IP
protocol

remoteapptype
Specifies whether a remote called program is a generated VisualAge
Generator program, a program developed using another program
development tool, or a VisualAge Generator program residing in the
Repository/ENVY library.

VG The remote procedure is a generated VisualAge

Chapter 25. Linkage tables 225

Generator program. An additional parameter is passed
to allow the server to notify the client program if the
server program ends abnormally.

VGJAVA The remote procedure is a generated VisualAge
Generator Java program.

NONVG The remote procedure is a program developed using a
tool other than VisualAge Generator. Only the
parameters specified on the call statement are passed.

ITF The remote procedure is a VisualAge Generator
program residing in the Repository/ENVY library that
will run under the control of the test facility.

contable
Specifies the name of the conversion table used to perform automatic
data conversion on a remote CALL statement from a client to a
remote server program. Anytime that you are coming from a Java
client or your client and server platforms are different, you will need
to specify a conversion table. For additional information, see the
VisualAge Generator Client/Server Communications Guide.

The attribute is supported if the linkage type is specified as REMOTE
or CSOCALL for CICS programs, or REMOTE, CSOCALL or
CICSLINK for clients running under the test facility.

conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed.

NONE
No conversion is performed. This is the default value if
VisualAge Generator communication middleware is not used.

CONTABLE=NONE is required for calls to CICS OS/2 if
PARMFORM=COMMPTR.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table. The default conversion table performs ASCII
to EBCIDIC character conversion, as well as binary numeric
conversion. For additional information, see the VisualAge
Generator Client/Server Communications Guide.

226 VisualAge Generator: Generation Guide

On OS/2, AIX, HP-UX, and Windows systems the default
conversion table is the conversion table specified in the
environment variable EZERCVT. The default conversion table
used is based on the generation system, the target run-time
environment, and the locale (country/language) specified at
generation time. For additional information on the conversion
tables shipped with VisualAge Generator, see the VisualAge
Generator Client/Server Communications Guide. If EZERNLS is
not specified, the default code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the calling
program was generated (TARGNLS generation option).

BINARY
Only binary fields are converted. The byte order in the binary
field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX, Solaris, and HP-UX servers, and
vice versa, when both the client and the server are running
under the same code page.

The default value is NONE.

location
Specifies how the location (system identifier) of a remote program is
determined at run time.

This attribute value is used only if the linkage type is specified as
REMOTE or CSOCALL.

EZELOC
Specifies that the system identifier for the remote program is
obtained from the EZELOC special function word when a call
is done to the program.

system name
The system identifier for the system on which the server
program resides. The meaning of the system identifier varies
with the protocol. The following table describes the meaning
of the identifier by protocol and the default value if location is
not specified.

Chapter 25. Linkage tables 227

Protocol Meaning of location Default value

APPCIMS CPIC side information identifier.
The side information specifies:
v Partner LU Alias
v Transaction Program Name
v Mode Name

No default

CA/400 AS/400 system identifier The managing OS/400 system

CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.

CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.

DCE,
DCESECURE

Location where the server
advertises in the DCE CDS
database. The location is
specified in the configuration file
used when the VisualAge
Generator DCE server program is
started.

No default

Java400 AS/400 system identifier The managing OS/400 system

TCPIP TCP/IP hostname No default

serverid
Protocol dependent channel or transaction identifier associated with
the server or VisualAge Generator communication middleware
gateway

Values are as follows:

server identifier
The server identifier name to be used for this call. The
meaning of the name varies with the communication protocol
as shown in the following table:

Protocol Meaning of Server Identifier

CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all programs called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction. For DB2 server applications on CICS
for MVS/ESA, an RCT entry is needed. The RCT is used for the
serverid.

DCE, DCESECURE Serverid name advertised by the server in the DCE CDS
database. The serverid is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

228 VisualAge Generator: Generation Guide

Protocol Meaning of Server Identifier

TCPIP Service name as defined in the TCP/IP services file.

If the call is from a Java program (GUI or server), the serverid
is the port number of the remote program’s listener.

The serverid is ignored for protocols not listed in the table.

luwcontrol
Specifies whether client or server controls unit of work:

CLIENT Unit of work is under client control. Server updates
are not committed or rolled back until the client
requests commit or rollback. Server programs cannot
call EZECOMIT or EZEROLLB. This is the default
value, unless client controlled unit of work is not
supported in the server environment.

SERVER Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) are automatically issued when the server
returns. Server programs can call EZECOMIT or
EZEROLLB.

the VisualAge Generator Client/Server Communications Guide shows the
environments that support client- and server-controlled units of work.

remotebind
Specifies when linkage options used for a call to a remote program are
determined. Values are as follows:

GENERATION
Linkage used for the call statement is determined by the
linkage table specified at generation. This is the default value.

RUNTIME
The linkage table is read at run time. Specified values in the
run-time linkage table override the values specified at
generation. Generation values are used if omitted from the
run-time table.

Common client access looks for the linkage table on the
current DPATH (OS/2, AIX) or PATH (Windows) search path.
The linkage table name is the same as the linkage table file
name specified at generation. If this table cannot be found,
common client access looks for the file named in the
environment variable CSOLINKTBL.

Chapter 25. Linkage tables 229

The generated program always passes EZECONVT and
EZELOC contents to common client access in case the
run-time values for CONTABLE and LOCATION require
them. The program always notifies common client access of
commits and rollbacks in case client controlled unit of work is
requested at run time.

The remotebind option is supported for generated C++, Java, and GUI
programs.

binform
This option is supported only for the test facility. The preprocessor
step does not pass this information to the generation process.

The value specifies in what format the user passes binary fields.

HOST Specifies that the user passes binary fields in host format.

INTEL
Specifies that the user passes binary fields in Intel format. The
default is Intel.

providerURL
This property specifies the host name and port of the name server
used by a Java client to locate a session bean that calls a server
program.

URL The property value must have the following format:
iiop://hostname:port, where hostname is the IP address or host
name of the machine on which the name server runs and port
is the port number on which the name server listens.

This attribute is applicable only if linktype=SESSIONEJB is also
specified, and if the client is a Java client. Since most URLs contain
periods, and may contain a port number preceded by a colon, the
URL specified should be enclosed in double quotes.

For example, the property value
"iiop://bankserver.mybank.com:9019" directs an EJB client to look for
a name server on the host named bankserver.mybank.com listening on
port 9019. The property value "iiop://bankserver.mybank.com"
directs an EJB client to look for a name server on the host named
bankserver.mybank.com at port number 900. The property value
"iiop:///" directs an EJB client to look for a name server on the local
host listening on port 900. If not specified, this property defaults to
the local host and port number 900, which is the same as specifying
"iiop:///".

230 VisualAge Generator: Generation Guide

package
This property specifies the called program’s package. The value is
case sensitive. Specification of this property is required for run-time
binding. If the package property is not specified, the default behavior
is to use the package of the calling program.

This property is only applicable for calls to a Java program.

Valid parameter formats and linkage combinations by platform
The following tables show the linkage and run-time parameter formats valid
for each type of run-time platform. The default format for the platform is
marked in the table.

Table 53. Valid Parameters and Linkages for CICS Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid Valid Valid Valid

STATIC Valid Valid Valid Valid

CICSLINK Default Valid

REMOTE Valid

CSOCALL Valid

Table 54. Valid Parameters and Linkages for Non-CICS Host Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Default

STATIC Valid

CICSLINK

REMOTE

CSOCALL

Table 55. Valid Parameters and Linkages for GUI programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid

STATIC Valid

CICSLINK

REMOTE Valid Valid

CSOCALL Valid Valid

Note: Default linkage for GUI programs is to call the program as a CMD or EXE file,
passing parameter data in the command buffer separated by blanks. Modifications to
the parameters by the called program are not returned to the caller.

Chapter 25. Linkage tables 231

Table 56. Valid Parameters and Linkages for C++ Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Default

STATIC Valid

CICSLINK

REMOTE Valid Valid

CSOCALL Valid Valid

Table 57. Valid Parameters and Linkages for Test Facility Calls to External Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid

STATIC Valid

CICSLINK Default for
non-GUI
programs

Valid

REMOTE Valid Valid

CSOCALL Valid Valid

Note: Default linkage for test facility is determined at test time based on the
following factors in the order listed:

v If the called program is defined in the library, the test facility interpretively executes
the program out of the library

v Otherwise the program is called as a CMD or EXE file, passing parameter data in
the command buffer separated by blanks. Modifications to the parameters by the
called program are not returned to the caller.

Interfaces requiring a linkage table
A linkage table entry is not required for a called program if the default
linkages for the run-time environment are acceptable. Table 58

Table 58. Nonstandard Linkages Supported by CALL

Function Environment Statement

Call to a PL/I program MVS/VSE/VM Non-CICS :calllink
applname=program-name
linktype=static

Call to a COBOL program
or program that calls a
PL/I program

MVS/VSE/VM Non-CICS :calllink
applname=program-name
linktype=static

Static COBOL calls CICS, MVS/VSE/VM
Non-CICS

:calllink
applname=program-name
linktype=static ...

232 VisualAge Generator: Generation Guide

Table 58. Nonstandard Linkages Supported by CALL (continued)

Function Environment Statement

Dynamic COBOL calls CICS :calllink
applname=program-name
linktype=dynamic ...

Pass parameter values
instead of pointers in the
COMMAREA

CICS :calllink
applname=program-name
parmform=COMMDATA ...

Call to a DLL in 16-bit
mode

CICS for OS/2 :calllink
applname=program-name
linktype=dynamic

Call to a DLL in 16-bit
mode

GUI program or test facility :calllink
applname=program-name
linktype=dynamic
bitmode=16
library=value...

Call to a DLL (OS/2 or
Windows) in 32-bit mode

GUI or C++ programs, or
test facility

:calllink
applname=program-name
linktype=dynamic
library=value...

Call to a shared library
(AIX, HP-UX, Solaris) in
32-bit mode

C++ programs :calllink
applname=program-name
linktype=dynamic
library=value...

Call to a DLL with a
program name longer than
eight characters

C++ program :calllink
applname=program-name
linktype=dynamic
[externalname=entry-point name]...

Call a CICS for OS/2
program

Test facility :calllink
applname=program-name
linktype=cicslink
parmform=commptr
[binform=value]

Call a CICS server program
on a remote system

CICS :calllink
applname=program-name
linktype=remote
[contable=value]
[location=value]
[luwcontrol=value]
[serverid=value]

Chapter 25. Linkage tables 233

Table 58. Nonstandard Linkages Supported by CALL (continued)

Function Environment Statement

Call a server program on a
remote system

GUI program, OS/2, AIX,
Windows NT, or Test
facility

:calllink
applname=program-name
linktype=remote
[externalname=value]
[library=value]
[luwcontrol=value]
[remoteapptype=value]
[remotecomtype=value]
[serverid=value]

Call a non-VisualAge
Generator MVS or VSE
CICS program

Test facility :calllink
applname=program-name
linktype=cicslink
parmform=commdata
contable=value

Call any program from a
Java client

Needed when calls are
made from one platform to
another. It is recommended
in all cases.

contable=CSOpxxxx

Specifying CREATX linkage (CRTXLINK)
The CRTXLINK tag specifies the type of linkage being generated for CALL
CREATX in the CICS environment. Specify the CRTXLINK tag only if the
created transaction is to be started on a remote CICS system. The defaults are
acceptable for transactions started on the same system.

For Java programs, CREATX linkage must be specified if the calling program
uses CREATX to start a program in a different package.

The following diagram shows the attributes you can specify for the
CRTXLINK tag:

!! :crtxlink recdname=record name
LOCAL

linktype= REMOTE

!

!
package= packagename contable= conversion table name

*
EZECONVT
BINARY

!

234 VisualAge Generator: Generation Guide

!
CICS

location= EZELOC
.

!<

Definitions for CRTXLINK

recdname
Specifies the name of the CREATX record on the CALL CREATX
statement for the linkage being defined.

You can use an asterisk (*) as a global substitution character in the
record name parameter; however, it is only valid as the last or only
character.

linktype
Specifies the type of linkage being generated.

LOCAL Specifies that the transaction being created is on the
same system as the program containing the CREATX
statement.

This value is the default value.

REMOTE Specifies that the transaction being created might be
on a different system than the program containing the
CREATX statement.

package
Specifies the name of the package that contains the program to be run.
The default is the package of the program that contains the CALL
CREATX statement.

This property is only valid for Java programs.

contable
Specifies the name of the conversion table used to perform automatic
data conversion on a remote CREATX statement.

This attribute value is used only if the linkage type is specified as
REMOTE.

Data conversion is specified as follows:
v If the CONTABLE attribute is not specified, data conversion is not

performed automatically by the program when the record is used in
a CREATX statement. In this case, the program must perform any
required conversion either by using explicit calls to the EZECONV
special function word or by defining a conversion template for the
operation to CICS.

v If the CONTABLE attribute is specified, you can specify the
following values:

Chapter 25. Linkage tables 235

conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table.

On OS/2, AIX, and Windows systems the default is the
conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELAxxxxx (OS/2 or AIX) or ELACWxxx
(Windows) where xxxxx or xxx is the code specified in
environment variable EZERNLS. If EZERNLS is not
specified, the default national language code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the
calling program was generated (TARGNLS generation
option).

BINARY
Only binary fields are converted. The byte order in the
binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa, when
both the client and the server are running under the same
code page.

Refer to the system and program guide for CICS for OS/2 for
information on defining a conversion template to CICS.

location
Specifies how the location (CICS system identifier) of a remote
transaction is defined.

This attribute value is used only if the linkage type is specified as
REMOTE.

CICS Specifies that the location for the remote transaction named in
the CREATX record at run time is defined in the program
control table (PCT)

236 VisualAge Generator: Generation Guide

EZELOC
Specifies that the location for the remote transaction is
obtained from the EZELOC special function word when the
CREATX operation is performed.

The location is passed to CICS using the SYSID keyword on
the EXEC CICS command.

Specifying DXFR linkage (DXFRLINK)
The DXFRLINK tag specifies the type of linkage to be generated when a main
program uses a DXFR statement to pass control to other programs.

The following diagram shows the attributes you can specify for the
DXFRLINK tag:

!! :dxfrlink fromappl=from-application name toappl=to-application name !

!
DYNAMIC

linktype= STATIC
NONCSP

. !<

Note: The DXFRLINK tag is supported for host and CICS for OS/2 programs.

Definitions for DXFRLINK

fromappl
Specifies the name of the program that transfers control using a DXFR
statement.

For non-host programs, this is the first main program in the run unit;
the program is not necessarily the program that contains the DXFR
statement.

For CICS programs, the from program is always the program that
contains the DXFR statement.

The DXFRLINK tag does not support using the asterisk (*) for global
character substitution.

toappl Specifies the VisualAge Generator program or non-VisualAge
Generator program that is the target of a DXFR statement.

For non-CICS host programs, the to program includes all programs
started by a DXFR statement from the initial main program, and all
programs that the transferred-to programs transfer to using a DXFR
statement. This also includes non-VisualAge Generator programs
being transferred to with a DXFR statement.

Chapter 25. Linkage tables 237

For CICS programs, the to program is the name of the non-VisualAge
Generator program being transferred-to.

If the EZEAPP special function word is specified as the target
program on the DXFR statement, do not specify EZEAPP as the to
program on the DXFRLINK linkage table entry. Instead, specify the
name of the program that will be in EZEAPP when the from program
runs.

For example, in the MVS/TSO environment, Program A transfers
program control to program B using a DXFR statement. Program B, in
turn, transfers control to program C using a DXFR statement. Program
C transfers control (using a DXFR statement) to the program specified
by the EZEAPP special function word, where EZEAPP is set to
program D or program E. You would have to specify the following
programs in the linkage table:
fromappl=A toappl=B
fromappl=A toappl=C
fromappl=A toappl=D
fromappl=A toappl=E

For CICS environments, with the same set of programs, a linkage
table is not required. However, if D is a non-VisualAge Generator
program, the linkage table required for CICS is as follows:
fromappl=C toappl=D linktype=noncsp

linktype
Specifies the type of linkage being generated.

DYNAMIC
For non-CICS host programs, specifies that a dynamic COBOL
call is to be generated in the initial main program for a DXFR
operation to a generated program

For CICS programs, an XCTL is used to implement the DXFR
statement. The target program is assumed to be a generated
program, and run-unit status information is passed to the
target program in addition to the DXFR parameter record.

This is the default value.

STATIC
For non-CICS host programs, specifies that a static COBOL
call is to be generated in the main program for a DXFR
operation to a non-CICS generated program

For CICS programs, this option is treated the same as the
DYNAMIC option.

238 VisualAge Generator: Generation Guide

For non-CICS environments, this value is required for target
programs that call PL/I programs or that call programs that
call PL/I programs.

NONCSP
For MVS, VM, and CICS programs, specifies that an XCTL is
to be used to implement the DXFR statement.

DXFR to a non-VisualAge Generator program is not
supported in the VSE batch environment.

All resources allocated by Server for MVS, VSE, and VM or
VisualAge Generator Server are released.

The NONCSP value is required for DXFR statements to
non-VisualAge Generator programs. The NONCSP value can
be specified either as an option on the DXFR statement or in
the linkage table.

This value is the only value that is valid for CICS programs.

Interfaces requiring a linkage table
A linkage table entry is not required for generation of a DXFR between
programs if the default linkages for the run-time environment are acceptable.
Table 59 statements, and which linkage table tags and keywords are needed to
control each linkage.

Table 59. Nonstandard Linkages Supported For DXFR

Function Environment Statement

Transfer using a DXFR to a
generated program that calls a
PL/I program

MVS/VSE/VM Non-CICS :dxfrlink
fromappl=fromhyphen.program-name
toappl=to-program-name
linktype=static

Transfer using a DXFR statement
to a non-VisualAge Generator
program, where the NONCSP
option was not specified on the
DXFR statement

CICS, MVS, and VM programs :dxfrlink
fromappl=from-program-name
toappl=to-program-name
linktype=noncsp

Specifying File linkage (FILELINK)
The FILELINK tag specifies the type of file access generated for
CICS-managed VSAM files and transient data queues. Specify the FILELINK
tag only if a file is remote; the default file access is acceptable for local files.

Linkage table file entries are accessed only for files specified as CICS VSAM
files and transient data queues. Other types of files are always accessed as
local files.

Chapter 25. Linkage tables 239

The following diagram shows the attributes you can specify for the FILELINK
tag:

!! :filelink filename=file name
LOCAL

linktype= REMOTE

!

!
contable= conversion table name

*
EZECONVT
BINARY

CICS
location= EZELOC

.
!<

Definitions for FILELINK

filename
Specifies the VisualAge Generator file name for the file access being
defined.

You can use an asterisk (*) as a global substitution character in the file
name parameter; however, it is only valid as the last or only character.

linktype
Specifies the type of linkage being generated.

LOCAL Specifies that the file resides on the same system as
the program.

This is the default value.

REMOTE Specifies that the file might reside on a different
system than the program.

This value is valid only for CICS-managed VSAM files
and transient data queues.

contable
Specifies the name of the conversion table used to perform automatic
data conversion for remote file input/output access.

This attribute value is used only if the linkage type is specified as
REMOTE.

Data conversion is specified as follows:
v If the CONTABLE attribute is not specified, data conversion is not

performed automatically by the program for the file input/output.
In this case, the program must perform any required conversion
either by using explicit calls to the EZECONV special function
word or by defining a conversion template for the operation to
CICS.

240 VisualAge Generator: Generation Guide

v If the CONTABLE attribute is specified, you can specify the
following values:

conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed. EZECONVT is not supported in calls from GUI
client programs.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table.

On OS/2, AIX, and Windows systems the default is the
conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELAxxxxx (OS/2 or AIX) or ELACWxxx
(Windows) where xxxxx or xxx is the code specified in
environment variable EZERNLS. If EZERNLS is not
specified, the default national language code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the
calling program was generated (/TARGNLS generation
option).

BINARY
Only binary fields are converted. The byte order in the
binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa, when
both the client and the server are running under the same
code page.

Refer to the system and program guide for CICS for OS/2 for
information on defining a conversion template to CICS.

location
Specifies how the location (CICS system identifier) of a remote file is
defined.

This attribute is ignored if the linkage type is not REMOTE.

Chapter 25. Linkage tables 241

CICS Specifies that the location for a remote file is defined in the
CICS file control table (FCT) or destination control table
(DCT).

EZELOC
Specifies that the location for the remote file is obtained from
the EZELOC special function word when an input or output
operation is performed to the file.

The location is passed to CICS using the SYSID keyword on
the EXEC CICS command.

Sample linkage table entries
The following are examples of linkage table entries:
v APP1 is an existing non-VisualAge Generator CICS COBOL program

expecting data to be passed in the COMMAREA:
:calllink applname=app1 parmform=commdata linktype=cicslink.

v APP2 is an MVS/TSO or VM CMS program that uses a DXFR statement to
transfer control to APP3, which uses a DXFR statement to return control to
APP2. Because APP2 is the initial program, it must be identified as the
FROMAPPL. Because APP3 is never an initial program in a run unit, it does
not have to be identified as a FROMAPPL. Both APP2 and APP3 call PL/I
programs. All the PL/I program names begin with the string P1.
:calllink applname=p1* linktype=static parmform=oslink.
:dxfrlink fromappl=app2 toappl=app3 linktype=static.

A DXFRLINK linkage table entry is not required for the DXFR back to
APP2 because a DXFR back to the initial program is handled in the internal
logic flow of the initial program.

v The installation chooses CICSOSLINK as the default linkage for CICS
VisualAge Generator programs. The non-VisualAge Generator program
named NCPGM does not contain any CICS functions and expects
conventional COBOL linkage to be used.
:calllink applname=ncpgm linktype=dynamic parmform=oslink.
:calllink applname=* linktype=dynamic parmform=cicsoslink.

v This linkage table entry would be used in a call from a Java GUI client to
server program APP1 that is installed on CICS Region NRACICS2 using
conversion table CSOE037.
:calllink applname=APP1 linktype=CSOCALL remotecomtype=CICSCLIENT
location=NRACICS2 contable=CSOE037.

The following example is a linkage table entry for local calls between two
VAGen Java server programs.
:calllink applname=SERVER package='my.pkg' linktype=DYNAMIC

242 VisualAge Generator: Generation Guide

Note: This linkage must be supplied at generation time. The called server
(SERVER) program’s package name must be quoted because it contains
a dot. If no linktype is specified, the value DYNAMIC is used by
default.

Chapter 25. Linkage tables 243

244 VisualAge Generator: Generation Guide

Chapter 26. Link edit parts

Linkage Editor control statement files are used for the MVS, VSE, and VM
environments. Preparation templates shipped with VisualAge Generator
Developer contain default linkage editor control statements for generated
programs. If a program calls or is called by other programs using static
COBOL calls, you must define additional linkage editor control statements in
a program-specific part.

Link-editing static COBOL calls

Define a link edit part when any of the following is true:
v The program includes static COBOL calls to other programs.
v The program is called by other programs using a static COBOL call.

A static COBOL call requires that the called and calling programs be
link-edited into the same load module.

You can use a dynamic COBOL call or CICS link instead of a static COBOL
call to avoid the extra link-editing. However, when programs contain CALL
and DXFR statements to specific programs, you must generate the static
COBOL calls.

If static calls are used in generated programs, the following statements are
true:
v Linkage editor control statements must be defined for each program that

uses static linkage to call another program or to transfer control to another
program.

v Linkage editor control statements must be defined for each program that is
called by another program or is transferred to by another program.

Defining a link edit part

Linkage Editor control statements for a program must be defined in a link
edit part. The link edit part must be named prgmname.linkedit_value if you
use the /LINKEDIT generation option to generate the program or prgmname if
you do not use /LINKEDIT. We recommend that you always use the
/LINKEDIT option, because it is difficult to create a link edit part with the
same name as the program part. You must use the /LINKEDIT generation
option if you need to define more than one link edit part for the same
program. This may be because you generate the same program for more than
one target system.

© Copyright IBM Corp. 1980, 2001 245

It is best to define the program’s link edit part in the same
package/application as the program so that it is available whenever the
program is available. It must be contained in the configuration map used to
generate the program. The link edit part must contain linkage editor control
statements for linking every load module that contains the program. See
“/LINKEDIT (Link edit)” on page 326 for more information on specifying the
linkage editor part to be used when preparing the code generated for the
program.

The control statements in the link edit part must follow linkage editor syntax
and format rules:
v Statements cannot start in column one.
v No blank lines are allowed between statements.

Refer to the linkage editor document for your host system for more
information about using linkage editor control files.

Linkage Editor control statements for MVS environments
When VisualAge Generator Developer produces preparation JCL for MVS
environments, it queries for the existence of the link edit part. If the part
exists, an additional link-edit step is generated for the program using the
template EFK2MPRE. The generated JCL calls the cataloged procedure
ELARLINK. The part containing the linkage editor control statements is
included in the generated JCL as the linkage editor SYSLIN input file for the
link-edit step.

MVS program with static calls to other programs
A link edit part containing linkage editor control statements must be defined
for each generated program that contains static COBOL calls. The linkage
editor control statements consist of ENTRY and NAME statements for the
load module and INCLUDE statements for each statically called program and
the base program. The VisualAge Generator Server for MVS, VSE, and VM
entry stub program (ELARMAIN) must also be included in the MVS/TSO,
MVS batch, and IMS BMP environments. Other VisualAge Generator Server
for MVS, VSE, and VM and database stubs are included along with the
programs from the original link-edit step produced during the generation
process.

Table 60 on page 247 shows sample control statements by environment for a
specific example where program BASEPGM statically calls both a generated
COBOL program VGNAP1 and a PL/I program PLIAPP1. In the example, the
object decks for PL/I programs have been written to data set
NONVGN.OBJ.LIBRARY. All the INCLUDE statements for the called members
precede the INCLUDE for the calling program.

246 VisualAge Generator: Generation Guide

Table 60. Sample control statements

Environment Base program type Control statements in BASEPGM

CICS for MVS/ESA
IMS/VS

Main or called INCLUDE SYSLMOD(VGNAP1)
INCLUDE NONVGNL(PLIAPP1) *
INCLUDE SYSLMOD(BASEPGM)
ENTRY BASEPGM
NAME BASEPGM(R)

MVS/TSO
MVS batch
IMS BMP

Main CHANGE ELAAPPL(BASEPGM)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SYSLMOD(VGNAP1)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE SYSLMOD(BASEPGM)
ENTRY ELARMAIN
NAME BASEPGM(R)

MVS/TSO
MVS batch
IMS BMP

Called INCLUDE SYSLMOD(VGNAP1)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE SYSLMOD(BASEPGM)
ENTRY BASEPGM
NAME BASEPGM(R)

*PL/I programs cannot be statically linked for CICS for MVS/ESA. For CICS for
MVS/ESA, this link would be to a statically linked non-VisualAge Generator COBOL
program.

Figure 68 shows how a project leader has customized the ELARLINK
procedure by adding the following DD statement to allocate the data set.

MVS programs that are statically called by other programs
A link edit part that contains link-edit statements must also be defined for
each program that is the target of a static COBOL call from another program.
Include statements to link every load module that calls a program in the link
edit part so that each load module is automatically linked again whenever the
called program is generated.

To define the link edit part containing the linkage editor control statements,
add the control statements defined for the base program to the link edit part
that contains link-edit statements defined for each included program.

See “MVS program with static calls to other programs” on page 246 for an
example showing the linkage editor control statements defined for the
BASEPGM program being added to the link edit part containing link-edit
statements for the VGNAP1 program. When the VGNAP1 program is

//NONVGNL DD DSN=NONVGN.OBJ.LIBRARY,DISP=SHR

Figure 68. Customized ELARLINK procedure

Chapter 26. Link edit parts 247

generated, the BASEPGM program is automatically linked again to include
the new version of the VGNAP1 program.

Modifying the ELARLINK Procedure
If a program is both the target of a static COBOL call and also includes a
static COBOL call to other programs, you must further tailor the ELARLINK
procedure to use different load libraries as the include and output libraries for
generated program load modules.

Figure 69 shows a SYSLMOD DD statement before modifications.

Figure 70 shows the replacement DD statements for the SYSLMOD DD
statement.

Then define all link edit parts containing link-edit statements to use the
VGNINCL library as the include library for generated programs. Setting up
the libraries this way has the following effects:
v The initial link-edit step in the preparation procedures links the generated

program with VisualAge Generator Server for MVS, VSE, and VM and
database stub programs into the VGNINCL library.

v Statically called programs are not linked together in the VGNINCL library
to avoid the same program being included multiple times on the relink
step.

v The relink step combines all statically linked programs into the appropriate
load modules and stores the load modules in the SYSLMOD library.

Specifying the control statements
Table 61 on page 249 shows how the control statements for linking program
BASEPGM would be specified if statically called program VGNAP1 in turn
statically called program VGNAP2. The control statements for linking
program BASEPGM would also be added to the VGNAP1 and VGNAP2 link
edit parts so that program BASEPGM is linked again when either program
VGNAP1 or VGNAP2 is generated.

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD

Figure 69. SYSLMOD DD statement

//VGNINCL DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD
//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..RELINK.LOAD

Figure 70. SYSLMOD DD statement replacements

248 VisualAge Generator: Generation Guide

Table 61. Control statements example

Environment Base program type Control statements in BASEPGM

CICS for MVS/ESA
IMS/VS

Main or called INCLUDE VGNINCL(VGNAP1)
INCLUDE VGNINCL(VGNAP2)
INCLUDE NONVGNL(PLIAPP1) *
INCLUDE VGNINCL(BASEPGM)
ENTRY BASEPGM
NAME BASEPGM(R)

MVS/TSO
MVS batch
IMS BMP

Main CHANGE ELAAPPL(BASEPGM)
INCLUDE SELALMD(ELARMAIN)
INCLUDE VGNINCL(VGNAP1)
INCLUDE VGNINCL(VGNAP2)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE VGNINCL(BASEPGM)
ENTRY ELARMAIN
NAME BASEPGM(R)

MVS/TSO
MVS batch
IMS BMP

Called INCLUDE VGNINCL(VGNAP1)
INCLUDE VGNINCL(VGNAP2)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE VGNINCL(BASEPGM)
ENTRY BASEPGM
NAME BASEPGM(R)

*PL/I programs cannot be statically linked for CICS for MVS/ESA. For CICS for
MVS/ESA, this link would be to a statically linked non-VisualAge Generator COBOL
program.

For CICS for MVS/ESA, MVS batch, IMS/VS, and IMS BMP environments,
the relink load library and the original load libraries are required when
running programs. The relink library is required for statically linked modules.
The original library is required for modules that did not have to be statically
linked. Figure 71 shows how to customize the run-time JCL file and the IMS
and CICS for MVS/ESA region JCL file to include the load libraries in the
correct order in the STEPLIB statement.

The chglq and env are the values that were substituted for the CGHLQ and
ENV parameters in the EFK2MPRE procedure.

For the MVS/TSO environment, the library that runs the first load module in
a run unit is the library that is searched first for any other modules that are

// DD DISP=SHR,DSN=cghlq.env.RELINK.LOAD
// DD DISP=SHR,DSN=cghlq.env.LOAD

Figure 71. Load libraries on the STEPLIB statement

Chapter 26. Link edit parts 249

required. Figure 72 shows a sample library where you can put all the
modules.

Change the run-time CLIST templates to use cghlq.env.RELINK.LOAD. In
addition, add link edit parts for all programs that are linked stand-alone so
that they are moved into cghlq.env.RELINK.LOAD. Table 62 shows the
link-edit commands required for a program called ALONE in the MVS/TSO
environment.

Table 62. Sample link-edit statements for a stand-alone program

Base program type Control statements

Main CHANGE ELAAPPL(ALONE)
INCLUDE SELALMD(ELARMAIN)
INCLUDE VGNINCL(ALONE)
ENTRY ELARMAIN
NAME ALONE(R)

Called INCLUDE VGNINCL(ALONE)
ENTRY ALONE
NAME ALONE(R)

Linkage Editor control statements for VM environments
When the VisualAge Generator Developer produces the preparation REXX for
VM environments, it queries for the existence of the link edit part. If the part
exists, the linkage editor control statements in the part are used to generate
the linkage edit control statement file.

VM programs with static calls to other programs
A link edit part with linkage editor control statements must be defined for
each generated program that contains static COBOL calls. The linkage editor
control statements consist of ENTRY and NAME statements for the load
module and INCLUDE statements for each statically called program and the
base program. The VisualAge Generator Server for MVS, VSE, and VM entry
stub program (ELARMAIN) must also be included in the VM CMS and VM
batch environments. Other VisualAge Generator Server for MVS, VSE, and
VM and database stubs are included along with the programs from the
original link-edit step produced during the generation process.

Table 63 on page 251 shows sample control statements by environment for a
specific example where program BASEPGM statically calls both a generated
COBOL program VGNAP1 and a PL/I program PLIAPP1. In the example, the
object decks for PL/I programs have been written to a CMS minidisk, and

cghlq.env.RELINK.LOAD

Figure 72. Modules in a single library

250 VisualAge Generator: Generation Guide

ELAPREP EXEC has been modified to issue a FILEDEF to define this file as
data set PLIAPP1. All the INCLUDE statements for the called members
precede the INCLUDE for the calling program.

Table 63. Sample control statements

Environment Base program type Control statements in BASEPGM

VM CMS
VM batch

Main CHANGE ELAAPPL(BASEPGM)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SYSLMOD(VGNAP1)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE SYSLMOD(BASEPGM)
ENTRY ELARMAIN
NAME BASEPGM(R)

VM CMS
VM batch

Called INCLUDE SYSLMOD(VGNAP1)
INCLUDE NONVGNL(PLIAPP1)
INCLUDE SYSLMOD(BASEPGM)
ENTRY BASEPGM
NAME BASEPGM(R)

A second method to achieve the same effect is to use local TXTLIBs to hold
the object decks of non-VisualAge Generator programs that are called by a
VisualAge Generator program. Using the example from Table 63, the object
decks for PLIAPP1 are built into a local TXTLIB called MYTXTLIB, and the
BASEPGM EXECP file is modified to pass the name of the local TXTLIB to
ELAPREP as the USERLKED parameter (USERLKED=MYTXTLIB). This
method is easier than the first method when more than one object deck for
the called program or multiple called programs are involved.

VM programs that are statically called by other programs
A link edit part that contains link-edit statements must also be defined for
each program that is the target of a static COBOL call from another program.
Include statements to link every load module that calls a program in the link
edit part so that each load module is automatically linked again whenever the
called program is generated.

To define the link edit part containing the linkage editor control statements,
add the control statements defined for the base program to the link edit part
that contains link-edit statements defined for each included program.

See Table 63 for an example showing the linkage editor control statements
defined for the BASEPGM program being added to the link edit part
containing link-edit statements for the VGNAP1 program. When the VGNAP1
program is generated, the BASEPGM program is automatically linked again to
include the new version of the VGNAP1 program.

Chapter 26. Link edit parts 251

Specifying the control statements
Table 64 shows how the control statements for linking program BASEPGM
would be specified if statically called program VGNAP1 in turn statically
called program VGNAP2. The control statements for linking program
BASEPGM would also be added to the VGNAP1 and VGNAP2; link edit parts
so that program BASEPGM is linked again when either program VGNAP1 or
VGNAP2 is generated.

Table 64. Control statements example

Environment Base program type Control statements in BASEPGM

VM CMS
VM batch

Main INCLUDE TXTDECK
CHANGE ELAAPPL(BASEPGM)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD (ELARSINT)
INCLUDE PLIAPP1
INCLUDE SYSLMOD (BASEPGM)
INCLUDE ELAEUOPT
INCLUDE ELABXITB
ENTRY ELARMAIN
NAME BASEAPP

VM CMS
VM batch

Called INCLUDE TXTDECK
INCLUDE SELALMD (ELARSINT)
INCLUDE PLIAPP1
INCLUDE SYSLMOD (BASEPGM)
INCLUDE ELAEUOPT
INCLUDE ELABXITB
ENTRY BASEAPP
NAME BASEAPP

Note: Add these control statements if any of the programs use SQL statements:
INCLUDE SQLSTUB
INCLUDE SQLCOBOL

For VM batch environments, the relink load library and the original load
libraries are required when running programs. The relink library is required
for statically linked modules. The original library is required for modules that
did not have to be statically linked.

For the VM CMS environment, the library that runs the first load module in a
run unit is the library that is searched first for any other modules that are
required. Figure 73 shows a sample library where you can put all the
modules.

cghlq.env.RELINK.LOAD

Figure 73. Modules in a single library

252 VisualAge Generator: Generation Guide

Change the run-time CLIST templates to use cghlq.env.RELINK.LOAD. In
addition, add link edit parts for all programs that are linked stand-alone so
that they are moved into cghlq.env.RELINK.LOAD. Table 65 shows the
link-edit commands required for a program called ALONE in the VM CMS
environment.

Table 65. Sample link-edit statements for a stand-alone program

Base program type Control statements

Main CHANGE ELAAPPL(ALONE)
INCLUDE SELALMD(ELARMAIN)
INCLUDE VGNINCL(ALONE)
ENTRY ELARMAIN
NAME ALONE(R)

Called INCLUDE VGNINCL(ALONE)
ENTRY ALONE
NAME ALONE(R)

Linkage Editor control statements for VSE environments
When VisualAge Generator Developer produces preparation JCL for VSE
environments, it queries the existence of the link edit part. If the part exists, it
is used for the link-edit step of the preparation job. If static calls are used for
VSE, linking for the static calls occurs during the regular link-edit step. You
can use the default link-edit templates and modify them as needed to add
static modules.

See “Program templates for CICS for VSE/ESA and VSE batch preparation”
on page 64 for a list of link-edit templates.

VSE program with static calls to other programs
Table 66 on page 254 shows sample control statements by environment for a
specific example where program BASEPGM statically calls both a generated
COBOL program VGNAP1 and a PL/I program PLIAPP1. In the example, the
object decks for the PLIAPP1 and VGNAP1 are stored in the sublibrary
PRD5.NONVGNLIB.

Figure 74 shows the statement the system administrator must set for the value
for the VUSERLIB symbolic parameter in the generation options file.

All the INCLUDE statements for the called programs precede the INCLUDE
for the calling program.

/SYMPARM=VUSERLIB,'PRD5.NONVGNBL'

Figure 74. Setting VUSERLIB

Chapter 26. Link edit parts 253

Table 66. VSE Linkage Editor control statements showing static calls to programs

Environment Base program type Control statements

CICS for VSE/ESA Main or Called PHASE BASEPGM,*
INCLUDE DFHECI
INCLUDE ELARSINC
INCLUDE ELARSVCS
INCLUDE ELAASSGN
INCLUDE ELAASADR
INCLUDE VGNAP1
INCLUDE PLIAPP1
INCLUDE DFHPL1I
INCLUDE BASEPGM
ENTRY BASEPGM

VSE batch Main or Called PHASE BASEPGM,*
INCLUDE ELARSINV
INCLUDE ELARSVCS
INCLUDE ELAASSGN
INCLUDE ELAASADR
INCLUDE VGNAP1
INCLUDE PLIAPP1
INCLUDE BASEPGM
ENTRY BASEPGM

*Static link to a PL/I program. PL/I programs cannot be statically linked for CICS for
VSE/ESA. For CICS for VSE/ESA, this link would be to a statically linked
non-VisualAge Generator COBOL program.

When the VGNAP1 program is generated, the BASEPGM program is
automatically linked again to include the new version of the VGNAP1
program.

The control statements in the link edit part must follow linkage editor syntax
and format rules:
v Statements cannot start in column one.
v Statements cannot have blank lines between them.

Refer to the linkage editor document for your host system for more
information about linkage editor control statements.

VSE programs that are statically called by other programs
A link edit part that contains link-edit statements must also be defined for
each program that is the target of a static COBOL call from another program.
Include statements to link every load module that calls a program in the link
edit part so that each load module is automatically linked again whenever the
called program is generated.

254 VisualAge Generator: Generation Guide

To define the link edit part containing the linkage editor control statements,
add the control statements defined for the base program to the link edit part
that contains link-edit statements defined for each included program.

VSE programs with static links to and from other programs
Table 67 shows how the control statements for linking program BASEPGM
would be specified if statically called program VGNAP1 in turn statically
linked to program VGNAP2. The control statements for linking program
BASEPGM would also be added to the VGNAP1 and VGNAP2 link edit parts
so that program BASEPGM is relinked when either program VGNAP1 or
VGNAP2 is generated.

Table 67. VSE Linkage Editor control statements showing static calls to and from
programs

Environment Base program type Control statements in
BASEPGM

CICS for VSE/ESA Main or called PHASE BASEPGM,*
INCLUDE DFHECI
INCLUDE ELARSINC
INCLUDE ELARSVCS
INCLUDE ELAASADR
INCLUDE VGNAPI
INCLUDE VGNAP2
INCLUDE PLIAPP1
INCLUDE DFHPL1I
INCLUDE BASEPGM
ENTRY BASEPGM

VSE batch Main or called PHASE BASEPGM,*
INCLUDE ELARSINV
INCLUDE ELARSVCS
INCLUDE ELAASSGN
INCLUDE ELAASADR
INCLUDE VGNAP1
INCLUDE VGNAP2
INCLUDE PLIAPP2
INCLUDE BASEPGM
ENTRY BASEPGM

*Static link to a PL/I program. PL/I programs cannot be statically linked for CICS for
VSE/ESA. For CICS for VSE/ESA, this link would be to a statically linked
non-VisualAge Generator COBOL program.

Specifying AMODE and RMODE
Most generated programs must be linked AMODE(31) and RMODE(ANY).
You can link-edit generated programs as AMODE(24) and RMODE(24) only if
the generated program must be statically linked with a non-VisualAge
Generator program that must run AMODE(24). When AMODE(24) is required,

Chapter 26. Link edit parts 255

you can add user-defined symbols for AMODE and RMODE in preparation
JCL templates. When AMODE(24), AMODE(ANY), or RMODE(24) are
required for a VM program, you can specify the AMODE, RMODE, or both
on the call to ELAPREP. See “Modifying preparation templates and EXECs for
VM environments” on page 97 for information on specifying parameters for
the ELAPREP EXEC.

See the Chapter 24. Generation options parts for information on the DATA
compiler option.

Error return codes on static links

8 When an error occurs during the initial MVS link-edit step, the return
code specifies that there are unresolved external references for
statically called programs.

The problem is resolved on the relink step.

8 When an error occurs during the initial MVS relink step or during the
VSE or VM link-edit step, the return code specifies that there are
unresolved references.

Some of the included programs were not generated and prepared.

12 When an error occurs during the MVS relink step or during the VSE
or VM link-edit step, the return code indicates a missing module and
entry point in the base program.

Do not use a generated program until all programs that it runs with are
successfully prepared and all load modules are linked with a completion code
of 0.

256 VisualAge Generator: Generation Guide

Chapter 27. BIND control parts

A BIND control part is required only for DB2 programs generated for MVS
systems. Preparation templates shipped with VisualAge Generator contain
default BIND command statements used to generate a default BIND control
part when a DB2 program is generated. The template used to produce the
BIND control part is determined by the target environment, whether a DB2
work database is used, and whether a DL/I database is used. For a list of
templates used, see “Preparation JCL for MVS or VSE” on page 62. When the
default BIND control part is used during preparation, a DB2 plan is produced
that has the same name as the program, and includes only the program
database request module (DBRM) and the VisualAge Generator Server for
MVS, VSE, and VM as members. DBRMs are needed to gain access to the DB2
work database or to issue SQL COMMIT WORK or ROLLBACK WORK
commands if required. The default plan is suitable when the initial program is
the only program that needs to access the SQL tables in the run unit.

If the default BIND control part generated is not suitable, it is necessary to
provide a BIND control part as an input to generation. See “Considerations
for plan definition” on page 258 for more details about when a default BIND
control part might not be suitable.

To determine whether a BIND control part is to be produced from default
templates or from a BIND control part, the generator searches the Smalltalk
image into which the generation configuration map was loaded or the Java
workspace into which the generation projects were loaded. The generator
looks for a BIND control part named prgmname.bind_value if you specified the
/BIND option or prgmname if you did not specify /BIND. If a matching BIND
control part is found, it is used to produce the program’s BIND control part.
Otherwise, the program’s BIND control part is produced from the appropriate
template. Regardless of the input used to produce the BIND control part, the
BIND command file is named prgmname.BDC.

We recommend that you always use the /BIND option, because it is difficult
to create a bind control part with the same name as the program part.

Defining BIND control parts

The project leader must determine the DB2 plans that are needed for a project
and define the BIND control parts for plans that include multiple DBRMs. The
program names specified on the MEMBER keyword on the BIND command
identify the DBRMs to be included in the plan. When the BIND command for
a plan includes more than one generated program, that command must be

© Copyright IBM Corp. 1980, 2001 257

specified in BIND control parts for each of the generated programs. The BIND
control part for each program must be named prgmname if the /BIND
generation option is not used to generate the program, or
prgmname.bind_value if the /BIND generation option is used. bind_value may
be any character string, but a good convention would be to identify why you
need to differentiate between two BIND control parts for the same program.
For example, if you need different BIND control parts for generating the same
program for CICS for MVS/ESA and IMS/VS target systems, you might name
the required BIND control parts prgmname.MVS and prgmname.IMS.

It is best to define the program’s BIND control part in the same
package/application as the program so that it is available whenever the
program is available. It at least has to be contained in the configuration map
or projects used to generate the program.

If a generated program is included in more than one plan, its BIND control
part must contain the BIND command for each plan that it is a part of.
Whenever the program is generated and prepared, the BIND step of
preparation binds every plan that includes that program.

See “Chapter 29. Generation command and option descriptions” on page 297
for more information on specifying the BIND control part to be used when
generating the program.

Considerations for plan definition

Consider several issues as you define BIND commands for a program. These
issues include the following:
v The program and plan names
v The use of XFER, DXFR, CALL and CONVERSE statements, and the /RT

generation option
v The use of host services database request modules (DBRMs)

Naming CICS for MVS/ESA program plans
For CICS for MVS/ESA programs, any plan name can be used. The plan must
be associated with the CICS transaction in the CICS resource control table
(RCT). More than one CICS transaction code can be associated with a single
DB2 plan name in the RCT.

Naming MVS/TSO and MVS batch program plans
For MVS/TSO and MVS batch programs, the plan used at run time is
specified on the DSN subcommand RUN used to start the initial program. The
sample run-time JCL and CLISTs built by the VisualAge Generator Developer
assume the plan name is the same as the initial program name. You can
modify the plan name before the JCL or CLIST is used.

258 VisualAge Generator: Generation Guide

Naming IMS program plans
For IMS programs, the name of the program plan must match the name of the
initial program load module for the transaction or batch job. Do not modify
the name of the plan.

Effects of XFER, DXFR, CALL, CONVERSE, and the /RT generation option
on plans

For CICS for MVS/ESA and IMS programs, if a program uses an XFER
statement or the /RT generation option to transfer to another program, the
DBRMs for these programs do not have to be bound together. Transferring to
another program using an XFER statement or with the /RT generation option
results in a transaction switch. For IMS transactions, a separate plan must be
used because the plan name must match the name of the program associated
with the new transaction. CICS for MVS/ESA enables you to use the same
plan name for both transactions. However, when transferring with an XFER
statement or with the /RT generation option, there is reason to bind the
programs into a single plan.

If a program does a segmented CONVERSE in IMS or CICS environments and
switches transaction identifiers, the program database request module (DBRM)
must be bound into the plan of each transaction in which the program issues
an SQL request.

If a program uses an XFER statement or the /RT generation option in the
MVS/TSO, MVS batch, and IMS BMP environments, the DBRMs from each
program must be bound into the same plan.

A CALL or DXFR statement does not result in a transaction switch. The
DBRMs of all programs and non-VisualAge Generator programs connected by
CALL or DXFR statements must be bound into the same plan.

Using host services CICS for MVS/ESA DBRMs
Plans for CICS for MVS/ESA programs do not include a VisualAge Generator
Server for MVS, VSE, and VM DBRM.

Using MVS/TSO and MVS batch DBRMs
For MVS/TSO and MVS batch programs that use SQL databases, but not
DL/I databases, each plan must include the database request module (DBRM)
ELADBRM4. This module issues SQL COMMIT WORK and ROLLBACK
WORK commands.

For MVS batch, a DBRM is not required for programs that use both DL/I and
SQL. If DL/I is used, DL/I function calls are used instead of SQL commands
to commit and rollback database changes.

Chapter 27. BIND control parts 259

MVS/TSO programs cannot include both DL/I and SQL in the same program
or run unit.

Using IMS/VS DBRMs
If a DB2 work database is specified when a program is generated for the
IMS/VS environment, the DBRM module ELADBRM3 must be included in
each DB2 plan that includes the program. A plan including DBRM module
ELADBRM3 must be created even if the program does not use any DB2
program databases.

Additional BIND command keywords

For the BIND command keywords, refer to the DB2 commands document for
your version of DB2. Some of the DB2 commands that you might want to add
to the BIND commands you use are as follows:

OWNER(authorization-id)
Designates the authorization ID of the plan owner

EXPLAIN(YES)
Obtains information about how SQL statements in the plan are run
and inserts information into the x.PLAN_TABLE, where x is the
authorization plan owner

This information is useful to a database administrator in
understanding how a program gains access to tables, and might help
solve logic or performance problems.

Sample BIND commands

The examples of BIND commands show how to define the BIND commands
so that the program plan is bound whenever any program included in the
plan is changed.

Note: The BIND command does not complete successfully until all programs
included in the program plan have been generated.

Binding when the first program uses SQL
Consider the situation in which program A is an IMS main transaction
program that does the following:
1. Calls program B, which in turn calls program C
2. Using a DXFR statement, transfers to program D, which transfers to

program E
3. Transfers to program X using an XFER statement

Assuming that all the programs use DB2 databases in DB2 subsystem DSN
and that the main transactions use the DB2 work database, the database

260 VisualAge Generator: Generation Guide

request modules (DBRMs) for programs A, B, C, D, and E must be bound
together in a single plan. Program X has a plan of its own, because an XFER
statement starts a new transaction.

Because program X is the only SQL program in its transaction, the default
BIND command generated from template EFK2MBDB can be used. Figure 75
shows the bind command generated for program X.

Figure 76 shows a sample BIND command for plan A. This command needs
to be included in the bind control parts for A, B, C, D, and E:

Also consider the situation in which program B is called by program F, which
also is an SQL program. Figure 77 shows a sample BIND command for
program F, which includes programs B and C.

DSN SYSTEM(DSN)
* BIND IMSVS APPLICATION WITH DB2 ACCESS AND USES DB2 WORK DATABASE
BIND PLAN(X) -
MEMBER(X,ELADBRM3) -
ACT(REP) -
RETAIN -
VALIDATE(BIND) -
ISOLATION(CS)
* OWNER(OWNERGRP)

Figure 75. Sample BIND command generated for Program X

DSN SYSTEM(DSN)
BIND PLAN(A) -
MEMBER(A,B,C,D,E,ELADBRM3) -
ACT(REP) -
RETAIN -
VALIDATE(BIND) -
ISOLATION(CS)

Figure 76. Sample BIND command generated for Plan A

DSN SYSTEM(DSN)
BIND PLAN(F) -
MEMBER(F,B,C,ELADBRM3) -
ACT(REP) -
RETAIN -
VALIDATE(BIND) -
ISOLATION(CS)

Figure 77. Sample BIND command generated for Program F

Chapter 27. BIND control parts 261

The bind control parts for programs B and C must include the BIND
commands for both plan A and plan F. Then if either B or C is generated
again, each plan that includes B or C is automatically bound again.

Binding when the first program does not use SQL
Consider the situation in which program Q is an CICS for MVS/ESA main
transaction program that does not use SQL. Program Q does the following:
1. Calls program R, which uses SQL
2. Transfers using a DXFR statement to program S, which also uses SQL.

Program S does not change the segmented transaction ID from the
transaction ID for Q

Because program Q does not use SQL, neither a default BIND command nor a
DB2 bind step is created for program Q. However, a program plan must still
be bound for transaction Q. Figure 78 shows the BIND command for program
Q assuming that the transaction name is also Q and you name your program
plan the same as the transaction name for CICS for MVS/ESA.

You must create a bind control part for both programs R and S so whenever
either program is generated the bind occurs for the program plan for
transaction Q. You must not create a bind control part for program Q because
the plan does not need to be bound when program Q is generated, only when
programs R or S are generated.

Binding packages instead of plans

You might want to customize the preparation process to use the DB2 BIND
PACKAGE function. When using packages, the preparation BIND step binds
each program into its own package in the DB2 database. The system
administrator must still bind the packages into plans, but the BIND PLAN
command is run one time and does not need to be run again each time a
package is replaced.

To use packages, do the following:
v Do not specify any bind control files for programs on the workstation.

DSN SYSTEM(DSN)
BIND PLAN(Q) -
MEMBER(R,S) -
ACT(REP) -
RETAIN -
VALIDATE(BIND) -
ISOLATION(CS)

Figure 78. BIND command for Program Q

262 VisualAge Generator: Generation Guide

v Replace each BIND command template with a template that issues BIND
PACKAGE instead of BIND PLAN. Figure 79 shows an example of a BIND
PACKAGE template.

Packages are defined in sets called collections and are bound at different
database management system locations. Figure 80 shows how the symbol
MYCOL can be specified as the /SYMPARM generation for use in
Figure 79.

Where location-name defaults to the local database management system.
%EZEMBR% is the program DBRM name, which is the same name as the
program. Figure 81 shows the fully qualified name of the resulting package.

Where package-id is the DBRM name.
v Define and run your own BIND PLAN commands on the MVS system for

each plan required for your set of programs. See “Sample BIND
commands” on page 260 for an example showing how to create the BIND
PLAN commands. Use the PKLIST keyword instead of the MEMBER
keyword to identify the programs to be bound into the plan. Continue to
use the MEMBER keyword to include the host services database request

DSN SYSTEM(DSN)
BIND PACKAGE (%MYCOL.%) -
MEMBER(%EZEMBR%) -
ACTION(REPLACE) -
VALIDATE(BIND) -
ISOLATION(CS)
* OWNER(OWNERGRP)
* EXPLAIN(YES)

Figure 79. BIND PACKAGE template example

'location-name.collection-id'

or

'collection-id'

Figure 80. Setting a value for MYCOL

location-name.collection-id.package-id

Figure 81. The resulting package

Chapter 27. BIND control parts 263

modules (DBRMs) ELADBRM2, ELADBRM3, or ELADBRM4 in plans that
require them. The PLAN needs to be bound one time, no matter how many
times the package is replaced.
Use the qualified package name format when identifying packages in the
PKLIST. The location-name value is optional and defaults to the local
database management system. The collection-id value can be an asterisk (*)
to indicate the collection is determined at run time. The package-id value can
be an asterisk (*) to indicate all packages in the collection are to be bound
into the plan.

Refer to the DB2 documentation for more information on PKLIST formats and
on the BIND commands for packages and plans.

Error return codes on BIND commands

A bind command will return an error code of 8 if at least one of the
associated programs has not yet been generated and prepared. Do not use a
generated program until all programs that it runs with are successfully
prepared, and all plans have successfully been bound and receive a
completion code of 0.

Binding OS/2 program plans

If SQL is present in your program, the program is compiled with the
SQLBIND option. The SQLBIND compiler directive causes a bind file named
prgmname.BND to be created.

The .BND file must be bound into an object in the DB2/2 database called the
program access plan. You can do this in any of the following ways. No special
bind command files are required.
v To create the program access plan when the program is compiled, set the

symbolic parameter BINDPARM value equal to ’Y’ using the /SYMPARM
generation option.

v If you are binding multiple bind files together, use the SQLBIND command.
v If the plan is not valid or does not exist, you can have VisualAge Generator

Server bind the program for you in the CICS for OS/2 environment. Refer
to the Server Guide for Workstation Platforms for more information about
running in the CICS for OS/2 environment.

Binding for VSE, OS/400, and VM programs

The steps needed to prepare SQL programs to run on VSE, OS/400, and VM
systems are automatically included in the preparation jobs generated for the
target system. No special bind command files are required.

264 VisualAge Generator: Generation Guide

Chapter 28. Resource associations part

When you generate a COBOL or C++ (targeted for the CICS for AIX or CICS
for Windows NT environments) program that uses serial, relative, or indexed
files, or printer maps, you can use a resource association part to associate
target-system dependent file characteristics, including the file type and the
system file or resource name, with the file name specified in the VisualAge
Generator record definition. You can also associate the system print files with
the file name EZEPRINT.

The new values are used to associate the file name specified in the record
definition, or file name EZEPRINT for the print file, with a physical file or
data set in the target environment.

Notes:

1. Resource association parts created for generation are not compatible with
resource association files used for the VisualAge Generator Developer test
facility.

2. Resource association parts are not used during generation for the C++
native environments (OS/2, AIX, HP-UX, and Windows NT). They are
used only during execution.
Refer to the VisualAge Generator Server Guide for Workstation Platforms for
more information.

Creating resource associations parts

You can create and edit resource association parts using the Resource
Associations Editor. You can enter options and values in uppercase or
lowercase. All of the options can span lines.

Comments are permitted anywhere in the file. Begin comments with the
characters /* and end them with the characters */.

The file associations specified in the resource associations part are used by the
generation process. During generation, the entries in the resource associations
part are checked for validity for the specified file in the target environment. If
you do not specify resource association information for a file, default values
are used based on the target system and file organization. See “File types
supported by environment and record organization” on page 274 for
information about the default values.

© Copyright IBM Corp. 1980, 2001 265

Using multiple resource associations for a file

If the resource associations part for a file contains multiple entries, the
resource association used is the first association where the target system
specified for the /SYSTEM generation option matches the value specified for
the /SYSTEM option. The values specified for the system options can be exact
or wildcard matches.

If no entry for the /SYSTEM option value matches the target system, the first
entry that matches the file name but does not have the /SYSTEM option
specified is used. If you use the same resource associations part for multiple
target systems, but you want different resource associations for different
systems, be sure to specify the /SYSTEM option.

Use the /RESOURCE generation option to specify the name of your resource
association part during generation.

See “/RESOURCE (Resource associations)” on page 338 for more information
on specifying a resource association part.

Note: If your program does file or printer I/O, a resource associations part is
required. If your program requires a resource associations part, but you
want to use the system defaults, you can specify the name of a file that
does not contain any resource associations for the /RESOURCE
generation option.

Resource association part syntax

The following diagram shows the syntax of the entries in the resource
associations part.

!! ASSOCIATE FILE=filename !

!
/BLKSIZE

= option
, integer-1

, integer-2
= integer-1 , integer-2

!

266 VisualAge Generator: Generation Guide

!
/NOCOMMIT

/COMMIT

/NODUP

/DUP /FILETYPE= GSAM
MMSGQ
OS2COBOL
SEQ
SEQRS
SMSGQ
SPOOL
TEMPAUX
TEMPMAIN
TRANSIENT
VSAM
VSAMRS

/PCBNO=pcb number
!

!
/NOREPLACE

/REPLACE /SYSNAME=system resource name /SYSNUM=value
!

!
/SYSTEM=target system

!<

ASSOCIATE
Associates the file name specified in a record definition or the printer
file with the physical file that is used for the record at run time

FILE Specifies the name of the file for which you are defining system
resource association information

The file name can be EZEPRINT, the print file for the program, or one
of the file names specified for a serial, indexed, or relative record used
by the program.

Wildcard names are permitted. The wildcard character (*) can be
specified to be the trailing character in a file name. This enables the
project administrator to set up a file naming convention for specifying
file types.

/BLKSIZE
Specifies the block size for tape processing on VSE batch for the SEQ
file type.

When integer-1 and integer-2 are both specified, they respresent the
minimum and maximum character sizes of the physical record. If only
integer-1 is specified, it specifies the exact character size of the
physical record. The default is the record size.

Valid values for option are CHAR and REC. If you omit the /BLKSIZE
option, the default is CHAR. If you specify /BLKSIZE without option,

Chapter 28. Resource associations part 267

the default is REC. integer-1 and integer-2 are unsigned nonzero
integers. integer-2 must be equal to or greater than 1. integer-1 must be
less than integer-2.

/NOCOMMIT
/NOCOMMIT disables commitment control file management.
/COMMIT enables commitment control file management.

When commitment control is enabled, use the special function words
EZECOMIT and EZEROLLB in the program to control commit and
rollback boundaries.

This option applies to the OS/400 environment.

The default is /NOCOMMIT.

Refer to the following for more information about commitment control
services:
v ILE COBOL/400 Programmer’s Guide 3.1
v VisualAge Generator Design Guide
v VisualAge Generator Client/Server Communications Guide

/NODUP
/NODUP specifies that a file cannot contain duplicate record keys.
/DUP specifies that a file can contain duplicate record keys. You must
not specify /DUP with the DDS file level keyword UNIQUE in the
DDS describing the associate file, which is the target physical file in
an OS/400 environment.

Use only the following combinations of the DDS contents and
associate option:

UNIQUE /NODUP

no UNIQUE keyword
/DUP

Table 68 shows the errors you receive if the specifications are reversed.

Table 68. Errors from using the wrong generation options with the UNIQUE keyword

File level
keyword

Generation
option

COBOL return
code after
OPEN return
code

VisualAge
Generator
return code
after OPEN
return code

VisualAge
Generator
mnemonic

UNIQUE /DUP 95 220 FMT

no UNIQUE
keyword

/NODUP 95 220 FMT

268 VisualAge Generator: Generation Guide

Any other combination will cause an error when the file is opened.

This option applies to the OS/400 environment.

The default is /NODUP.

Refer to the following for more information about commitment control
services:
v ILE COBOL/400 Programmer’s Guide 3.1
v VisualAge Generator Design Guide
v VisualAge Generator Client/Server Communications Guide

/FILETYPE
Specifies the implementation of the file in a target environment

The valid file types are system-dependent. During the generation
process, the file type you specified is checked for validity for the
target run-time environment.

Table 69 on page 275 shows the valid file types for each environment.
An asterisk (*) indicates that the file type is the default for that record
organization in that environment.

The file type can be one of the following:

GSAM
Specifies a serial or print file associated with a GSAM
database on IMS BMP or MVS batch

MMSGQ
Specifies a serial or print file associated with a multisegment
message queue on IMS/VS or IMS BMP

OS2COBOL
Specifies an indexed, relative, serial, or print file associated
with a native COBOL data file on OS/2

COBOL READ/WRITE statements are generated to gain
access to the file.

SEQ Specifies a serial or print file associated with a system
sequential file for the CICS for AIX, CICS for Windows NT,
IMS BMP, MVS/TSO, MVS batch, OS/400, VM CMS, and VM
batch environments

For VSE batch, specifies one of the following:
v An output file directed to a printer (VSE/POWER LST

queue member)
v A sequential file in non-VSAM managed space
v A sequential file in VSAM managed space
v A sequential file on tape

Chapter 28. Resource associations part 269

For COBOL programs, COBOL READ/WRITE statements are
generated to gain access to the file.

SEQRS
Specifies a serial or print file associated with a system
sequential file

Calls to host services are generated for all reads and writes to
the file. For MVS/TSO, MVS batch, VM CMS, and VM batch
target environments, specify SEQRS when using dynamic
allocation, the special function word EZEDEST, or the special
function word EZEDESTP. This file type is not valid for the
OS/400 environment.

SMSGQ
Specifies a serial or print file associated with a single-segment
message queue on IMS/VS or IMS BMP

SPOOL
For CICS for MVS/ESA, specifies a serial or print file
associated with the JES SPOOL file

For VSE batch, specifies a serial output or print file associated
with a VSE/POWER member

For CICS for VSE/ESA, specifies a serial output, serial input,
or print file associated with a VSE/POWER queue member

This option can be used with the EZEDEST and EZEDESTP
special function words except for the OS/400 environment.
For OS/400 environments, SPOOL can only be used with the
EZEDESTP special function word.

TEMPAUX
Specifies a relative or serial file associated with an auxiliary
temporary storage queue in CICS environments

TEMPMAIN
Specifies a relative or serial file associated with a main
temporary storage queue in CICS environments

TRANSIENT
Specifies a serial or print file associated with a transient data
queue in CICS environments

VSAM
Specifies a serial, indexed, or relative file associated with a
VSAM file on a host system, or defined with a CICS file
control table entry (FCT) on a CICS for OS/2 or a file
definition (FD) on a CICS for AIX or CICS for Windows NT
system.

270 VisualAge Generator: Generation Guide

COBOL READ/WRITE statements or CICS commands are
generated to gain access to the file.

VSAMRS
Specifies an indexed, relative, or serial file associated with a
VSAM file in non-CICS environments

Calls to host services are generated for all reads and writes to
the file. Specify VSAMRS when using the SCANBACK process
option, the special function word EZEDEST, or when using
dynamic allocation in the MVS/TSO, MVS batch, VM CMS,
or VM batch environments. This file type is not valid for the
OS/400 environment.

/NOREPLACE
/NOREPLACE specifies that an existing serial file is appended to.
/REPLACE specifies that an existing serial file is replaced.

/REPLACE can be specified when the file type is SEQ and the target
environment is one of the following:
v AIX
v AIXCICS
v CICSNT
v HP
v OS2

Note: The resource association file is only referenced at run time
when the target environment is AIX, HP-UX, OS2, or
Windows NT.

When you specify /REPLACE, the first ADD to a serial file in the
program or the first ADD to a serial file following a CLOSE in the
program adds data to the beginning of the serial file; replacing all
previous contents.

The default is /NOREPLACE.

/PCBNO
Specifies the number of the program control block (PCB) in the
program specification block (PSB) that represents the message queue
or GSAM database associated with the file

The number is an integer that ranges from 0 to the number of PCBs in
the PSB.

Use /PCBNO only if the file type is SMSGQ, MMSGQ, or GSAM. This
option is ignored with other file types.

Chapter 28. Resource associations part 271

If you do not specify the /PCBNO option, the following defaults are
set at generation time by the PSB definition and the use of the file in
the program:
v 0 for SMSGQ and MMSGQ input files
v 1 for SMSGQ and MMSGQ output files
v The first GSAM PCB for GSAM files

This option is not valid for the OS/400 environment.

/SYSNAME
Specifies the system name of the file or data set associated with the
file

The format of the name is system- and file-type-dependent. Table 69
on page 275 shows the valid file types for each environment. An

asterisk (*) indicates that the file type is the default for that record
organization in that environment.

Symbolic parameters are permitted in the /SYSNAME option
specification. See “Chapter 12. Symbolic parameters” on page 123 for
more information about symbolic parameters. If the symbolic
parameter EZEDD is used in the /SYSNAME option specification, the
file name specified for the FILE option on the association is
substituted in place of EZEDD. If any special characters are included
in the value, enclose the value in single quotation marks (') or double
quotation marks ("). Figure 82 shows the special characters that
require quotation marks.

/SYSNUM
Specifies the system logical unit number assigned the device on which
the sequential file resides

The valid range of values is from 000–254; the default is 005.

This option is only valid for SEQ files on VSE batch.

Note: If multiple VSE batch SEQ files need to have default system
logical unit numbers set, default values are generated in
sequential order starting with 005.

Default system logical unit numbers are set at generation time. It is
possible that multiple programs in a run unit might be generated with
some of the same default system logical unit numbers. If you want to

% = , () / or a space character

Figure 82. Characters that require quotation marks

272 VisualAge Generator: Generation Guide

check the default system logical unit numbers assigned, generate a
source listing using the /LISTING generation option.

A default system logical unit number is generated for EZEPRINT even
when the intended use of EZEPRINT is as filetype SPOOL. The map
group for EZEPRINT might be shared by multiple programs in a run
unit. The /SYSNUM value within the map group is equivalent to the
/SYSNUM value specified or defaulted to at the time the last program
in the run unit was generated.

/SYSTEM
Specifies the target system affected by this associate command

You might have multiple associates in one resource association file.
The resource association used is the first association where the value
specified for the /SYSTEM option matches the value specified for the
/SYSTEM generation option value. The values specified for the
system options can be exact or wildcard matches. If there is not an
entry where the /SYSTEM value matches the target system specified
for the GENERATE subcommand, then the first entry in the resource
association file that matches the file name but does not have the
/SYSTEM option specified is used.

The target system value can be one of the following:
v AIXCICS
v IMSBMP
v IMSVS
v MVSBATCH
v MVSCICS
v NTCICS
v OS2CICS
v OS400
v SOLACICS
v TSO
v VMCMS
v VMBATCH
v VSEBATCH
v VSECICS
v WINNT

The following target systems use the resource association file at run
time. Refer to the VisualAge Generator Server Guide for Workstation
Platforms for information on these target systems.
v OS/2
v AIX
v HP-UX
v Windows NT

Chapter 28. Resource associations part 273

Sample resource associations part
Figure 83 shows a sample resource associations part.

File types supported by environment and record organization

Table 69 on page 275 shows the valid file types for each environment.

/**/
/* This is a sample resource association part that uses naming conventions on the file */
/* name to set the file type to a value other than the usual default. In this example, */
/* the target systems being used are IMSBMP, IMSVS, MVSCICS, OS2CICS, MVSBATCH, VMCMS, */
/* and OS/400. */
/* */
/* The defaults are changed in the following ways: */
/* */
/* For MVSCICS, files with names starting with a 'T' default to type TEMPMAIN */
/* */
/* For all targets, files with names starting with a 'V' default to type VSAM */
/* */
/* For MVSBATCH, files with names starting with a 'G' default to type GSAM */
/* */
/* For OS2CICS, the default file type is always OS2COBOL (unless the name starts */
/* with a 'V') */
/* */
/* In this example, TESTHLQ is a symbolic parameter that is set when generating for */
/* MVSBATCH. TESTHLQ includes the high-level qualifier used for test data sets. */
/* **/
/* any files that need values other than the defaults given below need to have their */
/* own associations above this line */

ASSOCIATE FILE=T* /SYSTEM=MVSCICS
/FILETYPE=TEMPMAIN /SYSNAME='%EZEDD%'

ASSOCIATE FILE=V*
/FILETYPE=VSAM /SYSNAME='%EZEDD%'

ASSOCIATE FILE=V* /SYSTEM=MVSBATCH
/FILETYPE=VSAM /SYSNAME='%TESTHLQ%.VSAM.%EZEDD%'

ASSOCIATE FILE=G* /SYSTEM=MVSBATCH
/FILETYPE=GSAM /SYSNAME='%TESTHLQ%.GSAM.%EZEDD%'

ASSOCIATE FILE=* /SYSTEM=OS2CICS
/FILETYPE=OS2COBOL /SYSNAME='C:\TESTDATA\%EZEDD%.DAT'

ASSOCIATE FILE=FILE1 /SYSTEM=IMSVS
/FILETYPE=MMSGQ

ASSOCIATE FILE=FILE1 /SYSTEM=MVSBATCH
/FILETYPE=SEQRS /SYSNAME='THE.NAME.OF.MY.FILE'

ASSOCIATE FILE=FILE2 /SYSTEM=MVSBATCH
/FILETYPE=GSAM /PCBNO=3

ASSOCIATE FILE=FILE2 /SYSTEM=IMSBMP
/SYSNAME='THE.NAME.OF.MY.OTHER.FILE'

ASSOCIATE FILE=FILE3 /SYSTEM=OS2CICS
/FILETYPE=OS2COBOL

ASSOCIATE FILE=COB* /SYSTEM=OS2CICS
/FILETYPE=OS2COBOL

ASSOCIATE FILE=EZEPRINT /SYSTEM=OS400
/FILETYPE=SPOOL

ASSOCIATE FILE=FILE4 /SYSTEM=VMCMS
/FILETYPE=SEQRS /SYSNAME='FILE4NAM FILE4TYP A1'

Figure 83. Sample resource associations part

274 VisualAge Generator: Generation Guide

Table 69. File types supported by environment and record organization

System Indexed Relative Serial Print

CICS for AIX VSAM * VSAM *
TEMPMAIN
TEMPAUX

SEQ *
VSAM
TRANSIENT
TEMPMAIN
TEMPAUX

SEQ *

CICS for
Windows NT

VSAM * VSAM *
TEMPMAIN
TEMPAUX

SEQ *
VSAM
TRANSIENT
TEMPMAIN
TEMPAUX

SEQ *

CICS for OS/2 VSAM *
OS2COBOL

VSAM *
TEMPMAIN
TEMPAUX
OS2COBOL

OS2COBOL *
VSAM
TRANSIENT
TEMPMAIN
TEMPAUX

OS2COBOL *

IMS/VS Not available Not available SMSGQ *
MMSGQ

SMSGQ *

IMS BMP VSAMRS *
VSAM

VSAMRS *
VSAM

SEQRS *
VSAMRS
SEQ
VSAM
SMSGQ
MMSGQ
GSAM

SEQRS *
SEQ
SMSGQ
GSAM

MVS batch VSAMRS *
VSAM

VSAMRS *
VSAM

SEQRS *
VSAMRS
SEQ
VSAM
GSAM

SEQRS *
SEQ
GSAM

CICS for MVS/ESA VSAM * VSAM *
TEMPMAIN
TEMPAUX

VSAM *
TRANSIENT
TEMPMAIN
TEMPAUX
SPOOL

TRANSIENT *
SPOOL

MVS/TSO VSAMRS *
VSAM

VSAMRS *
VSAM

SEQRS *
VSAMRS
SEQ
VSAM

SEQRS *
SEQ

OS/400 VSAM VSAM SEQ *
VSAM

SEQ *
SPOOL

VM CMS VSAMRS *
VSAM

VSAMRS *
VSAM

SEQRS *
VSAMRS
SEQ

SEQRS *
SEQ

Chapter 28. Resource associations part 275

Table 69. File types supported by environment and record organization (continued)

System Indexed Relative Serial Print

VM batch VSAMRS *
VSAM

VSAMRS *
VSAM

SEQRS *
VSAMRS
SEQ

SEQRS *
SEQ

VSE batch¹ VSAMRS *
VSAM

VSAMRS *
VSAM

SPOOL²
SEQ³
VSAMRS
VSAM

SPOOL *
SEQ

CICS for VSE/ESA VSAM * VSAM *
TEMPMAIN
TEMPAUX

VSAM *
TRANSIENT
TEMPMAIN
TEMPAUX
SPOOL

TRANSIENT *
SPOOL

Notes:

An asterisk (*) indicates that the file type is the default for that record organization in that environment.

¹SPOOL is not a valid file type for VSE batch serial input files.

²SPOOL is the default if the file is an output file.

³SEQ is the default if the file is an input file.

File types supported by CICS environments
Table 70 shows a list of the file types and their implementation supported in
the CICS environments, including CICS for OS/2, CICS for AIX, CICS for
Windows NT, CICS for MVS/ESA, and CICS for VSE/ESA.

Table 70. File type keywords supported by CICS environments

Environment File implementation System resource name format and length
Default system
resource name

OS2COBOL

276 VisualAge Generator: Generation Guide

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

CICS for
OS/2

An indexed, relative,
serial, or print file
associated with a
COBOL data file on
OS/2. COBOL
READ/WRITE
statements are
generated to gain
access to the file.

File sharing for
COBOL-managed
data files is not
supported in
programs generated
for CICS for OS/2.
Whenever the file is
opened, an exclusive
lock is obtained on
the file until it is
closed.

OS/2 file name, 65 bytes For print files, the
default system
resource name is
LPT1; for all other
file types, the
VisualAge Generator
file name.

SEQ

CICS for
AIX

An AIX or print file The file name must be one of the following:
v A fully-qualified AIX file name
v The name of a file located in a directory

specified by the FCWDPATH
environment variable of the program
process

The maximum length is 255 bytes.

For print files, the
default system
resource name is
EZEPRINT; for all
other file types, the
VisualAge Generator
file name.

CICS for
Solaris

A Solaris or print file The file name must be one of the following:
v A fully-qualified Solaris file name
v The name of a file located in a directory

specified by the FCWDPATH
environment variable of the program
process

The maximum length is 255 bytes.

For print files, the
default system
resource name is
EZEPRINT; for all
other file types, the
VisualAge Generator
file name.

Chapter 28. Resource associations part 277

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

CICS for
Windows NT

A CICS for
Windows NT or print
file

The file name must be one of the following:
v A fully-qualified CICS for Windows NT

file name
v The name of a file located in a directory

specified by the FCWDPATH
environment variable of the program
process

The maximum length is 255 bytes.

For print files, the
default system
resource name is
EZEPRINT; for all
other file types, the
VisualAge Generator
file name.

CICS for
MVS/ESA

A serial or print file
associated with a JES
SPOOL file

OS/2 file name, 65 bytes

Input file: The name is in the format
userid.class, where the userid is a 4- to
8-character external writer name, and class
is a 1-character spool class. CICS requires
that the first 4 characters of the external
writer name be the same as the first 4
characters of the CICS APPLID value used
to identify the CICS region to ACF/VTAM.
The class value is optional and its default is
“A”. The maximum name size is 10 bytes.

Output file: The name is in the format
nodeid.userid.class, where nodeid is a 1- to
8-character system node ID, userid is a 1- to
8-character system user ID, and class is a
1-character spool class. The class value is
optional and its default is “A”. If class is not
specified, userid is also optional and its
default is the CICS user ID. This is the
same value as stored in the EZEUSRID
special function word. The maximum name
size is 19 bytes.

Refer to the CICS customization guide for
more information on specifying the system
resource name.

For print files, the
default system
resource name is
EZEP; for serial files,
the VisualAge
Generator file name.

278 VisualAge Generator: Generation Guide

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

CICS for
VSE/ESA

A serial output, serial
input, or print file
associated with a
VSE/POWER queue
member

Input file: The name is in the format
userid.class, where the userid is a 4- to
8-character external writer name, and class
is a 1-character spool class. See “Output file
naming format for CICS for VSE/ESA” on
page 283.

CICS requires that the first 4 characters of
the external writer name be the same as the
first 4 characters of the CICS APPLID value
used to identify the CICS region to
ACF/VTAM. An asterisk (*) can be used as
the userid value, in which case the default is
the contents of the EZEUSRID special
function word. The class value is optional
and, if left blank, its default is “A”. You
cannot use an asterisk to request the default
class for input spool file. The maximum
name size is 10 bytes.

The input spool file is read from the PUN
VSE/POWER queue.

Output file: The name is in the format:
jobname.queue.class.disp.form.node.userid.parm.
(This name must be typed without spaces)
or for VSE/POWER PRT, the name is in the
format:
jobname.queue.class.disp.form.node.userid.fcbname.copies.
See “Output file naming format for CICS
for VSE/ESA” on page 283.

The default system
resource name is the
VisualAge Generator
file name used as
the SPOOL name.
The value for
jobname is the
VisualAge Generator
file name, and all
other values have
the specified
defaults.

TEMPAUX

Chapter 28. Resource associations part 279

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

All CICS A relative or serial
file associated with
an auxiliary
temporary storage
queue in CICS
environments.

TEMPAUX files can
be used by only one
transaction at a time.
The program
enqueues, by issuing
the ENQ command
with the
NOSUSPEND option,
when the queue is
first opened on
resource name
EZETEMP-
queuename. The
program dequeues by
issuing the DEQ
command, when the
file is closed or when
recoverable resources
are committed. A file
is closed because of a
CLOSE process
option or when the
end of the program is
reached.

A control byte is
added to each
temporary storage
record written by
generated programs.
Refer to the VisualAge
Generator Design
Guide for more
information about
using temporary
storage.

Queue name, 8 bytes The default system
resource name is the
VisualAge Generator
file name.

TEMPMAIN

280 VisualAge Generator: Generation Guide

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

All CICS A relative or serial
file associated with a
main temporary
storage queue in
CICS environments.

TEMPMAIN files can
be used by only one
transaction at a time.
The program
enqueues, by issuing
the ENQ command
with the
NOSUSPEND option,
when the queue is
first opened on
resource name
EZETEMP-
queuename. The
program dequeues,
by issuing the DEQ
command, when the
file is closed or when
recoverable resources
are committed. A file
is closed because of a
CLOSE process
option or when the
end of the program is
reached.

Queue name, 8 bytes

In the current releases of CICS for OS/2,
files defined as main storage queues to
CICS are actually implemented as auxiliary
storage queues.

A control byte is added to each temporary
storage record written by generated
programs. Refer to the VisualAge Generator
Design Guide for more information about
using temporary storage.

The default system
resource name is the
VisualAge Generator
file name.

TRANSIENT

Chapter 28. Resource associations part 281

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

All CICS A serial or print file
associated with a
transient data queue
in CICS
environments.

Destination control table (DCT) name or
Transient data definition (TDD) name, 4
bytes

For print files, the
default system
resource name is
EZEP; for serial files,
the first 4 characters
of the VisualAge
Generator file name.

The EZEDEST and
EZEDESTP special
function words are
initialized with the
system resource
name associated at
generation time.

The exception is
when the
/PRINTDEST
generation option is
specified with a
value of TERMID;
then the EZEDESTP
special function
word is initialized to
the value of
EIBTRMID.

VSAM

CICS for
AIX and
CICS for
Solaris

An indexed, relative,
or serial file
associated with a
CICS for AIX
managed file. EXEC
CICS statements are
generated for each
read or write to the
file.

File definition (FD) name, 8 bytes The default system
resource name is the
VisualAge Generator
file name.

VSAM

282 VisualAge Generator: Generation Guide

Table 70. File type keywords supported by CICS environments (continued)

Environment File implementation System resource name format and length
Default system
resource name

CICS for
Windows NT

An indexed, relative,
or serial file
associated with a
CICS for
Windows NT
managed file. EXEC
CICS statements are
generated for each
read or write to the
file.

File definition (FD) name, 8 bytes The default system
resource name is the
VisualAge Generator
file name.

CICS for
OS/2

An indexed, relative,
or serial file
associated with a
CICS for OS/2
managed file. EXEC
CICS statements are
generated for each
read or write to the
file.

File control table (FCT) name, 8 bytes The default system
resource name is the
VisualAge Generator
file name.

CICS for
MVS/ESA
and CICS for
VSE/ESA

An indexed, relative,
or serial file
associated with a
VSAM file. EXEC
CICS statements are
generated for each
read or write to the
file.

File control table (FCT) name, 8 bytes on
MVS and 7 bytes on VSE

For CICS for
MVS/ESA, the
default system
resource name is the
VisualAge Generator
file name; for CICS
for VSE/ESA, the
first 7 characters of
the VisualAge
Generator file name.

Output file naming format for CICS for VSE/ESA
The jobname parameter must be specified, or the default must be explicitly
requested by specifying an asterisk (*). All other parameters can specify that
the default value can be used by specifying an asterisk (*) or a blank.
However, if a default value for a parameter is specified using a blank, the
default values are used for all subsequent parameters. The components of the
output file name are defined as follows:

jobname The 1- to 8-character name that defines the jobname for the
VSE/POWER queue member. This value is used in all cases except when the
CICS Report Control Facility (RCF) is not being used, for example when the
queue is PUN or LST. For these two cases, the value in jobname is ignored,
and the VSE/POWER queue member jobname is the CICS for VSE/ESA

Chapter 28. Resource associations part 283

program ID. For all other cases, an asterisk (*) in this field causes the
VisualAge Generator file name to be used for the record.

queue The 3 characters that identify the destination VSE/POWER queue for
the file. The destinations, by output type, are as follows:

RDR for job output
LST for list output
PUN for punch output
PRT for list output (using RCF)

Using any other characters for queue makes the spool name not valid. An
asterisk (*) or a blank in this field causes the PRT queue to be used. The types
of support are RCF and basic CICS.

The RCF is used for files that specify RDR or PRT in this field.

Basic CICS SPOOL support is used for files that specify PUN or LST in this
field.

If you attempt to use RCF when you do not have RCF installed on your CICS
system, CICS returns an error message. This might be an AEY9 transaction
abend, a NOSPOOL condition, or the message ″SPOOLING SYSTEM IS NOT
AVAILABLE″.

When the queue value is PRT or LST, the file is opened with the ASA option.
This option specifies that the report is created using an American National
Standard printer-control character at the beginning of each line of data. If you
are using a serial file, you must ensure that valid carriage control characters
are used. If the file is a print file, the American National Standard
printer-control characters are automatically added for you by VisualAge
Generator Server for MVS, VSE, and VM.

class The single character that specifies class. An asterisk (*) or blank in this
field causes the default of ’A’ to be used.

disp The single character that specifies the VSE/POWER disposition status of
the queue member after it is closed. Valid values for disp are as follows:

D Process the job and delete it after processing

H Hold the job in the queue until released

K Process the job and keep it in the queue after processing

L Let the job stay in the queue until released

284 VisualAge Generator: Generation Guide

Using any other characters for disp makes the spool name not valid. This field
is not applicable when the RCF is not in use, for example when the queue is
LST or PUN. An asterisk (*) or a blank in this field causes the default of D to
be used.

form The 4 characters that identify the form number for print output. An
asterisk (*) or a blank in this field causes the default of your location’s
standard form to be used. This field is applicable when the queue is PRT and
it is ignored for all other queues.

node The 1- to 8-characters that specify the system node ID. An asterisk (*) or
a blank in this field causes the default of the current system node ID to be
used.

userid The 1- to 8-characters that specify the user ID. An asterisk (*) or a
blank in this field and you are signed on to CICS, the default value of userid is
the contents of the special function word EZEPID.

An asterisk (*) or a blank in this field and you are not signed on to CICS, the
default value of userid is an asterisk (*).

parm The string of characters used to specify output operands for files on the
VSE/POWER LST queue. This option is used only if the queue is LST, and it is
ignored for all other queues. This string is passed to CICS in the OUTDESCR
option of the CICS for VSE/ESA SPOOLOPEN OUTPUT command. The
characters must be specified in the correct format for the OUTDESCR option.
The parameters use the same keywords and values as are used on the
VSE/POWER LST statement for program-user-defined output operands but
the syntax varies slightly. Figure 84 shows how you can use FORMDEF
FORM1 and PAGEDEF PAGE1, the parm string.

Figure 85 shows how the spool file might appear.

The calculating and inserting of the length area required by CICS for
VSE/ESA at the beginning of the string is handled automatically. The length
of the parm string is variable and depends on the length of the spool file
specification up to this point. The total length of the spool file specification
cannot be over 65 characters.

'FORMDEF(FORM1) PAGEDEF(PAGE1)'

Figure 84. FORMDEF example

JOBNAME1.LST.*.*.*.*.*.FORMDEF(FORM1) PAGEDEF(PAGE1).

Figure 85. Spool file

Chapter 28. Resource associations part 285

fcbname The name of the FCB-image phase which VSE/POWER to use for
printing the related job output. The name phase must be cataloged in a
sublibrary accessible from the VSE/POWER partition. The name can be up to
eight alphanumeric (characters, numbers, and special characters). If omitted,
the system default FCB is used. The default name can be specified with an
asterisk.

copies The number of copies to be printed from the print queue. The value
can be from 1 to 255. If omitted, VSE/POWER prints one copy. The default
value is 1.

File types supported for MVS/TSO
Table 71 shows a list of file types supported for the MVS/TSO environment.

Table 71. File type keywords supported by the MVS/TSO environments

File implementation

System resource
name format and
length

Default system
resource name

SEQ

A serial or print file associated with a system sequential
file. COBOL READ/WRITE statements are generated to
gain access to the file. SEQ must not be specified when
using dynamic allocation, the special function word
EZEDEST, or the special function word EZEDESTP.

The file name is used as the DD name. For serial files,
the system resource name is used as the data set name
in the generated CLIST. For print files, the system
resource name is not used in the generated CLIST.

Fully qualified data
set name, 54 bytes

For print files, the
default system
resource name is
EZEPRINT; for serial
files, the VisualAge
Generator file name.

SEQRS

A serial or print file associated with a system sequential
file. Calls to host services are generated for all reads and
writes to the file. SEQRS must be specified when using
dynamic allocation, the special function word EZEDEST,
or the special function word EZEDESTP.

The system resource name is used as the data set name
in the generated CLIST. Refer to the VisualAge Generator
Design Guide for more information about dynamically
allocating files.

Fully qualified data
set name, 54 bytes

EZEDEST/EZEDESTP:
fully-qualified data
set name, 54 bytes, or
DD name, 8 bytes

For print files, the
default system
resource name is
EZEPRINT; for serial
files, the VisualAge
Generator file name.

The EZEDEST and
EZEDESTP special
function words are
initialized with the
system resource name
associated at
generation time.

VSAM

286 VisualAge Generator: Generation Guide

Table 71. File type keywords supported by the MVS/TSO environments (continued)

File implementation

System resource
name format and
length

Default system
resource name

An indexed, relative, or serial file associated with a
VSAM file. COBOL READ/WRITE statements are
generated to gain access to the file. VSAM must not be
specified when using dynamic allocation, the
SCANBACK process option, or the EZEDEST special
function word.

The file name is used as the DD name. The system
resource name is used as the data set name in the
generated CLIST.

Fully qualified data
set name, 44 bytes

The default system
resource name is the
VisualAge Generator
file name.

VSAMRS

An indexed, relative, or serial file associated with a
VSAM file. Calls to host services are generated for all
reads and writes to the file.

The system resource name is used as the data set name
in the generated CLIST. Refer to the VisualAge Generator
Design Guide for more information about dynamically
allocating files.

Fully qualified data
set name, 44 bytes

EZEDEST: fully
qualified data set
name, 44 bytes, or DD
name, 8 bytes

The default system
resource name is the
VisualAge Generator
file name.

The EZEDEST special
function word is
initialized with the
system resource name
associated at
generation time.

File types supported for IMS BMP, IMS/VS, and MVS batch
Table 72 shows a list of file types supported for the MVS batch, IMS/VS, and
IMS BMP environments. Listed under each file type are the environments
supporting that file type.

Note: For the IMS BMP environment, all programs generated as COBOL
programs that run together in the same job step must associate
EZEPRINT with either the message queue or a sequential or GSAM file.

Table 72. File type keywords supported by IMS BMP, IMS/VS, and MVS batch environments

Environment File implementation
System resource name
format and length

Default system resource
name

GSAM

Chapter 28. Resource associations part 287

Table 72. File type keywords supported by IMS BMP, IMS/VS, and MVS batch environments (continued)

Environment File implementation
System resource name
format and length

Default system resource
name

IMS BMP
MVS batch

A serial or print file associated with
a GSAM database.

Data set name, 44 bytes For print files, the
default system resource
name is EZEPRINT; for
serial files, the
VisualAge Generator file
name.

MMSGQ

IMS BMP
IMS/VS

A serial file associated with a
multiple segment message queue.

The logical terminal
name or transaction code
associated with the
message queue, 8 bytes

The default system
resource name is the
VisualAge Generator file
name.

SEQ

IMS BMP
MVS batch

A serial or print file associated with
a system sequential file. COBOL
READ/WRITE statements are
generated to gain access to the file.
SEQ must not be specified when
using dynamic allocation, the special
function word EZEDEST, or the
special function word EZEDESTP.

The file name is used as the DD
name. For serial files, the system
resource name is used as the data set
name in the generated JCL. For print
files, the system resource name is
not used in the generated JCL.

Data set name, 54 bytes For print files, the
default system resource
name is EZEPRINT; for
serial files, the
VisualAge Generator file
name.

SEQRS

IMS BMP
MVS batch

A serial or print file associated with
a system sequential file. Calls to host
services are generated for all reads
and writes to the file. SEQRS must
be specified when using dynamic
allocation, the special function word
EZEDEST, or the special function
word EZEDESTP.

The system resource name is used as
the data set name in the generated
JCL. Refer to the VisualAge Generator
Design Guide for more information
about dynamically allocating files.

Generation: data set
name, 54 bytes

EZEDEST/EZEDESTP:
data set name, 54 bytes,
or DD name, 8 bytes

For print files, the
default system resource
name is EZEPRINT; for
serial files, the
VisualAge Generator file
name.

The EZEDEST and
EZEDESTP special
function words are
initialized with the
system resource name
associated at generation
time.

288 VisualAge Generator: Generation Guide

Table 72. File type keywords supported by IMS BMP, IMS/VS, and MVS batch environments (continued)

Environment File implementation
System resource name
format and length

Default system resource
name

SMSGQ

IMS BMP
IMS/VS

A serial or print file associated with
a single-segment message queue.

The logical terminal
name or transaction code
associated with the
message queue, 8 bytes

For print files, the
default system resource
name is EZEPRINT; for
serial files, the
VisualAge Generator file
name.

VSAM

IMS BMP
MVS batch

An indexed, relative, or serial file
associated with a VSAM file.
COBOL READ/WRITE statements
are generated to gain access to the
file. VSAM must not be specified
when using dynamic allocation, the
SCANBACK process option, or the
special function word EZEDEST.

The file name is used as the
DDname. The system resource name
is used as the data set name in the
generated JCL.

Data set name, 44 bytes The default system
resource name is the
VisualAge Generator file
name.

VSAMRS

IMS BMP
MVS batch

An indexed, relative, or serial file
associated with a VSAM file. Calls to
host services are generated for all
reads and writes to the file.
VSAMRS must be specified when
using dynamic allocation, the
SCANBACK process option, or the
special function word EZEDEST.

The system resource name is used as
the data set name in generated JCL.
Refer to the VisualAge Generator
Design Guide for more information
about dynamically allocating files.

Generation: data set
name, 44 bytes

EZEDEST: data set
name, 44 bytes, or DD
name, 8 bytes

The default system
resource name is the
VisualAge Generator file
name.

The EZEDEST special
function word is
initialized with the
system resource name
associated at generation
time.

File types supported by OS/400
Table 73 on page 290 shows a list of file types supported for the OS/400
environment.

Chapter 28. Resource associations part 289

Table 73. File type keywords supported by the OS/400 environment

File implementation
System resource name format and
length

Default system resource
name

SEQ

For serial files, a file associated with a
system sequential file, which is a
physical or logical file in “arrival
sequence” organization.

COBOL READ/WRITE statements are
generated to access the file.

For printer files, SEQ and SPOOL
differ in that SEQ inserts a page eject
at the end of the print stream when
the file is closed.

Unqualified file name, 10 bytes
maximum.

For serial files, the run-time library
list (*LIBL) and the first member in
the physical or logical file is used to
complete qualification of the file
name. Override Database File
commands can be used prior to run
time to alter the resolution to the
file; use EZEDEST at run time.

For printer files, same as for SPOOL

For serial files, the default
system resource name is
the VisualAge Generator
file name.

For printer files, same as
for SPOOL

SPOOL

A printer file object (*PRTF) such as
QVGNPRTF, which is shipped with
VisualAge Generator Server for
AS/400

Unqualified file name, 10 bytes
maximum.

The run-time library list (*LIBL) is
used to complete qualification of the
file name. Override Printer File
commands can be used prior to run
time to alter the resolution to the
file; use EZEDESTP at run time.

For printer files
(EZEPRINT), the default
system resource name is
QVGNPRNT. Output
from EZEPRINT is sent to
the job’s output queue as
a spooled file that is
named with the system
resource name.

VSAM

OS/400 database files, physical or
logical, in indexed or “arrival
sequence” organization SEQ
(depending on the VisualAge
Generator corresponding record
organization)

COBOL READ/WRITE statements are
generated to access the file. To use
relative record access, you need to
preallocate the file.

Same as SEQ Same as SEQ

File types supported for VM CMS and VM batch
Table 74 on page 291 shows a list of file types supported for the VM
environments.

290 VisualAge Generator: Generation Guide

Table 74. File type keywords supported by the VM environments

File implementation
System resource name format
and length

Default system resource
name

SEQ

A serial or print file associated with a
system sequential file. COBOL
READ/WRITE statements are generated
to gain access to the file. SEQ must not
be specified when you are using dynamic
allocation or the special function words
EZEDEST or EZEDESTP.

The file name is used as the FILEDEF DD
name. For serial files, the system resource
name is used as the CMS file name in the
generated run-time exec. For print files,
the system resource name is not used in
the generated run-time exec.

CMS file name in the form:

'filename filetype filemode'
or

'filename filetype'

For print files, the default
system resource name is
EZEPRINT; for serial files,
the VisualAge Generator
file name.

SEQRS

A serial or print file associated with a
system sequential file. Calls to host
services are generated for all reads and
writes to the file. SEQRS must be
specified when you use dynamic
allocation or the special function words
EZEDEST or EZEDESTP.

The system resource name is used as the
CMS file name in the generated run-time
exec. Refer to the VisualAge Generator
Design Guide for more information about
dynamically allocating files.

CMS file name in the form:

'filename filetype filemode'
or

'filename filetype'
or:

Fully qualified name of an MVS
file on an OS formatted
minidisk for input (read) only.

For EZEDEST or EZEDESTP,
one of the following:

v CMS file name in the form:

'filename filetype filemode'

v FILEDEF DD name, 8 bytes

v Fully qualified file name of a
file on an OS formatted
minidisk for input only

For print files, the default
system resource name is
EZEPRINT; for serial files,
the VisualAge Generator
file name.

The EZEDEST and
EZEDESTP special function
words are initialized with
the system resource name
associated at generation
time.

VSAM

Chapter 28. Resource associations part 291

Table 74. File type keywords supported by the VM environments (continued)

File implementation
System resource name format
and length

Default system resource
name

An indexed, relative, or serial file
associated with a VSAM file. COBOL
READ/WRITE statements are generated
to access the file.

The system resource name is used as the
DLBL file identifier in the generated
run-time exec. File connections are
performed using the file name as the
DLBL file name. VSAM must not be
specified when you are using the
SCANBACK process option or the
EZEDEST special function word.

DLBL file identifier, 44 bytes The default system
resource name is the first 7
characters of the VisualAge
Generator file name.

The EZEDEST and
EZEDESTP special function
words are initialized with
the system resource name
associated at generation
time.

VSAMRS

An indexed, relative, or serial file
associated with a VSAM file. Calls to
host services are generated for all reads
and writes to the file.

The system resource name is used as the
DLBL file identifier in the generated
run-time exec. VSAMRS must be
specified when you use the SCANBACK
process option or the EZEDEST special
function word.

Generation: DLBL file identifier,
44 bytes

EZEDEST: DLBL file name, 7
bytes

The default system
resource name is the first 7
characters of the VisualAge
Generator file name.

The EZEDEST and
EZEDESTP special function
words are initialized with
the system resource name
associated at generation
time.

File types supported for VSE batch
Table 75 shows a list of file types supported for the VSE batch environment.

Table 75. File type keywords supported by the VSE batch environment

File implementation
System resource name
format and length Default system resource name

SEQ

292 VisualAge Generator: Generation Guide

Table 75. File type keywords supported by the VSE batch environment (continued)

File implementation
System resource name
format and length Default system resource name

A system logical unit number is used
for all SEQ files. This value is specified
using the /SYSNUM option for the
resource association.

System Logical Unit Number

The following shows how to specify
nnn as the 3-character system label
number.

SYSnnn

The valid range of values is 000–254.

The DLBL or TLBL name is always the
first 7 characters of the VisualAge
Generator file name associated with
that VisualAge Generator record.

The first 7 characters of the
VisualAge Generator file
name, used as the DLBL or
TLBL name.

Default System Logical
Unit Number

The default is 005.

If multiple VSE batch SEQ
files need default system
logical unit numbers set,
default values are assigned
in sequential order starting
with 005.

SPOOL

A sequential file in VSAM managed
space

Calls to host services are generated for
all writes to the file.

The name is in the format:
jobname.queue.class.disp.
form.node.userid.fcbname.copy
(You must type this name
without spaces.) See
“Output file naming format
for VSE batch” on page 294.

The default system resource
name is the VisualAge Generator
file name used as the SPOOL
name. The value of jobname is the
VisualAge Generator file name,
and all other values have the
specified defaults.

The jobname parameter must be
specified, or the default must be
explicitly requested by specifying
an asterisk (*). All other
parameters can specify that the
default value can be used by
specifying an asterisk (*) or a
blank. However, if a default value
for a parameter is specified using
a blank, the default values are
used for all subsequent
parameters.

VSAM

Chapter 28. Resource associations part 293

Table 75. File type keywords supported by the VSE batch environment (continued)

File implementation
System resource name
format and length Default system resource name

An indexed, relative, or serial file
associated with a VSAM file. COBOL
READ/WRITE statements are
generated to access the file.

The system resource name is used as
the DLBL file identifier in the
generated JCL. File connections are
performed using the file name as the
DLBL file name. VSAM must not be
specified when using the SCANBACK
process option or the EZEDEST special
function word.

DLBL file identifier, 44 bytes The default system resource
name is the first 7 characters of
the VisualAge Generator file
name.

The EZEDEST and EZEDESTP
special function words are
initialized with the system
resource name associated at
generation time.

VSAMRS

An indexed, relative, or serial file
associated with a VSAM file. Calls to
host services are generated for all
reads and writes to the file.

The system resource name is used as
the DLBL file identifier in the
generated JCL. VSAMRS must be
specified when using the SCANBACK
process option or the EZEDEST special
function word.

Generation: DLBL file
identifier, 44 bytes

EZEDEST: DLBL file name,
7 bytes

The default system resource
name is the first 7 characters of
the VisualAge Generator file
name.

The EZEDEST special function
word is initialized with the
system resource name associated
at generation time.

Output file naming format for VSE batch
The components of the name in the format
jobname.queue.class.disp.form.node.userid.fcbname.copy are defined as follows:

jobname The 1- to 8-character name that defines the jobname for the
VSE/POWER queue member. This option is used in all cases. An asterisk (*)
in this field causes the default of the VisualAge Generator file name for the
record to be used.

queue The 3 characters that identify the destination VSE/POWER queue for
the file. The destinations and their appropriate output type, follow:

RDR for job output
LST for list output
PUN for punch output

294 VisualAge Generator: Generation Guide

Using any other characters for queue makes the spool name not valid. An
asterisk (*) or a blank in this field causes the LST queue to be used. The queue
PRT can be used, but is changed to LST. The PRT value is not valid for VSE
batch. When the queue is LST, the file is opened with the ASA option. This
option specifies that the report is created using an American National
Standard printer-control character at the beginning of each line of data. If you
use a serial file, you must ensure that valid carriage control characters are
used. If the file is a print file, the American National Standard printer-control
characters are automatically added for you by VisualAge Generator Server for
MVS, VSE, and VM.

class The single character that specifies class. An asterisk (*) or blank in this
field causes the default of ’A’ to be used.

disp The single character that specifies the VSE/POWER disposition status of
the queue member after it is closed. Valid values for disp follow:

D Process the job and delete it after processing

H Hold the job in the queue until released

K Process the job and keep it in the queue after processing

L Let the job stay in the queue until released

Using any other characters for disp makes the spool name not valid. An
asterisk (*) or a blank in this field causes the default of ’D’ to be used.

form The 4 characters that identify the form number for print output. An
asterisk (*) or a blank in this field causes the default of your location’s
standard form to be used. This field is applicable when the queue is LST, and
it is ignored for all other queues.

node The 1- to 8-characters that specify the system node ID. An asterisk (*) or
a blank in this field causes the default of the current system node ID to be
used.

userid The 1- to 8-characters that specify the user ID. An asterisk (*) or a
blank in this field causes the default of the userid ’ANY’ to be used.

fcbname The name of the FCB-image phase which VSE/POWER to use for
printing the related job output. The name phase must be cataloged in a
sublibrary accessible from the VSE/POWER partition. The name can be up to
eight alphanumeric (characters, numbers, and special characters). If omitted,
the system default FCB is used. The default name can be specified with an
asterisk.

Chapter 28. Resource associations part 295

copy The number of copies to be printed from the print queue. The value can
be from 1 to 255. If omitted, VSE/POWER prints one copy. The default value
is 1.

296 VisualAge Generator: Generation Guide

Chapter 29. Generation command and option descriptions

This chapter describes the generation commands, subcommands, parameters,
and options. Options (keyword parameters beginning with a /) can be used
as shown on commands or in generation options parts.

See the following chapters for command syntax diagrams:
v “Chapter 5. Command interface for C++ generation” on page 21
v “Chapter 9. Command interface for Java generation” on page 43
v “Chapter 15. Command interface for COBOL generation” on page 167
v “Chapter 19. Command interface for Web transaction program generation”

on page 187
v “Chapter 22. Command interface for Java wrapper generation” on page 201

HPTCMD commands

This section describes the HPTCMD command and HPTCMD subcommands.

HPTCMD command
The HPTCMD command provides the command interface functions for the
VisualAge Generator Developer. The first parameter you enter after the
HPTCMD command is the subcommand. The command can be entered from
a system prompt or from within another program or command file.

HPTCMD subcommands

GENERATE Specifies that you want to generate a program, table, or map
group.

You can also specify options that affect how a part is
generated.

PREPARE Specifies that you want to run the preparation script created
during the generation process.

You can also specify options that affect how a part is
prepared.

START Specifies that you want to start the server process that runs
HPTCMD subcommands.

STOP Specifies that you want to stop the server process that runs
HPTCMD subcommands.

VALIDATE Specifies that you want to validate a program, table, or map
group.

© Copyright IBM Corp. 1980, 2001 297

You can specify option values as part of the validation.

You can use this command even if you do not have the
VisualAge Generator Developer installed on your machine.
The VALIDATE subcommand enables you to validate your
source before submitting your program for generation.

The GENERATE, PREPARE and VALIDATE subcommands use many of the
same parameters and options. See the appropriate syntax diagrams to
determine what parameter or option is used. Use the following information to
determine the meaning of the parameter or option.

Required parameters for subcommands

The parameters listed below are required but cannot all be used at the same
time. For specific syntax information, refer to the syntax diagrams listed at the
beginning of this chapter.

filename
Is a positional parameter on the PREPARE subcommand which specifies the
name of the preparation command file generated for a part.

The file name is the name of the part specified on the GENERATE
subcommand. Specifying the file extension is optional. If an extension is not
specified, PRP is assumed.

If the preparation process starts as a result of the /PREP generation option
being specified, the path for the file is determined from the value specified for
the /GENOUT generation option.

If the path is not explicitly specified, and the /GENOUT generation option is
not specified, the DPATH directories are searched for the file.

partname
Is a positional parameter on the GENERATE command which specifies the
program, table, or map group you want to generate or validate.

The generation process determines the part type from the part name.

You can specify multiple parts separated by a comma. Spaces between the
part names is not allowed.

/CONFIGMAPNAME
Specifies the ENVY configuration map to be loaded to access the program,
table, or map group, as well as all its associated parts during generation or
validation. The value must be specified in quotation marks (″″). This
parameter is valid only in VisualAge Generator for Smalltalk.

298 VisualAge Generator: Generation Guide

/CONFIGMAPVERSION
Specifies the version of the ENVY configuration map identified by the
/CONFIGMAPNAME parameter. The value must be specified in quotation
marks (″″). This parameter is valid only in VisualAge Generator for Smalltalk.

/PROJECT
Specifies the name and the version of a Java project. For example:
/PROJECT="AlphaProj","1.2"

This option is repeatable.

/SYSTEM
Specifies the target system where the generated program runs.

In VisualAge Generator, if you generate the same program, map group, or
table for more than one target run-time environment, you must specify a
different output directory for each generation. Otherwise, the output from the
later generations overlays the output from the first generation. You can specify
the symbolic parameter EZEENV as one of the subdirectories on the
/GENOUT option. Specifying /GENOUT causes outputs for different systems
to be written to different directories.

The following table shows the batch terms, the corresponding user-interface
terms, and the type of generated output for all the values that can be specified
for the target system.

Table 76. The /SYSTEM generation option values

Batch User interface Output

AIX AIX C++

AIXCICS AIX CICS C++

HP HP-UX C++

IMSBMP IMS BMP COBOL

IMSVS IMS VS COBOL

JAVAWINNT Windows NT Java

JAVAGUI GUI (on VisualAge Java
only)

JAVAWRAPPER Java Wrapper Java (on VisualAge Java
only)

MVSBATCH MVS Batch COBOL

MVSCICS MVS CICS COBOL

NTCICS Windows NT CICS C++

OS2CICS OS/2 CICS COBOL

Chapter 29. Generation command and option descriptions 299

Table 76. The /SYSTEM generation option values (continued)

Batch User interface Output

OS2 OS/2 C++

OS2GUI GUI (on VisualAge
Smalltalk only)

OS400 OS/400 COBOL

SCO SCO OpenServer C++

SOLARIS Solaris C++

SOLACICS Solaris CICS C++

TSO MVS TSO COBOL

VMCMS VM CMS COBOL

VMBATCH VM Batch COBOL

VSEBATCH VSE Batch COBOL

VSECICS VSE CICS COBOL

WINGUI GUI (on VisualAge
Smalltalk only)

WINNT Windows NT C++

The /CONFIGMAPNAME, /CONFIGMAPVERSION, and /PROJECT options
require a value.

Optional parameters for subcommands

The phrase in parentheses that follows the option name is the field name that
is displayed on the user interface.

/ANSISQL (ANSI SQL statements)
Specifies that you want to generate SQL statements using the ANSI SQL
format.

Generate ANSI SQL statements only if you use a non-IBM database manager
on MVS, VM, or VSE environments.

Do not generate ANSI SQL statements if your database manager is DB2 on
MVS, DB2/VSE on VSE, DB2/400 on OS/400, or SQL/DS on VM.

ANSI SQL statements do not support the Execution Time Statement Build
option for SQL processes or the specification of table names as host variables
at run time. You can only use these functions with the IBM database
managers.

300 VisualAge Generator: Generation Guide

When specifying ANSI SQL statement generation, consider the following
items:
v The I/O error values (ERR, NRF, DED, UNQ, and HRD) are set by treating

the ANSI SQL database manager return code as though it had the same
meaning as the corresponding DB2, DB2/VSE, or SQL/DS VM return code.
If the return codes have different meanings, check the value in the
EZESQCOD special function word.

v Any of the preparation templates and procedures for SQL programs that
might need to be tailored to use the procedures required by your ANSI SQL
database manager. This includes templates and procedures that perform the
following functions:
– SQL precompile
– Link-edit with database manager stub
– DB2 BIND

v Any of the run-time templates that might need to be tailored to meet the
requirements of your ANSI SQL database manager.

The default is /NOANSISQL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/BIND (Bind Control)
Specifies the BIND control part to search for the program BIND command file.

A BIND control part is required only for DB2 programs generated for MVS
systems. Preparation templates shipped with VisualAge Generator contain
default BIND command statements used to generate a default BIND control
part when a DB2 program is generated. The template used to produce the
BIND control part is determined by the target environment, whether a DB2
work database is used, and whether a DL/I database is used.

To determine whether a BIND control part is to be produced from default
templates or from a BIND control part, the generator searches the
workspace/image into which the generation project/configuration map was
loaded for a BIND control part named prgmname.bind_value if you specified
the /BIND option or prgmname if you did not specify /BIND. If a matching
BIND control part is found, it is used to produce the program’s BIND control
part. Otherwise, the program’s BIND control part is produced from the
appropriate template. Regardless of the input used to produce the BIND
control part, the BIND command file is named prgmname.BDC.

We recommend that you always use the /BIND option, because it is difficult
to create a bind control part with the same name as the program part.

Chapter 29. Generation command and option descriptions 301

Note: Binding a program targeted for CICS for OS/2 is accomplished by
setting BINDPARM=Y. This causes COBOL/2 to perform the SQL bind
for the program.

For COBOL Users

COBOL has a limitation of 128 characters for the command line parser.
Characters exceeding that limitation are truncated. Do not use names for the
/GENOUT option or the /BIND option that might cause the total length of
the command line to exceed this limitation.

If the limitation is exceeded and the line is truncated, any of the following
might occur:
v An SQL message might be displayed if the /SQLDB option is truncated.
v A COBOL compiler message might be displayed if the /GENOUT option or

the /BIND option is truncated.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

See “Chapter 27. BIND control parts” on page 257 for more information about
BIND.

/CHECKTYPE (Substructured data items)
Specifies that you want to check the structures of records and tables for
possible data type conflicts that can cause run-time errors.

An example of the type of conflict this checking reports is a character (CHA)
data item that is substructured by a packed (PACK) data item.

You can specify the following values:

NONE

Specify NONE if you do not want to check for potential conflicts in
the data types of substructured data items at validation.

LOW

Specify LOW to check for conflicting data types in the lower-level
data items only. The highest level of the structure is not checked.

For example, if a record or table is defined with the first data item at
level 03 and all other data items are substructured under the first data
item, then the first data item is not included in the type checking. This

302 VisualAge Generator: Generation Guide

helps to minimize the number of messages issued if the entire
structure is defined as character so it can be moved as a block.

ALL

Specify ALL to check for conflicting data types in all levels of a
substructured data item.

An information message is issued if a conflict is found.

Specifying a value other than NONE increases the time needed for validation.

The default value is NONE.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/CICSDBCS (CICS translator supports DBCS)
Specifies that your MVS or VSE translator supports double-byte character set
(DBCS) names. Specify /CICSDBCS if your program uses DBCS part names.

If DBCS names are not supported, all DBCS names are assigned an alias name
at generation.

Note: CICS/ESA 3.1 and VSE/CICS 2.2 or higher support DBCS names;
earlier releases do not.

Note: All the CICS for OS/2 environments that the VisualAge Generator
product supports, support DBCS characters. This option is set for the
CICS for OS/2 environment.

The default is /NOCICSDBCS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/CICSENTRIES (CICS entries)
Specifies that you want to generate CICS program and transaction definitions.

You can specify the following values:

Specify NONE if you do not want to generate CICS program and transaction
definitions.

Specify RDO to generate model resource definition online (RDO) program
and transaction definitions.

Chapter 29. Generation command and option descriptions 303

The RDO option can be used with CICS for AIX, CICS for Solaris, CICS for
Windows NT, CICS for OS/2, CICS for VSE/ESA, and CICS for MVS/ESA
systems. CICS for MVS/ESA V2 systems do not support the batch utilities for
RDO.

Specify MACRO to generate model CICS DFHPPT and DFHPCT model
statements.

The default value for /CICSENTRIES is NONE.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

See “CICS for OS/2 table entries” on page 163 for additional information on
generating program and transaction definitions in CICS for OS/2.

/COMMENTLEVEL (Comment level) (COBOL)
Specifies the level of comments you want to include when you are generating
a COBOL program.

See “/COMMENTLEVEL (Generate comments) (C++)” on page 305 if you are
generating C++ programs.

Raising the comment level increases the size of the source part, but it has no
effect on the size or performance of the compiled COBOL program. However,
raising the comment level might significantly increase the time needed to
generate the program, and it also might increase the time needed to transfer
the files and compile the program.

You can select any of the following values:

0 Specify 0 if you do not want comments included in the generated
program.

Note: Generation option comments are still included in the generated
program for debugging purposes.

1 Specify 1 if you want only the following comments included in the
generated program:
v Comments on assigned alias names
v Standard generation information (for example, the generation

options and generation date and time)

2 Specify 2 if you want the comments specified for 1, and the following
comments, included in the generated program procedure division:
v Program or table prologue
v Function descriptions

304 VisualAge Generator: Generation Guide

3 Specify 3 if you want the comments specified for 1, 2, and the
following comments, included in the generated program data division:
v Record prologues
v Data item descriptions

4 Specify 4 if you want the comments specified for 1, 2, and 3, and all
VisualAge Generator statements and comments, included in the
generated program.

This option helps in tracing the COBOL statements back to the
VisualAge Generator statements and options.

The default is STATEMENTS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/COMMENTLEVEL (Generate comments) (C++)
Specifies whether comments are included in the generated source code when
you are generating C++.

See “/COMMENTLEVEL (Comment level) (COBOL)” on page 304 if you are
generating COBOL programs.

Note: Some generation option comments are always included in the
generated program for debugging purposes.

Approximately one brief comment is generated for each language statement.

Specify 1 if you want comments included in the generated program.

Specify 0 if you do not want comments included in the generated program.

Raising the comment level increases the size of the source part, but it has no
effect on the size or performance of the compiled C++ program. However,
raising the comment level might significantly increase the time needed to
generate the program, and it also might increase the time needed to transfer
the files and compile the program.

The default is 1.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 305

/CONTABLE (Conversion table)
Specifies the conversion table to be used for converting the text in generated
binary objects from OS/2 ASCII or Windows ASCII to the corresponding
UNIX ASCII code page or to MVS, OS/400, VM, or VSE EBCDIC code pages.

The default conversion table name depends on the locale (which is formed by
combining the language and territory as in ’english-ns’) and the source and
target environment. There is no default value if conversion is not needed.
These default conversion tables are the same as those used during run time.

For information on how to define conversion tables for other environments,
refer to the VisualAge Generator Client/Server Communications Guide.

For information on customizing VisualAge Generator to suit your national
language requirements, refer to the National Language Support section in the
VisualAge Generator Installation Guide.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/CREATEDDS (Create DDS files)
Specifies that OS/400 environment data description specification (DDS) files
are to be created from the record definitions used for file I/O operations
associated with the program being generated.

The default value is /NOCREATEDDS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/CURRENCY (Currency Symbol)
Specifies a currency symbol comprising one to three characters. If you do not
specify this option, the default value is derived from the system locale.

To specify a character that is not on your keyboard, hold down the Alt key
and use the numeric key pad to type the character’s decimal code. On
Windows NT the decimal code for the Euro is 0128; on OS/2 it is 0213.

/DATA (Data)
Specifies whether you want VisualAge Generator Server for MVS, VSE, and
VM to allocate its working storage with 24- or 31-bit addresses.

This option also controls whether you want the generated preparation JCL to
use the DATA(24) or DATA(31) compile options for MVS COBOL and VSE
COBOL programs or whether you want the generated preparation script to
use the DATA(24) or DATA(31) for VM COBOL programs.

306 VisualAge Generator: Generation Guide

You can specify the following values:

24

Specify 24 if you want VisualAge Generator Server for MVS, VSE, and
VM to allocate its working storage with 24-bit addresses.

For CICS for MVS/ESA and CICS for VSE/ESA, you can only specify
24-bit addressing if the dynamic storage required by the generated
COBOL program, mapping services program, or table is less than
64KB.

You must specify 24 bit for the following:
v Any program that calls a program linked AMODE(24)
v The first program in the run unit if any generated program in the

run unit is linked AMODE(24) or if any program that uses DL/I is
generated with /DATA=24

v Tables and map groups if any program that uses the table is linked
AMODE(24)

v Any DL/I program in VSE batch, or in non-CICS environments on
MVS if IMS/ESA is not installed

31

Specify 31 if you want VisualAge Generator Server for MVS, VSE, and
VM to allocate its working storage with 31-bit addresses.

If you specify 31-bit addressing for DL/I programs in the MVS batch
or MVS/TSO environments, you must install IMS/ESA and you must
specify the VisualAge Generator Server for MVS, VSE, and VM
IMSESA installation option as IMSESA=’Y’. Refer to the Program
Directory and the VisualAge Generator Server Guide for MVS, VSE, and
VM for information on specifying the IMSESA installation option.

The default for non-CICS environments is /DATA=24. The default for CICS
environments is /DATA=31.

/DBMS (Database management system)
Specifies the database management system to use for SQL programs. You can
specify one of the following values:

DB2 generates native DB2 embedded SQL calls

Oracle generates native Oracle embedded SQL calls

ODBC generates dynamic ODBC SQL calls

Chapter 29. Generation command and option descriptions 307

If the /DBMS option is not specified, the Database Management system value
specified in the VisualAge Generator SQL Preferences is used. You can also
select Database management system on the Validation tab of the Generation
Options notebook.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DBPASSWORD (Password)
Specifies the password of the USERID that will be connected to the database
on the target machine.

You must specify a password to use with the USERID for the database.

This option is case sensitive.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DBUSER (User ID)
Specifies the USERID that will be used to connect to the database on the
target machine.

This USERID is used to connect to the database on the target machine. The
USERID must be identified to the database, and have the appropriate access
privileges.

This option is case sensitive.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DEBUGTRACE (Debug trace information)
Specifies /DEBUGTRACE to enable tracing of the generation process.

Trace information is written to a file named prgmname.TRC in the directory
specified by the /GENOUT generation option.

Use tracing only when you are providing debugging information to IBM
service personnel.

308 VisualAge Generator: Generation Guide

The default is /NODEBUGTRACE.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DESTACCOUNT (Account)
Specifies the name of the account on the machine the generated code and
auxiliary supporting files will be sent to when transferring files using TCP/IP.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DESTDIR (Directory)
Specifies the name of the directory on a machine that generated server code
and auxiliary supporting files will be sent to.

The target directory must exist. The user specified by the /DESTUID
generation option must have the authority to write to this directory.

For UNIX environments, do the following:
v Specify the fully qualified path name.
v Enclose the specified value in single quotation marks (’).
v Validate the case used. The environments are case sensitive.
v Be sure to use slashes (/).

For other environments, specify the directory name, not the absolute path
name.

You cannot use any platform-specific keywords, for example:
v $HOME
v tilde (x)

For Java, server code is sent to /DESTUID and gateway servlet code is sent to
/JAVADESTDIR.

Example: for UNIX environments
'/home/myid/mysource'

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 309

/DESTHOST (Name)
Specifies the name or numeric TCP/IP address of the target machine on
which the target directory resides. You can enter up to 64 characters for the
name or address. If developing on Windows NT, you must specify a fully
qualified name.

You can type up to 64 characters for the name or address. If developing on
Windows NT, you must specify a fully qualified name.

The UNIX environments are case sensitive. Verify the case of the value you
specify for this option.

Example:
sms.raleigh.ibm.com

or

9.67.226.22

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DESTLIB (Target library)
Specifies the 1- to 10-character OS/400 library name where objects created
during generation are placed when transferred by the preparation process.

The default is QGPL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DESTPASSWORD (Password)
Specifies the password of the USERID that will be logged on to the target
machine.

The password is used for the user specified by the /DESTUID generation
option. The AIX, HP-UX, SCO, and Solaris environments are case sensitive.
Verify the case of the value you specify for this option.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

310 VisualAge Generator: Generation Guide

/DESTUID (User ID)
Specifies the USERID that will be logged on to the target machine specified by
the /DESTHOST generation option.

The UNIX environments are case sensitive. Verify the case of the value you
specify for this option.

Example:
/DESTUID=myuserid

There is no default value.

/DXFRCANCEL (Cancel program after DXFR)
Specifies that you want to remove the COBOL program from memory for any
program that was transferred to using a DXFRLINK with a linktype of
DYNAMIC when execution of that program is complete. A COBOL CANCEL
command appears in the generated COBOL of the program performing the
DXFR.

The default is /NODXFRCANCEL

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/DXFRXCTL (Implement DXFR as an XCTL)
Specifies that you want to use an XCTL command to implement a DXFR
statement. This value changes the default DYNAMIC linktype on a
DXFRLINK to XCTL.

After specifying this value, by default, all programs will perform an XCTL
when a DXFR is requested. You can override the default with :DXFRLINK
linkage table entries. Because XCTL is already the default for CICS
environments, this option has no effect there.

Note that this option results in slower performance because the run-time
environment must be reloaded each time a DXFR is performed.

The default is /NODXFRXCTL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/EJBGROUP (Enterprise Java Bean Group)
Specifies that you want to create a session bean assigned to a particular
Enterprise Java Bean (EJB) group.

Chapter 29. Generation command and option descriptions 311

The group must already exist.

By default VisualAge Generator creates Java wrappers (one for the program
and one for each record parameter) but does not create a session bean. For
more information about Java wrappers, see VisualAge Generator
Client/Server Communications Guide.

This option is valid only with the Java Wrapper target.

/ENDCOMMAREA (End COMMAREA with FFFF)

Specifies /ENDCOMMAREA if you want a full word containing X’FFFFFFFF’
appended to the end of the COMMAREA on calls to non-VisualAge Generator
programs. The length of the COMMAREA is increased by 4 bytes.

COMMPTR is the default parameter format for all CICS environments.

The default is /NOENDCOMMAREA.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/ERRDEST (Error destination)
Specifies the destination of the diagnostic messages in the IMS/VS and
IMS BMP environments.

The error destination is specified as one of the following:
v The IMS transaction code associated with a BMP program that lists error

diagnostics associated with run-time errors
v The logical terminal identifier associated with the printer where the

diagnostics are sent

This option is effective at run time only if the option is specified for the first
program in the run unit.

The default for IMS/VS is ELADIAG, a transaction code for a BMP utility
provided with the VisualAge Generator Server for MVS, VSE, and VM
function that prints the diagnostics. The default for IMS BMP is to write the
messages to the file ELAPRINT instead of a message queue.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

312 VisualAge Generator: Generation Guide

/FASTPATH (Run as a fast-path program)

Specifies /FASTPATH if you want the program to run as an IMS fast-path
program. If the /FASTPATH option is specified and the run unit does not end
successfully, VisualAge Generator Server for MVS, VSE, and VM issues a 1602
abend.

If the /NOFASTPATH option is specified and the run unit does not end
successfully, VisualAge Generator Server for MVS, VSE, and VM issues a
ROLL request.

This option is effective at run time only if the option is specified for the first
program in the run unit.

The default is /NOFASTPATH.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Refer to the VisualAge Generator Design Guide for detailed information on IMS
fast-path programs.

/FOLD (Fold to uppercase)

Specifies that you want folding to uppercase to occur for the output.

When you select folding, the source statements and comments are
transformed from lowercase to uppercase characters in printed reports and in
the generated programs where the source statements and comments appear as
COBOL comments.

The default is /NOFOLD.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/FTPTRANSLATIONCMDDBCS (FTP DBCS Translation Command)
Specifies that the DBCS translation tables must be set for the remote system
when transferring files using FTP. This is normally not necessary, because any
needed translation is done automatically on the local system.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 313

/FTPTRANSLATIONCMDSBCS (FTP SBCS Translation Command)
Specifies that the SBCS translation tables must be set for the remote system
when transferring files using FTP. This is normally not necessary, because any
needed translation is done automatically on the local system.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENAUTHORTIMEVALUES
Adds code to UI record JSPs and UI record beans to let Web page designers
quickly view simulated results of changes to generated JSPs. The added code
does not affect results when the JSP is invoked from the Web transaction
gateway.

A method, initAuthorTimeValues(), is added to UI record beans to initialize
each UI record data item that the UI record JSP uses to produce an HTML
element. The initialization values are determined only by the UI type and the
data type of the data items. For example, a data item with a UI type of
OUTPUT and a data type of NUM with two decimal places is assigned a
value of 99.99. A scriplet is added to the JSP to invoke the
initAuthorTimeValues() method.

When you use a URL in a browser to invoke the JSP directly rather than by
starting a Web transaction from the gateway, initAuthorTimeValues() is
invoked to initialize data items in the UI record rather than using values
produced in the Web transactions. These values are displayed formatted by
the JSP just as if they were set by a Web transaction, but you do not need to
set up the actual Web transaction on your application server to see results of
JSP modifications. Although you cannot use this methodology to test
interaction between Web pages, links will be properly displayed. You can
modify the initAuthorTimeValues() method to produce more realistic default
data.

The default is /NOGENAUTHORTIMEVALUES.

/GENHELPMAPS (Help map group)
Specifies that you want to generate a help map group with the program.

Specify /NOGENHELPMAPS if you do not want to generate a help map
group.

This option is available only if you are generating a program.

The default is /GENHELPMAPS.

314 VisualAge Generator: Generation Guide

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENMAPS (Map group)
Specifies that you want to generate a map group with the program.

Specify /NOGENMAPS if you do not want to generate a map group.

This option is available only if you are generating a program.

The default is /GENMAPS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENOUT (Generated output directory)
Specifies a directory on your workstation where you store the generation
outputs. When you specify the directory path for the /GENOUT option, you
can use symbolic parameters for subdirectory names.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

When you are generating for an AIX target environment, the generated output
is first created in this directory. The generated output is then transferred to
the directory specified by the /DESTDIR option.

For COBOL Users

COBOL has a limitation of 128 characters for the command line parser.
Characters exceeding that limitation are truncated. Do not use names for the
/GENOUT option or the /BIND option that might cause the total length of
the command line to exceed this limitation.

Chapter 29. Generation command and option descriptions 315

If the limitation is exceeded and the line is truncated, any of the following
might occur:
v An SQL message might be displayed if the /SQLDB option is truncated.
v A COBOL compiler message might be displayed if the /GENOUT option or

the /BIND option is truncated.

Example:

The following is an example of using the /GENOUT generation option at the
command prompt or in an options file:
/GENOUT=C:\Program Files\VAST\%EZEUSRID%\%EZEENV%

The following is an example of using the /GENOUT generation option in a
command file:
/GENOUT=C:\Program Files\VAST\%%EZEUSRID%%\%%EZEENV%%

The values of the symbolic parameters replace the symbols in the path name
when the generation process writes out a generated object, if you type the
following:
C:\Program Files\VAST\%%EZEUSRID%%\%%EZEENV%%

In the above example, if EZEUSRID is set to PROJECT1 and the target system
for generation is IMSVS, then the generated objects are written to directory
C:\Program Files\VAST\PROJECT1\IMSVS.

If the specified directory does not exist, it is created.

The default directory is the directory where the server process is running.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENPROPERTIES
Specifies that you want to generate with your Java server program a
properties file that contains settings derived from the generation options file,
linkage table, and resource associations file.

The generated properties file is given the same name as the generated part
with a .properties file extension and is saved in the same directory with
your generated Java code. The properties file is saved as text so you can open
it using a text editor and further customize it.

Properties shown in the file include:
v vgj.nls.code (from /TARGNLS)

316 VisualAge Generator: Generation Guide

v vgj.datemask.gregorian.long.NLS (where NLS is the language code specified
in preferences)

v vgj.datemask.julian.long.NLS (where NLS is the language code specified in
preferences)

v vgj.jdbc.default.database (from /SQLDB)
v vgj.jdbc.default.database.userid (from /SQLID)
v vgj.jdbc.default.database.user.password (from /SQLPASSWORD)
v linkage properties (from /LINKAGE)
v resource association properties (from /RESOURCE)

By default, no properties file is generated.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENRESOURCEBUNDLE (Generate as resource bundle)
Specifies generation of Java resource bundles.

Java resource bundles are generated in the following cases::
v You are generating only a UI record or message table and have specified

option GENRESOURCEBUNDLE.
v You are generating a web transaction; in this case, if you have specified

option GENRESOURCEBUNDLE, one resource bundle is generated for each
UI record and one for each message table; but if you have not specified
option GENRESOURCEBUNDLE, a resource bundle is generated only for
the message table.

UI record
If /GENRESOURCEBUNDLE is specified, labels, titles, and help text
that might be presented to a user are generated into a resource bundle
that can be translated. If /GENRESOURCEBUNDLE is not specified,
labels, titles, and help text are generated into the bean.

UI records — Web transactions
If /GENRESOURCEBUNDLE is specified , labels, titles, and help text
for each UI record used in the Web transaction are generated into
separate resource bundles. Otherwise, they are generated into the
beans.

The name of the resource bundle generated for a UI record is as
follows:
NameRBundle_JavaLocale.java

Name is the message table prefix. See the
/RESOURCEBUNDLELOCALE option for a description of JavaLocale.

Chapter 29. Generation command and option descriptions 317

Table If /GENRESOURCEBUNDLE is specified, the table will be generated
as a resource bundle that contains message keys and associated
message text.

In order to be used by a UI record bean, the table must be named
PrefixNLSValue where Prefix is the message table prefix in the bean
and NLSValue is /TARGNLS. The table must be defined as follows:

column 1 Num4, Char, or Mixed, 1–254

column 2 Char or Mixed, 1–254

Tables — Web transactions
For a Web transaction, the message table is always generated as a Java
resource bundle. The message table prefix and /TARGNLS are used to
determine which message table to use.

The name of the resource bundle generated for table PrefixNLSValue is
as follows:
PrefixRBundle_JavaLocale.java

Prefix is the message table prefix. See the
/RESOURCEBUNDLELOCALE option for a description of JavaLocale.

The name of the table should have a 1–4 character prefix followed by
a 3–character NLS value, and the NLS value should be matched at
generation time by the setting of generation option TARGNLS.

This option is only available if you are generating a UI record, table or Web
Transaction program..

The default is /NOGENRESOURCEBUNDLE.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENRET (Issue RETURN IMMEDIATE)

Specifies that you want CICS to issue a RETURN IMMEDIATE.

The default is /NOGENRET. For more information about the default
generated code, see the VisualAge Generator Design Guide.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

318 VisualAge Generator: Generation Guide

/GENTABLES (Tables)
Specifies that you want to generate all the tables associated with the program
being generated.

Specify /NOGENTABLES if you do not want to generate the tables.

For user message tables, only the message table for the target NLS is
generated.

This option is available only if you are generating a program.

The default is /GENTABLES.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GENUIRECORDS
Specifies that the user interface records in the program are to be generated.

The following Java files can be generated for a user interface record:
v UI record bean
v UI record object
v Resource bundle
v Edit table definition
v Edit table contents
v Edit function local-storage record definition
v Java Server Page (JSP)

This option is available only if you are generating a Web transaction program.

The default is /GENUIRECORDS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/GROUPNAME (Group name)
Specifies the 1- to 8-character group name to which this resource belongs.

Type a valid 1- to 8-character group name.

Resource management is simplified when related transactions and resources
are associated with groups.

Chapter 29. Generation command and option descriptions 319

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/INEDIT (Input edit)
Specifies whether you want to do input editing only for modified fields on a
map.

This option affects the operation of the TEST map-item statement in the
program.

Valid values are ALL and INONLY. The default is ALL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/INITADDWS (Initialize additional working storage records)
Specifies that you want to initialize working storage records in the table and
additional records list of a program.

The primary working storage record specified for the program is always
initialized. Specify /NOINITADDWS if you do not want to initialize these
working storage records.

The following statements are true if you specify /INITADDWS:
v Records are initialized as though a SET record EMPTY statement is

specified at the beginning of the program you are generating. This means
that you do not need to code a SET record EMPTY statement for each
working storage record.

v Some abends caused by data that has not been initialized can be avoided.

Note: Records received as parameters in a called program and redefined
records are never initialized.

The following is true if you specify /NOINITADDWS:
v If your program has a large number of records with many fields that do not

require initialization, performance might be slightly better.
v If your program already uses SET record EMPTY to initialize your working

storage records, using this option eliminates additional initialization of the
working storage records, causing improved performance. The change in
performance is more noticeable for repeatedly called programs.

The default is /INITADDWS.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

320 VisualAge Generator: Generation Guide

/INITRECD (Initialize records)
Specifies that you want to initialize serial, indexed, relative, SQL row, and
DL/I segment records when the program starts to run.

Specify /NOINITRECD if you do not want to initialize these records.

The following statements are true if you specify /INITRECD:
v Records are initialized as though a SET record EMPTY statement was

specified at the beginning of the program you are generating. This means
that you do not need to code a SET record EMPTY statement for each
record.

v Some abends caused by data that has not been initialized can be avoided.

Note: Records received as parameters in a called program and redefined
records are not affected by this option.

The following statements are true if you specify /NOINITRECD:
v If your program has a large number of records with many fields that do not

require initialization, performance might be slightly better.
v If your program already uses SET record EMPTY to initialize your

non-working storage records, using this option eliminates additional
initialization of the non-working storage records, causing improved
performance. The change in performance is more noticeable for repeatedly
called programs.

The default is /INITRECD.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/JAVADESTDIR (Java directory)
Specifies the name of the directory on a target machine that generated
gateway Java gateway code and auxiliary supporting files will be sent to.

The target directory must exist. The user specified by the /JAVADESTUID
generation option must have the authority to write to this directory.

For UNIX environments, do the following:
v Specify the fully qualified path name.
v Enclose the specified value in single quotation marks (’).
v Validate the case used. The environments are case sensitive.
v Be sure to use slashes (/).

For other environments, specify the directory name, not the absolute path
name.

Chapter 29. Generation command and option descriptions 321

You cannot use any platform-specific keywords, for example:
v $HOME
v tilde (x)

For Java, server code is sent to /DESTUID and gateway servlet code is sent to
/JAVADESTDIR.

Example: for UNIX environments
'/home/myid/mysource'

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/JAVADESTHOST (Name)
Specifies the name or numeric TCP/IP address of the gateway target machine
on which the Java target directory resides. You can enter up to 64 characters
for the name or address. If developing on Windows NT, you must specify a
fully qualified name.

You can type up to 64 characters for the name or address. If developing on
Windows NT, you must specify a fully qualified name.

The UNIX environments are case sensitive. Verify the case of the value you
specify for this option.

Example:
sms.raleigh.ibm.com

or

9.67.226.22

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/JAVADESTPASSWORD (Password)
Specifies the password of the USERID that will be logged on to the gateway
target machine.

The password is used for the user specified by the /JAVADESTUID
generation option. The AIX and Solaris environments are case sensitive. Verify
the case of the value you specify for this option.

322 VisualAge Generator: Generation Guide

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/JAVADESTUID (User ID)
Specifies the USERID that will be logged on to the gateway target machine
specified by the /DESTHOST generation option.

The UNIX environments are case sensitive. Verify the case of the value you
specify for this option.

Example:
/JAVADESTUID=myuserid

There is no default value.

/JAVASYSTEM (Java target system)
Specifies the type of target system for Java gateway output. This option
corresponds to the gateway target system you can select on the Generate
window. This system can be AIX, OS2, OS390, OS400, SOLARIS, or WINNT.

/JAVASYSTEM must be specified for preparation files to be generated for the
gateway.

There is no default value.

/JOBCARD (JOB card)
Identifies the name of the file containing the job statement you want to use
for generated preparation or run-time JCL or CL

The file name must be specified in one of the following ways:
v A fully qualified file name. Symbolic parameters are permitted in the

directory specification. See “Chapter 12. Symbolic parameters” on page 123
for more information about symbolic parameters.

v The name of a file located in a directory specified in the DPATH
environment variable of the server process. See “Chapter 15. Command
interface for COBOL generation” on page 167 for more information about
the server process.

The default file name for MVS is EFK2MJOB.TPL.

The default file name for VSE is EFK2VJOB.TPL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 323

See “JOB statements” on page 74 for more information about the job
statement.

/JOBNAME (Job name)
Specifies the value used for job name in the default job statement built for the
preparation of run-time JCL or CL batch job.

The name must be a valid MVS or VSE job name.

The job name is used to replace the symbolic parameter, EZEJOB, in the job
template. If you modify your VSE templates to use the symbolic parameter,
EZEJOB, this option can be used in VSE environments.

The default name is built using the value specified in the .ini file for the
Options/Preferences page. If that value is not set, the value of the EZEUSRID
environment variable is concatenated with the letter A. Because the job name
value is limited to a length of 8 characters, only the first 7 characters are used
from EZERUSRID values that are longer than 7 characters.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/JSPRELDIR
Specifies a path, relative to the JSP directory, where its associated beans are
stored.

The relative path is a partially qualified uniform resource locator (URL). Using
this option allows you to place beans in directories other than the root of the
JSP you are using.

The URL must be enclosed in quotes so that the forward slashes are
interpreted correctly.

There is no default for this option and a value is not required.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LEFTJUST (Left justify)
Specifies that you want CHA, MIX, and DBCS map variables defined with
JUSTIFY LEF justification on output.

Specify /NOLEFTJUST if you do not want data left justified.

Specifying /LEFTJUST eliminates leading spaces for map variables defined
with JUSTIFY LEF. It is safe to request left justification if the values displayed
are always left justified on input or are created by the program.

324 VisualAge Generator: Generation Guide

Not requesting left justification might provide better performance and smaller
load module size.

Note: This option has no effect on justification of input data; this option
affects only the generation of map groups that contain printer maps. It
has no effect on the generation of programs, tables, or map groups that
only contain terminal maps.

The default is /LEFTJUST.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LINEINFO (Line trace information)

Specifies that you want to include line information in columns 73–80 of the
generated COBOL output.

Line information identifies which generation function produced the output
line. You might have better performance if you do not request line
information.

The following statements are true when you specify /LINEINFO:
v The size of the load module is not affected.
v The time needed to transfer the COBOL source is increased.

The default is /NOLINEINFO.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LINES (Lines per page)
Specifies the number of lines you want to print on each page in the
generation listing file.

You can enter one of the following values:
0 Specifies that no pages breaks will be inserted.
number

Specifies the number of lines (20-999) per page.

The default is 55.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 325

/LINKAGE (Linkage table)
Specifies the part name where the linkage table information is stored.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LINKEDIT (Link edit)
Specifies the part name of the optional link edit part, which contains the
linkage editor control statements for link-editing the program with other
programs for the MVS, VSE, or VM environments.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

See “Link edit parts” on page 53 for more information about linkage editor
control statements.

/LISTING /LISTINGONERROR, /NOLISTING (Generation listing)

Specifies whether a generated output listing will be created. The following
options specify under what conditions a listing is generated:

/NOLISTING

Specify this option if you do not want an output listing generated.

/LISTING

Specify this option if you want a listing of the part source code
generated.

/LISTINGONERROR

Specify this option if you want a listing of the part source code to be
generated only if any error messages are issued.

The generated output listing includes the generation options, resource
associations, and linkage table entries used to generate the part source code.

The default is /NOLISTING.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LISTINGONERROR
See /LISTING on page “/LISTING /LISTINGONERROR, /NOLISTING
(Generation listing)”.

326 VisualAge Generator: Generation Guide

/LOCVALID (Local data items)

Specifies that you want local data items validated by comparing each local
data item definition with the global item definition of the same name, if one
exists. If you request validation and the definitions are different, a message is
issued and generation continues.

You need not specify the /NOLOCVALID option if you do not want local
data item definitions validated; /NOLOCVALID is the default.

When you request local data item validation, it takes longer for validation to
complete.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/LOG (Log identifier)

Specifies that you want the run-time errors detected by VisualAge Generator
Server for MVS, VSE, and VM written to the IMS system log.

You need not specify /NOLOG if you do not want IMS log records written to
the IMS system log; /NOLOG is the default. Messages written to the IMS log
are identical to messages that are written to ERRDEST.

If you specify that you want messages logged, you must specify a log
identifier. The log identifier is the IMS log record identifier that is used when
run time error messages are written to the IMS log. The identifier is a 2-digit
hexadecimal number ranging from A0 through FF.

This option is effective at run time only if the option is specified for the first
program in the run unit.

The Table 77 on page 375 shows the generation options and the valid
environments for each option.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MATH (Math)
Specifies whether you want the VisualAge Generator calculation method of
truncating intermediate results emulated in the COBOL program.

The truncation method used is significant if you are converting an existing
CSP/AE program and you want to ensure that the results are consistent with
the original program.

Chapter 29. Generation command and option descriptions 327

You can specify the following values:

COBOL

Select COBOL to use COBOL truncation algorithms.

COBOL might provide faster performance, smaller load module size,
and better accuracy.

CSPAE

Select CSP/AE if you want truncation of intermediate results in
calculations to the same number of significant digits as the result
field. This is the truncation algorithm used by the CSP/AE product.
Specify this option only for programs originally developed to run
with CSP/AE that have code that is dependent on this truncation
algorithm.

Note: The VisualAge Generator test facility supports only the COBOL method
of truncation.

The default is COBOL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MFSDEV
Specifies the devices for which maps are to be generated and the parameters
to be used on the MFSDEV statement.

Each set of device options specifies a terminal or printer device type and the
MFS parameters that correspond to that device.

Note: You Can specify the /MFSDEV generation option on the GENERATE
subcommand only or in a generation options file. The VisualAge
Generator Developer interactive interface has no corresponding entry
for the /MFSDEV generation option.

You can specify the following values:

ad device
Specifies a valid device type that can be specified during map definition.

Enclose the value in single quotation marks (’) or double quotation marks
(″). For additional information on the valid device types that can be
specified, refer to the VisualAge Generator Developer online help system.

mfs device
Specifies one or more of the parameters used on a DEV statement for
MFS.

328 VisualAge Generator: Generation Guide

Enclose the string of parameters in single quotation marks (’) or double
quotation marks (″). The information in the MFS device variable is based
on the information supplied for the TERMINAL and TYPE macros in your
IMS system definition.

EATTR, NCD, or NOEATTR
Indicates whether the device supports extended attributes, and whether a
CD (color default) extended attribute is generated for map fields defined
as MONO. These values are optional and allow you to override the
default value specified using the /MFSEATTR, /MFSEATTRNCD, or
/NOMFSEATTR generation option.

v IMS/VS
v IMS BMP

Refer to the VisualAge Generator Server Guide for MVS, VSE, and VM for details
about setting this attribute if you select additional devices.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MFSEATTR (MFS extended attribute)
Specifies whether you want to include extended attribute support in the
generated MFS.

The default is /MFSEATTR.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MFSEATTRNCD
See /MFSEATTR “/MFSEATTR (MFS extended attribute)”.

/MFSIGNORE (Include IGNORE for SOR)

Specifies that you want to include IGNORE for the SOR parameter on the
message statement for the MID and MOD in the generated message format
service (MFS).

Specify /MFSIGNORE only if the /MFSDEV option specifies FEAT=IGNORE
for all of the devices used by the map group you are generating.

The default is /NOMFSIGNORE.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 329

/MFSTEST (Use test library)

Specifies that you want the preparation JCL to place MFS control blocks in a
test library.

You need not specify /NOMFSTEST if you want the preparation JCL to place
MFS control blocks in a staged FORMAT library; /NOMFSTEST is the default.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MSGTABLEPREFIX
Specifies a message table prefix similar to the message table prefix defined in
a program. This is a one- to four-character prefix of the message table that
contains the keys used by user interface (UI) records.

This option is available only if you are generating a UI record. If you are
generating a Web transaction program, the message table prefix defined in the
program is used.

The default is no prefix.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/MSP (Mapping service program)
Specifies the type of print services programs you want to generate for
IMS BMP or MVS batch. For MVS/TSO, VM batch, VM CMS, and VSE batch
the print service program is always SEQ.

You can specify the following values:

ALL

Specify ALL to generate all the types of mapping services programs
that can be used in the environment (GSAM, MFS, and SEQ, for
IMS BMP; GSAM and SEQ for MVS batch). The default value is ALL
in the IMS BMP environment but not in the MVS batch environment.

GSAM

Specify GSAM to generate a batch mapping services program that
supports writing to a GSAM file. GSAM is available only for the
IMS BMP and MVS batch target systems.

MFS

Specify MFS to generate a message format service (MFS) print
mapping services program and the MFS source definitions. If the map

330 VisualAge Generator: Generation Guide

group contains terminal maps, the COBOL copybooks for MFS and a
map group format module are also generated. This option is valid
only for IMS BMP.

SEQ

Specify SEQ to generate a batch mapping services program for IMS,
MVS, VM, or VSE that supports writing to a printer or QSAM file.
This is the default for MVS batch and the only option for MVS/TSO,
VM batch, VM CMS, and VSE batch.

You can enter multiple values separated by commas (,). For example, for
IMS BMP, /MSP=MFS,SEQ,GSAM is valid and has the same result as
specifying /MSP=ALL.

The MFS print services program has the same name as the map group. The
SEQ and GSAM services, if generated, are included in the batch print services
program. The batch print services program has the same name as the map
group with P1 appended to the name.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/NOANSISQL
See “/ANSISQL (ANSI SQL statements)” on page 300.

/NOCICSDBCS
See “/CICSDBCS (CICS translator supports DBCS)” on page 303.

/NOCREATEDDS
See “/CREATEDDS (Create DDS files)” on page 306.

/NODXFRCANCEL
See “/DXFRCANCEL (Cancel program after DXFR)” on page 311.

/NODXFRXCTL
See “/DXFRXCTL (Implement DXFR as an XCTL)” on page 311.

/NODEBUGTRACE
See “/DEBUGTRACE (Debug trace information)” on page 308.

/NOENDCOMMAREA
See “/ENDCOMMAREA (End COMMAREA with FFFF)” on page 312.

/NOFASTPATH
See “/FASTPATH (Run as a fast-path program)” on page 313.

/NOFOLD
See “/FOLD (Fold to uppercase)” on page 313.

Chapter 29. Generation command and option descriptions 331

/NOGENAUTHORTIMEVALUES
See “/GENAUTHORTIMEVALUES” on page 314.

/NOGENHELPMAPS
See “/GENHELPMAPS (Help map group)” on page 314.

/NOGENMAPS
See “/GENMAPS (Map group)” on page 315.

/NOGENPROPERTIES
See “/GENPROPERTIES” on page 316.

/NOGENRESOURCEBUNDLE
See “/GENRESOURCEBUNDLE (Generate as resource bundle)” on page 317.

/NOGENRET
See “/GENRET (Issue RETURN IMMEDIATE)” on page 318.

/NOGENTABLES
See “/GENTABLES (Tables)” on page 319.

/NOGENUIRECORDS
See “/GENUIRECORDS” on page 319.

/NOINITADDWS
See “/INITADDWS (Initialize additional working storage records)” on
page 320.

/NOINITRECD
See “/INITRECD (Initialize records)” on page 321.

/NOLEFTJUST
See “/LEFTJUST (Left justify)” on page 324.

/NOLINEINFO
See “/LINEINFO (Line trace information)” on page 325.

/NOLISTING, /LISTING, /LISTINGONERROR
See “/LISTING /LISTINGONERROR, /NOLISTING (Generation listing)” on
page 326.

/NOLOCVALID
See “/LOCVALID (Local data items)” on page 327.

/NOLOG
See “/LOG (Log identifier)” on page 327.

/NOMFSEATTR
See “/MFSEATTR (MFS extended attribute)” on page 329.

332 VisualAge Generator: Generation Guide

/NOMFSIGNORE
See “/MFSIGNORE (Include IGNORE for SOR)” on page 329.

/NOMFSTEST
See “/MFSTEST (Use test library)” on page 330.

/NONULLFILL
See “/NULLFILL (Fill map field)” on page 334.

/NONUMOVFL
See “/NUMOVFL (Numeric overflow)” on page 334.

/NOPREP
See “/PREP (Start preparation command file)” on page 335.

/NOPREPFILE
See “/PREPFILE (Create preparation command file)” on page 336.

/NORECOVERY
See “/RECOVERY (Recover current error message)” on page 337.

/NORUNFILE
See “/RUNFILE (Create sample run-time JCL, Create a sample clist, or Create
a sample REXX exec)” on page 342.

/NOSETFULL
See “/SETFULL (Set map item FULL)” on page 342.

/NOSPZERO
See “/SPZERO (Interpret spaces as zero in NUM and NUMC data items)” on
page 343 .

/NOSQLVALID
See “/SQLVALID (SQL statements)” on page 345.

/NOSYNCDXFR
See “/SYNCDXFR (Set sync points for DXFRs)” on page 347.

/NOSYNCXFER
See “/SYNCXFER (Set sync points for XFERs)” on page 347.

/NOUNLOAD
See “/UNLOAD (Unload parts)” on page 353.

/NOSYSCODES
See “/SYSCODES (Use system return codes)” on page 348.

Chapter 29. Generation command and option descriptions 333

/NULLFILL (Fill map field)
Specifies that you want CHA, MIX, DBCS, and NUM map variables with FILL
N (null) specified filled with null characters.

Specify /NONULLFILL if you want these map variables filled with spaces
instead of null characters.

Note: This option affects only the generation of map groups that contain
printer maps. It has no effect on the generation of programs, tables, or
map groups that contain only terminal maps.

The default is /NULLFILL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/NUMOVFL (Numeric overflow)
Specifies that you want to support numeric overflow checking.

Specify /NONUMOVFL if you do not want to support this checking.

If you specify/NONUMOVFL, the EZEOVER function is ignored. Division by
zero results in an abend with a message. In other overflow conditions, the
result is truncated causing the significant digits to be lost; there is no
indication that truncation has occurred. Design your program to ensure that
overflow conditions do not occur.

Specifying /NONUMOVFL, might result in smaller load modules with better
performance.

The default is /NUMOVFL.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/OPTIONS (Generation options)
Specifies a part that contains additional generation options that you want
applied to this generation.

The /OPTIONS option can also be specified within options parts. If the same
option appears in multiple options parts, the first-found occurrence of the
option applies. The exception is for options that are specified in the default
generation options file with the NOOVERRIDE parameter. These options
cannot be overridden.

334 VisualAge Generator: Generation Guide

When you use VisualAge Generator, the generations options defaults file is
specified by the defaultGenerationOptions key in the hpt.ini file.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/PACKAGENAME (Package Name)
Specifies the name of a Java package in which to group related classes and
interfaces.

During preparation of Java server or gateway files, a directory with the same
name as the package is created for you. If necessary, a subdirectory on your
target machine is also created as a subdirectory of the /GENOUT, /DESTDIR,
or /JAVADESTDIR directories. Java files are then copied to this directory and
compiled.

A Java package name comprises a sequence of identifiers separated by periods
(.), for example, com.ibm.vgj.ugs. The default package name is my.pkg.

/POSSIGN (Positive Sign Indicator)
Specifies the character the compiler uses as the positive sign for all zoned and
packed numeric data.

You can specify the following values:
F

Select F if you want to use F as the positive sign for all zoned and
packed numeric data. This includes NUM, NUMC, PACK and PACKF
VisualAge Generator data types.

C

Select C if you want to use C as the positive sign for all zoned and
packed numeric data. This includes NUM, NUMC, PACK and PACKF
VisualAge Generator data types.

If more occurrences of NUMC and PACK data types are compared to NUM
and PACKF data types, then the performance is improved by using
/POSSIGN=C (set Positive sign indicator to C).

The default value for /POSSIGN is F.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/PREP (Start preparation command file)
Specifies that, upon successful completion of generation (return code <= 4),
preparation of the generated objects is automatically initiated.

Chapter 29. Generation command and option descriptions 335

Specify /NOPREP if you do not want preparation to start automatically. If
preparation does not start automatically, the PREPARE subcommand must be
used to start preparation. Preparation messages are written to the
PRPOUT.LOG file in /GENOUT.

The default is /PREP.

If /PREP is specified, the /NOPREPFILE option is ignored.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/PREPFILE (Create preparation command file)
Specifies that you want to create a preparation script at generation.

Specify /NOPREPFILE if you do not want to create a preparation script at
generation.

If you specify /NOPREPFILE, you are responsible for the preparation of the
generated objects on the target run-time system.

The name of the preparation script created is partname.PRP.

For MVS and VSE environments, a file containing the preparation JCL is
created at generation. The name of the file is partname.JCL. For CICS for OS/2
and VM environments, a file containing the preparation REXX is created at
generation. The name of the preparation REXX file is partname.RXP. For
OS/400, the file containing the preparation REXX created at generation is
called partname.PRP. In addition, a file containing the OS/400 preparation CL
is created at generation called partname.CLP, and a file containing the OS/400
job stream is created at generation called partname.CLJ.

The Table 77 on page 375 shows the generation options and the valid
environments for each option.

The default is /PREPFILE.

/NOPREPFILE is ignored if the /PREP option is specified.

/PRINTDEST (Print destination)
Specifies the destination of your printed output for batch programs generated
for CICS environments.

This option is only used to set the initial value of the EZEDESTP special
function word. If a value has already been set for the EZEDESTP special

336 VisualAge Generator: Generation Guide

function word, this option is ignored. If a value is not set for EZEDESTP, then
the value specified for /PRINTDEST is used to determine the print
destination.

You can specify the following values:

EZEPRINT

Select EZEPRINT if you want the printed output from CICS
batch jobs sent to the destination specified for the EZEPRINT
file.

TERMID

Select Terminal ID if you want the printed output from CICS
batch jobs sent to the current CICS terminal ID.

This is compatible with the behavior of the Cross System
Product set.

The default is EZEPRINT.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/PROJECTID (Project ID)
Specifies the value that you want to use as the high-level data set name
qualifier in the preparation and run-time JCL.

The value you specify is substituted for the template symbolic parameter
%EZEPID%. EZEPID is used in JCL and CLIST templates as the high-level
data set name qualifier for the data sets that contain the preparation output
files. The value of /PROJECTID can be your user logon ID or a project ID.
The maximum length of /PROJECTID is 54 characters.

The value can also be used to route generation outputs for different projects
or users to different directories by specifying %EZEPID% as one of the
subdirectories on the /GENOUT option path.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is PROJECT; however, you can specify a value for /PROJECTID if
generation is to create host JCL.

/RECOVERY (Recover current error message)
Specifies that you want the message currently being processed inserted in the
message queue again if the program ends because of an error.

Chapter 29. Generation command and option descriptions 337

Specify /NORECOVERY if you do not want the current message inserted in
the message queue again.

This option applies only if the SCAN process option is used to read the
message queue in a transaction-oriented IMS BMP program. If a CSPTDLI call
is used to read the message queue, the message is not inserted in the message
queue again.

This option is effective at run time only if the option is specified for the first
program in the run unit.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is /RECOVERY for a transaction-oriented IMS BMP that uses the
SCAN I/O option to read the message queue, and /NORECOVERY for other
IMS BMP programs.

/RESOURCE (Resource associations)
Specifies the name of a resource association part containing resource
associations.

The contents of a resource association part indicate where the physical files
used by the program are located.

Note: The resource association part is used during the generation process for
C++ programs only when the target environment is CICS for AIX, CICS
for Solaris, CICS for OS/2, or CICS for Windows NT. When the target
environment is OS/2, AIX, HP-UX, SCO, Solaris, or Windows NT, C++
programs use resource association files at run time. The contents of the
resource association file indicate where the physical files used by the
program are located.

Refer to the VisualAge Generator Server Guide for Workstation Platforms for
information about the resource association file and supported file types
for the OS/2, AIX, HP-UX, SCO, Solaris, and Windows NT
environments.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

There is no default value.

See “Chapter 28. Resource associations part” on page 265 for more information
about resource associations.

338 VisualAge Generator: Generation Guide

/RESOURCEBUNDLELOCALE
Specifies a Java locale to be included in the name of a resource bundle
generated for a UI record or a Web transaction message table. The option
RESOURCEBUNDLELOCALE is used in the following cases:
v You are generating only a UI record or message table and have specified

option GENRESOURCEBUNDLE.
v You are generating a Web transaction; in this case, if you have specified

option GENRESOURCEBUNDLE, one resource bundle is generated for each
UI record and one for each message table; but if you have not specified
option GENRESOURCEBUNDLE, a resource bundle is generated only for
the message table.

A resource bundle is a Java object that contains strings to be presented at
runtime. The content of a resource bundle generated for a UI record includes
the web-page title, labels, and help text; and the content of a resource bundle
for a message table includes the set of messages. A resource bundle is specific
to a human language, and you can make a web transaction clear to a wider
audience by translating resource bundles into different languages.

The name of each generated resource bundle is as follows:
NameRBundle_JavaLocale.java

Name is the UI record name or message table prefix. If you generate a
resource bundle without specifying a resource bundle locale, the generated
resource bundle name is as follows:
NameRBundle.java

At runtime, as a result of a browser setting, the user who invokes a Web
transaction specifies a Java locale, which is a code identifying a human
language. Each subset of information in the Java locale is separated from the
next by an underscore. For example, en represents English, en_US represents
United States English (distinct from British English). You could also add a
third value as in no_NO_B, which specifies a particular variant of Norwegian.
The first two items—the language code in lower case and the country code in
uppercase are based on a Java language specification; and any additional,
items constitute a variant, which is not part of a Java specification.

If the user requests a Java locale that is precisely matched in the name of an
available resource bundle, that resource bundle is a source of strings
presented to the user. The user may requests a Java locale that is more specific
than the locale in the name of the available resource bundle—for example, the
user may specify no_NO_B when the only the Norwegian-language resource
bundle is named with no_NO; in this case, the less-specific bundle is a source.

Chapter 29. Generation command and option descriptions 339

It is good practice to provide default resource bundles, the names of which
include no Java locale. A default resource bundle becomes the source if the
user specifies either no locale or a locale that is less specific than the locale in
the names of other bundles. If the user specifies en when the only
locale-specific bundle includes the name en_US, for example, the default
bundle is accessed.

At runtime, if no resource bundle can be loaded for a UI record, the string
values specified at definition time are presented to the user. The lack of a
resource bundle for a message table results in runtime errors if the generated
program invokes a message table.

In relation to web transactions, the generation option /TARGNLS identifies
the name of the message table from which a resource bundle is generated. The
name of the message table is as follows:
PrefixNLSvalue

Prefix is the message table prefix and NLSvalue is the setting of /TARGNLS.

/TARGNLS is no longer used to determine the name of the resource bundle
itself during message-table generation. Use of RESOURCEBUNDLELOCALE
for this purpose allows support of more languages than those for which IBM
supplies translation.

There is no default value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/RESVWORD (Reserved words)
Specifies the file that contains the reserved words, such as COBOL, SQL, and
CICS reserved words, for your project.

Specify the directory name as a fully qualified directory name. Symbolic
parameters are permitted in the directory specification.

See “Chapter 12. Symbolic parameters” on page 123 for more information
about symbolic parameters. Partial directory names are treated as a
subdirectory of the current server process directory. See “Chapter 15.
Command interface for COBOL generation” on page 167 for more information
about the server process.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default file name is EFK2RSV.RSV.

340 VisualAge Generator: Generation Guide

See “Reserved-word file” on page 53 for more information about reserved
words.

/RT (Return or Return transaction ID)
Specifies a transaction identifier.

The strings for transaction identifiers are set in the following ways, depending
on the environments:

CICS and IMS/VS
Specifies the transaction identifier that is started when the transaction
associated with the VisualAge Generator program ends without
transferring

If you do not specify this option, the default action is to clear the
screen when the program ends without transferring to a new
transaction. You can prevent the message to clear the screen from
being sent in the IMS environment by specifying the value
/RT=EZENOINS (no message insert at all) when generating the main
program for IMS.

Only the first 4 characters are used for CICS environments; any
remaining characters are ignored.

MVS/TSO and VM CMS
Specifies a program name rather than a transaction identifier

In MVS/TSO, data sets must already be allocated for the target
program as if they were the target of an XFER statement.

This option is effective at run time only if the option is specified for the first
program in the run unit.

You usually use this method of specifying a transaction identifier when a
menu-driven program starts the program and you want to return to the
menu.

This option applies to the following types of programs:
v Main transaction programs in IMS/VS
v Main transaction and main batch programs in MVS/TSO, VM CMS, and all

CICS environments

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Chapter 29. Generation command and option descriptions 341

/RUNFILE (Create sample run-time JCL, Create a sample clist, or Create a
sample REXX exec)

Specifies that you want to generate run-time files.

Specify /NORUNFILE if you do not want to generate run-time files.

Run-time files consist of the following files:
v Sample run-time JCL for MVS batch, IMS BMP, or VSE batch programs

(prgmname.JCX)
v A sample CLIST for MVS/TSO programs (prgmname.CLX)
v A sample run-time REXX exec for VM CMS and VM batch programs

(prgmname.RXX)

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is /RUNFILE.

/SENDTRANSLATIONCMDDBCS (Send DBCS Translation Command)
Specifies that the DBCS translation tables must be set for the remote system
when transferring files using SNA. Set this value if you need to specify other
translation tables on the remote system. This is normally not necessary,
because any needed translation is done automatically on the local system.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Refer to your remote system documentation for default values.

/SESSION (Session ID)
Specifies the session ID of the host emulator session you want to use when
generated files are transferred to the host.

When this option is used with the GENERATE subcommand, the /PREP
generation option must also be specified.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is the first host session ID configured for your system.

/SETFULL (Set map item FULL)
Specifies that you want the VisualAge Generator SET map-item FULL
statement supported by the print services programs.

342 VisualAge Generator: Generation Guide

Specify /NOSETFULL if you want the VisualAge Generator SET map-item
FULL statement ignored by the print services programs.

Specify /SETFULL if you want asterisks (*) displayed in an empty map
variable if SET map item FULL statement is performed for the variable.

Specifying /NOSETFULL might provide better performance and smaller load
module size for map groups containing printer maps with many map
variables.

Specify /NOSETFULL if you do not use SET map item FULL statement in the
programs that use the map group.

Note: This option affects only the generation of map groups that contain
printer maps. It has no effect on the generation of programs, tables, or
map groups that only contain terminal maps.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is /SETFULL.

/SP (Issue CICS SET/INQUIRE)
Specifies the use of system program commands.

/SPA (SPA)
Specifies the size of the IMS scratch-pad area (SPA) you want to use for
transaction programs.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default value is 0.

/SPZERO (Interpret spaces as zero in NUM and NUMC data items)
Specifies that you want NUM and NUMC data items that contain only spaces
to be interpreted as containing all zeros.

You need not specify /NOSPZERO if you do not want special processing
done for NUM and NUMC data items that contain only spaces; /NOSPZERO
is the default.

Specify the /SPZERO option to generate COBOL source code that ensures
NUM and NUMC data items are interpreted as zeros instead of spaces.
Run-time performance is affected.

Chapter 29. Generation command and option descriptions 343

You do not need to specify the /SPZERO option if the NUM and NUMC data
items that contain all spaces cannot be used in an assignment statement or in
a conditional expression.

This option applies only to NUM and NUMC data items that contain just
spaces; this option does not apply to other types of data items.

Note: You cannot use nonnumeric data, such as national characters and
spaces, in NUM or NUMC data types. This option does not interpret
data items that contain a combination of spaces and other data.

An abend results if a numeric data type that contains character data is used in
an assignment statement or in a conditional expression. A data exception
causes this abend.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SQLDB (SQL database)
Specifies the name of the database you want to use for SQL statement
validation.

When you use this option with the VisualAge Generator GENERATE
subcommand, you must also specify the /PREP generation option.

The default value for /SQLDB is the value specified for the environment
variable EZERSQLDB.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

344 VisualAge Generator: Generation Guide

/SQLID (SQL userid)
Specifies the name of the SQL ID to use for SQL statement validation.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

The default value is the value specified for the environment variable
EZERSQLID.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SQLPASSWORD (password)
Specifies the name of the SQL password to use.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SQLVALID (SQL statements)
Specifies that you want to validate SQL statements.

Chapter 29. Generation command and option descriptions 345

You need not specify /NOSQLVALID if you do not want to validate SQL
statements; /NOSQLVALID is the default.

SQL statements are validated by dynamically preparing the statement using
the current database manager on the generation system. Validation of SQL
statements is done according to current database manager dynamic SQL
preparation rules.

For validation against remote databases, ensure that the database is
catalogued in the DDCS directory.

SQL statement validation does not catch all errors. The validation process
might return errors for the SQL statements that are valid in the target
environment, but not valid for the current database manager.

Note: You cannot validate SQL statements for SQL records defined with
dynamic table names or statements with the Execution Time Statement
Build option specified as Yes.

To validate SQL statements, all databases and tables used in the statements
must already be defined to the current database manager.

Requesting SQL statement validation increases the time needed for validation.

The default is /NOSQLVALID.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SYMPARM
Assigns a value to a symbolic parameter

The VisualAge Generator Developer builds JCL, CLIST, preparation command
files, the JOB and CICS program and transaction definitions, and preparation
and run-time REXX exec files from template files. If a symbol name in a
template matches a symbol you specified with the /SYMPARM option, the
value specified for the option replaces the name in the template.

Multiple /SYMPARM options can be specified on the same GENERATE
subcommand.

Note: The /SYMPARM generation option can only be specified using the
GENERATE subcommand or a generation options part. The user
interface has no corresponding field for the /SYMPARM generation
option.

346 VisualAge Generator: Generation Guide

Symbols specified using the /SYMPARM option cannot begin with EZE.
Symbols can be 1- to 8-characters in length.

Values specified for symbolic parameters must be enclosed in single quotation
marks (’) or double quotation marks (″).

Table 77 on page 375 shows the generation options and the valid environments
for each option.

See “Chapter 12. Symbolic parameters” on page 123 for more information
about symbolic parameters.

/SYNCDXFR (Set sync points for DXFRs)
Specifies that you want synchronization points to occur on DXFR operations
whenever a PSB is scheduled.

Specify /NOSYNCDXFR if you do not want synchronization points to occur
on DXFR operations unless a PSB is scheduled and the transferred-to program
was defined with a different PSB than the transferring program. The PSB
name in the program specification for both programs must be the same to
avoid the synchronization point at the DXFR operation.

Specifying /NOSYNCDXFR makes processing in CICS environments
compatible with other environments.

The default is /SYNCDXFR.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SYNCXFER (Set sync points for XFERs)
Specifies that you want to force database commits on XFER operations in
MVS/TSO, VM CMS, IMS BMP, MVS batch, and VM batch systems.
Specifying /SYNCXFER forces compatibility across all environments.

Specifying /NOSYNCXFER indicates that commits are not performed on
XFER operations in these environments.

/SYNCXFER is not supported in transaction-oriented IMS BMP programs
(programs which SCAN the I/O PCB as a serial file). These programs
automatically commit database changes on each SCAN to the I/O PCB and
cannot commit changes at any other point.

The default is /NOSYNCXFER.

Chapter 29. Generation command and option descriptions 347

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/SYSCODES (Use system return codes)
Specifies that you want the system return codes returned in your program.

You need not specify /NOSYSCODES to indicate that you want your program
to return VisualAge Generator return codes in the special function word
EZERT8 following I/O options; /NOSYSCODES is the default.

The default is /NOSYSCODES.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

For more information about system return codes for the format of VisualAge
Generator return codes, refer to the VisualAge Generator Messages and Problem
Determination Guide.

/TARGNLS (Target NLS)
Specifies the target national language code used for run-time output.

TARGNLS is the target national language code.

In relation to web-transaction programs, the following is true:
v TARGNLS identifies the name of the message table from which a resource

bundle is generated. The name of the message table is as follows:
PrefixNLSvalue

Prefix is the message table prefix and NLSvalue is the setting of TARGNLS.

TARGNLS is no longer used to determine the name of the resource bundle
itself during message-table generation. Use of
RESOURCEBUNDLELOCALE for this purpose allows support of more
languages than those for which IBM supplies translation.

v TARGNLS also specifies the default code-point-conversion table that is
available when the web-transaction program itself acts as a client and either
uses a linkage table or includes EZECONV or EZECONVT.

The rest of the information provided here concerns use of TARGNLS outside
of web-transaction programs.

TARGNLS defines the following specifications:
v The language for user messages and host services or workgroup services

messages at run time

348 VisualAge Generator: Generation Guide

v The language for run-time messages that are generated into a map group
generated for message format service (MFS)

v The fold table used at run time
v The default code point conversion table used in client/server programs at

run time
v The default code point conversion table used for generating map group

format modules for MVS, VSE, and VM environments
v The default conversion table used for translating ASCII to EBCDIC when

transferring objects from the workstation to MVS, VSE, and VM systems for
preparation

The /TARGNLS option is a run unit option for programs.

The /TARGNLS code for the first program in the run unit determines the
language you want to use for error messages for all programs in the run unit.

The /TARGNLS option acts as an option at generation (when generating
messages into the MFS source and identifying the default conversion tables).

The national language generated with the map group cannot be changed at
run time. To ensure that the national language values used in a program and
its map groups are consistent, specify the same /TARGNLS code when
generating the program and its map groups.

The following languages are supported:

Code Language
CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German
ENP Uppercase English
ENU US English
ESP Spanish
FRA French
ITA Italian
JPN Japanese
KOR Korean
PTB Brazilian Portuguese

Note: Uppercase English is not supported by AIX, OS/2, Windows NT,
HP-UX, SCO OpenServer, and Solaris.

Note: You must have the code pages loaded on your system for the languages
you use as values for the target national language.

Chapter 29. Generation command and option descriptions 349

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/TEMPLATES (Templates directory)
Specifies the directory that is searched for templates used in generating JCL,
CLISTs, REXX execs, preparation command files, the JOB statement, and CICS
program and transaction definitions.

If the templates are not found, the directories specified by the DPATH
environment variable are searched. Use the /TEMPLATES option if you built
different versions of the templates for different projects. Specify the directory
name as a fully qualified directory name. Symbolic parameters are permitted
in the directory specification.

See “Chapter 12. Symbolic parameters” on page 123 for more information
about symbolic parameters. Partial directory names are treated as a
subdirectory of the current server process directory. See “Chapter 15.
Command interface for COBOL generation” on page 167 for more information
about the server process.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

See “Chapter 11. Templates for COBOL generation” on page 57 for more
information about templates.

/TRACE (Runtime trace)
Specifies that you want to generate the necessary COBOL statements for
run-time tracing to be performed.

You can specify the following values:

350 VisualAge Generator: Generation Guide

NONE

Specify NONE if you do not want SQL tracing performed at run time.

Note: Because setting the /TRACE option to a value other than
NONE generates additional COBOL statements, using this
option will affect the run-time performance of the generated
program even if tracing is not active.

SQLERR

Specify SQLERR to generate the COBOL statements needed to trace
SQL error codes from the SQL communications area (SQLCA) at run
time.

SQLIO

Specify SQLIO to generate the COBOL statements needed to trace
SQL data areas and SQL error codes from the SQLCA at run time.

STMT

Specify STMT to enable VisualAge Generator Developer statement
tracing at run time. Statements are traced only if you specify STMT
when you run the program.

Note: If SQLERR or SQLIO is specified for a program that does not contain
SQL statements, the specification of SQLERR or SQLIO is ignored.

For more information about enabling tracing and for information about
obtaining the trace output, refer to any of the following documents:
v VisualAge Generator Server Guide for MVS, VSE, and VM
v VisualAge Generator Server Guide for AS/400
v VisualAge Generator Server Guide for Workstation Platforms

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is NONE.

/TRANSFERTYPE (Transfer method)
Specifies the protocol used for transferring files to the remote system.

The default values are as follows:

Development
System

CICS for
OS/2 AS/400 MVS VM VSE

Windows NT TCPIP TCPIP SNA SNA SNA

OS/2 NONE TCPIP SNA SNA SNA

Chapter 29. Generation command and option descriptions 351

If you are using the SNA protocol, you can specify /SESSION. If you are
using the TCP/IP protocol, you must specify /DESTHOST,
/DESTPASSWORD, and /DESTUID.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/TRANSID (Transaction IDs)
In relation to a main transaction or a Web transaction, you can specify the
following values for use in CICS environments:

primary
The trans-id that starts the program. The default is the first four
characters of the program name.

The specification of primary value has no effect at run time, but
causes the generation of PCT and RDO entries in accordance with the
setting of generation option /CICSENTRIES.

For a Web transaction, you must have PCT entries for the catcher
program DFHMIRS and for each Web transaction that DFHMIRS can
invoke. The /TRANSID primary value identifies a set of PCT and
RDO entries to be generated.

restart The trans-id that restarts the program. The restart occurs when the
user submits data in response to a segmented CONVERSE option.

At runtime, the restart value initializes the EZE word EZESEGTR. The
default for restart is a blank, which causes VisualAge Generator to
initialize EZESEGTR with the trans-id that the user entered to invoke
the program.

Like the primary value, the restart value causes the generation of PCT
and RDO entries in accordance with the value of generation option
/CICSENTRIES.

In a Web transaction, the restart value (if any) refers to the trans-id for
the catcher program DFHMIRS. To avoid starting CPMI when the
trans-id is not CPMI, prepend tpn_ to the trans_id. If the trans-id is
WEBT, for example, specify tpn_WEBT; but if the trans-id is CPMI,
specify only CPMI. If you specify WEBT without tpn_, CICS starts
CPMI, which in turn switches control to WEBT.

For details on EZESEGTR, see the VisualAge Generator Design Guide.
For details on Web transactions, see the Web Transaction Development
Guide.

352 VisualAge Generator: Generation Guide

Table 77 on page 375 shows the generation options and the valid environments
for each option.

/TWAOFF (TWA offset)
Specifies the offset of the 1024-byte block in the TWA. By default, generated
programs use 1024 contiguous bytes in the CICS transaction work area (TWA)
to keep track of transaction status

This option is effective at run time only if the option is specified for the first
program in the run unit.

Use this option to avoid overlap when non-VisualAge Generator programs
that use the transaction work area (TWA) are in the same run unit with
COBOL programs.

For example, if your non-VisualAge Generator program requires 100 bytes of
TWA, specifying a value of 100 causes the first 100 bytes to be reserved for
your program.

For CICS for OS/2 generation, when you specify a nonzero value you must
increase the TWASIZE defined in the transaction definition for the System
Initialization Table (SIT) by the amount beyond the 1024 bytes required for all
VisualAge Generator transactions.

For CICS for MVS/ESA and CICS for VSE/ESA, the increase in TWASIZE is
automatically generated in the transaction definitions. The TWASIZE value
generated in the PCT is set to 1024 plus the value specified for the /TWAOFF
generation option.

You can specify the following values:
0

Specify 0 if you want generated programs to use the first 1024 bytes
of the TWA.

offset

Specify offset to specify the offset of the 1024-byte transaction status
area in the TWA used by generated programs.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is 0.

/UNLOAD (Unload parts)
Specifies that all applications (on Smalltalk) or projects (on Java) containing
VAGen parts are to be unloaded before a batch generation.

Chapter 29. Generation command and option descriptions 353

The sequence is as follows:
1. An unload of all VAGen parts occurs.
2. The configuration map or project specified on the Generate command is

loaded.
3. Generation occurs.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is /UNLOAD.

/VALIDMIX (Validate mixed field moves)
Specifies that mixed fields are validated by VisualAge Generator Server or
VisualAge Generator Server for MVS, VSE, and VM.

Mixed fields are fields that contain both double-byte character set (DBCS) and
single-byte character set (SBCS) characters. Specify /NOVALIDMIX if you
want validation of mixed fields handled by the COBOL program. Using
/NOVALIDMIX might result in improved performance depending on the
number of mixed field moves contained in the program.

Specify the /VALIDMIX option to ensure that DBCS strings are valid,
especially if mixed fields might be truncated.

You do not need to specify the /VALIDMIX option if there is no possibility of
truncation of mixed fields.

Specify the /NOVALIDMIX option if you do not require the VisualAge
Generator Server to validate double-byte strings.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default is /VALIDMIX.

/VMLOADLIB (VM Load Library)
Specifies the VM target load library where the load modules are placed by the
preparation process.

Load modules created during the preparation process are stored in this
library.

The value for /VMLOADLIB is the file name for the load library; the filetype
is always LOADLIB.

The file name is limited to 8 characters.

354 VisualAge Generator: Generation Guide

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default value for /VMLOADLIB is EZEAPPL.

/LIB (VSE Library)
Specifies the library where objects created during generation are placed when
transferred by the preparation process.

Objects used in preparation, such as source code and text decks from COBOL
compiles, are placed in this library.

The parts are specified using the syntax part.type. This library is the first
library searched for link-editing.

The library specification is limited to 16 characters.

Notes:

v If you specify this option in a command file and you want to use a
symbolic parameter as part of the value for this option, you must
specify two percent signs (%%) as the symbolic parameter delimiter.

v If you specify this option on the command line or in a generation
options file, the symbolic parameter delimiter is one percent sign
(%).

v The user interface always places the options in a command file. If
you use symbolic parameters in values specified for the interactive
interface, always use two percent signs as the symbolic parameter
delimiter. For example, to use the symbolic parameter EZEENV,
specify %%EZEENV%%. This ensures that the command interpreter
correctly replaces the symbolic parameter value.

Chapter 29. Generation command and option descriptions 355

Table 77 on page 375 shows the generation options and the valid environments
for each option.

The default value for /LIB is PRD2.EZELIB.

/WORKDB (Work database)
Specifies the type of work database that you want to use for the generated
program.

This option is effective at run time only if the option is specified for the first
program in the run unit.

The work database is used for the following purposes:
v Saving program status across a CONVERSE process option in a segmented

program in IMS/VS and all CICS environments
v Saving input from a map while an end user views a help map
v Saving output for a map if the EZEMSG field was not included on the map

and an error message needs to be displayed in IMS/VS and all CICS
environments

v Saving a copy of the map for an XFER statement with a map in IMS/VS
and all CICS environments

v Passing working storage on an XFER statement in the IMS/VS environment

IMS environments support the definition of multiple DL/I databases, or SQL
databases, or both. Therefore, both the transferring and transferred-to
package/application must use not only the same /WORKDB type but also the
same physical database.

You can select any of the following values:

DLI

Specify DLI if you want to use DLI as the work database.

DLI is a valid value for the IMS/VS environment.

If you specify DLI, then you must include the ELAWORK PCB in the
program PSB.

The default for IMS/VS is DLI if you specified the ELAWORK
database in the program PSB.

SQL

Specify SQL if you want to use SQL as the work database.

SQL is a valid value for the IMS/VS environment.

356 VisualAge Generator: Generation Guide

The default is SQL if the ELAWORK database is not defined in the
program PSB. If there is an ELAWORK PCB in the PSB, DLI is the
default. SQL can be used in this case to override the DLI value.

AUX

Specify AUX if you want to save program status data in an auxiliary
temporary storage queue.

AUX is a valid value for all CICS environments.

The default is AUX for CICS environments.

MAIN

Specify MAIN if you want to save program status data in a main
temporary storage queue.

MAIN is a valid value for all CICS environments.

You can specify MAIN for CICS for OS/2 environments; however, the
current release of CICS for OS/2 always puts temporary storage
queues on auxiliary storage, even when the generated program
specifies MAIN.

Table 77 on page 375 shows the generation options and the valid environments
for each option.

Refer to the VisualAge Generator Design Guide for a description of work
database considerations for IMS.

Chapter 29. Generation command and option descriptions 357

358 VisualAge Generator: Generation Guide

Chapter 30. Java properties files

Java properties files contain settings that are used by Java programs at
runtime.You can elect to have a properties file generated when you generate a
program or you can write your own. From the Generation Options notebook,
you can specify generation of a properties file. If you are doing batch
generation, you specify generation of a properties file using
/GENPROPERTIES.

You can also modify a properties file after you have generated it to change the
way your program runs without regenerating it. This chapter provides a list
of properties you can use in the properties file with an explanation of what
options or preferences they correspond to. The properties are arranged by the
purpose they serve at runtime.

Resource association properties

Properties that correspond to resource association specifications are shown in
the following list. In the examples shown here, <filename> is taken from
″ASSOCIATE FILE=filename″ specification in the resource association file.

vgj.ra.<filename>.filetype
Specifies the type of the associated file.

This property is defined in the resource association file by the
/FILETYPE option. It is a required property. The following values are
valid:
v SEQ specifies a sequential file
v MQ specifies a message queue.

In the properties file, a sequential file type specification is shown as:
vgj.ra.MYFILE.filetype=SEQ

vgj.ra.<filename>.replace
Specifies whether or not an existing serial file is to be replaced by a
new one.

This property is defined in the resource association file by the
/REPLACE option. The following values are valid for this property:
v A value of 1 specifies that a file is to be replaced.
v A value of 0 specifies that the file is not to be replaced and is the

default.
You can use a value of 0 to specify that an ADD to a file always
appends to the end of the file.

© Copyright IBM Corp. 1980, 2001 359

In the properties file, a replacement specification would be shown as:
vgj.ra.MYFILE.replace=1

vgj.ra.<filename>.sysname
Specifies the system name of the file associated with the file name in
the record.

This property is defined in the resource association file by the
/SYSNAME option. This is a required property. The format of the
name is system and type-dependent as shown in the following
examples:
v If the file type is SEQ, vgj.ra.<filename>.sysname specifies the fully

qualified path and file name. (Slashes in path names are special
characters that must be escaped using a back slash.) In the
properties file, a system name for a sequential file would be shown
as:
vgj.ra.MYFILE.sysname=c:\\docs\\customers.txt

v If the file type is MQ, vgj.ra.<filename>.sysname specifies the queue
manager name and the queue name. In the properties file, a system
name specification for a message queue would be shown as:
vgj.ra.MYFILE.sysname=queue_manager_name:queue_name

vgj.ra.<filename>.text
Specifies a special type of serial file that contains carriage return or
line feed (CRLF) characters at the end of each line.

When a record is read (SCAN), the CRLF characters are automatically
removed. When a record is written (ADD), the CRLF characters are
automatically appended to the end of each record. This option is
useful when exchanging data files with other software packages that
expect each record to be delimited with the CRLF characters.This
property is defined in the resource association file by the /TEXT
option. The following values are valid for this property:
v A value of 1 specifies that the file contains CRLFs.
v A value of 0 specifies that the file should be read as bytes. 0 is the

default.

In the properties file, a text file specification would be shown as:
vgj.ra.MYFILE.text=1

vgj.ra.<filename>.contable
Specifies the conversion table used when the record data comes from
a message queue. The following values are valid for this property:
v * specifies use of the default conversion table.
v EZECONVT specifies that the conversion table name it contains

should be used as the conversion table.

360 VisualAge Generator: Generation Guide

v <conversiontablename> specifies the name of the conversion table.
v NONE specifies that no conversion table is used. This property is

the default.

In the properties file, a conversion table specification would be shown
as:
vgj.ra.MYFILE.contable=EZECONVT

Database default properties

Java SQL programs can use these properties for default access to SQL
database.

vgj.jdbc.default.database
Specifies the default database name to be used for an SQL I/O
operation if no prior database connection is specified. In a generated
properties file, this value comes from the SQL database (/SQLDB)
generation option.

In the properties file, a default database is specified as follows:
vgj.jdbc.default.database=emplsdb

vgj.jdbc.default.database.user.id
Specifies the default database user ID to be used with the default
database connection if a default connection is specified. In a generated
properties file, this value comes from the SQL userid (/SQLID)
generation option.

In the properties file, a default database user ID is specified as
follows:
vgj.jdbc.default.database.user.id=vguser

vgj.jdbc.default.database.user.password
Specifies the default database user password to be used with the
default database connection if a default connection is specified. In a
generated properties file, this value comes from password
(/SQLPASSWORD) generation option. Use EZECONCT to avoid
exposing passwords in the properties file.

In the properties file, a default database password is specified as
follows:
vgj.jdbc.default.database.user.id=vgpasswd

vgj.jdbc.drivers
Specifies the names of one or more JDBC drivers to be used for JDBC
access. If multiple drivers are specified, the names should be
separated by colons.

In the properties file, a JDBC driver is specified as follows:

Chapter 30. Java properties files 361

vgj.jdbc.drivers=COM.ibm.db2.jdbc.app.DB2Driver

vgj.jdbc.database.<servername>
Specifies the name of the JDBC database that is used with the default
database specification when a call to EZECONCT is made with the
specified server name.

In the properties file, a server name is specified as follows:
vgj.jdbc.database.DB2SERV=jdbc.db2.sample

JVM command property

Although the default command for starting a JVM is java, in the properties
file you can define a different command to start a new JVM. You should use
this property when you start a program using a CREATX statement.

vgj.java.command
Specifies an alternate command to be used at runtime.

In the properties file, an alternate start command is specified as
follows:
vgj.java.command=jre

You can also use this property to specify both a different start
command and a different properties file:.
vgj.java.command=jre -Dvgj.properties.file=c:\\java\\alternatename.properties

Note: For additional information about using the vgj.properties.file property,
see the VisualAge Generator Server Guide for Workstation Platforms.

Java server communication properties

If the program you are setting up is a Java server program that uses TCP/IP
you will need to start the following service:

CSOTcpipListener
A Java program that handles TCP/IP calls. You start this program
using the command:
java CSOTcpipListener

If you do not specify a path to the properties file for the TCP/IP listener, the
Java virtual machine (JVM) looks for the default properties file
tcpiplistener.properties in your current directory.

If the program you are setting up or developing is a Web transaction, running
your program requires that the TCP/IP listener service be running. The
following service must also be running:

362 VisualAge Generator: Generation Guide

CSOUiListener
A Java program used to start Web transactions. You start this program
using the command:
java CSOUiListener

Each of these services requires a properties file. You can specify the fully
qualified path to these properties files on the command line as follows:
java CSOUiListener c:\java\csoul.properties

If you do not specify a path to the properties file for the UI listener, the Java
virtual machine (JVM) looks for the default properties file
uilistener.properties in your current directory.

Properties files for both services are structured the same way and use the
same properties. In the following summary, <listener> can be either uilistener
or tcpiplistener.

<listener>.port
Specifies the number of the port on which the program will listen for
connections.

In the properties file, the port number is specified as follows:
tcpiplistener.port=9876

<listener>.java.command
Specifies whether server programs started by the listener are to run in
the same JVM as the listener. If the value of this property is NONE or
if the property is not defined, all of the server programs run in the
same JVM with separate threads. If a command is specified as the
value of this property, each server runs in a separate JVM, as shown
in the following example:
tcpiplistener.java.command=java

<listener>.trace.flag
Specifies that operations of the listener should be written to a file. The
default value of this property is 0, so no trace file is created. If you
specify any other value, the trace is written to a file called
<listener>.out. To specify a different name, see <listener>.trace.file.

In the properties file, the writing of a trace file is specified as follows:
tcpiplistener.trace.flag=1

<listener>.trace.file
Specifies that operations of the listener should be written to a file with
a specific name. The default value of this property is <listener>.out.

In the properties file, the file name and location to which the trace
should be written is specified as follows:

Chapter 30. Java properties files 363

tcpiplistener.trace.file=c:\\temp\\uitrace.txt

NLS Properties

Properties from options affecting which language version of VisualAge
Generator Server for Windows NT and the program message tables are used
can also be specified in the properties files. When a program is generated the
NLS code is picked up from generation options. The date format is picked up
from user preferences

vgj.nls.code
Specifies the language to be used at runtime. In a generated properties
file, this value comes from the Target NLS (/TARGNLS) generation
option.

In the properties file, the target national language property is specified
as follows:
vgj.nls.code=ENU

vgj.datemask.<format>.<length>.<NLS>
Specifies the format and language for dates used at runtime. Here,
length and format are determined by user-specified settings in options
or preferences. NLS is the code defined by the Target NLS
(/TARGNLS) generation option.

In the properties file, an example of a date format and language
property specification is:
vgj.datemask.gregorian.long.ENU=MM/DD/YYYY

Note: Gregorian and juilan long formats are supported.

vgj.nls.number.decimal
Specifies the character to be used to designate the decimal point in
numbers.

In the properties file, an example of a decimal property specification
is:
vgj.nls.number.decimal=,

Linkage properties

Linkage properties are optional controls that define relationships between
programs. These properties, taken from generation options and linkage table
parts, specify the type of linkage to be used for calls from one program to
another. This list summarizes the properties and gives examples of their uses.

cso.linkagetable.<linktable>
Specifies the name of the linkage table part. This property is used to
support run-time binding of linkage tables. The value assigned to the

364 VisualAge Generator: Generation Guide

property is the name of the properties file that contains the table’s
linkage information. In a generated properties file, this value comes
from the Linkage table (/LINKAGE) generation option.

In the properties file, the properties file that contains linkage
information is specified as follows:
cso.linkagetable.LINKTABLE=linkage1.properties

cso.application.<applname>
Specifies that programs with names that match <applname> belong to
the same server group. If <applname> ends in an asterisk (wild card),
it may be used to specify several programs that use the same naming
convention. The value of the property is the name of the server group.
In a generated properties file, this value comes from the applname
attribute as specified in the linkage table.

In the properties file, the programs using the same naming convention
can be designated as a server group using as follows:
cso.application.J*=JAVASERVERS

cso.serverLinkage.<group>.<attribute>
Specifies a server group and a named linkage attribute (package,
bitmode, remotecomtype, etc.) to apply to it. The value is the attribute
setting. In a generated properties file, this value comes from the
attribute setting in the linkage table.

In the properties file, the programs belonging to a named server
group can have the value of an attribute applied to them at runtime
as follows:
serverLinkage.SERVER.remotecomtype=TCPIP

Chapter 30. Java properties files 365

366 VisualAge Generator: Generation Guide

Chapter 31. Analyzing return codes and errors

Errors can occur during program generation. Using the following information,
you can determine problems and then continue with your work.

Analyzing generation errors

When you use VisualAge Generator, return codes and messages are issued to
indicate whether generation was successful.

Analyzing return codes
The return codes for the GENERATE subcommand are as follows:
0 Generation was successful.
4 Generation was successful, but validation information messages were

issued.
8 Generation was not successful.

12 The command syntax is not valid.
16 The NLS identifier is not valid.

Locating generation error messages
Generation messages are written to the STDOUT destination for OS/2
commands. The default STDOUT destination is the current OS/2 session.

To route the messages to a file instead of displaying them in a window, add
the following statement to the end of the GENERATE subcommand.
> filename 2>&1;

Where filename is the name of the file you want the generation messages
written to. This is the standard OS/2 technique for routing command
messages to a file.

Analyzing messages
If the generation was not successful, do the following steps:
v Review the messages to determine why the generation was not successful.
v Correct the problem.
v Generate the part again.

If you receive a stack overflow condition, check your program for any of the
following conditions:
v A large number of statements or conditions on either the WHILE or IF

processing statements
v A large number of nested expressions
v A large number of operands

© Copyright IBM Corp. 1980, 2001 367

If any of these conditions exists, split the statements in your program. If the
problem continues, follow this procedure:
1. Record the available information.
2. Record the situation in which this problem occurs.
3. Save the program that you are working with.
4. Use your electronic link with IBM Service (for example, IBMLink) if one is

available, or contact the IBM Support Center. If you contact the IBM
Support Center to report an error in VisualAge Generator Developer, have
your customer number ready. The program number for VisualAge
Generator Developer is .

Refer to the VisualAge Generator Messages and Problem Determination Guide for
more information about the messages.

You can use the /LISTING generation option to generate a listing of the part
source code. See “/LISTING /LISTINGONERROR, /NOLISTING (Generation
listing)” on page 326 for more information on using the /LISTING generation
option.

Analyzing preparation errors

The HPTCMD PREPARE subcommand issues return codes and messages to
indicate if preparation was successful.

Analyzing return codes
The return codes for preparation are as follows:

0 The preparation process was successful.

4 The preparation was successful, but some information messages were
issued.

8 The preparation was not successful.

12 The command syntax is not valid.

16 The NLS identifier is not valid.

Note: The values returned by the PREPARE subcommand only indicate the
status of the preparation process itself. The values do not indicate
whether any jobs submitted by the PREPARE subcommand are
successful.

Locating preparation error messages
If preparation was automatically started by specifying the /PREP option,
preparation messages go to the same destination as messages returned by the
GENERATE subcommand.

368 VisualAge Generator: Generation Guide

If you use the PREPARE subcommand, messages are written to the STDOUT
destination for OS/2 commands. The default STDOUT destination is the
current OS/2 session.

To route the messages to a file instead of displaying them in the current OS/2
session, add the following to the end of the PREPARE subcommand:
> filename 2>&1;

where filename is the file to write the preparation messages to. This is the
standard OS/2 technique for routing command messages to a file.

Analyzing messages
If the preparation was not successful, do the following:
1. Review the messages to determine the cause of the failure.
2. Correct the problem.
3. If the messages indicate a problem in the generated parts, run the

generation process again. You can automatically start the preparation
process from generation by using the /PREP option.

4. If the problem was in the preparation process, you can start the
preparation process again using the PREPARE subcommand.

Refer to the VisualAge Generator Messages and Problem Determination Guide for
more information about the messages returned by the PREPARE
subcommand.

Chapter 31. Analyzing return codes and errors 369

370 VisualAge Generator: Generation Guide

Chapter 32. Serviceability

If you need to contact the IBM Support Center for assistance with a problem,
you might be asked to provide any of the following information about your
program:
v The program source that was generated with the /COMMENTLEVEL

option
See “/COMMENTLEVEL (Comment level) (COBOL)” on page 304 for
information about the /COMMENTLEVEL option.

v The external source format export files for the VisualAge Generator parts
that were used to generate the program

v You might be asked to use other generation options:
– /DEBUGTRACE
– /TRACE
– /LINEINFO

For more information about enabling tracing and for information about
obtaining the trace output when you are generating C++ programs, refer to
the VisualAge Generator Messages and Problem Determination Guide.

© Copyright IBM Corp. 1980, 2001 371

372 VisualAge Generator: Generation Guide

Part 8. Appendixes

© Copyright IBM Corp. 1980, 2001 373

374 VisualAge Generator: Generation Guide

Appendix A. List of valid generation options for each
environment

Table 77 shows the generation options and the environments for which each
option is valid. An equal sign signifies a value is specified with an option; the
rest of the options do not expect a value to be added. The options are in
alphabetical order.

Table 77. Generation options

COBOL C++ Java GUI

Generation options V
M

C
M

S
V

M
b

at
ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
b

at
ch

IM
S

/V
S

IM
S

B
M

P
V

S
E

C
IC

S
V

S
E

b
at

ch
O

S
/2

C
IC

S
O

S
/4

00
O

S
/2

A
IX

A
IX

C
IC

S
H

P
-U

X
S

C
O

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

W
in

d
ow

s
N

T
C

IC
S

Ja
va

Ja
va

w
ra

p
p

er
O

S
/2

W
in

d
ow

s
Ja

va

/ANSISQL x x x x x x x x x x

/BIND= x x x x x

/CHECKTYPE= x

/CICSDBCS x x

/CICSENTRIES= x x x x x

/COMMENTLEVEL= x

/CONTABLE= x

/CREATEDDS x

/CURRENCY= x x x x x x x x x

/DATA= x x x x x x x x x

/DBMS= x x x x x

/DBPASSWORD= x x x x x x x x x x

/DBUSER= x x x x x x x x x

/DEBUGTRACE x x x x x x x x x x

/DESTACCOUNT= x x x x x x x x x x x

/DESTDIR= x x x x x x x x x x x

/DESTHOST= x x x x x x x x x x x x x x x x x x x

© Copyright IBM Corp. 1980, 2001 375

Table 77. Generation options (continued)

COBOL C++ Java GUI

Generation options V
M

C
M

S
V

M
b

at
ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
b

at
ch

IM
S

/V
S

IM
S

B
M

P
V

S
E

C
IC

S
V

S
E

b
at

ch
O

S
/2

C
IC

S
O

S
/4

00
O

S
/2

A
IX

A
IX

C
IC

S
H

P
-U

X
S

C
O

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

W
in

d
ow

s
N

T
C

IC
S

Ja
va

Ja
va

w
ra

p
p

er
O

S
/2

W
in

d
ow

s
Ja

va

/DESTLIB= x

/DESTPASSWORD= x x x x x x x x x x x x x x x x x x x

/DESTUID= x x x x x x x x x x x x x x x x x x x

/DXFRCANCEL x x x x x x x x x

/DXFRXCTL x x x x x x x

/EJBGROUP= x

/ENDCOMMAREA x x x x x x

/ERRDEST= x x

/FASTPATH x

/FOLD x x x x x x x x x x x

/FTPTRANSLATIONCMD
DBCS

x x x x x x x x x x x

/FTPTRANSLATIONCMD
SBCS

x x x x x x x x x x x

/GENAUTHORTIMEVALUES x

/GENHELPMAPS x

/GENMAPS x

/GENOUT= x

/GENPROPERTIES x

/GENRESOURCEBUNDLE x

/GENRET x

/GENTABLES x

/GENUIRECORDS x

/GROUPNAME x x x

/INEDIT= x

/INITADDWS x x x x x x x x x x x

376 VisualAge Generator: Generation Guide

Table 77. Generation options (continued)

COBOL C++ Java GUI

Generation options V
M

C
M

S
V

M
b

at
ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
b

at
ch

IM
S

/V
S

IM
S

B
M

P
V

S
E

C
IC

S
V

S
E

b
at

ch
O

S
/2

C
IC

S
O

S
/4

00
O

S
/2

A
IX

A
IX

C
IC

S
H

P
-U

X
S

C
O

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

W
in

d
ow

s
N

T
C

IC
S

Ja
va

Ja
va

w
ra

p
p

er
O

S
/2

W
in

d
ow

s
Ja

va

/INITRECD x x x x x x x x x x x

/JAVADESTDIR= x

/JAVADESTHOST= x

/JAVADESTPASSWORD= x

/JAVADESTUID= x

/JAVASYSTEM= x

/JOBCARD= x x x x x x x x

/JOBNAME= x x x x x x x x

/JSPRELDIR x

/LEFTJUST x x x x x x x x x x x

/LINEINFO x x x x x x x x x x x

/LINES= x

/LINKAGE= x

/LISTING x x x x x x x x x x x x x

/LOCVALID x

/LOG= x x

/MATH= x x x x x x x x x x x

/MFSDEV= x x

/MFSEATTR x x

/MFSIGNORE x x

/MFSTEST x x

/MSGTABLEPREFIX= x

/MSP= x x x x x x

/NULLFILL x x x x x x x x x x x

/NUMOVFL x x x x x x x x x x x x x

Appendix A. List of valid generation options for each environment 377

Table 77. Generation options (continued)

COBOL C++ Java GUI

Generation options V
M

C
M

S
V

M
b

at
ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
b

at
ch

IM
S

/V
S

IM
S

B
M

P
V

S
E

C
IC

S
V

S
E

b
at

ch
O

S
/2

C
IC

S
O

S
/4

00
O

S
/2

A
IX

A
IX

C
IC

S
H

P
-U

X
S

C
O

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

W
in

d
ow

s
N

T
C

IC
S

Ja
va

Ja
va

w
ra

p
p

er
O

S
/2

W
in

d
ow

s
Ja

va

/OPTIONS= x

/PACKAGENAME= x x

/POSSIGN x

/PREP x

/PREPFILE x x x x x x x x x x x

/PRINTDEST= x x x x x x

/PROJECTID= x x x x x x x x

/RECOVERY x

/RESOURCE= x x x x x x x x x x x * * x * * x

/RESOURCEBUNDLELOCALE x

/RESVWORD= x x x x x x x x x x x

/RT= x x x x x x x x x

/RUNFILE x x x x x x

/SENDTRANSLATIONCMD
DBCS

x x x x x x x x x x x

/SESSION= x x x x x x x x x

/SETFULL x x x x x x x x x x x

/SP x

/SPA= x

/SPZERO x x x x x x x x x x x

/SQLDB= x x x x x x x x x x x x x x x x x x

/SQLID= x x x x x x x x x

/SQLPASSWORD= x x x x x x x x x

/SQLVALID x

/SYMPARM= x x x x x x x x x x x x x

378 VisualAge Generator: Generation Guide

Table 77. Generation options (continued)

COBOL C++ Java GUI

Generation options V
M

C
M

S
V

M
b

at
ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
b

at
ch

IM
S

/V
S

IM
S

B
M

P
V

S
E

C
IC

S
V

S
E

b
at

ch
O

S
/2

C
IC

S
O

S
/4

00
O

S
/2

A
IX

A
IX

C
IC

S
H

P
-U

X
S

C
O

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

W
in

d
ow

s
N

T
C

IC
S

Ja
va

Ja
va

w
ra

p
p

er
O

S
/2

W
in

d
ow

s
Ja

va

/SYNCDXFR x x x

/SYNCXFER x x x x x

/SYSCODES x x x x x x x x x x x

/SYSTEM= x

/TARGNLS= x

/TEMPLATES= x x x x x x x x x x x

/TRACE= x x x x x x x x x x

/TRANSFERTYPE x x x x x x x x x x x

/TRANSID= x x x x x x

/TWAOFF= x x x

/NOUNLOAD= x

/VALIDMIX x x x x x x x x x x x

/VMLOADLIB= x x

/LIB= x x

/WORKDB= x x x x x x x

Notes: *Includes Windows 95, and Windows NT.

The following characters are used to indicate the level of support:

x supported

blank not supported

* resource association file referenced only at run time

Appendix A. List of valid generation options for each environment 379

380 VisualAge Generator: Generation Guide

Appendix B. Implementing a generation server

Support for generation processing, using VisualAge Generator Developer, can
be implemented on a workstation that is shared by multiple programmers,
but this requires customized implementation and configuration. Sample REXX
programs are provided to help you set up client/server generation. These
sample files are placed in the C:\Program Files\Vast directory during
installation.

You must customize these files for your specific LAN server and operating
system environment to provide the required processing support. These sample
programs are command-driven and are not directly available on the user
interface.

The user interface for generation can be used to create generation command
files that invoke the EFKREQ.CMD or EFKREQ.REX client code if the
following is true:
v CALL EFKREQ is selected on the VAGen - Generation tab of the

Preferences notebook.
v Batch Generation is selected on the Generate window.

Note: These sample REXX programs are the recommended method for
running VisualAge Generator Developer on a generation server. It is
recommended that you do not use the NET RUN service.

To run these REXX programs on Windows NT you will need to obtain
and install REXX support; this is provided by the product IBM Object
REXX for Windows NT and Windows 95 (5801-AAR). You need the
interpreter edition (Feature 1569, part number 10J9392).

Table 78 shows the sample files provided for OS/2 and Windows NT.

Table 78. Sample files for OS/2 and Windows NT

Sample file OS/2 Windows NT

EFKREQ EFKREQ.CMD EFKREQ.REX

EFKSERV EFKSERV.CMD EFKSERV.REX

EFKLIST EFKLIST.CMD EFKLIST.REX

The following sample files are provided:

© Copyright IBM Corp. 1980, 2001 381

EFKSERV.CMD, EFKSERV.REX
This REXX file contains commands that receive server requests. The
EFKSERV.CMD or EFKSERV.REX program runs on the LAN server
and continually checks the server input queue for generation requests.
The server input queue is specified in the EFKGEN.INI file. End this
server process by pressing CTRL+C or by issuing the EFKREQ STOP
command.

EFKREQ.CMD, EFKREQ.REX
This REXX file contains commands that submit server requests. The
EFKREQ.CMD or EFKREQ.REX program runs on the client, gathers
generation option information, and places the generate request on the
server input queue. EFKREQ also supports command options of
PAUSE, STOP, and START. These command options control the
processing of EFKSERV.

EFKLIST.CMD, EFKLIST.REX
This REXX file contains commands that list the contents of the server
input queue. The EFKLIST program runs on the client and displays a
list of all requests waiting to be processed by the EFKSERV program.

EFKGEN.INI
This file defines the locations for different files. This file also defines
other parameters used by the REXX command files. This file is
installed on the client and server.

LANGEN.TXT
This file contains additional configuration guidance for the
implementation of generation clients and generation servers.

Setting up the client

You must do the following when setting up a client:
v For Windows NT, install Object REXX. See “Setting up Object REXX

support on Windows NT” on page 384.
v Each client must have a copy of the EFKGEN.INI file. The following

modifications must be made before the EFKGEN.INI file can be used:
– The environment variable GENERATE_INI value must be set to the

directory containing the EFKGEN.INI file.
– The working_dir parameter must be set to a directory located on the

client.
– The server_input_dir and gen_listing_dir parameter values must be set to

directories located on a shared file system that can be accessed by both
generation clients and generation servers. Your VisualAge Generator
Developer administrator provides these locations.

382 VisualAge Generator: Generation Guide

Alternatively, if all developer’s workstations are identical, they can share a
copy of the EFKGEN.INI file on the generation server (see “LAN generation
setup” on page 385.

v You must have read/write access to the directory on the server where the
input queue is located to submit requests. The location of this directory is
defined in the EFKGEN.INI file with the value for the server_input_dir
parameter.

You can submit server requests even if the EFKSERV program is not running.
The EFKREQ program places the generation request in input queue of the
server.

The HPTCMD command output listings are placed in the directory specified
by the gen_listing_dir parameter in the EFKGEN.INI file. The generated source
and related program objects are placed on the server machine in the directory
specified by the /GENOUT generation option.

When you specify a value for the /GENOUT generation option, use symbolic
parameters to avoid conflicts with other generation requests. Figure 86 shows
how to use a symbolic parameter.

If your target system is CICS for OS/2 and your project is USERA, the
generated output is placed in the directory F:\OUTPUT\USERA\OS2CICS. If
a specified directory does not exist, it is created for you.

Setting up the server

You need to be aware of the following when setting up a server:
v For Windows NT, install Object REXX. See “Setting up Object REXX

support on Windows NT” on page 384.
v Each server must have a copy of the EFKGEN.INI file. The following

modifications must be made before the EFKGEN.INI file can be used:
– The environment variable GENERATE_INI value must be set to the

directory containing the EFKGEN.INI file.
– The working_dir parameter must be set to a directory located on the

server.
– The server_input_dir and gen_listing_dir parameter values must be set to

directories located on a shared file system that can be accessed by both
generation clients and generation servers. Your VisualAge Generator
Developer administrator provides these locations.

/GENOUT=F:\OUTPUT\%EZEPID%\%EZEENV%

Figure 86. Using symbolic parameters example

Appendix B. Implementing a generation server 383

v The EFKSERV program runs continuously. To stop the EFKSERV program,
press CTRL+C. or issue the EFKREQ STOP command.

v The sample REXX programs use long file names. If your file system does
not support long file names you must modify the sample REXX programs
to use file names that are between 1- to 8-characters.

v The EFKSERV program writes a log listing the generated programs. This
log file is called Gen_Server.log and is located in the directory specified for
the gen_listing_dir parameter in the EFKGEN.INI file.

See the LANGEN.TXT file for additional information.

Setting up Object REXX support on Windows NT

These tasks are only required on Windows NT. OS/2 provides integrated
support for REXX.
v Install Object REXX
v Customize Windows NT so that REXX command files, which have a file

extension of .REX, are recognized as REXX and invoked under the control
of the REXX interpreter. To fully implement this level of REXX support in
Windows NT you must:
1. Check that the Object REXX installation process sets up an association

for the .REX filetype. You can check the existing associations using this
command: assoc | more If the association does not exist you can add it
from the command line using this command:
assoc .rex=REXXscript

2. Make sure the Object REXX command processor is somewhere in the
PATH (or enter it fully qualified in this step) and use ftype to link it to
the file type, if this has not been done by your command processor
setup. You can check the existing ftype definitions using this command:
ftype | more. Ensure that the file type association for REXXscript has
the following value:
REXXscript="c:\ObjRexx\rexx.exe" %1 %* >.REX

where c:\ObjRexx is the directory where Object REXX is installed. If the
ftype definition does not exist, or does not match the value shown
above, you can create the definition from the command line using this
command:
ftype REXXscript="c:\ObjRexx\rexx.exe" %1 %* >.REX

Note: These two steps are sufficient for running the file with the EXT
extension and might have been done when your command
processor was installed. But, you must modify the ftype
definition for REXXscript to ensure parameters are passed as
expected.

384 VisualAge Generator: Generation Guide

3. Finally, set the PATHEXT system environment variable to recognize the
EXT extension.This is the key step that allows you to use the command
file without extension. To set it permanently, use the environment page
of the Windows NT system settings notebook dialog (Control Panel →
System → Environment) and create the PATHEXT environment variable
(because the default is not shown) with a value of:
.REX;.COM;.EXE;.BAT;.CMD

LAN generation setup

The following example lists the tasks needed to setup LAN generation on the
server machine.

Setup on the generation server
The following example assumes that VisualAge Generator is installed on a
LAN server and that all clients install VisualAge Generator on the same drive
and directory and use the same mappings of drives on the file server. You
must complete the following tasks on the generation server:
1. Install VisualAge Smalltalk client (directory d:\vast)
2. Install VisualAge Generator Developer
3. For Windows NT, install and tailor Object REXX
4. Be sure the drive supports long names
5. Create the following directories:

v d:\langen
v d:\langen\template
v d:\langen\cmds
v d:\langen\inputgen
v d:\langen\outlist

6. Copy the following files from d:\vast to d:\langen\cmds:
v efkreq.rex or efkreq.cmd
v efkserv.rex or efkserv.cmd
v efklist.rex or efklist.cmd
v efkgen.ini
v abt.cnf
v hpt.ini

This file has been tailored to include the VisualAge Generator
environment variables and to point to the repository.

v abt.icx
This is an workspace/image that already has the VisualAge Generator
Developer feature loaded.

7. Copy and name the efkgen.ini file in d:\langen\cmds as the following
files:
v efkgensv.ini

Appendix B. Implementing a generation server 385

Tailor this file to reflect the drives that the generation server uses. For
example, set the following: /server_input_dir=d:\langen\inputgen
and /gen_listing_dir=d:\langen\outlist

v efkgencl.ini
Tailor this file to reflect the drives that the client uses. For example, set
the following: /server_input_dir=h:\input and
/gen_listing_dir=h:\outlist

8. Make your changes in the copies of efkserv and efkreq in
d:\langen\cmds, not in d:\vast. This ensures that any fixpak changes to
efkserv and efkreq do not destroy your changes.

9. Copy the templates from \vast\template to d:\langen\template and then
make any tailoring changes you need to the version in
d:\langen\template. Be sure to point your generation options to the
tailored version of the templates.

10. Set the GENERATE_INI environment variable to point to
d:\langen\cmds\efkgensv.ini

11. Set the PATH environment variable to include d:\langen\cmds before the
d:\vast directory.

12. If you are running on a Novell Netware LAN environment, set the
EZERUSRID environment variable to the LAN userid of the generation
server.

13. Reboot your system for the changes to take effect.
14. Start EFKSERV from a command prompt.
15. For Windows NT, ensure that the date style and the time style in the

Regional Settings match the corresponding information on the repository.

Setup on the client
The following example assumes that VisualAge Generator is installed on a
LAN server and that all clients install VisualAge Generator on the same
directory and use the same mappings of drives on the file server. You must
complete the following tasks on the clients:
1. Install VisualAge Smalltalk client (directory d:\vast)
2. Install VisualAge Generator Developer
3. For Windows NT, install and tailor Object REXX
4. Map the generation server drive so that drive h: on the client workstation

points to d:\langen on the server machine.
5. Set the GENERATE_INI environment variable to point to

h:\cmds\efkgencl.ini
6. Set the PATH environment variable to include h:\cmds before the d:\vast

directory.
This is needed so you can use EFKREQ from the generation server.

386 VisualAge Generator: Generation Guide

7. If you are running on a Novell Netware LAN environment, set the
EZERUSRID environment variable to the LAN userid of the client
workstation.
For Windows NT, this should be a user environment variable because it
would vary depending on which user is signed on.

8. From the VisualAge Organizer window, select Options then Preferences.
Then, from the VAGen - Generation tab, select CALL EFKREQ as the
Batch generation command.

9. Reboot your system for the changes to take effect.
10. For Windows NT, ensure that the date style and the time style in the

Regional Settings match the corresponding information on the repository.

Appendix B. Implementing a generation server 387

388 VisualAge Generator: Generation Guide

Appendix C. Reading syntax diagrams

The syntax diagrams used throughout the documentation conform to the
following conventions:
v The keywords can be listed in any order.

The !!─── symbol indicates the beginning of a statement.
The ───! symbol indicates that the statement syntax is continued on the
next line.
The !─── symbol indicates that a statement is continued from the previous
line.
The ───!< symbol indicates the end of a statement.
A syntax diagram that does not show the complete statement starts with
the !─── symbol and ends with the ───! symbol. The >>─── symbol
indicates the beginning of a statement.
A syntax diagram that show the complete statement starts with the !!───
symbol and ends with the ───!< symbol.

v Required items appear on the horizontal line (the main path).

!! STATEMENT required-item !<

v Optional items appear below the main path.

!! STATEMENT
optional-item

!<

v Items positioned above the syntax diagram line are default parameters.

!!
default-item1

STATEMENT
optional-choice2

!<

v If you can choose from two or more items, these items appear vertically, in
a stack.
If you must choose an item in the stack, one of the required items appears
on the main path.

!! STATEMENT :kwd required-choice1
:kwd required-choice2

!<

© Copyright IBM Corp. 1980, 2001 389

If choosing one of the items is optional, the entire stack appears below the
main path.

!! STATEMENT
optional-choice1
optional-choice2

!<

v An arrow returning to the left above the item indicates an item that you
can repeat. Required items appear on the main line and optional items
appear below the main line.

!! STATEMENT repeatable-item !<

A repeat arrow indicates that you can make more than one choice from the
grouped items, or repeat a single item.

v Keywords appear in uppercase (for example, PARM1). However, they can be
uppercase or lowercase when they are entered. They must be spelled
exactly as shown. Variables and acceptable values appear in all lowercase
letters (for example, parmx). They represent names or values that you
supply.

v If punctuation marks, parentheses, arithmetic operators, or other symbols
are shown, you must enter them as part of the syntax.

390 VisualAge Generator: Generation Guide

Index

Special Characters
<listener>.java.command

java properties 363
<listener>.port

java properties 363
<listener>.trace.flag

java properties 363

A
adding a qualifier

program user data set
names 106

to a preparation procedure 108
to a preparation process

template 113
to a preparation template 107
to a run-time CLIST

template 111
AIX

case sensitive 310
example of generation 24
slash in path name 215

AMODE, specifying 255
analyzing

generation errors 367
messages 165, 369
preparation errors 18, 164, 368
return codes 164, 368

ANSISQL option 300
appcims

with calllink tag 224
applname attribute

on calllink tag 220
assigning values to user-defined

symbolic parameters 135
ASSOCIATE 267

/BLKSIZE; 267
/COMMIT 268
/FILETYPE 269
/NOCOMMIT 268
/NODUP 268
/NOREPLACE 271
/PCBNO 271
/REPLACE 271
/SYSNAME 272
/SYSNUM 272
/SYSTEM 273
FILE 267
syntax 266

B
batch print services COBOL

program 148
beans

for record array rows 199
for record parameters 198
for servers 196

binary
with calllink tag 227
with crtxlink tag 236
with filelink tag 241

binary table 151
BIND

command file 257, 301
command keywords 260
command templates 71
control part 55, 146, 257
defining plans 257
error return codes 264
EXPLAIN(YES) keyword 260
not required for OS/2, OS/400,

or VSE environments 264
OWNER(authorization-id)

keyword 260
sample commands 260

BIND option 301
binding

packages instead of plans 262
when the first program does not

use SQL 262
when the first program uses

SQL 260
binform attribute

on calllink tag 230
bitmode attribute

on calllink tag 220

C
C++

command interface 21
GENERATE subcommand

examples 24
generating programs 5
generation output 15
inputs to program generation 11
preparation process 17
preparing programs 6

C++ generation
command interface 21

C++ generation (continued)
GENERATE subcommand

syntax 21
inputs and outputs tables 11

C++ preparation
VALIDATE subcommand

example 28, 47
VALIDATE subcommand

syntax 27, 47
ca400

with calllink tag 224
CALL, effect on plans with RT

generation option 259
CALL IDENTIFIER 88
call linkage 218
call linkage (CALLLINK) 218
CALL LITERAL 88
CALLLINK definition 220
calllink tag

binform attribute
host 230
INTEL 230

contable attribute
binary 227
conversion table name 226
EZECONVT 226
none 226

linktype attribute
cicslink 221
csocall 221
dynamic 221
remote 221
sessionejb 222
static 221

location attribute
EZELOC 227
system name 227

luwcontrol attribute
client 229
server 229

parmform attribute
cicsoslink 224
commdata 224
commptr 223
oslink 223

providerURL attribute
URL 230

remoteapptype attribute
ITF 226

© Copyright IBM Corp. 1980, 2001 391

calllink tag (continued)
NONVG 226
VG 225
VGJAVA 226

remotebind attribute
generation 229
runtime 229

remotecomtype attribute
appcims 224
ca400 224
cicsclient 224
dce 224
dcesecure 225
direct 225
exci 225
ipc 225
Java400 225
lu2 225
tcpip 225

serverid attribute
server identifier 228

case sensitive, generation
options 215

cataloged procedure 83
CHECKTYPE option 302
cics

with crtxlink tag 236
with filelink tag 242

CICS
file types supported 276
parameter format and linkage

combinations 231
required conversion options 86
TEMPAUX 279
templates for table definition 73
templates for tables 72
TEMPMAIN 280
TRANSIENT 281

CICS/ESA, DBCS translator option
for 87

CICS for AIX
SEQ 277
VSAM file type 282

CICS for MVS/ESA
DBRMs 259
file type keywords 283
generation example 171
inputs and outputs for COBOL

generation 51
naming program plans 258
SPOOL 278

CICS for OS/2
creating COBOL compile and link

listings for 118
generation example 173

CICS for OS/2 (continued)
initializing the environment

for 119
inputs and outputs for COBOL

generation 51
OS2COBOL 276
outputs of preparation 163
preparation 162
PREPARE subcommand 176
suppressing CICS translator,

COBOL compile, and link
messages 119

table entries 163
VSAM file type keyword 283

CICS for VSE/ESA
file type keywords 283
generation example 174
inputs and outputs for COBOL

generation 51
map group preparation

templates 66
preparation templates 64
SPOOL 278

CICS for Windows NT
SEQ 277
VSAM file type 282

CICS table templates 72
cicsclient

with calllink tag 224
CICSDBCS option 303
CICSENTRIES option 303
cicslink

with calllink tag 221
cicsoslink

with calllink tag 224
client

with calllink tag 229
client generation xv
CLIST templates for MVS/TSO 79
COB2LIB symbolic parameter 131
COBLIST symbolic parameter 131
COBOL

compiler options for MVS 88
copybook for MFS MID/MOD

layout 150
creating compile and link listings

for CICS for OS/2 118
deleting 114
GENERATE subcommand

syntax 167
generating programs 5
inputs and outputs for

generation 51
inputs to generation 51
link-editing static calls 245

COBOL (continued)
outputs of generation 137
preparation process 153
preparing programs 6
program 144
run-time options for VSE 95
syntax for the VALIDATE

subcommand 177
table program 151
VisualAge Generator Developer

commands 167
COBOL generation

outputs 137
templates used in 57

COBOL program 144
command interface

C++ generation 21
Java generation 43, 187, 201

command keywords, BIND 260
commands, options 297
commdata

with calllink tag 224
COMMENTLEVEL

details for C++ 305
details for COBOL 304

common preparation errors 18
commptr

with calllink tag 223
compiler, RES option 89
compiler options

additional 89
included 89
required for COBOL 88
that are not supported 91

CONFIGMAPNAME
parameter 298

CONFIGMAPVERSION
parameter 299

considerations for plan
definition 258

contable attribute
on calllink tag 226
on crtxlink tag 235
on filelink tag 240

CONTABLE option 306
contacting IBM for support 371
control files, COBOL generation 51
control statements, specifying 248,

252
CONVERSE, effect on plans with RT

generation option 259
conversion table name

with calllink tag 226
with crtxlink tag 236
with filelink tag 241

392 VisualAge Generator: Generation Guide

conversion tables 13, 33, 55
CREATEDDS option 306
creating

a resource association file 265
COBOL compile and link listings

for CICS for OS/2 118
generation options files 209
user-defined symbolic

parameters 134
creating linkage table entries 217
CREATX linkage (CRTXLINK) 234
crtxlink tag

contable attribute
binary 236
conversion table name 236
EZECONVT 236

linktype attribute
local 235
remote 235

location attribute
cics 236
EZELOC 237

cso.application.<applname>
java properties 365

cso.serverLinkage.<group>.<attribute>
java properties 365

csocall
with calllink tag 221

CSOTcpipListener 362
CSOUiListener 362
CURRENCY option 306

D
DATA option 306
DB2, required options 86
DB2/VSE

naming program packages 95
required options 94

DBCS
compiler option 89

DBCS translator option for
CICS/ESA 87

DBDLIB symbolic parameter 131
DBMS option 307
DBPASSWORD option 308
DBUSR option 308
dce

with calllink tag 224
dcesecure

with calllink tag 225
DEBUGTRACE option 308
default

establishing generation
options 210

generation options parts
examples 211

default (continued)
generation options parts when

NOOVERRIDE is not
specified 211

generation options parts when
NOOVERRIDE is
specified 210

reserved-word file 54
sample generation options

parts 213
template extension 57

defining
BIND plans 257
link-edit file 245

definitions for CALLLINK 220
deleting COBOL on MVS or VSE

host 114
deleting COBOL source from the

workstation 113
DESTACCOUNT option 309
DESTDIR option 309
DESTHOST option 310
DESTLIB option 310
DESTPASSWORD option 310
DESTUID option 311
detail 319

/GROUPNAME 319
determining generation option

resolution order 212
diagram

CICS for MVS/ESA
generation 51

CICS for OS/2 generation 51
CICS for VSE/ESA

generation 51
COBOL generation 51
IMS BMP COBOL generation 51
IMS VS COBOL generation 51
inputs and outputs for C++

generation 11
MVS batch generation 51
MVS TSO generation 51
OS/400 generation 51
VSE batch generation 51

different systems, preparing
programs on 85

direct
with calllink tag 225

DL/I
usage 79
usage for MVS batch 63, 76
usage for MVS/TSO 63
VSE batch 78

DSNLOAD symbolic parameter 132
DSYS symbolic parameter 132

DXFR, effect on plans with RT
generation option 259

DXFR linkage (DXFRLINK) 237
DXFRCANCEL 311
dxfrlink tag

linktype attribute
dynamic 238
noncsp 239
static 238

DXFRXCTL 311
dynamic

with calllink tag 221
with dxfrlink tag 238

E
effects of XFER, DXFR, CALL,

CONVERSE, and the /RT
generation option on plans 259

EFK24PBC, preparation template 68
EFK24PBM, preparation

template 69
EFK24PCL, preparation template 68
EFK24PEC, preparation template 68
EFK24PEJ, preparation template 70
EFK24PMN, preparation

template 68
EFK24PPM, preparation

template 68
EFK24PSC, preparation template 68
EFK24PSM, preparation

template 68
EFK24TAM, preparation

template 69
EFK24TCM, preparation

template 69
EFK24TEM, preparation

template 69
EFK24TMJ, preparation template 70
EFK24WCL, preparation

template 68
EFK24WSC, preparation

template 69
EFK2CVCL template 82
EFK2MDLI template 81
EFK2MEBA template 78
EFK2META template 80
EFK2MIMS template 81
EFK2MPCB template

before modification 120
preparation JCL 121
values for the symbolic

parameters 120
EFK2MTCL template 82
EFK2MTDL template 81
EFK2VDLI template 80

Index 393

EFK2VEBA template 78
EFKGEN.INI file

defines input queue
directory 383

specifies server input queue 382
EFKREQ file 381
EJBGROUP option 311
ELA symbolic parameter 131
ELARLINK procedure,

modifying 248
ENDCOMMAREA option 312
Enterprise Java Bean (EJB)

generating 205
entries, required 298
ENTRY_POINT option 158
environment variable

PATHEXT 385
environment variables

HPTCLASSDIR 185
HPTJSPDIR 185

ERRDEST option 312
error return code, BIND

commands 264
error return codes, static links 256
errors

analyzing generation 367
analyzing preparation 164, 368
common preparation 18
preparation 18

establishing default generation
options 210

example
default generation options

files 211
GENERATE subcommand 171
GENERATE subcommand for

C++ 24
GENERATE subcommand for

Java 189
generating for AIX 24
generating for CICS for

MVS/ESA 171
generating for CICS for

OS/2 173
generating for CICS for

VSE/ESA 174
generating for HP-UX 24
generating for MVS batch 172
generating for MVS/TSO 172
generating for OS/2 25
generating for SCO 25
generating for Solaris 25
generating for VM batch 174
generating for VM CMS 173
generating for VSE batch 174

example (continued)
generating for Windows NT 26,

45
modifying templates 106
PREPARE subcommand 176
VALIDATE subcommand 179
VALIDATE subcommand for

C++ 28, 47
VALIDATE subcommand for

Java 204
exci

with calllink tag 225
extension

templates 57
externalname attribute

on calllink tag 223
EZEBLK symbolic parameter 130
EZECOBOLTYPE, symbolic

parameter 124
EZECONVT

with calllink tag 226
with crtxlink tag 236
with filelink tag 241

EZEDATA symbolic parameter 124
EZEDBCS symbolic parameter 124
EZEDBD symbolic parameter 130
EZEDD symbolic parameter 130
EZEDESTLIB symbolic

parameter 124
EZEDESTNAME symbolic

parameter 124
EZEDLBL symbolic parameter 130
EZEDLI symbolic parameter 124
EZEDSN symbolic parameter 131
EZEENTRY symbolic

parameter 124
EZEENV symbolic parameter 124
EZEGDATE symbolic

parameter 125
EZEGENOUT, symbolic

parameter 125
EZEGMBR symbolic parameter 125
EZEGTIME symbolic

parameter 125
EZELOC

with calllink tag 227
with crtxlink tag 237
with filelink tag 242

EZELRECL symbolic parameter 131
EZEMBR symbolic parameter 125
EZEMBRPATH symbolic

parameter 125
EZEMSG symbolic parameter 125
EZEPID symbolic parameter 125
EZEPREPDESTACCOUNT 125

EZEPREPDESTDIR 126
EZEPREPDESTHOST 126
EZEPREPDESTPASSWORD 126
EZEPREPDESTUID 126
EZEPREPFTPCMDDBCS 126
EZEPREPFTPCMDSBCS 126
EZEPREPSENDCMDDBCS 126
EZEPREPSESSION 127
EZEPREPSP 127
EZEPREPSQLDB 127
EZEPREPWORKDB 127
EZEPSB symbolic parameter 127
EZEPTYPE part types 127
EZEPTYPE symbolic parameter 127
EZERECFM symbolic

parameter 131
EZESQL symbolic parameter 128
EZETRAN symbolic parameter 129
EZETRANSFERTYPE 129
EZEUSRID environment

variable 91
EZEUSRID symbolic parameter 129
EZEVSELIB symbolic

parameter 129
EZEXAPP symbolic parameter 129
EZUAUTH symbolic parameter 132
EZUINST symbolic parameter 132

F
FASTPATH option 313
FCEJBLD

FCEJBLD 39
file and database allocation

placeholder templates 81
file and database allocation

templates 80
file linkage 239
FILE linkage (FILELINK) 239
file-related symbolic

parameters 130
file type

OS2COBOL 276
SEQ 277
SPOOL 278
supported by CICS

environments 276
supported by environment and

record organization 274
supported by OS/400 289
supported for MVS Batch,

IMS/VS, and IMS BMP 287
supported for MVS/TSO 286
supported for VM

environments 290
supported for VSE batch 292
TEMPAUX 279

394 VisualAge Generator: Generation Guide

file type (continued)
TEMPMAIN 280
TRANSIENT 281
VSAM 283
VSAM for CICS for AIX< 282
VSAM for CICS for

Windows NT 282
filelink tag

contable attribute
binary 241
conversion table name 241
EZECONVT 241

linktype attribute
local 240
remote 240

location attribute
cics 242
EZELOC 242

filename attribute
on filelink tag 240

filename option 298
FOLD option 313
fromappl attribute

on dxfrlink tag 237
FTPTRANSLATIONCMDDBCS 313
FTPTRANSLATIONCMDSBCS 314

G
GENAUTHORTIMEVALUES

option 314
GENERATE command

Java 43
GENERATE subcommand 297

examples 171
examples for C++ 24
examples for Java 189
return codes 367
syntax for C++ 21
syntax for COBOL 167
syntax for Java 187, 201

generation
analyzing errors 367
COBOL and C++ 5
command interface for C++ 21
command interface for Java 187,

201
inputs and outputs for C++ 11
inputs to C++ 11
inputs to Java 181, 193
inputs to Java server program

generation 31
inputs to Java wrappers 193
introducing 3
modifying output 151
on a LAN server, running 381

generation (continued)
options for each

environment 375
options for Java wrappers 193
output for C++ 15
output for java 35
output for Java 183
output for Java wrappers 195
sample option files 213
templates used for COBOL 57
with calllink tag 229

generation binding for linkage
options 194

generation examples
AIX 24
CICS for MVS/ESA 171
CICS for OS/2 173
CICS for VSE/ESA 174
GENERATE subcommand for

C++ 24
GENERATE subcommand for

Java 189
HP-UX 24
MVS batch 172
MVS/TSO 172
OS/2 25
SCO 25
Solaris 25
VM batch 174
VM CMS 173
VSE batch 174
Windows NT 26, 45

generation option
/ANSISQL 300
/BIND 301
/CHECKTYPE 302
/CICSDBCS 303
/CICSENTRIES 303
/COMMENTLEVEL for

C++ 305
/COMMENTLEVEL for

COBOL 304
/CONFIGMAPNAME 298
/CONFIGMAPVERSION 299
/CONTABLE 306
/CREATEDDS 306
/CURRENCY 306
/DATA 306
/DBMS 307
/DBPASSWORD 308
/DBUSER 308
/DEBUGTRACE 308
/DESTACCOUNT 309
/DESTDIR 309
/DESTHOST 310

generation option (continued)
/DESTLIB 310
/DESTPASSWORD 310
/DESTUID 311
/EJBGROUP 311
/ENDCOMMAREA 312
/ERRDEST 312
/FOLD 313
/FTPTRANSLATIONCMDDBCS 313
/FTPTRANSLATIONCMDSBCS 314
/GENAUTHORTIMEVALUES 314
/GENHELPMAPS 314
/GENMAPS 315
/GENOUT 315
/GENRESOURCEBUNDLE 317
/GENRET 318
/GENTABLES 319
/GENUIRECORDS 319
/INEDIT 320
/INITADDWS 320
/INITRECD 321
/JAVADESTDIR 321
/JAVADESTHOST 322
/JAVADESTPASSWORD 322
/JAVADESTUID 323
/JAVASYSTEM 323
/JOBCARD 323
/JOBNAME 324
/JSPRELDIR 324
/LEFTJUST 324
/LIB 355
/LINEINFO 325
/LINES 325
/LINKAGE 326
/LINKEDIT 326
/LISTING 326
/LISTINGONERROR 326
/LOCVALID 327
/LOG 327
/MATH 327
/MFSDEV 328
/MFSEATTR 329
/MFSEATTRNCD 329
/MFSIGNORE 329
/MFSTEST 330
/MSGTABLEPREFIX 330
/MSP 330
/NOANSISQL 331
/NOCICSDBCS 331
/NODEBUGTRACE 308
/NOENDCOMMAREA 312
/NOFASTPATH 313
/NOFOLD 313
/NOGENHELPMAPS 314
/NOGENMAPS 315

Index 395

generation option (continued)
/NOGENRET 318
/NOGENTABLES 319
/NOINITADDWS 320
/NOINITRECD 321
/NOLEFTJUST 324
/NOLINEINFO 325
/NOLISTING 326
/NOLISTING, /LISTING,

/LISTINGONERROR 326
/NOLOCVALID 327
/NOLOG 327
/NOMFSEATTR 329
/NOMFSIGNORE 329
/NOMFSTEST 330
/NONULLFILL 334
/NONUMOVFL 334
/NOPREP 335
/NOPREPFILE 336
/NORECOVERY 337
/NORUNFILE 342
/NOSETFULL 342
/NOSPZERO 343
/NOSQLVALID 345
/NOSYNCDXFR 347
/NOSYNCXFER 347
/NOSYSCODES 348
/NOUNLOAD 333
/NOVALIDMIX 354
/NULLFILL 334
/NUMOVFL 334
/OPTIONS 334
/PACKAGENAME 335
/POSSIGN 335
/PREP 335
/PREPFILE 336
/PRINTDEST 336
/PROJECT 299
/PROJECTID 337
/RECOVERY 337
/RESOURCE 338
/RESOURCEBUNDLELOCALE 339
/RESVWORD 340
/RT 341
/RUNFILE 342
/SENDTRANSLATIONCMDDBCS 342
/SESSION 342
/SETFULL 342
/SP 343
/SPA 343
/SPZERO 343
/SQLDB 344
/SQLID 345
/SQLPASSWORD 345
/SQLVALID 345

generation option (continued)
/SYMPARM 346
/SYNCDXFR 347
/SYSCODES 348
/SYSTEM 299
/TARGNLS 348
/TEMPLATES 350
/TRACE 350
/TRANSFERTYPE 351
/TRANSID 352
/TWAOFF 353
/UNLOAD 353
/VALIDMIX 354
/VMLOADLIB 354
/WORKDB 356
case sensitive options 215
commands details 297
database management

system 307
default files 211
details 297
determining resolution

order 212
DXFRCANCEL 311
DXFRXCTL 311
establishing defaults 210
filename 298
GENERATE 297
guidelines for setting 215
HPTCMD 297
HPTCMD details 297
naming conventions 215
NOOVERRIDE not specified 211
NOOVERRIDE specified 210
not valid 215
options details 300
overriding a value to use

default 215
partname 298
PREPARE 297
reading 389
subcommand details 297
symbolic parameters 214
VALIDATE 297

generation options for each
environment 375

generation options part
available during generation 210
creating 209
description 209
multiple levels 212
sample 213

generation outputs 195
generation server

setting up 385

GENHELPMAPS option 314
GENMAPS option 315
GENOUT option 315
GENRESOURCEBUNDLE

option 317
GENTABLES option 319
GENUIRECORDS option 319
getting ready for OS/400

preparation 162
GROUPNAME option 319
guideline, setting generation

options 215

H
host

with calllink tag 230
host services

DBRMs for CICS for
MVS/ESA 259

HP-UX
case sensitive 310
example of generation 24
slash in path name 215

HPTCMD details 297

I
IBM, contacting for support 371
IMS, naming program plans 259
IMS BMP

file types supported 287
inputs and outputs for COBOL

generation 51
map group preparation

templates 66
preparation templates 64
run-time JCL templates 76

IMS/VS
DBRMs 260
file types supported 287
inputs and outputs for COBOL

generation 51
map group preparation

templates 66
preparation templates 64

IMS/VS DBRMs 260
included compiler options 89
INEDIT option 320
INITADDWS option 320
initializing the environment for CICS

for OS/2 119
INITRECD option 321
inputs

C++ program generation 11
COBOL generation 51
Java program generation 181

396 VisualAge Generator: Generation Guide

inputs (continued)
Java server program

generation 31
inputs and outputs tables

C++ generation 11
COBOL generation 51
COBOL generation, CICS for

MVS/ESA 51
COBOL generation, CICS for

OS/2 51
COBOL generation, CICS for

VSE/ESA 51
COBOL generation, IMS

BMP 51
COBOL generation, IMS VS 51
COBOL generation, MVS

batch 51
COBOL generation, MVS

TSO 51
COBOL generation, OS/400 51
COBOL generation, VSE

batch 51
Java wrapper generation 193

INTEL
with calllink tag 230

interfaces requiring a linkage
table 232, 239

interfaces using CALL or DXFR
statements on a single
system 232, 239

introducing program generation 3
ipc

with calllink tag 225
issuing VisualAge Generator

Developer commands 167
ITF

with calllink tag 226

J
java

generation output for 35
Java

command interface 187, 201
GENERATE subcommand

examples 189
GENERATE subcommand

syntax 187, 201
generation output 183
inputs to program

generation 181, 193
inputs to server program

generation 31
preparation 39
preparation process 185

Java generation
command interface 43, 187, 201
GENERATE command 43
inputs 181

Java generation outputs 183
Java Naming and Directory Interface

(JNDI) 205
Java preparation

fcjbld 39
VALIDATE subcommand

example 204
VALIDATE subcommand

syntax 204
java properties

<listener>.java.command 363
<listener>.port 363
<listener>.trace.file 363
<listener>.trace.flag 363
applname 365
cso.application.<applname> 365
cso.linkagetable.<linktable> 364
cso.serverLinkage.<group>.<attribute> 365
CSOTcpipListener 362
CSOUiListener 362
linkage table 364
server group 365

Java properties
contable 360
database default 361
decimal 364
default database 361
filetype 359
java command 362
JDBC drivers 361
JDBC server name 362
JVM command 362
linkage 364
listener 362
NLS 364
nls code 364
replace 359
resource association 359
SQL password 361
SQL user ID 361
sysname 360
text 360

Java wrapper generation
inputs 193

Java400
with calllink tag 225

JavaBeans wrappers
generating 191

generation outputs 195
generation inputs 193
generation options 193

JavaBeans wrappers (continued)
generation output 195
inputs to program

generation 193
linkage table options 194

JAVADESTDIR option 321
JAVADESTHOST option 322
JAVADESTPASSWORD option 322
JAVADESTUID option 323
JAVASYSTEM option 323
JCL templates 75
JOB statements 74
JOBCARD option 323
JOBNAME option 324
JSPRELDIR option 324

L
LAN generation

setting up 385
LE

modifying user exits 87
run-time options 87

LEFTJUST option 324
library attribute

on calllink tag 220
LINEINFO option 325
LINES option 325
link-edit

defining a file 245
link-editing static COBOL

calls 245
linkage editor control statement

files 53, 245
linkage editor control statements

for MVS 246
linkage editor control statements

for VM 250
link-edit templates 71
link-editing, static COBOL calls 245
linkage

table entries
creating 217
sample 242

table entry format 217
tables 217

linkage editor control statements
files 53, 245
MVS 246
VM 250
VSE 253

LINKAGE option 326
linkage table

cso.linkagetable.<linktable> 364
java properties 364

linkage table description 53

Index 397

linkage table options
for Java wrappers 194
generation binding 194
run-time binding 194

LINKEDIT option 326
linktype attribute

on calllink tag 221
on crtxlink tag 235
on dxfrlink tag 238
on filelink tag 240

list of files
transferred to MVS 161
transferred to OS/400 162
transferred to VSE 161

list of terms used in this
document xii

listing file 141
LISTING option 326
LISTINGONERROR option 326
local

with crtxlink tag 235
with filelink tag 240

location attribute
on calllink tag 227
on crtxlink tag 236
on filelink tag 241

LOCVALID option 327
LOG option 327
lu2

with calllink tag 225
luwcontrol attribute

on calllink tag 229

M
map group

format module 148
templates 65

map group template
CICS for VSE/ESA and VSE

batch preparation 66
IMS/VS and IMS BMP

preparation 66
MATH option 327
member-related symbolic

parameters 123
messages, analyzing 165, 369
MFS

COBOL copybook for MID/MOD
layout 150

control blocks 149
print services COBOL

program 149
MFSDEV option 328
MFSEATTR option 329
MFSEATTRNCD option 329

MFSIGNORE option 329
MFSTEST option 330
modifying

ELARLINK procedure 248
generation output 151
LE user exits 87
MVS JOB card 91
PSB name to match batch

program name 115
templates 82
templates and procedures for

MVS environments 84
templates for the OS/400

environment 92
templates for VM 97
templates for VSE 93
the EFK2MPCB template 120
VSE JOB card 95

MSGTABLEPREFIX option 330
MSP option 330
multiple resource associations for a

file 266
MVS

COBOL compiler options 88
deleting COBOL 114
getting ready for

preparation 160
linkage editor control

statements 246
list of files transferred 161
modifying templates and

procedures 84
modifying the JOB card 91
preparation 153
preparation file templates 62
preparation JCL 142
preparation script templates 58
PREPARE subcommand 176
program and transaction

definitions 143
program with static calls to other

programs 246
programs statically called by

other programs 247
setting COBOL run-time

options 87
MVS batch

DBRMs 259
DL/I usage 63, 76
file types supported 287
generation example 172
inputs and outputs for COBOL

generation 51
naming program plans 258

MVS preparation 160

MVS/TSO
CLIST templates 79
DBRMs 259
DL/I usage 63
file types supported 286
generation example 172
inputs and outputs for COBOL

generation 51
naming program plans 258
routing output 116

N
names, generation options files 213
naming

CICS for MVS/ESA program
plans 258

conventions for allocated data
sets 160

DB2/VSE program packages 95
IMS program plans 259
MVS/TSO and MVS batch

program plans 258
NET RUN 381
NLS codes 349
NOANSISQL option 331
NOCICSDBCS option 331
NODEBUGTRACE option 308
NODYNAM compiler option 88
NOENDCOMMAREA option 312
NOFASTPATH option 313
NOFOLD option 313
NOGENHELPMAPS option 314
NOGENMAPS option 315
NOGENRET option 318
NOGENTABLES option 319
NOINITADDWS option 320
NOINITRECD option 321
NOLEFTJUST option 324
NOLINEINFO option 325
NOLISTING option 326
NOLOCVALID option 327
NOLOG option 327
NOMFSEATTR option 329
NOMFSIGNORE option 329
NOMFSTEST option 330
noncsp

with dxfrlink tag 239
none

with calllink tag 226
NONULLFILL option 334
NONUMOVFL option 334
NONVG

with calllink tag 226

398 VisualAge Generator: Generation Guide

NOOVERRIDE
in default generation options

file 210
not in default generation options

file 211
NOPREP option 335
NOPREPFILE option 336
NORECOVERY option 337
NOREPLACE, ASSOCIATE 271
NORUNFILE option 342
NOSPZERO option 343
NOSQLVALID option 345
NOSYNCDXFR option 347
NOSYNCXFER option 347
NOSYSCODES option 348
NOUNLOAD option 333
NOVALIDMIX option 354
NULLFILL option 334
NUMOVFL option 334

O
Object REXX support for

Windows NT 384
objects generated

all member types 138
map groups 147
programs 144
tables 150

online print services COBOL
program 149

option
DBCS compiler 89
details 300
establishing default

generation 210
NODYNAM compiler 88
RES compiler 89

options
/ANSISQL 300
/BIND 301
/CHECKTYPE 302
/CICSDBCS 303
/CICSENTRIES 303
/COMMENTLEVEL for

C++ 305
/COMMENTLEVEL for

COBOL 304
/CONTABLE 306
/CREATEDDS 306
/CURRENCY 306
/DATA 306
/DBPASSWORD 308
/DBUSER 308
/DEBUGTRACE 308
/DESTACCOUNT 309
/DESTDIR 309

options (continued)
/DESTHOST 310
/DESTLIB 310
/DESTPASSWORD 310
/DESTUID 311
/EJBGROUP 311
/ENDCOMMAREA 312
/ERRDEST 312
/FOLD 313
/GENAUTHORTIMEVALUES 314
/GENHELPMAPS 314
/GENMAPS 315
/GENOUT 315
/GENRESOURCEBUNDLE 317
/GENRET 318
/GENTABLES 319
/GENUIRECORDS 319
/INEDIT 320
/INITADDWS 320
/INITRECD 321
/JAVADESTDIR 321
/JAVADESTHOST 322
/JAVADESTPASSWORD 322
/JAVASYSTEM 323
/JOBCARD 323
/JOBNAME 324
/JSPRELDIR 324
/LEFTJUST 324
/LIB 355
/LINEINFO 325
/LINES 325
/LINKAGE 326
/LINKEDIT 326
/LOCVALID 327
/LOG 327
/MATH 327
/MFSDEV 328
/MFSEATTR 329
/MFSEATTRNCD 329
/MFSIGNORE 329
/MFSTEST 330
/MSGTABLEPREFIX 330
/MSP 330
/NOANSISQL 331
/NOCICSDBCS 331
/NODEBUGTRACE 308
/NOENDCOMMAREA 312
/NOFASTPATH 313
/NOFOLD 313
/NOGENHELPMAPS 314
/NOGENMAPS 315
/NOGENRET 318
/NOGENTABLES 319
/NOINITADDWS 320
/NOINITRECD 321

options (continued)
/NOLEFTJUST 324
/NOLINEINFO 325
/NOLOCVALID 327
/NOLOG 327
/NOMFSEATTR 329
/NOMFSIGNORE 329
/NOMFSTEST 330
/NONULLFILL 334
/NONUMOVFL 334
/NOPREP 335
/NOPREPFILE 336
/NORECOVERY 337
/NORUNFILE 342
/NOSETFULL 342
/NOSPZERO 343
/NOSQLVALID 345
/NOSYNCDXFR 347
/NOSYNCXFER 347
/NOSYSCODES 348
/NOUNLOAD 333
/NOVALIDMIX 354
/NULLFILL 334
/NUMOVFL 334
/OPTIONS 334
/PACKAGENAME 335
/POSSIGN 335
/PREP 335
/PREPFILE 336
/PRINTDEST 336
/PROJECT 299
/PROJECTID 337
/RECOVERY 337
/RESOURCE 338
/RESOURCEBUNDLELOCALE 339
/RESVWORD 340
/RT 341
/RUNFILE 342
/SESSION 342
/SETFULL 342
/SP 343
/SPA 343
/SPZERO 343
/SQLDB 344
/SQLID 345
/SQLVALID 345
/SYMPARM 346
/SYNCDXFR 347
/SYSCODES 348
/SYSTEM 299
/TARGNLS 348
/TEMPLATES 350
/TRACE 350
/TRANSID 352
/TWAOFF 353

Index 399

options (continued)
/UNLOAD 353
/VALIDMIX 354
/VMLOADLIB 354
/WORKDB 356
additional compiler 89
CICS required conversion 86
commands 297
compiler options that are not

supported 91
DBCS translator for

CICS/ESA 87
filename 298
for COBOL compiler for

MVS 88
for setting COBOL run-time for

MVS 87
GENERATE 297
HPTCMD 297
included compiler 89
LE run-time 87
options 300
partname 298
PREPARE 297
required 88
required DB2 86
required for DB2/VSE 94
setting additional SQL

preprocessor 94
setting COBOL run-time for

VSE 95
subcommands 297
syntax diagram 297
VALIDATE 297

OPTIONS option 334
OS/2

BIND command files not
required 264

example of generation 25
OS/400

BIND command files not
required 264

CICS for OS/2 176
example 176
file types supported 289
getting ready for

preparation 162
inputs and outputs for COBOL

generation 51
list of files transferred 162
modifying templates for the 92
MVS 176
OS/400 176
preparation 161
PREPARE subcommand 176

OS/400 (continued)
return codes 368
syntax for COBOL 175
templates 67
VSE 176

OS2COBOL, file type keyword for
the CICS for OS/2
environment 276

oslink
with calllink tag 223

output
C++ generation 15
COBOL generation 137
java generation 35
Java generation 183
Java wrapper generation 195
modifying generation 151

outputs, CICS for OS/2
preparation 163

overriding a value to use the default
value 215

overview about generation control
files 51

P
package attribute

on crtxlink tag 235
PACKAGENAME option 335
parameters

format and linkage combinations
for CICS 231

parmform attribute
on calllink tag 223

partname option 298
PATHEXT environment

variable 385
PCT, program control table 73
POSSIGN option 335
PPT, program properties table 73
predefined symbolic

parameters 123
PREP option 335
preparation

analyzing errors 18, 164, 368
C++ 17
CICS for OS/2 162
command file templates 58
common errors 18
customizing 159
for COBOL 153
for MVS and VSE systems 153
getting ready for MVS 160
getting ready for OS/400 162
getting ready for VSE 161
Java 39, 185

preparation (continued)
JCL for MVS and VSE

environments 142
MVS and VSE 153
OS/400 161
REXX exec for VM

environments 143
VALIDATE subcommand

example for C++ 28, 47
VALIDATE subcommand

example for Java 204
VALIDATE subcommand syntax

for C++ 27, 47
VALIDATE subcommand syntax

for Java 204
preparation command file 141
preparation file templates for MVS

or VSE 62
preparation JCL, created from the

EFK2MPCB template 121
preparation template

EFK24PBC 68
EFK24PBJ 69
EFK24PCL 68
EFK24PEC 68
EFK24PEJ 70
EFK24PMN 68
EFK24PPM 68
EFK24PSC 68, 69
EFK24PSM 68
EFK24TAM 69
EFK24TCM 69
EFK24TEM 69
EFK24TMJ 70
EFK24WCL 68

PREPARE subcommand 297
preparing

COBOL and C++ 6
programs on a single system 85
programs on different

systems 85
PREPFILE option 336
PRINTDEST option 336
procedure name and symbolic

parameters 86
processing templates 120
PROCLIB symbolic parameter 132
program and transaction definitions,

MVS and VSE 143
program control table (PCT) 73
program name

java properties 365
program properties table (PPT) 73
program templates 62

400 VisualAge Generator: Generation Guide

program templates 62 (continued)
CICS for VSE/ESA and VSE

batch preparation 64
IMS/VS and IMS BMP

preparation 64
PROJECT option 299
PROJECTID option 337
providerURL attribute

on calllink tag 230
PSBLIB symbolic parameter 132
PWRCLASS symbolic

parameter 132

Q
qualifier

adding for program user data set
names 106

adding to a preparation
procedure 108

adding to a preparation process
template 113

adding to a preparation
template 107

adding to a run-time CLIST
template 111

R
reading syntax diagrams 389
reasons to modify templates 83
recdname attribute

on crtxlink tag 235
RECOVERY option 337
remote

with calllink tag 221
with crtxlink tag 235
with filelink tag 240

remoteapptype attribute
on calllink tag 225

remotebind attribute
on calllink tag 229

remotecomtype attribute
on calllink tag 224

REPLACE, ASSOCIATE 271
required DB2 options 86
required DB2/VSE options 94
required options 88
required parameters and

options 298
RES compiler option 89
reserved-word file

contents 54
default 54
description 53

RESLIB symbolic parameter 132
resource association file

creating 265

resource association file (continued)
description 265
multiple associations 266
sample 274
syntax 266

Resource Associations Editor 265
resource associations part 56, 265
resource associations part when

using VisualAge Generator 13, 32
RESOURCE option 338
RESOURCEBUNDLELOCALE

option 339
RESVWORD option 340
return codes

analyzing 164, 368
GENERATE subcommand 367
PREPARE subcommand 368

REXX 70
preparation exec for VM 70
setting up support for 384

REXX exec 143
REXXscript 384
RMODE, specifying 255
routing output, MVS/TSO 116
RT option

details 341
effect on plans with XFER DXFR

CALL CONVERSE 259
run time

file templates 74
JCL templates for IMS BMP 76
JCL templates for VSE batch 77
REXX templates for VM 78

run-time binding for linkage
options 194

run-time CLIST, sample 145
run-time code

generating xv
run-time JCL, sample 145
run-time REXX exec, sample 146
RUNFILE option 342
running generation on a LAN

server 381
runtime

with calllink tag 229

S
sample

BIND commands 260
default generation options

files 213
generation options files 213
linkage table entries 242
resource association file 274
run-time CLIST 145

sample (continued)
run-time JCL 145
run-time REXX exec 146

sample files
EFKGEN.INI 382
EFKLIST 382
EFKREQ 382
EFKSERV 382

SCO
case sensitive 310
example of generation 25
slash in path name 215

SENDTRANSLATIONCMDDBCS
option 342

SEQ file-type keyword
for CICS for AIX 277
for CICS for Windows NT 277

server
with calllink tag 229

server group
java properties 365

server identifier
with calllink tag 228

serverid attribute
on calllink tag 228

serviceability 371
session bean

generating 205
SESSION option 342
sessionejb

with calllink tag 222
SETFULL option 342
setting additional SQL preprocessor

options 94
setting COBOL run-time options for

MVS 87
setting COBOL run-time options for

VSE 95
setting up

the client 382
the server 383

single system, preparing programs
on a 85

Solaris
case sensitive 310
example of generation 25
slash in path name 215

SP option 343
SPA option 343
specifying

AMODE and RMODE 255
control statements 248, 252

SPOOL
file type keyword for CICS for

MVS/ESA 278

Index 401

SPOOL (continued)
file type keyword for CICS for

VSE/ESA environments 278
SPZERO option 343
SQL

preprocessing for VSE 93
setting additional preprocessor

options 94
starting preprocessing mode 93
usage 79

SQL/DS VM
naming programs 95
required options 94

SQLDB option 344
SQLDBNAM symbolic

parameter 132
SQLID option 345
SQLPASSWORD option 345
SQLPKGNM symbolic

parameter 133
SQLPROPT symbolic

parameter 133
SQLSTMDE symbolic

parameter 133
SQLSTOPT symbolic parameter 133
SQLUSRPW symbolic

parameter 133
SQLVALID option 345
START subcommand

syntax 26, 46, 176, 202
starting SQL preprocessing

mode 93
static

with calllink tag 221
with dxfrlink tag 238

static calls
MVS 246, 247
VM 250, 251
VSE 253, 254

static links
error return codes 256
VSE 255

STOP subcommand
syntax 27, 46, 177, 203

subcommand options 297
support, contacting IBM for 371
suppressing messages

CICS translator, COBOL compile,
and link messages for CICS for
OS/2 119

Personal Communications
messages during file
transfer 117

symbolic parameter

assigning values to
user-defined 135

COB2LIB 131
COBLIST 131
creating user-defined 134
DBDLIB 131
description 123
DSNLOAD 132
DSYS 132
ELA 131
EZEBLK 130
EZECOBOLTYPE 124
EZEDATA 124
EZEDBCS 124
EZEDBD 130
EZEDD 130
EZEDESTLIB 124
EZEDESTNAME 124
EZEDLBL 130
EZEDLI 124
EZEDSN 131
EZEENTRY 124
EZEENV 124
EZEGDATE 125
EZEGENOUT 125
EZEGMBR 125
EZEGTIME 125
EZELRECL 131
EZEMBR 125
EZEMBRPATH 125
EZEMSG 125
EZEPID 125
EZEPREPDESTACCOUNT 125
EZEPREPDESTDIR 126
EZEPREPDESTHOST 126
EZEPREPDESTPASSWORD 126
EZEPREPDESTUID 126
EZEPREPFTPCMDDBCS 126
EZEPREPFTPCMDSBCS 126
EZEPREPSENDCMDDBCS 126
EZEPREPSESSION 127
EZEPREPSP 127
EZEPREPSQLDB 127
EZEPREPWORKDB 127
EZEPSB 127
EZEPTYPE 127
EZERECFM 131
EZESQL 128
EZETRAN 129
EZETRANSFERTYPE 129
EZEUSRID 129
EZEVMLOADLIB 129
EZEVSELIB 129
EZEXAPP 129

symbolic parameter (continued)
EZUAUTH 132
EZUINST 132
file-related 130
generation option

specifications 214
member-related 123
predefined 123
procedure name 86
PROCLIB 132
PSBLIB 132
PWRCLASS 132
RESLIB 132
SQLDBNAM 132
SQLPKGNM 133
SQLPROPT 133
SQLSTMDE 133
SQLSTOPT 133
SQLUSRPW 133
user-defined 131
values for EFK2MPCB

template 120
VMDISKADDR 134
VMFMODE 134
VUSERLIB 134

SYMPARM option 346
SYNCDXFR option 347
SYNCXFER option 347
syntax

/GROUPNAME 319
ASSOCIATE 266
GENERATE subcommand for

C++ 21
PREPARE subcommand for

COBOL 175
resource association file 266
START subcommand 26, 46,

176, 202
STOP subcommand 27, 46, 177,

203
VALIDATE subcommand for

C++ 27, 47
VALIDATE subcommand for

COBOL 177
VALIDATE subcommand for

Java 204
SYSCODES option 348
system name

with calllink tag 227
SYSTEM parameter 299

T
table

binary 151
COBOL program 151
conversion 13, 33, 55

402 VisualAge Generator: Generation Guide

table (continued)
entries for CICS for OS/2 163

table entry, CICS for OS/2 163
table templates 67
TARGNLS option 348
tcpip

with calllink tag 225
TEMPAUX, CICS 279
template

adding a qualifier to a
preparation process 113

adding a qualifier to a run-time
CLIST 111

BIND commands 71
CICS for VSE/ESA and VSE

batch map group preparation
templates 66

CICS for VSE/ESA and VSE
batch preparation templates 64

CICS table definition 73
CICS tables 72
CLIST for MVS/TSO 79
default extension 57
EFK2CVCL 82
EFK2MDLI 81
EFK2MEBA 78
EFK2META 80
EFK2MIMS 81
EFK2MPCB 121
EFK2MTCL 82
EFK2MTDL 81
EFK2VDLI 80
EFK2VEBA 78
examples of modifying 106
file and database allocation 80
file and database allocation

placeholder 81
IMS/VS and IMS BMP map

group preparation
templates 66

IMS/VS and IMS BMP
preparation 64

JCL 75
JOB statements 74
link-edits 71
map group 65
modifying 82
modifying for MVS

environments 84
modifying for the OS/400

environment 92
modifying for VM

environments 97
modifying for VSE

environments 93

template (continued)
MVS and VSE preparation

command file 58
OS/400 67
preparation command file 58
preparation file templates for

MVS or VSE 62
processing 120
programs 62
reasons to modify 83
REXX preparation exec 70
run-time files 74
run-time JCL for IMS BMP 76
run-time JCL for VSE batch 77
run-time REXX for VM 78
statically linked programs 63
table 67
types 58
used in COBOL generation 57
VSE end-of-job 67

TEMPLATES option 350
TEMPMAIN, file type keyword for

CICS environments 280
terms

default product directory xv
template directory xv

terms used in this document, list
of xii

toappl attribute
on dxfrlink tag 237

TRACE option 350
trademarks xi
TRANSFERTYPE 351
TRANSID option 352
TRANSIENT, file type keyword for

CICS environments 281
TWAOFF option 353
types of templates 58

U
understanding multiple levels of

generation options files 212
UNLOAD option 353
URL

with calllink tag 230
user-defined symbolic

parameters 131
creating 134

V
valid parameter format and link type

for external calls from the test
facility 232

for GUI programs 231
for non-CICS programs 231

VALIDATE subcommand 297

VALIDATE subcommand 297
(continued)

example 179
example for C++ 28, 47
example for Java 204
syntax for C++ 27, 47
syntax for COBOL 177
syntax for Java 204

VALIDMIX option 354
values for symbolic parameters 120
VG

with calllink tag 225, 226
VisualAge Generator, resource

associations part 13, 32, 56
VisualAge Generator Developer

commands
COBOL 167

VM 71
batch generation example 174
file types supported 290
generation example 173
link-edit templates 71
linkage editor control

statements 250
modifying templates 97
preparation REXX exec 143
program, with static calls to other

programs 250
programs, statically called by

other programs 251
run-time REXX templates 78
sample run-time REXX exec 146

VMDISKADDR 134
VMFMODE

user-defined symbolic
parameter 134

VMLOADLIB option 129, 354
VSAM

file type 283
file type keyword for the CICS

for OS/2 environment 283
VSE

BIND command files not
required 264

deleting COBOL 114
getting ready for

preparation 161
linkage editor control

statements 253
list of files transferred 161
modifying templates 93
modifying the JOB card 95
preparation 153
preparation file templates 62
preparation JCL 142

Index 403

VSE (continued)
preparation script templates 58
PREPARE subcommand 176
program, with static calls to other

programs 253
program and transaction

definitions 143
programs, that are statically

called by other programs 254
programs, with static links to and

from other programs 255
setting COBOL run-time

options 95
SQL preprocessing 93

VSE batch

DL/I usage 78
file types supported 292
generation example 174
inputs and outputs for COBOL

generation 51
map group preparation

templates 66
preparation templates 64
run-time JCL templates 77

VSE end-of-job template 67

VSE preparation 161

VSELIB option 355

VUSERLIB symbolic parameter 134

W
Web transaction

CSOTcpipListener 362
CSOUiListener 362

Windows NT

example of generation 26, 45

WORKDB option 356

workstation, deleting COBOL
source 113

X
XFER, effect on plans with RT

generation option 259

404 VisualAge Generator: Generation Guide

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
Generation Guide
Version 4.5

Publication No. SH23-0263-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH23-0263-01

SH23-0263-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0263-01

	Contents
	Notices
	Trademarks
	Terminology used in this document
	Terminology differences between Java and Smalltalk

	About this document
	How to use this document
	Documentation provided with VisualAge Generator

	Part 1. Introducing generation
	Chapter 1. Introducing program generation
	Generating C++, Java, and COBOL programs
	Preparing C++, Java, and COBOL programs

	Part 2. Generating C++ programs
	Chapter 2. Inputs to C++ program generation
	Inputs for C++ generation
	Generation options parts
	Linkage table parts
	Resource associations part
	Conversion tables

	Chapter 3. Outputs of C++ program generation
	Chapter 4. Preparation process for C++ generation
	Preparing C++ programs
	Analyzing preparation errors
	Common preparation errors
	Errors accessing the database
	FCWMAKE not found
	Preparation jobs do not run on the target system

	Chapter 5. Command interface for C++ generation
	GENERATE subcommand syntax for C++ generation
	GENERATE subcommand examples for C++
	Generating for AIX
	Generating for HP-UX
	Generating for SCO OpenServer
	Generating for Solaris
	Generating for CICS for AIX
	Generating for OS/2
	Generating for Windows NT

	START subcommand syntax
	STOP subcommand syntax
	VALIDATE subcommand syntax for C++ generation

	Part 3. Generating Java programs
	Chapter 6. Inputs to Java server program generation
	Inputs for Java generation
	Generation Options parts
	Linkage table parts
	Resource associations part
	Conversion tables

	Chapter 7. Outputs of Java program generation
	Chapter 8. Preparation process for Java generation
	Preparing Java programs
	Analyzing preparation errors
	Common preparation errors

	Chapter 9. Command interface for Java generation
	GENERATE subcommand syntax for Java generation
	GENERATE subcommand examples for Java
	Generating for Windows NT

	START subcommand syntax
	STOP subcommand syntax
	VALIDATE subcommand syntax for Java generation

	Part 4. Generating COBOL programs
	Chapter 10. Inputs to COBOL generation
	Inputs for COBOL generation
	Generation options parts
	Linkage table parts
	Link edit parts
	Reserved-word file
	Conversion tables
	BIND control parts
	Resource associations part

	Chapter 11. Templates for COBOL generation
	Types of templates
	Preparation templates
	Preparation script templates
	Preparation Rexx for CICS for OS/2

	Preparation JCL for MVS or VSE
	Program templates
	Template for statically linked programs
	More about DL/I usage in MVS/TSO and MVS batch
	Program templates for IMS/VS and IMS BMP preparation
	Program templates for CICS for VSE/ESA and VSE batch preparation
	Map group templates
	Map group templates for IMS/VS and IMS BMP preparation
	Map group templates for CICS for VSE/ESA and VSE batch preparation
	Table templates
	VSE end-of-job template

	Preparation CL for OS/400
	Preparation REXX for VM
	BIND command templates
	Link-edit templates
	Link-edit templates for VM
	CICS table templates
	Templates for CICS table definition

	JOB statements
	Run-time file templates
	JCL templates
	REXX templates for VM
	CLIST templates for MVS/TSO
	EFK2META

	File and database allocation templates
	EFK2VDLI
	EFK2MTDL
	EFK2MDLI
	EFK2MIMS

	File and database allocation placeholder templates
	EFK2MTCL
	EFK2CVCL

	Modifying templates
	Reasons to modify templates
	Modifying templates and procedures for MVS environments
	Preparing programs on a single system
	Preparing programs on different systems
	Procedure name and symbolic parameters
	Required DB2 options
	CICS-required conversion options
	DBCS translator option for CICS/ESA
	Setting COBOL run-time options for MVS
	COBOL compiler options for MVS
	Modifying the MVS JOB card

	Modifying templates for the OS/400 environment
	Modifying templates for VSE environments
	SQL preprocessing for VSE
	Setting COBOL run-time options for VSE
	Modifying the VSE JOB card

	Modifying preparation templates and EXECs for VM environments
	Overview of program preparation for VM
	ELAPREP parameters
	COBOL compiler options for VM
	Other ELAPREP parameters

	SQL preprocessing for VM
	Required SQL/DS VM options
	Setting additional SQL preprocessor options

	Setting COBOL run-time options for VM
	Modifying LE user exits

	Examples of modifying templates
	Adding a qualifier to the end user data set names
	Adding a qualifier to a preparation template
	Adding a qualifier to a preparation procedure
	Adding a qualifier to a run-time CLIST template
	Adding a qualifier to a preparation process template

	Deleting COBOL source code from the workstation after preparation
	Deleting COBOL source on an MVS or VSE host
	Modifying a PSB name to match a batch program name
	Routing output to a system printer for an MVS/TSO CLIST
	Suppressing Personal Communications messages during file transfer
	Creating COBOL compile and link listings for CICS for OS/2
	Initializing the environment for CICS for OS/2
	Suppressing CICS translator, COBOL compile, and link messages forCICS for OS/2

	Processing templates
	EFK2MPCB before modification
	Values for the symbolic parameters
	Preparation JCL created from the EFK2MPCB template

	Chapter 12. Symbolic parameters
	Part-related symbolic parameters
	File-related symbolic parameters
	User-defined symbolic parameters
	Creating user-defined symbolic parameters
	Assigning values to user-defined symbolic parameters

	Chapter 13. Outputs of COBOL generation
	Objects generated for all part types
	Listing file
	Preparation script
	Preparation JCL for MVS and VSE environments
	Preparation REXX for VM and CICS for OS/2 environments
	Program and transaction definitions for MVS and VSE environments

	Objects generated for programs
	COBOL program
	Sample run-time CLIST
	Sample run-time JCL
	Sample run-time REXX for VM and CICS for OS/2
	BIND command file

	Objects generated for map groups
	Map group format module
	Batch print services COBOL program
	Online print services COBOL program
	MFS print services COBOL program
	MFS control blocks
	COBOL copybook for MFS MID/MOD layout

	Objects generated for tables
	Table COBOL program
	Binary table

	Modifying generation output

	Chapter 14. Preparation process for COBOL generation
	Preparing parts for MVS, VSE, VM, CICS for OS/2 systems
	Preparation script file contents
	Preparation script file restrictions
	Preparation script sections and keywords
	Setting PROFILE keywords on the command line
	Customizing the preparation process

	Additional preparation steps
	Getting ready for MVS preparation
	Transferring files to MVS systems
	Getting ready for VSE preparation
	Transferring files to VSE systems
	Preparing parts for OS/400
	Additional preparation steps
	Getting ready for OS/400 preparation
	Transferring files to OS/400

	Preparing parts for CICS for OS/2
	Additional preparation steps
	Outputs of CICS for OS/2 preparation
	CICS for OS/2 table entries

	Analyzing preparation errors
	Analyzing return codes
	Locating preparation error messages
	Analyzing messages

	Chapter 15. Command interface for COBOL generation
	GENERATE subcommand syntax for COBOL generation
	GENERATE subcommand examples
	Generating for CICS for MVS/ESA
	Generating for MVS batch
	Generating for MVS/TSO
	Generating for CICS for OS/2
	Generating for VM CMS
	Generating for VM batch
	Generating for VSE batch
	Generating for CICS for VSE/ESA

	PREPARE subcommand syntax for COBOL generation
	START subcommand syntax
	STOP subcommand syntax
	VALIDATE subcommand syntax for COBOL generation

	Part 5. Generating Web transaction programs
	Chapter 16. Inputs to Web transaction program generation
	Chapter 17. Outputs of Web transaction programgeneration
	Outputs of generating Web transaction program parts
	Java generation outputs

	Chapter 18. Preparation for Web transaction programgeneration
	Preparation requirements
	Preparing Web transaction Java parts

	Chapter 19. Command interface for Web transactionprogram generation
	GENERATE subcommand syntax for Web transaction program generation
	GENERATE subcommand example for Web transaction

	Syntax of other HPTCMD subcommands

	Part 6. Generating JavaBeans wrappers and sessionbeans
	Chapter 20. Inputs to Java wrapper generation
	Inputs for JavaBeans wrapper generation
	Generation options
	Linkage table options
	Generation or run-time binding for linkage options

	Chapter 21. Outputs of Java wrapper generation
	Beans for servers
	Beans for record parameters
	Beans for record array rows

	Chapter 22. Command interface for Java wrappergeneration
	GENERATE subcommand syntax for Java wrapper generation
	START subcommand syntax
	STOP subcommand syntax
	VALIDATE subcommand syntax for Java wrapper generation

	Chapter 23. Generating session beans
	Part 7. Reference information
	Chapter 24. Generation options parts
	Creating generation options parts
	Making the default generation options part available during generation

	Establishing default generation options
	Default generation options parts with NOOVERRIDE
	Default generation option part without NOOVERRIDE

	Using multiple levels of generation options parts
	Determining generation option resolution order

	Using the sample generation options parts
	Sample generation options default part
	Sample generation options parts

	Using symbolic parameters in generation option specifications
	Generation options that are not valid
	Overriding a value to use the default value
	Guidelines for setting generation options

	Chapter 25. Linkage tables
	Creating a linkage table
	Specifying CALL linkage (CALLLINK)
	Definitions for CALLLINK
	Valid parameter formats and linkage combinations by platform
	Interfaces requiring a linkage table
	Specifying CREATX linkage (CRTXLINK)
	Definitions for CRTXLINK

	Specifying DXFR linkage (DXFRLINK)
	Definitions for DXFRLINK

	Interfaces requiring a linkage table
	Specifying File linkage (FILELINK)
	Definitions for FILELINK

	Sample linkage table entries

	Chapter 26. Link edit parts
	Link-editing static COBOL calls
	Defining a link edit part
	Linkage Editor control statements for MVS environments
	MVS program with static calls to other programs
	MVS programs that are statically called by other programs
	Modifying the ELARLINK Procedure
	Specifying the control statements

	Linkage Editor control statements for VM environments
	VM programs with static calls to other programs
	VM programs that are statically called by other programs
	Specifying the control statements

	Linkage Editor control statements for VSE environments
	VSE program with static calls to other programs
	VSE programs that are statically called by other programs
	VSE programs with static links to and from other programs

	Specifying AMODE and RMODE
	Error return codes on static links

	Chapter 27. BIND control parts
	Defining BIND control parts
	Considerations for plan definition
	Naming CICS for MVS/ESA program plans
	Naming MVS/TSO and MVS batch program plans
	Naming IMS program plans
	Effects of XFER, DXFR, CALL, CONVERSE, and the /RT generation optionon plans
	Using host services CICS for MVS/ESA DBRMs
	Using MVS/TSO and MVS batch DBRMs
	Using IMS/VS DBRMs

	Additional BIND command keywords
	Sample BIND commands
	Binding when the first program uses SQL
	Binding when the first program does not use SQL

	Binding packages instead of plans
	Error return codes on BIND commands
	Binding OS/2 program plans
	Binding for VSE, OS/400, and VM programs

	Chapter 28. Resource associations part
	Creating resource associations parts
	Using multiple resource associations for a file
	Resource association part syntax
	Sample resource associations part

	File types supported by environment and record organization
	File types supported by CICS environments
	Output file naming format for CICS for VSE/ESA

	File types supported for MVS/TSO
	File types supported for IMS BMP, IMS/VS, and MVS batch
	File types supported by OS/400
	File types supported for VM CMS and VM batch
	File types supported for VSE batch
	Output file naming format for VSE batch

	Chapter 29. Generation command and option descriptions
	HPTCMD commands
	HPTCMD command
	HPTCMD subcommands

	Required parameters for subcommands
	filename
	partname
	/CONFIGMAPNAME
	/CONFIGMAPVERSION
	/PROJECT
	/SYSTEM

	Optional parameters for subcommands
	/ANSISQL (ANSI SQL statements)
	/BIND (Bind Control)
	/CHECKTYPE (Substructured data items)
	/CICSDBCS (CICS translator supports DBCS)
	/CICSENTRIES (CICS entries)
	/COMMENTLEVEL (Comment level) (COBOL)
	/COMMENTLEVEL (Generate comments) (C++)
	/CONTABLE (Conversion table)
	/CREATEDDS (Create DDS files)
	/CURRENCY (Currency Symbol)
	/DATA (Data)
	/DBMS (Database management system)
	/DBPASSWORD (Password)
	/DBUSER (User ID)
	/DEBUGTRACE (Debug trace information)
	/DESTACCOUNT (Account)
	/DESTDIR (Directory)
	/DESTHOST (Name)
	/DESTLIB (Target library)
	/DESTPASSWORD (Password)
	/DESTUID (User ID)
	/DXFRCANCEL (Cancel program after DXFR)
	/DXFRXCTL (Implement DXFR as an XCTL)
	/EJBGROUP (Enterprise Java Bean Group)
	/ENDCOMMAREA (End COMMAREA with FFFF)
	/ERRDEST (Error destination)
	/FASTPATH (Run as a fast-path program)
	/FOLD (Fold to uppercase)
	/FTPTRANSLATIONCMDDBCS (FTP DBCS Translation Command)
	/FTPTRANSLATIONCMDSBCS (FTP SBCS Translation Command)
	/GENAUTHORTIMEVALUES
	/GENHELPMAPS (Help map group)
	/GENMAPS (Map group)
	/GENOUT (Generated output directory)
	/GENPROPERTIES
	/GENRESOURCEBUNDLE (Generate as resource bundle)
	/GENRET (Issue RETURN IMMEDIATE)
	/GENTABLES (Tables)
	/GENUIRECORDS
	/GROUPNAME (Group name)
	/INEDIT (Input edit)
	/INITADDWS (Initialize additional working storage records)
	/INITRECD (Initialize records)
	/JAVADESTDIR (Java directory)
	/JAVADESTHOST (Name)
	/JAVADESTPASSWORD (Password)
	/JAVADESTUID (User ID)
	/JAVASYSTEM (Java target system)
	/JOBCARD (JOB card)
	/JOBNAME (Job name)
	/JSPRELDIR
	/LEFTJUST (Left justify)
	/LINEINFO (Line trace information)
	/LINES (Lines per page)
	/LINKAGE (Linkage table)
	/LINKEDIT (Link edit)
	/LISTING /LISTINGONERROR, /NOLISTING (Generation listing)
	/LISTINGONERROR
	/LOCVALID (Local data items)
	/LOG (Log identifier)
	/MATH (Math)
	/MFSDEV
	/MFSEATTR (MFS extended attribute)
	/MFSEATTRNCD
	/MFSIGNORE (Include IGNORE for SOR)
	/MFSTEST (Use test library)
	/MSGTABLEPREFIX
	/MSP (Mapping service program)
	/NOANSISQL
	/NOCICSDBCS
	/NOCREATEDDS
	/NODXFRCANCEL
	/NODXFRXCTL
	/NODEBUGTRACE
	/NOENDCOMMAREA
	/NOFASTPATH
	/NOFOLD
	/NOGENAUTHORTIMEVALUES
	/NOGENHELPMAPS
	/NOGENMAPS
	/NOGENPROPERTIES
	/NOGENRESOURCEBUNDLE
	/NOGENRET
	/NOGENTABLES
	/NOGENUIRECORDS
	/NOINITADDWS
	/NOINITRECD
	/NOLEFTJUST
	/NOLINEINFO
	/NOLISTING, /LISTING, /LISTINGONERROR
	/NOLOCVALID
	/NOLOG
	/NOMFSEATTR
	/NOMFSIGNORE
	/NOMFSTEST
	/NONULLFILL
	/NONUMOVFL
	/NOPREP
	/NOPREPFILE
	/NORECOVERY
	/NORUNFILE
	/NOSETFULL
	/NOSPZERO
	/NOSQLVALID
	/NOSYNCDXFR
	/NOSYNCXFER
	/NOUNLOAD
	/NOSYSCODES
	/NULLFILL (Fill map field)
	/NUMOVFL (Numeric overflow)
	/OPTIONS (Generation options)
	/PACKAGENAME (Package Name)
	/POSSIGN (Positive Sign Indicator)
	/PREP (Start preparation command file)
	/PREPFILE (Create preparation command file)
	/PRINTDEST (Print destination)
	/PROJECTID (Project ID)
	/RECOVERY (Recover current error message)
	/RESOURCE (Resource associations)
	/RESOURCEBUNDLELOCALE
	/RESVWORD (Reserved words)
	/RT (Return or Return transaction ID)
	/RUNFILE (Create sample run-time JCL, Create a sample clist, or Create asample REXX exec)
	/SENDTRANSLATIONCMDDBCS (Send DBCS Translation Command)
	/SESSION (Session ID)
	/SETFULL (Set map item FULL)
	/SP (Issue CICS SET/INQUIRE)
	/SPA (SPA)
	/SPZERO (Interpret spaces as zero in NUM and NUMC data items)
	/SQLDB (SQL database)
	/SQLID (SQL userid)
	/SQLPASSWORD (password)
	/SQLVALID (SQL statements)
	/SYMPARM
	/SYNCDXFR (Set sync points for DXFRs)
	/SYNCXFER (Set sync points for XFERs)
	/SYSCODES (Use system return codes)
	/TARGNLS (Target NLS)
	/TEMPLATES (Templates directory)
	/TRACE (Runtime trace)
	/TRANSFERTYPE (Transfer method)
	/TRANSID (Transaction IDs)
	/TWAOFF (TWA offset)
	/UNLOAD (Unload parts)
	/VALIDMIX (Validate mixed field moves)
	/VMLOADLIB (VM Load Library)
	/LIB (VSE Library)
	/WORKDB (Work database)

	Chapter 30. Java properties files
	Resource association properties
	Database default properties
	JVM command property
	Java server communication properties
	NLS Properties
	Linkage properties

	Chapter 31. Analyzing return codes and errors
	Analyzing generation errors
	Analyzing return codes
	Locating generation error messages
	Analyzing messages

	Analyzing preparation errors
	Analyzing return codes
	Locating preparation error messages
	Analyzing messages

	Chapter 32. Serviceability
	Part 8. Appendixes
	Appendix A. List of valid generation options for eachenvironment
	Appendix B. Implementing a generation server
	Setting up the client
	Setting up the server
	Setting up Object REXX support on Windows NT
	LAN generation setup
	Setup on the generation server
	Setup on the client

	Appendix C. Reading syntax diagrams
	Index
	Readers’ Comments — We'd Like to Hear from You

