NAME

INSTALL - Installation procedure for NetBSD/amiga

DESCRIPTION

About this Document

This document describes the installation procedure for NetBSD1.4.2 on the amiga platform. It is available in four different formats titled INSTALL.ext, where ext is one of .ps, .html, .more, or .txt.

.ps
PostScript.

.html
Standard internet HTML.

.more
The enhanced text format used on Unix-like systems by the more(1) and less(1) pager utility programs. This is the format in which the on-line man pages are generally presented.

.txt
Plain old ASCII.

You are reading the HTML version.

What is NetBSD?

The NetBSD Operating System is a fully functional Open Source UN*X-like operating system derived from the Berkeley Networking Release 2 (Net/2), 4.4BSD-Lite, and 4.4BSD-Lite2 sources. NetBSD runs on twenty different system architectures featuring eight distinct families of CPUs, and is being ported to more. The NetBSD1.4.2 release contains complete binary releases for fifteen different machine types. (The remaining ones are not fully supported at this time and are thus not part of the binary distribution. For information on them, please see the NetBSD web site at http://www.netbsd.org/)

NetBSD is a completely integrated system. In addition to its highly portable, high performance kernel, NetBSD features a complete set of user utilities, compilers for several languages, The X Window System, and numerous other tools, all accompanied by full source code.

NetBSD is a creation of the members of the Internet community. Without the unique cooperation and coordination the net makes possible, it's likely that NetBSD wouldn't exist.

Upgrade path to NetBSD 1.4.2

If you are not installing your system ``from scratch'' but instead are going to upgrade an existing system already running NetBSD you need to know which versions you can upgrade with NetBSD 1.4.2.

NetBSD 1.4.2 is an upgrade of NetBSD 1.4.1, NetBSD 1.4 and earlier releases of NetBSD such as versions 1.3.3, 1.2 etc.

The intermediate development versions of code available on the main trunk in our CVS repository (also known as ``NetBSD-current'') from after the point where the release cycle for 1.4 was started are designated by version identifiers such as 1.4A, 1.4B, 1.4P etc. These identifiers do not designate releases, but indicate major changes in internal kernel APIs. Note that the kernel from NetBSD 1.4.2 can not be used to upgrade a system running one of those intermediate development versions. Trying to use the NetBSD1.4.2 kernel on such a system will in all probability result in problems.

Please also note that it is not possible to do a direct ``version'' comparison between any of the intermediate development versions mentioned above and 1.4.2 to determine if a given feature is present or absent in 1.4.2. The development of 1.4, 1.4.1 and 1.4.2 is done on a separate branch in the CVS repository which was created when the release cylcle for 1.4 was started, and during the release cycles for all these versions selective fixes (with minor impact on the stability of the code on the release branch) have been imported from the main development trunk. So, there are features in 1.4.2 which were not in e.g. 1.4H, but the reverse is also true.

Major Changes Between 1.4.1 and 1.4.2

The complete list of changes between NetBSD 1.4.1 and 1.4.2 can be found in the file CHANGES-1.4.2 in the top directory of the source tree. The following are the highlights only.

  • A driver for the Alteon Gigabit Ethernet cards has been added, see ti(4).

  • A driver for the Realtek 8129/8239 Fast Ethernet PCI cards have been added, see rl(4).

  • A driver for the DPT SmartCache and SmartRAID III or IV SCSI adapters has been added, see dpt(4).

  • A driver for the BOCA IOAT66 6-port ISA serial adapter has been added, see ioat(4).

  • Support for the X-surf Amiga board has been added.

  • Support has been added for ext2fs revision 1, with read-only support for the ``sparse super'' and the ``filetype'' options.

  • BIND has been upgraded to version 8.2.2-P5.

  • The IPF packet filtering software has been updated to version 3.3.5.

  • Tcpdump now does hex/ascii dumps of packet contents if asked to do so.

  • An implementation of the System V user management utilities has been added.

  • The name ``errno'' is now always a macro which expands to a function call. This is done to ease the integration of thread libraries with the code in both system and third-party libraries. Please include <errno.h> to access the correct definition of ``errno''.

  • A utility for making temporary files for shell scripts has been added, see mktemp(1).

  • The automounter utility amd(8) has been updated to fix a security problem.

  • A security problem in procfs has been fixed. Procfs is not used by default in NetBSD.

  • The floating point emulation on the ports using the m68k CPU has been reverted to the version in NetBSD 1.4 (the version in 1.4.1 had problems).

  • Several subsystems have received substantial work, such as RAIDframe, LFS, and the package tools.

In addition, many, many bugs have been fixed -- more than 100 problems reported through our problem tracking system have been fixed, and many other non-reported problems have also been found and fixed. See the CHANGES-1.4.2 file for the complete list.

Known caveats with 1.4.2

The following are the major known issues with NetBSD 1.4.2.

  • The upgrade of ipf(8) caused a change of the kernel API. Thus, if you are using ipf(8) you need to upgrade both the kernel and the user-land utilities to control that feature in order for it to work.

  • As part of fixing a kernel bug, ``struct vfsnode'' needed to change size. This will unfortunately, and contrary to tradition for patch releases, cause incompatibilities for users of file system LKMs compiled for 1.4 and 1.4.1.

  • Although LFS has been improved between 1.4.1 and 1.4.2, it can probably still be characterized as being of ``beta test'' quality, e.g. filling the file system still gives ``interesting'' effects. It should probably not be used to store critical data quite yet.

  • The version of the IPF packet filtering software in NetBSD 1.4.2 must be enabled with ``ipf -E'' before filtering or NAT rules can be set. Failure to do so may result in a panic.

Major Changes Between 1.4 and 1.4.1

The complete list of changes between NetBSD 1.4 and 1.4.1 can be found in the file CHANGES-1.4.1 in the top directory of the source tree.

  • The NetBSD/alpha port's compatibility for Digital UNIX executables has been greatly improved.

  • Many bug fixes and improvements of the installation tools and utilities.

  • Support for more PCI serial/parallel cards has been added.

  • It is now possible to boot NetBSD/i386 on systems with 1GB of RAM.

  • The floating point emulation on the ports using the m68k CPU has been upgraded.

  • A fatal problem with /dev/random has been found and fixed.

  • Support for Alpha 21264 ev6 based systems has been added to NetBSD/alpha.

Major Changes Between 1.3 and 1.4

The NetBSD1.4 release is a substantial improvement over its predecessors. We have provided numerous significant functional enhancements, including support for many new devices, integration of hundreds of bug fixes, new and updated kernel subsystems, and many userland enhancements. The results of these improvements is a stable operating system fit for production use that rivals most commercially available systems.

It is impossible to completely summarize the nearly two years of development that went into the NetBSD1.4 release. Some highlights include:

  • Substantial improvements in the TCP/IP implementation, including numerous performance enhancements and bug fixes by Jason Thorpe and others.

  • A new, high efficiency kernel memory pool allocator by Paul Kranenburg. This has been integrated into most kernel subsystems.

  • A new, totally rewritten virtual memory subsystem, UVM, created by Chuck Cranor, which is substantially cleaner and better performing than the old Mach derived VM subsystem.

  • Improved POSIX and XPG standards compliance.

  • Completion of the integration of all remaining 4.4BSD Lite-2 kernel improvements and bug fixes that had not been previously integrated. (Integration of all userland components was completed before NetBSD1.3)

  • Several new ports, including macppc, bebox, sparc64, next68k, and others, have been integrated into the source tree.

  • The system compilers have been upgraded to egcs 1.1.1, and the system compiler toolchain now (mostly) uses the latest versions of GNU binutils instead of the obsolete versions left over from 4.4BSD Lite.

  • Everyone's favorite ftp(1) client has been improved even further. See the man page for details.

  • A new architecture independent console driver, wscons(4), has been integrated into many ports.

  • Numerous improvements have been made to the audio subsystem support, including support for MIDI device drivers.

  • Linux compatibility support has been improved.

  • A number of scheduler enhancements have yielded dramatic improvements in interactive performance and better control of background tasks.

  • Several network tunneling protocols, including GRE and IP in IP, have been implemented.

  • Kernel support for the CODA distributed file system has been added.

  • Manuel Bouyer completed major changes to the IDE support. It is now architecture independent. Major changes have been made to the IDE code for better error handling, improved ATAPI support, 32 bit data I/O support and bus-master DMA support on PCI IDE controllers.

  • Lennart Augustsson has added full USB support, permitting the use of a wide variety of Universal Serial Bus peripherals. The drivers should easily port to any future platforms that support the PCI bus. See usb(4) for an overview.

  • RAIDframe, version 1.1, from the Parallel Data Laboratory at Carnegie Mellon University, has been integrated. Supports RAID levels 0, 1, 4, 5, and more.

  • Luke Mewburn added nsswitch.conf(5) functionality to the system to specify the search order for system databases.

  • syslogd(8) now supports listening on multiple sockets, to make the chrooting of servers easier.

  • Most third party packages have been updated to the latest stable release.

As has been noted, there have also been innumerable bug fixes.

Kernel interfaces have continued to be refined, and more subsystems and device drivers are shared among the different ports. You can look for this trend to continue.

$NetBSD: whatis,v 1.8.2.4 1999/04/19 21:01:10 perry Exp $

This is the fifth public release of NetBSD for the Amiga and DraCo line of computers.

New port-specific features include: Support for the Cyberstorm Mk.3/ Cyberstorm PPC SCSI board, ATAPI devices on the internal IDE port, more audio formats supported by the Amiga custom chip audio driver, serial ports on the HyperCom 3+ and 4+ Zorro-bus boards, and a spanish keyboard map for the text console driver.

The Future of NetBSD

The NetBSD Foundation has been incorporated as a non-profit organization. Its purpose is to encourage, foster and promote the free exchange of computer software, namely the NetBSD Operating System. The foundation will allow for many things to be handled more smoothly than could be done with our previous informal organization. In particular, it provides the framework to deal with other parties that wish to become involved in the NetBSD Project.

The NetBSD Foundation will help improve the quality of NetBSD by:

  • providing better organization to keep track of development efforts, including co-ordination with groups working in related fields.

  • providing a framework to receive donations of goods and services and to own the resources necessary to run the NetBSD Project.

  • providing a better position from which to undertake promotional activities.

  • periodically organizing workshops for developers and other interested people to discuss ongoing work.

We intend to begin narrowing the time delay between releases. Our ambition is to provide a full release every six to eight months.

We hope to support even more hardware in the future, and we have a rather large number of other ideas about what can be done to improve NetBSD.

We intend to continue our current practice of making the NetBSD-current development source available on a daily basis. In addition, Anonymous CVS access to the NetBSD source tree has been added since NetBSD 1.4.1; see http://www.netbsd.org/Changes/#anoncvs-available We have also added a browsable CVS repository on the web at http://cvsweb.netbsd.org/cgi-bin/cvsweb.cgi/

We intend to integrate free, positive changes from whatever sources submit them, providing that they are well thought-out and increase the usability of the system.

Above all, we hope to create a stable and accessible system, and to be responsive to the needs and desires of NetBSD users, because it is for and because of them that NetBSD exists.

Sources of NetBSD

Please refer to http://www.netbsd.org/Sites/net.html.

NetBSD 1.4.2 Release Contents

The root directory of the NetBSD1.4.2 release is organized as follows:

.../NetBSD-1.4.2/

BUGS
Known bugs list (somewhat incomplete and out of date).

CHANGES
Changes since earlier NetBSD releases.

LAST_MINUTE
Last minute changes.

MIRRORS
A list of sites that mirror the NetBSD1.4.2 distribution.

README.files
README describing the distribution's contents.

TODO
NetBSD's todo list (also somewhat incomplete and out of date).

patches/
Post-release source code patches.

source/
Source distribution sets; see below.

In addition to the files and directories listed above, there is one directory per architecture, for each of the architectures for which NetBSD1.4.2 has a binary distribution. There are also 'README.export-control' files sprinkled liberally throughout the distribution tree, which point out that there are some portions of the distribution (i.e. the `domestic' portion) that may be subject to export regulations of the United States. It is your responsibility to determine whether or not it is legal for you to export these portions and to act accordingly. The NetBSD project maintains a web page at

http://www.NetBSD.ORG/Misc/crypto-export.html

which should contain up-to-date information on this issue.

The source distribution sets can be found in subdirectories of the "source" subdirectory of the distribution tree. They contain the complete sources to the system. The source distribution sets are as follows:

secrsrc.tgz:
This set contains the "domestic" sources. These sources may be subject to United States export regulations.
421K gzipped, 2M uncompressed

gnusrc.tgz:
This set contains the "gnu" sources, including the source for the compiler, assembler, groff, and the other GNU utilities in the binary distribution sets.
19M gzipped, 84.3M uncompressed

syssrc.tgz:
This set contains the sources to the NetBSD1.4.2 kernel, config(8), and dbsym(8).
13.9M gzipped, 68.3M uncompressed

sharesrc.tgz:
This set contains the "share" sources, which include the sources for the man pages not associated with any particular program, the sources for the typesettable document set, the dictionaries, and more.
3M gzipped, 11.9M uncompressed

src.tgz:
This set contains all of the NetBSD1.4.2 sources which are not mentioned above.
14.4M gzipped, 67.4M uncompressed

Most of the above source sets are located in the source/sets subdirectory of the distribution tree. The secrsrc.tgz set is contained in the source/security subdirectory. This set, which may only be available to users in the United States and Canada, contains the sources normally found in /usr/src/domestic - primarily Kerberos and other cryptographic security related software. (Remember, because of United States law, it may not be legal to distribute this set to locations outside of the United States and Canada. Again, see http://www.NetBSD.ORG/Misc/crypto-export.html for updated information on this issue.)

The source sets are distributed as compressed tar files. They may be unpacked into /usr/src with the command:
       cat set_name.tgz | gunzip | (cd /; tar xpf - )
The sets/Split/ and security/Split/ subdirectories contain split versions of the source sets for those users who need to load the source sets from floppy or otherwise need a split distribution. The split sets are are named "set_name.xx" where "set_name" is the distribution set name, and "xx" is the sequence number of the file, starting with "aa" for the first file in the distribution set, then "ab" for the next, and so on. All of these files except the last one of each set should be exactly 240,640 bytes long. (The last file is just long enough to contain the remainder of the data for that distribution set.)

The split distributions may be reassembled and extracted with cat as follows:
       cat set_name.?? | gunzip | (cd /; tar xpf - )

In each of the source distribution set directories, there is a file named CKSUMS which contains the checksums of the files in that directory, as generated by the cksum(1) utility. You can use cksum to check the integrity of the archives, if you suspect that one of the files is corrupt and have access to a cksum binary. Checksums based on other algorithms may also be present - see the release(7) man page for details.

NetBSD/amiga Subdirectory Structure
The amiga-specific portion of the NetBSD1.4.2 release is found in the amiga subdirectory of the distribution: .../NetBSD-1.4.2/amiga/
INSTALL.html
INSTALL.ps
INSTALL.txt
INSTALL.more
Installation notes; this file. The .more file contains underlined text using the more(1) conventions for indicating italic and bold display.
binary/
sets/
amiga binary distribution sets; see below.
Split/
.tgz files split for loading onto floppies.
kernel/
The GENERIC kernel.
security/
amiga security distribution; see below.
installation/
miniroot/
amiga miniroot file system image; see below.
misc/
Miscellaneous amiga installation utilities; see installation section, below.
Miniroot file system
The Amiga now uses a single miniroot filesystem for both an initial installation and for an upgrade. A gzipped version is available, for easier downloading. (The gzipped version has the .gz extension added to their names.)

miniroot.fs
This file contains a BSD root file system setup to help you install the rest of NetBSD or to upgrade a previous version of NetBSD. This includes formatting and mounting your root and /usr partitions and getting ready to extract (and possibly first fetching) the distribution sets. There is enough on this file system to allow you to make a SLIP or PPP connection, configure an Ethernet, mount an NFS file system or ftp. You can also load distribution sets from a SCSI tape or from one of your existing AmigaDOS partitions.
Binary Distribution Sets
The NetBSD amiga binary distribution sets contain the binaries which comprise the NetBSD1.4.2 release for the amiga. There are eight binary distribution sets and the security distribution set. The binary distribution sets can be found in the amiga/binary/sets subdirectory of the NetBSD1.4.2 distribution tree, and are as follows:

base
The NetBSD1.4.2 amiga base binary distribution. You must install this distribution set. It contains the base NetBSD utilities that are necessary for the system to run and be minimally functional. It includes shared library support, and excludes everything described below.
10.3M gzipped, 28.9M uncompressed

comp
Things needed for compiling programs. This set includes the system include files (/usr/include) and the various system libraries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages.
8.3M gzipped, 28.5M uncompressed

etc
This distribution set contains the system configuration files that reside in /etc and in several other places. This set must be installed if you are installing the system from scratch, but should not be used if you are upgrading. (If you are upgrading, it's recommended that you get a copy of this set and carefully upgrade your configuration files by hand.)
57K gzipped, 330K uncompressed

games
This set includes the games and their manual pages.
2.8M gzipped, 7.1M uncompressed

kern
This set contains a NetBSD/amiga 1.4.2 GENERIC kernel, named /netbsd. You must install this distribution set.
894k gzipped, 1.9M uncompressed

man
This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets.
4.2M gzipped, 17M uncompressed

misc
This set includes the (rather large) system dictionaries, the typesettable document set, and other files from /usr/share.
2.2M gzipped, 8.4M uncompressed

text
This set includes NetBSD's text processing tools, including groff(1), all related programs, and their manual pages.
1.3M gzipped, 4.6M uncompressed

The amiga security distribution set is named secr and can be found in the
       amiga/binary/security
subdirectory of the NetBSD1.4.2 distribution tree. It contains security-related binaries which depend on cryptographic source code. You do not need this distribution set to use encrypted passwords in your password file; the base distribution includes a crypt library which can perform only the one-way encryption function. The security distribution includes a version of the Kerberos IV network security system, and a Kerberized version of telnet(1) program. The secr distribution set can be found only on those sites which carry the complete NetBSD distribution and which can legally obtain it. Because of United States law, it may not be legal to distribute this set to locations outside of the United States and Canada. See http://www.NetBSD.ORG/Misc/crypto-export.html for updated information on this issue.

NetBSD maintains its own set of sources for the X Window System in order to assure tight integration and compatibility. These sources are based on XFree86, and tightly track XFree86 releases. They are currently equivalent to XFree86 3.3.6. Binary sets for the X Window system are distributed with NetBSD. The sets are:

xbase
The basic files needed for a complete X client environment. This does not include the X servers.
2.4M gzipped 7.7M uncompressed

xcomp
The extra libraries and include files needed to compile X source code.
1.6M gzipped, 6.8M uncompressed

xcontrib
Programs that were contributed to X.
179k gzipped, 670k uncompressed

xfont
Fonts needed by X.
5.7M gzipped, 7.0M uncompressed

The amiga binary distribution sets are distributed as gzipped tar files named with the extension .tgz, e.g. base.tgz.

The instructions given for extracting the source sets work equally well for the binary sets, but it is worth noting that if you use that method, the files are /-relative and therefore are extracted below the current directory. That is, if you want to extract the binaries into your system, i.e. replace the system binaries with them, you have to run the tar xfp command from /.

Note
Each directory in the amiga binary distribution also has its own checksum files, just as the source distribution does:

All BSDSUM files are historic BSD checksums for the various files in that directory, in the format produced by the command: cksum -o 1 file

All CKSUM files are POSIX checksums for the various files in that directory, in the format produced by the command: cksum file.

All MD5 files are MD5 digests for the various files in that directory, in the format produced by the command: cksum -m file.

All SYSVSUM files are historic AT&T System V UNIX checksums for the various files in that directory, in the format produced by the command: cksum -o -2 file.

The MD5 digest is the safest checksum, followed by the POSIX checksum. The other two checksums are provided only to ensure that the widest possible range of system can check the integrity of the release files.


NetBSD/amiga System Requirements and Supported Devices

NetBSD1.4.2 runs on any Amiga that has a 68020 or better CPU with some form of MMU, and on 68060 DraCos.

For 68020 and 68030 systems, a FPU is recommended but not required for the system utilities. 68LC040, 68040V and 68LC060 systems don't work correctly at the moment.

The minimal configuration requires 6M of RAM (not including CHIPMEM!) and about 75M of disk space. To install the entire system requires much more disk space, and to run X or compile the system, more RAM is recommended. (6M of RAM will actually allow you to compile, however it won't be speedy. X really isn't usable on a 6M system.)

Here is a table of recommended HD partition sizes for a full install:

partition:     advise,   with X,   needed,   with X
root (/)  20M  20M  15M  15M
user (/usr)    110M 135M 90M  115M
swap      ----- 2M for every M ram -----
local (/usr/local)  up to you

As you may note the recommended size of /usr is 20M greater than needed. This is to leave room for a kernel source and compile tree as you will probably want to compile your own kernel. GENERIC is large and bulky to accommodate all people. For example, most peoples machines have an FPU, so you do not need the bulky FPU_EMULATE option.

Preconfigured or precompiled packages are installed below /usr/pkg per default. You should either make /usr larger (if you intend to install a lot of them), make /usr/pkg an additional partiton, use the -p option to pkg_add to install them in a different place or link /usr/pkg to some different place.

If you only have less than 8M of fast memory, you should make your swap partition larger, as your system will be doing much more swapping. Especially: do NOT place it onto a old small (and normally slow) disk!

Supported devices include:

A4000/A1200 IDE controller, including ATAPI devices.
SCSI host adapters:
     33c93 based boards: A2091, A3000 builtin, A3000 builtin
         modified for Apollo accellerator board, and GVP series II.
     53c80 based boards: 12 Gauge, IVS, Wordsync/Bytesync and
         Emplant.*)
     53c710 based boards: A4091, Magnum, Warp Engine, Zeus
         and DraCo builtin.
     FAS216 based SCSI boards: FastLane Z3, Blizzard I and II,
         Blizzard IV, Blizzard 2060, CyberSCSI Mk I and II.
     53c770 based SCSI baords: Cyberstorm Mk III SCSI, Cyberstorm
         PPC SCSI.
Video controllers:
     ECS, AGA and A2024 built in on various Amigas.
     Retina Z2*****, Retina Z3 and Altais.
     Cirrus CL GD 54xx based boards:
         GVP Spectrum,
         Picasso II, II+ and IV,
         Piccolo and Piccolo SD64.
     Tseng ET4000 based boards:
         Domino and Domino16M proto,
         oMniBus,
         Merlin.
     A2410*****.
     Cybervision 64.
     Cybervision 64/3D.
     

Audio I/O: Amiga builtin Melody Mpeg-audio layer 2 board Ethernet controllers: A2065 Ethernet Hydra Ethernet ASDG Ethernet A4066 Ethernet Ariadne Ethernet Ariadne II Ethernet Quicknet Ethernet ARCnet controllers: A2060 ARCnet Tape drives: Most SCSI tape drives, including Archive Viper, Cipher SCSI-2 ST150. Scanners: SCSI-2 scanners behaving as SCSI-2 scanner devices, HP Scanjet II, Mustek SCSI scanner.***) CD-ROM drives: Most SCSI CD-ROM drives Serial cards: HyperCom 3Z, HyperCom 4, HyperCom 3+ and 4+ MultiFaceCard II and III A2232 (normal and clockdoubled) Amiga floppy drives with Amiga (880/1760kB) and IBM (720/1440kB) encoding. ****) Amiga parallel port. Amiga serial port. Amiga mouse. DraCo serial port, including serial mouse. DraCo parallel printer port. Real-time clocks: A2000, A3000, A4000 builtin (r/w), DraCo builtin (r/o).

If its not on the above lists, there is no support for it in this release. Especially (but this is an incomplete list), there are no drivers for: Blizzard III SCSI option, Ferret SCSI, Oktagon SCSI.

Footnotes: Known problems with some hardware:

*
the Emplant SCSI adapter has been reported by a party to hang after doing part of the installation without problems.

**
SCSI scanner support is machine independent, so it should work, but hasn't been tested yet on most Amiga configurations. There are reports that the Mustek and HP Scanjet hang if accessed from the A3000. This might apply to other 33C93-Adapters, too.

****
Our floppy driver doesn't notice when mounted floppies are write-protected at the moment. Your floppy will stay unchanged, but you might not notice that you didn't write anything due to the buffer cache. Also note that HD floppy drives only get detected as such if a HD floppy is inserted at boot time.

*****
No X11 server available.

Getting the NetBSD System on to Useful Media

Installation is supported from several media types, including:

  • AmigaDOS HD partitions

  • Tape

  • NFS partitions

  • FTP

  • NetBSD partitions, if doing an upgrade.

  • CD-ROM (SCSI or ATAPI)

The miniroot file system needs to be transferred to the NetBSD swap partition. This can be done from AmigaDOS in the case of a new install or upgrade, or from NetBSD when doing an upgrade. See the "Preparing your System for NetBSD Installation" section for details.

The steps necessary to prepare the distribution sets for installation depend on which method of installation you choose. The various methods are explained below.

  • To prepare for installing via an AmigaDOS partition:

    To install NetBSD from an AmigaDOS partition, you need to get the NetBSD distribution sets you wish to install on your system on to an AmigaDOS partition. All of the set_name.xx pieces can be placed in a single directory instead of separate ones for each distribution set. This will also simplify the installation work later on.

    Note where you place the files you will need this later.

    Once you have done this, you can proceed to the next step in the installation process, preparing your hard disk.

  • To prepare for installing from CD-ROM:

    To install NetBSD from a CD-ROM drive, make sure it is a SCSI CD-ROM on a SCSI bus currently supported by NetBSD (refer to the supported hardware list) or an ATAPI cd-rom connected to the A1200 or A4000 internal IDE connector. If it is a SCSI CD-ROM on a non-supported SCSI bus like Blizzard-3 SCSI, Apollo SCSI) you must first copy the distribution sets to an AmigaDOS partition like described above.

    If your SCSI CD-ROM is connected to a supported SCSI host adapter, or it is an ATAPI cd-rom connected to the A1200/A4000 internal IDE connector, simply put the CD into the drive before installation.

    Once you have done this, you can proceed to the next step in the installation process, preparing your hard disk.

  • To prepare for installing via a tape:

    To install NetBSD from a tape, you need to somehow get the NetBSD file sets you wish to install on your system on to the appropriate kind of tape.

    If you're making the tape on a UN*X system, the easiest way to do so is:

    dd if=<first file> of=<tape device>
    dd if=<2nd file> of=<tape device>
    ...
    

    where "<tape_device>" is the name of the non-rewinding tape device that describes the tape drive you're using (possibly something like /dev/nrst0, but we make no guarantees 8-). If you can't figure it out, ask your system administrator. "<files>" are the names of the "set_name.tgz" files which you want to be placed on the tape.

    If you have a slow cpu (e.g. 68030 @ 25 MHz) on the target machine, but big tapes, you might want to store the uncompressed installation sets instead. This will help tape streaming when doing the actual installation. E.g, do:

    gzip -d -c <first file> | dd of=<tape device>
    gzip -d -c <2nd file> | dd of=<tape device>
    ...
    
    Once you have done this, you can proceed to the next step in the installation process, preparing your hard disk.

  • To prepare for installing via an NFS partition:

    Note:
    this method of installation is recommended only for those already familiar with using the BSD network-manipulation commands and interfaces. If you aren't, this documentation should help, but is not intended to be all-encompassing.

    Place the NetBSD software you wish to install into a directory on an NFS server, and make that directory mountable by the machine which you will be installing NetBSD on. This will probably require modifying the /etc/exports file of the NFS server and resetting mountd, acts which will require superuser privileges. Note the numeric IP address of the NFS server and of the router closest to the the new NetBSD machine, if the NFS server is not on a network which is directly attached to the NetBSD machine.

    Once you have done this, you can proceed to the next step in the installation process, preparing your hard disk.

  • To prepare for installing via FTP:

    Note:
    this method of installation is recommended only for those already familiar with using the BSD network-manipulation commands and interfaces. If you aren't, this documentation should help, but is not intended to be all-encompassing.

    The preparations for this method of installation are easy: all you have to do is make sure that there's some FTP site from which you can retrieve the NetBSD installation when it's time to do the install. You should know the numeric IP address of that site, the numeric IP address of your nearest router if one is necessary

    Once you have done this, you can proceed to the next step in the installation process, preparing your hard disk.

  • If you are upgrading NetBSD, you also have the option of installing NetBSD by putting the new distribution sets somewhere in your existing file system, and using them from there. To do that, you must do the following:

    Place the distribution sets you wish to upgrade somewhere in your current file system tree. At a bare minimum, you must upgrade the "base" binary distribution, and so must put the "base" set somewhere in your file system. If you wish, you can do the other sets, as well, but you should NOT upgrade the "etc" distribution; the "etc" distribution contains system configuration files that you should review and update by hand.

    Once you have done this, you can proceed to the next step in the upgrade process, actually upgrading your system.


Preparing your System for NetBSD Installation

You will need an AmigaDOS hard drive prep tool to prepare your hard drives for use with NetBSD/Amiga. HDToolBox is provided with the system software and on floppy installation disks since Release 2.0 of AmigaDOS, so we will provide instructions for its use.

Note that NetBSD can't currently be installed on disks with a sector size other than 512 bytes (e.g., "640 MB" 90mm MO media). You can, however, mount ADOSFS partitions on such MOs.

Preparing your hard disk with HDToolBox

A full explanation of HDToolBox can be found with your AmigaDOS manuals and is beyond the scope of this document.

The first time you partition a drive, you need to set its drive type so that you have working geometry parameters. To do this you enter the "Change drive type" menu, and either use "read parameters from drive" or set them manually.

Note you will be modifying your HD's. If you mess something up here you could lose everything on all the drives that you configure. It is therefore advised that you:

  1. Write down your current configurations. Do this by examining each partition on the drive and the drives parameters (from Change drive type.)

  2. Back up the partitions you are keeping.
What you need to do is partition your drives; creating at least root, swap and /usr partitions and possibly at least one more for /usr/local if you have the space.

This should be done as the HDToolBox manual describes. One thing to note is that if you are not using a Commodore controller you will need to specify the device your SCSI controller uses, e.g. if you have a Warp Engine you would:

from cli,        hdtoolbox warpdrive.device

from wb set the tooltype,
       SCSI_DEVICE_NAME=warpdrive.device

The important things you need to do above and beyond normal partitioning includes (from Partition Drive section):

  1. Marking all NetBSD partitions as non-bootable, with two exceptions: the root partition, if you want to boot NetBSD directly, or the swap partition, if you want to boot the installation miniroot directly.

  2. Changing the file system parameters of the partitions to NetBSD ones. This must be done from the partitioning section and `Advanced options' must be enabled.

To Make the needed changes:

  • Click the `Adv. Options' button
  • Click the `Change file system' button
  • Choose `Custom File System'
  • Turn off `Automount' if on.
  • Set the dostype to one of these three choices:
    root partition  : 0x4e425207
    swap partition  : 0x4e425301
    other partitions: 0x4e425507
    

    Here `other' refers to other partitions you will format for reading and writing under NetBSD (e.g. /usr)

    Make sure you hit the return key to enter this value as some versions of HDToolBox will forget your entry if you don't.

  • Turn custom boot code off
  • Set Reserved Blocks start and end to 0.
  • Click Ok.

On the root (and, for installation, swap) partition, set instead this:

  • Turn custom boot code on
  • Set Reserved Blocks start and end to 0.
  • Set Number of Custom Boot Blocks to 16.
  • Set Automount This Partition on
  • Click Ok.

    Mask and maxtransfer are not used with NetBSD.

Caveat:
The swap (for installation) and the root partition (if you plan to use the bootblocks) MUST BE WITHIN THE FIRST 4 gigabytes of the disk! The reason for the former is that xstreamtodev uses trackdisk.device compatible I/O-calls, the reason for the latter is that the bootblock gets a 32bit partition offset from the operating system.

Once this is done NetBSD/Amiga will be able to recognize your disks and which partitions it should use.

Transferring the miniroot file system
The NetBSD/Amiga installation or upgrade now uses a "miniroot" file system which is installed on the partition used by NetBSD for swapping. This removes the requirement of using a floppy disk for the file system used by the installation or upgrade process. It also allows more utilities to be present on the file system than would be available when using an 880K floppy disk.

Once the hard disk has been prepared for NetBSD, the miniroot file system (miniroot.fs) is transferred to the swap partition configured during the hard disk prep (or the existing swap partition in the case of an upgrade). The xstreamtodev utility provided in the "amiga/installation/misc" directory can be used on AmigaDOS to transfer the file system for either a new installation or an upgrade. The file system can also be transferred on an existing NetBSD system for an update by using dd. This should only be done after booting NetBSD into single-user state. It may also be possible to shutdown to single-user, providing that the single-user state processes are not using the swap partition.

On AmigaDOS, the command:
       xstreamtodev --input=miniroot.fs --rdb-name=<swap partition>
where <swap partition> is the name you gave to the NetBSD partition to be used for swapping. If xstreamtodev is unable to determine the SCSI driver device name or the unit number of the specified partition, you may also need to include the option
       --device=<driver.name>
and/or
       --unit=<SCSI unit number>

To transfer the miniroot using NetBSD, you should be booted up in single user state on the current NetBSD system, or use the "shutdown now" command to shutdown to single-user state. Then copy the miniroot using dd:
       dd if=miniroot.fs of=/dev/rsd0b
where /dev/rsd0b should be the device path of the swap partition your system is configured to use. Once the file is copied, reboot back to AmigaDOS to boot the upgrade kernel.

Caveat:
Once you have started installation, if you abort it and want to retry you must reinstall the miniroot.fs on the swap partition.

Installing the NetBSD System

Installing NetBSD is a relatively complex process, but, if you have this document in hand and are careful to read and remember the information which is presented to you by the install program, it shouldn't be too much trouble.

Before you begin, you must have already prepared your hard disk as detailed in the section on preparing your system for install.

The following is a walk-through of the steps necessary to get NetBSD installed on your hard disk. If you wish to stop the installation, you may hit Control-C at any prompt, but if you do, you'll have to begin again from scratch.

Transfer the miniroot file system onto the hard disk partition used by NetBSD for swapping, as described in the "Preparing your System for NetBSD Installation" section above.

Booting from AmigaOS, using loadbsd:
You then need to have ixemul.library in your LIBS: directory on AmigaDOS. You also need to have the loadbsd program in your command path. If AmigaDOS complains about loadbsd not being an executable file, be sure that the Execute protection bit is set. If not, set it with the command:        Protect loadbsd add e

Next you need to get yourself into NetBSD by loading the kernel from AmigaDOS with loadbsd like so:
       loadbsd -b netbsd

If you have an AGA machine, and your monitor will handle the dblNTSC mode, you may also include the -A option to enable the dblNTSC display mode.

If your machine has a fragmented physical memory space, as, e.g., DraCo machines, you should add the -n2 option to enable the use of all memory segments.

If you have a M680x0 + PPC board, make sure the PPC cpu is inactive before using loadbsd, else the kernel will hang!

Directly booting NetBSD, with boot blocks installed:

[This description is for V40 (OS 3.1) ROMs. For older ROMs, there might be small differences. Check your AmigaOS documentation to learn about the exact procedure.] Using bootblocks may not work on some systems, and may require a mountable filesystem on others.

Reboot your machine, holding down both mouse buttons if you have a 2-button mouse, the outer mouse buttons if you have a 3-button mouse. On the DraCo, press the left mouse button instead, when the boot screen prompts you for it.

From the boot menu, select Boot Options. Select the swap partition with the miniroot, and then ok. Select Boot now. The machine will boot the bootblock, which will prompt your for a command line. You have a few seconds time to change the default. Entering an empty line will accept the default.

The bootblock uses command lines of the form:
file[ options]
where file is the kernel file name on the partition where the boot block is on, and [options] are the same as with loadbsd. E.g., instead of
       loadbsd -bsSn2 netbsd
use
       netbsd -bsSn2

Once your kernel boots:
You should see the screen clear and some information about your system as the kernel configures the hardware. Note which hard disk device(s) are configured (sd0, sd1, etc). Then you will be prompted for a root device. At this time type sd0b, where sd0 is the device which contains the swap partition you created during the hard disk preparation. When prompted for a dump device, answer 'none' for the install (normally, you would tell it one of the swap devices). When prompted for the root filesystem type, confirm 'generic', which will auto-detect it.

If the system should hang after entering the root device, try again with
       loadbsd -I ff -b netbsd
This disables synchronous transfer on all SCSI devices.

The system should continue to boot. For now ignore WARNING: messages about bad dates in clocks, and a warning about /etc/rc not existing. Eventually you will be be asked to enter the pathname of the shell, just hit return. After a short while, you will be asked to select the type of your keyboard. After you have entered a valid response here, the system asks you if you want to install or upgrade your system. Since you are reading the 'install' section, 'i' would be the proper response here...

The installer starts with a nice welcome messages. Read this message carefully, it also informs you of the risks involved in continuing! If you still want to go on, type 'y'. The installer now continues by trying to figure out your disk configuration. When it is done, you will be prompted to select a root device from the list of disks it has found.

You should know at this point that the disks are NOT numbered according to their scsi-id! The NetBSD kernel numbers the scsi drives (and other devices on the scsi bus) sequentially as it finds them. The drive with the lowest scsi id will be called sd0, the next one sd1, etc. Also, any Amiga internal IDE disk drives will be configured as "SCSI" drives, and will be configured before any 'real' SCSI drives (if any are present).

The installer will offer you to look at the NetBSD disk label of the disks at this point. You should do this, to find out what partition letters the NetBSD kernel assigned to the partitions you created, and as a check whether the disk number you are going to use is right.

you are now at the point of no return. If you confirm that you want to install NetBSD, your hard drive will be modified, and perhaps its contents scrambled at the whim of the install program. Type Control-C NOW if you don't want this.

At this time, you will need to tell the installer which partition will be associated with the different filesystems. Normally, you'll want to add a partition for /usr, at least.

Caveat:
Do not use the (r)sdNc partitions for anything! They are for access to the whole disk only and do not correspond to any Amiga partition!

The install program will now make the the file systems you specified. There should be only one error per file system in this section of the installation. It will look like this:

newfs: ioctl (WDINFO): Invalid argument
newfs: /dev/rsd0a: can't rewrite disk label

If there are any others, restart from the the beginning of the installation process. This error is ok as the Amiga does not write disklabels currently. You should expect this error whenever using newfs.

The install will now ask you want to configure any network information. It ill ask for the machine's host name, domain name, and other network configuration information.

Since the network configuration might have lead to additional (nfs) filesystem entries, you get another chance to modify your fstab.

You are finally at the point where some real data will be put on your freshly made filesystems. Select the device type you wish to install from and off you go....

Some notes:

- If you want to install from tape, please read the section about how to create such a tape.

- Some tapes (e.g. Archive Viper 150) refuse to operate with the default tape density ("nrst0"). Try "nrst0h", "nrst0m", or "nrst0l" instead.

- Install at least the base and etc sets.

- If you have to specify a path relative to the mount-point and you need the mount-point itself, enter '.'.

Next you will be asked to specify the timezone. Just select the timezone you are in. The installer will make the correct setup on your root filesystem. After the timezone-link is installed, the installer will proceed by creating the device nodes on your root filesystem.

Be patient, this will take a while...

Finally, the installer ask you if you want to install the bootblock code on your root disk. This is a matter of personal choice and can also be done from a running NetBSD system. See the 'installboot(8)' manual page about how to do this.

Once the installer is done, halt the system with the halt command (wait for halted to be displayed) and reboot. Then again boot NetBSD this time with the command:
       loadbsd netbsd
or select the root partition from the boot menu, and tell it to boot
       netbsd -s

You need to do your final tweaks now. First mount your file systems like so:
       mount -av

Your system is now complete but not completely configured; you should adjust the /etc/sendmail.cf file as necessary to suit your site. You should also examine and adjust the settings in /etc/rc.conf. You can use vi(1) or ed(1) to edit the files. If you installed the man pages you can type man vi or man ed for instructions on how to use these somewhat non-intuitive editors.

Once you are done with the rest of configuration unmount your file systems and halt your system, then reboot:

cd /
umount -av
halt

Finally you can now boot your system and it will be completely functional:
       loadbsd -a netbsd

When it boots off of the hard drive, you will have a complete NetBSD system! Congratulations! (You really deserve them!!!)

Post installation steps

Once you've got the operating system running, there are a few things you need to do in order to bring the system into a propperly configured state, with the most important ones described below.

  1. Configuring /etc/rc.conf

    If you haven't done any configuration of /etc/rc.conf, the system will drop you into single user mode on first reboot with the message        /etc/rc.conf is not configured. Multiuser boot aborted.
    and with the root filesystem mounted read-write. When the system asks you to choose a shell, simply hit return to get to a prompt. If you are asked for a terminal type, respond with vt220 (or whatever is appropriate for your terminal type) and hit return. At this point, you need to configure at least one file in the /etc directory. Change to the /etc directory and take a look at the /etc/rc.conf file. Modify it to your tastes, making sure that you set rc_configured=YES so that your changes will be enabled and a multi-user boot can proceed. If your /usr directory is on a separate partition and you do not know how to use 'ed' or 'ex', you will have to mount your /usr partition to gain access to 'vi'. Do the following:
           mount /usr
           export TERM=vt220
    If you have /var on a seperate partition, you need to repeat that step for it. After that, you can edit /etc/rc.conf with vi(1). When you have finished, type exit at the prompt to leave the single-user shell and continue with the multi-user boot.

    Other values that need to be set in /etc/rc.conf for a networked environment are hostname and possibly defaultroute, furthermore add an ifconfig_int for your interface <int>, along the lines of
           ifconfig_de0="inet 123.45.67.89 netmask 255.255.255.0"
    or, if you have myname.my.dom in /etc/hosts:
           ifconfig_de0="inet myname.my.dom netmask 255.255.255.0"
    To enable proper hostname resolution, you will also want to add an /etc/resolv.conf file or (if you are feeling a little more adventurous) run named(8). See resolv.conf(5) or named(8) for more information.

    Other files in /etc that are new to NetBSD 1.4 and may require modification or setting up include /etc/mailer.conf, /etc/nsswitch.conf and /etc/wscons.conf.

  2. Logging in

    After reboot, you can log in as root at the login prompt. There is no initial password, but if you're using the machine in a networked environment, you should create an account for yourself (see below) and protect it and the "root" account with good passwords.

  3. Adding accounts

    Use the vipw(8) command to add accounts to your system, do not edit /etc/passwd directly. See adduser(8) for more information on the process of how to add a new user to the system.

  4. The X Window System

    If you have installed the X window system, look at the files in /usr/X11R6/lib/X11/doc for information.

    Don't forget to add /usr/X11R6/bin to your path in your shell's dot file so that you have access to the X binaries.

  5. Installing 3rd party packages

    There is a lot of software freely available for Unix-based systems, almost all of which can run on NetBSD. Modifications are usually needed to when transferring programs between different Unix-like systems, so the NetBSD packages collection incorporates any such changes necessary to make that software run on NetBSD, and makes the installation (and deinstallation) of the software packages easy. There's also the option of building a package from source, in case there's no precompiled binary available.

    Precompiled binaries can be found at ftp://ftp.netbsd.org/pub/NetBSD/packages/ Package sources for compiling packages can be obtained by retrieving the file ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-current/tar_files/pkgsrc.tar.gz and extracting it into /usr/pkgsrc. See /usr/pkgsrc/README then for more information.

  6. Misc

    • To adjust the system to your local timezone, point the /etc/localtime symlink to the appropriate file under /usr/share/zoneinfo.

    • Edit /etc/aliases to forward root mail to the right place (run newaliases(1) afterwards.)

    • The /etc/sendmail.cf file will almost definitely need to be adjusted; files aiding in this can be found in /usr/share/sendmail. See the README file there for more information.

    • Edit /etc/rc.local to run any local daemons you use.

    • Many of the /etc files are documented in section 5 of the manual; so just invoking
             man filename
      is likely to give you more information on these files.

Upgrading a previously-installed NetBSD System

The upgrade to NetBSD1.4.2 is a binary upgrade; it can be quite difficult to advance to a later version by recompiling from source due primarily to interdependencies in the various components.

To do the upgrade, you must have the NetBSD kernel on AmigaDOS and you must transfer the miniroot file system miniroot.fs onto the swap partition of the NetBSD hard disk. You must also have at least the "base" binary distribution set available, so that you can upgrade with it, using one of the upgrade methods described above. Finally, you must have sufficient disk space available to install the new binaries. Since the old binaries are being overwritten in place, you only need space for the new binaries, which weren't previously on the system. If you have a few megabytes free on each of your root and /usr partitions, you should have enough space.

Since upgrading involves replacing the kernel, and most of the system binaries, it has the potential to cause data loss. You are strongly advised to BACK UP ANY IMPORTANT DATA ON YOUR DISK, whether on the NetBSD partition or on another operating system's partition, before beginning the upgrade process.

To upgrade your system, follow the following instructions:

Transfer the miniroot file system onto the hard disk partition used by NetBSD for swapping, as described in the "Preparing your System for NetBSD Installation" section above.

Now boot up NetBSD using the 1.4.2 kernel using the loadbsd command:        loadbsd -b netbsd
If you machine has a split memory space, like, e.g., DraCo machines, use this instead:
       loadbsd -bn2 netbsd

If you have a M680x0 + PPC board, make sure the PPC cpu is inactive before using loadbsd, else the kernel will hang!

Directly booting NetBSD, with boot blocks installed:

Note:
This description is for V40 (OS 3.1) ROMs. For older ROMs, there might be small differences. Check your AmigaOS documentation to learn about the exact procedure. Booting using bootblocks doesn't work at all on some systems, and may require a mountable filesystem on others.

Reboot your machine, holding down both mouse buttons if you have a 2-button mouse, the outer mouse buttons if you have a 3-button mouse. On the DraCo, press the left mouse button instead, when the boot screen prompts you for it.

From the boot menu, select Boot Options. Select the swap partition with the miniroot, and then ok. Select Boot now. The machine will boot the bootblock, which will prompt your for a command line. You have a few seconds time to change the default. Entering an empty line will accept the default.

The bootblock uses command lines of the form: file[ options] where file is the kernel file name on the partition where the boot block is on, and options are the same as with loadbsd. E.g., instead of
       loadbsd -bsSn2 netbsd
use
       netbsd -bsSn2

Once your kernel boots:
You should see the screen clear and some information about your system as the kernel configures the hardware. Note which hard disk device is configured that contains your root and swap partition. When prompted for the root device, type sd0b (replacing 0 with the disk number that NetBSD used for your root/swap device). When prompted for a dump device, answer 'none' for the upgrade. (For a normal boot, you would tell it one of the swap devices). When prompted for the root filesystem type, confirm 'generic', which will auto-detect it.

You will be presented with some information about the upgrade process and a warning message, and will be asked if you wish to proceed with the upgrade process. If you answer negatively, the upgrade process will stop, and your disk will not be modified. If you answer affirmatively, the upgrade process will begin, and your disk will be modified. You may hit Control-C to stop the upgrade process at any time. However, if you hit it at an inopportune moment, your system may be left in an inconsistent (and possibly unusable) state.

You will now be greeted and reminded of the fact that this is a potential dangerous procedure and that you should not upgrade the etc-set.

When you decide to proceed, you will be prompted to enter your root disk. After you've done this, it will be checked automatically to make sure that the filesystem is in a sane state before making any modifications. After this is done, you will be asked if you want to configure your network.

You are now allowed to edit your fstab. Normally you don't have to. Note that the upgrade-kit uses it's own copy of the fstab. Whatever you do here *won't* affect your actual fstab. After you are satisfied with your fstab, the upgrade-kit will check all filesystems mentioned in it. When they're ok, they will be mounted.

You will now be asked if your sets are stored on a normally mounted filesystem. You should answer 'y' to this question if you have the sets stored on a filesystem that was present in the fstab. The actions you should take for the set extraction are pretty logical (I think).

After you have extracted the sets, the upgrade kit will proceed with setting the timezone and installing the kernel and bootcode. This is all exactly the same as described in the installation section.

Your system has now been upgraded to NetBSD1.4.2.

After a new kernel has been copied to your hard disk, your machine is a complete NetBSD1.4.2 system. However, that doesn't mean that you're finished with the upgrade process. There are several things that you should do, or might have to do, to insure that the system works properly.

You will probably want to get the etc distribution, extract it, and compare its contents with those in your /etc directory. You will probably want to replace some of your system configuration files, or incorporate some of the changes in the new versions into yours.

You will want to delete old binaries that were part of the version of NetBSD that you upgraded from and have since been removed from the NetBSD distribution. If upgrading from a NetBSD version older than 1.0, you might also want to recompile any locally-built binaries, to take advantage of the shared libraries. (Note that any new binaries that you build will be dynamically linked, and therefore take advantage of the shared libraries, by default. For information on how to make statically linked binaries, see the cc(1) and ld(1) manual pages.)

Compatibility Issues With Previous NetBSD Releases

Users upgrading from previous versions of NetBSD may wish to bear the following problems and compatibility issues in mind when upgrading to NetBSD1.4.2

Note
Only issues effecting an upgrade from NetBSD 1.3 or NetBSD 1.3.x are decribed here.

  • "machine" directory/link in "/usr/include"

    Description
    Some architecture may fail to install the comp set because the
           /usr/include/machine
    directory changed to a symbolic link in NetBSD 1.4.

    Fix
    If this happens, you can use the command
           # rm -r /usr/include/machine
    to remove the old directory and it contents and reinstall the comp set.

Using online NetBSD documentation

Documentation is available if you first install the manual distribution set. Traditionally, the ``man pages'' (documentation) are denoted by ``name(section)''. Some examples of this are

  • intro(1),
  • man(1),
  • apropros(1),
  • passwd(1), and
  • passwd(5).

The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8.

The man command is used to view the documentation on a topic, and is started by entering man[ section] topic. The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the lowest numbered section name will be displayed. For instance, after logging in, enter
       man passwd
to read the documentation for passwd(1). To view the documentation for passwd(5)m enter
       man 5 passwd
instead.

If you are unsure of what man page you are looking for, enter apropos subject-word

where subject-word is your topic of interest; a list of possibly related man pages will be displayed.

Administrivia

If you've got something to say, do so! We'd like your input. There are various mailing lists available via the mailing list server at majordomo@NetBSD.ORG. To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instructions.

There are various mailing lists set up to deal with comments and questions about this release. Please send comments to: netbsd-comments@NetBSD.ORG.

To report bugs, use the send-pr(1) command shipped with NetBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details. Additionally, bug reports can be sent by mail to: netbsd-bugs@NetBSD.ORG.

Use of send-pr(1) is encouraged, however, because bugs reported with it are entered into the NetBSD bugs database, and thus can't slip through the cracks.

There are also port-specific mailing lists, to discuss aspects of each port of NetBSD. Use majordomo to find their addresses. If you're interested in doing a serious amount of work on a specific port, you probably should contact the "owner" of that port (listed below).

If you'd like to help with this effort, and have an idea as to how you could be useful, send us mail or subscribe to: netbsd-help@NetBSD.ORG.

As a favor, please avoid mailing huge documents or files to these mailing lists. Instead, put the material you would have sent up for FTP somewhere, then mail the appropriate list about it, or, if you'd rather not do that, mail the list saying you'll send the data to those who want it.

Thanks go to

  • The former members of UCB's Computer Systems Research Group, including (but not limited to):
    Keith Bostic
    Ralph Campbell
    Mike Karels
    Marshall Kirk McKusick
    

    for their ongoing work on BSD systems, support, and encouragement.

  • Also, our thanks go to:
    Mike Hibler
    Rick Macklem
    Jan-Simon Pendry
    Chris Torek
    

    for answering lots of questions, fixing bugs, and doing the various work they've done.

  • UC Berkeley's Experimental Computing Facility provided a home for sun-lamp in the past, people to look after it, and a sense of humor. Rob Robertson, too, has added his unique sense of humor to things, and for a long time provided the primary FTP site for NetBSD.

  • Vixie Enterprises for hosting the NetBSD FTP, WWW and SUP server.

  • Redback Networks, Inc. for hosting the NetBSD Mail server.

  • Without CVS, this project would be impossible to manage, so our hats go off to Brian Berliner, Jeff Polk, and the various other people who've had a hand in making CVS a useful tool.

  • Dave Burgess burgess@cynjut.infonet.net has been maintaining the 386BSD/NetBSD/FreeBSD FAQ for quite some time, and deserves to be recognized for it.

  • The following individuals and organiztions (each in alphabetical order) have made donations or loans of hardware and/or money, to support NetBSD development, and deserve credit for it:

    Steve Allen
    Jason Birnschein
    Mason Loring Bliss
    Jason Brazile
    Mark Brinicombe
    David Brownlee
    Simon Burge
    Dave Burgess
    Ralph Campbell
    Brian Carlstrom
    James Chacon
    Bill Coldwell
    Charles Conn
    Tom Coulter
    Charles D. Cranor
    Christopher G. Demetriou
    Scott Ellis
    Hubert Feyrer
    Castor Fu
    Greg Gingerich
    William Gnadt
    Michael Graff
    Guenther Grau
    Ross Harvey
    Charles M. Hannum
    Michael L. Hitch
    Kenneth Alan Hornstein
    Jordan K. Hubbard
    Soren Jorvang
    Scott Kaplan
    Noah M. Keiserman
    John Kohl
    Chris Legrow
    Ted Lemon
    Neil J. McRae
    Perry E. Metzger
    Herb Peyerl
    Mike Price
    Dave Rand
    Michael Richardson
    Heiko W. Rupp
    Brad Salai
    Chuck Silvers
    Thor Lancelot Simon
    Bill Sommerfeld
    Paul Southworth
    Ted Spradley
    Kimmo Suominen
    Jason R. Thorpe
    Steve Wadlow
    Krister Walfridsson
    Jim Wise
    Christos Zoulas
    

    AboveNet Communications, Inc.
    Advanced System Products, Inc.
    Avalon Computer Systems
    Bay Area Internet Solutions
    Brains Corporation, Japan
    Canada Connect Corporation
    Co-operative Research Centre for Enterprise Distributed Systems Technology
    Demon Internet, UK
    Digital Equipment Corporation
    Easynet, UK
    Free Hardware Foundation
    Innovation Development Enterprises of America
    Internet Software Consortium
    MS Macro System GmbH, Germany
    Numerical Aerospace Simulation Facility, NASA Ames Research Center
    Piermont Information Systems Inc.
    VMC Harald Frank, Germany
    Warped Communications, Inc.
    
    (If you're not on that list and should be, tell us! We probably were not able to get in touch with you, to verify that you wanted to be listed.)

  • Finally, we thank all of the people who've put sweat and tears into developing NetBSD since its inception in January, 1993. (Obviously, there are a lot more people who deserve thanks here. If you're one of them, and would like to mentioned, tell us!)

We are...

(in alphabetical order)


The NetBSD core group:
Alistair Crooksagc@NetBSD.ORG
Jun-ichiro itojun Haginoitojun@NetBSD.ORG
Frank van der Lindenfvdl@NetBSD.ORG
Luke Mewburnlukem@NetBSD.ORG
Christos Zoulaschristos@NetBSD.ORG

The portmasters (and their ports):
Mark Brinicombemark@NetBSD.ORG arm32
Jeremy Cooperjeremy@NetBSD.ORG sun3x
Ross Harveyross@NetBSD.ORG alpha
Ignatios Souvatzisis@NetBSD.ORG amiga
Jun-ichiro itojun Haginoitojun@NetBSD.ORG sh3
Eduardo Horvatheeh@NetBSD.ORG sparc64
Paul Kranenburgpk@NetBSD.ORG sparc
Anders Magnussonragge@NetBSD.ORG vax
Tsubai Masanaritsubai@NetBSD.ORG macppc
Tsubai Masanaritsubai@NetBSD.ORG newsmips
Minoura Makotominoura@NetBSD.ORG x68k
Phil Nelsonphil@NetBSD.ORG pc532
Scott Reynoldsscottr@NetBSD.ORG mac68k
Darrin Jewelldbj@NetBSD.ORG next68k
Kazuki Sakamotosakamoto@NetBSD.ORG bebox
Wolfgang Solfrankws@NetBSD.ORG ofppc
Jonathan Stonejonathan@NetBSD.ORG pmax
Shin Takemuratakemura@NetBSD.ORG hpcmips
Jason Thorpethorpej@NetBSD.ORG hp300
Frank van der Lindenfvdl@NetBSD.ORG i386
Leo Weppelmanleo@NetBSD.ORG atari
Nathan Williamsnathanw@NetBSD.ORG sun3
Steve Woodfordscw@NetBSD.ORG mvme68k

The NetBSD 1.4.2 Release Engineering team:
Chris G. Demetrioucgd@NetBSD.ORG
Havard Eidneshe@NetBSD.ORG
Ted Lemonmellon@NetBSD.ORG
Perry Metzgerperry@NetBSD.ORG
Curt Sampsoncjs@NetBSD.ORG

Developers and other contributors:
Steve Allenwormey@NetBSD.ORG
Julian Assangeproff@NetBSD.ORG
Lennart Augustssonaugustss@NetBSD.ORG
Christoph Badurabad@NetBSD.ORG
Robert V. Baronrvb@NetBSD.ORG
Erik Berlscyber@NetBSD.ORG
John Birrelljb@NetBSD.ORG
Mason Loring Blissmason@NetBSD.ORG
Manuel Bouyerbouyer@NetBSD.ORG
John Brezakbrezak@NetBSD.ORG
Allen Briggsbriggs@NetBSD.ORG
Aaron Brownabrown@NetBSD.ORG
David Brownleeabs@NetBSD.ORG
Frederick Bruckmanfredb@NetBSD.ORG
Jon Bullerjonb@NetBSD.ORG
Simon Burgesimonb@NetBSD.ORG
Dave Burgessburgess@cynjut.infonet.net
Robert Byrnesbyrnes@NetBSD.org
D'Arcy J.M. Caindarcy@NetBSD.ORG
Dave Carrelcarrel@NetBSD.ORG
Bill Coldwellbillc@NetBSD.ORG
Julian Colemanjdc@NetBSD.ORG
Chuck Cranorchuck@NetBSD.ORG
Aidan Cullyaidan@NetBSD.ORG
Johan Danielssonjoda@NetBSD.ORG
Matt DeBergalisdeberg@NetBSD.ORG
Rob Dekerdeker@NetBSD.ORG
Chris G. Demetrioucgd@NetBSD.ORG
Jaromir Dolecekjdolecek@NetBSD.ORG
Andy Doranad@NetBSD.ORG
Roland Dowdeswellelric@NetBSD.ORG
Matthias Drochnerdrochner@NetBSD.ORG
Jun Ebiharajun@NetBSD.ORG
Havard Eidneshe@NetBSD.ORG
Enami Tsugutomoenami@NetBSD.ORG
Bernd Ernestiveego@NetBSD.ORG
Erik Fairfair@NetBSD.ORG
Hubert Feyrerhubertf@NetBSD.ORG
Thorsten Frueauffrueauf@NetBSD.ORG
Castor Fucastor@NetBSD.ORG
Brian R. Gaekebrg@dgate.org
Thomas Gernerthomas@NetBSD.ORG
Simon J. Gerratysjg@NetBSD.ORG
Justin Gibbsgibbs@NetBSD.ORG
Adam Glassglass@NetBSD.ORG
Michael Graffexplorer@NetBSD.ORG
Brian C. Graysonbgrayson@NetBSD.ORG
Brad Granthamgrantham@tenon.com
Matthew Greenmrg@NetBSD.ORG
Juergen Hannken-Illjeshannken@NetBSD.ORG
Charles M. Hannummycroft@NetBSD.ORG
Eric Haszlakiewiczerh@NetBSD.ORG
HAYAKAWA Koichihaya@NetBSD.ORG
Rene Hexelrh@NetBSD.ORG
Michael L. Hitchmhitch@NetBSD.ORG
Christian E. Hoppschopps@NetBSD.ORG
Ken Hornsteinkenh@NetBSD.ORG
Marc Horowitzmarc@NetBSD.ORG
Dean Huxleydean@netbsd.org
ITOH Yasufumiitohy@NetBSD.ORG
Matthew Jacobmjacob@NetBSD.ORG
Lonhyn T. Jasinskyjlonhyn@NetBSD.ORG
Chris Jonescjones@NetBSD.ORG
Soren Jorvangsoren@NetBSD.ORG
Antti Kanteepooka@NetBSD.ORG
Lawrence Kestelootkesteloo@cs.unc.edu
Thomas Klausnerwiz@NetBSD.ORG
Klaus Kleinkleink@NetBSD.ORG
John Kohljtk@NetBSD.ORG
Kevin Laheykml@NetBSD.ORG
Johnny C. Lamjlam@NetBSD.ORG
Martin J. Laubachmjl@NetBSD.ORG
Ted Lemonmellon@NetBSD.ORG
Joel Lindholmjoel@NetBSD.ORG
Mike Longmikel@NetBSD.ORG
Warner Loshimp@NetBSD.ORG
Brett Lymnblymn@NetBSD.ORG
Paul Mackerraspaulus@NetBSD.ORG
Dan McMahilldmcmahill@NetBSD.ORG
Neil J. McRaeneil@NetBSD.ORG
Perry Metzgerperry@NetBSD.ORG
der Mousemouse@NetBSD.ORG
Joseph Myersjsm@NetBSD.ORG
Ken Nakatakenn@NetBSD.ORG
Bob Nestorrnestor@NetBSD.ORG
Tohru Nishimuranisimura@NetBSD.ORG
Masaru Okioki@NetBSD.ORG
Greg Osteroster@NetBSD.ORG
Herb Peyerlhpeyerl@NetBSD.ORG
Matthias Pfallermatthias@NetBSD.ORG
Dante Profetadante@NetBSD.ORG
Chris Provenzanoproven@NetBSD.ORG
Waldi Ravenswaldi@moacs.indiv.nl.net
Darren Reeddarrenr@NetBSD.ORG
Michael Richardsonmcr@NetBSD.ORG
Tim Rightnourgarbled@NetBSD.ORG
Gordon Rossgwr@NetBSD.ORG
Heiko W. Rupphwr@NetBSD.ORG
SAITOH Masanobumsaitoh@NetBSD.ORG
Curt Sampsoncjs@NetBSD.ORG
Wilfredo Sanchezwsanchez@NetBSD.ORG
Ty Sarnatsarna@NetBSD.ORG
SATO Kazumisato@NetBSD.ORG
Matthias Schelertron@NetBSD.ORG
Karl Schilke (rAT)rat@NetBSD.ORG
Konrad Schroderperseant@NetBSD.ORG
Tim Shepardshep@NetBSD.ORG
Takao Shinoharashin@NetBSD.ORG
Chuck Silverschs@NetBSD.ORG
Thor Lancelot Simontls@NetBSD.ORG
Noriyuki Sodasoda@NetBSD.ORG
Bill Sommerfeldsommerfeld@NetBSD.ORG
Bill Studenmundwrstuden@NetBSD.ORG
Kevin Sullivansullivan@NetBSD.ORG
Kimmo Suominenkim@NetBSD.ORG
Matt Thomasmatt@NetBSD.ORG
Christoph Toshoktoshok@NetBSD.ORG
Izumi Tsutsuitsutsui@NetBSD.ORG
UCHIYAMA Yasushiuch@NetBSD.ORG
Todd Vierlingtv@NetBSD.ORG
Aymeric Vincentaymeric@NetBSD.ORG
Paul Vixievixie@NetBSD.ORG
Krister Walfridssonkristerw@NetBSD.ORG
Lex Wennmacherwennmach@NetBSD.ORG
Assar Westerlundassar@NetBSD.ORG
Rob Windsorwindsor@NetBSD.ORG
Dan Winshipdanw@NetBSD.ORG
Jim Wisejwise@NetBSD.ORG
Colin Woodender@NetBSD.ORG

Legal Mumbo-Jumbo

The following notices are required to satisfy the license terms of the software that we have mentioned in this document:

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by the Computer Systems Engineering Group at Lawrence Berkeley Laboratory.

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes software developed by Adam Glass and Charles Hannum.

This product includes software developed by Adam Glass.

This product includes software developed by Berkeley Software Design, Inc.

This product includes software developed by Charles D. Cranor and Washington University.

This product includes software developed by Charles D. Cranor.

This product includes software developed by Charles Hannum, by the University of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors.

This product includes software developed by Charles Hannum.

This product includes software developed by Charles M. Hannum.

This product includes software developed by Chris Provenzano.

This product includes software developed by Christian E. Hopps.

This product includes software developed by Christopher G. Demetriou for the NetBSD Project.

This product includes software developed by Christopher G. Demetriou.

This product includes software developed by Christos Zoulas.

This product includes software developed by David Jones and Gordon Ross.

This product includes software developed by Dean Huxley.

This product includes software developed by Eric S. Hvozda.

This product includes software developed by Ezra Story.

This product includes software developed by Gordon Ross.

This product includes software developed by Gordon W. Ross and Leo Weppelman.

This product includes software developed by Gordon W. Ross.

This product includes software developed by Herb Peyerl.

This product includes software developed by Ian W. Dall.

This product includes software developed by Ignatios Souvatzis for the NetBSD Project.

This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com/.

This product includes software developed by Joachim Koenig-Baltes.

This product includes software developed by Jochen Pohl for The NetBSD Project.

This product includes software developed by John Polstra.

This product includes software developed by Jonathan Stone and Jason R. Thorpe for the NetBSD Project.

This product includes software developed by Jonathan Stone for the NetBSD Project.

This product includes software developed by Jonathan Stone.

This product includes software developed by Julian Highfield.

This product includes software developed by Kenneth Stailey.

This product includes software developed by Leo Weppelman.

This product includes software developed by Lloyd Parkes.

This product includes software developed by Mark Brinicombe.

This product includes software developed by Markus Wild.

This product includes software developed by Martin Husemann and Wolfgang Solfrank.

This product includes software developed by Mats O Jansson and Charles D. Cranor.

This product includes software developed by Mats O Jansson.

This product includes software developed by Matthias Pfaller.

This product includes software developed by Paul Kranenburg.

This product includes software developed by Paul Mackerras.

This product includes software developed by Peter Galbavy.

This product includes software developed by Philip A. Nelson.

This product includes software developed by Rodney W. Grimes.

This product includes software developed by Scott Bartram.

This product includes software developed by SigmaSoft, Th. Lockert.

This product includes software developed by Terrence R. Lambert.

This product includes software developed by Theo de Raadt and John Brezak.

This product includes software developed by Theo de Raadt.

This product includes software developed by TooLs GmbH.

This product includes software developed by Winning Strategies, Inc.

This product includes software developed by the Center for Software Science at the University of Utah.

This product includes software developed by the University of Calgary Department of Computer Science and its contributors.

This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman.

This product includes software developed for the FreeBSD project.

This product includes software developed for the Internet Software Consortium by Ted Lemon.

This product includes software developed for the NetBSD Project by Frank van der Linden.

This product includes software developed for the NetBSD Project by Jason R. Thorpe.

This product includes software developed for the NetBSD Project by John M. Vinopal.

This product includes software developed for the NetBSD Project by Matthias Drochner.

This product includes software developed for the NetBSD Project by Matthieu Herrb.

This product includes software developed for the NetBSD Project by Perry E. Metzger.

This product includes software developed for the NetBSD Project by Piermont Information Systems Inc.

This product includes software developed for the NetBSD Project by Ted Lemon.

This product includes software developed by LAN Media Corporation and its contributors.

This product includes software developed by Michael Graff for the NetBSD Project.

This product includes software developed by Niklas Hallqvist, C Stone and Job de Haas.

This product includes software developed by Tobias Abt.

This product includes software developed by Klaus Burkert.

This product includes software developed by Michael van Elst.

This product includes software developed by Bernd Ernesti.

This product includes software developed by Michael L. Hitch.

This product includes software developed by Christian E. Hopps.

This product includes software developed by Markus Illenseer.

This product includes software developed by Mika Kortelainen.

This product includes software developed by Jukka Marin.

This product includes software developed by Kari Mettinen.

This product includes software developed by Brad Pepers.

This product includes software developed by Ignatios Souvatzis.

This product includes software developed by Ezra Story.

This product includes software developed by Michael Teske.

This product includes software developed by Lutz Vieweg.

This product includes software developed by Daniel Widenfalk.

This product includes software developed by Markus Wild.