
VisualAge Generator

Design Guide

Version 4.0

SH23-0264-00

���

Note

Before using this document, read the general information under “Notices” on page ix.

Third Edition (April 2001)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 4 Release 4
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 503, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices ix

Trademarks xi
Terminology used in this document xii

Terminology differences between Java and
Smalltalk xiv

About this document xv
Who should use this document xv
Documentation provided with VisualAge
Generator xv

Chapter 1. Designing VisualAge Generator
programs 1
Designing data 3

Designing entities 3
Designing entity attributes 3
Designing entity relationships 4

Designing user interfaces 4
User interface function design 5
User interface presentation design 5
Designing GUI interfaces 5

Designing logic 7
Determining a client/server model 7
Designing clients 10
Designing server programs 11
Designing text-based user interfaces . . . 11
Designing GUI clients 12
Performance considerations for GUI clients 13

Rapid application development through reuse 15
Program size considerations. 16

Chapter 2. Developing SQL programs . . 19
Understanding SQL and relational databases 20

Example: Inventory, Suppliers, and
Quotations Sample Tables 22

Defining relational database tables 24
Defining relational tables as record parts 24
Defining data items for SQL row records 24
Defining default selection conditions . . . 26
SQL data type support 27

Defining SQL programs 37
Relationship between functions and SQL
statements 37

Accessing relational tables without coding
SQL statements 38

Modifying SQL statements 44
Modifying the SQL statement for a
function 44
Checking the syntax of a modified SQL
statement 46
Resetting a modified SQL statement to the
default SQL statement. 47
Effects of SQL row record changes on
modified SQL statements. 47

Defining SQL statements using the SQLEXEC
I/O option 47

Entering the SQL statement for the
SQLEXEC I/O option 47
Using SQLEXEC to issue data definition
statements 48
SQL statements not supported by
SQLEXEC 48

Controlling SQL statement preparation with
execution time statement build 49

Using execution time statement build with
SQLEXEC functions 50
Using execution time statement build for
dynamic SELECTs 50
Using table name host variables with the
execution time statement build option . . 53

Testing the results of an SQL I/O option . . 54
Ending the program on a hard SQL error
code 54
Handling a hard SQL error code 54

SQL functions and program calls or transfers 55
SQL locking 55
Logical unit of work considerations 55
Automatic rollback for relational database
I/O 56
Assuring data integrity across transactions . . 57

Referential integrity considerations . . . 57
Accessing distributed databases 59

Remote or distributed unit of work . . . 59
Guidelines for using EZECONCT 61
Default database connections 62

Preparing SQL statements for the runtime
environment 62

Dynamic Mode 63

© Copyright IBM Corp. 1980, 2001 iii

Static Mode 63
Compiling and binding the program . . . 63
ANSI standard static mode 65

Authorization considerations 65
DB2 considerations. 66
DB2/2 considerations 66
Additional DB2 considerations for
VisualAge Generator Server 66
Using unqualified table names or
synonyms 66

Database Considerations when using GUIs. . 67
Accessing databases using DataJoiner . . . 67

Getting Started 68
Using nicknames for table names 68
Using the PASSTHRU extension 68

Accessing databases using ODBC 69
Getting Started 69
Using ODBC in VisualAge Generator . . 70
SQL syntax 71
Data type considerations 71
Testing results of an SQL I/O option for
ODBC 72
Special function words 72
Accessing distributed databases using
EZECONCT 74

Accessing databases using Oracle 74
Getting started 74
Using Oracle in VisualAge Generator . . 75
Data Type Considerations 75
Testing results of an SQL I/O option for
Oracle 77
Special function words 77
Authorization considerations 78
Using unqualified table names or
synonyms 78

Accessing DB2/MVS stored procedures . . . 78
Defining stored procedures 79
Defining the stored procedure call . . . 79
Preparing a VisualAge Generator stored
procedure 80
Declaring stored procedures. 80
Parameter list data types 80
Parameter size 81
Defining DB2 linkage conventions . . . 81
Binding the stored procedure package . . 81
Calling a VisualAge Generator stored
procedure 81
Defining host variables 81
Invoking the stored procedure 82
Converting data. 82

Testing stored procedures 82
Tracing and debugging 83

Chapter 3. Developing DL/I programs. . . 85
Introduction to DL/I 86

Example: customer database 88
Defining DL/I data 91

Defining DL/I programs 93
Processing root segments. 94
Testing the results of a DL/I call 94
Processing dependent segments 96
SCAN function variations 97
Additional function through SSA list
modification 98
Accessing the same segment in two data
structures 100
Sharing a function when programs use
different PSBs 100
Using a secondary index 102
Using CSPTDLI service routine for
database calls 103

Sharing a PSB with a called program . . . 103
Passing EZEDLPSB 104
Passing EZEDLPCB 105

Sharing a PSB with a transferred-to program
using XCTL 106

Passing the EZEDLPSB special function
word 106
Passing a list of PCBs 106

Sharing a PSB across environments 107
Assuring data integrity between CONVERSE
I/O options 107
DL/I considerations for the CICS
environment 108

Understanding PSB scheduling 108
Using an alternate PSB at run time . . . 110
Sharing a scheduled PSB with a called
program 110
Recovering after a deadlock in record
queuing 111
Accessing distributed DL/I databases . . 113

DL/I considerations for non-CICS
environments 113

Understanding PSB scheduling 113
Understanding commit points and the
logical unit of work 114
Using an alternate PSB at run time . . . 115
Using symbolic checkpoint and restart
functions (MVS Batch and IMS BMP
Only) 115

iv VisualAge Generator: Design Guide

DL/I Considerations for the Test Facility . . 116
Setting up the Test Facility for DL/I . . 116
Understanding how the test facility
handles commits and rollbacks 119
Sharing PSB parts across target
environments 119
Understanding data conversion in the test
facility 120
Passing DL/I data in the test facility . . 120

Chapter 4. Developing segmented
programs 121
Running in segmented mode 121
Running in single-segmented mode 122
Running in nonsegmented mode. 122
Comparison of segmented and
nonsegmented program designs for CICS . . 122
Choosing between segmented and
nonsegmented programs 124
Program design Considerations 126

Implementing a hierarchical structure for
segmenting programs using a DXFR
statement 128

Switching transaction codes for program
segments. 130
Using an XFER statement with map and first
map 132
Accessing multiple DB2 plans in CICS for
MVS/ESA 133

Accessing DB2 plans using EZESEGTR 133
Accessing DB2 plans with an XFER
statement 135
Dynamically selecting a DB2 plan . . . 135

Accessing multiple DB2 plans in IMS . . . 135
Error Processing for segmented programs 135

Chapter 5. Developing IMS programs . . 137
Introduction to IMS 138

Understanding IMS terminology 138
Interacting with terminals in IMS . . . 142
IMS program development methods . . 144
Developing IMS fast path programs. . . 146
Sample program flow 147

Defining data in IMS programs 150
Defining PSBs 150
Defining PCBs 152
Defining a PCB for the work database 153
Sharing IMS PSBs in TeamConnection . . 154

Defining maps for IMS programs 155

Estimating the size of MFS blocks for a
map group 155

Defining IMS programs 157
Using service routines 157
Using serial and printer files in IMS
programs 157

Using IMS functions from VisualAge
Generator programs 161

Chapter 6. Developing CICS programs 167
Understanding CICS terminology 167
File techniques in CICS programs 170

Using temporary storage 170
Using transient data queues 172
Using spool files in CICS for MVS/ESA 172
Using spool files in CICS for VSE/ESA 173
Using VSAM files 177
Using OS/2 files 178
Using AIX files. 178
Using Windows NT files 178
Using Solaris files 178
Using EZEDEST 178

Printing techniques in CICS 179
Using transient data queues for printer
output 179
Using spool files for printer output on
CICS for MVS/ESA 179
Using OS/2 files for printer output . . . 180
Using VSE/POWER files for printer
output 180
Using EZEDESTP 180

Setting the recovery unit of work 181
Using CICS functions from VisualAge
Generator programs 182
Communicating between multiple CICS
transactions 185
Inter-transaction affinity considerations in a
CICSplex. 186

Segmented programs 186
Sharing VisualAge Generator tables for
update 186
Temporary storage queues 186
Using a transient data queue for printed
output 187
Error destination queue 187
Disable on run unit failure 187
CICS utility function region affinity . . . 187

Chapter 7. Developing programs for
OS/400 189

Contents v

Defining program native database files. . . 189
VisualAge Generator record
organization-to-file conversion 189
Creating and naming files 189
Sharing database files 190
Relative record file initialization 190
Record lock considerations 190
Using data description specifications
generated by VisualAge Generator . . . 191
Restrictions on logical files 191

Considerations for native database
commitment control 191

Program development considerations . . 191
Program runtime considerations 193

Considerations for using DB2/400 databases 193
Using DATE, TIME, and TIMESTMP SQL
columns 194
Recovery and database integrity
considerations 194
ANSI SQL support 195

Compatibility considerations 196
CALL statement error handling 196
Variable length records 196
DBCS data type 196
Message tables 196
Serial file I/O 196
OS/400 file attribute SHARE 197
File I/O status in EZERT8 198
UNQ and DUP I/O error mnemonic
enablement 199

Considerations for VisualAge Generator map
definition and runtime behavior 200

Maps displayed on 5250 devices 200
Maps containing DBCS fields 200
5250 family keyboard considerations . . 201
Print maps and spooled output 201

Performance considerations 202
VisualAge Generator program linkage on
CALL statements 202
Loading tables and map groups 203
Using positive sign values for PACK and
NUM Data types 204

Security considerations 204

Chapter 8. Allocating and associating
files 207
Dynamically allocating files 207
Dynamically associating files 208

Invoking an I/O function using EZEDEST 208

Invoking an I/O function using
EZEDESTP 208
Supported file types 209

Sharing an MVS or VSE VSAM data set in a
run unit 210

Chapter 9. Developing programs
containing DBCS 213
Using DBCS and mixed data fields 214
Using DBCS names 215
Defining data 216

Defining records 216
Defining tables. 217
Defining data items 217
Defining prologs 217

Defining GUI clients 218
GUI text field data types 218
Data item connections 218

Defining maps 218
Selecting DBCS devices 218
SOSI take position 219
Using the map editor 219
Defining variable field edits 220
Field attribute definition 220

Defining programs 221
Defining statements 221
Data movement processing 222
Data item comparison processing . . . 224
Using mixed literals as CALL statement
arguments 224

Testing programs 224
Understanding relational database support 225

Specifying SQL row records 225
Defining SQL row data items 226
Using mixed SQL statements 226

Preparing programs with DBCS support . . 226

Appendix A. Program design techniques 227
Invoked functions. 227

Recursive functions 227
Map edit functions 227
EXECUTE functions 228

MOVE statement 229
Moving data items between maps and
records 229
Moving between records 229

Table Data 230
Direct addressing of table data items . . 230
Table searches with the FIND or
RETRIEVE statement. 230

vi VisualAge Generator: Design Guide

Defining tables. 231
Changing table contents while running
the program 232
Message tables on OS/400 232

Initializing data fields 233
Data types 234

Controlling flags and counters 235
Subscripting data items 235

Subscripting a table item 235
Subscripting EZEDLPCB 236

Record processing techniques 236
Duplicate Keys. 236
Record locks 236
Generic keys 236

Controlling file I/O 237
Data set position 237
Abnormal termination 238
File error handling 238
Mnemonic error codes 239
Example of an I/O error routine 239

Defining partial and floating maps 241
Floating maps 241
Defining a presentation area for floating
maps 241
Partial maps 242

Defining printer maps 242
Fixed position printer maps 243
Floating Printer Maps 243
Printer paging control 244
Releasing print output 244

Performance techniques 245
Choosing between CALL and DXFR
statements 247
Choosing between XFER and DXFR
statements 248
Cross-Platform development between OS/2
and Windows NT 252
Developing multi-language programs . . . 253
Developing multi-language GUI clients . . 253
Coding arithmetic operations for consistent
math results 254

Coding multiplication and division
operations 254
Coding division operations for consistent
remainders 254

Appendix B. Naming and programming
standards 255
Suggested naming conventions 255

Repository/ENVY library part names . . 255
Repository/ENVY library part names . . 256
Data item names 257

Suggested programming standards 258

Appendix C. Size restrictions and record
lengths 259
Size limitations for VisualAge Generator . . 259
Maximum record lengths 260

Index 263

Contents vii

viii VisualAge Generator: Design Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2001 ix

x VisualAge Generator: Design Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
AD/Cycle
AIX
AS/400
CICS
CICS/ESA
CICS/MVS
CICS OS/2
CICS/VSE
CICS/6000
CICS for Solaris
COBOL/370
COBOL/400
Common User Access
CUA
DATABASE 2
DataJoiner
DB2
DB2 Universal Database
Distributed Relational Database Architecture
DRDA
Operating System/2
IBM
IMS
IMS/ESA
Language Environment
MVS
OS/2
OS/400
SAA
SQL/DS
SQL/400
System/370
Virtual Machine/Enterprise Systems Architecture
VisualGen
VisualAge
VM/ESA
VSE/ESA

© Copyright IBM Corp. 1980, 2001 xi

The following terms are trademarks of other companies:

Adobe Adobe Systems, Inc

Apollo Apollo Computer, Inc

C++ American Telephone & Telegraph
Company

COBOL Workbench Micro Focus Limited

DDS Sony Corporation

DIF Lotus Development Corporation

EDA/SQL Information Builders, Inc.

Express Parasoft Corporation

HP-UX Hewlett-Packard Company

Legend Sigma Designs Inc.

Micro Focus Micro Focus Limited

Micro Focus IMS Option Micro Focus Limited

OSF/Motif Open Software Foundation, Inc.

Oracle Oracle Corporation.

Solaris Sun Microsystems, Inc.

Sybase Sybase Inc.

UNIX X/Open Company Ltd.

Windows NT Microsoft Corporation

X/Open X/Open Company Ltd.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Solaris, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.

xii VisualAge Generator: Design Guide

v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for
AIX, CICS for Windows NT, and CICS for Solaris.

v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.
v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to

message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:
– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.
v References to VM batch apply to any batch facility running on VM.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.
v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal

Database (UDB) for AIX Version 5.
v Windows applies to Windows 95, Windows 98, Windows NT, and

Windows 2000.

Trademarks xiii

v Unless a specific version of Windows NT is referenced, statements
regarding Windows NT also apply to Windows 2000.

Terminology differences between Java and Smalltalk
VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

xiv VisualAge Generator: Design Guide

About this document

This document contains the following information:
v The program design methodology to consider when using VisualAge

Generator
v Information on developing Structured Query Language (SQL) programs

using VisualAge Generator
v Information on developing Data Language I (DL/I) programs using

VisualAge Generator
v Information on allocating and associating files
v Considerations for the design and development of segmented,

nonsegmented, and single-segment programs
v Considerations for the design and development of VisualAge Generator

programs in the IMS/VS and IMS BMP environments
v Considerations for the design and development of VisualAge Generator

programs in CICS environments
v Considerations for the design and development of VisualAge Generator

programs in an OS/400 environment
v DBCS naming conventions, mixed data fields, testing and relational

database support for programs containing DBCS
v Coding techniques that have significant performance or ease-of-use benefits
v The VisualAge Generator standards for data items and program libraries

Who should use this document

This document is intended for application system developers who will be
developing programs for any of the environments supported by VisualAge
Generator. The intent of this document is to help you plan an effective design
before you begin coding your programs. Each chapter is written with a
specific aspect of computer programming in mind.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.

© Copyright IBM Corp. 1980, 2001 xv

v HTML files (.htm) on the product CD-ROM and from the VisualAge
Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

4. This document is included when you order the VisualAge Generator Server product CD.

xvi VisualAge Generator: Design Guide

Chapter 1. Designing VisualAge Generator programs

Note: In this chapter, the term business application refers to the end-user
function being provided, such as Payroll or Inventory. The term
application system refers to the set of GUI clients, VisualAge Generator
programs, and/or non-VisualAge Generator programs that implement
the function. These terms do not correspond to the grouping of parts
into an ENVY package/application.

Before beginning design, you should know and understand the requirements
of the application system you are developing. To develop systems that are
modular, efficient, and easy to maintain, it is important to complete the initial
design before you begin coding. VisualAge Generator supports and
encourages an iterative development process.

The first step is to understand the business function required by the system’s
users; that is, the data to be processed and the operations that users want to
perform with the data. If you understand the business function, you can more
effectively describe the structure of the application system.

The basic functions found in most business applications are the following:
v Entry and update of data elements
v Comparison, analysis, and conversion of data elements
v Presentation of data on either a terminal or a printer

Therefore, the design tasks for an individual program include the following:
v Data design
v Logic design
v User interface design

An important design feature of an application system in VisualAge Generator
is modularity. Every identifiable component in a program or GUI client is
defined independently and stored in a Repository/ENVY library as a part.
Each part is associated with other parts through definition references. Table 2
illustrates the VisualAge Generator part classes.

Table 2. VisualAge Generator Part Classes

Function VisualAge Generator Part

Logic unit A function

Data structure A record, containing data elements

© Copyright IBM Corp. 1980, 2001 1

Table 2. VisualAge Generator Part Classes (continued)

Function VisualAge Generator Part

User interface A map (text or character-based user interface) or view
(graphic user interface) that describes how data is
presented to users

Set of values A table, used for validation or conversion

Data element A data item, referenced in records, maps, tables, functions

Transaction or batch
program

Logic with associated maps and data

The VisualAge Generator approach to design includes independent design
and definition tasks for data, user interfaces, and logic. The components are
associated with one another through VisualAge Generator program definition
and GUI client definition. Independent design and definition tasks allow you
to concurrently associate each component with more than one program or
GUI client.

The modular design approach of VisualAge Generator strongly supports
developing client/server systems. With VisualAge Generator you can generate
any client or server independently.

VisualAge Generator Developer can be used early in the design to create
prototypes of your application system. By demonstrating a prototype system
to your end-users, they can more easily verify that your design meets their
requirements. After they verify your design, you can finalize the detailed data,
logic, and operating system considerations for the application system.

When you have finished the initial design of your VisualAge Generator
application system, use VisualAge Generator Developer to define and test
your system. When your system is complete, use VisualAge Generator
Developer to generate the final programs. For more information on defining
and testing, refer to the VisualAge Generator help facility or to the
Programmer’s Reference document. For more information on generating your
programs, refer to the VisualAge Generator Generation Guide document. For
running your programs, refer to one of the following documents:
v VisualAge Generator Server Guide for Workstation Platforms
v VisualAge Generator Server Guide for AS/400
v VisualAge Generator Server Guide for MVS, VSE, and VM

2 VisualAge Generator: Design Guide

Designing data

A first step in designing application systems is to define the data to be
processed. This data can be defined in VisualAge Generator Developer
independently, or as part of a structured set of entities (or objects). The
entities can be associated with attributes and can have defined relationships
with each other. The end-users are usually the best source for identifying this
information.

Using an automated data modeling tool can help you capture and document
the data descriptions. A tool that automatically transforms your data
definitions to a physical database or file description enables you to design
your programs more quickly and to maintain your programs longer.
VisualAge Generator Developer enables you to develop programs that work
with relational (SQL) and hierarchical (DL/I) databases. You can also develop
VisualAge Generator programs that use indexed, relative, and serial file
systems.

Designing entities
Entities are objects whose representations are processed by programs.
Examples of entities are customers, orders, and parts in stock.

In VisualAge Generator Developer, entities are represented by records. Your
data design must describe the following information for each entity your
program uses:
v Name
v Description
v Attributes
v Relationships between entities

Designing entity attributes
Attributes are the characteristics associated with entities. Examples of
attributes are customer name, order number, and number of parts in stock.

In VisualAge Generator Developer, attribute definitions are represented by
data items. Your design must describe the following information for each
attribute:
v Name
v Description
v Rules to determine valid values for the attribute
v Rules for how values are shown to program users
v Rules for deriving the attribute’s value from other attributes, if the value is

not stored in a file or database

To create attribute characteristics that are the same in all record definitions for
that attribute, define the attributes as VisualAge Generator shared data items.

Chapter 1. Designing VisualAge Generator programs 3

Designing entity relationships
Entities can be related to each other in defined ways, referred to as entity
relationships. The following are examples of entity relationships: The order
entity and the customer entity have a relationship in that an order is placed
for a customer. Similarly, a part entity has a defined relationship with the
order entity in that a part is one of the items listed on the order.

VisualAge Generator Developer entity relationships are usually implemented
the same way you implement entity attributes. That is, they are implemented
as data items in a record definition. For example, an order record includes a
customer identification number as one of the data items. In this case, the
customer identification number defines the relationship between the customer
entity and the order entity. If you use DL/I databases, relationships can also
be implemented as hierarchical parent/child relationships between records in
the database.

To define entity relationships, your design must include the following
information for each relationship. This information enables you to define the
data item that establishes the relationship and the processing related to it:
v Name
v Description
v Related entities
v Rules for determining whether the relationship is valid

Designing user interfaces

An important step in application design is defining the user interface. The
user interface can be a graphical user interface (GUI), a text or character-based
user interface, or a printer map. Regardless of the user interface you use, there
are two important aspects to user interface design:
v Function, or the specification of what the user wants to accomplish by using

the interface
v Presentation, or the specification of how the interface physically appears to

the user

When you design a user interface, avoid including too much information on a
single window, terminal screen, or printer map. It is recommended that you
use a separate window or terminal screen for each entity or array of entities
to be processed. Encourage end-users to assist in identifying both the
operations that apply to the entity presented on the interface and any
navigation required between this user interface and other user interfaces. For
example, if the user is taking an order from a new customer, link the
interfaces together to enable the user to go directly from the order entry user
interface to the customer entry user interface.

4 VisualAge Generator: Design Guide

User interface function design
In developing the function design, you should work with the end-users to
ensure your designs meet their requirements. Identify both the information
they need to see or enter, and the operations they need to perform on the
data. Examples of operations might be adding a new customer to a database,
taking an order, and determining whether a part is in stock.

During the design of the logical user interface, it is a good time to determine
which operations are initiated directly through the user interface, and which
operations are started by a user action. An example of an operation initiated
by the user interface is taking an order, and an example of an operation
initiated by a user action is creating a purchase order for a part when
inventory is decreased by an order.

User interface presentation design
With VisualAge Generator Developer, you can design two types of physical
user interfaces:
v Graphical user interface (GUIs)
v A text or character-based user interface.

You must choose the interface appropriate for your runtime environment and
for the needs of your end-users.

You can use VisualAge Generator Developer to prototype the physical user
interfaces of your application system. Using prototypes, you can verify that
the logical and physical user interface design meets your users’ needs. With a
prototype you can easily and quickly make changes to finalize your design.

Designing GUI interfaces
Consistency is very important when designing user interfaces. The VisualAge
Generator GUI Composition Editor enables a great amount of flexibility in
defining user interfaces; therefore, it is possible to make choices that can affect
the consistency of your user interface.

To achieve consistency, you should implement a standard set of guidelines for
all developers on a project to follow. There are many different user interface
design guidelines available. The following are two recommended sources:
v Object-Oriented Interface Design, IBM Common User Access (CUA) Guidelines

SC34-4399
v OSF/Motif Style Guide, Revision 1.2 (For OSF/Motif Release 1.2) (ISBN

0-13-643123-2)

Keep the following user interface design considerations in mind:
v Place the end-user in control

Chapter 1. Designing VisualAge Generator programs 5

Text-based user interfaces force users to follow a strictly prescribed path of
action, but graphical interfaces enable the user to follow many different
paths to complete the same task. The following are guidelines to help you
place the end-user in control:
– Adopt the end-user’s perspective
– Keep interfaces flexible
– Provide rapid response

v Reduce the amount of information the user must retain to effectively use
the application
You can reduce the amount of information the user must remember by
making direct manipulation of screen objects possible. An example is
enabling users to copy text from one source to another without having to
remember data and type it again. Some guidelines to help you reduce the
memory load are as follows:
– Use progressive disclosure

Progressive disclosure means you provide the information users need to
perform their tasks as they need it.

– Use real-world metaphors
– Enable direct manipulation

v Reduce the end-user’s error rate
Consistency of interfaces increases the transfer of knowledge across
application systems and the predictability of how systems act. Some
guidelines to help you reduce the error rate are as follows:
– Provide clues to natural progression of the task
– Do not clutter the interface
– Disable and enable controls as appropriate (for example, if two controls

are mutually exclusive, one of them should be disabled at all times)

Some recommended methods for designing GUI interfaces are as follows:
v Use menu actions or push buttons to represent the operations that the user

can perform or select. For each operation that an end-user can request,
connect the menu actions or push buttons to the appropriate processing
blocks. For navigation between visual parts, connect menu actions or push
buttons to other visual parts.

v To display information and enable data entry, use graphical controls such as
entry fields, tables, or radio buttons. Define the VisualAge Generator
working storage records to pass information between clients and servers,
connecting the graphical controls to the records.

For more detailed information on defining and implementing GUI clients,
refer to the VisualAge Smalltalk documentation and the online VisualAge
Generator help facility or the VisualAge for Java online VisualAge Generator
help facility.

6 VisualAge Generator: Design Guide

Designing logic

After you design the data, its entities, attributes and their relationships, and
design the logical and physical user interface, you must design the structure
that implements the operations.

An effective method of implementing designs is with client/server systems. In
client/server systems, the user interfaces are implemented as text-based
programs or graphical views, and the database and file operations are
implemented as server programs. In this model, the clients request
information and processing from the server programs.

A client/server design with VisualAge Generator has the following benefits:
v You can choose to generate and run your programs on a single system or

on a network. On a network, the clients usually run on a workstation, while
the server programs run on an OS/2, AIX, CICS for AIX, Windows NT,
CICS for Windows NT, Solaris, CICS for Solaris, HP-UX, OS/400, CICS for
MVS/ESA, CICS for VSE/ESA, or VM server.

v You can share a common set of server programs between GUI clients and
text-based clients.

v You can change the target system for the client and server portions of the
application system independently

Determining a client/server model
The model or architecture of your client/server application system affects how
you design the individual programs and views in your system.

The location of the processing functions for your application system is an
important consideration when deciding on a client/server model. The
functional division determines where you create the boundaries of the
components of your programs and views. The boundaries of your components
directly affect the possibility of reusing your components. For more
information on component reuse, see “Rapid application development
through reuse” on page 15.

As you design, you should consider reusing the logic, I/O components, and
parts of the user interface.

Client/server models
A client/server system consists of three logical components:
v Clients
v Servers
v Connecting network

In a client/server system, the client programs or views are separate from the
server programs, and the clients request services from the servers. The logical

Chapter 1. Designing VisualAge Generator programs 7

network that connects the clients and servers does not have to be a physical
network. That is, the clients and servers can be on the same physical system.

Client and server data processing can be distributed using any of five
different models. Figure 1 illustrates the five models.

Distributed presentation
In this model, the presentation, function, and data components are on
the server platform and part of the presentation is on the client
platform.

Distributed presentation is accomplished by using terminal emulation
software like that provided with the IBM OS/2 Communications
Manager. With this software, the user sees the VisualAge Generator
host program map displayed on the workstation rather than on a 3270
or 5250 device, although the program is running on the host system
instead of the workstation.

Remote presentation
In this model, the presentation component is located on the client
platform while all the functions and data are located on the server.

Remote presentation is accomplished by collecting user input using
either a text-based or graphical client, and then calling a server
program to process the data. The user input is validated by the server
program.

Figure 1. Five Client/Server models

8 VisualAge Generator: Design Guide

Distributed function
In this model, the presentation component is located on the client
platform while the function is located on both the server and the
client.

Of the five client/server models, the distributed function model is the
most flexible, and can be the most efficient. The distributed function
model enables you to grow and change your application system as
your business needs change. You also have the option of placing your
function and data components on the most cost-efficient platform.

Remote data management
In this model, the presentation and function are on the client platform
and the data is on the server platform.

An example of remote data management is the Remote Unit of Work
(RUW) in the Distributed Relational Database Architecture (DRDA).
The RUW of DRDA is a relational database product feature. VisualAge
Generator supports the RUW of DRDA in both developing and
running programs. If you want to use RUW, you must determine
whether or not your database manager supports DRDA with a RUW
feature.

Another example of remote data management is the transaction
manager function, function shipping, in the CICS family of products.
Function shipping is the ability of one program running in a CICS
system to gain access to different connected CICS systems. For
example, CICS for OS/2 can gain access to data from CICS/ESA.

VisualAge Generator supports CICS function shipping in both
developing and running programs.

Distributed data management
In this model, the presentation and function are located on the client,
while portions of the data function are located on both the client and
server.

An example of distributed data management is the Distributed Unit of
Work (DUW) in Distributed Relational Database Architecture (DRDA).
The DUW of DRDA is a database feature available in Version 2 of
workstation DB2 products and is supported in VisualAge Generator.

VisualAge Generator supports valid DRDA connections for both
developing and running programs.

Summary of client/server models
The distributed function model is the primary strength of VisualAge
Generator client/server support; however, VisualAge Generator supports the
four other client/server models under specific conditions and considerations.
Some examples of these considerations or conditions are as follows:

Chapter 1. Designing VisualAge Generator programs 9

v The flexibility and efficiency provided in the remote presentation and
distributed function models has a cost: a complex, underlying
communications infrastructure. A benefit of VisualAge Generator is the
client/server communications support provided with the product. This
communications support enables you to create programs in the remote
presentation and distributed function models without needing to know the
complex communications protocols that are used.

v VisualAge Generator supports the remote data management and the
distributed data management models only through functions provided by
database and transaction management products. The scope of the VisualAge
Generator client/server support of these models depends on the capabilities
of the database and the transaction management products used.

v To use the remote presentation model, the GUI client can only use visual
connections to start server programs or other callable functions. That is,
there can be no connections to functions on the Composition Editor’s
free-form surface (otherwise the model you are using is the distributed
function model).

v VisualAge Generator only supports distributed presentation for a text-based
user interface through terminal emulation tools.

For more information on client/server applications, refer to the VisualAge
Generator Client/Server Communications Guide document.

Designing clients
A client should have a hierarchical relationship with the server program it
calls for database or file access. Clients should either call, transfer, or
asynchronously start other clients or servers.

The following is a list of considerations to keep in mind when designing
clients:
v Generally, it is best to keep the design of individual clients as simple as

possible. Consider having only one primary window or screen per view or
program. Ensure that your user can easily identify the specific entity to be
processed and easily select the operations to be performed on that entity.

v Your design should include a short summary of the function of each client
program or view, and a detailed description of any information passed
between them. Validate that the client formats the data displayed to the
user correctly and that the input data received from the client is correct for
the defined data.

v Minimize the number of calls and the volume of data flow between clients
and servers when designing call interfaces. For example, design the server
to return an array of entities instead of one entity at a time, or design the
server program to return a calculated value instead of data used to perform
a calculation.

10 VisualAge Generator: Design Guide

v The design of the navigation, or flow of control, is determined by whether
the interface is graphical or text-based. See “Designing GUI clients” on
page 12 and “Designing text-based user interfaces” for more information on
navigation design.
For GUI and text-based interfaces, the design of the application system
should maintain the current contents of variable fields used in a current
working storage record. This working storage record is shared or passed
among the clients. With this working storage record, you can set the calling
view or program back to its original contents when control is returned to it.

Designing server programs
A server program should have a hierarchical relationship with the client that
calls it for database and file access.

The following is a list of considerations to keep in mind when designing
server programs:
v Generally, it is best to keep the design of individual server programs as

simple as possible. Consider having only one server program per
transaction or a closely related set of transactions.
A transaction is a set of related database service requests. For database
updates, a transaction represents a unit of work. The unit of work can be
updates that must be synchronized to ensure the database is correct. For
example, assume an order is committed to the database. An order
transaction should update both the order and the inventory data records.
Some environments support logical units of work, which can include
multiple server calls. Other environments require each server call to be a
separate unit of work. By putting all update transactions in a single server
call ensures your design works in all supported operating environments.

v In VisualAge Generator, a server program is implemented as a called batch
program. Your design should specify the program inputs and outputs as
record structures. Describe internal logic flow as a hierarchy of procedural
logic structure; that is, higher-level processing logic calling to lower-level
processes to perform specific functions and then returning back to the
higher-level process.

v Your design should include a short description of the processing logic
implemented at each node in the structure. Assume only one I/O operation
is performed in each process of the hierarchy. Implement the logic as
VisualAge Generator functions. Use WHILE statements for logic that
repeats (loops) and IF statements for conditional processing.

Designing text-based user interfaces
With VisualAge Generator Developer, you can define and generate text-based
programs that can run independently can be used as clients to local or remote
server programs.

Chapter 1. Designing VisualAge Generator programs 11

When designing text-based programs, specify Main Transaction program. Use
function keys or map variable values to represent operations that the user can
select. Use a CONVERSE I/O option for the main function to display a map
to the user. Define VisualAge Generator processing blocks (functions or other
programs) for each operation that the program user can request. Use IF
statements following the CONVERSE I/O options to CALL, or invoke the
appropriate processing block based on which key was pressed. Define
VisualAge Generator working storage records to pass information between
clients and server programs.

To implement navigation between text-based programs, use DXFR statements.
If a return to the current program is possible, save the state of the current
program in the primary working storage record or in a file, and restore the
state of the current program after program control returns from the server.

To display information and enable data entry, use variable fields on maps.
Before using the CONVERSE I/O option, use MOVE statements to pass the
information from working storage records to the map. To pass the information
back to working storage from the map, use MOVE statements after the
CONVERSE I/O option.

Designing GUI clients
GUI clients are event-driven. This means that they respond to user input by
running logic, invoking other views or programs, or altering the style of the
current view when the user interacts with it. Examples of ways users provide
input are by clicking on a push button or entering text in a data entry field.

Designing GUI clients is different from designing text-based programs. The
main differences are in the following:
v How you define the appearance of the user interface, especially with regard

to how the functions are controlled
v How you design the logic

In the runtime environment of an event-driven GUI client, the view is
supported by a variety of interface events, such as windows being opened
and push buttons being clicked with a mouse.

When designing an event-driven GUI, consider the possible events that can
take place and the order in which they can occur. You can prototype these
events and design your view iteratively. Designing a prototype first can help
you determine why, how, and what procedural logic should run, ensuring that
the system response is predictable.

GUI clients strongly support client/server computing systems. VisualAge
Generator Developer provides the ability to visually construct graphical user

12 VisualAge Generator: Design Guide

interfaces that link selected objects or controls on a GUI to logic that can run
either locally, on a remote system, or both.

At run time, the clients and servers can be located on the same system or on
different systems.

GUI clients often must communicate with server programs. Communication
requests to servers by GUI clients can be designed in two ways:
v Using CALL statements in VisualAge Generator functions to call server

programs
v Connecting an event to a Callable Function part on the free-form surface.

v Coding the invocation of a Callable Function part on the free-form surface
within a Smalltalk script or Java code

For more information on developing event-driven GUI clients, refer to the
VisualAge Smalltalk documentation and the online VisualAge Generator help
facility or the VisualAge for Java online VisualAge Generator help facility.

Performance considerations for GUI clients
The design of your GUI client can have significant effects on its runtime
performance. Following are some design and coding techniques to improve
the performance of your GUI clients when using VisualAge Generator parts
and VisualAge Generator extensions to VisualAge Smalltalk or VisualAge for
Java parts.
v Use getFieldsStartingAt:to: to populate Container Details parts

When populating a Container Details part, use the getFieldsStartingAt:to:
action from the tear-off attribute of the occurs item (array) in the VisualAge
Generator record. Refer to ″Handling Occurs Items″ in the Programmer’s
Reference for more information.
The getFieldsStartingAt:to: action of the torn-off occurs data item is more
efficient than connecting directly to the occurs items. The
getFieldsStartingAt:to: action copies from n to nn items of the array. By
contrast, if the items attribute of the occurs item is connected to the items
attribute of the Container Details part, the entire occurs item (array) is
scanned, and all items up to and including the last non-default item are
copied to the Container Details.
For example, in an array with an occurs value of 50, if you connect the
items to the Container Details, VisualAge Generator looks at each data item
in the array to see if it is a non-default value before displaying the values.
If the getFieldsStartingAt:to: action is used, VisualAge Generator copies the
50 items without the overhead of checking for a default value. Zeroes or
blanks will show in this case. If the application can determine the number
of valid data items in the array, then you can set parameters for the
getFieldsStartingAt:to: action, further accelerating the Container Details
population process.

Chapter 1. Designing VisualAge Generator programs 13

An event needs to trigger the getFieldsStartingAt:to: action. Often the best
event is the hasExecuted; of the VAGen Logic part in which the data for the
Container Details is accumulated or created. Then define the parameters as
appropriate in the Settings or with connections to the parameters on the
event-to-action connection. Finally, connect the items of the Container
Details to the result of the event-to-action connection.

v Use getValuesStartingAt:to: to populate List parts
When populating a List part, use the getValuesStartingAt:to: action in the
same way as described above for the getFieldsStartingAt:to: action for
Container Details parts. Values are used instead of fields because Lists are
usually populated with simple arrays, while Container Details parts are
connected to a compound array with one or more substructures. Thus, use
fields to assure that values are mapped to the correct fields or columns.

v Minimize connections to information shared between visual or non-visual
parts.
You can share data of VAGen data parts between parts. However, you
should minimize the number of other connections to that shared
information. When one visual part opens another, all the attribute
connections between the parts are triggered. If the shared information also
has connections to other information, then those connections are also
triggered, creating a chain reaction. This can happen when another visual
part is opened or when the data changes. Use unidirectional
attribute-to-attribute connections where appropriate to reduce the amount
of triggering.

v Use unidirectional connections when appropriate
You should use unidirectional attribute-to-attribute connections whenever
possible. It is also a good practice to remove any unnecessary
attribute-to-attribute connections to eliminate unneeded data movement.
Note that using Quick Form creates default bi-directional
attribute-to-attribute connections. You should evaluate these connections to
see if they can be changed to unidirectional connections or removed.

v Limit the number of occurs in the record used as a parameter for the
VAGen performRequest action.
When searching an occurs item that is a parameter for a VAGen
performRequest action, VisualAge Generator searches all occurs values to
determine if an action is to take place. The search does not stop at the first
blank action. Therefore, the structure should be as small as possible to
avoid the overhead of searching through blank actions.

v Minimize the amount of data passed to server programs
It is important to minimize the amount of data passed across the network
to reduce network traffic. If data conversion is done, each byte is converted
as it goes from client to server and back, even if it is a blank.

14 VisualAge Generator: Design Guide

Minimize the use of substructured data items on a call that goes across the
network. There is overhead when passing substructures across the network.

v Minimize the use of decimal places for numeric data
VisualAge Generator GUI client runtime optimizes data items with no
decimal positions.

v Use level-77 data items whenever possible
Because level-77 data items are not part of the record structure, it is more
efficient to use them in the GUI client logic. For example, you should use
level-77 data items for loop counters.

v Minimize the use of substructured records and occurs items. When possible,
use flat record structures when passing to Callable Functions or sharing
with other GUI client parts.
GUI client runtime is not optimized for substructured records or for records
with occurs item.

v Minimize connecting the data attribute of records
GUI client runtime is not optimized for records that have connections to or
from the record’s data attribute. Instead, use the VAGen Variable part.
For more information on the VAGen Variable part, refer to the Programmer’s
Reference

v Do not place records or other VAGen data or logic parts on the Free-form
surface that are not used by the GUI client.
The structure for every record on the Free-form surface is generated in the
VisualAge Generator runtime code of the client part. Therefore, unnecessary
records increase the amount of storage used at runtime.

v Minimize the movement of data between character and numeric data items.
Movement between these data types requires type conversion, which is not
optimal.

v Minimize the use of automatic truncation and padding. Although
VisualAge Generator truncates or pads when the source and target of
MOVE and ASSIGNMENT statements are different lengths, this requires
extra code.

v Use the NONUMOVFL generation option whenever possible.
Performance of GUI clients is significantly faster when the generated
VisualAge Generator logic does not have to check for numeric overflow.

Rapid application development through reuse

The basis of reuse is to take an existing program, one with logic similar to
what is needed for a new program, and generalize it to meet the needs of the
new or existing programs. Reuse is an important design consideration. The
following is a list of ways you can take advantage of reusing existing code:

Chapter 1. Designing VisualAge Generator programs 15

v Create standard components and parts for common functions, such as
handling database and file errors. Standard components can be directly
included in many different programs or views.

v Create model or template programs for common operations, such as
scrolling in database tables and re-establishing an update position in a
database following user interface input. While not fully reusable as is, these
components can be copied and modified for each specific usage. This is
known as cloning.

Reusable components can simplify your design. For example, you can state in
the design that a reusable component is used for an operation instead of
repeating the description.

Contact your IBM representative for service offerings and products that
provide reusable sample programs and a methodology for using and updating
reusable components.

Program size considerations

As you design new VisualAge Generator application systems, design the
system as a set of small (1500 statements or less) modular programs instead of
as one very large program. Smaller programs are more efficient to test and
maintain.

If your target runtime environment is a workstation system, it is usually best
to keep your VisualAge Generator program under 1500 VisualAge Generator
statements, in order to avoid long compile times.

The VisualAge Generator Developer produces at least twice as many COBOL
source statements as the number of original VisualAge Generator source
statements. The actual size of the generated COBOL source depends on the
size of the original VisualAge Generator source, the type of VisualAge
Generator statements used in the program, the amount of function they
provide, and the complexity of the VisualAge Generator program. An exact
correlation between the size of the generated COBOL program and the
VisualAge Generator source is not possible, but the generated COBOL source
is always much larger.

Some examples of the greater productivity achieved from generating
VisualAge Generator COBOL, C++, Smalltalk, or Java versus handwritten
programs are the following:
v A single procedural VisualAge Generator statement such as MOVE

automatically handles operands of unequal lengths, validates data types,
and performs conversion as necessary. A single VisualAge Generator

16 VisualAge Generator: Design Guide

statement also sets SQL indicators for SQL data items, handles repeated
moves if the target of a move is an array, and handles overflow if required
as a generation option.

v VisualAge Generator procedural statements such as IF..IN and
RETRIEVE/FIND provide built-in functions that otherwise require
additional logic to be hardcoded.

v Program logic is generated to handle pseudoconversational processing for
CICS environments.

v File I/O options are transformed into source code to open files, invoke
runtime services routines to keep track of file use count, issue the file read,
handle the return code and transform it into VisualAge Generator
mnemonics, and invoke EZERTN file error routine if necessary.

Chapter 1. Designing VisualAge Generator programs 17

18 VisualAge Generator: Design Guide

Chapter 2. Developing SQL programs

This section describes how to develop Structured Query Language (SQL)
programs using VisualAge Generator. You can quickly develop SQL programs
without coding SQL statements because VisualAge Generator creates the SQL
statements for you.

You can use SQL to access information stored in relational databases. Table 3
outlines the database manager that supports SQL access to IBM relational
databases for each environment. The database products differ in minor
respects.

Table 3. IBM Database Managers used in each Environment

Database Manager Environment

DATABASE 2 (DB2) MVS systems

DB2/VSE (formerly SQL/DS) VSE systems

SQL/DS VM systems

DB2/400 OS/400 systems

DB2/2 OS/2 systems

DB2/6000 AIX systems

DB2 for Windows NT Windows NT systems

DB2 for HP-UX HP-UX systems

DB2 for Solaris Solaris systems

If you are testing programs with one database manager and generating the
program to run with a different database manager, you should be familiar
with the publications for both database managers. Use your SQL
documentation when modifying the default SQL statements. Some of the
differences relate to handling long character data types and resource recovery.
The VisualAge Generator test facility and the generation facility mask most
differences when default SQL statements are used in the program.

The information in this chapter applies to both IBM and non-IBM database
management systems supported by VisualAge Generator unless otherwise
noted. For differences and more specific information on accessing non-IBM
databases, see “Accessing databases using DataJoiner” on page 67, “Accessing
databases using ODBC” on page 69 or “Accessing databases using Oracle” on
page 74.

© Copyright IBM Corp. 1980, 2001 19

Understanding SQL and relational databases

Before you begin developing an SQL program, you need to understand the
relationship between VisualAge Generator and the following basic SQL
concepts:

Tables All data in a relational database is represented as two-dimensional
tables with columns and rows. Tables in a relational database are
similar to other tables you use every day, such as phone directories,
airline schedules, and stock market reports.

Tables are defined to the database manager using the CREATE TABLE
SQL statement. The CREATE TABLE statement defines the name of
each column in the table, and the data type and length of the values
that appear in the column.

You can define a relational table to VisualAge Generator as a record
with SQL row organization. You can use the record definition facility
to define SQL row records. The SQL record definition includes the
following information:
v Names of the tables in the database that the record represents; or

table name host variables that the program moves the actual table
name into at run time

v Items in the record that represent columns in the tables
v Default selection criteria used in generating SQL statements that

access the tables

Operations on Tables
After a table is defined to the database manager, rows of data can be
added to it. Each row contains one data value for each column
defined in the table. Rows in the table can be retrieved, updated,
inserted, or deleted using SQL statements from a system command
line, a terminal, or a program. From a system command line or a
terminal, you can search several rows in a table at the same time. In a
program, you can process the data in a table one row at a time.

Defining SQL programs is similar to defining other VisualAge
Generator programs. From I/O options, VisualAge Generator creates
default SQL statements that access the tables in a relational database.
You can modify some of the statements to request additional SQL
functions. If you are working with a single table that has a column
that can be used as a unique key, you can process the table without
modifying SQL statements because VisualAge Generator defines the
necessary SQL statements for you by default. The following I/O
options are available for use with SQL row records:

INQUIRY
Get a row from a table

20 VisualAge Generator: Design Guide

UPDATE
Get a row from a table for replacement or deletion

ADD Insert a row in a table

REPLACE
Replace a row in a table that was read using an UPDATE or
SCAN function

DELETE
Delete a row from a table that was read using an UPDATE or
SCAN function

SETINQ
Select a set of rows from a table for scanning

SETUPD
Select a set of rows from a table for scanning with possible
replacement or deletion

SCAN Get the next row from a set of rows that were selected using a
SETINQ or SETUPD function

CLOSE
End the scanning of a selected set of rows before the last row
has been retrieved

SQLEXEC
Run a user-defined SQL statement

Views A view is a logical (or virtual) table that is derived from one or more
tables or views or combinations of tables and views. To a program, a
view looks like a table. It has a name and contains data arranged in
columns and rows. You can use a view name anywhere you use a
table name in defining records and logic for SQL programs.

Joins A join is a relational database operation that creates a logical (or
virtual) table by forming combinations of rows from two or more
tables. Usually some conditions are defined to limit the number of
combinations. For example, in a relational database for a college, a
faculty table might be joined with a course offering table. The
resulting joined table includes only the combinations of rows for a
professor who taught a course.

In VisualAge Generator Developer record definition, you can specify
that an SQL row record represents a join of two or more tables, and
you can also enter the conditions that control the combinations of
rows included in the join.

Null Data
Any field in a relational database table might have a null value. Null
represents an unassigned or undefined value. A null value can be

Chapter 2. Developing SQL programs 21

thought of as an empty space or space reserved for later insertion of
data. Nulls can be set in a column through insert or update
operations. Nulls can also occur implicitly when a new column is
added to an existing table. Null values can be prohibited for specific
columns when a table is created.

You can design your program to test or set null values for items in
SQL row records.

If you are using relational databases for the first time, it is a good idea to
completely understand what you can do with SQL by experimenting with the
appropriate interactive facility. For DB2, you can use one of the following:
v The Interactive SQL (ISQL) facility of DB2/VSE
v The Start SQL (STRSQL) facility of DB2/400
v The Start Query Manager (STRQM) of DB2/400
v The DB2 Interactive (DB2I) facility of DB2
v The Query Manager, Command Line Processor, Command Center (DB2

Version 5 or later) and online help of DB2/2 or DB2 for Windows NT
v IBM Visualizer Query for AIX
v The Interactive SQL (ISQL) facility, and the Database Services Utility for

SQL/DS

See your database administrator for more information about relational
database concepts and facilities available at your installation.

Example: Inventory, Suppliers, and Quotations Sample Tables
The examples in this section show the sample tables shipped with the
DB2/VSE program product. The Inventory, Suppliers, and Quotations sample
tables are used throughout this chapter to illustrate the coding of a VisualAge
Generator SQL program. The tables contain information needed for
maintaining inventory, such as the part descriptions, part numbers and the
quantity in stock, the part supplier’s names and addresses, each supplier’s
price, delivery time, and quantity on order for parts. The tables are defined to
VisualAge Generator as SQL row records.

The columns in the tables are defined in the example SQL database as shown
in Table 4:

Table 4. Example SQL Database
Name SQL Data Type
PARTNO SMALLINT (NOT NULL)
DESCRIPTION VARCHAR(24)
QONHAND INTEGER
SUPPNO SMALLINT (NOT NULL)
NAME CHAR(15)
ADDRESS VARCHAR(35)
PRICE DECIMAL(5,2)

22 VisualAge Generator: Design Guide

Table 4. Example SQL Database (continued)
Name SQL Data Type
DELIVERY_TIME SMALLINT
QONORDER INTEGER

Inventory Table
Table 5 contains information on parts in stock: part number (PARTNO), part
description (DESCRIPTION), and quantity on hand (QONHAND).

Table 5. Inventory
PARTNO DESCRIPTION QONHAND
207 gear 75
209 cam 50
221 bolt 650
222 bolt 1250
231 nut 700
232 nut 1100
241 washer 6000
285 wheel 350
295 belt 85

Suppliers Table
Table 6 contains information about suppliers: supplier number (SUPPNO),
name (NAME), and address (ADDRESS).

Table 6. Suppliers
SUPPNO NAME ADDRESS
52 Vesuvius, Inc. 512 Ancient Boulevard, Pompeii, New York
53 Atlantis Co. 8 Ocean Avenue, Washington, D.C.
54 Titanic Parts 32 Large Street, Bigtown, Texas
57 Eagle Hardware 64 Tranquility Place, Apollo, Minnesota
61 Sky Parts 128 Orbit Boulevard, Sydney, Australia
64 Knight Ltd. 256 Arthur Court, Camelot, England

Quotations Table
Table 7 contains information about quotations from suppliers for specific
parts: supplier number (SUPPNO), part number (PARTNO), price (PRICE),
delivery time (DELIVERY_TIME), and quantity on order (QONORDER):

Table 7. Quotations
SUPPNO PARTNO PRICE DELIVERY_TIME QONORDER
51 221 .30 10 50
51 231 .10 10 0
53 222 .25 15 0
53 232 .10 15 200

Chapter 2. Developing SQL programs 23

Table 7. Quotations (continued)
SUPPNO PARTNO PRICE DELIVERY_TIME QONORDER
53 241 .08 15 0
54 209 18.00 21 0
54 221 .10 30 150
54 231 .04 30 200
54 241 .02 30 200
57 285 21.00 14 0
57 295 8.50 21 24
61 221 .20 21 0
61 222 .20 21 200
61 241 .05 21 0
64 207 29.00 14 20
64 209 19.50 7 7

Defining relational database tables

A relational table is defined to VisualAge Generator as an SQL row record.
The record can represent one table or table view, or a join of two or more
tables or table views. Unless otherwise noted, information about single tables
also applies to joined tables.

Defining relational tables as record parts
You use VisualAge Generator Developer record definition to define a
relational table as an SQL row record part in the Repository/ENVY library.
You can name the record part anything you want. The part name does not
have to be the same as the table name.

An SQL row record definition can represent a join of two or more tables or
views.

The only I/O options that can be used with a join are functions that read the
database, such as:
v INQUIRY
v SETINQ
v SCAN

Defining data items for SQL row records
For SQL row records, the data items defined represent columns in a relational
table instead of a record structure. In addition to the item name, specify the
column name for the item as it is known to the database manager. You cannot
specify level and an OCCURS value for any item in an SQL row record.

When you define an SQL row record on a system with access to a relational
database, you can retrieve and display the SQL column information from the
database. If a database is not specified, or if the table is in host variable

24 VisualAge Generator: Design Guide

format, the Retrieve and Compare options are not available, and the SQL data
types are converted to VisualAge Generator data types. If the database is not
available, the relational table is not defined, or if the table is in host variable
format, you have to define the data items.

For shared data items, the item name, type, length, decimal places, bytes, and
description values are all stored with the data item part in the
Repository/ENVY library. For nonshared data items, the item name, type,
length, decimal places, bytes, and description values are all stored with the
SQL row record in the Repository/ENVY library. The SQL data code values
are associated with the item as it appears in the SQL row definition and are
stored with the SQL row, not with the data item part.

Note: When VisualAge Generator Developer obtains the SQL definitions for
an SQL row record during record definition, it uses the unqualified
SQL column names as the default list of data item names. VisualAge
Generator Developer does not truncate column names, but if the item
name is not a valid VisualAge Generator name or if it duplicates the
name of an item in another structure, you receive an error message.
You must correct the errors before saving the definition.

Modifying the data item definition
You might modify a data item definition if you are following a naming
convention that the SQL columns does not use. You can modify the data item
definition extracted from the relational database as follows:
v Change item names.

VisualAge Generator uses the SQL column name associated with the item
when it creates the SQL statements that access the database. The item name
is used to identify the item within the program definition.

v Identify default selection columns.
On the SQL Row Item Usage window, select the Key Item check box for
items to be used as search columns in the default SQL statements that are
created for the record. The use of keys affects the creation of SQL row
default statements. See “Defining default selection conditions” on page 26
for additional information on key items.

v Arrange the items in an SQL row.
The order you specify data items as keys determines the ORDER BY clause
for the SETINQ I/O option.

v On the SQL Row Item Usage window, select the Read-only check box for
items your program does not modify.
You should select the Read-only check box for items that represent virtual
columns in views that cannot be written back to the database.

v Delete columns from an SQL row that your program does not need to
process.

Chapter 2. Developing SQL programs 25

v Change the item data type and length from the type and length obtained
from the SQL catalog.
The VisualAge Generator and SQL data types must be compatible.

v Add items whose SQL column name is defined as an expression with the
actual column name used as one of the operands in the expression.

Comparing the SQL row definition to the database definition
You can compare your SQL row record definition to the definition of the
tables in the database when the following conditions exist:
v The database is available
v Your relational table exists
v You do not have any table name host variables

If a database is not specified, or if the table is in host variable format, the
Retrieve and Compare options are not available. If the relational database is
available, the record definition function extracts and uses the table definition
from the relational database. The record definition function tries to match each
column in the relational table with a column name specified in the record. The
data definition function then displays each column that does not have a
matching data item, each data item that does not have a matching column,
and all data items having an SQL column definition that is different from the
Repository/ENVY library data item definition.

Defining default selection conditions
In a SELECT SQL statement, the WHERE clause identifies the criteria used to
select rows from the database. You can control the default WHERE clauses
that VisualAge Generator creates for functions that access the SQL row record.
You control the default WHERE clause by specifying key items and default
selection conditions:

Key items
You can identify data items in the SQL row record as key items in the
SQL row record definition. For alternative specification records, you
can specify a single default key item during record definition.

For single-record I/O options, such as INQUIRY and UPDATE,
VisualAge Generator uses items to create the default WHERE clause
to select records that match the values of the data items specified as
keys.

For multi-record I/O options, such as SETINQ and SETUPD,
VisualAge Generator generates key selection clauses only if a single
key is specified. The records selected have a key column value that is
greater than or equal to the values of the data item used as the keys.

Keys are sorted in the default ORDER BY clause in the order you
defined the key items. Key items are excluded from the FOR UPDATE

26 VisualAge Generator: Design Guide

OF clause and the SET clause to maintain referential integrity. See
“Referential integrity considerations” on page 57 for general
information on referential integrity.

Default selection conditions
You enter the conditions in a WHERE clause of a simulated SELECT
statement. Use default selection conditions to specify join conditions
when the record represents a join of two or more tables.

During function definition you can view the default WHERE clause
created for a function. If you specified both key items and selection
conditions, the default WHERE clause combines the key search and
the selection conditions using an AND operator. For SETINQ or
SETUPD I/O options on multiple key records, default selection
conditions are defined; however, a default WHERE clause is not
defined.

If the default WHERE clause does not meet the requirements for a
function, you can modify the clause for any individual function.

Joined Tables
Often when you define a record as a join, you also want to define selection
conditions that limit the number of rows used from the combined tables.

In high-level language programs, you must define the join conditions in each
SELECT statement that accesses the join tables. With VisualAge Generator,
after you define the join conditions with the SQL row record definition, the
join conditions are automatically included in any SELECT statement created
for the SQL row.

SQL data type support
The SQL data type identifies the data type of the data item in the relational
database. VisualAge Generator uses DB2 SQL data types to map to VisualAge
Generator data types for SQL row records. SQL data types for other database
management systems are mapped to DB2 data types during SQL column
retrieval and comparison. SQL data codes can vary only for double-byte
character set (DBCS) characters and hexadecimal data items. SQL data codes
are fixed for other types of data items and cannot be modified.

Variable length and fixed length items
You can specify that the table column associated with an item in an SQL row
record is variable or fixed length by setting the SQL data code for the item to
the following values:

Chapter 2. Developing SQL programs 27

Table 8. SQL Data Types for Variable and Fixed Length Columns

VisualAge
Generator Data
Type

SQL Data Type Variable/Fixed

CHA 453–CHAR (default) Fixed

CHA 449–VARCHAR, length < 255 Variable

CHA 457–VARCHAR, length > 254 Variable

DBCS 469–GRAPHIC (default) Fixed

DBCS 465–VARGRAPHIC, length < 128 Variable

DBCS 473–VARGRAPHIC, length > 127 Variable

Note: The SQL data types associated with record data items always specify
the use of null indicators. This does not affect the table column
associated with the data item, which might be defined as null or not
null. See “SQL Nulls” on page 34 for a description of the use of null
values in generated programs.

The SQL data type for a variable length column is saved automatically for a
data item whenever the relational table definition is defined from the SQL
catalog. You can also set the SQL data code using the SQL Row Item Usage
window for SQL row records.

If an item is associated with a variable length column, the column is accessed
using a variable length host variable whenever the column is read from the
table or written to the table.

Compatible data types
SQL provides the necessary conversion between compatible data types. A data
item in an SQL row record and its corresponding column in the SQL database
are considered compatible if one or more of the following is true:
v The SQL column is any form of character data, and the data item is of type

CHA with length less than or equal to the length of the SQL column.
Data read from a column into a shorter data item is truncated on the right.
You can test for truncation using the IF item TRUNC statement.

v The SQL column is any form of DBCS data, and the data item is of type
DBCS with a byte length less than or equal to the length of the SQL
column.
Data read from a column into a shorter data item is truncated on the right.
You can test for truncation using the IF item TRUNC statement.

v The SQL column is any form of number and the data item is the following:
– Binary (BIN) 2 or 4 bytes, no decimal places

28 VisualAge Generator: Design Guide

– Packed (PACK) with a maximum length of 18 digits, including decimal
places

Note: C++ does not have a packed decimal data type. Floating point
variables with a maximum precision of 15 digits are used to access
decimal columns. SQL columns of up to 18 digits can be accessed,
but the numbers will be accurate only to the first 15 significant
digits.

If data is read from a number column into a shorter data item, leading
zeros are truncated on the left. If the number still does not fit into the data
item, fractional parts of a decimal number are deleted on the right with no
error indication. If the number still does not fit, an overflow condition
results and a negative SQL code is returned.

v The SQL column has any type, the data item has type HEX, and the column
and item have the same length. No data conversion is performed when
data is transferred. HEX data items support access to SQL columns whose
SQL data type does not have a corresponding VisualAge Generator data
type.

SQL-to-VisualAge Generator data type conversion
When a table definition is extracted from the database, the SQL data types are
converted to VisualAge Generator data types as shown in Table 9. The table
shows the DB2/400, DB2/VSE, SQL/DS, DB2, DB2/2, DB2/6000, DB2 for
Windows NT, DB2 for HP-UX and DB2 for Solaris data types and the
corresponding VisualAge Generator data types.

Table 9. SQL to VisualAge Generator Data Type Conversion

SQL Data Type DB2/400
DB2/VSE or
SQL/DS Type DB2/MVS Type

DB2/2,
DB2/6000, DB2
for
Windows NT,
DB2 for
HP-UX, DB2
for Solaris
Type

CHAR Length:
1–32766
Type: CHA
Bytes:
1–32766

Length:
1–254
Type: CHA
Bytes: 1–254

Length:
1–254
Type: CHA
Bytes: 1–254

Length:
1–254
Type: CHA
Bytes: 1–254

VARCHAR Length:
1–32740
Type: CHA
Bytes:
1–32740

Length:
1–254
Type: CHA
Bytes: 1–254

Length:
1–32767
Type: CHA
Bytes:
1–32767

Length:
1–4000
Type: CHA
Bytes:
1–4000

Chapter 2. Developing SQL programs 29

Table 9. SQL to VisualAge Generator Data Type Conversion (continued)

SQL Data Type DB2/400
DB2/VSE or
SQL/DS Type DB2/MVS Type

DB2/2,
DB2/6000, DB2
for
Windows NT,
DB2 for
HP-UX, DB2
for Solaris
Type

LONG
VARCHAR

N/A Length:
32767
Type: CHA
Bytes: 32767

Length:
1–32767
Type: CHA
Bytes:
1–32767

Length:
1–32700
Type: CHA
Bytes:
1–32700

GRAPHIC Length:
1–16383
Type: DBCS
Bytes:
2–32766

Length:
1–127
Type: DBCS
Bytes: 2–254

Length:
1–127
Type: DBCS
Bytes: 2–254

Length:
1–127
Type: DBCS
Bytes: 2–254

VARGRAPHIC Length:
1–16370
Type: DBCS
Bytes:
2–32740

Length:
1–127
Type: DBCS
Bytes: 2–254

Length:
1–16383
Type: DBCS
Bytes:
2–32766

Length:
1–2000
Type: DBCS
Bytes:
2–4000

LONG
VARGRAPHIC

N/A Length:
16383
Type: DBCS
Bytes: 32766

N/A Length:
1–16350
Type: DBCS
Bytes:
2–32700

SMALLINT Length: 2
Type: BIN
Bytes: 2

Length: 2
Type: BIN
Bytes: 2

Length: 2
Type: BIN
Bytes: 2

Length: 2
Type: BIN
Bytes: 2

INTEGER Length: 4
Type: BIN
Bytes: 4

Length: 4
Type: BIN
Bytes: 4

Length: 4
Type: BIN
Bytes: 4

Length: 4
Type: BIN
Bytes: 4

DECIMAL1 Length: 18
Type: PACK
Bytes: 1-10

Length: 18
Type: PACK
Bytes: 1-10

Length: 18
Type: PACK
Bytes: 1-10

Length: 18
Type: PACK
Bytes: 1-10

FLOAT Length: 8
Type: HEX
Bytes: 8

Length: 8
Type: HEX
Bytes: 8

Length: 8
Type: HEX
Bytes: 8

Length: 8
Type: HEX
Bytes: 8

DATE Length: 10
Type: CHA
Bytes: 10

Length: 10
Type: CHA
Bytes: 10

Length: 10
Type: CHA
Bytes: 10

Length: 10
Type: CHA
Bytes: 10

30 VisualAge Generator: Design Guide

Table 9. SQL to VisualAge Generator Data Type Conversion (continued)

SQL Data Type DB2/400
DB2/VSE or
SQL/DS Type DB2/MVS Type

DB2/2,
DB2/6000, DB2
for
Windows NT,
DB2 for
HP-UX, DB2
for Solaris
Type

TIME Length: 8
Type: CHA
Bytes: 8

Length: 8
Type: CHA
Bytes: 8

Length: 8
Type: CHA
Bytes: 8

Length: 8
Type: CHA
Bytes: 8

TIMESTAMP Length: 26
Type: CHA
Bytes: 26

Length: 26
Type: CHA
Bytes: 26

Length: 26
Type: CHA
Bytes: 26

Length: 26
Type: CHA
Bytes: 26

NUMERIC Length: 18
Type: PACK
Bytes: 1-10

N/A N/A N/A

Note: To find how data is represented in VisualAge Generator for each database
manager and operating system you are using, locate the column with the database
manager you are using and the row with the appropriate SQL Data Type. The
VisualAge Generator representation is displayed in the table cell that is common to
both.

1. C++ does not have a packed decimal data type. Floating point variables with a
maximum precision of 15 digits are used to access decimal columns. SQL columns
of up to 18 digits can be accessed, but the numbers will be accurate only to the first
15 significant digits.

Note: For workstation systems, GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC are supported only on DBCS-enabled systems.

To view data conversions for Oracle, see Table 15 on page 76.

If any data type not shown on the table is returned from the SQL database
manager, the column is defined as type HEX with a byte length corresponding
to the byte length returned from the database manager. The SQL data type is
saved in the record definition.

The SQL DECIMAL data type has both precision (number in digits) and scale
(number of decimal places to the right of the decimal) defined. When defining
a data item in VisualAge Generator the length and the decimal places will
map to precision and scale for SQL decimal data types. Therefore, if you
know the precision and scale in SQL, you know the length and decimal places
in VisualAge Generator, and vice versa.

Chapter 2. Developing SQL programs 31

The SQL types VARCHAR and VARGRAPHIC are variable-length fields, but a
maximum length is specified when they are defined. The maximum length is
used for the VisualAge Generator data item byte length. LONG VARCHAR
and LONG VARGRAPHIC columns are not defined with a maximum
VisualAge Generator size in the SQL table definition; therefore, the SQL type
maximum length is used for the data item byte length in VisualAge
Generator.

These large fields can result in excessive virtual storage requirements for the
program. A warning is issued about the size of these fields when the
definition is being converted to an SQL row record definition. You should
change the byte-length to the maximum size that the column actually
contains.

VisualAge Generator-to-SQL data type conversion
When the test facility accesses columns in a relational database, it sets the
SQL data type in the SQL descriptor area (SQLDA) according to the way the
item is defined in the SQL row record. The SQL type used for each VisualAge
Generator data type is listed in Table 10.

Note: When setting the SQL data type, VisualAge Generator uses DB2 specific
data types. When non-DB2 database management systems (DBMS) are
used during test, the DB2 data types are mapped to the data types
supported by the accessed DBMS.

The VisualAge Generator data types in the table are the only data types
supported in SQL row records.

Table 10. Valid Data Types for Use in SQL Row Records

VisualAge Generator
type Bytes SQL type Code

CHA 1–32767 User specified

DBCS 2–32767 User specified

BIN 2 SMALLINT 501

BIN 4 INTEGER 497

PACK1 10 DECIMAL 485

HEX 1–32767 User specified

Note: C++ does not have a packed decimal data type. Floating point variables
with a maximum precision of 15 digits are used to access decimal
columns. SQL columns of up to 18 digits can be accessed, but the
numbers will be accurate only to the first 15 significant digits.

32 VisualAge Generator: Design Guide

VisualAge Generator generates COBOL or C++ host variable definitions that
are appropriate for the SQL code, according to the way the item is defined in
the SQL row record.

Neither VisualAge Generator SQL row records nor the database managers
support the MIX data type. However, they support mixed data in SQL
character (CHAR, VARCHAR) columns. The program can move mixed data
between MIX fields on maps and CHA items in SQL row records. DB2/2
supports mixed data only on DBCS-enabled systems.

For more information on mixed data in SQL programs, see “Chapter 9.
Developing programs containing DBCS” on page 213.

Support for FLOAT and other unknown data types
VisualAge Generator supports FLOAT and any other SQL data types that do
not have a corresponding VisualAge Generator data type by using HEX data
items. When VisualAge Generator extracts a column definition with an
unrecognized data type from the SQL catalog, the item type for that column is
set to HEX. The SQL data type and column length are saved with the record
definition. The program can reference that item in MOVE and LOGICAL
COMPARE statements but not in calculations.

If you do not have access to the SQL database during program definition, you
can set the SQL data codes for HEX items on the SQL Row Item Usage
window. If you wanted to define a FLOAT column in an SQL row, you define
the item as a HEX item with length 8 and set the SQL data code to 481. The
SQL data codes for SQL data types are listed in the SQL program manuals in
the description of SQLDA.

Columns with the following SQL data types cannot be accessed in a generated
program because there is not an equivalent COBOL data type for the item:
v 460/461 - Null terminated character string
v 476/477 - Varying-length character string (Pascal)

Decimal columns must not be accessed as HEX items, use PACK items for
decimal columns.

Using DATE, TIME, and TIMESTMP SQL Columns
DATE, TIME, and TIMESTMP columns in the database are associated with
CHA data items in record and map definitions. The values are in character
format with separator characters when processed in the program.

To have the map edit routines and the EZEDTELC special function word
produce dates in the format expected by the database manager, set the
VisualAge Generator installation default Gregorian date format for long dates
(four digit year) equal to the date format specified for the database manager.

Chapter 2. Developing SQL programs 33

Define date items as 10 character fields. Then when the program uses the date
map item edit to set the value of the field or moves EZEDTELC to the field,
the resulting date is in the correct format for storing in the database.

The method of setting the default date format varies with the runtime
environment as shown in Table 11.

Table 11. Methods for Setting the Default Date Format

Environment How default date format is set

MVS, VSE, VM Specified during IBM VisualAge Generator
Server for MVS, VSE, and VM Installation.
See the installation program directory for
more information.

OS/400 Derived from date format and date
separator job options at runtime.

OS/2, AIX, CICS for AIX, Windows NT,
CICS for Windows NT, HP-UX, Solaris,
and CICS for Solaris

Specified in the EZERGRGL_xxx
environment variable

SQL Nulls
SQL supports null values for columns in an SQL table row. A null value
indicates the absence of a value for the column; that is, the contents of the
column do not exist. A null value can occur for any of the following reasons:
v A row is added to a table without specifying all of the columns
v A new column is added to the definition of an existing table
v An update explicitly sets the column to a null value

VisualAge Generator supports the following statements that can be used with
data items in SQL row records:
v TEST item NULL
v IF item IS NULL
v IF item NOT NULL
v WHILE item IS NULL
v WHILE item NOT NULL
v SET item NULL

Items in tables and records other than SQL rows cannot have a null value.
SET item NULL is supported only for data items in SQL row records.

Columns with a null value that are read from the SQL database have item
contents initialized in storage according to their data type (blanks for
character and DBCS data, zeros for numeric and hexadecimal data).
Movement from any non-SQL item or any non-null SQL item into an SQL row
item makes the SQL item not null.

34 VisualAge Generator: Design Guide

Movement from a null SQL item to an SQL row item makes the target item
null and sets it to its initial value (blanks or zeros). Moving a null SQL item to
a non-SQL item sets the target item to blanks or zeros. The null value
indicator is not carried along on the move. Moving the same data back to the
SQL item makes the SQL item blank or zeros, and not null.

Comparisons between record items do not consider null values. For
comparisons, items with null values are set to binary zeros. Use the IF and
TEST statements to determine if an item has a null value.

The null indicators that are used with SQL are included as part of every SQL
row record item structure; they consist of 2 bytes before each SQL data item.
That is, every SQL item passes 2 bytes that are not null during SQL to
VisualAge Generator conversion. You are not aware of these indicators unless
an SQL row is passed as a parameter or redefined.

Note: Null indicators are not included in the generated WHERE clause.

The details of the record item structure used for SQL data are in “Storage
layout of SQL row records”.

Storage layout of SQL row records
You do not need to be aware of the internal layout of an SQL row record
except when using the following functions:
v Receiving an SQL row as a parameter in a non-VisualAge Generator

program
v Receiving an SQL row as a parameter in a VisualAge Generator program

when the received record is defined as something other than an SQL row
v Redefining an SQL row record

If you use any of these functions, you need to know the following internal
layout of the record structure for an SQL row in storage. Figure 2 on page 36
illustrates the internal layout of an SQL record.
v All record data structures start on a word boundary. A further boundary

alignment within a record structure does not exist.
v The data items appear in the buffer in the order they were defined.
v Each data item in an SQL row record is preceded by 4 bytes of data.

– The 2 leading bytes are the null indicator. A null indicator is reserved for
all fields, even when the table column associated with the field does not
permit nulls. Any negative binary value (bit 0 is on) is a null value. Any
other value is not a null value.

– The second pair of bytes is used as a length field for some items when
running in static mode. The contents of this area are unpredictable.

Chapter 2. Developing SQL programs 35

If you change an SQL row record to a different organization, filler fields are
optionally added to the structure so that the structure matches the layout of
the SQL row record as it appeared in internal storage. The LEVEL for each
item is set to 3, and the OCCURS value for each item is set to 1.

If you change a record with different organization to an SQL row record, the
following items are deleted from the record’s data item structure:
v All filler items
v All items that are substructured. For example, if a level 3 item contains

level 4 items, the level 3 item is deleted and the level 4 items are kept. If
another level 3 item has no substructure, that level 3 item is not deleted.

The LEVEL for each remaining item is set to 3, and the OCCURS value for
each item is set to 1.

If you want to test or set the null indicator items in the internal structure
directly, you can define a new record that is a record redefinition of the SQL
row record. The redefined record structure must match the internal record
structure of the SQL row. You can create an exact redefinition of the SQL row
internal structure by copying the SQL row Repository/ENVY library part into
a new record part and then changing the record specification for the new part
to be a redefined record for the original SQL row. Data definition adds filler
fields to the redefined record structure that match the null indicator and
length fields in the SQL record buffer.

Figure 2. The internal layout of an SQL record

36 VisualAge Generator: Design Guide

Defining SQL programs

The first step in defining an SQL program is specifying the SQL row
definitions. This is usually done by a database administrator. If you are a
program developer, you can access the SQL row definitions by loading the
database administrator’s ENVY package/application. You can also define the
SQL row records in your own ENVY package/application, if that is the
practice at your installation.

The definition of maps and working storage is the same for an SQL program
as for any other VisualAge Generator program. Defining the program logic is
also very similar to the definition of program logic for a file-based program.

During program logic definition, you define the set of functions to run for the
program. Defining the I/O functions for an SQL program is similar to
defining the I/O functions for a file-based program. You use I/O options and
specify SQL rows as I/O objects. VisualAge Generator creates the SQL
statement necessary to run a function with an SQL row object. For certain I/O
options, you can modify the SQL statement to request additional SQL
functions.

Relationship between functions and SQL statements
VisualAge Generator generates SQL statements for running all I/O options,
except SQLEXEC. Table 12 lists the SQL statements used for each I/O option.

You can use the SQL Statement Definition window in a function definition to
view the primary SQL statement that VisualAge Generator uses for the
function. You can modify the following SQL statements:
v SQL SELECT statement, except the FROM clause, built for INQUIRY,

UPDATE, SETINQ, or SETUPD functions
v SQL INSERT statement, except the table name, built for an ADD function
v SET clause of the SQL UPDATE statement built for a REPLACE function

The SQLEXEC function enables you enter your own SQL statements using the
Object Selection function. Table 12 illustrates the relationship between the I/O
option and the SQL statement used to run the I/O option.

Table 12. I/O Option and SQL Statement Relationships

I/O Option SQL Statements used to Run the I/O Option

INQUIRY (Single-row
select=yes)

SELECT

INQUIRY (Single-row
select=no)

SELECT through DECLARE CURSOR
OPEN
FETCH
CLOSE

Chapter 2. Developing SQL programs 37

Table 12. I/O Option and SQL Statement Relationships (continued)

I/O Option SQL Statements used to Run the I/O Option

UPDATE SELECT through DECLARE CURSOR
OPEN
FETCH
CLOSE (only if SQLCODE=100, no more rows)

SETINQ SELECT through DECLARE CURSOR
OPEN

SETUPD SELECT through DECLARE CURSOR
OPEN

If you specified the cursor to declare with hold:
SELECT through DECLARE CURSOR WITH
HOLD

SCAN FETCH
CLOSE (only if SQLCODE=100, no more rows)

ADD INSERT

REPLACE UPDATE WHERE CURRENT OF cursor
CLOSE (if REPLACE follows UPDATE function)

DELETE DELETE WHERE CURRENT OF cursor
CLOSE (if DELETE follows UPDATE function)

CLOSE CLOSE

SQLEXEC User-defined statements

Accessing relational tables without coding SQL statements
This section describes how to perform basic SQL functions without coding
SQL statements by using I/O options and letting VisualAge Generator
generate default SQL statements.

Accessing single rows by key items
If the SQL row record has been defined with key items that represent columns
in the table with a unique index, then you can access specific rows directly by
keys just as if the record were in an indexed file.

Reading a specific row: To read a specific row, use an INQUIRY function
and specify the SQL row record name as the I/O object. Move the key values
for the row you want to read into the key items before the I/O option is
invoked.

Changing a specific row: To change a specific row, move the key values for
the desired row into the key items and use an UPDATE instead of an
INQUIRY function to read the row. After the row is read, change any fields in

38 VisualAge Generator: Design Guide

the row except the keys and write the row back to the database using a
REPLACE function with the SQL row record as the I/O object.

Adding a specific row: To add a specific row to the database, move data into
the record items, including the key values into the key items, and use an ADD
function to insert the row in the database.

Deleting a specific row: To delete a row, move the key values for the row to
be deleted into the key items, read the row with an UPDATE function, and
follow the UPDATE with a DELETE function using the SQL row record as the
I/O object.

Releasing a specific row: If your program uses UPDATE to read a row and
then determines that the row should not be replaced or deleted, use a CLOSE
function to release the row that was obtained for update.

If a CLOSE is not issued, the row is held either until the next I/O option for
the same record, or the next commit point, or the end of the main program.

Processing selected sets of rows using SETINQ, SETUPD, and SCAN
To process a selected set of rows from a table, use a SETINQ or SETUPD
function to select the rows. Then use a SCAN function within a loop to
retrieve the rows one at a time. The SCAN can be followed by a REPLACE or
DELETE function if the rows are selected using SETUPD.

Using SETINQ or SETUPD to select the rows: To use the SCAN I/O option
with an SQL row record, you must first select a set of rows for retrieval by
using the SETINQ or SETUPD I/O option. SETINQ and SETUPD do not
retrieve any data, but only identify a set of rows for later retrieval using a
SCAN function loop. The rows selected depend on whether you specified key
items or selection conditions for the rows. Before the SETINQ or SETUPD
option runs, your program should move the required key values to the key
items or to any host variables used in the selection conditions.

Note: If you specify multiple data items as keys for a record, the default
WHERE clause consists only of the default selection conditions for the
record.

Table 13 shows the rows selected by the default SELECT statement built for
SETINQ or SETUPD functions.

Table 13. Rows Selected by Using Default SETINQ or SETUPD Function

No Selection Conditions Selection Conditions

No Key Item Specified or
Multiple Key Items
Specified

Select all rows in the table Select all rows that meet
selection conditions

Chapter 2. Developing SQL programs 39

Table 13. Rows Selected by Using Default SETINQ or SETUPD Function (continued)

No Selection Conditions Selection Conditions

Single Key Item Specified Select all rows with a key
greater than or equal to the
key item

Select all rows with a key
greater than or equal to the
key item and that meet
selection conditions

The SETINQ function sorts the selected rows in key sequence order if key
items were specified. The order of the key items in the SQL row record
determines the sequence of the keys in the ORDER BY clause. The SETUPD
function does not sort rows, due to an SQL restriction, but does select rows
for update, meaning that a REPLACE or DELETE can optionally follow the
SCAN function that actually reads the rows.

To change the rows selected, you can modify the SELECT statement built for
SETINQ or SETUPD during function definition.

Using SCAN to read one row at a time: A SCAN function retrieves the next
row in a selected set of rows. The columns read by the SCAN are the columns
specified in the SELECT statement for the previously run SETINQ or SETUPD
function. The columns are read into the host variables identified in the INTO
clause of the SELECT statement.

To process all rows in the selected set one at a time, put the SCAN I/O option
inside a WHILE loop. If the SCAN function is run, when no rows are left in
the set, the NRF (no record found) indicator is set for the record.

Figure 3 on page 41 shows the logic used to scan through the Inventory table
and print a line on a report for each inventory item in the table. The logic is
defined as a function with invoked I/O functions. All the processing
statements are defined in the group to make the logic easier to understand.

40 VisualAge Generator: Design Guide

Releasing selected rows using CLOSE: The set of rows selected with a
SETINQ or SETUPD I/O option must be released when the program has
finished processing the set. If your program loops through the entire set until
the no record found (NRF) condition is encountered, VisualAge Generator
automatically releases the set for you by issuing an SQL CLOSE statement.

If your program ends the SCAN loop before reaching the end of the set of
rows, you must use a CLOSE statement to release the rest of the set. If a
CLOSE statement is not issued, the rest of the set is held until the next
INQUIRY, UPDATE, SETINQ, or SETUPD I/O option for the same object, or
until the next commit, or until the main program ends.

Figure 4 on page 42 demonstrates when a CLOSE I/O option is required. The
logic of the example calculates the total parts on order for a specific part in
the INVQUOTS table. The logic also prints a line showing the parts-on-order
number for each supplier of the part. The processing loop can end after the
last row for the part has been processed because the set of rows returned by
the SETINQ is sorted on the key field.

MOVE 0 TO FINISH; /* Set stop switch
MOVE 0 TO INVTABLE.PARTNO;/* Set key item to low value to select all rows

/* Use SETINQ function to select all rows with key >= 0
PSETINQ(); /* Option SETINQ, object INVTABLE

/* Use SCAN function to read each row in the table
WHILE FINISH EQ 0; /* Loop until done
PSCAN(); /* Option SCAN, object INVTABLE
IF INVTABLE IS NRF; /* Check for last record found
MOVE 1 TO FINISH; /* end loop
ELSE; /* If we found a valid record
PPRINT(); /* Go print the contents of the row
END;
END;

Figure 3. Sample Logic: Reading Each Row in the Inventory Table

Chapter 2. Developing SQL programs 41

Replacing or deleting a row retrieved by using a SCAN function: If a row
was selected using a SETUPD, the SCAN function can be followed by a
REPLACE function to modify the row or a DELETE function to delete the
row.

Figure 5 on page 43 shows logic that scans through the Quotations sample
table and changes the delivery time for a specific supplier. If a part number
was specified in the map input, only the delivery time for that part is
changed. The logic assumes you have defined an SQL row record named
QUOTES for the table with key item SUPPNO. Note that you must scan all
rows returned by the SETUPD function, because the set of rows returned is
not sorted due to an SQL restriction.

MOVE 0 TO FINISH; /* Set stop switch
MOVE 0 TO TOTALQN; /* Set initial quantity to zero
MOVE MAPIN.PARTNO TO INVQUOTS.PARTNO; /* set key item from map input

/* Use SETINQ function to select all rows with
/* key >= key from map

PSETINQ(); /* Option SETINQ, object INVQUOTS
/* Use SCAN function to read each row in the table

WHILE FINISH EQ 0; /* Loop until done
PSCAN(); /* Option SCAN, object INVQUOTS
IF INVQUOTS IS NRF; /* Check for last record found
MOVE 1 TO FINISH; /* End loop
ELSE;
IF INVQUOTS.PARTNO NE MAPIN.PARTNO; /* Check for new part number
MOVE 1 TO FINISH; /* end loop

/* Use CLOSE function to release
/* remaining rows in set

PCLOSE(); /* Option CLOSE, object INVQUOTS
ELSE; /* If we found a row for this part

/* number
PPRINT(); /* Print number of parts for this

/* supplier
TOTALQN = TOTALQN + INVQUOTS.QONORDER; /* Increment quantity on order
END;
END;
END;
PPRTTOT(); /* Print total number of parts

/* for part number

Figure 4. Sample Logic: Retrieving All Suppliers of a Specific Part

42 VisualAge Generator: Design Guide

If you understand SQL statement syntax, you might simplify the logic in this
example by modifying the WHERE clause in the SELECT statement for the
SETUPD function to select only the rows where the supplier number was the
supplier number entered on the map. “Modifying SQL statements” on page 44
contains more information on modifying the SQL statements built by
VisualAge Generator.

Searching on a partial key: If you only know the first part of a row key, you
can retrieve the first row that has a key beginning with that partial key by
doing the following:
1. Move the partial key into the key item.
2. Use a SETINQ function to select and sort all records with keys greater

than or equal to the key item value.
3. Use the SCAN function to retrieve the first row in the set.
4. Use the CLOSE function to release the rest of the rows in the set.

Alternatively, you might use an INQUIRY I/O option and modify the SQL
statement built for the option to select rows with key greater than or equal to

MOVE 0 TO FINISH; /* Set stop switch
MOVE MAPIN.SUPPNO TO QUOTES.SUPPNO;/* Set key item from map input

/* Use SETUPD function to select
/* all rows with key >= key from map

PSETUPD(); /* Option SETUPD, object QUOTES
/* Use SCAN function to read each
/* row in the table

WHILE FINISH EQ 0; /* Loop until done
PSCAN(); /* Option SCAN, object QUOTES
IF INVQUOTS IS NRF; /* Check for last record found
MOVE 1 TO FINISH; /* end loop
ELSE;
IF INVQUOTS.SUPPNO EQ MAPIN.SUPPNO; /* If we found the correct

/* supplier
IF MAPIN.PARTNO EQ 0 /* If we are changing all

/* parts for supplier
OR MAPIN.PARTNO EQ INVQUOTS.PARTNO; /* Or this is the specified

/* part
MOVE MAPIN.DELIVERY TO QUOTES.DELIVERY;/* Reset delivery time

/* Use REPLACE function to
/* replace row in the table

PREPLAC(); /* Option REPLACE,
/* object QUOTES

END;
END;
END;
END;

Figure 5. Sample Logic: Modifying Delivery Time for Parts from a Supplier

Chapter 2. Developing SQL programs 43

the key item value. The INQUIRY then returns the first row of the selected set
and automatically releases the rest of the rows in the set.

Updating a set of records in key sequence order: Updating a set of records
in key sequence order requires special logic because SETUPD cannot sort rows
due to a database manager restriction. To perform the operation, you define a
second SQL row record as an alternate specification of the first. Use SETINQ
and SCAN to retrieve the set of rows in key sequence order. To replace a row
that has been retrieved, move the key from the original row to the key of the
alternate specification record. Then, issue an UPDATE and REPLACE
sequence to retrieve and update the row using the alternate specification
record.

Modifying SQL statements

On the SQL Statement Definition window, you can view or modify the SQL
statement that VisualAge Generator creates for the I/O option.

Modifying the SQL statement for a function
During function definition, when the I/O object is an SQL row record, you
can modify most of the clauses generated by VisualAge Generator for SQL
functions.

You can modify any of the lines on the SQL Statement Definition window that
are not preceded by an asterisk (*). If you understand SQL syntax, you can
change the row selected and the columns read from the table. Table 14
summarizes VisualAge Generator support for modifying default clauses:

Table 14. VisualAge Generator Support for Default Clause Modification

I/O Option Clauses You Can
Modify

Clauses You Cannot
Modify

Clauses You Can
Delete

INQUIRY
SETINQ

SELECT
INTO
WHERE
GROUP BY
HAVING
ORDER BY

FROM WHERE
GROUP BY
HAVING
ORDER BY

UPDATE SETINQ SELECT
INTO
WHERE
FOR
UPDATE OF

FROM WHERE

ADD INSERT INTO
VALUES

Table name None

44 VisualAge Generator: Design Guide

Table 14. VisualAge Generator Support for Default Clause Modification (continued)

I/O Option Clauses You Can
Modify

Clauses You Cannot
Modify

Clauses You Can
Delete

REPLACE SET UPDATE
WHERE
CURRENT

None

DELETE None DELETE FROM
WHERE
CURRENT

None

SCAN None FETCH None

CLOSE None CLOSE None

In changing a statement, use the SQL statement syntax described in the
appropriate relational database manager reference manual with the following
additions or exceptions:
v You can use data items as host variables in the statement by coding a colon

immediately preceding the data item name. The data item name can be
qualified and subscripted. The subscript can be a numeric data item or a
numeric literal. At run time, when the SQL statement is processed by the
database manager, the host variable in the statement is replaced by the
value of the variable.
Any data item in the program whose length and type are compatible with
SQL can be used as a host variable. HEX items used as host variables must
be from an SQL row record.
The colon (:) is the default SQL host variable indicator, that is :item-name
format. You can change the host variable indicator on the SQL
options/preferences.

v Do not define host variables for null indicator checking. Null indicators are
maintained by VisualAge Generator for all items in SQL row definitions
(see “SQL Nulls” on page 34 for more information). You can use the TEST
and IF statements to test and the SET statement to set null indicators for
SQL row items. Null indicators are not maintained for items outside of SQL
row definitions.

v An INTO clause is shown with all SELECT commands. The SELECT
command is actually run with an SQL cursor. The INTO clause identifies
the host variables that receive the data when a row is retrieved with the
FETCH command associated with the cursor. The INTO clause is defined
with the SELECT command because a one-to-one relationship must be
maintained between the selected columns and the items in the INTO clause.
You can avoid the use of the cursor for INQUIRY I/O options by specifying
YES for the Single Row SELECT option.

Chapter 2. Developing SQL programs 45

Note: Single row SELECT is not supported when table name host variables
are used in the statement or if the Execution Time Statement Build
check box is selected for the function.

v You can define a comment line in the statement by putting a semicolon (;)
as the first character in the line or by coding a /* as the first 2 characters in
the line.

v You can enter an SQL column name in host column name form by coding
an SQL row item name for the SQL column immediately preceded by an
exclamation point (!). The item name cannot be qualified or subscripted.
The item must be one of the items defined in the record definition for the
I/O object.
When the SQL statement is prepared for run time, the data item name is
replaced by the SQL column name defined for the data item in the SQL row
definition.
You can change the SQL column name indicator on the SQL
options/preferences.

v When the WHERE clause of an SQL SELECT statement is modified to
include the LIKE or IN predicates, VisualAge Generator Developer and
VisualAge Generator Server for MVS, VSE, and VM strip trailing blanks
from character and DBCS fields used as host variables. This can affect the
results of the search performed by SQL.

Checking the syntax of a modified SQL statement
If you modify an SQL statement, VisualAge Generator validates the host
variable names entered in :item-name format and the column names in
!item-name format. VisualAge Generator then checks that the INTO clause of
a SELECT statement consists of a list of host variables separated by commas,
but leaves all further statement syntax checking to the database manager.

On the SQL Statement Editor window, select Validate to request an immediate
syntax check of the statement by the database manager using the SQL
dynamic PREPARE function. Before the prepare the following is true:
v Each host variable is replaced in the statement with a question mark (?) or

parameter marker
v Each column name entered in !item-name format is replaced with the actual

SQL column name
v The INTO clause is deleted from SELECT statements

If the SQL database manager finds an error in the statement, it returns an
error code and error information in the SQL Request Error window. Some
database manager functions are not valid with an SQL dynamic prepare
function. Use of these functions results in error conditions when the database
checks SQL syntax.

46 VisualAge Generator: Design Guide

Resetting a modified SQL statement to the default SQL statement
If you want to reset a modified SQL statement to its default definition, display
the SQL statement and from the Options pull-down menu, select Reset SQL
Statement.

If you want to reset the statement to what it was before editing, on the SQL
Statement Definition window, select the Cancel push button.

Effects of SQL row record changes on modified SQL statements
Changes to an SQL row record definition are automatically reflected in default
SQL statements built for a function. Any modifiable clauses in a modified SQL
statement are not built again if the SQL row definition for the I/O object is
modified. You must manually update modified statements to reflect the new
record definition if changes are required.

Defining SQL statements using the SQLEXEC I/O option

The SQLEXEC I/O option is used for advanced SQL programming functions
for database manipulation. SQLEXEC supports functions that write to the
relational database. With SQLEXEC, you define the entire SQL statement. You
can enter any statement that you can run using the EXECUTE statement of
the SQL interface for high-level languages. These include INSERT, UPDATE,
and DELETE statements in single- or multiple-row format, GRANT and
REVOKE statements for authorization processing, and CREATE and DROP
statements for table, view, index, and synonym definition.

The major statements that cannot be issued using the SQL EXECUTE
statement are any statements that read data from the database (SELECT,
SCAN, OPEN, CLOSE), and COMMIT and ROLLBACK WORK statements.
For SELECT processing, use the INQUIRY, UPDATE, SETINQ, or SETUPD
functions and modify the SQL statement built for the function. Use the
EZECOMIT and EZEROLLB special function words for COMMIT and
ROLLBACK processing.

Entering the SQL statement for the SQLEXEC I/O option
Enter the SQL statement in the free-format line edit area on the panel. Use the
statement syntax described in the appropriate relational database manager
reference manual.

You can define host variables as part of the SQL statement. You can also
define host column names using the !item-name format if you have specified
an SQL row record as the I/O object. “Modifying the SQL statement for a
function” on page 44 contains a description of host variables and host column
names in SQL statements. “Using table name host variables with the execution
time statement build option” on page 53 contains more information on using
table name host variables with SQLEXEC functions.

Chapter 2. Developing SQL programs 47

You can use the SQLEXEC I/O option to issue multiple-row INSERT,
DELETE, and UPDATE statements that are not supported directly with
VisualAge Generator I/O options. Examples of each of these statements are as
follows:

Multiple-row insert
INSERT INTO DEPT.EMPTAB

SELECT EMPLOYEE_NUMBER, WEEKLY_SALARY
FROM COMPANY.EMPTAB
WHERE DEPARTMENT_NUMBER = :EMPTAB.DEPTNO

Multiple-row delete
DELETE FROM COMPANY.EMPTAB

WHERE EMPLOYEE_NUMBER = :EMPLNO

Multiple-row update
UPDATE COMPANY.EMPTAB

SET WEEKLYSALARY = WEEKLYSALARY * 2
WHERE EMPLOYEE_NUMBER = :EMPLNO

Using SQLEXEC to issue data definition statements
You can use SQLEXEC to issue the following SQL data definition language
statements:
v GRANT
v REVOKE
v CREATE TABLE
v DROP TABLE
v CREATE INDEX
v DROP INDEX
v CREATE SYNONYM
v DROP SYNONYM
v CREATE VIEW
v DROP VIEW

If you want to use host variables in these statements, select the Execution
Time Statement Build check box as described in “Using execution time
statement build with SQLEXEC functions” on page 50.

SQL statements not supported by SQLEXEC
You cannot issue the following commands using the SQLEXEC function:
v SELECT
v INCLUDE SQLCA
v INCLUDE SQLDA
v WHENEVER
v OPEN
v CLOSE
v FETCH

48 VisualAge Generator: Design Guide

v DECLARE CURSOR
v COMMIT WORK
v ROLLBACK WORK
v CONNECT
v PREPARE
v EXECUTE
v EXECUTE IMMEDIATE
v DESCRIBE

Controlling SQL statement preparation with execution time statement build

SQL statements must be preprocessed before they can be performed by the
database manager. The SQL Statement Definition window used for SQLEXEC
functions and SELECT statement functions contains the Execution Time
Statement Build check box that enables you to control when and how SQL
statements are presented to the database manager for statement preparation.
The Execution Time Statement Build option permits an SQL statement
generated for an SQL function to be dynamically modified at run time. It also
permits host variables to be used in SQL where SQL does not normally
support host variables.

If you do not select the Execution Time Statement Build check box, the SQL
statement cannot be modified by the program at run time. You can use host
variables as defined in normal SQL statement syntax. All valid host variable
data types are supported. “Using table name host variables with the execution
time statement build option” on page 53 contains special considerations for
table name host variables.

If you select the Execution Time Statement Build check box, the statement is
prepared each time the function is run. The SQLEXEC function is
implemented using the EXECUTE IMMEDIATE command. INQUIRY,
SETINQ, UPDATE, and SETUPD functions are implemented using PREPARE
and cursor manipulation statements. The SQL statement is built each time the
function is run by replacing all the host variables in the statement (except the
host variables in the INTO clause of the SELECT statement) with the character
representation of the contents of the host variables.

Only host variables with CHA, BIN, or PACK data types can be used. The
CHA fields are inserted directly in the statement without being enclosed in
single quotes. This is an advantage because it permits host variables to be
used in places where SQL does not normally support host variables.

Statements that contain host variables cannot be checked for syntax errors by
the test facility or used in a generated program when the Execution Time
Statement Build check box is selected.

Chapter 2. Developing SQL programs 49

Selecting the Execution Time Statement Build check box is not valid when
generating using the ANSI SQL format.

Using execution time statement build with SQLEXEC functions
When you select the Execution Time Statement Build check box for
SQLEXEC, the function is run using the EXECUTE IMMEDIATE interface. The
statement string that is run is created by replacing the host variables in the
statement with the character representation of the contents of the host
variables. The replacement is done before the string is passed to the database
manager.

Only CHA, BIN, and PACK items can be used as host variables for the
EXECUTE IMMEDIATE interface statement without being enclosed in
quotation marks. This permits the EXECUTE IMMEDIATE interface to be
used with SQL statements that do not normally support host variables.

For example, you can define the following GRANT statement for an
SQLEXEC function and run it with the Execution Time Statement Build
option:

GRANT :TYPE
ON :TABLENAM
TO :USERID

If your program moved ‘SELECT’ to the TYPE date item,
’COMPANY.EMPTAB’ to TABLENAM, and ‘SMITH, JONES’ to USERID, and
then ran the SQLEXEC function, the following SQL statement is issued using
EXECUTE IMMEDIATE:
GRANT SELECT ON COMPANY.EMPTAB TO SMITH, JONES

Note: CHA host variables are not surrounded with single quotation marks
when the statement string is built for run time. If you intend the CHA
host variable to be used as a character constant value in the SQL
statement, you are responsible for surrounding the character value with
single quotation marks.

Using execution time statement build for dynamic SELECTs
You can select the Execution Time Statement Build check box for SELECT
statement functions in addition to SQLEXEC function SQL statements. When
the option is selected, the SQL statement is prepared dynamically each time
the function is run. Any REPLACE or DELETE functions associated with the
SELECT are also run dynamically.

For all clauses except the INTO clause in SELECT statements, the statement
text to be prepared is built by replacing the host variables in the statement
with the character representation of their contents. For these clauses, only host
variables with type CHA, BIN, or PACK can be used. The CHA fields are

50 VisualAge Generator: Design Guide

inserted directly in the statement without being enclosed in single quotation
marks. This has the advantage of permitting host variables to be used in
places where SQL does not normally support host variables.

Example of a dynamic WHERE clause
When Execution Time Statement Build is used, host variables can be defined
in place of a WHERE clause, enabling dynamic specification of selection
criteria within a program. The syntax check function cannot be used with
statements defined in this way because the SQL statement to run is not
known until run time.

Before the function EXAMPLE is run, the program must move a valid
WHERE clause to the host variable WHRCLS. For example:
MOVE “PARTNO=1 and DESCRIPTION=‘BOLT’” TO WHRCLS ;

Then, the resulting SQL SELECT statement is prepared as shown in the
following example.

Note: The CHA host variables are not surrounded with single quotation
marks when the statement string is built for preparation. If you intend
to use a CHA host variable as a character constant value in the SQL
statement, the program is responsible for surrounding the character
value with single quotation marks.

SELECT
PARTNO, DESCRIPTION, QONHAND

INTO
:PARTNO, :DESCRIPTION, :QONHAND

FROM
SQLDBA.INVENTORY

WHERE
:WHRCLS

/** INSERT ORDER BY CLAUSE HERE **

The example below shows how the contents of WHRCLS are built into the
SQL statement. The statement is then dynamically prepared.

SELECT
PARTNO, DESCRIPTION, QONHAND

FROM
SQLDBA.INVENTORY

WHERE
PARTNO=1 AND DESCRIPTION=‘BOLT’

Note: Nesting of host variables in dynamically-built clauses is not supported.
For example, if the following statement is run before the I/O option in
the example code above, an SQL error is returned from the database
manager:
MOVE “PARTNO = :PARTNO” to WHRCLS ;

Chapter 2. Developing SQL programs 51

Example of a dynamic ORDER BY clause
You can define a host variable in place of an ORDER BY clause to enable the
program to dynamically change the sort column. The sort column determines
the order the selected rows are retrieved and presented to the program user.

For example, using the Execution Time Statement Build option you can define
an SQL statement to retrieve all the parts in the parts table in the following
order:
SELECT

PARTNO, DESCRIPTION, QONHAND
INTO

:PARTNO, :DESCRIPTION, :QONHAND
FROM

SQLDBA.INVENTORY
ORDER BY

:ORDERCOL

The program can move the column number of the sort column to the
ORDERCOL item before the SETINQ option is run. For example, to sort on
the description column, the program should contain the following MOVE
statement, assuming ORDERCOL is a character item:
MOVE “2 ASC” TO ORDERCOL;

Then the following statement is dynamically prepared when the SETINQ I/O
option is run:
SELECT

PARTNO, DESCRIPTION, QONHAND
INTO

:PARTNO, :DESCRIPTION, :QONHAND
FROM

SQLDBA.INVENTORY
ORDER BY

2 ASC

Example of changing a static SQL statement to a dynamic SQL statement
You cannot change a static SQL statement that uses CHA host variables to a
dynamic SQL statement without modifying the program logic that sets the
value in the CHA host variables. This limitation is because the value in the
CHA variables must be enclosed in single quotation marks for correct
dynamic preparation of the SQL statement.

For example, suppose the following SQL statement was working in static
mode:
SELECT

PARTNO, DESCRIPTION, QONHAND
INTO

:PARTNO, :DESCRIPTION, :QONHAND

52 VisualAge Generator: Design Guide

FROM
SQLDBA.INVENTORY

WHERE
DESCRIPTION = :DESCRIPT

For the program to continue to work correctly when the Execution Time
Statement Build option is selected for the SQL statement, the program must
put single quotation marks around the value moved to DESCRIPT as shown
in the following example:
MOVE “‘BOLT’” TO DESCRIPT;

Then the following SQL statement is prepared at run time:
SELECT

PARTNO, DESCRIPTION, QONHAND
INTO

:PARTNO, :DESCRIPTION, :QONHAND
FROM

SQLDBA.INVENTORY
WHERE

DESCRIPTION = ‘BOLT’

If the single quotation marks were omitted, the WHERE clause is generated as
WHERE DESCRIPTION = BOLT and the SQL statement preparation is not
successful because the precompiler expects a column named BOLT instead of
a literal value.

Using table name host variables with the execution time statement build
option

If you plan to use table name host variables with the Execution Time
Statement Build option, you must consider the following:

Note: These considerations apply to all I/O options, except for SQLEXEC.
v When you do not select the Execution Time Statement Build option, you

can only use table name host variables in statements that are defined on the
record specified as the I/O option.

v To use a table name host variable that is not defined on the I/O object in a
sub-SELECT statement, select the Execution Time Statement Build option.

For the SQLEXEC I/O option, a different consideration applies. If you do not
select the Execution Time Statement Build option, the only table name host
variables that can be used in the SQL statement are those defined on the I/O
object. If the SQLEXEC I/O option does not have a I/O object table name,
host variables can only be used when the Execution Time Statement Build
option is selected.

For all other cases of using table name host variables in an SQLEXEC
function, Execution Time Statement Build must be selected.

Chapter 2. Developing SQL programs 53

Testing the results of an SQL I/O option

To test the results of any SQL I/O request, use an IF or TEST statement. The
amount of testing your program does depends on whether you want the
program to end or continue processing on negative SQL return codes. It is
strongly recommended that VisualAge Generator programs test the SQL
record for the VisualAge Generator record I/O error values rather than
EZESQCOD to determine if an I/O operation completed successfully.

Ending the program on a hard SQL error code
The default response to a hard SQL error code (304, 802, or any negative code
for DB2 and DataJoiner) in the communications area is to end program
processing with an error message. For DB2 and DataJoiner, the only return
code your program normally needs to handle is return code 100, which
indicates no more rows for the INQUIRY, UPDATE, and SCAN functions. For
access using ODBC or other database management systems, check the record
status, after the I/O operation, for NRF instead of return code 100.

The record status for the SQL row record is the last SQLCODE returned for
the record. The no record found (NRF) status is set for DB2 and DataJoiner
when the SQLCODE is 100. Your program can either test the status of the SQL
row record or test the contents of the special function word EZESQCOD. The
EZESQCOD special function word contains the value of the SQLCODE field
in the SQLCA that was returned with the last SQL I/O function.

In the following examples, the record is the sample SQL row record,
INVTABLE, defined in this chapter. To test the NRF record state, define the
statement:
IF INVTABLE IS NRF ;/* test for record not found

Other special function words contain other parts of the SQLCA after an SQL
I/O function.

Handling a hard SQL error code
The program does not end on a hard error SQLCODE if the EZEFEC special
function word is set to 1 and an error routine is specified. In this case, the
error handling logic must test for the HRD (hard error) condition, as well as,
the NRF condition. You can use the IF statement to check for a hard SQL code
or a specific SQLCODE as in the following example:
IF INVTABLE IS HRD ;/* test for hard SQLCODE

The status for the SQL row record is also set. When using DB2 or DataJoiner,
HRD status is set for all negative SQL codes, SQL code 304, or SQL code 802.
Additionally, UNQ status is set for SQL return code -803 (insert or update
was not successful because of a duplicate index column value). ERR
status is set for any nonzero SQLCODE.

54 VisualAge Generator: Design Guide

SQL functions and program calls or transfers

Whenever you use XFER or DXFR statements to transfer to another program,
any cursors opened with the UPDATE, SETINQ, or SETUPD I/O options will
automatically be closed.

If a generated program is invoked by a non-VisualAge Generator program,
the program cannot do the following:
v Issue a SETUPD or SETINQ in the called program, return to the calling

program, and call the program at a later time to do the SCAN function
v Issue an UPDATE or SCAN for update in the called program and issue the

REPLACE or DELETE on a subsequent call to the program

SQL locking

The database manager locks data accessed by a program until the end of a
unit of work (commit or rollback) to prevent simultaneous updates or access
to uncommitted changes.

The SQL database manager supports two types of locks: exclusive locks and
share locks. All LUWs exclusively lock all data that they modify, and share
locked data that they read. Exclusive locks prevent other users from reading
or modifying the same data. Share locks permit other users to read, but not
modify, the data. Generally, locks are held to the end of the LUW.

The SQL database manager automatically detects and corrects potential
deadlocks. A deadlock occurs when two LUWs access data that is locked. The
database manager detects these situations and ’backs out’ the newest LUW. A
’back out’ means that the database manager restores all changes made to the
database during that LUW, and then releases the lock. The other program can
then proceed. If your LUW is backed out, the database manager returns a
negative SQLCODE.

Logical unit of work considerations

If a generated SQL program calls an external program developed with a tool
other than VisualAge Generator, and both the program and the external
program access SQL tables, the external program must not use any function
that causes a commit or roll back, unless all cursors within the calling
program are closed.

The following functions must not be used in the external program:
v CICS SYNCPOINT or SYNCPOINT ROLLBACK
v DL/I CHKP, ROLB, or ROLL
v SQL COMMIT WORK or ROLLBACK WORK
v OS/400 COMMIT or ROLLBACK

Chapter 2. Developing SQL programs 55

Programs running in non-CICS environments will commit DB2 updates only
if a VisualAge Generator program has accessed an SQL table within the unit
of work. In these environments, if a called external program access SQL
tables, but the calling program does not, then the external program must issue
an SQL COMMIT or ROLLBACK work to commit or roll back database
changes.

Automatic rollback for relational database I/O

Certain error conditions returned from the database manager result in the
database performing an automatic rollback for the current logical unit of work
(LUW). An example of this is the deadlock condition. This rollback results in
all of the active cursors in the LUW becoming non-active (or closed).

VisualAge Generator detects these specific errors and also detects that the
cursors in the current LUW have been closed. Any subsequent attempt by the
program to reference any affected cursor, results in the program ending. For
example, if a SETUPD I/O option is followed by a SCAN I/O option, and the
SCAN raises one of these error conditions, the SETUPD is not active. This is
because the cursor corresponding to the SETUPD has been closed by the
automatic rollback. An additional SCAN results in an error, indicating there is
not an active SETUPD or SETINQ for the SCAN.

One way to avoid this program end is to check for the general error condition
(ERR) after any database I/O option. If the error condition (ERR) exists then
do not issue any more SCAN, REPLACE, or DELETE I/O options for the
corresponding SETINQ or SETUPD.

You might also wish to define your program to check specifically for the
conditions that cause an automatic rollback using the special function word
EZESQCOD. These error conditions are listed in the appropriate database
manager messages and codes manuals.

If your program has an active SETUPD or SETINQ I/O option, and a function
against the SETUPD or SETINQ (such as SCAN, REPLACE, or DELETE)
results in an error, the program can determine if the error has caused the
SETINQ or SETUPD to be deactivated by examining EZESQCOD. If the value
of the EZESQCOD special function word indicates that the SQL return code is
one of the return codes that results in an automatic rollback, the program
should not attempt another function (for example, SCAN) against the SETINQ
or SETUPD. If the SQL return code does not result in a rollback, the program
can continue processing as if the SETINQ and SETUPD were still active.

56 VisualAge Generator: Design Guide

Assuring data integrity across transactions

If your program accesses a database that is shared by multiple users, you
should define your program to run in segmented mode, or you should set the
EZECNVCM special function word to 1 in your program. In both cases, the
program commits database and recoverable file changes at each CONVERSE
I/O option. This ensures that your program does not lock out database
records for long periods of time while waiting for a response from a program
user. However, you must define functions to prevent two users from changing
the same record at the same time, or to reestablish the selected set of rows if
your program is scanning through a set of rows.

You should use a compare and update technique to ensure that another
program has not modified a row while it was being displayed to the user if
the following is true:
v The LUW ends at each CONVERSE.
v The program reads a row, displays the row contents, reads changes from

the map and then writes the changes back to the database.

Use the following steps to compare and update the row:
1. Read the row.
2. Save a copy of the row in working storage.
3. Display the row contents to the user.
4. Read updates from the terminal.
5. Read the row with an update function.
6. Compare the row just read with the saved row.
7. If not equal, go back to step 2.
8. If equal, update the row from the terminal input.
9. Write the row back to the database with a replace function.

10. Display a message confirming that the row has been updated.

If the row is always updated from the same system or from systems with
synchronized clocks, you can include a column in the row that is set to the
time of the last update. You can then simplify the preceding algorithm to save
and compare only the time stamp instead of saving and comparing the entire
row.

Referential integrity considerations
Databases with referential integrity affect the design of SQL programs. For
example, when accessing tables which have referential constraints in database
management systems which support referential integrity, your program must
not violate the constraints.

IBM relational database managers have restrictions on the use of
cursor-controlled UPDATE and DELETE when using referential integrity.
These restrictions are documented in the appropriate database management
system and database administration manuals. VisualAge Generator uses

Chapter 2. Developing SQL programs 57

cursor-controlled SQL UPDATE and DELETE to implement its REPLACE and
DELETE I/O options. See “Relationship between functions and SQL
statements” on page 37 for more information on the SQL Statements that are
run for the VisualAge Generator SQL I/O options.

The following referential integrity restrictions should be considered when
using the VisualAge Generator UPDATE, REPLACE and DELETE I/O
options:
v You cannot use a cursor-controlled update on any of the columns of the

primary key or on columns of a view derived from the primary key. You
cannot use WHERE CURRENT OF with the SQL UPDATE statement, which
VisualAge Generator creates for the REPLACE I/O option.

v A non-cursor update of primary key columns must not apply to more than
one row.

v An SQL self-referencing table cannot be the object of a cursor-controlled
delete operation. For example, a table using DELETE WHERE CURRENT
OF, which VisualAge Generator creates for the DELETE I/O option, cannot
be the object.

The following list includes alternative methods of performing the VisualAge
Generator UPDATE, REPLACE, and DELETE I/O options within the
preceding restrictions.
v You can indicate that fields in an SQL Row Record are keys. If you set the

primary key fields to KEY = YES, the corresponding SQL columns are not
updated. The keys are excluded from the SQL statement.

v You can update a primary key column by using the UPDATE I/O option to
select the row and then define an SQL UPDATE statement using the
SQLEXEC I/O option. The UPDATE in SQLEXEC is done without using a
cursor.
You can also use the SQL UPDATE statement in SQLEXEC to update the
row without selecting it first. In this case, ensure that you update only one
row at a time. In either case, VisualAge Generator optionally creates a
model SQL UPDATE statement for you in SQLEXEC.

v To delete data from an SQL self-referencing table, you can define an SQL
DELETE statement using the SQLEXEC I/O option. In this case, the delete
is done without a cursor. VisualAge Generator optionally creates a model
SQL DELETE statement in SQLEXEC.

Another consideration is that the database managers have error return codes
for referential integrity errors. These return codes can be checked using
program logic in the EZESQCOD special function word. Also, the EZESQRRM
special function word might contain information on the relational table
exposed and the rule or constraint in error.

58 VisualAge Generator: Design Guide

If you are running programs in more than one production environment, be
aware that return codes received from the different database managers can be
different for the same referential integrity error. For more information about
the return codes, refer to the appropriate messages and codes manual for the
database manager system you are using.

Accessing distributed databases

This section describes the Remote or Distributed Unit of Work (DUW),
guidelines for using EZECONCT, and default database connections.
Distributed unit of work is supported only for DB2 and DataJoiner.

Remote or distributed unit of work
DB2 remote unit of work support allows a program to access one database
program server per unit of work. DB2 distributed unit of work support allows
a program to connect to multiple database program servers within a single
unit of work. Only one connection is active at any one time (an SQL I/O
option operates on the last database to which EZECONCT was issued), but
database updates do not have to be committed prior to connecting to another
database.

VisualAge Generator supports remote unit of work connections in all DB2
environments except CICS for VSE/ESA. Distributed unit of work connections
are supported from the test facility and generated C++ programs to any DB2
database on any DB2 system.

Use the EZECONCT special function word to control the database unit of
work in VisualAge Generator programs. EZECONCT lets a program connect,
disconnect, or activate database connections. The parameters that can be
specified on the EZECONCT call are:
CALL EZECONCT userid,pswd,servername,product,release,uow;

userid DB2 user identifier (8-byte CHA data item)

See “Authorization considerations” on page 65, for more information
on options for specifying DB2 userid and password for workstation
programs.

pswd DB2 password (8-byte CHA data item)

Supported on OS/2 systems with DB2/2 Version 2.1 or later, and on
AIX, Windows NT, HP-UX, Solaris, VM, and VSE batch systems, but
ignored on other systems.

servername
Database program server name (18-byte CHA data item).

Chapter 2. Developing SQL programs 59

product
Database product name (8-byte CHA item). The name of the currently
connected database product is returned in this field if servername is
blank.

The parameter is optional, but must be specified if release is specified.

release
Database product release level (8-byte CHA item). The release level of
the currently connected database product is returned in this field if
servername is blank.

The parameter is optional, but must be specified if uow is specified.

uow Unit of work connection option (8-byte CHA item):

R Type 1 Connect, Remote Unit of Work (default)

Perform a type 1 connection to the database identified in the
servername parameter. Only one database can be connected at
a time; EZECOMIT or EZEROLLB must be issued prior to
connection to another database. Connection to another
database ends an existing connection. All cursors are closed
when the connection occurs.

If servername is RESET, a CONNECT RESET is performed.
This results in a commit operation and a disconnect from the
current server.

Remote unit of work must be used if the database managers
are at the following levels:
v DB2 Version 2
v DB2/6000 Version 1
v DataJoiner Version 1
v Oracle

Use remote unit of work whenever your program design
permits. Remote unit of work is more efficient than
distributed unit of work connections.

Dxy Type 2 Connect, Distributed Unit of Work,

Perform a type 2 connection to the database identified in the
servername parameter; x and y specify connection syncpoint
and automatic disconnect options.

With type 2 connections, multiple connections can be made
within a single unit of work. Connection to another database
does not end prior connections. Cursors are not closed when
another connection occurs.

Values for x, the syncpoint option, are:

60 VisualAge Generator: Design Guide

1 One phase commit; only one database can be updated
within the unit of work. Use one phase commit if
your program design permits; a one phase commit
does not have the overhead associated with a two
phase commit.

2 Two phase commit; multiple databases can be
updated within the unit of work.

Values for y, the automatic disconnect option, are:

E Disconnect must be explicitly requested. The
connection remains active following a commit or
rollback. A program must explicitly issue a disconnect
request for connection resources to be released.

C Automatic disconnect is conditional. Connections that
have no open WITH HOLD cursors are disconnected
at commit or rollback.

A Disconnect is automatic. The connection is
disconnected following a commit or rollback.

Specifying RESET for the servername is equivalent to an
explicit connect to the DB2 default database named in
environment variable DB2DBDFT. If the default database is
not available, the connection state remains unchanged.

DISC Disconnect from the database identified in servername.

DCURRENT
Disconnect from the currently connected database.

DALL Disconnect from all currently connected databases.

SET Set connection to dormant database connection.

Guidelines for using EZECONCT
Follow these coding guidelines to avoid SQL errors when using EZECONCT:
v Ensure all open cursors have been closed prior to connecting to another

database.
v CALL EZECOMIT or EZEROLLB prior to explicitly disconnecting from a

database.
v Use SET instead of one of the type-2 connect options to reactivate a

dormant database connection.

Follow these guidelines to avoid SQL errors when running a test environment
with some SQL requests issued from the test facility and some from generated
native C++ DLLs called locally from the test facility:

Chapter 2. Developing SQL programs 61

v Issue all EZECONCT, EZEROLLB, and EZECOMIT requests from a
program running under the test facility, not from the generated C++
program.

v Set the default database name in the test facility profile or the DB2
environment variable DB2DFTDB. Do not set the VisualAge Generator
environment variables EZERSQLDB or FCWDBNAME_<applname>.

Default database connections
If EZECONCT is not used, the default database connection is a Type 1
(remote unit of work) connection, except in the C++ runtime environments,
where the default is a Type 2 (distributed unit of work) connection. The
specification of the default server name varies with the environment.

Test facility uses the server name specified in the SQL options/preferences.

On CICS OS/2 the server name is checked for in this order:
v ELARTRDB_tttt where tttt is the CICS transaction identifier.
v EZERSQLDB environment variable
v DB2DFTDB

In other workstation environments the server name is checked for in this
order:
v FCWDBNAME_applname where applname is the name of the program

issuing the first SQL request
v EZERSQLDB environment variable
v DB2DFTDB (native C++ programs) or default database defined to the CICS

region (recommended for best performance for CICS programs).

In MVS CICS, VSE CICS, and IMS environments, the default database is
specified when setting up the environment.

For TSO, MVS batch, VSE batch, and VM programs, the default database is
specified in the JCL or EXEC used to start the job. Refer to the appropriate
Running manual for details.

For OS/400, the default database is the DB2/400 database on that OS/400
system.

Preparing SQL statements for the runtime environment

The SQL statements in a program must be analyzed and prepared by the
database manager before they can be run. SQL statements in VisualAge
Generator programs are processed in either dynamic or static mode,
depending on the type of function being performed and whether the program
is running under the test facility or as a COBOL or C++ program.

62 VisualAge Generator: Design Guide

Dynamic Mode
Dynamic SQL statements are prepared each time the program runs. Dynamic
mode is always used in the following situations:
v For all statements, when programs are running under the test facility
v When the Execution Time Statement Build option is specified for SQL

statements in a generated program
v When the table name of an SQL row record is defined as a host variable
v For all statements in a generated ODBC program

In dynamic mode, the end-user or tester running the program must be
authorized to use the tables referenced by the SQL statements.

Static Mode
Static SQL statements are embedded in EXEC SQL statements in the generated
COBOL or C++ source and are prepared using the database precompiler (DB2,
DataJoiner, or Oracle) before or during COBOL and C++ compilation. When
using DB2 or DataJoiner, the output of the precompiler must be bound into a
plan or a package in the SQL database. The developer performing the bind or
SQL preprocessing must be authorized to use the tables referenced by the
static SQL statements. The user must be authorized to use the plan or package
associated with the program.

Compiling and binding the program
Programs containing SQL statements must first be precompiled. An additional
step is required on some systems to bind the relational database to the
program. Precompiling translates the SQL statements into COBOL or C++
statements that call the relational database manager. Binding involves putting
information about the program and the SQL statements in the program into
the database.

The process (and the terminology for the process) for precompiling and
binding varies from environment to environment. In some environments
precompiling and binding take place within a single step; in other
environments precompiling and binding are two separate steps with the
precompiler producing an intermediate file that is input to the bind process.

In all environments, if you move a DB2 program runtime module to another
system, you must also move the program object in the database to the other
system. This can be done using database manager utilities to export and
import the program information; or it can be done by rerunning the bind
process on the new system.

A short description of the DB2 precompile/bind process for each environment
follows; however, for more detailed information on how to perform the

Chapter 2. Developing SQL programs 63

precompile and bind for the environment you are using, refer to the running
manual for the environment you are using.

On MVS systems, precompiling and binding are separate steps. The
intermediate file is called a Database Request Module (DBRM) that must be
bound into an object called a plan in the DB2 database. On MVS, DBRMS
from all the programs that run together as a single CICS or IMS transaction or
batch job step, or that are invoked under a single DSN RUN command in
MVS/TSO, must be bound into a single plan. Refer to VisualAge Generator
Generation Guide document for information on how to set up bind commands
for program preparation. See “Accessing multiple DB2 plans in CICS for
MVS/ESA” on page 133 and “Accessing multiple DB2 plans in IMS” on
page 135 for strategies on minimizing plan sizes for transactions.

On VSE systems, DB2/VSE preprocessing that combines precompiling and
binding into one step is performed as part of preparation. The DB2/VSE
preprocessor converts SQL statements in the program into an SQL package
that is stored in the DB2/VSE database. The program and its associated SQL
package must have consistency tokens that match. You must ensure that your
program and its SQL package are created in the same preparation job stream.

On VM systems, SQL/DS preprocessing that combines precompiling and
binding into one step is performed as part of preparation. The SQL/DS
preprocessor converts SQL statements in the program into an SQL package
that is stored in the SQL/DS database. The program and its associated SQL
package must have consistency tokens that match. At run time, consistency
tokens in the program and the SQL package must match before the database
allows the SQL package to be executed.

On AS/400 systems, the DB2/400 processing that combines the SQL
precompiling, and the ILE COBOL/400 compiling and binding into one step
is performed as part of the preparation. On the AS/400, when the
CRTSQLCBLI command is issued, the SQL precompiler produces a temporary
source member containing information about each precompiled SQL
statement. The *GEN OPTION is used on the CRTSQLCBLI command to
ensure that the SQL precompiler calls the ILE COBOL/400 compiler.

If the program is a distributed program, and the relational database parameter
(RDB) is specified, the CRTSQLCBLI command also creates a package. If the
ILE COBOL/400 compile is successful, the SQL precompiler automatically
binds the SQL program and produces an access plan. The access plan for
non-distributed SQL programs is stored in the program. The access plan for
distributed SQL programs is stored with the package.

On CICS for OS/2 the precompile is performed with the DB2 PREP
command. The precompile produces a .BND file for the program, which is

64 VisualAge Generator: Design Guide

input to the bind process. You can use the DB2 BIND command to perform
the bind, or you can set up VisualAge Generator Server environment variables
to indicate that programs are to be bound the first time the program is run
with the database. Refer to the VisualAge Generator Server Guide for Workstation
Platforms documentation for a description of the environment variables
associated with binding on OS/2.

On OS/2, AIX, Windows NT, HP-UX, and Solaris systems, the DB2 PREP
command performs the precompile and bind. A .BND file is also produced,
which can be used to bind the program to other databases.

ANSI standard static mode
If you specify the /ANSISQL COBOL generation option when generating a
program to run in the MVS, OS/400, VSE, or VM environment, VisualAge
Generator puts ANSI standard SQL statements in the generated COBOL
program. Use ANSI standard SQL if you have a non-IBM ANSI database
manager. Follow the preparation instructions for the database manager to
prepare the generated program for the runtime environment.

Authorization considerations

An authorization identifier is required by SQL and the database manager to
ensure that you have the authorization to perform operations on the database.
Your authorization identifier is used for database authorization checking for
all SQL functions in VisualAge Generator Developer. For run time, the
authorization identifier used depends on whether a static or dynamic SQL
statement is being run.

For all DB2 database managers other than DB2/400, the authorization
identifier of the program developer performing the binding, DB2/VSE, or
SQL/DS preprocessing is used for static SQL statements. The authorization
identifier of the program user is used for dynamic SQL statements.

The preparation command file built by the generator from default command
templates specifies that authorization checking should occur as described
above (static SQL authorization checking is done using the ID of the owner or
preparer of the program; dynamic checking is done using the ID of the user
running the program).

By modifying the preparation templates you can specify that static SQL
authorization be done with the ID the user running the program or dynamic
SQL authorization be done with the ID of the person who prepared the
program. Refer to the DB2/400 preparation command documentation for
information on how to do this.

Chapter 2. Developing SQL programs 65

DB2 considerations
You can change the user ID used by DB2 for the authorization identifier using
the security extensions in DB2. For more information, refer to a DB2 systems
and database administration manual.

DB2/2 considerations
On OS/2 systems, you use the DB2/2 LOGON /L command to identify
yourself to the database manager. If you have not logged on prior to running
a DB2 program, the database manager prompts you for logon ID and
password.

For server programs, the logon command must be issued on the server. All
users run under the same authorization ID.

Additional DB2 considerations for VisualAge Generator Server
On OS/2, AIX, Windows NT, HP-UX, and Solaris systems, use the
EZECONCT command in server and stand-alone programs to connect to DB2.
The user ID and password parameters are honored. If no EZECONCT is
issued at the time of the first SQL request, the program will connect using the
user ID and password from the FCWDBUSER and FCWDBPASSWORD
environment variables.

Using unqualified table names or synonyms
A table creator name is the authorization identifier of the person who created
the table. If you do not fully qualify a table name in an SQL row record with
the table creator name, the database manager supplies a default name.

If you are running a static SQL statement in a DB2 program, the default
identifier is the value specified in the DB2 OWNER keyword during the bind
or the value specified in the DB2/VSE or SQL/DS USERID option during
DB2/VSE or SQL/DS preprocessing. Refer to the appropriate DB2, DB2/VSE,
or SQL/DS manual for more information. If you are using dynamic SQL
statements or any SQL functions in VisualAge Generator Developer, the
default identifier is the user identifier of the user running the program or
using VisualAge Generator Developer.

If DB2 or SQL/DS synonyms are used for table names, each developer that
uses the SQL row record must create a synonym for each table name. If the
SQL row record is used with dynamic SQL statements in a generated
program, each user must create a synonym for each table. If the SQL row
record is used only in static SQL statements in a generated program, only the
plan owner as identified on the bind operation needs to create a synonym for
the table name.

If you are running a static SQL statement in a workstation program, the
default identifier is the authorization identifier of the user that bound the DB2

66 VisualAge Generator: Design Guide

plan. Refer to the appropriate DB2 manual. If you are running a dynamic SQL
statement within the program, the default identifier is the authorization
identifier of the person running the program.

On DB2/400 systems, programs are always prepared with the *SQL naming
convention. For static SQL statements, the default qualifier for table names is
the collection name specified on the DFTRDBCOL parameter of the
CRTSQLCBLI command used to prepare the program. If the parameter was
not specified the default qualifier is the authorization ID of the user who
owns (or prepared) the program. For dynamic SQL statements, the default
qualifier is the authorization ID of the user running the program.

Database Considerations when using GUIs

Possible methods of database access when designing a GUI system include
Smalltalk database parts, Java Data Access Beans, and VisualAge Generator
programs. Results are unpredictable when you use more than one method in
the same execution unit.

Accessing databases using DataJoiner

VisualAge Generator programs can access a variety of relational databases
using IBM DataJoiner, such as the following:
v IBM DB2 on any platform
v Oracle Version 7 or later
v Sybase System10 or later

DataJoiner runs on AIX and Windows NT. VisualAge Generator workstation
client programs can access DataJoiner using a client enabler product such as
one of the following in place of a local DB2 database:
v IBM DataJoiner Client Support for AIX
v DataJoiner Client Application Enabler for UNIX systems
v DB2 Client Application Enabler for AIX
v DB2 Client Application Enabler for OS/2
v DB2 Client Application Enabler for DOS

You can access non-IBM database tables using the default SQL statements
generated for VisualAge Generator SQL I/O options. User modified SQL
statements are also likely to work correctly, but must be individually verified
by the customer.

In addition, DataJoiner supports other functions that are likely to work with
VisualAge Generator programs:
v Indirect access to a variety of other data sources accessed through:

Chapter 2. Developing SQL programs 67

– ODBC, X/Open CLI compliant interfaces
– IBI EDA/SQL
– CrossAccess

v Read-only access to a collection of heterogeneous data sources as if it were
one database.

You must verify the use of these functions in specific instances.

The information in the following sections describes DataJoiner unique
considerations. See the earlier sections of the chapter for general SQL usage
considerations. Refer to the DataJoiner documentation for more information
on DataJoiner.

Getting Started

Experimenting with SQL using DataJoiner
If you are using relational databases for the first time, it is a good idea to
completely understand what you can do with SQL by experimenting with the
interactive facility provided with the DBMS. To experiment with SQL using
DataJoiner, you can use the same tools as you would for DB2/6000 or DB2 for
Windows NT.

Configuring remote data sources
Configuring a DataJoiner system requires the establishment of connections
from clients to DataJoiner and from DataJoiner to the remote data sources.
Client-to-DataJoiner connections are configured like client-to-DB2/6000 or
client-to-DB2 for Windows NT connections. For specific details on configuring
the DataJoiner-to-data source (DB2, Oracle, Sybase, and others) connections,
refer to DataJoiner Planning, Installation, and Configuration

Your administrator must provide information about the remote data source
and must associate the data source with a server name, as well as provide
user ID and password information for remote users of the data source.

Using nicknames for table names
When running with DataJoiner, the SQL table name specified in a VisualAge
Generator SQL row record can be either a three-part remote table name
(server-name.remote-authorization-ID.table-name) or a DataJoiner nickname
for the table name. Your administrator can use the DataJoiner CREATE
NICKNAME statement to define nicknames to DataJoiner.

Using the PASSTHRU extension
You must use dynamic SQL to take advantage of the DataJoiner PASSTHRU
extension. Use an SQLEXEC function with Execution Time Statement Build to
issue SET PASSTHRU and SET PASSTHRU RESET statements plus any of the

68 VisualAge Generator: Design Guide

SQL statements that a program issues while in PASSTHRU mode (any
statements issued following a SET PASSTHRU and before a SET PASSTHRU
RESET).

Accessing databases using ODBC

VisualAge Generator ODBC support provides access to relational and flat file
systems on OS/2, Windows NT, HP-UX, AIX and Solaris. With ODBC, a
VisualAge Generator program connects to a data source instead of directly to
a database. A data source represents a connection between an ODBC driver
and the DBMS. The mapping between a data source and an ODBC driver is
managed by an ODBC driver manager.

Note: An ODBC driver manager and any necessary ODBC drivers must be
available on the target or test platform. VisualAge Generator does not
ship an ODBC driver manager or any ODBC drivers.

Within the same execution unit, do not mix VisualAge Generator programs
generated with DBMS=ODBC, programs generated with DBMS=DB2,
programs generated with DBMS=ORACLE, and/or VisualAge Smalltalk or
VisualAge for Java database parts. The results in this case are unpredictable.
DataJoiner is recommended for SQL programs which need to access a
combination of database managers.

ODBC database drivers, including the ODBC driver manager, used with the
VisualAge Generator ODBC support must be ODBC Version-2 compliant and
at least level-1 conforming.

For authorization considerations, information on using unqualified table
names or synonyms, or to experiment with SQL using ODBC, see the
documentation provided with the ODBC software you are using or the
database software you are accessing.

The information in the following sections describes ODBC unique
considerations. See the earlier sections of the chapter for general SQL usage
considerations.

Getting Started

Defining a data source
Before running a VisualAge Generator ODBC enabled program, the user
needs to define to ODBC the data sources the program will access. When
defining a data source, be aware that VisualAge Generator only supports a
1-18 character case-sensitive data source name.

Chapter 2. Developing SQL programs 69

Database setup
For certain database managers, there are administrative setup functions that
need to be performed before using the VisualAge Generator ODBC support.
Refer to the documentation provided for the database driver that you are
using for more specific information about setup that is required for that
database driver.

VisualAge Generator Server setup
In order to run generated C++ ODBC programs using VisualAge Generator,
some setup of the VisualAge Generator Server ODBC modules may be
required. Refer to the VisualAge Generator Server Guide for Workstation Platforms
documentation for setup information.

Using ODBC in VisualAge Generator
When using ODBC, the database manager must be started manually before
the first connection is made to a data source.

The Cursor WITH HOLD option is not supported under the current
VisualAge Generator ODBC support.

Defining and testing ODBC programs
To use the ODBC interface from VisualAge Generator Developer, go to the
VisualAge Generator Options/Preferences and select SQL. Then specify the
ODBC data source name in the Database name field and select ODBC for the
Database management system. The default database management system is
DB2.

Validating and generating ODBC programs
To validate or generate an SQL program for ODBC, use the /DBMS=ODBC
generation option. The /DBMS=DB2 option generates native DB2 embedded
SQL programs. The /DBMS=ORACLE option generates native Oracle
embedded SQL programs. If the /DBMS option is not specified, the Database
management system value specified in the VisualAge Generator SQL
Options/Preferences is used. You may also select Database management
system on the Validation page of the Generation Options notebook.

For ODBC enabled programs, there is no DB2 or Oracle precompilation phase
during the preparation process, and no bind files are created with the
program module.

The results of validation of SQL statements via ODBC is dependent on the
ODBC driver implementation of the SQLPrepare ODBC API. This API is used
by VisualAge Generator to validate SQL statements when using ODBC.
However, according to the ODBC 2.0 standard (which VisualAge
Generatorconforms to), syntax checking of the SQL statement does not have to
be done by the ODBC driver during a call to this API function. Some drivers

70 VisualAge Generator: Design Guide

do syntax checking and return errors on a call to this API while some defer it
until a corresponding SQLExecute API call is made.

When using the DB2 ODBC driver, syntax checking can be turned on by
setting the DEFERREDPREPARE environment variable to 0. The Oracle ODBC
driver defers all syntax checking until the SQLExecute API. There is no way
to alter this behavior.

Check with your ODBC vendor to determine the behavior of the SQLPrepare
ODBC API in regards to syntax checking for your ODBC driver.

Running ODBC programs
To run ODBC enabled C++ programs, specify the ODBC Data Source Name,
in place of the actual database name, using either the
FCWDBNAME_<applname> or EZERSQLDB environment variables.
FCWDBNAME_<applname> specifies the name of the data source name to be
used for running a specific program. This environment variable allows the
data source name to be specified on a program-by-program basis. If
FCWDBNAME_<applname> is not specified, EZERSQLDB is used.

SQL syntax
You can use any of the default SQL statements generated for VisualAge
Generator SQL I/O options to access databases through the ODBC interface.
For maximum portability, user modified SQL statements should use the
standard syntax for SQL statements as defined in the Microsoft ODBC
Programmer’s Reference and SDK Guide.

Data type considerations
It is strongly recommended that you first define the SQL table using the
appropriate DBMS before you define the VisualAge Generator SQL row
records. Then use the record editor’s Retrieve SQL function to define the
corresponding VisualAge Generator SQL row record data items. Alternately,
you may define the SQL row record manually and specify the SQL column
data types using the DB2 native SQL data codes. For information on how
VisualAge Generator converts Oracle data types to VisualAge Generator data
types, see Table 15 on page 76.

VisualAge Generator ODBC support uses a character data area to set and
retrieve SQL date/time/timestamp columns defined in the ODBC data source.

When retrieving a date column from the data source, the date SQL data is
converted to character data. The resulting string is in ″yyyy-mm-dd″ format.
When retrieving a time column from the data source, the time SQL data is
converted to character data. The resulting string is in ″hh:mm:ss″ format.

When setting a date column in the data source, the character data area should
contain date data in the format defined in the data source. When setting a

Chapter 2. Developing SQL programs 71

time column in the data source, the character data area should contain time
data in the format defined in the data source.

It should be noted that Oracle Date data type columns contain both date and
time information and the corresponding VisualAge Generator character data
item must be at least 19 bytes to accommodate the data returned. Otherwise,
the program will terminate on retrieval of the column with a numeric
overflow error.

DB2 SQL data types graphic, vargraphic, and long vargraphic are not
supported by the ODBC drivers. VisualAge Generator programs that access a
DBCS data item which maps to one of these data types will cause run time
errors when running under ODBC.

Testing results of an SQL I/O option for ODBC
It is strongly recommended that VisualAge Generator programs test the SQL
row record for the VisualAge Generator record I/O error values to determine
if an I/O operation completed successfully. When the record state indicates an
error condition was encountered, additional information sometimes may be
obtained by examining the SQLSTATE in the EZESQLCA structure.

For more information, see “Testing the results of an SQL I/O option” on
page 54.

The values returned in EZESQCOD and SQLSTATE vary between different
database managers. After accessing a data source using ODBC, EZESQCOD
usually contains the native database manager return code. The result of
comparing EZESQCOD for a specific database manager with other database
managers is unpredictable.

I/O error values
ODBC drivers return diagnostic error information using the SQLSTATE
variable. The ODBC driver manager may also return error information via
return codes. The HRD status is set when the value of SQLSTATE is ″40001″,
″23505″, or ″23000″ or whenever the driver manager returns a return code of
-1 (SQL_ERROR), -2 (SQL_INVALID_HANDLE), or 2
(SQL_STILL_EXECUTING). Additionally, UNQ status is set when the value of
SQLSTATE is ″23505″ or ″23000″. DED status is set when the value of
SQLSTATE is ″40001″. ERR status is set when the driver manager returns any
positive return code except 100 (SQL_NO_DATA_FOUND).

Special function words
The following considerations apply to the VisualAge Generator special
function words when using ODBC.

72 VisualAge Generator: Design Guide

EZESQISL
The isolation level value should be set prior to a data source
connection. Each connection can assume one of the following values:

0 The isolation level is set to repeatable read.

1 The isolation level is set to cursor stability.

This special function word is not currently supported by the
VisualAge Generator Test Facility.

EZESQLCA
The length of the communication area remains 136 bytes long. The
last 5 bytes of the area contains the SQLSTATE associated with an
ODBC I/O error.

SQLSTATE contains a 5-character warning or error code value that is
defined in the SQL92 standard, unlike SQLCODE (EZESQCOD)
values which are not consistent from product to product. The ODBC
SQLSTATE error code is more general than the SQLSTATE returned
by a specific database manager.

Only the SQLCODE, SQLWARN1 and SQLSTATE fields are set in the
EZESQLCA. All other fields contain the initial value and are not set
by any ODBC I/O operation.

A VisualAge Generator sample working storage record named
HptSQLCA, which maps to the DB2 version of SQLCA, is shipped
with the VisualAge Generator Developer product, in the
HptSampleEzerempParts package/application in the ezeremp.dat file.

EZESQRD3
Contains initial value and is not set by any ODBC I/O operation.

EZESQRRM
Contains initial value and is not set by any ODBC I/O operation.

EZESQWN1
Contains a ’W’ if the last ODBC I/O operation causes the DBM to
truncate character data because of insufficient space in a program host
variable.

EZESQWN6
Contains initial value and is not set by any ODBC I/O operation.

EZECOMIT/EZEROLLB
On COMMIT or ROLLBACK operations, all open cursors are closed.

Cursor WITH HOLD option is not supported under the current
VisualAge Generator ODBC support.

Chapter 2. Developing SQL programs 73

Accessing distributed databases using EZECONCT
Using the call EZECONCT statement a VisualAge Generator program can
connect to one or more data sources, depending on the DBMS. For example,
Oracle supports multiple connections per process while DB2 supports only
one connection.

Each ODBC connection establishes a separate logical unit of work and unlike
the distributed unit of work, there is no coordination between the SQL I/O
statements that are executed on different connections. When a commit or
rollback is triggered, VisualAge Generator attempts to perform
commit/rollback on all connected data sources. If an error occurs, the data
sources might be left in an inconsistent state. DataJoiner is recommended for
programs that need to update more than one database.

Accessing databases using Oracle

VisualAge Generator Oracle support provides access to Oracle databases on
OS/2, AIX, CICS for AIX, Windows NT, CICS for Windows NT, HP-UX,
Solaris, and CICS for Solaris.

Note: Oracle7 is not supported on Solaris and Oracle8 is not supported on
OS/2.

Within the same execution unit, do not mix VisualAge Generator programs
generated with DBMS=ODBC, programs generated with DBMS=DB2,
programs generated with DBMS=ORACLE, and/or VisualAge Smalltalk or
VisualAge for Java database parts. The results in this case are unpredictable.
DataJoiner is recommended for SQL programs which need to access a
combination of database managers.

The information in the following sections describes Oracle unique
considerations. See the earlier sections of the chapter for general SQL usage
considerations.

Getting started

Experimenting with SQL using Oracle
If you are using relational databases for the first time, it is a good idea to
completely understand what you can do with SQL by experimenting with the
interactive facility provided with the DBMS. For Oracle, you can use the SQL*
Plus utility shipped with the Oracle software. See the documentation provided
with the Oracle software for more information.

74 VisualAge Generator: Design Guide

VisualAge Generator Setup
Before generating SQL programs for Oracle, make sure that the environment
variables specified in the VisualAge Generator Server Guide have been set for
the appropriate environment.

Database setup
Refer to the appropriate Oracle documentation for information on creating or
configuring databases.

VisualAge Generator Server setup
In order to run generated C++ Oracle programs using VisualAge Generator
Oracle7 modules, some setup of the VisualAge Generator Server Oracle
modules may be required. Refer to the VisualAge Generator Server Guide for
Workstation Platforms documentation for setup information.

Using Oracle in VisualAge Generator

Defining and testing Oracle programs
Oracle databases are not directly accessible via the embedded SQL interface
from the VisualAge Generator Definition Facility or the Test Facility. The
ODBC interface must be used for defining and testing programs accessing
Oracle databases. Once these programs have been thoroughly tested, they can
be generated to use the Oracle embedded SQL interface for Oracle on the
supported execution platforms. For information on the supported
environments, see “Accessing databases using Oracle” on page 74.

For information on ODBC support, see “Using ODBC in VisualAge
Generator” on page 70.

Validating and generating Oracle programs
To validate or generate an SQL program that accesses Oracle, use the
/DBMS=ORACLE generation option. If the /DBMS option is not specified,
the Database management system value specified in the VisualAge Generator
SQL Options/Preferences is used.

Running Oracle programs
To run VisualAge Generator programs generated to access Oracle databases,
specify the Oracle database name using either the
FCWDBNAME_<progname> or EZERSQLDB environment variables.
FCWDBNAME_<progname> specifies the name of the Oracle database to be
used for running a specific VisualAge Generator program. This environment
variable allows the database name to be specified on a program-by-program
basis. If FCWDBNAME_ <progname> is not specified, EZERSQLDB is used.

Data Type Considerations
It is strongly recommended that you use the VisualAge Generator’s Retrieve
SQL function for dynamically creating the SQL row record. Using the Retrieve
SQL function insures that your SQL row record data item definitions match

Chapter 2. Developing SQL programs 75

the columns in the SQL table object. First, define the SQL table objects using
the appropriate tool for your Database Management System. Then use the
record editor’s Retrieve SQL function to define the corresponding VisualAge
Generator SQL row record data items. Alternatively, you can define the SQL
row record manually and specify the SQL column data types using the DB2
native SQL data codes. For more information on supported ANSI data types,
refer to the Oracle Server SQL Reference Guide.

Using the Retrieve SQL function, VisualAge Generator converts the Oracle
data types to the VisualAge Generator data types as shown in Table 15.

Table 15. Oracle to VisualAge Generator Data Type Conversion

Oracle Data
Type

VisualAge Generator Data Type VisualAge Generator SQL Code

CHAR Char 453

DATE Char 453

LONG Char 457

LONG RAW Hex 481

NUMBER Hex 481

NUMBER(p,s) Pack 485

RAW Hex 481

VARCHAR2 Char 449

Note: Oracle data types that are not listed are converted to the VisualAge
Generator Hex data type with an SQL code of 481.

Date Data Type
The DATE data type in Oracle contains both the date and time information.
The corresponding VisualAge Generator character data item must be at least
19 bytes to accommodate the data returned. Oracle does not provide direct
support for the TIME or TIMESTAMP date type. You can use the VisualAge
Generator string functions to substring for the time data.

The default date format is specified by the Oracle server initialization
parameter NLS_DATE_FORMAT and is usually a string such as
’DD-MON-YY’. This default can be changed on the server by specifying
another format for this initialization parameter or overridden on the client
machine by specifying the desired format with the following environment
variables:

NLS_LANG
NLS_DATE_FORMAT

76 VisualAge Generator: Design Guide

For example, to tell Oracle to return the date in the format of
’YYYY/MM/DD’ the following system environment variables must be set for
Windows NT:

NLS_LANG=american_america
NLS_DATE_FORMAT=YYYY/MM/DD

Testing results of an SQL I/O option for Oracle
The values returned in EZESQCOD and SQLSTATE vary between different
database managers. It is strongly recommended that VisualAge Generator
programs test the SQL row record for the VisualAge Generator record I/O
error values to determine if an I/O operation completed successfully.

For more information, see “Testing the results of an SQL I/O option” on
page 54.

I/O error values
Oracle returns diagnostic error information much like DB2 does in the
SQLCODE variable of the SQLCA. The HRD status is set for all negative SQL
codes. Additionally, UNQ status is set for SQL return code -1 (insert or update
was not successful because of a duplicate index column value). DED status is
set for SQL code of -60. ERR status is set for any positive return code except
100 (NRF).

Special function words
The following considerations apply to the VisualAge Generator special
function words when using Oracle.

EZESQCOD
The values contained in EZESQCOD are documented in the Oracle
Server Messages and Codes Manual.

EZESQISL
This special function word is not used by Oracle.

EZESQLCA
The length of the communications area is 136 bytes. The format differs
slightly from the DB2 SQLCA. Refer to the Oracle SQL publications
for more information on the format of the SQLCA.

EZESQRD3
Contains the actual number of rows affected after an INSERT,
UPDATE, or DELETE operation.

EZESQRRM
Contains the message text corresponding to the error code stored in
EZESQCOD.

EZESQWN1
Contains a ’W’ if the last Oracle I/O operation caused a character
data item to be truncated.

Chapter 2. Developing SQL programs 77

EZESQWN6
This special function word is not set by Oracle.

EZECOMIT/EZEROLLB

EZECONCT
When specifying the UOW parameter, the following considerations
apply:

Only Type 1 Connects (R) are supported. Only one database can be
connected at a time. EZECOMIT or EZEROLLB must be issued prior
to connection to another database. Connection to another database
ends an existing connection. All cursors are closed when the new
connection occurs.

A value of DISC or SET is ignored.

If DCURRENT or DALL is specified, an EXEC SQL ROLLBACK
WORK RELEASE is issued.

Authorization considerations
An authorization (userid and password) is required for precompilation on
Windows NT and OS/2. It is optional on all other systems.

Using unqualified table names or synonyms
Each user in an Oracle database has an associated schema name of the same
name as the user. If a table name, view name, snapshot name or synonym is
not fully qualified in an SQL row record or SQL statement, the default value
for the schema name is the name of the user currently connected to the
database.

Accessing DB2/MVS stored procedures

Transforming new or existing VisualAge Generator client/server programs
into DB2 stored procedures for DB2/MVS can be done with little effort. The
following sample programs and related files were created to guide you
through this process. The source code for the sample files are included in the
SAMPLES sub-directory where the VisualAge Generator Developer product is
installed. The files and what is included in each file are:

STAFFJ.DAT and STAFFS.DAT
STFPROC, the stored procedure which runs on DB2/MVS and,
ACALLSP, the calling program that invokes the stored procedure.
STAFFJ.DAT is for VisualAge Generator for Java and STAFFS.DAT is
for VisualAge Generator Smalltalk. For information on how to import
the parts from these files into your Repository/ENVY library, see the
VisualAge Generator Getting Started documentation.

78 VisualAge Generator: Design Guide

STAFF.QMF
STAFF table in QMF format. To upload the file to the host using
IBM’s eNetwork Personal Communications, issue the following
command:
send staff.qmf b:qmf.staff [crlf recfm(f) lrecl(44)

STFPROC.SQL
SQL statements used to catalog the stored procedure in the DB2
system catalogs.

Defining stored procedures
A stored procedure is defined as a called batch program that accesses only
relational or DL/I databases, not files. The stored procedure cannot XFER to
another program. The only other special considerations for defining stored
procedures are in defining the parameter list. The following is a list of the
special considerations for defining the parameter list for a stored procedure:
v Parameters can be individual data items up to 254 bytes long or records up

to 32K bytes long.
v Individual data item types are restricted to the types supported by SQL row

records: Char, DBCS, Bin, Pack and Hex.
v Record definitions must be defined with a top-level character item that

includes all of the other items in the record. The top-level item is specified
as the parameter in the SQL CALL coded in the calling program.

v Records up to 254 bytes long can be passed as fixed-length SQL CHAR
parameters.

v Records greater than 254 bytes in length must be passed as SQL VARCHAR
parameters, and a second record part definition must be defined for use in
the called parameter list with a 2-byte Bin data item added to the front of
the record structure.

Defining the stored procedure call
To define the stored procedure call, do the following:
1. Use an SQLEXEC process to define the SQL CALL statement to call the

stored procedure, specifying the individual data item or top-level record
item for each parameter as a host variable on the SQL CALL.

2. Since DB2 does not know about the structure of record parameters, call
EZECONV for each record parameter before the call to convert the
parameter to host data format on the way to the stored procedure, and
after the call to convert the parameter back to client format.

3. Specify individual items or top-level record items of up to 254 bytes long
as host variables on the SQL CALL statement.

4. For records greater than 254 bytes, define an SQL record item with the
same length as the record and with SQL data code = 457 (VARCHAR).
Specify the SQL item as the host variable and move the record contents

Chapter 2. Developing SQL programs 79

from the record to the host variable prior to the call, and back from the
host variable to the record after the call.

Preparing a VisualAge Generator stored procedure
You prepare a VisualAge Generator stored procedure as you would prepare
any other MVS BATCH called program. The program should be link-edited
with the Call Attachment Facility language interface module, DSNALI. The
following template, EFK2MPBC.TPL, was permanently changed to use the
CAF interface module.

//***
//** EFK2MPBC - PREPARE MVSBATCH APPLICATION WITH DB2 ACCESS
//** AND NO DLI ACCESS
//** DB2 PRECOMPILE, COMPILE, LINK AND BIND
//***
//PCLB EXEC ELAPCLB,MBR=%EZEMBR%,ENV=%EZEENV%,DATA=%EZEDATA%,
//CGHLQ='%EZEPID%'
//L.SYSIN DD *
CHANGE ELAAPPL(%EZEMBR%)
INCLUDE SELALMD(ELARMAIN)
INCLUDE SELALMD(ELARSINT)
INCLUDE SELALMD(ELASTB07)
INCLUDE SYSLIB(DSNALI)
ENTRY %EZEENTRY%
NAME %EZEMBR%(R)
/*
//B.SYSTSIN DD DISP=SHR DSN=%EZEPID%.%EZEENV%.EZEBIND(%EZEMBR%)

Declaring stored procedures
All stored procedures must be defined in the DB2 system table
SYSIBM.SYSPROCEDURES. The following information was cataloged for this
example of a VisualAge Generator stored procedure.

INSERT INTO SYSIBM.SYSPROCEDURES
(PROCEDURE, AUTHID, LUNAME, LOADMOD, COLLID, LINKAGE,
LANGUAGE, RUNOPTS, STAYRESIDENT, IBMREQD,
PARMLIST)
VALUES('STFPROC', ' ', ' ', 'STFPROC', 'STFPROC', ' ',
'COBOL', ' ', 'Y', 'N',
'STFPARM SMALLINT INOUT,
VARCHAR(1660) FOR BIT DATA INOUT')

Parameter list data types
The parameters passed by DB2 to the stored procedures can be in several
forms (using SQLDA, host variables, constants, and NULL). Currently,
VisualAge Generator stored procedures support passing parameters only as
host variables. The host variables for records and hex data items should be
defined as binary data (FOR BIT DATA) when defining the parameters in the
DB2 system catalog. This prevents DB2 from performing conversion on the
data being passed.

80 VisualAge Generator: Design Guide

Parameter size
When calculating the size of a VARCHAR parameter, do not include the
length of the additional 2-byte field in the size. You will notice that the
parameter STFPROC_REQ_MSG was defined with a length of 1660 to DB2.
The extra 2 bytes are inserted by DB2 when the parameter is passed up.

Defining DB2 linkage conventions
Parameters for VisualAge Generator stored procedures should be defined as
INOUT (input/output) parameters. INOUT means that data will be flowing to
and from the stored procedure. The sample called program was tested with
both SIMPLE and SIMPLE WITH NULLS. The SIMPLE linkage convention
was the only parameter list convention that worked successfully for
VisualAge Generator. To specify the SIMPLE linkage convention, enter a blank
value for the LINKAGE column when the stored procedure is defined to DB2.

Binding the stored procedure package
The following bind command was used to create the package for the sample
VisualAge Generator stored procedure, STFPROC. If your program calls other
generated programs using the VisualAge Generator CALL or DXFR statement,
include the DBRMs for these programs in the stored procedure package.

DSN SYSTEM(DSNE)
* EFK2MBDD
* BIND TSO APPLICATION WITH DB2 ACCESS AND NO DLI ACCESS
* BIND MVSBATCH APPLICATION WITH DB2 ACCESS AND NO DLI ACCESS
BIND PACKAGE(STFPROC) -
MEMBER(STFPROC) -
ACT(REP) -
VALIDATE(BIND) -
ISOLATION(CS)
* OWNER(OWNERGRP)
BIND PACKAGE(STFPROC) -
MEMBER(ELADBRM4) -
ACT(REP) -
VALIDATE(BIND) -
ISOLATION(CS)
* OWNER(OWNERGRP)

Calling a VisualAge Generator stored procedure
Stored procedures are invoked using the SQL statement CALL. The program,
ACALLSP, contains an example of how to call a stored procedure. The
program was generated to run as a C++ program in the Windows NT
environment. The steps to prepare ACALLSP to call stored procedures,
STFPROC, are discussed later in more detail.

Defining host variables
1. Create host variables for each parameter passed to the stored procedure.
2. Define host variables corresponding to working storage records greater

than 254 bytes long as VARCHAR, data code 457.

Chapter 2. Developing SQL programs 81

3. Specify individual items or top-level record items of up to 254 bytes long
as host variables on the SQL CALL statement.

4. Use the default SQL data code for the item type for host variables that are
less than or equal to 254 bytes long.

For our sample, two host variables that correspond to the two parameters
were created, TEST_REC.STARTING_ID and TEST_REC.STFLIST_DATA. Both
variables were defined in the same SQL row record. We could have defined
an SQL row record for each parameter.

Invoking the stored procedure
Invoke the stored procedure (as shown below) from an SQLEXEC process,
using the SQL CALL statement, passing the host variables in the order
expected by the called program.

CALL STFPROC
(:TEST_REC.STARTING_ID,
:TEST_REC.STFLIST_DATA)

Converting data
Because DB2 does not understand how to work with VisualAge Generator
data structures, the record parameter is defined as bit data to DB2. As a result,
the calling program is responsible for converting the data before and after
calling the stored procedure. The following is an example of how this was
coded in the main process, PCALLSP_MAIN.
EZEFEC = 1;
PSHOW_MSTFMN();

WHILE EZEAID NOT PF3;
STFLIST_SEARCH_ROW.STARTING_ID = MSTFMN.STARTING_ID;
TEST_REC.STARTING_ID = STFLIST_SEARCH_ROW.STARTING_ID;
EZECONV(STFLIST_REQ_MSG2,'L','ELACNENU');
PCALL_STORED_PROC();

; /* CALL STFLIST STFLIST_SEARCH_ROW, STFLIST_REQ_MSG2;
IF EZESQCOD NE 0;

MOVE EZESQCOD TO MSTFMN.STAFFIDX_WS[1];
EZEREPLY = 0;
EZEROLLB();

END;
STFLIST_REQ_MSG2.STFLIST_DATA = TEST_REC.STFLIST_DATA;
EZECONV(STFLIST_REQ_MSG2,'R','ELACNENU');
MOVEA STFLIST_REQ_MSG2.STAFFIDX_WS TO MSTFMN.STAFFIDX_WS FOR 10;
MOVEA STFLIST_REQ_MSG2.NAME_WS TO MSTFMN.NAME_WS FOR 10;
MOVEA STFLIST_REQ_MSG2.SALARY_WS TO MSTFMN.SALARY_WS FOR 10;
MOVEA STFLIST_REQ_MSG2.COMM_WS TO MSTFMN.COMM_WS FOR 10;
PSHOW_MSTFMN();

END;

Testing stored procedures
The dynamic SQL interface used by the Test Facility does not support calling
a stored procedure. SQL error -104 is returned if a call is made to a stored
procedure from the Test Facility. The best way to test a stored procedure is to

82 VisualAge Generator: Design Guide

test it as a normal client/server program using the CALL statement. The
following list describes what we did to test our stored procedure:
v Commented out the SQLEXEC process containing the DB2 SQL statement

CALL and replaced it with a VisualAge Generator CALL
v Commented out the calls to the conversion routines
v Commented out the statements that moved the data back and forth

between the working storage records and the host variables
v Removed the VARCHAR length variable from the parameters on the called

parameter list.

When you are ready to generate the called program for MVS BATCH, reverse
the steps above. Be sure to insert the VARCHAR length variable back into the
appropriate working storage record. For this example, record
STFPROC_REQ_MSG was the only record that required the VARCHAR length
variable.

After the stored procedure is prepared and ready to start, generate and test
the calling program.

Tracing and debugging
To debug your VisualAge Generator client/server program, set the
environment variable CSO_DUMP_CONV=YES to show the conversion of
data before and after the call to the stored procedure as follows:

SET CSO_DUMP_CONV=YES

Chapter 2. Developing SQL programs 83

84 VisualAge Generator: Design Guide

Chapter 3. Developing DL/I programs

You can use VisualAge Generator Developer to define Data Language I (DL/I)
programs. A generated DL/I program can be run on one of the following
systems: CICS for MVS/ESA, CICS for VSE/ESA, IMS/VS, IMS BMP,
MVS/TSO, MVS batch, and VSE batch. The differences between these systems
are noted throughout this chapter.

In a DL/I program environment, there are two primary responsibilities:
v Defining the databases
v Developing the programs that access the databases

The database definition function is usually assigned to a database
administrator. The database administrator does the following tasks for
VisualAge Generator DL/I programs. These tasks are the same for programs
written in other programming languages:
v Definition of databases
v Definition of Program Specification Blocks (PSBs)
v Definition of databases in the CICS for MVS/ESA or CICS for VSE/ESA file

control table
v Definition of the database and PSB directory (CICS for MVS/ESA only)
v Definition of the valid PSBs, among other specifications, in the Application

Control table (CICS for VSE/ESA only)
v Definition of the databases and valid PSBs in the IMS system definition

(IMS only)

Most installations choose to have the database administrator control and
maintain a single common definition for all database segments in the
Repository/ENVY library. When a new program is designed, the database
administrator defines each PSB and each segment in the PSB for that program
in the Repository/ENVY library. Using the Repository/ENVY library
definitions, VisualAge Generator creates the DL/I parameter lists that enable
the program to access the databases defined in the PSB

Definition of DL/I programs is similar to the definition of other VisualAge
Generator programs. You can use many of the same VisualAge Generator I/O
options you use for a file-based program and specify DL/I segments as I/O
objects. VisualAge Generator creates the DL/I call needed to run the I/O
option.

© Copyright IBM Corp. 1980, 2001 85

Introduction to DL/I

DL/I is a data management control system that enables you to create, access,
and maintain large, shared databases. VisualAge Generator helps you quickly
develop programs that access DL/I databases.

Note: DL/I calls are also used in IMS to handle terminal and
program-to-program communications. This chapter describes only
database calls. For more information about calls used in the IMS
environment, refer to “Chapter 5. Developing IMS programs” on
page 137.

You need to understand the following basic DL/I concepts before you begin
developing a DL/I program:

Segments
The primary unit of data in a DL/I database is the segment. A
segment is similar to a record. It is a single block of data divided into
data fields that are similar to the data items in a record.

Database Hierarchy
A single database can contain many types of segments. These
segments are arranged in a hierarchical (top down) relationship. The
segment at the top of the hierarchy is called a root segment. Each
segment can have one or more dependent segments related to it at a
lower level in the hierarchy. A segment with a dependent segment is
called the parent of the dependent segment. The dependent segment
is called a child segment. Each segment in the database, except for a
root segment, has one and only one parent. The root segment has no
parent.

Sequence Field
Each segment type in a database can have one of its fields designated
as a sequence field. The value of the sequence field determines the
order that the segments are stored and retrieved from the database.
When a parent segment has multiple occurrences of the same child
segment, those child segments are stored in sequence field order
under that parent, if a sequence field is defined for the child segment.

Program Specification Block (PSB)
A PSB is a formal DL/I description of the hierarchical database
structures that a program can access. VisualAge Generator supports
the definition of a Repository/ENVY library part that contains a
subset of the information in the DL/I PSB. The PSB shows the
hierarchical relationships that exist between types of segments.

Program Communication Block (PCB)
A PCB is an entry in a PSB. Each database PCB describes one
hierarchical data structure that a program can use. The data structure

86 VisualAge Generator: Design Guide

might correspond directly to the structure of a physical or logical
DL/I database or might invert the database structure through access
by a secondary index.

DL/I Call
A DL/I call is an invocation of DL/I by a program. The parameter list
passed for a database call provides DL/I with the following
information:

Function Code
Indicates if DL/I is to get, insert, replace, or delete segments
from the database.

Database identifier
Points to the Program Communication Block (PCB) that
identifies the database that DL/I is to access on the call.

I/O Area Address
Identifies the address of the buffer that contains the segment
after it is read from the database or before it is written to the
database.

Segment Search Argument (SSA) List
Lists a set of search criteria that enables DL/I to select the
segments that it retrieves from the database or specify the
position of segments it inserts into the database.

When you code a DL/I program in a language like COBOL or PL/I,
you either code the DL/I parameter list directly or use the command
level interface of CICS for MVS/ESA or CICS for VSE/ESA to create
the DL/I parameter list.

VisualAge Generator creates DL/I parameter lists for you based on
the I/O option and the position of the I/O object in the PSB. You can
view the DL/I call created for the function. You can also modify the
DL/I call to use additional DL/I functions.

Database Position
When a program is running, DL/I maintains a position pointer for
each PCB in the program PSB. The pointer indicates the place in the
database where a SCAN function (DL/I get next function) begins
searching for the segment to retrieve.

The position pointer is set on any successful DL/I call to point to the
segment following the last segment accessed on the call. If no calls are
issued, the current position indicates the start of the database. If the
end of database condition is encountered, the current position
becomes the start of the database.

Chapter 3. Developing DL/I programs 87

As DL/I continues scanning a database for a segment that satisfies the
SSA list criteria, DL/I accesses each root segment in the order it
appears in the database. When DL/I finds a root segment, it accesses
all the dependents of the root before scanning the next root. As DL/I
scans the dependent segments, it first tries to read the next segment at
the next lower level. If there is not a lower level, it reads the next
segment at the same level. If there are no more segments at the
current level, it returns to the previous level to search for the next
segment. This process is called the “top to bottom, left to right” search
order.

Example: customer database
Figure 6 shows the structure of a customer database used in the examples
throughout this chapter. The database contains information needed for
processing customer orders, such as customer name, address, current order
information, and credit status.

There are 6 types of segments in the customer database:

Customer Name and Address Segment (STSCCST)
This is the root segment in the database. There is one of these
segments for each customer. The key field is the 6-byte customer
number. The following fields are in the segment:

NAME DESCRIPTION LENGTH IN
BYTES

Figure 6. An example of a customer database

88 VisualAge Generator: Design Guide

STQCCNO Customer number 6
STUCCNM Customer name 25
STQCCA1 Customer address line 1 25
STQCCA2 Customer address line 2 25
STQCCA3 Customer address line 3 25

Customer Location Segment (STSCLOC)
Each customer can have multiple ship locations. Each location is
represented by a unique location segment chained off the single
customer segment. The location segment is a child segment of the
customer segment. The segment sequence field is a location number
that is unique for that customer. The location segment also contains a
location name and address.

NAME DESCRIPTION LENGTH IN
BYTES

STQCLNO Location number 6
STFCLNM Location name 25
STFCLA1 Location address line 1 25
STFCLA2 Location address line 2 25
STFCLA3 Location address line 3 25

Customer Order Segment (STPCORD)
Each location can have any number of active orders including 0. The
order segment is a child of the location segment. The orders are
uniquely identified by an order number and date. Each order also
contains some reference data, an item count, and a total order amount.

NAME DESCRIPTION LENGTH IN
BYTES

STQCODN Order date/number 12
STFCORF Order reference data 25
STFCOIC Order item count 6
STFCOAM Order amount 12

Order Item Segment (STLCITM)
Multiple kinds of items can be included in each order. There is one
item segment for each item in the order. Each item is identified by an
inventory item number and a line item number. For this order, the
segment also contains the quantity ordered, the quantity shipped, the
quantity back ordered, and the amount charged for the item.

The segment, as presented to the program, also contains an item
description, total quantity on hand, total quantity on order for all
customers, quantity reserved, unit price, and unit of issue. This last
set of information is physically stored only once in a separate

Chapter 3. Developing DL/I programs 89

inventory database. DL/I extracts the information from the inventory
database using the item number in the order item segment as a logical
link to the inventory database. From the program’s point of view, this
information is presented as if it was part of the order item segment.

NAME DESCRIPTION LENGTH IN
BYTES

STKCIIN Inventory item number 6
STQCILI Line item number 2
STFCIQO Quantity ordered 6
STFCIQS Quantity shipped 6
STFCIQB Quantity back ordered 6
STFCIAM Item amount 12
STQIINO Item number 6
STFIIDS Description 25
STFIIQH Quantity on hand 6
STFIIQO Quantity on order 6
STFIIQR Quantity reserved 6
STFIIPR Unit price 6
STFIIUN Unit of issue 1

Credit Status Segment (STSCSTA)
This segment contains information about the credit status of the
customer and is a child of the customer segment. There is only one
credit segment per customer, so you do not need a key field to
uniquely identify the credit segment. The information is placed in a
separate segment to permit access to only authorized users. A segment
contains 2 fields: credit limit and credit balance.

NAME DESCRIPTION LENGTH IN
BYTES

STFCSCL Credit Limit 12
STFCSBL Credit balance 12

Customer History Segment (STSCHIS)
The history segment contains summary information about closed
orders. There is 1 segment per closed order. The closed orders for a
specific customer are chained off the customer record in date and
order number sequence. This segment is defined with a variable
length to provide flexibility in storing order status information. The
first field in the segment is the halfword containing the segment
length.

NAME DESCRIPTION LENGTH IN
BYTES

STGCSL Segment length 2

90 VisualAge Generator: Design Guide

STQCHDN Order date/number 12
STFCHRF Order reference data 25
STFCHIC Order item count 2
STQCHAM Order amount 12
STQCLOS Order status 77

Defining a sample PSB
The database administrator defines the database structures that a program can
use in a DL/I program specification block. Figure 7 shows the PSB for a
sample print program. The customer database is the second PCB entry in the
PSB. Note that each segment in the database is represented by a SENSEG
statement in the PCB entry. Each SENSEG segment identifies the segment and
its parent segment by name.

Note: On MVS/TSO, MVS batch, IMS/VS, and IMS BMP systems, you must
include the parameter CMPAT=YES on the PSBGEN statement.

The customer database and the sample PSB are used in the following sections
as examples in defining databases to VisualAge Generator and in defining a
program that refers to the databases.

Defining DL/I data

Defining DL/I databases through the PSB definition facility
The PSB definition facility enables you to define a set of DL/I databases that a
program can access. VisualAge Generator uses the PSB definition to create
and validate DL/I calls. The PSB definition is stored as a separate part in the

TITLE 'DL/I SAMPLE PRINT PROGRAM - PSB'
PCB TYPE=DB,DBDNAME=STDIDBL,PROCOPT=G,KEYLEN=50,POS=S,

PROCSEQ=STXININ
SENSEG NAME=STPIITM,PARENT=0
SENSEG NAME=STLICOR,PARENT=STPIITM
SENSEG NAME=STSIVND,PARENT=STPIITM
SENSEG NAME=STLISUB,PARENT=STPIITM
SENSEG NAME=STSILOC,PARENT=STPIITM
PCB TYPE=DB,DBDNAME=STDCDBL,PROCOPT=AP,KEYLEN=50,POS=S
SENSEG NAME=STSCCST,PARENT=0
SENSEG NAME=STSCLOC,PARENT=STSCCST
SENSEG NAME=STPCORD,PARENT=STSCLOC
SENSEG NAME=STLCITM,PARENT=STPCORD
SENSEG NAME=STSCSTA,PARENT=STSCCST
SENSEG NAME=STSCHIS,PARENT=STSCCST
PSBGEN LANG=ASSEM,PSBNAME=STBICLG
END

Figure 7. Sample PSB for Customer Database Program

Chapter 3. Developing DL/I programs 91

Repository/ENVY library. The part is called a PSB definition because it
contains a subset of the information in the original DL/I PSB.

To define a PSB part, define a PCB for each PCB statement in the DL/I PSB.
For each database PCB, enter the following:
v PCB type (DB)
v Database name
v Name of index key field, if database is to be accessed by a secondary index

(PROCSEQ operand specified on the PCB statement in the DL/I PSB)

For each segment in the database (SENSEG statements in the DL/I PSB
following the PCB statement), enter the following:
v Segment name
v Parent segment name (blank for root segment)

The segment names in the PSB part must be the same as the segment names
in the DL/I PSB. The secondary index key name in the PSB part must be the
name specified on the XDFLD statement that defines the secondary index
field in the DL/I database description.

To use the PSB definition with a program, you must do the following:
1. Enter the PSB name in the program specifications.
2. Define each segment in the PSB as a record with DL/I segment

organization.
3. Define each secondary index key as a data item. The item must have the

same length as the DL/I secondary index key field.

Note: If you plan to use the PSB in an IMS program, you must also define
PCBs for issuing IMS teleprocessing DL/I calls to terminals and for
accessing serial files as GSAM files or IMS message queues. PSBs that
include the IMS PCB definitions can also be used in the other DL/I
environments. See “Sharing a function when programs use different
PSBs” on page 100 for more information about defining PSBs.

Segment record definition
You define DL/I segments using the record editor. Give the record the same
name that the segment has in the PSB definition.

During record specification you define the record organization as a DL/I
segment. If the segment is sequenced, enter the sequence field name as the
Key Item. If the segment has variable length, enter the name of the item
containing the length as the Variable Length Item.

Use Record Definition to lay out the structure of the segment. The item
structure must match the structure of the segment as DL/I presents it to the

92 VisualAge Generator: Design Guide

program. Define the Key Item and Variable Length Item, if they exist, with the
same length and position that they have in the DL/I segment.

If the segment is a logical child, the structure should include the concatenated
key of the destination parent and the intersection data. If the segment is a
concatenated segment in a logical database, the structure should include the
concatenated key, the intersection data, and the destination parent segment.
The sample database is a logical database. The order item segment is a
concatenated segment in the database.

If a segment is redefined in the DL/I PSB using the field level sensitivity
function, the structure should match the PSB view of the segment. If the
segment appears in different PSBs with different item structures, use the
record redefinition function to define an item structure that matches the
structure in each PSB.

You must be careful to define the record structure so that its length matches
or exceeds the length of the largest segment accessed. If a DL/I segment is
larger than the defined record structure, the storage following the record
buffer is overlaid when the segment is read. The bytes following the record
buffer are checked to ensure that they are not modified when reading a
database. If they are, the program ends.

Defining DL/I programs

The first step in defining a DL/I program is defining the program data
structures. Defining the structures is usually done by the database
administrator as described in the previous section.

The definition of maps and working storage is the same for a DL/I program
as for other VisualAge Generator programs.

Defining the program logic is also very similar to the definition of the logic
for a file-based program. The first step in logic definition is to define the
program specifications. During program specification, enter the PSB name of
the PSB part that describes the databases that the program can access.

The second step in logic definition is to define the set of functions that are run
for the program. Use the same I/O options you use for a file-based program,
and specify DL/I segments as I/O objects. You access segments using the
following I/O options:

INQUIRY
Get a segment from a database

UPDATE
Get a segment from a database for replacement or deletion

Chapter 3. Developing DL/I programs 93

SCAN Get the next segment of this type in a database

ADD Insert a segment in a database

REPLACE
Replace a segment in a database

DELETE
Delete a segment from a database.

You can view or change the DL/I call from the function editor. You can also
request that additional DL/I functions be performed on the call.

Processing root segments
The root segment in a DL/I database is processed just like a record in an
indexed file. To read a specific root segment, use an INQUIRY function and
specify the segment name as the I/O object. Load the segment key field with
the key of the segment you want to read before the I/O option is run.

To change a specific root segment, use an UPDATE instead of an INQUIRY
function. After the segment is read, change any fields in the segment except
the key and write the segment back to the database using a REPLACE
function with the segment as the I/O object.

To add a specific root segment to the database, move data into the segment
fields, including the key value into the key field, and use an ADD function to
insert the root segment in the database.

To read the next root segment in the database, use a SCAN function with the
segment as the object. If you want to start at a specific key, move the key
value into the segment key item and SET record SCAN before executing the
SCAN function. Note that the root segment might or might not be retrieved in
key sequence order on a SCAN depending on the DL/I access method
specified by the database administrator for the database. If the access method
is HISAM or HIDAM, the roots are retrieved in key sequence order. If the
access method is HDAM, the roots are not in key sequence order.

To delete a root segment, read the segment with an UPDATE function and
follow the UPDATE with a DELETE function, naming the segment as the I/O
object. If you delete a segment in a DL/I database, you delete all its
dependent segments at the same time. Deleting a root deletes the root and all
its dependents.

Testing the results of a DL/I call
To test the results of a DL/I call, you can use an IF, TEST, or WHILE
statement in the I/O error routine to test the record state.

94 VisualAge Generator: Design Guide

In addition to setting the record state after each DL/I call, VisualAge
Generator also saves the status of the DL/I PCB and the CICS User Interface
Block (UIB) in a set of EZE special function words. If you are experienced
with DL/I calls, you can check the results of the call by using an IF or WHILE
statement to check the contents of the DL/I special function words:

EZEDLDBD
Database name

EZEDLLEV
Level of lowest level segment

EZEDLSTC
Status code

EZEDLPRO
Processing options

EZEDLSEG
Name of lowest level segment

EZEDLKYL
Key length

EZEDLSSG
Number of sensitive segments

EZEDLKEY
Concatenated key

EZEDLCON
CICS condition code

EZEDLCER
CICS error code

The following is an example of how to check for a GE status code using an IF
statement:

IF EZEDLSTC EQ 'GE';

VisualAge Generator distinguishes between two classes of DL/I errors. The
following DL/I status codes indicate the soft errors that could be expected in
a normal situation:
GA Crossed hierarchical boundary into higher level
GB End of data set, last segment reached
GD Call did not have SSAs for all levels above insert (IMS only)
GE Segment or parent segment not found
GK Different segment type at same level returned
II Segment to insert already exists in database or is non-unique

Chapter 3. Developing DL/I programs 95

All other status codes or calls where the CICS condition code is nonzero are
considered hard errors. If DL/I or CICS returns an error other than normal
completion or one of the status codes listed above, program processing ends
with a message describing the error. If you do not want the program to end,
set either of the special function words EZEFEC or EZEDLERR to 1 in the
program and include an error routine for the function. In this situation,
VisualAge Generator does not issue an error message and returns to your
program when hard errors are found. Your program is responsible for error
handling. The program can check for errors by checking the PCB and, on a
CICS system, the UIB special function words in the I/O error routine.

DL/I status codes and CICS codes are documented in the following
publications:
v CICS application programmer’s reference manual
v IMS or DL/I application programming manual for your system

Processing dependent segments
Processing dependent segments is similar to processing a root segment with
one exception: a dependent segment is accessed through its parent chain in
the database. To read a specific segment, you must set the key item of the root
segment plus the key item of each segment in the dependent segment chain
from the root to the I/O object segment.

For example, to read customer order 543 for customer 23 at location 12 in the
customer database, you use an INQUIRY function and specify the order
segment as the I/O object. Before the INQUIRY function, you move 23 into
the key item for the customer segment, 12 into the key item for the location
segment, and 543 into the key item for the order segment. The INQUIRY
function searches for customer order 543 for customer 23 at location 12 and
reads the order if it was in the database.

You can change or delete a specific order by using an UPDATE function to
read the segment. Initialize the keys for an UPDATE I/O option the same as
you initialize the keys for an INQUIRY I/O option. Once you have read the
order segment, a REPLACE or DELETE I/O option that specifies the segment
as the I/O object replaces or deletes the segment in the database.

To add a new order for customer 23 at location 12, use an ADD function.
Before the ADD function, set the items in the order segment including the
order number. Also, set the customer number (the root segment key) to 23 and
the location number (the location segment key) to 12. This gives DL/I the
information required to correctly position the new order in the database.

To read the next order segment in the database, use a SCAN option specifying
the order segment as the I/O object.

96 VisualAge Generator: Design Guide

SCAN function variations
Once you view the DL/I call that is generated for an I/O option you can do
any of the following:
v Replace or delete segments
v Scan within a parent
v Set a SCAN position
v Search on partial keys
v Determine the parents of a segment retrieved on a SCAN

Replacing or deleting segments
If you want to replace or delete segments that are retrieved with a SCAN I/O
option, edit the SCAN function and edit the DL/I call. Specify Scan for
Update. You can then follow the SCAN function with a REPLACE or DELETE
function for the same segment.

Scanning within a parent
The default SCAN function starts at the current position in the database and
searches through the entire database for the next occurrence of the object
segment under any parent. To limit the scope of the SCAN to the currently
established dependent chain, edit the DL/I call for the SCAN function and
select the SCAN in parent option. An NRF condition is returned on the SCAN
following the reading of the last segment under the current parent. NRF is
also returned if there are no segments of the requested type in the current
parent chain.

To process all the segments of the same type under a specific parent, use an
INQUIRY function to read the parent segment and to set the database position
pointer. To read the dependents in one at a time, repeat a SCAN function with
SCAN in parent specified. End the loop on the NRF condition.

In the sample customer database, if you want to process all the orders for one
specific customer location, use an INQUIRY function to read in the required
location segment. Then use a SCAN function to read in the order segments
one at a time. If you specify SCAN in parent, the NRF condition is returned
when there are no more orders for the location.

Setting SCAN position
Before beginning a SCAN loop, your program must establish position in the
database. You do this in one of the following ways:
v Use an INQUIRY or UPDATE I/O option to establish position. The example

in the previous section used INQUIRY to set the position pointer to a
specific location segment so that the SCAN in parent specification can be
used to read each order for that location.

v Set the key fields of the object segment and all segments of the dependent
chain from the root to the object segment the same as you set the key fields
for the object segment and all the segments in the dependent chain from

Chapter 3. Developing DL/I programs 97

the root to the object for an INQUIRY I/O option. Define the SET record
SCAN statement instruction before the SCAN function. VisualAge
Generator creates a DL/I call that acts as if the position pointer were set to
point just before the position indicated by the key fields.
The set scan indicator can be used only if you have not modified the SSA
list for the SCAN and have not specified SCAN in parent. The running
program is ended if the set scan indicator is on for a SCAN function for a
modified SSA list. The indicator is reset on the first I/O function for that
segment that follows the setting of the indicator.

Searching on partial keys
If you know only the first part of a segment key, you can retrieve the first
segment with a key that begins with that partial key. Move the partial key
into the key item; set the keys of the other segments in the path from the root
to the object segment, and use the SET record SCAN function as described
under “Setting SCAN position” on page 97

Determining the parents of a segment retrieved on a SCAN
The EZEDLKEY special function word contains the concatenated segment key
of the lowest level segment retrieved on any DL/I call after the call completes
successfully. The concatenated key consists of the contents of the sequence
fields of all the segments in the path from the root to the object segment
concatenated in a single string.

In the sample database, if you retrieved an order segment using SCAN,
EZEDLKEY contains a 24-byte string consisting of the customer number
followed by the location number, followed by the order date and number. To
access the individual parts of the key, you define a 24-character item in
working storage and subdivide it into the 6-byte customer number, the 6-byte
location number, and the 12-byte order date/number. In the statements
following the SCAN, you could move EZEDLKEY to the working storage item
and reference the individual segment keys in working storage.

Additional function through SSA list modification
You can use additional DL/I functions by modifying the SSA list that is built
by VisualAge Generator for the I/O option. Refer to the VisualAge Generator
Developer online help system for more information.

Using path calls to access multiple segments at the same time
If your I/O object is a dependent segment, you can read in any of the
segments on the path from the root to the object with the same call that you
retrieve the object. To do this, edit the DL/I call for the function and enter a
D command code for each segment you want to retrieve on the call. You can
modify the call by using D command codes to read in the customer segment,

98 VisualAge Generator: Design Guide

the customer location segment and the order segment on the same call. To
determine if the call completed successfully, use the I/O error routine to test
the state of the object segment.

If you use the D command code on an UPDATE or SCAN for UPDATE
function, the subsequent REPLACE function replaces each segment retrieved.
You can selectively prevent replacement of one or more segments by naming
the selected segments and specifying an N command code in the SSAs for the
REPLACE function.

The default DL/I call built for a DELETE function that follows an UPDATE or
Scan for Update with D command codes does not delete each segment
retrieved. It deletes only the I/O object segment.

Using non-key fields as search arguments
You can use any field in a segment as a search argument on a DL/I call by
modifying the SSA list for the call.

For example, if you wanted to scan through the customer database and
retrieve the customer segment and status segment for each customer with a
credit balance greater than a specified amount, you define the DL/I call
search arguments as follows:
1. You want to search on the credit balance field (STFCSBL) in the status

segment. To do this, define an item in working storage (CHECKBAL) that
contains the specified amount that you want to search for. Make
CHECKBAL a 12-byte numeric field just like STFCSBL.

2. Use a SCAN option with the status segment (STSCSTA) as the I/O object.
3. Edit the DL/I Call for the function and add a qualification statement to

the SSA that retrieves the next segment found that the contents of the
credit balance field (STFCSBL) are greater than the amount in
CHECKBAL.

4. Add another SSA in the list with a D command code that retrieves the
customer record with the status segment.

Scanning through all database segments with a single function
You can use a single function to scan all segments in a database. If a DL/I get
next (SCAN) call is issued with no SSAs, DL/I returns the next segment in the
database regardless of its type. You can use this type of call with any of the
following techniques:
1. Define a SCAN function for the largest segment in the database.
2. Edit the default DL/I call for the function and delete the single SSA in the

default call.
3. Define a set of records with structures matching the other segments in the

database. Define them as redefined records for the I/O object record.

Chapter 3. Developing DL/I programs 99

4. Test the EZEDLSEG special function word after the SCAN to determine
which segment was retrieved on the SCAN.

5. Access the segment that is retrieved from the redefined record structure or
move the data from the redefined record to the actual segment of the
record that was retrieved. VisualAge Generator Server for MVS, VSE, and
VM does not automatically recognize that an alternate segment has been
read and move the segment data for you.

6. If the largest segment in the database is a variable-length segment, define
the segment to VisualAge Generator as fixed length (the length should be
equal to the length of the largest possible returned segment). The 2-byte
length code should still be defined at the beginning, so you can check the
actual length returned by DL/I.

Accessing the same segment in two data structures
Sometimes the same segment appears in two or more PCB entries in the same
PSB. This can happen when a structure is accessed by a secondary index as
well as the primary path or when the same structure is repeated in more than
one PCB in order to maintain multiple positions in the database.

VisualAge Generator Developer creates default DL/I calls based on the first
PCB that the object segment appears in. If you want to access the object
segment by using a later PCB in the PSB, edit the DL/I call and select the
number of the other PCB you want using the database identifier field on the
DL/I Call Definition window.

Sharing a function when programs use different PSBs
You can use the same DL/I function in programs that use different PSBs as
long as the PCB associated with the function is included in both PSBs. The
PCB does not have to be at the same offset in each PSB, but does have to have
the same database name and segment structure.

Use a technique explained in this section when you want to reuse a function
with a database that is used in more than one PCB in each PSB. Consider two
IMS PSBs that have the structure shown in Figure 8 on page 101:

100 VisualAge Generator: Design Guide

APPL1 has the same physical database (DB01) used for two different PCBs.
This represents the need to have two views of this database, both having
similar segments (SEG01, SEG02, and SEG04). APPL2 has a similar PCBs, but
they are at different offsets because database DB00 is not included in the
APPL2 PSB.

The database name in the VisualAge Generator PSB is never used to
determine the physical database. It is only used in determining which PCB to
use in the DL/I call. Therefore, to be able to easily refer to the different PCBs
for DB01, the VisualAge Generator PSBs can use a “dummy” database name
for the second occurrence. Note that the only change between Figure 8 and
Figure 9 on page 102 is that the second occurrence of DB01 in both PCBs has
been renamed DB01X.

Figure 8. Sample structure for an IMS PSB

Chapter 3. Developing DL/I programs 101

Two functions can be defined:
v PROC-INQUIRY-A to do an INQUIRY on SEG04 using DB01
v PROC-INQUIRY-B to do an INQUIRY on SEG04 using DB01X

These two functions can then be used in programs APPL1 (using PSB APPL1P
and IMS PSB APPL1) and APPL2 (using PSB APPL2P and IMS PSB APPL2)
without requiring further modifications and without requiring the database
identifier to be reset when switching between the two programs.

Using a secondary index
Sometimes the DL/I PSB indicates that a database structure is to be accessed
with a secondary index. When this situation occurs, your database
administrator had entered an index key name next to the root segment in the
PSB definition. VisualAge Generator uses the index key instead of the
segment key item as the search field in creating DL/I calls that reference that
segment. If the field is not defined in the segment itself, you must define the
field as an item in working storage with the correct type and length. When
you set up an INQUIRY function that references the segment, set the index
key instead of the segment key item before running the I/O option.

In CICS for MVS/ESA, your program ends abnormally with an ADLA CICS
ABEND if you have defined the secondary index with duplicate key values not
allowed and your program attempts to insert a duplicate key in the secondary
index. (On CICS for VSE/ESA systems, a NI status code is returned).
Therefore, on CICS for MVS/ESA systems, test for a duplicate key already in
the database before doing the insert.

Figure 9. Example where DB01 in both PCBs has been renamed DB01X.

102 VisualAge Generator: Design Guide

Using CSPTDLI service routine for database calls
Some DL/I functions cannot be implemented using the DL/I Call Definition
function of function definition. The CSPTDLI service routine can be used to
implement these DL/I calls. For example, there is not an I/O option to
generate a FLD (field) call for a main storage database (MSDB). However, you
can use the FLD call by defining a CALL CSPTDLI statement with the same
parameters you use if you were coding in COBOL. The POS (position) call for
data entry databases (DEDBs) can also be defined with the CSPTDLI service
routine.

In CICS, CSPTDLI should not be used for PSB scheduling. The program
automatically schedules the PSB as required.

In IMS, CSPTDLI should not be used for get unique, insert, rollback, or
checkpoint calls to the I/O PCB in a main transaction program or in a batch
program that is called by a transaction program.

The EZEDL status words are not set on a CSPTDLI call. If you must check the
DL/I status code after using CSPTDLI, you must move the EZEDLPCB(n)
special function word (where n is the PCB number that you used in the
CSPTDLI call) to a working storage record and then examine the status area
of the working storage record. Refer to your system’s IMS or DL/I program
programming manual for more information about the syntax and for
examples of these calls.

Sharing a PSB with a called program

Called and calling programs cannot both be DL/I programs unless they share
the same program PSB or unless a commit is done to end the PSB before each
call or return to a program that uses a different PSB.

If the called program uses DL/I, it can do any of the following:
v Specify a PSB and choose not to include EZEDLPSB or EZEDLPCB in its

parameter list (CICS only).
v Include EZEDLPSB in the program’s parameter list to receive a complete

PSB from the calling program.
v Include one or more EZEDLPCB(n) in the program’s parameter list to

receive specific PCBs from the calling program.

Each VisualAge Generator program maintains its own copy of a record. You
cannot read a segment from a database in one program and reference the
items in that segment in another program unless the record was explicitly
passed as a parameter from one program to the other.

Chapter 3. Developing DL/I programs 103

REPLACE and DELETE functions must be included in the same program that
read the segment for update in the first place. If a program is invoked
through a non-VisualAge Generator program, an UPDATE or Scan for Update
and a subsequent REPLACE or DELETE must be done within the same call to
the VisualAge Generator program.

Passing EZEDLPSB
The EZEDLPSB special function word is a structure containing a PSB name
and a pointer to the CICS User Interface Block (UIB). The UIB is the standard
way of getting addressability to database program control blocks (PCBs) in the
CICS for MVS/ESA or CICS for VSE/ESA environment. The UIB is simulated
in the non-CICS environments for portability and must point to the PCB
address list passed to the initial program when the IMS transaction,
MVS/TSO program, or batch job step was started.

As shown in Figure 10, the 12-byte area passed by the VisualAge Generator
program contains the PSB name and a 4-byte address (simulated UIB) that
addresses a pointer to the PCB list to be used by the called program. This
pointer to the PCB list is saved by programs started by the IMS control
program.

Figure 10. Structure of EZEDLPSB

104 VisualAge Generator: Design Guide

Note: If you are using the COMMDATA parameter format for CICS, refer to
the VisualAge Generator User’s Guide for information on how EZEDLPSB
is passed.

If a non-VisualAge Generator program is passing control to a VisualAge
Generator program, the program must pass the 12-byte area described above,
with a pointer to a pointer that addresses the PCB list in bytes 9–12
(simulated UIB). This pointer must address an assembler format PCB list (that
is, it must point to an area containing the PCB pointers in contiguous storage).

For special considerations in testing DL/I programs, see the DL/I testing
considerations section.

Passing EZEDLPCB
Individual PCBs can be passed on a CALL statement by subscripting
EZEDLPCB with the PCB number to be passed. The passed PCBs are
associated to the PCBs defined by EZEDLPCB in the parameter list of the
called program. Passing PCBs as parameters is the standard method of getting
addressability to PCBs in non-CICS environments and is useful in CICS
environments for calling programs that access a database shared by multiple
transactions. Each transaction can have a different PSB, that contains the PCB
for the shared database at a different offset in the PSB.

The subscript for the EZEDLPCB special function word must be a numeric
literal. If the EZEDLPCB special function word is not subscripted on the
CALL statement or in the parameter list, it defaults to the first PCB.

Only PCBs passed on the call can be used by the called program. If the PSB
was not scheduled prior to the CALL statement, the PSB is scheduled
automatically before the CALL is performed.

A non-VisualAge Generator program calling a generated program can pass a
PCB to the generated program as follows: If a high-level language call is used,
specify the PCB as a standard argument on the call passing the argument by
reference. If a CICS LINK is used, pass the PCB pointer in the COMMAREA.
The PSB must be scheduled prior to calling or linking to the generated
program. Refer to the VisualAge Generator User’s Guide for more information
on how parameters are passed in CICS environments.

You cannot specify EZEDLPSB and EZEDLPCB on the same CALL statement.

For special considerations in testing DL/I programs, see the DL/I testing
considerations section.

Chapter 3. Developing DL/I programs 105

Sharing a PSB with a transferred-to program using XCTL

Transfers from a program to a main transaction or main batch program (or
from a program to a program) in the MVS/TSO, MVS batch, and IMS BMP
environments can be implemented using an OS XCTL to the generated
program. You can pass the special function word EZEDLPSB or a list of PCBs
as parameters on the OS XCTL macro.

Passing the EZEDLPSB special function word
One or two parameters are passed to the receiving program on the OS XCTL
macro. The first parameter is the working storage buffer consisting of a 2-byte
length field, an 8-byte filler field, and the working storage data. The second
parameter, used only if the generated program is a DL/I program, is the
EZEDLPSB special function word. Figure 11 shows the format of the
parameter list that the transferring program should pass. See “Sharing a PSB
with a called program” on page 103 for the format of the EZEDLPSB special
function word.

Passing a list of PCBs
If the generated program is a DL/I program, a program can transfer to the
generated program, passing a list of PCBs as parameters on the OS XCTL
macro. The generated program receives control in this way if it is started as a
DL/I MVS batch job. The PCBs must match the PSB definition expected by
the generated program.

The working storage record is initialized to blanks if the generated program is
started with this interface.

Figure 11. The format of the parameter list that the transferring program should pass

106 VisualAge Generator: Design Guide

Sharing a PSB across environments

If you are defining a PSB for a program that you also plan to generate for
CICS for MVS/ESA, and if TP (including the I/O PCB) and GSAM PCBs are
included in the PSB definition, the same IMS PSB definition can be shared
between CICS for MVS/ESA, IMS BMP, IMS/VS, MVS/TSO, and MVS batch
environments. The PSB must be generated with CMPAT=YES on the PSBGEN
macro. The TP PCBs are ignored in CICS for MVS/ESA and cannot be
referenced using EZEDLPCB or CSPTDLI calls in the CICS environment. The
PSB must comply with the compatibility considerations for IMS/VS. For CICS
for MVS/ESA, the actual PSB name is moved into EZEDLPSB prior to the
first use of a DL/I segment.

Sharing the IMS PSB definition with CICS for MVS/ESA is not recommended
if the DL/I work database is used. The ELAWORK PCB in the PSB gets a PSB
work area of approximately 64K bytes each time the PSB is scheduled. The
work area is obtained to support a database (the DL/I work database) that is
not accessed in the CICS for MVS/ESA environment. To avoid this problem,
use an alternate PSB for the CICS for MVS/ESA environment with an
alternate PCB at the same position as ELAWORK. Associate this PCB with
only the root segment of the ELAWORK database or with any other small
database segment. The PCB is acting as a place holder and is not accessed by
the generated program in the CICS for MVS/ESA environment.

Note: DL/I PSBs for VSE environments cannot include TP PCBs nor GSAM
PCBs; therefore, you cannot share the DL/I PSB definition with the IMS
environments. The VisualAge Generator PSB definition can include the
TP and GSAM PCBs for the VSE environments. Any TP or GSAM PCBs
are ignored (eliminated) by the VisualAge Generator Developer when
generating for the VSE environments.

Assuring data integrity between CONVERSE I/O options

If your program accesses a database that is to be shared by multiple users,
you should define your program to run in segmented mode or you should
define your program to set the EZECNVCM special function word to 1. In
both cases, the program commits database changes at each CONVERSE I/O
option. This ensures that your program does not lock out any database
records for long periods of time while waiting for a response from a program
user. However, you must define programs to prevent two program users from
changing the same record at the same time, or to reestablish the position in
the database if your program is scanning the database.

Note: IMS always commits database changes at each CONVERSE function; in
CICS, the PSB also ends when updates are committed.

Chapter 3. Developing DL/I programs 107

You should use a compare and update technique to ensure that another
program has not modified the record while it was being displayed to the
program user if the following is true:
v Changes are committed at each CONVERSE, and
v Your program reads a segment, displays the segment contents on a map,

reads changes from the map, and then writes the changes back to the
database

Use the following steps to compare and update the record:
1. Read the segment.
2. Save a copy of the segment in working storage.
3. Display the segment contents to the program user.
4. Read updates from the terminal.
5. Read the segment with an update function.
6. Compare the segment just read with the saved segment.
7. If not equal, go back to step 2.
8. If equal, update the segment from the terminal input.
9. Write the segment back to the database with a replace function.

10. Display a message confirming that the segment has been updated.

An alternative to saving and comparing large segments is to store the current
date and time as part of the segment each time the segment is modified. The
program can then determine whether a record has been updated by saving
and comparing the time stamp instead of the entire segment.

DL/I considerations for the CICS environment

In the CICS environment, PSB scheduling is handled differently than in
non-CICS environments. The following sections describe PSB scheduling, how
to use an alternate PSB at run time and how to share a PSB with a called
program.

Understanding PSB scheduling
A CICS DL/I program must schedule a PSB before it can access databases
defined in that PSB. The program must end the PSB when database access is
complete. VisualAge Generator Server for MVS, VSE, and VM automatically
handles PSB scheduling for a program. However, you need to know when the
PSB is scheduled because the following functions are affected by PSB
scheduling:

Segment record locking
Segment update locks are released when the PSB is ended

Database positioning
Database position is lost when the PSB is ended

108 VisualAge Generator: Design Guide

Update commitment
Changes are committed (written to the database) when the PSB is
ended

The PSB is scheduled whenever a DL/I call is issued for the program and the
PSB is not currently scheduled. The PSB named in EZEDLPSB is the PSB
scheduled.

When using a CALL or DXFR statement to transfer program control, the
transferred-to program does not have to use the same PSB the transferring
program uses.

The PSB ends whenever a CICS SYNCPOINT or SYNCPOINT ROLLBACK is
issued. SYNCPOINTs occur when one of the following occurs:
v The top-level program in a run unit ends successfully and returns control to

CICS.
For CICS, a run unit is equivalent to a single transaction and consists of all
VisualAge Generator programs and non-VisualAge Generator programs that
transfer control among themselves using a DXFR or CALL statement. For
non-VisualAge Generator programs, this also includes any transfer that uses
a CALL statement, CICS LINK command, or CICS XCTL command.

v A program uses a CONVERSE I/O option, and any of the following is set
to 1:
– EZESEGM special function word (segmented mode)

The EZESEGM special function word defaults to 1 if the program is
defined as segmented.

– EZECNVCM special function word (CONVERSE commit)
– EZEDLTRM special function word (end the PSB at CONVERSE) if the

program uses DL/I
The best time for a commit point to occur is after terminal output and
before the next terminal input. A commit point at terminal I/O
synchronizes updates to the database and confirmation messages to the
program user.

v A transfer using an XFER statement occurs.
v A program calls either the EZECOMIT or COMMIT service.
v A transfer using a DXFR statement occurs, a PSB is scheduled, and one of

the following occurred:
– Transfer to a non-VisualAge Generator program and a PSB is scheduled.
– The /SYNCDXFR generation option was specified for the

transferred-from program

Chapter 3. Developing DL/I programs 109

– The /NOSYNCDXFR generation option was specified for the
transferred-from program and different PSB names were identified in the
program specifications for the two programs.

v A VisualAge Generator called DL/I program returns to the calling
non-VisualAge Generator program, the PSB was not passed using the
EZEDLPSB special function word, and PCBs were not passed using the
EZEDLPCB special function word.

A SYNCPOINT ROLLBACK occurs when:
v A VisualAge Generator program calls the EZEROLLB or RESET service.
v A program ends because of an error condition.

When a rollback occurs, all changes that were made to databases and
recoverable files since the start of the LUW are backed out.

Using an alternate PSB at run time
VisualAge Generator uses the PSB named in the program specification to
create DL/I calls for the segments defined in the PSB and to validate any
changes you make to the DL/I calls. In the CICS environment, VisualAge
Generator Server for MVS, VSE, and VM also uses the PSB name for PSB
scheduling at the time the program is run.

Sometimes, however, you might want to use an alternate PSB with the same
program. The alternate PSB describes databases with the exact same structure
as the program PSB, but the databases themselves might be different. For
example, you could have a set of test databases for program development and
a corresponding set of production databases that contain the real data for
production.

If you want to use an alternate PSB for any reason, your program can
dynamically change the PSB that is scheduled by moving the alternate PSB
name into the special function word EZEDLPSB before running the first DL/I
function. The alternate PSB must match the program PSB except that the
database names can be different.

Sharing a scheduled PSB with a called program
Called and calling programs cannot both be DL/I programs unless they share
the same program PSB or unless a commit is done to end the PSB prior to
each call or return to a program that uses a different PSB. The PSB is shared
by specifying the special function word EZEDLPSB or EZEDLPCB as a
parameter passed on the call for both the called and the calling program.

If the called and calling programs are both VisualAge Generator programs,
and if the PSB was scheduled before the call, VisualAge Generator does not
reschedule the PSB in the called program.

110 VisualAge Generator: Design Guide

You can share a PSB between VisualAge Generator programs and
non-VisualAge Generator programs. When EZEDLPSB is passed as a
parameter, a 12-byte area is actually passed. The first 8 bytes contain the PSB
name; the final 4 bytes contain the address of the CICS User Interface Block
(UIB). If the PSB is not scheduled, the UIB address is 0.

When sharing a PSB between VisualAge Generator programs and
non-VisualAge Generator programs, the called program should check the UIB
address before scheduling. If the UIB address is not 0, the PSB should not be
rescheduled. If the called program ends the PSB, it must set the UIB address
field to 0. If the PSB is scheduled again, the UIB address field should be set to
the UIB address returned by CICS.

If a program needs to share a scheduled PSB with a called VisualAge
Generator program, it should pass a 12-byte area to the program. Again, the
first 8 bytes should contain the PSB name and the next 4 bytes should contain
the UIB address. If the PSB is not scheduled, the UIB address should be 0. On
return, the UIB address reflects the current scheduling status of the PSB.

Recovering after a deadlock in record queuing
Updated records are not actually written to the database until the PSB is
ended. Your program obtains exclusive use of these records until PSB
termination because the UPDATE function locks out other programs from
changing the record again until it is actually written to the database. This can
result in a deadlock situation where your program has some record locked
and now wants to change records locked by another program that in turn
needs the records you have locked. When CICS detects a deadlock situation, it
abnormally ends one of the programs, backs out the changes it has made to
the database, and writes an error message to the terminal explaining why the
program ended.

If having a program abnormally end is unacceptable to the users of the
program, you can define your program as restartable in the CICS tables. See
“Restarting VisualAge Generator programs after a DL/I deadlock” on
page 112 for information on restarting programs.

If the program is restartable and CICS detects a deadlock situation, CICS
backs out the changes that the program has made since the PSB was
scheduled and restarts the program from the beginning of the transaction.

If your program is running in segmented (pseudoconversational) mode, the
most recent segment of the program is restarted, and you do not need any
special restart code in the program.

If a conversational program is restarted, the program is entered at the top of
the program. You can determine that the program was restarted by having the

Chapter 3. Developing DL/I programs 111

program test for a value of 1 in the EZEDLRST special function word. If
EZEDLRST is 1, you can write a message to the program user explaining that
the program was restarted because of a deadlock and then display the initial
program map again.

Restarting VisualAge Generator programs after a DL/I deadlock
When the DL/I program isolation facility is used, deadlocks can occur
between two transactions locking on the same record. The programs try to
update the same record at the same time. If both updates are accepted, one of
the changes is lost. If CICS for MVS/ESA or CICS for VSE/ESA detects that
data is lost, it abnormally ends the transaction with an ADLD abend code.

The VisualAge Generator Server for MVS, VSE, and VM abend handler
requests restart for programs that end with a deadlock abend. CICS for
MVS/ESA or CICS for VSE/ESA restarts the transaction from the beginning if:
v You have specified DTB=YES and RESTART=YES in the PCT for the

transaction program.
v The CICS for MVS/ESA or CICS for VSE/ESA transaction restart program

(DFHRTY) specifies to restart the transaction.
v The temporary storage queues are defined as recoverable.

Otherwise, CICS for MVS/ESA or CICS for VSE/ESA writes a message
indicating the reason for program termination.

A restarted program is a program that is started again from the beginning of
the last transaction that was running. All changes to databases that were
made since the program PSB was last scheduled are rolled back.

The distributed version of the CICS for MVS/ESA or CICS for VSE/ESA
restart program (DFHRTY) does not restart VisualAge Generator transactions.
You can add code to DFHRTY to restart VisualAge Generator transactions.
Your program should check that the following is true:
v The current abend code is ADLD.
v The transaction identifier is the identifier of the transaction you want

restarted.
v The restart count is less than the specified number. This is a restart loop

check.

If all checks are met, your program should set the restart flag on, indicating to
CICS for MVS/ESA or CICS for VSE/ESA that restart is to continue. For more
information on modifying DFHRTY, refer to the recovery, restart and
customization manuals for your CICS for MVS/ESA or CICS for VSE/ESA
system.

112 VisualAge Generator: Design Guide

Programs running in segmented mode must have all the CICS for MVS/ESA
or CICS for VSE/ESA resources (that are to be updated) defined as
recoverable if restart is requested. The names of the temporary storage queues
that are created by the segmentation function of VisualAge Generator Server
for MVS, VSE, and VM are a combination of the user’s terminal identifier
appended to a 4-character prefix. The prefixes used are in the form of X‘EE‘
followed by either WRK or MSG.

You should not request restart for conversational programs unless you have
designed the program to handle restart. A program can test the EZEDLRST
special function word to see if the current program transaction has been
restarted. One simple way of designing a program for restart is to have the
program test EZEDLRST whenever it begins. If the restart flag is on, a special
message or map should appear to user 1 explaining that the transaction was
restarted at the beginning because user 2 was changing the database at the
same time. User 1’s changes were backed out, and the program was restarted
to prevent the changes from being lost.

Accessing distributed DL/I databases
Programs running on CICS for MVS/ESA, CICS for VSE/ESA, or CICS for
OS/2 systems can access DL/I databases on remote systems by calling an
CICS for MVS/ESA or CICS for VSE/ESA called batch server program that
runs on the system where the database is located.

DL/I considerations for non-CICS environments

In non-CICS environments, PSB scheduling is handled differently than in
CICS environments. The following sections describe PSB scheduling and the
use of an alternate PSB at run time.

Understanding PSB scheduling
During program execution for MVS/TSO, IMS/VS, IMS BMP, MVS batch,
and VSE batch processing, DL/I initialization schedules a single PSB. This
PSB is the only one available for one MVS/TSO invocation, batch job step, or
IMS transaction.

All programs and non-VisualAge Generator programs in the run unit must
share the same PSB. The run unit includes all programs that are called or
transferred-to using a DXFR statement. For MVS/TSO, IMS BMP, MVS batch,
and VSE batch, the run unit also includes all programs that are transferred-to
using an XFER statement. For IMS/VS, the run unit for a program
transferred-to using an XFER statement differs from that of the transferring
program.

Chapter 3. Developing DL/I programs 113

For MVS/TSO, you specify the name of the PSB to be used in the runtime
CLIST used to run the program. The PSB is scheduled when you run the
runtime CLIST for the program.

For IMS/VS, you specify the PSB that is to be used in the IMS system
definition. The IMS PSB must have the same name as the program name. The
PSB is scheduled at the beginning of the IMS transaction.

For IMS BMP, MVS batch, and VSE batch, you specify the name of the PSB to
be used in the JCL used to run the batch job. The PSB is scheduled at the
beginning of the IMS BMP, MVS batch, or VSE batch job.

Understanding commit points and the logical unit of work
A logical unit of work (LUW) ends whenever a commit point or a rollback
occurs.

A commit point occurs when the following happens:
v The top-level program in a run unit ends successfully.

For MVS/TSO, MVS batch, VSE batch, and IMS BMP, a run unit consists of
all VisualAge Generator programs and non-VisualAge Generator programs
that transfer control among themselves using an XFER, DXFR, or CALL
statement. For non-VisualAge Generator programs, this also includes any
transfer that uses an OS XCTL macro or a CALL statement.
For IMS/VS, a run unit is equivalent to a single transaction and consists of
all VisualAge Generator programs and non-VisualAge Generator programs
that transfer control among themselves using a DXFR or CALL statement.
For non-VisualAge Generator programs, this also includes any transfer that
uses a CALL statement.

v A program uses a CONVERSE I/O option and any of the following is set to
1:
– EZESEGM special function word (segmented mode). The EZESEGM

special function word defaults to 1 if the program is defined as
segmented.

– EZECNVCM special function word (CONVERSE commit)
– EZEDLTRM special function word (end the PSB at CONVERSE) if the

program uses DL/I.

The best time for a commit point to occur is after terminal output and
before the next terminal input. A commit point at terminal I/O
synchronizes updates to the database and confirmation messages to the
program user.

v For MVS/TSO, when a transfer using an XFER statement occurs for a
segmented or single segment program.

114 VisualAge Generator: Design Guide

v For MVS/TSO, MVS batch, and batch-oriented IMS BMP programs, a
program transfers using an XFER statement and the /SYNCXFER
generation option is specified for the transferred-from program.

v A program calls the EZECOMIT or COMMIT service.
For MVS/TSO, MVS batch, or VSE batch, VisualAge Generator programs
that do not use DL/I issue a commit point only if the program has made
changes to an SQL table. A commit point does not occur for changes to an
SQL table made by a non-VisualAge Generator program.
For IMS/VS and transaction-oriented IMS BMP programs (programs that
scan a serial file associated with the I/O PCB), EZECOMIT is ignored. A
commit point occurs whenever there is a get unique to the I/O PCB.

v For IMS/VS and transaction-oriented IMS BMP programs, a program does
a successful get unique to the I/O PCB.

A rollback occurs when the following happens:
v A VisualAge Generator program calls the EZEROLLB or RESET service
v A program ends because of an error condition

When a rollback occurs, all changes that were made to databases and
recoverable files since the start of the LUW are backed out. Rollback does not
affect DL/I databases in the VSE batch environment.

Using an alternate PSB at run time
The actual DL/I PSB name you use at run time might differ from the name
you specified as the PSB name during program specification. However, for
IMS/VS, IMS BMP, MVS batch, and MVS/TSO, the PCB number, type, and
order must match in the IMS PSB and the VisualAge Generator PSB. Although
the database structures must match, the database names do not have to match
the name specified in VisualAge Generator PSB definition.

Using symbolic checkpoint and restart functions (MVS Batch and
IMS BMP Only)

When you run a batch program, you can use EZECOMIT to periodically
commit database updates. Alternatively, you can use CSPTDLI to implement
symbolic checkpoint and restart functions.

Both EZECOMIT and the symbolic checkpoint function commit database
updates. However, the symbolic checkpoint function also enables you to save
information, such as control totals or the key of the last database record that
was processed when a commit point occurred. If the program does not
complete successfully, it is backed out to the last commit point. If you have
saved information using symbolic checkpoint, when you restart the program,
you can restore the saved data using the restart (XRST) call. You can use this
information to resume processing at the point in the database where

Chapter 3. Developing DL/I programs 115

processing stopped. Refer to the IMS application programmer’s manual for
more information about the symbolic checkpoint and restart functions.

DL/I Considerations for the Test Facility

This section gives information on using DL/I in the Test Facility. Topics are as
follows:
v “Setting up the Test Facility for DL/I”
v “Understanding how the test facility handles commits and rollbacks” on

page 119
v “Sharing PSB parts across target environments” on page 119
v “Understanding data conversion in the test facility” on page 120
v “Passing DL/I data in the test facility” on page 120

Note: You cannot test these functions in the test facility:
v Calls to the I/O or TP PCBs using CSPTDLI.
v I/O or TP PCB references using EZEDLPCB.
v CICS deadlock restart using EZEDLRST.

Also, if your program accesses message queues as serial files, you need
to test with serial files instead of using I/O or TP PCB DL/I calls.

Setting up the Test Facility for DL/I
To provide access to DL/I databases at test time, do the following:
1. In the case of VisualAge for Java, go to the VAGen Parts Browser menu

bar and click Windows→Options. The VisualAge Generator Options screen
appears.
In the case of VisualAge Smalltalk, go to the VisualAge Organizer window
menu bar and click Options→VAGen Preferences. The VisualAge
Generator Preferences screen appears.

2. In the left pane, click DL/I.

You select options in each of the following categories:
v Default DL/I PSB name
v Target environment
v DL/I Database Access Middleware
v Options

Default DL/I PSB name
In relation to Default DL/I PSB name, you specify how the test
facility identifies which IMS PSB to schedule. Three options are
available:
v If you select Main program name, the PSB scheduled has the same

name as the program, as is necessary for IMS/VS transactions.

116 VisualAge Generator: Design Guide

v If you select EZEDLPSB, the PSB scheduled has the name equal to
the setting of that EZE word; for details, see the EZEDLPSB entry
in the Programmer’s Reference.

v If you select Prompt for PSB name, the test facility asks you to
specify a PSB name during each test.

Selecting a different way to specify the PSB name affects the next use
of that information; you do not need to wait for a new invocation of
the test facility.

Target environment
In relation to Target environment, you specify the environment that
the test facility is to simulate when performing commits and rollbacks
and when scheduling, sharing, and terminating PSBs. The options are
as follows:
v IMS BMP
v IMS VS
v MVS Batch
v MVS CICS
v MVS TSO
v VSE Batch
v VSE CICS

For details on how the target environment affects your program’s
interaction with DL/I databases, see “DL/I considerations for the
CICS environment” on page 108, “DL/I considerations for non-CICS
environments” on page 113, and “Understanding how the test facility
handles commits and rollbacks” on page 119.

Note: At test time, if the target environment is MVS CICS or VSE
CICS and if the program is handling hard errors (EZEFEC = 1)
and PSB scheduling fails, the test facility emulates the target
environment by setting EZEDLCON and EZEDLCER return
fields with the appropriate CICS return codes.

Selecting a different target environment has an effect only when you
next invoke the test facility.

Although you specify an environment that is simulated, the program
at test time executes in one of a smaller set of environments, as
described in relation to Database Access Middleware.

DL/I Database Access Middleware
In relation to DL/I Database Access Middleware, you specify the

Chapter 3. Developing DL/I programs 117

product used by the test facility to access DL/I. The available options
depend on the type of workstation you use.

The options on workstations that use Windows 2000 or Windows NT:
v Micro Focus Mainframe Express
v VisualAge Remote MVS
v VisualAge Remote VSE

The options on workstations that use OS/2:
v Micro Focus
v VisualAge Remote MVS

If you select Micro Focus or Micro Focus Mainframe Express, your
purchase and configuration of products sold by MERANT determines
whether the test facility accesses DL/I remotely on MVS or in a
workstation-based simulation. If you select one of the
VisualAge-related options instead, a built-in facility (if installed)
provides remote DL/I access:
v In the case of VisualAge Remote MVS, VisualAge brings up an

IMS batch environment on MVS, and you are able to access DL/I in
the test facility even if your organization lacks an IMS Transaction
Manager on MVS.

v In the case of VisualAge Remote VSE, the DL/I requests are
executed on VSE under the control of CICS for VSE/ESA; and
when you specify the target environment to be simulated in test
facility, you must select either VSE Batch or VSE CICS.

Neither of the two VisualAge options supports a local DL/I
simulation or provides access to IMS Fast Path databases.

The Micro Focus support of DL/I on MVS gives access to IMS Fast
Path databases, but requires that the IMS Transaction Manager be
present for any DL/I access on MVS. In relation to Windows 2000 or
Windows NT, the MERANT products support both remote DL/I
access and a local simulation. In relation to OS/2, however, the
newest versions of the MERANT products support neither remote
DL/I access nor a local simulation, although those capabilities are
available if you use older versions of those products.

For details on the prerequisites for each middleware option, access the
appropriate web page from the list displayed under Additional Links at
the following web site:
http://www.ibm.com/software/ad/visgen/library/v45docs.html

118 VisualAge Generator: Design Guide

After you have gone to the Hardware and Software Prerequisites web
page, review the section on Hierarchical database access.

Selecting a different middleware option has an effect only when you
next invoke the test facility.

Options
Selecting the SYNCXFER or SYNCDXFR option causes the test
facility to fulfill the behavior provided by a generation option of the
same name. For details, see the VisualAge Generator Generation Guide.

During a test, selecting or clearing the SYNCXFER or SYNCDXFR
option affects the next use of that information; you do not need to
wait for a new invocation of the test facility.

Understanding how the test facility handles commits and rollbacks
In relation to commits and rollbacks, the test facility does the following in
most cases:
v Performs a commit or rollback in response to an EZECOMIT or EZEROLLB

in your code, if the behavior would occur at runtime.
v Performs a commit when a test ends normally.
v Performs a rollback when a test ends abnormally either because a hard

error occurs and your code does not handle the error (EZEFEC=0) or
because you end a test before the last statement is executed.

Exceptions are as follows:
v If you are simulating DL/I access by using the MERANT products that

provide local simulation, calls to EZEROLLB cause a loss of database
positioning in DL/I, but have no effect on DL/I data.

v If you are accessing DL/I remotely on MVS by using the MERANT
products or the VisualAge remote DL/I option, calls to EZEROLLB cause a
rollback of changes to DL/I data even when the target environment is VSE
Batch, which does not support rollback of DL/I data. The DL/I rollback
eliminates the need for manual cleanup of the data.

The DL/I commits and rollbacks are independent of those for SQL databases,
and all commits are single-phase commits.

Sharing PSB parts across target environments
A VisualAge Generator PSB part can be shared across multiple target
environments, and VisualAge Generator takes the target environment into
account when determining the PCB number that a DL/I call references.

VisualAge Generator adjusts for I/O or TP PCBs defined in the VisualAge
Generator PSB part if the target environment does not support those PCBs.

Chapter 3. Developing DL/I programs 119

If you are going to use the same VisualAge Generator PSB part to test with
different target environments, you may need two different IMS PSBs. Define
the PSB in the target environment as you normally would. Include no I/O or
TP PCB for a PSB in MVS CICS, VSE Batch, or VSE CICS. Include the I/O
and TP PCBs in the PSB used for other environments.

Understanding data conversion in the test facility
The test facility assumes that character data is stored in EBCDIC format in
DL/I databases. The test facility converts the data to ASCII for use within the
test facility, and data defined in the test facility is converted to EBCDIC before
being stored.

Whether you access DL/I by way of VisualAge or Micro Focus, and whether
you access DL/I remotely or by a local simulation, segments are retrieved
from the database in EBCDIC collating sequence. Information retrieved in the
EZE word EZEDLPCB is also converted to ASCII.

A data-conversion table guides ASCII/EBCDIC conversion and binary-data
conversion. On workstations, the default table name is the setting of
environment variable EZERCVT. If EZERCVT is not set, the default
conversion-table name is ELACNxxx, where xxx is the value of environment
variable EZERNLS and is, by default, ENU. For further details on data
conversion, see VisualAge Generator Client/Server Communications Guide.

Passing DL/I data in the test facility
If your test involves multiple programs accessing DL/I data, do not run a
mixture of generated programs and test programs. Make sure all of the DL/I
programs are run from the test facility.

120 VisualAge Generator: Design Guide

Chapter 4. Developing segmented programs

During program definition, you can specify the runtime mode for a program.
The program can run in any of the following modes:
v Segmented
v Single-segment
v Nonsegmented

MVS/TSO, VM CMS, OS/2, Windows NT, AIX, HP-UX, Solaris, or test
facility

The logical effects of segmented mode are simulated by committing
recoverable resources on a segmented CONVERSE.

CICS Nonsegmented is equivalent to CICS conversational processing, while
segmented or single-segment modes are equivalent to CICS
pseudoconversational processing.

IMS Programs must always run in segmented or single-segment mode.

Running in segmented mode

When running in segmented mode, a program saves current program status
in a work file or database. An example of current program status is the
current values for variables. The program releases all storage, file, and
database resources whenever it requests input from the terminal using a
CONVERSE statement or transfers with a map using an XFER statement.
When running in nonsegmented mode, these resources are not released.

Before defining programs that run in segmented mode, you must understand
the effect of segmenting in the runtime environment. Because segmenting
might alter the results of the program, you must consider whether or not to
segment programs during the initial design phase.

Segmented mode enables a larger number of terminals to run VisualAge
Generator programs within the same system storage address space for CICS
systems at the same time. Although segmenting programs enables concurrent
use by a larger number of terminals, the response time for each terminal is
increased by the time required for each transfer of data (roll out or roll in),
and the time required by the host subsystem to create a new system task.

Segmented programs do not use address space during user think time. This is
because the program address space is saved on external storage when the
current system task ends, and the program needs input from the user to
continue.

© Copyright IBM Corp. 1980, 2001 121

When the user presses Enter, Clear, a PA key, or a function key, a new system
task is started. This task’s address space is restored by VisualAge Generator
with the data retrieved from external storage.

Running in single-segmented mode

Use single-segment mode if you want to reduce the amount of information
saved during the program intermessage delay time, that is the time between
receipt of a system response at a terminal and the time when a new
transaction is entered, better known as user think time. With single-segment
mode, you define a program that represents a single runtime segment from
program start to end. The program ends with the first XFER statement, when
the EZECLOS special function word is invoked, or at the end of the program
logic.

The CONVERSE I/O options are not supported in a single-segment program.
To read a map at the start of your program, you select the First Map option
during program specification. At the end of your program, you can use an
XFER statement with a map.

Running in nonsegmented mode

Nonsegmented programs consume address space from start to finish
including user think time. User think time starts with each map CONVERSE
function and varies by program and map. System resources are used by the
program while waiting for the user to enter the next transaction, for example,
when the user presses Enter or Clear.

Comparison of segmented and nonsegmented program designs for CICS

You can specify in CICS environments whether a program runs in segmented
(CICS pseudoconversational) or nonsegmented (CICS conversational) mode
during program specification. You can also dynamically change the runtime
mode for the program by using the EZESEGM special function word.
EZESEGM is set to the default value (1 for segmented mode and 0 for
nonsegmented mode) after every CONVERSE.

Figure 12 on page 123 illustrates the flow of a program running in
nonsegmented mode, and Figure 13 on page 124 illustrates the flow of a
program running in segmented mode. The sample update program, CSUP
used in both figures, converses a map, displays the customer data that can be
updated, accepts data from a user to update the customer record, and replaces
the record with the changed data.

When you use nonsegmented mode (as in Figure 12), you should set
EZECNVCM special function word to 1. This causes a commit point to occur

122 VisualAge Generator: Design Guide

at the CONVERSE so changes to files and databases are committed and locks
are released. Figure 12 also illustrates saving a copy of the record for
comparison purposes after the CONVERSE to ensure that no other changes
have been made to the record during user think time.

Figure 13 on page 124 shows the flow of a program running in segmented
mode.

Figure 12. Update File Program Running NonSegmented Mode

Chapter 4. Developing segmented programs 123

When a program runs in segmented mode, temporary storage must be
provided to contain the roll out/in data during segmentation. Each program
requires approximately 6000 bytes plus the total size of all objects accessed by
the program (records, working storage, and maps). For this reason, you might
want to make the program, print services program, and map group format
module resident for segmented programs.

Choosing between segmented and nonsegmented programs

When you are deciding whether to design your program as segmented or
nonsegmented, you should be aware of two issues. The first issue is the effect
of the transaction on contention resources, such as storage and processor use.
The second issue is the effect on exclusive use resources, such as records and
recoverable data sets, recoverable transient data queues, and enqueue items.

Figure 13. File Program Running in Segmented Mode

124 VisualAge Generator: Design Guide

Nonsegmented programs have a high impact on storage because they run
longer than the sum of the transactions that are in an equivalent segmented
program. However, processor overhead is less because only one program is
started, instead of one for every transaction.

A nonsegmented program retains exclusive use of resources for a longer
period of time, unlike the equivalent segmented program. For this reason,
segmented programs are quicker to respond, but for recovery and integrity
considerations, you might prefer a nonsegmented program.

If you have maps in called programs or need to lock the database over a
CONVERSE, you should design your program to run in nonsegmented mode.

The following list contains considerations for segmented and nonsegmented
programs:
v Segmented mode uses more processor time because CICS spends more time

initiating and ending transactions.
v Nonsegmented mode uses more virtual storage because transactions are still

active during user think time. However, with Dynamic Transaction Routing
(CICS/ESA 3.1) CICS can automatically start another region and send
transactions to the next region when the first region is constrained.

v Nonsegmented mode can also use other resources such as locks in the
database during user think time. (This can be solved by setting the special
function word EZECNVCM to 1.)

v CICS accounting and security is less granular with nonsegmented
transactions because you have a few large transactions, rather than a lot of
small ones.

v CICS shutdown can be more difficult with a lot of nonsegmented
transactions. You might have to end transactions before you can shut down
because someone is out for a break in the middle of a nonsegmented
transaction. (This can be solved by having transactions time out if the user
has not pressed Enter after a specified time).

v Programming nonsegmented programs can be easier because you can do
the following:
– Use maps in called programs
– Hold locks and cursor position in the database over a CONVERSE.

v Only segmented transactions can be migrated to the IMS environment.

When running a program on an XA or ESA system where storage contention
is not a problem, a good compromise between running in segmented or
nonsegmented mode is to run in nonsegmented mode with the EZECNVCM
special function word set to 1. This approach forces a commit at every

Chapter 4. Developing segmented programs 125

CONVERSE from the main program, and it has the good performance
characteristics of nonsegmented mode, while it does not hold file or database
resources during user think time.

Program design Considerations

The following must be considered in designing segmented programs:
v Any called program loses the return point if segmentation occurs; therefore,

the following restrictions apply:
– VisualAge Generator programs defined as called transactions can

converse maps but cannot be generated to run in segmented mode.
Called transactions are not supported for the IMS environment.

– If a program is called from a main program that is running in segmented
mode, the transaction runs in CICS conversational mode (nonsegmented)
until the program returns from the called program.

– If a VisualAge Generator program calls a non-VisualAge Generator
program, the program cannot use segmented mode. Any interaction with
the program user must be in CICS conversational (nonsegmented) mode.

v Segmentation ends the current system task. CICS and IMS commit all
recoverable resources when the task ends.

v A record cannot be held for update (locked) across a segmented
CONVERSE.

Note: Holding a record for update across a CONVERSE is not a good
practice on any system, because it locks resources during user think
time, preventing additional users from accessing the system.

For a better approach to holding a record for update across a CONVERSE,
refer to the code in Figure 14 on page 127.

126 VisualAge Generator: Design Guide

v UPDATE locks and SCAN positions in files or databases are lost during a
CONVERSE when running in segmented mode.

v The program function and I/O objects determine the amount of response
time delay caused by the roll out/roll in process:
– The longest delay occurs in a segmented program that has a large

amount of variable field data on maps or large records and short user
think time.

– The shortest delay occurs in a menu type program that has a small
amount of variable field data on maps and long periods of user think
time.

v In CICS, if the UCTRAN operand has been specified for the terminal
control table (TCT), CICS folds user data from maps when running in
segmented mode. The folding of user data prevents users from running
with uppercase and lowercase input (Fold=NO).

PROC1 INQUIRY RECDA Get record for compare
MOVE RECDA TO COMPA; /* Save record for compare

/* COMPA is a copy of RECDA
/* in the additional records list

PROC2 CONVERSE MAPA Get changes from program user

PROC3 UPDATE RECDA Get record for update

IF RECDA.ALL-DATA NE COMPA.COMPA-DATA; /* See if changed
/* Build error message and
/* converse MAPA again

PROC4 REPLACE RECDA /* Replace record with changes
.
.
.

RECDA RECORD
03 ALL-DATA CHA n
05 item-1
05 item-2
.
.
.
05 item-n

COMPA RECORD
03 COMPA-DATA CHA n
05 item-1
05 item-2
.
.
.
05 item-n

Figure 14. Alternative to Holding a Record for Update across a CONVERSE

Chapter 4. Developing segmented programs 127

v On CICS systems, when the user presses Enter or a function key, the system
returns input data through CICS to the VisualAge Generator program. CICS
examines the beginning of the data, searching for Basic Mapping Support
(BMS) commands. When designing segmented programs, ensure that the
first physical variable field on your VisualAge Generator map does not
contain a valid BMS paging command. For more information on design
considerations for segmented programs in CICS, refer to the CICS
documentation.

Implementing a hierarchical structure for segmenting programs using a
DXFR statement

This section describes a set of VisualAge Generator programs that should
perform well running in segmented mode in the CICS environment. An
additional benefit is that these programs are easier to maintain, test, and
enhance than a single VisualAge Generator program that contains all the same
functions.

Figure 15 shows the structure of four VisualAge Generator programs that
perform three functions. The menu program’s only function is to access the
three functions. When the user selects the desired function, the menu program
transfers control using a DXFR statement to the correct program, passing a
small working storage record to further define the request. The transferred-to
program prompts the user for required data, performs the function as often as
needed and transfers using the DXFR statement back to the menu program.

The implementation of a DXFR statement solves the following segmented
mode restrictions:
v Called programs cannot run in segmented mode.
v Called programs do not release the caller’s resources because program

control returns to the calling program.
v The amount of data rolled in/out during a segmented converse is much

smaller. Only the program currently in control has its data areas saved.

Figure 15. Hierarchical Structure Using a DXFR Statement

128 VisualAge Generator: Design Guide

With a DXFR statement in the IMS/VS environment, the storage for the
original program (the MENU program in the example), is not released. If you
are developing programs that run in both IMS and CICS environments, you
can use either a DXFR or an XFER statement. If you are developing programs
that run in IMS only, use an XFER statement for the following reasons:
v To free resources for the transferred-from programs
v To cause a commit point and release UPDATE locks
v To permit each program to have its own DB2 plan and a different PSB
v To permit each program to have different performance tuning information

in the IMS system definition

Use a DXFR statement in the IMS environment if you do not want a commit
point to occur or if you need both programs to use the same DB2 plan and
PSB.

Dynamically changing execution mode
The EZESEGM special function word enables the dynamic control of program
segmentation at run time. Specifying segmented mode for run time during
program specification only sets the default mode for run time. By setting the
EZESEGM special function word to either 0 or 1, you can override the default
value for any CONVERSE function. Before each CONVERSE, VisualAge
Generator Server for MVS, VSE, and VM checks the value of EZESEGM. If
EZESEGM equals 1, the CONVERSE is segmented, if EZESEGM equals 0, the
CONVERSE is nonsegmented. At the successful completion of a CONVERSE,
the system resets EZESEGM to the generated default value. Nonsegmented
programs have a default value of 0 for EZESEGM while segmented programs
default to 1. This function gives you control to switch in and out of
segmented mode for reasons of performance, function, and target system
differences. To control segmentation, define the following statements prior to a
CONVERSE.

MOVE 1 TO EZESEGM ; /* Force converse to be segmented
MOVE 0 TO EZESEGM ; /* Force converse to be nonsegmented

Remember that EZESEGM is reset to its generated default after every
CONVERSE I/O option.

Note: The EZESEGM special function word is ignored for IMS/VS. All
CONVERSE functions must be segmented in IMS/VS.

Chapter 4. Developing segmented programs 129

Switching transaction codes for program segments

On CICS and IMS systems, a segmented CONVERSE ends the current
transaction. A new transaction is started when the terminal input is received
from the user. The new transaction is identified by the EZESEGTR special
function word when the CONVERSE I/O option is issued. The default value
of EZESEGTR is the current transaction ID associated with the initial program
in the current transaction.

If a segmented CONVERSE is used in a program started by a DXFR statement
from another program (for example, A transfers using a DXFR statement to B,
which issues the CONVERSE), then the default transaction ID starts the
original program (A) again on the input from program B’s CONVERSE. The
generated program reads the transaction status record from the work
database, determines that B was the program that issued the CONVERSE, and
transfers to B to continue processing. This logic is generated into the program
for you.

You can bypass the overhead of restarting the original program by doing the
following:
v Defining a unique transaction ID for each segmented program started by a

DXFR statement
v Having each program move its transaction ID into EZESEGTR before doing

the first CONVERSE.

Each transaction ID you use must be defined to IMS or CICS as being
associated with its corresponding program.

The two figures, Figure 16 on page 131 and Figure 17 on page 131, show the
differences in program flow for a program that has been transferred-to with a
DXFR statement using the default transaction ID and setting the EZESEGTR
special function word.

For CICS, if you use the technique in Figure 16 on page 131, which shows a
transfer using default transaction IDs, you need one Program Control Table
(PCT) entry to associate transaction ABCD with the menu program. If you use
the technique in Figure 17 on page 131, which shows a transfer using
EZESEGTR, you need two PCT entries, one to associate transaction ABCD
with the menu program and one to associate transaction GETD with program
GETDATA.

For IMS, if you use the technique in Figure 16 on page 131, which shows a
transfer using default transaction IDs, you need one pair of APPLCTN and
TRANSACT macros to associate transaction ABCD with the PSB for the menu
program. If you use the technique in Figure 17 on page 131, which shows a
transfer using EZESEGTR, you need two pairs of APPLCTN and TRANSACT

130 VisualAge Generator: Design Guide

macros, one pair to associate transaction ABCD with the PSB for the menu
program and one pair to associate transaction GETD with the PSB for
program GETDATA.

Figure 16. Example Transfer Using Default Transaction IDs

Figure 17. Example Transfer Using the EZESEGTR Special Function Word

Chapter 4. Developing segmented programs 131

Using an XFER statement with map and first map

You can specify a map name on an XFER statement in addition to the record
name. When a map name is specified, the generated program displays the
map and identifies the next transaction to the CICS or IMS environment. The
new transaction is scheduled when input is received from the program user.
For the MVS/TSO and VM CMS environments, specifying a map on an XFER
statement results in the transferred-from program displaying the map and
then transferring to the next program using an OS XCTL macro.

When you use an XFER statement with a map, you must also specify the
same map as the First Map for the transferred-to program during program
specification. First Map is the name of the map from where the program
receives input before the program begins processing. The First Map
specification enables the transferred-to program to begin by reading the same
map displayed using the XFER statement in the initial program. First Map
and XFER with a map enable you to use an IMS deferred program switch or a
RETURN TRANSID for CICS.

Note: For IMS/VS, when you use an XFER statement with a map and First
Map, the two programs must share the same map group. For other
environments, the map can be in different map groups, but it must be
the same map.

When you specify First Map, the processing that occurs when a program is
started varies:
v If a map is not received, the generated program automatically displays the

map that was specified as the First Map.
v If a map is received, the generated program automatically performs any

map edits that are required before beginning the normal processing logic.

When you transfer program control using an XFER statement with a map, you
control the amount of data saved during user think time and the location
where it is saved:
v You can specify a record when you define the XFER statement in addition

to the map.
For the IMS/VS environment, VisualAge Generator Server for MVS, VSE,
and VM automatically saves the record in either the Scratchpad Area (SPA),
for conversational without the ADF parameter specified on the /SPA
generation option, or the work database, for nonconversational or when the
ADF parameter is specified on the /SPA generation option.
For the CICS environment, VisualAge Generator Server for MVS, VSE, and
VM automatically saves the record in the COMMAREA.

v You can put additional data on the map by defining map fields having a
dark attribute so the user cannot see the field. Using a dark attribute allows

132 VisualAge Generator: Design Guide

the data to be available to the transferred-to program when it reads the
First Map, but keeps the user from seeing the data when the map is
displayed. A copy of the map is saved in the work database so the data can
be displayed again if the user requests a help map.

For the IMS/VS environment, if you want to avoid saving a copy of the map
in the work database, you must do the following:
v Set the MODIFY attribute on for all variable fields on the map. You can do

this when you define the default attributes for the fields on the map or
with the SET statement.

v Ensure that all the other attributes are set to their defined values before the
XFER statement.

v You can save data in a database using the VisualAge Generator I/O options
and then restore the data in the transferred-to program.

v You can also use an XFER statement to transfer to the same program
(Program A can transfer to program A by using an XFER statement).

Accessing multiple DB2 plans in CICS for MVS/ESA

When creating a system of programs that access DB2 tables, you might not
want to bind all the database request modules (DBRMs) for each program into
one DB2 plan. For security and maintenance reasons, you might want to
access several DB2 plans in a system of programs. This section discusses three
of the possible methods for accessing multiple DB2 plans in CICS for
MVS/ESA. The first two methods describe how to change the transaction ID.
The third method uses the DB2 Dynamic Plan Selection function.

If you have associated the DB2 plan name and transaction ID in the CICS for
MVS/ESA resource control table (RCT), you can change the DB2 plan name
by changing the transaction ID. For more information on the RCT, refer to the
appropriate installation or administration manual for your version of DB2.

Accessing DB2 plans using EZESEGTR
The VisualAge Generator special function word EZESEGTR enables you to
dynamically change the segmented transaction ID. When running a
segmented program, the value in EZESEGTR is used as the transaction ID to
start the program again immediately after every CONVERSE. A simple
example of using EZESEGTR to dynamically change the transaction ID is
described in Figure 18 on page 134.

Chapter 4. Developing segmented programs 133

In Figure 18, the menu program converses a menu map with three options
and issues a DXFR statement to a function program. Each of the function
programs moves a transaction ID to EZESEGTR, converses a map, and
retrieves a row from a DB2 table. For example, logic similar to the following
could be used in each of the function programs:

.

.

.
MOVE 'AAAA' TO EZESEGTR ; /* Set EZESEGTR to a new transaction ID
SHOW_INFOMAP() ; /* Show the information map to the user.
READ_DB2_RECORD() ; /* Retrieve information from a DB2 table
.
.
.

SQL statements are not in the menu program or, prior to the CONVERSE I/O
option, in the function programs.

Each function program’s DBRM is bound into a unique DB2 plan and
associated with a unique transaction ID in the RCT. This is the transaction ID
moved to EZESEGTR. After the CONVERSE, a new transaction starts with the
plan associated with the new transaction ID.

The transaction IDs AAAA, BBBB, and CCCC are associated in the RCT with
DB2 plans PLANA, PLANB, and PLANC, respectively.

This method of association can only be used in segmented programs.
However, for CICS programs, you can access DB2 plans with an XFER
statement or dynamically select a DB2 plan.

Figure 18. Example of Using the EZESEGTR Special Function Word

134 VisualAge Generator: Design Guide

Accessing DB2 plans with an XFER statement
This method is useful if you transfer control between programs using an
XFER statement. The transaction ID is changed when you transfer from one
program to another using an XFER statement. This gives you access to a new
DB2 plan if you associated the new transaction ID with a different DB2 plan
in the RCT.

Dynamically selecting a DB2 plan
This method uses DB2 dynamic plan selection, introduced in DB2 Version 2
Release 1, that provides the ability to dynamically select a DB2 plan name for
an CICS for MVS/ESA transaction. DB2 dynamic plan selection provides you
with the option of defining an exit program in the RCT instead of a DB2 plan
name. The exit program selects a DB2 plan for the CICS for MVS/ESA
transaction. With this function, you can associate several plans with one
transaction ID. For more information about DB2 dynamic plan selection, refer
to your DB2 system documentation.

The first SQL statement in a logical unit of work (LUW) starts the exit
program.

Accessing multiple DB2 plans in IMS

All the DBRMs that run together using a single IMS PSB must be bound
together in a single DB2 plan. The following programs run together using a
single IMS PSB:
v A main program and all programs it calls
v A program and all programs that it transfers to using a DXFR statement

You can change DB2 plans with the following techniques:
v Transfer to a new program using a DXFR statement, change the EZESEGTR

special function word to a new transaction code, and then do a converse
before using any SQL I/O options. For more information on this technique,
refer to “Accessing DB2 plans using EZESEGTR” on page 133.

v Transfer control to a new transaction using an XFER statement. Different
transactions can use different PSBs and can, therefore, have different DB2
plans.

Error Processing for segmented programs

The test facility issues warning messages if it detects the potential for error.
For example, warning messages are issued if a record is currently being
updated, a CONVERSE function is encountered, and the EZESEGM special
function word equals 1.

The validation and generation step does the following:

Chapter 4. Developing segmented programs 135

v Warns you if the EZESEGM special function word is referenced in a called
program. EZESEGM has no effect in a called program.

v Prevents programs being generated for IMS/VS from being nonsegmented.

136 VisualAge Generator: Design Guide

Chapter 5. Developing IMS programs

This chapter describes design and development considerations for IMS
applications. You can perform the following functions using VisualAge
Generator to develop IMS programs:
v Define online and batch programs for IMS
v Test IMS programs using the VisualAge Generator Developer test facility
v Generate COBOL programs to run in the IMS/VS or IMS BMP

environments

You can convert existing database programs that run in segmented
(pseudoconversational) mode in CICS environments or as MVS batch jobs to
run in the IMS environment. See “Chapter 4. Developing segmented
programs” on page 121 of this document.

See the following documents or sections for additional information on
developing programs for the IMS environment:
v “DL/I considerations for non-CICS environments” on page 113
v In the VisualAge Generator Client/Server Communications Guide, various

sections and the following chapters:
– Introduction to client/server processing with synchronous calls
– IMS platform
– Implementing client/server processing by using the message queue

interface
v The following sections in VisualAge Generator User’s Guide:

– Calls in the MVS/TSO, MVS Batch, IMS BMP, IMS MPP, VM CMS, VM
batch, and VSE Batch environments

– Transfers in the MVS/TSO, MVS Batch, IMS BMP, VM CMS, VM batch,
and VSE Batch environments

– Transfers in the IMS MPP environment
– Interfacing with IMSADF II programs

v “Choosing between CALL and DXFR statements” on page 247
v “Choosing between XFER and DXFR statements” on page 248

Refer to the following VisualAge Generator documents for the following
information about programs targeted for IMS/VS or IMS BMP:
v Preparing a program for generation in the Generation Guide document.
v Preparing a generated program to run in IMS in the VisualAge Generator

Server Guide for MVS, VSE, and VM document.

© Copyright IBM Corp. 1980, 2001 137

v IMS compatibility considerations by language element in the Programmer’s
Reference document.

Introduction to IMS

IMS is a database/data communication system that can manage a large,
complex network of databases and terminals. IMS/VS consists of a database
feature (IMS/DB) and a data communications feature (IMS/DC). IMS/ESA
consists of a Database Manager (IMS/ESA DM) and a Transaction Manager
(IMS/ESA TM). The VisualAge Generator target environments of IMS/VS and
IMS BMP support execution on either IMS/VS or IMS/ESA systems. In the
discussion that follows IMS is used for both IMS/VS and IMS/ESA, unless
explicitly stated otherwise. The terms IMS/VS and IMS BMP are used when a
distinction is needed between the target runtime environments.

This section describes program execution, terminal access, and serial file
access in the IMS environments. For information about database access, see
the “Chapter 2. Developing SQL programs” on page 19 and “Chapter 3.
Developing DL/I programs” on page 85 of this document.

IMS/DC and IMS/ESA do the following:
v Bring databases into an online environment so you can have interactive

access to them
v Manage transactions and terminals
v Manage the transfer of data between transactions and terminals
v Provide services for displaying information at terminals and printers
v Provide extensive data recovery facilities
v Support programs that require a high volume of transactions and a high

rate of data availability
v Provide a link between multiple IMS systems and between IMS and CICS

systems through Intersystem Communication (ICS)

Understanding IMS terminology
Before you can develop online and batch programs for IMS/VS and
IMS BMP, you need to understand the following terms that have a unique
meaning in the IMS environment:

Message processing programs (MPPs)
IMS programs that process requests from terminals and from other
programs. The requests or messages are stored in message queues
accessible to the MPP. The MPP can perform required database access
and write new messages to output queues for further terminal and
program processing. MPPs cannot access OS/VS or GSAM files. There
are two types of MPPs:

138 VisualAge Generator: Design Guide

Conversational MPP
A type of MPP that saves data in a scratchpad area (SPA)
during user think time, even though locks on the database are
lost. IMS conversational mode is similar to CICS
pseudoconversational mode. IMS has no capability that is
similar to CICS conversational mode.

Nonconversational MPP
A type of MPP that can process a single input message with,
at most, a single response. No data can be saved during user
think time (except for data saved on the screen or in a
database).

Batch message processing programs (BMPs)
Programs that run as batch jobs but access databases that they share
with online transactions. BMPs can access message queues like MPPs
for batch processing and can also access operating system files. You
start BMPs using JCL. There are 2 types of BMPs:

Transaction-oriented BMP
A BMP that accesses the message queue for input. It can also
access databases and operating system files. Output can be
sent to databases, operating system files, or a message queue.
Only one input file can be associated with the message queue.

Batch-oriented BMP
A BMP that does not access a message queue for input.
Databases and operating system files are available for input
and output processing, and message queues are available for
output.

Batch programs
Programs that can access private databases and operating system files
directly. Batch jobs do not access message queues or databases shared
with an online system. In IMS documentation, these are referred to as
DL/I batch jobs.

BTS Batch Terminal Simulator- An IBM product that enables you to run
IMS database and data communication programs in an MVS/TSO or
batch environment. BTS provides a comprehensive way to check
program logic, IMS program interfaces, teleprocessing activity, 3270
format control blocks, and database activity.

DBD The database definition of DL/I, fast path, or GSAM databases. You
specify segment content, hierarchy, and physical characteristics such
as organization and access method, in the DBD.

Fast path
A type of IMS processing that involves expedited handling for certain

Chapter 5. Developing IMS programs 139

transactions and supports special databases designed for large
volumes of data with a high availability rate. There are two types of
fast path databases:

DEDB Data Entry Database- A type of IMS fast path database that
contains large volumes of data with a high rate of availability.
Subset pointers help manage long chains of segment
occurrences. One segment type is stored near the root segment
and the occurrences are in chronological order.

MSDB
Main Storage Database- A type of IMS fast path database that
uses fixed-length root segments that reside in virtual storage
for quick access. The segments can be related to a specific
terminal or be defined so all terminals can access the data.

GSAM
Generalized sequential access method- GSAM enables MVS batch
programs and BMPs to access a sequential OS/VS data set as a
database. The database is a root-only database, and the entire root
segment represents a record. Unlike sequential OS/VS data sets, you
can checkpoint and restart GSAM files just like DL/I databases.

Message Queue
A place in IMS where information being sent to an alternate terminal
or to another transaction can be stored so IMS can handle the I/O to
the terminal or schedule the other transaction to start processing. It is
accessed through DL/I calls.

MFS Message Format Services- An editing facility that you use with IMS
that permits programs to access message data from a terminal. MFS
enables you to customize the presentation of the data, but shields the
program from panel formats and device dependencies by providing
access to only the data required from the terminal.

PCB Program Communication Block- In IMS, a collection of information
related to an IMS resource that a program can use. IMS uses this
control block to determine the resource being used and to return the
results of an I/O operation against the resource to the program.

IMS uses the following types of PCBs:

I/O Represents an IMS logical terminal or a message from another
program. A program uses DL/I calls for this PCB to read
input from a terminal or program and write output messages
back to that same terminal.

Alternate
Represents the message queue for an IMS logical terminal or
an alternate transaction. It differs from an I/O PCB because

140 VisualAge Generator: Design Guide

the alternate PCB can represent logical terminals other than
the terminal from where the input message came. An alternate
PCB is also known as a teleprocessing (TP) PCB.

Express
An alternate PCB that sends a completed message
immediately to its destination. A non-express alternate PCB
does not send a completed message to its destination until a
commit point. When this process is not successful, complete
messages sent to an express PCB cannot be backed out. A
message is complete when a PURG call is issued. You can
force a PURG call by using the VisualAge Generator CLOSE
I/O option. An express PCB is also known as a teleprocessing
(TP) PCB.

DB Represents a DL/I database that a program can access. In
addition, the DB PCB specifies the data that the program can
access, the segment or field level, and the type of processing
valid with that database.

GSAM
Represents a GSAM file that a program can access and
contains the processing option available for the program.

PSB A Program Specification Block- In IMS, a PSB is a set of statements
that define the PCBs a program can use. The database PCBs identify
the required databases, segments to be accessed, and database options
for a given program. Alternate PCBs define message queues for
terminals or other programs.

Program switch
A way of transferring control from one program to another. There are
two types of program switches:

Deferred program switch
Occurs when Program A responds to the terminal and informs
IMS to start another transaction that is associated with
Program B on the next input from the terminal.

For a conversational MPP, the program switch is done by
modifying the SPA to specify the new transaction name before
sending it back to IMS through the I/O PCB.

For a nonconversational MPP, the program switch is done by
including the next transaction name on the map so it is the
first 8 bytes of the input message.

Immediate program switch
Occurs when Program A passes control directly to another

Chapter 5. Developing IMS programs 141

transaction that is associated with Program B without
responding to the originating terminal first.

For a conversational MPP, the program does this by inserting
the SPA to an alternate PCB that has its destination set to the
new transaction name.

For a nonconversational MPP, the program inserts a message
to an alternate PCB that has its destination set to the new
transaction name.

SPA Is the scratchpad area (SPA) for IMS. The SPA is used for
conversational processing to save data while the map is displayed
during user think time.

Work database
Is a database that is used to save information about a running
program during user think time. Except for defining a PCB for the
work database or including it in your DB2 plan, you do not need to
do any special processing for a work database. VisualAge Generator
Server for MVS, VSE, and VM manages and uses the work database
for you. The work database can be a DL/I database or a DB2
database.

Interacting with terminals in IMS
Typical IMS programs use a message-driven structure like the example shown
in Figure 19 on page 143.

142 VisualAge Generator: Design Guide

In this example, the IMS controller starts the transaction program when the
message queue associated with the program contains a message. The message
might have been put on the queue by another program or as a result of the
controller reading input from the terminal. The program takes the message off
the queue, does any required database I/O, and adds messages to output
queues to continue further processing. The output queue can represent the
input terminal, another terminal or printer, or a queue associated with another
transaction. The program then loops back to the beginning and processes the
next message on its input queue.

Typical PL/I or COBOL programs must continue the cycle until the message
queue is empty because multiple terminals can be running the same
transaction concurrently. However, with VisualAge Generator main transaction
programs, the loop to read the next message in the queue is automatically
handled. You do not need to define message queue control functions directly.
You can define programs for IMS just as you define programs for CICS, that
use a synchronous logic structure instead of a message-driven structure. The
Figure 20 on page 144 shows an example of a synchronous program.

Figure 19. IMS Program Development Considerations

Chapter 5. Developing IMS programs 143

With the synchronous model, you only need to consider the processing that
must occur for a single user at a single terminal. This simplifies both the
design and the definition of the program.

IMS requires that database changes are committed and that database locks
and positions are released when waiting for user input. In VisualAge
Generator, segmented is the term for this mode of operation. When you are
defining the program, remember that a commit is performed each CONVERSE
I/O option. You must understand how segmentation works to develop
programs for IMS. For design and development considerations, see
“Chapter 4. Developing segmented programs” on page 121 of this document.

IMS program development methods
VisualAge Generator programs can interact with users at terminals in IMS in
either of the following ways:
v An XFER statement with a map and First Map that can be used in either

segmented or single-segment mode
v CONVERSE I/O option

This section describes the use of a CONVERSE I/O option or an XFER
statement with a map in different types of IMS programs. For more
information on using an XFER statement with a map and First Map, see
“Using an XFER statement with map and first map” on page 132.

An IMS conversational program
If you want to define an IMS conversational program, you can define a
VisualAge Generator main transaction and use the CONVERSE I/O option for
terminal I/O. During program definition, you specify segmented execution
mode. You must also specify the /SPA generation option. The generated
program runs as an IMS conversational message processing program.

Figure 20. Synchronous Program

144 VisualAge Generator: Design Guide

For conversational programs, the following functions are automatically
handled by the generated code:
v Reading the message queue to obtain the SPA and the map input.
v Saving program information that is needed to resume processing after a

CONVERSE function. This information is saved in the work database.
v Writing the SPA and map output to the message queue to continue the

conversation.

An IMS nonconversational program in segmented mode
Developing IMS nonconversational programs in this mode is very similar to
developing IMS conversational programs. If you want to define an IMS
nonconversational program, define a VisualAge Generator main transaction.
You can use the CONVERSE I/O option for terminal I/O. During program
definition, you specify segmented execution mode. The only difference from
developing a conversational program is that at generation time, you must
specify /SPA=0 as a generation option. The generated program runs as an
IMS nonconversational message processing program.

For nonconversational programs, the following functions are automatically
performed by the generated code:
v Reading the message queue to obtain the message or the map input.
v Saving program information that is needed to resume processing after a

CONVERSE function. This information is saved in the work database.
v Writing a map to the message queue to continue processing.

An IMS nonconversational program in single-segment mode
The amount of information saved at a CONVERSE function can be quite
large. It includes all the records and maps used by the program, as well as the
EZE special function words and information about where processing of the
program must resume. If you want to reduce the amount of information
saved during user think time, you can develop programs using
single-segment mode.

With single-segment mode, you define a program that represents a single
execution segment from program start-up to program end. The program ends
with the first XFER statement, when the EZECLOS special function word is
encountered, or at the end of the program logic. CONVERSE I/O options are
not supported in a single-segment program.

With single-segment mode, you must use the First Map option to read a map
at the beginning of your program. You use an XFER statement with a map to
write a map at the end of your program.

Chapter 5. Developing IMS programs 145

Because you control the data that is saved and where it is saved, you can
minimize the amount of overhead involved. Therefore, single-segment
programs provide the highest level of performance for IMS programs.

Single-segment main transactions without a First Map are supported only if
they are the object of a transfer by an XFER statement without a map.

An IMS nonconversational program using batch programs
If you have a nonconversational program that does not use maps to
communicate with a terminal, you can define a VisualAge Generator main
batch program that processes the message queue. In this situation, you use the
SCAN I/O option to read records in a serial file. At generation, you associate
the serial file with the IMS message queue and the I/O PCB. As in a batch
program for other environments, you must continue processing the input file
until it is empty.

If a program transfers to a batch program using an XFER statement with a
record, the transferred record is not used to initialize the transferred-to
program’s working storage record. Instead, the batch program must read the
transferred record by using a SCAN I/O option.

Developing IMS fast path programs
You can develop IMS fast path programs using any one of the
nonconversational development examples previously described. However,
segmented mode (including CONVERSE functions) is not recommended for
IMS fast path programs for performance reasons.

IMS imposes restrictions on fast path programs. These restrictions result in the
following limitations on the use of VisualAge Generator functions with fast
path programs:
v An XFER statement without a map is supported only to a non-fast path

program. In this case, the transferred-to program is responsible for
responding to the terminal. An XFER statement with a map or both a map
and working storage is permitted.

v CSPTDLI is limited to using the call types supported for fast path
transactions.

v Multiple-segment input message queues are not supported.
v Only one of the following actions can be done for each get unique to the

I/O PCB:
– XFER statement
– ADD function for serial file associated with an alternate response PCB
– CSPTDLI service routine call using the I/O PCB or an alternate response

PCB

146 VisualAge Generator: Design Guide

To indicate that you want a nonconversational program to run as an IMS fast
path program, use the /FASTPATH generation option. This option causes the
generated program to limit its use of IMS functions to that permitted by IMS
fast path support. Use of fast path restricts the amount and type of diagnostic
data that is provided when an error occurs in the generated program.

When a batch program runs as IMS BMP and updates IMS fast path
databases, the program must explicitly issue either a SYNC or CHKP call to
commit the updates. You can force a CHKP call by:
v Using the EZECOMIT service routine before the end of a batch-oriented

BMP
v Making sure that the SCAN function for a serial file associated with an IMS

message queue receives an EOF (QC status code) before the end of a
transaction-oriented BMP.

Sample program flow
You can develop programs for IMS using one of the following techniques or a
combination of them:
v Segmented processing using a CONVERSE I/O option
v Segmented processing using a CONVERSE I/O option with the EZESEGTR

special function word
v An XFER statement with a map and First Map.

Figure 21 on page 148, Figure 22 on page 149, and Figure 23 on page 150
contain examples of a program’s runtime flow using these techniques. The
sample program or series of programs that are used in the following figures
converse a map, display the customer data that can be updated, accept data
from a user to update the customer record, and replace the record with the
changed data.

The first two figures, Figure 21 on page 148, Figure 22 on page 149, use one
program running in segmented mode. The only difference in program design
is that Figure 22 on page 149 uses the EZESEGTR special function word to
have multiple transactions associated with a single VisualAge Generator
program. When the converse is done, the data on both the MENU and
CUSTOMER maps, as well as the CUSTOMER record, must be saved.

Figure 23 on page 150 shows the use of two single-segment programs to
accomplish the same function. The same map must be specified on the XFER
statement and as the First Map of the transferred-to program. The same map
group must be specified for both the transferred-from and transferred-to
programs. With single-segment mode, you control the data to be saved during
user think time. In this case, only a copy of the customer record needs to be
saved. Single-segment mode enables you to minimize the amount of data that
must be saved; therefore, it can improve performance.

Chapter 5. Developing IMS programs 147

Note: DXFR can be used to transfer between programs without changing the
IMS transaction. See “Implementing a hierarchical structure for
segmenting programs using a DXFR statement” on page 128 and
“Choosing between XFER and DXFR statements” on page 248 for
information about situations that you might want to use a DXFR
statement instead of an XFER statement.

Figure 21. Segmented Mode Technique

148 VisualAge Generator: Design Guide

Figure 22. Segmented Mode Using EZESEGTR Special Function Word

Chapter 5. Developing IMS programs 149

Defining data in IMS programs

For IMS programs, you define data the same as you define data for any other
type of program. Only PSBs are defined differently for the IMS environment.

Defining PSBs
IMS uses PSBs and PCBs in a different way than other systems. An IMS PSB
is a set of statements that define the PCBs a program can use.

An IMS PCB is a collection of information related to an IMS resource that a
program can use. IMS programs use PCBs to do the following:
v Receive message and device input (the I/O PCB)
v Deliver message and device output (the I/O and alternate PCBs)
v Define the structure of DL/I databases (DB PCBs)
v Provide serial file support (GSAM PCBs for MVS batch and IMS BMP only)

Figure 23. Two Single Segment Programs

150 VisualAge Generator: Design Guide

VisualAge Generator uses the database PCBs in all environments to create
default segment search arguments (SSAs). VisualAge Generator supports the
presence of all types of PCBs for IMS programs. The VisualAge Generator PSB
definition must match the IMS PSB definition exactly.

You need to generate an IMS PSB to correspond to the VisualAge Generator
PSB. For IMS/VS, the IMS PSB must have the same name as the load module
for the associated COBOL program. An application control block (ACB)
generation is also required for the IMS/VS environment. For IMS BMP and
DL/I batch, the IMS PSB name does not have to match the program load
module name.

You can define VisualAge Generator PSBs using two methods in VisualAge
Generator Developer. How the VisualAge Generator PSB is stored and how
you can access it depend upon the method you use to create the PSB.

You can define a VisualAge Generator PSB using PSB Definition . Because
the definition is local to the VisualAge Generator PSB, you can change it using
VisualAge Generator Developer. VisualAge Generator PSBs defined using PSB
Definition cannot be shared with other tools enabled to TeamConnection.

You can also create a new VisualAge Generator PSB by associating it to an
existing IMS PSB object. See “Sharing IMS PSBs in TeamConnection” on
page 154 for more information.

When you define the PSBs for IMS programs, consider the following criteria:
v The I/O PCB is automatically supplied and does not appear in the IMS or

VisualAge Generator PSB source. For IMS/VS or IMS BMP execution, the
IMS PSB source must indicate CMPAT=YES.

v Alternate PCBs are used to route output to terminals other than the
originating terminal, or to other transactions. Alternate PCBs must appear
before the database PCBs both in the IMS and the VisualAge Generator PSB
source.

v Batch programs that support DL/I, both in IMS BMP and MVS batch target
environments, can implement serial files as GSAM databases. These GSAM
files are treated as a special type of database and require a PCB in the PSB.
The GSAM PCBs must follow all database PCBs.

v When a VisualAge Generator program is generated for the IMS/VS or
IMS BMP environment, a modifiable alternate PCB and a modifiable
express alternate PCB are required, in that order, as the first two PCBs
following the I/O PCB. Both of these PCBs must have the parameters
ALTRESP=NO and SAMETRM=NO. The PSBGEN statement must include
the parameters CMPAT=YES and LANG=COBOL or LANG=ASSEM. To
avoid having to edit your DL/I call modifications to adjust for the two

Chapter 5. Developing IMS programs 151

required PCBs, include these PCBs whenever you plan to generate a
program for the IMS/VS or IMS BMP target environments.

v If you are creating PSBs to use with programs that you plan to generate for
the MVS/TSO or MVS batch environments, you must include at least two
PCBs of any type in the PSB. The PSBGEN statement must include the
parameters CMPAT=YES and LANG=COBOL or LANG=ASSEM.

If a DL/I work database is used, the PCB for this database must be included
in the IMS PSB. This PCB can be created using the macro ELAPCB and
concatenating ELA110.ELASAMP as part of the SYSLIB in the PSBGEN
procedure. Figure 24 shows an example of the PCB expansion that occurs
when ELAPCB is used. WORKDBD defaults to ELAWORK. The WORKDBD
parameter must be used if the DBD name is changed.

Defining PCBs
VisualAge Generator supports the following types of PCBs for use with IMS
programs that access DL/I databases:

TP Is used to represent an alternate PCB. You must define one TP PCB
for each alternate PCB that exists in the IMS PSB. For TP PCBs, the
Type field is required. All other fields must be blank.

You must define at least two TP PCBs in PSBs for use in the IMS/VS
and IMS BMP environments. The first TP PCB must be a modifiable
alternate PCB that is used for transaction switching. The second TP
PCB must be a modifiable express alternate PCB that is used for

ELAPCB [WORKDBD=customer-dbd-name]

--- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19
SENSEG NAME=ELAWCNTL,PARENT=0
SENSEG NAME=WORKLV01,PARENT=ELAWCNTL
SENSEG NAME=WORKLV02,PARENT=WORKLV01
.
.
.
SENSEG NAME=WORKLV14,PARENT=WORKLV13
SENSEG NAME=MSGLV01,PARENT=ELAWCNTL
SENSEG NAME=MSGLV02,PARENT=MSGLV01
.
.
.
SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 24. Generating the DL/I Work Database PCB

152 VisualAge Generator: Design Guide

diagnostic information. These two TP PCBs are required. You can
define additional modifiable or non-modifiable alternate or express
alternate PCBs.

You do not define the I/O PCB in either the IMS PSB or the
VisualAge Generator PSB. To include the I/O PCB in the PSB, you
specify CMPAT=YES on the IMS PSB definition.

TP PCBs are not used in other environments, but they can be included
for compatibility with IMS. In the other environments, the TP PCBs
are place holders when determining the offset of database PCBs in the
PSB.

DB Is used to define one database PCB for each database that is in the
PSB. If you are using DL/I to implement the work database used by
VisualAge Generator Server for MVS, VSE, and VM, the PCB for this
database should follow the database PCBs for the program. See
“Defining a PCB for the work database” for more information.

GSAM
Is used to define a GSAM PCB. When you use a GSAM PCB, Type
and Database are required fields in the VisualAge Generator PSB
definition. All the other fields must be blank.

For programs generated for MVS/TSO or MVS batch, at least 2 PCBs of any
type are required in the PSB.

You can define PSBs so they can be used in other environments with some
restrictions. If the same program and PSB are used in other environments as
well as in IMS/VS and IMS BMP, you should include any TP PCBs that are
used by the program in the IMS/VS or IMS BMP environments.

Numbering PCBs
Some VisualAge Generator functions require you to specify a PCB number.
Some of the functions that require you to specify a PCB number are DL/I call
definition, the EZEDLPCB special function word, and the resource association
file. The PCB number is the relative number of the PCB as shown in the PSB
Definition window. The I/O PCB, that does not appear in the definition, is
always number zero.

Defining a PCB for the work database
VisualAge Generator programs running in IMS use a work database to save
information that is required to resume processing when running in segmented
mode. Your system administrator specifies whether this database is
implemented as DL/I or DB2 in the generation options file for VisualAge
Generator Developer. If DL/I implementation is specified, you must include a
PCB for the database in both the IMS PSB and the VisualAge Generator PSB
definition.

Chapter 5. Developing IMS programs 153

You can include the work database in VisualAge Generator PSB definition by
setting the Type field to DB and the database name to ELAWORK. The
Segment, Parent, and Index key fields must be blank.

If you do not include the work database in the original PSB definition but add
it later, you must add it after the last database PCB but before any GSAM
PCBs. This prevents you from having to modify the PCB number specified in
any DL/I call modifications or the subscript used with the EZEDLPCB special
function word for DL/I databases. However, you must modify the PCB
number specified for any serial file implemented as a GSAM file during
generation when resource association information is specified, as well as the
subscript used for the EZEDLPCB special function word when it references
any GSAM file.

Note: If you plan to use a DL/I work database with VisualAge Generator
Server for MVS, VSE, and VM in the future, you can avoid making
DL/I call modifications or other changes to the PCB number by
including place-holder PCBs in both the IMS and the VisualAge
Generator PSB. These place-holder PCBs can reference a DBD for a
root-only database that is never used by the program.

Sharing IMS PSBs in TeamConnection
You can create a new VisualAge Generator PSB by associating it to an existing
IMS PSB object. In this case, the VisualAge Generator PSB shares the existing
IMS PSB definition that was created by using DataAtlas. If the IMS PSB
definition is changed in DataAtlas, the change is reflected in VisualAge
Generator Developer. Because VisualAge Generator Developer does not
support the creation or maintenance of IMS PSBs, you can only view
VisualAge Generator PSBs that are associated to IMS PSBs.

You can create a new VisualAge Generator PSB that is associated to an
existing IMS PSB by using PSB with Association. On the PSB with
Association window, you can use Display to list the IMS PSBs in the library
and display the definition stored in an IMS PSB. You can then create a new
VisualAge Generator PSB that shares this definition.

You can change the association of a VisualAge Generator PSB to a different
IMS PSB by using Change Member Association. On the Change Member
Association window, you can use Display to list the IMS PSBs in the library
and display the definition of an IMS PSB. You can then change the association
of a VisualAge Generator PSB to another IMS PSB.

154 VisualAge Generator: Design Guide

Defining maps for IMS programs

Each terminal map in the IMS environment must contain an 8-byte constant
field. This field is used to store the IMS transaction name in the MFS
definition for the map. You can define this field as an 8-byte constant field
with the protect and dark attributes. The attribute byte on the map becomes
the attribute byte in the generated MFS. The 8-byte constant contains the
name of the IMS transaction that is started when the map is processed.
Specifying the constant on the map enables the user to specify the IMS
/FORMAT command to display a formatted screen to start a transaction. The
/FORMAT command should not be used if variable fields on the map contain
default data. If the /FORMAT command is used, the default values do not
appear.

If you do not define an 8-byte, protected, dark constant on the map,
VisualAge Generator Developer searches for any string of 9 blanks on the
map and sets this area aside as a protected, dark variable field (1 byte
attribute, 8 bytes of data) in the generated MFS map. The generated program
uses this field to store the name for the next IMS transaction to be run after a
CONVERSE function or an XFER statement with a map. The user cannot use
the /FORMAT command to start a transaction for these maps because IMS
does not have a default transaction name.

An additional unused 2-byte field is also required on each terminal map.
VisualAge Generator Developer selects a 2-byte blank field on the map and
treats it as a protected, dark variable field (1 byte attribute, 1 byte of data).
The field is used to indicate the type of information stored in the work
database.

Estimating the size of MFS blocks for a map group
When a VisualAge Generator map group is generated, MFS control blocks are
generated for the map group. There are three types of control blocks:
v Device input format (DIF) and device output format (DOF). These control

blocks describe the arrangement of data fields and literals on the device
presentation space (for example, the screen for 3270 devices).
For 3270-type devices a single set of statements describe both the DIF and
the DOF. For printers, only a DOF is needed. Each device field is given a
name that can be referred to by statements in the message input and output
descriptors.
For VisualAge Generator map groups, the DOF is always larger than the
DIF because the DOF includes map constants.

v Message output descriptor (MOD). This control block describes the various
fields of information in the output message inserted by the program. It also
identifies corresponding device fields where the data for each message field
is moved.

Chapter 5. Developing IMS programs 155

v Message input descriptor (MID). This control block describes the various
fields of information in the input message retrieved by the program. The
MID identifies the corresponding device field from where the data for each
message field came from.

MFS control blocks cannot exceed 32748 bytes. If you are using a large map
group, use the following formulas as a guideline for estimating an upper limit
for the size of the control blocks that will be generated. Using these formulas
during your design helps you determine whether map groups should be split
into smaller ones. If a generated control block is too large, MFS generation
issues a 3022 abnormal termination.

Calculating the DOF size for terminal devices
The following formula helps you estimate the size of the DOF.
DOF Size =

150
+ 388 * Number of printer maps in the map group
+ 208 * Number of terminal maps in the map group
+ 63 * Number of map variable occurrences on terminal

maps in the map group
+ 62 * Number of map constants on terminal maps in the

map group
+1.12 * Total length of all map constants on terminal maps

in the map group

Calculating the DOF size for printer devices
The following formula helps you estimate the size of the DOF.
DOF Size =

206
+ 68 * Number of printer maps in the map group
+ 374 * Number of terminal maps in the map group
+ 63 * Number of map variable occurrences on printer

maps in the map group
+ 62 * Number of map constants on printer maps in the

map group
+1.12 * Total length of all map constants on printer maps

in the map group

Calculating the MOD size for terminal maps
The following formula helps you estimate the size of the MOD.
MOD Size =

36
+ 724 * Number of terminal maps in the map group
+ 202 * Number of printer maps in the map group
+ 52 * Number of map variable occurrences in the map group

156 VisualAge Generator: Design Guide

Calculating the MID size for terminal maps
The following formula helps you estimate the size of the MID for terminal
maps.
MID Size =

36
+ 858 * Number of terminal maps in the map group
+ 52 * Number of map variable occurrences for terminal maps

in the map group

Defining IMS programs

You can define programs for IMS the same as you define other non-IMS
VisualAge Generator programs. There are some exceptions if you use serial
and printer files in IMS programs.

Using service routines
You can use the CREATX service routine and the AUDIT service routine in
IMS/VS and IMS BMP environments.

You can also use the CSPTDLI service routine that enables you to issue any
DL/I call that is supported by the run-time environment. You can use
CSPTDLI for DL/I database calls that are not supported by VisualAge
Generator I/O options (for example, the FLD and POS call) or to perform
functions that are not directly supported by VisualAge Generator (for
example, symbolic checkpoint and restart for an IMS BMP). For more
information about the CREATX, AUDIT, and CSPTDLI service routines, refer
to the Programmer’s Reference

Using serial and printer files in IMS programs
Serial files must be implemented as IMS message queues in IMS/VS. They
can be implemented as message queues, OS/VS files, VSAM files, or GSAM
files for IMS BMP. Serial files can be implemented as OS/VS files, VSAM
files, or GSAM files for MVS batch. The following sections describe how to
use GSAM files or message queues for serial files.

Using serial files as GSAM files
VisualAge Generator programs that run in the IMS BMP or MVS batch
environments can implement serial files as GSAM files. You can use the ADD,
SCAN, and CLOSE I/O options for serial files that you implement as GSAM
files. The following list describes the differences between GSAM and normal
serial file processing:
v A GSAM file requires a DBD.
v A GSAM file requires a PCB in the IMS PSB. You must define this PCB in

the IMS PSB and in the VisualAge Generator PSB definition. You must
include the VisualAge Generator PSB name during program specification.

Chapter 5. Developing IMS programs 157

v A GSAM file is read or written through DL/I calls. The generated
COBOL program handles this automatically, based on the I/O options that
you request.

v A GSAM file is checkpointed and restarted in the same way as a DL/I
database. However, to recover the GSAM file requires the use of symbolic
checkpoint and restart instead of basic checkpoint.

VisualAge Generator does not support the record search argument for GSAM
or undefined length records.

You identify a serial file or printer file as a GSAM file by using the resource
association file during generation to specify a file type of GSAM and a PCB
number.

When you associate a serial file with a GSAM file, you must include the
following information:

Resource name
Indicates the 1- to 44-character data set name that is used in the
sample runtime JCL. The file name is used as the DD name in the
sample runtime JCL.

File type
Specifies GSAM as the file type to associate the serial file or printer
output with a GSAM file.

PCB number
Specifies a PCB number for the serial file that is associated with the
GSAM file. If you do not specify one, the default is the first GSAM
PCB in the VisualAge Generator PSB.

Using serial files as message queues
Online programs that run in IMS/VS implement serial files as IMS message
queues. Programs that run as IMS BMP programs can also implement serial
files as message queues. You can use the ADD and SCAN I/O options as well
as CLOSE for output files. If you select IMS/VS or IMS BMP as the target
runtime environment, you can define serial or print files as being associated
with a message queue. You must associate all serial files and print files with
message queues for IMS/VS. Only a single input file can be associated with
the message queue.

You can associate a serial file or printer file with a message queue by using a
resource association file during generation and specifying the file type and a
PCB number. When you associate a serial file with a message queue, you
must define the following resource information:

Resource name
You must indicate the 1- to 8-character destination ID for printer or

158 VisualAge Generator: Design Guide

serial file data. The name must match the ID of an IMS logical
terminal or a transaction code that is defined in the IMS system
definition.

The file name is the default resource name for the message queue.
You can override this default in the resource association file.

You can also override the default message queue name at run time. If
the PCB that you select is a modifiable alternate or express alternate
PCB, you can override the default resource name at run time by
setting a value for EZEDEST for a file or EZEDESTP for a printer in
the program. EZEDEST is treated as a local variable. Setting EZEDEST
for a record in one program does not affect EZEDEST in another
program. An ADD function writes to the message queue identified by
the setting of EZEDEST for that program. For more information on
EZEDEST and EZEDESTP, refer to the Programmer’s Reference
document.

Message queue type
You can specify single-segment message queues (SMSGQ) or
multiple-segment message queues (MMSGQ).

Single-segment message queues (SMSGQs)
For a single-segment message queue (SMSGQ), each record
that is added to or scanned from the serial file is a complete
message. The generated COBOL program issues an IMS
PURG call between records that are added to a single-segment
message queue. The generated COBOL program issues an IMS
get unique for each SCAN I/O option.

Multiple-segment message queues (MMSGQs)
For multiple-segment message queues (MMSGQs), a series of
adds to the serial file is treated as though each ADD function
were for a segment of a single message. The message is not
ended until you issue a CLOSE I/O option or reach a commit
point. The generated COBOL program issues an IMS PURG
call for the CLOSE I/O option. You can then begin adding
segments of another message and close it. Multiple-segment
message queues are not valid for printer files.

If you issue a SCAN I/O option for a MMSGQ serial file, the
generated program issues an IMS get unique call to get the
first segment of the message. Additional SCAN functions
result in get next calls to get the remaining segments of the
message. At the end of all the segments in a message, the
generated COBOL program sets the NRF (no record found)
record state. If you continue scanning, the generated program
starts another series of get unique, followed by get next calls.

Chapter 5. Developing IMS programs 159

When no more messages are found, the generated program
returns an EOF (end of file) state.

PCB number
You must also specify a PCB number for the serial file that is
associated with a message queue. You must specify PCB 0 as the PCB
number for a serial input file. PCB 0 is the number of the I/O PCB
that is the only message queue used for input. If you use a serial
input file, you must use a main batch or called batch program. The
generated program handles all I/O PCB logic for main transaction
programs.

You can specify the PCB number for a serial output file. The PCB
number must be the number of a TP PCB in the PSB definition. The
default PCB number is 1. You can only send output to PCB 0 using
the CSPTDLI service routine. For more information about the service
routines that you can use with IMS, refer to the Programmer’s Reference
document.

Defining records to use with message queues
When you define a serial record to associate with a message queue, you
should define only the program data. The generated COBOL program adds
the IMS message header (length, ZZ, and transaction code) for an ADD I/O
option and remove it for a SCAN I/O option. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information.

Checking the results of serial file I/O options
When a serial file is associated with a message queue or GSAM database, the
generated program issues a DL/I call to implement the I/O operation. When
the DL/I call completes, VisualAge Generator Server for MVS, VSE, and VM
performs the following functions:
v For SCAN I/O options, the record state is set based on the DL/I status

code. The EZEUSR or EZEUSRID special function word is updated from the
user ID field of the I/O PCB when the generated program issues a get
unique call for the I/O PCB. This happens at the first SCAN for a serial file
defined as a multiple-segment message queue (MMSGQ), and at each
SCAN for a single-segment message queue (SMSGQ). The EZESEGTR
special function word field is updated from the transaction name in the IMS
message header after each SCAN that results in a get unique call for the
I/O PCB.

v For an ADD or CLOSE I/O option, the record state is updated based on the
DL/I status code.

After a DL/I call that involves either the message queue or GSAM, the
EZEDL special function words are not updated. These EZEDL words are
updated only for functions that access DL/I segment records. This allows a
program written for a CICS transient data queue or an OS/VS serial file to

160 VisualAge Generator: Design Guide

run consistently if the file is changed to a message queue or GSAM database
in an IMS environment. If you need access to the PCB, you can use the
EZEDLPCB special function word to move the PCB contents to a working
storage record for direct access by your program. You should check the I/O
error values to determine if End Of File was reached or an error occurred on
the serial file. Refer to the Programmer’s Reference document for more
information on I/O error values.

Using printer files as message queues
For IMS/VS you must associate printer files with message queues. For
IMS BMP, you can associate printer files with message queues. You associate
printer files with message queues the same way you associate serial files with
message queues, except only SMSGQ is valid for EZEPRINT. During IMS
GEN, you must define the message queue name that you use in the runtime
environment as a logical terminal. EZEDESTP can be used to change the
printer destination at run time. For example, you could define a table of user
IDs and the printer ID that each user normally uses. By setting EZEDESTP,
you can route the printer output to a printer near the program user.

Using IMS functions from VisualAge Generator programs

Table 16 lists the IMS/VS functions that you can use in VisualAge Generator
programs, as well as summarize how to use these functions.

Table 16. Comparison of IMS and VisualAge Generator Functions

IMS Function VisualAge Generator Function Comments

Type of Program

Conversational Main segmented transaction
program with a PSB, a target
system of IMS/VS, and a SPA

/SPA is a VisualAge Generator
generation option.

Nonconversational (option 1) or
message-driven fast path

Main segmented transaction
program with a PSB, a target
system of IMS/VS, and no SPA

Some VisualAge Generator
functions cannot be used if the
program is generated as
message-driven fast path. See
“Developing IMS fast path
programs” on page 146 for more
information.

Nonconversational (option 2) or
message-driven fast path

Main single-segment transaction
with a PSB and a target system of
IMS/VS

Some VisualAge Generator
functions cannot be used if the
program is generated as
message-driven fast path.

Chapter 5. Developing IMS programs 161

Table 16. Comparison of IMS and VisualAge Generator Functions (continued)

IMS Function VisualAge Generator Function Comments

Nonconversational or
message-driven fast path without
terminal maps

Main batch program with a PSB,
that accesses the I/O PCB as a
serial input file. In VisualAge
Generator Server for MVS, VSE,
and VM, reading messages using
the I/O PCB results in a commit
point.

Some VisualAge Generator
functions cannot be used if the
program is generated as
message-driven fast path.

BMP Main batch program with a PSB
and a target system of IMS BMP

Transaction-oriented BMP uses
message queue for input.
Batch-oriented BMP does not use
the message queue.

VisualAge Generator treats a
batch program that uses the
SCAN I/O option for a file
associated with the I/O PCB as a
transaction-oriented BMP; other
batch programs generated for the
IMS BMP environment are
treated like batch-oriented BMPs.

DL/I Batch Main batch program with a PSB
and a target system of MVS batch

Normal MVS batch Main batch program without a
PSB and a target system of MVS
batch

Terminal and Printer Support

Communication with the terminal For segmented mode, a
CONVERSE function for output
and input or an XFER statement
with a map for output and First
Map for input. For
single-segment mode, an XFER
statement with a map for output
and First Map for input.

Dynamic printer support EZEDESTP special function word
set to alter print destination for
DISPLAY

162 VisualAge Generator: Design Guide

Table 16. Comparison of IMS and VisualAge Generator Functions (continued)

IMS Function VisualAge Generator Function Comments

/FORMAT modname mapname The IMS /FORMAT command
can be used to display any map
generated for IMS. The syntax of
the command is /FORMAT
modname mapname where
modname is the map group name
concatenated with O and
mapname is the name of the map
defined as the First Map for the
program.

Physical and logical paging Not supported Map definition does not support
the definition of physical or
logical pages.

SDF II to produce the MFS source Not supported Generation requires knowledge of
the edit order and special control
fields.

Database and File Access

DL/I database definition and
access

PSB definition, DL/I segment
definition, and normal I/O
options as provided for DL/I
programs

VisualAge Generator creates
default SSAs and sets the default
PCB number.

DL/I fast path database
definition and access

Same as DL/I database definition
and access

DL/I call definition allows
2-position command codes.
CSPTDLI can be used for FLD
and POS calls.

DB2 database definition and
access

SQL row definition and normal
I/O options as provided for
relational programs

Message queue for secondary
transactions

ADD and CLOSE I/O options to
serial file defined as message
queue. Alter destination with the
EZEDEST special function word.
Alternatively, use the CREATX
service routine.

Use a batch program with a
SCAN function to read the
records inserted to the message
queue by the previous program’s
ADD function or CREATX service
routine.

GSAM ADD, SCAN, and CLOSE I/O
options to serial file defined as
GSAM

Message Switching

Chapter 5. Developing IMS programs 163

Table 16. Comparison of IMS and VisualAge Generator Functions (continued)

IMS Function VisualAge Generator Function Comments

Immediate program-to-program
message switch

An XFER statement with working
storage or other record passed to
new VisualAge Generator
program or non-VisualAge
Generator program

Requires the transaction name
and PSB name to change because
different load modules are
involved and the PSB name must
match the load module name.

The map group name can change
or stay the same.

Can be used by either segmented
or single-segment programs.

Deferred program-to-program
message switch (Method 1)

First program ends with an XFER
statement with a map name
specified. Second program begins
with First Map that matches the
map displayed by the XFER
statement.

Requires the transaction name
and PSB name to change because
different load modules are
involved and the PSB name must
match the load module name.

Same map group must be used
by both programs.

Can be used by either segmented
or single-segment programs.

Deferred program-to-program
switch (Method 2)

CONVERSE with EZESEGTR set
to next transaction name

Permits the transaction name
change within the same
VisualAge Generator program.
The same PSB and map group
must be used by both
transactions.

Can be used only by segmented
programs.

Miscellaneous

Basic checkpoint CALL EZECOMIT

Symbolic checkpoint CALL CSPTDLI service routine Refer to the Programmer’s
Reference document for more
information.

Restart CALL CSPTDLI service routine Refer to the Programmer’s
Reference document for more
information.

LOG call CALL AUDIT service routine Refer to the Programmer’s
Reference document for more
information.

164 VisualAge Generator: Design Guide

Table 16. Comparison of IMS and VisualAge Generator Functions (continued)

IMS Function VisualAge Generator Function Comments

PURG call CLOSE I/O option for printer
map or serial file associated with
an output message queue

For printers and message queues

Asynchronous processing CALL CREATX service routine Refer to the Programmer’s
Reference document for more
information.

Chapter 5. Developing IMS programs 165

166 VisualAge Generator: Design Guide

Chapter 6. Developing CICS programs

This chapter describes design and development considerations for CICS for
MVS/ESA, CICS for VSE/ESA, CICS for OS/2, CICS for AIX, CICS for
Windows NT, and CICS for Solaris programs. You can perform the following
functions using VisualAge Generator to develop CICS programs:
v Define programs for CICS
v Test CICS programs using the VisualAge Generator Developer test facility
v Generate COBOL or C++ programs to run in the CICS environment

The following sections in this manual contain additional information on
developing programs for the CICS environment:
v “Accessing multiple DB2 plans in CICS for MVS/ESA” on page 133
v “DL/I considerations for the CICS environment” on page 108
v “Choosing between CALL and DXFR statements” on page 247
v “Choosing between XFER and DXFR statements” on page 248
v Chapter 4. Developing segmented programs

Refer to the VisualAge Generator documentation for the following information
about CICS:
v Transferring control in the CICS environment in the VisualAge Generator

User’s Guide

v Developing client/server programs in the VisualAge Generator Client/Server
Communications Guide document

v Administering on CICS for MVS/ESA in the VisualAge Generator Server
Guide for MVS, VSE, and VM

v Administering on CICS for VSE/ESA in the VisualAge Generator Server Guide
for MVS, VSE, and VM

v Preparing a generated program to run in CICS for MVS/ESA in the
VisualAge Generator Server Guide for MVS, VSE, and VM

v Preparing a generated program to run in CICS for VSE/ESA in the
VisualAge Generator Server Guide for MVS, VSE, and VM

v Preparing a generated program to run in CICS for OS/2 in the VisualAge
Generator Server Guide for Workstation Platforms

Understanding CICS terminology

Transaction
A unit of processing, consisting of one or more programs.

Task The processing of a transaction for a program user.

© Copyright IBM Corp. 1980, 2001 167

Conversational
The CICS term for running a program in nonsegmented mode. A
conversational program consists of a sequence of alternating entries
and responses between a user and the program. File and database
position and locks, and storage resources are held across the terminal
I/O operation.

Pseudoconversational
The CICS term for running a program in segmented mode. A
pseudoconversational program consists of a series of single CICS tasks
designed to appear to the user as a continuous conversation. File and
database position and locks, and storage resources are released across
the terminal I/O operation. The program must save conversation
status before terminal output and restore it on terminal input.

Communication area (COMMAREA)
A data area used to transfer information between two programs
within a transaction or between two transactions from the same
terminal. When one program transfers to another, the COMMAREA
can be any data area the transferring program can access. The
transferred-from program can both pass data to that area and receive
results in the area. The data area is usually the working storage area
of that program.

Transaction Work Area (TWA)
A fixed length storage area allocated for each transaction task control
area. Generated programs use a 1024 byte section of the TWA. The
offset of the section of bytes is controlled by the /TWAOFF generation
option.

Control Tables (CICS for MVS/ESA, CICS for VSE/ESA, and CICS for OS/2)
or Resource Definitions (CICS for AIX, CICS for Windows NT, CICS for
Solaris)

Definitions of resources used or managed by the CICS system. Each
definition is created by using resource definition online (RDO) or by
coding macros for the tables. The following is a list of the types of
definitions:

Destination Control Table (DCT) or Transient Data Definition
(TDD) Used to define transient data destinations for the system.

File Control Table (FCT) or File Definition (FD)
Used to define files used by the system.

Processing Program Table (PPT) or Program Definition (PD)
Contains information about each program. The VisualAge
Generator Server for MVS, VSE, and VM programs, generated

168 VisualAge Generator: Design Guide

COBOL programs, mapping services programs, map group
format modules, and table programs must be defined in the
PPT.

Program Control Table (PCT) or Transaction Definition (TD)
Defines the transaction identifiers that can be entered by
program users. For each transaction, it also defines the related
program that starts the processing for the transaction.

Resource Control Table (RCT)
Describes the interface between the CICS region and DB2,
including the association of transaction codes to DB2 program
plans. Information on defining this table is located in the
manual on installing DB2 for your version of DB2.

Terminal Control Table (TCT) or Terminal Definition (WD)
Contains descriptions of terminals, their features, and
operating information.

Temporary storage queue
A CICS managed file for storing intermediate results. Records in a
temporary storage queue can be accessed serially or by a relative
record number. Descriptions of the two types of temporary storage
follow:

Auxiliary
A temporary storage queue that is stored on DASD. It can be
recovered and maintained from one CICS run to the next.

Main A temporary storage queue that exists in the CICS address
space. It is not recoverable and is not maintained from one
CICS run to the next.

Transient data queue
A CICS managed file that is serially organized. Descriptions of the
two types of transient data queues follow:

Extrapartition transient data queue
A CICS managed serial file in a system sequential data set or
tape. The file can be an input file or an output file but not
both. Extrapartition queues are not recoverable.

Intrapartition transient data queue
A transient data queue that is accessible to transactions
running in a CICS region. The queue can be used for both
input and output. On MVS, the queue is stored in a VSAM
entry sequenced data set. Intrapartition queues can be
recovered.

Chapter 6. Developing CICS programs 169

File techniques in CICS programs

Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note
that are specific to CICS.

Using temporary storage
In CICS, temporary storage is the primary method for storing data that must
be available to multiple transactions. Data items in temporary storage are
placed in queues with names assigned dynamically by the program storing
the data. Temporary storage is implemented in two different ways: main
temporary storage and auxiliary temporary storage. Main indicates that the
queue is stored in main storage in space taken from the dynamic storage area.
Auxiliary indicates that the queue is written to an entry-sequenced VSAM
data set. CICS maintains an index of items in main storage.

Main and auxiliary storage have the following characteristics:
v Main temporary storage requires more virtual storage than does auxiliary. It

should be used for small queues that have short lifetimes or are accessed
frequently.

v Auxiliary temporary storage is designed for large amounts of data that
must be stored for a long time or are accessed infrequently.

v Queues can be recovered in auxiliary temporary storage.
Note that only one transaction at a time can update a recoverable
temporary storage queue. Keep in mind the probability of enqueues as you
design your program. You should also ensure that there are enough VSAM
strings to eliminate as much contention as possible.

v If a task attempts to write to temporary storage and the space is not
available, CICS suspends the task. The task is not resumed until another
task frees the needed space in main storage or in the VSAM data set.

v VisualAge Generator Server for MVS, VSE, and VM use temporary storage
to save information about the program during a segmented converse or to
save a copy of the map during a transfer using an XFER statement with a
map. You can use the /WORKDB generation option to specify whether the
main or auxiliary temporary storage is to be used.

Accessing temporary storage from VisualAge Generator
A generated program running in the CICS environment can access CICS
temporary storage as a serial or relative record. The following I/O options are
valid when you access temporary storage:
v ADD
v SCAN
v UPDATE
v REPLACE
v DELETE

170 VisualAge Generator: Design Guide

v INQUIRY
v CLOSE

The record file must have the file type specified as TEMPAUX (auxiliary
storage file) or TEMPMAIN (main storage file) when the program is
generated. The system resource name is the queue name associated with the
temporary storage file.

Temporary storage files can be used by only one task at a time. The program
enqueues (ENQ command with the NOSUSPEND option) on resource name
EZETEMP-queuename when the queue is first accessed and dequeues (DEQ
command) when the file is closed (CLOSE I/O option or end of program) or
when recoverable resources are committed. Non-VisualAge Generator
programs that access the same file should enqueue on the same system
resource name while accessing the file.

Records in temporary storage have an additional byte added to the front of
the record that indicates the status of the record:
X‘01‘ indicates that the record has logically been deleted.
X‘00‘ indicates that the record logically exists in the file.

The additional byte is added to the record definition and managed by
VisualAge Generator Server for MVS, VSE, and VM. Do not include the
additional byte in the VisualAge Generator record definition. However, if the
temporary storage file is also used by a non-VisualAge Generator program,
the program must allocate space for the byte, interpret the byte, and update it
as VisualAge Generator does. Processing of the additional byte is as follows:

ADD or REPLACE I/O option
The byte is set to X‘00‘.

DELETE I/O option
The byte is set to X‘01‘ and the record length is set to 1.

SCAN I/O option
Records with a value of X‘01‘ are skipped.

INQUIRY or UPDATE I/O option
Records with a value of X‘01‘ cause an NRF record state to be set.

The CLOSE I/O option does not delete temporary storage files. Use the
EZEPURGE special function word to delete the file. The program enqueues
(ENQ command with the NOSUSPEND option) on resource name
EZETEMP-queuename when EZEPURGE is used and dequeues (DEQ
command) after the queue is deleted.

Chapter 6. Developing CICS programs 171

Using transient data queues
Like temporary storage, intrapartition transient data consists of data queues in
a single data set with an index in main storage. You can use transient data
queues for many of the same purposes as an auxiliary temporary storage
queue with the following differences:
v Transient data queue names must be defined in a DCT or TDD before CICS

is started. Transient data queues do not have the same random access
characteristics as temporary storage queues.

v Transient data queues must be read sequentially, and each item can only be
read once. After a transaction reads an item, the item is removed from the
queue and is not available to any other transaction.

v Items in a transient data queue cannot be changed.
v Transient data queues are always written to a data set.
v Writing items to a transient data queue can initiate a specific transaction

when the trigger level for the queue is reached.
v A transient data queue can be physically or logically recoverable, and you

can specify that you want areas of the entry sequenced data set (ESD) that
have been written and read to be reused for new data.

v Because the commands for intrapartition and extrapartition data sets are the
same, you can switch between the internal CICS facility and an external
data set. You need only change the DCT or the TDD for the data set.

Accessing transient data queues from VisualAge Generator
A generated program running in the CICS environment can access a CICS
transient data queue as a serial record using ADD and SCAN I/O options.
The record file must have the file type specified as TRANSIENT when the
program is generated. The system resource name is the DCT or TDD name for
the queue as it is defined to CICS.

Using spool files in CICS for MVS/ESA
generated programs running in CICS for MVS/ESA can access JES SPOOL
files if the serial or print file is associated with the SPOOL file type at
generation.

The system resource name for a spool file depends on whether the file is an
input or output file. The following format descriptions are for the input and
output files:

Input file
Name in the format userid.class. The userid is a 4- to 8-character
external writer name. CICS requires that the first 4 characters of the
external writer name be the same as the first 4 characters of the CICS
APPLID used to identify the CICS region to ACF/VTAM. Userid can
be specified as an asterisk. Class is a 1-character spool class. Class is
optional and defaults to “A.” The maximum name size is 10 bytes.

172 VisualAge Generator: Design Guide

Output file
Name in the format nodeid.userid.class where nodeid is a 1- to
8-character system node id, userid is a 1- to 8-character system user id
and class is a 1-character spool class. Userid and nodeid can be
specified using an asterisk. Class is optional and defaults to “A.” If
class is not specified, userid is also optional and defaults to the CICS
user id (the same value as stored in EZEUSRID). The maximum name
size is 19 bytes.

Refer to the CICS customization manual for more information.

Do not use spool files as temporary storage files that a program writes to and
then reads. You can specify the same resource name for an output and input
file, but the resource name represents a destination rather than a specific file.
If you write to a spool destination and close the file, the file might not be
immediately available as an input file from that destination and might be
queued behind other files sent to the same destination.

For more information on spool file access in CICS, refer to the CICS
customization manual.

SPOOL files are opened on first access and closed at program end, CLOSE
I/O option for the file, or when recoverable resources are committed
(EZECOMIT, EZEROLLB, end of transaction or segment).

The test facility does not support SPOOL file access.

Using spool files in CICS for VSE/ESA
generated programs running in VSE batch or CICS for VSE/ESA can create
and write to a VSE/POWER queue member by associating a serial or print
file as the SPOOL file type at generation. A serial or print output file
associated as filetype SPOOL can be created and routed to the RDR, LST, or
PUN VSE/POWER queue. generated programs running on CICS for
VSE/ESA can also read from a VSE/POWER queue member by associating a
serial file as the SPOOL file type at generation.

The first ADD to a SPOOL file creates a new VSE/POWER queue member
and adds the data to the beginning of the file. Later ADDs place data
following the previously added data until the file is closed. A CLOSE I/O
option issued for a SPOOL file closes the VSE/POWER queue member.

Once a SPOOL file is closed, a later ADD function to that file creates a new
VSE/POWER queue member. When adding to a SPOOL file that is to be
routed to the LST VSE/POWER queue, you must be aware of the following:
VSE/POWER LST queue members are opened by VisualAge Generator Server
for MVS, VSE, and VM with the ASA option. This specifies that the report is

Chapter 6. Developing CICS programs 173

created using an American National Standard printer-control character at the
beginning of each line of data. If the file is a serial file, you must ensure that
valid carriage control characters are used. If the file is a print file, then
VisualAge Generator Server for MVS, VSE, and VM adds the American
National Standard printer-control characters for you.

SPOOL files are closed at program end, CLOSE I/O option for the file, or
when recoverable resources are committed (EZECOMIT, EZEROLLB, end of
transaction or segment). Any close indicates the end of the file.

Because users have a choice of a VSE/POWER queue destination when
creating an output SPOOL file, they have the ability to create a file that is
placed on the VSE/POWER RDR queue as a batch job. Note that a CLOSE
I/O option issued against a SPOOL file that is a RDR queue member indicates
the end of the file. A subsequent ADD to the RDR queue file creates a new
RDR queue member to be processed as a separate batch job. Also note that
when creating jobs, if a POWER EOJ statement is output, the POWER job is
made available for running before the SPOOL is closed.

SPOOL System Resource Name Format

The system resource name format for an input SPOOL file (CICS for
VSE/ESA only) is userid.class. The userid is a 4- to 8-character external writer
name. CICS requires that the first 4 characters of the external writer name be
the same as the first 4 characters of the CICS APPLID used to identify the
CICS for VSE/ESA partition to ACF/VTAM. The user ID defaults to the
contents of the EZEUSRID special function word if you specify the user ID as
an asterisk (*). Class is a 1-character spool class. Class is optional and, if left
blank, defaults to A. You cannot use an asterisk to default class for an input
SPOOL file. The maximum name size is 10 bytes. The input spool file is read
from the PUN VSE/POWER queue.

The following is the system resource name format for an output SPOOL file:
jobname.queue.class.disp.form.node.userid

with an additional parameter for CICS for VSE/ESA.

The additional parameter on CICS for VSE/ESA is parm, so the following is
the format on CICS for VSE/ESA:
jobname.queue.class.disp.form.node.userid.fcb.copies.parm

The jobname parameter must be specified or explicitly defaulted by an
asterisk (*). All other parameters can be defaulted by an asterisk (*) or by a
blank. However, if a parameter is defaulted by a blank, all subsequent
parameters also default.

174 VisualAge Generator: Design Guide

jobname
1 to 8 characters that define the jobname for the VSE/POWER queue
member. This option is used in all cases except on CICS for VSE/ESA
and not using Report Control Facility (in effect, queue is PUN or LST).
For these two cases, the value in jobname is ignored, and the
VSE/POWER queue member jobname is the CICS for VSE/ESA
program ID. For all other cases, an asterisk (*) in this field defaults to
the VisualAge Generator file name for the record.

queue 3 characters that identify the destination VSE/POWER queue for the
file:
v RDR for job output
v LST for list output
v PUN for punch output
v PRT for list output (using CICS Report Control Facility)

Any other characters for queue cause a spool name error. On CICS for
VSE/ESA, an asterisk (*) or a blank in this field defaults to the PRT
queue. On VSE batch, an asterisk (*) or a blank in this field defaults to
the LST queue. On CICS for VSE/ESA, the CICS Report Control
Facility (RCF) is used for files that specify RDR or PRT in this field.
Basic CICS SPOOL support is used for files that specify PUN or LST
in this field. Therefore, LST and PRT both specify that the file is to be
a member of the VSE/POWER LST queue, but PRT uses RCF
commands while LST does not. If you attempt to use RCF when you
do not have RCF installed on your CICS system, CICS returns an
error condition. This might be an AEY9 transaction abend, a NO
SPOOL condition, or the message ″SPOOLING SYSTEM IS NOT
AVAILABLE″. On VSE batch, the queue PRT can be used, but is
changed to LST by VisualAge Generator Server for MVS, VSE, and
VM.

When queue is PRT or LST, the file is opened by VisualAge Generator
Server for MVS, VSE, and VM with the ASA option. This specifies that
the report is created using an American National Standard
printer-control character at the beginning of each line of data. If you
are using a serial file, you must ensure that valid carriage control
characters are used. If the file is a print file, then VisualAge Generator
Server for MVS, VSE, and VM adds the American National Standard
printer-control characters for you.

class A single character that specifies class. An asterisk (*) or blank in this
field defaults to A.

disp A single character that specifies the VSE/POWER disposition status of
the queue member once it is closed:
v D - process the job and delete it after processing

Chapter 6. Developing CICS programs 175

v H - hold in queue until released
v K - process the job and keep it in the queue after processing
v L - leave in queue until released

Any other characters for queue causes a spool name error. This field is
not applicable when you are on CICS for VSE/ESA and not using the
Report Control Facility (in effect, when you are on CICS for VSE/ESA
and the queue is LST or PUN). An asterisk (*) or blank in this field
defaults to ’D’.

form 4 characters that identify the form number for print output. An
asterisk (*) or a blank in this field defaults to your location’s standard
form. This field is applicable when queue is LST in VSE batch or PRT
in CICS for VSE/ESA and is ignored for all other queues.

node 1 to 8 characters that specify the system node ID. An asterisk (*) or a
blank in this field defaults to the current system node ID.

userid 1 to 8 characters that specify the user ID. An asterisk (*) or a blank in
this field defaults as follows: For CICS for VSE/ESA, if you are signed
on to CICS (either through CSSN or VSE/ESA interactive interface
sign-on panel) then userid defaults to the contents of EZEUSRID. If
you are not signed on to CICS, then userid defaults to ’*’. For VSE
batch, userid defaults to ‘ANY‘’. This default indicates that
VSE/POWER might make the output available to any user that
requests this output.

parm A string of characters to be used to specify output operands for files
on the VSE/POWER LST queue. This option is used only if you are
on CICS for VSE/ESA when the queue is LST, and is ignored for all
other queues. This string is passed to CICS in the OUTDESCR option
of the VSE CICS SPOOLOPEN OUTPUT command. Therefore, you
must specify these characters in the correct format for the OUTDESCR
option: the parameters use the same keywords and values as are used
on the VSE/POWER LST statement for user defined output operands
but the syntax varies slightly. For example if you want to use
FORMDEF FORM1 and PAGEDEF PAGE1, the parm string is
’FORMDEF(FORM1) PAGEDEF(PAGE1)’ and the spool file might
appear as follows:
JOBNAME1.LST.*.*.*.*.*.FORMDEF(FORM1) PAGEDEF(PAGE1)

VisualAge Generator Server for MVS, VSE, and VM handles
calculating and inserting the length area required by CICS for
VSE/ESA at the beginning of the string. The length of the parm string
is variable and depends on the length of the spool file specification up
to this point: the total length of the spool file specification cannot be
over 65 characters.

176 VisualAge Generator: Design Guide

fcbname
1 to 8 characters that specify the name of the form control buffer. This
is the name of the FBC-image phase which VSE/POWER will use for
printing the job output. The name phase must be cataloged in a
sublibrary accessible from the VSE/POWER partition. If omitted, or if
an asterisk (*) is specified, the system default FCB is used.

copies A number from 1 to 255 that specifies the number of copies to be
printed. The default is 1.

Refer to the CICS customization manual for more information.

Do not use spool files as temporary storage files for a program that writes to
a file and then reads the file. You can specify the same resource name for an
output and input file, but the resource name represents a destination rather
than a specific file. If you write to a spool destination and close the file, the
file might not be immediately available as an input file from that destination
and might be queued behind other files sent to the same destination.

For more information on spool file access in CICS, refer to the CICS
customization manual.

SPOOL files are opened on first access and closed at program end, CLOSE
I/O option for the file, or when recoverable resources are committed
(EZECOMIT, EZEROLLB, end of transaction or segment).

The test facility does not support SPOOL file access.

Using VSAM files
The file type VSAM is used generically in CICS environments to refer to a
serial, relative, or indexed file accessed via a CICS FCT or FD. The underlying
file system might be called VSAM (on MVS or VSE, for example) or might
have a different name (Shared File Server on CICS for AIX, for example). The
VisualAge Generator record file name must be associated with a file with type
VSAM when the program is tested or generated. The system resource name is
the FCT name for the data set as it is defined to CICS.

For CICS, the CLOSE I/O option does not actually close the data set. CLOSE
releases record locks and position in the file.

When accessing the same indexed data set using either two file names for the
same physical data set or two file names that access a base data set and its
alternate index, an indefinite deadlock can occur in CICS that does not raise
the DED condition. When the file is not defined with LSRPOOLID equal
NONE in the FCT and one function in a program has performed a SCAN on
a file and another function requests an UPDATE or ADD to the same file (or
alternate index) without ending the SCAN, this deadlock can occur. If you

Chapter 6. Developing CICS programs 177

design this type of file access into your programs, then ensure the
LSRPOOLID is set to NONE in order to avoid the deadlock.

Using OS/2 files
A generated program running in the CICS for OS/2 environment can access
OS/2 files through COBOL READ/WRITE statements. Serial, relative, and
indexed organizations are supported. The record file must have the file type
specified as OS2COBOL during generation. The system resource name is the
OS/2 file name.

File sharing is not supported for COBOL managed files. Whenever a program
opens a file, an exclusive lock is obtained for the file until it is closed.

Using AIX files
A generated program running in the CICS for AIX environment can access
AIX files as serial files. The record file name must be associated with the file
type SEQ during generation. The system resource name is the AIX file name.

File sharing is not supported for AIX files. Whenever a program opens a file,
an exclusive lock is obtained for the file until it is closed.

Using Windows NT files
A generated program running in the CICS for Windows NT environment can
access Windows NT files as serial files. The record file name must be
associated with the file type SEQ during generation. The system resource
name is the Windows NT file name.

File sharing is not supported for Windows NT files. Whenever a program
opens a file, an exclusive lock is obtained for the file until it is closed.

Using Solaris files
A generated program running in the CICS for Solaris environment can access
Solaris files as serial files. The record file name must be associated with the
file type SEQ during generation. The system resource name is the Solaris file
name.

File sharing is not supported for Solaris files. Whenever a program opens a
file, an exclusive lock is obtained for the file until it is closed.

Using EZEDEST
The EZEDEST special function word can be used to dynamically change the
physical file associated with a record at run time by having the program move
the system resource name of the new file to record-name.EZEDEST. The new
system resource is used on the next I/O option associated with the record file.
If another resource is already open for the record, that file is closed before the
new file is accessed. The new resource must have the same file type as the file
type specified for the record file when the program was generated.

178 VisualAge Generator: Design Guide

Printing techniques in CICS

Programs write printer data when the program processes a DISPLAY I/O
option for a printer map. The printer output is in line character format with
American National Standard printer-control characters. The printer data is
written to a logical file named EZEPRINT. For CICS for MVS/ESA, you can
associate the EZEPRINT file with either a transient data queue (type
TRANSIENT) or a JES spool file (type SPOOL) at generation. For CICS for
VSE/ESA, you can associate the EZEPRINT file with either a transient data
queue (type TRANSIENT) or a VSE/POWER file (type SPOOL) at generation.
For CICS for OS/2, you can associate the EZEPRINT file to a serial file (type
OS2COBOL) at generation. For CICS for AIX, CICS for Windows NT, and
CICS for Solaris, you can associate the file EZEPRINT to a transient data
queue (type TRANSIENT) at generation.

Using transient data queues for printer output
If EZEPRINT is associated with a transient data queue at generation, the
system resource name is the destination control table (DCT) name for the
queue. You can define the destination for the queue as a system printer, a
terminal printer, or a data set. If the destination is a terminal printer, you need
to define a transaction that is started when data is written to the queue. The
transaction runs the VisualAge Generator Server for MVS, VSE, and VM
program FZETPRT. FZETPRT reads the queue and writes the data to the
terminal printer identified in the DCT entry.

The program does not actually write the printer output to the transient data
queue until the print file is closed. The printed output is accumulated in
temporary storage. When the file is closed (CLOSE I/O option or end of
transaction), VisualAge Generator Server for MVS, VSE, and VM enqueues on
the transient data queue using the DCT name as the resource name, copies the
printer output to the queue, and dequeues. The maximum number of print
records that can be accumulated in the transient data queue is 32765. Write
your program to close the print file before 32765 records are accumulated.

Using spool files for printer output on CICS for MVS/ESA
If EZEPRINT is associated with the SPOOL file at generation, the system
resource name identifies the node, user or external writer identifier, and class
that you want to spool the file. The name is in the format nodeid.userid.class
where nodeid is a 1- to 8-character system node ID, userid is a 1- to 8-character
system user ID, and class is a 1-character spool class. Userid and nodeid can be
specified as an asterisk. Class is optional and defaults to “A”. If class is not
specified, userid is also optional and defaults to the CICS user id (the same
value as stored in EZEUSRID). The maximum name size is 19 bytes.

Refer to the CICS customization manual for more information.

Chapter 6. Developing CICS programs 179

The spool file is opened as needed on DISPLAY I/O options and closed on
CLOSE I/O options for a printer map, or when recoverable resources are
committed (EZECOMIT, EZEROLLB, or end of transaction or segment).

The test facility does not support spool file access.

Using OS/2 files for printer output
Programs generated for the CICS for OS/2 environment use COBOL I/O (file
type OS2COBOL) for print output. This means you do not need additional
CICS entries as you do for CICS for MVS/ESA and CICS for VSE/ESA. The
default system resource name is LPT1. LPT1 is usually your current printer.
When you want to change the printer destination, you can move the new
printer destination to EZEDESTP.

Using VSE/POWER files for printer output
Printing is initiated when a program processes a DISPLAY I/O option for a
VisualAge Generator-defined printer map or printing can be initiated from a
serial record defined as a SPOOL file when destination queue is the
VSE/POWER LST queue.

When printing is initiated through the DISPLAY of a printer map, the printer
output is routed to the file that is specified as the resource associated to
EZEPRINT. The resource associated to EZEPRINT can be specified at
generation or at run time (using the EZEDESTP special function word).

On CICS for VSE/ESA, if the resource associated to EZEPRINT is a SPOOL
file, it is spooled to VSE/POWER. The user can specify that queue equal LST
or PRT, causing the SPOOL file to become a VSE/POWER LST queue
member. The user can specify the jobname, class, disp, form, node, and userid
of the VSE/POWER LST queue member. These values are specified using the
system resource name format for the spool file.

The CICS Report Controller can be used in conjunction with VisualAge
Generator Server for MVS, VSE, and VM printer functions to provide ease of
handling printed output.

Printing can also be initiated through serial records defined as filetype SPOOL
on CICS for VSE/ESA. The system resource name format for the spool file
enables program users to specify the VSE/POWER queue destination. If the
queue equals LST or PRT, the file becomes a VSE/POWER LST queue
member.

Using EZEDESTP
The EZEDESTP special function word can be used to dynamically change
print file destination (transient data queue or spool file name) at run time by
having the program move the new system resource name for the print file

180 VisualAge Generator: Design Guide

before the DISPLAY option is run. The new resource must have the same file
type as the file type specified for EZEPRINT when the program was
generated.

Multiple print files can be open at the same time. A DISPLAY writes to the
resource named in EZEDESTP at the time the DISPLAY option is run. A
CLOSE for a printer map closes only the resource named in EZEDESTP. Any
files not explicitly closed are closed at the end of the transaction or segment,
or commit point for spool files.

The default value for EZEDESTP is the system resource name specified for the
EZEPRINT file at generation. If you specified the generation option
/PRINTDEST = TRMID and the program was started with a CREATX that
had the recip parameter set to binary zeros and that specified a prid, then
EZEDESTP is initialized to the value in prid. For OS/2, AIX, Windows NT,
HP-UX, and Solaris, you can associate the file EZEPRINT to a serial file (type
SEQ) in the resource association file that is used at runtime.

If the program was started by a non-VisualAge Generator program that
specified the RTERMID on the START command, then EZEDESTP is
initialized to the value specified for RTERMID.

Setting the recovery unit of work

The EZECOMIT service routine is used to indicate that the current recovery
unit of work is complete and a new unit of work is to be started. This routine
issues a CICS SYNCPOINT command.

There is an implicit EZECOMIT upon completion of a program (EZECLOS of
a main program or an XFER statement). However, a CALL EZECOMIT can be
issued at any time during execution of a program. It is advisable to issue a
CALL EZECOMIT from within programs that have UPDATE, REPLACE,
DELETE, or ADD with a logic loop at the completion of a logical unit of work
so that multiple locks are not held by the program.

Special care must be taken to prevent deadlocks when data sets using VSAM
Local Shared Resources (LSR) on CICS are accessed from a generated
program. When using LSR and performing SCAN or SCANBACK processing
on a file, you should issue a CALL EZECOMIT at the completion of a logical
unit of work prior to attempting an operation requiring exclusive use of
resources such as UPDATE, REPLACE, DELETE, or ADD. This releases the
SCAN position on the data set allowing later updates to the data set.

If you are defining DXFR statements to replace previous XFER statements,
note that the recovery unit of work holds across the transfer and you must
define a CALL EZECOMIT if you want to end the unit of work.

Chapter 6. Developing CICS programs 181

A SYNCPOINT occurs on a DXFR statement under the following conditions:
v If a transfer to a non-VisualAge Generator program occurs and a PSB is

scheduled
v If the /SYNCDXFR generation option is specified and a PSB is scheduled
v If /NOSYNCDXFR is specified for the transferring program, and if the

transferring program had scheduled a PSB, and if different PSB names were
identified during program specification for the two programs

On CICS for OS/2 systems, VisualAge Generator Server issues an SQL
COMMIT WORK command before the CICS SYNCPOINT when SQL requests
have been issued in the current unit of work.

Using CICS functions from VisualAge Generator programs

Table 17 lists the CICS functions that you can use in VisualAge Generator
programs. The tables also summarize how to use these functions.

Table 17. CICS functions and how to represent them in VisualAge Generator

CICS Function VisualAge Generator Function Comments

Type of Program

Conversational Nonsegmented execution mode

Pseudoconversational Segmented execution mode /WORKDB generation option
specifies whether to use a main
or auxiliary temporary storage
queue for saving status across the
terminal I/O.

Pseudoconversational, different
transaction names

Segmented CONVERSE with
EZESEGTR set to next transaction
name

/WORKDB generation option
specifies whether to use a main
or auxiliary temporary storage
queue for saving status across the
terminal I/O.

Terminal and Printer Support

Communication with the terminal CONVERSE for input/output,
DISPLAY for output, or an XFER
statement with a map for output
and First Map for input.

System printer support TRANSIENT file type for
EZEPRINT file

Associate DCT for transient data
queue with system printer

Terminal printer support TRANSIENT file type for
EZEPRINT file

Associate DCT for transient data
queue with terminal printer and
trigger FZETPRT transaction to
write to printer.

182 VisualAge Generator: Design Guide

Table 17. CICS functions and how to represent them in VisualAge Generator (continued)

CICS Function VisualAge Generator Function Comments

JES SPOOL file for printer output SPOOL file type for EZEPRINT
file

Resource name identifies node,
spool writer or user identifier,
and class

VSE/POWER SPOOL file for
printer support

SPOOL file type for EZEPRINT
file on VSE environment

Resource name identifies
jobname, queue, class, disp, form,
node, userid, and parm of the
VSE/POWER LST queue
member.

Dynamic printer support EZEDESTP set to alter print
destination for DISPLAY

Database and File Support

DL/I database definition and
access

PSB definition, DL/I segment
definition, and normal I/O
options as provided for DL/I
programs

VisualAge Generator creates
default SSAs and sets the default
PCB number.

PSB Scheduling EZEDLPSB identifies PSB to be
scheduled.

Scheduling is done automatically
prior to the first DL/I operation
in the unit of work.

PSB Termination Done automatically on
EZECOMIT, EZEROLLB, end of
transaction or segment.

A SYNCPOINT occurs on a
DXFR statement under the
following conditions:

If a transfer to a non-VisualAge
Generator program occurs and a
PSB is scheduled

If /SYNCDXFR is specified and a
PSB is scheduled

If /NOSYNCDXFR is specified
for the transferring program, the
transferring program had
scheduled a PSB and different
PSB names were identified for the
two programs during program
specification.

Program restart following
abnormal termination due to
deadlock in queueing on
database records

EZEDLRST Switch indicating whether
program was restarted

DB2 database definition and
access

SQL row definition and normal
I/O options as provided for
relational programs

Chapter 6. Developing CICS programs 183

Table 17. CICS functions and how to represent them in VisualAge Generator (continued)

CICS Function VisualAge Generator Function Comments

VSAM file support VSAM file type for serial,
relative, and indexed files

FCT or FD required for file; FCT
or FD name is system resource
name

Transient data queue support TRANSIENT file type for serial
files

DCT or TDD required for file;
DCT or TDD name is system
resource name

Function shipping for VSAM data
sets and transient data queues

:FILELINK LINKTYPE=REMOTE
in the linkage table for the file
EZELOC special function word

Specifying SYSID when function
shipping.

:FILELINK LINKTYPE=REMOTE
location=EZELOC in the linkage
table entry for the file

Main temporary storage queue
support

TEMPMAIN file type for serial or
relative file

Records have extra control byte
in byte 1

Auxiliary temporary storage
queue support

TEMPAUX file type for serial or
relative file

Records have extra control byte
in byte 1

JES SPOOL file support SPOOL file type for serial file Resource name identifies node
(output only), spool writer or
user identifier, and class

VSE/POWER SPOOL file SPOOL file type for serial file Resource name identifies spool
writer or user identifier and class
(input only); or jobname, queue,
class, disp, form, node, userid,
and parm for a VSE/POWER
RDR, PUN, or LST queue
member (output only).

Program Communications

START transaction An XFER statement without a
map or CALL CREATX

RETURN TRANSID an XFER statement with a map or
a segmented CONVERSE

Function shipping for START
transaction

CALL CREATX;
:CRTXLINK LINKTYPE=REMOTE in
linkage table entry for CREATX
record

Specifying SYSID when function
shipping

:CRTXLINK
LINKTYPE=REMOTE
location=EZELOC in linkage table
entry for CREATX record

XCTL to a program A DXFR statement If a record is specified, it is
transferred in the COMMAREA.

184 VisualAge Generator: Design Guide

Table 17. CICS functions and how to represent them in VisualAge Generator (continued)

CICS Function VisualAge Generator Function Comments

XCTL to a program A DXFR statement with NONCSP
option

If a record is specified, it is
transferred in the COMMAREA.

LINK to program with data in
COMMAREA

CALL program;
:calllink LINKTYPE=CICSLINK
parmform=COMMDATA for
called program in linkage table

Distributed program LINK to
program with data in
COMMAREA

CALL program;
:calllink LINKTYPE=REMOTE
parmform=COMMDATA
for called program in
linkage table

Specifying SYSID on distributed
program LINK

:calllink LINKTYPE=REMOTE
location= system name on
linkage table entry for called
program

Specifying TRANSID on
distributed program LINK

:calllink LINKTYPE=REMOTE
serverid=transaction name on
linkage table entry for called
program

Specifying SYNCONRETURN on
distributed program LINK

:calllink LINKTYPE=REMOTE
luwcontrol=SERVER on linkage
table entry for called program

Miscellaneous

SYNCPOINT CALL EZECOMIT

SYNCPOINT ROLLBACK CALL EZEROLLB

JOURNAL call CALL AUDIT

Communicating between multiple CICS transactions

Programs running in a CICS environment can communicate with other
programs in the same CICS region using shared tables. Tables defined as
shared cause all programs in the same CICS region to use the same copy of
the table until a new copy is requested.

In CICS environments, shared tables can be modified at run time. Because of
this, multiple VisualAge Generator program transactions running in the same
CICS region could use a shared table as a shared communications area.

This use of tables might have synchronization considerations depending on
the specific CICS platform and the way the data is modified in the table.

Chapter 6. Developing CICS programs 185

v For CICS for MVS/ESA and CICS for VSE/ESA, modifications to shared
tables are not synchronized across call statements or I/O options.

v For CICS for OS/2, modifications to shared tables are never synchronized.
If synchronization is required across a call statement or an I/O option, or if
it is required in the CICS for OS/2 environment, an external serialization
method might be needed. For example, a non-VisualAge Generator
program could be called to perform a CICS ENQ function while the table is
being updated.

v For CICS for AIX, CICS for Windows NT, and CICS for Solaris, shared
updateable tables are not supported.

Inter-transaction affinity considerations in a CICSplex

A CICSplex consists of two or more CICS regions that are linked using CICS
intercommunication facilities. A CICS function called dynamic transaction
routing supports load balancing by dynamically routing a transaction from a
terminal to any of the regions that have the resources to process the
transaction.

Inter-transaction affinity occurs when two or more CICS transactions pass
information to one another in a way that requires the transactions to run in
the same CICS region. When inter-transaction affinity exists, you must define
the transactions to CICS so that they are routed to the same region.

The following topics describe transaction routing considerations for CICS
programs generated using VisualAge Generator. For a more complete
discussion of transaction routing refer to Dynamic Routing in a CICSplex,
SC33-1012

Segmented programs
Segmented programs use a temporary storage queue (the work database) for
saving the state of the program conversation across a CONVERSE or XFER
with MAP function. To ensure that all segments of the conversation run in the
same region, specify Pseudo-conversation affinity lifetime with LUname affinity
for the affinity group to which the transaction belongs.

Sharing VisualAge Generator tables for update
Programs can update shared VisualAge Generator tables in the CICS
environment. The shared table is stored in getmained CICS storage; any
updates are accessible only to programs running in the same region. Any
transactions dependent on passing information through a shared table must
be routed to the same region.

Temporary storage queues
VisualAge Generator support for temporary storage queues requires that
access to the queues be serialized. The generated program does this by using

186 VisualAge Generator: Design Guide

CICS ENQ and DEQ with the queue name as the resource name. ENQ and
DEQ are effective only within the scope of a single region.

To ensure that access to the queue is serialized, do one of the following:
v Define the temporary storage queue as a local queue.
v Route all transactions that access the queue to same region.
v Use a queue naming convention that includes the terminal ID from

EZELTERM as part of the queue name so that a different queue is used for
each terminal. Since only one transaction is active from any one terminal at
a time, access to the queue is serialized.

Refer to the CICS manual for more information on using temporary storage
queues with transaction routing.

Using a transient data queue for printed output
Printed output can be routed to a transient data queue. the program
accumulates the printed output in a temporary storage queue. When the
output is complete, the program copies the output to the transient data queue,
using ENQ/DEQ to ensure that output from multiple transactions in the same
system is not interspersed.

Because ENQ/DEQ are effective only within a region, define the queue as a
local queue to prevent interspersed output from multiple regions.

Also if you’ve defined the queue to trigger the FZETPRT terminal printing
program, define the transaction for FZETPRT as a local transaction in the
region where the queue resides.

Error destination queue
Runtime error messages from VisualAge Generator host services can be
directed to a transient data queue called the error destination queue. Define
the queue as a local queue to each region in which a VisualAge Generator
program can run to ensure that messages related to a single error are not
interspersed with messages related to another error occurring at the same
time in another region.

Disable on run unit failure
One of the options that can be specified using the diagnostic control utility is
disabling a transaction whenever a run-unit error is detected for that
transaction.

The disable action is implemented using the CICS SET function and is
effective only for the region in which the error occurred.

CICS utility function region affinity
The VisualAge Generator Server for MVS, VSE, and VM CICS utilities
perform functions that have region affinity; therefore, you must ensure that

Chapter 6. Developing CICS programs 187

the transaction is routed to the desired region based on user identifier, LU
name, or alternate transaction name. Table 18 lists the utilities, default
transaction identifier, and function description.

Table 18. Region Dependent Utilities

Utility Default ID Function Description

CICS Utilities Menu ELAM Menu for selecting the other utilities
(except trace).

New Copy ELAN Loads new copy of program, map group,
or table in region

Diagnostic Message Print ELAU Prints error message queue associated
with the region.

Diagnostic Control Options ELAC Sets error reporting options for VisualAge
Generator Server for MVS, VSE, and VM.
Is region dependent if option file (FCT
name ELACFIL) is defined as local to
each region; is not region dependent if
ELACFIL is defined as a shared file
accessed through a file owning region.

Trace ELAZ Trace options set by this utility are saved
in shared getmained storage in the region
and are effective only in the region in
which the ELAZ transaction ran.

188 VisualAge Generator: Design Guide

Chapter 7. Developing programs for OS/400

This chapter describes the general considerations for developing programs
targeted for the OS/400 environment.

Defining program native database files

The following sections contain considerations for preparing your VisualAge
Generator programs and data for use in the OS/400 environment.

VisualAge Generator record organization-to-file conversion
VisualAge Generator programs use the OS/400 file system to implement
VisualAge Generator I/O options for file I/O operations. The OS/400 file
system consists of two types of files: physical and logical. Physical files contain
the actual data stored on the system. Logical files present a based or
reorganized view of data in a physical file. Table 19 shows the VisualAge
Generator record organizations that support file I/O operations and the
recommended OS/400 file types. You should select the VisualAge Generator
record organization that best fits the program being developed. Refer to the
AS/400 Data Management , SC41-3710 document for details on using physical
and logical files.

Table 19. VisualAge Generator Record Organizations and Recommended OS/400 File
Types

VisualAge Generator Record
Organization OS/400 File Type

Indexed Physical file or logical file

Indexed alternate specification Logical file

Relative Physical file

Serial Physical file

Creating and naming files
VisualAge Generator requires that all files accessed by the program exist on
the system before using VisualAge Generator functions for I/O operations on
the files. The file I/O functions do not create a file for the program user.

You specify the names of files used by a program as system resource names
during generation. The default system resource name for a file is the name
you assigned during record definition. You can change the default name to
some other name. You can also explicitly qualify a file name by adding a
library name, using the form library/filename. If you do not explicitly qualify a

© Copyright IBM Corp. 1980, 2001 189

file name, VisualAge Generator searches for the file in the library list (*LIBL)
when the program runs on the OS/400 system.

To create a physical file, use the create physical file (CRTPF) command. You
can create physical files having the relative and serial VisualAge Generator
record organizations with or without data description specifications (DDS)
information. Files with these organizations are arrival sequenced files. If you do
not use the DDS source information to create these files, you must specify the
record length for the file using the RCDLEN parameter on the CRTPF
command.

Use the DDS source information provided by VisualAge Generator to create
physical and logical files that have the indexed and indexed alternate
specification VisualAge Generator record organizations. Use the create
physical files CRTPF command to create physical files and the create logical
file CRTLF command to create logical files. Files having these record
organizations are considered keyed sequenced files. The DDS source information
provides the means for specifying the key fields.

Note: You can use other methods for creating files, such as the Interactive
Data Definition Utility and SQL. However, because DDS is the most
commonly used method, it is used in this chapter.

Sharing database files
VisualAge Generator programs can share a file’s record position or pointer
with another program or program in the same job. Use the SHARE(*YES)
parameter on the OS/400 CREATE, CHANGE, or OVERRIDE file commands
for file sharing. SHARE(*NO) maintains the independence of a file’s record
position for each program accessing the file.

Relative record file initialization
Initialize file members that have the relative VisualAge Generator record
organization before attempting to use them. Relative record files are
represented on the OS/400 system by physical files whose records are
retrieved and manipulated by a relative record number. When you update or
add a record to a relative file member, a place must exist in the member for
the record. For an update, that place must be a valid, existing record; for a
new record, that place must be a deleted record. Use the Initialize Physical
File Member (INZPFM) command to initialize records for relative file
members.

Record lock considerations
The VisualAge Generator UPDATE I/O option reads a record from a file and
locks the record as exclusive allow read. This means that no other user can
update this record until the user who locked the record releases the record

190 VisualAge Generator: Design Guide

with an I/O option other than UPDATE. If one user attempts to update a
record that is already held for update by another user, a VisualAge Generator
LOK error occurs.

Using data description specifications generated by VisualAge Generator
During generation, VisualAge Generator can generate DDS information from
VisualAge Generator record definitions that are used for file I/O operations.

The DDS information generated by VisualAge Generator is useful only to an
OS/400 system administrator or program developer. The system administrator
can use the DDS source members, or modified versions of them, to create the
files that do not already exist on the OS/400 system. Using the DDS source
information to create the files qualifies these files for OS/400 data
management functions, such as specifying key fields, unique keys, and logical
files.

You are not required to use the DDS source information to create files because
VisualAge Generator does not require that the files a program accesses be
externally described. VisualAge Generator relies on the record definition,
which is built into the *PGM object, for the structure of a record. However,
using the DDS information guarantees agreement between the program’s view
of the record structure and the record data stored on the OS/400 system.

Restrictions on logical files
VisualAge Generator supports simple logical files that use only one record
format. The DDS source information specifies only one file on the PFILE
keyword. Refer to the Data Description Specifications Reference, SC41-3712
document for complete details on the DDS keywords and their usages.

Considerations for native database commitment control

OS/400 Commitment Control Services enables more than one program to
access the same data at the same time and prevents data inconsistency on the
OS/400 system.

You can specify how a VisualAge Generator program uses OS/400
Commitment Control Services at the following times:
v Program run time
v Program development (within VisualAge Generator)
v Program generation, if you specify the /COMMIT option in the resource

association file, the file is under commitment control when it is opened. The
/NOCOMMIT option does not place the file under commitment control.

Program development considerations
During program development, you can specify commitment control explicitly
in the program. However, be aware that VisualAge Generator Server for
AS/400 performs some implicit commitment control when the program runs.

Chapter 7. Developing programs for OS/400 191

Explicit commitment control
While defining a program with VisualAge Generator Developer, you can
specify explicit logic to issue commits and rollbacks for both OS/400 database
files (relative record, sequential, and indexed) and SQL tables. This logic
consists of calls to the special routines EZECOMIT and EZEROLLB. The
developer can also set special function word EZECNVCM to the value 1,
which causes changes to be committed when any CONVERSE function
presents a map on a workstation.

Any explicit use of commitment control ends the current unit of recovery and
begins another. OS/400 Commitment Control Services releases any record and
file locks being held when changes are committed or rolled back.

Implicit commitment control
At certain times, VisualAge Generator Server for AS/400 automatically
performs commitment control. This implicit commitment control is
independent of any instances of explicit commitment control. As you design
your programs, you can exploit implicit commitment control and avoid using
explicit commitment control. Table 20 summarizes the implicit commitment
control processing that VisualAge Generator Server for AS/400 does.

Table 20. Implicit COMMIT, ROLLBACK, and SQL Close Cursor Processing

Cause of Program Exit Implicit Action MAIN Program
CALLED
Program

XFER EZECOMIT yes N/A

SQL Close
Cursor

yes N/A

DXFR EZECOMIT no N/A

SQL Close
Cursor

yes N/A

EZECLOS EZECOMIT yes no

SQL Close
Cursor

yes X

error EZEROLLB yes no

SQL Close
Cursor

yes X

Legend:
N/A Not applicable
X If the program started the run unit, yes.

192 VisualAge Generator: Design Guide

Program runtime considerations
The following sections describe the considerations to keep in mind during
program run time.

Starting and ending commitment control cycles
To use OS/400 Commitment Control Services, you must explicitly start and
end a commitment control cycle using the start commitment control
(STRCMTCTL) command to start the commitment control and the end
commitment control (ENDCMTCTL) command to end the commitment
control. VisualAge Generator Server for AS/400 does not implicitly start or
end commitment control cycles. However, DB2/400 implicitly starts
commitment control automatically for programs that use SQL I/O options.
After commitment control is started for the job, both native database I/O and
SQL I/O can use the common commitment control OS/400 provides.

If necessary, you can change the commitment control for an SQL program in
the templates. The COMMIT parameter on the CRTSQLCBLI command sets
the level of commitment control for SQL statements in a program. The
LCKLVL parameter on the STRCMTCTL command does not affect programs
that use only SQL I/O operations.

If no commitment control cycle is active and the program attempts to open a
file requiring commitment control, the program ends with an error condition.
Messages in the job log explain the exact nature of the error. The program
ends abnormally under these conditions because it might attempt to explicitly
commit changes to a file, but that is possible only with an active commitment
control cycle.

Refer to the AS/400 Data Management , SC41-3710 and AS/400 ILE COBOL/400
Programmer’s Guide SC09-1522 documents for more information on OS/400
commitment control services.

Considerations for using DB2/400 databases

This section describes the considerations to keep in mind when you use the
DB2/400 database with VisualAge Generator. The following items require
special considerations when you use DB2/400 with VisualAge Generator
programs:
v DB2/400 DATE and TIMESTMP columns
v Recovery and database integrity support
v ANSI SQL support

Refer to the VisualAge Generator Generation Guide document for information on
generating VisualAge Generator DB2 programs.

Chapter 7. Developing programs for OS/400 193

Using DATE, TIME, and TIMESTMP SQL columns
DATE and TIMESTMP columns in the database are associated with character
(CHA) data items in record and map definitions. The values are in character
format with separator characters when they are processed in a program.
“Processed” means that either the value was received from the Database
Manager product or that the value was set by a program statement or map
edit. You code VisualAge Generator statements to set a date value using either
a hard-coded, fixed format or the default date format. This section explains
how the default format mask of a date value is established by VisualAge
Generator Server for AS/400 and how to ensure that it matches the format
mask expected or received by DB2/400.

Note: On other VisualAge Generator Server for MVS, VSE, and VM
platforms, such as MVS, setting a date value is less of a concern
because both VisualAge Generator Server for MVS, VSE, and VM and
the Database Manager product extract the default date format
dynamically during run time. On OS/400 however, DB2/400 establishes
the date format at program precompile time whereas VisualAge
Generator Server for AS/400 still establishes its default data format
dynamically at run time. The two products must use the same date
format for the SQL statements using DATE and TIMESTMP host
variables to operate successfully.

The VisualAge Generator language date edit values SYSGREGRN and
SYSJULIAN for map fields and the special function word EZEDTELC (long
date in character format) produce date values using the VisualAge Generator
default date format mask. VisualAge Generator Server for AS/400 establishes
the default date format mask at run time by deriving it from the OS/400 job
attributes of Date format and Date separator, when the first VisualAge
Generator run unit for the job is started. You can control the default by
manipulating the job attribute before the first VisualAge Generator run unit
starts. (See OS/400 command CHGJOB, parameters DATFMT and DATSEP,
for valid values.) VisualAge Generator Server for AS/400 expands the OS/400
2-digit year format to a 4-digit year format.

DB2/400 establishes the date and time format for each program during SQL
precompile of the program. (See OS/400 command CRTSQLCBLI, parameters
DATFMT and DATSEP, for valid values.) The default is the date format and
separator value obtained from the attributes of the job in which the
precompile is performed.

Recovery and database integrity considerations
VisualAge Generator programs can use all the recovery and data integrity
features that DB2/400 provides. Most commitment control issues that affect
DB2/400 programs are the same as those for native databases. This section
discusses some differences.

194 VisualAge Generator: Design Guide

DB2/400 databases are recoverable resources. If your program makes changes
to a DB2/400 table and the program was prepared with commitment control
(COMMIT parameter not equal to *NONE on the CRTSQLCBLI (Create SQL
ILE COBOL object) command, the changes are committed to the database. The
changes are committed to the database when the job or the activation group
ends or when an implicit or explicit VisualAge Generator commit occurs. For
more information on implicit and explicit commitment control, see
“Considerations for native database commitment control” on page 191.

The CMTSCOPE (commit scope) parameter on the STRCMTCTL (start
commitment control) command defines the scope of commitment control to be
*JOB or *ACTGRP. DB2/400, when the first SQL statement runs, issues the
STRCMTCTL command if it has not already been issued. Likewise, when the
commit scope is complete, DB2/400 issues the ENDCMTCTL (end
commitment control) command. If your program ends abnormally before the
end of the logical unit work (LUW) or before an explicit VisualAge Generator
rollback is requested, all changes that were made since the beginning of the
LUW is backed out.

Commitment control for VisualAge Generator DB2/400 programs is controlled
through the COMMIT parameter on the CRTSQLCBLI command. If *NONE is
specified, the program does not run under commitment control. *NONE must
be specified if the VisualAge Generator program issues the SQL DROP
COLLECTION, GRANT, or REVOKE commands in an SQLEXEC I/O option.
The default value for the COMMIT parameter in the VisualAge Generator
DB2/400 preparation template (EFK24PSM.TPL) is *CHG. You can modify
EFK24PSM.TPL so that a template symbolic parameter (sysparm) establishes
the commit value during VisualAge Generator program generation. This
template modification enables easy variations of the COMMIT value among
multiple programs. Refer to the VisualAge Generator Generation Guide document
for information on modifying templates. Commitment control using DB2/400
is no different from commitment control using native database files except as
noted here.

ANSI SQL support
Before running a program, the SQL statements need to be prepared and
analyzed. DB2/400 can analyze SQL statements to verify that they meet the
ANSI SQL standards. To use ANSI SQL in a VisualAge Generator DB2/400
program, specify the /ANSISQL generation option so that any SQL statements
in the program are generated to the ANSI SQL format. If you use ANSI SQL,
tailor the DB2/400 VisualAge Generator template (EFK24PSM) so that the
FLAGSTD parameter on the CRTSQLCBLI command is *ANS.

Chapter 7. Developing programs for OS/400 195

Compatibility considerations

This section describes compatibility considerations for preparing programs to
run in an OS/400 environment.

CALL statement error handling
You can receive the escape message sent by a CALLED program by using the
REPLY option on the CALL statement. The escape message ID is placed in the
special function word EZERT8. The escape message ID is 7 alphanumeric
characters, such as the following:

aaannnn

Where aaa is usually a message ID prefix, which are alphabetic characters and
nnnn is a character value consisting of hexadecimal digits in the range of 0
through 9 and A through F.

Calls to server programs follow the same EZERT8 values as on other server
program platforms.

Variable length records
VisualAge Generator does not support variable length records for OS/400.

DBCS data type
VisualAge Generator supports the DBCS data type. The MIX data type
requires program-programmer management of shift-out and shift-in DBCS
data delimiters when setting or referencing values of MIX data items.

DBCS customers using RISC hardware can use OS/400 Version 3.6 or later.
DBCS customers using non-RISC hardware must use OS/400 Version 3.2 or
later.

Message tables
VisualAge Generator message tables are implemented as OS/400 message
files. Enter GO CMDMSGF from any OS/400 system command line for a
menu of message file commands.

As a result of the message table to message file conversion, VisualAge
Generator programs generated for OS/400 cannot reference message tables
using VisualAge Generator statements and expressions that operate on table
row data. Examples of such statements are MOVE, FIND, RETR, conditional
expressions, and assignment operands or receivers.

Serial file I/O
Serial files in VisualAge Generator-generated programs are opened for write
access in one of two methods (OUTPUT or EXTEND), which affect the
disposition of the existing file. OUTPUT and EXTEND are COBOL OPEN verb

196 VisualAge Generator: Design Guide

phrases. The phrase produced in the OPEN statement for a particular file
depends on the VisualAge Generator resource association file type value at
generation time.

VisualAge Generator supports two file type values, VSAM and SEQ. For serial
files, you can use either VSAM or SEQ file types. The VSAM file type
produces the EXTEND phrase. The EXTEND phrase writes append records to
the end of the existing file. The SEQ file type produces the OUTPUT phrase.
The OUTPUT phrase clears the file and writing begins at the first record
position.

OS/400 and COBOL/400 attempt to manage conflicting open methods when a
file is already open in the job, taking into consideration its SHARE status.
Refer to the ILE COBOL/400 Programmer’s Guide , SC09-1522 document and the
COBOL runtime messages for more information on serial files.

OS/400 file attribute SHARE
The following table depicts program behavior for specific and general file
operations depending on the OS/400 file SHARE attribute.

Table 21. Program Behavior for the SHARE Attribute File Operations

Subject SHARE(*YES) SHARE(*NO)

Record position within a
file.

Record position is shared
between programs.

Record position is
independent between
programs.

CLOSE I/O option.
(implemented as COBOL
CLOSE statement)

Virtual or absolute
depending on whether the
file was already open when
the program was started.

Absolute CLOSE of a file.
Record position is lost.
(Poor performer)

First use of a VisualAge
Generator file I/O option
on each file. (implemented
in part as COBOL OPEN
statement with INPUT,
OUTPUT, or
INPUT-OUTPUT phrases,
depending on use of other
VisualAge Generator I/O
Options for same file in the
program)

v Must be done in each
program that uses the
file.

v Run time hard error if
the OPEN phrase is not
compatible with the file
open type of the program
that actually opened the
file. (If EZEFEC is 1, then
program logic will
handle the error).

v Must be done in each
program that uses the
file.

v File OPEN phrases are
independent in each
program, so they do not
have to conform to each
other.

Chapter 7. Developing programs for OS/400 197

Table 21. Program Behavior for the SHARE Attribute File Operations (continued)

Subject SHARE(*YES) SHARE(*NO)

EZECLOS or anytime a
program ends.

v Main VisualAge
Generator run unit
program. All files in the
run unit are CLOSED,
but the effect is virtual or
absolute depending on
whether the file was
already open when the
program was started.

v Subordinate VisualAge
Generator run unit
program. File is kept
OPEN, and the record
position is saved, if the
program is restarted in
the current VisualAge
Generator run unit.

v Main VisualAge
Generator run unit
program. All files in the
run unit are CLOSED,
and the effect is absolute.

v Subordinate VisualAge
Generator run unit
program. File is kept
OPEN, and the record
position is saved, if the
program is restarted in
the current VisualAge
Generator run unit.

File I/O status in EZERT8
EZERT8 contains the file I/O status code. Use the /SYSCODES generation
option to control the codes that are returned for file I/O errors. The
/SYSCODES generation option value does not affect the use of VisualAge
Generator mnemonics.
v If /NOSYSCODES is specified, EZERT8 contains CSP/AE system

independent codes.
v If /SYSCODES is specified, EZERT8 contains system dependent access

method return codes. For the VisualAge Generator COBOL/400 system,
that is the COBOL file status key value. Refer to the ILE COBOL/400
Reference , SC09-1523 document for information on the COBOL File Status
Key values. Refer to the VisualAge Generator Developer online help system
for details on the format of EZERT8.

v By contrast, EZERT8 on CSP/AE unconditionally contains the message ID
sent from the I/O routine that detected the OS/400 file I/O error.

The following table shows the correspondence between status key values,
mnemonics and EZERT8. There is a many-to-1 correspondence between the
file status key values and EZERT8.

198 VisualAge Generator: Design Guide

Table 22. Correspondence between Status Key Values, Mnemonics, and EZERT8

EZERT8 - /SYSCODES,
COBOL File Status Key
values

VisualAge Generator
Mnemonics EZERT8 - /NOSYSCODES

00,05,07 NORMAL 000

02 DUP, ERR 103

04 (Var record format) NORMAL 000

04 FMT, ERR, HRD 220

10,14,46 EOF, ERR 102

22 UNQ, ERR 206

23 (START) EOF, ERR 102

23 NRF, ERR 205

24,34 (access method not
relative or relative key not
0)

FUL, ERR, HRD 25A

35 FNF, ERR, HRD 251

38 FNA, ERR, HRD 218

39,95 FMT, ERR 220

9D LOK, ERR, HRD 381

For all other file status codes, EZERT8 is set based on the type of request as
shown in the following table:

Type of Request
VisualAge Generator
Mnemonics EZERT8 - /NOSYSCODES

OPEN ERR, HRD 500

CLOSE, UNLOCK ERR, HRD 989

READ, START ERR, HRD 987

WRITE ERR, HRD 988

UNQ and DUP I/O error mnemonic enablement
The use of either UNQ or the DUP file I/O error mnemonic requires special
action to ensure predictable results. Ignoring this action and its consideration
causes the test of the expression using these mnemonics to yield a result that
is inconsistent with the actual file I/O error status.

For VisualAge Generator to enable detection of a duplicate record key when
writing to an indexed file, the file (or its associated physical file if the file is

Chapter 7. Developing programs for OS/400 199

logical) must be defined with the OS/400 data description specification (DDS)
language with the UNIQUE DDS file level keyword.

To enable detection of duplicate record keys when reading an indexed file, use
a VisualAge Generator resource association file during program generation.
Refer to the VisualAge Generator Generation Guide document for more
information on the resource association file and its contents.

Considerations for VisualAge Generator map definition and runtime behavior

This section contains considerations for map definition for the OS/400
environment. On 5250 workstation devices, the limitations of a map are based
on the minimum control unit capability. VisualAge Generator issues a warning
if you generate a map that exceeds the capability of a minimum control unit.

Maps displayed on 5250 devices
The following compatibility considerations apply for maps displayed on
devices, including double-byte character set (DBCS) devices, in the 5250
workstation family.
v Row 1 column 1 on the screen cannot contain data. It must be blank or

contain a field attribute byte. Maps generated for the 5250 workstation
cannot use row 1 column 1 as part of an input field.

v The number of variable fields allowed on the screen varies with the control
unit to which the display device is attached. The limitation is a maximum
of 256 input fields for 5250 control units.

v The following device types for maps are recommended for the OS/400
environment. Other device types that are 27 x 132 or less dimensionally are
compatible. The device type that best fits the physical device is used. When
a map group is defined for the OS/400 environment, include the
appropriate choices from this list during device selection.

Device type Characteristics

ANY-2D For 24 × 80 screens

ANY-5D For 27 × 132 screens

PRINTER For single-byte printer maps

5550D For maps containing DBCS variable fields

5550P For DBCS printer maps

Maps containing DBCS fields
The following compatibility considerations apply to maps containing DBCS
fields:

200 VisualAge Generator: Design Guide

v OS/400 DBCS workstations do not display double-byte characters that start
in column 80. Instead, a single-byte X is displayed in column 80 and in
column 1 of the next line. To avoid this effect, do not define double-byte
fields that span lines.

v When field outlining is specified for a field on a map, no data other than
blanks can be displayed in the first 3 bytes on the map (row 1 columns 1
through 3). In addition, row 1 column 4 can only be a blank or an attribute
byte.

5250 family keyboard considerations
The following table shows the mapping used for 5250 workstation keys when
a VisualAge Generator program runs. All other keys (cursor movement, Enter,
and Reset) have the same effect as in System/370 environments.

Table 23. VisualAge Generator Functions on OS/400 5250 Workstation

OS/400 5250 Workstation Key VisualAge Generator Function

Help (operator error mode) Displays Help for map

Help (not operator error mode) Displays ‘Help Not Available’

Print Prints screen to local printer

Attn Trace function or active attention handler

Clear Clears screen

Rec Backspace Clears screen

Field Exit (Newline with Erase EOF) Sets modified data tag (MDT)

Roll Up or Page Down¹ VisualAge Generator PA1 definition

Roll Down or Page Up¹ VisualAge Generator PA2 definition

F1 through F12 VisualAge Generator PF1 through PF12

F13 through F24 VisualAge Generator PF13 through PF24

¹: You can reverse the meaning of the roll keys in your online user profile. If you do
reverse the meaning of the roll keys, then Roll Down becomes Page Down, and Roll
Up becomes Page Up, which is the opposite of the entries in the table.

Print maps and spooled output
In VisualAge Generator, a printer map is intended for printer output. The
printer map represents the physical layout of associated printed output for file
name EZEPRINT.

The VisualAge Generator Server for AS/400 printer file QVGNPRNT formats
the output of VisualAge Generator printer maps. The default printer file
QVGNPRNT is shipped with VisualAge Generator Server for AS/400.

The default characteristics for the QVGNPRNT printer file are as follows:

Chapter 7. Developing programs for OS/400 201

Length
Lines per page is 66

Width Positions per line is 132

Control character
*FCFC

Refer to the VisualAge Generator Generation Guide for information on resource
association files.

Performance considerations

This section describes considerations that affect the performance of VisualAge
Generator programs at run time. This section familiarizes you with the
attributes and concepts of various VisualAge Generator program
implementations so you can apply general OS/400 recommendations that
address performance tuning.

OS/400 system and program performance tuning is no different for VisualAge
Generator programs and related objects than for other objects of the same
type on OS/400. Refer to the AS/400 LPS: Performance Tools/400 , GC41-3055
document for more information on OS/400 system tuning tasks and issues.

VisualAge Generator program linkage on CALL statements
The default VisualAge Generator program linkage for targets of a CALL
statement is DYNAMIC. This means that the COBOL statement produced to
affect the CALL is a CALL identifier type of statement. This is the opposite of
a CALL literal type of statement, which associates a STATIC program linkage
type in VisualAge Generator. For the best runtime performance on a CALL
statement, use the VisualAge Generator STATIC program linkage type with
COBOL/400 because it resolves to the target program object, sets a system
pointer, and continues to use that system pointer throughout the duration of
the COBOL run unit.

The VisualAge Generator DYNAMIC program linkage type is implemented so
that for each CALL statement, COBOL/400 resolves to the target program
object. To eliminate the need to constantly resolve objects, use the VisualAge
Generator STATIC program linkage type. Do this at generation time by
naming a linkage table file (/LINKAGE=) and by using the calllink tag within
the file so that the CALL target is handled as specified by the STATIC
program linkage type.

An example of a linkage table file that affects all program targets named in
generated programs by changing the VisualAge Generator default from
DYNAMIC to STATIC is as follows:

:CALLLINK applname=* linktype=STATIC.

202 VisualAge Generator: Design Guide

Refer to the VisualAge Generator Client/Server Communications Guide document
for more information on creating and using linkage table files.

Loading tables and map groups
How you load tables and map groups can affect the performance of your
VisualAge Generator programs. You can improve the performance for loading
tables and map groups by storing the binary tables and map groups in
Integrated File System (IFS) stream files rather than in database files:
QVGNTAB (for tables) and QVGNMAPG (for map groups).

Use the CPYTOSTMF (Copy to Stream File) command to copy the binary table
and map group from the database file to the stream file. The stream file must
reside in the /QVGN subdirectory in the root file system; otherwise,
VisualAge Generator Server for AS/400 cannot find the table and map group
as stream files. The /QVGN subdirectory is automatically created at
installation.

It is recommended that you only copy VisualAge Generator tables and map
groups to the IFS stream files after the VisualAge Generator program system
is placed into production. Programs must be in production because the
subdirectories in the IFS stream files, in this case /QVGN (which contains the
tables and map groups), are scoped to all OS/400 jobs on the system. Testing
of programs that use tables and map groups stored in the IFS stream files
always access the stream file instance of the tables and map groups rather
than the developer copy of the tables and map groups in database files
*LIBL/QVGNTAB and *LIBL/QVGNMAPG.

Refer to the AS/400 Integrated File System Introduction SC41-3711 document for
more information on the integrated file system. IFS system commands can be
found by typing GO DATA on an OS/400 command line.

Note: All binary image table and map group files that you want copied to
stream files reside in the same root subdirectory /QVGN. Ensure that
all tables and map groups have unique names. Tables and map groups
that occur within the ENVY package/application have unique names,
but table and map group names from various library sources might
collide.

If you do not copy tables and map groups into stream files in the /QVGN
root subdirectory, loading tables and map groups can be slower. The binary
table and map group files are stored in the native library system as database
files in QVGNTAB and QVGNMAPG. This occurs automatically during
preparation.

You can use any combination of tables and map groups in stream files and
database files. To load tables and map groups, VisualAge Generator Server for

Chapter 7. Developing programs for OS/400 203

AS/400 first searches the /QVGN subdirectory for the table or map group. If
the table or map group does not exist as a stream file, VisualAge Generator
Server for AS/400 loads the table and map group from the *LIBL/QVGNTAB
and *LIB/QVGNMAPG database files.

Using positive sign values for PACK and NUM Data types
VisualAge Generator has two sets of “packed” and “numeric” data types. The
difference between the sets is the positive sign values of F or C.

Program developers can control the ILE COBOL/400 positive sign value
stored in packed and numeric data items via the OS/400 option /POSSIGN=F
or /POSSIGN=C. ILE COBOL sets the positive sign value. VisualAge
Generator switches a positive sign value from F to C or from C to F,
depending on the data item type and /POSSIGN= generation values. To
switch a sign value, VisualAge Generator programs perform an ILE procedure
call to VisualAge Generator Server for AS/400. To minimize the calls to
VisualAge Generator Server for AS/400 and improve runtime performance,
generate your programs so that the most used data types receive an ILE
COBOL/400 sign value that is right for the VisualAge Generator positive sign.

The following table shows the affect of the /POSSIGN= generation value on
ILE COBOL/400 positive sign values, VisualAge Generator data types, and
VisualAge Generator sign values:

VisualAge Generator Data
Type

VisualAge Generator
Positive Sign Value

ILE
COBOL/400
Positive Sign

ILE
COBOL/400
Data Type

PACK C /POSSIGN=
value

S9 COMP-3

NUMC C /POSSIGN=
value

S9 USAGE
DISPLAY

PACF F /POSSIGN=
value

S9 COMP-3

NUM F /POSSIGN=
value

S9 USAGE
DISPLAY

Security considerations

This section describes the considerations for controlling access to programs
and administration activities. Object security for VisualAge Generator
programs and related objects on OS/400 is no different from security for any
other objects on the OS/400 environment.

204 VisualAge Generator: Design Guide

Use the standard object authority management commands on OS/400 to
manage access to VisualAge Generator programs and related parts. These
commands control user access to programs and activities. The commands
include the following:
GRTOBJAUT

To grant the user object authority
RVKOBJAUT

To revoke the user’s object authority
EDTOBJAUT

To edit the user’s object authority
CHGOBJOWN

To change the object’s owner

Refer to the AS/400 Security - Basic SC41-3301 document for more information
on system and object access management.

Chapter 7. Developing programs for OS/400 205

206 VisualAge Generator: Design Guide

Chapter 8. Allocating and associating files

Whenever you generate a program that uses serial, relative, indexed, or print
files, you may specify the file type and a system resource name, using the
resource association file at generation time. For serial files of type SEQ on VSE
batch, you must also supply a system resource number. The file type identifies
the access method used to read or write the file. The system resource name
associates the file defined in the VisualAge Generator program with a physical
file, queue, or data set in the target environment.

For some files, the generated program can dynamically allocate the physical
file at run time, or dynamically change the system resource name used for file
association.

Dynamically allocating files

The generated program dynamically allocates existing files for the following
types of files in the following environments. When dynamic allocation is used,
the system resource name is the name of the data set or file to be allocated.
v VSAM (file type VSAMRS) or sequential (file type SEQRS) files on

MVS/TSO, MVS batch, IMS BMP, VM CMS, or VM batch. The system
resource name must be specified as an MVS data set name, or on VM CMS,
a VSE data set name, or a CMS file name. For serial and print files, the data
set name can include a partitioned data set member name in parentheses.
The program checks for a preexisting file allocation using the VisualAge
Generator file name as the DD name before attempting a dynamic
allocation on an MVS or VM system. Also, if the system resource name is
less than 9 characters (less than 8 characters for VSAM on VM CMS) and
does not contain any separators (periods or parentheses), it is assumed to
be a DD name instead of a data set name, and the program attempts to
access a file pre-allocated using that DD name before it attempts a dynamic
allocation with a data set name.
If dynamic allocation is used, the data set is allocated with the disposition
of SHR. Therefore, when the data set is opened for output, the default
disposition of OLD is used.

v IBM VisualAge for COBOL for OS/2 files (file type OS2COBOL) on CICS
for OS/2. The system resource name is the OS/2 file name including drive
and path information.

v ILE COBOL/400 files (filetype SEQ). If the file is not found at the time of
open, the system creates the file.

© Copyright IBM Corp. 1980, 2001 207

v Sequential files (file type SEQ) on OS/2, AIX, CICS for AIX, Windows NT,
CICS for Windows NT, HP-UX, Solaris and CICS for Solaris. The system
resource name is the system file name including path information.

Note: Dynamic allocation of files is not supported in CICS for MVS/ESA and
VSE environments.

Dynamic allocation is not successful on the first I/O function that accesses the
file and are treated as hard I/O errors. If the program is handling hard I/O
errors (EZEFEC is set to 1 and an error routine is specified), the program can
test the record status indicators (FNF, file not found, or FNA, file not
available) to determine whether the file could not be accessed because the file
did not exist or was in use by another program.

Dynamically associating files

The system resource name associated with a file can be dynamically modified
during program run time for most types of files using the EZEDEST and
EZEDESTP special function words. For remote CICS files, the system where
the file is accessed can be dynamically modified using the EZELOC special
function word.

Invoking an I/O function using EZEDEST
The EZEDEST special function word must be qualified with a record name.
Whenever an I/O option is performed for a record, the program performs the
I/O operation on the system resource associated with the record file. You can
associate the resource with the file using the following methods:
v The program moves a value to EZEDEST special function word.

This method overrides the association specified using either of the other
methods.

v The program user preallocates the record file name with a DD statement,
with an ALLOC command (only with file types SEQ, SEQRS, VSAM
(non-CICS), and VSAMRS only), or with a VM FILEDEF or DLBL
command.
This method overrides the next method.

v You specify a system resource name for the record file during generation or
test.

The previously opened physical file is closed when an I/O option for a record
with that file name is processed and the EZEDEST special function word is
modified.

Invoking an I/O function using EZEDESTP
The EZEDESTP special function word contains the resource name of the print
file. Whenever a function is invoked to print a file, the program prints to the

208 VisualAge Generator: Design Guide

system resource associated with EZEPRINT. You can associate the resource
with the file using the following methods:
v The program moves a value to EZEDESTP.

This method overrides the association specified using either of the other
methods.

v The program user preallocates EZEPRINT (EZEPRIN for VSE systems) to a
system resource name (file types SEQ and SEQRS only). On VM CMS, this
is done with a FILEDEF command. If the file is to go directly to the virtual
print queue (as opposed to CMS disk space), use RECFM VA and LRECL
133 on the FILEDEF command. That is, use the following command:
FILEDEF EZEPRINT PRINTER (RECFM VA LRECL 133

To create the file on disk, enter the following command:
FILEDEF EZEPRINT DISK fname ftype fmode (RECFM V LRECL 133

This creates a file on disk with the carriage control characters included. The
CMS PRINT command with the CC option can then be used to print the
file. This method overrides the last method.

v You specify a system resource name for EZEPRINT during generation or
test. For OS/2, AIX, CICS for AIX, Windows NT, CICS for Windows NT,
HP-UX, Solaris, and CICS for Solaris, you specify EZEPRINT at runtime in
the resource association file.

For some types of files, dynamic file association also allows multiple physical
printer files to be open simultaneously.

If multiple printer files are supported, previously opened files are not closed
when a printer map is displayed and EZEDESTP is modified. Position is
maintained for each open file. A CLOSE I/O option is effective only for the
file currently named in EZEDESTP. If multiple printer files are not supported,
the previously opened file is closed when a printer map is displayed and
EZEDESTP has been modified.

Supported file types
Table 24 shows the file types that can be used with EZEDEST and EZEDESTP.
The table also indicates whether multiple files can be open simultaneously for
that file type.

Table 24. File Types Supported By EZEDEST and EZEDESTP

File Type EZEDEST EZEDESTP Multiple Print Files
Open

GSAM No No No

MMSGQ Yes No No

OS2COBOL Yes No No

Chapter 8. Allocating and associating files 209

Table 24. File Types Supported By EZEDEST and EZEDESTP (continued)

File Type EZEDEST EZEDESTP Multiple Print Files
Open

SEQ (OS/400) Yes Yes No

SEQ (AIX, OS/2,
Windows NT,
HP-UX, Solaris,
CICS for AIX, CICS
for Windows NT,
CICS for Solaris)

Yes Yes No

SEQ (Other) No No No

SEQRS Yes Yes Yes

SMSGQ Yes Yes No

SPOOL (AIX,
HP-UX, OS/400,
Solaris)

No Yes No

SPOOL input file
(Other)

Yes No No

SPOOL output file Yes Yes Yes

TEMPAUX Yes No No

TEMPMAIN Yes No No

TRANSIENT Yes Yes Yes

VSAM (non-CICS)
(non-OS/400)

No No No

VSAM (CICS) Yes No No

VSAMRS Yes No No

VSAM (OS/400) Yes No No

Sharing an MVS or VSE VSAM data set in a run unit

To share a VSAM data set, you can associate a VSAM data set with more than
one file name in a run unit.

When multiple file names are associated with a single VSAM data set, some
considerations depend on the file type specified when the program is
generated. These considerations also apply when accessing an indexed data
set using more than one index.

The following considerations are based on the generation file type:

210 VisualAge Generator: Design Guide

VSAMRS, VSAM on MVS CICS or VSE CICS
I/O operations exhibit the behavior expected when specifying the
DSN parameter on the MACRF option of the GENCB. The VSAM
share options control whether sharing is permitted between run units,
but not within a single run unit.

VSAM
COBOL I/O operations exhibit the behavior expected when specifying
the DDN parameter on the MACRF option of the GENCB. The VSAM
share options control whether the operation is permitted.

When more than one run unit attempts to access a data set, you must
consider the VSAM share options specified for the data set.

Chapter 8. Allocating and associating files 211

212 VisualAge Generator: Design Guide

Chapter 9. Developing programs containing DBCS

This chapter describes VisualAge Generator design considerations for
programs that contain double-byte character set (DBCS) and mixed data
(MIX).

Note: In this chapter, references to host means System/370 (MVS, VSE, and
VM) and OS/400 environments. References to workstation means OS/2,
AIX, Windows, HP-UX, and Solaris environments.

In VisualAge Generator, a DBCS data type contains only double-byte
characters, where a single character is represented by 2 bytes of data. A MIX
data type allows the presence of DBCS data in the same field as single-byte
character set (SBCS) data.

VisualAge Generator allows certain part names to be DBCS names. DBCS and
mixed data fields are also supported for map fields, record fields, table
columns, and literals.

DBCS field outlining is supported for VisualAge Generator maps. Field
outlining enables horizontal and vertical bars to be drawn around a field on a
map. Any combination of vertical and horizontal lines is supported.

DBCS support for host environments and workstation environments differ:
v Host environments support the EBCDIC DBCS code set.

In mixed single-byte character set/DBCS fields, the EBCDIC character sets
require special delimiter characters to identify DBCS characters. A
single-byte, shift-out (SO) character indicates that the data that follows is
DBCS. A single-byte, shift-in (SI) character indicates that the data that
follows is SBCS.

v Workstation environments support the ASCII DBCS code set.
The ASCII character sets do not require the use of shift-out/shift-in (SOSI)
codes to delimit DBCS characters. Instead, a range of code points is set
aside to be the first byte of a DBCS character. These code points have no
meaning as single-byte codes. In addition, the data stream for DBCS data
returned by the workstation environment does not contain any SOSI
characters.

© Copyright IBM Corp. 1980, 2001 213

Using DBCS and mixed data fields

DBCS fields can only contain DBCS data. However, data can also be defined
with a data type of MIX. The MIX data type allows both DBCS data and SBCS
data.

For GUI clients, only the DBCS data type exists, not MIX. String data type
supports SBCS and mixed DBCS and SBCS when using a DBCS code page.

Mixed fields in host environments (EBCDIC format) require special delimiter
characters to identify a DBCS substring within the field. A single-byte,
shift-out (SO) character in a mixed field indicates that the data that follows is
DBCS. A single-byte, shift-in (SI) character in a mixed field indicates that the
data that follows is SBCS.

Note: DBCS fields cannot contain SO and SI characters.

In most examples of mixed data, single-byte characters are shown
surrounding double-byte characters. Each double-byte character is represented
by 2 single-byte characters in the form of Dx, where x is replaced by a
lowercase alphabetic character. The SO character is represented by the less
than symbol (<) in the following examples of mixed data and has an actual
hexadecimal value of 0E. The SI character is represented by the greater than
symbol (>) in the following examples of mixed data and has an actual
hexadecimal value of 0F.

Mixed data with surrounding SBCS data in EBCDIC format
ABC<DiDjDk>DEF

Mixed fields on the workstation (ASCII format) do not require control
characters to delimit double-byte data. A double-byte character can
immediately precede or follow a single-byte character. For example:

Mixed data with surrounding SBCS data in ASCII format
ABCDiDjDkEF

To enable external source files to be moved between the host (EBCDIC) and
the workstation (ASCII), VisualAge Generator Developer removes or inserts
the SOSI characters around DBCS and mixed data in the external source
format file on import or export. Do not remove these SOSI characters: mixed
literals and mixed data in table contents that contain adjacent groups of DBCS
data (not separated by blanks) have all SOSI characters removed on import;
however, only one pair of SOSI characters is inserted around the DBCS data
on export. For example, on import
ABC<DiDjDk><DlDmDn>DEF

becomes
ABCDiDjDkDlDmDnDEF

214 VisualAge Generator: Design Guide

On a later export,
ABCDiDjDkDlDmDnDEF

becomes
ABC<DiDjDkDlDmDn>DEF

The above literal has different lengths from the import and export operations.
If the mixed literal is used as a source operand to be moved to a high-level
VisualAge Generator structure, such as a record, the result might be
unpredictable.

Note: The use of a mixed literal in this way is not generally recommended,
and it is your responsibility to ensure that design of the program is
portable between the two different environments where the program
runs.

If a DBCS or mixed map constant field is used as a header for multiple
columns, the alignment of the header might appear different with or without
the SOSI characters. You must align the header for display in both
environments or define the header as separate fields.

Using DBCS names

VisualAge Generator Developer supports DBCS names for any part with a
name that can be longer than 18 single-byte characters. A valid DBCS name
must meet the following conditions:
v The DBCS part name cannot be a mixed name, using both SBCS and DBCS

characters.
v The DBCS part name cannot contain a DBCS blank.
v The maximum number of DBCS characters in a name is shown in Table 25:

Table 25. The Maximum Number of DBCS Characters for Each Part Name

Part Name Maximum

Function 8

Record 8

Data item 15

v A DBCS name must contain at least 1 DBCS character that does not have a
SBCS equivalent (non-42nd-ward DBCS character). The only valid
SBCS-equivalent (42nd-ward) DBCS characters are as follows:
– Double-byte A through Z (.A - .Z)
– Double-byte 0 through 9 (.0 - .9)
– Double-byte @, #, $, _ and - (hyphen)

Chapter 9. Developing programs containing DBCS 215

Double-byte lowercase characters a-z are folded to double-byte uppercase
A-Z when used in a DBCS name.

Note: A 42nd-ward DBCS character contains Hexadecimal 42 in the first byte
when translated to EBCDIC.

Table 26 shows DBCS names that are valid and not valid:

Table 26. Valid DBCS Names vs. Invalid DBCS Names

Valid DBCS Names Not Valid DBCS Names

.CDi.B .A.B.C

DiDjDk AB.C

Note: To avoid aliases being assigned during program generation and to
improve the readability of the generated program, follow these
standards:

v Do not use a DBCS name for a function or record.
v Do not use a DBCS name for a data item name if your program contains

SQL functions.

Defining data

Through data definition you can define data items, records, and tables.

Defining records
A record is defined to VisualAge Generator with a record specification and a
list of data items. You can define DBCS and MIX type data items in the
Record Editor window. You can specify a data type of MIX to indicate that the
field contains SBCS and DBCS data, and a data type of DBCS to specify that
the field contains only DBCS data.

You do not have to account for the possibility of DBCS subfields when
specifying the length of a MIX data item. The length specified is the number
of single-byte characters that the field can contain. The number of bytes for a
MIX type must equal the length you specified on the Record Definition
window.

When defining a DBCS data item, specify the length in DBCS characters. The
number of bytes for a pure DBCS field is double the length of DBCS
characters in the field. If the length is changed, the number of bytes is
automatically calculated.

A record is composed of data items that can be substructured. Both MIX and
DBCS data types can be substructured. A data item of type MIX can be below

216 VisualAge Generator: Design Guide

or above (have a lower or higher level number) than data items of type CHA
or MIX. A data item of type DBCS can be substructured only under a CHA
data type.

Note: Moving data into a CHA field that has a MIX or DBCS field
substructured on or over the CHA field can result in incorrect data.
Moves to MIX type fields are validated. Moves to CHA type fields are
not validated unless the source is defined as MIX type. See “Data
movement processing” on page 222 and Figure 26 on page 223, which
depicts mixed data movement in structures.

Defining tables
You can specify table columns and table contents as DBCS.

Defining table columns
Specification of mixed and DBCS table columns is similar to record and data
item definition. See “Defining records” on page 216 for a more detailed
description of mixed data in substructures.

Defining table contents
The Table Contents function of the Table Editor enables you to enter DBCS
data into table columns that have been defined as type DBCS and MIX data
into table columns that have been defined as type MIX.

The fold table contents specification option is used to fold MIX type data
columns from lowercase characters. Only single-byte portions of MIX data are
folded; DBCS columns are not folded.

If you generate a table for use in host environments, the table contents have
SOSI characters inserted around DBCS substrings. If a table column is not
defined with a length that allows enough space for SOSI with specific
contents entry, the system will truncate the contents entry.

Defining data items
The Data Item Editor enables you to specify a data type of DBCS or MIX for a
data item. You can then enter a description of the data type in the Description
field of the Data Item Editor window.

Defining prologs
The Prolog editor supports the entry of record, table, and program prologs.
Mixed data is valid on the Prolog window.

Chapter 9. Developing programs containing DBCS 217

Defining GUI clients

In the composition editor, you can type the DBCS name directly or display
and select a DBCS name from a select list.

You can connect to DBCS and MIX data items

GUI text field data types
The following data types support DBCS when running in a DBCS
environment:

String Supports single-byte and double-byte characters. String is used for
either SBCS strings or mixed strings.

DBCS String
Supports double-byte characters.

Data item connections
The following considerations apply for DBCS data:
v String data is compatible with CHA and MIX data. DBCS String data is

compatible with DBCS data.
v Any connection is allowed at definition time.
v At run time, if single-byte characters are typed in a DBCS String field, you

will receive an error when the data is moved to the data item.
v At run time, if double-byte characters are typed in a field in a visual part,

and that field is connected to a CHA data item, you will receive an error
when the data is moved to the data item.

Defining maps

The Map Editor allows you to specify general options/preferences for your
VisualAge Generator maps and allows you to specify the devices you will use
with your program.

Selecting DBCS devices
If you plan to enable the program user to enter DBCS or mixed data on the
map you are defining, you must select the DBCS display device (IBM 5550D)
on the Devices page of the Map Properties notebook. Any program that
displays a map defined for an IBM 5550D must be run by VisualAge
Generator Server for MVS, VSE, and VM using one of the IBM DBCS devices.

If you are defining a printer map and plan to print DBCS or mixed data, you
must select the DBCS printer device (IBM 5550P). Program output produced
from a map defined for an IBM 5550P must be directed to a printer that
supports DBCS printing.

218 VisualAge Generator: Design Guide

A single map cannot support both a DBCS device and a non-DBCS device.
One or the other must be specified. If a DBCS device is replaced with a
non-DBCS device, any reference to field outlining is removed and all mixed
and DBCS fields are changed to single-byte character set fields.

SOSI take position
SOSI take position enables you specify that SOSI characters take a position
when printing mixed data from a program running on an MVS VM, VSE, or
AS/400 system. SOSI take position is the default value for a new map.

If SOSI take position is selected, the generated map group program inserts a
blank character before each shift-out character and after each shift-in character
when print lines are formatted. If SOSI take position is not selected, blanks are
not inserted. Select SOSI take position when you are directing output to a
printer that removes SOSI characters from the print line. Deselect SOSI take
position when directing output to a printer that prints blanks in place of SOSI
characters.

Two buffer sizes are used for printing maps. If the DBCS invocation
parameter is specified, or you are using an IBM DBCS device, then a buffer
size of 650 bytes is used. This larger buffer is required to hold the additional
data for blank insertion around SO and SI characters and the added attribute
data for field outlining.

SOSI take position is ignored when testing or running programs on
workstation systems.

Using the map editor
Maps can be defined for running in a DBCS system. Considerations for
defining maps using DBCS and mixed character fields are described in this
section.

Defining DBCS and mixed fields
All DBCS, mixed, and SBCS fields are defined in a single map editor window.
The map editor window checks that data entered in these fields is in the
correct format; for example:
v SBCS characters cannot be entered in a field defined for DBCS, and DBCS

data cannot be entered in fields defined as SBCS.
v If you specify an initial value for a field using the Variable Field Properties

window, it must be a valid character type for the defined field.
v DBCS fields are kept at an even length.
v Some workstation editor functions, such as clipboard operations and insert

or delete, can incorrectly alter DBCS or mixed fields. The map editor
validates each field if a map is saved or previewed.

Chapter 9. Developing programs containing DBCS 219

It is not recommended that you edit DBCS maps on a non-DBCS device. If a
non-DBCS device is used for editing, the validation described above is not
performed because a DBCS code page is not in use.

DBCS map definition considerations
The following rules apply when defining a DBCS or mixed field:
v DBCS and mixed fields cannot wrap at the beginning of a map.
v DBCS and mixed fields cannot wrap if the width of the map is less than the

width of the DBCS device selected.
v If the device selected for the map is a printer the following is true:

– Mixed variable fields cannot wrap from one line to another
– DBCS variable fields that wrap from one line to another must begin in

an odd column
v If all data contained in a field is DBCS, you should use a DBCS field. If

there is a possibility that mixed data might be contained in a field, the
mixed field should be used. It is recommended that SBCS field be used
when mixed or DBCS data is not present.

You can specify the map message field EZEMSG as a mixed field.

Defining variable field edits
The following rules apply when defining variable field edits:
v DBCS and mixed fields can be left-aligned, right-aligned, or not justified.
v All fields in a map array must be of the same type (DBCS, mixed, or SBCS).
v The only valid fill characters for DBCS fields are blanks and nulls. Any

keyable single-byte character is valid as a fill character for mixed fields.
v The fold option is not applicable to DBCS fields. If folding is specified for

mixed fields, only single-byte portions of the mixed data are folded.

Field attribute definition
Attributes pertaining to mixed and DBCS variable fields are discussed in this
section.

Note: VisualAge Generator Developer supports color and extended attributes
for all devices that provide these attributes.

Field outlining
To specify outlining attributes for specific fields, from the Map Editor
window, select Field Properties from the Define pull-down, and then select
the Attributes notebook tab. The controls used to define the outlining
attributes are only visible for maps that are defined for IBM DBCS devices.
With field outlining you can draw horizontal and vertical bars around a map
field. The outlining attribute that you define is applied to the entire map field.
For example, a line cannot be drawn around only the first 3 characters of a
5-character map field.

220 VisualAge Generator: Design Guide

If you replace a DBCS with a non-DBCS device any reference to field
outlining is removed.

The field outlining controls enable you to specify the following values. The
default value is None (no outline).

Box Turns on all four outlining attributes

Over Draws a line over the field data from the attribute position that starts
the field to the attribute position that ends the field

Under Draws a line under the field data from the attribute position that
starts the field to the attribute position that ends the field

Left Draws a vertical line in the attribute position that starts the field

Right Draws a vertical line in the attribute position that ends the field

Note: Field Outlining can be specified with any combination of valid
extended attributes. A field can be outlined, have a color, and use one
of the supported extended highlighting attributes.

Maps generated for the OS/400 environment should contain blanks in row 1
columns 1 through 4, if one or more fields on the map have field outlining
attributes. Row 1 column 4 can contain a field attribute.

Defining programs

This section covers the specific issues you must consider when you define
programs that contain DBCS.

Defining statements
You can specify mixed and DBCS literals when you define statements. You
can specify a mixed literal by enclosing the literal data in quotation marks
and having both SBCS and DBCS characters within the data. If DBCS
characters are not present, the literal is assumed to be a character literal. If
single quotation marks are used, the SBCS data in the literal is folded. DBCS
characters or data enclosed by double quotation marks is not folded.

You can specify a DBCS literal by enclosing DBCS characters in quotation
marks and prefacing the first quote with a G. SBCS characters, including SBCS
blanks, are not permitted between the G and the second quotation mark. The
preceding G forces the literal to be a DBCS rather than a mixed literal;
therefore, a DBCS literal must be in the sequence: G'DiDjDk'.

Statements in functions or program flow can use DBCS names, DBCS and
mixed literals, and comments.

Chapter 9. Developing programs containing DBCS 221

SOSI characters in literals are inserted when a program is generated for an
MVS VM, or VSE environment or when a part is exported.

Data movement processing
Data item movement in a VisualAge Generator program occurs as a result of
the ASSIGNMENT, MOVE, MOVEA, and RETR statements.

DBCS Data Items
DBCS data items can only be moved from or to another DBCS data
item. When a DBCS data item is moved to a DBCS data item of a
different length, padding or truncation occurs. If the target item length
is longer than the source data item length, the target is padded with
blanks. If the target data item length is shorter that the source item
length, the source data is truncated.

Mixed Data Items
Mixed data items can only be moved to or from another mixed data
item or a character data item.

When you move from or to a mixed data item, mixed data validation
is performed. If the target string results in an incorrect mixed string,
VisualAge Generator ends processing.

When a mixed data item is moved to a mixed data item of a different
length, padding or truncation occurs.

If the target item length is longer than the source data item length, the
target is padded on the right with single-byte blank (X'40') characters.
If the target item length is shorter than the source item length, the
source data is truncated. In System/370 and OS/400 environments, if
the place of truncation is in a DBCS substring, only enough data is
moved to result in a complete DBCS substring that contains at least
one DBCS character. Unoccupied positions in the target that result
from DBCS substring truncation are filled with single-byte blank
(X'40') characters.

When testing or running a program on a workstation system, mixed
values do not contain SOSI characters. If a truncation point is within a
double-byte character when testing or running on a workstation
system, that character is truncated and the moved value is padded
with a single-byte blank (X'40') characters.

Figure 25 on page 223 illustrates truncation and padding in host
environments resulting from mixed data movement:

222 VisualAge Generator: Design Guide

Only the strings used directly in the processing are checked for a
valid mixed string; therefore, a mixed string that is not valid might be
created by the MOVE statement for a different data item. The mixed
string that is not valid might not be detected while the MOVE
statement is processing. This is especially possible when data items
are defined in substructures,

Figure 26 shows mixed data movement in substructures in MVS VM,
and VSE environments. MIXV1 is a level 10 data item that is
substructured into two level-20 data items, MIXV2 and MIXV3.

In Figure 26 the following is true:
v MIXV1 is a mixed item of length 20. The data contained in MIXV1

is: <DiDjDkDlDmDnDpDq>.
v MIXV2 is a mixed item of length 4 substructured under MIXV1.
v MIXV3 is a mixed item of length 16 substructured under MIXV1.
v Using the VisualAge Generator MOVE statement, MOVE <Dz> TO

MIXV2.

Data in a source mixed field of length 14 = ABC<DiDjDk>DEF

Target mixed field of length
3 = ABC
4 = ABCb
5 = ABCbb
6 = ABCbbb
7 = ABC<Di>
8 = ABC<Di>b
9 = ABC<DiDj>
10 = ABC<DiDj>b
11 = ABC<DiDjDk>
12 = ABC<DiDjDk>D
13 = ABC<DiDjDk>DE
14 = ABC<DiDjDk>DEF
15 = ABC<DiDjDk>DEFb
16 = ABC<DiDjDk>DEFbb

where b indicates a single byte blank (X'40') character.

Figure 25. Mixed Data Movement - Truncation and Padding

Figure 26. Mixed Data Movement in Substructures in MVS and VSE Environments

Chapter 9. Developing programs containing DBCS 223

v The result is <Dz>DjDkDlDmDnDpDq>, for MIXV2. Therefore, the
move is considered valid. Note that the data in MIXV1 is not valid
but is not detected.

v The result of a move from MIXV1 to another string of length 20 is
not correct because MIXV1 currently contains
<Dz>DjDkDlDmDnDpDq>.

Data item comparison processing
The following data item comparisons in a VisualAge Generator program occur
as a result of the IF/WHILE, FIND, and RETR statements:

Mixed data items
A mixed data item can only be compared to another mixed data item
or to a character data item. For comparisons, a left-to-right
byte-to-byte logical comparison is done.

If the data item lengths are different, the shorter item is padded with
single-byte blank characters (X'40') to the length of the longer item
prior to the compare. Then, the two strings are compared for the
length of the longer data item.

DBCS data items
A DBCS data item can only be compared to another DBCS data item.
For comparisons, a left-to-right byte-to-byte logical comparison is
done.

If the data item lengths are different, the shorter item is padded with
double-byte blank characters to the length of the longer item prior to
the compare. Then, the two strings are compared for the length of the
longer data item.

Using mixed literals as CALL statement arguments
Avoid the use of mixed literals as CALL statement arguments because the
literal has a different length when it is generated for ASCII-based systems
than when it is generated for EBCDIC-based systems. The SOSI characters are
present in the EBCDIC literal, but not in the ASCII literal.

To avoid this problem, define a mixed variable with the same length as the
corresponding called parameter definition in the called program. Specify the
mixed variable as the CALL argument and move the literal value to the
variable prior to the CALL.

Testing programs

The test facility supports DBCS and mixed data on your maps for the IBM
DBCS devices. All fields with the data type MIX are validated before being
sent to the device. In addition, all trace statements displayed to an IBM DBCS
device that refer to data items of data type MIX are validated before being

224 VisualAge Generator: Design Guide

displayed. A mixed data item that spans lines because of the length of the
data item is split and validated according to mixed data splitting rules.

VisualAge Generator Developer test facility trace assumes that data being
retrieved from an SQL row with a data type of CHA might contain mixed
data; therefore, for the trace only, the data item is assumed to have a data
type of MIX. It is recommended that data containing mixed notation defined
to an SQL row as Char be moved immediately to a VisualAge Generator
Developer data item with type MIX. This assures mixed validation during
runtime.

Understanding relational database support

For general information on SQL and relational databases, see “Chapter 2.
Developing SQL programs” on page 19.

DB2, DB2/VSE, and SQL/DS VM support mixed data in table and column
names. If a DBCS national language version of DB2/2, is installed on the
workstation, DBCS and mixed data are supported in DB2/2

Character constants can be used in SQL statements. Use G notation (for
example, G’DiDj’) for DBCS constant fields. Use character literals (for
example, ’eeeDiDjee’) for mixed strings. VisualAge Generator inserts SOSI
characters around DBCS strings in literals when the literals are generated for
MVS, OS/400, VSE, and VM environments.

VisualAge Generator allows mixed data and SOSI notation for DBCS constants
to be entered in the table and column name fields and in SQL statements.

DB2, DB2/VSE, and SQL/DS VM do not support a mixed data type. Instead,
they support a system DBCS invocation parameter that allows any character
column to contain mixed data.

VisualAge Generator does not allow data items in SQL rows to be defined as
mixed because DB2, DB2/VSE, and SQL/DS VM do not support the mixed
type. However, in VisualAge Generator programs, data can be moved
between character columns in SQL rows and mixed fields in a map or
working storage. It is recommended that you move any mixed data retrieved
from the database to a data item defined as mixed in VisualAge Generator.

Specifying SQL row records
When an SQL row is being defined in record definition on an IBM DBCS
device the table name can be specified using mixed data.

Chapter 9. Developing programs containing DBCS 225

Defining SQL row data items
Data item definition is different for an SQL row record than for the other
record organizations. The items represent columns in a relational table instead
of a record structure. In addition to the data item name, specify the column
name for the item as it is known to the database manager. You cannot specify
level and occurs values for items in an SQL row record.

Relational databases support the use of mixed data for their column names.
VisualAge Generator enables DBCS device users to enter mixed SQL column
names on the SQL Row Item Usage Data window of Record Definition facility.
VisualAge Generator does not support mixed data item names.

The type field for a mixed SQL data item should be specified as Char.
VisualAge Generator only supports valid SQL types for its data type. Any
mixed data contained in an SQL Char field received from the relational
database is assumed to be valid mixed data. Mixed data being moved from
VisualAge Generator to a relational database should be moved from a data
item or map field having the data type Mixed to an SQL row data item
having type Char. Movement of data between Char and Mixed data items is
validated using the mixed validation rules. See “Data movement processing”
on page 222 for details on mixed data movement.

Using mixed SQL statements
You can define SQL statements using mixed notation. The SQL Statement
Editor window of the Record Editor enables the use of mixed notation in
creating the selection conditions. All fields that can be modified support the
entry of mixed data.

If the program is running on a MVS, VM, VSE, or OS/400 system, SOSI
characters are inserted as required into the SQL statement text.

Preparing programs with DBCS support

When you compile a program, map group, or table that uses DBCS or mixed
data, you must include the DBCS compiler option.

If you are using CICS, you must be on CICS/ESA Version 3 Release 1
Modification 1 or later. You must include the DBCS option on both the CICS
translator and the COBOL compile steps.

OS/400 DBCS customers using RISC hardware can use OS/400 Version 3.6 or
later. OS/400 DBCS customers using non-RISC hardware must use OS/400
Version 3.2 or later.

226 VisualAge Generator: Design Guide

Appendix A. Program design techniques

This appendix describes easier ways to use particular functions of VisualAge
Generator during the program coding phase. The techniques shown here have
significant benefits for performance, storage, or ease-of-use.

Invoked functions

Invoked functions should be defined for any group of identical statements
that appear in multiple functions. This has four advantages:
v Conserves real storage at run time
v Saves keying repetitive lines of statement definitions
v Conserves Repository/ENVY library storage during definition and testing
v Simplifies maintenance

Data items referenced within an EXECUTE function must be qualified if they
appear in more than one structure (map, record, or table). You should
consider qualifying all data item references if it is possible that the data item
might be defined in another structure in the future.

Recursive functions
A function is recursive if it invokes itself or another function it is nested
under (for example, A invokes B, and B invokes A).

In most cases it is better to use a WHILE statement rather than a recursive
function to implement processing loops.

Notes:

1. Do not use function invocation statements for unconditional flow, transfer,
or return processing. Use the special function word EZERTN for an
immediate return to the invoking function. Use the special function word
EZEFLO and unconditional branch flow statements for “go to” or transfer
processing.

2. Recursive program calls (for example, A calls B, and B calls A) are not
supported by VisualAge Generator. Recursive use of functions is
supported.

Map edit functions
Edit functions can be useful for performing complex edits on map fields.
Figure 27 on page 228 shows the general format of an edit function:

© Copyright IBM Corp. 1980, 2001 227

This function does the following:
v Returns control if edit errors are not detected.
v If edit errors are detected the following occurs:

– The field is highlighted
– The map field is set MODIFIED to ensure that it is edited again.
– The EZEMNO special function word is checked to determine if this is

the first error to be detected. If it is, the proper error message is set up
and the cursor is placed under this field.

EXECUTE functions
EXECUTE functions are typically used in the following situations:
v Initialization code
v File error processing and message setup
v Separating unique processing statements from generalized I/O processes
v Loop control
v A place holder for a central FLOW control point
v Function invocation

The choice of whether to include logic statements as part of the statements
preceding an I/O function or to move them to an EXECUTE function that is
run immediately before the I/O function is a matter of programming style
and makes little difference to program efficiency.

SINQE01:
/**
/* Perform edits here. If o.k. then EZERTN
/* Else set up for error.
/**

/**
/* Following is sample code to set up for error.
/**
SET MAP3.FIELD1 MODIFIED BRIGHT; /* Set FIELD MODIFIED so it is

/* edited again and BRIGHT to
/* indicate it is in error

IF EZEMNO NE 0; /* Figure out if this is
/* the first error

EZERTN; /* Prev. error detected, so exit
ELSE; /* This is the first error

MOVE 34 TO EZEMNO; /* Set up correct error message
SET MAP3.FIELD1 CURSOR; /* Put cursor under this field

END;
EZERTN;

Figure 27. General format of an edit function

228 VisualAge Generator: Design Guide

MOVE statement

The MOVE statement has two different forms. One moves data from one data
item to another data item. The other form moves data between two structures
(that is, records or maps) by moving all the data items that have matching
names in the structures.

Data moved between two structures with a single statement is called a
structured MOVE or a move corresponding. These structures can be records
or maps. Level-77 items are not included in a record structure and are not
moved. When you generate your program the structured move is expanded
into the multiple MOVE statements. The multiple MOVE statements are
equivalent to the structured move.

The expansion is done internally and is not printed in your generation listing.
If you are using nonshared data items, then items that have the same name in
different structures can have different characteristics. If they are compatible,
data conversion is the same as for a single item move. If they are not
compatible, an error message is issued during testing or generation.

Moving data items between maps and records
By naming a map and a record on your MOVE statement, you can easily
move the matching data items between the two. When moving from a record
to a map, you should be sure the record data can be displayed. If a character
data item in a record contains data that cannot be displayed, it can cause
terminal errors to occur when moved to a map. If a field having the same
name exists in both the record and the map, and it is defined as binary or
packed in the record, then it must be defined as numeric on the map.

Moving between records
When moving entire records, it is better to use a MOVE statement between
the two high-level data items of the records rather than doing a move
corresponding. Both accomplish the same thing, but the data item MOVE
statement results in just one move instead of a move for each data item. If a
high-level data item is used, be sure that the data items defined in both
structures match in length and type because data conversion is not done.

Similarly, if you are moving part of your record to another record, it is more
efficient to move the highest level structures possible in the records.

Figure 28 on page 230 shows an example of moving between records. If the
move corresponding is done, nine moves are performed instead of one if the
high level data items are used.

Appendix A. Program design techniques 229

If you are rearranging the order of the data in the records at the same time
you are moving the data, then using the move corresponding is easy to define
because it is a single statement. It can be more efficient (but less convenient)
to define the individual MOVE statements. Structures with identically named
items at different levels result in some redundant moves if you use the move
corresponding. It is not determined whether the data has already moved
through a higher level item.

Table Data

Direct addressing of table data items
A specific item in a table can be referenced in a processing statement by using
subscripts or numeric literals. For example, TABLNM.COLNAM(43) addresses
the data value in the 43rd row of the column name COLNAM in the
TABLNM table. This method of obtaining data from a table is more efficient
than using either the FIND or RETRIEVE statements. This technique can be
especially useful if you are substituting a character string for a numeric code
(such as state names for state numeric codes).

Table searches with the FIND or RETRIEVE statement
Always order the data in the column that you are searching by frequency of
use. VisualAge Generator searches tables by examining each entry beginning
with the first entry until a match or the end of the table is encountered.

Both the FIND and RETRIEVE statements set the EZETST special function
word to the row number of the matching data value. One technique is to
define the FIND statement in the FLOW of a function. Defining a FIND
statement in FLOW enables you to specify a function to run if the item is

DO NOT DO

MOVE REC1 TO REC2 MOVE REC1.ALL1 TO REC2.ALL1

REC1 REC2

ALL1 LEN 256 ALL1 LEN 256
STR1 LEN 100 STR1 LEN 100

FIELD1 LEN 030 FIELD1 LEN 030
FIELD2 LEN 030 FIELD2 LEN 030
FIELD3 LEN 040 FIELD3 LEN 040

STR2 LEN 156 STR2 LEN 156
FIELD4 LEN 050 FIELD4 LEN 050
FIELD5 LEN 050 FIELD5 LEN 050
FIELD6 LEN 056 FIELD6 LEN 056

Figure 28. An example of moving between records

230 VisualAge Generator: Design Guide

found. Another function can be specified as the FALSE condition. This
eliminates the overhead of coding an IF statement to test the EZETST special
function word to determine if the item was found.

A table searched with a FIND statement can be used in the flow section of a
program instead of an IF statement that checks multiple ‘OR EQUAL‘
conditions. Refer to Figure 29. The common definitions appear in bold.

Defining tables
In the CICS and IMS environments, tables can be defined as shared or
non-shared tables. If a shared table is loaded, all the transactions running in
the same region use the same copy of the table.

For tables that are not modified by programs, specify the shared option to
reduce memory usage and table load time. For tables that are modified by
programs, you can also use the shared option to use the table as a shared
communications area between multiple programs. Note that shared tables can
only be modified in CICS environments. For more information, see
“Communicating between multiple CICS transactions” on page 185.

The Keep After Use language element controls when a table is loaded into
storage. Keep After Use and Resident elements together control when a table
is deleted from storage.

Use the Table and Additional Records List in the Program Editor to turn off
Keep After Use for tables that are conditionally used within a program. An

PUPD100: --- execute ----
(flow) (flow)

or
IF WS.DAY EQ 'MON' FIND WS.DAY TAB.DAY PUPD200 PUPD300
OR WS.DAY EQ 'TUE'
OR WS.DAY EQ 'WED'
OR WS.DAY EQ 'THU'
OR WS.DAY EQ 'FRI';

PUPD200;
ELSE

PUPD300;
END;

PUPD200: PROCESS WEEK DAY DEPOSITS
.
.

PUPD300: PROCESS WEEK END DEPOSITS
.
.

Figure 29. Using FIND to do an IF

Appendix A. Program design techniques 231

example is a map edit table used on a map shown from a CONVERSE
function only when the user requests a rarely used function.

Using the Table Editor, specify Resident for shared tables that are used
frequently in high performance, high volume CICS transactions. The table
remains loaded until CICS comes down or a new copy of the table is
requested using the VisualAge Generator Server for MVS, VSE, and VM or
VisualAge Generator Server new copy function in the CICS utility.

Changing table contents while running the program
A program can modify table contents at run time using processing statements
such as MOVE. Such changes are temporary. They are lost when the table is
deleted.

If you want to provide a private copy of the table for each program to use
that can be modified and not deleted until the program ends, you must do the
following:
1. Specify Keep After Use, the default, using the Table and Additional

Records List function of the Program Editor.
2. Using Table Definition, remove the Shared attribute to define the table as

single-user.
3. Do not run the program in segmented mode.

On CICS systems, you can use a table as a shared communications area
between all active users of a program by doing the following:
1. Using Table Definition, define the table as Shared.
2. For CICS for MVS/ESA or CICS for VSE/ESA environments, mark the

table load module as RESIDENT in the PPT.

When marked resident, the shared table is not deleted, even when the
program is running in segmented mode. For more information about using a
table as a shared communications area, see “Communicating between multiple
CICS transactions” on page 185.

For IMS/VS and segmented programs, modification of shared tables is not
supported. Because IMS/VS programs run in segmented mode, modifications
of single-user tables are lost at each CONVERSE function. Resident is not
supported for segmented programs.

Message tables on OS/400
On OS/400 execution systems, message tables are implemented as native
OS/400 message file objects (*MSGF). This has the advantage of providing
second-level message text when viewing the messages from a display map
and sharing the message file with other programs even if they are of another
high-level language form. However, the disadvantage is that message table
rows and columns cannot be referenced by program logic in VisualAge

232 VisualAge Generator: Design Guide

Generator because they are not actually tables as other table types are
managed at runtime. This is a program execution consideration only, for
OS/400, user messages are still defined within message table parts in the
Repository/ENVY library.

Initializing data fields

Data items are initialized as follows when a program starts:
v Working storage items, including level-77 items in the primary working

storage record, are set to blank if they are CHA, MIX, or DBCS; 0 if they are
NUM, NUMC, PACK, PACF; and binary 0 if they are BIN or HEX

v Implicit variables are treated the same as level-77 working storage items.
These are not created in test facility until they are encountered while
testing.

v All map data items are set to blank if they are CHA or DBCS and to 0 if
they are NUM.

v If DXFR or XFER statements were used to transfer to your program and
working storage was passed, then the first part of your program working
storage contains the passed working storage. If your working storage is
shorter, the passed working storage is truncated. If your working storage is
longer, it is padded with blanks (test facility only). For generated COBOL
programs, the working storage record is initialized based on the type of
data before the passed working storage data is moved into the record.
Therefore, if your working storage is longer than the passed working
storage, the extra area is initialized based on type.
For generated C++ programs, unpredictable results will occur if the passed
working storage record is shorter than your program’s working storage
record.

v Data items in serial, indexed, relative, DL/I segment, and SQL row records
are not initialized. You must define a SET record EMPTY or specify the
/INITRECD generation option to initialize these records.

v Initialization of data items in working storage records, other than the
primary working storage record, is controlled by the /INITADDWS
generation option.

Note: Record initialization is done at the lowest (deepest) level of nesting.
Therefore, if you have items of different data types nested under each
other, you can end up with blanks in NUM, NUMC, PACK, PACF, or
BIN data items. You should ensure that you set them to numeric values
before using them in calculations.

If your program performs a ‘SET mapname EMPTY‘, the data items in the
map are blanked or zeroed according to type.

Appendix A. Program design techniques 233

The following are suggestions for initializing individual data items:
v Use MOVE ‘ ‘ TO REC.FIELD to blank out a CHA field. It is only necessary

to put one blank between the quotation marks. The length of the item does
not matter.

v Use the following statement:
MOVE 0 TO REC.FIELD

to initialize NUM, NUMC, PACK, PACF, or BIN data items to 0.
v Use the MOVE statement to put data values in the highest level data item

possible in the record structure that initializes the data fields correctly.

Data types
The following are guidelines for defining data types:
v Binary data type is the most efficient for array subscripting and relative

record IDs.
v When using binary data, try to use short binary positive numbers with no

decimal places. ‘Short‘ includes numbers with values less than 32,768 (or
defined as four numeric digits), that can be resolved into a length of two
bytes.

v If a numeric item is going to be used on a map as well as in a few
calculations, define it as numeric instead of binary.

v Numeric data without decimal places is more efficient in calculations,
moves, and comparisons than numeric data with decimals. If decimal
places are required, try to be consistent in the number of decimal places
across all items in a calculation. Addition or subtraction of binary numbers
when all items in the statement do not have the same number of decimal
places is inefficient. This addition and subtraction is inefficient because the
decimals for the numbers are aligned to match the result before doing the
addition or subtraction. It is more time-consuming to align decimals for a
binary number than to align decimals for a numeric number.

v VisualAge Generator attempts to convert any data as it is moved to a data
item defined with different characteristics. A severe error occurs only if this
conversion is not successful. Decimal alignment is handled automatically.
Data truncation warnings are generated during program test when binary
fields are moved into smaller fields, numeric data loses significant digits on
moves or calculations, or character data cannot fit into the target field.

v VisualAge Generator handles numeric or binary data with up to 18 digits,
including decimal places.

234 VisualAge Generator: Design Guide

Controlling flags and counters

Flags used by your program should be defined as CHA data items. They
should be set or reset by using a MOVE, and tested using IF or WHILE
statements. Implicit variables can be used for character flags. Numeric flags
are less efficient to test because signs and decimal places must be considered
prior to the compare operation.

Counters should be defined as BIN data items (no decimal places). Counters
can be defined in working storage as level-77 items. NUMC performs better
than NUM.

Addition or subtraction of two variables (or a variable and a literal), that are
numeric and have the same number of decimal places, is performed without
data conversion.

Subscripting data items

Subscripting is used to refer to a single occurrence of a data item defined with
an occurrence (OCCURS) greater than one, or to reference a data item in a
specific row of a table, or to reference a specific PCB using EZEDLPCB. If the
data item has an OCCURS greater than one and no subscript is supplied, the
first occurrence of the data item is used.

The following example shows subscripting a data item with an OCCURS
greater than one. In the example, STATES is a record containing a data item
called NAMES. NAMES has an OCCURS value of 3. STATES contains another
data item called NUMB, and this data item contains a number.

To move the contents of the third occurrence of NAMES in the record,
STATES, NUMB is first set to equal 3. The following statement moves the
contents of the third occurrence of NAMES into a map item called
MAP.STNAM:
MOVE 3 TO NUMB;
MOVE STATES.NAMES[NUMB] TO MAP.STNAM;
or
MOVE STATES.NAMES[3] TO MAP.STNAM;

The NUMB data item is the subscript that specifies which occurrence of
NAMES should be used.

Subscripting a table item
Items in tables can be subscripted. For example, a table called STATES
contains a single column called NAMES. There are 50 rows in the table and
each contains the name of a state. A number from 1 to 50 can be stored in a
data item called NUMB, and NUMB can be used to reference a row in the
table.

Appendix A. Program design techniques 235

If NUMB equals 5, the following statement moves the contents of the fifth
row in the NAMES column to a map item called MAPA.STNAM:
MOVE STATES.NAMES[NUMB] TO MAPA.STNAM;

By changing the value of NUMB, you can reference any row in the STATES
table.

Subscripting EZEDLPCB
In the example, the IMS PSB being used by the program has 5 PCBs. If you
want to access the contents of the I/O PCB, use the following MOVE
command:
MOVE EZEDLPCB[0] to IOPCB;

Record processing techniques

Duplicate Keys
Records with duplicate keys can exist in indexed files. Duplicate keyed
records can be read or written only in the SCAN, SCANBACK, and ADD
functions. UPDATE and DELETE functions only act upon the first record in a
set of records with duplicate keys.

Records with duplicate keys or without keys can exist in DL/I databases. You
can UPDATE or DELETE records retrieved with the SCAN function if you
modify the DL/I call for the function to do SCAN FOR UPDATE.

Record locks
A REPLACE or DELETE function must be preceded by an UPDATE or SCAN
FOR UPDATE function in the same program. The number of locks that can be
held at the same time varies with the system.

If your system uses VSAM indexed files, the program can hold one lock per
file. If a second read operation, within the same program with the UPDATE
function, is run against the same file, the first record lock is released.

If your program uses DL/I databases, the program can hold one lock per
database structure (PCB entry in the program PSB). The lock is released on
the next I/O function for the same structure.

Locking rows in relational databases is discussed in “SQL locking” on page 55.

Generic keys
Generic key search support for indexed files can be satisfied by moving a
partial key into the record key field and doing SET record SCAN against the
record. The subsequent SCAN receives the next sequential record with a key
greater than the partial key.

236 VisualAge Generator: Design Guide

For example, if a file has 10 character keys with people’s names, to start
scanning for names starting with ‘JON,‘ you should move ‘JON‘ to the record
key and do a ‘SET record SCAN‘ to start scanning.

Generic key search support for DL/I databases is described in “Searching on
partial keys” on page 98. Generic key search support for relational databases is
described in “Chapter 2. Developing SQL programs” on page 19.

Controlling file I/O

The task of sending or receiving data from a file can require as little as one
VisualAge Generator statement or it can require several functions to set up
and perform. Some of the important file I/O considerations are discussed in
this section.

Data set position
Data set position for relative or indexed files determines what logical record is
presented to your program if it does a record SCAN. If the program has a
position, a record SCAN retrieves the next sequential record from the data set
and sets the data set position to the record just accessed. Each successful I/O
for a record sets the data set position to the logical record obtained on that
I/O. If an I/O is unsuccessful (NRF, EOF, LOK, and so on), your position in
the data set is unpredictable.

At the start of a program, the program is positioned to the first record in each
of your data sets.

The position of the file is reset to the beginning of the data set when you call
a program that does I/O to the same data set, but uses a different file name.

For CICS recoverable files, the position of the file is reset to the beginning of
the data set when one of the following occurs:
v A commit point
v A rollback
v A segmented CONVERSE.

If you want to maintain your position for scanning across one of these points,
you must save a unique key and re-establish your position by doing an
INQUIRY (or SET record SCAN for indexed files) to the record using that key.

If you have multiple records defined in the same data set by using the same
file name on each record definition, then you should be aware that there is
only one position per file name. For example, if you have three records (REC1,
REC2, REC3) and you specified the same file name (ARFILE) on all three
definitions and the data set you were testing with was
V90.UCAT1.ARDSINDX, then doing an INQUIRY to any one (for example,

Appendix A. Program design techniques 237

REC2) of the three records sets the position in V90.UCAT1.ARDSINDX for all
three records. The data content of REC1 and REC3 does not change. However
if you then scan REC3, you get the next record in V90.UCAT1.ARDSINDX
after the last record that had position set on (the INQUIRY of REC2).

To have more than one position maintained in the same input data set in the
same run unit, associate multiple records with different file names with the
data set. In the data set, a separate file position is maintained for each logical
file name.

Abnormal termination
When VisualAge Generator detects an error at runtime, it ends with a return
code and error notification. The error notification identifies either the
statement or function where the error occurred and the reason for the error.

For more information on abnormal terminations, refer to the VisualAge
Generator Server Guide for MVS, VSE, and VM document.

File error handling
File I/O return codes are classified as hard or soft errors. The hard errors
cause the program to end with error messages. The soft errors enable the
program to continue if the user provides an error handling function for the
I/O.

You should always define an error routine on your file I/O functions. A
program abnormal termination can occur if you do not.

The choices you have for an error routine are a function, EZERTN, EZEFLO,
or EZECLOS. While one of the special function words might work adequately
during initial testing, you should normally include logic in your program to
determine what type of file error occurred and send an appropriate message
to the user. This means using a function to decode the error and set up the
error message. An I/O error routine is invoked as an inline subroutine when
an I/O error occurs. When the function completes, processing continues with
the statement immediately following the I/O option. An I/O error routine
works as an error exit. When the error routine completes, processing
continues as directed by the flow stage of the process.

A program can continue after a file I/O error or a hard error if it has access to
the error information. This enables programs to be written that can provide
graceful degradation of service when some of their resources are not available.
For example, if a file is full, a program could continue providing information
from that file, or if there was a hard error on one file, the program could
continue providing services that did not require that file.

238 VisualAge Generator: Design Guide

The program can set a special function word, EZEFEC, to control continuation
after hard errors. If this form of error handling is chosen, the program can test
for hard errors and access error information. DL/I and SQL error information
is returned in separate special function words. For other I/O, the return code
is in the EZERT8 special function word. Refer to the Programmer’s Reference
document system for information on the format of EZERT8.

When file I/O is done for a program and the user has defined an error
handler on the I/O function, the content of the EZEFEC special function word
is checked to see if the program has requested special error handling. If the
value of EZEFEC is equal to 0 (the initial value) then the program ends on
hard errors. If the value of EZEFEC is equal to 1, the program continues on
hard or soft errors.

Both mnemonic error codes and the value in EZERT8 can be tested after file
I/O. The EZERT8 value is subject to system dependencies and should be
carefully used.

Mnemonic error codes
The mnemonic I/O error values vary by I/O option and file type. Refer to the
online help system or the Programmer’s Reference document for the actual
mnemonic error codes that are set for specific I/O options.

The UNQ error code is a subset of DUP and applies only to indexes that have
been defined as unique. That is, if UNQ is set then DUP and ERR are also set.
Therefore you should test the most specific error codes first. If UNQ is set, the
operation was not successful (ADD or REPLACE of a record containing an
index field key that is a duplicate of an already existing key in the file). If
UNQ is not set, the operation was successful. DUP indicates that records with
duplicate keys exist on the file. DUP can be returned on an input as well as
an output option.

Example of an I/O error routine
An example of using an I/O error routine is shown in the following figure.
This example assumes that you are not using a user message table. Assume
that a key was obtained in the CONVERSE function for MAP2 and that an
UPDATE function for that record is immediately performed in function
PINQ080, which received some sort of file error. Therefore, the program
branches to function PINQ180. The program attempts to determine the error
condition, calls a function to correct the problem, and moves an appropriate
message into the EZEMSG special function word field of MAP2.

This example assumes there is one index defined with duplicate keys. If it
was not, the DUP code does not need to be tested because this program does

Appendix A. Program design techniques 239

not ADD, and DUP on an UPDATE only indicates there are other records with
this same key.

The example shows the following:
v If a potential deadlock condition is detected, the program calls EZEROLLB

to release all locks so that the other program that is waiting can proceed.
The program user should be notified of this.

v If none of the TEST statements are true, the program should issue a
message to the program user that indicates they should call their help desk
with information about what they were doing. There is limited problem
determination data that the program can access other than the program and
function names.

v The error messages are set up by moving literals to EZEMSG. Because these
messages are exception messages, they might be considered for a user
message table. The messages are then set up by moving the correct message
number to EZEMNO.

PINQ070: CONVERSE MAP2

PINQ080: UPDATE CUSTREC PINQ180
MOVE CUSTREC TO MAP3;
MAP3.TOTAL = MAP3.TOTAL + CUSTREC.ARBAL;
....
....

FLOW- PINQ090;

PINQ180: ---- execute ---
MOVE 'CUST FILE ERROR, CONTACT HELP DESK' TO MAP2.EZEMSG;
TEST CUSTREC NRF SINQ190; /* NOT ON FILE
TEST CUSTREC DUP SINQ200; /* DUPLICATE RECORD ON FILE
TEST CUSTREC LOK SINQ210; /* SOMEONE ELSE HAS LOCK
TEST CUSTREC DED SINQ220; /* POTENTIAL DEADLOCK DETECTED

FLOW- PINQ070; /* REDISPLAY THE MAP

SINQ190: MOVE 'NO SUCH CUSTOMER EXISTS' TO MAP2.EZEMSG;
EZERTN;

SINQ200: MOVE 'ANOTHER CUSTOMER HAS THE SAME CODE' TO MAP2.EZEMSG;
EZERTN;

SINQ210: MOVE 'CUSTOMER RECORD IS IN USE, TRY LATER' TO MAP2.EZEMSG;
EZERTN;

SINQ220: CALL EZEROLLB; /* RELEASE LOCKS TO BREAK DEADLOCK
MOVE 'CUSTOMER RECORD IS IN USE, TRY LATER' TO MAP2.EZEMSG;
EZERTN;

Figure 30. Example of an I/O Error Routine

240 VisualAge Generator: Design Guide

Defining partial and floating maps

Partial maps are smaller than the standard size of the screen for a particular
device. Partial maps can be defined and positioned so that more than one
map can be shown on a screen at the same time. A floating map has no fixed
starting location. In other words, floating maps can appear in more than one
location on a screen or printer. The following discussion of partial and floating
maps applies primarily to maps that are defined to display on your screen.
For information on map definition functions for printer maps see “Defining
printer maps” on page 242.

Floating maps
A floating map does not have a fixed starting location. Floating maps are
identified by the Floating map check box on the Layout page of the Map
Properties notebook. When you select Floating map, the starting line is set to
Next and the starting column is set to Same.

A floating area is defined by the map group and device, using the Map Group
Editor. Floating maps appear without any consideration to any partial fixed
maps or full fixed maps that might be on the screen. The only requirement for
floating maps is that they fit the floating area defined for the device in the
program’s map group.

Floating maps occupy the next available space in a defined floating area not
already occupied by a floating map. If there is no room at the bottom of the
floating area for a new map, all floating maps are deleted (erased), and the
floating area is considered empty. The new map is positioned on the first line
of the floating area.

If a floating map overlays a fixed map, only that part of the fixed map that is
in the floating area is overwritten by the floating map. The rest of the fixed
map remains intact. Unpredictable results can occur when fixed maps are
overlaid by another variable field.

Only one map can be placed on a given line (that is, side-by-side maps are
not supported). If a floating area is not defined for a device, the floating area
defaults to the full device size.

For IMS/VS, a floating map is only valid for printer maps. A floating map
cannot be used for display devices in IMS/VS.

Defining a presentation area for floating maps
You can define a presentation area for floating maps defined within a map
group from the Map Group Editor window. This list contains all devices
supported by maps within the map group and shows the current floating area
definition (if any) for each device.

Appendix A. Program design techniques 241

Define the floating area size by setting the lines and columns to nonblank,
nonzero values within the ranges shown. For the position of the floating area,
set the starting line and starting column to nonblank, nonzero values within
the ranges shown. All four settings must either be blank or all must contain
numbers within the ranges shown. If the values are all blank, then a specific
floating area has not been defined for this device and the entire device is
considered as the floating area.

Within a floating area, floating maps are displayed one after another, from the
top of the floating area to the bottom. Floating maps cannot be displayed side
by side. Usually, the floating area is defined with the same depth for all
display devices for a map group. Different floating areas for display devices
supporting the same set of maps within the group are of little use. It is
possible to use different floating areas if floating maps are conversed during
program execution. If the floating area is full, you must converse one of the
maps contained in the floating area.

For IMS/VS, a floating area is only valid for printer maps. Do not use a
floating area for display devices in IMS/VS.

Partial maps
Partial maps are maps that do not have a depth equal to the size of the
physical screen. More than one of these maps can be shown on the screen at
one time if their position and depth do not overlap. Side-by-side maps are not
supported.

Fixed maps have a specific starting line number. A fixed map overlay occurs if
a partial map appears and exactly overlays an existing fixed map on the
screen (same starting line and depth). When a fixed map overlay occurs,
VisualAge Generator replaces the existing map without erasing the panel. If
you do not want this to happen, code a SET map PAGE statement before the
second (partial) map is displayed or is conversed, which causes the panel to
be cleared before the partial map appears.

Fixed maps that do not overlap any other fixed map can appear on the same
display in any order.

For IMS/VS, the screen is cleared before each CONVERSE so that only a
single partial map can appear.

Defining printer maps

Many of the map definition functions associated with display device maps are
applicable to maps that are defined for printers. However, because these
output devices support different functions, some differences exist.

242 VisualAge Generator: Design Guide

When VisualAge Generator processes a DISPLAY option for a printer map, the
output is sent to the resource associated with the internal file name
EZEPRINT. You specify this association when starting the test facility or when
generating the program. You can also dynamically change the printer name at
run time by moving the name of the printer into EZEDESTP before the
DISPLAY I/O option.

Fixed position printer maps
Fixed position printer maps can start on any specified line number, provided
the total depth and offset do not exceed 255 lines.

Unlike display maps, the order in which printer maps are printed affects the
output. VisualAge Generator monitors the current line number for the print
output. When a map is printed with a starting line less than the current line, a
form feed order is included in the first line of the print map before it is sent
to its associated resource. The line counter is reset whenever a form feed
order is included in the output.

When a printer map is printed with a starting line greater than the current
line counter, VisualAge Generator inserts the needed carriage control
characters in the print output, advancing the printer to the specified starting
line.

Fixed position printer maps can be defined to start in a column other than
column 1. However, only one map can be displayed on a given line.
Side-by-side maps are not supported.

Floating Printer Maps
Like floating maps for display devices, printer maps do not have a fixed
starting location. A floating area for the printer is defined in the same manner
as for display devices. The floating area size and offset must not exceed the
default device size. If a floating area is not defined for the printer, the floating
area defaults to the full device size. Although floating printer maps cannot be
defined with a specified starting column, the floating area can be defined to
start in a column other than column 1.

When a floating printer map is printed, the map is positioned in the first
available space in the defined floating area. If a program has previously
displayed a fixed map, a portion of which falls in the floating area, a form
feed order is inserted in the output and the floating map is placed in the first
floating area position of the next page. If the floating map cannot fit at the
bottom of the floating area, the floating map is placed in the first floating area
position of the next page.

If different floating areas are defined for different print devices (PRINT,
PRINT-B, 3767), only one of the floating area definitions is used for all the

Appendix A. Program design techniques 243

printer maps. To avoid confusion, either specify the same print device for all
print maps or specify the same floating area for all printer devices.

Printer paging control
Control characters are inserted into the print output to manage the occurrence
of page advances or form feeds on the printer. Form feed orders are inserted
as follows:
v When the program prints a fixed position map with a starting line number

less than the current print line (as described in “Fixed position printer
maps” on page 243).

v When a floating map is printed after the floating area has been partially
overlaid by a fixed map.

v When a floating map is printed but there is not enough room remaining in
the floating area for the entire map.

v When a map is printed that has previously been issued a SET map PAGE.
v When a CLOSE option is processed for any printer map. This inserts a form

feed order before releasing the print output.
v When a main program ends.
v When a called program that was called by a non-VisualAge Generator

program ends.
v When printing the next map after a CLOSE option is processed for a printer

map.

Releasing print output
Print output is accumulated until the printer is “closed”. The output is then
released to the associated resource. The manner in which this accumulation
and release are performed varies by environment and resource. When the
printer is closed, a final form feed order is inserted into the output, advancing
the printer to the top of the next page. There is no form feed when a program
starts. The printer issues a form feed and closes the printer file when any of
the following occurs:
v a program issues a CLOSE I/O option for a printer map.
v A main program ends.
v A called program that was called by a non-VisualAge Generator program

ends.
This enables you to create reports where a portion of the report (for
example, the heading) is produced by the main program and other portions
of the report (for example, sections of the body of the report) are produced
by called programs.

v A segmentation break occurs in IMS/VS and CICS environments.

Note: For CICS OS/2, the following behavior occurs when using a VisualAge
Generator program that does not have print maps, but which calls a

244 VisualAge Generator: Design Guide

VisualAge Generator program that does have print maps. This is
assuming that no explicit CLOSE is performed for the print map. If
linktype=cicslink (the default) is specified at generation time, print
maps will be closed on return from the called program. If the desired
behavior is for print maps to be closed at the end of the run unit, then
specify linktype=dynamic at generation time.

Performance techniques

The following are general considerations for generating COBOL programs that
perform well:
v NUMC and PACK provide better performance than NUM and PACF.
v SET record EMPTY statements involving NUM or PACF fields that do not

have substructures (ones that are not made up of other data items with
high level numbers) run more slowly because they result in calls to
VisualAge Generator Server for MVS, VSE, and VM (to set the sign bit).

v If the generation options /INITRECD and /INITADDWS are always
specified, then it might not be necessary to explicitly define a SET record
EMPTY statement at the beginning of the program.

v MOVE or MOVEA statements involving the following types of data run
more slowly because they result in calls to VisualAge Generator Server for
MVS, VSE, and VM:
– Short HEX field to a longer HEX field (to handle padding of the target

field with binary 0’s)
– MIX to MIX (to validate that the source is valid data and do the move)

unless the /NOVALIDMIX generation option is specified.
– Any move to a NUM or PACF field (to set the sign bit). A move to a

NUM field in a CICS for OS/2 program is the only situation that does
not result in a VisualAge Generator Server for MVS, VSE, and VM call.

– CHA to HEX or HEX to CHA (to convert between the two data types
and handle padding with binary 0’s for HEX fields)

– CHA to MIX or MIX to CHA (to convert between the two data types and
handle SO/SI and padding/truncation).

– On OS/400 runtime systems, NUM/PACKF or NUMC/PACK data types
can be optimized such that the call to VisualAge Generator Server for
AS/400 is avoided. See generation option /POSSIGN.

v IF or WHILE statements involving comparisons of the following types of
data are slow because they result in calls to VisualAge Generator Server for
MVS, VSE, and VM:
– HEX to HEX where the fields are of different lengths (to handle padding

of the shorter field with binary 0’s)
– CHA to HEX or HEX to CHA (to convert between the two data types

and handle padding with binary 0’s for HEX fields)

Appendix A. Program design techniques 245

– CHA to NUM or NUM to CHA (to convert between the two data types).
– On OS/400 runtime systems, NUM/PACKF or NUMC/PACK data types

can be optimized such that the call to VisualAge Generator Server for
AS/400 is avoided. See generation option /POSSIGN.

In a RETR statement, similar slow comparisons occur when the search
column and data item 1 differ as listed for IF and WHILE. This also occurs
for FIND statements.

v Limit the number of maps in your map group and the number of device
types specified.

v Use a separate map group for help maps. This splits the original map
group format module into two separate modules. The map group format
module for the help map only needs to be loaded when the program user
requests help.

v A blank fill character for CHA, MIX, or DBCS map variables provides better
performance than other fill characters.

v The choice of XFER or DXFR affects performance. See “Choosing between
XFER and DXFR statements” on page 248 for detailed information.

v The choice of CALL or DXFR affects performance. See “Choosing between
CALL and DXFR statements” on page 247 for more information.

v Generation options chosen can effect performance. Refer to the Generation
Guide document for description of these options.

v If your terminal maps contain a large number of fields intended only for
output (program never moves data from the field, tests the contents of the
field, or sets the field unprotected or modified), define each output only
field as protected on the map and specify /INEDIT=INONLY as a
generation option when the program and map group are generated.

v For CICS and IMS/VS, when running in segmented mode, use a DL/I
(IMS/VS) or main storage (CICS) work database for best performance.
Refer to the VisualAge Generator Server Guide for MVS, VSE, and VM or the
VisualAge Generator Server Guide for MVS, VSE, and VM document for
general information.

v In the CICS environments, use EZECNVCM=1 as an alternative to running
in segmented mode if storage resources are not constrained. Running
nonsegmented with EZECNVCM=1 frees file and database resources across
a CONVERSE but does not require the state of the program to be saved
and restored in a temporary storage file.

v If a program is always to run in nonsegmented mode, do not reference the
EZESEGM special function word in the program. Using EZESEGM causes
extra logic to be generated into the COBOL module.

246 VisualAge Generator: Design Guide

v Put the messages that are used most frequently at the top of the user
message tables. Also, for CICS, define user message tables as Shared and
Resident in the Table Definition facility. For IMS, preload user message
tables.

v For both IMS and CICS, if you use the DXFR statement to transfer among
segmented programs, use the EZESEGTR special function word to set the
transaction id to a transaction associated with the program that is doing the
CONVERSE, rather than returning to the initial program in the group.

Choosing between CALL and DXFR statements

The following considerations might help you decide whether a CALL or
DXFR statement meets the needs of your program.

Passing parameters
A CALL can pass 30 parameters, including level-77 data items, maps
and records.

A DXFR statement can pass only a single record.

Returning to the original program
A called program always returns to the calling program at the location
in the calling program where the call was made.

A program transferred to with a DXFR statement can only return to
the original program by using a DXFR or XFER statement. The
original program starts from the beginning in this case.

Segmentation
A CALL must be to a called or called batch program. Segmentation is
not supported in called programs. Any CONVERSE function in a
called program must run in nonsegmented mode.

A DXFR must transfer to a main or main batch program.
Segmentation is supported for main programs. A CONVERSE in a
main program can run in either segmented or nonsegmented mode.

Linkage table
The type of CALL (static, dynamic, CICS LINK, or remote) can be
specified in the linkage table. In addition, the format that parameters
are passed in (OSLINK, CICSOSLINK, COMMPTR, or COMMDATA)
can also be specified.

The type of DXFR (static, dynamic, OS XCTL, or CICS XCTL) can be
specified in the linkage table. The format that parameters are passed
in is determined by the type of DXFR being done.

Storage Considerations
For a CALL, both the main and called program must be in storage.

Appendix A. Program design techniques 247

For a DXFR statement, if either OS XCTL or CICS XCTL is used, the
storage for the original program is released.

PSB Structures
For MVS/TSO, MVS batch, IMS, and VSE batch, the same PSB must
be used regardless of whether a CALL or DXFR statement is used.

For CICS, the same or different PSB can be used regardless of whether
a CALL or DXFR statement is used.

DB2 plan
For all environments, the initial DB2 plan used by the called or
transferred-to program is the same as that for the original program.

However, for segmented programs in CICS for MVS/ESA and for the
IMS/VS environment, you can change the transaction name in
EZESEGTR prior to a CONVERSE. This results in a different
transaction being scheduled after the CONVERSE and, therefore, a
different DB2 plan is used. You do not need to bind the original and
transferred-to programs into the same DB2 plan if you use a DXFR
and change EZESEGTR before the first CONVERSE and if the
transferred-to program does not use any SQL functions prior to the
first CONVERSE.

Commit points and freeing resources
In non-CICS environments, neither a CALL nor a DXFR cause a
commit point.

In CICS environments, a CALL does not cause a commit point. A
commit point occurs on a DXFR statement under the following
conditions:
v If a transfer to a non-VisualAge Generator program occurs and a

PSB is scheduled
v If /SYNCDXFR is specified and a PSB is scheduled
v If /NOSYNCDXFR is specified for the transferring program and the

transferring program had scheduled a PSB and different PSB names
were identified in the program specifications for the two programs.

Portability
If a called program does a CONVERSE, it cannot run in the IMS/VS
environment. A CONVERSE in a called program must run in
nonsegmented mode and each CONVERSE must run in segmented
mode for the IMS/VS environment.

Choosing between XFER and DXFR statements

When you transfer control between programs, you can use either an XFER or
a DXFR statement. The following considerations might help you decide which
statement meets the needs of your program.

248 VisualAge Generator: Design Guide

Number of transactions
XFER forces the transaction code to change.

DXFR requires that the transaction code stay the same. All programs
that transfer among themselves using a DXFR are part of the same
run unit.

PSB structures
For CICS, the transferred-to and -from program can use the same or
different PSBs for transfers using DXFR or XFER.

For MVS/TSO, MVS batch, IMS BMP, and VSE batch, the same DL/I
PSB is required for both the transferred-from and -to programs for
transfers using DXFR or XFER.

For IMS/VS, XFER requires each program to use a different IMS PSB.
However, the two PSBs can use the same set of PCBs. In this case, the
PSB specified in the program specifications can be the same.

For IMS/VS, DXFR requires that the PSB stay the same. All programs
that transfer among themselves using a DXFR are part of the same
run unit and must use the same PSB structure.

DB2 plan
For CICS for MVS/ESA and IMS/VS, XFER starts a new transaction.

CICS for MVS/ESA enables you to use the same plan for multiple
transactions. However, if you are using the XFER statement to transfer
from one program to another, it is not necessary to bind the programs
into a single plan.

For IMS/VS, the plan name, program name, and the IMS PSB name
must all be the same name. In this case, if you are doing an XFER
between two programs, you must use two different plan names. A
program transferring control to itself with an XFER statement is the
only situation where the plan name remains the same.

For CICS for MVS/ESA and IMS/VS, DXFR requires that the
programs use the same DB2 plan and that the DBRMs be bound
together.

For MVS/TSO, MVS batch and IMS BMP, the same DB2 plan is
required for both the transferred-from and -to programs for transfers
using DXFR or XFER statements.

Security
The differences in transaction codes, PSBs, and DB2 plans have an
effect on security.

Performance tuning
The differences in transaction codes, PSBs, and DB2 plans have an
effect on performance tuning.

Appendix A. Program design techniques 249

A DXFR statement should give better performance than an XFER
statement. With the DXFR statement a transaction does not end when
transferring control to another program.

For CICS, if an XFER statement is necessary, you should consider
using the /GENRET generation option. This option causes the XFER
statement to be generated into a CICS RETURN IMMEDIATE
command instead of a CICS START command. This method uses less
CICS overhead to transfer control to a new transaction.

Transaction scheduling
XFER causes CICS or IMS/VS to schedule a new transaction. If XFER
without a map is used, the transaction is immediately available for
scheduling. If XFER with a map is used, the transaction is not
scheduled until the program user enters data.

DXFR does not cause CICS or IMS/VS to schedule a new transaction.

Commit points and freeing resources
For CICS and IMS/VS, XFER causes a commit point. Database locks
are released. For CICS, the program control logic returns to CICS. For
IMS/VS, the program control logic reads the next message on the
message queue.

For MVS/TSO, MVS batch, VM CMS, VM batch, and batch-oriented
IMS BMPs, a commit point occurs for an XFER statement if the
/SYNCXFER generation option was specified. For MVS/TSO and
VM CMS, a commit point also occurs for an XFER statement in a
main transaction program that is defined as segmented or
single-segment. For a transaction-oriented IMS BMP program, an
XFER statement does not cause a commit point.

For non-CICS environments, DXFR does not cause a commit point.
Database locks continue to be held. The control program handles the
transfer and processing continues until the transferred-to program
does a CONVERSE, XFER, or EZECLOS.

For CICS, a SYNCPOINT occurs on a DXFR under the following
conditions:
v If a transfer to a non-VisualAge Generator program occurs and a

PSB is scheduled
v If /SYNCDXFR is specified and a PSB is scheduled
v If /NOSYNCDXFR is specified for the transferring program, the

transferring program had scheduled a PSB, and different PSB names
were specified in the program specifications for the two programs.

Loading modules
For CICS, XFER causes the transferred-to program to be loaded,
unless it is already loaded.

250 VisualAge Generator: Design Guide

For CICS, DXFR causes the transferred-to program to be loaded,
unless it is already loaded. When a CONVERSE occurs in a
transferred-to module, two loads might be required when the
program user enters data, one for the module associated with the
transaction code and one for the transferred-to module.

For IMS/VS, XFER causes the transferred-to program to be loaded
unless it is preloaded or there is a message already on the input
message queue for that transaction.

For IMS/VS, DXFR using a dynamic call causes the transferred-to
program to be loaded unless it is preloaded or it has already been
used during this scheduling of the from transaction by IMS
(considering everything that has gone on for all loop backs to read the
next message off the queue). When a CONVERSE occurs in a
transferred-to module, two loads might be required when the
program user enters data, one for the module associated with the
transaction code and one for the transferred-to module.

For IMS/VS, DXFR using a static call does not result in a load
because the programs are already linked together.

Using First Map
XFER with or without a map to a program that has a First Map is
permitted. For IMS/VS, XFER with a map requires the transferred-to
and -from programs to use the same map group.

DXFR with a map is not permitted. DXFR to a program that has a
First Map is not permitted.

XFER with a map requires the transferring and transferred-to
programs to share the map. For CICS, MVS/TSO, and VM CMS, you
can use different map groups when using XFER with a map only if
you copy the map definition into the second map group. For IMS/VS,
XFER with a map requires the transferred-to and -from programs to
use the same map group.

The DXFR statement allows the two programs to use different map
groups.

Work database storage
Use the /WORKDB generation option to specify the type of work
database you want to use. DL/I and SQL are supported for IMS/VS.
Main or auxiliary temporary storage are supported for CICS. For
IMS/VS, XFER causes, at most, the record and map to be stored in the
work database. For CICS, the record is stored in the COMMAREA and
the map is stored in the work database.

The DXFR statement does not use the work database. When you use a
CONVERSE function, program context, EZE special function words,

Appendix A. Program design techniques 251

all records and all maps that the program uses are stored in the work
database. If you choose to use the XFER statement or DXFR statement
for segmented programs then the there are no special storage
consideration when a CONVERSE I/O option is performed. If you
choose to use the single-segment mode with segmented programs,
then the storage saved at the CONVERSE I/O option can be
significant.

If the transferred-to program immediately performs a CONVERSE
I/O option, then the XFER statement performs slower than a DXFR
statement. The slower performance is because of scheduling done by
IMS. Using an XFER statement with a map to a program with a First
Map should perform faster than a DXFR statement to a program that
immediately issues a CONVERSE I/O option. In either situation, IMS
schedules a transaction. The XFER statement minimizes the amount of
information sent to the work database.

Productivity
The CONVERSE I/O option is easier to define than single-segment
mode, especially for developers already familiar with VisualAge
Generator.

Cross-Platform development between OS/2 and Windows NT

Because of the code page differences between OS/2 and Windows NT,
VisualAge Generator does not support cross-platform development between
OS/2 and Windows NT. The areas of VAGen parts that might contain
character data with different codepoints for the OS/2 and Windows platforms
are:
v Part names containing national characters
v Literals in logic statements
v The alternate ″not sign″ (the sign used on the host systems) in logic

statements
v Map fields (constant fields and initial values of variable fields)
v Table contents
v Labels and initial contents in views (GUIs)
v Comments in logic parts, descriptions and prologs

If you choose to cross-develop between OS/2 and Windows NT, it is your
responsibility to ensure that only character data with the same codepoints are
used on both platforms. If characters with different codepoints are used in a
part developed on one platform, when you load this part on the other
platform, the characters will appear incorrectly.

In general, you should be able to cross-develop for both OS/2 and
Windows NT if you use only the following character data:
v ASCII characters (codepoints less than 128)

252 VisualAge Generator: Design Guide

v DBCS characters
v The caret (″|″) instead of the alternate ″not sign″

The strings used in GUI views can be extracted into separate files. These files
contain information about the platform from which they were extracted.
When these files are loaded on another platform, the correct codepoint
conversion is performed for the strings. Refer to “Developing multi-language
GUI clients” document for more information. Note that this process enables
you to test and run GUI views correctly but it does not help in editing the
GUI clients. This means that when you edit a GUI view on Windows NT that
was defined in OS/2, you might see invalid characters in your strings.

Developing multi-language programs

If you want to use multiple languages in a single CICS region or IMS system,
you must change the program name and assign separate transaction codes to
each version of the program. For the programs to co-exist in the same CICS
region or IMS system, each must have a unique name. You must also rename
map groups and tables if they contain NLS dependent information. Any
references to these map groups and tables must also be changed to the new
name.

For CICS, you must have PPT and PCT entries for each version of the
program.

For IMS, you must have APPLCTN and TRANSACT macros in the IMS
system generation for each version of the program.

If you want to use multiple languages under MVS/TSO, you do not need to
change the program, map group, or table names, provided you install
generated programs into separate load libraries. You must use the correct load
library for the language you want to run.

Developing multi-language GUI clients

If you are developing GUI clients to run with multiple languages, or if you
want to deploy your clients on multiple platforms, VisualAge enables you to
extract the text of your user interface into separate files. This extraction
enables you to translate the text strings. It also enables VisualAge to perform
the correct codepoint conversion when the strings are read in on a different
platform than the one on which they were extracted. Following is a summary
of the steps needed to create an external file containing all of the text strings
used in the visual parts of an ENVY package/application:
1. Define a binary file to hold the text strings. The file must have an

extension of .mpr.

Appendix A. Program design techniques 253

2. Register the binary file when the package/application is loaded
3. Unregister the binary file when the package/application is unloaded
4. Build the binary file
5. Bind the image strings

Note: This section only applies to VisualAge Generator Smalltalk users.

For a detailed discussion of this process, refer to the ″National Language
Support″ section of the VisualAge Smalltalk User’s Guide or the VisualAge for
Java online VisualAge Generator help facility.

Coding arithmetic operations for consistent math results

Due to differences in COBOL, Smalltalk, C++, and Java arithmetic operations
involving multiplication, division, and remainders can have different results in
different operating environments when decimals places are greater than zero.
To ensure consistent math results in all VisualAge Generator operating
environments, you should code each arithmetic operation as one statement,
and break up remainder operations into their component parts.

Coding multiplication and division operations
To get consistent results from multiplication and division, code each operation
separately, as follows:

intermediate_result = a * b;
result = intermediate_result / c;

Do not code an arithmetic operation like the following:
result = a * b / c;

The number of decimal places defined to the intermediate_result item
determines the accuracy of the final result.

Coding division operations for consistent remainders
To get consistent remainders from division operations, code each operation
separately, as follows:

quotient = dividend / divisor;
remainder = dividend - (quotient * divisor);

Use a quotient with 0 decimal places to get Smalltalk, C++, or Java type
remainders. Use a quotient with the same number of decimal places as the
remainder to get COBOL type remainders.

The remainder operator provides consistent results if the dividend, divisor,
and remainder fields are all defined with 0 decimal places.

254 VisualAge Generator: Design Guide

Appendix B. Naming and programming standards

This appendix provides an example of naming and programming standards
you might use in your development group. Each computer installation should
have a set of programming standards and guidelines to ensure consistency
and ease of operation among application systems.

Suggested naming conventions

VisualAge Generator Developer permits shared access to several ENVY
packages/applications during the development process, either by one
developer or concurrently by many. The names of the various parts should be
unique across all ENVY packages/applications used during development of a
specific system.

The use of a well-designed, enforced naming scheme is essential to the
management and maintenance of a successful development environment.

This section includes the following information:
v Example naming standards
v Guidelines for programming standards

Repository/ENVY library part names
Your ENVY packages/applications should have a unique prefix (possibly 3
characters) so that all of your packages/applications will be grouped
alphabetically in the VisualAge Organizer/VisualAge for Java Workbench.
Using a single prefix for your packages/applications means that all of your
packages/applications appear together on the VisualAge Organizer/VisualAge
for Java Workbench. If there are several subsystems, each subsystem could
have a different prefix, but this means that they might not appear together on
the VisualAge Organizer/VisualAge for Java Workbench.

For example, if you have an Accounting system and a Payroll system, you
might choose to prefix your ENVY packages/applications with Acct for the
Accounting system and Pay for the Payroll system. However, there are also
sample packages/applications that ship with VisualAge Generator. These are
prefixed with Hpt. If you have the packages/applications for accounting,
payroll, and the VisualAge Generator sample packages/applications all loaded
into your workspace/image at the same time, the order in which the
packages/applications appear on the VisualAge Organizer/VisualAge for Java
Workbench is:

© Copyright IBM Corp. 1980, 2001 255

Acct
Hpt
Pay

Therefore, you might prefer to use a naming convention such as XyzAcct for
the Accounting system and XyzPay for the Payroll system, where Xyz is an
acronym for your company name. In this case, the order in which the
packages/applications appear on the VisualAge Organizer/VisualAge for Java
Workbench is:

Hpt
XyzAcct
XyzPay

Versions in ENVY should also have a naming convention. Using the default
naming convention (1.0, 1.1, and so on) might be the best way to start.

Repository/ENVY library part names
With the exception of nonshared data items within a record, VisualAge
Generator part names must be unique within an ENVY package/application
regardless of the part type. For example, a program cannot have the same
name as the record that defines the working storage used by that program.
Also, if two projects are part of the same package/application system, the
names of the parts in the two projects must not overlap. Prefix or suffix
characters can be used to partition names by system, program, and part type
to avoid overlapping names for different parts.

For example, the format for a part name is sspptnn...n

Where:

ss Two alphabetic characters designating the application system ID in
which the part is used(an application system is a group of programs
designed to do a function, such as payroll). You might reserve the
characters ZZ for parts common to more than one application system.

pp Two numeric digits identifying parts associated with a specific
program in an application system. 99 might be reserved for parts of
the same application system common to more than one program in
the system. The developer assigns the program numbers.

Note: The combination ZZ99 is then reserved for skeleton parts used
as a development base for all application systems.

t(t) One or two alphabetic characters designating one of the following
types of parts:
A Program
D Dummy record for extra records list
F File

256 VisualAge Generator: Design Guide

P Function
G Map group
M Map
PS PSB
R Record
T Table
W Working storage
X Alternate index record

nn...n The developer assigns a maximum number of characters permitted for
that part. Always start with 01, rather than 00.

Example

VA01P01-DISP-ACCT is a function and VA01W is working storage
related to program VA01A.

Data item names
Data item names can be from 1 to 32 characters long, but it is suggested that
they be at least 2 characters and no more than 30 characters. The 30-character
limitation is to avoid alias names being assigned for generated COBOL, and
the 30-character limitation to improve readability of the program. The
following naming format can be used for data items:

abbbbbbb...b

Where:

a An alphabetic first character. The letter Z in this position indicates a
data name common to all application systems.

bbbbbbb
Up to 31 alphanumeric characters

Example

UCOMMAND is the name of the user command entry variable field.

To avoid aliases being assigned during COBOL or C++ generation and to
improve the readability of the generated COBOL or C++ program, follow
these standards:
v Use 30 characters or less in item names.
v Do not use COBOL or C++ reserved words.
v Do not use $, #, @, or _ characters.
v Do not use double-byte character set (DBCS) names for item names if your

program contains SQL functions.
v For C++ programs, do not use DBCS names.

Appendix B. Naming and programming standards 257

Suggested programming standards

This section outlines suggestions for developing your own set of
programming standards. It is important to develop a set of standards within
your development group to ensure consistency between programs.

Function Standards
Use invoked functions for I/O functions that need to run multiple
times or from multiple places. Test for any PA key after invoking
CONVERSE. Write your program so that if a PA key is pressed the
program does not accept the input as valid. Make the program go to
an exit, or display the function again.

Note: IMS/VS reserves the PA key so you cannot use it.

Map Standards
Include a line for EZEMSG.

Include a map identifier on the map, which could also identify the
version of the map.

Make use of the user help map capability and have the VisualAge
Generator product display the help maps for you. This method is
more efficient than defining VisualAge Generator logic statements to
check for specific user responses and then using a CONVERSE
function to display the help map. Using the VisualAge Generator
product also eliminates the need to know exactly what (and how
many) help maps there are when defining programs. The help maps
can be defined during map definition and then ignored in the logic of
your program.

258 VisualAge Generator: Design Guide

Appendix C. Size restrictions and record lengths

Size limitations for VisualAge Generator

Table 27 outlines size limitations for VisualAge Generator. Refer to specific
language element compatibility considerations for additional environmental
restrictions.

Table 27. Size Limitations for VisualAge Generator

Definition Limitations

Number of Data Items 32767 data items and literals per program

Data Items 32767 bytes in record definition

32730 bytes in record definition (OS/400 only)

254 bytes in table definition

8000 bytes for printer maps (IMS only)

1 byte less than map size for terminal maps (IMS only)

Map Constant Field 255 bytes (IMS only)

Working Storage 32767 bytes if used in an XFER or DXFR statement

32730 bytes maximum, regardless of XFER or DXFR
(OS/400 only)

Numeric Items 18 digits

Decimal Places 18 digits (included within numeric item size)

Subscripting One level

Number of Occurrences 32767 in record definition

32730 in record definition (OS/400 only)

Maximum Table 524288 bytes for MVS, VM, VSE, or non-shared tables on
CICS for OS/2

64K bytes for shared tables on CICS for OS/2

On OS/400, table rows are limited to 32,767 bytes, total
table contents is limited to 3 mega bytes.

Maximum Number of
Variable Fields on a Map

800 on CICS for OS/2

Primary Table Columns 700 top level data items

Numeric Literals 18 digits plus 1 sign, 1 decimal point, or both

© Copyright IBM Corp. 1980, 2001 259

Table 27. Size Limitations for VisualAge Generator (continued)

Definition Limitations

CALL Parameters Limit of 30 arguments

Number of Main Functions 254 per program

COMPILED Size of a
Function

64K limit for COBOL for the Micro Focus COBOL
compiler on OS/2

Number of lines in an SQL
statement

819

Maximum record lengths

Table 28 outlines the maximum record lengths for each environment.

Table 28. Maximum Record Lengths by Environment When using an XFER Statement

Environment XFER with Record XFER with Record and Map

CICS (Main or Main
Batch)

32763 (limit set by
CICS)

32753 (Main only) - (32763 - 10 bytes
reserved for VisualAge Generator Server
for MVS, VSE, and VM, and VisualAge
Generator Server for AIX, Windows NT,
and Solaris)

MVS/TSO (Main or
Main Batch)

32767 32767 (Main only)

MVS batch (Main
Batch)

32767 XFER not supported

IMS/VS (Main) 32753 32753

IMS/VS (Main
Batch)

XFER not supported XFER not supported

IMS BMP (Main
Batch)

32767 XFER not supported

OS/400 (Main or
Main Batch)

32730 32730

VM CMS 32767 32767

OS/2 batch 32767 XFER not supported

AIX batch 32767 XFER not supported

Windows NT batch 32767 XFER not supported

HP-UX batch 32767 XFER not supported

Solaris batch 32767 XFER not supported

260 VisualAge Generator: Design Guide

Table 29. Maximum Record Lengths by Environment When Using a DXFR Statement

Environment DXFR with Record

CICS 32763

MVS/TSO 32767

MVS batch 32767

IMS/VS 32767

IMS BMP 32767

OS/400 32730

VSE 32767

VM CMS 32767

VM batch 32767

OS/2 batch 32767

AIX batch 32767

Windows NT batch 32767

HP-UX batch 32767

Solaris batch 32767

Table 30. Maximum Record Lengths for Serial, Relative, and Indexed Records by
Environment

Environment Serial, Relative, and Indexed Records

CICS (VSAM) 32763 (32688 for journaled records)

9999 for serial and indexed records on
CICS for OS/2

4092 for relative records on CICS for OS/2

CICS (TD queue) 32763 (9999 on CICS for OS/2)

CICS (TS queue) 32762

CICS (Spool) 32763

IMS/VS (message queue) 32755 (32767 - 2 bytes for LL, 2 bytes for
ZZ, and 8 bytes for transaction name)

(IMS/VS Main can only ADD to a
message queue)

IMS BMP (Main batch) 32755 (32767 - 2 bytes for LL, 2 bytes for
ZZ, and 8 bytes for transaction name)

OS/400 32730

Appendix C. Size restrictions and record lengths 261

Table 31. The Maximum Audit Data Length for a Record by Environment

Environment Audit Data Length

CICS 32763

MVS batch (with DL/I) 32765 (32767 - 2 bytes ZZ)

IMS/VS (with DL/I) 32765 (32767 - 2 bytes ZZ)

IMS BMP (with DL/I) 32765 (32767 - 2 bytes ZZ)

VSE, VM not supported

Table 32. The Maximum CREATX Data Length for a Record by Environment

Environment CREATX Data Length

CICS 32763

IMS/VS 32765 (32767 - 2 bytes ZZ)

IMS BMP 32765 (32767 - 2 bytes ZZ)

262 VisualAge Generator: Design Guide

Index

Special Characters
> (shift in) 214
< (shift out) 214
/WORKDB generation option 251

Numerics
3270 client program 11
5250 keyboard considerations 201

A
abend, DL/I 112
abnormal termination 238
accessing databases using ODBC 69
accessing databases using Oracle 74
accessing DB2/MVS stored

procedures 78
accessing distributed databases 59
accessing distributed databases using

EZECONCT, ODBC 74
accessing relational tables 38
ADD I/O option 21, 94
adding an SQL row 39
addressability 104
addressing PCBs 105
AIX

files, using 178
alias names 257
allocate, file 207
allocation failure 208
alternate PCB 100

description 140
using 151

alternate PSB 115
among multiple programs 104
and SELECT commands 45
ANSI SQL, OS/400 195
ANSI standard static mode 65
arithmetic operations 254
associate, file 208
attributes, data 3
AUDIT service routine 157
authorization considerations,

Oracle 78
authorization considerations,

SQL 65
authorization identifier, SQL 65
automatic rollback, relational

database 56
auxiliary temporary storage

queue 169, 170

B
basic checkpoint with GSAM

file 158
basic SQL functions 38
batch message processing (BMP),

batch-oriented 139
batch-oriented BMP 139
batch programs 139
batch terminal simulator (BTS) 139
binary data type 234
binding stored procedure packages,

DB2/MVS 81
Box 221

C
call

DL/I 87, 94
CALL and DXFR statements 247
CALL statement

DB2 plan 248
freeing resources 248
linkage table 247
passing parameters 247
portability 248
PSB 248
segmentation 247
storage considerations 247

CALL statement, program linkage
on, VisualAge Generator 202

CALL statement arguments, mixed
literals 224

CALL statement error handling 196
CALL statement in GUI client

design 13
Callable Function part in GUI client

design 13
calling a VisualAge Generator stored

procedure, DB2/MVS 81
changing, a static SQL statement to a

dynamic SQL 52
changing, an SQL row 38
checking results of serial file I/O

options 160
checkpoint, with GSAM file 158
choosing between CALL and DXFR

statements 247
choosing between XFER and DXFR

statements 248

CICS
functions 182
JOURNAL call 185
multiple transactions 185
print file destination 180
printer support 182
printing techniques 179
program communications 184
programs 167
PSB scheduling 108
serial record organization,

transient data queue 172
spool files 172, 173
spool files for printer

output 179
SYNCPOINT 185
SYNCPOINT ROLLBACK 185
terminal support 182
transient data queues for printer

output 179
using OS/2 files 178, 180
using Solaris files 178
using Windows NT files 178
VSAM files 177

CICS, CICSplex 186
CICS region affinity 187
CICSplex 186
client

3270 11
GUI 6
host 11

CLOSE, releasing rows 41
close cursor, implicit processing 192
CLOSE I/O option 21
CMPAT=YES parameter 91
coding

comment line 46
SQL column name 46

coding arithmetic operations 254
coding multiplication and

division 254
column definition, DBCS data 217
COMMAREA 168
comment line 46
commit point

at CONVERSE 122
CALL statement 248
DL/I 114
DXFR statement 248, 250

© Copyright IBM Corp. 1980, 2001 263

commit point (continued)
XFER statement 250

commitment control
during program

development 191
explicit 192
implicit 192

commitment control, native
database 191

commitment control cycle
ending 193
starting 193

commits, OS/400 192
committing database updates,

DL/I 115
common programming tasks

initializing data 233
subscripting 235

communication area 168
compare and update technique 57,

108
comparing SQL row definition to the

database 26
comparison processing, DBCS and

Mixed data 224
compatibility considerations 196
compatibility considerations, map

definition 200
compatible data types 28
considerations 225

compatibility 196
for 5250 family keyboard 201
for native database commitment

control 191
performance 202
record lock 190
security 204

considerations, general, OS/400 189
considerations, nonsegmented

programs 125
considerations, segmented

programs 125
consistent math results 254
contents definition, DBCS and Mixed

data 217
control tables 168
controlling file I/O

abnormal termination 238
data set position 237
file error handling 238

conversational mode 122
CICS 168, 182
program flow diagram 123

conversational MPP 139
CONVERSE 147

CONVERSE with EZESEGTR 147
converting data, stored procedures,

DB2/MVS 82
counters 235
CREATE statement 48
CREATE TABLE SQL statement 20
creating and naming physical

files 189
CREATX service routine 157
cross-platform development between

OS/2 and Windows NT 252
CRTLF command 190
CRTPF command 190
CSPTDLI 103, 115
CSPTDLI service routine 157
customer database example,

DL/I 88

D
data communications feature

(IMS/DC) 138
data conversion, stored procedures,

DB2/MVS 82
data conversion in the test

facility 120
data definition in IMS 150
data definition specifications, (DDS)

during generation 191
data-entry database 140
data integrity

across transactions 57
between CONVERSEs 107

data item 1
initializing 233
subscripting 235

data item comparison processing,
DBCS and Mixed data 224

data item definition 226
DBCS and Mixed data 217
modifying 25
SQL 25

data item names, naming
conventions for 257

data items 3
data items, moving 229
data movement processing, DBCS

and Mixed data 222
data set position 237
data source for ODBC, defining 69
data structures, DL/I 93
data type, conversion 234
data type, DBCS 196
data types

date, Oracle 76
guidelines 234
ODBC 71

data types (continued)
Oracle 75
SQL 28
SQL to VisualAge Generator

conversion 29
VisualAge Generator to SQL

conversion 32
database

definition 139
definitions, SQL 24
distributed 113
DL/I 91
feature (IMS/DB) 138
hierarchy, DL/I 86
identifier, DL/I 87
manager (IMS/ESA DM) 138
PCB 141
PCB, DB 153
position, DL/I 87, 97

database, considerations for
DB2/400 193

database, non-IBM relational 67
DATABASE 2 19
database access using ODBC 69
database access using Oracle 74
database connections, ODBC 74
database integrity, OS/400 194
database setup for ODBC,

defining 70
database setup for Oracle,

defining 75
DataJoiner 67
DATE, TIME, and TIMESTMP SQL

columns 194
DATE column, Oracle 76
DATE column, SQL 33
DB2/2 Version 1.0 19
DB2/400 databases, considerations

for 193
DB2 authorization

considerations 66
DB2/MVS stored procedures,

accessing 78
DB2 plans

multiple plans in IMS 135
multiple plans in MVS

CICS 135
accessing using 133
accessing with 135
dynamically 135

DB2 program 248
DB2 program plan 248, 249
DBCS

field outlining 213
field validation 219

264 VisualAge Generator: Design Guide

DBCS (continued)
map field definition 219

DBCS, GUI clients 218
DBCS, map definition 200
DBCS and Mixed data

column definition 217
contents definition 217
data definition 216
data item comparison

processing 224
data item definition 217
data item definition list 217
data movement processing of

DBCS data 222
data movement processing of

mixed data 222
device selection 218
devices 213
EZEMSG 220
field attribute definition 220
field outlining 220
fields 214
literals 221
naming conventions 215
prolog definition 217
record definition 216
relational database support 225

mixed 226
SQL row 225, 226

SI (shift in) 214
SO (shift out) 214
table definition 217
test facility 224
variable field edit definition 220

DBCS and Mixed variable fields
Box 221
Left 221
Over 221
Right 221
Under 221

DBCS data type 196
DCT (destination control table) 168
deadlock

ABEND recovery, DL/I 111
DL/I 112
preventing 181
SQL 55

debugging and tracing, stored
procedures, DB2/MVS 83

declaring stored procedures,
DB2/MVS 80

default selection conditions 27
default SQL statement 47
default transaction IDs, transfer 131
deferred program switch 141

defining
data items for SQL row

records 24
defining, program native database

files for OS/400 189
defining DB2 linkage conventions,

stored procedures, DB2/MVS 81
defining host variables, stored

procedures, DB2/MVS 81
defining ODBC programs 70
defining Oracle programs 75
defining partial and floating

maps 241
defining printer maps 242
defining SQL programs, logical unit

of work considerations 55
defining stored procedure call,

DB2/MVS 79
defining stored procedures,

DB2/MVS 79
defining the data source for

ODBC 69
defining the database setup for

ODBC 70
defining the database setup for

Oracle 75
defining the VisualAge Generator

Server setup for ODBC 70
defining the VisualAge Generator

Server setup for Oracle 75
definition facility 91
definition size limitations 259
DELETE, multiple-row 48
DELETE I/O option 21, 94
deleting an SQL row 39
deleting DL/I segments 97
dependent DL/I segments 96
design 1

data 3
GUI 4, 6
host client 11
logical user interface 4
physical user interface 4

designing programs 1
destination control table (DCT) 168
developing multi-language GUI

clients 253
developing on cross-platforms,

considerations for 252
device selection, DBCS and Mixed

data 218
devices, DBCS 213
devices, map definition 200
distributed database

DB2 59

distributed database (continued)
DL/I 113

distributed unit of work 59
division operations, math 254
DL/I

abend 112
accessing multiple segments on

one call 98
alternate PCB 100
alternate PSB 110, 115
call definition 93
commit points 114
concepts 86
considerations,

for CICS 108
for non-CICS

environments 113
CSPTDLI for database calls 103
data integrity 107
database definition 91
database hierarchy 86
database identifier 87
database position 87
deadlock 112
deadlock ABEND recovery 111
deleting segments 97
dependent segments 96
developing programs 85
distributed database 113
example, customer database 88
field level sensitivity 93
function code 87
GET NEXT IN PARENT 97
I/O area address 87
key checking 98
logical child segment 93
non-key fields 99
path calls 98
program communication block

(PCB) 86
program definition 93
program specification block (PSB)

scheduling 108
sharing a PSB 104
termination 108

program specification block
(PSB), description 86

remote access in ITF 116
replacing multiple segments 99
replacing segments 97
restart 115
results 94
rollback 115
root segment 94
run time 110

Index 265

DL/I (continued)
SCAN

access methods 94
function variations 97

search arguments 99
searching on partial keys 98
secondary index 92, 102
segment record definition 92
segment search argument (SSA)

list 87
segments 86
sequence field 86
setting database positions 97
sharing a PSB with a called

program 103, 110
soft errors 95
SSA list modification 98
status codes 95
symbolic checkpoint 115
transaction program design 107
unqualified SCAN 99
variable length segment 92

DL/I call 87
DOF size

for printer devices 156
for terminal devices 156

double-byte character set
(DBCS) 213

double-byte character set in map
definition 200

DRDA 59
DROP statement 48
DUP, I/O error mnemonic

enablement 199
duplicate keys 236
DXFR and CALL statements 247
DXFR and XFER statements 248
DXFR statement

DB2 plan 248, 249
first map 251
freeing resources 248, 250
linkage table 247
loading modules 250
passing parameters 247
performance tuning 249
portability 248
productivity 252
PSB 248, 249
security 249
segmentation 247
storage considerations 247
transaction scheduling 250
transactions 249
work database storage 251

DXFR statement implicit
commitment control 192

dynamic
allocate file 207
allocation failure 208
associate file 208
change print file destination 180
changing segmentation 129
execution mode 63
ORDER BY clause, example 52
SELECT 50
selecting a DB2 plan 135
SQL statement 52
WHERE clause, example 51

E
ELAWORK 152
ENDCMTCTL command 193
ending, commitment control

cycle 193
entities, data 3
entity relationships 3
error

codes 238
DL/I 95
notification 238

error handling, CALL
statement 196

error handling, file 238
error handling, ODBC 72
error handling, Oracle 77
error processing, segmented

programs 135
estimating MFS block size 155
example 52
exclusive locks, SQL 55
EXECUTE function 228
execution mode

called program 122
conversational 122
dynamically changing

segmentation 129
EZESEGM 129
nonsegmented 121
program flow diagram

nonsegmented 123
segmented 123

segmented 121, 122
transferred-to program 122

execution time statement build
controlling statement 49
dynamic ORDER BY clause, 52
dynamic SELECT 50
dynamic WHERE clause 51
table name host variables 53

execution time statement build
(continued)

with SQLEXEC functions 50
express alternate PCB 151
express PCB 141
external design 4
extrapartition transient data

queue 169
EZECLOS special function

word 122
EZECLOS special routine 192
EZECNVCM special function

word 122
EZECOMIT service routine 181
EZECONCT 61
EZECONCT unit of work

parameter 59
EZEDEST

invoking an I/O function
using 208

special function word 178
supported file types 209

EZEDESTP
invoking an I/O function

using 208
special function word 180, 208
supported file types 209

EZEDLKEY special function
word 98

EZEDLPCB
subscripting 236

EZEDLPCB, passing 105
EZEDLPCB special function

word 120
EZEDLPCB subscript 105
EZEDLPSB

passing 104
special function word 106, 120

EZEDLPSB special function
word 120

EZEDTELC special function
word 33

EZEMSG, DBCS and Mixed
data 220

EZERT8, file I/O status 198
EZESEGM special function

word 122, 129, 246
EZESEGTR 133

accessing DB2 plans 133
transfer 132

F
failure, dynamic allocation 208
fast path

data-entry database 140

266 VisualAge Generator: Design Guide

fast path (continued)
development 146
main storage database 140
restrictions 146

FCT (file control table) 168
field attribute definition, DBCS 220
field level sensitivity, DL/I 93
field outlining, DBCS 213, 220
file

AIX 178
allocation 207
association 207
dynamically allocating 207
dynamically associating 208
error handling 238
error processing 228
position 237
type 158

file control table (FCT) 168
file I/O status in EZERT8 198
first map 251
first map option 122
fixed position printer maps 243
flags 235
FLOAT column support 33
floating maps 241
floating printer maps 243
FLOW control point 228
for IMS, example 145, 146
freeing resources 248, 250
function 1

map edit 227
recursive 227

function code, DL/I 87
function invocation 228
functions 50, 227
functions, basic SQL 38
functions and SQL statements,

relationship between 37

G
generalized sequential access

method (GSAM) 140
generating

program specification block 151
tables 231

generating ODBC programs 70
generating Oracle programs 75
generic keys 236
GET NEXT IN PARENT 97
GRANT statement 48
GSAM file, IMS 157
GSAM PCB 141, 153
GUI 1

design 4, 6
GUI client, DBCS 218

GUI clients, developing for
multi-language 253

GUI communication to servers,
design 13

H
HDAM access method, DL/I 94
HIDAM access method, DL/I 94
hierarchical structure, segmented

programs 128
HISAM access method, DL/I 94
host variables

Execution Time Statement
Build 53

null indicators 45

I
I/O area address, DL/I 87
I/O error values, ODBC 72
I/O error values, Oracle 77
I/O function

EZEDEST 208
EZEDESTP 208

I/O PCB 140
immediate program switch 141
implementation techniques

controlling counters 235
controlling file I/O 237
controlling flags 235
data types 234
functions 227
invoked functions 227
map edit functions 227
MOVE statement 229
record processing

techniques 236
recursion 227
structured move 229
tables 230

IMPORT command 151
IMS

accessing multiple DB2
plans 135

batch message processing
programs (BMPs) 139

batch programs 139
batch terminal simulator

(BTS) 139
data communications feature

(IMS/DC) 138
database description 139
defining data 150
DOF size

for printer devices 156
for terminal devices 156

estimating MFS block size 155

IMS (continued)
example 145
fast path 139
fast path programs 146
generalized sequential access

method (GSAM) 140
IMS/ESA 138
introduction to 138
map definition 155
message format services 140
message processing programs

(MPPs) 138
message queue 140
MID size for terminal maps 157
MOD size for terminal

maps 156
PCB definition 152

database (DB) 153
generalized sequential

access 153
teleprocessing (TP) 152

PCB numbering 153
printer files 157
printer files, as message

queues 161
program communication block

(PCB) 140
program definition 157
program development

considerations 142, 143, 145,
146

program development
considerations,
synchronous 143

program specification block
(PSB) 141

program switch 141
PSB definition 150
resource information definition

message queue type 159
PCB number 160
resource name 158

sample program flow
segmented processing

using 147
XFER with a map and

First 147
scratchpad area 142

IMS, sample program flow,
segmented processing using 147

IMS/VS
data communications feature

(IMS/DC) 138
database feature (IMS/DB) 138

index key, DL/I 102

Index 267

indexed alternate record
specification 190

initialization code 228
initializing a relative file 190
initializing data fields 233
INQUIRY I/O option 20, 93
INSERT, multiple-row 48
interactive data definition

utility 190
interface design

function 5
presentation 5

interface utility 151
internal layout, record structure,

SQL 35
intrapartition transient data

queue 169
invoked functions 227
invoking the stored procedure,

DB2/MVS 82

J
join, SQL 21
join condition definition, SQL 27
joined relational tables 24
JOURNAL call, CICS 185

K
key checking, DL/I 98
key items, SQL 26
keyboard considerations, 5250

family 201

L
Left 221
library list 189
linkage table 247
linking programs, PCB list 106
list of PCBs as parameters 106
literals 221
loading modules 250
loading tables and map groups 203
lock, record 236
locking, SQL 55
locking records 190
logic structure 143
logical child segment, DL/I 93
logical file, OS/400

considerations 189
logical file restrictions 191
logical unit of work, ODBC 74
logical user interface design 4
loop control 228

M
main storage database 140
main temporary storage queue 169,

170
map 1

definition for IMS 155
edit functions 227
standards 258

Map 147
map definition

DBCS restrictions 220
DBCS rules 220

map definition, compatibility
considerations 200

map definition, double-byte
character fields 200

map groups and tables, loading 203
maps displayed on 5250

devices 200
maps printer 242
math statements 254
maximum record lengths 260
member 1
message-driven structure 143
message driven structure for IMS,

example 143
message input descriptor (MID)

size for terminal maps 157
message output descriptor (MOD)

size for terminal maps 156
message processing program (MPP)

conversational 139
nonconversational 139

message queue
description 140
multiple 159
single-segment 159

message setup 228
message tables 196
method (GSAM) 153
migration consideration, size

restriction 16
mixed data 213
mixed fields, DBCS 215
mixed literals 221
models, program 15
modifying, SQL statements 44
modifying, statement for a function,

SQL 44
modules, loading 250
MOVE

corresponding 229
structured 229

MOVE statement 229

moving
data items 229
records 229

multi-language programs 253
multiple, physical printers 209
multiple, programs 104
multiple DB2 plans, access in

IMS 135
multiple DB2 plans, MVS CICS 133
multiple-row DELETE 48
multiple-row INSERT 48
multiple-row UPDATE 48
multiple segments, DL/I 98, 99
MVS

installation default date
format 34

MVS, programs 167

N
names 66
naming conventions

data item names 257
DBCS 215
for part names 256

naming standards
data items 257
parts 255, 256
rationale 255

non-IBM relational databases,
accessing 67

nonconversational in segmented
mode 145

nonconversational in single-segment
mode 145

nonconversational program
in segmented mode for 145
in single-segment mode 145
using batch programs 146

nonconversational using batch
programs 146

nonsegmented, CICS 168
nonsegmented execution mode 121
nonsegmented programs 122

nonsegmented processing 124
segmented processing 124

null data, SQL 21
nulls, SQL 34
number of transactions 249
numeric data type 234

O
ODBC, accessing distributed

databases using EZECONCT 74
ODBC, considerations when using

special function words 72
ODBC, database connections 74

268 VisualAge Generator: Design Guide

ODBC, defining and testing
programs 70

ODBC, defining the data source 69
ODBC, defining the database

setup 70
ODBC, defining the VisualAge

Generator Server setup 70
ODBC, I/O error values 72
ODBC, logical unit of work 74
ODBC, running programs 71
ODBC, testing results of SQL I/O

options 72
ODBC, using, to access

databases 69
ODBC, using in VisualAge

Generator 70
ODBC, validating and generating

programs 70
ODBC support for data types 71
operations on tables 20
Oracle, authorization

considerations 78
Oracle, considerations when using

special function words 77
Oracle, defining and testing

programs 75
Oracle, defining the database

setup 75
Oracle, defining the VisualAge

Generator Server setup 75
Oracle, experimenting with SQL 74
Oracle, I/O error values 77
Oracle, running programs 75
Oracle, testing results of SQL I/O

options 77
Oracle, using, to access

databases 74
Oracle, using in VisualAge

Generator 75
Oracle, using unqualified table

names or synonyms 78
Oracle, validating and generating

programs 75
Oracle date data type 76
Oracle support for data types 75
OS/2

CICS programs 167
DB2/2 66
files 178, 180

OS/2 and Windows NT
cross-platform development 252

OS/400, commitment control
during run time 193

OS/400 considerations
during program

development 191
during run time 193
for map definition

compatibility 200
for using DB2/400

databases 193
recovery and database

integrity 194
OS/400 file attribute SHARE 197
Over 221

P
parameter list data types, stored

procedures, DB2/MVS 80
parameter size, stored procedures,

DB2/MVS 81
parameters

list of PCBs 106
passing 247
passing EZEDLPSB 106
WORK in ELAPCB 152

partial keys, DL/I 98
partial maps 241, 242
passing

EZEDLPCB 105
EZEDLPSB 104, 106
parameters 106, 247

path calls, DL/I 98
PCT (program control table) 169
performance

techniques 245
tuning 249

physical file
qualifiers 189

physical file, OS/400
considerations 189
creating and naming 189
record locking 190
record organizations 189
sharing file positions 190
types 189

physical file associated with a
record 178

physical record organization 190
physical user interface design 4
plan, DB2 program 249
portability 248
position

data set 237
file 237

positive sign values, using 204
PPT (processing program table) 168
preparation 49

preparing a VisualAge Generator
stored procedure, DB2/MVS 80

preparing and binding 63
preventing deadlocks 181
print file destination, CICS 180
print maps and spooled output 201
print output releasing 244
printer, multiple 209
printer, support, CICS 182
printer file, IMS 157
printer maps 242
printer output

spool files 179
transient data queues 179

printer paging control 244
printing techniques, CICS 179
processing program table (PPT) 168
processing sets of SQL rows 39
productivity 252
productivity hints 15
program

basic functions 1
CICS 167
CICS for MVS/ESA 167
CICS for OS/2 167
design tasks 1
DL/I 85
preparing and binding, SQL 63
restartable 112
size restrictions 16

program, design 1
program, models 15
program, structure for segmented

programs 129
program, templates 15
program communication block (PCB)

alternate 100, 140, 151
database (DB) 153
defining 152
description 140
DL/I 86
ELAPCB macro 152
express 141
generalized 153
I/O 140
list linkage 106
number 158
teleprocessing (TP) 152

program communications,
CICS 184

program control table (PCT) 169
program design, segmented

execution mode 126
program development, commitment

control 191

Index 269

program development, OS/400
considerations 191

program specification block (PSB)
definition for IMS 150
description 86, 141
naming 151
scheduling 108
sharing a PSB among 104
termination 108
using the source 151
using work database 153

program switch 141
deferred program switch 141
immediate program switch 141

programming, suggested
standards 258

programming standards 255
programs, ODBC, defining and

testing 70
programs, ODBC, running 71
programs, ODBC, validating and

generating 70
programs, Oracle, defining and

testing 75
programs, Oracle, running 75
programs, Oracle, validating and

generating 75
prolog definition, DBCS and Mixed

data 217
PSB

alternate 115
DL/I 86
sample 91
scheduling, DL/I 113
sharing across environments 107
structures 248

PSB, sharing across
environments 119

PSB structures 249
PSBGEN statement 91
pseudoconversational mode,

CICS 168, 182

Q
QPAECRT spool print file 190

R
RCT (resource control table) 169
reading a row using SCAN 40
reading an SQL row 38
record

locks 236
physical file 178
queuing, deadlock 111
specification 225

record (continued)
structure, internal layout,

SQL 35
record, lengths 260
record locking 190
record organization 190
record processing techniques

duplicate keys 236
generic keys 236
record locks 236

records 3
records, variable length 196
recovery integrity, OS/400 194
recovery unit of work 181
recursive function 227
referential integrity

considerations 57
relational database

description 19
support for DBCS and Mixed

data 225
relational database tables,

examples 22
relational tables

accessing 38
as record members 24
defining 24

relationship between functions and
SQL statements 37

relative file
initializing 190
record organization 190

releasing an SQL row 39
releasing print output 244
releasing SQL rows using

CLOSE 41
REPLACE I/O option 21, 94
replacing DL/I segments 97
Repository/ENVY library part

names, naming conventions 256
resource control table (RCT) 169
resource name 158
restart, DL/I 115
restarting programs 112
restrictions on logical files 191
reusable components 15
REVOKE statement 48
Right 221
rollback

automatic, relational
database 56

DL/I 115
rollbacks, OS/400 192
root segment 94

running mode
nonsegmented 122
single-segment 122

running ODBC programs 71
running Oracle programs 75
running programs

conversational 122
segmented 122

runtime considerations
alternate PSB 115
called program 122
EZESEGM 122
transferred-to program 122

S
sample

program flow for IMS 147
PSB 91
SQL tables 22

SCAN
deleting a row 42
DL/I variations 97
I/O option 21, 94
in parent field 97
reading a row 40
replacing a row 42

scheduling
PSB 113
transaction 250

search arguments, DL/I 99
searching on a partial key, SQL 43
secondary index, DL/I 92, 102
security 249
security, considerations for

OS/400 204
segment

deleting 97
DL/I 86
DL/I record definition 92
logical child 93
multiple 98, 99
replacing 97

segment search argument (SSA) list,
DL/I 87

segmentation 247
segmentation, dynamically

changing 129
segmented

CICS 168
segmented execution mode 121

program considerations 121
program design 126
program flow diagram 123
restrictions 128
SCAN I/O option 127

270 VisualAge Generator: Design Guide

segmented execution mode 121
(continued)

UPDATE I/O option 127
segmented programs

hierarchical structure 128
program structure 129
transaction codes 130

segmented programs, error
processing 135

select rows from the database,
SQL 26

SELECT statement function 50
selecting 135
sequence field, DL/I 86
sequential access method

(GSAM) 153
serial file

as GSAM files 157
as message queues 158
in IMS programs 157

serial file I/O, OS/400 196
serial record organization 190
SETINQ

I/O option 21
to process rows, SQL 39

setting database position, DL/I 97
setup, test facility 116
SETUPD

I/O option 21
to process rows, SQL 39

SHARE, OS/400 file attribute 197
share locks, SQL 55
shared table 231
sharing a PSB

across environments 107
with a called program,

DL/I 103, 110
sharing VSAM 210
SI (shift in) 214
single rows 38
single-segment program, XFER with

map and first map 132
single-segment running mode 122
size of generated COBOL source 16
size restrictions 16, 259
SO (shift out) 214
soft errors, DL/I 95
Solaris

files, using 178
source statement

COBOL 16
VisualAge Generator 16

special function word, DL/I 94
special function words, ODBC 72
special function words, Oracle 77

specific row 38
spool file, test facility 180
spool files

CICS 172, 173
for printer output, CICS 179

spool print file, QPAECRT 190
spooled output and print maps 201
SQL

authorization considerations 65
DB2/2 66
DB2 considerations 66
unqualified table 66

authorization identifier 65
automatic rollback 56
basic functions 38
comparing SQL row definition to

the database 26
data integrity 57
data types

compatible types 28
FLOAT column support 33

DB2/2 66
deadlock 55
default selection conditions 27
deleting a row using SCAN 42
distributed databases 59
error handling 54
exclusive locks 55
execution mode

ANSI standard static 65
dynamic 63
static 63

execution time statement
build 49

controlling 49
dynamic SELECT 50
table name host 53
with SQLEXEC 50

functions 55
hard SQL error code 54
join condition definition 27
joins 21
keys 26
locking 55
logical unit of work

considerations 55
modifying SQL statements for a

function 44
coding a 46
data items 45
host 45
INTO clause 45

modifying the data item
definition 25

nulls 21

SQL (continued)
preparing and binding 63
processing rows with unique

keys 38
processing sets of rows 39
program calls 55
program definition 37
program transfers 55
referential integrity

considerations 57
releasing rows using CLOSE 41
replacing a row using SCAN 42
searching on a partial key 43
share locks 55
SQL statements not supported by

SQLEXEC 48
table column 33

FLOAT 33
null value 34

table name synonyms 66
tables 20

examples 22
retrieving definitions from the

database 24
transactional program design 57
unqualified table names 66
updating rows in key sequence

order 44
using SCAN to read a row 40
using SETINQ to select rows 39
using SETUPD to select rows 39
variable length column 27
views 21

SQL column name 46
SQL columns, DATE, TIME, and

TIMESTMP 194
SQL data definition language

statements 48
SQL I/O option, testing results,

ODBC 72
SQL I/O option, testing results,

Oracle 77
SQL row data item definition, DBCS

and Mixed data 226
SQL row definition compared to the

database definition 26
SQL row record changes effect on

modified SQL statements 47
SQL row record specification, DBCS

and Mixed data 225
SQL statements 226
SQLEXEC I/O option 21, 47
SSA list modification, DL/I 98
standard linkage conventions 106
standards, for programming 258

Index 271

starting, commitment control
cycle 193

statement, example 52
statement preparation 49
static mode 63
static SQL statement 52
status codes, DL/I 95
storage considerations 247
storage layout, SQL row records 35
stored procedures, DB2/MVS

accessing 78
binding packages 81
calling 81
converting data 82
declaring 80
defining 79
defining call 79
defining DB2 linkage

conventions 81
defining host variables 81
invoking 82
parameter list data types 80
parameter size 81
preparing 80
testing 82
tracing and debugging 83

STRCMTCTL command 193
structured move 229
subscripting

data items 235
EZEDLPCB 236
table 235

suggested programming
standards 258

symbolic checkpoint, DL/I 115
symbolic checkpoint with GSAM

file 158
synchronous logic structure for IMS,

example 143
SYNCPOINT, CICS 185
SYNCPOINT ROLLBACK 110
SYNCPOINT ROLLBACK,

CICS 185
synonyms or unqualified table

names, using, Oracle 78
syntax, SQL 46
system resource name, OS/400

assigning 189

T
table 1

direct addressing 230
generating 231
modifying contents 232
searches 230

table 1 (continued)
shared 231
subscripting 235

table definition, DBCS and Mixed
data 217

table name
host variables 53
synonyms 66
synonyms, Oracle 78
unqualified 66
unqualified, Oracle 78

tables and map groups, loading 203
task, CICS 167
TCT (terminal control table) 169
teleprocessing (TP) PCB 152
TEMPAUX (auxiliary storage

file) 171
templates, program 15
TEMPMAIN (main storage file) 171
temporary storage 170

accessing 170
auxiliary 170
main 170

terminal control table (TCT) 169
terminal support, CICS 182
test facility

data conversion 120
DL/I considerations 116
PSB Scheduling 119
setting up the 116

testing ODBC programs 70
testing Oracle programs 75
testing results of SQL I/O options,

ODBC 72
testing results of SQL I/O options,

Oracle 77
testing stored procedures,

DB2/MVS 82
TIME column, SQL 33
TIMESTMP column, SQL 33
tracing and debugging, stored

procedures, DB2/MVS 83
transaction

CICS 167
codes, segmented program 130
default IDs 131
number of 249
scheduling 250

transaction manager (IMS/ESA
TM) 138

transaction-oriented BMP 139
transaction work area (TWA) 168
transfer

default transaction IDs 131
EZESEGTR 132

transferred-to program, XCTL 106
transferring, standard

conventions 106
transient data queue 172

CICS 169
for printer output, CICS 179

TWAOFF generation option 168

U
UCTRAN operand 127
UIB, User Interface Block 104
UIB address 111
Under 221
unit of work parameter

EZECONCT 59
UNQ, I/O error mnemonic

enablement 199
unqualified SCAN, DL/I 99
unqualified table names or

synonyms 66
unqualified table names or

synonyms, using, Oracle 78
UPDATE, multiple-row 48
UPDATE I/O option 21, 93
updating rows in key sequence

order, SQL 44
user interface, character-based 11
user interface, design 4
User Interface Block, UIB 104
using ODBC in VisualAge

Generator 70
using Oracle in VisualAge

Generator 75
using positive sign values for PACK

and NUM data types 204
using unqualified table names or

synonyms, Oracle 78

V
validating ODBC programs 70
validating Oracle programs 75
variable field edit definition,

DBCS 220
variable length items, SQL 27
variable length records 196
variable length segment, DL/I 92
variables 53
variables and null indicators 45
view, SQL 21
VisualAge Generator, using

DataJoiner 67
VisualAge Generator, using

GUIs 67
VisualAge Generator, using

ODBC 70

272 VisualAge Generator: Design Guide

VisualAge Generator, using
Oracle 75

VisualAge Generator, using stored
procedures 78

VisualAge Generator program
linkage on CALL statements 202

VisualAge Generator Server setup
for ODBC, defining 70

VisualAge Generator Server setup
for Oracle, defining 75

VSAM, sharing 210

VSAM files, CICS 177

W
WHERE clause, controlling

default 26

Windows NT

files, using 178

Windows NT and OS/2
cross-platform development 252

work database 142

ELAPCB macro 152
PSB definition for 153

work database storage 251

WORK parameter in ELAPCB 152

WORKDB generation option 170

X
XCTL

statement 106
transferred-to program 106

XFEF statement implicit commitment
control 192

XFER and DXFR statements 248

XFER statement

accessing DB2 plans 135
DB2 plan 249
first map 251
freeing resources 250
loading modules 250
performance tuning 249
productivity 252
PSB 249
security 249
transaction scheduling 250
transactions 249
with map and first map 132
work database storage 251
XFER 135

Index 273

274 VisualAge Generator: Design Guide

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
Design Guide
Version 4.0

Publication No. SH23-0264-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH23-0264-00

SH23-0264-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0264-00

	Contents
	Notices
	Trademarks
	Terminology used in this document
	Terminology differences between Java and Smalltalk

	About this document
	Who should use this document
	Documentation provided with VisualAge Generator

	Chapter 1. Designing VisualAge Generator programs
	Designing data
	Designing entities
	Designing entity attributes
	Designing entity relationships

	Designing user interfaces
	User interface function design
	User interface presentation design
	Designing GUI interfaces

	Designing logic
	Determining a client/server model
	Client/server models
	Summary of client/server models

	Designing clients
	Designing server programs
	Designing text-based user interfaces
	Designing GUI clients
	Performance considerations for GUI clients

	Rapid application development through reuse
	Program size considerations

	Chapter 2. Developing SQL programs
	Understanding SQL and relational databases
	Example: Inventory, Suppliers, and Quotations Sample Tables
	Inventory Table
	Suppliers Table
	Quotations Table

	Defining relational database tables
	Defining relational tables as record parts
	Defining data items for SQL row records
	Modifying the data item definition
	Comparing the SQL row definition to the database definition

	Defining default selection conditions
	Joined Tables

	SQL data type support
	Variable length and fixed length items
	Compatible data types
	SQL-to-VisualAge Generator data type conversion
	VisualAge Generator-to-SQL data type conversion
	Support for FLOAT and other unknown data types
	Using DATE, TIME, and TIMESTMP SQL Columns
	SQL Nulls
	Storage layout of SQL row records

	Defining SQL programs
	Relationship between functions and SQL statements
	Accessing relational tables without coding SQL statements
	Accessing single rows by key items
	Processing selected sets of rows using SETINQ, SETUPD, and SCAN

	Modifying SQL statements
	Modifying the SQL statement for a function
	Checking the syntax of a modified SQL statement
	Resetting a modified SQL statement to the default SQL statement
	Effects of SQL row record changes on modified SQL statements

	Defining SQL statements using the SQLEXEC I/O option
	Entering the SQL statement for the SQLEXEC I/O option
	Multiple-row insert
	Multiple-row delete
	Multiple-row update

	Using SQLEXEC to issue data definition statements
	SQL statements not supported by SQLEXEC

	Controlling SQL statement preparation with execution time statement build
	Using execution time statement build with SQLEXEC functions
	Using execution time statement build for dynamic SELECTs
	Example of a dynamic WHERE clause
	Example of a dynamic ORDER BY clause
	Example of changing a static SQL statement to a dynamic SQL statement

	Using table name host variables with the execution time statement buildoption

	Testing the results of an SQL I/O option
	Ending the program on a hard SQL error code
	Handling a hard SQL error code

	SQL functions and program calls or transfers
	SQL locking
	Logical unit of work considerations
	Automatic rollback for relational database I/O
	Assuring data integrity across transactions
	Referential integrity considerations

	Accessing distributed databases
	Remote or distributed unit of work
	Guidelines for using EZECONCT
	Default database connections

	Preparing SQL statements for the runtime environment
	Dynamic Mode
	Static Mode
	Compiling and binding the program
	ANSI standard static mode

	Authorization considerations
	DB2 considerations
	DB2/2 considerations
	Additional DB2 considerations for VisualAge Generator Server
	Using unqualified table names or synonyms

	Database Considerations when using GUIs
	Accessing databases using DataJoiner
	Getting Started
	Experimenting with SQL using DataJoiner
	Configuring remote data sources

	Using nicknames for table names
	Using the PASSTHRU extension

	Accessing databases using ODBC
	Getting Started
	Defining a data source
	Database setup
	VisualAge Generator Server setup

	Using ODBC in VisualAge Generator
	Defining and testing ODBC programs
	Validating and generating ODBC programs
	Running ODBC programs

	SQL syntax
	Data type considerations
	Testing results of an SQL I/O option for ODBC
	I/O error values

	Special function words
	Accessing distributed databases using EZECONCT

	Accessing databases using Oracle
	Getting started
	Experimenting with SQL using Oracle
	VisualAge Generator Setup
	Database setup
	VisualAge Generator Server setup

	Using Oracle in VisualAge Generator
	Defining and testing Oracle programs
	Validating and generating Oracle programs
	Running Oracle programs

	Data Type Considerations
	Date Data Type

	Testing results of an SQL I/O option for Oracle
	I/O error values

	Special function words
	Authorization considerations
	Using unqualified table names or synonyms

	Accessing DB2/MVS stored procedures
	Defining stored procedures
	Defining the stored procedure call
	Preparing a VisualAge Generator stored procedure
	Declaring stored procedures
	Parameter list data types
	Parameter size
	Defining DB2 linkage conventions
	Binding the stored procedure package
	Calling a VisualAge Generator stored procedure
	Defining host variables
	Invoking the stored procedure
	Converting data
	Testing stored procedures
	Tracing and debugging

	Chapter 3. Developing DL/I programs
	Introduction to DL/I
	Example: customer database
	Defining a sample PSB

	Defining DL/I data
	Defining DL/I databases through the PSB definition facility
	Segment record definition

	Defining DL/I programs
	Processing root segments
	Testing the results of a DL/I call
	Processing dependent segments
	SCAN function variations
	Replacing or deleting segments
	Scanning within a parent
	Setting SCAN position
	Searching on partial keys
	Determining the parents of a segment retrieved on a SCAN

	Additional function through SSA list modification
	Using path calls to access multiple segments at the same time
	Using non-key fields as search arguments
	Scanning through all database segments with a single function

	Accessing the same segment in two data structures
	Sharing a function when programs use different PSBs
	Using a secondary index
	Using CSPTDLI service routine for database calls

	Sharing a PSB with a called program
	Passing EZEDLPSB
	Passing EZEDLPCB

	Sharing a PSB with a transferred-to program using XCTL
	Passing the EZEDLPSB special function word
	Passing a list of PCBs

	Sharing a PSB across environments
	Assuring data integrity between CONVERSE I/O options
	DL/I considerations for the CICS environment
	Understanding PSB scheduling
	Using an alternate PSB at run time
	Sharing a scheduled PSB with a called program
	Recovering after a deadlock in record queuing
	Restarting VisualAge Generator programs after a DL/I deadlock

	Accessing distributed DL/I databases

	DL/I considerations for non-CICS environments
	Understanding PSB scheduling
	Understanding commit points and the logical unit of work
	Using an alternate PSB at run time
	Using symbolic checkpoint and restart functions (MVS Batch andIMS BMP Only)

	DL/I Considerations for the Test Facility
	Setting up the Test Facility for DL/I
	Understanding how the test facility handles commits and rollbacks
	Sharing PSB parts across target environments
	Understanding data conversion in the test facility
	Passing DL/I data in the test facility

	Chapter 4. Developing segmented programs
	Running in segmented mode
	Running in single-segmented mode
	Running in nonsegmented mode
	Comparison of segmented and nonsegmented program designs for CICS
	Choosing between segmented and nonsegmented programs
	Program design Considerations
	Implementing a hierarchical structure for segmenting programs using aDXFR statement
	Dynamically changing execution mode

	Switching transaction codes for program segments
	Using an XFER statement with map and first map
	Accessing multiple DB2 plans in CICS for MVS/ESA
	Accessing DB2 plans using EZESEGTR
	Accessing DB2 plans with an XFER statement
	Dynamically selecting a DB2 plan

	Accessing multiple DB2 plans in IMS
	Error Processing for segmented programs

	Chapter 5. Developing IMS programs
	Introduction to IMS
	Understanding IMS terminology
	Interacting with terminals in IMS
	IMS program development methods
	An IMS conversational program
	An IMS nonconversational program in segmented mode
	An IMS nonconversational program in single-segment mode
	An IMS nonconversational program using batch programs

	Developing IMS fast path programs
	Sample program flow

	Defining data in IMS programs
	Defining PSBs
	Defining PCBs
	Numbering PCBs

	Defining a PCB for the work database
	Sharing IMS PSBs in TeamConnection

	Defining maps for IMS programs
	Estimating the size of MFS blocks for a map group
	Calculating the DOF size for terminal devices
	Calculating the DOF size for printer devices
	Calculating the MOD size for terminal maps
	Calculating the MID size for terminal maps

	Defining IMS programs
	Using service routines
	Using serial and printer files in IMS programs
	Using serial files as GSAM files
	Using serial files as message queues
	Defining records to use with message queues
	Checking the results of serial file I/O options
	Using printer files as message queues

	Using IMS functions from VisualAge Generator programs

	Chapter 6. Developing CICS programs
	Understanding CICS terminology
	File techniques in CICS programs
	Using temporary storage
	Accessing temporary storage from VisualAge Generator

	Using transient data queues
	Accessing transient data queues from VisualAge Generator

	Using spool files in CICS for MVS/ESA
	Using spool files in CICS for VSE/ESA
	Using VSAM files
	Using OS/2 files
	Using AIX files
	Using Windows NT files
	Using Solaris files
	Using EZEDEST

	Printing techniques in CICS
	Using transient data queues for printer output
	Using spool files for printer output on CICS for MVS/ESA
	Using OS/2 files for printer output
	Using VSE/POWER files for printer output
	Using EZEDESTP

	Setting the recovery unit of work
	Using CICS functions from VisualAge Generator programs
	Communicating between multiple CICS transactions
	Inter-transaction affinity considerations in a CICSplex
	Segmented programs
	Sharing VisualAge Generator tables for update
	Temporary storage queues
	Using a transient data queue for printed output
	Error destination queue
	Disable on run unit failure
	CICS utility function region affinity

	Chapter 7. Developing programs for OS/400
	Defining program native database files
	VisualAge Generator record organization-to-file conversion
	Creating and naming files
	Sharing database files
	Relative record file initialization
	Record lock considerations
	Using data description specifications generated by VisualAge Generator
	Restrictions on logical files

	Considerations for native database commitment control
	Program development considerations
	Explicit commitment control
	Implicit commitment control

	Program runtime considerations
	Starting and ending commitment control cycles

	Considerations for using DB2/400 databases
	Using DATE, TIME, and TIMESTMP SQL columns
	Recovery and database integrity considerations
	ANSI SQL support

	Compatibility considerations
	CALL statement error handling
	Variable length records
	DBCS data type
	Message tables
	Serial file I/O
	OS/400 file attribute SHARE
	File I/O status in EZERT8
	UNQ and DUP I/O error mnemonic enablement

	Considerations for VisualAge Generator map definition and runtime behavior
	Maps displayed on 5250 devices
	Maps containing DBCS fields
	5250 family keyboard considerations
	Print maps and spooled output

	Performance considerations
	VisualAge Generator program linkage on CALL statements
	Loading tables and map groups
	Using positive sign values for PACK and NUM Data types

	Security considerations

	Chapter 8. Allocating and associating files
	Dynamically allocating files
	Dynamically associating files
	Invoking an I/O function using EZEDEST
	Invoking an I/O function using EZEDESTP
	Supported file types

	Sharing an MVS or VSE VSAM data set in a run unit

	Chapter 9. Developing programs containing DBCS
	Using DBCS and mixed data fields
	Using DBCS names
	Defining data
	Defining records
	Defining tables
	Defining table columns
	Defining table contents

	Defining data items
	Defining prologs

	Defining GUI clients
	GUI text field data types
	Data item connections

	Defining maps
	Selecting DBCS devices
	SOSI take position
	Using the map editor
	Defining DBCS and mixed fields
	DBCS map definition considerations

	Defining variable field edits
	Field attribute definition
	Field outlining

	Defining programs
	Defining statements
	Data movement processing
	Data item comparison processing
	Using mixed literals as CALL statement arguments

	Testing programs
	Understanding relational database support
	Specifying SQL row records
	Defining SQL row data items
	Using mixed SQL statements

	Preparing programs with DBCS support

	Appendix A. Program design techniques
	Invoked functions
	Recursive functions
	Map edit functions
	EXECUTE functions

	MOVE statement
	Moving data items between maps and records
	Moving between records

	Table Data
	Direct addressing of table data items
	Table searches with the FIND or RETRIEVE statement
	Defining tables
	Changing table contents while running the program
	Message tables on OS/400

	Initializing data fields
	Data types

	Controlling flags and counters
	Subscripting data items
	Subscripting a table item
	Subscripting EZEDLPCB

	Record processing techniques
	Duplicate Keys
	Record locks
	Generic keys

	Controlling file I/O
	Data set position
	Abnormal termination
	File error handling
	Mnemonic error codes
	Example of an I/O error routine

	Defining partial and floating maps
	Floating maps
	Defining a presentation area for floating maps
	Partial maps

	Defining printer maps
	Fixed position printer maps
	Floating Printer Maps
	Printer paging control
	Releasing print output

	Performance techniques
	Choosing between CALL and DXFR statements
	Choosing between XFER and DXFR statements
	Cross-Platform development between OS/2 and Windows NT
	Developing multi-language programs
	Developing multi-language GUI clients
	Coding arithmetic operations for consistent math results
	Coding multiplication and division operations
	Coding division operations for consistent remainders

	Appendix B. Naming and programming standards
	Suggested naming conventions
	Repository/ENVY library part names
	Repository/ENVY library part names
	Data item names

	Suggested programming standards

	Appendix C. Size restrictions and record lengths
	Size limitations for VisualAge Generator
	Maximum record lengths

	Index
	Readers’ Comments — We'd Like to Hear from You

