
Guide to the IBM WebSphere
Business Integration Adapter for

SWIFT
(C) Copyright IBM Corporation 2002

Connector Version 1.3.x

Supported on IBM CrossWorlds Infrastructure version 4.1.0 and 4.1.1 (if
the environment uses ISO Latin-1 data only), and IBM WebSphere

Business Integration Adapter Framework version 2.0
See Release Notes for any exceptions.

(For support on version 3.1.x or 4.0.1, contact Technical Support.)

http://www-3.ibm.com/software/websphere/crossworlds/library/doc/wbia20/connectors/swift/swift.pdf
http://www-3.ibm.com/software/websphere/crossworlds/library/doc/wbia20/connectors/swift/swift.pdf
http://www-3.ibm.com/software/websphere/crossworlds/library/doc/wbia20/connectors/swift/swift.pdf
http://www-3.ibm.com/software/websphere/crossworlds/library/doc/wbia20/release_notes/connectors/swift/swift_1-3-0.pdf

(C) Copyright IBM Corporation 2002. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

NOTICES

IBM may not offer the products, services, or features discussed in this document in all countries. Consult
your local IBM representative for information on the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not
in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Lab Director
IBM Burlingame Laboratory
577 Airport Blvd.
Suite 800
Burlingame, CA 94010
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not necessarily tested those products and cannot
confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information may contain examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples may include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Programming interface information

Programming interface information, if provided, is intended to help you create application software using this
program.

General-use programming interfaces allow you to write application software that obtain the services of this
program’s tools.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming interface because it
is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business Machines Corporation in
the United States or other countries, or both:

IBM
the IBM logo
AIX
CrossWorlds
the CrossWorlds logo
DB2

DB2 Universal Database
MQIntegrator
MQSeries
Tivoli
WebSphere

Lotus, Domino, Lotus Notes, and Notes Mail are trademarks of the Lotus Development Corporation in
the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel Corporation in the
United States, other countries, or both.

Solaris, Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.

IBM CrossWorlds Servers V4.1, IBM CrossWorlds Full Toolset V4.1, IBM CrossWorlds
Connectors V4.1, IBM CrossWorlds Collaborations V4.1, WebSphere Business Integration
Adapters, V 2.0

Connector version: 1.3.0
Document release: 28August2002

This edition of this document applies to connector version 1.3.x and to all subsequent releases and
modifications until otherwise indicated in new editions.

To send us your comments about IBM CrossWorlds documentation, email doc-comments@us.ibm.com.
We look forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Contents
New in This Release
New in Release 1.3.x .. vii
New in Release 1.2.x .. vii
New in Release 1.1.x ... viii

About This Document

1 Overview
Connector Architecture.. 2
Application-Connector Communication Method .. 4
Event Handling ... 6
Business Object Requests ... 10
Business Object Mapping... 10
Message Processing .. 11
Error Handling .. 14
Tracing .. 15

2 Configuring the Connector
Prerequisites .. 17
Installing the Connector... 18
Connector Configuration ... 20
Queue Uniform Resource Identifiers (URI) .. 26
Meta-Object Attributes Configuration... 27
Startup File Configuration... 38
Startup .. 38

3 Business Objects
Connector Business Object Requirements... 40
Overview of SWIFT Message Structure... 44
Overview of Business Objects for SWIFT.. 45
SWIFT Message and Business Object Data Mapping .. 46
(C) Copyright IBM Corporation 2002 v

4 ISO 7775 to ISO 15022 Mapping
Production Instruction Meta-Objects (PIMOs) ...79
Creating PIMOs...87
Modifying PIMOs: Map Summary...96

5 SWIFT Data Handler
Configuring the SWIFT Data Handler ...129
Business Object Requirements ..131
Converting Business Objects to SWIFT Messages..131
Converting SWIFT Messages to Business Objects..132
Mapping Engine ..133

6 Troubleshooting
Startup Problems...135
Event Processing ...136

A Standard Configuration Properties for Connectors
Configuring Standard Connector Properties for IBM CrossWorlds InterChange
Server ..137
Configuring Standard Connector Properties for WebSphere MQ Integrator ..148

B Connector Configurator
Using Connector Configurator..155
Creating a New Configuration File ..156
Setting the Configuration File Properties ..158
Completing the Configuration ..161

C Connector Feature List
Business Object Request Handling Features...163
Event Notification Features ...165
General Features..166

D SWIFT Message Structure
SWIFT Message Types..169
SWIFT Field Structure ..170
SWIFT Message Block Structure ...171
vi Guide to the IBM WebSphere Business Integration Adapter for SWIFT

New in This Release
New in Release 1.3.x
The IBM WebSphere Business Adapter for SWIFT can dynamically transform a
business object representing an ISO 7775 SWIFT message into a business object
representing the corresponding ISO 15022 SWIFT message and vice versa. The
adapter supports business object ISO 7775-15022 mapping for SWIFT Category 5,
Securities Markets, but only with the expanded business object definitions available
with this release and described in this document, and only on the Solaris platform.

New in Release 1.2.x
The IBM WebSphere Business Integration Adapter for SWIFT includes the connector
for SWIFT. This adapter operates with both the InterChange Server (ICS) and
WebSphere MQ Integrator (WMQI) integration brokers. An integration broker, which
is an application that performs integration of heterogeneous sets of applications,
provides services that include data routing. The adapter includes:

■ An application component specific to SWIFT

■ Sample business objects

■ IBM WebSphere Adapter Framework, which consists of:

– Connector Framework

– Development tools (including Business Object Designer and Connector
Configurator))

– APIs (including CDK)

This manual provides information about using this adapter with both integration
brokers: ICS and WMQI.

Important
Because the connector has not been internationalized, do not run it against ICS

version 4.1.1 if you cannot guarantee that only ISO Latin-1 data will be processed.
(C) Copyright IBM Corporation 2002 vii

New in Release 1.1.x
The following new features are described in this guide:

■ The connector for SWIFT is now enabled for AIX 4.3.3 Patch Level 9
viii Guide to the IBM WebSphere Business Integration Adapter for SWIFT

About This Document
The IBM(R) WebSphere(R) business integration system is a suite of software
integration products that supply connectivity for leading e-business technologies and
enterprise applications. The system includes:

■ Prebuilt components for common business integration processes

■ Tools and templates for customizing and creating components

■ A flexible, easy-to-use platform for configuring and managing the components

This document describes how to use the business integration technology that
WebSphere supplies for SWIFT.

Audience
This document is for consultants, developers, and system administrators who support
and manage the WebSphere business integration system at customer sites.

Prerequisites for This Document
Users of this document should be familiar with

■ the IBM CrossWorlds system (if you are using InterChange Server as your
integration broker)

■ the WebSphere MQ Integrator (if you are using MQ Integrator as your integration
broker)

■ business object development

■ the MQSeries application

■ the SWIFT product suite and protocol
(C) Copyright IBM Corporation 2002 ix

Related Documents
The complete set of documentation available with this product describes the features
and components common to all WebSphere adapter installations, and includes
reference material on specific components.

To access the documentation, go to the directory where you installed the product and
open the documentation subdirectory. If a welcome.html file is present, open it for
hyperlinked access to all documentation. If no documentation is present, you can
install it or read it directly online at one of the following sites:

■ If you are using MQ Integrator as your integration broker:
http://www.ibm.com/software/websphere/wbiadapters/infocenter

■ If you are using InterChange Server as your integration broker:
http://www.ibm.com/websphere/crossworlds/library/infocenter

The documentation set consists primarily of Portable Document Format (PDF) files,
with some additional files in HTML format. To read it, you need an HTML browser
such as Netscape Navigator or Internet Explorer, and Adobe Acrobat Reader 4.0.5 or
higher. For the latest version of Adobe Acrobat Reader for your platform, go to the
Adobe website (www.adobe.com).

Typographic Conventions
This document uses the following conventions:

courier font Indicates a literal value, such as a command name,
filename, information that you type, or information
that the system prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue text Blue text, which is visible only when you view the
manual online, indicates a cross-reference hyperlink.
Click any blue text to jump to the object of the
reference.

{ } In a syntax line, curly braces surround a set of options
from which you must choose one and only one.

[] In a syntax line, square brackets surround an optional
parameter.

... In a syntax line, ellipses indicate a repetition of the
previous parameter. For example, option[,...]
means that you can enter multiple, comma-separated
options.

< > In a naming convention, angle brackets surround
individual elements of a name to distinguish them
from each other, as in
<server_name><connector_name>tmp.log.
x Guide to the IBM WebSphere Business Integration Adapter for SWIFT

/, \ In this document, backslashes (\) are used as the
convention for directory paths. For UNIX
installations, substitute slashes (/) for backslashes. All
product pathnames are relative to the directory where
the product is installed on your system.

UNIX:/Windows: Paragraphs beginning with either of these indicate
notes listing operating system differences.

◆ This symbol indicates the end of a UNIX/Windows
paragraph; it can also indicate the end of a
multiparagraph note.

%text% and $text Text within percent (%) signs indicates the value of the
Windows text system variable or user variable.

The equivalent notation in a UNIX environment is
$text, indicating the value of the text UNIX
environment variable.
xi

xii Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 1 Overview
The connector for SWIFT is a runtime component of the WebSphere Business
Integration Adapter for SWIFT. The connector allows the WebSphere integration
broker to exchange business objects with SWIFT-enabled business processes.

Connectors consist of an application-specific component and the connector
framework. The application-specific component contains code tailored to a particular
application. The connector framework, whose code is common to all connectors, acts
as an intermediary between the integration broker and the application-specific
component. The connector framework provides the following services between the
integration broker and the application-specific component:

■ Receives and sends business objects

■ Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the IBM CrossWorlds System Administration Guide, or the WebSphere
Business Integration Adapters Implementation Guide for MQ Integrator.

All WebSphere business integration adapters operate with an integration broker. The
connector for SWIFT operates with both the InterChange Server (ICS) and WebSphere
MQ Integrator (WMQI) integration brokers.

The connector for SWIFT allows the ICS or WMQI integration broker to exchange
business objects with applications that send or receive data in the form of SWIFT
messages.

Important
The connector supports SWIFT message transformation from ISO 7775 to
corresponding ISO 15022 formats and vice versa, but only with the expanded
business object definitions and ISO mapping described in this document. For further
information, see Chapter 3, "Business Objects," and Chapter 4, "ISO 7775 to ISO 15022

Mapping."
(C) Copyright IBM Corporation 2002 1

The chapter contains the following sections:

Connector Architecture
The connector allows WebSphere business processes to asynchronously exchange
business objects with applications that issue or receive SWIFT messages when
changes to data occur. (The connector also supports synchronous acknowledgment.)

SWIFT stands for Society for Worldwide Interbank Financial Telecommunications. It
is a United Nations-sanctioned International Standards Organization (ISO) for the
creation and maintenance of financial messaging standards.

As shown in Figure 1-1, the connector interacts with several components (WebSphere
components are shown in bold) whose collective purpose is to bridge the world of
WebSphere business objects with that of SWIFT messages.

"Connector Architecture" page 2

"Application-Connector Communication Method" page 4

"Event Handling" page 6

"Business Object Requests" page 10

"Message Processing" page 11

"Error Handling" page 14

"Tracing" page 15
2 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Figure 1-1 Connector for SWIFT Architecture

The SWIFT environment is made up of various components that are described below.

Connector for SWIFT

The connector for SWIFT is meta-data-driven. Message routing and format
conversion are initiated by an event polling technique. The connector retrieves
MQSeries messages from queues, calls the SWIFT data handler to convert messages to
their corresponding business objects, and then delivers the objects to the
corresponding business processes. In the opposite direction, the connector receives
business objects from the integration broker, converts them into SWIFT messages
using the same data handler, and then delivers the messages to an MQSeries queue.

The type of business object and verb used in processing a message are based on the
meta-data in the Format field of the MQSeries message header. You construct a meta-
object to store the business object name and verb to associate with the MQSeries
message header Format field text.

You can optionally construct a dynamic meta-object that is added as a child to the
business object passed to the connector. The child meta-object values override those
specified in the static meta-object that is specified for the connector as a whole. If the
child meta-object is not defined or does not define a required conversion property, the

SWIFT

WebSphere
Integration

Broker

Connector

Data Handler

MQSeries Output Queue MQSeries Input Queue

MQSA

SWIFTAlliance Access Gateway

incoming
messages

outgoing
messages

for SWIFT

Note: WebSphere

in Bold
Components

(Processes)

Mapping
Engine
Overview 3

connector, by default, examines the static meta-object for the value. You can specify
one or more dynamic child meta-objects instead of, or to supplement, a single static
connector meta-object.

The connector can poll multiple input queues, polling each in a round-robin manner
and retrieving a configurable number of messages from each queue. For each message
retrieved during polling, the connector adds a dynamic child meta-object (if specified
in the business object). The child meta-object values can direct the connector to
populate attributes with the format of the message as well as with the name of the
input queue from which the message was retrieved.

When a message is retrieved from the input queue, the connector looks up the
business object name associated with the FORMAT text field. The message, along with
the business object name, is then passed to the data handler. If a business object is
successfully populated with message content, the connector checks to see if it a
collaboration subscribes to it, and then delivers it to the integration broker using the
gotApplEvents() method.

SWIFT Data Handler and Mapping Engine

The connector calls the SWIFT data handler to convert business objects into SWIFT
messages and vice versa. The data handler is coupled with a mapping engine, which
uses a map to perform transformations between business objects representing ISO
7775 and ISO 15022 SWIFT message formats. For more on the SWIFT data handler, see
Chapter 5, "SWIFT Data Handler." For more on mapping, see Chapter 4, "ISO 7775 to
ISO 15022 Mapping."

MQSeries

The connector for SWIFT uses an MQ implementation of the JavaTM Message Service
(JMS), an API for accessing enterprise-messaging systems. This makes possible
interaction with incoming and outgoing MQSeries event queues.

MQSA

The MQSeries event queues exchange messages with the MQSeries Interface for
SWIFTAlliance (MQSA). The MQSA software integrates MQSeries messaging
capabilities with SWIFT message types, performing delivery, acknowledgement,
queue management, timestamping, and other functions.

SWIFTAlliance Access

The SWIFTAlliance Access gateway is a window through which SWIFT messages
flow to and from remote financial applications over IP or MQSeries.

Application-Connector Communication Method
The connector makes use of IBM’s MQSeries implementation of the Java Message
Service (JMS). The JMS is an open-standard API for accessing enterprise-messaging
systems. It is designed to allow business applications to asynchronously send and
receive business data and events.

Message Request

Figure 1-2 illustrates a message request communication.
4 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

1 The connector framework receives a business object representing an ISO 7775
SWIFT message from an integration broker.

2 The connector passes the business object to the data handler.

3 If specified in the map subscription meta-object, the data handler passes the ISO
7775 object to the mapping engine.

4 Using a production instruction meta-object (PIMO), the mapping engine
transforms the ISO 7775 object into an ISO 15022 business object and passes it to
the data handler.

5 The data handler converts the ISO 15022 business object into an ISO 15022-
compliant SWIFT message.

6 The connector dispatches the ISO 15022 SWIFT message to the MQSeries output
queue.

7 The JMS layer makes the appropriate calls to open a queue session and routes the
message to the MQSA, which issues the message to the SWIFT Alliance Gateway.

Figure 1-2 Application-Connector Communication Method: Message Request

Event Delivery

Figure 1-3 illustrates the message return communication.

1 The polling method retrieves the next applicable ISO 15022 SWIFT message from
the MQSeries input queue.

2 The message is staged in the in-progress queue, where it remains until processing
is complete.

3 The data handler converts the message into an ISO 15022 business object.

SWIFT Message

Integration
Broker

ISO 7775 Connector
MQSeries Output

SWIFT
Data Handler

MQSA

SWIFTAlliance Access Gateway

Queue

Gray Box Indicates
non-WebSphere
Components

Object
Business

ISO 15022

Engine
Mapping

1

2

3

4

6 7

5

Overview 5

4 Using the map subscription meta-object, the connector determines whether the
message type is supported and, if supported, requires transformation into an ISO
7775 business object. If so, the data handler passes the ISO 15022 business object
to the mapping engine.

5 Using a PIMO, the mapping engine processes the sub-fields of business object
data, creating an ISO 7775-compliant business object, which is passed to the data
handler.

6 The SWIFT data handler receives the ISO 7775 business object and sets the verb in
it to the default verb specified in the data handler-specific meta-object.

7 The connector then determines whether the business object is subscribed to by the
integration broker. If so, the connector framework delivers the business object to
the integration broker, and the message is removed from the in-progress queue.

Figure 1-3 Application-Connector Communication Method: Event Delivery

Event Handling
For event notification, the connector detects an event written to a queue by an
application rather than by a database trigger. An event occurs when SWIFTAlliance
generates SWIFT messages and stores them on the MQSeries queue.

Retrieval

The connector uses a polling method to poll the MQSeries input queue at regular
intervals for messages. When the connector finds a message, it retrieves it from the
MQSeries input queue and examines it to determine its format. If the format has been
defined in the connector’s static or child meta-objects, the connector uses the data
handler to generate an appropriate business object with a verb.

Integration
Broker

Connector

MQSeries Input

SWIFT
Data Handler

MQSA

Queue

SWIFTAlliance Access Gateway

Gray Box Indicates
non-WebSphere
Components

In-Progress
Queue

ISO 7775

Object
Business

SWIFT Message
ISO 15022

1

2

3

4

6

7

Engine
Mapping5
6 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

In-Progress Queue

The connector processes messages by first opening a transactional session to the
MQSeries queue. This transactional approach allows for a small chance that a
business object could be delivered to a business process twice due to the connector
successfully submitting the business object but failing to commit the transaction in the
queue. To avoid this problem, the connector moves all messages to an in-progress
queue. There, the message is held until processing is complete. If the connector shuts
down unexpectedly during processing, the message remains in the in-progress queue
instead of being reinstated to the original MQSeries queue.

Note: Transactional sessions with a JMS service provider require that every requested
action on a queue be performed and committed before events are removed from the
queue. Accordingly, when the connector retrieves a message from the queue, it does
not commit to the retrieval until: 1) The message has been converted to a business
object; 2) the business object is delivered to the integration broker, and 3) a return
value is received.

Synchronous Acknowledgment

To support applications that require feedback on the requests they issue, the
connector for SWIFT can issue report messages to the applications detailing the
outcome of their requests once they have been processed.

To achieve this, the connector posts the business data for such requests synchronously
to the integration broker. If the business object is successfully processed, the
connector sends a report back to the requesting application including the return code
from the integration broker and any business object changes. If the connector or the
integration broker fails to process the business object, the connector sends a report
containing the appropriate error code and error message.

In either case, an application that sends a request to the connector for SWIFT is
notified of its outcome.

If the connector for SWIFT receives any messages requesting positive or negative
acknowledgment reports (PAN or NAN), it posts the content of the message
synchronously to the integration broker and then incorporates the return code and
modified business data in to a report message that is sent back to the requesting
application.

Table 1-1 shows the required structure of messages sent to the connector to be
processed synchronously.

Table 1-1 Required Structure of Synchronous MQSeries Messages

MQMD Field
(Message
Descriptor)

Description
Supported Values (multiple values should
be OR’d)

MessageType Message type DATAGRAM
Overview 7

Upon receipt of a message as described in Table 1-1, the connector:

1 Reconstructs the business object in the message body using the configured data
handler.

2 Looks up the business process specified for the business object and verb in the
static meta-data object.

3 Posts the business object synchronously to the specified process.

4 Generates a report encapsulating the result of the processing and any business
object changes or error messages.

5 Sends the report to the queue specified in the replyToQueue and
replyToQueueManager fields of the request.

Report Options for
report message
requested

You can specify one or both of the
following:
■ MQRO_PAN

The connector sends a report message if
the business object can be successfully
processed.

■ MQRO_NAN
The connector sends a report message if
an error occurred while processing the
business object.

You can specify one of the following to
control how the correlation ID of the report
message is to be set:
■ MQRO_COPY_MSG_ID_TO_CORREL_ID

The connector copies the message ID of
the request message to the correlation ID
of the report. This is the default action.

■ MQRO_PASS_CORREL_ID
The connector copies the correlation ID
of the request message to the correlation
ID of the report.

ReplyToQueue Name of reply
queue

The name of the queue to which the report
message should be sent.

ReplyToQueue
Manager

Name of queue
manager

The name of the queue manager to which
the report message should be sent.

Message Body A serialized business object in a format
compatible with the data handler
configured for the connector.

Table 1-1 Required Structure of Synchronous MQSeries Messages

MQMD Field
(Message
Descriptor)

Description
Supported Values (multiple values should
be OR’d)
8 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Table 1-2 shows the structure of the report that is sent to the requesting application
from the connector.

Recovery

Upon initialization, the connector checks the in-progress queue for messages that
have not been completely processed, presumably due to a connector shutdown. The
connector configuration property InDoubtEvents allows you to specify one of four
options for handling recovery of such messages: fail on startup, reprocess, ignore, or
log error.

Fail on Startup

With the fail on startup option, if the connector finds messages in the in-progress
queue during initialization, it logs an error and immediately shuts down. It is the
responsibility of the user or system administrator to examine the message and take
appropriate action, either to delete these messages entirely or move them to a
different queue.

Reprocess

With the reprocessing option, if the connector finds any messages in the in-progress
queue during initialization, it processes these messages first during subsequent polls.
When all messages in the in-progress queue have been processed, the connector
begins processing messages from the input queue.

Table 1-2 Structure of the Report Returned to the Requesting Application

MQMD Field Description
Supported Values (multiple values
should be OR’d)

MessageType Message type REPORT

feedback Type of report One of the following:
■ MQRO_PAN

If the business object is successfully
processed.

■ MQRO_NAN
If the connector or the integration
broker encountered an error while
processing the request.

Message Body If the business object is successfully
processed, the connector populates the
message body with the business object
returned by the integration broker.
This default behavior can be
overridden by setting the
DoNotReportBusObj property to
true in the static meta-data object.
If the request could not be processed,
the connector populates the message
body with the error message
generated by the connector or the
integration broker.
Overview 9

Ignore

With the ignore option, if the connector finds any messages in the in-progress queue
during initialization, the connector ignores them but does not shut down.

Log Error

With the log error option, if the connector finds any messages in the in-progress
queue during initialization, it logs an error but does not shut down.

Archiving

If the connector property ArchiveQueue is specified and identifies a valid queue, the
connector places copies of all successfully processed messages in the archive queue. If
ArchiveQueue is undefined, messages are discarded after processing.

Guaranteed Event Delivery

You can enable guaranteed event delivery. This feature enables the connector
framework to remove a message from the source queue and place it on the destination
queue as a single transaction.

For configuration information, see "ContainerManagedEvents," on page 144 and
page 151.

Business Object Requests
Business object requests are processed when the integration broker issues a business
object. Using the SWIFT data handler and mapping engine, and depending on the
requirements specified in the subscription meta-object, the connector can transform
an ISO 7775 object to an ISO 15022 object before converting the business object to a
SWIFT message and issuing it.

Business Object Mapping
The map subscription meta-object determines whether mapping between ISO 7775
and ISO 15022 business objects occurs. For example, a child map subscription meta-
object (MO_Swift_MapSubscriptions_In) with an attribute
Map_Swift_MT523_to_MT543 indicates that the business object definition
corresponding to SWIFT message type 523 must be mapped to a business object
definition representing SWIFT message type 543. For more information on the map
subscription meta-object, see "Map Subscription Meta-Object," on page 28.

The transformation of business object definitions from those representing ISO 7775
messages to those representing ISO 15022 and vice versa takes place in the mapping
engine. There, a production instruction meta-object (PIMO) governs the mapping
process. The PIMO is a meta-object, but one designed to handle mapping only. Each
PIMO specifies attribute-by-attribute processing instructions for a specific
transformation, for example, from SWIFT message type 523 to message type 543. You
can modify PIMOs using Business Object Designer. For more information on
mapping and PIMOs, see Chapter 4, "ISO 7775 to ISO 15022 Mapping."
10 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Message Processing
The connector processes business objects passed to it by an integration broker based
on the verb for each business object. The connector uses business object handlers to
process the business objects that the connector supports.The business object handlers
contain methods that interact with an application and that transform business object
requests into application operations.

The connector supports the following business object verbs:

■ Create

■ Retrieve

Create

Processing of business objects with create depends on whether the objects are issued
asynchronously or synchronously.

Asynchronous Delivery

This is the default delivery mode for business objects with Create verbs. A message is
created from the business object using a data handler and then written to the output
queue. If the message is delivered, the connector returns BON_SUCCESS, else
BON_FAIL.

Note: The connector has no way of verifying whether the message is received or if
action has been taken.

Synchronous Acknowledgment

If a replyToQueue has been defined in the connector properties and a
responseTimeout exists in the conversion properties for the business object, the
connector issues a request in synchronous mode. The connector then waits for a
response to verify that appropriate action was taken by the receiving application.

For MQSeries, the connector initially issues a message with a header as shown in
Table 1-3.

Table 1-3 Request Message Descriptor Header (MQMD)

Field Description Value

Format Format name Output format as defined in the conversion properties
and truncated to 8 characters to meet IBM
requirements (example: MQSTR).

MessageType Message type MQMT_DATAGRAMa

Report Options for report
message requested.

When a response message is expected, this field is
populated as follows:

MQRO_PANa to indicate that a positive-action report is
required if processing is successful.

MQRO_NANa to indicate that a negative-action report is
required if processing fails.

MQRO_COPY_MSG_ID_TO_CORREL_IDa to indicate
that the correlation ID of the report generated should
equal the message ID of the request originally issued.
Overview 11

The message header described in Table 1-3 is followed by the message body. The
message body is a business object that has been serialized using the data handler.

The Report field is set to indicate that both positive and negative action reports are
expected from the receiving application. The thread that issued the message waits for
a response message that indicates whether the receiving application was able to
process the request.

When an application receives a synchronous request from the connector, it processes
the business object and issues a report message as described in Table 1-4, Table 1-5,
and Table 1-6.

ReplyToQueue Name of reply queue When a response message is expected, this field is
populated with the value of connector property
ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENTa

Expiry Message lifetime MQEI_UNLIMITEDa

a.Indicates constant defined by IBM.

Table 1-4 Response Message Descriptor Header (MQMD)

Field Description Value

Format Format name Input format of busObj as defined in the conversion
properties.

MessageType Message type MQMT_REPORTa

a.Indicates constant defined by IBM.

Table 1-5 Population of Response Message

Verb Feedback Field Message Body

Create SUCCESS
VALCHANGE

(Optional) A serialized business object
reflecting changes.

VALDUPES
FAIL

(Optional) An error message.

Table 1-3 Request Message Descriptor Header (MQMD)
12 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

If the business object can be processed, the application creates a report message with
the feedback field set to MQFB_PAN (or a specific IBM CrossWorlds value). Optionally
the application populates the message body with a serialized business object
containing any changes. If the business object cannot be processed, the application
creates a report message with the feedback field set to MQFB_NAN (or a specific IBM
CrossWorlds value) and then optionally includes an error message in the message
body. In either case, the application sets the correlationID field of the message to
the messageID of the connector message and issues it to the queue specified by the
ReplyTo field.

Upon retrieval of a response message, the connector matches the correlationID of
the response to the messageID of a request message. The connector then notifies the
thread that issued the request. Depending on the feedback field of the response, the
connector either expects a business object or an error message in the message body. If
a business object was expected but the message body is not populated, the connector
simply returns the same business object that was originally issued by the integration
broker for the Request operation. If an error message was expected but the message
body is not populated, a generic error message is returned to the integration broker
along with the response code.

Creating Custom Feedback Codes
You can extend the MQSeries feedback codes to override default interpretations
shown in Table 1-6 by specifying the connector property FeedbackCodeMappingMO.
This property allows you to create a meta-object in which all IBM CrossWorlds-
specific return status values are mapped to the MQSeries feedback codes. The return
status assigned (using the meta-object) to a feedback code is passed to the integration
broker. For more information, see "FeedbackCodeMappingMO," on page 23.

Table 1-6 Feedback Codes and Response Values

MQSeries Feedback Code Equivalent IBM CrossWorlds Responsea

a.See the Connector Development Guide for details.

MQFB_PAN or
MQFB_APPL_FIRST

SUCCESS

MQFB_NAN or
MQFB_APPL_FIRST + 1

FAIL

MQFB_APPL_FIRST + 2 VALCHANGE

MQFB_APPL_FIRST + 3 VALDUPES

MQFB_APPL_FIRST + 4 MULTIPLE_HITS

MQFB_APPL_FIRST + 5 Not applicable

MQFB_APPL_FIRST + 6 Not applicable

MQFB_APPL_FIRST + 7 UNABLE_TO_LOGIN

MQFB_APPL_FIRST + 8 APP_RESPONSE_TIMEOUT (results in
immediate termination of connector)

MQFB_NONE What the connector receives if no feedback code
is specified in the response message
Overview 13

Retrieve

Business objects with the Retrieve verb support synchronous delivery only. The
connector processes business objects with this verb as it does for the synchronous
delivery defined for create. However, when using a Retrieve verb, the
responseTimeout and replyToQueue are required. Furthermore, the message
body must be populated with a serialized business object to complete the transaction.

Table 1-7 shows the response messages for these verbs.

Error Handling
All error messages generated by the connector are stored in a message file named
SWIFTConnector.txt. (The name of the file is determined by the LogFileName
standard connector configuration property.) Each error has an error number followed
by the error message:

Message number
Message text

The connector handles specific errors as described in the following sections.

Application Timeout

The error message ABON_APPRESPONSETIMEOUT is returned when:

■ The connector cannot establish a connection to the JMS service provider during
message retrieval.

■ The connector successfully converts a business object to a message but cannot
deliver it to the outgoing queue due to connection loss.

■ The connector issues a message but times out waiting for a response from a
business object whose conversion property TimeoutFatal is equal to True.

■ The connector receives a response message with a return code equal to
APP_RESPONSE_TIMEOUT or UNABLE_TO_LOGIN.

Unsubscribed Business Object

The connector delivers a message to the queue specified by the
UnsubscribedQueue property if:

■ The connector retrieves a message that is associated with an unsubscribed
business object.

■ The connector retrieves a message but cannot associate the text in the Format field
with a business object name.

Table 1-7 Population of Response Message

Verb Feedback Field Message Body

Retrieve FAIL
FAIL_RETRIEVE_BY_CON
TENT

(Optional) An error message.

MULTIPLE_HITS
SUCCESS

A serialized business object.
14 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Note: If the UnsubscribedQueue is not defined, unsubscribed messages are
discarded.

Data Handler Conversion

If the data handler fails to convert a message to a business object, or if a processing
error occurs that is specific to the business object (as opposed to the JMS provider), the
message is delivered to the queue specified by ErrorQueue. If ErrorQueue is not
defined, messages that cannot be processed due to errors are discarded.

If the data handler fails to convert a business object to a message, BON_FAIL is
returned.

Tracing
Tracing is an optional debugging feature you can turn on to closely follow connector
behavior. Trace messages, by default, are written to STDOUT. See the connector
configuration properties in Chapter 2, "Configuring the Connector," for more on
configuring trace messages. For more information on tracing, including how to enable
and set it, see the Connector Development Guide.

What follows is recommended content for connector trace messages.

Level 0 This level is used for trace messages that identify the
connector version.

Level 1 Use this level for trace messages that provide key
information on each business object processed or record each
time a polling thread detects a new message in an input
queue.

Level 2 Use this level for trace messages that log each time a business
object is posted to the integration broker, either from
gotApplEvent() or executeCollaboration().

Level 3 Use this level for trace messages that provide information
regarding message-to-business-object and business-object-to-
message conversions or provide information about the
delivery of the message to the output queue.

Level 4 Use this level for trace messages that identify when the
connector enters or exits a function.

Level 5 Use this level for trace messages that indicate connector
initialization, represent statements executed in the
application, indicate whenever a message is taken off of or
put onto a queue, or record business object dumps.
Overview 15

16 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 2 Configuring the Connector
This chapter describes how to install and configure the connector and how to
configure the message queues to work with the connector.

The chapter contains the following sections:

Prerequisites

Prerequisite Software

The following software must be installed before you install and configure the
connector for SWIFT:

■ IBM CrossWorlds software version 4.1.0 or later or WebSphere Business
Integration Adapter Framework version 2.0

■ MQSeries 5.1 and 5.2

■ IBM MQSeries Java client libraries

Note: It’s advisable to download the latest MA88 libraries from IBM.

Windows: Microsoft Windows NT 4.0 Service Pack 6A or Windows 2000

UNIX: Solaris 7 or AIX 4.3.3 Patch Level 7

■ MQSA MQSeries Interface for SWIFTAlliance 1.3

"Prerequisites" page 17

"Installing the Connector" page 18

"Connector Configuration" page 20

"Queue Uniform Resource Identifiers (URI)" page 26

"Meta-Object Attributes Configuration" page 27

"Startup File Configuration" page 38

"Startup" page 38
(C) Copyright IBM Corporation 2002 17

For client setup with an NT server, see the description in the IBM publication
MQSeries Quick Beginnings for NT.

Installing the Connector
The following subsections describe how to install the connector on a UNIX or
Windows system.

After your business integration system is installed, you can install additional adapters
from the CD at any time. To do this, insert the CD, run the installation program, and
choose the adapters that you want to install.

Installing on a UNIX System

To install the connector on a UNIX system, run the Installer for IBM WebSphere
Business Integration Adapter and select the WebSphere Business Integration Adapter
for SWIFT. Installer installs all UNIX-supported connectors.

Note: If you are installing a Web release of this connector, see the Release Notes for
installation instructions.

Table 2-1 describes the UNIX file structure used by the connector.

Table 2-1 Installed UNIX File Structure for the Connector

Subdirectory of $CROSSWORLDS Description

connectors/SWIFT/CWSwift.jar Connector jar files

connectors/SWIFT/CWJMSCommon.jar

connectors/SWIFT/start_SWIFT.sh The startup script for the connector. The
script is called from the generic
connector manager script. When you
click Install from Connector
Configurator (WMQI as the integration
broker) or the Connector Configuration
screen of CSM (ICS as the integration
broker), the installer creates a
customized wrapper for this connector
manager script. When the connector
works with ICS, use this customized
wrapper only to start and stop the
connector. When the connector works
with WMQI, use this customized
wrapper only to start the connector; use
mqsiremotestopadapter to stop the
connector.

connectors/messages/
SWIFTConnector.txt

Connector message file

repository/SWIFT/CN_SWIFT.txt Connector definition

DataHandlers/CwDataHandler.jar The SWIFT data handler
18 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

For more information on installing the connector component, refer to one of the
following guides, depending on the integration broker you are using:

■ System Installation Guide for UNIX (when ICS is used as integration broker)

■ WebSphere Business Integration Adapter Implementation Guide for MQ Integrator
(when MQ Integrator is used as integration broker)

Installing on a Windows System

To install the connector on a Windows system, run the Installer for IBM WebSphere
Business Integration Adapter and select the WebSphere Business Integration Adapter
for SWIFT. Installer installs standard files associated with the connector. Table 2-2
describes the Windows file structure used by the connector.

Note: If you are installing a Web release of this connector, see the Release Notes for
installation instructions.

repository/DataHandlers/
MO_DataHandler_SWIFT.txt

Meta-object for SWIFT data handler

repository/DataHandlers/
MO_DataHandler_Default.txt

Data handler default object

connectors/SWIFT/samples/
Sample_SWIFT_MO_Config.txt

Sample configuration object

connectors/SWIFT/samples/
BO_Definitions/SWIFT_objects.txt

SWIFT message business object
definitions

connectors/SWIFT/samples/
Map_Definitions/Map_objects.txt

ISO 7775-ISO 15022 maps

connectors/SWIFT/samples/
MAP_SWIFT_SUBSCRIPTIONS.txtg

Map subscription meta-object

Table 2-2 Installed Windows File Structure for the Connector

Subdirectory of %CROSSWORLDS% Description

connectors\SWIFT\CWSwift.jar Connector jar files

connectors\SWIFT\CWJMSCommon.jar

connectors\SWIFT\start_SWIFT.bat The startup file for the connector.

connectors\messages\SWIFTConnector
.txt

Connector message file

repository\SWIFT\CN_SWIFT.txt Connector definition

DataHandlers\CwDataHandler.jar The SWIFT data handler

repository\DataHandlers\MO_DataHan
dler_SWIFT.txt

Meta-object for SWIFT data handler

Table 2-1 Installed UNIX File Structure for the Connector (Continued)

Subdirectory of $CROSSWORLDS Description
Configuring the Connector 19

openfile ../../development_manuals/WBIA_imp_guide_MQI/WBIAforWMQI.pdf

For more information on installing the connector component, refer to one of the
following guides, depending on the integration broker you are using:

■ System Installation Guide for Windows (when ICS is used as integration broker)

■ WebSphere Business Integration Adapter Implementation Guide for MQ Integrator
(when MQ Integrator is used as integration broker)

Connector Configuration
Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. You must set the values of
these properties before running the connector. Use one of the following tools to set a
connector’s configuration properties:

■ Connector Designer (if ICS is the integration broker)—Access to this tool is from
the CrossWorlds System Manager (CSM).

■ Connector Configurator (if WMQI is the integration broker)—Access this tool
from the WebSphere Business Integration Adapter program folder. For more
information see Appendix B, "Connector Configurator."

Standard Connector Properties

Standard configuration properties provide information that all connectors use. See
Appendix A, "Standard Configuration Properties for Connectors," for documentation
of these properties.

Important
Because this connector supports both the ICS and WMQI integration broker,

configuration properties for both brokers are relevant to the connector.

repository\DataHandlers\MO_DataHan
dler_Default.txt

Data handler default object

connectors\SWIFT\samples\
Sample_SWIFT_MO_Config.txt

Sample configuration object

connectors\SWIFT\samples\BO_Defini
tions\SWIFT_objects.txt

SWIFT message business object definitions

connectors\SWIFT\samples\Map_Defin
itions\Map_objects.txt

ISO 7775-ISO 15022 maps

connectors\SWIFT\samples\MAP_SWIFT
_SUBSCRIPTIONS.txtg

Map subscription meta-object

Table 2-2 Installed Windows File Structure for the Connector (Continued)

Subdirectory of %CROSSWORLDS% Description
20 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

openfile ../../development_manuals/WBIA_imp_guide_MQI/WBIAforWMQI.pdf

Connector-Specific Properties

Connector-specific configuration properties provide information needed by the
connector at runtime. Connector-specific properties also provide a way of changing
static information or logic within the connector without having to recode and rebuild
the agent.

Note: Always check the values MQSeries provides because they may be incorrect or
unknown. If the provided values are incorrect, specify them explicitly.

Table 2-3 lists the connector-specific configuration properties for the connector for
SWIFT. See the sections that follow for explanations of the properties.

Table 2-3 Connector-Specific Configuration Properties

Name Possible Values Default Value Required

"ApplicationPassword" Login password No

"ApplicationUserID" Login user ID No

"ArchiveQueue" Queue to which copies of
successfully processed
messages are sent

queue://
CrossWorlds.
QueueManager/
MQCONN.ARCHIVE

No

"Channel" MQ server connector channel Yes

"ConfigurationMetaObject" Name of configuration meta-
object

Yes

"DataHandlerClassName" Data handler class name com.crossworlds.
DataHandlers.swi
ft.ExtendedSwift
DataHandler

No

"DataHandlerConfigMO" Data handler meta-object MO_DataHandler_
Default

Yes

"DataHandlerMimeType" MIME type of file swift No

"ErrorQueue" Queue for unprocessed
messages

queue://
crossworlds.Queu
e.manager/
MQCONN.ERROR

No

"FeedbackCodeMappingM
O"

Feedback code meta-object No

"HostName" MQSeries server No

"InDoubtEvents" FailOnStartup
Reprocess
Ignore
LogError

Reprocess No
Configuring the Connector 21

ApplicationPassword

Password used with the ApplicationUserID to log in to MQSeries.

Default = None.

If the ApplicationPassword is left blank or removed, the connector uses the
default password provided by MQSeries.

ApplicationUserID

User ID used with the ApplicationPassword to log in to MQSeries.

Default=None.

If the ApplicationUserID is left blank or removed, the connector uses the default
user ID provided by MQSeries.

ArchiveQueue

Queue to which copies of successfully processed messages are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ARCHIVE

"InputQueue" Poll queues queue://
CrossWorlds.
QueueManager/
MQCONN.IN

Yes

"InProgressQueue" In-progress event queue queue://
CrossWorlds.
QueueManager/
MQCONN.IN_PROGRE
SS

Yes

"PollQuantity" Number of messages to
retrieve from each queue
specified in the InputQueue
property

1 No

"Port" Port established for the
MQSeries listener

No

"ReplyToQueue" Queue to which response
messages are delivered when
the connector issues requests

queue://
CrossWorlds.
QueueManager/
MQCONN.REPLYTO

No

"UnsubscribedQueue" Queue to which unsubscribed
messages are sent

queue://
CrossWorlds.
QueueManager/
MQCONN.UNSUBSCRI
BE

No

Table 2-3 Connector-Specific Configuration Properties (Continued)

Name Possible Values Default Value Required
22 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Channel

MQ server connector channel through which the connector communicates with
MQSeries.

Default=None.

If the value of Channel is left blank or the property is removed, the connector uses the
default server channel provided by MQSeries.

ConfigurationMetaObject

Name of static meta-object containing configuration information for the connector.

Default = none.

DataHandlerClassName

Data handler class to use when converting messages to and from business objects.

Default =
com.crossworlds.DataHandlers.swift.ExtendedSwiftDataHandler

DataHandlerConfigMO

Meta-object passed to data handler to provide configuration information.

Default = MO_DataHandler_Default

DataHandlerMimeType

Allows you to request a data handler based on a particular MIME type.

Default = swift

ErrorQueue

Queue to which messages that could not be processed are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ERROR

FeedbackCodeMappingMO

Allows you to override and reassign the default feedback codes used to
synchronously acknowledge receipt of messages to the integration broker. This
property enables you to specify a meta-object in which each attribute name is
understood to represent a feedback code. The corresponding value of the feedback
code is the return status that is passed to the integration broker. For a listing of the
default feedback codes, see "Synchronous Acknowledgment," on page 11. The
connector accepts the following attribute values representing MQSeries-specific
feedback codes:

■ MQFB_APPL_FIRST

■ MQFB_APPL_FIRST_OFFSET_N
where N is an integer (interpreted as the value of MQFB_APPL_FIRST + N)

The connector accepts the following IBM CrossWorlds-specific status codes as
attribute values in the meta-object:

■ SUCCESS
Configuring the Connector 23

■ FAIL

■ APP_RESPONSE_TIMEOUT

■ MULTIPLE_HITS

■ UNABLE_TO_LOGIN

■ VALCHANGE

■ VALDUPES

Table 2-4 shows a sample meta-object.

Default = none.

HostName

The name of the server hosting MQSeries.

Default=None.

If the HostName is left blank or removed, the connector allows MQSeries to
determine the host.

InDoubtEvents

Specifies how to handle in-progress events that are not fully processed due to
unexpected connector shutdown. Choose one of four actions to take if events are
found in the in-progress queue during initialization:

■ FailOnStartup. Log an error and immediately shut down.

■ Reprocess. Process the remaining events first, then process messages in the
input queue.

■ Ignore. Disregard any messages in the in-progress queue.

■ LogError. Log an error but do not shut down.

Default = Reprocess.

InputQueue

Specifies the message queues that the connector polls for new messages. See the
MQSA documentation to configure the MQSeries queues for routing to
SWIFTAlliance gateways.

The connector accepts multiple semicolon-delimited queue names. For example, to
poll the queues MyQueueA, MyQueueB, and MyQueueC, the value for connector
configuration property InputQueue is: MyQueueA;MyQueueB;MyQueueC.

Table 2-4 Sample Feedback Code Meta-Object Attributes

Attribute Name Default Value

MQFB_APPL_FIRST SUCCESS

MQFB_APPL_FIRST + 1 FAIL

MQFB_APPL_FIRST + 2 UNABLE_TO_LOGIN
24 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

The connector polls the queues in a round-robin manner and retrieves up to
pollQuantity number of messages from each queue. For example, pollQuantity equals
2, and MyQueueA contains 2 messages, MyQueueB contains 1 message and MyQueueC
contains 5 messages.

With pollQuanity set to 2, the connector retrieves at most 2 messages from each queue
per call to pollForEvents. For the first cycle (1 of 2), the connector retrieves the first
message from each of MyQueueA, MyQueueB, and MyQueueC. That completes the first
round of polling. The connector starts a second round of polling (2 of 2) and retrieves
one message each from MyQueueA and MyQueueC—it skips MqQueueB because that
queue is now empty. After polling all queues twice, the call to the method
pollForEvents is complete. The sequence of message retrieval is:

1 1 message from MyQueueA

2 1 message from MyQueueB

3 1 message from MyQueueC

4 1 message from MyQueueA

5 Skip MyQueueB because it is empty

6 1 message from MyQueueC

Default = queue://crossworlds.Queue.manager/MQCONN.IN

InProgressQueue

Message queue where messages are held during processing.

Default= queue://crossworlds.Queue.manager/MQCONN.IN_PROGRESS

PollQuantity

Number of messages to retrieve from each queue specified in the InputQueue
property during a pollForEvents scan.

Default =1

Port

Port established for the MQSeries listener.

Default=None.

If the value of Port is left blank or the property is removed, the connector allows
MQSeries to determine the correct port.

ReplyToQueue

Queue to which response messages are delivered when the connector issues requests.

Default = queue://crossworlds.Queue.manager/MQCONN.REPLYTO

UnsubscribedQueue

Queue to which messages about business objects that are not subscribed to are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.UNSUBSCRIBED
Configuring the Connector 25

Queue Uniform Resource Identifiers (URI)
A URI uniquely identifies a queue. A URI for a queue begins with the sequence
queue:// followed by:

■ The name of the queue manager on which the queue resides

■ A forward slash (/)

■ The name of the queue

■ Optionally, a list of name-value pairs to set the remaining queue properties.

For example, the following URI connects to queue IN on queue manager
crossworlds.queue.manager and causes all messages to be sent as SWIFT
messages with priority 5.

queue://crossworlds.Queue.manager/
MQCONN.IN?targetClient=1&priority=5

Table 2-5 shows property names for queue URIs.

Table 2-5 SWIFT-Specific Connector Property Names for Queue URIs

Property Name Description Values

expiry Lifetime of the message
in milliseconds.

0 = unlimited.
positive integers =
timeout (in ms).

priority Priority of the message. 0-9, where 1 is the highest
priority. A value of -1
means that the property
is determined by the
configuration of the
queue. A value of -2
means that the connector
can use its own default
value.

persistence Whether the message
should be retained in
persistent memory.

1 = non-persistent
2 = persistent
A value of -1 means that
the property is
determined by the
configuration of the
queue. A value of -2
means that the connector
uses its own default
value.

CCSIDa Character set of the
destination.

Integers - valid values
listed in base MQSeries
documentation.
26 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Meta-Object Attributes Configuration
The connector for SWIFT can recognize and read four kinds of meta-objects:

■ Map Subscription meta-object specifies business object mapping between ISO
7775 and ISO 15022 message types. For a description and configuration
information, see "Map Subscription Meta-Object," on page 28.

■ Production Instruction meta-object (PIMO) specifies the attribute-by-attribute
processing instructions for a specific transformation, for example, from SWIFT
message type 523 to message type 543. No configuration is required after
installation. For more information on PIMOs and mapping, see Chapter 4, "ISO
7775 to ISO 15022 Mapping."

■ Static meta-object specifies verb and message formats for business objects as well
as transport layer options. For more information, see "Static Meta-Object," on
page 29.

targetClient Whether the receiving
application is JMS
compliant or not.

1 = MQ (MQMD header
only) This value must be
set to 1 for
SWIFTAlliance.

encoding How to represent
numeric fields.

An integer value as
described in the base
MQSeries
documentation.

a.The connector has no control over the character set (CCSID) or encoding at-
tributes of data in MQMessages. For the connector to work properly,
MQSeries queues require an ASCII character set, and must be configured ac-
cordingly in MQSA. Because data conversion is applied as the data is retrieved
from or delivered to the message buffer, the connector relies on the IBM
MQSeries implementation of JMS to convert data (see the IBM MQSeries Java
client library documentation). Accordingly, these conversions should be bi-di-
rectionally equivalent to those performed by the native MQSeries API using
option MQGMO_CONVERT. The connector has no control over differences or fail-
ures in the conversion process. It can retrieve message data of any CCSID or
encoding supported by MQSeries without additional modifications (such as
those imposed by MQSA). To deliver a message of a specific CCSID or encod-
ing, the output queue must be a fully qualified URI and specify values for
CCSID and encoding. The connector passes this information to MQSeries,
which (via the JMS API) uses the information when encoding data for MQMes-
sage delivery. Often, lack of support for CCSID and encoding can be resolved
by downloading the most recent version of the IBM MQSeries Java client li-
brary from the IBM website. For further information on MQSA requirements,
see MQSA documentation. If problems specific to CCSID and encoding per-
sist, contact IBM Technical Support to discuss the possibility of using another
Java Virtual Machine to run the connector.

Table 2-5 SWIFT-Specific Connector Property Names for Queue URIs (Continued)

Property Name Description Values
Configuring the Connector 27

■ Dynamic child meta-object The attribute values of the dynamic child meta-object
duplicate and override those of the static meta-object. For more information see
"Dynamic Child Meta-Object," on page 33.

Map Subscription Meta-Object

The map subscription meta-object, MO_Swift_MapSubscriptions, contains two
child objects, MO_Swift_MapSubscriptions_In and
MO_Swift_MapSubscriptions_Out. The inbound child object,
MO_Swift_MapSubscriptions_In, contains attributes for transforming business
objects representing ISO 7775 SWIFT messages to objects representing ISO 15022
SWIFT messages. The outbound (from SWIFT) child object,
MO_Swift_MapSubscriptions_Out, contains attributes identifying business
object transformations from ISO 15022 to ISO 7775 SWIFT messages.

You can alter or add attributes to the child objects as you modify or extend the
number of ISO 7775-15022 transformations. When you do so, you must reload the
map subscription meta-object into the repository and restart the adapter.

Here is an excerpt from MO_Swift_MapSubscriptions_In. The excerpt specifies
maps for transformations of business objects representing SWIFT messages. For
example, the Type for attribute Swift_MT520, Map_Swift_MT520_to_MT540, tells
the connector that the business object must be transformed from one representing
SWIFT message type 520 (ISO 7775) to message type 540 (ISO 15022).

[ReposCopy]

Version = 3.1.0
RepositoryID =
[End]
[BusinessObjectDefinition]
Name = MO_Swift_MapSubscriptions_In
Version = 3.0.0

[Attribute]
Name = Swift_MT520
Type = Map_Swift_MT520_to_MT540
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = true
IsForeignKey = false
IsRequired =true
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT52
Type = Map_Swift_MT521_to_MT541
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = true
28 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT522
Type = Map_Swift_MT522_to_MT542
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]

Static Meta-Object

The static meta-object consists of a list of conversion properties defined for different
business objects. To define the conversion properties for a business object, first create
a string attribute and name it using the syntax busObj_verb. For example, to define
the conversion properties for a Customer object with the verb Create, create an
attribute named Swift_MT502_Create. In the application-specific text of the
attribute, you specify the actual conversion properties.

Additionally, a reserved attribute named Default can be defined in the meta-object.
When this attribute is present, its properties act as default values for all business
object conversion properties.

Note: If a static meta-object is not specified, the connector cannot map a given message
format to a specific business object type during polling. When this is the case, the
connector passes the message text to the configured data handler without specifying a
business object. If the data handler cannot create a business object based on the text
alone, the connector reports an error indicating that this message format is
unrecognized.
Configuring the Connector 29

Table 2-6 describes the meta-object properties.

Table 2-6 Static Meta-Object Properties

Property Name Description

CollaborationName The collaboration name must be specified in the
application-specific text of the attribute for the
business object/verb combination. For example, if you
expect to handle synchronous requests for the
business object Customer with the Create verb, the
static meta-data object must contain an attribute
named Swift_MTnnn_Verb, where nnn is the Swift
message type, for example, Swift_MT502_Create.

The Swift_MT502_Create attribute must contain
application-specific text that includes a name-value
pair. For example,
CollaborationName=MyCustomerProcessingCollab.
See the "Application-Specific Text" section for syntax
details.
Failure to do this results in runtime errors when the
connector attempts to synchronously process a request
involving the Customer business object.
Note: This property is available only for synchronous
requests.

DoNotReportBusObj Optionally, you can include the
DoNotReportBusObj property. By setting this
property to true, all PAN report messages issued
have a blank message body. This is recommended
when you want to confirm that a request has been
successfully processed but does not need notification
of changes to the business object. This does not affect
NAN reports.
If this property is not found in the static meta-object,
the connector defaults to false and populates the
message report with the business object.
Note: This property is available only for synchronous
requests.

InputFormat The input format is the message format to associate
with the given business object. When a message is
retrieved and is in this format, it is converted to the
given business object if possible. If this format is not
specified for a business object, the connector does not
handle subscription deliveries for the given business
object. An InputFormat property value defined in a
dynamic child meta-object overrides the value defined
in the static meta-object.
30 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Application-Specific Text

The application-specific text is structured in name-value pair format, separated by
semicolons. For example:

InputFormat=ORDER_IN;OutputFormat=ORDER_OUT

Overloading Input Formats

When retrieving a message, the connector normally matches the input format to one
specific business object and verb combination. The connector then passes the business
object name and the contents of the message to the data handler. This allows the data
handler to verify that the message contents correspond to the business object that the
user expects.

If, however, the same input format is defined for more than one business object, the
connector cannot determine which business object the data represents before passing
it to the data handler. In such cases, the connector passes the message contents only to

OutputFormat The output format is set on messages created from the
given business object. If a value for the
OutputFormat property is not specified, the input
format is used, if available. An OutputFormat
property value defined in a dynamic child meta-object
overrides the value defined in the static meta-object.

OutputQueue The output queue is the queue to which messages
derived from the given business object are delivered.
An OutputQueue property value defined in a
dynamic child meta-object overrides the value defined
in the static meta-object.

ResponseTimeout The length of time in milliseconds to wait for a
response before timing out. The connector returns
SUCCESS immediately without waiting for a response
if this property is undefined or has a value less than
zero. A ResponseTimeout property value defined in
a dynamic child meta-object overrides the value
defined in the static meta-object.

TimeoutFatal If this property is defined and has a value of true, the
connector returns APP_RESPONSE_TIMEOUT when a
response is not received within the time specified by
ResponseTimeout. All other threads waiting for
response messages immediately return
APP_RESPONSE_TIMEOUT to the integration broker.
This causes the integration broker to terminate the
connection to the connector. A TimeoutFatal
property defined in a dynamic child meta-object
overrides the value defined in the static meta-object.

Table 2-6 Static Meta-Object Properties (Continued)

Property Name Description
Configuring the Connector 31

the data handler and then looks up conversion properties based on the business object
that is generated. Accordingly, the data handler must determine the business object
based on the message content alone.

If the verb on the generated business object is not set, the connector searches for
conversion properties defined for this business object with any verb. If only one set of
conversion properties is found, the connector assigns the specified verb. If more
properties are found, the connector fails the message because it is unable to
distinguish among the verbs.

A Sample Static Meta-Object

The static meta-object shown below configures the connector to convert
SWIFT_MT502 business objects using verbs Create and Retrieve. Note that attribute
Default is defined in the meta-object. The connector uses the conversion properties
of this attribute:

OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true

as default values for all other conversion properties. Thus, unless specified otherwise
by an attribute or overridden by a dynamic child meta-object value, the connector
issues all business objects to queue CustomerQueue1 and then waits for a response
message. If a response does not arrive within 5000 milliseconds, the connector
terminates immediately.

Business Object with Verb Create
Attribute Swift_MT502_Create indicates to the connector that any messages of
format NEW should be converted to a business object with the verb Create. Because an
output format is not defined, the connector sends messages representing this object-
verb combination using the format defined for input (in this case NEW).

Business Object with Verb Retrieve
Attribute Swift_MT502_Retrieve specifies that business objects with verb
Retrieve should be sent as messages with format RETRIEVE. Note that the default
response time has been overridden so that the connector can wait up 10000
milliseconds before timing out (it still terminates if a response is not received).

[ReposCopy]
Version = 3.1.0
Repositories = 1cHyILNuPTc=
[End]
[BusinessObjectDefinition]
Name = Sample_MO
Version = 1.0.0

[Attribute]
Name = Default
Type = String
Cardinality = 1
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo =
OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true
IsRequiredServerBound = false
[End]
[Attribute]
32 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Name = Swift_MT502_Create
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = InputFormat=NEW
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502_Retrieve
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = OutputFormat=RETRIEVE;ResponseTimeout=10000
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

Dynamic Child Meta-Object

If it is difficult or unfeasible to specify the necessary meta-data through a static meta-
object, the connector can optionally accept meta-data specified at runtime for each
business object instance.

The connector recognizes and reads conversion properties from a dynamic meta-
object that is added as a child to the top-level business object passed to the connector.
The attribute values of the dynamic child meta-object duplicate the conversion
properties that you can specify via the static meta-object that is used to configure the
connector.

Because dynamic child meta object properties override those found in static meta-
objects, if you specify a dynamic child meta-object, you need not include a connector
property that specifies the static meta-object. Accordingly, you can use either a
dynamic child meta-object or a static meta-object, or both.
Configuring the Connector 33

Table 2-7 shows sample static meta-object properties for business object
Swift_MT502_Create. Note that the application-specific text consists of semicolon-
delimited name-value pairs

Table 2-8 shows a sample dynamic child meta-object for business object
Swift_MT_Create.

The connector checks the application-specific text of the top-level business object
received to determine whether tag cw_mo_conn specifies a child meta-object. If so,
the dynamic child meta-object values override those specified in the static meta-
object.

Population of the Dynamic Child Meta-Object During Polling

In order to provide the integration broker with more information regarding messages
retrieved during polling, the connector populates specific attributes of the dynamic
meta-object, if already defined for the business object created.

Table Table 2-9 shows how a dynamic child meta-object might be structured for
polling.

Table 2-7 Static Meta-Object Structure for Swift_MT502_Create

Attribute Name Application-Specific Text

Swift_MT502_Create InputFormat=ORDER_IN;

OutputFormat=ORDER_OUT;

OutputQueue=QueueA;

ResponseTimeout=10000;

TimeoutFatal=False

Table 2-8 Dynamic Child Meta-Object Structure for Swift_MT502_Create

Attribute Name Value

OutputFormat ORDER_OUT

OutputQueue QueueA

ResponseTimeout 10000

TimeoutFatal False

Table 2-9 JMS Dynamic Child Meta-Object Structure for Polling

Attribute Name Sample Value

InputFormat ORDER_IN

InputQueue MYInputQueue

OutputFormat CxIgnore

OutputQueue CxIgnore
34 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

As shown in Table 2-9, you can define an additional attribute, InputQueue, in a
dynamic child meta-object. This attribute contains the name of the queue from which
a given message has been retrieved. If this property is not defined in the child meta-
object, it will not be populated.

Example scenario:

■ The connector retrieves a message with the format ORDER_IN from the queue
MQSeries queue.

■ The connector converts this message to an order business object and checks the
application-specific text to determine if a meta-object is defined.

■ If so, the connector creates an instance of this meta-object and populates the
InputQueue and InputFormat attributes accordingly, then publishes the
business object to available processes.

Sample Dynamic Child Meta-Object

[BusinessObjectDefinition]
Name = MO_Sample_Config
Version = 1.0.0

[Attribute]
Name = OutputFormat
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
DefaultValue = ORDER
IsRequiredServerBound = false
[End]
[Attribute]
Name = OutputQueue
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = OUT
IsRequiredServerBound = false
[End]
[Attribute]
Name = ResponseTimeout
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = -1

ResponseTimeout CxIgnore

TimeoutFatal CxIgnore

Table 2-9 JMS Dynamic Child Meta-Object Structure for Polling (Continued)

Attribute Name Sample Value
Configuring the Connector 35

IsRequiredServerBound = false
[End]
[Attribute]
Name = TimeoutFatal
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = InputFormat
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = InputQueue
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]
[BusinessObjectDefinition]
Name = Swift_MT502
Version = 1.0.0
AppSpecificInfo = cw_mo_conn=MyConfig

[Attribute]
Name = FirstName
Type = String
MaxLength = 1
36 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = LastName
Type = String
MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = Telephone
Type = String
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = MyConfig
Type = MO_Sample_Config
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]
Configuring the Connector 37

Startup File Configuration
Before you start the connector for SWIFT, you must configure the startup file. The
sections below describe how to do this for Windows and UNIX systems.

Windows

To complete the configuration of the connector for Windows platforms, you must
modify the start_SWIFT.bat file:

1 Open the start_SWIFT.bat file.

2 Scroll to the section beginning with “Set the directory containing your
MQ Java client libraries,” and specify the location of your MQ Java client
libraries.

UNIX

To complete the configuration of the connector for UNIX platforms, you must modify
the start_SWIFT.sh file:

1 Open the start_SWIFT.sh file.

2 Scroll to the section beginning with “Set the directory containing your
MQSeries Java client libraries,” and specify the location of your
MQSeries Java client libraries.

Startup
For information on starting a connector, stopping a connector, and the connector’s
temporary startup log file, see the see the startup chapter in the System Installation
Guide for your platform.
38 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 3 Business Objects
The connector for SWIFT is a meta-data-driven connector. In WebSphere business
objects, meta-data is data about the application’s data, which is stored in a business
object definition and which helps the connector interact with an application. A meta-
data-driven connector handles each business object that it supports based on meta-
data encoded in the business object definition rather than on instructions hard-coded
in the connector.

Business object meta-data includes the structure of a business object, the settings of its
attribute properties, and the content of its application-specific text. Because the
connector is meta-data-driven, it can handle new or modified business objects
without requiring modifications to the connector code. However, the connector’s
configured data handler makes assumptions about the structure of its business
objects, object cardinality, the format of the application-specific text, and the database
representation of the business object. Therefore, when you create or modify a business
object for SWIFT, your modifications must conform to the rules the connector is
designed to follow, or the connector cannot process new or modified business objects
correctly.

Important
The connector supports business object mapping between the ISO 7775-15022
message formats for SWIFT Category 5, Securities Markets, but only with the
expanded business object definitions available with release 1.3 (and later) of this
connector. To install the object definition files, see Chapter 2, "Configuring the
Connector." If you use business object definitions from release 1.2 or earlier, the connector

cannot perform ISO 7775-15022 business object transformations.

This chapter describes how the connector processes business objects and describes the
assumptions the connector makes. You can use this information as a guide to
implementing new business objects. The chapter contains the following sections:

"Connector Business Object Requirements" page 40

"Overview of SWIFT Message Structure" page 44

"SWIFT Message and Business Object Data Mapping" page 46
(C) Copyright IBM Corporation 2002 39

Connector Business Object Requirements
The business object requirements for the connector reflect the way the SWIFT data
handler converts:

■ a SWIFT message into a WebSphere business object, and vice versa

■ a business object representing a SWIFT ISO 7775 message into a business object
representing the corresponding SWIFT ISO 15022 message, and vice versa.

The sections below discuss the requirements for WebSphere business objects as well
as the SWIFT message structure. For a step-by-step description of how the SWIFT data
handler interacts with WebSphere business objects and SWIFT messages, see
Chapter 5, "SWIFT Data Handler."

A review of the following WebSphere documents is strongly recommended:

■ Technical Introduction to IBM CrossWorlds (when ICS is the integration broker)

■ WebSphere Business Integration Adapters Implementation Guide for MQ Integrator
(when MQ Integrator is the integration broker)

■ Business Object Development Guide

Business Object Hierarchy

WebSphere business objects can be flat or hierarchical. All the attributes of a flat
business object are simple (that is, each attribute represents a single value, such as a
String or Integer or Date).

In addition to containing simple attributes, a hierarchical business object has
attributes that represent a child business object, an array of child business objects, or a
combination of both. In turn, each child business object can contain a child business
object or an array of business objects, and so on.

Important
A business object array can contain data whose type is a business object. It cannot

contain data of any other type, such as String or Integer.

There are two types of relationships between parent and child business objects:

■ Single-cardinality—When an attribute in a parent business object represents a
single child business object. The attribute is of the same type as the child business
object.

■ Multiple-cardinality—When an attribute in the parent business object represents
an array of child business objects. The attribute is an array of the same type as the
child business objects.

WebSphere uses the following terms when describing business objects:

■ hierarchical—Refers to a complete business object, including the top-level
business object and its the child business objects at any level.

■ parent—Refers to a business object that contains at least one child business object.
A top-level business object is also a parent.

■ individual—Refers to a single business object, independent of any child business
objects it might contain or that contain it.
40 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

openfile ../../development_manuals/WBIA_imp_guide_MQI/WBIAforWMQI.pdf

■ top-level—Refers to the individual business object at the top of the hierarchy,
which does not itself have a parent business object.

■ wrapper—Refers to a top-level business object that contains information used to
process its child business objects. For example, the XML connector requires the
wrapper business object to contain information that determines the format of its
child data business objects and routes the children.

Business Object Attribute Properties

Business object architecture defines various properties that apply to attributes. This
section describes how the connector interprets several of these properties. For further
information on these properties, see Business Object Attributes and Attribute
Properties in Chapter 2 of the Business Object Development Guide.

Name Property

Each business object attribute must have a unique name within the business object.
The name should describe the data that the attribute contains.

For an application-specific business object, check the connector or data handler guide
for specific naming requirements.

The name can be up to 80 alphanumeric characters and underscores. It cannot contain
spaces, punctuation, or special characters.

Type Property

The Type property defines the data type of the attribute:

■ For a simple attribute, the supported types are Boolean, Integer, Float,
Double, String, Date, and LongText.

■ If the attribute represents a child business object, specify the type as the name of
the child business object definition (for example, Type = MT502A) and specify
the cardinality as 1.

■ If the attribute represents an array of child business objects, specify the type as the
name of the child business object definition and specify the cardinality as n.

Note: All attributes that represent child business objects also have a
ContainedObjectVersion property (which specifies the child’s version number)
and a Relationship property (which specifies the value Containment).

Cardinality Property

Each simple attribute has cardinality 1. Each business object attribute that represents a
child or array of child business objects has cardinality 1 or n, respectively.

Note: When specified for a required attribute, cardinality 1 indicates a child business
object must exist, and cardinality n indicates zero to many instances of a child
business object.

Key Property

At least one attribute in each business object must be specified as the key. To define an
attribute as a key, set this property to true.
Business Objects 41

When you specify as key an attribute that represents a child business object, the key is
the concatenation of the keys in the child business object. When you specify as key an
attribute that represents an array of child business objects, the key is the concatenation
of the keys in the child business object at location 0 in the array.

Note: Key information is not available in the collaboration mapping process (relevant
only when ICS is the integration broker).

Foreign Key Property

The Foreign Key property is typically used in application-specific business objects to
specify that the value of an attribute holds the primary key of another business object,
serving as a means of linking the two business objects. The attribute that holds the
primary key of another business object is called a foreign key. Define the Foreign Key
property as true for each attribute that represents a foreign key.

You can also use the Foreign Key property for other processing instructions. For
example, this property can be used to specify what kind of foreign key lookup the
connector performs. In this case, you might set Foreign Key to true to indicate that
the connector checks for the existence of the entity in the database and creates the
relationship only if the record for the entity exists.

Required Property

The Required property specifies whether an attribute must contain a value. If a
particular attribute in the business object that you are creating must contain a value,
set the Required property for the attribute to true.

For information on enforcing the Required property for attributes, see the section on
initAndValidateAttributes() in Connector Reference: C++ Class Library and
Connector Reference: Java Class Library.

AppSpecificInfo

The AppSpecificInfo property is a String no longer than 255 characters that is
specified primarily for an application-specific business object.

Note: Application-specific text is not available in the collaboration mapping process
(relevant only when ICS is the integration broker).

Max Length Property

The Max Length property is set to the number of bytes that a String-type attribute
can contain. Although this value is not enforced by the WebSphere system, specific
connectors or data handlers may use this value. Check the guide for the connector or
data handler that will process the business object to determine minimum and
maximum allowed lengths.

Note: The Max Length property is very important when you use a fixed width data
handler. Attribute length is not available in the collaboration mapping process
(relevant only when ICS is the integration broker).

Default Value Property

The Default Value property can specify a default value for an attribute.
42 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

If this property is specified for an application-specific business object, and the
UseDefaults connector configuration property is set to true, the connector can use
the default values specified in the business object definition to provide values for
attributes that have no values at runtime.

For more information on how the Default Value property is used, see the section on
initAndValidateAttributes() in Connector Reference: C++ Class Library and
Connector Reference: Java Class Library.

Comments Property

The Comments property allows you to specify a human-readable comment for an
attribute. Unlike the AppSpecificInfo property, which is used to process a business
object, the Comments property provides only documentation information.

Special Attribute Value

Simple attributes in business object can have the special value, CxIgnore. When it
receives a business object from an integration broker, the connector ignores all
attributes with a value of CxIgnore. It is as if those attributes were invisible to the
connector.

If no value is required, the connector sets the value of that attribute to CxIgnore by
default.

Application-Specific Text at the Attribute Level

Note: Business object level application-specific text is not used by the connector.

For business object attributes, the application-specific text format consists of name-
value parameters. Each name-value parameter includes the parameter name and its
value. The format of attribute application-specific text is as follows:

name=value[:name_n=value_n][...]

Each parameter set is separated from the next by a colon (:) delimiter.

Table 3-1 describes the name-value parameters for attribute application-specific text.

Table 3-1 Name-Value Parameters in AppSpecificText for Attributes

Parameter Required Description

block Yes for top-level
object only

The number of the block in the SWIFT
message. Values range from 0-5. For
information on the SWIFT message blocks, see
"Overview of SWIFT Message Structure," on
page 44.

parse Yes for attributes
of the top-level
object only

Describes whether, and how, to parse the
SWIFT message block. Values are:
fixlen—parse as fixed length
delim—parse as delimited text
field—Block 4 only
no—Do not parse; treat as a single string.
Business Objects 43

Note: The application-specific information for production instruction meta-objects
(PIMOs) contains name-value pairs that indicate compute instructions. For more
information, see Chapter 4, "ISO 7775 to ISO 15022 Mapping."

Overview of SWIFT Message Structure
SWIFT messages consist of five blocks of data. In addition, the MQSA component
adds two blocks that are used for queue management. The high-level structure of a
SWIFT message is as follows:

MQSA UUID

SWIFT 1:Basic Header Block

SWIFT 2: Application Header Block

SWIFT 3:User Header Block

SWIFT 4: Text Block

SWIFT 5: Trailer

MQSA S Block

Note: The MQSA component adds the UUID (User Unique Message Identifier) and S
blocks. Neither are parsed by the SWIFT data handler. The S block has the same
structure as SWIFT block 5, except that field tags consist of three char strings. For
example, {S:{COP:P}}.

For further information on SWIFT message structure, see Appendix D, SWIFT
Message Structure, and All Things SWIFT: the SWIFT User Handbook.

tag Yes for attributes
of type tag
business object

The tag number of the field. For more on
SWIFT message tags, see Appendix D, SWIFT
Message Structure. For further information on
sequence and field business objects, see "Block
4 Business Object Structure," on page 59.

letter=a Yes for each
attribute that
points to a tag
business object

One or more supported letters appended to
the tag in the SWIFT message format. For
example 20A or [A|B|NULL] (A or B or null).
Note that NULL must be specified for tags
where no letter is a possibility, or for tags that
do not have a letter option at all. For example,
tag 59.

content No The qualifier in the SWIFT message format.
For example, in a SWIFT message MT502,
tag20C, the qualifier = SEME.

Table 3-1 Name-Value Parameters in AppSpecificText for Attributes (Continued)

Parameter Required Description
44 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Overview of Business Objects for SWIFT
As shown in Figure 3-1 there are five kinds of business objects for SWIFT:

Figure 3-1 Business Objects Map to SWIFT Message Components

■ Message business object (Msg BO) This is the top-level business object whose
attributes correspond to the blocks in a SWIFT message. For further information,
see "Top-Level Business Object Structure," on page 46.

■ Message block business object (MsgBlk BO) A child object of the Msg BO that
can represent blocks 1, 2, 3, or 5 in a SWIFT message. For further information, see
"Block 1 Business Object Structure," on page 50.

■ Message data business object (MsgData BO) A child object of the Msg BO that
represents block 4 of the SWIFT message. For further information, see "Block 4
Business Object Structure," on page 59.

■ Message sequence business object (MsgSeq BO) A child object of a MsgData BO
or of another MsgSeq BO. A MsgSeq BO represents a sequence of fields occurring
in block 4 of the SWIFT message. For further information, see "Sequence Business
Object Structure," on page 65.

■ Message field business object (MsgField BO) A child object of the MsgData BO
or of a MsgSeq BO that contains the content of a field. Fields correspond to tags in
SWIFT messages. For further information, see "Field Business Object Definitions,"
on page 68.

Each of these business objects consist of the following:

Msg BO

MsgBlk BO

MsgData BO

MsgSeq BO

MsgField BO

= SWIFT Message

= SWIFT Message Blocks 1, 2, or 3

= SWIFT Data Block 4

= Block 4 Data Sequence

= Block 4 Data Field

MsgBlk BO = SWIFT Message Block 5
Business Objects 45

■ Name The name of the business object consists of a SWIFT Message name, a
SWIFT message sequence name, or a SWIFT field name. More detailed naming
conventions, if any, are provided in the sections for each kind of business object
listed below. For example:

– Swift_MT502 is the name of the Msg BO. For further information, see "Top-
Level Business Object Structure," on page 46.

– Swift_ApplicationHeader is the name of a MsgBlk BO. For further
information, see "Block 1 Business Object Structure," on page 50, "Block 2
Business Object Structure," on page 53, and "Block 3 Business Object
Structure," on page 56.

– Swift_MT502Data is the name of a MsgData BO. For further information,
see "Block 4 Business Object Structure," on page 59.

– Swift_MT502_B1 is the name of a MsgSeq BO. For further information, see
"Sequence Business Object Structure," on page 65.

– Swift_Tag_22 is the name of a MsgField BO. For further information, see
"Field Business Object Definitions," on page 68.

■ Version The version of the business object is set to 1.1.0. For example:

Version = 1.1.0

■ Attributes Each business object contains one or more attributes. For more
information see "Business Object Attribute Properties," on page 41 and the
sections below on each kind of business object.

■ Verbs Each business object supports the following standard verbs:

– Create

– Retrieve

SWIFT Message and Business Object Data Mapping
The IBM WebSphere Business Integration Adapter for SWIFT supports two kinds of
mapping:

■ SWIFT-message-to-WebSphere-business-object The sections below describe the
data mapping that occurs between SWIFT messages and WebSphere business
objects.

■ Business-object-to-business-object The mapping used to transform a business
object that represents an ISO 7775 SWIFT message into a business object that
represents the corresponding ISO 15022 SWIFT message, and vice versa. For
further information, see Chapter 4, "ISO 7775 to ISO 15022 Mapping."

Top-Level Business Object Structure

The structure of the top-level business object for a SWIFT message, or Msg BO, reflects
that of the SWIFT message. WebSphere requires a business object for each SWIFT
block. As shown in Table 3-2, the top-level business object must have at least 5
attributes, one for each SWIFT block.

Note: Only attribute properties of consequence are shown in Table 3-2. For a listing of
all attribute properties, see "Sample Top-Level Business Object (Msg BO) Definition,"
on page 48.
46 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Table 3-2 Top-Level Business Object Structure

The following rules apply to the top-level business object:

■ The name of the top-level object must be constructed in the following way:

BOPrefix_MTMessageType

where:

BOPrefix = an attribute of the meta-object (MO). For further information on the
meta-object, see "Static Meta-Object," on page 29.

_MT = a constant string.

MessageType = an attribute of block 2 of the SWIFT message. For further
information, see All Things SWIFT: the SWIFT User Handbook

An example of a top-level business object name is Swift_MT502.

■ UUID, prepended to the message by the MQSA, is represented with a String
attribute

■ Blocks 1-4 are represented with single-cardinality containers

■ Block 5 is a string attribute, and is not extracted from the message by the SWIFT
data handler.

Note: It is possible to create business objects for block 5 and block S using block 3 as a
template.

See Table 3-1 for the attribute application-specific information.

Figure 3-2 shows a business object definition for a top-level business object of a SWIFT
message. This Msg BO definition was created in the WebSphere development
environment.

The application-specific information contains the block number and parsing
parameters for each attribute. For further information on attribute application-specific
text, see Table 3-1. The Swift_ attributes correspond to child business objects
discussed in the following sections. For a full specification of this sample business
object definition, see "Sample Top-Level Business Object (Msg BO) Definition," on

Name Type Key Required
Application
Specific Info

UUID
(MQSA prepended)

 String Yes No block=0;parse=no

Swift_01Header Swift_BasicHeader No Yes block=1;parse=fixlen

Swift_02Header Swift_ApplicationHeader No No block=2;parse=fixlen

Swift_03Header Swift_UserHeader No No block=3;parse=delim

Swift_Data Swift_Text No No block=4;parse=field

Swift_05Trailer String No No block=5;parse=no

Swift_BlockS
(MQSA appended)

String No No block=6;parse=no
Business Objects 47

page 48. Of special note is the type for the data block attribute, Swift_MT502Data,
which indicates SWIFT message type 502, an order to buy or sell. This attribute
corresponds to a child object of the top-level Msg BO that represents block 4 of the
SWIFT message. The child object is a message data business object (MsgData BO).

All SWIFT top-level business object definitions are identical to that shown in
Figure 3-2 with one exception: Block 4, shown as Swift_MT502Data, reflects the
actual data definition of a specific SWIFT message.

Figure 3-2 Definition for Top-Level Business Object of a SWIFT Message

Note: To create a top-level business object definition for a SWIFT message, you must
start Business Object Designer and then create all the child objects first.

Sample Top-Level Business Object (Msg BO) Definition

This section presents a sample definition of a top-level business object, or Msg BO, for
a SWIFT message of type MT502—an order to buy or sell.

[BusinessObjectDefinition]
Name = Swift_MT502
Version = 1.1.0

[Attribute]
Name = UUID
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=0;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_01Header
Type = Swift_BasicHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=1;parse=fixlen
48 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_02Header
Type = Swift_ApplicationHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=2;parse=fixlen
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_03Header
Type = Swift_UserHeader
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=3;parse=delim
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_MT502Data
Type = Swift_MT502Data
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=4;parse=field
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_05Trailer
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = block=5;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = Swift_BlockS
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
Business Objects 49

IsRequired = false
AppSpecificInfo = block=6;parse=no
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

Block 1 Business Object Structure

The MsgBlck BO, Swift_BasicHeader, has the format and attributes shown in
Table 3-3. The SWIFT data handler converts each of the SWIFT fields in this block into
attributes in the Swift_BasicHeader business object. Note that there is no attribute
application-specific information for this business object.

Note: Only attribute properties of consequence are shown in Table 3-3. For a listing of
all attribute properties, see "Sample Block 1 Business Object Definition," on page 51.

See Table 3-1 for the attribute application-specific information.

Figure 3-3 shows a block 1 business object definition that has been manually created
in a WebSphere development environment. Each attribute name
(ApplicationIdentifier, ServiceIdentifier, and so on) corresponds to a
field in this SWIFT message block. For further information on this SWIFT message

Table 3-3 Block 1 Business Object Structure

Name Type Key
Foreign
Key

Required Cardinality Default
Max
Length

BlockIdentifier String Yes No Yes 1 1:a

a.The BlockIdentifier attribute includes the delimiter ”:” as in “1:”.

2

ApplicationIdentifier String No No Yes 1 1

ServiceIdentifier String No No Yes 1 2

LTIdentifier String No No Yes 1 12

SessionNumber String No No Yes 1 4

SequenceNumber String No No No 1 4
50 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

block, see Appendix D, "SWIFT Message Structure," and All Things SWIFT: the SWIFT
User Handbook. Specify Type String for each named attribute. Note that there is no
attribute application-specific information for the components of this business object.

Note: Be sure to specify the correct MaxLength values for the attribute names in this
fixed-length block business definition.

Figure 3-3 Block 1 Business Object Definition

Note: To create a block 1 business object definition for a SWIFT message, start Business
Object Designer and then enter values for the attributes shown in "Sample Block 1
Business Object Definition," on page 51.

Sample Block 1 Business Object Definition

This section presents a sample definition of a block 1 business object for a SWIFT
message of type MT502—an order to buy or sell.

[BusinessObjectDefinition]
Name = Swift_BasicHeader
Version = 1.1.0

[Attribute]
Name = BlockIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = true
IsForeignKey = false
IsRequired = true
DefaultValue = 1:
IsRequiredServerBound = false
[End]
[Attribute]
Name = ApplicationIdentifier
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
Business Objects 51

[Attribute]
Name = ServiceIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = LTIdentifier
Type = String
Cardinality = 1
MaxLength = 12
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = SessionNumber
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = SequenceNumber
Type = String
Cardinality = 1
MaxLength = 6
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]
52 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Block 2 Business Object Structure

The block 2 MsgBlk BO, Swift_ApplicationHeader, has the format and attributes
shown in Table 3-4. The SWIFT data handler converts each of the SWIFT fields in this
block into attributes in the Swift_ApplicationHeader business object. Note that
there is no attribute application-specific information for this business object.

Note: Only attribute properties of consequence are shown in Table 3-4. For a listing of
all attribute properties, see "Sample Block 2 Business Object Definition," on page 54.

The first three attributes in Table 3-4 are I/O attributes. Attributes that start with I_
are input attributes and are populated during SWIFT-to-business-object conversion.
Attributes that start with O_ are output attributes and are populated in business-
object-to-SWIFT conversions. The CxIgnore property must be set for business-object-
to-SWIFT conversions.

See Table 3-1 for the attribute application-specific information.

Figure 3-4 shows a block 2 business object definition that has been manually created
in a WebSphere development environment. Each attribute name
(BlockIdentifier, IOIdentifier, and so on) corresponds to a field in this
SWIFT message block. The definition shown is for the input attributes (I_) are
populated during SWIFT-to-business-object conversion. For further information on
this SWIFT message block, see Appendix D, "SWIFT Message Structure," and All
Things SWIFT: the SWIFT User Handbook. Specify type String for each named
attribute. Note that there is no attribute application-specific information for the
components of this business object.

Note: Be sure to specify the correct MaxLength values for the attribute names in this
fixed-length block business definition.

Table 3-4 Block 2 Business Object Structure

Name Type Key Required Cardinality Default
Max
Length

Block Identifier String No Yes 1 2:a

a.The BlockIdentifier attribute includes the delimiter ”:” as in “2:”.

2

IOIdentifier String No Yes 1 1

MessageType String No Yes 1 3

I_ReceiverAddress String No Yes 1 12

I_MessagePriority String No Yes 1 1

I_DeliveryMonitoring String No No 1 1

I_ObsolescencePeriod String No No 1 3

O_InputTime String No Yes 1 4

O_MessageInputReference String No Yes 1 28

O_OutputDate String No No 1 6

O_OutputMessagePriority String No No 1 6
Business Objects 53

Figure 3-4 Block 2 Business Object Definition

Note: To create a block 2 business object definition for a SWIFT message, start Business
Object Designer and then enter values for the attributes shown in "Sample Block 2
Business Object Definition," on page 54.

Sample Block 2 Business Object Definition

This section presents a sample definition of a block 2 business object for a SWIFT
message of type MT502—an order to buy or sell.

[BusinessObjectDefinition]
Name = Swift_ApplicationHeader
Version = 1.1.0

[Attribute]
Name = BlockIdentifier
Type = String
Cardinality = 1
MaxLength = 2
IsKey = false
IsForeignKey = false
IsRequired = true
DefaultValue = 2:
IsRequiredServerBound = false
[End]
[Attribute]
Name = IOIdentifier
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
DefaultValue = O
IsRequiredServerBound = false
[End]
[Attribute]
Name = MessageType
Type = String
Cardinality = 1
54 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MaxLength = 3
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_InputTime
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_MessageInputReference
Type = String
Cardinality = 1
MaxLength = 28
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_OutputDate
Type = String
Cardinality = 1
MaxLength = 6
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_OutputTime
Type = String
Cardinality = 1
MaxLength = 4
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = O_OutputMessagePriority
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_ReceiverAddress
Type = String
Business Objects 55

Cardinality = 1
MaxLength = 12
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_MessagePriority
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_DeliveryMonitoring
Type = String
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = I_ObsolescencePeriod
Type = String
Cardinality = 1
MaxLength = 3
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

Block 3 Business Object Structure

The block 3 MsgBlk BO, Swift_UserHeader, has the format and attributes shown in
Table 3-5. Note that there is attribute application-specific information for this business
object: the Tag parameter. For Tag parameters see Table 3-1.
56 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Note: Only attribute properties of consequence are shown in Table 3-5. For a listing of
all attribute properties, see "Sample Block 3 Business Object Definition," on page 57.

Figure 3-5 shows a block 3 business object definition that has been manually created
in a WebSphere development environment. Each attribute name (Tag103, Tag113,
and so on,) corresponds to a field in this SWIFT message block. For further
information on this SWIFT message block, see Appendix D, SWIFT Message Structure,
and All Things SWIFT: the SWIFT User Handbook. Specify type String for each named
attribute. Note that the application-specific information for the components of this
business object are SWIFT tags.

Figure 3-5 Block 3 Business Object Definition

Note: To create a block 3 business object definition for a SWIFT message, start Business
Object Designer and then enter values for the attributes shown in "Sample Block 3
Business Object Definition," on page 57.

Sample Block 3 Business Object Definition

This section presents a sample definition of a block 3 business object for a SWIFT
message of type MT502—an order to buy or sell.

[BusinessObjectDefinition]
Name = Swift_UserHeader

Table 3-5 Block 3 Business Object Structure

Name Type Key Foreign Required Cardinality
Application
Specific
Information

Max
Length

Tag103 String Yes No No 1 Tag=103 6

Tag113 String No No No 1 Tag=113 6

Tag108 String No No No 1 Tag=108 6

Tag119 String No No No 1 Tag=119 6

Tag115 String No No No 1 Tag=115 6
Business Objects 57

Version = 1.1.0

[Attribute]
Name = Tag103
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=103
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag113
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=113
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag108
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=108
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag119
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=119
IsRequiredServerBound = false
[End]
[Attribute]
Name = Tag115
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=115
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
58 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

Block 4 Business Object Structure

SWIFT block 4 contains the body of the SWIFT message. Block 4 is made up of fields of
message tags and their contents on the one hand, and on the other, of sequences of
message tags. This data content makes the block 4 business object structure unlike
that of blocks 1, 2, and 3. The block 4 business object is the message data business
object (MsgData BO).

Every tag and sequence in a SWIFT message is modeled as a child business object of
the MsgData BO. Accordingly, a MsgData BO has child objects of two types: field
business objects (MsgField BO) and sequence business objects (MsgSeq BO). These
business objects reflect how the SWIFT data is formatted in block 4. More specifically,
attributes in these business objects model the content (message tags and their content)
and order (sequence) that is specified in a SWIFT message format specification. The
sequence of the message tags is crucial if the business object definition is to faithfully
represent the SWIFT message. For further information on MsgField BOs and MsgSeq
BOs, see "Sequence and Field Business Objects," on page 64.

Figure 3-6 shows a portion of the format specification from the SWIFT Standards
Release Guide for MT502, an order to buy or sell.
Business Objects 59

Figure 3-6 SWIFT Message Type 502 Format Specification

Figure 3-7 shows the corresponding portion of a business object definition, which
reflects the structure of the message tags and sequences in the SWIFT message:

■ The Status—M (mandatory) or O (optional)—field in the SWIFT message is
mapped to the Required property in the business object definition. For example,
the status of SWIFT Tag 98a (shown in Figure 3-6) is O or optional; Figure 3-7
shows the corresponding business object attribute, Preparation_DateTime (of type
Swift_Tag_98), for which the Required property is not checked.

■ The Tag, Qualifier, and Content/Options fields from the SWIFT message are
mapped as attribute application-specific text in the business object definition. For
example, in the SWIFT message shown in Figure 3-6, Start of Block is Tag16R with
Content of GENL. The corresponding entry shown in Figure 3-7 is the attribute
Start_Of_Block of type Swift_Tag_16 with application-specific information
property parameters that identify the Tag, the Tag’s letter, and Content
(Tag=16;Letter=R;Content=GENL).

■ Data formats are often indicated in the Content/Options field in a SWIFT
message. For example, Figure 3-6 shows the sender’s reference for “Mandatory
Sequence A General Information” as Tag20C, with a SEME qualifier and Content
consisting of data format instructions (:4!c[/4!c]). Figure 3-7 shows the
corresponding attribute application-specific text: only the Tag and Letter are
shown in the AppSpecInfo field (Tag=20;Letter=C). The SWIFT data handler
also parses the field’s data content—the formatting information (:4!c[/4!c]) is
included in the business object definition in ways that support mapping between
ISO 7775 and ISO 15022 message formats.

■ Repeating sequences in SWIFT messages are indicated by “---->” in the SWIFT
Format Specifications as shown in Figure 3-6. Nonrepeating sequences are
marked “-----|” . In the business object definition, a repeating sequence is
60 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

assigned cardinality n. For example, the repeating sequence Tag22F shown in
Figure 3-6 is mapped to the attribute Indicator of type Swift_Tag_22 with a
cardinality property of n.

Figure 3-7 Partial Block 4 Business Object Definition

MsgData BO Format

The format of a MsgData BO is summarized in the sections below.

MsgData BO Name
The naming convention for the MsgData BO representing block 4 of a SWIFT message
is as follows:

Swift_MT<message_type>Data

For example:

Name = Swift_MT502Data

MsgData BO Attribute Names
Each attribute of the MsgData BO represents one of the following:

■ a MsgSeq BO

■ a MsgField BO

Accordingly, the attribute names are the same as those for MsgSeq BOs and MsgField
BOs. The naming convention for MsgField BO attributes is as follows:

Swift_<tag_number>_<position_in_the_SWIFT_message>

For example:

Name = Swift_94_1
Business Objects 61

The naming convention for MsgSeq BO attributes is as follows:

Swift_MT<message_type>_<SWIFT_sequence_name>

For example:

Name = Swift_MT502_B

For further information see "Sequence Business Object Structure," on page 65 and
"Field Business Object Definitions," on page 68.

MsgData BO Attribute Types
The type for MsgData attributes is as follows:

For MsgField BO attributes:

Swift_Tag_<tag_number>

For example:

Type = Swift_Tag_94

For MsgSeq BO attributes:

Swift_MT<message_type>_<SWIFT_sequence_name>

For example:

Type = Swift_MT502_B

MsgData BO Attribute ContainedObjectVersion
The contained object version for the MsgData BO as well as for the its MsgSeq BO
attributes is 1.1.0. For example:

[Attribute]
Name = Swift_MT502_B
Type = Swift_MT502_B

...

ContainedObjectVersion = 1.1.0

...

[End]

Note: MsgField BO attributes are simple, and have no ContainedObjectVersion.

MsgData BO Attribute Relationship
The relationship attribute property for MsgData BO and its MsgSeq BO attributes is
Containment. For example:

[Attribute]
Name = Swift_MT502Data
Type = Swift_MT502Data

...

Relationship = Containment

...

[End]
62 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MsgData BO Attribute Cardinality
The MsgData BO and its MsgSeq BO attributes have a cardinality property of n.
MsgField BO attributes that represent repeating fields also have cardinality n. All
others attributes have cardinality 1. For example:

[Attribute]
Name = Swift_16_1
Type = Swift_Tag_16

...

Cardinality = n

...

[End]

MsgData BO Attribute IsKey
Each MsgData BO definition must contain at least one attribute defined as the key
attribute (IsKey = true). The rule is that the first single cardinality attribute in each
BO definition must be defined as key attribute.

For example:

[Attribute]
Name = Swift_16.1
Type = Swift_Tag_16

...

Cardinality = 1

IsKey = true

[End]

MsgData BO Attribute AppSpecificInfo
In MsgData BO definitions, only MsgField BO attributes have application-specific
information; this property is always null for MsgSeq BO attributes. The convention
for application-specific information for MsgField BO attributes is as follows:

Tag=nn;Letter=xx;Content=string

where nn is the SWIFT tag number of the field, xx is one or a list of supported letter
options for the tag, and string is the value of the qualifier for a non-generic field as
described in Table 3-1, on page 43. For example:

[Attribute]
Name = Swift_16_22
Type = Swift_Tag_16

...

AppSpecificInfo = Tag=16;Letter=S;Content=OTHRPRTY

...

[End]

When MsgField BO attributes appear in MsgSeq BOs and the application specific
information indicates:

...;Union=True
Business Objects 63

The MsgField child object—a TagUnion business object and its child objects,
TagLetterOption objects—will be populated instead of the DataField attribute. For
information on TagUnion business objects, see "Field Business Object Definitions," on
page 68.

Sequence and Field Business Objects

As noted above, the connector models sequences and tags in SWIFT messages as
sequence business objects (MsgSeq BO) and field business objects (MsgField BO),
respectively. Figure 3-8 illustrates the hierarchical relationship of these business
objects.

Figure 3-8 Field and Sequence Business Objects in the (Block 4) MsgData BO

Figure 3-9 shows part of a definition for a SWIFT message (MT502) that illustrates a
sequence containing field and sequence attributes. The sequence attribute
Swift_MT02_B_Order_Details not only includes several attributes of type Tag
(for example, Swift_Tag_16, Swift_Tag_94), but also the subsequence
Swift_MT502_B1_Price. This subsequence is a repeating optional sequence, and
its properties reflect this (Required= no; Cardinality=n). Note that the sequences
contain no application-specific information.

MsgData BO

MsgSeq Attribute

MsgField Attribute

MsgSeq Attribute

MsgField BO

MsgSeq Attribute

MsgField BO

MsgSeq BO

MsgField BO

MsgField BO

MsgField Attribute
64 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Figure 3-9 A Sequence Containing Tag and Subsequence Attributes

Sequence Business Object Structure

As shown in Figure 3-10, each sequence business object (MsgSeq BO) attribute
indicates one of the following:

■ another MsgSeq BO, or subsequence

■ a MsgField BO

There is no limit to the number of subsequences that a MsqSeq BO can nest.

Figure 3-10 Field and Subsequence Business Objects in the MsgSeq BO

MsgSeq BO

MsgSeq Attribute

MsgField BO

MsgSeq BO
MsgField Attribute

MsgField BO
Business Objects 65

Figure 3-11 shows another excerpt of a MsgSeq BO. In this excerpt, the Swift_Tag_
attributes represent MsgField BOs. The Swift_MT502_A1_Linkages attribute is for
a child object that is a subsequence MsgSeq BO.

Figure 3-11 Excerpt from a Sequence Business Object (MsgSeq BO)

The following rules apply to sequence business objects:

■ A subsequence business object is an attribute of a particular sequence business
object type.

■ A collection of more than one repeating field is treated as a subsequence.

■ The application-specific information of a sequence attribute is always NULL.

For a sample sequence business object, see "Sample Sequence Business Object
Definition," on page 66.

MsgSeq BO Format

Like a MsgData BO, a MsgSeq BO consists of attributes that are either MsgSeq BOs or
MsgField BOs. For information on the format of these attributes, see "MsgData BO
Format," on page 61.

Sample Sequence Business Object Definition

This section presents a sample definition of a MsgSeq BO for a SWIFT message of type
MT502—an order to buy or sell. The definition is of a Mandatory Sequence A Order to
Buy or Sell.

[BusinessObjectDefinition]
Name = Swift_MT502_A_General_Information
Version = 1.0.0

[Attribute]
Name = Start_Of_Block
Type = Swift_Tag_16
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
66 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MaxLength = 1
IsKey = true
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=16;Letter=R;Content=GENL
IsRequiredServerBound = false
[End]
[Attribute]
Name = Senders_Reference
Type = Swift_Tag_20
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=20;Letter=C
IsRequiredServerBound = false
[End]
[Attribute]
Name = Function_Of_The_Message
Type = Swift_Tag_23
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=23;Letter=G
IsRequiredServerBound = false
[End]
[Attribute]
Name = Preparation_DateTime
Type = Swift_Tag_98
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Tag=98;Letter=A|C
IsRequiredServerBound = false
[End]
[Attribute]
Name = Indicator
Type = Swift_Tag_22
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = n
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=22;Letter=F
IsRequiredServerBound = false
[End]
Business Objects 67

[Attribute]
Name = Swift_MT502_A1_Linkages
Type = Swift_MT502_A1_Linkages
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = n
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Attribute]
Name = End_Of_Block
Type = Swift_Tag_16
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 1
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = Tag=16;Letter=S;Content=GENL
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

Field Business Object Definitions

WebSphere represents every SWIFT tag as a field business object (MsgField BO). Each
MsgField BO is modeled using the SWIFT generic field structure, even if the field is
non-generic. WebSphere uses two additional business object models to represent the
combination of letters and options used to represent and combine SWIFT message
components as subfields in business objects:

■ Tag union business object (TagUnion BO) This is a child object of the MsgField
BO. A TagUnion BO contains all possible letter options for a specific tag, and is
not specific to a particular message type.

■ Tag letter option business object (TagLetterOption BO) This is a letter option
child object of the TagUnion BO that defines the content of the subfield as well as
its format including delimiters.
68 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MsgField BO Format

As shown in Figure 3-12, each MsgField BO contains five attributes, including one
and only one TagUnion BO, with the data type shown in parentheses () below:

Figure 3-12 Attributes and Business Objects in the MsgField BO

The content and order of all subfields other than the SWIFT Qualifier and Issuer Code
(IC) are captured in the child object of DataField, which is the TagUnion BO and its
child objects, TagLetterOption BOs. The attributes and business objects shown in
Figure 3-12 are discussed in the section below.

MsgField BO, TagUnion BO, and TagLetterOption BO Names
The naming convention for a MsgField BO is as follows:

Swift_Tag_<N>

where N stands for the message number. For example:

Name = Swift_Tag_22

The naming convention for a TagUnion BO is as follows:

Swift_Tag_Union_<tag_number>

where tag_number is the numeric representation of tag number. For example:

Name = Swift_Tag_Union_20

The naming convention for a TagLetterOption BO is as follows:

Swift_Tag_Union_<tag_number>_Opt_[<letter_option>]

where tag_number is the numeric representation of tag number and
[<letter_option>] is the letter option when a tag is associated with a letter. If the
tag has no letter associated with it, then the name ends at Opt.For example:

Name = Swift_Tag_Union_20_Opt_C

MsgField BO, TagUnion BO, and TagLetter BO Attribute Names
The names of the five attributes in a MsgField BO are as follows:

■ Letter

■ Qualifier

MsgField BO

TagUnion BO

TagLetterOption Attribute

TagLetterOption BO

Letter Attribute
Qualifier Attribute
IC Attribute
Data Attribute
DataField Attribute

TagLetterOption BO
Business Objects 69

■ IC

■ Data

■ DataField

The names of attributes in TagUnion BOs are as follows:

Swift_<tag_number>_[<letter_option>]

where tag_number is the numeric representation of the tag number and the square
brackets signify that the letter is appended only when it is associated with the tag. For
example:

Swift_20_C

The name of the attribute in TagLetterOption BOs is the concatenation of words in the
subfield name shown in the SWIFT format specification table. The first letter of each
word in the concatenated string is always capitalized, with subsequent letters in the
word appearing in lowercase, regardless of how the words are spelled in the SWIFT
format specification. Spaces and non-alphabetic symbols are left out of the
concatenated name. If a field has no subfield, the word Subfield is used as an
attribute name. For example, for the subfield “Proprietary Code” in 95R, the
corresponding attribute name in the definition of TagLetterOption BO
Swift_Tag_Union_95_Opt_R is as follows:

Name = ProprietaryCode

MsgField BO, TagUnion BO, and TagLetterOption BO Attribute Types
The type for MsgField attributes is as follows:

■ Letter (String)

■ Qualifier (String)

■ Issuer Code (String)

■ Data (String)

■ DataField (TagUnion_BO)

For example, in a MsgField BO definition, the type for a Swift_Tag_20 attribute
would be listed as follows:

[Attribute]
Name = DataField
Type = Swift_Tag_Union_20

The type for attributes in the TagUnion BO is the name of the TagLetterOption BO
child object. For example, in a TagUnion BO definition for Swift_Tag_Union_20, the
type for the TagLetterOption attribute is as follows:

[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

The type for attributes in TagLetterOption BOs is always String.

MsgField BO, TagUnion BO, and TagLetterOption BO ContainedObjectVersion
The contained object version for the MsgField BO, the TagUnion BO, and the
TagLetterOption BO is 1.1.0. For example:

as well as for the its MsgSeq BO attributes is 1.1.0. For example:
70 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

...

ContainedObjectVersion = 1.1.0

...

[End]

Note: MsgField BO attributes are simple, and have no ContainedObjectVersion.

MsgField BO, TagUnion BO, and TagLetterOption BO Attribute Cardinality
The cardinality of attributes in TagUnion BOs and TagLetterOption BOs is always set
to 1. For example:

[Attribute]
Name = Swift_20_C
Type = Swift_Tag_Union_20_Opt_C

...

Cardinality = 1

...

[End]

MsgField BO, TagUnion BO, and TagLetterOption BO Attribute IsKey
In each MsgField BO, the attribute Letter must be defined as the key attribute.

For example:

[Attribute]

Name = Letter
Type = String
IsKey = true

...

[End]

The first attribute of a TagUnionBO is defined as key.

The first attribute of TagLetterOption BO is defined as key.

TagLetterOption BO Attribute AppSpecificInfo
The AppSpecificInfo attribute definition of a TagLetterOption BO provides crucial
SWIFT message formatting information for business object subfields. The
AppSpecificInfo attribute must contain the following information:

Format=***;Delim=$$$

where

*** stands for the SWIFT subfield format specification, which excludes delimiter
information

$$$ stands for one or more letters that constitute the delimiter between the
current subfield and the next subfield.

When the delimiters are CrLf, the symbol string CrLf specifies that a carriage return
is immediately followed by a line feed.
Business Objects 71

For example, the AppSpecificInfo attribute for a TagLetterOption BO,
Swift_Tag_Union_95_Opt_C, might appear as follows:

[Attribute]

Name = CountryCode
Type = String

...

AppSpecificInfo = Format=2!a;Delim=/

...

[End]

For a sample object and attribute definitions, see "Sample MsgField BO, TagUnion BO,
and TagLetterOption BO Definitions," on page 72.

Sample MsgField BO, TagUnion BO, and TagLetterOption BO
Definitions

This section presents a sample definition of a MsgField BO definition that illustrates
TagUnion and TagLetterOption attributes and objects.

The sample MsgField BO, Swift_Tag_21, is as follows:

[BusinessObjectDefinition]
Name = Swift_Tag_21
Version = 3.0.0

[Attribute]
Name = Letter
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Qualifier
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = IC
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
72 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Name = Data
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = DataField
Type = Swift_Tag_Union_21
ContainedObjectVersion = 3.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]
Name = Retrieve
[End]

[Verb]
Name = Update
[End]
[End]
Note that the DataField attribute indicates a TagUnion BO, whose name is defined
by the Type attribute, Swift_Tag_Union_21. Here is that TagUnion BO, which lists as
attributes all the letter options for Swift_Tag_21.

[BusinessObjectDefinition]
Name = Swift_Tag_Union_21
Version = 1.1.0

[Attribute]
Name = Swift_21
Type = Swift_Tag_Union_21_Opt
Business Objects 73

ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_A
Type = Swift_Tag_Union_21_Opt_A
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_B
Type = Swift_Tag_Union_21_Opt_B
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_C
Type = Swift_Tag_Union_21_Opt_C
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_D
Type = Swift_Tag_Union_21_Opt_D
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
74 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_E
Type = Swift_Tag_Union_21_Opt_E
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_F
Type = Swift_Tag_Union_21_Opt_F
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_G
Type = Swift_Tag_Union_21_Opt_G
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_N
Type = Swift_Tag_Union_21_Opt_N
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_P
Type = Swift_Tag_Union_21_Opt_P
ContainedObjectVersion = 1.0.0
Business Objects 75

Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = Swift_21_R
Type = Swift_Tag_Union_21_Opt_R
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 0
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

[End]

Note that IsKey = true for the first attribute in the TagUnion BO above, Swift_21.

The attribute Swift_21_A indicates a child object TagLetterOption BO. This child
object’s name is defined by the attribute’s Type attribute,
Swift_Tag_Union_21_Opt_A. Here is that TagLetterOption BO:

[BusinessObjectDefinition]
Name = Swift_Tag_Union_21_Opt_A
Version = 1.0.0

[Attribute]
Name = ReferenceOfTheIndividualAllocation
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
76 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

IsRequired = false
AppSpecificInfo = Format=16x
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]

Note that the only attribute of this TagLetterOption BO,
ReferenceOfTheIndividualAllocation, is a concatenation of the corresponding
SWIFT subfield name for this tag option, with the first letter of each word in
uppercase. The Qualifier and Issuer Code subfields are excluded from the attribute of
the TagLetterOption BOs. The IsKey property is also true for this attribute.

Note: A TagUnion BO contains both generic and non-generic fields. A non-generic
field has no subfields.

The TagLetterOption BO can represent simple and complex SWIFT field and subfield
formatting. Here is a business object definition for Swift_Tag_Union_22_Opt, a
TagLetterOption BO whose attributes and application-specific information specify the
subfield formatting for SWIFT Field 22, a function for a Common Reference between a
sender and receiver. Notice that the AppSpecificInfo for Function specifies the
format and the delimiter with which to parse the data in the SWIFT message.
CommonReference is the concatenation of the subfield name. The AppSpecificInfo
for CommonReference corresponds to that shown in Figure 3-13.

[BusinessObjectDefinition]
Name = Swift_Tag_Union_22_Opt
Version = 1.0.0

[Attribute]
Name = Function
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Format=8a;Delim=/
IsRequiredServerBound = false
[End]

[Attribute]
Name = CommonReference
Business Objects 77

Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = Format=4!a2!c4!n4!a2!c
IsRequiredServerBound = false
[End]

[Attribute]
Name = ObjectEventId
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Retrieve
[End]
[End]

Figure 3-13 SWIFT Field Definition
78 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 4 ISO 7775 to ISO 15022 Mapping
The IBM WebSphere Business Adapter for SWIFT dynamically transforms a business
object representing an ISO 7775 SWIFT message into a business object representing
the corresponding ISO 15022 SWIFT message and vice versa. The transformation is
performed by a mapping engine. The mapping engine is governed by a production
instruction meta-object (PIMO). This chapter describes PIMOs, how they map
business object attributes, and how to create or modify a PIMO.

Important
The adapter supports business object ISO 7775-15022 mapping for SWIFT Category 5,
Securities Markets, but only with the expanded business object definitions available
with this release and described in Chapter 3, "Business Objects," and only on Solaris
platforms. The mapping capability does not support transformation of business

objects released with 1.2 or earlier releases of the adapter for SWIFT.

The chapter contains the following sections:

Production Instruction Meta-Objects (PIMOs)
A PIMO is a hierarchical meta-object that supports the transformation of business
objects from one format to another. PIMOs specify not only the attribute-to-attribute
mapping but also the computation instructions required to perform the
transformation. The mapping and the computation instructions constitute meta-data
that is used by the mapping engine.

Map_objects.txt contains 20 PIMOs in their entirety. Each PIMO contains all of
the meta-data required to transform a business object representing an ISO 7775- or
15022-formatted SWIFT message to a business object representing the corresponding
ISO 15022- or 7775-formatted SWIFT message. For more on these PIMOs and how to
create or modify them, see "Creating PIMOs," on page 87.

"Production Instruction Meta-Objects (PIMOs)" page 79

"Creating PIMOs" page 87

"Modifying PIMOs: Map Summary" page 96
(C) Copyright IBM Corporation 2002 79

PIMO Structure and Syntax

As Figure 4-1 shows, a simple PIMO has two mandatory child objects, Port and
Action, and an optional child object, Declaration.

Figure 4-1 Simple PIMO

The attribute structure is as follows:

Port This child object always contains an input port and output port.

■ IPort The input port

■ OPort The output port

Declaration This optional child object contains attributes that name local variables.

Action This attribute describes objects that contain compute instructions. The
instructions, which reside in the attribute’s application-specific information, are used
to process Declaration variables and Port objects. Action child objects represent
computational sub-tasks listed in the order of execution:

■ Action1

■ Action2

■ ...

■ Actionn

In fact, as shown in Figure 4-2, the PIMOs that are used to map SWIFT business
objects are hierarchical objects that contain many nested levels of PIMOs, each with
their own Port, Action, and Declaration objects as well as discrete mapping and
computing instructions. At every level, however, the Port, Action and Declaration
attributes exhibit the same syntax, structure, and function, which are described in the
sections below.

Note: A simple PIMO can have multiple nested levels of Port, Declaration, and Action
objects. A complex PIMO has more than one Port object on the same level. The PIMOs
available with this release are simple PIMOs.
80 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Figure 4-2 Excerpt of Expanded PIMO

Port

The Port object type describes the specific transformation the mapping engine
undertakes and has the following naming syntax:

PimoName>_Port

In Figure 4-1, for example, the Port is of type Map_Swift_MT520_to_MT540_Port,
which names the transformation of a business object representing an ISO 7775 SWIFT
message to an object representing an ISO 15022 SWIFT message.

Port contains as child objects IPort (input port) and OPort (output port). The types of
the IPort and OPort attributes describe the parameters to be mapped: an IPort is used
to pass an input parameter (for example, Swift_MT_520), and an OPort is used to
pass an output parameter (for example Swift_MT_540). The parameters are passed
by way of reference to their object types.

The IPort and OPort object may be a primitive type, such as int, float, or String,
or a business object, such as Swift_MT520. The computation instructions contained
in an Action child object refer to, and act on, these IPort and OPort object types.

Note: IPort and OPort cannot specify a meta-object as a type.

By convention, the Port and IPort attributes are marked as key (IsKey = true).

Declaration

The Declaration object type describes the objects to be transformed and has the
following naming syntax:
ISO 7775 to ISO 15022 Mapping 81

PimoName_Declaration

The attributes in Declaration child objects specify local variables for the computing
instructions that are detailed in Action objects for the Port. The attribute type declares
the type of variable.

Variables can be constant or variable. The keyword final in a Declaration object’s
AppSpecificInfo designates a constant variable. If a Declaration object’s
AppSpecificInfo is blank, the variable is not constant. In the PIMO excerpt shown
in Figure 4-3, for example, Qualifier and Letter are declared constant variables;
Var Boolean and the Map_Swift_Tag35E_to_70E_Declaration itself are
variable.

Figure 4-3 Declarations in a PIMO

By convention, the first variable in the Declaration object is marked as key (IsKey =
true).

Note: A Declaration object is optional; when Action objects require no local variable,
the Declaration attribute can be omitted. The data type of the Declaration child object
cannot be a meta-object.

Action

The Action object describes the computing instructions that the mapping engine
performs. The top-level Action object has the following naming syntax:

PimoName_Action

The computing instructions specified in Action objects act on the IPort and OPort
objects and use the variables specified in Declaration objects. For each Port and
Declaration, the Action objects aggregate, in sequential order, all of the computing
instructions for the map engine. No space or period is allowed in the Action type
names.

Actions can be one of the following types:

■ Compute

■ Delegate

■ Native

■ Scenario
82 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Compute Action
A Compute type indicates that the Action can be performed by a simple operation. All
compute type Actions use the keyword opCode to specify the name of operation. The
keyword Target designates the receiving party of the operation. The syntax for a
compute type Action is specified in its AppSpecificInfo and is as follows:

opCode=<opCode>;target=<variable>;<parameters>

where opCode, variable, and parameters are described in Table 4-1.

Table 4-1 Compute Action opCodes

opCode Example Description

+ type=compute;opCode=+;target
=Var_B;Var_1;Var_2

Addition. Var_2 is added to
Var_1 and the sum assigned
to the target, Var_B; applies
to string and numeric type
variables.

- type=compute;opCode=-
;target=Var_B;Var_1;Var_2

Subtraction. Var_2 is
subtracted from Var1 and the
difference is assigned to the
target, Var_B. Applies to
numeric type variables.

move type=compute;opCode=move;tar
get=OPort;Var_1

Copy the value of Var_1 to
the target, OPort. Applies to
all variable types.

index type=compute;opCode=
index;target=var_4;Var_1;Var
_2;Var_3

Looks for first occurrence of
string Var_2 in the string
Var_1, starting at the
position Var_3.
Returns Var_4 to the target,
OPort. Var_4 can be –1 if
Var_2 is not found. Applies
to string variables only.

substring type=compute;opCode=
substring;target=result;sour
ceString;index1;index2

Assign target the result of the
sub-string of sourceString
from index1 to index2.
When index2 exceeds the
string length of
sourceString, index2 is
deemed the same length as
that of sourceString.

append type=compute;opCode=
append;target=result;source1
String;index;source2String

Append source2String to
source1String at index.
The result is assigned to the
target, result.
ISO 7775 to ISO 15022 Mapping 83

Delegate Action
Delegate Action is specified when more than one Compute Action is required. A
Delegate Action relies on nested PIMOs to complete the Action, and in this sense is
analogous to a function call. The syntax of a Delegate Action object is specified in its
AppSpecificInfo and is as follows:

type=delegate;<var1>;<var2>

where type indicates the Delegate Action type and var1 is passed to the IPort of a
child PIMO, and var2 is passed to the OPort of the child PIMO. The relative position
of the variables corresponds to the sequence of Ports in the invoked PIMO. (The
invoked PIMO is the PIMO to which Action is delegated.) Looping occurs if one or
both of the IPort and OPort objects in the invoked PIMO is of cardinality n.The loop
syntax of the delegation is as follows:

■ If both the IPort and OPort objects in the invoked PIMO have cardinality n, then
for each instance of these Port objects, an object is created and passed on to the
invoked PIMO’s IPort and OPort. Looping occurs as many times as the number of
object instances, and delegation is passed by reference along with each instance.

■ If the IPort object in the invoked PIMO has cardinality n and the OPort object
does not have cardinality n, then for each instance of the IPort object, an object is
created and passed on to the IPort of the invoked PIMO along with a reference to
the type of the OPort object. Looping occurs as many times as the number of IPort
object instances, and delegation is passed by reference along with each instance.

For example, in Figure 4-4, Action6 is of type Delegate. The computing tasks for this
action are too complex for specification using Compute Action. In fact, the computing
tasks require two levels of Delegate Action. The first Delegate Action is to a nested
PIMO, Map_Swift_MT520_A_to_MT540_A_Port. The Action of this Port is also of
type Delegate, with its variables passed to the IPort and OPort of

size type=compute;opCode=
size;target=OPort;Var;

Assign target the length of
variable Var when Var is of
type String. When Var is of
type containment, assign
target the number of
instances of Var.

Table 4-1 Compute Action opCodes (Continued)

opCode Example Description
84 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Map_Swift_Tag_20_to_20C_Port. The Action of this nested PIMO is of the
compute type, and the results are passed back up to the invoking PIMOs, just like a
function call.

Figure 4-4 Delegate Action in a PIMO

Native Action
Native Action is used to invoke components implemented in Java. In particular, a
Native Action object supports calls to the public static method of a Java class, which
allows you to develop more complicated processing functions in Java. The syntax of a
Native Action object is specified in its AppSpecificInfo and is as follows:

type=nativeStatic;class=<className>;method=<methodName>;
target=return;var1;var2, varn

where type indicates the Native Action type, className indicates the name of a
Java class, methodName indicates the name of the static Java method that provides
the functionality for the action, and the return value of the function call is passed to
the target variables as follows: var1 is passed to the first variable of the method, and
var2 will be passed to the second variable of the method, and so on.

Note: The order and type of variables in the method call must match the that of the
parameters in the method.

Scenario Action
A Scenario Action is a construct that makes possible conditional computing and
branching in PIMOs.

A Scenario Action is a child object that consists of two to three attributes:

Scenario (Action Object)

■ Scenario (attribute)

■ TrueAction (attribute)
ISO 7775 to ISO 15022 Mapping 85

■ FalseAction (attribute)

The Scenario attribute is always a boolean expression, and the TrueAction or
FalseAction (or both) attributes contain conditional computing instructions that are
processed after the boolean expression is evaluated.

The syntax of a Scenario Action object is specified in its AppSpecificInfo and is as
follows:

type=scenario

The syntax of a Scenario attribute is specified in its AppSpecificInfo and is as
follows:

Boolean_Expression

where Boolean_Expression corresponds to one of the entries in Table 4-2.

Note: PIMOs support parentheses in the Boolean expression.

A TrueAction attribute indicates the computing instruction that the map engine will
process if the Boolean expression (in the Scenario attribute) evaluates to true; likewise,
a FalseAction attribute indicates the action if the Boolean expression evaluates to

Table 4-2 Scenario Attribute Boolean Expressions

Boolean
Symbol

Example Description

== IPort==LetterA Equal. When applied to string
type variables, equality
means that the lexical content
of the two strings is the same.

> Var_A>Var_B Greater than. When applied
to String type variables,
string length is compared.

>= Var_A>=Var_B Greater than or equal to.
When applied to String
type variables, string length
is compared.

&& (IPort==LetterA)&&

(IPort==LetterC)

And

|| (IPort==LetterA)||

(IPort==LetterC)

Or

< Less than. When applied to
String type variables, string
length is compared.

<= Less than or equal to. When
applied to String type
variables, string length is
compared.
86 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

false. Actions specified in the TrueAction and FalseAction can be Compute, Delegate
and Native types, and follow the syntax of the Compute, Delegate and Native type
Actions, respectively.

For example, Figure 4-5 shows the attributes of a Scenario Action. If the IPort Object is
equal to Code_AVAL, then the computing instruction
type=compute;opCode=move;target=OPort;Qualifier_TAV1 will be
processed by the map engine.

Figure 4-5 Scenario Action in a PIMO

Object References in Actions
Actions make reference to other PIMO objects, whether Port or Declaration objects. By
convention, the application-specific information of Action objects follows the path
name convention that uses a period to denote the attribute names at different levels in
the hierarchy of the PIMO.

For example, consider an IPort of type Swift_Tag_20 (the type shown in
parentheses), which has the following hierarchy:

IPort (Swift_Tag_20)

■ Letter (String)

■ Qualifier (String)

■ IC (String)

■ Data (String)

■ DataField (Swift_Tag_Union_20)

– Swift_20 (Swift_Tag_Union_20_Opt)

Subfield (String)

– Swift_20_C (Swift_Tag_Union_20_Opt_C)

Reference (String)

Then the reference to the Swift_20_C attribute is
IPort.DataField.Swift_20_C.

Creating PIMOs
This section describes how to create a PIMO using Business Object Designer. Before
proceeding, review the previous sections of this chapter, and make sure you have access to the
Swift User HandBook and Business Object Designer, with which you should be
familiar. For more information, see the Business Object Development Guide. You should
also have access to Map_Objects.txt, which contains the PIMOs shipped with this
release as well as thousands of sub-maps and objects that may be of use.
ISO 7775 to ISO 15022 Mapping 87

openfile ../../development_manuals/busobj_dev_guide/busobj_dev_guide.pdf

Note: The example used to illustrate the process of creating PIMOs is a sample PIMO
residing in Map_Objects.txt. For a closer look at any of the screenshots presented
below, launch Business Object Designer and open Map_Swift_MT520_to_MT540
from your repository.

Getting Started

1 Launch Business Object Designer.

2 Choose Server>Connect and login to your server.

This provides access to your repository. To load the repository, see Chapter 2,
"Configuring the Connector," and the system installation guide for your operating
environment.

3 Choose File>New.

This displays the New Business Object Dialog.

4 Enter the Business Object name as follows:

Map_Swift_MT<SourceNN>_to_MT<DestinationNN>

where SourceNN is the SWIFT message type number that corresponds to the
business object you want to transform and DestinationNN is the SWIFT message
type number that corresponds to the destination business object. This is the name of a
new PIMO representing the mapping between the source message type and the
destination message type as shown in Figure 4-6.

Figure 4-6 Naming a New PIMO

5 Enter type=simple in the Application Specific Information field.

Defining Port

1 Enter Port in the Attribute Name field as shown in Figure 4-7.

Figure 4-7 Specifying a Port Object

2 Right-click the Type field, and from the pop-up menu choose from available port
objects in your repository.

The type syntax for the Port is as follows:

PimoName_Port
88 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

In the example shown in Figure 4-7, the type is as follows:

Map_Swift_MT520_to_MT540_Port

3 In the Port attribute row, check the Key property and enter 1 in the Cardinality
field as shown in Figure 4-7.

Defining Port Child Objects

The Port object must have two child objects, IPort and OPort, which correspond to the
business objects representing the source and destination SWIFT messages.

1 Select ObjectEventId under Port and, from the Edit menu, choose Insert Above.

2 Enter IPort and OPort as names of new attributes under the Port object.

3 Right click the IPort Type field, and from the pop-up menu choose the object from
those available in your repository.

The type syntax for the IPort is as follows:

Swift_<IPortSourceNN>

In the example shown in Figure 4-8 the IPort type is Swift_MT520.

4 Right click the OPort Type field, and from the pop-up menu choose the object
from those available in your repository.

In the example shown in Figure 4-8 the OPort type is Swift_MT540.

5 In the IPort attribute row, check the Key property and enter 1 in the Cardinality
field for both IPort and OPort as shown in Figure 4-8.

Figure 4-8 Specifying IPort and OPort Objects

Defining Declaration

A Declaration object at the top-level of a PIMO specifies high-level variables as
required by Action objects at this level. As shown in Figure 4-9, the Declaration
variable applies to the top-level Action object discussed below in "Defining Action,"
on page 90. Following the naming convention for a Declaration object, the type of this
variable is Map_Swift_MT520_to_MT540_Declaration.

1 Enter Declaration in the Name field under ObjectEventId.

2 Enter PimoName_Declaration in the Type field.

In the example, the Declaration type is
Map_Swift_MT520_to_MT540_Declaration

3 Enter three attributes of type String with specifications as follows:
ISO 7775 to ISO 15022 Mapping 89

– MTNum A constant (enter final in the App Spec Info field) with the Key
property checked and a Default value of MT<DestinationNN>. In the
example, the default is the destination SWIFT message type, MT540.

– TargetMTNum A variable whose default value is the DestinationNN. In
the example, the default value is 540.

– SourceMTNum A variable whose default value is the SourceNN. In the
example, the default value is 520.

Figure 4-9 Specifying a Declaration for a Top-Level PIMO

For examples of sequence- and field-level Declarations, see "Representing Sequence
Objects," on page 91 and "Representing Field Objects," on page 93.

Defining Action

To define the top-level Action Object for the PIMO:

1 Enter Action in the Name field under ObjectEventId.

2 Enter Map_Swift_MT<SourceNN>_to_MT<DestinationNN>Action in the
Type field.

In the example, the Action type is Map_Swift_MT520_to_MT540_Action, as
shown in Figure 4-10.

Figure 4-10 Specifying an Action for a Top-Level PIMO
90 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

To create all other Action objects for a PIMO mapping SWIFT MT520 to MT 540, you
must become familiar with the actual tag- and field-level maps for these messages.
This information is available in the SWIFT User Handbook, Category 5, Securities Markets
Message Usage Guidelines. Figure 4-11 shows a page from Appendix B of this book,
which illustrates the tag and field maps that the PIMO will model.

Figure 4-11 Excerpt from SWIFT User Handbook showing ISO 7775-15022 Field
and Tag Mapping

The sections below describe how to extract this information and create Action objects
that represent SWIFT sequences and fields.

Representing Sequence Objects

Review the maps in the SWIFT User Handbook, Category 5, Securities Markets Message
Usage Guidelines Appendix for SWIFT MT520 to MT 540 and identify the following:

■ The number of sequences in the source message type (MT520)

■ The number of sequences in the destination message type (MT 540)

Use the following naming convention for representing a sequence in a PIMO:

Map_Swift_MT<SourceNN>_<X>_to_MT<DestinationNN>_<X>

where X stands for the sequence letter and is always in uppercase.

Note: PIMO sequence object names can also reflect two special cases:
ISO 7775 to ISO 15022 Mapping 91

■ The source message tag has a sequence but the destination does not:

– Map_Swift_MT<SourceNN>_<X>_to_MT<DestinationNN>

■ The destination message tag has a sequence but the source does not:

– Map_Swift_MT<SourceNN>_to_MT<DestinationNN>_<X>

As shown in Figure 4-12, the child objects representing some of the sequences make
use of Delegate Action because the mapping requires multiple Compute Action
objects.

Figure 4-12 Specifying Sequence Objects with Delegate Action

When using Delegate Action, you must pass the IPort and OPort object paths. For
example, Figure 4-12 shows that mapping computations from Swift_MT520_A (the
child object of Swift_MT_520Data) to Swift_MT540_A (the child object of
Swift_MT_540Data). Accordingly, the naming convention is as follows:

IPort.<Source_Object_Path>
OPort.<Destination_Object_Path>

In the example, the corresponding entries are:

IPort.Swift_MT520Data.Swift_MT520_A
OPort.Swift_MT540Data.Swift_MT540_A

For each delegated sequence shown in Figure 4-12, you must define the Port,
Declaration, and Action objects for the parent. Declaration is mandatory at the level of
any Compute Action that refers to variables. Figure 4-13 shows how some of the
Action and sub-Action objects are defined.
92 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Figure 4-13 Sub-Action Objects for a Sequence Object

Representing Field Objects

Just as SWIFT sequences can contain other sequences as well as field tags, sequence
objects in PIMOs make reference to sequence and field objects. Field objects are child
objects of sequence Action objects. This section describes how to create field objects
that map to other field objects via parent sequence Action objects.

The previous section showed how to define sequence objects, including
Map_Swift_20_to_20C. Figure 4-14 shows how to create the PIMO entries that
correspond to the field and sub-field mapping for this sequence.
ISO 7775 to ISO 15022 Mapping 93

Note: The SWIFT User Handbook shows that no Code Words are required for the
Map_Swift_20_to_20C mapping.

Figure 4-14 Field Action Objects for a Sequence

As shown in Figure 4-14, you must specify Port (IPort and OPort) objects, Declaration
variables, and Actions for Field objects:

Port The type for IPort and OPort is the source and destination tag, stripped of tag
letters. In this case, they are the same, Swift_Tag_20. IPort, by convention is Key
(IsKey = true).

Declaration The tag letter variable is specified as Letter. In this example, the default
value is C. The keyword final designates this variable as a constant, and, by
convention, the first variable is Key (IsKey = true). Qual_<QUALIFIER> represents
the qualifier. (The qualifier is always in uppercase.) In the example the default value is
SEME.

Action The sub-Action objects are as follows:

Action1 type=compute;opCode=move;target=OPort.Letter;Letter The
value of the Letter variable is moved to the Letter attribute of OPort (which is
Swift_Tag_20)

Action2
type=compute;opCode=move;target=OPort.Qualifier;Qualifier The
value of the Qualifier variable is moved to the Qualifier attribute of OPort (which is
Swift_Tag_20).

Action3
type=compute;opCode=move;target=OPort.DataField.Swift_20_C.Refe
rence;IPort.DataField.Swift_20.TransactionReferenceNumber The
value of IPort.DataField.Swift_20.TransactionReferenceNumber is
moved to OPort.DataField.Swift_20_C.Reference.
94 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Figure 4-15 shows a field map that involves code word mapping and a Delegate
Action.

Figure 4-15 Field Mapping with Code Words

For Action3, the Delegate Action, you must define the Port (IPort and OPort)
Declaration, and sub-Action objects as shown in Figure 4-16.

Figure 4-16 Code Word Declaration for a Field Map
ISO 7775 to ISO 15022 Mapping 95

The code words are declared and assigned constant default values. A Scenario Action
(Action6) specifies an equality boolean expression and a contingent Compute Action
to execute if the expression evaluates to false.

Modifying PIMOs: Map Summary
The file Map_Objects.txt contains PIMOs for maps as follows:

From ISO 7775 to ISO 15022

■ MT520 to MT540 Receive Free

■ MT521 to MT541 Receive Payment Against

■ MT522 to MT542 Deliver Free

■ MT523 to MT543 Deliver Against Payment

■ MT530 to MT544 Receive Free Confirmation

■ MT531 to MT 545 Receive Against Payment Confirmation

■ MT532 to MT546 Deliver Free Confirmation

■ MT533 to MT547 Deliver Against Payment Confirmation

■ MT571 to MT535 Statement of Holdings

■ MT573 to MT537 Statement of Pending Transactions

From ISO 15022 to ISO 7775

■ MT536 to MT572 Statement of Transactions

■ MT540 to MT520 Receive Free

■ MT541 to MT521 Receive Payment Against

■ MT542 to MT522 Deliver Free

■ MT543 to MT523 Deliver Against Payment

■ MT544 to MT530 Receive Free Confirmation

■ MT545 to MT 531 Receive Against Payment Confirmation

■ MT546 to MT532 Deliver Free Confirmation

■ MT547 to MT533 Deliver Against Payment Confirmation

■ MT548 to MT534 Settlement Status and Processing Advice

If you need to modify one or more of these PIMOs:

■ Review "Production Instruction Meta-Objects (PIMOs)," on page 79 and "Creating
PIMOs," on page 87

■ Find the PIMO you want to modify in the tables below, which summarize the
default values and mapping relationships for each PIMO

Note: Each table below shows the mapping relationships and default values for
the ISO 7775-to-15022 direction and for the reverse (ISO 15022-to-7775) direction.

■ Launch Business Object Designer and open the PIMO you wish to modify, saving
a backup copy of the unmodified original copy.
96 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT520 to MT540 Receive Free

Table 4-3 MT520 to MT540 Receive Free

 MT520 MT540

Data Elements Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Delivery Date A 30 B 98a SETT MT540 default
values: 98A

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

MT540 default
values: 98A

Identification of
Securities

A 35B B 35B

Next Coupon A 35a B1
B1

98A
13a

COUP
COUP

MT520 default
values: 35D
MT540 default
values: 13A

Book Value A 33V B1 90a MRKT MT540 default
values: 90B

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs
SAFE

MT520 default
values: 82D
MT540 default
values: 95Q
REAG, 97A

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT520 default
values: 83D
MT540 default
values: 97A

Certificate Numbers B 35E C 13B CERT MT520 default
values: 35E->70E
(F)

Deliverer of Securities C 87a E1
E1

95a
97a

DEAG
SAFE

MT520 default
values: 87D
MT540 default
values: 95Q, 97A
ISO 7775 to ISO 15022 Mapping 97

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT520 default
values: 88D
MT540 default
values: 95Q, 97A

Deliverer's Instructing
Party

C 85a E1
E1

95a
97a

SELL
SAFE

MT520 default
values: 85D
MT540 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI MT540 default
values: 70D

Declaration Details C 77R E1 70a DECL MT540 default
values: 70E

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

Table 4-4 MT520 to MT540 Code Word Mapping

MT520 MT540

Tag 72 (C) Tag 13B (C)

MSG579 CERT

Tag 35A Tag 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

SHS

UNT

WTS

Table 4-3 MT520 to MT540 Receive Free (Continued)
98 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT521 to MT541 Receive Payment Against

Table 4-5 MT521 to MT541 Receive Payment Against

 MT521 MT541

Data Elements Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Settlement Date A 30 B 98a SETT MT541 default
values: 98A

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

MT541 default
values: 98A

Identification of
Securities

A 35B B 35B

Next Coupon A 35a B1
B1

98A
13a

COUP
COUP

MT521 default
values: 35D
MT541 default
values: 13C

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs
SAFE

MT521 default
values: 82D
MT541 default
values: 95Q REAG,
97A

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT521 default
values: 83D
MT541 default
values: 97A

Certificate Numbers B 35E C 13B CERT 521.B.35E is
mapped to
541.F.70E (with
DECL as qualifier)
instead of to
541.C.13B

Deliverer of Securities C 87a E1
E1

95a
97a

See Field
Specs
SAFE

MT521 default
values: 87D
MT541 default
values: 95Q DEAG,
97A
ISO 7775 to ISO 15022 Mapping 99

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT521 default
values: 88D
MT541 default
values: 95Q, 97A

Deliverer's Instructing
Party

C 85a E1
E1

95a
97a

SELL
SAFE

MT521 default
values: 85D
MT541 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI MT541 default
values: 70D

Declaration Details C 77R E1 70a DECL MT541 default
values: 70E

Account for Payment C 53a C 97a CASH MT521 default
values: 53C
MT541 default
values: 97A

Account with
Institution

C 57a E2
E2

95a
97A

ACCW
CASH

MT521 default
values: 57D
MT541 default
values: 95Q

Beneficiary of Money C 58a E2
E2

95a
97A

BENM
CASH

MT521 default
values: 58D
MT541 default
values: 95Q

Deal Price C 33T B 90a DEAL MT541 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT521 default
values: 34G

Taxes Added C 71E E3 19A See Field
Specs

MT 541 default
values: TRAX

Broker's Commission C 71F E3 19A See Field
Specs

MT 541 default
values: LOCO

Other Charges or Fees C 71G E3 19A See Field
Specs

MT 541 default
values: CHAR

Settlement Amount C 32B C
E3

19A
19A

SETT
SETT

Account(s) for Charges C 71D E2 97A
70E

CHAR
DECL

Table 4-5 MT521 to MT541 Receive Payment Against (Continued)
100 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

13B CERT: Not
Implemented

Table 4-6 MT521 to MT541 Code Mapping

MT521 MT541

Old Tag: 72 (C) New Tag: 13B (C)

Old Code Qualifier

MSG579 CERT

Old Tag: 35A New Tag: 36B

Old Code Qualifier

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

Table 4-5 MT521 to MT541 Receive Payment Against (Continued)
ISO 7775 to ISO 15022 Mapping 101

MT522 to MT542 Deliver Free

Table 4-7 MT522 to MT542 Deliver Free

Data Element

MT522 MT542

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Delivery Date A 30 B 98a SETT

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

MT542 default
values: 98A

Identification of
Securities

A 35B B 35B -

Next Coupon A 35a B1
B1

98A
13a

COUP
COUP

MT522 default
values: 35D, 35C
MT542 default
values: 98A, 13A

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs

MT522 default
values: 82D
MT542 default
values: 95Q
DEAG, 97A SAFE

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT522 default
values: 83D
Default values for
MT542: 97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1
E1

95a
97a

REAG
SAFE

MT522 default
values: 87D
MT542 default
values: 95Q, 97A

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT522 default
values: 88D
MT542 default
values: 95Q, 97A
102 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Registration Details C 77D E1 70a REGI MT542 default
values: 70D

Declaration Details C 77R E1 70a DECL MT542 default
values: 70E

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

13B CERT: not
implemented

Table 4-8 MT 522 to MT 542 Code Mapping

MT522 MT542

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

Table 4-7 MT522 to MT542 Deliver Free (Continued)
ISO 7775 to ISO 15022 Mapping 103

MT523 to MT543 Deliver Against Payment

Table 4-9 MT523 to MT543 Deliver Against Payment

Data Element

MT523 MT543

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Settlement Date A 30 B 98a SETT

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

MT543 default
values: 98A

Identification of
Securities

A 35B B 35B -

Next Coupon A 35a B1
B1

98A
13a

COUP
COUP

MT523 default
values: 35D, 35C
MT543 default
values:13A

Book Value A 33V B1 90a MRKT MT543 default
values: 90B

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs
SAFE

MT523 default
values: 82D
MT543 default
values: 95Q
DEAG, 97A

Quantity of Securities B 35A C 36B SETT

Safekeeping Account B 83a C 97a SAFE MT523 default
values: 83D
MT543 default
values: 97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1
E1

95a
97a

REAG
SAFE

MT523 default
values: 95Q
MT543 default
values: 97A

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT523 default
values: 88D;
MT543 default
values: 95Q, 97A
104 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Registration Details C 77D E1 70a REGI MT543 default
values: 70D

Declaration Details C 77R E1 70a DECL MT543 default
values: 70E

Account for Payment C 53a C 97a CASH MT523 default
values: 53D
MT543 default
values: 97A

Account With
Institution

C 57a E2
E2

95a
97a

ACCW
CASH

MT523 default
values: 57D
MT543 default
values: 95Q, 97R

Beneficiary of Money C 58a E2
E2

95a
97a

BENM
CASH

MT523 default
values: 58D
MT543 default
values: 95Q, 97A

Deal Price C 33T B 90a DEAL MT543 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU

Taxes Deducted C 71E E3 19A See Field
Specs

MT543 default
values: TRAX

Broker's Commission C 71F E3 19A See Field
Specs

MT543 default
values: LOCO

Other Charges or Fees C 71G E3 19A See Field
Specs

MT543 default
values: CHAR

Settlement Amount C 32B C
E3

19A
19A

SETT
SETT

Account(s) For
Changes

C 71D E2 70E DECL

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

Table 4-10 MT523 to MT543 Code Word Mapping

MT523 MT543

Old Tag: 72 (C) New Tag: 13B (C)

Table 4-9 MT523 to MT543 Deliver Against Payment (Continued)
ISO 7775 to ISO 15022 Mapping 105

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

SHS

UNT

WTS

Table 4-10 MT523 to MT543 Code Word Mapping (Continued)
106 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT530 to MT544 Receive Free Confirmation

Table 4-11 MT530 to MT544 Receive Free Confirmation

Data Elements

MT530 MT544

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Delivery Date A 30 B 98a ESET

Identification of
Securities

A 35B B 35B

Next Coupon A 35a
35C

B1
B1

98A
13a

COUP
COUP

MT530 default
values: 35D
MT544 default
values: 13A

Book Value A 33V B1 90a MRKT SWIFT
documentation
erroneously lists
35V as MT530 tag.

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs
SAFE

MT530 default
values: 82D
MT544 default
values: 95Q, 97A

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE MT530 default
values: 83D
MT544 default
values: 97A

Certificate Numbers B 35E C 13B CERT

Deliverer of Securities C 87a E1
E1

95a
97a

DEAG
SAFE

MT530 default
values: 87D
MT544 default
values: 95Q 97A

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT530 default
values: 88D
MT544 default
values: 95Q, 97A
ISO 7775 to ISO 15022 Mapping 107

Deliverer's Instructing
Party

C 85a E1
E1

95a
97a

SELL
SAFE

MT530 default
values: 85D
MT544 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI MT544 default
values: 70D

Declaration Details C 77R E1 70a DECL MT544 default
values: 70E

Other Charges C 71C E3 19A See Field
Specs

MT544 default
values: CHAR

Own Charges C 71B E3 19A See Field
Specs

MT544 default
values: CHAR

Sender to Receiver
Information

C 72 B
C1

70E
13B

SPRO
CERT

Table 4-12 MT530 to MT544 Code Word Mapping

MT530 MT544

Old Tag: 72 (C) New Tag: 23G (A)

REVERSAL RVSL

Old Tag: 72 (C) New Tag: 22a (A) Qualifier PARS

PARTIAL PAIN

COMPLETE PARC

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT
-REGOPEN

Table 4-11 MT530 to MT544 Receive Free Confirmation (Continued)
108 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT531 to MT 545 Receive Against Payment Confirmation

Table 4-13 MT531 to MT 545 Confirmation of Receive Against Payment

Data Elements

MT531 MT545

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

TRN A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Settlement Date A 30 B 98a ESET MT545 default
values: 98A

Identification of
Securities

A 35B B 35B

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

MT545 default
values: 98A

Next Coupon A 35a
35C

B1
B1

98A
13a

COUP
COUP

MT531 default
values: 35D, 35C
MT545 default
values: 13A

Book Value A 33V B1 90a MRKT SWIFT
documentation
erroneously lists
35V as MT531 tag.

Instructing Party A 82a E1
E1

95a
97a

REAG
SAFE

MT531 default
values: 82D
MT545 default
values: 95Q, 97A

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE

Certificate Numbers B 35E C 13B CERT

Deliverer of Securities C 87a E1
E1

95a
97a

DEAG
SAFE

MT531 default
values: 87D
MT545 default
values: 95Q, 97A

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT531 default
values: 88D
MT545 default
values: 95Q, 97A
ISO 7775 to ISO 15022 Mapping 109

Deliverer's Instructing
Party

C 85a E1
E1

95a
97a

SELL
SAFE

MT531 default
values: 85D
MT545 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI MT545 default
values: 70D

Declaration Details C 77R E1 70a DECL MT545 default
values: 70E

Account for Payment C 53a C 97a CASH MT531 default
values: 53C
MT545 default
values: 97A

Account with
Institution

C 57a E2
E2

95a
97A

ACCW
CASH

MT531 default
values: 57D
MT545 default
values: 95Q

Beneficiary of Money C 58a E2
E2

95a
97A

BENM
CASH

MT531 default
values: 58D
MT545 default
values: 95Q

Special Concessions C 33S E3 19A SPCN

Deal Price C 33T B 90a DEAL MT545 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT531 default
values: 34G

Settlement Amount C 32B C
E3

19A
19A

ESTT
ESTT

Other Charges C 71C E3 19A CHAR

Own Charges C 71B E3 19A CHAR

Exchange Rate C 36 E3 92B EXCH

Net Proceeds C 34A E3 19A POST

Sender to Receiver
Information

C 72 B
C1

70E
13B

SPRO
CERT

Table 4-13 MT531 to MT 545 Confirmation of Receive Against Payment
 (Continued)
110 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Mapping of Code Words (MT 531 ·> MT 545):

Table 4-14 MT531 to MT545 Code Word Mapping

MT531 MT545

Old Tag: 72 (C) New Tag: 23G (A)

REVERSAL RVSL

Old Tag: 72 (C) New Tag: 22a (A) Qualifier PARS

PARTIAL PAIN

COMPLETE PARC

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT
-REGOPEN
ISO 7775 to ISO 15022 Mapping 111

MT532 to MT 546 Deliver Free Confirmation

Table 4-15 MT532 to MT 546 Deliver Free Confirmation

Data Element

MT532 MT546

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Delivery Date A 30 B 98a ESET MT546 default
values: 98A

Identification of
Securities

A 35B B 35B -

Next Coupon A 35a B1
B1

98A
13a

COUP
COUP

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs

MT532 default
values: 82D
MT546 default
values: 95Q
DEAG, 97A SAFE

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE MT532 default
values: 83D
MT546 default
values: 97A

Certificate Numbers B 35E C 13B CERT

Receiver of Securities C 87a E1
E1

95a
97a

REAG
SAFE

MT532 default
values: 87D
MT546 default
values: 95Q, 97A

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT532 default
values: 88D
MT546 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI MT546 default
values: 70D

Declaration Details C 77R E1 70a DECL MT546 default
values: 70E
112 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Other Charges C 71C E3 19A See Field
Specs

MT546 default
values: CHAR

Own Charges C 71B E3 19A See Field
Specs

MT546 default
values: CHAR

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

Table 4-16 MT532 to MT546 Code Word Mapping

MT 532 MT546

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

Table 4-15 MT532 to MT 546 Deliver Free Confirmation (Continued)
ISO 7775 to ISO 15022 Mapping 113

MT533 to MT547 Deliver Against Payment Confirmation

Table 4-17 MT533 to MT547 Deliver Against Payment Confirmation

Data Element

MT533 MT547

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Settlement Date A 30 B 98a ESET MT547 default
values: 98A

Date and Place of
Trade

A 31P B
B

98a
94B

TRAD
TRAD

Identification of
Securities

A 35B B 35B -

Next Coupon A 35a
35C

B1
B1

98A
13a

COUP
COUP

MT533 default
values: 35D, 35C
MT547 default
values: 98A, 13A

Book Value A 33V B1 90a MRKT

Instructing Party A 82a E1
E1

95a
97a

See Field
Specs

MT533 default
values: 82D
MT547 default
values: 95Q
DEAG, 97A
SAFE

Quantity of Securities B 35A C 36B ESTT

Safekeeping Account B 83a C 97a SAFE MT533 default
values: 83D
MT547 default
values: 97A

Certificate Numbers B 35E C 13B CERT Note the Code
level mapping

Receiver of Securities C 87a E1
E1

95a
97a

REAG
SAFE

MT533 default
values: 87D
MT547 default
values: 95Q, 97A
114 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Beneficiary of
Securities

C 88a E1
E1

95a
97a

BUYR
SAFE

MT533 default
values: 88D
MT547 default
values: 95Q, 97A

Registration Details C 77D E1 70a REGI

Declaration Details C 77R E1 70a DECL

Account for Payment C 53a C 97a CASH MT533 default
values: 53D
MT547 default
values: 97A

Account With
Institution

C 57a E2
E2

95a
97a

ACCW
CASH

MT533 default
values: 57D
MT547 default
values: 95Q, 97A

Beneficiary of Money C 58a E2
E2

95a
97a

BENM
CASH

MT533 default
values: 58D
MT547 default
values: 95Q, 97A

Special Concessions C 33S E3 19A SPCN

Deal Price C 33T B 90a DEAL MT547 default
values: 90B

Deal Amount C 32M E3 19A DEAL

Accrued Interest C 34a E3 19A ACRU MT533 default
values: 34G

Settlement Amount C 32B C
E3

19A
19A

ESTT
ESTT

Other Charge(s) C 71C E3 19A See Field
Specs

MT547 default
values: CHAR

Own Charge(s) C 71B E3 19A See Field
Specs

MT547 default
values: CHAR

Exchange Rate C 36 E3 92B EXCH

Net Proceeds C 34A E 19A ANTO

Sender to Receiver
Information

C 72 B
C

70E
13B

SPRO
CERT

Table 4-18 MT533 to MT547 Code Word Mapping

MT533 MT547

Table 4-17 MT533 to MT547 Deliver Against Payment Confirmation (Continued)
ISO 7775 to ISO 15022 Mapping 115

Old Tag: 72 (C) New Tag: 13B (C)

MSG579 CERT

Old Tag: 35A New Tag: 36B

FMT FAMT

BON UNIT

CER

CPN

MSC

OPC

OPS

PRC

PRS

RTE

RTS

SHS

UNT

WTS

Table 4-18 MT533 to MT547 Code Word Mapping
116 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT534 to MT548 Settlement Status and Processing Advice

Table 4-19 MT534 to MT548 Settlement Status and Processing Advice

Data Elements

MT534 MT548

Seq.
Field
Tag

Seq.
Field
Tag

Qualifier Comments

Transaction Reference
Number

---- 20 A 20C SEME

Related Reference ---- 21 A1 20C RELA

MT and Date of
Original Instruction

---- 11a A1 13A LINK Date of original
instruction can
not be specified
anymore.

Settlement Date ---- 30 B 98a SETT

Date Problem
Occurred

---- 31S ---- ----

Further Identification

---- 23 A2 25D See Field
Specs

MT548 default
values: SETT

 A2a 24B See Field
Specs

MT548 default
values: PEND

 B 22H REDE

Safekeeping Account ---- 83a B 97a SAFE MT534 default
values: 83D
MT548 default
values: 97A

Quantity of Securities ---- 35A B 36B SETT

Identification of
Securities

---- 35B B 35B

Receiver/Deliverer of
Securities

87a B1 95a REAG or
DEAG

MT534 default
values: 87D
MT548 default
values: 96A

B1 97a SAFE MT548 default
values: 97A
ISO 7775 to ISO 15022 Mapping 117

Receiver/Deliverer's
Instructing Party

82a

B1 95a See Field
Specs

MT534 default
values: 8D
MT548 default
values: 95A

B1 97a SAFE MT548 default
values: 97A

Narrative ---- 79 B 70E SPRO

Sender to Receiver
Information

---- 72 B 70E SPRO

Table 4-20 MT534 to MT548 Code Word Mapping

MT534 MT548

Old Tag: 23 New Tag: 24B (A2a) Qualifier: PEND

COLLATER COLL

CPFUTURE CFUT

CPLACK CLAC

CPMONEY CMON

FUTURE FUTU

LACK LACK

MONEY MONY

REGOPEN REGO

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

INCAD INCA

Table 4-19 MT534 to MT548 Settlement Status and Processing Advice (Continued)
118 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT571 to MT535 Statement of Holdings

Table 4-21 MT571 to MT535 Statement of Holdings

Data Elements

MT571 MT535

Seq
Field
Tag

Seq
Field
Tag

Qualifier Comments

Page Number/
Continuation Indicator

A 28 A 28E

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Safekeeping Account A 83a A 97a SAFE MT571 default
values: 83D
MT535 default
values: 97A

Statement Period A 67A A 98a STAT MT535 default
values: 98A

Date Prepared A 30 A 98a PREP MT535 default
values: 98C

Statement Basis A 26F A 22F STBA

Quantity of Securities B 35H B 93B AGGR

Quantity of Securities B1 60B B1 93C See Field
Specs

MT535 default
values: BORR

Further Identification B1 23 B1

B1

93C

70C

BORR

SUBB

The qualifier of the
balance field will
specify the status
or characteristic
Additional
information can be
given in the
narrative

Sender to Receiver
Information

B1 72 B1a 70C SUBB

Identification of
Securities

B 35B B 35B

Price per Unit B 33B B 90a See Field
Specs

MT535 default
values: 90B MRKT

Accrued Interest B 34a B
B

99A
19A

DAAC
ACRU

Exchange Rate B 36 B 92B EXCH
ISO 7775 to ISO 15022 Mapping 119

Value B 32H 19A HOLD

Sender to Receiver
Information

B 72 B 70E HOLD

Number of Repetitive
Parts

C 18A ---- ----

Final Value C 34E C 19A HOLP

Sender to Receiver
Information

B 72 B1
B1
B1

90a
98a
94B

See Field
Specs
PRIC
PRIC

MT535 default
values: 90A
MRKT, 98A

Table 4-22 MT571 to MT535 Code Word Mapping

Old Tag: 26F (A) New Tag: 22F (A) Qualifier: STBA

ACTUA SETT

TRADE TRAD

CONTR ----

BOOKD ----

Old Tag: 23 (B1) New Tag: 93C (B1) All Qualifiers

NA NAVL

AD AVAL

Old Tag: 23 (B1) New Tag: 93C (B1)

REGIS REGO

DEPRJ ----

REGRJ ----

DENOM REGO

PLEDG COLI or COLO

MARGE COLI or COLO

COLLA COLI or COLO

LOAND LOAN

BORRO BORR

TRNSH TRAN

REINV PECA

Table 4-21 MT571 to MT535 Statement of Holdings (Continued)
120 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

DIVID PECA

SPLIT PECA

TENDE PECA

REDEM PECA

EXCHS PECA

AVAIL TAVI

MERGE PECA

LIQUI PECA

BANKR PECA

PENDD PEND

PENDR PENR

SEE72 ----

Old Tag: 72 (C) New Tag: 90a (B) All Qualifiers

DISCOUNT DISC

PREMIUM PREM

Old Tag: 72 (C) New Tag: 98a (B)

VALUDATE (date) PRIC

Old Tag: 72 (C) New Tag: 94B (B)

VALUDATE (source) PRIC

Table 4-22 MT571 to MT535 Code Word Mapping (Continued)
ISO 7775 to ISO 15022 Mapping 121

MT572 to MT536 Statement of Transactions

Table 4-23 MT572 to MT536 Statement of Transactions

Data Elements

MT572 MT536

Seq.
Field
Tag

Seq.
Field
Tag

Qualifier Comments

Page Number/
Continuation Indicator

A 28 A 28E

Transaction Reference
Number

A 20 A 20C SEME

Related Reference A 21 A1 20C RELA

Safekeeping Account A 83a A 97a SAFE MT572 default
values: 83D
MT536 default
values: 97A

Statement Period A 67A A 69a STAT MT536 default
values: 69A

Date Prepared A 30 A 98a PREP MT536 default
values: 98A

Identification of
Securities

B 35B B1 35B

Opening Balance B 60A B1 93B FIOP

Safekeeping Account B 83a ---- ---- The functionality
of the new
message does not
allow you to
specify more than
one safekeeping
account per
message (which is
specified in
sequence A)

Opening Balance B 60B ---- ----

Quantity of Securities B 35A B1, A2 36B PSTA

Transaction Details B1a 66A B1b
B1b
B1b
B1b

B1a2

98a
22H
22F
22F

25D

ESET
REDE
TRAN
CAEV and
SETR
MOVE

MT536 default
values: 98A

High level
transaction type
Detailed
transaction type
122 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Transaction Details B1a 66A B1a1
B1a

20C
20C

RELA
PREV

Account Owner's
Reference
Sender's Reference

Counterparty B1a 87a B1a2a

B1b1

95a

97a

DEAG and
REAG
SAFE

MT572 default
values: 87D
MT536 default
values: 97A

Settlement Date B1a 30 B2a 98a SETT MT536 default
values: 98A

Price Per Unit B1a 33B B1 90a MRKT MT536 default
values: 90B

Accrued Interest B 34a B1a2
Blb

99A
19A

DAAC
ACRU

MT572 default
values: 34G

Amount B 34a B1b 19A PSTA MT572 default
values: 34G

Sender to Receiver
Information

B1a 72 B1a2
B1a2
B1
B1

70E
22a
98a
94B

TRDE
TRAN
PRIC
PRIC

Closing Balance B 62B ---- ----

Closing Balance B 62A B1 93B FICL

Number of Repetitive
Parts

C 18A ---- ----

Sender to Receiver
Information

C 72 A
B1a2
B1
B1

17B
22a
98a
94B

ACTI
TRAN
PRIC
PRIC

Table 4-24 MT572 to MT536 Code Word Mapping

MT572 MT536

Old Tag: 66A (B) New Tag: 22H (B1b) Qualifier: REDE

N RECE

T DELI

Old Tag: 66A (B) New Tag: 22F (B1b) Qualifier: SETR

10 (correction) ----

11 (receipt for deposit) TRAD (trade)

Table 4-23 MT572 to MT536 Statement of Transactions (Continued)
ISO 7775 to ISO 15022 Mapping 123

12 (regular trade) TRAD (trade)

13 (forward trade) ----

14 (new issue) ----

16 (delivery) TRAD (trade)

27 (depository transfer) OWNE (external own account transfer)

28 (deposit transfer) OWNI (internal own account transfer)

29 (opening buy)

30 (opening sell)

31 (closing buy)

32 (closing sell)

34 (assigned)

Old Tag: 66A (B) New Tag: 22F (B1b1) Qualifier: CAEV

17 (bonus securities) BONU (bonus issue)

18 (stock dividends) DVSE (stock dividend)

19 (split) SPLF (stock split)

20 (reverse split) SPLR (reverse stock split)

21 (exchange) EXOF (exchange offer)
MRGR (merger)

22 (conversion)

CONV (conversion)

EXWA (warrant exercise)

23 (redemption) BPUT (put redemption)

24 (new issue for conversion
of maturing debentures)

REDM (redemption

25 (drawing by lot) DRAW (drawing)

26 (modification of
identification of security)

33 (exercise) EXWA (warrant exercise)

Old Tag: 66A (B) New Tag: 22F (B1b) Qualifier: MOVE

35 (reversal) REVE

Old Tag: 66A (B) New Tag: 22F (B1b) All Qualifiers

72 (see field 72) All other codes

Table 4-24 MT572 to MT536 Code Word Mapping (Continued)
124 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Old Tag: 72 (B,C) New Tag: 22F (B1b) Qualifier: TRAN

LOANDOUT BOLE

BORROWED BOLE

COLLATER COLL

Old Tag: 72 (B,C) New Tag: 98a (B)

VALUDATE (date) PRIC

Old Tag: 72 (B) New Tag: 94B (B)

VALUDATE (source) PRIC

Old Tag: 72 (C) New Tag: 17B (A) Qualifier: ACTI

NOTRANS N

Table 4-24 MT572 to MT536 Code Word Mapping (Continued)
ISO 7775 to ISO 15022 Mapping 125

MT573 to MT537 Statement of Pending Transactions

Table 4-25 MT573 to MT537 Statement of Pending Transactions

Data Elements

MT573 MT537

Seq.
Field
Tag

Seq.
Field
Tag

Qualifier Comments

Page Number/
Continuation
Indicator

A 28 A 28E

Transaction
Reference
Number

A 20 A 20C SEME

Related
Reference

A 21 A1 20C RELA
PREV

Safekeeping
Account

A 83a A 97a SAFE MT573 default
values: 83A
MT537 default
values: 97A

Statement
Period

A 67A A 98a STAT MT537 default
values: 98A

Date Prepared A 30 A 98a PREP MT537 default
values: 98C

Identification of
Securities

B,C 35B B2b 35B

Safekeeping
Account

B,C 83a ---- ---- The functionality
of the new
message does not
allow you to
specify more than
one safekeeping
account per
message (which is
specified in
sequence A)

Transaction
Reference
Number

B,C 20 B2a 20C RELA

Further
Identification

B,C 23 B

B1

25D

24B

SETT
See field
specs

MT537 default
values: 24B PEND
126 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

MT and Date of
the Original
Instruction

B,C 11a B1 13A LINK MT573 default
values: 11R

Related
Reference

B,C 21 B2a 20C RELA

Quantity of
Securities

B,C 35A B2b 36B PSTA

Settlement Date B,C 30 B2b 98a SETT

Settlement
Amount

B,C 32B B2b 19A PSTA

Counterparty B,C 87a B2b1

B2b1

95a

97a

REAG or
DEAG
SAFE

MT573 default
values: 87D
MT537 default
values: 95Q, 97A

Sender to
Receiver
Information

B,C 72 B2b 70E TRDE

Sender to
Receiver
Information

D 72 A 17B ACTI

Table 4-26 MT573 to MT537 Code Word Mapping

MT573 MT537

Old Tag: 23 (B,C) New Tag: 24B (B1) Qualifier: PEND

COLLATER COLL

CPFUTURE CFUT

CPLACK CLAC

CPMONEY CMON

FUTURE FUTU

INCAD INCA

LACK LACK

MONEY MONY

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

Table 4-25 MT573 to MT537 Statement of Pending Transactions
ISO 7775 to ISO 15022 Mapping 127

REGOPEN REGO
----SEE72

Old Tag: 23 (B,C) New Tag: 24B (B1) Qualifier: PENF

CERTD REGO

COLLATER COLL

CPLACK CLAC

CPMONEY CMON

FAIL ---- (see other codes)

INCAD INCA

LACK LACK

MONEY MONY

REGOPEN REGO

MONSE LACK and MONY

NODEL NDEL

REFUS REFS

Old Tag: 23 (B,C)
New Message Type: MT 548
New Tag: 24B (A2a) Qualifier: REJT

LATEI LATE

CPLAT LATE

MDATE MDAT

Old Tag: 23 (B,C) New Tag: 24B (B1), Qualifier: NMAT

CUNMATCH NMAT

UNMATCH CMIS

DSECU DSEC

DDATE DDAT

DTRAN DTRA

DMONE DMON

DQUAN DQUA

Old Tag: 72 (D) New Tag: 17B (A)

Old Code Qualifier: ACTI

NOPENDGS N

Table 4-26 MT573 to MT537 Code Word Mapping (Continued)
128 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 5 SWIFT Data Handler
The SWIFT data handler is a data-conversion module whose primary roles are to
convert business objects into SWIFT messages and SWIFT messages into business
objects. The SWIFT data handler’s primary roles are to:

■ convert incoming SWIFT messages to business objects and vice versa

■ pass business objects to the mapping engine for transformation from formats
representing ISO 7775 to formats representing ISO 15022 and vice versa

Both default top-level data-handler meta-objects (connector and server) support the
swift MIME type and therefore support use of the SWIFT data handler.

This chapter describes how the SWIFT data handler processes SWIFT messages. It
also discusses how to configure the SWIFT data handler. The chapter contains the
following sections:

Configuring the SWIFT Data Handler
To configure a SWIFT data handler for use with the connector, you must do the
following:

■ Make sure that the class name of the SWIFT data handler is specified in the
connector properties.

■ Enter the appropriate values for the attributes of the SWIFT data handler child
meta-object.

Note: For the SWIFT data handler to function properly, you must also create or
modify business object definitions so that they support the data handler. For more
information, see "Connector Business Object Requirements," on page 40.

"Configuring the SWIFT Data Handler" page 129

"Business Object Requirements" page 130

"Converting Business Objects to SWIFT Messages" page 131

"Converting SWIFT Messages to Business Objects" page 131
(C) Copyright IBM Corporation 2002 129

Configuring the Connector Meta-Object

To configure the connector to interact with the SWIFT data handler, make sure that
the connector-specific property DataHandlerClassName has the value
com.crossworlds.DataHandlers.swift.ExtendedSwiftDataHandler.

You must set the value of this property before running the connector. Doing so will
enable the connector to access the SWIFT data handler when converting SWIFT
messages to business objects and vice versa. For further information, see "Connector-
Specific Properties," on page 21.

Configuring the Data Handler Child Meta-Object

For the SWIFT data handler, WebSphere delivers the default meta-object
MO_DataHandler_Default. This meta-object specifies a child attribute of type
MO_DataHandler_Swift. Table 5-1 describes the attributes in the child meta-object,
MO_DataHandler_SWIFT.

The Delivered Default Value column in Table 5-1 lists the value that WebSphere
provides for the default value of the associated meta-object attribute. You must ensure
that all attributes in this child meta-object have a default value that is appropriate for
your system and your SWIFT message type. Also, make sure that at least the
ClassName and BOPrefix attributes have default values.

Note: Use Business Object Designer to assign default values to attributes in this meta-
object.

Business Object Requirements
The SWIFT data handler uses business object definitions when it converts business
objects or SWIFT messages. It performs the conversion using the structure of the
business object and its application-specific text. To ensure that business object
definitions conform to the requirements of the SWIFT data handler, follow the
guidelines described in Chapter 3, Business Objects.

Table 5-1 Child Meta-Object Attributes for the SWIFT Data Handler

Attribute Name Description
Delivered
Default Value

BOPrefix Prefix used by the default NameHandler class to
build business object names.
The default value must be changed to match the
type of the business object. The attribute value is
case-sensitive.

Swift

DefaultVerb The verb used when creating business objects. Create

ClassName Name of the data handler class to load for use
with the specified MIME type. The top-level
data-handler meta-object has an attribute whose
name matches the specified MIME type and
whose type is the SWIFT child meta-object.

com.crossworlds.
DataHandlers.swi
ft.SwiftDataHand
ler

DummyKey Key attribute; not used by the data handler but
required by the integration broker.

1

130 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Converting Business Objects to SWIFT Messages
To convert a business object to a SWIFT message, the SWIFT data handler loops
through the attributes in the top-level business object in sequential order. It generates
populated blocks of a SWIFT message recursively based on the order in which
attributes appear in the business object and its children.

Attributes without a block number, or with values unrecognized by the parser
properties, are ignored. Also ignored is block 0, the UUID header that is added by the
MQSA.

The parse=value application-specific information property is used to determine how
to format strings. This property parses the business object as follows:

■ parse=no;
The attribute MUST be of type String and is formatted as
{block number:attribute value}
The block number is the value of the block=block value application-specific text
property.

■ parse=fixlen;
The attribute must be a single cardinality container. It is formatted as
{block number:attr0 value attr1 value….attrn value}
where attrn value is the attribute value of the nth attribute. All CxIgnore and
CxBlank attributes are IGNORED.

■ parse=delim;
The attribute must be a single cardinality container. It is formatted as
{block number:[Tag:attr1 data]…[Tag:attr1 data]}
where: Tag is the value of the Tag property of attribute application-specific text
 attrn data is the value of the attribute. All CxIgnore and CxBlank attributes are
IGNORED.

■ parse=field;
This setting can be used only on Block 4 messages. Fields are printed out in loop
through non-CxIgnore and non-CxBlank attributes of the business object.

– If appText == NULL and the attribute is a container, call
printBO(childBO). Handle multiple cardinality if required.

– If appText != NULL, call printFieldObj(), which handles multiple
cardinality and calls printFieldBO() to write out a tag.

■ All fields are formatted as generic or non-generic fields. The tag number is
determined by the value of the Tag business object attribute. All non-CxIgnore
attributes of the tag business object are printed out. For more on generic or non-
generic fields, see Appendix D, SWIFT Message Structure.

Converting SWIFT Messages to Business Objects
All SWIFT messages as well as compliance with SWIFT formats and syntax, are
validated by SWIFT before being processed by the SWIFT data handler. The SWIFT
data handler performs validation of business object structure and compliance only.

The SWIFT data handler extracts data from a SWIFT message and sets corresponding
attributes in a business object as follows:
SWIFT Data Handler 131

1 The SWIFT parser is called to extract the first 4 blocks (UUID + blocks 1 through
3). For block 2, the SWIFT application header, only the input attributes are
extracted.

2 The SWIFT data handler is called to extract the name of the business object from
block 2 of the SWIFT message.

3 The SWIFT data handler creates an instance of the top-level object.

4 Based on the application-specific information parameters, the data handler
processes SWIFT message blocks. The blocks are parsed in one of four different
ways

– parse=no; The block data is treated as type String and not parsed out.

– parse=fixlen; The block data is parsed as a fixed-length structure, based
on the values of the maximum length attributes of the block business object.

– parse=delim; The block data is parsed as {n:data} delimited format.

– parse=field; This setting is used only on block 4 data. Fields are parsed as
generic and non-generic.

5 For block 4 data (parse=field;) the data handler either matches the field
returned from the parser to a tag business object attribute, or finds the sequence
business object that the field belongs to.

a If the application specific information of the attribute is NULL, the child
business object is a sequence. The data handler checks if the first required
attribute of the child business object matches the field:

– If it does match, the data handler assigns the attribute multiple cardinality
and populates the sequence for the child business object.

– If it does not match, the data handler skips to the next attribute of the parent
business object.

b If application-specific information is not NULL, the child is a tag business
object. If the field matches the application-specific information, it is handled
with the multiple cardinality and extracted, with the data handler setting the
letter and data attributes of the tag business object.

6 If a non-NULL field is returned, the field is written to a log and an exception is
thrown.

7 The data handler parses block 5 of the SWIFT message. The application-specific
information for this block is always block=5; parse=no and is of type String.
Block 5 is treated as a single string.

Mapping Engine
The SWIFT data handler uses a mapping engine to perform transformations between
business objects representing ISO 7775 and ISO 15022 SWIFT messages. For each
transformation, a Production Instruction Meta Object (PIMO) serves as a map. PIMOs
specify the attribute-to-attribute mapping and the computation instructions required
to perform the transformation. The attribute mapping and the computation
instructions constitute meta-data that is used by the mapping engine.

If specified in the map subscription meta-object for a business object representing an
ISO 7775 format, the data handler passes the ISO 7775 object definition to the
mapping engine. There, using a production instruction meta-object (PIMO), the
132 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

mapping engine transforms the ISO 7775 object into an ISO 15022 business object
definition and passes it to the data handler. It is likewise in the other direction. Using
the map subscription meta-object, the connector determines whether the business
object representing an ISO 15022 message type is supported and, if supported,
requires transformation into an ISO 7775 business object. If so, the connector passes
the message to the SWIFT data handler. The data handler passes the ISO 15022
business object definition to the mapping engine. Using a PIMO, the mapping engine
processes the sub-fields of business object data, creating an ISO 7775-compliant
business object.
SWIFT Data Handler 133

134 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

CHAPTER 6 Troubleshooting
This chapter describes problems that you may encounter when starting up or running
the connector.

Startup Problems

Problem Potential Solution / Explanation

The connector shuts down unexpectedly
during initialization and the following
message is reported: Exception in
thread "main"
java.lang.NoClassDefFoundError:
javax/jms/JMSException...

Connector cannot find file jms.jar from the
IBM MQSeries Java client libraries. Ensure
that variable MQSERIES_JAVA_LIB in
start_connector.bat points to the IBM
MQSeries Java client library folder.

The connector shuts down unexpectedly
during initialization and the following
message is reported: Exception in
thread "main"
java.lang.NoClassDefFoundError:
com/ibm/mq/jms/
MQConnectionFactory...

Connector cannot find file
com.ibm.mqjms.jar in the IBM MQSeries
Java client libraries. Ensure that variable
MQSERIES_JAVA_LIB in
start_connector.bat points to the IBM
MQSeries Java client library folder.

The connector shuts down unexpectedly
during initialization and the following
message is reported: Exception in
thread "main"
java.lang.NoClassDefFoundError:
javax/naming/Referenceable...

Connector cannot find file jndi.jar from
the IBM MQSeries Java client libraries. Ensure
that variable MQSERIES_JAVA_LIB in
start_connector.bat points to the IBM
MQSeries Java client library folder.
(C) Copyright IBM Corporation 2002 135

Event Processing

The connector shuts down unexpectedly
during initialization and the following
exception is reported:
java.lang.UnsatisfiedLinkError: no
mqjbnd01 in shared library path

Connector cannot find a required runtime
library (mqjbnd01.dll [NT] or
libmqjbnd01.so [Solaris]) from the IBM
MQSeries Java client libraries. Ensure that
your path includes the IBM MQSeries Java
client library folder.

The connector reports MQJMS2005: failed
to create MQQueueManager for ‘:’

Explicitly set values for the following
properties: HostName, Channel, and Port.

Problem Potential Solution / Explanation

The connector delivers all messages with an
MQRFH2 header.

To deliver messages with only the MQMD
MQSeries header, append
?targetClient=1 to the name of output
queue URI. For example, if you output
messages to queue queue://
my.queue.manager/OUT, change the URI to
queue://my.queue.manager/
OUT?targetClient=1. See "Configuring the
Connector" for more information.

The connector truncates all message formats
to 8 characters upon delivery regardless of
how the format has been defined in the
connector meta-object.

This is a limitation of the MQSeries MQMD
message header and not the connector.
136 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

APPENDIX A Standard Configuration Properties for
Connectors
Connectors have two types of configuration properties:

■ Standard configuration properties

■ Connector-specific configuration properties

This chapter describes standard configuration properties, applicable to all connectors.
For information about properties specific to the connector, see the installing and
configuring chapter of its adapter guide.

The connector uses the following order to determine a property’s value (where the
highest numbers override the value of those that precede):

1 Default

2 Repository (relevant only when InterChange Server is the integration broker)

3 Local configuration file

4 Command line

The chapter contains the following sections:

Note: In this document backslashes (\) are used as the convention for directory paths.
For UNIX installations, substitute slashes (/) for backslashes and obey the
appropriate operating system-specific conventions.

Configuring Standard Connector Properties for IBM
CrossWorlds InterChange Server

This section describes standard configuration properties applicable to connectors
whose integration broker is IBM CrossWorlds InterChange Server (ICS). Standard
configuration properties provide information that is used by a configurable

"Configuring Standard Connector Properties for IBM
CrossWorlds InterChange Server"

page 137

"Configuring Standard Connector Properties for WebSphere
MQ Integrator"

page 148
(C) Copyright IBM Corporation 2002 137

component of InterChange Server called the connector controller. Like the connector
framework, the code for the connector controller is common to all connectors.
However, you configure a separate instance of the controller for each connector.

A connector, which consists of the connector framework and the application-specific
component, has been referred to historically as the connector agent. When a standard
configuration property refers to the agent, it is referring to both the connector
framework and the application-specific component.

For more information on configuring connectors that work on InterChange Server,
refer to information on the connector controller in:

■ Technical Introduction to IBM CrossWorlds

■ System Administration Guide

■ System Implementation Guide

Important
Not all properties are applicable to all connectors that use InterChange Server. For

information specific to an connector, see its adapter guide.

You configure connector properties from Connector Designer, which you access from
IBM CrossWorlds System Manager.

Note: Connector Designer and CrossWorlds System Manager run only on the
Windows system. Even if you are running the connector on a UNIX system, you must
still have a Windows machine with these tools installed. Therefore, to set connector
properties for a connector that runs on UNIX, you must start up CrossWorlds System
Manager on the Windows machine, connect to the UNIX InterChange Server, and
bring up Connector Designer for the connector.

A connector obtains its configuration values at startup. If you change the value of one
or more connector properties during a runtime session, the property’s update
semantics determine how and when the change takes effect. There are four different
types of update semantics for standard connector properties:

■ Dynamic—The change takes effect immediately after it is saved.

■ Component restart—The change takes effect only after the connector is stopped
and then restarted in CrossWorlds System Manager. This does not require
stopping and restarting the application-specific component or InterChange
Server.

■ Server restart—The change takes effect only after you stop and restart the
application-specific component and InterChange Server.

■ Agent restart—The change takes effect only after you stop and restart the
application-specific component.

To determine the update semantics for a specific property, refer to the Update
Method column in the Connector Designer window, or see the Update Method
column of Table A-1.
138 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Table A-1 provides a quick reference to the standard connector configuration
properties. You must set the values of some of these properties before running the
connector. See the sections that follow for explanations of the properties.

Table A-1 Quick Reference for Standard Connector Properties

Property Name
Possible
Values

Default
Value

Update
Method

Notes

"AgentConnections" 1-4 1 server restart multi-
threaded
connector
only

"AgentTraceLevel" 0-5 0 dynamic

"Agent URL" URL for connector
agent gateway

server restart HTTP
transport
only

"ApplicationName" application name the value that is
specified for the
connector name

component
restart

value
required

"Anonymous
Connections"

true or false false server restart HTTPS
transport
only

"CA Certificate
Location"

path/filename server restart HTTPS
transport
only

"CharacterEncoding" ascii7or
ascii8

ascii7 component
restart

HTTPS
transport
only

"ConcurrentEventTrigge
redFlows"

1 to 32,767 1 server restart

"ContainerManagedEve
nts"

JMS or None JMS guaranteed
event
delivery

"ControllerStoreAndFor
wardMode"

true or false true dynamic

"ControllerTraceLevel" 0-5 0 dynamic

"DeliveryTransport" MQ, IDL, JMS,
or HTTP

MQ system restart

"GW Name" gateway name server restart HTTP
transport
only
Standard Configuration Properties for Connectors 139

"jms.BrokerName" If
FactoryClassNam
e is IBM, use
crossworlds.q
ueue.manager.
If
FactoryClassNam
e is Sonic, use
localhost:250
6.

crossworlds.qu
eue.manager

server restart JMS
transport
only

"jms.FactoryClassName
"

CxCommon.Mess
aging.jms.IBM
MQSeriesFacto
ry

CxCommon.Mess
aging.jms.Son
icMQFactory

Any Java class
name

CxCommon.Messa
ging.jms.IBMMQ
SeriesFactory

server restart JMS
transport
only

"jms.Password" Any valid
password

server restart JMS
transport
only

"jms.UserName" Any valid name server restart JMS
transport
only

"Listener Port" port number 80 for HTTP
443 for HTTPS

server restart HTTP
transport
only

"LogAtInterchangeEnd" true or false false component
restart

"LogFileName" filename or
STDOUT

C:\CrossWorlds
\InterChangeSy
stem.log

component
restart

"MessageFileName" path/filename ConnectorNameC
onnector.txt
or
InterchangeSys
tem.txt

component
restart

"OADAutoRestartAgent
"

true or false false dynamic

"OADMaxNumRetry" a positive number 1000 dynamic

Table A-1 Quick Reference for Standard Connector Properties (Continued)

Property Name
Possible
Values

Default
Value

Update
Method

Notes
140 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

AgentConnections

The AgentConnections property controls the number of IIOP connections opened for
request transport between an application-specific component and its connector
controller. By default, the value of this property is set to 1, which causes InterChange
Server to open a single IIOP connection.

This property enhances performance for a multi-threaded connector by allowing
multiple connections between the connector controller and application-specific
component. When there is a large request/response workload for a particular
connection, the IBM WebSphere administrator can increase this value to enhance
performance. Recommended values are in the range of 2 to 4. Increasing the value of

"OADRetryTimeInterva
l"

a positive number
in minutes

10 dynamic

"PollEndTime" HH:MM HH:MM component
restart

"PollFrequency" -1 to a positive
integer in
milliseconds

no (to disable
polling)
key (to poll only
when the letter p
is entered in the
connector’s
Command
Prompt window)

10000 dynamic

"PollStartTime" HH:MM
(HH is 0-23,
MM is 0-59)

HH:MM component
restart

"RestartRetryCount" 0-99 3 dynamic

"RestartRetryInterval" a sensible positive
value in minutes

1 dynamic

"SourceQueue" SourceQueue or
None

SourceQueue designates
event
source
queue in
support of
guaranteed
event
delivery

"TraceFileName" path/filename STDOUT component
restart

Table A-1 Quick Reference for Standard Connector Properties (Continued)

Property Name
Possible
Values

Default
Value

Update
Method

Notes
Standard Configuration Properties for Connectors 141

this property increases the scalability of the Visigenic software, which establishes the
IIOP connections. You must restart the application-specific component and the server
for a change in property value to take effect.

Important
If a connector is single-threaded, it cannot take advantage of the multiple connections.
Increasing the value of this property causes the request transport to bottleneck at the
application-specific component. To determine whether a specific connector is single-

or multi-threaded, see the installing and configuring chapter of its adapter guide.

AgentTraceLevel

Level of trace messages for the application-specific component. The default is 0. The
connector delivers all trace messages applicable at the tracing level set or lower.

Agent URL

Used when HTTP or HTTPS is the delivery transport, specifies the URL of the
application-specific component’s gateway. You set this value on the controller to
allow it to connect to its application-specific component’s gateway by providing that
gateway's URL and the port number on which that gateway listens for
communications from the controller.

Use the format Protocol://host_name:port_number. For example, http://
www.othercompany.com:80. Specify https protocol for secure transport. If you
set the protocol to https, two additional properties, "Anonymous Connections" and
"CA Certificate Location", display in the Connector Designer. These properties are
required for HTTPS.

The default port is 80 for HTTP, and 443 for HTTPS. If you do not specify a port in
the Agent URL property, the controller uses the default port for the selected protocol.
However, it is recommended that you explicitly state the port number on both the
controller and application-specific component side, even if you use the default port.

The port number you specify in this property's value must match the port number
configured for the application-specific component’s gateway. That port number is set
for the application-specific component in the connector's configuration file. Note that
you can change only controller configuration properties using the Connector
Definitions screen. To change application-specific component properties, you must
directly edit the connector’s configuration file.

ApplicationName

Name that uniquely identifies the connector’s application. This name is used by the
system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

Anonymous Connections

Used when HTTPS is the delivery transport, determines whether the controller allows
data exchange in the event that the application-specific component gateway cannot be
validated. Failure to validate may occur for a number of reasons. For example, if
certification authority (CA) certificates are missing at the controller end, or identity
certificates or private key stores are missing at the application-specific component
142 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

gateway end, the server may not be able to validate the gateway. Data exchange is
secure in an anonymous connection. However, without validating the application-
specific component, the system is vulnerable to unauthenticated access.

The default value is false.

CA Certificate Location

Used when HTTPS is the delivery transport, specifies the directory path where
certification authority (CA) certificates are stored. When the application-specific
component gateway presents its identity certificates, the connector controller
authenticates them with the CA certificates stored in this directory. If the connector
controller cannot authenticate the identity certificates, it either terminates the
connection or sets up an anonymous connection, depending on the value of the
"Anonymous Connections" property.

CharacterEncoding

Set to ascii7 if the connector handles data containing the standard ASCII character
set. Set to ascii8 if the connector handles data containing extended ASCII
characters. The default is ascii7.

Note: Not all connectors use this property. To determine whether a specific connector
does, see the installing and configuring chapter of its adapter guide.

ConcurrentEventTriggeredFlows

Determines how many business objects can be concurrently processed by the
connector controller for event delivery. Set the value of this attribute to the number of
business objects you want concurrently mapped and delivered. For example, set the
value of this property to 5 to cause five business objects to be concurrently processed.
The default value is 1.

Setting this property to a value greater than 1 allows a connector controller for a
source application to simultaneously map multiple event business objects, and to
simultaneously deliver them to multiple collaboration instances. Setting this property
to enable concurrent mapping of multiple business objects can speed delivery of
business objects to a collaboration, particularly if the business objects use complex
maps. Increasing the arrival rate of business objects to collaborations can improve
overall performance in the system.

Note: To implement concurrent processing for an entire flow (from a source
application to a destination application) also requires that the collaboration be
configured to use multiple threads and that the destination application’s application-
specific component be able to process requests concurrently. To configure the
collaboration, set its Maximum number of concurrent events property high
enough to use multiple threads. For an application-specific component to process
requests concurrently, it must be either multi-threaded, or be capable of using
Connector Agent Parallelism and be configured for multiple processes (setting the
Parallel Process Degree configuration property greater than 1). For
information on setting these properties and resources, see the System Administration
Guide.
Standard Configuration Properties for Connectors 143

Important
To determine whether a specific connector is single- or multi-threaded, see the

installing and configuring chapter of its adapter guide.

The ConcurrentEventTriggeredFlows property has no effect on connector
polling, which is single-threaded and performed serially. For more information about
using concurrent flow processing, see the System Administration Guide.

ContainerManagedEvents

Setting this property to JMS enables the connector to remove a message from the
source queue and place it on the destination queue as a single transaction. This
property can also be set to None.

Default = JMS

Note: When ContainerManagedEvents is set to JMS, you must also configure the
following properties to enable guaranteed event delivery:

PollQuantity = 1
SourceQueue = SOURCEQUEUE

Note, too, that when ContainerManagedEvents is set to JMS, the connector does not
call its pollForEvents() method, thereby disabling that method’s functionality.

ControllerStoreAndForwardMode

Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable. If this property is set to true and the
destination application-specific component is unavailable when an event reaches
InterChange Server, the connector controller blocks the request to the application-
specific component. When the application-specific component becomes operational,
the controller forward the request to it.

Important
If the destination application’s application-specific component becomes unavailable
after the connector controller forwards a service call request to it, the connector

controller fails the request.

If this property is set to false, the connector controller begins failing all service call
requests as soon as it detects that the destination application-specific component is
unavailable.

The default is true.

ControllerTraceLevel

Level of trace messages for the connector controller. The default is 0.

DeliveryTransport

Specifies the transport mechanism for the delivery of events. Possible values are MQ
for MQSeries, IDL for CORBA IIOP, JMS for Java Messaging Service, and HTTP. The
default is MQ.
144 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Note: The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is
MQSeries or IDL.

MQSeries and IDL
It is recommended using MQSeries rather than IDL for event delivery transport,
unless you have compelling reasons not to license and maintain two separate
products. MQSeries offers the following advantages over IDL:

■ Asynchronous communication – MQSeries allows the application-specific
component to poll and persistently store events even when the server is not
available.

■ Server side performance – MQSeries provides faster performance on the server
side. In optimized mode, MQSeries stores only the pointer to an event in the
repository database, while the actual event remains in the MQSeries queue. This
saves the overhead of having to write potentially large events to the repository
database.

■ Agent side performance – MQSeries provides faster performance on the
application-specific component side. Using MQSeries, the connector’s polling
thread picks up an event, places it in the connector’s queue, then picks up the next
event. This is faster than IDL, which requires the connector’s polling thread to
pick up an event, go over the network into the server process, store the event
persistently in the repository database, then pick up the next event.

JMS
Enables communication between the connector controller and application-specific
component using JMS.

If you select JMS as the delivery transport, four additional properties,
"jms.BrokerName", "jms.FactoryClassName", "jms.Password",and "jms.UserName",
display in Connector Designer. The first two of these properties are required for this
transport.

HTTP
Enables HTTP communication between the connector controller and application-
specific component through the WebSphere business integration system web
gateway. HTTP allows communication between InterChange Server and an
application-specific component residing on a remote machine across the Internet or
an intranet. If you set the DeliveryTransport property to HTTP, the "Agent URL", "GW
Name", and "Listener Port" properties are required.

GW Name

Used when HTTP or HTTPS is the delivery transport, specifies the CORBA object
name of the controller gateway for InterChange Server. The gateway name must be
unique among all other gateways on the local network.

jms.BrokerName

Specifies the broker name to use for the JMS provider.

The default is crossworlds.queue.manager.

jms.FactoryClassName

Specifies the class name to instantiate for a JMS provider.
Standard Configuration Properties for Connectors 145

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.Password

Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName

Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

Listener Port

Used when HTTP or HTTPS is the delivery transport, this property specifies the port
number on which the controller gateway listens on behalf of the connector controller.
If you do not specify a port number, the controller gateway listens on the default port
for the selected protocol. The default port is 80 for HTTP, and 443 for HTTPS. If a
number other than the default is used, the Remote URL property in the connector
configuration file must reflect this.

LogAtInterchangeEnd

Specifies whether to log errors to InterChange Server's log destination, in addition to
logging locally. Logging to the server's log destination also turns on email
notification, which generates email messages for the MESSAGE_RECIPIENT specified
in the InterchangeSystem.cfg file when errors or fatal errors occur. As an
example, when a connector loses its connection to its application, if
LogAtInterchangeEnd is set to true, an email message is sent to the specified
message recipient. The default is false.

LogFileName

The name of the file where the application-specific component logs messages. Specify
the file name in an absolute path. The default is
C:\CrossWorlds\InterChangeSystem.log. To log to the command prompt
window that opens when the application-specific component starts, change the value
of this property to STDOUT. To log to a file of your choosing, specify the full path of
that file.

MessageFileName

The name of the connector message file. The standard location for the message file is
\connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Important
To determine whether a specific connector has its own message file, see the installing

and configuring chapter of its adapter guide.
146 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

OADAutoRestartAgent

Specifies whether the Object Activation Daemon (OAD) automatically attempts to
restart the application-specific component after an abnormal shutdown. If you set this
property to true, two additional properties, "OADMaxNumRetry" and
"OADRetryTimeInterval", display in Connector Designer. This property is required
for automatic restart. For more information, see the System Administration Guide.

The default is false.

OADMaxNumRetry

Specifies the maximum number of times that the OAD automatically attempts to
restart the application-specific component after an abnormal shutdown. For more
information, see the System Administration Guide.

The default is 1000.

OADRetryTimeInterval

Specifies the number of minutes of the retry time interval that the OAD automatically
attempts to restart the application-specific component after an abnormal shutdown. If
the application-specific component does not start within the specified interval, the
OAD repeats the attempt as many times as specified in "OADMaxNumRetry". For
more information, see the System Administration Guide.

The default is 10.

PollEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents 0-23
hours, and MM represents 0-59 seconds.

PollFrequency

The amount of time between polling actions. Set the PollFrequency to one of the
following values:

■ The number of milliseconds between polling actions.

■ The word key, which causes the connector to poll only when you type the letter p
in the connector's Command Prompt window. Enter the word in lowercase.

■ The word no, which causes the connector not to poll. Enter the word in lowercase.

The default is 10000.

Important
Some connectors have restrictions on the use of this property. To determine whether a
specific connector does, see the installing and configuring chapter of its adapter

guide.

PollStartTime

The time to start polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.
Standard Configuration Properties for Connectors 147

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. When used for a
parallel connector, specifies the number of times the master connector application-
specific component attempts to restart the slave connector application-specific
component. For more information, see the System Administration Guide.

The default is 3.

RestartRetryInterval

Specifies the interval at which the connector attempts to restart itself. When used for a
parallel connector, specifies the interval at which the master connector application-
specific component attempts to restart the slave connector application-specific
component. For more information, see the System Administration Guide.

The default is 1.

SourceQueue

Designates the source queue for the connector framework in support of guaranteed
event delivery. For further information, see "ContainerManagedEvents," on page 144.

Default = SourceQueue

TraceFileName

The name of the file where the application-specific component writes trace messages.
Specify the filename in an absolute path. The default is STDOUT.

Configuring Standard Connector Properties for WebSphere
MQ Integrator

This section describes standard configuration properties applicable to adapters whose
integration broker is WebSphere MQ Integrator (WMQI). For information on using
WMQI, see the WebSphere Business Integration Adapters Implementation Guide for MQ
Integrator.

Important
Not all properties are applicable to all connectors that use WMQI. For information

specific to a connector, see its adapter guide.

You configure connector properties from Connector Configurator.

Note: Connector Configurator runs only on the Windows system. Even if you are
running the connector on a UNIX system, you must still have a Windows machine
with this tool installed. Therefore, to set connector properties for a connector that runs
on UNIX, you must execute Connector Configurator on the Windows computer and
copy the configuration files to the UNIX computer using FTP or some other file
transfer mechanism. For more information about Connector Configurator, see
Appendix B, "Connector Configurator."
148 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

A connector obtains its configuration values at startup. If you change the value of one
or more connector properties during a runtime session, you must restart the
connector. Standard configuration properties provide information that is used by the
adapter framework and connector framework, and is common to all connectors.

Standard Connector Properties

Table A-1 provides a quick reference for standard connector configuration properties.
See the sections that follow for explanations of the properties.

Table A-2 Quick Reference for Standard Connector Properties for WMQI

Name Possible Values Default Value

"AdminInQueue" valid MQSeries
queue name

ADMININQUEUE

"AdminOutQueue" valid MQSeries
queue name

ADMINOUTQUEUE

"AgentTraceLevel" 0-5 0

"ApplicationName" application name AppNameConnector

"BrokerType" WMQI WMQI

"CharacterEncoding" ascii7 or
ascii8

ascii7

"ContainerManagedEvents" JMS or None JMS

"ConcurrentRequests" 1-10 10

"DeliveryQueue" valid MQSeries
queue name

DELIVERYQUEUE

"DeliveryTransport" WMQI-JMS WMQI-JMS

"FaultQueue" valid MQSeries
queue name

FAULTQUEUE

"MessageFileName" path/filename InterchangeSystem
.txt

"PollEndTime" HH:MM HH:MM

"PollFrequency" milliseconds/
key/no

10000

"PollStartTime" HH:MM HH:MM

"QueueManager" valid MQSeries
queue manager
name

crossworlds.queue
.manager

"QueueManagerLogin" user name for
MQSeries queue
manager

crossworlds
Standard Configuration Properties for Connectors 149

AdminInQueue

The queue that is used by the integration broker to send administrative messages to
the connector.

AdminOutQueue

The queue that is used by the connector to send administrative messages to the
integration broker.

"QueueManagerPassword" password for
MQSeries queue
manager user
name

WMQI

"RepositoryDirectory" path/directory
name

C:\crossworlds\Re
pository

"RequestQueue" valid MQSeries
queue name

REQUESTQUEUE

"RestartRetryCount" 0-99 3

"RestartRetryInterval" an appropriate
integer
indicating the
number of
minutes between
restart attempts

1

"SourceQueue" SourceQueue
or None

SourceQueue

"SynchronousRequestQueue" valid MQSeries
queue name

"SynchronousResponseQueue" valid MQSeries
queue name

"Timeout" an appropriate
integer
indicating the
number of
minutes the
connector waits
for a response to
a synchronous
request

0

"WireFormat" path/filename CwXML

Table A-2 Quick Reference for Standard Connector Properties for WMQI

Name Possible Values Default Value
150 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

AgentTraceLevel

Level of trace messages for the connector’s application-specific component. The
default is 0. The connector delivers all trace messages applicable at the tracing level
set or lower.

ApplicationName

Name that uniquely identifies the connection to the application. This name is used by
the system administrator to monitor the connector’s environment. When you create a
new connector definition, this property defaults to the name of the connector. When
you work with the definition for an IBM WebSphere-delivered connector, the
property is also likely to be set to the name of the connector. Set the property to a
value that suggests the program with which the connector is interfacing, such as the
name of an application, or something that identifies a file system or website in the
case of technology connectors.

BrokerType

This property is set to the value WMQI for connectors that are configured to use
WebSphere MQSeries Integrator as the integration broker.

CharacterEncoding

Set to ascii7 if the connector handles data containing the standard ASCII character
set. Set to ascii8 if the connector handles data containing extended ASCII
characters. The default is ascii7.

Note: Not all connectors use this property. To determine whether a specific connector
does, see the installing and configuring chapter of its adapter guide.

ConcurrentRequests

ConcurrentRequests is the maximum number of concurrent service call requests that
can be sent to a connector at the same time. Once that maximum is reached, new
service calls block and wait for another request to complete before proceeding.

ContainerManagedEvents

Setting this property to JMS enables the connector to remove a message from the
source queue and place it on the destination queue as a single transaction. This
property can also be set to None.

Default = JMS

Note: When ContainerManagedEvents is set to JMS, you must also configure the
following properties to enable guaranteed event delivery:

PollQuantity = 1
SourceQueue = SOURCEQUEUE

Note, too, that when ContainerManagedEvents is set to JMS, the connector does not
call its pollForEvents() method, thereby disabling that method’s functionality.

DeliveryQueue

The queue that is used by the connector to send business objects to the integration
broker.
Standard Configuration Properties for Connectors 151

DeliveryTransport

Specifies the transport mechanism for the delivery of events. The property defaults to
the value WMQI-JMS, indicating that the Java Messaging Service is used for
communication with WebSphere MQ Integrator. Although the list of possible values
in the drop-down menu also includes MQ, IDL, JMS, and HTTP, this property must be
set to WMQI-JMS when WMQI is the integration broker or the connector cannot start.

FaultQueue

If the connector experiences an error while processing a message then the connector
moves the message to the queue specified in this property, along with a status
indicator and a description of the problem.

MessageFileName

The name of the connector message file. The standard location for the message file is
\connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location. This property defaults to the value
InterchangeSystem.txt for new connector definitions and should be changed to
the name of the message file for the specific connector.

PollEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents 0-23
hours, and MM represents 0-59 seconds.

PollFrequency

The amount of time between polling actions. Set the PollFrequency to one of the
following values:

■ The number of milliseconds between polling actions.

■ The word key, which causes the connector to poll only when you type the letter p
in the connector's Command Prompt window. Enter the word in lowercase.

■ The word no, which causes the connector not to poll. Enter the word in lowercase.

The default is 10000.

Important
Some connectors have restrictions on the use of this property. To determine whether a
specific connector does, see the installing and configuring chapter of its adapter

guide.

PollStartTime

The time to start polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

QueueManager

The queue manager that controls the various queues used for communication
between the connector and the integration broker.
152 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

QueueManagerLogin

A valid user name to log in to the MQSeries queue manager specified for the
"QueueManager" property.

If local binding is being used to connect to the queue manager, then this property is
not necessary. If client mode is being used to connect to the queue manager over
TCP/IP, however, then this property must be set to a valid queue manager user
name. For more information on local binding and client mode communication, see the
WebSphere Business Integration Adapters Implementation Guide for MQ Integrator.

QueueManagerPassword

The password for the MQSeries queue manager user name specified for the
"QueueManagerLogin" property.

If local binding is being used to connect to the queue manager, then this property is
not necessary. If client mode is being used to connect to the queue manager over
TCP/IP, however, then this property must be set to the proper password. For more
information on local binding and client mode communication, see the WebSphere
Business Integration Adapters Implementation Guide for MQ Integrator.

RepositoryDirectory

The path and name of the directory from which the connector reads the XML schema
documents that store the meta-data of business object definitions.

RequestQueue

The queue that is used by the integration broker to send business objects to the
connector.

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. The default
value is 3, indicating that the connector tries to restart 3 times. For instance, if a
connector is unable to log in to an application it fails to start, but with this property set
to the value 3 the connector tries a total of three times to start. When used in
conjunction with the "RestartRetryInterval" property, this behavior enables a
connector to make several attempts at communicating with an application that might
not reliably have a connection available all the time.

RestartRetryInterval

Specifies the interval in minutes at which the connector attempts to restart itself. The
default value is 1, indicating that the connector waits 1 minute in between its restart
attempts.

SourceQueue

Designates the source queue for the connector framework in support of guaranteed
event delivery. For further information, see "ContainerManagedEvents," on page 151.

Default = SourceQueue
Standard Configuration Properties for Connectors 153

SynchronousRequestQueue

Delivers request messages that require a synchronous response from the connector
framework to WMQI. This queue is necessary only if the connector uses synchronous
execution. With synchronous execution, the connector framework sends a message to
the SynchronousRequestQueue and waits for a response back from WMQI on the
SynchronousResponseQueue. The response message sent to the connector bears a
correlation ID that matches the ID of the original message.

SynchronousResponseQueue

Delivers response messages sent in reply to a synchronous request from WMQI to the
connector framework. This queue is necessary only if the connector uses synchronous
execution.

Timeout

Specifies the time in minutes that the connector waits for a response to a synchronous
request. If the response is not received within the specified time then the connector
moves the original synchronous request message into the fault queue along with an
error message.

WireFormat

The data format for messages exchanged by the connector. The default value CwXML is
the only valid value, and directs the connector to compose the messages in XML.
154 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

APPENDIX B Connector Configurator
Before you can start and use a connector, you must create or modify a connector
configuration file (*.cfg file) that sets the properties for the connector, designates the
business objects and any meta objects that it supports, and sets logging and tracing
values that the connector will use at runtime.

Use Connector Configurator to create and modify the configuration file for your
connector.

Note: Connector Configurator runs only in a Windows environment. If you are
running the connector itself in a UNIX environment, use Connector Configurator in a
Windows environment, as described in these instructions, to create the connector
configuration file. Then copy the file to your UNIX environment. Some properties in
the connector configuration file use directory paths, which are defaulted to the path
convention for the Windows environment. If you use the connector configuration file
in a UNIX environment, be sure to revise any directory path constructs in the
configuration properties to match the UNIX convention for directory paths.

Using Connector Configurator
If a configuration file has previously been created for your connector, you can use
Connector Configurator to open the file and modify its settings. If no configuration
file has yet been created for your connector, you can use Connector Configurator to
both create the file and set its properties. This appendix describes how to use
Connector Configurator to

■ Create a New Configuration File

■ Set Properties in a New or Existing Configuration File

■ Complete the Connector Configurator Tasks for Your Connector

Note: The Server menu selection of the Connector Configurator screen is not used for
configuring connectors for use with MQ Integrator as the broker; it is reserved for use
with IBM CrossWorlds InterChange Server. If you are using MQ Integrator as the
broker, do not attempt to connect to InterChange Server.
(C) Copyright IBM Corporation 2002 155

Creating a New Configuration File
You can create a connector configuration (*.cfg) file in either of the following ways:

■ Create a completely new connector configuration file from within Connector
Configurator

■ Load a file that contains preliminary settings for your connector (referred to as a
connector definitions file) and save it as a connector configuration file

Creating a File from within Configurator

1 Choose File -> New.

2 The New Connector dialog appears, with the following fields:

– Name

Enter the name of the connector. Names are case-sensitive. The name you
enter must be unique, must end with the word “connector” and must be
consistent with the file name for a connector that you have installed on the
system; for example, enter ClarifyConnector if the connector file name is
Clarify.dll.

Note: The Connector Configurator does not check the spelling of the name
that you enter. You must ensure that the name is correct.

– System Connectivity

Choose WMQI connectivity.

3 The configuration screen displays, showing the broker that you are using and the
name that you have given to the connector. You can fill in all the field values to
complete the definition now (see "Setting the Configuration File Properties"), or
you can save the file and complete the fields later.

4 To save the file, choose File -> Save->To File. The Save File Connector dialog
displays. Choose *.cfg as the file type, verify in the File Name field that you have
the correct spelling and casing for the connector, navigate to the directory where
you want to locate the file, and choose Save. The status display in the lower panel
of Connector Configurator indicates that the configuration file was successfully
created.

Note: The directory path and name that you establish here must match the
connector configuration file path and name that you supply in the startup file for
the connector.

5 To complete the connector definition, enter values in the fields for each of the tabs
of the Connector Configurator window, as described under "Setting the
Configuration File Properties".

Loading Settings from a Connector Definitions File

A connector definitions file is a text file that lists properties and applicable default
values for a specific connector. Some connectors include such a file in a /repository
directory in their delivery package (such a file typically has the extension *.txt; for
example, CN_XML.txt for the XML connector).
156 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

In addition, if you have previously used an IBM CrossWorlds connector in an ICS
environment, the definitions for that connector may be available to you in a
repository file that was used in the IBM CrossWorlds configuration of that connector.
Such a file would typically have the extension *.in or *.out.

However, that definition is not complete until you designate the supported business
objects and meta objects, set values for the use of trace and log files, and set
appropriate values for your connector under the Standard and Application Config
Properties tabs. Although some of these values are preset in the connector definition
file, you may wish to change their values. In addition, a connector definition may
have some required Standard or Application Config properties that have no pre-filled
value, and you may need to set such values in Connector Configurator in order to
complete the definition. For some connectors, you may need to use the Application
Config Properties tab to both add an application-specific property and set its value.

To use a connector definitions file to configure a connector, you must open the
definitions file in Connector Configurator, revise the configuration, and then save the
file as a configuration file (*.cfg file). To do this, follow these steps:

1 In Connector Configurator, choose File>Open>From File.

2 In the Open File Connector dialog, choose one of the following:

– ICS Repository (*.in, *.out)

Choose this if you know that you have available a repository file that was
used to configure this connector in an ICS environment. A repository file may
include multiple connector definitions, all of which will be displayed when
you open the file.

– All files (*.*)

Choose this if you have available a *.txt file that was delivered in the package
for this connector, or if you have a definitions file available under another
extension.

3 In the directory display, navigate to the appropriate connector definitions file,
select it, and choose Open.

4 The Connector Configurator window displays the configuration screen, prefilled
with the attributes and values that Connector Configurator found in the
connector definitions file.

The title of the configuration screen displays the type of the broker and the name
of the connector as specified in the connector definition file. If you are using a
connector definition file or repository file that still has its original values, the title
on the configuration screen may show that the broker type value for the connector
definition is “ICS.” You must change this value before you can configure the
connector for use with MQ Integrator as the broker. To do so:

a Under the Standard Properties tab, select the value field for the Delivery
Transport property. In the drop-down menu, select the value WMQI-JMS.

b The Standard Properties tab will refresh to show a new property, BrokerType,
with WMQI as the prefilled value. This means that MQ Integrator has now
been selected as the broker type. When you save the file, this broker selection
will be retained. You can save the file now, or proceed to complete the
remaining configuration fields, as described in "Setting the Configuration File
Properties".
157

5 When you have finished making entries in the configuration fields, choose File-
>Save->To File, choose *.cfg as the extension, choose the correct location for the
file in the directory structure, and choose Save. (If you have multiple connector
configurations open, as you might if you have opened a repository file, choose
Save All if you want to save all of the configurations.)

Before it saves the file, Connector Configurator validates to make sure that you
have set values for all the required Standard properties. If you omit a required
Standard property, Connector Configurator displays a message that tells you that
the validation failed. You must supply a value for the property in order to save
the configuration file.

Connector Configurator saves the configuration file to the location and file name
that you specified. Keep in mind that to start your connector, the name and final
location of your configuration file must match exactly (including casing) the name
and path specified in your startup file.

Setting the Configuration File Properties
When you create and name a new connector configuration file, or when you open an
existing connector configuration file, Connector Configurator displays a
configuration screen with tabs for the different categories of configuration values that
you must set. When you select a tab, you display the fields for that category. In the
following diagram, the Standard Properties tab has been selected:

The configuration values that you need to set in Connector Configurator are:

1 Standard Properties

2 Application Config Properties

3 Supported Business Object Definitions and meta objects

4 Trace/Log File values

Note: Configurable values in the Connector Configurator screen can use either the
English character set or non-English character sets. However, the names of both
standard and application config properties, and the names of supported business
objects, must use the English character set only.
158 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Standard properties are differentiated from Application Config Properties as follows:

■ Standard properties of a connector are shared by both the applications-specific
component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
your connector guide. You can change some but not all of these values.

■ Application Config (application-specific) properties apply only to the connector
component that interacts directly with an application. Each connector has
application-specific properties that are unique to the connector’s application.
Some of these properties have changeable default values; others you must set
explicitly. The installation and configuration chapters of your connector guide
describe the application-specific properties and recommended values for that
connector.

The fields for Standard Properties and Application Config Properties are color-coded
to show which are configurable:

■ Properties in grey background are standard properties for connectors. Their
values can be changed, but their names cannot be changed or removed.

■ Properties in white background vary depending on the connector development
code. These properties can be deleted and their values can be changed.

■ Value fields are configurable.

■ The Update Method field is not configurable. It tells you the action you will need
to perform to activate a changed property.

Setting Standard Connector Properties

For standard properties, you can configure values, but you cannot change the names
of the properties or their update method.

To change a value:

1 Click in the field whose value you want to set.

2 Either enter a value, or choose from the drop-down menu if one appears.

3 After entering all the intended Standard Property values, you can do either of the
following:

– To discard the changes, preserve the original values, and exit the Connector
Configurator, choose File>Exit (or close the window), and choose No when
prompted to save changes.

– To enter values for other categories in Connector Configurator, choose the tab
for the category. The values you enter for Standard Properties (or any other
category) are retained when you move to the next category; when you close
the window, you will be prompted to either save or discard the values that
you entered in all of the categories as a whole.

– To save the revised values, choose File->Exit (or close the window) and
choose Yes when prompted to save changes. Alternatively, choose Save->To
File from either the File menu or the toolbar.

Setting Application Config Properties

For application-specific configuration properties, you can add or change property
names, configure values, and choose whether to Encrypt the property:
159

1 Click in the field whose name or value you want to set.

2 Enter a name or value.

3 To encrypt a property, click the Encrypt box.

4 Choose to save or discard changes, as described for Setting Standard Connector
Properties.

Note the Update Method shown for each of the changed properties to determine if
either a component or server restart is necessary.

Attention
Changing a pre-set application-specific connector property name may cause a
connector to fail. Certain property names may be needed by the connector to connect

to an application or to run properly.

Encryption for Connector Properties

Application-specific properties can be encrypted by clicking the Encrypt checkbox in
the Edit Property window. To decrypt a value, uncheck the Encrypt checkbox, enter
the correct value in the Verification dialog box, and choose OK. If the entered value is
correct, the Value is decrypted and displays. Your connector guide contains a list and
description of each property and its default value.

Update Method

When MQ Integrator is used as the broker, connector properties are static. The
Update Method is Connector Restart, meaning that for changes to take effect, you
must restart the connector after saving the revised connector configuration file.

Specifying Supported Business Object Definitions

The steps described in this chapter presume that you have already created business
object definitions, and that you have created MQ message set files (*.set files), which
contain message set IDs that Connector Configurator requires for designating the
business objects supported by the connector. See the WebSphere Business Integration
Adapters Implementation Guide for MQ Integrator for information about creating the MQ
message set files.

Each time that you add business object definitions to your system, you must use
Connector Configurator to designate those business objects as supported by the
connector.

Important
If your connector requires meta objects, you must create message set files for them
and load them into Connector Configurator, in the same manner as for business

objects.

To specify supported business objects:

1 Select the Supported Business Objects tab and choose Load. The Open Message
Set ID File(s) dialog displays.

2 Navigate to the directory where you have placed your message set file for the
connector and select the appropriate message set file (*.set) or files.
160 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

3 Choose Open. The Business Object Name field is filled with the business object
names contained in the *.set file, and the numeric message set ID for each
business object is listed in its corresponding Message Set ID field. Do not change
the message set IDs. These names and numeric IDs will be saved when you save
the configuration file.

4 Whenever you add business objects to your configuration, you must load their
message set files. If you attempt to load a message set that contains a business
object name that already exists in your configuration, or if you attempt to load a
message set file that contains a duplicate business object name, Connector
Configurator will detect the duplicate and display the Load Results dialog. The
dialog shows the business object name or names for which there are duplicates.
For each duplicate name shown, click in the Message Set ID field, and choose the
Message Set ID that you wish to use.

Setting Trace/Log File Values

When you open a connector configuration file or a connector definitions file, the
Connector Configurator uses the logging and tracing file values of that file as default
values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1 Choose the Trace/Log Files tab.

2 For either Logging or Tracing, you can choose to write messages to one or both of
the following:

– To console (STDOUT): Writes logging or tracing messages to the STDOUT
display.

– To File: Writes logging or tracing messages to a file that you specify. To
specify the file, choose the directory button (ellipsis), navigate to the
preferred location, provide a file name, and choose Save. Logging or tracing
files will be written to the file and location that you specify.

Note: Both logging and tracing files are simple text files, and you can use the
file extension that you prefer when you set their file names. For tracing files,
however, it is advisable to use the extension .trace rather .trc, to avoid
confusion with other files that might reside on your system. For logging files,
either .log or .txt are typical file extensions.

Completing the Configuration
After you have created a configuration file for a connector and modified it with any
necessary changes, make sure that the connector can locate the configuration file
when the connector starts up. To do so, open the startup file used for the connector,
and verify that the location and file name used for the connector configuration file
match exactly the name you have given the file and the directory or path where you
have placed it.
161

162 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

APPENDIX C Connector Feature List
This appendix details the features supported by the connector. For descriptions of
these features, see “Appendix A: Connector Feature Checklist” in the Connector
Development Guide. The chapter contains the following sections:

Business Object Request Handling Features
Table 6-1 details the business object request handling features supported by the
connector.

"Business Object Request Handling Features" page 163

"Event Notification Features" page 165

"General Features" page 166

Table 6-1 Business Object Request Handling Features

Category Feature Support Notes

Create Create verb N/A Support is entirely dependent on
application receiving connector
request.

Delete Delete verb N/A Support is entirely dependent on
application receiving connector
request.

Logical delete N/A Support is entirely dependent on
application receiving connector
request.

Exist Exist verb N/A Support is entirely dependent on
application receiving connector
request.

Misc Attribute names Full
(C) Copyright IBM Corporation 2002 163

Business object
names

Full

Retrieve Ignore missing child
object

N/A Support is entirely dependent on
application receiving connector
request.

RetrieveByContent Ignore missing child
object

N/A Support is entirely dependent on
application receiving connector
request.

Multiple results N/A Support is entirely dependent on
application receiving connector
request.

RetrieveByContent
verb

N/A The connector supports
RetrieveByContent verb in full when
using synchronous request/response.

Update After-image support N/A Support is entirely dependent on
application receiving connector
request.

Delta support N/A Support is entirely dependent on
application receiving connector
request.

KeepRelations N/A Support is entirely dependent on
application receiving connector
request.

Verbs Retrieve verb N/A Support is entirely dependent on
application receiving connector
request.

Subverb support Partial Depends on data handler chosen for the
connector.

Verb stability Full

Table 6-1 Business Object Request Handling Features (Continued)

Category Feature Support Notes
164 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Event Notification Features
Table 6-2 details the event notification features supported by the connector.

Table 6-2 Event Notification Features

Category Feature Support Notes

Connector
Properties

Event distribution No

PollQuantity Full

Event Table Event status values N/A

Object key N/A

Object name N/A

Priority Full Connector retrieves messages based on
the priority specified in their message
header (range 0-9). See MQSeries
documentation for more information.

Misc. Archiving Full Connector can deliver copies of
messages to different queues depending
on whether the message was
unsubscribed, was successfully
processed, or resulted in errors.

CDK method
gotApplEvent

Full

Delta event
notification

No

Event sequence Full

Future event
processing

No

In-Progress event
recovery

Full

Physical delete event N/A Support is entirely dependent on
application receiving connector request.

RetrieveAll N/A Support is entirely dependent on
application receiving connector request.

Smart filtering No

Verb stability N/A
165

General Features
Table 6-3 details the general features supported by the connector.

Table 6-3 General Features

Category Feature Support Notes

Business Object
Attributes

Foreign key No

Foreign Key attribute
property

N/A Support is entirely dependent on
application receiving connector
request.

Key No

Max Length Partial May be used by the data handler
chosen for the connector.

Meta-data-driven
design

Full

Required No

Connection Lost Connection lost on poll Full

Connection lost on
request processing

Full

Connection lost while
idle

No

Connector
Properties

ApplicationPassword Full

ApplicationUserName Full

UseDefaults Partial Depends on the data handler
established for the connector.

Message Tracing General messaging Full

generateMsg() Full

Trace level 0 Full

Trace level 1 Full

Trace level 2 Full

Trace level 3 Full

Trace level 4 Full

Trace level 5 Full

Misc. CDK method LogMsg Full

Java Package Names Full
166 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Logging messages Full

NT service compliance Full

Transaction support Full

Special Value CxBlank processing Partial Depends on the data handler chosen
for the connector

CxIgnore processing N/A Support is entirely dependent on
application receiving connector
request.

Table 6-3 General Features (Continued)

Category Feature Support Notes
167

168 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

APPENDIX D SWIFT Message Structure
This appendix describes SWIFT message structure and includes the following
sections:

SWIFT Message Types
SWIFT messages consist of five blocks of data including three headers, message
content, and a trailer. Message types are crucial to identifying content.

All SWIFT messages include the literal “MT” (Message Type). This is followed by a 3-
digit number that denotes the message type, category, and group. Consider the
following example, which is an order to buy or sell via a third party:

MT502 The first digit (5) represents the category. A category denotes
messages that relate to particular financial instruments or
services such as Precious Metals, Syndications, or Travelers
Checks. The category denoted by 5 is Securities Markets.

The second digit (0) represents a group of related parts in a
transaction life cycle. The group indicated by 0 is a Financial
Institution Transfer.

The third digit (2) is the type that denotes the specific
message. There are several hundred message types across the
categories. The type represented by 2 is a Third-Party
Transfer.

Each message is assigned unique identifiers. A 4-digit session number is assigned
each time the user logs in. Each message is then assigned a 6-digit sequence number.
These are then combined to form an ISN (Input Sequence Number) from the user’s

"SWIFT Message Types" page 169

"SWIFT Field Structure" page 170

"SWIFT Message Block Structure" page 171
(C) Copyright IBM Corporation 2002 169

computer to SWIFT or an OSN (Output Sequence Number) from SWIFT to the user’s
computer. It is important to remember that terminology is always from the
perspective of SWIFT and not the user.

The Logical Terminal Address (12 character BIC), Day, Session and Sequence
numbers combine to form the MIR (Message Input Reference) and MOR (Message
Output Reference), respectively.

For a full list of SWIFT message types, see All Things SWIFT: the SWIFT User Handbook.

SWIFT Field Structure
This section discusses the SWIFT field structure. A field is a logical subdivision of a
message block A, which consists of a sequence of components with a starting field tag
and delimiters.

A field is always prefaced by a field tag that consists of two digits followed,
optionally, by an alphabetic character. The alphabetic character is referred to as an
option. For example, 16R is a tag (16) with an option (R) that indicates the start of a
block; 16S is a tag (16) with an option (S) that indicates the end of a block. A field is
always terminated by a field delimiter. The delimiter depends on the type of field
used in a message block.

There are two types of fields used in SWIFT messages: generic and non-generic. The
type of field used in a SWIFT message block is determined by the Message Type.
What follows is a discussion of these SWIFT field structures. For more on generic and
non-generic fields and how to distinguish between them, see Part III, Chapter 3 of the
SWIFT User Handbook

Note: The symbol CRLF shown below is a control character and represents carriage
return/line feed (0D0A in ASCII hex, 0D25 in EBCDIC hex).

Non-Generic Fields

The structure of non-generic fields in SWIFT message blocks is as follows:

:2!n[1a]: data content<CRLF>

where:

: = mandatory colon

2!n = numeric character, fixed length

[1a] = one optional alphabetic character, letter option

: = mandatory colon

data content = the data content, which is defined separately for every tag

<CRLF> = field delimiter

The following is an example of a non-generic field:

:20:1234<CRLF>
:32A:...<CRLF>

Note: In some cases (such as with the tag 15A...n), the data content is optional.
170 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

Generic Fields

The structure of generic fields in SWIFT messages is as follows:

:2!n1a::4!c’/’[8c]’/’data content

where

:2!n1a: = same format as non-generic fields, except that 1a is mandatory

: = mandatory second colon (required in all generic fields)

4!c = qualifier

’/’ = first delimiter

[8c] = issuer code or Data Source Scheme (DSS)

’/’ = second delimiter

data content = See Part III, Chapter 3 of the SWIFT User Handbook for the format
definition

Note: Non-generic fields and generic fields cannot share the same field tag letter
option letter. In order to distinguish between them easily, a colon is defined as the
first character of the column Component Sequence. Generic fields are defined in the
same section (Part III, Chapter 3 of the SWIFT User Handbook) as the non-generic
fields.

The following character restrictions apply to generic field data content:

■ Second and subsequent lines within the data content must start with the delimiter
CRLF.

■ Second and subsequent lines within the data content must never start with a
colon (:) or a hyphen (-).

■ The data content must end with the delimiter CRLF.

SWIFT Message Block Structure
The connector supports SWIFT Financial Application (FIN) messages. They have the
following structure:

{1: Basic Header Block}
{2: Application Header Block}
{3: User Header Block}
{4: Text Block or body}
{5: Trailer Block}

These five SWIFT message blocks include header information, the body of the
message, and a trailer. All blocks have the same basic format:

{n:...}

The curly braces ({}) indicate the beginning and end of a block. n is the block
identifier, in this case a single integer between 1 and 5. Each block identifier is
associated with a particular part of the message. There is no carriage return or line
feed (CRLF) between blocks.
171

Blocks 3, 4, and 5 may contain sub-blocks or fields delimited by field tags. Block 3 is
optional. Many applications, however, populate block 3 with a reference number so
that when SWIFT returns the acknowledgement, it can be used for reconciliation
purposes.

Note: For further information on SWIFT message blocks, see Chapter 2 of the SWIFT
User Handbook FIN System Messages Document.

{1: Basic Header Block}

The basic header block is fixed-length and continuous with no field delimiters. It has
the following format:

{1: F 01 BANKBEBB 2222 123456}

(a) (b) (c) (d) (e) (f)

a) 1: = Block ID (always 1)

b) Application ID as follows:

– F = FIN (financial application)

– A = GPA (general purpose application)

– L = GPA (for logins, and so on)

c) Service ID as follows:

– 01 = FIN/GPA

– 21 = ACK/NAK

d) BANKBEBB = Logical terminal (LT) address. It is fixed at 12 characters; it must
not have X in position 9.

e) 2222 = Session number. It is generated by the user’s computer and is padded
with zeros.

f) 123456 = Sequence number that is generated by the user’s computer. It is
padded with zeros.

{2: Application Header Block}

There are two types of application headers: Input and Output. Both are fixed-length
and continuous with no field delimiters.

The input (to SWIFT) structure is as follows:

{2: I 100 BANKDEFFXXXX U 3 003}

(a) (b) (c) (d) (e) (f) (g)

a) 2: = Block ID (always 2)

b) I = Input

c) 100 = Message type

d) BANKDEFFXXXX = Receiver’s address with X in position 9/ It is padded with
Xs if no branch is required.

e) U = the message priority as follows:
172 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

– S = System

– N = Normal

– U = Urgent

f) 3 = Delivery monitoring field is as follows:

– 1 = Non delivery warning (MT010)

– 2 = Delivery notification (MT011)

– 3 = Both valid = U1 or U3, N2 or N

g) 003 = Obsolescence period. It specifies when a non-delivery notification is
generated as follows:

– Valid for U = 003 (15 minutes)

– Valid for N = 020 (100 minutes)

The output (from SWIFT) structure is as follows:

{2: O 100 1200 970103BANKBEBBAXXX2222123456 970103 1201 N}

(a) (b) (c) (d) (e) (f) (g) (h)

a) 2: = Block ID (always 2)

b) O = Output

c) 100 = Message type

d) 1200 = Input time with respect to the sender

e) The Message Input Reference (MIR), including input date, with Sender’s
address

f) 970103 = Output date with respect to Receiver

g) 1201 = Output time with respect to Receiver

h) N = Message priority as follows:

– S = System

– N = Normal

– U = Urgent

{3: User Header Block}

This is an optional block and has the following structure:

{3: {113:xxxx} {108:abcdefgh12345678} }

(a) (b) (c)

a) 3: = Block ID (always 3)

b) 113:xxxx = Optional banking priority code

c) This is the Message User Reference (MUR) used by applications for
reconciliation with ACK.
173

Note: Other tags exist for this block. They include tags (such as 119, which can
contain the code ISITC on an MT521) that may force additional code word and
formatting rules to validate the body of the message as laid down by ISITC (Industry
Standardization for Institutional Trade Communication). For further information, see
All Things SWIFT: the SWIFT User Handbook.

{4: Text Block or body}

This block is where the actual message content is specified and is what most users see.
Generally the other blocks are stripped off before presentation. The format, which is
variable length and requires use of CRLF as a field delimiter, is as follows:

{4:CRLF

:20:PAYREFTB54302 CRLF

:32A:970103BEF1000000,CRLF

:50:CUSTOMER NAME CRLF

AND ADDRESS CRLF

:59:/123-456-789 CRLF

BENEFICIARY NAME CRLF

AND ADDRESS CRLF

-}

The symbol CRLF is a mandatory delimiter in block 4.

The example above is of type MT100 (Customer Transfer) with only the mandatory
fields completed. It is an example of the format of an ISO7775 message structure.
Block 4 fields must be in the order specified for the message type in the appropriate
volume of the SWIFT User Handbook.

Note: The ISO7775 message standard is gradually being replaced by the newer data
dictionary standard ISO15022. Among other things, the new message standard makes
possible generic fields for block 4 of a SWIFT message structure. For further
information, see "SWIFT Field Structure," on page 170.

The content of the text block is a collection of fields. For more on SWIFT fields, see
"SWIFT Field Structure," on page 170. Sometimes, the fields are logically grouped into
sequences. Sequences can be mandatory or optional, and can repeat. Sequences also
can be divided into subsequences. In addition, single fields and groups of consecutive
fields can repeat. For example, sequences such as those in the SWIFT Tags 16R and
16S may have beginning and ending fields. Other sequences, such as Tag 15, have
only a beginning field. In yet other message types, no specific tags mark the start or
end of a field sequence.

The format of block 4 field tags is:

:nna:

nn = Numbers

a = Optional letter, which may be present on selected tags

For example:

:20: = Transaction reference number
174 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

:58A: = Beneficiary bank

The length of a field is as follows:

nn = Maximum length

nn! = Fixed-length

nn-nn = Minimum and maximum length

nn * nn = Maimum number of lines times maximum line length

The format of the data is as follows:

 n = Digits

 d = Digits with decimal comma

 h = Uppercase hexadecimal

 a = Uppercase letters

 c = Uppercase alphanumeric

 e = Space

 x = SWIFT character set

 y = Uppercase level A ISO 9735 characters

 z = SWIFT extended character set

Some fields are defined as optional. If optional fields are not required in a specific
message, do not include them because blank fields are not allowed in the message.

/,word = Characters “as is”

 [...] = Brackets indicate an optional element

For example:

4!c[/30x] This is a fixed 4 uppercase alphanumeric, optionally
followed by a slash and up to 30 SWIFT characters.

ISIN1!e12!c This is a code word followed by a space and a 12 fixed
uppercase alphanumeric.

Note: In some message types, certain fields are defined as conditional. For example,
when a certain field is present, another field may change from optional to mandatory
or forbidden. Certain fields may contain sub-fields, in which case there is no CRLF
between them. Validation is not supported.

Certain fields have different formats that depend on the option that is chosen. The
option is designated by a letter after the tag number, for example:

:32A:000718GBP1000000,00 Value Date, ISO Currency, and Amount

:32B:GBP1000000,00 ISO Currency and Amount

Note: The SWIFT standards for amount formats are: no thousand separators are
allowed (10,000 is not allowed, but 10000 is allowed); use a comma (not a decimal
point) for a decimal separator (1000,45 = one thousand and forty-five hundredths).

:58A:NWBKGB2L Beneficiary SWIFT address

:58D:NatWest Bank Beneficiary full name and address
175

Head Office

London

{5: Trailer Block}

A message always ends in a trailer with the following format:

{5: {MAC:12345678}{CHK:123456789ABC}

This block is for SWIFT system use and contains a number of fields that are denoted
by keywords such as the following:

MAC Message Authentication Code calculated based on the entire
contents of the message using a key that has been exchanged
with the destination and a secret algorithm. Found on
message categories 1,2,4,5,7,8, most 6s and 304.

CHK Checksum calculated for all message types.

PDE Possible Duplicate Emission added if user thinks the same
message was sent previously

DLM Added by SWIFT if an urgent message (U) has not been
delivered within 15 minutes, or a normal message (N) within
100 minutes.
176 Guide to the IBM WebSphere Business Integration Adapter for SWIFT

	Contents
	New in This Release
	New in Release 1.3.x
	New in Release 1.2.x
	New in Release 1.1.x

	About This Document
	Audience
	Prerequisites for This Document
	Related Documents
	Typographic Conventions

	CHAPTER 1 Overview
	Connector Architecture
	Connector for SWIFT
	SWIFT Data Handler and Mapping Engine
	MQSeries
	MQSA
	SWIFTAlliance Access

	Application-Connector Communication Method
	Message Request
	Event Delivery

	Event Handling
	Retrieval
	In-Progress Queue
	Synchronous Acknowledgment

	Recovery
	Fail on Startup
	Reprocess
	Ignore
	Log Error

	Archiving
	Guaranteed Event Delivery

	Business Object Requests
	Business Object Mapping
	Message Processing
	Create
	Asynchronous Delivery
	Synchronous Acknowledgment
	Creating Custom Feedback Codes

	Retrieve

	Error Handling
	Application Timeout
	Unsubscribed Business Object
	Data Handler Conversion

	Tracing

	CHAPTER 2 Configuring the Connector
	Prerequisites
	Prerequisite Software

	Installing the Connector
	Installing on a UNIX System
	Installing on a Windows System

	Connector Configuration
	Standard Connector Properties
	Connector-Specific Properties
	ApplicationPassword
	ApplicationUserID
	ArchiveQueue
	Channel
	ConfigurationMetaObject
	DataHandlerClassName
	DataHandlerConfigMO
	DataHandlerMimeType
	ErrorQueue
	FeedbackCodeMappingMO
	HostName
	InDoubtEvents
	InputQueue
	InProgressQueue
	PollQuantity
	Port
	ReplyToQueue
	UnsubscribedQueue

	Queue Uniform Resource Identifiers (URI)
	Meta-Object Attributes Configuration
	Map Subscription Meta-Object
	Static Meta-Object
	Application-Specific Text
	Overloading Input Formats
	A Sample Static Meta-Object
	Business Object with Verb Create
	Business Object with Verb Retrieve

	Dynamic Child Meta-Object
	Population of the Dynamic Child Meta-Object During Polling
	Sample Dynamic Child Meta-Object

	Startup File Configuration
	Windows
	UNIX

	Startup

	CHAPTER 3 Business Objects
	Connector Business Object Requirements
	Business Object Hierarchy
	Business Object Attribute Properties
	Name Property
	Type Property
	Cardinality Property
	Key Property
	Foreign Key Property
	Required Property
	AppSpecificInfo
	Max Length Property
	Default Value Property
	Comments Property
	Special Attribute Value

	Application-Specific Text at the Attribute Level

	Overview of SWIFT Message Structure
	Overview of Business Objects for SWIFT
	SWIFT Message and Business Object Data Mapping
	Top-Level Business Object Structure
	Sample Top-Level Business Object (Msg BO) Definition

	Block 1 Business Object Structure
	Sample Block 1 Business Object Definition

	Block 2 Business Object Structure
	Sample Block 2 Business Object Definition

	Block 3 Business Object Structure
	Sample Block 3 Business Object Definition

	Block 4 Business Object Structure
	MsgData BO Format
	MsgData BO Name
	MsgData BO Attribute Names
	MsgData BO Attribute Types
	MsgData BO Attribute ContainedObjectVersion
	MsgData BO Attribute Relationship
	MsgData BO Attribute Cardinality
	MsgData BO Attribute IsKey
	MsgData BO Attribute AppSpecificInfo

	Sequence and Field Business Objects
	Sequence Business Object Structure
	MsgSeq BO Format
	Sample Sequence Business Object Definition
	Field Business Object Definitions
	MsgField BO Format
	MsgField BO, TagUnion BO, and TagLetterOption BO Names
	MsgField BO, TagUnion BO, and TagLetter BO Attribute Names
	MsgField BO, TagUnion BO, and TagLetterOption BO Attribute Types
	MsgField BO, TagUnion BO, and TagLetterOption BO ContainedObjectVersion
	MsgField BO, TagUnion BO, and TagLetterOption BO Attribute Cardinality
	MsgField BO, TagUnion BO, and TagLetterOption BO Attribute IsKey
	TagLetterOption BO Attribute AppSpecificInfo
	Sample MsgField BO, TagUnion BO, and TagLetterOption BO Definitions

	CHAPTER 4 ISO 7775 to ISO 15022 Mapping
	Production Instruction Meta-Objects (PIMOs)
	PIMO Structure and Syntax
	Port
	Declaration
	Action
	Compute Action
	Delegate Action
	Native Action
	Scenario Action
	Object References in Actions

	Creating PIMOs
	Getting Started
	Defining Port
	Defining Port Child Objects

	Defining Declaration
	Defining Action
	Representing Sequence Objects
	Representing Field Objects

	Modifying PIMOs: Map Summary
	MT520 to MT540 Receive Free
	MT521 to MT541 Receive Payment Against
	MT522 to MT542 Deliver Free
	MT523 to MT543 Deliver Against Payment
	MT530 to MT544 Receive Free Confirmation
	MT531 to MT 545 Receive Against Payment Confirmation
	MT532 to MT 546 Deliver Free Confirmation
	MT533 to MT547 Deliver Against Payment Confirmation
	MT534 to MT548 Settlement Status and Processing Advice
	MT571 to MT535 Statement of Holdings
	MT572 to MT536 Statement of Transactions
	MT573 to MT537 Statement of Pending Transactions

	CHAPTER 5 SWIFT Data Handler
	Configuring the SWIFT Data Handler
	Configuring the Connector Meta-Object
	Configuring the Data Handler Child Meta-Object

	Business Object Requirements
	Converting Business Objects to SWIFT Messages
	Converting SWIFT Messages to Business Objects
	Mapping Engine

	CHAPTER 6 Troubleshooting
	Startup Problems
	Event Processing

	APPENDIX A Standard Configuration Properties for Connectors
	Configuring Standard Connector Properties for IBM CrossWorlds InterChange Server
	AgentConnections
	AgentTraceLevel
	Agent URL
	ApplicationName
	Anonymous Connections
	CA Certificate Location
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryTransport
	MQSeries and IDL
	JMS
	HTTP
	GW Name
	jms.BrokerName
	jms.FactoryClassName
	jms.Password
	jms.UserName
	Listener Port
	LogAtInterchangeEnd
	LogFileName
	MessageFileName
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollStartTime
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	TraceFileName

	Configuring Standard Connector Properties for WebSphere MQ Integrator
	Standard Connector Properties
	AdminInQueue
	AdminOutQueue
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentRequests
	ContainerManagedEvents
	DeliveryQueue
	DeliveryTransport
	FaultQueue
	MessageFileName
	PollEndTime
	PollFrequency
	PollStartTime
	QueueManager
	QueueManagerLogin
	QueueManagerPassword
	RepositoryDirectory
	RequestQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	Timeout
	WireFormat

	APPENDIX B Connector Configurator
	Using Connector Configurator
	Creating a New Configuration File
	Creating a File from within Configurator
	Loading Settings from a Connector Definitions File

	Setting the Configuration File Properties
	Setting Standard Connector Properties
	Setting Application Config Properties
	Encryption for Connector Properties
	Update Method

	Specifying Supported Business Object Definitions
	Setting Trace/Log File Values

	Completing the Configuration

	APPENDIX C Connector Feature List
	Business Object Request Handling Features
	Event Notification Features
	General Features

	APPENDIX D SWIFT Message Structure
	SWIFT Message Types
	SWIFT Field Structure
	Non-Generic Fields
	Generic Fields

	SWIFT Message Block Structure
	{1: Basic Header Block}
	{2: Application Header Block}
	{3: User Header Block}
	{4: Text Block or body}
	{5: Trailer Block}

