
IBM® VisualAge® for Java™, Version 3.5.3

Team Programming

���

Edition notice

This edition applies to Version 3.5.3 of IBM VisualAge for Java and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. Team development concepts 1
Team development - overview 1
Team client/server configuration 3
The repository server (EMSRV) 4
Editions and versioning. 5
Scratch editions 7
Baselines, releasing, and reloading 8
Version control for project resource files 9
Ownership and team roles - overview 11
Class developer 13
Class owner 13
Package owner 14
Project owner. 15
Repository administrator 15
EMSRV user (All server operating systems except
OS/2) 17
Workspace owner 18
Repository user list 19
Package groups 20

Chapter 2. Team development
scenarios 21
Team Development Scenarios - overview 21
Team development - basic class development
pattern 21
Team development scenario - single package, single
developer 22
Team development scenario - single package,
multiple developers 24
Team development scenario - multiple packages,
multiple developers 28
Team development scenario - project wrap-up and
delivery 31
Sample life cycle of an application. 32

Chapter 3. Working in a team
environment 37
Logging in to the server 37
Connecting to a shared repository 37
Changing workspace owner 39
Releasing a program element or resource file . . . 40
Creating a scratch edition. 42
Sharing resource files 43
Creating resource folders 44
Adding resource files to the project from the file
system 45
Replacing a resource file with the released version 45
Building a team baseline 46
Managing editions of program elements 47
Finding unreleased editions in the workspace . . . 48
Finding unversioned editions in the workspace . . 48
Viewing a class or interface’s developer 49
Viewing a program element’s owner 50
Changing a program element’s owner 50
Adding members to a package group. 51

Changing the owner of a resource file or folder . . 52
Viewing information about your repository
connection. 53
Changing repositories 53
Working at a standalone workstation 55
Recovering from a server failure 56

Chapter 4. Team administration 59
TCP/IP network considerations in team
development 59
Server considerations in team development. . . . 59
Server files and directories 61
Server security 62
Number and placement of shared repositories . . . 63
Team and project organization 65
Setting up a team server - overview 66
Installing EMSRV as a service in the Windows
registry 68
Removing EMSRV from the Windows registry . . . 69
Authorizing the EMSRV user (Windows) 69
Starting the repository server on Windows . . . 72
Starting the repository server on OS/2 76
Starting the repository server on AIX, HP-UX,
Solaris, or Linux 77
Starting the repository server on NetWare 79
Stopping a client connection 80
Stopping the repository server 81
Displaying server connections 82
Displaying server statistics 82
Displaying active EMSRV settings 83
Displaying EMSRV messages 84
Changing the EMSRV working directory 84
Setting the server disk threshold 85
Setting EMSRV message logging options 85
Changing EMSRV settings (NetWare) 87
Adding users to the repository user list 87
Enabling password validation - overview 88
Enabling native password validation 90
Enabling password validation with the passwd.dat
file 91
Providing a standard workspace 92
Creating a repository 93
Backing up a shared repository 94
Dividing a repository 96
Optimizing server performance. 97
EMSRV startup parameters 98
EMSRV and TCP/IP 101
The EMADMIN utility - overview 102
The EMADMIN copy command 103
The EMADMIN list command. 104
The EMADMIN opts command 105
The EMADMIN stat command 106
The EMADMIN stop command 107
EMSRV account names and authentication on
Windows 108

© Copyright IBM Corp. 1998, 2000 iii

Authentication on Windows NT and Windows
2000 108

EMSRV account names and authentication on
Netware 111

Notices 115

Programming interface information 117

Trademarks and service marks 119

iv Team Programming

Chapter 1. Team development concepts

Team development - overview
VisualAge for Java, Enterprise Edition, provides a collaborative team development
environment based on a shared repository. Change control works at the object
level; it is based on object ownership.

Shared repository on a server
In the team development environment, all source code is stored in a shared
repository on a server. Team members connect from their clients to the shared
repository. Once connected, they can perform the following tasks:
v Find program elements in the shared repository, including those developed or

owned by other team members
v Bring various editions of those program elements into their workspaces
v Create, change, test, and version program elements
v Release editions of program elements that they own for other team members to

use as a common baseline
v Selectively replace editions of program elements in their workspace with other

editions released by other members of the team

Change control based on ownership
In the VisualAge for Java team development environment, every project, package,
and class has one person who is responsible for the quality of that program
element, and who has the most authority over it. That person is the program
element’s owner.

For example, any number of developers may work on the same class, each in their
own time stamped editions, but it is the owner of the class who compares their
editions, merges their work to create a single version, and then releases the new
version into its containing package. (Releasing updates the containing package
with the new version of the class and indicates to other team members that this is
a good baseline to work from.)

Similarly, packages and projects can only be versioned or reopened by their
owners. Owners control the mainstream of development for their program
elements.

For links to more information on program element ownership and team roles, see
the related concepts listed at the end of this document.

Comparison with other source configuration management (SCM) systems
VisualAge for Java, Enterprise Edition, is different from other team development
environments in the following ways:
v Team developers do not reserve or “check out” program elements, so program

elements are always available to everyone on the team.
v There is no need to “check in” a program element after changing it. Incremental

changes are immediately saved in the shared repository.
v Anyone on the team can access and modify any program element for

development, testing, and debugging purposes, regardless of who owns the
program element. This facilitates code reuse and collaborative development.

© Copyright IBM Corp. 1998, 2000 1

v Change is managed at the object level rather than at the file level. This facilitates
parallel development of classes by more than one developer.

v Program element owners approve changes by releasing them into the team
baseline. There is an emphasis on roles and responsibilities assumed by the
team, rather than on file locking performed by the software.

VisualAge for Java’s team features are optimized for object-oriented development
in fast-moving, iterative, prototyping development environments. They are flexible
and offer a high level of programmer productivity, while also providing stability.

For a more detailed discussion of setting up the team development environment,
see the IBM redbook, VisualAge for Java Enterprise Team Support (SG24-5245-00). For
information on VisualAge for Java books, select the Library link at
http://www.software.ibm.com/ad/vajava/.

Using External Version Control
VisualAge for Java also offers an interface to other software configuration
management (SCM) programs, including:
v ClearCase for Windows NT®, from Rational Software Corporation
v PVCS Version Manager, from INTERSOLV, Inc.
v VisualAge TeamConnection®, from IBM Corporation
v Visual SourceSafe, from Microsoft®

The interface to external version control systems is accessible from a menu, which
you can use to add classes to source control, check classes in and out of the SCM
repository, and import the most recently checked-in version of a class from the
SCM repository.

If you select to install the interface when you install VisualAge for Java, you can
use the External Version Control menu for convenient access from the VisualAge
for Java IDE to an existing SCM tool. There is no relationship between external SCM
functions and the version control provided by VisualAge for Java. If you use
another SCM tool to manage program elements developed in VisualAge for Java,
you will have to correlate the names, contents, and versions of program elements
in the two systems.

Team client/server configuration
Repository
Editions and versioning
Ownership and team roles - overview
Baselines, releasing, and reloading
Team development scenarios - overview
Sample life cycle of an application

Setting up a team server - overview

Repository files

2 Team Programming

Team client/server configuration
The following drawing shows the client and server components that make up a
VisualAge for Java team development environment.

Example of a VisualAge for Java team network

Connectivity is provided by a TCP/IP network.

Any computer where a shared repository will reside must be a server, which is to
say it must run the repository server program (EMSRV). There may be more than
one server in your environment. Each server has the following components:
v One or more source code repositories (.dat files), shared by the team
v The repository server (emsrv.exe, emsrv.nlm, or emsrv). This program manages

concurrent client access to the shared repositories on the server.

VisualAge for Java clients have the following components:
v The Integrated Development Environment (ide.exe)
v A workspace (ide.icx)
v Optionally, a local repository (.dat file) for offline development
v The EMADMIN utility (emadmin.exe), which is most commonly used by the

person responsible for operating the repository server, for example to check the
server’s status

The amount of clients a server can support varies and is dependent on numerous
factors, such as the number of I/O requests serviced per second.

Team development - overview
The repository server (EMSRV)

Chapter 1. Team development concepts 3

Repository
Workspace
Overview of the VisualAge for Java IDE

Setting up a team server - overview

The EMADMIN utility - overview

The repository server (EMSRV)
EMSRV is the program that manages concurrent access to shared repositories on
the server. It uses native locking calls to manage file input/output requests against
the repository files on the server.

The administrator must start the repository server, using the emsrv command,
before clients can can connect to the shared repository. The administrator uses the
EMADMIN utility to manage the repository server.

No more than one EMSRV process should be run at a time on the same server.

The EMSRV working directory
The EMSRV working directory is the default directory that the repository server
uses to locate shared repositories when, for example, a team member is changing
repositories or importing from another repository. The repository server also writes
its log in the EMSRV directory.

For ease of use, it is recommended that you store all shared repositories in the
EMSRV working directory. This allows team members to connect to shared
repositories without providing path information.

Refer to the related topics below for more information on EMSRV, including
supported operating systems and changing the EMSRV working directory.

Team development - overview
Team client/server configuration
EMSRV user
Repository administrator
Server considerations in team development
Server files and directories
Server security

Starting the repository server on Windows®

Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Changing the EMSRV working directory

4 Team Programming

Repository files
EMSRV startup parameters
The EMADMIN utility - overview

Editions and versioning
In VisualAge for Java, whenever you work with any project, package, class, or
resource file you are actually working with a specific edition of that program
element. At any time, you can only have one edition of each program element in
the workspace. To see which editions are in the workspace, click the Show Edition

Names button.

Resource files do not appear in the workspace. To work with the resource files for
a particular project, from the project’s pop-up menu select Open to > Resources.

You will usually work with open and versioned editions;
occasionally, you may also create scratch editions of program elements to
experiment with. You will periodically release editions of classes and packages that
you have been working on, to provide a baseline for the team and to make your
changes easily available to them. Editions, releasing, and ownership are all
fundamental to managing application changes in the team environment. Editions
are discussed below; releasing and ownership are discussed as separate topics.

Open editions
Open editions are works in progress. Before you can make changes to an existing
project, package, or class, you must create an open edition of it. The Workspace
can only contain one edition of a program element. In the repository, however, you
can have multiple open editions of the same program element, with each one
implemented differently. For example, if you are adding features to an application
that you have customized for different industries, you might have multiple open
editions of a package with the same name stored in the repository.

Open editions appear in VisualAge for Java windows with a timestamp, in
parentheses, showing when they were created. Here is an example:
PackageA (3/28/00 4:21:15 PM)

Versioned editions
Versioned editions are editions that can not be changed. You version your open
editions for the following reasons:
v To keep a copy of a program element at some meaningful point, so you can

return to it at a later date. In the case of packages and projects, versioning
freezes a specific configuration of the contained program elements, which must
also be versioned.

v To make your changed classes available to other team members
who are browsing the repository.

v To release a class into its containing package, thereby updating the
team baseline. Classes must be versioned before they can be released.

Versioned editions appear in VisualAge for Java windows with version names, as
opposed to the timestamps that identify open editions. When you version an open
edition of a program element, VisualAge for Java can automatically assign a name
for you, or you can specify your own name. Here are some examples of versioned
editions:

Chapter 1. Team development concepts 5

PackageA 1.6.1
PackageB VersionBRel2
PackageC JS - Fixed print problems for CustomerX

Versioning does not prevent you from ever changing a program element again. To
make changes, create a new open edition of the program element. To revert to an
earlier version, replace the edition in the workspace with a different edition from
the repository, and create an open edition based on that.

You will probably version your classes frequently, whereas you may leave
packages and projects open for extended periods of time.

In the team development environment, version control is achieved by
means of releasing editions into a team baseline. A program element can only be
released by its owner. See the list of related topics at the end of this document
for links to more information on ownership, baselines, or releasing.

Scratch editions
Scratch editions are editions that no other users of the shared repository can see.
Scratch editions appear in VisualAge for Java windows with < > around the
edition name:
PackageA <1.0>

Scratch editions are discussed separately.

Undefined editions
You may see a class or interface whose edition name is “undefined”:
ClassA Undefined

This means that someone has created a class or interface, but has never versioned
or released it. VisualAge for Java has reserved the new program element’s name in

the shared repository. Such editions are also marked with the undefined
symbol.

Tools for managing your editions
VisualAge for Java provides two tools for working with editions in a team
development environment:
v The Managing page of the Workbench window consolidates information about

all the editions that are in the workspace, and is a convenient place to perform
activities such as versioning and releasing.

v The Management Query tool helps you search for program elements in the
workspace by edition status. Open it by selecting Management Query from the
Workspace menu.

You can also view edition details, such as status and ownership, by selecting
Properties from a program element’s pop-up menu.

Projects and other program elements
Workspace
Repository

Version control for resource files

6 Team Programming

Creating an open edition
Versioning a program element
Replacing editions in the workspace (reloading)

Scratch editions
Scratch editions are private. Unlike open editions, you can not version them to
make them available to other developers on the team. You can create scratch
editions of projects or packages. You can not create a scratch edition of a class, but
you can create open editions of classes contained in scratch editions of packages.

You can not release into a scratch edition of a package or a project.

You might create a scratch edition for any of the following purposes:
v To learn how someone else’s code works. After you finish experimenting, delete

the scratch edition from your workspace or replace it with another edition from
the repository.

v To test a change that you think the owner should make. If you think your
change is good, talk to the class owner about integrating it into an edition that
can be versioned and released.

v To start development on a class when the containing package has been
versioned and the package owner is not available to create an open edition for
you. You can make your changes, test and debug them, and version your class
edition, but you can not release it until the package owner creates an open
edition of the package for you.

If you have configured your VisualAge for Java options to show edition names,
your scratch editions will be designated with < > around the program element’s
version name:
PackageA <1.0>
PackageB 1.2

In the example above, PackageA is a scratch edition that was created from a
versioned edition called 1.0. PackageB is not a scratch edition; it is a versioned
edition.

You do not explicitly create scratch editions. VisualAge for Java automatically
creates scratch editions from versioned editions, under the following circumstances:
v If you modify a class contained in a versioned edition of a package, and then

save your changes. A scratch edition of the package is created in the workspace.
v If you replace the edition of a class in a versioned package with another edition

of that class, a scratch edition of the package is created in the workspace.
v If you create a new open edition of a package, in a project that has been

versioned, a scratch edition of the project is created in the workspace.

Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview
Package groups

Chapter 1. Team development concepts 7

Creating a scratch edition
Creating an open edition
Versioning a program element
Releasing a program element
Replacing editions in the workspace (reloading)

Baselines, releasing, and reloading
Every edition of a containing program element maintains a list of editions for its
content. For example, MyPackage 1.1 may contain MyClass 1.0 and YourClass 1.3,
whereas MyPackage 1.2 may contain Myclass 1.1 and YourClass 1.3.

As long as a project or package is an open edition, its configuration of package or
class editions can be changed. Program element owners change project or package
configurations by releasing different package or class editions into them, or by
deleting editions. Once a project or package is versioned, that particular
configuration of editions is frozen.

In the VisualAge for Java team development environment, these configurations are
called project or package baselines. Baselines determine which editions a team
developer has available to work with, after adding a project or package from the
shared repository or after replacing an edition in the workspace with another
edition (reloading). Baselines allow developers to get a common view of the current
state of the application, and to catch inconsistencies early.

A class owner can update a package baseline by releasing a class into the package.
A package or project owner can update a project baseline by releasing a package
into a project. Classes must be versioned before they can be released. Packages, on
the other hand, may be released while they are still open editions. Releasing one or
more open packages into a project has the effect of establishing a dynamic, or
rolling, baseline for the project. As long as the project contains an open edition of a
package, the project’s configuration of classes is immediately updated every time a
class is released into the contained package. The benefit of a rolling baseline is that
team members can resynchronize in one step, by reloading the project instead of
reloading individual packages or classes.

Since releasing affects every team member who reloads a baseline, changes should
be tested before they are released. Classes may be versioned every day, but they
should only be released when they are stable.

Periodically, project and package owners will preserve a baseline by versioning the
project or package. At that point, all contained packages and classes must also be
versioned. The result is a frozen configuration to which the team can return, if
necessary.

For more information on baselines, see the team development scenarios that are
listed as related topics, below.

Version control for resource files
Team development - overview
Ownership and team roles - overview
Editions and versioning
Team development scenarios - overview

8 Team Programming

Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Sample life cycle of an application

Building a team baseline
Releasing a program element or resource file
Finding unreleased editions in the workspace
Replacing editions in the workspace (reloading)
Managing editions of program elements
Adding projects and packages from the repository to the workspace

Version control for project resource files
In VisualAge for Java, Enterprise Edition, Version 3.5.3 you can version and release
resource files. Resource files are files that are not Java source files or bytecode. For
example, HTML files, image files, audio clips, or SQLJ source files.

Versioning project resource files
Any project resource files contained in the project owner’s local project_resources
directory are automatically versioned when the owner versions the project. Since
only the owner can version the project, all other developers on the team must
provide a copy of their project resource files to the project owner if they want them
versioned. Team members can do this by individually releasing project resource
files, which the project owner can then access on the server.

Releasing project resource files
When a project owner versions a project, all the project resource files in the project
owner’s local project_resources directory are automatically released, updating the
project baseline. Therefore, the project owner should make sure that the project
resource files are correct when they version the project.

Project resource files can also be released individually by the members of the
development team. When released individually, they must be released into open
editions of the project. A team member may choose to explicitly release project
resource files while the team is working on an open edition, so that if anyone loads
or reloads the project, they will get the latest changes.

If you are working with an open edition of a project and release a resource file,
then modify it and re-release it, your previous edition of the file will automatically
be replaced.

When you release a resource, VisualAge for Java will automatically attempt to
release the resource’s enclosing folder (and its enclosing folder and so forth). When
you release a resource folder, VisualAge for Java will also automatically attempt to
release the contents of the folder itself (and the contents of each of its folders and
so forth). If a resource or resource folder cannot automatically be released because
you do not own it, you will receive an error message (if an enclosing folder cannot
be released) or a warning message (if the contents of a folder cannot be released).

The following are various examples of different setups of resource files and folders.
In these examples, everthing is in an unreleased state.
1. Folder A contains

Resources B and C

Chapter 1. Team development concepts 9

2. Folder D contains
subfolder E which contains

Resources F and G
3. Folder H contains

subfolder I which contains
Resources J and K and also contains

subfolder L which contains
Resources M and N

In example one, if you release Folder A, then both Resources B and C will be
released. If you release one of the resources, for example, Resource B, then it and
Folder A will be released, but Resource C will not.

In example two, if you release Folder D, then everything contained inside it
(subfolder E and Resources F and G) are released. This could also be accomplished
by releasing subfolder E, as its enclosing subfolder (Folder D) and its resource
(Resources F and G) would also be released.

In example three, if you release subfolder L, then its resources (Resources M and
N), and its enclosing folders (subfolder I and Folder H) are released. Resources J
and K are not released, however, because they are not connected to subfolder L -
they do enclose it nor are they enclosed by it. If you release Resource M all the
folders and subfolders are released, but none of the other resources are. This is
because all of the folders and subfolders enclose Resource M, but none the
resources are enclosed by Resource M nor do they enclose it, so they are not
connected to it.

Team members can add, delete, rename, or replace resource files in their
workspace but may only perform these same operations on released resources if
they are the project owner or the owner of the affected resources. For example, a
team member can create a local copy of a resource, but they cannot change the
released edition of it, unless assigned ownership of it.

For a team member to own a released edition of a resource, the project owner must
release the resource and then assign ownership to it.

You can assign ownership in the Resources page of the project browser or the
Workbench.

Resource files do not appear in the Repository Explorer until they have been
released.

Refer to the list of related tasks below for more information on performing these
tasks.

Released resources in the file system
When resources are released, they are are stored in a directory in the same location
as the shared repository. The name of the directory is the name of the repository
with the suffix ’.pr’. For example, if your repository is called ivj.dat, your
directory would be called ivj.dat.pr.

Note: Never delete files directly from the file system. You should always work in
VisualAge for Java to purge, copy or back up resource files.

For all platforms: Use caution when you are using clients and servers with
different file systems where one file system is case-sensitive and the other is not.

10 Team Programming

For example, if you have UNIX® clients and a PC server, and you have a resource
called TEST.TXT and a resource called test.txt and you release them both, one will
overwrite the other as they both cannot exist on the PC filesystem. Conversely, if
you have a PC client and a UNIX server and you have a project with the resources
TEST.TXT and test.txt, when you load those resources, one will overwrite the other
as they both cannot exist on the PC file system.

Loading a project with project resource files into your workspace
When users load an edition of a project into their workspace, they can view and
edit all the resources associated with a project.

If you replace an edition of a project in your workspace without releasing the
resources, any changes you make to them will be lost.

When users load an edition of a project into their workspace, all of the resources
associated with it are copied into the local project_resources directory for the
project (any old resources in this directory will be deleted first). When a project is
deleted from the workspace, the project resource files are deleted from the local
project_resources directory. If you load an edition of the project into the workspace
that was created in Version 2.0 or 3.0x of VisualAge for Java and does not have any
project resource files associated with it, the contents of the the project_resources
directory will remain untouched.

Resource files and directories
Version control for Java program elements
Baselines, releasing and reloading

Releasing a program element or resource file
Sharing resource files
Creating resource folders
Adding resources from the file system
Replacing a resource file with the released version
Changing the owner of a resource file or folder

Ownership and team roles - overview
Ownership
In the team development environment, change control is based on program
element ownership. In VisualAge for Java, Enterprise Edition, every project,
package, class, and project resource file has an owner.

The owner of each program element is responsible for its integrity and consistency.
For example, while several developers might work concurrently on the same class
(in separate open editions), the owner of the class is responsible for merging their
changes into a single edition, versioning that edition, and releasing the new
version to update the team baseline.

This ownership-based system differs from development environments where
change management is based on reserving program elements. In those
environments, developers “check out” files to prevent others from concurrently
modifying the same component. Often, any developer can check out a program
element, change it, and check it back in, thereby affecting the mainstream of
development.

Chapter 1. Team development concepts 11

By contrast, in the VisualAge for Java team development environment team
members can work in parallel on the same program elements (in their own open
editions) and their changes are automatically saved in the shared repository, but
owners control the mainstream of development; they must approve changes before
they are released into the team baseline. This approach offers both programmer
productivity and quality control.

Team roles
In VisualAge for Java, the following team roles exist:
v Classes have developers and owners

v Packages, projects (and project resource files), have owners

v The repository has an administrator

v The repository server is started and stopped by a user called the EMSRV user

Each of these team roles is discussed as a separate topic. See the list of related
topics, below.

There are certain operations that only these individuals can perform. In actual
practice, a team member will probably perform more than one role. For example,
the same person might be the developer of several classes, the owner of a few
classes, and the owner of one package. Another team member may be the
repository administrator and the EMSRV user.

All team members (that is, everyone who has been added to the repository user
list by the administrator) are automatically class developers. All team members can
browse program elements in the repository, develop classes, and create scratch
editions of existing packages to experiment with. To release their work into a team
baseline, for other team members to work with, developers must belong to a
package group and have the appropriate ownership privileges. See the list of
related topics below, for more information.

Team development - overview
Class developer
Class owner
Package owner
Project owner
Repository administrator
EMSRV user
Package groups
Repository user list
Team and project organization
Scratch editions
Editions and versioning
Baselines, releasing, and reloading
Team development scenarios - overview
Sample life cycle of an application

Adding users to the repository user list
Adding members to a package group
Changing a program element’s owner
Viewing a program element’s owner
Viewing a class or interface’s developer

12 Team Programming

Class developer
Any team member can create new classes and create open editions of existing
classes, thereby becoming the developer of that open edition of the class.

Only the developer of a particular class edition can version that edition, whereas
only the class owner can release the version.

The class developer and the class owner may be the same person, or there may be
more than one developer working on the same class. (When multiple developers
work on the same class, they work in their own editions.)

Team development - overview
Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview
Class owner

Creating an open edition
Versioning a program element

Class owner
A class owner is the team member responsible for the integrity of a particular class
and its methods.

Only the owner of a class can update the team baseline in the following ways:
v Release editions of the class into the containing package
v Delete editions of the class from the containing package

Often, the owner and developer of the class are the same person. Sometimes two
or more developers may be working on the same class. In that case, the class
owner is responsible for comparing and merging everyone’s changes into a single
edition of the class. The class owner then versions the merged edition and releases
it.

Within an edition of a package, each class has one owner (but may have multiple
developers). The same class can have a different owner in another edition of the
package.

Any member of the package group can change ownership of the class to any other
member of the package group.

Team development - overview
Ownership and team roles - overview
Editions and versioning
Baselines, releasing, and reloading
Class developer
Package groups

Chapter 1. Team development concepts 13

Comparing editions of a program element
Merging editions of a class or interface
Versioning a program element
Releasing a program element
Building a team baseline
Changing a program element’s owner

Package owner
A package owner is responsible for the overall quality of a package. The owner of
a package coordinates the activities of the class owners who are releasing their
versioned classes into that package.

Only the owner of a package can do these things:
v Version the package to preserve a team baseline
v Create an open edition of the package so that class owners can update the team

baseline by releasing or deleting classes
v Add members to the package group and delete members from the group

Both the project owner and the package owner can update the team baseline in the
following ways:
v Release the package into its containing project edition
v Delete the package from its containing project edition

Both the administrator and the package owner can transfer ownership of the
package to another member of the package group.

If you create a package, you are by default the owner of that package. Different
editions of one package may have different owners.

Package owners control when a package is frozen and when it is opened for
further development. They should ensure that an open edition of their package is
available when class owners need to release their versioned classes or create new
classes. Otherwise, the class owners in the package group can only work in their
own scratch editions of the package, and they can not release their work.

Team development - overview
Ownership and team roles - overview
Editions and versioning
Baselines, releasing, and reloading
Package groups
Scratch editions

Versioning a program element
Releasing a program element
Creating an open edition
Adding members to a package group
Changing a program element’s owner

14 Team Programming

Project owner
A project owner is responsible for the overall quality of a project. A project owner
coordinates the activities of the package owners who are releasing their packages
into that project.

Only the owner of a project can do the following:
v Version the project to preserve a team baseline
v Create an open edition of the versioned project so that package owners can

update the team baseline by releasing their packages
v Add packages to the project and delete packages from the project, thereby

updating the team baseline
v Assign ownership of project resource files (when they are first created)

Both the project owner and the administrator can change ownership of the project.
Both the project owner and the package owner can release packages into the
package.

It is worth noting that if the project owner does not create an open edition,
package owners can no longer release editions and versions of their packages into
the project. They can make changes to their packages, but they cannot release those
changes into the project. This gives the project owner complete control over when
a project is frozen and when it is reopened for further development.

Team development - overview
Ownership and team roles - overview
Baselines, releasing, and reloading
Scratch editions
Version control for Java program elements
Version control for resource files
Resource files and directories

Creating an open edition
Versioning a program element
Releasing a program element or resource file
Sharing resource files

Repository administrator
Each repository has one administrator in its repository user list. The administrator
is the only person who can do the following tasks:
v Add, delete, and change users on the repository user list
v Compact the repository

The repository administrator, along with the owners of the affected program
elements, can also do these tasks:
v Purge projects and packages from the repository
v Change the owner of a project, package, or class

Chapter 1. Team development concepts 15

The repository administrator should know how your VisualAge for Java projects
are organized, and which responsibilities have been assigned to each developer on
the team.

Combining repository administrator with other roles
The person who performs the tasks listed above may also be a developer on the
team, but the repository administrator’s ID should not be used for application
development. Change workspace owner to alternate between working as the
administrator and working as a developer. This separation of roles provides the
following benefits:
v Normal, ownership-based change control mechanisms can not be bypassed

accidentally. For example, a developer who is not connected as Administrator
can not inadvertently purge another developer’s packages.

v The role of the administrator can be transferred to another team member later,
without necessitating transfer of owned program elements.

v It is easier for team members to identify the real owner or developer of a
program element, by looking at its properties.

The repository administrator may also be the EMSRV user. (The EMSRV user starts
and stops the repository server, and backs up the repository with the emadmin
copy command.) Unlike the EMSRV user, the repository administrator requires
access to a workstation running the IDE.

Your repository administrator may also perform the following tasks, although no
special VisualAge for Java privileges are required:
v Install the repository server
v Create shared repositories
v Back up shared repositories
v Enable password validation

These responsibilities may be assumed by the same person who is your LAN
administrator.

The repository administrator ID
When you first install VisualAge for Java, Enterprise Edition, the only user in the
repository list is Administrator. This is the default full name for the repository
administrator. The first user to connect to the shared repository will connect as the
repository administrator. This person should add team members to the repository
user list, and then change workspace owner before developing code.

The repository administrator’s full name (which appears in user lists like the
Change Workspace Owner window) and network login name (which is used to
validate the administrator’s password validation) can be changed by opening the
User Administration window. The repository administrator’s unique name cannot
be changed.

Repository user list
EMSRV user
Ownership and team roles - overview
Workspace owner

16 Team Programming

Adding users to the repository user list
Changing workspace owner
Enabling password validation - overview
Changing a program element’s owner
Creating a repository
Backing up a shared repository
Purging program elements from the repository
Compacting a repository
Setting up a team Server - overview

EMSRV user (All server operating systems except OS/2)

The person who starts the repository server
(EMSRV) is known as the EMSRV user. The EMSRV program runs with that user’s
privileges.

When you start the repository server (EMSRV), you must provide
the name of a user under whose authority the emsrv program will run, as one of
the EMSRV startup parameters.

The EMSRV User’s Password
You must know the EMSRV user’s password to perform the following operations:

Server operating system EMSRV user’s password is required

To stop the server remotely

To start the server
To stop the server remotely

Not applicable. Optionally, you can provide
a password as a server startup parameter, in
which case the same password must be
provided to stop the server remotely. This
password does not have to be the login
password of the user who starts the server.

Combining the Role of the EMSRV User with Other Roles
The EMSRV user may also be the administrator. (The administrator maintains the
list of users authorized to use the repository, and performs tasks like compacting
the repository.) Unlike the administrator, the EMSRV user does not require access
to the IDE.

The EMSRV user may be an existing user, or you may want to create a new user
for operating the repository server. The EMSRV user requires access to the
following files:
v The shared repositories that EMSRV manages on the server
v The EMSRV log file (automatically created and owned by the EMSRV user)
v The passwd.dat file, if you are using it for password validation

Security considerations
You may want to restrict access to the above files so that only the EMSRV user has
authority over them.

Chapter 1. Team development concepts 17

To start the repository server, the EMSRV user must have a number of
advanced user rights. For more information on these rights and how to grant them,
refer to the related tasks listed below.

The EMSRV user’s password can be seen when EMSRV is started from a
command prompt or as a manually started service in the Windows registry. You
can reduce the risk of exposing network passwords by creating a new user just to
operate EMSRV and by limiting that user’s access to anything other than
VisualAge for Java files. If you install EMSRV as a service in the registry as an
automatically started service, you can hardcode the EMSRV user’s name and
password and they will not be visible.

The repository server (EMSRV)
Repository administrator

Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Stopping the repository server
Authorizing the EMSRV user (Windows)
Enabling password validation - overview

Repository files
EMSRV startup parameters
EMSRV authentication on Windows
EMSRV authentication on Netware

Workspace owner
To be connected to a shared repository, your workspace must have an owner. You
choose the owner from the repository user list. The unique name (not the full
name) of the workspace owner identifies you to the repository server.

The workspace owner’s privileges determine what you can do with program
elements in the shared repository. For example, if the workspace owner belongs to
a package group, you can create classes in that package. When you create new
program elements, the current workspace owner automatically becomes the owner
of those elements.

When you save the workspace, for example by exiting the IDE, the workspace
owner’s name is saved. The next time you start the IDE, the workspace will be
connected automatically to the same repository, with the same owner. You can
change the workspace owner while you are connected to a shared repository.

The workspace owner’s name is always displayed in the title bar of the Workbench
window and the Repository Explorer window.

18 Team Programming

If password validation has been enabled in your environment, you will be
prompted for the workspace owner’s password when you start the IDE, change
repositories, or change workspace owner.

Team development - overview
Workspace
Repository
Repository user list
Package groups
Repository administrator
Ownership and team roles - overview

Adding users to the repository user list
Changing workspace owner
Enabling password validation - overview
Connecting to a shared repository
Changing repositories

Repository user list
Each shared repository on the server has a list of VisualAge for Java users who are
allowed to use that repository. Team members must be added to the repository
user list before they can connect to the repository or be assigned to package
groups.

The repository administrator adds team members to the user list. (In addition, if
password validation is enabled, the administrator will add the same users to the
passwd.dat file or create user accounts in the server operating system.) Usually
package owners, not the administrator, add team members to their package
groups.

Repository
Repository administrator
Ownership and team roles - overview
Package groups
Package owner
Workspace owner

Adding users to the repository user list
Enabling password validation - overview
Adding members to a package group
Creating a repository
Connecting to a shared repository

Chapter 1. Team development concepts 19

Package groups
In VisualAge for Java, Enterprise Edition, each edition of a package has a group of
developers who are assigned to work with classes in that package. These
developers are the package group for that edition.

Package group members can do the following things:
v Own classes in the package
v Create classes in the package
v Release classes that they own, into the package
v Delete classes that they own, from the packages
v Change ownership of any class in the package (not just the classes that they own)

Different editions of one package can have different package groups.

The package owner adds team members to the package group, after the
administrator has added them to the repository user list.

Ownership and team roles - overview
Package owner
Class developer
Class owner
Repository user list
Repository administrator

Adding members to a package group
Adding users to the repository user list

20 Team Programming

Chapter 2. Team development scenarios

Team Development Scenarios - overview
To take full advantage of the team programming features of VisualAge for Java,
you should establish modes of operation that are suitable for your environment,
and adhere to them. To help you design procedures for your own environment,
this documentation presents some team development scenarios:
v Basic class development pattern
v Single package, single developer
v Single package, multiple developers
v Multiple packages, multiple developers
v Project wrap-up and delivery

These scenarios build on each other, so it is recommended that you read them in
the order shown. They are adapted from the IBM redbook, VisualAge for Java
Enterprise Team Support (SG24-5245-00). For information on VisualAge for Java
books, select the Library link at http://www.software.ibm.com/ad/vajava/.

Team development - basic class development pattern
Team development scenario - single package, single developer
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Team development scenario - project wrap-up and delivery
Team development - overview
Sample life cycle of an application

Team development - basic class development pattern
As a class developer, you move through a cycle of creating an open edition,
making changes to it, and versioning it.

Basic development pattern for classes

© Copyright IBM Corp. 1998, 2000 21

This basic pattern forms the core of all the work you do in VisualAge for Java. You
may enter the cycle at different points, depending on the context in which you are
working. You leave the cycle having created a new version of the class.

The frequency with which you version your classes depends on personal style and
on your team’s established practices. One guideline is to version whenever you
reach a known state that you may wish to return to. Versioning classes at least
once a day would be typical. This pattern naturally supports an incremental
development style that is usual in object-oriented programming. When you are
working as part of a team, there may also be a requirement to version your classes
at defined intervals. Versioning allows your classes to be seen by other developers
or to be released by the class owner for the creation of a package baseline.

Team development scenarios - overview
Team development scenario - single package, single developer
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Team development scenario - project wrap-up and delivery
Team development - overview
Sample life cycle of an application
Editions and versioning
Baselines, releasing, and reloading

Creating an open edition
Versioning a program element

Team development scenario - single package, single developer
This scenario describes the simplest way of working with VisualAge for Java,
Enterprise Edition. This is a situation where one person on the team does all of the
work for a small application, which consists of a single package. The application
may use classes from other packages, but the developer does not need to change
them.

The overall process is shown in the following illustration. It builds on the basic
class development pattern that is described as a separate topic in this
documentation.

22 Team Programming

Single developer working in a single package

As the developer in this scenario, you play the roles of package owner, class
owner, and class developer. A project owner creates a package and transfers
ownership of the package to you. You create the classes and interfaces required for
the application. You follow the basic class development pattern by creating an
open edition, making changes, debugging, and versioning.

When you have finished testing, you release your classes into the package, version
the package, and release it. (If you work in an environment that uses rolling
baselines, you would have released the package when you created the open
edition. Rolling baselines are described in the team development scenario with
multiple developers working on multiple packages.)

Although this is a simple scenario, many small applications will be developed this
way using VisualAge for Java, Enterprise Edition.

The next team scenario describes an environment where multiple developers work
together on a single package.

Team development scenarios - overview
Team development - basic class development pattern
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers

Chapter 2. Team development scenarios 23

Team development scenario - project wrap-up and delivery
Team development - overview
Sample life cycle of an application
Editions and versioning
Ownership and team roles - overview
Baselines, releasing, and reloading

Creating an open edition
Creating a package
Creating a class
Versioning a program element
Releasing a program element
Building a team baseline

Team development scenario - single package, multiple developers
In this team development scenario, multiple developers work on an application
that consists of a single package. This scenario highlights the cooperative nature of
VisualAge for Java team development, and introduces the concept of a package
baseline.

Project set-up
Typically, in this situation, the lead developer acts as the package owner. The
project owner creates the package and assigns ownership to the lead developer.

After some analysis of the problem and after an initial design, the set of classes
and interfaces that make up the application are known. The lead developer
allocates responsibility to each of the other developers, for a number of classes. As
the package owner, the lead developer also adds team members to the package
group so that they can create classes and interfaces within the package.

Basic development pattern
As with the other team scenarios, the development process in this environment is
built on the basic class development pattern. As the following figure illustrates,
each developer follows the basic pattern independently.

24 Team Programming

Developers working independently on their own classes

The developer who creates a class or interface automatically becomes its owner.
Other developers may make changes to a class they do not own but, as described
later, the owner must accept or reject those changes and make them available to
the rest of the team. The owner is responsible for the class.

Merging changes made by different team developers
In practice, team development is not always as simple as suggested above, since
developers are often dependent on each other’s work. For example, a developer
working on one class may need new function in another class, or may be affected
by a bug in another class. And, the owner of that class may be too busy to make
the required changes immediately. In the VisualAge for Java team environment, the
developer who needs the change can create an open edition of the relevant class,
make the changes there, and use that edition to continue working productively.

The person who creates an open edition of a class is the only person who can
version that particular edition, but the class owner is the only person who can
release the class into the team baseline. As the next step in this scenario, the
developer versions the edition to make the changes visible to the class owner, and
then consults with the class owner to get approval. The class owner may release
the versioned edition immediately, but it is quite likely that the class has been
further developed by the owner in the meantime, in which case the owner would
merge the two sets of changes in a single open edition. This process is shown in
the following illustration.

Chapter 2. Team development scenarios 25

Class owner reconciles changes made by another team member

Change reconciliation is easy to do with the comparison browser in VisualAge for
Java; the owner views class and method definitions side-by-side, and selectively
loads from other developer’s version into the open edition in the workspace.
Reconciliation of class changes should occur on a regular basis. Fewer errors occur
when reconciliations are small and frequent.

Once the changes have been merged, the normal development pattern resumes.

Establishing a package baseline
The project manager has established a plan that identifies milestones in the
application development process. Milestones generally represent the achievement
of a certain level of functionality within the application. They also provide an
opportunity for all developers to synchronize with each other and get a common
view of the current state of the application. This process is called establishing a
baseline. Baselines help the team to find inconsistencies early in the development
process, before they become entrenched.

When a deadline is approaching, the lead developer expects programmers to have
all their classes in a working state, and instructs the class owners to release. The
lead developer, who is the package owner, establishes a new baseline by versioning
the package. The lead developer then opens a new edition of the package, so the
team can resume work on it. Before continuing with their development work, the
team developers synchronize with the new baseline by reloading the package. To
reload, they select Replace with > Another Edition from the package’s pop-up
menu in the Workbench, and choose the new open edition.

The following figure illustrates the process of establishing a baseline for a package.

26 Team Programming

Establishing a package baseline

At this point, the class owners resume the normal development pattern until the
next project milestone and the production of a new baseline.

The next team scenario describes a more complex environment, where multiple
developers work on multiple packages.

Team development scenarios - overview
Team development - basic class development pattern
Team development scenario - single package, single developer
Team development scenario - multiple packages, multiple developers
Team development scenario - project wrap-up and delivery
Team development - overview
Sample life cycle of an application
Editions and versioning
Ownership and team roles - overview
Baselines, releasing, and reloading

Creating an open edition
Creating a package
Creating a class

Chapter 2. Team development scenarios 27

Versioning a program element
Releasing a program element
Building a team baseline
Comparing editions of a program element
Merging editions of a class or interface
Replacing editions in the workspace (reloading)

Team development scenario - multiple packages, multiple developers
This scenario is typical of team development on a large-scale project. In this
environment, a number of people work together on an application that includes
multiple packages. This scenario extends the other team development scenarios
included in this documentation.

Set-up and basic development pattern
A large development project includes many distinct subsystems, partitioned into
separate packages. The project team is divided into smaller teams; each team is
responsible for a particular package. The project owner, who is perhaps the chief
architect, creates the packages and assigns ownership of each package to the
corresponding team leader. Each team leader adds the team members to the
package group.

As in the previous team development scenarios, developers in this environment
follow the basic class development pattern: they create open editions, make
changes, and version their open editions. As in the scenario with multiple
developers working on a single package, package baselines are established on a
regular basis, and class owners reconcile other developers’ changes to their classes.
Change reconciliation sometimes occurs across package boundaries, when a
developer working in one package has to change a class that is in another package.
The process for merging changes across packages is exactly the same as it is within
a single package.

Standard project baseline
There are two approaches to establishing a project baseline for the team. One is the
standard project baseline, which is static; the other is the rolling baseline, which is
dynamic.

The standard project baseline is analogous to the package baseline that was
described in the scenario with multiple developers working on a single package.
To establish a standard project baseline, you start by creating a baseline for each
package in the project. Next, the versioned packages are released into the project,
either by the individual package owners or by the project owner. Once all the
packages are versioned and released, the project owner creates a new baseline by
versioning the project.

The new version represents an immutable state of the project, its packages and all
their classes. This frozen state distinguishes the standard baseline from the rolling
baseline that is described below. With a standard project baseline, if work is to
continue, the project owner must create an open edition of the project so the
package owners can create open editions of their packages and the class
developers can recommence releasing changes into the packages.

The following figure illustrates the process of establishing and loading a standard
project baseline.

28 Team Programming

Establishing a standard project baseline

Rolling project baseline
You are most likely to create a standard project baseline at major project milestones
and at the end of a project. For ongoing development, it can be quite a
burdensome process. It is often difficult for the team to produce a baseline for all
packages at the same time. VisualAge for Java provides a more flexible way for the
team to synchronize with the current state of the application. The alternative is to
establish a rolling project baseline.

The main difference in this approach is that packages are released into the project
while they are still open editions. Unlike classes, packages do not have to be
versioned before they can be released. As a result, the project baseline is dynamic:
when a class is released into a package, the configuration of the containing project
is simultaneously updated. Any time a developer reloads the project (by selecting
Replace with > Released Contents from the project’s pop-up menu in the
Workbench), the class editions that are in the workspace are all replaced with the
editions that the class owners have most recently released.

The following figure illustrates the process of establishing and loading a rolling
project baseline.

Chapter 2. Team development scenarios 29

Establishing a rolling project baseline

Combining baseline approaches
Caution should be exercised with the rolling baseline technique. Releasing a class
straight into the project has the effect of bypassing any integration testing that, in a
standard baseline environment, would occur at the package level. The release of a
defective class could seriously affect the productivity of any programmer who
loads it. For that reason, you might want to restrict the rolling baseline technique
to packages where the class owners are senior programmers who always test their
classes prior to release.

Team development scenarios - overview
Team development - basic class development pattern
Team development scenario - single package, single developer
Team development scenario - single package, multiple developers
Team development scenario - project wrap-up and delivery
Team development - overview
Sample life cycle of an application
Editions and versioning
Ownership and team roles - overview
Baselines, releasing, and reloading

Creating an open edition
Creating a package

30 Team Programming

Creating a class
Versioning a program element
Releasing a program element
Building a team baseline
Comparing editions of a program element
Merging editions of a class or interface
Replacing editions in the workspace (reloading)

Team development scenario - project wrap-up and delivery
Like the basic class development pattern that is presented as a separate topic, the
process for delivering a project is common to both small and large team
development environments.

The first step is to produce a standard project baseline, as described in the team
development scenario with multiple developers working on multiple packages.
You may wish to create a separate project for the released version, to reinforce the
separation of development and production versions of the project. Or, you may use
the existing project as the reference version. In either case, add comments to the
open edition of the project before you version it. It is useful to establish a standard
format for comments, and to use it extensively.

When you have a completed, versioned project, choose a delivery mechanism.
VisualAge for Java, Enterprise Edition, offers a number of options for exporting
your work so that it can be delivered to your customer:
v Export .class or .java files to the file system
v Publish an applet
v Produce a .jar file
v Export to another repository

These tasks are discussed as related topics.

Team development scenarios - overview
Team development - basic class development pattern
Team development scenario - single package, single developer
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Team development - overview
Sample life cycle of an application
Editions and versioning
Baselines, releasing, and reloading

Building a team baseline
Exporting and publishing code
Deploying an applet on the network station
Deploying an application on the network station
Exporting to another repository

Creating a project
Versioning a program element

Chapter 2. Team development scenarios 31

Sample life cycle of an application
The following example shows the steps that a team of developers might follow to
deliver enhancements to an existing VisualAge for Java application. In the
example, there are five team members:
v The repository administrator
v A project owner
v A package owner
v Two class owners

In your own environment, one person may perform two or more of these roles, or
your team may be much larger than five people. The basic flow is the same,
regardless of whether you have a “team of one” or a team of twenty or more
developers.

Similarly, the example shows the creation of one project, one package, and two
classes. In your own projects you may be working with existing program elements,
and you may have many more of them.

Phase 1: Project initiation
The steps in this phase would only be performed once, at the beginning of the
project.

Team member Steps performed

Administrator v Adds all members of all project teams to the repository user list.

Project Owner v Creates a new project, using the Comments pane of the SmartGuide to
document the purpose. By default, the edition status is open.

v Adds any necessary packages from the shared repository to the open edition
of the project in the workspace, and then releases them to update the project
baseline.

v Creates one or more new packages, including PackageA, in the open project.
New packages are released automatically.

v Adds Package Owner, Class Owner A, and Class Owner B to the package
group for PackageA.

v Transfers ownership of PackageA to Package Owner.

Administrator v Reviews ownership of existing packages. If classes in those packages require
changing, transfers package ownership to someone on the team. (The new
package owner would add developers to the package group and assign
ownership of classes.)

Package Owner, Class Owner A,
Class Owner B

v Connect to the shared repository and add the open edition of the project to
workspace. This action will automatically add the released package and class
editions contained in the project.

At this point, every team member’s workspace contains the open edition of the
new project, any existing packages (and any contained classes) that the project
owner added to the project, and an open edition of PackageA. The team is ready to
begin development.

Phase 2a: Ongoing development
In this phase, the team develops the planned enhancements to their application. As
is always the case with VisualAge for Java, the development process is iterative.

32 Team Programming

Team Member Steps Performed

Class Owner A v Creates one or more new classes in PackageA, including ClassA.

v Versions open class editions after completing significant blocks of work.

Class Owner B v Creates one or more new classes in ProjectA, including ClassB.

v Versions open class editions after completing significant blocks of work.

All Team Members v As necessary, add other team members’ versioned classes to their workspaces,
for testing.

v As necessary, make changes to classes. (Each team member works in a
different open edition of each class.)

v Version open class editions after completing significant blocks of work.

Class Owner A v On request, compares other developers’ changes to ClassA and merges them
into a single versioned edition.

v Releases the latest stable version of ClassA into the open edition of PackageA
in the repository, to update the team baseline.

v Tells the team when to replace the edition of ClassA that is in their
workspaces, with the latest released contents.

Class Owner B v Performs the same activities as Class Owner A, for the classes he owns
(including ClassB).

All Team Members v When advised by class owners, replace the class editions in their workspaces
with more recently versioned editions from the shared repository by selecting
Replace with Released Edition from the pop-up menu for the class.

v When they want to reload all the classes within a package or project, select
Replace with Released Contents for the package or project. If this backs out
changes that they want to keep, they can retrieve their open editions by
selecting Replace with Another Edition for those specific program elements.

Administrator v Every night, backs up the shared repository.

You may have noticed that, in this example, the package and project editions
remain open while the classes are frequently versioned. That is a typical
development pattern. If you prefer to version projects or packages while classes are
still being developed, then it is important that project and package owners create
new open editions immediately after versioning, so that class developers can
continue to release their changes into the team baseline. For more information on
development patterns and team baselines, see the team development scenarios that
are included elsewhere in this documentation.

Phase 2b: A deviation from the main development flow
This minor variation illustrates how members of the VisualAge for Java package
group are really “trusted peers”.

Team member Steps performed

Package Owner v Makes some useful changes in an open edition of ClassB.

Class Owner B v Likes the changes, but is too busy to incorporate them. Suggests that Package
Owner incorporate the changes herself.

Chapter 2. Team development scenarios 33

Package Owner
(new owner of ClassB)

v Transfers ownership of ClassB to herself. (Any member of the package group
can do this.)

v Compares her changes with the latest released version of ClassB, in case there
are new changes to be merged.

v Versions her open edition of the class, and releases it.

Class Owner B
(original owner of ClassB)

v Loads Package Owner’s released version of ClassB into the workspace
(Replace with Released Edition).

v Changes ownership of ClassB back to himself.

This example shows how flexible the team development environment is, and why
communication and cooperation among team members is very important.

Phase 3: Preparation for testing
At this point, the team is ready to close off work, for acceptance testing.

Team member Steps performed

Class Owners v Search for their unversioned editions (using Management Query from the
Workspace menu), so they can version and release them.

v Search for remaining unreleased versions and release them.

Package Owner v Searches to make sure there are no unversioned or unreleased class editions.

v Versions PackageA.

At this point, someone on the team would bundle the VisualAge for Java program
elements with the necessary resource files (for example, images or audio clips) and
deliver the application to the testers. The steps required to do this, which might
include exporting to the file system or publishing to an intranet, are not dependent
on any particular VisualAge for Java privileges or team roles.

The package will remain frozen until testing has been completed. Meanwhile, team
members who want to experiment with changes to classes in the package can do
so by creating their own scratch editions of the package.

Phase 4: Wrap-up
Assuming that acceptance testing goes well and the users only report a few small
problems, the team would follow a process similar to the following one in order to
wind down the project.

Team member Steps performed

Package Owner v Creates a new open edition of PackageA so class owners can make changes.

v Releases the open edition of the package, so the project baseline will be updated automatically
as classes are released.

Class Owners v Reload the project (Replace with Another Edition).

v Make final changes to their classes.

v Version and release their changed classes into the open edition of PackageA.

Package Owner v Updates the comments for Package A.

v Versions PackageA (which was released when it was created).

Project Owner v Updates the comments for the project.

v Versions the project.

34 Team Programming

Again, someone on the team would take the necessary steps, such as exporting, to
actually deploy the application. Deploying is not dependent on any VisualAge for
Java privileges or team roles.

Team development - overview
Ownership and team roles - overview
Editions and versioning
Baselines, releasing, and reloading
Team and project organization
Team development scenarios - overview
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Team development scenario - project wrap-up and delivery

Creating an open edition
Creating a scratch edition
Comparing editions of a program element
Merging editions of a class or interface
Versioning a program element
Releasing a program element
Building a team baseline
Replacing editions in the workspace (reloading)
Managing editions of program elements
Finding unversioned editions in the workspace
Finding unreleased editions in the workspace

Chapter 2. Team development scenarios 35

36 Team Programming

Chapter 3. Working in a team environment

Logging in to the server
If the VisualAge for Java repository server (EMSRV) has been started with
password validation enabled, you will be prompted for a password when you
perform either of these tasks:
v Connect to a shared repository on the server
v Change workspace owner

Otherwise, there is no “login” required. While you are using VisualAge for Java,
you have the privileges of the current workspace owner. To work as someone else,
select Change Workspace Owner from the Workspace menu.

Team client/server configuration
The repository server (EMSRV)
Workspace owner
Repository user list

Connecting to a shared repository
Changing workspace owner
Enabling password validation - overview
Adding users to the repository user list

EMSRV startup parameters

Connecting to a shared repository
Your workspace is automatically connected to a shared repository when you
perform one of these tasks:
v Start the IDE in the team development environment. The workspace will connect

to the same server and shared repository that you were using when you last
exited the IDE.

v Change to another shared repository, after starting the IDE.

The first time that you connect to a shared repository, you will be asked to select a
workspace owner from the repository user list. Contact the repository
administrator if your name is not on the list. If password validation has been
enabled on the repository server, you will need to provide your password to
connect to any repository on that server.

Whenever you connect to to a repository, VisualAge for Java performs a complete
check for consistency with the workspace. This can take some time. Inconsistencies
are noted in the Log window.

© Copyright IBM Corp. 1998, 2000 37

Once you have connected to a shared repository, you can browse it using the
Repository Explorer window. Ask your project leader which editions you should
add from the repository to your workspace, so you can start programming.

The ide.ini file
The names of the server and the repository are stored in the [JavaDevelopment]
section of the ide.ini file on your client workstation. This information is provided
when you install VisualAge for Java on the client, and it is saved when you exit
the IDE. Here is an example:
[JavaDevelopment]
ServerAddress = bestteam
DefaultName = team1.dat

In the above example, “bestteam” is the IP host name of the server and team1.dat
is the name of the shared repository. Because no path information is provided for
the repository, the repository server uses the EMSRV working directory to locate
the shared repository. See the list of related topics, below, for more information
about the EMSRV working directory.

Here is another example:
[JavaDevelopment]
ServerAddress = 9.55.55.155
DefaultName = j:\javateam\ivj.dat

In the second example, the server’s IP address is used instead of its host name, and
explicit path information is provided for the shared repository. In this example, j: is
a local drive on the server.

Handling connection errors
If you have trouble connecting to a shared repository, check the following things:
v Are the server and repository names spelled correctly in the ide.ini file?
v Has EMSRV been started on the server? Use the emadmin stat hostname

command to verify.
v Did the administrator supply the right EMSRV startup parameter for working

directory? To see the current EMSRV working directory, issue the emadmin opts
command.

v Has TCP/IP been started on the server and the client? To verify, ping the server
from the client, using the appropriate command for your TCP/IP software.

v Has some process other than EMSRV locked the repository file?
v Does your repository file have the correct permissions? An error message that

reads ″repository <name> cannot be opened on machine <machine>, error
accessing <name>, lock violation.″ or “Access denied” could be caused by
inadequate permissions. Check the settings of ivj.dat (your repository file) to
make sure that is is NOT read-only.

v Are you pointing to the right server, path and repository? If you get the error
message: ″VisualAge is unable to start due to an unrecoverable error in the
startup sequence, one or more required files may be missing or the workspace
may be corrupt.″ when you try to start and you suspect that EMSRV is at fault,
open the IDE.INI file (found in
x:\IBMVJava\ide) and check the following things:
– ″DefaultName″ points to the correct repository.
– ″ServerAddress″ is a valid server on which EMSRV is running.

38 Team Programming

If the IDE.INI file looks correct, try to ping the machine where EMSRV is
installed. If you cannot ping the machine, you may have a TCP/IP error. As
well, ensure that EMSRV has started. If you try to start your client and EMSRV
is down, you may receive this message.

v If you receive the error message: “Error 33”, you may be trying to access a
repository you do not have permission to acccess. Check to see if you have the
correct permission to access the repository.

v If you receive the error message, Failed to open path name : errno=[13], you
may not have permission to access a drive or directory you are trying to connect
to. Ensure that you can access any drives or directory that files may be read
from or written to (for example, ensure you can access the location the log file
will be written to).

Team development - overview
Team client/server configuration
The repository server (EMSRV)
Repository administrator
Repository user list

Changing repositories
Adding users to the repository user list
Enabling password validation - overview
Changing workspace owner
Adding projects and packages from the repository to the workspace
Adding classes and methods from the repository to the workspace
Reconnecting after a server failure
Working at a standalone workstation
Changing the EMSRV working directory

EMSRV startup parameters
The EMADMIN utility - overview
The EMADMIN stat command
Repository files

Changing workspace owner
The workspace owner’s unique name, from the repository user list, is what
identifies you to the repository server. At times, you might want to work as
someone else. For example, you may want to work as the repository administrator
so you can add users. You can do this by changing the current workspace owner.

To change workspace owner:
1. From the Workspace menu, select Change Workspace Owner. A dialog box

will appear, listing all the names from the repository user list.
2. Select the new workspace owner, and click OK.
3. If password validation is enabled on your server, you will be prompted for the

network password of the new workspace owner. Type the password and click
OK.

Chapter 3. Working in a team environment 39

You can also change the workspace owner by double-clicking on the current
owner’s name in the status bar at the bottom of the window.

On all VisualAge for Java windows, the title bar will show the new workspace
owner’s name.

Workspace owner
Repository user list

Enabling password validation - overview
Adding users to the repository user list

Releasing a program element or resource file
In VisualAge for Java, Enterprise Edition, you release a class, package or resource
file to update the team baseline. A baseline is the combination of class editions that
make up a specific edition of a package, or the combination of package editions
that make up a specific edition of a project.

Releasing is very important in the team development environment, because it
determines which editions get added to the workspace when a team member
performs any of the following actions:
v Adds a project or package to the workspace.
v Selects Replace with Released Edition for a package, class or resource file.
v Selects Replace with Released Contents for a project or package.

Resource files and folders are automatically released when the project owner
versions the project. Resource files can also be released individually. You can also
release entire resource folders and all the resources contained in them. Team
members can only release project resource files or folders that they own the
released edition of. If you are working with an open edition of a project and
release a resource file, then modify it and re-release it, your previous edition of the
file will automatically be replaced.

When you release your resources, they are are stored in a directory in the same
location as the repository. The name of the directory is the name of the repository
with the suffix ’.pr’. For example, if your repository is called ivj.dat, your
directory would be called ivj.dat.pr.

If you export projects with project resources to a repository, a stored resource
directory will be created for the resources. If you are going to make a copy of the
repository, you should always ensure that you also copy the stored resources
directory.

Unlike solutions, projects, types, and methods, resources only exist on the server
when they are released. After you have released a resource file, you cannot
re-release it until you have modified it.

Once team members have released their resource files, the project owner can load
the latest copies of the them into their workspace, and then version the project,
setting a new baselines, making the newly updated resource files available to all
the team members.

40 Team Programming

To release packages and classes:
1. In a browser or the Workbench window, select the editions that you want to

release. (You can make multiple selections by holding down the Ctrl key.)
2. From the pop-up menu, select Manage > Release.

To release a resource file or resource file folder, follow these steps:
1. Select and double-click the project that contains the project resource files you

wish to work with. The project browser opens.
2. Click the Resources tab.
3. Select the resource or resource folder that you want to release and from its

pop-up menu select Release. When you release a resource, VisualAge for Java
will automatically attempt to release the resource’s enclosing folder (and its
enclosing folder and so forth). When you release a resource folder, VisualAge
for Java will also automatically attempt to release the contents of the folder
itself (and the contents of each of its folders and so forth). If a resource cannot
be automatically released because you do own it, you will receive an error
message (if an enclosing folder cannot be released) or a warning message (if the
contents of a folder cannot be released).

Once you have released the editions, the unreleased (>) marker no longer appears
beside their names in the Managing page of the Workbench window. The open
edition of the containing project or package is updated with the newly released
edition of the class, package or project resource file. Team members who had
previously added the project or package to the workspace are not notified when the
baseline is changed. Inform the team when you release a class, package or project
resource file, so they can take the appropriate action to replace the edition in their
workspaces.

To determine the last released edition, select Properties from the program
element’s pop-up menu and then select the Info page of the Properties notebook.

The following considerations govern releasing:

Program element Consideration

Project v Not applicable.

Package v Both open and versioned editions of packages can be released.

v The project into which you are releasing must be an open
edition.

v You must be the package owner or the project owner.

v When you create a package, VisualAge for Java automatically
releases the initial open edition of the package.

v When you version a project, VisualAge for Java automatically
releases any unreleased packages that it contains, irrespective
of who owns the package.

Class v Only versioned editions of classes can be released.

v The package into which you are releasing must be an open
edition.

v You must be the class owner.

v When you version a package, VisualAge for Java automatically
versions and releases the contained classes that you own.

Method v Methods are automatically released when you save them.

Chapter 3. Working in a team environment 41

Project resource files v You must be the project owner or the resource file owner

v The project into which you are releasing must be an open
edition. You must be the project owner or if there is already a
released edition of the resource, you must own the currently
released edition.

Version control for Java program elements
Baselines, releasing and reloading
Version control for resource files
Ownership and team roles - overview
Workspace

Finding unreleased editions in the workspace
Managing editions of program elements
Versioning a program element
Replacing editions in the workspace (reloading)
Searching the workspace by edition status, owner, or developer
Building a team baseline
Sharing resource files
Replacing a resource file with the released version

Creating a scratch edition
Scratch editions are private. They reside in the workspace; no one else can see
them in the shared repository. In the workspace, you can have scratch editions of
projects or packages, open editions of classes contained in scratch editions of
packages, and open editions of packages contained in scratch editions of projects.

If you have configured your VisualAge for Java options to show edition names,
your scratch editions will be designated with < > around the program element’s
version name:
PackageA <1.0>
PackageB 1.2

In the example above, PackageA is a scratch edition that was created from a
versioned edition called 1.0. PackageB is not a scratch edition; it is a versioned
edition.

You may use a scratch edition to experiment, for example to learn how someone
else’s code works, or to test a change that you think the program element’s owner
should make. You can version program elements that are contained in a scratch
edition, but you can not release them.

To create a scratch edition of a package, do one of these things:
v Modify a class contained in a versioned edition of a package, and then save

your changes. A scratch edition of the package will be created automatically.
v Replace the edition of a class in a versioned package with another edition of that

class. A scratch edition of the package will be created automatically.

To create a scratch edition of a project, do one of these things:

42 Team Programming

v Create a new open edition of a package that is a scratch edition. A scratch
edition of the project will be created automatically.

v Create a new open edition of a versioned package contained in a versioned
edition of a project. A scratch edition of the project will be created automatically.

To find all of your scratch editions at once, select the Management Query tool
from the Workspace menu, and specify Scratched as one of your search criteria.

Scratch editions
Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview
Workspace

Versioning a program element
Creating an open edition
Releasing a program element
Replacing editions in the workspace (reloading)
Searching the workspace by edition status, owner, or developer

Sharing resource files
In the team development environment, resource files are stored on the team server.
The following is a typical development cycle dealing with shared resources:
1. (Optional) The project owner creates resource folders in their workspace to

separate the files into groups. For example, the project owner may want to
create a folder for each team member.

2. The project owner adds resource files to the project.
3. After the project owner has added all the resource files to the project, the

project owner should release any resources that have not been released
previously. Any resources that have been previously released appear in the
Resources pane of the Repository Explorer Projects page. Ownership cannot be
assigned to resource files or folders before they have been released. As well, the
other team members cannot load any resource files into their workspaces that
have not been released.

4. The project owner transfers ownership of the released files and folders to the
team members who will be responsible for releasing changes to the files.

5. The team members then load the project into their workspaces. The project
comes with all the resource files (and folders) associated with it, which are
stored in the local project_resources directory.

6. The team members progress through the normal development cycle, working
with program elements and resource files.

7. When they are at a stage that they are ready to share their changes with other
team members, team members release their resource files to the server.

8. When team members want to pick up other team members’ changes, they
replace a resource file with the released copy.

9. When the project owner is ready to set a new baseline, they replace all of the
resource files in their workspace with the released copies, and then they
version the project. Team members reload the project and start the development
cycle again.

Chapter 3. Working in a team environment 43

Baselines, releasing and reloading
Version control for resource files
Resource files and directories

Creating resource folders
Project owners can create folders for project resource files and assign ownership to
these folders. When a developer owns a folder, the developer should own all the
project resource files contained in the folder.

To create a resource folder, follow these steps:
1. In the project browser, select the Resources tab.
2. Right-click anywhere in the Resources page and select Add > Folder.
3. Enter the name of the new folder. You can create a folder that contains a

subfolder, by entering the name of the folder followed by a backslash (\) and
the name of the new folder:
Newfolder\subfolder\anothersubfolder

4. If you want to add a subfolder to a folder after you have created it, select the
folder and select Add > Folder from its pop-up menu. Repeat step 3.

The project owner can now assign ownership to the folder (and subfolders) and
add resource files to it.

All team members can create folders locally by following the steps above, but they
cannot release them or change the owner of them. They can add project resource
files to them, but they cannot release the files unless they own the released version
of the resource file.

When you release a resource folder, VisualAge for Java will automatically attempt
to release the contents of the folder itself (and the contents of each of its folders
and so forth). It will also automatically attempt to release the folder’s enclosing
folder (and its enclosing folder and so forth).

Resource files and directories
Version control for Java program elements
Baselines, releasing and reloading
Version control for resource files

Releasing a program element or resource file
Sharing resource files
Adding resources from the file system
Replacing a resource file with the released version
Changing the owner of a resource file or folder

44 Team Programming

Adding resource files to the project from the file system
Team members can add, delete, rename, or replace resource files in their
workspace but may only perform these same operations on released resources if
they are the project owner or the owner of the released resources.

All team members can add resource files from the local file system or network.
Files that are added to folders are not automatically assigned the same owner as
the folder (if the folder has an owner); you must change their owner (if you have
that authority) manually.

You can add resource files to a versioned edition of a project. You cannot release
the resources, however, until you create an open edition of the project.

To add resource files to the workspace, follow these steps:
1. In the project browser or the Workbench, select the Resources tab.
2. If you want to add the resource files to a folder, first select the folder and select

Add > Resources from the folder’s pop-up menu.
If you do not want to add the resource files to a folder, right-click on the
appropiate project and select Add > Resources from the pop-up menu.

3. Select the directory that contains the resource files you want to add. Click OK.
4. The Add Resources window opens. All the available resources (from both the

directory and any subdirectories it contains) are automatically
selected. Deselect any resources you do not want to add to your resource
folder. Click OK.

5. The resources are copied into the local project_resources directory for your
project. Any relative paths will be retained.

All team members other than the project owner can edit the resources, but they
cannot change the ownership of them or release them. The project owner can
release the files, and then change ownership of them.

After ownership has been assigned to the files and folders, the team members can
load the project into their workspace.

Resource files and directories
Version control for Java program elements
Version control for resource files
Baselines, releasing and reloading

Releasing a program element or resource files
Sharing resource files
Creating resource folders
Replacing a resource file with the released version
Changing the owner of a resource file or folder

Replacing a resource file with the released version
All team members can replace the current copy of a resource file in their
workspace with the most recently released version of it. They can choose to replace
all resource files in the project at once, or to replace files individually.

Chapter 3. Working in a team environment 45

To replace a resource file with the most recently released version of it, follow these
steps:
1. In the project browser or Workbench, select the Resources tab.
2. Select the resource that you want to replace. Right-click and select Replace

With > Released Edition.

3. The released version is imported into your workspace.

Resource files and directories
Version control for Java program elements
Version control for resource files
Baselines, releasing and reloading

Releasing a program element or resource files
Sharing resource files
Creating resource folders
Adding resource files to the project
Changing the owner of a resource file or folder

Building a team baseline
Baselines allow team developers to synchronize the editions that they have in their
workspaces, to have a common view of the application, and to catch
inconsistencies in their work.

Updating a team baseline
A class owner updates a package baseline by creating a new class in the package,
adding an existing class to the package, releasing an updated class into the
package, or deleting a class from a package.

A project owner updates a project baseline by creating a new package in the
project, adding an existing package to the project, releasing an edition of a package
into the project, or deleting a package from the project. A project owner can also
update the project baseline by releasing project resource files.

A package owner can also update the project baseline by releasing or deleting a
package.

Only open editions of packages and projects can be modified in this manner. When
the package or project is versioned, that particular baseline is frozen. When the
package or project owner creates a new open edition, the team can start building a
new baseline from that point.

Synchronizing with a baseline
Team members load a baseline by adding a project or package to their workspaces.
This automatically loads the class versions most recently released into that edition
of the project or package from the shared repository.

When team members want to resynchronize with a baseline, they reload by
selecting the open edition of the project or package in the Workbench window, and
then selecting Replace with > Released Contents from the program element’s
pop-up menu. This action refreshes all of the class editions in the workspace with
the versions most recently released into that edition of the package or project.

46 Team Programming

Team development - overview
Baselines, releasing, and reloading
Team development scenarios - overview
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Sample life cycle of an application

Creating a class
Creating a package
Adding classes and methods from the repository to the workspace
Adding projects and packages from the repository to the workspace
Releasing a program element
Deleting program elements from the workspace
Replacing editions in the workspace (reloading)
Adding projects and packages from the repository to the workspace

Managing editions of program elements
Edition management in a team development environment can become complex
when there are many developers, program elements and editions. The Managing
page of the Workbench consolidates information about team editions, and is a
convenient place to perform activities such as versioning, releasing, and replacing
editions of program elements in your workspace.

The Workspace menu’s Management Query selection allows you to search the
workspace, using different combinations of the following search criteria:
v Search by edition status (open, versioned, unreleased, scratch, or undefined)
v Search by kind of program element (type, package, or project)
v Search by scope (workspace or working set)
v Search by owner
v Search by developer

This is very useful, for example if you are a class developer and you want to know
which of your classes you have not versioned, or you are an owner who wants to
know which of your program elements you have not released. From the search
results list, you can select editions and use their pop-up menus to browse, version,
release, delete from the workspace, or replace the edition in the workspace with
another edition from the repository. You can also copy from the search results list
to the system clipboard.

For more information on using the management query tool, refer to the related
information on searching the workspace by edition status.

Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview

Chapter 3. Working in a team environment 47

Searching the workspace by edition status, owner, or developer
Creating an open edition
Versioning a program element
Releasing a program element
Building a team baseline
Replacing editions in the workspace (reloading)
Changing a program element’s owner

Finding unreleased editions in the workspace
Editions that have not yet been released are marked with > beside their names in
the Managing page of the Workbench window. In the following example, the open
edition of PackageA has been released, but the versioned edition of PackageB and
the open edition of PackageC have not been released.
PackageA (3/28/98 4:21:15 PM)
>PackageB 1.2
>PackageC (4/12/98 10:15:11 AM)

You can use the Management Query tool to find all the unreleased editions that are
in your workspace. Here is an example of searching for unreleased editions that
you own:
1. From the Workspace menu, select Management Query.
2. In the Status area of the Management Query window, select Unreleased.
3. In the Owners area, select Current User.

4. Click the Start Query button.

The side pane of the Management Query window will show the search results:
v For packages, the search results include both open and versioned editions.
v For classes and interfaces, the search results show editions that have been

versioned but not released.

Editions and versioning
Baselines, releasing, and reloading

Finding unversioned editions in the workspace
Searching the workspace by edition status, owner, or developer
Releasing a program element
Building a team baseline
Replacing editions in the workspace (reloading)

Finding unversioned editions in the workspace
To tell whether an edition is open or versioned, look at its edition name in
VisualAge for Java browsers and in the Workbench window. (If you do not see

edition names, click the Show Edition Names button.)

Open editions have a date and timestamp (in parentheses) showing when they
were created. Versioned editions have actual names, which you assign when you

48 Team Programming

version them. In the following example, FredsClass and KimsClass have been
versioned, while MyClass is still an open edition.
FredsClass 1.3
KimsClass KP-4Feb-Fix Show()-1.2
MyClass (03/08/98 12:51:32 PM)

You can use the Management Query tool to find all the unversioned editions that
are in your workspace. Here is an example of how you would search for
unreleased editions that you own:
1. From the Workspace menu, select Management Query.
2. In the Status area of the Management Query window, select Open Edition.
3. In the Owners area, select Current user.

4. Click the Start Query button.

Depending on what other search criteria you selected, the side pane of the
Management Query window will show your unversioned projects, packages, and
classes.

Editions and versioning
Baselines, releasing, and reloading

Finding unreleased editions in the workspace
Searching the workspace by edition status, owner, or developer
Versioning a program element
Replacing editions in the workspace (reloading)

Viewing a class or interface’s developer
Classes and interfaces can only be versioned by the user who developed them. To
see who is the developer for a class or interface, select the program element in any
browser or in the Workbench window. The developer’s name will appear in
parentheses in the status line at the bottom of the window. (When you select an
edition of a project or package, the status line will show you the owner’s name.)

You can also see who developed a particular class or interface by selecting
Properties from the program element’s pop-up menu.

Ownership and team roles - overview
Editions and versioning

Changing a program element’s owner
Viewing a program element’s owner
Searching the workspace by edition status, owner, or developer

Chapter 3. Working in a team environment 49

Viewing a program element’s owner
To see who owns a project or package in the workspace, select the program
element in any browser or in the Workbench window. The owner’s name appears
in the status line at the bottom of the window. (When you select an edition of a
class or interface, the status line will show you the developer’s name.)

You can also use the Managing page of the Workbench window to find out who
owns program elements that are in your workspace:
v When you select a project from the Projects pane, the owner’s name appears in

the Project Owner pane.
v When you select a package from the Packages pane, the owner marker (>)

appears next to the owner’s name in the Package Group Members pane.
v When you select a class or interface from the Types pane, the owner’s name

appears in the Type Owner pane.

You can also see who owns a program element by selecting Properties from the
element’s pop-up menu.

Ownership and team roles - overview
Editions and versioning

Changing a program element’s owner
Viewing a class or interface’s developer
Searching the workspace by edition status, owner, or developer

Changing a program element’s owner
In the team development environment of VisualAge for Java, change control is
based on ownership. At times, you will want to reassign ownership of program
elements, for example when someone leaves the team.

Here are the rules governing change of ownership for program elements:

Program element Who is authorized to change
the owner

Who is eligible to be the
new owner

Class The administrator or any
member of the package
group

Any member of the package
group

Package The administrator or the
package owner

Any member of the package
group

Project The administrator or the
project owner

Anyone on the repository
user list

Project resource files The administrator or the
project owner

Anyone on the repository
user list

Ownership of project resource files is assigned differently than for all other
program elements. Refer to the list of related tasks below for information about
changing the owner of project resource files.

50 Team Programming

To change the owner of a program element:
1. Change workspace owner to the appropriately authorized user, based on the

table shown above. If password validation has been enabled, you will be
prompted for a password.

2. In the Workbench, click the Managing tab. The owner marker (>) appears
beside the names of package owners in the Package Group Members pane.

3. Select the program elements whose ownership you want to change. From the
pop-up menu, select Manage > Change Owner. A list of eligible users will
appear.

4. Select the name of the user who will be the new owner, and click OK.

The new owner’s name will now appear in the appropriate pane at the bottom of
the Workbench’s Managing window.

Ownership and team roles - overview
Package groups

Viewing a program element’s owner
Searching the workspace by edition status, owner, or developer
Changing workspace owner
Adding members to a package group
Enabling password validation - overview
Changing a resource’s owner

Adding members to a package group
Before developers can own, create, or release classes in a given package, they must
be members of the appropriate package group. Package group members can also
change ownership of classes in the package.

Only the package owner can change the membership of the package group. To see
who the owner is, select the package on the Managing page of the Workbench
window, and look for the owner marker (>) in the Package Group Members pane.

Users must be in the repository user list before they can be added to a package
group.

To add users to a package group, do the following steps:
1. In the Workbench, click the Managing tab.
2. On the Managing page, select one or more packages. If you select only one, the

members of the group will be listed in the Package Group Members pane.
3. Open the pop-up menu for the selected packages, and select Manage > Add

User to Group. The Add Users dialog box will show a list of repository users
who are not yet members of the package group.

4. Select one or more user names, and click OK.

The users will be added to the appropriate package groups. To verify, select each
package and review the list of names in the Package Group Members pane.

Removing members from a package group
To remove users from a package group:

Chapter 3. Working in a team environment 51

1. In the Workbench, click the Managing tab.
2. On the Managing page, select a package. The Package Group Members pane

will list the team members who are currently in the group.
3. Select one or more user names.
4. Open the pop-up menu for the selected names, and select Remove.

The users’ names will be removed from the list of group members.

Ownership and team roles - overview
Package owner
Package groups

Adding users to the repository user list
Changing a program element’s owner

Changing the owner of a resource file or folder
A team member must own a project resource file or folder before they can release
it. If they do not own a resource file, they can edit it, but they cannot make their
changes available to other team members.

Only the project owner or the owner of the released edition of a resource or folder
can assign ownership to that resource file or folder. Team members can add, delete,
rename, or replace resource files in their workspace but may only perform these
same operations on released resources if they are the project owner or the owner of
the affected resources. Only the project owner can release a resource to a project if
there is not already a released edition of the resource. After doing so, the project
owner may assign ownership to another user.

If the ownership of a resource file or folder is not assigned to anyone, it is
implicitly owned by the project owner. If the project owner is changed, then
resource files or folders that have not been assigned an owner are automatically
owned by the new project owner. If a project owner wants to maintain ownership
of a resource file or folder, they must explicitly assign it to themselves.

To assign ownership to a project resource file or folder, you must be working with
an open edition of the project. Follow these steps:
1. In the project browser, select the Resources tab.
2. The current owner of the resource file or folder is listed in the Owner

column. If the resource file or folder has not been released, this column will be
blank. You must release the resource before an owner can be assigned.

3. From the resource file’s or folder’s pop-up menu select Change Owner.

4. Select the new owner. Click OK.
5. The new owner’s name is now listed in the Owner column.
6. When you change the owner of the folder, it does not change the owners of

any subfolders or resources contained in it. You must change the ownership of
each folder, subfolder, and resource individually.

52 Team Programming

The new owner can now release different editions of the resource into the project.
The project owner can also do this, as the project owner always has the right to
modify released resources.

Resource files and directories
Version control for Java program elements
Version control for resource files
Baselines, releasing and reloading

Releasing a program element or resource files
Sharing resource files
Creating resource folders
Adding resource files to the project
Replacing a resource file with the released version

Viewing information about your repository connection
To see details about the repository to which the workspace is currently connected,
do the following steps.
1. From the Window menu, select Repository Explorer. The Repository Explorer

window will open.
2. From the Admin menu, select Properties. The Properties dialog box appears,

showing information about the repository file and the repository’s contents.

If you are connected to a repository on a server, the Repository field in the
Properties dialog box will show the repository name in server::filename format.
Here is an example:
teamserv::team1.dat

If you are connected to the local repository, the Repository field in the Properties
dialog box will display path information for the .dat file.

Repository

Changing repositories
Connecting to a shared repository

Repository files

Changing repositories
The workspace can only be connected to one repository at a time. You can change
repositories, for example to browse program elements developed by another team.
You can change to another shared repository, perhaps on a different server, or you
can change to a local repository on your client workstation.

Chapter 3. Working in a team environment 53

When you exit the IDE, VisualAge for Java will save the server and directory
names for your last connection, in the client’s ide.ini file. The next time you start
the IDE, your workspace will connect to that repository. To confirm which
repository you are currently using, select Properties from Admin pull-down menu
in the Repository Explorer window.

Changing to a shared repository on a server
To connect your workspace to a shared repository on a server:
1. It is recommended that you delete projects from your workspace before

connecting to a repository that does not contain those projects.
2. From the Repository Explorer window, select Admin > Change Repository.

The Select repository dialog box will appear.
3. Select Use a shared repository with EMSRV server address. In the entry field,

type the IP address or host name of the server where the shared repository
resides.

4. Click Browse. A second dialog box will appear, listing the repositories (.dat
files) that are available in that server’s working directory.

5. Select the repository file that you want to use, and click Open. (To navigate
through the server directory structure, double-click entries in the Directories
pane.) The first dialog box will reappear, with the name of the repository
entered.

6. Click OK.
7. If you are not on the user list for the new repository, you will be asked to

choose a new workspace owner. (VisualAge for Java compares the unique
name, not the full name, when it checks the repository user list.) Select an
owner name and click OK. If password protection has been enabled on the
repository server, you will need to provide the new workspace owner’s
password.

8. A message will confirm that the workspace is being connected to the new
repository. If there are inconsistencies between the workspace and the new
repository, a message will instruct you to check the Log. Click OK and open
the Log window.

If you attempt to browse a program element that does not reside in the new
repository, you will see the text “Source code not available” in the browser’s
Source pane. If you plan to continue working with this repository, select Save
Workspace from the File menu. This action will ensure that the next time you start
the IDE, you will be connected to the same repository and you will have the same
editions in your workspace.

Changing to a repository on your workstation
To connect your workspace to a local repository on your own hard drive:
1. It is recommended that you delete projects from your workspace before

connecting to a repository that does not contain those projects.
2. From the Repository Explorer window, select Admin > Change Repository.

The Select repository dialog box will appear.
3. Select Use a local repository and click Browse. A second dialog box will

appear, showing the contents of the VisualAge for Java program directory on
your machine.

4. Navigate through the directory structure until you see the repository (.dat file)
that you want to use. Select it and click Open. The first dialog box will
reappear, with the name of the repository entered.

5. Click OK.

54 Team Programming

6. If you are not on the user list for the new repository, you will be asked to
choose a new workspace owner. (VisualAge for Java compares the unique
name, not the full name, when it checks the repository user list.) Select an
owner name and click OK.

7. A message will confirm that the workspace is being connected to the new
repository. If there are inconsistencies between the workspace and the new
repository, a message will instruct you to check the Log. Click OK and open
the Log window.

If you attempt to browse a program element that does not reside in the new
repository, you will see the text “Source code not available” in the browser’s
Source pane. If you plan to continue working with this repository, select Save
Workspace from the File menu. This action will ensure that the next time you start
the IDE, you will be connected to the same repository and you will have the same
editions in your workspace.

Team client/server configuration
Workspace
Repository
Repository user list
Repository administrator
Workspace owner

Connecting to a shared repository
Changing workspace owner
Adding users to the repository user list
Enabling password validation - overview
Changing the EMSRV working directory
Saving the workspace

Repository files
EMSRV startup parameters

Working at a standalone workstation
As a team developer, you may sometimes need to work away from the office. You
can do this by creating a repository to use when you are not connected to the
LAN.

Here is an example of how you might replicate program elements from the server
for use on a home computer. In the example, the home computer has its own local
repository and its own copy of VisualAge for Java, Enterprise Edition.
1. While connected to the shared repository, version the packages you need to

work with.
2. Export those packages to a temporary repository on the server. Call the new

repository home.dat. You cannot export any code that is not in the repository.
3. Copy home.dat from the server to an offline medium, for instance diskette.
4. Start the IDE on your home computer and connect to your default local

repository (ivj.dat).

Chapter 3. Working in a team environment 55

5. Copy home.dat onto your home computer and import its packages to ivj.dat.
6. Use the Repository Explorer to add the packages to your workspace. (If they

are already in your workspace, reload them by selecting Replace with >
Another Edition from their pop-up menus.)

7. Open a new edition of the packages whose classes you need to change. Modify
the classes as required, and then version and release them.

8. Reverse the process to transport your work back to the shared repository:
a. On your home computer, version the changed packages and export them to

another repository
b. Copy the results of the export to an offline medium; copy the portable

repository to the server
c. Import from it to the shared repository; reload the new versions.

There are variations on this approach:

If the server and the home computer have the appropriate hardware, you can
eliminate the two copy steps by exporting to a Zip disk.

If the client is a laptop, you could import your versioned packages directly from
the shared repository to a local repository on the laptop’s hard drive, and then
change to that repository before leaving the office. (If you forget to change
repositories while you are still connected to the LAN, you can still connect to your
local repository by editing the client’s ide.ini file. For more information, see the
related topic on connecting to a shared repository.)

Repository
Team client/server configuration
The repository server (EMSRV)

Importing from another repository
Exporting to another repository
Changing repositories
Connecting to a shared repository

Repository files

Recovering from a server failure
If you are working in the IDE and connected to a shared repository, you may
experience the following symptoms after a server failure:
v You are unable to open any new browsers
v You do not receive any confirmation message when you try to save a method
v You get an error message when you try to save the workspace
v You see one or more occurrences of the following error in the Log window:

An exception occurred in a system program
Terminating Default

56 Team Programming

These symptoms all occur because your connection to the shared repository has
broken. To reconnect to the shared repository after a server failure:
1. Confirm that the server has been restarted.
2. From the File menu of any VisualAge for Java window, select Quick Start.
3. Select Repository Management > Change Repository, and click OK. The Select

repository dialog box will appear.
4. Select Use a shared repository with EMSRV server address.
5. Accept the name of the current server, and click Browse. A second dialog box

will appear, listing the repositories (.dat files) that are available in that server’s
working directory.

6. Select the repository file that you were using before the server failed, and click
Open. The first dialog box will reappear, with the name of the repository
entered.

7. Click OK.
8. A message will confirm that the workspace is being connected to the repository.

If your workspace is not successfully reconnected to the shared repository, then
you must restart the IDE. If this is the case, you may need to re-add some open
editions from the repository, or replace editions in the workspace in order to
retrieve changes to methods that you had saved.

See the topics listed below for links to more information about workspace recovery.

Team client/server configuration

Saving changes to code
Saving the workspace
Backing up a shared repository
Connecting to a shared repository
Replacing editions in the workspace (reloading)

Recovering the workspace
Reinstalling the workspace
Important files to back up

Chapter 3. Working in a team environment 57

58 Team Programming

Chapter 4. Team administration

TCP/IP network considerations in team development
In the VisualAge for Java team development environment, all servers and clients
are connected by means of a TCP/IP network. VisualAge for Java does not provide
the TCP/IP software itself; typically your operating system would provide TCP/IP
support.

EMSRV for NetWare requires the NetWare TCP/IP stack (TCPIP.NLM) loaded and
configured on the server. When EMSRV for NetWare is started, if this NLM is not
loaded, it will automatically be loaded. EMSRV for NetWare will also automatically
load the NWSNUT.NLM which is required by the EMSRV for NetWare user
interface.

The default limit for client connections to a server is 512. This limit can be changed
by using the -M parameter of the emsrv command. Some TCP/IP stacks will run
out of stream sockets before this limit is reached.

Team client/server configuration
The repository server (EMSRV)
Server considerations in team development

Setting up a team server - overview

EMSRV startup parameters
EMSRV and TCP/IP

Server considerations in team development
The repository server (EMSRV) must be installed on any computer where one or
more shared repositories will reside.

You may have one or more servers in your team development environment. Below
are some issues to consider when planning where to install shared repositories and
the repository server.

Capacity and availability
Run EMSRV on server-class computers. For optimal availability and performance,
servers should be dedicated; that is, shared repositories should not reside on a
developer’s workstation.

EMSRV uses TCP/IP for its client/server network connections. The default limit
for client connections to a server is 512, but some TCP/IP stacks will run out of
stream sockets before this limit is reached.

© Copyright IBM Corp. 1998, 2000 59

Number and placement of shared repositories
Repository planning considerations, including information on file sizes, are covered
as a separate topic in this documentation.

Ease of management
It is simpler to manage one server than multiple servers. For example, it is easier
to design a backup strategy for one server.

Supported operating systems
The following operating systems are supported as VisualAge for Java servers:
v Windows NT Workstation Version 4.0 (with Service pack 5) **
v Windows NT Server Version 4.0 (with Service pack 5) **
v Windows 2000 Professional **
v Windows 2000 Server **
v Windows 2000 Advanced Server **
v OS/2® Warp Version 4.0
v OS/2 Warp Server for e-business
v AIX® Version 4.3.2, 4.3.3
v HP-UX Version 10.20, 11.0
v Sun Solaris Version 2.6 (with patch 106257-05), 7.0
v Novell NetWare Versions 4.2, and 5.1
v Red Hat Linux 6.1, 6.2

Withdrawal of support for SMP hardware

** IMPORTANT NOTE: Running any release of EMSRV for Windows NT/2000 on
a machine with more than one processor may lead to repositories becoming
corrupt.

EMSRV is no longer supported on Windows NT/2000 servers that run on SMP
hardware (machines with more than one processor). The decision to remove
support for SMP hardware is due to the frequency of reports concerning repository
corruptions with Windows servers and SMP hardware. EMSRV continues to
support SMP hardware for all other operating systems.

IBM ACCEPTS NO LIABILITY FOR DAMAGES YOU MAY SUFFER AS A RESULT
OF USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT RUNS ON SMP
HARDWARE, INCLUDING BUT NOT LIMITED TO, DAMAGES CLAIMED BY
YOU, BASED ON THIRD PARTY CLAIMS. IN NO EVENT WILL IBM, ITS
SUPPLIERS, AGENTS AND EMPLOYEES BE LIABLE FOR ANY INDIRECT,
SPECIAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL DAMAGES WHICH
MAY RESULT FROM USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT
RUNS ON SMP HARDWARE.

If you want to use EMSRV on a server that runs on SMP hardware, you must use
the -mp parameter when you start EMSRV. This will bypass the check for SMP
hardware. By doing this, you will be running EMSRV on an unsupported platform
and must assume full responsibility (IBM DOES NOT ASSUME RESPONSIBILITY
OR LIABILITY OF ANY KIND) if repositories become subsequently corrupted.

EMSRV does not exploit extra processors, by virtue of the fact that EMSRV is an
input/output-bound process, not processor-bound. Consequently, the performance
of EMSRV is not impacted by the number of processors on your server.

60 Team Programming

Team client/server configuration
The repository server (EMSRV)
Network considerations in team development
Server security
Number and placement of shared repositories

Setting up a team server - overview
Optimizing server performance

Repository files

Server files and directories
Server files
The team development server requires the following files:
v The executable program for the repository server (emsrv.exe, emsrv.nlm, emsrv,

or emsrv.shadow)
v The repository server log file (default name emsrv.log)
v One or more shared repositories (default name ivj.dat)

The repository server program must be installed on any computer where a shared
repository will reside. The EMADMIN utility (emadmin.exe) may also be installed
for local monitoring or stopping of the repository server. As project resource files
are added to projects and versioned, subdirectories are added to the directory
where the shared repository resides.

It is not necessary to install the IDE on the server.

Server directories
VisualAge for Java repositories must reside on the same system as EMSRV; remote
file systems are not supported.

The server files may reside in any directory on the server. It may be convenient to
keep them together in the same directory, for the following reasons:
v If repository files are in the same directory, and if that directory is the EMSRV

working directory, then team members do not have to provide path information
to connect, export, import, or change repositories. See the related topics below,
for links to more information on the EMSRV working directory.

v If repository files are all in one directory, it is easier to write a script to back
them up.

v By default, the emsrv.log file is written in the EMSRV working directory. (To
override the default, use the -lf startup parameter of the emsrv command.)

EMSRV checks the location of the working directory at startup. If the working
directory is found to reside on a remote filesystem then EMSRV will not start.
EMSRV also checks the location of each repository it opens. If the repository
resides on a remote file system then EMSRV will not open the repository.

Chapter 4. Team administration 61

File access rights
All files (including resource files) created by the repository server are owned by
the EMSRV user. The repository server has the file access rights of the EMSRV
user. To ensure the integrity of shared repositories, you may wish to restrict rights
for repository files to the EMSRV user.

Planning for repository growth
In the team development environment, it is quite common for the shared
repository to reach a size of several hundred megabytes. Project and package
owners should be encouraged to purge program elements that are no longer
needed, so the administrator can compact the repository. Projects can be purged as
well as packages.

Users who do not own any projects, packages or classes are not copied when the
repository is compacted. After the compaction, the Administrator will have to
re-create them.

Team client/server configuration
Repository
The repository server (EMSRV)
Number and placement of shared repositories
Server considerations in team development
Server security
EMSRV user

Setting up a team server - overview
Changing the EMSRV working directory
Creating a repository
Compacting a repository

Repository files
EMSRV startup parameters

Server security
There are different levels of security that you can implement for VisualAge for Java
servers.

Password validation
If password validation is enabled on the repository server, team members must
provide valid passwords to do these tasks:
v Connect to a repository managed by that server
v Change workspace owner

In all cases, the workspace owner’s privileges determine what the developer who
is using that workspace can do. For example, if a developer connects to the shared
repository as Administrator, then that developer can purge any program element
or change ownership of any program element.

62 Team Programming

The VisualAge for Java default is to run with no password validation on the
repository server.

File security
The server comprises the following files:
v The executable file for the repository server (emsrv.exe, emsrv.nlm, or emsrv)
v The server log file (default name emsrv.log)
v One or more shared repositories (default name ivj.dat)

The only user who requires access to these files is the EMSRV user, under whose
authority the repository server runs. (The repository server handles input/output
requests on behalf of the clients.) You can add an additional measure of security by
restricting access to only the EMSRV user. Do this using the standard facilities of
your server operating system.

Physical security
For optimal performance and availability, the server should be a dedicated
machine, not a developer’s workstation. As with any kind of server, you should
exploit hardware and software features like keyboard passwords, and you should
consider the benefits of placing the server in a physically secure area.

Team client/server configuration
EMSRV user
Server files and directories
Server considerations in team development
Repository administrator

Setting up a team server - overview
Enabling password validation - overview
Adding users to the repository user list

Repository files

Number and placement of shared repositories
In the team development environment, there will be at least one shared repository.
You may decide to have more than one, residing on the same server or on different
servers. Team members can change from one shared repository to another, but they
can only be connected to one repository at a time.

Below are some issues to consider when deciding how many shared repositories
the team will use, and where they will reside.

Performance
There are several factors that affect the time required for a client to connect to a
shared repository, and to work with the repository after connecting. Those factors
include the number of clients using the same server, and the speed of the server
itself.

Chapter 4. Team administration 63

Repository growth and maximum size
The source code repository, ivj.dat, will grow as team members experiment and
take advantage of incremental development. It is not uncommon to have a
repository that is several hundred megabytes in size. The administrator can reduce
the size by compacting the repository after team members have purged any
package editions they no longer need.

You should be careful to try and avoid excess, unnecessary repository growth. For
example, if all your team members import a class library, this will take up more
space in the repository than if one team member imports it and the rest load it into
their workspace from the repository.

The maximum repository size is 2 gigabytes.

The maximum repository size is 4 gigabytes.

The maximum repository size is 2 gigabytes for FAT drives, 4 gigabytes for
FAT32 drives, and 16 gigabytes for NTFS drives.

The maximum repository size is 16 gigabytes.

The maximum repository size is 2 gigabytes.

Ease of management
It is simpler to manage one shared repository than multiple repositories, and it is
simpler to manage one server than multiple servers. For example, if everything
resides in one repository then it is easier to ensure your developers have access to
all of the program elements that they require. Trade-offs include performance and
the effort required to divide a repository later.

Team and project organization
If most of your developers need access to each others’ classes, then ideally they
should use a single shared repository. This must be weighed against performance
and server capacity considerations.

If your developers are working on very different projects and are not dependent
on each other’s classes, then you should consider designing your server and project
structure so they are working with different repositories. You might start by having
two or more repositories on one server to begin with, and then move them to
different servers later if you need more capacity.

Effort required to divide a repository
If you decide, after several months of development, that your team should be
working with multiple repositories, then the administrator will have to divide the
repository that everyone has been using. One way to do this is to create a second
repository, export selected program elements into it, and purge those program
elements from the first repository. Another approach is to copy the existing
repository, and purge what is not needed from both the original and the copy.

In any case, you must identify which group of developers needs which classes.
This process may require reorganization of projects and packages, and may involve
some trial and error.

Server capacity
Considerations for server selection are covered as another topic.

64 Team Programming

Restrictions
Repository files must reside on the same system as the EMSRV executable
program. The repository server does not support remote repositories.

Repository
Team client/server configuration
Server considerations in team development
Server files and directories
Team and project organization
Repository administrator

Setting up a team server - overview
Creating a repository
Compacting a repository
Purging program elements from the repository
Dividing a repository
Optimizing server performance

Repository files

Team and project organization
Before the team starts a new application development project, you should discuss
the following issues:
v How to organize the work
v How to structure the VisualAge for Java project, packages and classes
v Who should own each project, package, and class

After the design is complete, the appointed project owner should set up the project
for the rest of the team.

Organization and assignment of classes
Once you know what classes will be required and how they will be grouped into
packages, consider the following issues:

Who will belong to each package group? These are the developers who can own,
create, change, and delete classes in the package. The package group members are
“trusted peers”; they can take ownership of any class in the package, at any time.

Which developer is likely to make the most changes in each class? That developer
should probably own that class.

Are the developers dependent on classes in other packages? If not, perhaps you
should ask the administrator to create a separate shared repository for this project.
This would be simpler than dividing a large repository later.

Organization and assignment of packages and projects
Here are some other questions to answer before setting up the project in VisualAge
for Java.

Chapter 4. Team administration 65

Who will own the package? The package owner appoints members to the package
group, monitors whether they have versioned and released their classes, and
decides when the package is stable enough to release or version. The package
owner should be available to re-open the package after it has been versioned so
that class owners are not restricted to working in scratch editions. The package
owner probably owns some classes in the package.

Who will own the project? The project owner sets up the project by adding
packages to it and assigning them to owners. The project owner coordinates the
activities of the package owners and versions the entire project. This person, who
might have a job title like project leader or architect, probably also owns classes.

For an illustration of how the project manager would proceed to set up the project
and how the team members would perform their roles, see the sample application
life cycle that is described as a related topic.

For more a more detailed discussion of setting up the team development
environment, see the IBM redbook, VisualAge for Java Enterprise Team Support
(SG24-5245-00). For information on VisualAge for Java books, select the Library
link at http://www.software.ibm.com/ad/vajava/.

Ownership and team roles - overview
Package groups
Sample life cycle of an application
Number and placement of shared repositories

Creating a project
Creating a package
Adding users to the repository user list
Adding members to a package group
Changing a program element’s owner

Setting up a team server - overview
The administrator performs the following tasks to prepare a server for the team
development environment. For more detailed information, see the links to related
information at the end of this document.
1. Plan the server installation. Review the following subjects:

v Network considerations
v Server considerations
v Number and placement of shared repositories
v Server file and directory structures
v Server security

2. Plan the team and project organization.
3. Install and configure TCP/IP on the server.
4. Install the VisualAge for Java server code. This action will install the EMSRV

executable program and a repository called ivj.dat on the server. Refer to the
Installation and Migration guide on the product CD for information on how
to install the product.

66 Team Programming

5. Decide which user account will be used to start EMSRV, and create the user
account if necessary.

6. Give the EMSRV user the necessary Windows privileges.

Give the EMSRV user appropriate rights to any paths where
repositories can reside.

7. Install EMSRV as a service in the Windows registry. (As an
alternative, you may wish to start EMSRV from a command line until you are
familiar with the startup parameters, and then install it in the registry later.)

8. If native password validation will be used, create the user accounts on the
server. If VisualAge for Java password validation will be used, create the
passwd.dat file in the EMSRV working directory.

9. If it has been decided that more than one shared repository is necessary, create
the additional repositories. For example, you might make copies of ivj.dat
with different names, in the same directory.

10. Start EMSRV.
11. From a VisualAge for Java client, connect to the shared repository as

Administrator, and add users to the repository list. If there will be multiple
shared repositories, do this for each one.

Team client/server configuration
The repository server (EMSRV)
Network considerations in team development
Server considerations in team development
Number and placement of shared repositories
Server files and directories
Server security
Team and project organization
EMSRV user

Installing EMSRV as a service in the Windows registry
Removing EMSRV from the Windows registry
Authorizing the EMSRV user (Windows)
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Enabling password validation - overview
Connecting to a shared repository
Adding users to the repository user list
Creating a repository

Repository files
EMSRV and TCP/IP
EMSRV startup parameters

Chapter 4. Team administration 67

Installing EMSRV as a service in the Windows registry
You can install EMSRV in the Windows NT or Windows 2000 registry, if you prefer
to start EMSRV as a service rather than from a command prompt.

There are two advantages to installing EMSRV as a service:
v You can specify automatic startup so that EMSRV will start whenever the

repository server is booted.
v You can specify the default settings that you want EMSRV to use. For example,

you might want to ensure that password validation is always enabled.

If EMSRV is started as a service, the default EMSRV working directory is the
Windows NT or Windows 2000 system32\ directory. It is recommended that you
change this default by using the -W parameter when you install EMSRV as a service
in the Windows registry.

To install EMSRV as a service:
1. From a command prompt, change to the directory where the emsrv executable

program is installed.
2. Issue emsrv -install [parameter2] [parameter3] ... The first parameter

must be -install; the others are the EMSRV startup parameters that you have
chosen for your environment.
Here is an example:
emsrv -install -u joe -p donttell -W j:\sharedrep -rn

This example installs EMSRV as a service in the Windows registry, with joe as
the EMSRV user name and donttell as joe’s password. By default, the EMSRV
working directory will be j:\sharedrep and native password validation will be
enforced.

A message will confirm that EMSRV has been installed.
3. Steps a and b are slightly different for Windows NT and Windows 2000.

a) From the Windows NT Control Panel, double-click Services. The Services
dialog box will appear. Select EMSRV from the list of services.
b) From the Windows 2000 Control Panel, double-click Administrative Tools.
Double-click Services. Double-click EMSRV.

4. In the Startup Parameters text box, type the EMSRV startup parameters that
you want to use. If you are specifying the working directory for EMSRV to use,
you must type an extra backslash for each backslash in the path. Here is an
example:
-u emsrvacc -p secret -W d:\\javateam

5. Click Start. A message will appear, informing you that EMSRV is starting.

EMSRV is now installed as a service in the registry and the necessary DLLs have
been copied to the system directory. The parameters that you provided will be
used, by default, whenever EMSRV is started. You can also override or add to
these parameters if you start EMSRV manually from the Services icon of the
Windows Control Panel.

The repository server (EMSRV)
EMSRV user

68 Team Programming

Authorizing the EMSRV user (Windows)
Starting the repository server on Windows
Removing EMSRV from the Windows registry
Enabling password validation - overview
Enabling password validation with the passwd.dat file
Changing the EMSRV working directory
Displaying active EMSRV settings

EMSRV startup parameters

Removing EMSRV from the Windows registry
Warning: Removing EMSRV from the registry will also stop EMSRV if it is
running. You should not stop EMSRV until all clients have disconnected.
Otherwise, developers may not be able to save their workspaces.

To remove EMSRV from the registry on Windows NT or Windows 2000:
1. Make sure no team members are currently connected to the repository server.

To confirm this, issue emadmin list from the command prompt of any
network-attached workstation where the EMADMIN utility is installed.

2. To stop the repository server, enter EMADMIN stop.
3. Enter EMSRV -remove .

EMSRV will be removed from the registry. To confirm this, double-click the
Services icon in the Windows NT Control Panel. For Windows 2000, double-click
the Administrative Tools icon, then the Services icon in the Control Panel. EMSRV
no longer appears on the list of services.

The repository server (EMSRV)
EMSRV user

Stopping the repository server
Installing EMSRV as a service in the Windows NT or 2000 registry

The EMADMIN utility - overview
The EMADMIN stop command
The EMADMIN list command

Authorizing the EMSRV user (Windows)
On Windows NT or Windows 2000, the person who starts the repository server
(EMSRV) must provide the name of a user account under whose privileges the
repository server will run. This is known as the EMSRV user.

Chapter 4. Team administration 69

A number of advanced user rights are required for authentication to work
correctly. Authentication is required even if EMSRV is not started with the -rn
option since EMSRV authenticates the EMSRV account when it is started and
stopped.

Each of the advanced user rights required are detailed below.

Act as part of the operating system

This right is required for authentication and must be set for the account from
which EMSRV is started (if EMSRV is not started as a service) and the EMSRV
account. Note that both accounts must also be part of the ’Administrators’ group.

Logon as a service

This right is required if EMSRV is being started as a service and must be set for
the account from which EMSRV is started (if EMSRV is not started as a service)
and the EMSRV account. You must also ensure that the ’Deny logon as a service’
right is not set for each of the accounts.

Logon locally

This right is required if EMSRV is being started interactively or from a batch job
and must be set for the account from which EMSRV is started (if EMSRV is not
started as a service) and the EMSRV account. You must also ensure that the ’Deny
logon locally’ right is not set for each of the accounts.

Access this computer from the network

This right is required for each account which will be used to authenticate a client.
You must also ensure that the ’Deny access to this computer from the network’
right is not set for each account.

The following describes how to set and activate the Act as part of the operating
system right for Windows NT:
1. Log in to Windows NT as an Administrator.
2. From the Start menu, select Programs > Administrative Tools (Common) >

User Manager. The User Manager dialog box will appear.
3. If desired, create a new user to be the EMSRV user.
4. Still in the User Manager dialog box select User Rights from the Policies

menu. (It does not matter which user’s name is selected when you do this.)
The User Rights Policy dialog box will appear.

5. Select Show Advanced User Rights and then click the down arrow to see the
Right pull-down list. The list should now include “Act as part of the
operating system”.

6. Select Act as part of the operating system from the list, and click OK.
7. The Grant To pane will list the users who currently have this privilege. Click

Add. The Add Users and Groups dialog box will appear.
8. Click Show Users. Scroll down the list of users in the Names pane and select

the EMSRV user from the list.
9. Click Add. The EMSRV user’s name will appear in the Grant To pane at the

bottom of the Add Users and Groups dialog box. Click OK.

70 Team Programming

10. The EMSRV user’s name now appears in the Grant To pane of the User Rights
dialog box. Click OK.

The following describes how to set and activate the Act as part of the operating
system right for Windows 2000:
1. From the Start menu, select Settings > Control Panel. Double-click

Administrative Tools.
2. Double-click Local Security Policy. The Local Security Settings window opens.
3. Double-click Local Policies. From the list that opens, select User Rights

Assignment. In the right-hand pane, you will see a list of all the operating
system properties.

4. Double-click Act as part of the operating system. The Local Security Policy
Setting dialog opens.

5. Click Add. The Select Users or Groups dialog opens.
6. Select the EMSRV user and click Add. Click OK.
7. The dialog closes. The EMSRV user appears in the Local Security Policy

Setting dialog. Click OK.
8. Log off as Administrator and log back on as Administrator. You must do this,

otherwise, the property will not be set properly.
9. To verify the property has been set properly, follow steps 1 to 4 and ensure that

both the “Local Policy Setting” and “Effective Policy Setting” check boxes are
selected for the EMSRV user.

The EMSRV user now has the Windows operating system privileges needed to
start the repository server. If the user can not start EMSRV successfully, shut down
Windows on the server and reboot the machine. It is sometimes necessary to take
this action before changes in Windows privileges take effect.

Tip: For Windows 2000 Server, the Local Security Policy may be overridden by the
Domain Controller Security Policy or the Domain Security Policy. User rights for
the domain controller and/or domain may need to be set in order for the Effective
Policy Settingin the Local Security Policy to appear checked.

For Windows 2000 Advanced Server, there is no Local Security Policy. Assign the
right for the Domain Controller Security Policy and Domain Security Policy as
necessary.

The repository server (E-MSRV)
EMSRV user

Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare

EMSRV authentication on Windows

Chapter 4. Team administration 71

Starting the repository server on Windows
As the administrator, you must start the repository server (EMSRV) on Windows
NT and Windows 2000, before clients can connect to shared repositories. You can
start EMSRV from a command prompt or as a service.

A full list of the EMSRV startup parameters is available from a reference link
provided at the end of this topic. At a minimum, you must use the -u and -p
parameters, to specify the EMSRV user’s name and password.

EMSRV checks the location of the working directory at startup. If the working
directory is found to reside on a remote filesystem then EMSRV will not start.
EMSRV also checks the location of each repository it opens. If the repository
resides on a remote file system then EMSRV will not open the repository.

Running EMSRV as a Windows NT/2000 service on SMP hardware

*Important: EMSRV is no longer supported on Windows NT/2000 servers that run
on SMP hardware (machines with more than one processor). The decision to
remove support for SMP hardware is due to the frequency of reports concerning
repository corruptions with Windows servers and SMP hardware. EMSRV
continues to support SMP hardware for all other operating systems.

IBM ACCEPTS NO LIABILITY FOR DAMAGES YOU MAY SUFFER AS A RESULT
OF USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT RUNS ON SMP
HARDWARE, INCLUDING BUT NOT LIMITED TO, DAMAGES CLAIMED BY
YOU, BASED ON THIRD PARTY CLAIMS. IN NO EVENT WILL IBM, ITS
SUPPLIERS, AGENTS AND EMPLOYEES BE LIABLE FOR ANY INDIRECT,
SPECIAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL DAMAGES WHICH
MAY RESULT FROM USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT
RUNS ON SMP HARDWARE.

If you want to install and start EMSRV as a Windows NT/2000 service on SMP
hardware you must install the service using the -mp parameter. This will bypass
the check for SMP hardware. By doing this, you will be running EMSRV on an
unsupported platform and must assume full responsibility (IBM DOES NOT
ASSUME RESPONSIBILITY OR LIABILITY OF ANY KIND) if repositories become
subsequently corrupted.

If you do not install the service using the -mp parameter, the service will not start
and you will receive the following error message:

Could not start the EMSRV service on \\host

Error 2140: An internal Windows NT error occurred.

If you attempt to install EMSRV as a service again (for example, to add the -mp
parameter), the service will install successfully, but you will receive the following
error:

Message file emsrvmsg.dll, could not be copied to
C:\WINNT\System32\emsrvmsg.dll

--- OS error 1224: The requested operation could not be performed on a file with a
user mapped section open. Make sure the DLL is in the same directory as
EMSRV.EXE.

72 Team Programming

You can ignore this error message, as the DLL will already have been installed
when the service was previously installed.

Prerequisite
To start the repository server, the EMSRV user must have a number of advanced
user rights. For more information on these rights and how to grant them, refer to
the related tasks listed below.

Starting EMSRV from a command prompt
To start EMSRV:
1. Change to the directory where the emsrv executable program is installed.

EMSRV must be started from this directory.
2. Enter the emsrv command with the desired startup parameters. Here is an

example:
emsrv -u emsrvacc -p secret -W d:\javateam

starts the repository server under the authority of a user called emsrvacc. The
user’s password is secret. The working directory where EMSRV will write its
log and where it will search for repositories is d:\javateam.

You cannot qualify the path name in any way when you start EMSRV from the
command line. For example:

.\emsrv -u emsrvacc -p secret -W d:\javateam

will not work.

Messages will be logged in the EMSRV log and in the DOS Command Prompt
window, confirming that EMSRV has started and listing the parameters that are in
effect. If you experience problems with EMSRV, start EMSRV with the -lc option to
log messages to the console and the -lf<name> option to write the log files to the
file <name>.

Starting EMSRV as a service
EMSRV must be installed in the Windows NT or 2000 registry before you can start
it as a service. For installation instructions, refer to the related tasks listed below.

When EMSRV is started as a service, the default EMSRV working directory is the
Windows NT or 2000 system32\ directory. It is recommended that you change this
default by using the -W parameter when starting EMSRV as a service.

If you have installed EMSRV in the registry as an automatically started service, it
will start whenever the Windows NT or 2000 operating system is restarted. If you
have installed EMSRV in the registry as a manually started service, you can start it
by following these steps:
1. Steps a and b are slightly different for Windows NT and Windows 2000.

a) From the Windows NT Control Panel, double-click Services. The Services
dialog box will appear. Select EMSRV from the list of services. b) From the
Windows 2000 Control Panel, double-click Administrative Tools. Double-click
Services. Double-click EMSRV.

2. In the Startup Parameters text box, type the EMSRV startup parameters that
you want to use. If you are specifying the working directory for EMSRV to use,
you must type an extra backslash for each backslash in the path. Here is an
example:

Chapter 4. Team administration 73

-u emsrvacc -p secret -W d:\\javateam

3. Click Start. A message will appear, informing you that EMSRV is starting.

Potential problems
The following table summarizes some errors that you may see when starting
EMSRV as a Windows NT or 2000 service.

Problem Recommended action

An internal Windows NT or Windows 2000
error has occurred. Error message appears at
startup.

v Verify that the startup parameters have
been entered correctly:

– Were the EMSRV user’s name and
password correctly specified?

– If you specified an EMSRV working
directory, did you include the extra
backslashes in the path?

v Verify that the EMSRV user’s password
has not expired, by logging in to
Windows NT or 2000 as that user.

v Verify that the EMSRV user has the
necessary advanced user rights.

Normal EMSRV (not a service) hangs on
startup.

A pathname cannot be specified for the
executable in Windows NT or 2000. It must
be run in the directory of the executable. It
will not run from a different directory.

The specified service is disabled and cannot
be started error message appears at startup.

The service may have been disabled.

For Windows NT:

1. From the Control Panel, double-click
Services.

2. Select EMSRV from the list of installed
services.

3. Click HW Profiles.

4. If EMSRV’s original configuration shows
as disabled, click Enable.

For Windows 2000:

1. From the Control Panel, double-click the
Administrative Tools icon.

2. Double-click Services.Double-click
EMSRV.

3. Click Log On.

4. If EMSRV’s original configuration shows
as disabled, click Enable.

74 Team Programming

The start button is disabled. The service could already be running on the
local machine. Otherwise, the service could
be disabled.

For Windows NT:

1. From the Control Panel, double-click
Services.

2. Select EMSRV from the list of installed
services.

3. Click Startupto open the Startup Options
window.

4. Select Manualfor Startup Type.

For Windows 2000:

1. From the Control Panel, double-click the
Administrative Tools icon.

2. Double-click Services.Double-click
EMSRV.

3. From the Startup Type drop down list,
select Manual.

The service did not start due to a logon
failure error message appears at startup.

An invalid password was entered in the
Startup Window of the Service Control
Panel. Open the Startup window and change
the password or start as the System Account.

To open the Startup window on Windows
NT:

1. From the Control Panel, double-click
Services.

2. Select EMSRV from the list of installed
services.

3. Click Startupto open the Startup Options
window.

4. Change the password.

To open the Startup window on Windows
2000:

1. From the Control Panel, double-click the
Administrative Tools icon.

2. Double-click Services. Double-click
EMSRV.

3. Click Log On.

4. Change the password.

The process terminated unexpectedly error
message appears at startup.

EMSRV may have already been started from
a command prompt. Use the emadmin stat
command to check the status, or use the
Windows NT or 2000 Task Manager to look
for EMSRV on the list of running processes.

Chapter 4. Team administration 75

EMSRV does not start (User is on a domain) Ensure that the owner of the user name and
password used to start EMSRV can log onto
the machine where the password verification
is done.

For example, if your password verification is
done by a machine called DOMAIN, you
should be able to go to that physical
machine and log on using the user name
and password (-u and -p options) passed to
EMSRV.

Error setting impersonation in Client Thread Check if the EMSRV user has all the
necessary advanced rights.

EMSRV does not start as a service when
using -W option

Ensure that you have used a double slash
when specifying the working directory when
starting EMSRV. As well, ensure that you
can write a log to the working directory.

You receive the error message:
AdjustTokenPrivileges error setting
privileges

Ensure that the EMSRV user has all the
neccessary advanced user rights.

Error 2140 occurs when starting EMSRV as
an NT service

Ensure that you have entered your start
command (all the parameters, your
password and so on) correctly. A common
error is using -w instead of -W.

Confirming that EMSRV is running
To verify that EMSRV is running, issue the emadmin stat hostname command
from any workstation where the EMADMIN utility is installed.

The Repository Server (EMSRV)
EMSRV User

Setting up a team server - overview
Installing EMSRV as a service in the Windows registry
Authorizing the EMSRV user (Windows)
Stopping the repository server
Enabling password validation - overview
Changing the EMSRV working directory

EMSRV startup parameters
The EMADMIN utility - overview
EMSRV authentication on Windows

Starting the repository server on OS/2
As the administrator, you must start the repository server (EMSRV) before clients
can connect to shared repositories.

76 Team Programming

EMSRV checks the location of the working directory at startup. If the working
directory is found to reside on a remote filesystem then EMSRV will not start.
EMSRV also checks the location of each repository it opens. If the repository
resides on a remote file system then EMSRV will not open the repository.

To prevent unauthorized remote shutdown of EMSRV, provide a password when
you start it. For a full list of the EMSRV startup parameters that are available, refer
to the reference link provided at the end of this topic.

To start EMSRV from an OS/2 command line:
1. Change to the directory where the emsrv executable program is installed.
2. Type the emsrv command with the desired startup parameters. Here is an

example:
emsrv -p secret -W d:\javateam

where secret is the password that would be required to stop the repository
server remotely and d:\javateam is the working directory where EMSRV will
look for shared repositories.
Press Enter.

Messages will be logged in the EMSRV log and in the OS/2 Command Prompt
window, confirming that EMSRV has been started. If you experience problems with
EMSRV, start EMSRV with the -lc option to log messages to the console and the
-lf<name> option to write the log files to the file <name>.

The repository server (EMSRV)
EMSRV user

Setting up a team server - overview
Stopping the repository server
Enabling password validation - overview
Setting EMSRV message logging options

EMSRV startup parameters
The EMADMIN utility - overview

Starting the repository server on AIX, HP-UX, Solaris, or Linux
As the administrator, you must start the repository server (EMSRV) before clients
can connect to shared repositories.

A full list of the EMSRV startup parameters is available from a reference link
provided at the end of this topic.

EMSRV checks the location of the working directory at startup. If the working
directory is found to reside on a remote filesystem then EMSRV will not start.
EMSRV also checks the location of each repository it opens. If the repository
resides on a remote file system then EMSRV will not open the repository.

Chapter 4. Team administration 77

You must start EMSRV at its root if you do not want to use password
checking. To be able to start EMSRV as any user, change the file permissions by
using the following commands:

chmod 4775 emsrv
chown root emsrv

EMSRV requests 4 bytes of shared memory. Operating system settings
define the minimum and maximum sizes for chunks of shared memory that a
process can ask for. If your maximum setting is less than 4 bytes, or your
minimum setting is greater than 4 bytes, EMSRV will not run, and it will not
generate the log file.

To start EMSRV:
1. Log in as the EMSRV user.
2. Change to the directory where the emsrv executable program is installed.

3. If your system is using shadow passwords, issue the emsrv.shadow
command with the desired startup parameters.

If your system is using shadow passwords, issue the
emsrv command with the desired startup parameters. You do not need to use
the emsrv.shadow command.

4. If your system is not using shadow passwords, issue the emsrv command.

Here is an example:
emsrv -lc -lflogfile

This example starts the repository server. Messages are logged both to the
system console and to a file called logfile.

Press Enter.

EMSRV will start on the server. To verify, issue the emadmin stats hostname
command from any workstation where the EMADMIN utility is installed.

EMSRV can log operations and error messages to a .log file or can display this
information in a console or Message Screen. If you experience problems with
EMSRV, start EMSRV with the -lc option to log messages to the console and the
-lf<name> option to write the log files to the file <name>.

The repository server (EMSRV)
EMSRV user

Setting up a team server - overview
Enabling password validation - overview
Stopping the repository server
Setting EMSRV message logging options

78 Team Programming

EMSRV startup parameters
The EMADMIN utility - overview

Starting the repository server on NetWare
As the administrator, you must start the repository server (EMSRV) before clients
can connect to shared repositories.

For information on startup parameters, refer to the “EMSRV startup parameters”
file. At a minimum, you must specify the EMSRV user’s name and password, and
a working directory. If you do not enter these three parameters at the console, you
will be prompted as the NLM loads.

EMSRV checks the location of the working directory at startup. If the working
directory is found to reside on a remote filesystem then EMSRV will not start.
EMSRV also checks the location of each repository it opens. If the repository
resides on a remote file system then EMSRV will not open the repository.

To get the NLM to load automatically when the NetWare file server is rebooted,
you can add an appropriate command line to the file server autoexec.ncf file.

To load the EMSRV NLM, type load emsrv (with the desired startup parameters) at
the NetWare console, and press Enter. The EMSRV for NetWare menu will appear
at the server console.

Here is an example of a command for starting EMSRV from the server console, on
a server that uses the Novell Directory Services (NDS) NLM:

load emsrv -u emsrvacc -p secret -W volname:\path -rn -SC nyc

The above example loads the NLM with the account name emsrvacc and password
secret. The working directory where EMSRV will write its log and look for shared
repositories is volname:\path. The -rn parameter indicates that native password
validation should be enforced when users connect to the shared repository. Because
native password validation is being used and because the server is running
EMSRV for NetWare (NDS), the -SC parameter is also provided to specify the NDS
context (nyc) for the network login names that the administrator supplied when
adding users to the VisualAge for Java repository user list.

If the EMSRV for NetWare users are found in a container other than [root], we
advise the Network Administrator to use the -SC option to set the context to the
container object containing the users.

EMSRV can log operations and error messages to a .log file or can display this
information in a console or Message Screen. If you experience problems with
EMSRV, start EMSRV with the -lc option to log messages to the console and the
-lf<name> option to write the log files to the file <name>.

The repository server (EMSRV)
EMSRV user

Setting up a team server - overview
Changing the EMSRV working directory

Chapter 4. Team administration 79

Enabling password validation - overview
Enabling native password validation
Adding users to the repository user list
Changing EMSRV settings (NetWare)
Stopping the repository server
Setting EMSRV message logging options

EMSRV startup parameters
The EMADMIN utility - overview
EMSRV authentication on Netware

Stopping a client connection
As the administrator, you may want to stop one or more client connections to the
repository server, for example in preparation for backing up the shared repository.

Warning
Stopping a team client’s connection to the server could corrupt that client’s
workspace, if the client was in the process of loading code from the repository. To
see whether clients are active, use the emadmin list command to check the last
time a request was issued.

Stopping a client connection using the EMADMIN utility
To stop a client’s connection to the repository server:
1. Issue the emadmin list command to display the list of active connections. You

will see information similar to the following:
EMSRV Connection list for: localhost

Active Last
ID IP Address Locks Request Library
--
0 9.21.35.196 0 19:37:08 ivj.dat
1 9.25.32.196 0 18:12:19 ivj.dat

2. Use the ID information you have just obtained to identify the connection
number that you want to stop. In the example above, you may decide that
connection 1 can be terminated.

3. Continuing with the example, to stop connection 1 issue this command:

emadmin stop -k1

You will be prompted for the EMSRV user’s password.

The client’s connection to the repository server will be stopped. You can verify this
by issuing the emadmin list command again.

Stopping a client connection from the NetWare console
From the EMSRV for NetWare menu, select View Connections. To display statistics
for a particular client connection, select it from the list and press Enter. To
terminate that connection, press Delete. Press Esc to return to the menu.

The repository server (EMSRV)
EMSRV user

80 Team Programming

Displaying server connections
Stopping the repository server

The EMADMIN utility - overview
The EMADMIN stop command
EMSRV and TCP/IP

Stopping the repository server
Warning
To ensure developers have had a chance to save their work, do not stop EMSRV
while team clients are still connected. To display active connections, issue the
emadmin list command.

Stopping EMSRV remotely
You can stop EMSRV from any network-attached workstation that has the
EMADMIN utility installed. To stop the repository server remotely, use the
emadmin stop command:
emadmin stop [-p password] [-h host]

A message will inform you that the server has been scheduled to stop.

If a password was used to start the server, you must provide the same
password to stop it.

The password is the EMSRV user’s
password. If you do not provide the -p parameter, you will be prompted for it. If
the EMSRV user does not have a password, issue emadmin stop -p with no
password argument.

If the operating system on the server uses shadow passwords, remote
shutdown will fail unless EMSRV was started with the emsrv.shadow command.

Stopping EMSRV from the control panel
If EMSRV has been installed as a service in the Windows registry, you can stop it
from the Control Panel on the server:
1. Double-click Services.
2. Select EMSRV from the list of services.
3. Select Stop.

Unloading EMSRV from the NetWare console
You can not unload EMSRV for NetWare using the unload command from the
server console. You can use the EMADMIN utility as described above, or you can
use the EMSRV for NetWare menu.

To stop from the menu, select Shutdown EMSRV and provide the EMSRV user’s
password when prompted.

Chapter 4. Team administration 81

The repository server (EMSRV)
EMSRV user

Installing EMSRV as a service in the Windows registry
Displaying server connections
Stopping a client connection

The EMADMIN utility - overview
The EMADMIN stop command
EMSRV startup parameters

Displaying server connections
To display active connections to the repository server, for example when preparing
to stop EMSRV, issue emadmin list from a command prompt. You can use the -s
and -l parameters to display statistics and active locks for a particular connection.

EMSRV must be running on the server in order for you to communicate with it
using the EMADMIN utility.

From the EMSRV for NetWare menu, select View Connections. To display
statistics for a particular connection, select the connection from the list and press
Enter. Press Esc to return to the menu.

The repository server (EMSRV)

Displaying server statistics
Stopping a client connection

The EMADMIN utility - overview
The EMADMIN list command

Displaying server statistics
The emadmin stat command displays statistics for the repository server, covering
the time period since EMSRV was last started. This provides information such as
the following:
v Elapsed time since the repository server was started
v Number of connects and disconnects
v Reads, writes, and locks
v Packets sent and received
v The EMSRV working directory

EMSRV must be running on the server in order for you to communicate with it
using the EMADMIN utility.

82 Team Programming

From the EMSRV for NetWare menu, select EMSRV Statistics. (If EMSRV
Statistics has already been selected, select it again to force a screen update.) This
will display statistics covering the time period since the EMSRV NLM was
loaded. Press Esc to return to the menu.

The repository server (EMSRV)

Displaying server connections
Changing the EMSRV working directory

The EMADMIN utility - overview
The EMADMIN stat command

Displaying active EMSRV settings
To display the options that are currently in effect for the repository server, issue
the emadmin opts command from a command prompt. This will display
information such as the following:
v The EMSRV working directory
v Whether password validation has been enabled
v What level of messages are being logged
v The name of the log file
v The maximum number of concurrent connections allowed
v The threshold for free disk space on the repository server

EMSRV must be started on the server in order for you to communicate with it
using the EMADMIN utility.

From the Menu console, select Change Settings. A form will appear,
showing you the current EMSRV settings.

The repository server (EMSRV)

Changing EMSRV settings (NetWare)
Changing the EMSRV working directory

The EMADMIN utility - overview
The EMADMIN opts command
EMSRV startup parameters

Chapter 4. Team administration 83

Displaying EMSRV messages
When debugging an EMSRV problem, it is often useful to watch the messages that
get written to the log or the server console, as they occur.

When you start EMSRV as a service, messages that are normally logged to the
console are logged to the Application Log (which you can view using Windows
Event Viewer).

If you are not sure where EMSRV is currently logging, issue the emadmin opts
command. This will tell you the name of the log file, whether logging to the server
console is also enabled, and what the current logging level is.

To display messages logged by EMSRV, select View Message Screen from
the EMSRV for NetWare menu. To return to the menu, press Esc.

The repository server (EMSRV)

Setting EMSRV message logging options

The EMADMIN utility - overview
The EMADMIN opts command
EMSRV startup parameters

Changing the EMSRV working directory
The EMSRV working directory is the default directory that the repository server
uses to locate shared repositories when, for example, a user is changing
repositories or exporting to another repository. For ease of use, it is recommended
that you store all shared repositories in the EMSRV working directory. This allows
team members to find shared repositories without providing path information.

If EMSRV is started as a service, the default EMSRV working directory is
the Windows NT or 2000 system32\ directory. It is recommended that you change
this default by using the -W parameter when you install EMSRV as a service in the
Windows registry.

If EMSRV is started from a command prompt, the default EMSRV working
directory is the directory where emsrv.exe is installed. To change the default, use
the -W parameter of the emsrv command when starting the repository server.

By default, the EMSRV working directory is the directory where emsrv.exe
is installed. To change the default, use the -W parameter of the emsrv command
when starting the repository server.

By default, the EMSRV working directory is SYS:\. To change the default,
use the -W parameter of the emsrv command when starting the repository server.

84 Team Programming

The EMSRV working directory is the current
working directory at the time that EMSRV is started.

The repository server (EMSRV)

Installing EMSRV as a service in the Windows registry
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare

EMSRV startup parameters

Setting the server disk threshold
EMSRV will write warnings in its log file when there is a minimum amount of free
space left on the disk drive where the VisualAge for Java shared repositories
reside. The default is to log a warning when there are fewer than 10,000 kilobytes
of free space remaining.

To change the disk storage threshold on the server, use the -b kilobytes startup
parameter for EMSRV.

The repository server (EMSRV)

Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Displaying EMSRV messages

EMSRV Startup Parameters

Setting EMSRV message logging options
You can change where the repository server logs messages, and you can change
the level of detail of the messages logged.

Specifying where EMSRV logs messages
By default, messages are logged to a file called emsrv.log in the EMSRV working
directory. To specify a different log name, use the -lf parameter when starting
EMSRV.

Chapter 4. Team administration 85

To log messages to the Command Prompt window from which
EMSRV was started, use the -lc parameter when starting EMSRV. Messages will
also be logged to the log file.

EMSRV for NetWare logs to the EMSRV message screen as well as to the log
file.

To log messages to stdout instead of a log file, use
the -ls parameter when starting EMSRV. If you do this, you must also use the -f
parameter to run EMSRV in the foreground.

Specifying EMSRV message logging levels
You can set the message logging level when you start EMSRV, using the
appropriate startup parameter:
v -s0 logs all operations
v -s1 logs warning and error messages
v -s2 logs only errors (default for all platforms)

For performance reasons, it is recommended that you use the default reporting
level during normal operation. Log more detailed information only when you are
trying to diagnose a problem.

You can also change the message logging level while the repository server is
running, by issuing the emadmin opts command with the -s parameter. You will
be prompted for the EMSRV user’s password.

Use the EMSRV for NetWare menu to select Change Settings. A form will
appear, allowing you to view and change the current EMSRV settings, including
logging level. Once you have made your changes, press Esc to save them.

Verifying the EMSRV message logging level
To confirm which level of messages are currently being logged, issue the emadmin
opts command.

The repository server (EMSRV)
EMSRV user

Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Displaying EMSRV messages
Changing the EMSRV working directory

The EMADMIN utility - overview
The EMADMIN opts command
EMSRV startup parameters

86 Team Programming

Changing EMSRV settings (NetWare)
You can change the following settings for EMSRV while it is running:
v Logging level and log file name
v Whether repositories can be truncated
v Whether password validation is in effect
v How often EMSRV should refresh its statistics screen

The available choices for these settings are the same as the EMSRV startup
parameters. To change any of these settings:
1. From the EMSRV for NetWare menu on the server, select Change Settings. A

form will appear.
2. Use the Arrow keys to highlight the setting that you want to change. Make

your change and press Enter. The setting will be changed.
3. Press Esc to return to the menu.

Changes made from the menu are only in effect until EMSRV is stopped. The next
time you start the repository server, you can specify the same settings (and many
others) using startup parameters of the load emsrv command.

The repository server (EMSRV)

Setting EMSRV message logging options
Enabling password validation - overview
Starting the repository server on NetWare

EMSRV startup parameters

Adding users to the repository user list
The administrator maintains the list of team members who can access each shared
repository.

If you plan to enable password validation with VisualAge for Java, then team
members also require either user accounts on the server, or entries in the
passwd.dat file.

Adding a user to the repository list
To add a user to the repository list:
1. Change the workspace owner to Administrator.
2. From any Window menu, select Repository Explorer.
3. From the Admin menu, select Users. The User Administration dialog box will

appear. The left pane lists the users who are currently in the repository list.
4. Click New.
5. Enter a unique name, full name, and network login name. Click Save. The user

list on the left will be updated with the new user.

Chapter 4. Team administration 87

Changing a user on the repository list
You can change the Full Name or Network Login Name for a user on the list. To
change a user on the repository list:
1. Open the User Administration dialog box, as described above.
2. Select the user to be updated.
3. Modify the Full Name or Network Login Name.
4. Click Save. The information for that user will be changed.

Deleting a user from the repository list
Before deleting a user, ensure the user does not own any program elements
associated with this repository. To delete a user from the repository list:
1. Open the User Administration dialog box, as described above.
2. Select the user to be deleted.
3. Click Delete. The user list on the left will no longer show the user.

Repository
Repository administrator
Repository user list

Changing workspace owner
Adding members to a package group
Changing a program element’s owner
Enabling password validation - overview

Enabling password validation - overview
When password validation is enabled, team members must provide valid
passwords to do these tasks:
v Connect to a repository managed by that server.
v Change workspace owner.

By default, the VisualAge for Java repository server runs run with no password
validation. You have two other options:
v Use native operating system accounts and passwords (available on all server

operating systems except OS/2).
v Use a VisualAge for Java password file (passwd.dat) to verify user names and

passwords (available on all server operating systems).

Refer to the Related Tasks for details on enabling either password option.

These platforms both support authentication using Pluggable
Authentication Modules (PAM). This support enables you to start these server
operating systems using the same command (emsrv) whether or not you are using
shadow passwords.

PAM must be correctly configured on a machine running EMSRV otherwise it will
not even be possible to shutdown EMSRV using EMADMIN.

88 Team Programming

Refer to your server operating system documentation for more information about
PAM.

In addition, Red Hat Linux, Version 6.2 supports MD5 passwords and
EMSRV for Linux also supports these via PAM. You can use the emsrv command to
start EMSRV for Linux if you are using MD5 passwords.

This platform supports authentication using the system authenticate()
function. This allows both shadow and non-shadow passwords, in addition to
Distributed Computing Environment (DCE) authentication, to be supported with
one EMSRV executable. This means that you can use the same command (emsrv)
to start the server operating system regardless of which method of authentication
you are using.

Refer to your server operating system documentation for more information about
DCE authentication.

Refer to the Related References for detailed information on account
names and authentication.

Root access is required to authenticate users. This
can be accomplished by setting the owner of the EMSRV executable to ’root’ and
setting the SUID bit of the executable.

This can be accomplished as follows:
chown root emsrv
chmod u+s emsrv

When EMSRV attempts to authenticate a user, it will will temporarily change the
authority of the EMSRV process to the authority of the owner of the executable.
Once authentication is complete, the authority of the running EMSRV process will
be changed back to that of the user that started EMSRV. For security reasons, this
method is recommended over the more simplistic method of simply running the
EMSRV executable as ’root’.

Root access for authentication is required regardless of how EMSRV actually
implements authentication. Interfaces such as PAM only provide a common API to
permit applications to support multiple authentication methods; configuration
specific to each method of authentication must still be correct.

The repository server (EMSRV)

Enabling native password validation
Enabling password validation with the passwd.dat file
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare

Chapter 4. Team administration 89

EMSRV startup parameters
EMSRV account names and authentication on Windows
EMSRV account names and authentication on Netware

Enabling native password validation

Native password validation is not available on OS/2.

You can use native operating system accounts to enforce password validation when
team members connect to a shared repository. To enable native password
validation:
1. Create an account for each user on the server, following standard procedures

for your operating system.

Refer to the Related References for detailed information on
account names and authentication.

2. Test the new user accounts by logging in to the operating system itself.
3. Add the new users to the VisualAge for Java repository user list. In the User

Administration dialog box, provide the operating system account as the
Network Login Name for each user.

4. Include the -rn startup parameter when you start EMSRV. You can set
your own default EMSRV startup parameters, including -rn, by installing
EMSRV as a service in the Windows registry.

Include the -rn startup parameter when you start EMSRV. In a Novell
Directory Services (NDS) environment, you should also use the -SC startup
parameter of the emsrv command to set an NDS context for the network login
names that were provided when the users were added to the VisualAge for
Java repository user list. If the -SC parameter is not specified, the NDS context
will be root.

Regardless of the authentication method being used
(local password file, shadow passwords, and so on), start the server by issuing
the emsrv command with the -rn startup parameter.

If the server operating system uses shadow passwords, start the server
by issuing the emsrv.shadow command with the -rn startup parameter. If the
server operating system does not use shadow passwords, start the server by
issuing the emsrv command with the -rn startup parameter.

Team client/server configuration
The repository server (EMSRV)
Server security

Enabling password validation - overview
Adding users to the repository user list
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Enabling password validation with the passwd.dat file
Installing EMSRV as a service in the Windows registry

90 Team Programming

EMSRV startup parameters
EMSRV account names and authentication on Windows
EMSRV account names and authentication on Netware

Enabling password validation with the passwd.dat file
As an alternative to using native operating system passwords, the repository
administrator can maintain a file of VisualAge for Java users and passwords. This
file is called passwd.dat. If the appropriate EMSRV startup parameter for password
checking is used, this file will be checked whenever a team member connects to a
shared repository on the server.

The passwd.dat file
The passwd.dat file resides in the EMSRV working directory. There is one
passwd.dat file per server; that file is used for all shared repositories on the same
server. The passwd.dat file contains one entry per team member, with one user
name and password per entry. The user name is first, separated from the
password by a single space. Here is an example:
fred mypassword
barney secret
wilma hello
betty ZXF65

See the instructions below for more information on the user name.

The passwd.dat file is not encrypted. As a safety precaution, passwords should not
be the users’ network login passwords. If EMSRV is configured correctly, the
passwd.dat file will only be readable by the EMSRV user account (NetWare,
Windows NT/2000) or the root account (UNIX platforms).

The passwd.dat file must be in the directory you start EMSRV from.

Enabling VisualAge for Java password checking
To use the passwd.dat file for password validation, do the following steps:
1. Create an entry for each user in the passwd.dat file on that server.
2. Add each user to the repository user list, providing their name from the

passwd.dat file as the Network Login Name in the User Administration dialog
box.

3. When you start the repository server, use the -rp startup parameter of the
emsrv command.
Note: Your passwd.dat file must always be in the directory where you start the
repository server from.

Users will be prompted for their system password when they connect to a shared
repository on the server or when they change workspace owner.

You can set your own default EMSRV startup parameters, including -rp, by
installing EMSRV as a service in the Windows registry.

Refer to the Related References for detailed information on account
names and authentication.

Chapter 4. Team administration 91

Team client/server configuration
The repository server (EMSRV)
Repository administrator
EMSRV user

Adding users to the repository user list
Enabling native password validation
Installing EMSRV as a service in the Windows registry
Changing the EMSRV working directory

EMSRV startup parameters
EMSRV account names and authentication on Windows
EMSRV account names and authentication on Netware

Providing a standard workspace
In the team development environment, you may wish to provide a standard
workspace at the beginning of a project, to ensure that team members start with
the same editions of the same program elements. You can do this by copying the
workspace file, ide.icx.

The following procedure is an example of how you can copy the workspace from
one client (the source) to another (the target).
1. On the source client, connect to the shared repository.
2. Add the desired projects and packages from the repository to the workspace,

and delete projects and packages that are not desired. The result is your
standard workspace. See the comments about password validation, below.

3. Exit the IDE. The workspace is saved as the ide.icx file on the source client’s
workstation. The server and repository names are saved in the client’s ide.ini
file.

4. Using file system commands, copy the source client’s ide.icx and ide.ini files.
For example, you might call the copies team1.icx and team1.ini. You may wish
to store these on the server, in a directory to which the team has read-only
access.

5. On the target client workstation, preserve the existing ide.icx and ide.ini files
by renaming them, for example to icx.old and ini.old.

6. Copy team1.icx and team1.ini into the target client’s VisualAge for Java
program directory, naming them ide.icx and ide.ini.

7. Start the IDE on the target client. The workspace will connect to the shared
repository and will contain the desired projects and package editions. By
default, the workspace will be owned by the user who created the standard
workspace.

8. Change the workspace owner.

In an environment where password validation is enabled for VisualAge for Java, to
start the IDE on the target workstation you must provide the password of the user
who owned the standard workspace when it was saved. To handle this situation,
the administrator could create a dummy user who owns the standard workspace

92 Team Programming

but has no other privileges, and team members could first start the IDE with the
dummy user’s password and then change workspace owner.

Team client/server configuration
Workspace
Repository

Saving the workspace
Changing workspace owner
Adding users to the repository user list
Enabling password validation - overview
Connecting to a shared repository
Adding classes and methods from the repository to the workspace
Adding projects and packages from the repository to the workspace
Setting IDE options

Important files to back up

Creating a repository
When you first install VisualAge for Java on the team server, one shared repository
is provided. By default, this file is called ivj.dat. You can create additional
repositories, to separate the source code for two completely distinct groups of
developers.

Creating a new repository by copying an existing one
You can create a new repository by copying an existing repository. For example,
you might copy the original ivj.dat repository as a basis for every new repository.
Give each copy a different name, such as team1.dat and team2.dat. The new
repository will be exactly the same size as the copied repository, and will have the
same repository user list.

Note: If you create a new repository by copying an existing one, ensure that there
are no open editions in the .dat file you are copying.

For details about performing this task, see the related topic on backing up a shared
repository.

Create a new repository by exporting
You can also create a repository by exporting from one repository (the source) to
another repository that does not exist yet (the target). The new repository will only
contain the projects and packages that you choose to export, so it will be smaller
than the original repository. It will contain all editions of the exported projects and
packages. The new repository’s user list will include the following users:
v All owners of exported projects, packages, and classes
v Developers of exported classes
v Members of package groups for exported packages

Remember to export the base libraries on which your classes depend. There are
four base projects:

Chapter 4. Team administration 93

v IBM Java Implementation
v Java class libraries
v JFC class libraries
v Sun class libraries

If you forget to include some program elements, you can export them into the
same target repository later.

You cannot export any code that is not in the repository.

Creating a new repository by compacting
Finally, you can create a new repository by compacting an existing repository.
Compacting copies all program elements from the source repository, but it only
copies versioned projects, versioned packages, and versioned classes that are
contained in versioned packages. Otherwise, this approach is similar to exporting.

Repository
Repository user list
Ownership and team roles - overview

Dividing a repository
Backing up the repository
Backing up a shared repository
Exporting to another repository
Compacting a repository
Adding users to the repository user list
Connecting to a shared repository

Repository files
The EMADMIN utility - overview
The EMADMIN copy command

Backing up a shared repository
Overview
The procedures described below are for backing up and restoring a shared
repository on a team server. If you wish to back up a local repository on a
VisualAge for Java client, see the links to related information at the end of this
document.

The shared repository is where all of the team’s work is saved. The administrator
should back up the repository every day. There two basic alternatives:
v Use the emadmin copy command, without stopping the repository server

(EMSRV). This command locks the source repository to ensure that no one
changes it while it is being copied. Emadmin copy creates a new repository on
the same server or on another server that is also running EMSRV.

v Use operating system commands or a backup utility to copy the repository file,
perhaps to offline media. If you take this approach, you are responsible for
ensuring that no one can change the repository while it is being backed up.

94 Team Programming

It is recommended that you back up resource files, such as images or sound files,
at the same time as the source repository. To do this, you must manually create a
copy of the stored resources directory (ivj.dat.pr) when you copy the repository.

Backing up with the Emadmin copy command
The emadmin copy command locks the repository while it is being copied. Team
developers should not be browsing or saving code when the administrator starts
the backup.
1. To check the last request time (LRT) of any clients that are still connected, issue

the emadmin list command.
2. Issue the emadmin copy command to copy the repository to another .dat file.

The following example copies team1.dat from the EMSRV working directory, to
a file called bkup.dat in another directory:
emadmin copy team1.dat j:\backups\bkup.dat

3. When you make a duplicate copy of the repository, you must make a duplicate
copy of the stored resources directory (ivj.dat.pr) directory and change the
name to match the repository it is associated with. For example, if you make a
duplicate copy called “team.dat”, you must make a duplicate project resources
directory called “team.dat.pr”.

For more information on emadmin copy and its parameters, see the related links
that are listed below.

Backing up without the Emadmin copy command
If you prefer to use operating system commands or a server backup utility, then
you must ensure that no changes can be written to the repository file while it is
being copied. Your operating system or backup utility may provide file locking
support. If not, you should disconnect VisualAge for Java clients during the
backup, as described in the following example.
1. Ask users to exit the IDE.
2. To ensure that no clients are connected, issue the emadmin list command.
3. To prevent clients from reconnecting to the repository while you are backing it

up, issue the emadmin stop command. This stops EMSRV.
4. Use operating system commands or a backup utility to copy the repository files

(.dat files) and any resource files (the ivj.dat.pr directory) that reside on the
server.

5. Issue the emsrv command to restart the repository server.

Restoring a repository
Here is an example of a procedure for restoring a repository:
1. To check that no clients are connected to the repository that you are about to

replace, issue the emadmin list command.
2. To prevent clients from connecting to the repository while it is being restored,

stop EMSRV.
3. Rename the repository (.dat file) that you are about to replace. For example,

rename team.dat to obsolete.dat.
4. Use operating system commands to copy the backup version of the file into the

EMSRV working directory, giving it the original name, for example team.dat.
5. Restart the repository server and tell the team they can reconnect to the shared

repository.

Chapter 4. Team administration 95

Repository
Repository administrator
The repository server (EMSRV)
EMSRV user

Displaying server connections
Backing up a local repository
Stopping the repository server
Connecting to a shared repository
Changing repositories
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on Windows
Changing the EMSRV working directory

Repository files
The EMADMIN utility - overview
The EMADMIN copy command
The EMADMIN stop command
EMSRV startup parameters
Important files to back up

Dividing a repository
As your team grows, you may decide to divide the shared repository into two or
more repositories, based on team responsibilities. Here is an example of how you
could divide a repository called team1.dat:
1. Back up the existing repository, as a precaution.
2. Copy the existing repository, team1.dat, to team2.dat.
3. Purge program elements from both repositories, based on each team’s

requirements.
4. Tell the members of the second team to change repositories to team2.dat.
5. After some period of time - perhaps two weeks - compact both repositories to

permanently delete the purged items and reclaim disk space.
After the repository is compacted, only owners are kept, not developers. You
have to recreate them, and reassociate them.

If the new repository is on the same server, no user administration is required. If
the new repository is on a different server, then the administrator for that server
will have to add the developers of team2.dat to the repository user list.

Repository

Backing up a shared repository
Purging program elements from the repository
Changing repositories

96 Team Programming

Adding users to the repository user list
Creating a repository
Exporting to another repository

Repository files

Optimizing server performance
The most important factor in your server’s performance is the capacity of the
machine itself; fast processors, fast disk drives, and a fast networking connection
are obviously better. For optimal performance and availability, the server should be
a dedicated machine, not a developer’s workstation.

EMSRV is not particularly CPU intensive - performance is I/O-bound. Unless very
large resource files are being stored on the server, disk bandwidth is not as
important as disk seek times since repository transactions consist mostly of many
small read and write operations. All source and compiled code is stored in the
repository which is implemented as one large file. It is important that this file does
not become too fragmented otherwise performance may degrade. The simplest
way to avoid fragmentation is to ensure that there is plenty of free disk space
available on the volume that is hosting the repository. Any optional volume or file
compression or encryption options should be disabled as they usually have a
negative impact on performance.

EMSRV and VisualAge for Java clients communicate using TCP/IP so it is
important that the TCP/IP stacks on the client and the server are optimized for the
network environment they are operating in.

Optimizing performance of shared repositories
The size of the repository does not have a large impact on performance unless it is
severely fragmented. To reduce the size of the shared repository and to reduce the
number of file and directory entries being used in the stored resource directory, the
administrator should periodically compact the repository. This will create a new
repository and a corresponding new resource directory. Compacting the repository
is only useful if package and project owners first purge the editions of their
program elements that are no longer required.

The size of the repository does not have a large impact on performance unless it is
severely fragmented. To reduce the size of the shared repository and to reduce the
number of file and directory entries being used in the stored resource directory, the
administrator should periodically compact the repository. This will create a new
repository and a corresponding new stored resource directory.

After the repository is compacted, only owners are kept, not developers. You have
to recreate them, and reassociate them.

Setting message logging levels for better performance
You can change the level of detail of the messages logged by EMSRV. For
performance reasons, it is recommended that you use the default reporting level
during normal operation. Log more detailed information only when you are trying
to diagnose a problem.

Chapter 4. Team administration 97

Server considerations in team development
Number and placement of shared repositories
Server files and directories

Creating a repository
Dividing a repository
Purging program elements from the repository
Compacting a repository
Setting EMSRV message logging options
Changing the EMSRV working directory

Repository files

EMSRV startup parameters
The following table lists and describes parameters you can use when starting the
VisualAge for Java repository server. All parameters are case-sensitive.

In EMSRV 7.1, several parameters have been changed in order to provide more
consistency across platforms. They are as follows:
v The -n option to disable tracking of statistics has been removed. Statistics are

now always tracked.
v The -w option to track locks has been removed. Locks are now always tracked.
v The -rd option on PC (Windows NT/2000, OS/2, Netware) platforms to disable

authentication has been removed. Authentication is now disabled by default.
v The -v option on UNIX platforms has changed to -rn to be consistent with PC

platforms.
v The -r option on UNIX platforms has changed to -rp to be consistent with PC

platforms.
v The -a option to change the timeout for killing connections that are inactive with

a lock now exists for all platforms (formerly only available on UNIX)
v The -lp option on UNIX platforms to set timeout for killing connections that are

inactive with a lock has been removed
v The -lt option on UNIX platforms to set the maximum number of seconds to

hold a lock has been removed
v The - xd and - xn parameters on UNIX platforms for specifying device

numbers have been removed. EMSRV will now check the filesystem type and
reject any path residing on a filesystem of type “nfs” (for AIX, HP-UX, and
Solaris) or type 0x6969 (NFS_SUPER_MAGIC) (for Linux).

Note: The -mp parameter has been added for Windows NT/2000.

Parameter Server operating system Description

- A 0, 1 All The file system requires read locks. The default setting is 0 which
indicates the file system does not require read locks.

-a seconds All Sets the number of seconds before a connection with a lock is
deemed inactive. The default is 30 seconds.

98 Team Programming

-b Kilobytes All Sets the low-volume threshold warning in kilobytes. The default
is 10,000 kilobytes. If the available disk space is less than the
low-volume threshold, EMSRV will log warning messages to the
log file.

-f AIX, HP-UX, Solaris,
Linux

Sets EMSRV to run in the foreground.

-h All Displays the help text that lists the valid parameters.

-i q,t AIX, HP-UX, Solaris,
Linux

Ignores signals. q = ignore SIGQUIT; t = ignore SIGTERM.

-install WinNT, Windows 2000 Installs EMSRV as a service in the Windows registry.

-lc WinNT, Windows 2000,
Netware, OS/2

Logs messages to the server console. By default, messages are not
written to the console. (See also -lf.)

-lf name WinNT, Windows 2000,
Netware, OS/2

Writes the log to file name. By default, the log is written to
emsrv.log. The file name must specify a valid path for which the
EMSRV user has sufficient rights. (See also -lc.)

-ls AIX, HP-UX, Solaris,
Linux

Logs messages to stdout instead of a log file. You must also use
-f parameter if -ls is used.

-M numberOf
Connections

All Specifies the maximum number of connections that can be
established to EMSRV. The default is 512, but some TCP/IP
stacks will run out of stream sockets before this limit is reached.

To start EMSRV with a maximum of 80 client connections, use
the following parameter:

EMSRV -M80

-mp* WinNT, Windows 2000 If you want to install and start EMSRV as a Windows NT/2000
service on SMP hardware you must install the service using the
-mp parameter

-P port
Number

All Specifies the port number that EMSRV uses. The default is 4800.

To start EMSRV using port number 4899, use the following
parameter:

EMSRV -P4899

-p password WinNT, Windows 2000
NetWare, OS/2

Provides the password for the EMSRV user. The same password
is required for certain EMADMIN functions such as shutting
down the repository server remotely. (See also: -u.)

For NetWare and Windows you must specify -p without the
password argument, if the EMSRV user has no password.

-R 0,1 All The file system releases locks on file close. The default setting is
1 which indicates the file system releases locks when a file is
closed. 0 indicates the file system does not release locks when a
file is closed. If the latter is true, then locks are manually released
before closing a repository..

-remove WinNT, Windows 2000 Removes the EMSRV service from the registry.

-rn WinNT, Windows 2000,
NetWare, AIX, HP-UX,
Solaris, Linux

Rejects users who do not supply a user name and password
recognized by the server operating system. By default, no
password is required to connect to the shared repository.

-rp All Rejects users who are not in the passwd.dat file. By default, no
password is required to connect to the shared repository.

Chapter 4. Team administration 99

-s 0, 1, 2 All Sets the reporting level to the specified severity level:

v -s0 logs all operations

v -s1 logs warning and error messages

v -s2 logs only errors (default for all platforms)

-SC context NetWare Sets the default EMSRV for NetWare, NetWare Loadable Module
(NLM), Novell Directory Services (NDS) context.

See also -rn.

-t All Protects existing files from truncation. By default, files are created
over existing ones; that is, the existing file is truncated to 0
length.

-u username WinNT, Windows 2000,
NetWare

Specifies the EMSRV user. (See also: -p.)

-W path WinNT, Windows 2000,
NetWare, OS/2

Specifies the EMSRV working directory. The path must be a valid
path for which the EMSRV user has sufficient rights to read and
write.

*Important: EMSRV is no longer supported on Windows NT/2000 servers that run
on SMP hardware (machines with more than one processor). The decision to
remove support for SMP hardware is due to the frequency of reports concerning
repository corruptions with Windows servers and SMP hardware. EMSRV
continues to support SMP hardware for all other operating systems.

IBM ACCEPTS NO LIABILITY FOR DAMAGES YOU MAY SUFFER AS A RESULT
OF USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT RUNS ON SMP
HARDWARE, INCLUDING BUT NOT LIMITED TO, DAMAGES CLAIMED BY
YOU, BASED ON THIRD PARTY CLAIMS. IN NO EVENT WILL IBM, ITS
SUPPLIERS, AGENTS AND EMPLOYEES BE LIABLE FOR ANY INDIRECT,
SPECIAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL DAMAGES WHICH
MAY RESULT FROM USE OF EMSRV ON A WINDOWS NT/2000 SERVER THAT
RUNS ON SMP HARDWARE.

If you want to install and start EMSRV as a Windows NT/2000 service on SMP
hardware you must install the service using the -mp parameter. This will bypass
the check for SMP hardware. By doing this, you will be running EMSRV on an
unsupported platform and must assume full responsibility (IBM DOES NOT
ASSUME RESPONSIBILITY OR LIABILITY OF ANY KIND) if repositories become
subsequently corrupted.

If you do not install the service using the -mp parameter, the service will not start
and you will receive the following error message:

Could not start the EMSRV service on \\host

Error 2140: An internal Windows NT error occurred.

If you attempt to install EMSRV as a service again (for example, to add the -mp
parameter), the service will install successfully, but you will receive the following
error:

Message file emsrvmsg.dll, could not be copied to
C:\WINNT\System32\emsrvmsg.dll

100 Team Programming

--- OS error 1224: The requested operation could not be performed on a file with a
user mapped section open. Make sure the DLL is in the same directory as
EMSRV.EXE.

You can ignore this error message, as the DLL will already have been installed
when the service was previously installed.

The repository server (EMSRV)
EMSRV user

Setting up a team server - overview
Installing EMSRV as a service in the Windows registry
Starting the repository server on Windows
Starting the repository server on OS/2
Starting the repository server on AIX, HP-UX, Solaris, or Linux
Starting the repository server on NetWare
Changing the EMSRV working directory

The EMADMIN utility - overview
EMSRV authentication on Netware

EMSRV and TCP/IP
TCP/IP is the only supported network protocol for the VisualAge for Java team
development environment.

By default, EMSRV uses port 4800. To change this, use the -P parameter when
issuing the emsrv command to start the repository server. For example:

emsrv - P4803

The running EMSRV process will listen for connections on port 4803 instead of
default port 4800.

Clients must be configured to use the port that EMSRV will use.

The default limit for client connections to a server is 512. This limit can be changed
by using the -M parameter of the emsrv command. Some TCP/IP stacks will run
out of stream sockets before this limit is reached.

Team client/server configuration
The repository server (EMSRV)

EMSRV startup parameters

Chapter 4. Team administration 101

The EMADMIN utility - overview
The EMADMIN command-line utility allows you to manage a repository server
(EMSRV) from any network-attached workstation where emadmin.exe is installed.

The following table summarizes the EMADMIN commands that are available. Each
of these commands is discussed as a separate topic in this reference. To display a
list of these commands and their most common parameters, issue the emadmin
command with no parameters.

Command Description

copy Copies a VisualAge for Java repository on the server.

list Displays the current EMSRV connection list or information about a
specific connection.

opts Displays the current EMSRV settings.

stat Displays EMSRV statistics.

stop Shuts down EMSRV remotely or closes an active connection.

Supported Operating Systems
EMADMIN is supported on the following operating systems:
v Windows 95 and 98, and 98 (Second Edition)
v Windows 2000 Professional
v Windows 2000 Server
v Windows 2000 Advanced Server
v Windows NT Workstation 4.0 (with Service Pack 5)
v Windows NT Server 4.0 (with Service Pack 5)
v OS/2 Warp 4.0
v OS/2 Warp Server for e-business
v AIX 4.3.2, 4.33
v Sun Solaris 2.6, 7.0
v HP-UX 10.20, 11.0
v Red Hat Linux 6.1, 6.2

Syntax
EMADMIN uses the following syntax:
emadmin command [parameter1] [parameter2]...

The repository server (EMSRV)
EMSRV user

The EMADMIN copy command
The EMADMIN list command
The EMADMIN opts command
The EMADMIN stat command
The EMADMIN stop command

102 Team Programming

The EMADMIN copy command
The emadmin copy command allows you to copy a VisualAge for Java repository
(the source) to another repository (the target). The target repository may be on the
same server, or on another server in the network. The emadmin copy command
locks the source repository to make sure it is not changed during the copy
operation.

When you make a duplicate copy of the repository, you must make a duplicate
copy of the stored resources directory (ivj.dat.pr) and change the name to match
the repository it is associated with. For example, if you make a duplicate copy
called “team.dat”, you must make a duplicate project resources directory called
“team.dat.pr”.

Restrictions

v EMSRV must be running on the source and target servers.
v You must know the EMSRV user’s password.
v The source and target repositories must reside in directories to which the

EMSRV user has access. They can not reside on remote file systems.
v While the repository is being copied, team developers should not be browsing,

saving code, or running scripts that lock the repository. The administrator can
use the emadmin list command to see whether clients are still connected, or to
see the the last request time (LRT) of clients that are still connected.

Syntax
emadmin copy source target -p password [-o] [-q] [-P portNumber]

Parameter Description

source The VisualAge for Java repository file that you want to copy. The
file specification has the following format:

[ip_address]:[path]filename

ip_address is optional; it is the host name or IP address of the server
where EMSRV is running.

target The name of the repository to which you are copying. The format
is the same as for the source file.

If the repository does not exist, it will be created. If it does exist,
you will be prompted to confirm that you want to overwrite it.

The file specification has the same format as the source repository.

-p password The password of the EMSRV user (the user who started EMSRV)
on the source server.

-o Specifies that the target file may be overwritten without
prompting.

-q Specifies quiet operation so that EMADMIN will not issue any
prompts or write the number of bytes transferred to the console.

-P Specifies the port that EMSRV is using. The default port number is
4800.

Example

To copy a repository file to a backup file, issue the following command:

Chapter 4. Team administration 103

emadmin copy team1.dat bkup.dat -o -p emsrvpw

In this example, the team1.dat repository will be copied to the bkup.dat repository,
overwriting bkup.dat if it exists. Both repositories are in the EMSRV working
directory on the same server, so no server or directory information needs to be
provided. The EMSRV user’s password is emsrvpw.

The repository server (EMSRV)
EMSRV user

Backing up a shared repository
Creating a repository
Changing the EMSRV working directory

The EMADMIN utility - overview

The EMADMIN list command
The emadmin list command shows current connections to the repository server.
You can use it to obtain information about connection statistics and active locks.
Syntaxemadmin list host [-s connectionNumber] [-l] [-P portNumber]

Parameter Description

host The host name or IP address of the server whose active
connections you want to display. By default, this is the name of the
host from which you are issuing the emadmin command.

-s Display the statistics for the connection specified by connection
number.

-l Display the active locks for the connection specified by connection
number.

-P Specifies the port that EMSRV is using. The default port number is
4800.

Example 1
Here is an example of the information that might be displayed in response to
issuing emadmin list syd3fv from a command prompt:
EMADMIN 7.0
Copyright (C) IBM Corporation 1989-2000
Code page (ANSI): 1252

==
EMSRV 7.1 for NetWare (NDS) Dec 07 2000 13:18:27 (EST)
Operating system: NetWare 5.09 (SMP) (1 Processor - 2048 MB Memory)
Code page: 437

Active Last
ID IP Address Locks Request Socket File
--

0 204.138.97.188 0 13:22:09 13 DATA:\uvm\manager\manager6.dat
1 204.138.97.188 0 13:21:51 18 DATA:\uvm\manager\manager6.dat
2 204.138.97.188 0 13:21:51 22 <none>
3 204.138.97.18 0 15:31:31 27 DATA:\uvm\manager\manager6.dat

104 Team Programming

4 204.138.97.18 0 15:30:51 32 DATA:\uvm\manager\manager6.dat
5 204.138.97.18 0 15:30:51 36 <none>
6 192.168.12.21 0 16:34:26 41 DATA:\uvm\manager\manager6.dat
7 192.168.12.21 0 16:34:26 46 DATA:\uvm\manager\manager6.dat
8 192.168.12.21 0 16:34:08 50 <none>

--

There are 9 active connections.
==-----

Example 2
Here is an example of the information that might be displayed, in response to
issuing emadmin list -s0 syd3f from a command prompt:
EMADMIN 7.0
Copyright (C) IBM Corporation 1989-2000
Code page (ANSI): 1252

==
EMSRV 7.1 for NetWare (NDS) Dec 07 2000 13:18:27 (EST)
Operating system: NetWare 5.09 (SMP) (1 Processor - 2048 MB Memory)
Code page: 437

Connection 0 statistics (204.138.97.188)

File: DATA:\uvm\manager\manager6.dat
Total Opens: 2 Total Closes: 1
Total Reads: 27 Total Writes: 0
Total Locks: 0 Total Unlocks: 0
Current Locks: 0

The repository server (EMSRV)

Displaying server connections

The EMADMIN utility - overview

The EMADMIN opts command
The emadmin opts command allows you to do the following tasks:
v Display the parameters that were used to start the repository server
v Change the logging level for the EMSRV log, without restarting EMSRV

Syntax
emadmin opts host [-s level] [-P portNumber]

Parameter Description

host The host name or IP address of the server whose active
connections you want to display. By default, this is the name of the
host from which you are issuing the emadmin command.

Chapter 4. Team administration 105

-s level Specifies a new logging level for EMSRV. You can specify the
following logging levels:

0 Logs all operations and messages to the log file.
1 Logs warnings and errors to the log file.
2 Logs only errors to the log file (default).

-P Specifies the port that EMSRV is using. The default port number is
4800.

Example

Here is an example of the information that might be displayed in response to
issuing emadmin opts javateam from a command prompt:
EMADMIN 7.0
Copyright (C) IBM Corporation 1989-2000
Code page (ANSI): 1252

==
EMSRV 7.1 for NetWare (NDS) Dec 07 2000 13:18:27 (EST)
Operating system: NetWare 5.09 (SMP) (1 Processor - 2048 MB Memory)
Code page: 437

Maximum number of concurrent connections = [512]
Working directory = [g:\emsrv623]
Password checking = [Disabled]

Logging level = [Error]
Log file name = [emsrv.log]

Allow connection to truncate libraries = [true]
Process activity timeout value = [30] sec.
Sleep on lock value = [1000] msec.
Free disk space warning threshold = [10000] KBytes
Restrict libraries to local filesystems = [false]
--

The repository server (EMSRV)

Changing EMSRV settings (NetWare)

The EMADMIN utility - overview
EMSRV startup parameters

The EMADMIN stat command
The emadmin stat command provides statistics for operations completed since the
repository server was started. It also tells you what the current EMSRV working
directory is.

Syntax
emadmin stat host [-P portNumber]

Parameter Description

106 Team Programming

host The host name or IP address of the server whose active
connections you want to display. By default, this is the name of the
host from which you are issuing the emadmin command.

-P Specifies the port that EMSRV is using. The default port number is
4800.

Example

Here is an example of the information that might be displayed in response to
issuing emadmin stat syd3f from a command prompt:
EMADMIN 7.0
Copyright (C) IBM Corporation 1989-2000
Code page (ANSI): 1252

==
EMSRV 7.1 for NetWare (NDS) Dec 07 2000 13:18:27 (EST)
Operating system: NetWare 5.09 (SMP) (1 Processor - 2048 MB Memory)
Code page: 437

Total Connects: 234 Total Disconnects: 226
Total Opens: 7633 Total Closes: 7613
Active Locks 0 Unexpected Connection Closes: 29
Total Locks: 141795 Total Unlocks: 141795
Total Reads: 4293743 Total Writes: 101530
Total Reads Failed On Lock: 0 Total Locks Failed On Lock: 0
Times Lock Limit Hit: 0
Total Requests Serviced: 5144671 Requests in last interval: 1528
Largest Packet Sent: 32780 Largest Packet Received: 32784

Working Directory : DATA:EMSRV
Server Has Been Alive For: 4 Days 23 Hours 42 Minutes 45 Seconds
==-----

The repository server (EMSRV)

Stopping the repository server
Stopping a client connection
Changing the EMSRV working directory

The EMADMIN utility - overview

The EMADMIN stop command
The emadmin stop command allows you to do the following tasks:
v Stop a client’s connection to the repository server
v Stop EMSRV

Syntax
emadmin stop host [-k connection_number] [-p password] [-P portNumber]

Parameter Description

Chapter 4. Team administration 107

host The host name or IP address of the server. By default, this is the
name of the host from which you are issuing the emadmin
command. If you do not use -k to specify a particular connection,
the entire server will be shut down.

-k The unique connection number that you want to terminate. (Use
the emadmin list command for a list of connections.)

-p The password of the EMSRV user (the account used to start
EMSRV). If you do not provide the password, you will be
prompted for it.

-P Specifies the port that EMSRV is using. The default port number is
4800.

Example
To stop the repository server on an IP host called teamserv, which was started with
the password “secret”, issue the following command:
emadmin stop teamserv -p secret

The repository server (EMSRV)
EMSRV user

Stopping the repository server
Stopping a client connection

The EMADMIN utility - overview

EMSRV account names and authentication on Windows
This file contains detailed information about EMSRV authentication and account
names on Windows NT and Windows 2000.

Authentication on Windows NT and Windows 2000
Account names authenticated by EMSRV for Windows NT/2000 can come from
two sources - the name of the EMSRV user and the network names for users
managed in a repository. As of this release, an account name may be in one of
three formats:

Simple name

adrian

Windows NT 4.0 SAM (Security Accounts Manager) compatible name

engineering\adrian

User Principal Name (UPN)

adrian@ral.ibm.com

108 Team Programming

Windows NT 4.0 and Windows 2000 non-domain controllers support simple names
and SAM-compatible names. Windows 2000 domain controllers support all three
formats. Previous releases of EMSRV for Windows NT only supported simple
names. The new formats allow authentication between domains as well as in an
Active Directory.

Windows NT and Windows 2000 supports installable authentication and security
packages, allowing the system to be extended with new forms of authentication
and security. EMSRV for Windows NT/2000 only supports the default packages
supplied with Windows NT and Windows 2000 - namely the MSV1_0 and
Kerberos authentication packages and the NTLM (NT LAN Manager) and Kerberos
security packages.

Authentication procedure using Windows NT and Windows 2000 non-domain
controllers
EMSRV for Windows NT/2000 uses NTLM (NT Lan Manager) authentication on
Windows NT 4.0 and Windows 2000 non-domain controllers. User records in these
systems are stored in a SAM database.

To authenticate a user, EMSRV must first find the name of the domain with the
SAM database that contains the user to be authenticated. The term domain applies
equally to non-domain controllers because every SAM database contains a built-in
domain known as ’BUILTIN’ as well as for non-domain controllers, a domain with
the same name as the machine or for domain controllers, the controlled domain.

If a SAM-compatible name (specifying a domain) is supplied, then the domain is
already known. If a simple name is provided then the following are checked to
find the user:
v a list of well-known SID (Security Identifier)s
v built-in and administratively defined local accounts
v the primary domain
v trusted domains

One the domain is known, an attempt is made to authenticate the user in that
domain. If the domain name matches the name of the SAM database on the local
machine then the authentication is processed on that machine. The name of the
SAM database on a Windows NT Workstation that is a member of a domain, is
considered to be the name of that Windows NT machine. The name of the SAM
database on a Windows NT Advanced Server is the name of the domain. If a
Windows NT machine is not a member of a domain then authentication is
processed locally.

If the domain specified is trusted by the domain of the machine running EMSRV,
the authentication request is passed through to the trusted domain. On a Windows
NT workstation, the request is always passed through to the primary domain
controller of the workstation, allowing the primary domain controller to determine
if the specified domain is trusted.

If the domain name specified is not trusted by the domain of the machine running
EMSRV, the authentication request is processed on that machine as if the domain
name specified were that domain (or computer) name. In other words, the domain
name is ignored. The system does not differentiate between a nonexistent domain
or an untrusted domain.

An example illustrates how cross-domain authentication can be set up:

Chapter 4. Team administration 109

There are two domains: KIRA and CHIEF. The domain controller for the KIRA
domain is NT4PDC. The domain controller for the CHIEF domain is NT4PDC2. A
trust relationship is setup so that CHIEF is a trusted domain of KIRA (and hence
KIRA is a trusting domain of CHIEF). The trust relationship is one-way such that
KIRA is not a trusted domain of CHIEF.

EMSRV is setup to run on KIRA\NT4PDC. Users in both domains can be
authenticated. Account names may be specified using a simple name in which case
EMSRV will locate the domain containing the user, or the domain may be specified
using a SAM-compatible name such as CHIEF\ADRIAN.

EMSRV is setup to run on CHIEF\NT4PDC2. Only users in the CHIEF domain can
be authenticated because KIRA is not a trusted domain of the CHIEF domain.

Authentication procedure using Windows 2000 domain controllers
EMSRV for Windows NT/2000 uses Kerberos authentication on Windows 2000.
User records for Windows 2000 domain controllers are stored in an Active
Directory instead of a SAM database. The KDC (Key Distribution Center) service
must be running to use Kerberos authentication.

If a simple name is supplied, then the procedure for locating the user is the same
as that for Windows NT 4.0 and Windows 2000 non-domain controllers. The one
difference is that in addition to checking the following:
v a list of well-known SID (Security Identifier)s
v built-in and administratively defined local accounts
v the primary domain
v (explicitly) trusted domains

Every domain in the forest for the machine running EMSRV, is also checked. This
makes sense since a forest is a collection of Active Directory trees connected by
two-way transitive trust relationships.

A SAM-compatible name will be authenticated with the domain that the name
specifies. A User Principal Name will be authenticated with Active Directory
Services.

The implementation of Kerberos authentication in Windows 2000 can be
summarized as:

The NTLM protocol requires that the server must contact a domain controller.
When Kerberos is used, the server does not have to contact the domain controller.
A client gets a ticket for a server by requesting one from a domain controller in the
server account domain; the server validates the ticket without consulting any other
machine.

An example illustrates how Active Directory authentication can be setup:

There are three Active Directory domains - ibm, ral.ibm, and engineering.ral.ibm.
The engineering.ral.ibm domain is a child of the ral.ibm domain and the ral.ibm
domain is a child of the ibm domain. Each parent-child relationship automatically
creates a two-way transitive trust relationship. As a result, since ral.ibm trusts
engineering.ral.ibm and ibm trusts ral.ibm, ibm trusts engineering.ral.ibm. The
three domains form a tree.

110 Team Programming

In addition there is another Active Directory domain - bedrock, which forms a tree
of one domain. The ibm tree and the bedrock tree together form a forest - they
share a common schema, configuration, global catalog, and are linked with
two-way transitive trusts at the tree roots.

Finally there is an NT 4.0 domain - KIRA. A one-way trust relationship is setup so
that ibm trusts KIRA.

If EMSRV is run on the domain controller for the ibm domain, users from the
following domains can be authenticated:

ibm
ral.ibm
engineering.ral.ibm
bedrock
KIRA

Simple names for users in any of those domains will cause a search to be initiated
to find the domain containing the user. Alternatively, names may be specified in
any one of the other two formats previously described (Windows NT 4.0
SAM-compatible names and User Principal Names).

The Repository Server (EMSRV)
EMSRV User

Setting up a team server - overview
Installing EMSRV as a service in the Windows registry
Authorizing the EMSRV user (Windows)
Stopping the repository server
Enabling password validation - overview
Changing the EMSRV working directory

EMSRV startup parameters
The EMADMIN utility - overview

EMSRV account names and authentication on Netware
This file contains detailed information about EMSRV authentication and account
names on Netware.

Account names authenticated by EMSRV for NetWare can come from two sources -
the name of the EMSRV user and the network names for users managed in a
repository. Account names can be simple or distinguished. Both forms can also be
typeful or typeless. Some examples are provided below:

Simple typeless name

adrian

Simple typeful name

Chapter 4. Team administration 111

CN=adrian

Distinguished typeless name

adrian.engineering.ral.IBM

Distinguished typeful name

CN=adrian.OU=engineering.OU=ral.O=IBM

Names are always authenticated in the context of the NDS context that is specified
when EMSRV is started (the context is appended to the account name). Absolute
names (those preceded with a period) are authenticated in the [Root] context (any
context specified when EMSRV was started, is ignored). For each trailing period in
a name, one component of the context is removed before being appended to the
name. This allows names to be resolved in containers that are higher in an NDS
tree than the specified context. Some examples:

Context engineering.ral.IBM
Name adrian
Resulting name adrian.engineering.ral.IBM

Context engineering.ral.IBM
Name .admin.IBM
Resulting name .admin.IBM

Context engineering.ral.IBM
Name kathy.support.phx..
Name kathy.support.phx.IBM

By using a distinguished name, it is possible to authenticate users in different
containers. The most common case for this may be if the account names for users
are located in one container but the EMSRV user is located in another. For
example, if Netware accounts corresponding to network names of users in a
repository exist in the container ’engineering.ral.IBM’ but the EMRSV user exists in
the container ’IBM’, the following command could be used to load EMSRV:

load emsrv -u .EMSRV.IBM -p test - W sys:emsrv -rn -SC engineering.ral.IBM

Alternatively, the following command would also accomplish the same result:

load emsrv -u EMSRV.IBM.. -p test - W sys:emsrv -rn -SC engineering.ral.IBM

The repository server (EMSRV)
EMSRV user

Setting up a team server - overview
Changing the EMSRV working directory
Enabling password validation - overview
Enabling native password validation
Adding users to the repository user list
Changing EMSRV settings (NetWare)
Stopping the repository server

112 Team Programming

EMSRV startup parameters
The EMADMIN utility - overview

Chapter 4. Team administration 113

114 Team Programming

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2000 115

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. 1997, 2000. All rights reserved.

116 Team Programming

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1998, 2000 117

118 Team Programming

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1998, 2000 119

	Contents
	Chapter 1. Team development concepts
	Team development - overview
	Team client/server configuration
	The repository server (EMSRV)
	Editions and versioning
	Scratch editions
	Baselines, releasing, and reloading
	Version control for project resource files
	Ownership and team roles - overview
	Class developer
	Class owner
	Package owner
	Project owner
	Repository administrator
	EMSRV user (All server operating systems except OS/2)
	Workspace owner
	Repository user list
	Package groups

	Chapter 2. Team development scenarios
	Team Development Scenarios - overview
	Team development - basic class development pattern
	Team development scenario - single package, single developer
	Team development scenario - single package, multiple developers
	Team development scenario - multiple packages, multiple developers
	Team development scenario - project wrap-up and delivery
	Sample life cycle of an application

	Chapter 3. Working in a team environment
	Logging in to the server
	Connecting to a shared repository
	Changing workspace owner
	Releasing a program element or resource file
	Creating a scratch edition
	Sharing resource files
	Creating resource folders
	Adding resource files to the project from the file system
	Replacing a resource file with the released version
	Building a team baseline
	Managing editions of program elements
	Finding unreleased editions in the workspace
	Finding unversioned editions in the workspace
	Viewing a class or interface's developer
	Viewing a program element's owner
	Changing a program element's owner
	Adding members to a package group
	Changing the owner of a resource file or folder
	Viewing information about your repository connection
	Changing repositories
	Working at a standalone workstation
	Recovering from a server failure

	Chapter 4. Team administration
	TCP/IP network considerations in team development
	Server considerations in team development
	Server files and directories
	Server security
	Number and placement of shared repositories
	Team and project organization
	Setting up a team server - overview
	Installing EMSRV as a service in the Windows registry
	Removing EMSRV from the Windows registry
	Authorizing the EMSRV user (Windows)
	Starting the repository server on Windows
	Starting the repository server on OS/2
	Starting the repository server on AIX, HP-UX, Solaris, or Linux
	Starting the repository server on NetWare
	Stopping a client connection
	Stopping the repository server
	Displaying server connections
	Displaying server statistics
	Displaying active EMSRV settings
	Displaying EMSRV messages
	Changing the EMSRV working directory
	Setting the server disk threshold
	Setting EMSRV message logging options
	Changing EMSRV settings (NetWare)
	Adding users to the repository user list
	Enabling password validation - overview
	Enabling native password validation
	Enabling password validation with the passwd.dat file
	Providing a standard workspace
	Creating a repository
	Backing up a shared repository
	Dividing a repository
	Optimizing server performance
	EMSRV startup parameters
	EMSRV and TCP/IP
	The EMADMIN utility - overview
	The EMADMIN copy command
	The EMADMIN list command
	The EMADMIN opts command
	The EMADMIN stat command
	The EMADMIN stop command
	EMSRV account names and authentication on Windows
	Authentication on Windows NT and Windows 2000

	EMSRV account names and authentication on Netware

	Notices
	Programming interface information
	Trademarks and service marks

