
D I S L I N 7.5

A Data Plotting

Library

by

Helmut Michels

c
 Helmut Michels, Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau 1986 - 2001

All rights reserved.

Contents

1 Introduction 1

2 Basic Concepts and Conventions 3
2.1 Page Format . 3
2.2 File Format . 3
2.3 Level Structure of DISLIN . 4
2.4 Conventions . 5
2.5 Error Messages . 5
2.6 Programming in C . 5
2.7 Programming in Fortran 90 . 6
2.8 Linking Programs . 6
2.9 Utility Programs 7
2.10 WWW Homepage . 9
2.11 Reporting Bugs . 9
2.12 License Information . 9

3 Introductory Routines 11
3.1 Initialization and Termination. 11
3.2 Plotting of Text and Numbers. 11
3.3 Plotting Symbols . .. 12
3.4 Plotting a Page Border, Background and Header. 13
3.5 Sending a Metafile to a Device . 13
3.6 Including Metafiles into a Graphics . 14

4 Plotting Axis Systems and Titles 15
4.1 Plotting Axis Systems. 15
4.2 Termination of Axis Systems . 16
4.3 Plotting Titles. 16
4.4 Plotting Grid Lines .. 16
4.5 Secondary Axes 17

5 Plotting Curves 19
5.1 Plotting Curves 19
5.2 Plotting Legends . .. 20
5.3 Plotting Shaded Areas between Curves . .. 22
5.4 Plotting Error Bars .. 22
5.5 Plotting Vector Fields. 23

6 Parameter Setting Routines 25
6.1 Basic Routines . 25

6.1.1 Resetting Parameters. 25
6.1.2 Modifying the Origin . 25

i

6.1.3 Changing the Foreground Colour. 25
6.1.4 File Format Control . 26
6.1.5 Page Control . 28
6.1.6 Error Handling . 31
6.1.7 Viewport Control . 32

6.2 Axis Systems . 35
6.2.1 Modifying the Type . 35
6.2.2 Modifying the Position and Size. 35
6.2.3 Axis Scaling . 36
6.2.4 Modifying Ticks . 37
6.2.5 Modifying Labels . 39
6.2.6 Modifying Axis Titles . 42
6.2.7 Suppressing Axis Parts 43
6.2.8 Modifying Clipping . 45
6.2.9 Framing Axis Systems . 45
6.2.10 Setting Colours. 46
6.2.11 Axis System Titles. 46

6.3 Text and Numbers . 48
6.4 Fonts . 50
6.5 Indices and Exponents. 62
6.6 Instruction Alphabet . 63
6.7 TeX Instructions for Mathematical Formulas . 67

6.7.1 Introduction. 67
6.7.2 Enabling TeX Mode and TeX Options . 67
6.7.3 Exponents and Indices 68
6.7.4 Fractions . 68
6.7.5 Roots . 68
6.7.6 Sums and Integrals . 69
6.7.7 Greek Letters . 69
6.7.8 Mathematical Symbols . 69
6.7.9 Alternate Alphabets . 70
6.7.10 Function Names . 70
6.7.11 Accents. 70
6.7.12 Lines above and below Formulas . 70
6.7.13 Horizontal Spacing . 70
6.7.14 Selecting Character Size in TeX Mode . 70
6.7.15 Colours in TeX Mode . 70
6.7.16 Example . 71

6.8 Curve Attributes . 73
6.9 Line Attributes . 76
6.10 Shading . 77
6.11 Attribute Cycles . 79
6.12 Base Transformations . 79
6.13 Shielded Regions . 80

7 Parameter Requesting Routines 83

8 Elementary Plot Routines 89
8.1 Lines . 89
8.2 Vectors . 90
8.3 Geometric Figures . 91

ii

9 Utility Routines 95
9.1 Transforming Coordinates . 95
9.2 String Arithmetic . 97
9.3 Number Arithmetic . 97
9.4 Date Routines . 100
9.5 Bit Manipulation . 101
9.6 Byte Swapping . 102
9.7 Cursor Routines . 103
9.8 Binary I/O . 104

10 Business Graphics 107
10.1 Bar Graphs . 107
10.2 Pie Charts . 111
10.3 Examples . 115

11 3-D Colour Graphics 121
11.1 Introduction. 121
11.2 Window Terminals . 121
11.3 PostScript Files . 122
11.4 Clearing the Screen . 122
11.5 Plotting Coloured Axis Systems. 122
11.6 Secondary Colour Bars. 123
11.7 Plotting Data Points .. 123
11.8 Parameter Setting Routines. 124
11.9 Elementary Image Routines . 128
11.10Multiple Windows on X11 and Windows Terminals. 132
11.11Elementary Plot Routines . 133
11.12Conversion of Coordinates . 134
11.13Example . 135

12 3-D Graphics 137
12.1 Introduction. 137
12.2 Defining View Properties . 138
12.3 Plotting Axis Systems. 139
12.4 Plotting a Border around the 3-D Box . .. 140
12.5 Plotting Grids. 140
12.6 Plotting Curves 140
12.7 Plotting a Surface Grid from a Function .. 141
12.8 Plotting a Surface Grid from a Matrix . .. 141
12.9 Plotting a Shaded Surface from a Matrix .. 142
12.10Plotting a Shaded Surface from a Parametric Function. 143
12.11Plotting a Shaded Surface from Triangulated Data. 143
12.12Plotting Isosurfaces .. 144
12.13Additional Parameter Setting Routines . .. 144
12.14Lighting . 147
12.15Surfaces from Randomly Distributed Points. 149
12.16Projection of 2-D-Graphics into 3-D Space . 152
12.17Using the Z-Buffer . 152
12.18Elementary Plot Routines . 153
12.19Transformation of Coordinates . 154
12.20Examples . 156

iii

13 Geographical Projections and Plotting Maps 161
13.1 Axis Systems and Secondary Axes .. 161
13.2 Defining the Projection . 162
13.3 Plotting Maps .. 164
13.4 Plotting Data Points. 165
13.5 Parameter Setting Routines. 166
13.6 Conversion of Coordinates . 167
13.7 Examples . 168

14 Contouring 177
14.1 Plotting Contours. 177
14.2 Plotting Filled Contours. 179
14.3 Generating Contours . 179
14.4 Parameter Setting Routines. 180
14.5 Examples . 183

15 Widget Routines 189
15.1 Widget Routines . 189
15.2 Parameter Setting Routines. 194
15.3 Requesting Routines . 200
15.4 Utility Routines. 202
15.5 Dialog Routines . 203
15.6 Examples . 205

16 Quickplots 211
16.1 Plotting Curves. 211
16.2 Scatter Plots . 211
16.3 Bar Graphs . 211
16.4 Pie Charts . 212
16.5 3-D Colour Plots . 212
16.6 Surface Plots . 212
16.7 Contour Plots . 212
16.8 Setting Parameters for Quickplots .. 213

17 MPAe Emblem 215

A Short Description of Routines 217

B Examples 231
B.1 Demonstration of CURVE . 232
B.2 Symbols . 234
B.3 Logarithmic Scaling . 236
B.4 Interpolation Methods. 238
B.5 Line Styles . 240
B.6 Legends . 242
B.7 Shading Patterns (AREAF) . 244
B.8 Vectors . 246
B.9 Shading Patterns (PIEGRF) . 248
B.10 3-D Bar Graph / 3-D Pie Chart . 250
B.11 Surface Plot (SURFUN) . 252
B.12 Map Plot . 254

C Index 257

iv

Preface to Version 7.5

This manual describes the data plotting library DISLIN written in the programming languages Fortran
and C. The name DISLIN is an abbreviation for Device-Independent Software LINdau since applications
were designed to run on different computer systems without any changes. The library contains subrou-
tines and functions for displaying data graphically as curves, bar graphs, pie charts, 3-D colour plots,
surfaces, contours and maps.

DISLIN is intended to be a powerful and easy to use software package for programmers and scientists that
does not require knowledge of hardware features of output devices. The routines in the graphics library
are the result of my own work on many projects with different computers and many plotting packages.
There are only a few graphics routines with a short parameter list needed to display the desired graphical
output. A large variety of parameter setting routines can then be called to create individually customized
graphics.

Since the first version of DISLIN was released in Dec. 1986, many changes and corrections have been
made and new features and standards have been added to the software. Some of the new features are el-
ementary image routines, a graphical user interface, filled contour lines, flat and smooth shaded surfaces
and a C interface for reading binary data from Fortran programs. DISLIN supports now several hardware
platforms, operating systems and compilers. A real Fortran 90 library is available for most Fortran 90
compilers.

Although nearly all the routines and utilities of the software package are written by myself, DISLIN
would not have been possible without the help of many people. I would like to thank several people at
the Max-Planck-Institut in Lindau. First, Dr. W. Degenhardt, Dr. H. J. Mueller and Dr. I. Pardowitz who
gave their friendly assistance. To all the users of DISLIN, I am grateful for your helpful suggestions and
comments. I would especially like to thank the members of the computer center, Friederich Both, Terry
Ho, Godehard Monecke and Michael Bruns for their co-operation. Finally, I am grateful to Linda See
and Erika Eschebach who corrected the English and German manuals with great carefulness. To all of
them, my sincere thanks.

H. Michels Lindau, 15.05.2001

v

vi

Chapter 1

Introduction

DISLIN is a library of subroutines and functions that display data graphically. The routines can be used
with any display device capable of drawing straight lines with the exception of routines that generate 3-D
colour graphics which require special devices. Fortran 77, Fortran 90 and C versions of the library are
available.

DISLIN can display graphic information directly on graphic terminals or store them in metafiles. The
supported display types are VGA, X Windows, Windows API and Tektronix. The supported file formats
are GKSLIN, CGM, HPGL, PostScript, PDF, Prescribe, WMF, PNG and TIFF. DISLIN metafiles can be
printed on various devices using the DISLIN driver program DISDRV.

Chapter 2 describes the file and page formats and the overall structure of DISLIN programs.

Chapter 3 describes routines for the initialization, termination and plotting of text, numbers and symbols.

Chapter 4 presents the format of two-dimensional axis systems. Axes can be linearly or logarithmically
scaled and labeled with linear, logarithmic, date, time, map and user-defined formats.

Chapter 5 describes the routines for plotting curves. Several curves can appear in one axis system and
can be differentiated by colour, line style and pattern.

Chapter 6 summarizes parameter setting routines that overwrite default plotting parameters such as fonts,
character size and angle, colours, line styles and patterns.

Chapter 7 presents routines to request the values of plot parameters.

Chapter 8 describes the routines for plotting lines, circles, ellipses, vectors and shaded regions.

Chapter 9 describes the utilities available to transform coordinates, sort data and calculate the lengths of
numbers and character strings.

Chapter 10 introduces business graphic routines to create bar graphs and pie charts.

Chapter 11 presents 3-D colour graphics where points can be plotted with coloured or shaded rectangles.
A colour graphics device or a PostScript printer is needed for these subroutines and functions.

Chapter 12 describes routines for 3-D coordinate systems. Axis systems, curves and surfaces can be
drawn from various angular perspectives. All 2-D plotting routines can be used in a 3-D axis system.

Chapter 13 presents 14 different methods to project geographical coordinates onto a plane surface. Sev-
eral base maps are stored in the library for map plotting.

Chapter 14 describes routines for contouring three-dimensional functions of the form Z = F(X,Y). Con-
tours can be filled with solid lines.

Chapter 15 offers routines for creating graphical user interfaces in Fortran and C programs.

Chapter 16 presents some quickplots that are collections of DISLIN routines for displaying data with one
statement.

Chapter 17 describes routines for plotting and modifying the MPAe emblem.

1

2

Chapter 2

Basic Concepts and Conventions

2.1 Page Format

In DISLIN, the graphics are limited to a rectangular area called the page. All lines outside of or crossing
page borders will be suppressed.

The size of the page is determined by the routines SETPAG and PAGE. SETPAG corresponds to a
predefined page while PAGE defines a global page setting. In default mode, there are 100 points per
centimeter and the point (0, 0) is located in the upper left corner (Figure 2.1):

(0, 0)

(2969, 2099)

DIN A4 Landscape

Figure 2.1: Default Page (DA4L)

2.2 File Format

DISLIN can create several types of plotfiles. Device-independent plotfiles or metafiles can be coded in
ASCII or binary format. Device-dependent plotfiles are available for several printers and plotters.

The file formats are:

a) a CGM metafile according to the ANSI standard
Plot vectors are coded in binary format as non negative integers with 200 points per cm. Be-
cause of binary coding, CGM metafiles are smaller than other plotfiles.

b) a GKSLIN metafile
Plot vectors are stored as floating-point numbers between 0 and 1 in ASCII format. These files
are easily transferable from one computer to another.

3

c) a PostScript file
PostScript is an international standard language that has been developed for laserprinters in the
last few years. Some of the PostScript features such as hardware fonts and shading can be used
within DISLIN.

d) a PDF file
The Portable Document Format is the de facto standard for the electronic exchange of docu-
ments. Compressed and non compressed PDF files can be created by DISLIN. PostScript fonts
can be used for PDF files in the same way as for PostScript files.

e) a Prescribe file
The plotfile is created in the graphics language of Kyocera laserprinters and may also contain
hardware features such as shading for rectangles and pies.

f) a HPGL file
Plot vectors and colours are coded in a language recognized by Hewlett-Packard plotters.

g) a WMF file
The Windows metafile format is also supported by DISLIN. Plot vectors are converted to
1/1440 inch. WMF files can contain hardware fonts defined with the DISLIN routine WINFNT.

h) a Java applet file
Plot vectors and colours are stored in form of a Java applet.

i) a TIFF file
The raster format TIFF can be used for storing graphical output.

j) a PNG file
The Portable Network Graphics format is a compressed and therefore very small raster format
for storing graphical output. PNG files can be displayed directly by several Internet browsers.
The compression of PNG files is done in DISLIN with the zlib compression routines written
by Jean-loup Gailly and Mark Adler.

k) a PPM file
The portable pixmap format is a well-known colour image file format in the UNIX world.
There are many tools for converting PPM files into other image formats. The pixel values are
stored in DISLIN PPM files in plain bytes.

l) an IMAGE file
This easy raster format is used by DISLIN to store images. The files contain an ASCII header
of 80 bytes and the following image data.

m) a Tektronix, X Window and VGA emulation
Data can be displayed on graphic terminals such as X Window, VGA and Tektronix 4010/4014.

File formats can be set with the routine METAFL. The filename consists of the keyword ’DISLIN’ and
an extension that depends on the file format. An alternate filename can be chosen by calling the routine
SETFIL. Both subroutines must be called before the initialization routine DISINI.

2.3 Level Structure of DISLIN

Most routines in DISLIN can be called anywhere during program execution. Certain routines, however,
use parameters from other routines and must be called in a fixed order. DISLIN uses a level structure to
control the order in which routines are called. The levels are:

0 before initialization or after termination

1 after initialization or a call to ENDGRF

2 after a call to GRAF

4

3 after a call to GRAF3 or GRAF3D.

Generally, programs should have the following structure:

(1) setting of page format, file format and filename

(2) initialization

(3) setting of plot parameters

(4) plotting of the axis system

(5) plotting the title

(6) plotting data points

(7) termination.

2.4 Conventions

The following conventions appear throughout this manual for the description of routine calls:

- INTEGER variables begin with the character N or I

- CHARACTER variables begin with the character C

- other variables are REAL

- arrays end with the keyword ’RAY’.

Additional notes:

- CHARACTER variables may be specified in upper or lower case and may be shortened to
four characters.

- DISLIN stores parameters in common blocks whose names begin with the character ’C’.
Common block names in user programs should not begin with the character ’C’ to avoid
possible name equalities.

- The Fortran logical units 15, 16 and 17 are reserved by DISLIN for plot and parameter files.

- Two types of coordinates are continually referred to throughout the manual: plot coordinates
which correspond to the page and always have 100 points per cm, and user coordinates
which correspond to the scaling of the axis system.

2.5 Error Messages

When a DISLIN subroutine or function is called with an illegal parameter or notaccording to the level
structure, DISLIN writes a warning to the screen. The call of the routine will be ignored and program
execution resumed. Points lying outside of the axis system will also be listed on the screen. Error
messages can be suppressed or written to a file with the routines UNIT and NOCHEK.

2.6 Programming in C

There are different DISLIN libraries for the programming languages Fortran 77, Fortran 90 and C. The
DISLIN C library is written in the programming language C and useful for C programmers.

Though it is possible to call C routines in Fortran programs and Fortran subroutines in C programs, it
is easier to use the corresponding library. Especially, the passing of strings can be complicate in mixed
language programming.

5

The number and meaning of parameters passed to DISLIN routines are identical for all libraries. The
Fortran versions use INTEGER, REAL and CHARACTER variables while the C library uses int, float
and char variables. A detailed description of the syntax of C routines is given by the utility program
DISHLP or can be found in the header file ’dislin.h’ which must be included in all C programs.
For example:

#include<stdio.h>
#include ”dislin.h”
main()
f

disini ();
messag (”This is a test”, 100, 100);
disfin ();

g

2.7 Programming in Fortran 90

Several DISLIN distributions contain native libraries for the programming language Fortran 90 where
the source code of DISLIN is written in Fortran 90. Since the passing of parameters to subroutines and
functions can be different in Fortran 90 and Fortran 77, you should not link Fortran 77 programs with
Fortran 90 libraries and vice versa.

Important: All program units in Fortran 90 programs that contain calls to DISLIN routines must
include the statement ’USE DISLIN’. The module ’DISLIN’ contains interfaces for all
DISLIN routines and enables the compiler the correct passing and checking of parame-
ters passed to DISLIN routines.

For example:

PROGRAM TEST
USE DISLIN
CALL DISINI ()
CALL MESSAG (’This is a test’, 100, 100)
CALL DISFIN ()

END PROGRAM TEST

2.8 Linking Programs

The linking of programs with the graphics library depends upon the operating system of the computer.
Therefore, DISLIN offers a system-independent link procedure that can be used on all computers in the
same way.

Command: DLINK [option] main

option is an optional parameter containing a minus sign and a character. The follow-
ing options can be used on all computers:

-c for compiling programs before linking.

-r for running programs after linking.

-a for compiling, linking and running programs.

main is the name of the main program.

6

Additional notes: - If DLINK is called without parameters, the description of the program will be
printed on the screen. There may be other local features available depending
upon the operating system used.

- Linking of C programs should be done with the procedure CLINK.

- Linking of Fortran 90 programs should be done with the procedure F90LINK.

2.9 Utility Programs

The following programs are useful for working with DISLIN. They send plotfiles to devices, check the
use of DISLIN routines in Fortran programs and print the description of routines on the screen.

D I S H L P

DISHLP prints the description of a DISLIN routine on the screen.

Command: DISHLP routine [options]

routine is the name of a DISLIN routine or a question mark. For a question mark, all
routine names will be listed. An empty input terminates the program.

options is an optional field of keywords (see DISHLP).

D I S M A N

DISMAN prints an ASCII version of the DISLIN manual on the screen.

Command: DISMAN [options]

options is an optional field of keywords (see DISMAN).

D I S P R V

DISPRV checks the use of DISLIN routines in a Fortran program. The type and dimension of parameters
and the overlapping of common block and routine names with internal DISLIN declarations will be
checked.

Command: DISPRV filename[.FOR] [options]

filename describes the file containing the Fortran code.

options is an optional field of keywords (see DISPRV).

D I S D R V

DISDRV sends a plotfile to a device. CGM and GKSLIN files can be used for all devices while device-
dependent plotfiles can only be sent to corresponding devices.

Command: DISDRV filename[.MET] [device] [options]

filename is the name of a plotfile.

device is the name of a device. CONS refers to the graphics screen, XWIN to an X
Window terminal, PSCi to a PostScript printer, KYOi to a Kyocera laserprinter
with Prescribe and HPLi to a HP-plotter, where i = 1, 2, 3, ..., n is the printer
number.

options is an optional field of keywords (see DISDRV).

7

D I S H P J

DISHPJ sends a GKSLIN or CGM metafile to a printer using a raster graphics emulation (i.e. HP PCL).

Command: DISHPJ filename[.MET] [device] [options]

filename is the name of the metafile.

device is the name of the device.

options is an optional field of keywords (see DISHPJ).

D I S I M G

DISIMG displays an image file on the screen, or converts it to PostScript and TIFF.

Command: DISIMG filename[.IMG] [device] [options]

filename is the name of the image file. The file must be created with the routine RIM-
AGE.

device is the device name.

options is an optional field of keywords (see DISIMG).

D I S M O V

DISMOV displays a sequence of image files.

Command: DISMOV filename[.MOV] [device] [options]

filename is the name of a data file where the filenames of the images are stored (1 line
for each filename). The images must be created with the routine RIMAGE.

device is the device name.

options is an optional field of keywords (see DISMOV).

D I S T I F

DISTIF displays a TIFF file created by DISLIN on the screen, or converts it to PostScript and an image
format.

Command: DISTIF filename[.TIF] [device] [options]

filename is the name of the TIFF file. The file must be created with the routine RTIFF.

device is the device name.

options is an optional field of keywords (see DISTIF).

D I S G I F

DISGIF displays a GIF file on the screen, or converts it to PostScript and TIFF.

Command: DISGIF filename[.GIF] [device] [options]

filename is the name of the GIF file.

device is the device name.

options is an optional field of keywords (see DISGIF).

8

D I S A P S

DISAPS converts an ASCII file to a PostScript file. Several page layouts can be defined.

Command: DISAPS filename [output] [options]

filename is the name of the ASCII file.

output is the name of the output file. By default, the name of the input file and the
extension ps will be used.

options is an optional field of keywords (see DISAPS).

Additional note: If a utility program is called without parameters, a description of possible pa-
rameters will be printed on the screen. DISDRV, for example, lists the local
output devices available.

2.10 WWW Homepage

DISLIN is available from the Web sites

http://www.dislin.de http://www.linmpi.mpg.de/dislin

2.11 Reporting Bugs

DISLIN is well tested by many users and should be very bug free. However, no software is perfect and
every change can cause new bugs. If you have any problems with DISLIN, contact the author:

Helmut Michels
Max-Planck-Institut fuer Aeronomie
D-37191 Katlenburg-Lindau, Max-Planck-Str. 2, Germany
E-Mail: michels@linmpi.mpg.de
Tel.: +49 5556 979 334
Fax: +49 5556 979 240

2.12 License Information

DISLIN is free for the operating systems Linux and FreeBSD and for the GNU compilers GCC+G77/MS-
DOS and GCC+G77/Windows95. Other DISLIN versions are available at low charge and can be tested
free of charge. Programs linked with DISLIN can be distributed without any royalties together with
neccessary shareable DISLIN libraries.

Normally, DISLIN programs check for a valid DISLIN license in the file ’license.dat’ in the DISLIN di-
rectory. If DISLIN is not installed on a system, a DISLIN program can be executed if the file ’license.dat’
is created with the entry ’License: Runtime’. The environment variable ’DISLIN’ should be set to the
directory where the file ’license.dat’ is placed.

A valid DISLIN license can be received by running the program ’license’ in the DISLIN directory and
sending the output file ’license.lis’ to the author.

This manual of the data plotting software DISLIN can be copied and distributed freely.

9

10

Chapter 3

Introductory Routines

3.1 Initialization and Termination

DISINI initializes DISLIN by setting default parameters and creating a plotfile. The level is set to 1.
DISINI must be called before any other DISLIN routine except for those noted throughout the manual.

The call is: CALL DISINI level 0

or: void disini ();

DISFIN terminates DISLIN and prints a message on the screen. The level is set back to 0.

The call is: CALL DISFIN level 1, 2, 3

or: void disfin ();

3.2 Plotting of Text and Numbers

M E S S A G

MESSAG plots text.

The call is: CALL MESSAG (CSTR, NX, NY) level 1, 2, 3

or: void messag (char *cstr, int nx, int ny);

CSTR is a character string (� 256 characters).

NX, NY are the plot coordinates of the upper left corner.

N U M B E R

NUMBER plots a floating-point number or integer.

The call is: CALL NUMBER (X, NDIG, NX, NY) level 1, 2, 3

or: void number (float x, int ndig, int nx, int ny);

X is a floating-point number.

NDIG is the number of digits plotted after the decimal point. If NDIG = -1, X will be
plotted as an integer. The last digit of X will be rounded up.

NX, NY are the coordinates of the upper left corner.

RLMESS and RLNUMB are corresponding routines for user coordinates. They can be used for plotting
text and numbers in an axis system after a call to GRAF.

11

The calls are: CALL RLMESS (CSTR, XP, YP) level 2, 3

CALL RLNUMB (X, NDIG, XP, YP) level 2, 3

or: void rlmess (char *cstr, float xp, float yp);

void rlnumb (float x, int ndig, float xp, float yp);

Additional notes: - To continue character strings and numbers on the same line, the coordinates
(999, 999) should be sent to MESSAG and NUMBER. The text or numbers
will be plotted after the last plotted text character or number.

- The angle and height of the characters can be changed with the routines AN-
GLE and HEIGHT.

- The format of numbers can be modified with the routines NUMFMT and NU-
MODE.

- Text and numbers can be plotted in a box if the routine FRMESS is used.

- The starting point of text and numbers can be interpreted as upper left, upper
center and upper right point if the routine TXTJUS is used.

3.3 Plotting Symbols

S Y M B O L

The routine SYMBOL plots symbols.

The call is: CALL SYMBOL (NSYM, NX, NY) level 1, 2, 3

or: void symbol (int nsym, int nx, int ny);

NSYM is a symbol number between 0 and 21. Available symbols are given in the
Appendix B.

NX, NY is the centre of the symbol in plot coordinates.

Additional notes: - The size of symbols can be set with HSYMBL.

- SYMROT (ANGLE) defines a rotation angle for symbols (in degrees). The
symbol is rotated in a counter-clockwise direction.

R L S Y M B

RLSYMB plots a symbol where the centre is specified by user coordinates.

The call is: CALL RLSYMB (NSYM, XP, YP) level 2, 3

or: void rlsymb (int nsym, float xp, float yp);

12

3.4 Plotting a Page Border, Background and Header

P A G E R A

PAGERA plots a border around the page.

The call is: CALL PAGERA level 1, 2, 3

or: void pagera ();

P A G F L L

The routine PAGFLL fills the page with a colour.

The call is: CALL PAGFLL (NCLR) level 1, 2, 3

or: void pagfll (int nclr);

NCLR is a colour number in the range 0 to 255.

P A G H D R

PAGHDR plots a page header at a corner of the page. The header line contains date, time and user-defined
information.

The call is: CALL PAGHDR (CSTR1, CSTR2, IOPT, IDIR) level 1, 2, 3

or: void paghdr (char *cstr1, char *cstr2, int iopt, int idir);

CSTR1 is a character string preceding the header line.

CSTR2 is a character string following the header line.

IOPT is the page corner where the header is plotted:
= 1 is the lower left corner.
= 2 is the lower right corner.
= 3 is the upper right corner.
= 4 is the upper left corner.

IDIR is the direction of the header line:
= 0 is horizontal.
= 1 is vertical.

Additional note: The character size of the header line is 0.6 * NH where NH is the parameter
used in HEIGHT.

3.5 Sending a Metafile to a Device

A metafile can be converted with a driver program and sent from the operating system to several devices.
From within a user program, the SYMFIL routine is used for this purpose.

S Y M F I L

SYMFIL sends a metafile to a device. It must be called after DISFIN.

The call is: CALL SYMFIL (CDEV, CSTAT) level 0

or: void symfil (char *cdev, char *cstat);

13

CDEV is the name of the device. ’CONS’ refers to the graphics screen, ’XWIN’ to
a X Window terminal, ’PSCi’ to a PostScript printer, ’KYOi’ to a Kyocera
laserprinter with Prescribe and ’HPLi’ to a HP-plotter. The keyword ’NONE’
can be used to delete a metafile with no device plotting.

CSTAT is a status parameter and can have the values ’DELETE’ and ’KEEP’.

Additional note: SYMFIL calls the DISLIN driver utility DISDRV. The parameter ’REVERS’
can be passed to DISDRV from SYMFIL if the routine SCRMOD is called
before with the parameter ’REVERS’.

3.6 Including Metafiles into a Graphics

A metafile can be included into a graphics with the routine INCFIL.

I N C F I L

The routine INCFIL includes a GKSLIN or CGM metafile into a graphics.

The call is: CALL INCFIL (CFIL) level 1, 2, 3

or: void incfil (char *cfil);

CFIL is a character string that contains the filename.

Additional notes: - The routine FILBOX (NX, NY, NW, NH) defines a rectangular area on the
page where the metafile will be included. (NX, NY) are the plot coordinates
of the upper left corner, (NW, NH) are the width and length of the box in plot
coordinates. By default, the entire page will be used.

- With the statement CALL FILCLR (’NONE’), colour values in a metafile will
be ignored. The default is FILCLR (’ALL’).

14

Chapter 4

Plotting Axis Systems and Titles

4.1 Plotting Axis Systems

An axis system defines an area on the page for plotting data. Various axis systems can be plotted to
accommodate different applications. For two-dimensional graphics, a maximum of two parallel X- and
Y-axes can be drawn. The axis system is scaled to fit the range of data points and can be labeled with
values, names and ticks. Two-dimensional axis systems are plotted with a call to the routine GRAF.

G R A F

GRAF plots a two-dimensional axis system.

The call is: CALL GRAF (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP) level 1

or: void graf (float xa, float xe, float xor, float xstep,
float ya, float ye, float yor, float ystep);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTEP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTEP are the first Y-axis label and the step between labels.

Additional notes: - GRAF must be called in level 1 and automatically sets the level to 2. When
plotting more than 1 axis system on a page, ENDGRF must be called in be-
tween each new set of axes in order to set the level back to 1.

- The position of the lower left corner and the size of an axis system can be
changed with the routines AXSPOS and AXSLEN.

- The axis scaling is linear by default and can be changed with SCALE. For
logarithmic scaling, the corresponding parameters in GRAF must be exponents
of base 10.

- One of several label types can be chosen with the routine LABELS or user-
defined with MYLAB. Single labels can be suppressed by calling AXENDS.

- The routine NAME defines axis titles.

- The number of ticks between axis labels can be changed with the routine
TICKS.

- SETGRF can be used to remove a piece of or complete axis from an axis
system.

- If the numerical value of the lower limit of an axis is larger than the upper limit
and the label step is negative, axis scaling will be in descending order.

15

- The routine FRAME defines the thickness of a frame plotted around an axis
system. A frame can also be plotted outside of GRAF with the statement
CALL BOX2D.

- A crossed axis system can be defined with CALL AXSTYP (’CROSS’).

4.2 Termination of Axis Systems

E N D G R F

The routine ENDGRF terminates an axis system and sets the level back to 1.

The call is: CALL ENDGRF level 2, 3

or: void endgrf ();

4.3 Plotting Titles

T I T L E

This routine plots a title over an axis system. The title may contain up to four lines of text designated
with TITLIN.

The call is: CALL TITLE level 2, 3

or: void title ();

Additional note: All lines are centred by default but can be left- or right-justified using TITJUS.

4.4 Plotting Grid Lines

G R I D

The routine GRID overlays a grid on an axis system.

The call is: CALL GRID (IXGRID, IYGRID) level 2, 3

or: void grid (int ixgrid, int iygrid);

IXGRID, IYGRID are the numbers of grid lines between labels.

G R D P O L

The routine GRDPOL plots a polar grid.

The call is: CALL GRDPOL (IXGRID, IYGRID) level 2, 3

or: void grdpol (int ixgrid, int iygrid);

IXGRID is the numbers of circles between labels.

IYGRID is the numbers of sector lines between 360 degrees.

16

Example:

The statements

CALL AXSLEN (1400,1400)
CALL GRAF (-3., 3., -3., 1., -3., 3., -3., 1.)
CALL GRDPOL (3, 16)

produce the following figure:

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Figure 4.1: GRDPOL

A X G I T

The routine AXGIT plots vertical and horizontal lines through X = 0 and Y = 0.

The call is: CALL AXGIT level 2, 3

or: void axgit ();

Additional note: The statement CALL XAXGIT plots only the line Y = 0 while CALL YAXGIT
plots only X = 0.

C R O S S

The routine CROSS plots vertical and horizontal lines with additional ticks through X = 0 and Y = 0.

The call is: CALL CROSS level 2, 3

or: void cross ();

Additional note: The statement CALL XCROSS plots only the line Y = 0 while CALL
YCROSS plots only X = 0.

4.5 Secondary Axes

The following routines plot single X- and Y-axes; they are called secondary axes because they do not
define or change any of the axis scaling parameters. Secondary axes can be used to add additional labels
to the axis systems.

The plotting routines for secondary axes are:

17

XAXIS plots a linear X-axis. level 1, 2, 3

YAXIS plots a linear Y-axis. level 1, 2, 3

XAXLG plots a logarithmic X-axis. level 1, 2, 3

YAXLG plots a logarithmic Y-axis. level 1, 2, 3

The call is: CALL XAXIS (A, B, OR, STEP, NL, CSTR, IT, NX, NY)

or: void xaxis (float a, float b, float or, float step, int nl, char *cstr, int it,
int nx, int ny);

A, B are the lower and upper limits of the axis.

OR, STEP are the first label and the step between labels.

NL is the length of the axis in plot coordinates.

CSTR is a character string containing the axis name.

IT indicates how ticks, labels and the axis name are plotted.
If IT = 0, they are plotted in a clockwise direction. If IT = 1, they are plotted
in an counter-clockwise direction.

NX, NY are the plot coordinates of the axis start point. The X-axis will be plotted from
left to right and the Y-axis from bottom to top.

Analog: YAXIS, XAXLG, YAXLG

Additional notes: - Secondary axes can be called from level 1, 2 or 3. Note again that secondary
axes do not change the scaling of an axis system defined by GRAF. Similarly,
curves cannot be plotted with only secondary axes, they require a call to GRAF.

- As in GRAF, the parameters of logarithmic axes must be exponents of base 10.

- User-defined labels may also be plotted on secondary axes with MYLAB and
the argument ’USER’ in the routine LABELS. The number of ticks can be
changed by calling TICKS.

18

Chapter 5

Plotting Curves

This chapter describes how to plot curves with lines and symbols. Several curves can be plotted in one
axis system and can be differentiated by colour, line style and pattern. Curve attributes can be plotted in
a legend.

5.1 Plotting Curves

C U R V E

CURVE connects data points with lines or plots them with symbols.

The call is: CALL CURVE (XRAY, YRAY, N) level 2, 3

or: void curve (float *xray, float *yray, int n);

XRAY, YRAY are arrays that contain X- and Y-coordinates.

N is the number of data points.

Additional notes: - CURVE must be called after GRAF from level 2 or 3.

- By default, data points that lie outside of an axis system are listed on the screen.
The listing can be suppressed with the routine NOCHEK.

- For a logarithmic scaling of an axis, CURVE suppresses the plotting of curves
and prints a warning if some corresponding data coordinates have non positive
values. After the statement CALL NEGLOG (EPS), where EPS is a small
positiv floating-point number, CURVE will use the value EPS for non positive
values.

- CURVE suppresses lines outside the borders of an axis system. Suppressing
can be disabled with NOCLIP or the margins of suppression can be changed
with GRACE.

- INCMRK determines if CURVE plots lines or symbols.

- When plotting several curves, attributes such as colour and line style can be
changed automatically by DISLIN or directly by the user. The routine CHN-
CRV defines which attributes are changed automatically. The routines COLOR
or SETCLR are used to define colours, SOLID, DOT, DASH, CHNDOT,
CHNDSH, DOTL, DASHM and DASHL to define line styles and MARKER
to define symbols plotted with the routine CURVE.

- Different data interpolation methods can be chosen with POLCRV.

19

5.2 Plotting Legends

To differentiate multiple curves in an axis system, legends with text can be plotted. DISLIN can store up
to 30 curve attributes such as symbols, thicknesses, line styles and colours and these can be incorporated
in a legend.

Legends are created with the following steps:

(1) define a character variable used to store the lines of text in the legend

(2) initialize the legend

(3) define the lines of text

(4) plot the legend.

The corresponding routines are:

L E G I N I

LEGINI initializes a legend.

The call is: CALL LEGINI (CBUF, NLIN, NMAXLN) level 1, 2, 3

or: void legini (char *cbuf, int nlin, int nmaxln);

CBUF is a character variable used to store the lines of text in the legend. The variable
must be defined by the user to have at least NLIN * NMAXLN characters.

NLIN is the number of text lines in the legend.

NMAXLN is the number of characters in the longest line of text.

L E G L I N

LEGLIN stores lines of text for the legend.

The call is: CALL LEGLIN (CBUF, CSTR, ILIN) level 1, 2, 3

or: void leglin (char *cbuf, char *cstr, int ilin);

CBUF see LEGINI.

CSTR is a character string that contains a line of text for the legend.

ILIN is the number of the legend line between 1 and NLIN.

L E G E N D

LEGEND plots legends.

The call is: CALL LEGEND (CBUF, NCOR) level 2, 3

or: void legend (char *cbuf, int ncor);

CBUF see LEGINI.

NCOR indicates the position of the legend:
= 1 is the lower left corner of the page.
= 2 is the lower right corner of the page.
= 3 is the upper right corner of the page.
= 4 is the upper left corner of the page.
= 5 is the lower left corner of the axis system.
= 6 is the lower right corner of the axis system.
= 7 is the upper right corner of the axis system.
= 8 is the upper left corner of the axis system.

20

Additional notes: The following routines change the position and appearance of a legend. They
must be called after LEGINI except for the routines FRAME and LINESP.

- LEGTIT (CTIT) sets the title of the legend.
Default: CTIT = ’Legende’.

- LEGPOS (NX, NY) defines a global position for the legend where NX
and NY are the plot coordinates of the upper left corner. After a call to
LEGPOS, the second parameter in LEGEND will be ignored.

- NLX = NXLEGN (CBUF) and NYL = NYLEGN (CBUF) return the
length and the height of a legend in plot coordinates.

- FRAME (NFRA) defines the thickness of a frame plotted around a legend.

- LINESP (XF) changes the spacing of lines in a legend.

- LEGCLR retains the same colour for curves and lines of text in the legend.

- The statement CALL MIXLEG enables multiple text lines in legends. By
default, the character ’/’ is used as a newline character but can be changed
with the routine SETMIX.

L E G P A T

The routine LEGPAT stores curve attributes plotted in legends. Normally, this is done automatically by
routines such as CURVE and BARS.

The call is: CALL LEGPAT (ITYP, ITHK, ISYM, ICLR, IPAT, ILIN) level 1, 2, 3

or: void legpat (int ityp, int ithk, int isym, int iclr, long ipat, int ilin);

ITYP is the line style between -1 and 7 (see LINTYP). IF ITYP = -1, no line will be
plotted in the legend line.

ITHK defines the thickness of lines (> 0).

ISYM is the symbol number between -1 and 21. If ISYM = -1, no symbol will be
plotted in the legend line.

ICLR is the colour value between -1 and 255. If ICLR = -1, the current colour will
be used.

IPAT is the shading pattern (see SHDPAT). If IPAT = -1, no pattern will be plotted
in the legend line.

ILIN is the legend line between 1 and NLIN.

Additional notes: - The routine LEGPAT is useful to create legends without calls to CURVE.

- LEGPAT must be called after LEGINI.

L E G O P T

The routine LEGOPT modifies the appearance of legends.

The call is: CALL LEGOPT (XF1, XF2, XF3) level 1, 2, 3

or: void legopt (float xf1, float xf2, float xf3);

XF1 is a multiplier for the length of the pattern field. The length is XF1 * NH,
where NH is the current character height. If XF1 = 0., the pattern field will be
suppressed.

21

XF2 is a multiplier for the distance between legend frames and text. The distance
is XF2 * NH * XSPC, where XSPC is the spacing between legend lines (see
LINESP).

XF3 is a multiplier for the spacing between multiple text lines. The space is XF3 *
NH * XLINSP.

Default: (4.0, 0.5, 1.0).

5.3 Plotting Shaded Areas between Curves

S H D C R V

SHDCRV plots a shaded area between two curves.

The call is: CALL SHDCRV (X1RAY, Y1RAY, N1, X2RAY, Y2RAY, N2) level 2, 3

or: void shdcrv (float *x1ray, float *y1ray, int n1, float *x2ray, float *y2ray,
int n2);

X1RAY, Y1RAY are arrays with the X- and Y-coordinates of the first curve. Values are not
changed by SHDCRV.

N1 is the number of points in the first curve.

X2RAY, Y2RAY are arrays with the X- and Y-coordinates of the second curve. Values are not
changed by SHDCRV.

N2 is the number of points in the second curve.

Additional notes: - The maximum number of data points cannot be greater than 2000.

- Different shading patterns can be selected with SHDPAT. The pattern number
will automatically be incremented by 1 after a call to SHDCRV.

- Legends may be plotted for shaded curves.

- The routine NOARLN will suppress border lines around shaded areas.

5.4 Plotting Error Bars

E R R B A R

The routine ERRBAR plots error bars.

The call is: CALL ERRBAR (XRAY, YRAY, E1RAY, E2RAY, N) level 2, 3

or: void errbar (float *xray, float *yray, float *e1ray, float *e2ray, int n);

XRAY, YRAY are arrays that contain the X- and Y-coordinates.

E1RAY, E2RAY are arrays that contain the errors. Lines will be drawn from YRAY - E1RAY
to YRAY + E2RAY.

N is the number of data points.

Additional notes: - Horizontal bars will be drawn after CALL BARTYP (’HORI’).

- A symbol can be selected with MARKER and the symbol size with HSYMBL.

22

5.5 Plotting Vector Fields

F I E L D

The routine FIELD plots a vector field.

The call is: CALL FIELD (X1RAY, Y1RAY, X2RAY, Y2RAY, N, IVEC) level 2, 3

or: void field (float *x1ray, float *y1ray, float *x2ray, float *y2ray, int n, int ivec);

X1RAY, Y1RAY are arrays that contain the X- and Y-coordinates of the start points.

X2RAY, Y2RAY are arrays that contain the X- and Y-coordinates of the end points.

N is the number of vectors.

IVEC is a four digit number that specifies the vector (see VECTOR).

23

24

Chapter 6

Parameter Setting Routines

All parameters in DISLIN have default values set by the initialization routine DISINI. This chapter
summarizes subroutines that allow the user to alter default values. The following routines can be called
from level 1, 2 or 3 except for those noted throughout the chapter. Subroutines that can only be called
from level 0 must appear before DISINI. In general, parameter setting routines should be called between
DISINI and the plotting routines they affect.

6.1 Basic Routines

6.1.1 Resetting Parameters

R E S E T

RESET sets parameters back to their default values.

The call is: CALL RESET (CNAME) level 1, 2, 3

or: void reset (char *cname);

CNAME is a character string containing the name of the routine whose parameters will
be set back to default values. If CNAME = ’ALL’, all parameters in DISLIN
will be reset.

6.1.2 Modifying the Origin

O R I G I N

In DISLIN, all lines are plotted relative to the origin which is a point located in the upper left corner of
the page. Modifying this point by ORIGIN produces a shifting of plot vectors on the page.

The call is: CALL ORIGIN (NX0, NY0) level 1

or: void origin (int nx0, int ny0);

NX0, NY0 are the coordinates of the origin. Default: (0, 0).

6.1.3 Changing the Foreground Colour

C O L O R

COLOR defines the colours used for plotting text and lines.

The call is: CALL COLOR (CNAME) level 1, 2, 3

25

or: void color (char *cname);

CNAME is a character string that can have the values ’BLACK’, ’RED’, ’GREEN’,
’BLUE’, ’CYAN’, ’YELLOW’, ’ORANGE’, ’MAGENTA’, ’WHITE’, ’FO-
RE’ and ’BACK’. The keyword ’FORE’ resets the color to the default value,
while the keyword ’BACK’ sets the colour to the background colour.

Additional note: Colours can also be defined with SETCLR which selects a colour index from
an actual colour table (see chapter 11).

6.1.4 File Format Control

M E T A F L

METAFL defines the metafile format.

The call is: CALL METAFL (CFMT) level 0

or: void metafl (char *cfmt);

CFMT is a character string that defines the file format.

= ’GKSL’ defines a GKSLIN metafile.

= ’CGM’ defines a CGM metafile.

= ’POST’ defines a greyscaled PostScript file. The colour table ’RGREY’ is loaded by
DISINI.

= ’PSCL’ defines a coloured PostScript file. The background is filled black and the
colour table ’RAINBOW’ is loaded by DISINI.

= ’PDF’ defines a PDF file.

= ’KYOC’ defines a Kyocera file.

= ’HPGL’ defines a HPGL file.

= ’JAVA’ defines a Java applet file.

= ’WMF’ defines a Windows metafile.

= ’TIFF’ defines a TIFF file.

= ’PNG’ defines a PNG file.

= ’PPM’ defines a portable pixmap format.

= ’IMAG’ defines an image file.

= ’VIRT’ defines a virtual file. The metafile is hold in a raster format in computer mem-
ory and can be saved on a file with the routines RIMAGE and RTIFF.

= ’CONS’ defines a graphics output on the screen.

= ’XWIN’ defines an X Window display.

= ’XWIi’ defines an X Window display, where i is the window number between 1 and
5. By default, window 1 is situated in the lower right corner, window 2 in the
upper right corner, window 3 in the upper left corner, window 4 in the lower
left corner and window 5 in the centre of the screen.

Default: CFMT = ’GKSL’.

Notes: - The default size of JAVA, TIFF, PNG, PPM, IMAGE and virtual files is set to
853 x 603 points but can be modified with the routine WINSIZ.

26

- JAVA applet files created by DISLIN can be compiled with Java and then dis-
played in a browser. The class names of the applets are identical with the
filenames of the output files. They can be changed with the routine SETFIL.

- The default colour table loaded by DISINI is ’RGREY’ for greyscaled
PostScript files and ’RAINBOW’ for the other file formats. Coloured
PostScript files with a white background can be created with the keyword
’PSCL’ and the statement CALL SCRMOD (’REVERS’) before DISINI, or
with the keyword ’POST’ and the statement CALL SETVLT (’RAINBOW’)
after DISINI.

S E T F I L

By default, the plotfile name consists of the keyword ’dislin’ and an extension that depends on the file
format. An alternate filename can be set with SETFIL.

The call is: CALL SETFIL (CFIL) level 0

or: void setfil (char *cfil);

CFIL is a character string that contains the filename.

F I L M O D

The routine FILMOD determines if a new plotfile name is created for existing files.

The call is: CALL FILMOD (CMOD) level 0, 1, 2, 3

or: void filmod (char *cmod);

CMOD is a character string containing the mode.

= ’COUNT’ means that a new file version will be created.

= ’DELETE’ means that the existing file will be overwritten.

= ’BREAK’ means that the program will be terminated by DISINI.
Default: CMOD = ’COUNT’.

S C R M O D

Normally, the background of screens, coloured PostScript, PPM, PNG and TIFF files is set to ’BLACK’
and the foreground colour is set to ’WHITE’. With the routine SCRMOD, the back and foreground
colours can be swapped without changing the colour table.

The call is: CALL SCRMOD (CMOD) level 0

or: void scrmod (char *cmod);

CMOD = ’AUTO’ uses a ’BLACK’ background colour for the screen, PNG, TIFF and coloured
PostScript files, and a ’WHITE’ background for PDF files.

CMOD = ’REVERS’ means that the background colour is set to ’WHITE’ and the foreground colour
to ’BLACK’.

CMOD = ’NOREV’ means that the background colour is set to ’BLACK’ and the foreground colour
to ’WHITE’.

Default: CMOD = ’AUTO’.

C G M B G D

The routine CGMBGD sets the background colour for CGM files.

27

The call is: CALL CGMBGD (XR, XG, XB) level 0, 1, 2, 3

or: void cgmbgd (float xr, floar xg, float xb);

XR, XG, XB are the RGB coordinates of the background colour in the range 0 to 1.
Default: (1., 1., 1.).

C G M P I C

The routine CGMPIC modifies the picture ID in CGM files. The picture ID may be referenced by some
browsers.

The call is: CALL CGMPIC (CSTR) level 0, 1, 2, 3

or: void cgmpic (char *cstr);

CSTR is a character string containing the picture ID (� 256 characters). By default,
the ID ’Picture n’ is used where n is the picture number beginning with 1.

P D F M O D

The routine PDFMOD selects between compressed and non compressed PDF files.

The call is: CALL PDFMOD (CMOD, CKEY) level 0

or: void pdfmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’ON’ and ’OFF’.

CKEY is a character string that can have the value ’COMPRESSION’.
Default: (’ON’, COMPRESSION’).

6.1.5 Page Control

P A G E

PAGE determines the size of the page.

The call is: CALL PAGE (NXP, NYP) level 0

or: void page (int nxp, int nyp);

NXP, NYP are the length and height of the page in plot coordinates. The lower right corner
of the page is the point (NXP-1, NYP-1).

Default: (2970, 2100).

S E T P A G

SETPAG selects a predefined page format.

The call is: CALL SETPAG (CPAGE) level 0
or: void setpag (char *cpage);

CPAGE is a character string that defines the page format.

= ’DA4L’ DIN A4, landscape, 2970 * 2100 points.
= ’DA4P’ DIN A4, portrait, 2100 * 2970 points.
= ’DA3L’ DIN A3, landscape, 4200 * 2970 points.
= ’DA3P’ DIN A3, portrait, 2970 * 4200 points.
= ’DA2L’ DIN A2, landscape, 5940 * 4200 points.
= ’DA2P’ DIN A2, portrait, 4200 * 5940 points.

28

= ’DA1L’ DIN A1, landscape, 8400 * 5940 points.
= ’DA1P’ DIN A1, portrait, 5940 * 8400 points.
= ’PS4L’ PostScript A4, landscape, 2800 * 1950 points.
= ’PS4P’ PostScript A4, portrait, 1950 * 2800 points.
= ’KY4L’ Kyocera A4, landscape, 2870 * 2000 points.
= ’KY4P’ Kyocera A4, portrait, 2000 * 2870 points.
= ’HP4L’ HP-plotter A4, landscape, 2718 * 1900 points.
= ’HP4P’ HP-plotter A4, portrait, 1900 * 2718 points.
= ’HP3L’ HP-plotter A3, landscape, 3992 * 2718 points.
= ’HP3P’ HP-plotter A3, portrait, 2718 * 3992 points.
= ’HP2L’ HP-plotter A2, landscape, 5340 * 3360 points.
= ’HP2P’ HP-plotter A2, portrait, 3360 * 5340 points.
= ’HP1L’ HP-plotter A1, landscape, 7570 * 5340 points.
= ’HP1P’ HP-plotter A1, portrait, 5340 * 7570 points.

Default: CPAGE = ’DA4L’.
S C L F A C

SCLFAC sets the scaling factor for an entire plot.

The call is: CALL SCLFAC (XFAC) level 0

or: void sclfac (float xfac);

XFAC is the scaling factor by which the entire plot is scaled up or down. Default:
XFAC = 1.

S C L M O D

The method by which graphics are scaled to the hardware pages of devices such as a graphics terminal
can be selected with the routine SCLMOD.

The call is: CALL SCLMOD (CMOD) level 0

or: void sclmod (char *cmod);

CMOD = ’DOWN’ means that graphics will be scaled down if the hardware page of a device is
smaller than the plotting page.

= ’FULL’ means that the graphics will be scaled up or down depending upon the size of
the hardware page.

Default: CMOD = ’DOWN’.

Additional notes: - The size of a graphics screen will be interpreted as DIN A4 landscape. This
means that by default graphics which are smaller than DIN A4 will not fill the
entire screen.

- SCLFAC and SCLMOD can affect each other.

P A G M O D

GKSLIN and CGM files can be rotated by 90 degrees to use the full hardware page of a device. In
general, this is done automatically by the driver program.

The call is: CALL PAGMOD (CMOD) level 0

or: void pagmod (char *cmod);

CMOD = ’LAND’ means that the metafile is not rotated.

= ’PORT’ means that the metafile is rotated by 90 degrees.

29

= ’NONE’ can be used to disable automatic plotfile rotation in the driver program (i.e. for
PostScript files).

Default: CMOD = ’LAND’.

Figure 6.1 shows the effect of PAGMOD:

Landscape

Portrait

-

X

Y

6

�

6

Y

X

Figure 6.1: PAGMOD

N E W P A G

NEWPAG creates a new page.

The call is: CALL NEWPAG level 1

or: void newpag ();

Additional notes: - PostScript and CGM files can store multiple pages. For other output formats,
NEWPAG is not useful.

- On X Window terminals, NEWPAG is waiting for a mouse button 2 event
before displaying the next page. On other terminals, NEWPAG has the same
effect as ERASE.

H W P A G E

The routine HWPAGE defines the size of the PostScript hardware page.

The call is: CALL HWPAGE (NW, NH) level 0

or: void hwpage (int nw, int nh);

NW, NH are the width and height of the PostScript hardware page in plot coordinates.
Default: (1950, 2800).

H W O R I G

The routine HWORIG defines the hardware origin of the PostScript hardware page.

The call is: CALL HWORIG (NX, NY) level 0

or: void hworig (int nx, int ny);

NX, NY are the plot coordinates of the hardware origin.
Default: (75, 100).

30

6.1.6 Error Handling

E R R F I L

By default, the name of the error file is ’dislin.err’. An alternate filename can be set with ERRFIL.

The call is: CALL ERRFIL (CFIL) level 0

or: void errfil (char *cfil);

CFIL is a character string that contains the filename.

E R R D E V

The routine ERRDEV defines the output device for DISLIN warnings. By default, warnings are written
to the screen.

The call is: CALL ERRDEV (COPT) level 0

or: void errdev (char *copt);

COPT is a character string that can have the values ’CONS’ and ’FILE’.
Default: COPT = ’CONS’.

U N I T

UNIT defines the logical unit used for printing error messages and listing data points that lie outside of
the axis scaling.

The call is: CALL UNIT (NU) level 1, 2, 3

or: void unit (FILE *nu);

NU is the logical unit. If NU = 0, all messages will be suppressed.
Default: NU = 6

W I N A P P

The routine WINAPP defines if a DISLIN program should look like a Windows console, or more like a
Windows program. If Windows mode is selected, all warnings are written to an error file and the protocol
in disfin is displayed in a widget.

The call is: CALL WINAPP (COPT) level 0

or: void winapp (char *copt);

COPT is a character string that can have the values ’CONSOLE’ and ’WINDOWS’.
Default: COPT = ’CONSOLE’.

31

6.1.7 Viewport Control

W I N D O W

This routine defines, for X Window terminals, a region on the screen where the graphics will be dis-
played. By default, the window size is set to 2/3 of the screen size and located in the lower right corner
of the screen.

The call is: CALL WINDOW (NX, NY, NW, NH) level 0, 1, 2, 3

or: void window (int nx, int ny, int nw, int nh);

NX, NY are the screen coordinates of the upper left corner.

NW, NH are the width and height of the window in screen coordinates.

Additional note: In general, the screen size is 1280 * 1024 pixels.

W I N S I Z

This routine defines the size of windows. By default, the window size is set to 2/3 of the screen size.

The call is: CALL WINSIZ (NW, NH) level 0, 1, 2, 3

or: void winsiz (int nw, int nh);

NW, NH are the width and height of the window in screen coordinates.

C L R M O D

The routine CLRMOD defines the colour mode used for output on window terminals.

The call is: CALL CLRMOD (CMOD) level 0

or: void clrmod (char *cmod);

CMOD is a character string defining the mode.

= ’NONE’ means that a colour table with 256 colours will be reduced to 129 colours
to conserve current screen and window colours. The colour values will be
reduced by the formula (0, 0, i = (iclr + 1) / 2, iclr = 1, ... 255).

= ’FULL’ means that all 256 colours will be displayed.

= ’CONT’ means that a colour table with less than 129 entries will be used.
Default: CMOD = ’NONE’.

X 1 1 M O D

The routine X11MOD enables or disables backing store for graphic windows.

The call is: CALL X11MOD (CMOD) level 0

or: void x11mod (char *cmod);

CMOD is a character string containing the mode.

= ’NOSTORE’ means that graphical output is sent directly to the graphics window.

= ’STORE’ means that graphical output is sent to a pixmap that will be copied to the graph-
ics window.

32

= ’AUTO’ means that ’NOSTORE’ will be used on X11 and ’STORE’ on Windows ter-
minals.

Default: CMOD = ’AUTO’.

W I N M O D

The routine WINMOD affects the handling of windows in the termination routine DISFIN.

The call is: CALL WINMOD (CMOD) level 1, 2, 3

or: void winmod (char *cmod);

CMOD is a character string containing the mode.

= ’FULL’ means that DISFIN is waiting for a mouse button 2 event. After program
continuation, all windows are deleted.

= ’NOHOLD’ means that DISFIN is not waiting for a mouse button 2 event. After a call to
DISFIN, all windows are deleted.

= ’NOERASE’ means that the program is still blocked in DISFIN but windows will not be
deleted after program continuation.

= ’NONE’ means that the program is not blocked in DISFIN and windows are not deleted.

= ’DELAY’ means that the program is blocked for a short time in DISFIN before it is
continued. The delay time can be defined with the routine WINOPT.

Default: CMOD = ’FULL’.

W I N O P T

The routine WINOPT sets the delay time for the keyword ’DELAY’ in WINMOD.

The call is: CALL WINOPT (IOPT, CKEY) level 1, 2, 3

or: void winopt (int iopt, char *ckey);

IOPT is the delay time in seconds.

CKEY is a character string that can have the value ’DELAY’.
Default: (10, ’DELAY’).

W I N K E Y

The routine WINKEY enables a an additional key that can be used for program continuation is DISFIN.
Normally, the mouse button 2 can be used for closing the graphics window.

The call is: CALL WINKEY (CKEY) level 1, 2, 3

or: void winkey (char *ckey);

CKEY is a character string that can have the values ’NONE’, ’RETURN’ and ’ES-
CAPE’.

Default: CKEY = ’NONE’.

S E T X I D

The routine SETXID defines an external graphics window for X11 and Windows displays. All graphical
output is sent to the external window. For X11 displays, an external pixmap can also be defined.

The call is: CALL SETXID (ID, CTYPE) level 0

33

or: void setxid (int id, char *ctype);

ID is the window or pixmap ID.

CTYPE is a character string that can have the values ’NONE’, ’WINDOW’, ’PIXMAP’
and ’WIDGET’. For the keyword ’WIDGET’, the ID of a DISLIN draw widget
can be used.

Default: (0, ’NONE’).

Additional notes: - If an external pixmap is used, backing store must also be enabled with the
routine X11MOD.

- An external window is not erased by DISINI. This can be done with the routine
ERASE.

- External windows are not blocked in DISFIN (see WINMOD).

34

6.2 Axis Systems

This section describes subroutines that allow the user to modify axis systems. The position of an axis
system, the size, the scaling, ticks, labels and axis titles can be altered in any way. Some of the routines
defining axis attributes can also be used with secondary axes. Routines that set axis attributes can be
used for one or for any combination of axes. The axes are identified by a character string that can contain
the characters ’X’, ’Y’ and ’Z’ in any combination.

6.2.1 Modifying the Type

A X S T Y P

The routine AXSTYP defines the type of an axis system. Axis systems can be plotted as rectangles or in
a crossed form. For crossed axis systems, the scaling must be linear and the axis limits must contain the
origin.

The call is: CALL AXSTYP (COPT) level 1

or: void axstyp (char *copt);

COPT is a character string defining the type.

= ’RECT’ defines a rectangular axis system.

= ’CROSS’ defines a crossed axis system.
Default: COPT = ’RECT’.

The following figure shows a rectangular and a crossed axis system:

-4.0 -2.0 0.0 2.0 4.0
X-axis

-5.0

-3.0

-1.0

1.0

3.0

5.0

Y
-a

xi
s

-4.0 -2.0 2.0 4.0
X-axis

-5.0

-3.0

-1.0

1.0

3.0

5.0
Y

-a
xi

s

Figure 6.2: Rectangular and Crossed Axis Systems

6.2.2 Modifying the Position and Size

A X S P O S

AXSPOS determines the position of an axis system.

The call is: CALL AXSPOS (NXA, NYA) level 1

or: void axspos (int nxa, int nya);

NXA, NYA are plot coordinates that define the lower left corner of an axis system. By
default, axis systems are centred in the X-direction while NYA is set to the
value (page height - 300).

35

A X S O R G

AXSORG is an alternate routine for defining the position of a crossed axis system.

The call is: CALL AXSORG (NX, NY) level 1

or: void axsorg (int nx, int ny);

NX, NY are plot coordinates that define the position of the origin of a crossed axis
system.

A X S L E N

AXSLEN defines the size of an axis system.

The call is: CALL AXSLEN (NXL, NYL) level 1

or: void axslen (int nxl, int nyl);

NXL, NYL are the length and height of an axis system in plot coordinates. The default
values are set to 2/3 of the page length and height.

C E N T E R

A call to the routine CENTER will centre the axis system on the page. All elements of an axis system,
including titles, axis labels and names, will be taken into consideration. The centralisation is done by
GRAF through changing the position of the origin. Therefore, all plotting routines called after GRAF
will work with the new origin.

The call is: CALL CENTER level 1, 2, 3

or: void center ();

Additional notes: - If there are several axis systems on the page, the origin will be changed only
by the first call to GRAF.

- The character height of titles should be defined with HTITLE if it is different
from the current character height in GRAF.

6.2.3 Axis Scaling

AXSSCL

This routine sets the axis scaling to logarithmic or linear.

The call is: CALL AXSSCL (CSCL, CAX) level 1, 2, 3

or: void axsscl (char *cscl, char *cax);

CSCL = ’LIN’ denotes linear scaling.

= ’LOG’ denotes logarithmic scaling.

CAX is a character string that defines the axes.
Default: (’LIN’, ’XYZ’).

Additional notes: - For logarithmic scaling, the corresponding parameters in GRAF must be ex-
ponents of base 10.

36

- The routine AXSSCL replaces the DISLIN routine SCALE because SCALE
is also a Fortran 90 intrinsic function.

S E T S C L

The parameters in GRAF will be calculated automatically by DISLIN if the routine SETSCL is used. In
this case, GRAF must have dummy parameters in which DISLIN returns the calculated values.

The call is: CALL SETSCL (XRAY, N, CAX) level 1, 2, 3

or: void setscl (float *xray, int n, char *cax);

XRAY is a vector that contains user coordinates. SETSCL calculates the minimum
and maximum values of the data and stores them in a common block.

N is the number of points in XRAY.

CAX is a character string that defines the axes. CAX can have the additional val-
ues ’XRESET’, ’YRESET’, ’ZRESET’ and ’RESET’ for disabling automatic
scaling. The parameter ’RESET’ resets automatic scaling for all axes.

Additional notes: - SETSCL can be used with linear and logarithmic scaling and with all label
types.

- The calculation of scaling and label values is done by GRAF. The minimum
and maximum of the data are always used for the lower and upper limits of an
axis while even values are calculated for the labels.

- The number of digits after the decimal point will be set automatically.

- If the scaling of an axis is logarithmic, labels will be plotted with the format
’LOG’.

6.2.4 Modifying Ticks

T I C K S

This routine is used to define the number of ticks between axis labels.

The call is: CALL TICKS (NTIC, CAX) level 1, 2, 3

or: void ticks (int ntic, char *cax);

NTIC is the number of ticks (� 0).

CAX is a character string that defines the axes.
Default: (2, ’XYZ’).

T I C P O S

This routine defines the position of ticks.

The call is: CALL TICPOS (CPOS, CAX) level 1, 2, 3

or: void ticpos (char *cpos, char *cax);

CPOS is a character string defining the position.

= ’LABELS’ means that ticks will be plotted on the same side as labels.

= ’REVERS’ means that ticks will be plotted inside of an axis system.

= ’CENTER’ means that ticks will be centred on the axis line.

CAX is a character string that defines the axes.
Default: (’LABELS’, ’XYZ’).

37

T I C L E N

TICLEN sets the lengths of major and minor ticks.

The call is: CALL TICLEN (NMAJ, NMIN) level 1, 2, 3

or: void ticlen (int nmaj, int nmin);

NMAJ is the length of major ticks in plot coordinates (> 0).

NMIN is the length of minor ticks in plot coordinates (> 0).
Default: (24, 16).

T I C M O D

The routine TICMOD modifies the plotting of minor tick marks on calendar axes. By default, a major
tick is plotted at each date label and no minor ticks are plotted.

The call is: CALL TICMOD (COPT, CAX) level 1, 2, 3

or: void ticmod (char *copt, char *cax);

COPT is a character string defining the tick marks.

= ’NONE’ means that no minor ticks will be plotted.

= ’DAYS’ means that ticks will be plotted for every day.

= ’MONTH’ means that ticks will be plotted for every month.

= ’DMONTH’ means that ticks will be plotted for every second month.

= ’QUARTER’ means that ticks will be plotted on the first of January, April, July and October.

= ’HALF’ means that ticks will be plotted on the first of January and July.

= ’YEAR’ means that ticks will be plotted for every year.

CAX is a character string that defines the axes.
Default: (’NONE’, ’XYZ’).

L O G T I C

The appearance of minor ticks on logarithmic axes differs slightly from linear axes. By default, loga-
rithmic minor ticks are generated automatically if the label step is 1 or -1 and if the number of ticks in
TICKS is greater than 1. If the step has another value, minor ticks are plotted as specified in TICKS.
This algorithm can be modified with LOGTIC.

The call is: CALL LOGTIC (CMOD) level 1, 2, 3

or: void logtic (char *cmod);

CMOD is a character string defining the appearance of logarithmic ticks.

= ’AUTO’ defines default ticks.

= ’FULL’ means that logarithmic minor ticks will be generated for every cycle even if
the label step is not 1 but some other integer.

Default: CMOD = ’AUTO’.

38

6.2.5 Modifying Labels

L A B E L S

LABELS determines which label types will be plotted on an axis.

The call is: CALL LABELS (CLAB, CAX) level 1, 2, 3

or: void labels (char *clab, char *cax);

CLAB is a character string that defines the labels.

= ’NONE’ will suppress all axis labels.

= ’FLOAT’ will plot labels in floating-point format.

= ’EXP’ will plot floating-point labels in exponential format where fractions range be-
tween 1 and 10.

= ’FEXP’ will plot labels in the format fEn where f ranges between 1 and 10.

= ’LOG’ will plot logarithmic labels with base 10 and the corresponding exponents.

= ’CLOG’ is similar to ’LOG’ except that the entire label is centred below the tick mark;
with ’LOG’, only the base ’10’ is centred.

= ’ELOG’ will plot only the logarithmic values of labels.

= ’TIME’ will plot time labels in the format ’hhmm’.

= ’HOURS’ will plot time labels in the format ’hh’.

= ’SECONDS’ will plot time labels in the format ’hhmmss’.

= ’DATE’ defines date labels.

= ’MAP’ defines geographical labels which are plotted as non negative floating-point
numbers with the following characters ’W’, ’E’, ’N’ and ’S’.

= ’LMAP’ is simular to ’MAP’ except that lowercase characters are used.

= ’DMAP’ selects labels that are plotted as floating-point numbers with degree symbols.

= ’MYLAB’ selects labels that are defined with the routine MYLAB.

CAX is a character string that defines the axes.
Default: (’FLOAT’, ’XYZ’).

Additional notes: - The values ’LOG’, ’CLOG’ and ’ELOG’ can be only used with logarithmic
scaling. If these label types are used with linear scaling, DISLIN will change
them to ’FLOAT’.

- For the values ’TIME’, ’HOURS’ and ’SECONDS’, the corresponding param-
eters in GRAF must be in seconds since midnight.

- For the value ’DATE’, the corresponding parameters in GRAF must be in days
since a base date. The base date can be defined with the routine BASDAT
while the number of days since the base date can be calculated with the routine
INCDAT. Date labels can be modified with the routine LABMOD.

M Y L A B

MYLAB defines user labels.

The call is: CALL MYLAB (CSTR, ITICK, CAX) level 1, 2, 3

or: void mylab (char *cstr, int itick, char *cax);

39

CSTR is a character string containing a label (� 16 characters).

ITICK is the tick number where the label will be plotted (� 20). Tick numbering
starts with 1.

CAX is a character string that defines the axes.

L A B T Y P

LABTYP defines horizontal or vertical labels.

The call is: CALL LABTYP (CTYPE, CAX) level 1, 2, 3

or: void labtyp (char *ctype, char *cax);

CTYPE is a character string defining the direction.

= ’HORI’ defines horizontal labels.

= ’VERT’ defines vertical labels.

CAX is a character string that defines the axes.
Default: (’HORI’, ’XYZ’).

L A B P O S

LABPOS defines the position of labels.

The call is: CALL LABPOS (CPOS, CAX) level 1, 2, 3

or: void labpos (char *cpos, char *cax);

CPOS is a character string defining the position.

= ’TICKS’ means that labels will be plotted at major ticks.

= ’CENTER’ means that labels will be centred between major ticks.

= ’SHIFT’ means that the starting and end labels will be shifted.

CAX is a character string that defines the axes.
Default: (’TICKS’, ’XYZ’).

L A B J U S

LABJUS defines the alignment of axis labels.

The call is: CALL LABJUS (CJUS, CAX) level 1, 2, 3

or: void labjus (char *cjus, char *cax);

CJUS is a character string defining the alignment of labels.

= ’AUTO’ means that labels are automatically justified.

= ’LEFT’ means that labels are left-justified.

= ’RIGHT’ means that labels are right-justified.

= ’OUTW’ means that labels are left-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are right-justified.

= ’INWA’ means that labels are right-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are left-justified.

CAX is a character string that defines the axes.
Default: (’AUTO’, ’XYZ’).

40

L A B D I G

This routine sets the number of digits after the decimal point displayed in labels.

The call is: CALL LABDIG (NDIG, CAX) level 1, 2, 3

or: void labdig (int ndig, char *cax);

NDIG = -1 defines integer labels.

= 0 defines integer labels followed by a decimal point.

= n defines the number of digits after the decimal point. The last digit will be
rounded up.

CAX is a character string that defines the axes.
Default: (1, ’XYZ’).

Additional note: The routine LABDIG replaces the DISLIN routine DIGITS because DIGITS
is also a Fortran 90 intrinsic function.

I N T A X

With the routine INTAX, all axes will be labeled with integers.

The call is: CALL INTAX level 1, 2, 3

or: void intax ();

L A B D I S

This routine sets the distance between labels and ticks.

The call is: CALL LABDIS (NDIS, CAX) level 1, 2, 3

or: void labdis (int ndis, char *cax);

NDIS is the distance in plot coordinates.

CAX is a character string that defines the axes.
Default: (24, ’XYZ’).

L A B M O D

The routine LABMOD modifies the appearance of date labels enabled with the keyword ’DATE’ in the
routine LABELS. Normally, date labels will be plotted in the form dd-mmm-yyyy.

The call is: CALL LABMOD (CKEY, CVAL, CAX) level 1, 2, 3

or: void labmod (char *ckey, char *cval, char *cax);

CKEY is a character string containing one of the following keywords:

= ’YEAR’ means that the century field will be modified in date labels. For CKEY =
’YEAR’, CVAL can have the values ’NONE’, ’SHORT’ and ’FULL’. ’NONE’
suppresses the year field while ’SHORT’ suppresses the century in the year
field. The default value is ’FULL’.

= ’DAYS’ means that the day field will be modified. CVAL can have the values ’NONE’,
’SHORT’, ’LONG’, ’NAME’ and ’FULL’. For CVAL = ’NONE’, the day field
will be suppressed, for CVAL = ’SHORT’, the day will be plotted as a number
without a leading zero. CVAL = ’LONG’ means that the day will be plotted
as a number with two digits, CVAL = ’NAME’ means that abbreviations of
the weekday names will be plotted and CVAL = ’FULL’ means that the full
weekday names will be displayed. The default value is CVAL = ’LONG’.

41

= ’MONTH’ means that the month field will be modified. CVAL can have the values
’NONE’, ’SHORT’, ’LONG’, ’NAME’, ’TINY’ and ’FULL’. For CVAL =
’NONE’, the month field will be suppressed, for CVAL = ’SHORT’, the month
will be plotted as a number without a leading zero. CVAL = ’LONG’ means
that the month will be plotted as a number with two digits, CVAL = ’NAME’
means that abbreviations of the month names will be plotted, CVAL = ’TINY’
means that only the first character of month names will be plotted and CVAL =
’FULL’ means that the full month names will be displayed. The default value
is CVAL = ’NAME’.

= ’LANG’ defines the language used for weekdays and month names in date labels. CVAL
can have the values ’ENGLISH’ and ’GERMAN’. The default value for CVAL
is ’ENGLISH’.

= ’FORM’ defines the order of the date fields. CVAL can have the values ’DMY’, ’DYM’,
’YDM’, ’YMD’, ’DYM’ and ’DMY’. The default is CVAL = ’DMY’.

= ’SEPA’ defines a separator character used in date labels. CVAL is a character string
containing the separator character. The default is CVAL = ’-’.

= ’CASE’ defines if weekdays and month names are plotted in uppercase characters or in
lowercase characters with a leading uppercase character. CVAL can have the
values ’UPPER’ and ’NONE’. The default value is ’NONE’.

= ’STEP’ defines a step between labels. CVAL can have the values ’DAYS’, ’MONTH’,
’DMONTH’, ’QUARTER’, ’HALF’ and ’YEAR’. For CVAL = ’DAYS’, the
label step specified in the routine GRAF will be used. The default value is
CVAL = ’DAYS’.

CAX is a character string that defines the axes.

T I M O P T

With TIMOPT time labels can be plotted in the format ’hh:mm’. The default is ’hhmm’.

The call is: CALL TIMOPT level 1, 2, 3

or: void timopt ();

R G T L A B

The routine RGTLAB right-justifies user labels. By default, user labels are left-justified.

The call is: CALL RGTLAB level 1, 2, 3

or: void rgtlab ();

6.2.6 Modifying Axis Titles

N A M E

NAME defines axis titles.

The call is: CALL NAME (CSTR, CAX) level 1, 2, 3

or: void name (char *cstr, char *cax);

CSTR is a character string containing the axis title (� 132 characters).

CAX is a character string that defines the axes.
Default: (’ ’, ’XYZ’).

42

H N A M E

HNAME defines the character height for axis names.

The call is: CALL HNAME (NHNAME) level 1, 2, 3

or: void hname (int nhname);

NHNAME is the character height in plot coordinates.
Default: NHNAME = 36

N A M D I S

NAMDIS sets the distance between axis names and labels.

The call is: CALL NAMDIS (NDIS, CAX) level 1, 2, 3

or: void namdis (int ndis, char *cax);

NDIS is the distance in plot coordinates.

CAX is a character string that defines the axes.
Default: (30, ’XYZ’).

N A M J U S

The routine NAMJUS defines the alignment of axis titles.

The call is: CALL NAMJUS (CJUS, CAX) level 1, 2, 3

or: void namjus (char *cjus, char *cax);

CJUS is a character string that can have the values ’CENT’, ’LEFT’ and ’RIGHT’.

CAX is a character string that defines the axes.
Default: (’CENT’, ’XYZ’).

R V Y N A M

The routine RVYNAM is used to plot names on right Y-axes and colour bars at an angle of 90 degrees.
By default, they are plotted at an angle of 270 degrees.

The call is: CALL RVYNAM level 1, 2, 3

or: void rvynam ();

6.2.7 Suppressing Axis Parts

N O L I N E

After a call to NOLINE the plotting of axis lines will be suppressed.

The call is: CALL NOLINE (CAX) level 1, 2, 3

or: void noline (char *cax);

CAX is a character string that defines the axes.

A X E N D S

With a call to AXENDS certain labels can be suppressed.

43

The call is: CALL AXENDS (COPT, CAX) level 1, 2, 3

or: void axends (char *copt, char *cax);

COPT is a character string that defines which labels will be suppressed.

= ’NONE’ means that all labels will be displayed.

= ’FIRST’ means that only the starting label will be plotted.

= ’NOFIRST’ means that the starting label will not be plotted.

= ’LAST’ means that only the ending label will be plotted.

= ’NOLAST’ means that the ending label will not be plotted.

= ’ENDS’ means that only the start and end labels will be plotted.

= ’NOENDS’ means that start and end labels will be suppressed.

CAX is a character string that defines the axes.
Default: (’NONE’, ’XYZ’).

N O G R A F

The routine NOGRAF suppresses the plotting of an axis system.

The call is: CALL NOGRAF level 1

or: void nograf ();

A X 2 G R F

The routine AX2GRF suppresses the plotting of the upper X- and left Y-axis.

The call is: CALL AX2GRF level 1, 2, 3

or: void ax2grf ();

S E T G R F

SETGRF removes a part of an axis or a complete axis from an axis system.

The call is: CALL SETGRF (C1, C2, C3, C4) level 1, 2, 3

or: void setgrf (char *c1, char *c2, char *c3, char *c4);

Ci are character strings corresponding to the four axes of an axis system. C1
corresponds to the lower X-axis, C2 to the left Y-axis, C3 to the upper X-
axis and C4 to the right Y-axis. The parameters can have the values ’NONE’,
’LINE’, ’TICKS’, ’LABELS’ and ’NAME’. With ’NONE’, complete axes will
be suppressed, with ’LINE’, only axis lines will be plotted, with ’TICKS’, axis
lines and ticks will be plotted, with ’LABELS’ axis lines, ticks and labels will
be plotted and with ’NAME’, all axis elements will be displayed.

Default: (’NAME’, ’NAME’, ’TICKS’, ’TICKS’).

Additional notes: - By default, GRAF plots a frame of thickness 1 around axis systems. There-
fore, in addition to the parameter ’NONE’, FRAME should be called with the
parameter 0 for suppressing complete axes.

- SETGRF does not reset the effect of NOGRAF and NOLINE. This must be
done using RESET.

44

6.2.8 Modifying Clipping

C L P W I N

The routine CLPWIN defines a rectangular clipping area on the page.

The call is: CALL CLPWIN (NX, NY, NW, NH) level 1, 2, 3

or: void clpwin (int nx, int ny, int nw, int nh);

NX, NY are the plot coordinates of the upper left corner.

NW, NH are the width and height of the rectangle in plot coordinates.

C L P B O R

The routine CLPBOR sets the clipping area to the entire page or to the axis system.

The call is: CALL CLPBOR (COPT) level 1, 2, 3

or: void clpbor (char *copt);

COPT is a character string that can have the values ’PAGE’ and ’AXIS’.
Default: COPT = ’PAGE’.

N O C L I P

The suppressing of lines outside of the borders of an axis system can be disabled with NOCLIP.

The call is: CALL NOCLIP level 1, 2, 3

or: void noclip ();

G R A C E

GRACE defines a margin around axis systems where lines will be clipped.

The call is: CALL GRACE (NGRA) level 1, 2, 3

or: void grace (int ngra);

NGRA is the width of the margin in plot coordinates. If NGRA is negative, lines will
be clipped inside the axis system.

Default: NGRA = -1

6.2.9 Framing Axis Systems

F R A M E

FRAME defines the thickness of frames plotted by routines such as GRAF and LEGEND.

The call is: CALL FRAME (NFRM) level 1, 2, 3

or: void frame (int nfrm);

NFRM is the thickness of the frame in plot coordinates. If NFRM is negative, the
frame will be thickened from the inside. If positive, the frame will be thickened
towards the outside.

Default: NFRM = 1

45

6.2.10 Setting Colours

A X S B G D

The routine AXSBGD defines a background colour for axis systems.

The call is: CALL AXSBGD (NCLR) level 1, 2, 3

or: void axsbgd (int nclr);

NCLR is a colour number between -1 and 255. If NCLR = -1, the background of an
axis system is not filled in GRAF.

Default: NCLR = -1

A X C L R S

AXCLRS selects colours for single parts of axes.

The call is: CALL AXCLRS (NCLR, COPT, CAX) level 1, 2, 3

or: void axclrs (int nclr, char *copt, char *cax);

NCLR is a colour number between -1 and 255. If NCLR = -1, the actual colour is
used.

COPT is a character string that can have the values ’LINE’, ’TICKS’, ’LABELS’,
’NAME’ and ’ALL’.

CAX is a character string that defines the axes.
Default: (-1, ’ALL’, ’XYZ’).

6.2.11 Axis System Titles

T I T L I N

This subroutine defines up to four lines of text used for axis system titles. The text can be plotted with
TITLE after a call to GRAF.

The call is: CALL TITLIN (CSTR, N) level 1, 2, 3

or: void titlin (char *cstr, int n);

CSTR is a character string (� 132 characters).

N is an integer that contains a value between 1 and 4 or -1 and -4. If N is negative,
the line will be underscored.

Default: All lines are filled with blanks.

T I T J U S

The routine TITJUS defines the alignment of title lines.

The call is: CALL TITJUS (CJUS) level 1, 2, 3

or: void titjus (char *cjus);

CJUS is a character string that can have the values ’CENT’, ’LEFT’ and ’RIGHT’.
Default: CJUS = ’CENT’.

L F T T I T

Title lines are centred above axis systems by default but can be left-justified with a call to LFTTIT. This
routine has the same meaning as TITJUS (’LEFT’).

46

The call is: CALL LFTTIT level 1, 2, 3

or: void lfttit ();

T I T P O S

The routine TITPOS defines the position of title lines which can be plotted above or below axis systems.

The call is: CALL TITPOS (CPOS) level 1, 2, 3

or: void titpos (char *cpos);

CPOS is a character string that can have the values ’ABOVE’ and ’BELOW’.
Default: CPOS = ’ABOVE’.

L I N E S P

LINESP defines the spacing between title and legend lines.

The call is: CALL LINESP (XFAC) level 1, 2, 3

or: void linesp (float xfac);

XFAC The space between lines is set to XFAC * character height.
Default: XFAC = 1.5

H T I T L E

HTITLE defines the character height for titles. The character height defined by HEIGHT will be used if
HTITLE is not called.

The call is: CALL HTITLE (NHCHAR) level 1, 2, 3

or: void htitle (int nhchar);

NHCHAR is the character height in plot coordinates.

V K Y T I T

The space between titles and axis systems can be enlarged or reduced with VKYTIT. By default, the
space is 2 * character height.

The call is: CALL VKYTIT (NV) level 1, 2, 3

or: void vkytit (int nv);

NV is an integer that determines the spacing between axis systems and titles. If
NV is negative, the space will be reduced by NV plot coordinates. If NV is
positive, the space will be enlarged by NV plot coordinates.

Default: NV = 0

47

6.3 Text and Numbers

H E I G H T

HEIGHT defines the character height.

The call is: CALL HEIGHT (NHCHAR) level 1, 2, 3

or: void height (int nhchar);

NHCHAR is the character height in plot coordinates.
Default: NHCHAR = 36

A N G L E

This routine modifies the direction of text plotted with the routines MESSAG, NUMBER, RLMESS and
RLNUMB.

The call is: CALL ANGLE (NDEG) level 1, 2, 3

or: void angle (int ndeg);

NDEG is an angle measured in degrees and a counter-clockwise direction.
Default: NDEG = 0

T X T J U S

The routine TXTJUS defines the alignment of text plotted with the routines MESSAG and NUMBER.

The call is: CALL TXTJUS (CJUS) level 1, 2, 3

or: void txtjus (char *cjus);

CJUS is a character string that can have the values ’LEFT’, ’RIGHT’ and ’CENT’.
The starting point of text and numbers will be interpreted as upper left, upper
right and upper centre point.

Default: CJUS = ’LEFT’.

F R M E S S

FRMESS defines the thickness of frames around text plotted by MESSAG.

The call is: CALL FRMESS (NFRM) level 1, 2, 3

or: void frmess (int nfrm);

NFRM is the thickness of frames in plot coordinates. If NFRM is negative, frames
will be thickened from the inside. If positive, frames will be thickened towards
the outside.

Default: NFRM = 0

N U M F M T

NUMFMT modifies the format of numbers plotted by NUMBER and RLNUMB.

The call is: CALL NUMFMT (COPT) level 1, 2, 3

or: void numfmt (char *copt);

COPT is a character string defining the format.

48

= ’FLOAT’ will plot numbers in floating-point format.

= ’EXP’ will plot numbers in exponential format where fractions range between 1 and
10.

= ’FEXP’ will plot numbers in the format fEn where f ranges between 1 and 10.

= ’LOG’ will plot numbers logarithmically with base 10 and the corresponding expo-
nents. The exponents must be passed to NUMBER and RLNUMB.

Default: COPT = ’FLOAT’.

Additional note: SETEXP and SETBAS alter the position and size of exponents.

N U M O D E

NUMODE alters the appearance of numbers plotted by NUMBER and RLNUMB.

The call is: CALL NUMODE (CDEC, CGRP, CPOS, CFIX) level 1, 2, 3

or: void numode (char *cdec, char *cgrp, char *cpos, char *cfix);

CDEC is a character string that defines the decimal notation.

= ’POINT’ defines a point.

= ’COMMA’ defines a comma.

CGRP is a character string that defines the grouping of 3 digits.

= ’NONE’ means no grouping.

= ’SPACE’ defines a space as separator.

= ’POINT’ defines a point as separator.

= ’COMMA’ defines a comma as separator.

CPOS is a character string that defines the sign preceding positive numbers.

= ’NONE’ means no preceding sign.

= ’SPACE’ defines a space as a preceding sign.

= ’PLUS’ defines a plus as a preceding sign.

CFIX is a character string specifying character spacing.

= ’NOEQUAL’ is used for proportional spacing.

= ’EQUAL’ is used for non-proportional spacing.

Default: (’POINT’,’NONE’,’NONE’,’NOEQUAL’).

C H A S P C

CHASPC affects intercharacter spacing.

The call is: CALL CHASPC (XSPC) level 1, 2, 3

or: void chaspc (float xspc);

XSPC is a real number that contains a multiplier. If XSPC< 0, the intercharacter
spacing will be reduced by XSPC * NH plot coordinates where NH is the
current character height. If XSPC> 0, the spacing will be enlarged by XSPC
* NH plot coordinates.

Default: XSPC = 0.

49

C H A W T H

CHAWTH affects the width of characters.

The call is: CALL CHAWTH (XWTH) level 1, 2, 3

or: void chawth (float xwth);

XWTH is a real number between 0 and 2. If XWTH< 1, the character width will be
reduced. If XWTH> 1, the character width will be enlarged.

Default: XWTH = 1.

C H A A N G

CHAANG defines an inclination angle for characters.

The call is: CALL CHAANG (ANGLE) level 1, 2, 3

or: void chaang (float angle);

ANGLE is the inclination angle between characters and the vertical direction in degrees
(-60.� ANGLE �60).

Default: ANGLE = 0.

F I X S P C

All fonts in DISLIN except for the default font are proportional. After a call to FIXSPC the characters
of a proportional font will also be plotted with a constant character width.

The call is: CALL FIXSPC (XFAC) level 1, 2, 3

or: void fixspc (float xfac);

XFAC is a real number containing a scaling factor. Characters will be centred in a
box of width XFAC * XMAX where XMAX is the largest character width of
the current font.

6.4 Fonts

The following routines define character sets of varying style and plot velocity. All fonts except for the
default font DISALF are proportional. Each font provides 6 alphabets.

The calls are: CALL DISALF - default font, single stroke, low resolution

CALL SIMPLX - single stroke font

CALL COMPLX - complex font

CALL DUPLX - double stroke font

CALL TRIPLX - triple stroke font

CALL GOTHIC - gothic font

CALL SERIF - complex shaded font

CALL HELVE - shaded font

CALL HELVES - shaded font with small characters

50

Additional note: If one of the shaded fonts SERIF, HELVE or HELVES is used, only the outlines
of characters are plotted to minimize plotting time. With the statement CALL
SHDCHA characters will be shaded.

P S F O N T

PSFONT defines a PostScript font.

The call is: CALL PSFONT (CFONT) level 1, 2, 3

or: void psfont (char *cfont);

CFONT is a character string containing the font. Standard font names in PostScript are:

Times-Roman Courier
Times-Bold Courier-Bold
Times-Italic Courier-Oblique
Times-BoldItalic Courier-BoldOblique
Helvetica AvantGarde-Book
Helvetica-Bold AvantGarde-Demi
Helvetica-Oblique AvantGarde-BookOblique
Helvetica-BoldOblique AvantGarde-DemiOblique
Helvetica-Narrow Bookman-Light
Helvetica-Narrow-Bold Bookman-LightItalic
Helvetica-Narrow-Oblique Bookman-Demi
Helvetica-Narrow-BoldOblique Bookman-DemiItalic
NewCenturySchlbk-Roman Palatino-Roman
NewCenturySchlbk-Italic Palatino-Italic
NewCenturySchlbk-Bold Palatino-Bold
NewCenturySchlbk-BoldItalic Palatino-BoldItalic
ZapfChancery-MediumItalic Symbol
ZapfDingbats

Additional notes: - The file format must be set to ’POST’, ’PSCL’ or to ’PDF’ with the routine
METAFL.

- Font names cannot be shortened. Some printers provide additional non-
standard fonts. These fonts should be specified exactly in upper and lower
characters as they are described in the printer manuals. PostScript suppresses
any graphics if there is a syntax error in the font name. Standard font names
are not case-sensitive.

- A call to a DISLIN font resets PostScript fonts.

W I N F N T

WINFNT defines a TrueType font for WMF files and screen output on Windows displays.

The call is: CALL WINFNT (CFONT) level 1, 2, 3

or: void winfnt (char *cfont);

CFONT is a character string containing the font. The following fonts can normally be
used on the Windows 95/NT operating system:

51

Courier New Times New Roman Italic
Courier New Bold Times New Roman Bold Italic
Courier New Italic Arial
Courier New Bold Italic Arial Bold
Times New Roman Arial Italic
Times New Roman Bold Arial Bold Italic

X 1 1 F N T

X11FNT defines an X11 font for screen output on X11 displays.

The call is: CALL X11FNT (CFONT, COPT) level 1, 2, 3

or: void x11fnt (char *cfont, char *copt);

CFONT is a character string containing the first part of an X11 font.

COPT is a character string containing the last part of an X11 font. IF COPT = ’STAN-
DARD’, the value ’-*-*-*-*-iso8859-1’ is used for the last part of an X11 font.

Additional note: - CFONT must begin and end with the separator ’-’ and must contain the first
five fields of an X11 font. DISLIN adds then the point size and a transfor-
mation matrix to the font. IF COPT has not the value ’STANDARD’, it must
begin with the character ’-’ and contain the last 6 fields of an X11 font.

Here are some examples for the contents of CFONT:

-Adobe-Times-Medium-R-Normal-
-Adobe-Times-Bold-R-Normal-
-Adobe-Times-Bold-I-Normal-
-Adobe-Helvetica-Bold-R-Normal-
-Adobe-Courier-Medium-R-Normal-

H W F O N T

The routine HWFONT sets a standard hardware font if hardware fonts are supported by the current file
format. For example, if the file format is PostScript, the font ’Times-Roman’ is used, if the file format is
’CONS’ or ’XWIN’, ’Times New Roman’ is used for Windows 95/NT and ’-*-Times-Bold-R-Normal-’
is used for X11. If no hardware fonts are supported, COMPLX is used.

The call is: CALL HWFONT level 1, 2, 3

or: void hwfont ();

B A S A L F

BASALF defines the base alphabet.

The call is: CALL BASALF (CALPH) level 1, 2, 3

or: void basalf (char *calph);

CALPH is a character string that can have the values ’STANDARD’, ’ITALIC’,
’GREEK’, ’SCRIPT’, ’RUSSIAN’ and ’MATHEMATIC’. These alphabets
can be used with all fonts.

Default: ’STANDARD’.

S M X A L F

SMXALF defines shift characters to shift between the base and an alternate alphabet.

52

The call is: CALL SMXALF (CALPH, C1, C2, N) level 1, 2, 3

or: void smxalf (char *calph, char *c1, char *c2, int n);

CALPH is a character string containing an alphabet. In addition to the names in
BASALF, CALPH can have the value ’INSTRUCTION’.

C1 is a character that shifts to the alternate alphabet.

C2 is a character that shifts back to the base alphabet. C1 and C2 may be identical.
After the last plotted character of a character string, DISLIN automatically
shifts back to the base alphabet.

N is an integer between 1 and 6. Up to 6 alternate alphabets can be defined.

E U S H F T

EUSHFT defines a shift character to plot special European characters.

The call is: CALL EUSHFT (CNAT, CHAR) level 1, 2, 3

or: void eushft (char *cnat, char *char);

CNAT is a character string that can have the values ’GERMAN’, ’FRENCH’, ’SPAN-
ISH’, ’DANISH’, ’ACUTE’, ’GRAVE’ and ’CIRCUM’.

CHAR is a shift character. For example, with CNAT = ’GERMAN’, the characters A,
O, U, a, o, u and s placed directly after CHAR will be plotted as ”A, ”O, ”U,
”a, ”o, ”u and ß.

Additional notes: - Shift characters can be defined multiple where the characters must be different.

- European characters are supported by PostScript fonts and by COMPLX.

53

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.3: DISALF Character Set

54

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.4: SIMPLX Character Set

55

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.5: COMPLX Character Set

56

ASCII SCRI. RUSS. MATH. ASCII SCRI. RUSS. MATH. ASCII SCRI. RUSS. MATH.

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.6: COMPLX Character Set

57

ASCII STAN. ITAL. SCRI. ASCII STAN. ITAL. SCRI. ASCII STAN. ITAL. SCRI.

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.7: GOTHIC Character Set

58

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.8: HELVE Character Set

59

Times-Roman

ASCII CHAR ASCII CHAR ASCII CHAR ASCII CHAR ASCII CHAR

 32

 33 !
 34 "
 35 #
 36 $
 37 %
 38 &
 39 ’
 40 (
 41)
 42 *
 43 +
 44 ,
 45 -
 46 .
 47 /
 48 0
 49 1
 50 2
 51 3
 52 4
 53 5
 54 6
 55 7
 56 8
 57 9
 58 :
 59 ;
 60 <
 61 =

 62 >
 63 ?
 64 @
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 91 [

 92 \
 93]
 94 ^
 95 _
 96 ‘
 97 a
 98 b
 99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y

122 z
123 {
124 |
125 }
126 ~
127 Ä
128 Ö
129 Ü
130 ä
131 ö
132 ü
133 ß
134 Å
135 Ø
136 Æ
137 å
138 ø
139 æ
140 Ñ
141 ñ
142 Ç
143 ç
144 Ë
145 Ï
146 ë
147 ï
148 Á
149 É
150 Í
151 Ó

152 Ú
153 á
154 é
155 í
156 ó
157 ú
158 À
159 È
160 Ì
161 Ò
162 Ù
163 à
164 è
165 ì
166 ò
167 ù
168 Â
169 Ê
170 Î
171 Ô
172 Û
173 â
174 ê
175 î
176 ô
177 û
178

179

180

181

Figure 6.9: Times-Roman Character Set

60

PostScript Fonts

This is Times-Roman
This is Times-Bold
This is Times-Italic
This is Times-BoldItalic
This is Helvetica
This is Helvetica-Bold
This is Helvetica-Oblique
This is Helvetica-BoldOblique
This is Helvetica-Narrow
This is Helvetica-Narrow-Bold
This is Helvetica-Narrow-Oblique
This is Helvetica-Narrow-BoldOblique
This is NewCenturySchlbk-Roman
This is NewCenturySchlbk-Italic
This is NewCenturySchlbk-Bold
This is NewCenturySchlbk-BoldItalic
This is ZapfChancery-MediumItalic
✴❈❉▲ ❉▲ ✺❁❐❆✤❉■❇❂❁▼▲
This is Courier
This is Courier-Bold
This is Courier-Oblique
This is Courier-BoldOblique
This is AvantGarde-Book
This is AvantGarde-Demi
This is AvantGarde-BookOblique
This is AvantGarde-DemiOblique
This is Bookman-Light
This is Bookman-LightItalic
This is Bookman-Demi
This is Bookman-DemiItalic
This is Palatino-Roman
This is Palatino-Italic
This is Palatino-Bold
This is Palatino-BoldItalic
Τηισ ισ Σψµβολ

Figure 6.10: PostScript Fonts

61

6.5 Indices and Exponents

Indices and exponents can be plotted by using control characters in characters strings, or by using the
TeX syntax described in paragraph 6.7. There are 3 predefined control characters in DISLIN which can
be altered with the routines NEWMIX and SETMIX. The predefined character

[is used for exponents. The character height is reduced by the scaling factor FEXP and the
pen is moved up FBAS * NH plot coordinates where NH is the current character height.

] is used for indices. The pen is moved down FBAS * NH plot coordinates and the character
height is reduced by the scaling factor FEXP.

$ is used to move the pen back to the base-line. This will automatically be done at the end of
a character string.

FBAS and FEXP have the default values 0.6 and 0.8, respectively, these values can be changed with the
routines SETBAS and SETEXP.

M I X A L F

This routine instructs DISLIN to search for control characters in character strings.

The call is: CALL MIXALF level 1, 2, 3

or: void mixalf ();

S E T B A S

SETBAS defines the position of indices and exponents. This routine also affects logarithmic axis labels.

The call is: CALL SETBAS (FBAS) level 1, 2, 3

or: void setbas (float fbas);

FBAS is a real number used as a scaling factor. The pen will be moved up or down by
FBAS * NH plot coordinates to plot exponents or indices. NH is the current
character height.

Default: FBAS = 0.6.

S E T E X P

SETEXP sets the character height of indices and exponents.

The call is: CALL SETEXP (FEXP) level 1, 2, 3

or: void setexp (float fexp);

FEXP is a real number used as a scaling factor. The character height of indices and
exponents is set to FEXP * NH where NH is the current character height.

Default: FEXP = 0.8

N E W M I X

NEWMIX defines an alternate set of control characters for plotting indices and exponents. The default
characters ’[’, ’]’ and ’$’ are replaced by ’^’, ’ ’ and ’%’.

The call is: CALL NEWMIX level 1, 2, 3

62

or: void newmix ();

S E T M I X

SETMIX defines global control characters for plotting indices and exponents.

The call is: CALL SETMIX (C, CMIX) level 1, 2, 3

or: void setmix (char *c, char *cmix);

C is a new control character.

CMIX is a character string that defines the function of the control character. CMIX
can have the values ’EXP’, ’IND’, ’RES’, ’LEG’ and ’TEX’ for exponents,
indices, resetting the base-line, for multiple text lines in legends and for TeX
instructions, respectively.

Additional note: The routines NEWMIX and SETMIX only modify the control characters. A
call to MIXALF is always necessary to plot indices and exponents.

6.6 Instruction Alphabet

The instruction alphabet contains commands that control pen movements and character sizes during
the plotting of character strings. It is provided for the representation of complicated formulas. An
alternate method for plotting of complicated formulas is described in paragraph 6.7, “TeX Instructions
for Mathematical Formulas”.
The instruction alphabet can be used in the same way as other alphabets in DISLIN. Shift characters
must be defined with the routine SMXALF to switch between the base and the instruction alphabet.
The commands of the instruction alphabet consist of a single character and an optional parameter. If the
parameter is omitted, DISLIN will use default values. A parameter can be a real number, an integer or
the character ’X’ which resets the parameter back to the entry value at the beginning of the character
string.
Commands of the instruction alphabet can only change plot parameters temporarily within a character
string. At the end of a character string, all parameters are reset to their entry values.

The following table summarizes all instruction commands. The character r means a real parameter and
i an integer. The base-line of character strings is placed directly below them. Commands can be given
in uppercase or lowercase letters. Real parameters can be specified without decimal points while integer
parameters cannot have decimal points. Several commands can follow one another. Blanks between
commands will be ignored.

63

Instruction-Alphabet

Command Parameter Default Description

A real 1. moves the pen horizontally by r * NH plot coordi-
nates where NH is the current character height. If r
< 0, the pen will be moved backwards.

C integer 1 moves the pen horizontally by i character spaces. If
i < 0, the pen will be moved backwards.

D real 1. moves the pen down from the base-line by r * NH
plot coordinates. If r> 0, NH is the entry character
height. If r< 0, NH is the current character height.

E moves the pen up by 0.75 * character height and re-
duces the character height by the scaling factor 0.6
(for exponents).

F integer 1 moves the pen horizontally by i spaces. If i is nega-
tive, the pen is moved backwards.

G integer 1 moves the pen horizontally to the tab position with
the index i, where 1� i � 20.

H real 0.6 sets the character height to r * NH. If r> 0, NH is
the entry character height. If r< 0, NH is the current
character height.

I moves the pen down by 0.35 * character height and
multiplies the character height by 0.6 (for indices).

J integer 1 underscores twice from the tab position i to the cur-
rent pen position.

K real 0.8 is used to plot characters with constant widths.
Characters will be centred in a box with the width
r * W where W is the largest character length in the
current font. The global routine is FIXSPC.

L integer 1 underscores from the tab position i to the current pen
position.

M integer 1 defines the base alphabet.
(1 = STAND., 2 = GREEK, 3 = MATH.,
4 = ITAL., 5 = SCRIPT, 6 = RUSSIAN).

64

Command Parameter Default Description

N integer 1 sets a colour i, where 0� i � 255). The global rou-
tine is SETCLR.

O real 0. moves the base-line vertically by r * character
height. If r< 0 the base-line is moved down.

P integer 1 defines a horizontal tab position with the index i at
the current pen position, where 1� i � 20.
All tab positions are initialized to the beginning of
the string.

R resets the character height and the base-line to their
entry values.

S integer 0 plots a symbol with the number i, where 0� i � 21.

T integer 0 moves the pen horizontally from the beginning of
the string by i plot coordinates.

U real 1. moves the pen up from the base-line by r * NH plot
coordinates. If r> 0, NH is the entry character
height. If r< 0, NH is the current character height.

V integer 1 plots a horizontal line from the tab position i to the
current pen position. The line is moved up from the
base-line by 0.5 * character height plot coordinates.

W real 1. affects the width of characters. The global routine is
CHAWTH.

Y real 0. affects the character spacing. The global routine is
CHASPC.

Z real 0. defines an inclination angle for characters, where -
60� r � 60. The global routine is CHAANG.

For the following examples, the characters ’f’ and ’g’ are defined with

CALL SMXALF (’INST’, ’ f’, ’ g’, 1)

to switch between the instruction and the base alphabet.

65

Figure 6.11: Instruction Alphabet

66

6.7 TeX Instructions for Mathematical Formulas

6.7.1 Introduction

This paragraph presents an alternate method to the DISLIN instruction alphabet for plotting mathemat-
ical formulas. The text formatting language TeX has a very easy method for describing mathematical
formulas. Since this method is well-known by many scientists, an emulation mode for TeX instructions
is added to DISLIN with version 7.4.

TeX instructions can be enabled in DISLIN with the statement CALL TEXMOD (’ON’). If TeX mode
is enabled, mixed alphabets defined with SMXALF and the control characters for indices and exponents
described in paragraph 6.5 will be ignored.

Mathematical formulas in TeX mode are produced in DISLIN by some special descriptive text. This
means that DISLIN must be informed that the following text is to be interpreted as a mathematical
formula. The character $ in a text switches from text to math mode, and from math to text mode.
Therefore, mathematical formulas must be enclosed in a pair of dollar signs.

Numbers that appear within formulas are called constants, whereas simple variables are represented by
single letters. The universal practice in mathematical typesetting is to put constants in Roman typeface
and variables in italics. DISLIN uses this rule by default in math mode. The rule can be modified with
the routine TEXOPT. Blanks are totally ignored in math mode and spaces are included automatically by
DISLIN between constants, variables and operators.

The characters $,f, g andn have a special meaning in TeX mode and therefore cannot act as printable
characters. To include them in normal text, the commandsn$, nf, ng andnn must be used. Additional,
the characters and^ have a special meaning in math mode and can be handled in the same way.

Note: Some Fortran compilers treat the character ’n’ as a special control character, so that an
additional flag has to be used for compiling (i.e. -fno-backslash for g77), or the TeX control
character ’n’ can be replaced by another character with the routine SETMIX.

6.7.2 Enabling TeX Mode and TeX Options

T E X M O D

The routine TEXMOD can be used to enable TeX mode in DISLIN. In TeX mode, all character strings
passed to DISLIN routines can contain TeX instructions for plotting mathematical formulas.

The call is: CALL TEXMOD (CMODE) level 1, 2, 3

or: void texmod (char *cmode);

CMODE is a character string that can have the values ’ON’ and ’OFF’. CMODE = ’ON’
enables TeX mode and CMODE = ’OFF’ disables TeX mode.

Default: CMODE = ’OFF’.

T E X O P T

The routine TEXOPT sets some TeX options.

The call is: CALL TEXOPT (COPT, CTYPE) level 1, 2, 3

or: void texopt (char *copt, char *ctype);

COPT is a character string that can have the values ’ON’ and ’OFF’.

67

CTYPE is a character string that can contain the keywords ’LIMITS’ and ’ITALIC’.
’LIMITS’ means that the limits for sums and integrals will be placed above
and below the sum and integral signs instead of following them. ’ITALIC’
means that for math mode variables will be put in italics.

Default: (’ON’, ’LIMITS’),
(’ON’, ’ITALIC’).

6.7.3 Exponents and Indices

Exponents and indices are characters that are either raised or lowered relative to the base line of the text.
The character̂ sets the next character as an exponent, while the charactersets it as an index:

x2 x^2 an a n xni x i^n

When exponents and indices occur together, their order is unimportant. If the exponent or index contains
more than one character, the group of characters must be inclosed in bracesf g:

x2n x^f2ng x2y x f2yg A�n+2i;j;k A fi,j,kg^f-n+2g
Multiple raisings and lowerings are generated by applying^ and to the exponents and indices:

xy
2

x^fy^2g

Additional note: The commandŝand are only allowed in math mode.

6.7.4 Fractions

The instructionnfracfnumeratorgfdenominatorg can be used in TeX math mode for plotting fractions.
The numerator is plotted on top of the denominator with a horizontal fraction line between them.

1

x+ y
nfracf1gfx+yg

a2 � b2
a+ b

= a� b nfracfâ 2 - b̂ 2gfa+bg = a - b

Fractions may be nested to a depth of 8 within one another:

a
x�y

+ b
x+y

1 + a�b
a+b

nfracfnfracfagfx-yg + nfracfbgfx+yg
f1 + nfracfa-bgfa+bgg

6.7.5 Roots

Roots can be plotted with the syntaxnsqrt[n]fargg where the optional part [n] can be omitted.

Examples:

3
p
8 = 2 nsqrt[3]f8g = 2

p
x2 + y2 + 2xy = x+ y nsqrtfx^2 + y^2 + 2xyg = x + y

Roots may be nested inside one another to a depth of 8:
q
�q +pq2 + p2 nsqrtf-q +nsqrtfq^2 + p̂ 2gg

68

6.7.6 Sums and Integrals

Summation and integral signs can be plotted with the two instructionsnsum andnint. Sums and integrals
can posses upper and lower limits that can be plotted with the exponent and index instructions^ and . By
default, the limits are placed below and above the summation and integral signs. This can be modfified
with the routine TEXMOD or with the instructionnnolimits following the summation and integral signs.

Examples:

2
nP

i=0

ai nsumfi=1g^n a i

R b
a fi(x)gi(x)dx nintnnolimits â b f i(x)g i(x)dx

6.7.7 Greek Letters

The following Greek letters are available in text and in math mode. If they are used in text mode, the first
blank character after the letter will be interpreted as a seperator and will be ignored.

� nalpha � ntheta o o � nchi
� nbeta � niota � npi npsi

 ngamma � nkappa � nrho ! nomega
� ndelta � nlambda � nsigma
� nepsilon � nmu � ntau
� nzeta � nnu � nupsilon
� neta � nxi ' nphi

� nGamma � nLambda � nSigma 	 nPsi
� nDelta � nXi � nUpsilon
 nOmega
� nTheta � nPi � nPhi

6.7.8 Mathematical Symbols

The following mathematical symbols are available in text and in math mode.

� npm � ncdot [ncup � nodot
� nmp � nast _ nvee � noplus
� ntimes ? nstar ^ nwedge 	 nominus
� ndiv \ ncap n nsetminus

� nle nleq � nge ngeq 6= nneq � nsim
� nsubset � nsupset �= ncong j nmid
� nsubseteq � nsupseteq � nequiv =2 nnotin
2 nin 3 nni k nparallel 6= nnot=

 nleftarrow ! nrightarrow , nLeftrightarrow # ndownarrow
(nLeftarrow) nRightarrow " nuparrow

; nemptyset
p nsurd 8 nforall n nbackslash

r nnabla @ npartial 9 nexists 1 ninfty

69

6.7.9 Alternate Alphabets

The DISLIN alphabets ’STANDARD’, ’ITALIC’, ’GREEK’, ’SCRIPT’ and ’RUSSIAN’ can be used in
TeX mode with the instructionsnrm, nit, ngr,ncal andnru.

6.7.10 Function Names

The standard for mathematical formulas is to set variable names in italics but the names of functions in
Roman. The following function names will be recognized by DISLIN and plotted in Roman.

narccos narcsin narctan narg ncos ncosh ncot
ncoth ncsc ndec ndim nexp nhom nln
nlog nsec nsin nsinh ntan ntanh

6.7.11 Accents

Accents are available in TeX mode in the same way as in normal DISLIN mode (see EUSHFT).

6.7.12 Lines above and below Formulas

The commandsnoverlinefargg andnunderlinefargg can be used to draw lines over and under a formula.
The commandnvecfargg draws a vector over a formula. All commands can be used in TeX text and
math mode.

6.7.13 Horizontal Spacing

Small amounts of horizontal spacing can be added in TeX mode with the following commands:

n, small space = 3/18 of the current character size
n: medium space = 4/18 of the current character size
n; large space = 5/18 of the current character size
n! negative space = -3/18 of the current character size

Larger amounts of horizontal spacing can be added with the commands:

nquad extra space = 1/1 of the current character size
nqquad extra space = 2/1 of the current character size

6.7.14 Selecting Character Size in TeX Mode

The commandsntiny, nscriptsize,nfootnotesize,nsmall,nnormalsize,nlarge,nLarge,nLARGE, nhuge
andnHuge can be used in TeX mode for modifying the character size. The commandnnormalsize is
corresponding to the current character size before the call of the text plotting routine. The character size
is decreased or increased by a factor of 1.2 for neighbouring character size commands.

6.7.15 Colours in TeX Mode

The commandsnblack,nred,ngreen,nblue,ncyan,nyellow,norange,nmagenta,nwhite,nfore andnback
set the corresponding colours in TeX mode.

70

6.7.16 Example

PROGRAM EX6_2
CHARACTER CSTR*80

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL HEIGHT(40)

CSTR=’TeX Instructions for Mathematical Formulas’
NL=NLMESS(CSTR)
CALL MESSAG(CSTR, (2100 - nl)/2, 100)

CALL TEXMOD(’ON’)
CALL MESSAG(’$\frac{1}{x+y}$’, 150, 400)
CALL MESSAG(’$\frac{aˆ2 - bˆ2}{a+b} = a - b$’, 1200, 400)

CALL MESSAG(’$r = \sqrt{xˆ2 + yˆ2}’, 150, 700)
CALL MESSAG(’$\cos \phi = \frac{x}{\sqrt{xˆ2 + yˆ2}}$’,

* 1200, 700)

CALL MESSAG(’$\Gamma(x) = \int_0ˆ\infty eˆ{-t}tˆ{x-1}dt$’,
* 150, 1000)

CALL MESSAG(’$\lim_{x \to \infty} (1 + \frac{1}{x})ˆx = e$’,
* 1200, 1000)

CALL MESSAG(’$\mu = \sum_{i=1}ˆn x_i p_i$’, 150, 1300)
CALL MESSAG(’$\mu = \int_{-\infty}ˆ \infty x f(x) dx$’,

* 1200, 1300)

CALL MESSAG(’$\overline{x} = \frac{1}{n} \sum_{i=1}ˆn x_i$’,
* 150, 1600)

CALL MESSAG(’$sˆ2 = \frac{1}{n-1} \sum_{i=1}ˆn’ //
* ’(x_i - \overline{x})ˆ2$’, 1200, 1600)

CALL MESSAG(’$\sqrt[n]{\frac{xˆn - yˆn}{1 + uˆ{2n}}}$’,
* 150, 1900)

CALL MESSAG(’$\sqrt[3]{-q + \sqrt{qˆ2 + pˆ3}}$’, 1200, 1900)

CALL MESSAG(’$\int \frac{dx}{1+xˆ2} = \arctan x + C$’,
* 150, 2200)

CALL MESSAG(’$\int \frac{dx}{\sqrt{1+xˆ2}} = ’ //
* ’ {\rm arsinh} x + C$’, 1200, 2200)

CALL MESSAG(’$\overline{P_1P_2} = \sqrt{(x_2-x_1)ˆ2 + ’//
* ’(y_2-y_1)ˆ2}$’, 150,2500)

CALL MESSAG(’$x = \frac{x_1 + \lambda x_2}{1 + \lambda}$’,
* 1200, 2500)

CALL DISFIN
END

71

Figure 6.12: TeX Instructions for Mathematical Formulas

72

6.8 Curve Attributes

C H N C R V

CHNCRV defines attributes that will be automatically changed by CURVE after a certain number of calls
to the routine CURVE.

The call is: CALL CHNCRV (CATT) level 1, 2, 3

or: void chncrv (char *catt);

CATT = ’NONE’ means that CURVE changes no attributes.

= ’COLOR’ means that colours will be changed.

= ’LINE’ means that line styles will be changed.

= ’BOTH’ means that colours and line styles will be changed.
Default: CATT = ’NONE’.

Additional note: The sequence of colours is WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN and MAGENTA.
The sequence of line styles is SOLID, DOT, DASH, CHNDSH, CHNDOT,
DASHM, DOTL and DASHL.
The symbol number is always changed. It will be incremented by 1 starting
with the current symbol defined by MARKER.

The following three routines are useful when automatic attribute setting is selected and the routine
CURVE is called several times to plot a single curve.

I N C C R V

INCCRV defines the number of calls after which CURVE will automatically change attributes.

The call is: CALL INCCRV (NCRV) level 1, 2, 3

or: void inccrv (int ncrv);

NCRV is the number of curves that will be plotted with identical attributes.
Default: NCRV = 1

C H N A T T

CHNATT is an alternative routine to INCCRV. It is useful when the number of curves plotted with
identical attributes varies. CHNATT defines new attributes that will be used by CURVE during the next
call.

The call is: CALL CHNATT level 1, 2, 3

or: void chnatt ();

Additional notes: - CHNATT changes only attributes specified with CHNCRV.

- Attributes cannot be skipped by calling CHNATT several times; the order of
the attribute cycles must be changed.

R E S A T T

In general, curve attributes will be repeated after 8 changes. With the routine RESATT, the attributes can
be reset earlier.

73

The call is: CALL RESATT level 1, 2, 3

or: void resatt ();

I N C M R K

INCMRK selects line or symbol mode for CURVE.

The call is: CALL INCMRK (NMRK) level 1, 2, 3

or: void incmrk (int nmrk);

NMRK = - n means that CURVE plots only symbols. Every n-th point will be marked by a
symbol.

= 0 means that CURVE connects points with lines.

= n means that CURVE plots lines and marks every n-th point with a symbol.
Default: NMRK = 0

M A R K E R

The symbols used to plot points can be selected with the routine MARKER. The symbol number will be
incremented by 1 after a certain number of calls to CURVE defined by INCCRV.

The call is: CALL MARKER (NSYM) level 1, 2, 3

or: void marker (int nsym);

NSYM is the symbol number between 0 and 21. The symbols are shown in appendix
B.

Default: NSYM = 0

H S Y M B L

HSYMBL defines the size of symbols.

The call is: CALL HSYMBL (NHSYM) level 1, 2, 3

or: void hsymbl (int nhsym);

NHSYM is the size of symbols in plot coordinates.
Default: NHSYM = 35

T H K C R V

THKCRV defines the thickness of curves.

The call is: CALL THKCRV (NTHK) level 1, 2, 3

or: void thkcrv (int nthk);

NTHK is the thickness of curves in plot coordinates.
Default: NTHK = 1

G A P C R V

GAPCRV defines a data gap used in the routine CURVE. If the distance between two neightbouring X
coordinates is greater than the gap value, CURVE will not connect these data points.

The call is: CALL GAPCRV (XGAP) level 1, 2, 3

or: void gapcrv (float xgap);

XGAP is the gap value.

74

P O L C R V

POLCRV defines an interpolation method used by CURVE to connect points.

The call is: CALL POLCRV (CPOL) level 1, 2, 3

or: void polcrv (char *cpol);

CPOL is a character string containing the interpolation method.

= ’LINEAR’ defines linear interpolation.

= ’STEP’ defines step interpolation.

= ’STAIRS’ defines step interpolation.

= ’BARS’ defines bar interpolation.

= ’STEM’ defines stem interpolation.

= ’SPLINE’ defines spline interpolation.

= ’PSPLINE’ defines parametric spline interpolation.
Default: CPOL = ’LINEAR’.

Additional notes: - The width of bars can be set with BARWTH.

- For spline interpolation, the X-coordinates must have different values and be
in ascending order. There is no restriction for a parametric spline. The order
of spline polynomials and the number of interpolated points can be modified
with SPLMOD.

S P L M O D

SPLMOD defines the order of polynomials and the number of interpolated points used for the interpola-
tion methods ’SPLINE’ and ’PSPLINE’.

The call is: CALL SPLMOD (NGRAD, NPTS) level 1, 2, 3

or: void splmod (int ngrad, int npts);

NGRAD is the order of the spline polynomials (2 - 10). It affects the number of points
accepted by CURVE which is determined by the formula (2 * NGRAD + 1) *
N � 1000. For example, with a cubic spline, up to 142 points can be passed to
CURVE.

NPTS is the number of points that will be interpolated in the range XRAY(1) to
XRAY(N).

Default: (3, 200).

B A R W T H

BARWTH sets the width of bars plotted by CURVE.

The call is: CALL BARWTH (XWTH) level 1, 2, 3

or: void barwth (float xwth);

XWTH defines the bar width. If positive, the absolute value of XWTH * (XRAY(1)-
XRAY(2)) is used. If negative, the absolute value of XWTH is used where
XWTH is specified in plot coordinates.

Default: XWTH = 0.75

N O C H E K

The routine NOCHEK can be used to suppress the listing of points that lie outside of the axis scaling.

The call is: CALL NOCHEK level 1, 2, 3

or: void nochek ();

75

6.9 Line Attributes

L I N E S T Y L E S

The routines SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL define different
line styles. They are called without parameters. The routine LINTYP (NTYP) can also be used to set
line styles where NTYP is an integer between 0 and 7 and corresponds to the line styles above. The
routine MYLINE sets user-defined line styles.

M Y L I N E

MYLINE defines a global line style.

The call is: CALL MYLINE (NRAY, N) level 1, 2, 3

or: void myline (int *nray, int n);

NRAY is an array of positive integers characterizing the line style. Beginning with
pen-down, a pen-down and pen-up will be done alternately according to the
specified lengths in NRAY. The lengths must be given in plot coordinates.

N is the number of elements in NRAY.

Examples: The values of NRAY for the predefined line styles are given below:

SOLID : NRAY = f1g
DOT : NRAY = f1, 10g
DASH : NRAY = f10, 10g
CHNDSH: NRAY =f30, 15, 10, 15g
CHNDOT: NRAY = f1, 15, 15, 15g
DASHM : NRAY = f20, 15g
DOTL : NRAY = f1, 20g
DASHL : NRAY = f30, 20g

L I N W I D

The routine LINWID sets the line width.

The call is: CALL LINWID (NWIDTH) level 1, 2, 3

or: void linwid (int nwidth);

NWIDTH is the line width in plot coordinates. Default: NWIDTH = 1

Additional note: To define smaller line widhts than 1 (i.e. for PostScript files), the routine
PENWID (XWIDTH) can be used where XWIDTH has the same meaning
as NWIDTH.

76

L N C A P

The routine LNCAP sets the current line cap parameter.

The call is: CALL LNCAP (CAP) level 1, 2, 3

or: void lncap (char *cap);

CAP is a character string defining the line cap.

= ’ROUND’ defines rounded caps.

= ’CUT’ defines square caps.

= ’LONG’ defines square caps where stroke ends will be continued equal to half the line
width.

Default: CAP = ’LONG’.

L N J O I N

The routine LNJOIN sets the current line join parameter.

The call is: CALL LNJOIN (CJOIN) level 1, 2, 3

or: void lnjoin (char *cjoin);

CJOIN is a character string containing the the line join.

= ’SHARP’ defines sharp corners between path segments.

= ’TRUNC’ defines truncated corners between path segments.
Default: CJOIN = ’TRUNC’.

L N M L T

The routine LNMLT sets the current miter limit parameter. This routine can be useful if the line join is
set to ’SHARP’.

The call is: CALL LNMLT (XFC) level 1, 2, 3

or: void lnmlt (float xfc);

XFC is a floatingpoint number where XFC * line width will be used as the miter
limit. The miter length is the distance between the inner and outside edge of a
path corner.

Default: XFC = 2.

6.10 Shading

S H D P A T

SHDPAT selects shading patterns used by routines such as SHDCRV and AREAF.

The call is: CALL SHDPAT (IPAT) level 1, 2, 3

or: void shdpat (long ipat);

IPAT is an integer between 0 and 17. The predefined patterns are shown in appendix
B.

77

M Y P A T

MYPAT defines a global shading pattern.

The call is: CALL MYPAT (IANGLE, ITYPE, IDENS, ICROSS) level 1, 2, 3

or: void mypat (int iangle, int itype, int idens, int icross);

IANGLE is the angle of shading lines (0 - 179).

ITYPE defines the type of shading lines:
= 0 no shading lines.
= 1 equidistant lines.
= 2 double shading lines.
= 3 triple shading lines.
= 4 thick shading lines.
= 5 dotted lines.
= 6 dashed lines.
= 7 dashed-dotted lines.

IDENS defines the distance between shading lines (0: small distance, 9: big distance).

ICROSS indicates whether shading lines are hatched (0: not hatched, 1: hatched).

Examples: The following calls to MYPAT show the predefined shading patterns used by
SHDPAT:

IPAT = 0: CALL MYPAT (0, 0, 0, 0)
IPAT = 1: CALL MYPAT (45, 1, 5, 0)
IPAT = 2: CALL MYPAT (150, 4, 5, 0)
IPAT = 3: CALL MYPAT (135, 1, 5, 0)
IPAT = 4: CALL MYPAT (45, 4, 5, 0)
IPAT = 5: CALL MYPAT (45, 1, 5, 1)
IPAT = 6: CALL MYPAT (135, 2, 1, 0)
IPAT = 7: CALL MYPAT (45, 4, 5, 1)
IPAT = 8: CALL MYPAT (30, 1, 4, 0)
IPAT = 9: CALL MYPAT (45, 2, 1, 1)
IPAT = 10: CALL MYPAT (0, 1, 5, 1)
IPAT = 11: CALL MYPAT (45, 3, 1, 0)
IPAT = 12: CALL MYPAT (70, 4, 7, 0)
IPAT = 13: CALL MYPAT (45, 3, 1, 1)
IPAT = 14: CALL MYPAT (0, 4, 5, 1)
IPAT = 15: CALL MYPAT (45, 2, 1, 0)
IPAT = 16: CALL MYPAT (0, 1, 0, 0)
IPAT = 17: CALL MYPAT (0, 5, 5, 0)

N O A R L N

With the routine NOARLN the outlines of shaded regions can be suppressed.

The call is: CALL NOARLN level 1, 2, 3

or: void noarln ();

78

6.11 Attribute Cycles

The attributes line style, colour and shading pattern can be changed automatically by routines such as
CURVE, SHDCRV, BARS and PIEGRF according to a predefined cycle.

The cycles are:

Line styles: SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL.

Colours: WHITE/BLACK, RED, GREEN, YELLOW, BLUE, ORANGE, CYAN and MAGENTA.

Shading: Pattern numbers from 0 to 17.

The following subroutines allow the redefining of cycles.

L I N C Y C

LINCYC changes the line style cycle.

The call is: CALL LINCYC (INDEX, ITYP) level 1, 2, 3

or: void lincyc (int index, int ityp);

INDEX is an index between 1 and 30.

ITYP is an integer between 0 and 7 containing the line style (0 = SOLID, 1 = DOT, 2
= DASH, 3 = CHNDSH, 4 = CHNDOT, 5 = DASHM, 6 = DOTL, 7 = DASHL).

C L R C Y C

CLRCYC changes the colour cycle.

The call is: CALL CLRCYC (INDEX, ICLR) level 1, 2, 3

or: void clrcyc (int index, int iclr);

INDEX is an index between 1 and 30.

ICLR is a colour number (see SETCLR).

P A T C Y C

PATCYC changes the shading pattern cycle.

The call is: CALL PATCYC (INDEX, IPAT) level 1, 2, 3

or: void patcyc (int index, long ipat);

INDEX is an index between 1 and 30.

IPAT is a pattern number between 0 and 17 or is determined by the formula IANGLE
* 1000 + ITYPE * 100 + IDENS * 10 + ICROSS with the parameters described
in MYPAT.

6.12 Base Transformations

The following subroutines create a transformation matrix that affects plot vectors contained within page
borders. Vectors may be scaled, shifted and rotated and the transformations can be combined in any
order.

T R F S H F

TRFSHF affects the shifting of plot vectors.

79

The call is: CALL TRFSHF (NXSHFT, NYSHFT) level 1, 2, 3

or: void trfshf (int nxshft, int nyshft);

NXSHFT, NYSHFT are plot coordinates that define the magnitude of shifting in the X- and Y-
direction.

T R F S C L

TRFSCL affects the scaling of plot vectors.

The call is: CALL TRFSCL (XSCL, YSCL) level 1, 2, 3

or: void trfscl (float xscl, float yscl);

XSCL, YSCL are scaling factors for the X- and Y-direction.

T R F R O T

TRFROT affects the rotation of plot vectors around a point.

The call is: CALL TRFROT (XANG, NX, NY) level 1, 2, 3

or: void trfrot (float xang, int nx, int ny);

XANG is the rotation angle measured in degrees in a counter-clockwise direction.

NX, NY are the plot coordinates of the rotation point.

T R F R E S

TRFRES resets base transformations.

The call is: CALL TRFRES level 1, 2, 3

or: void trfres ();

6.13 Shielded Regions

This section describes how to protect regions from being overwritten. Shielded regions can be defined
automatically by DISLIN or explicitly by the user. Shielded regions are stored in a buffer which can then
be manipulated by the user.

S H I E L D

SHIELD selects shielded regions which are set automatically by DISLIN.

The call is: CALL SHIELD (CAREA, CMODE) level 1, 2, 3

or: void shield (char *carea, char *cmode);

CAREA is a character string defining the regions:

= ’MESSAG’ is used for text and numbers plotted by MESSAG and NUMBER.

= ’SYMBOL’ will shield symbols.

= ’BARS’ will shield bars plotted by BARS.

= ’PIE’ will shield pie segments plotted by PIEGRF.

= ’LEGEND’ will protect legends. All legend attributes should be set before calling CURVE
because the shielded region of a legend is defined by CURVE. If there is no
legend position defined with LEGPOS, CURVE assumes that the legend lies
in the upper right corner of the axis system.

80

CMODE is a character string defining a status:

= ’ON’ means that the regions defined above will be written to the shielding buffer and
are protected.

= ’OFF’ means that regions will not be written to the shielding buffer. Regions that are
still stored in the buffer will be shielded.

= ’DELETE’ removes regions from the shielding buffer.

= ’RESET’ is a combination of ’OFF’ and ’DELETE’. Regions are removed from and will
not be written to the shielding buffer. To save computing time, this command
should always be used when shielding is no longer needed.

= ’NOVIS’ The shielding of regions held in the shielding buffer is disabled. This is not
valid for regions newly written to the buffer.

= ’VIS’ Disabled regions will be protected. This is the default value for regions newly
written to the buffer.

The following routines set user-defined regions:

The calls are: CALL SHLREC (NX, NY, NW, NH) for rectangles
CALL SHLRCT (NX, NY, NW, NH, THETA) for rotated rectangles
CALL SHLCIR (NX, NY, NR) for circles
CALL SHLELL (NX, NY, NA, NB, THETA) for rotated ellipses
CALL SHLPIE (NX, NY, NR, ALPHA, BETA) for pie segments
CALL SHLPOL (NXRAY, NYRAY, N) for polygons.

NX, NY are plot coordinates of the upper left corner or the centre point.

NW, NH are the width and height of rectangles.

NR, NA, NB are radii in plot coordinates.

THETA is a rotation angle measured in degrees in a counter-clockwise direction.

ALPHA, BETA are starting and ending angles for pie segments measured in degrees in a
counter-clockwise direction.

NXRAY, NYRAY are arrays of the dimension N containing the corner points of a polygon.

S H L I N D

The index of shielded regions in the buffer can be requested with SHLIND. It returns the index of the
region last written to the buffer.

The call is: CALL SHLIND (ID) level 1, 2, 3

or: int shlind ();

ID is the returned index.

S H L D E L

SHLDEL removes entries from the shielding buffer.

The call is: CALL SHLDEL (ID) level 1, 2, 3

or: void shldel (int id);

ID is the index of a shielded region. If ID is 0, all regions defined by the user will
be deleted.

81

S H L R E S

SHLRES deletes regions last written to the shielding buffer.

The call is: CALL SHLRES (N) level 1, 2, 3

or: void shlres (int n);

N is the number of regions to delete.

S H L V I S

SHLVIS disables or enables shielded regions. Disabled regions are no longer protected but are still held
in the shielding buffer.

The call is: CALL SHLVIS (ID, CMODE) level 1, 2, 3

or: void shlvis (int id, char *cmode);

ID is the index of a shielded region. If ID is 0, all entries are disabled or enabled.

CMODE = ’ON’ enables shielded regions. This is the default value for regions newly written to
the buffer.

= ’OFF’ disables shielded regions.

Additional notes: - A frame is plotted around regions defined by the user. The thickness of frames
can be set with FRAME. Regions defined automatically by DISLIN are not
enclosed by a frame but frames plotted by MESSAG after using FRMESS and
shielded regions defined by MESSAG are identical.

- Shielded regions can overlap each other.

- The statement CALL RESET (’SHIELD’) resets shielding. All regions defined
by DISLIN and the user are removed from the shielding buffer and no new
regions will be written to the buffer.

- The number of shielded regions is limited to the size of the shielding buffer
which is set to 1000 words. The number of words used by regions are:
SHLREC = 6, SHLRCT = 7, SHLCIR = 5, SHLELL = 7, SHLPIE = 7 and
SHLPOL = 2*N+3.

- Shielding of regions is computer intensive. Therefore, shieldingshould be used
very carefully and shielded regions should be deleted from the buffer when no
longer needed.

- Base transformations do not affect the position of shielded regions.

- SHLPOL can be used between the routines GRFINI and GRFFIN. The
shielded region will be projected into 3-D space. This is not valid for other
shielded regions.

82

