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About This Manual

This manual describes Xilinx’s Unified Libraries and the attributes and constraints 
that can be used with the components.

Before using this manual, you should be familiar with the operations that are common 
to all Xilinx software tools: how to bring up the system, select a tool for use, specify 
operations, and manage design data. These topics are covered in the Quick Start Guide. 

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists 
some of the resources you can access from this page. You can also directly access some 
of these resources using the provided URLs.

Manual Contents
This manual contains the following chapters.

• Chapter 1, “Xilinx Unified Libraries”

• Chapter 2, “Selection Guide”

• Chapter 3, “Design Elements (ACC1 to BYPOSC)”

• Chapter 4, “Design Elements (CAPTURE_SPARTAN2 to DECODE64)”

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification and 
debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Database Current listing of solution records for the Xilinx software tools
Search this database using the search function at 
http://support.xilinx.com/support/searchtd.htm

Application Notes Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-specific 
information on Xilinx device characteristics, including readback, boundary scan, 
configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design environment
http://support.xilinx.com/support/techsup/journals/index.htm
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• Chapter 5, “Design Elements (F5MAP to FTSRLE)”

• Chapter 6, “Design Elements (GCLK to KEEPER)”

• Chapter 7, “Design Elements (LD to NOR16)”

• Chapter 8, “Design Elements (OAND2 to OXOR2)”

• Chapter 9, “Design Elements (PULLDOWN to ROM32X1)”

• Chapter 10, “Design Elements (SOP3 to XORCY_L)”

• Chapter 11, “Design Elements (X74_42 to X74_521)”

• Chapter 12, “Attributes, Constraints, and Carry Logic”

Chapter 1, ”Xilinx Unified Libraries,” discusses the unified libraries, applicable device 
architectures for each library, contents of the other chapters, general naming conven-
tions, and performance issues.

Chapter 2, “Selection Guide,” describes then lists design elements by function that are 
explained in detail in the “Design Elements” chapters.

Chapters 3 through 11, “Design Elements,” provide a graphic symbol, functional 
description, primitive versus macro table, truth table (when applicable), topology 
(when applicable), and schematics for macros of the design elements.

Chapter 12, “Attributes, Constraints, and Carry Logic,” provides information on all 
attributes, logical constraints, placement and timing constraints, relationally placed 
macros (RPMs), and carry logic.
ii Xilinx Development System
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Conventions

This manual uses the following typographical and online document conventions. An 
example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files that the system 
displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a syntactical state-
ment. However, braces “{ }” in Courier bold are not literal and square brackets “[ 
]” in Courier bold are literal only in the case of bus specifications, such as bus 
[7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more information.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not 
connected.

• Square brackets “[ ]” indicate an optional entry or parameter. However, in bus 
specifications, such as bus [7:0], they are required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}
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• A vertical ellipsis indicates repetitive material that has been omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated one or more 
times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-reference to 
another book. Click the red-underlined text to open the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-reference within 
a book. Click the blue-underlined text to open the specified cross-reference.

Note: The preceding conventions do not apply to the links in the Adobe Acrobat 
versions of the books.
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Chapter 1

Xilinx Unified Libraries

This chapter describes the Unified Libraries and the applicable device architectures 
for each library. It also briefly discusses the contents of the other chapters, the general 
naming conventions, and performance issues.

This chapter consists of the following major sections.

• “Overview”

• “Applicable Architectures”

• “Selection Guide”

• “Design Elements”

• “Schematic Examples”

• “Naming Conventions”

• “Attributes, Constraints, and Carry Logic”

• “Flip-Flop, Counter, and Register Performance”

• “Unconnected Pins”

Overview
Xilinx maintains software libraries with thousands of functional design elements 
(primitives and macros) for different device architectures. New functional elements 
are assembled with each release of development system software. The catalog of 
design elements is known as the “Unified Libraries.” Elements in these libraries are 
common to all Xilinx device architectures. This “unified” approach means that you 
can use your circuit design created with “unified” library elements across all current 
Xilinx device architectures that recognize the element you are using.

Elements that exist in multiple architectures look and function the same, but their 
implementations might differ to make them more efficient for a particular architec-
ture. A separate library still exists for each architecture (or architectural group) and 
common symbols are duplicated in each one, which is necessary for simulation (espe-
cially board level) where timing depends on a particular architecture.

If you have active designs that were created with former Xilinx library primitives or 
macros, you may need to change references to the design elements that you were 
using to reflect the Unified Libraries’ elements.

The Libraries Guide describes the primitive and macro logic elements available in the 
Unified Libraries for the Xilinx FPGA and CPLD devices. Common logic functions 
can be implemented with these elements and more complex functions can be built by 
combining macros and primitives. Several hundred design elements (primitives and 
macros) are available across multiple device architectures, providing a common base 
for programmable logic designs.
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This libraries guide provides a functional selection guide, describes the design 
elements, and addresses attributes, constraints, and carry logic.

Applicable Architectures
Design elements for the XC3000, XC4000E, XC4000X, XC5200, XC9000, Spartan, Spar-
tanXL, Spartan2, and Virtex libraries are included in the Xilinx Unified Libraries. Each 
library supports specific device architectures. For detailed information on the archi-
tectural families referenced below and the devices in each, refer to the current version 
of The Programmable Logic Data Book (an online version is available from the Xilinx web 
site, http://support.xilinx.com).

XC3000 Library
Information appearing under the title of XC3000 pertains to the following devices 
families:

• XC3000A

• XC3100A

• XC3000L

• XC3100L

The XC3000L and XC3100L are identical in architecture and features to the XC3000A 
and XC3100A, respectively, but operate at a nominal supply voltage of 3.3 V.

XC4000E Library
Information appearing under the title XC4000E pertains to the following device fami-
lies:

• XC4000E

• XC4000L

The XC4000L is identical in architecture and features to the XC4000E but operates at a 
nominal supply voltage of 3.3 V. 

XC4000X Library
Information appearing under the title XC4000X pertains to the following device fami-
lies:

• XC4000EX

• XC4000XL

• XC4000XV

• XC4000XLA

The XC4000XL is identical in architecture and features to the XC4000EX but operates 
at a nominal supply voltage of 3.3 V. The XC4000XV has identical library symbols to 
the XC4000EX and XC4000XL but operates at a nominal supply voltage of 2.5 V and 
includes additional features. 
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XC4000
Wherever XC4000 is used, the information applies to all architectures supported by 
the XC4000E and XC4000X libraries. This consists of the following device families:

• XC4000E

• XC4000L

• XC4000EX

• XC4000XL

• XC4000XV

• XC4000XLA

XC5200 Library
The information appearing under the title XC5200 pertains to the XC5200 family.

XC9000 Library
The information appearing under the title XC9000 pertains to the following CPLD 
device families:

• XC9500

• XC9500XL

• XC9500XV

Spartan Library
The information appearing under the title Spartan pertains to the Spartan family XCS* 
devices.

SpartanXL Library
The information appearing under the title SpartanXL pertains to the SpartanXL 
family XCS*XL devices.

Spartan2 Library
The information appearing under the title Spartan2 pertains to the Spartan2 family 
XC2S* devices.

Spartans
Wherever Spartans is used, the information applies to all architectures supported by 
the Spartan, SpartanXL, and Spartan2 libraries. 

Virtex Library
The information appearing under the title Virtex pertains to the Virtex family XCV* 
devices.
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Selection Guide
The “Selection Guide” chapter briefly describes, then tabularly lists the logic elements 
that are explained in detail in the “Design Elements” sections. The tables included in 
this section are organized into functional categories. They list the available elements 
in each category along with a brief description of each element and an applicability 
table identifying which libraries (XC3000, XC4000E, XC4000X, XC5200, XC9000, 
Spartan, SpartanXL, Spartan2, Virtex) contain the element.

Design Elements
Design elements are organized in alphanumeric order, with all numeric suffixes in 
ascending order. For example, FDR precedes FDRS, and ADD4 precedes ADD8, 
which precedes ADD16.

The following information is provided for each library element.

• Graphic symbol

• Applicability table (with primitive versus macro identification)

• Functional description

• Truth table (when applicable)

• Topology (when applicable)

• Schematic for macros

Schematic Examples
Schematics are included for each library if the implementation differs. 

Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically 
include just one schematic — generally the 8-bit version. When only one schematic is 
included, implementation of the smaller and larger elements differs only in the 
number of sections. In cases where an 8-bit version is very large, an appropriate 
smaller element serves as the schematic example.
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Naming Conventions
Examples of the general naming conventions for the unified library elements are 
shown in the following figures.

Figure 1-1 Naming Conventions

Figure 1-2 Combinatorial Naming Conventions

Refer to the “Selection Guide” chapter for examples of functional component naming 
conventions.

Attributes, Constraints, and Carry Logic
Attributes are instructions placed on symbols or nets in a schematic to indicate their 
placement, implementation, naming, directionality, and so forth. Constraints are a 
type of attribute used only to limit where an element should be placed. The 
“Attributes, Constraints, and Carry Logic” chapter provides information on all 
attributes and constraints.
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Flip-Flop, Counter, and Register Performance
All counter, register, and storage functions are derived from the flip-flops (and latches 
in XC4000X and SpartanXL) available in the Configurable Logic Blocks (CLBs).

The D flip-flop is the basic building block for all architectures. Differences occur from 
the availability of asynchronous Clear (CLR) and Preset (PRE) inputs, and the source 
of the synchronous control signals, such as, Clock Enable (CE), Clock (C), Load enable 
(L), synchronous Reset (R), and synchronous Set (S). The basic flip-flop configuration 
for each architecture follows.

The XC3000 and XC5200 have a direct-connect Clock Enable input and a Clear input.

The XC4000s, XC9500XL, Spartan, and SpartanXL have a direct-connect Clock Enable 
input and a choice of either the Clear or the Preset inputs, but not both.

The basic XC9000 flip-flops have both Clear and Preset inputs.
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C

CE

QD
FDCE

X3721

FDPE

C

CE

QD

PRE

X3717CLR

C

CE

QD
FDCE

Q

D

C

FDCP

PRE

CLR

X4397
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Virtex and Spartan2 have two basic flip-flop types. One has both Clear and Preset 
inputs and one has both asynchronous and synchronous control functions.

The asynchronous and synchronous control functions, when used, have a priority that 
is consistent across all devices and architectures. These inputs can be either active-
High or active-Low as defined by the macro. The priority, from highest to lowest is as 
follows.

• Asynchronous Clear (CLR)

• Asynchronous Preset (PRE)

• Synchronous Set (S)

• Synchronous Reset (R)

• Clock Enable (CE)

Note: The asynchronous CLR and PRE inputs, by definition, have priority over all the 
synchronous control and clock inputs.

For FPGA families, the Clock Enable (CE) function is implemented using two 
different methods in the Xilinx Unified Libraries; both are shown in the “Clock Enable 
Implementation Methods” figure. 

• In method 1, CE is implemented by connecting the CE pin of the macro directly to 
the dedicated Enable Clock (EC) pin of the internal Configurable Logic Block 
(CLB) flip-flop. This allows one CE per CLB. CE takes precedence over the L, S, 
and R inputs. All flip-flops with asynchronous clear or preset use this method.

• In method 2, CE is implemented using function generator logic. This allows two 
CEs per CLB. CE has the same priority as the L, S, and R inputs. All flip-flops with 
synchronous set or reset use this method.

The method used in a particular macro is indicated by the inclusion of asynchronous 
clear, asynchronous preset, synchronous set, or synchronous reset in the macro’s 
description. 

Q

D

C

FDCPE

CE

PRE

CLR

X4389

X3732

FDRSE

C

CE

QD

R

S
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Figure 1-3 Clock Enable Implementation Methods

Unconnected Pins
Xilinx recommends that you always connect input pins in your schematics. This 
ensures that front end simulation functionally matches back end timing simulation. If 
an input pin is left unconnected, mapper errors may result. 

If an output pin is left unconnected in your schematic, the corresponding function is 
trimmed. If the component has only one output, the entire component is trimmed. If 
the component has multiple outputs, the portion that drives the output is trimmed. 
As an example of the latter case, if the overflow pin (OFL) in an adder macro is uncon-
nected, the logic that generates that term is trimmed, but the rest of the adder is 
retained (assuming all of the sum outputs are connected).

X4675

EC

Method 1
CE implemented

using dedicated EC pin.

Method 2
CE implemented as a
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Chapter 2

Selection Guide

This chapter provides a CLB count for the design elements in each library plus a list of 
the Relationally Placed Modules (RPMs) by family. It also categorizes, by function, the 
logic elements that are described in detail in the “Design Elements” sections.

The chapter contains three major sections.

• “CLB Count”

• “Relationally Placed Macros”

• “Functional Categories”

CLB Count
Configurable Logic Blocks (CLBs) implement most of the logic in an FPGA. The 
following CLB Count table lists FPGA design elements in alphanumeric order with 
the number of CLBs needed for their implementation in each applicable library. Refer 
to the  “Applicable Architectures” section of the “Xilinx Unified Libraries” chapter for 
information on the specific device architectures supported in each library. 

Each XC5200 CLB contains four independent Logic Cells™ (LCs). In the following 
table, the numbers in the XC5200 column are the LC4 count.

Each Virtex and Spartan2 CLB contains two slices. In the following table, the numbers 
for Spartan2 and Virtex are the combined count for the two slices.

Note: This information is for reference only. The actual count could vary, depending 
upon the switch settings of the implementation tools; for example, the effort level in 
PAR (Place and Route).

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**

ACC4 9 7 7 15 7 7 5 5

ACC8 17 11 11 27 11 11 9 9

ACC16 33 19 19 51 19 19 17 17

ACLK 1 - - - - - - -

ADD4 5 4 4 10 4 4 3 3

ADD8 9 6 6 18 6 6 5 5

ADD16 17 10 10 34 10 10 9 9

ADSU4 5 4 4 10 4 4 3 3

ADSU8 9 6 6 18 6 6 5 5

ADSU16 17 10 10 34 10 10 9 9
Libraries Guide, 2.1i 2-1
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AND2 1 - - 1 - - 1 1

AND3 1 - - 1 - - 1 1

AND4 1 - - 1 - - 1 1

AND5 1 1 1 2 1 1 1 1

AND6 2 1 1 2 1 1 1 1

AND7 2 1 1 3 1 1 1 1

AND8 2 1 1 3 1 1 2 2

AND9 2 1 1 4 1 1 2 2

AND12 - - - 4 - - 2 2

AND16 - - - 5 - - 2 2

BRLSHFT4 4 4 4 4 4 4 8 8

BRLSHFT8 12 12 12 12 12 12 12 12

BSCAN - - - 3 - - - -

BUFE 1 - - - - - - -

BUFE4 1 - - - - - - -

BUFE8 1 - - - - - - -

BUFE16 1 - - - - - - -

BUFG 1 - - 1 - - - -

BUFGP - - - 1 - - - -

BUFGS - - - 1 - - - -

CB2CE 3 2 2 4 2 2 2 2

CB2CLE 4 3 3 5 3 3 3 3

CB2CLED 4 3 3 6 3 3 3 3

CB2RE 3 2 2 4 2 2 2 2

CB4CE 4 3 3 6 3 3 3 3

CB4CLE 7 5 5 9 5 5 5 5

CB4CLED 8 7 7 10 7 7 6 6

CB4RE 4 4 4 8 4 4 3 3

CB8CE 8 6 6 13 6 6 6 6

CB8CLE 13 10 10 18 10 10 9 9

CB8CLED 14 12 13 22 12 13 12 12

CB8RE 9 8 8 17 8 8 6 6

CB16CE 16 12 12 27 12 12 13 13

CB16CLE 26 18 18 36 18 18 18 18

CB16CLED 28 25 25 46 25 25 24 24

CB16RE 18 18 18 35 18 18 13 13

CC8CE - 5 5 18 5 5 8 8

CC8CLE - 6 6 19 6 6 9 9

CC8CLED - 11 11 19 11 11 9 9

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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CC8RE - 5 5 18 5 5 9 9

CC16CE - 9 9 34 9 9 16 16

CC16CLE - 10 10 35 10 10 17 17

CC16CLED - 19 19 35 19 19 17 17

CC16RE - 9 9 34 9 9 17 17

CD4CE 4 3 3 6 3 3 3 3

CD4CLE 7 5 5 10 5 5 5 5

CD4RE 5 6 5 9 6 5 3 3

CD4RLE 10 9 9 17 9 9 7 7

CJ4CE 2 2 2 4 2 2 2 2

CJ4RE 2 4 4 4 4 4 2 2

CJ5CE 3 3 3 5 3 3 3 3

CJ5RE 3 5 5 5 5 5 3 3

CJ8CE 4 4 4 8 4 4 4 4

CJ8RE 4 8 8 8 8 8 4 4

COMP2 1 1 1 1 1 1 1 1

COMP4 4 1 1 3 1 1 2 2

COMP8 9 4 4 5 4 4 3 3

COMP16 17 9 9 11 9 9 6 6

COMPM2 3 1 1 5 1 1 1 1

COMPM4 8 2 2 13 2 2 5 5

COMPM8 19 8 8 27 8 8 11 11

COMPM16 39 21 21 64 21 21 24 24

COMPMC8 - 7 7 18 7 7 8 8

COMPMC16 - 11 11 34 11 11 16 16

CR8CE 8 8 8 8 8 8 8 8

CR16CE 16 16 16 16 16 16 16 16

CY_INIT - - - 1 - - - -

CY_MUX - - - 2 - - - -

D2_4E 2 2 2 4 2 2 2 2

D3_8E 4 4 4 8 4 4 4 4

D4_16E 16 16 16 32 16 16 16 16

DEC_CC4 - - - 2 - - 1 1

DEC_CC8 - - - 3 - - 1 1

DEC_CC16 - - - 5 - - 2 2

DECODE4 - - - 2 - - 1 1

DECODE8 - - - 3 - - 2 2

DECODE16 - - - 5 - - 2 2

DECODE32 - - - 9 - - 4 4

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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DECODE64 - - - 18 - - 8 8

F5_MUX - - - 1 - - - -

F5MAP - - - 1 - - - -

FD 1 - - 1 - - - -

FD_1 1 - - 1 - - - -

FD4CE 4 2 2 4 2 2 2 2

FD4RE 2 4 4 4 4 4 2 2

FD8CE 4 4 4 8 4 4 4 4

FD8RE 4 8 8 8 8 8 4 4

FD16CE 8 8 8 16 8 8 8 8

FD16RE 8 16 16 16 16 16 8 8

FDC 1 1 1 1 1 1 - -

FDC_1 1 1 1 1 1 1 - -

FDCE 1 1 1 1 1 1 - -

FDCE_1 1 1 1 1 1 1 - -

FDP - 1 1 1 1 1 - -

FDP_1 - 1 1 1 1 1 - -

FDPE - - - 1 - - - -

FDPE_1 - 1 1 1 1 1 - -

FDR 1 1 1 1 1 1 - -

FDRE 1 1 1 1 1 1 - -

FDRS 1 1 1 1 1 1 - -

FDRSE 1 2 2 3 2 2 - -

FDS 1 1 1 1 1 1 - -

FDSE 1 1 1 1 1 1 - -

FDSR 1 1 1 1 1 1 - -

FDSRE 1 2 2 3 2 2 - -

FJKC 1 1 1 1 1 1 1 1

FJKCE 1 1 1 1 1 1 1 1

FJKP - 1 1 1 1 1 1 1

FJKPE - 1 1 1 1 1 1 1

FJKRSE 2 2 2 3 2 2 1 1

FJKSRE 2 2 2 3 2 2 1 1

FTC 1 1 1 1 1 1 1 1

FTCE 1 1 1 1 1 1 1 1

FTCLE 1 1 1 2 1 1 1 1

FTCLEX - - - - - - 1 1

FTP - 1 1 1 1 1 1 1

FTPE - 1 1 1 1 1 1 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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FTPLE - 1 1 2 1 1 1 1

FTRSE 1 2 2 3 2 2 1 1

FTRSLE 3 2 2 4 2 2 2 2

FTSRE 1 2 2 3 2 2 1 1

FTSRLE 3 2 2 4 2 2 2 2

GCLK 1 - - - - - - -

IFD - - - 1 - - - -

IFD_1 - - - 1 - - - -

IFD4 - - - 4 - - - -

IFD8 - - - 8 - - - -

IFD16 - - - 16 - - - -

ILD - - - 1 - - 1 1

ILD_1 - - - 1 - - 1 1

ILD4 - - - 4 - - 2 2

ILD8 - - - 8 - - 4 4

ILD16 - - - 16 - - 8 8

IOPAD - - - 1 - - - -

LD - - 1 1 - 1 - -

LD4 - - 4 - - 4 2 2

LD8 - - 8 - - 8 4 4

LD16 - - 16 - - 16 8 8

LD4CE - - 4 4 - 4 2 2

LD8CE - - 8 8 - 8 4 4

LD16CE - - 16 16 - 16 8 8

LD_1 - - 1 1 - 1 - -

LDC - - 1 1 - 1 - -

LDC_1 - - 1 1 - 1 - -

LDCE - - 1 1 - 1 - -

LDCE_1 - - - 1 - - - -

LDPE - - 1 - - 1 - -

LDPE_1 - - 1 - - 1 - -

M2_1 1 1 1 1 1 1 1 1

M2_1B1 1 1 1 1 1 1 1 1

M2_1B2 1 1 1 1 1 1 1 1

M2_1E 1 1 1 1 1 1 1 1

M4_1E 3 1 1 1 1 1 1 1

M8_1E 6 3 3 7 3 3 2 2

M16_1E 11 7 7 14 7 7 5 5

NAND2 1 - - 1 - - 1 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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NAND3 1 - - 1 - - 1 1

NAND4 1 - - 1 - - 1 1

NAND5 1 1 1 2 1 1 1 1

NAND6 2 1 1 2 1 1 1 1

NAND7 2 1 1 3 1 1 1 1

NAND8 2 1 1 3 1 1 2 2

NAND9 2 1 1 4 1 1 2 2

NAND12 - - - 4 - - 2 2

NAND16 - - - 5 - - 2 2

NOR2 1 - - 1 - - 1 1

NOR3 1 - - 1 - - 1 1

NOR4 1 - - 1 - - 1 1

NOR5 1 1 1 2 1 1 1 1

NOR6 2 1 1 2 1 1 1 1

NOR7 2 1 1 3 1 1 1 1

NOR8 2 1 1 3 1 1 2 2

NOR9 2 1 1 4 1 1 2 2

NOR12 - - - 4 - - 2 2

NOR16 - - - 5 - - 2 2

OFD - - - 1 - - - -

OFD_1 - - - 1 - - - -

OFD4 - - - 4 - - - -

OFD8 - - - 8 - - - -

OFD16 - - - 16 - - - -

OFDE - - - 1 - - - -

OFDE_1 - - - 1 - - - -

OFDE4 - - - 4 - - - -

OFDE8 - - - 8 - - - -

OFDE16 - - - 16 - - - -

OFDT - - - 1 - - - -

OFDT_1 - - - 1 - - - -

OFDT4 - - - 4 - - - -

OFDT8 - - - 8 - - - -

OFDT16 - - - 16 - - - -

OR2 1 - - 1 - - 1 1

OR3 1 - - 1 - - 1 1

OR4 1 - - 1 - - 1 1

OR5 1 1 1 2 1 1 1 1

OR6 2 1 1 2 1 1 1 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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OR7 2 1 1 3 1 1 1 1

OR8 2 1 1 3 1 1 2 2

OR9 2 1 1 3 1 1 2 2

OR12 - - - 4 - - 2 2

OR16 - - - 5 - - 2 2

RAM16X2 - 1 1 - 1 1 - -

RAM16X2D - 2 2 - 2 2 2 2

RAM16X2S - 1 1 - 1 1 2 2

RAM16X4 - 2 2 - 2 2 - -

RAM16X4D - 4 4 - 4 4 4 4

RAM16X4S - 2 2 - 2 2 4 4

RAM16X8 - 4 4 - 4 4 - -

RAM16X8D - 8 8 - 8 8 8 8

RAM16X8S - 4 4 - 4 4 8 8

RAM32X2 - 2 2 - 2 2 - -

RAM32X2S - 2 - - 2 - 2 2

RAM32X4 - 4 4 - 4 4 4 4

RAM32X4S - 4 4 - 4 4 8 8

RAM32X8 - 8 8 - 8 8 - -

RAM32X8S - 8 8 - 8 8 - -

SOP3 1 1 1 1 1 1 1 1

SOP4 1 1 1 1 1 1 1 1

SR4CE 2 2 2 4 2 2 2 2

SR4CLE 4 3 3 5 3 3 3 3

SR4CLED 5 5 5 10 5 5 5 5

SR4RE 2 4 4 4 4 4 2 2

SR4RLE 6 5 5 9 5 5 3 3

SR4RLED 7 8 8 14 8 8 5 5

SR8CE 4 4 4 8 4 4 4 4

SR8CLE 5 5 5 9 5 5 5 5

SR8CLED 9 9 9 18 9 9 9 9

SR8RE 4 8 8 8 8 8 4 4

SR8RLE 12 9 9 17 9 9 5 5

SR8RLED 13 9 9 26 9 9 9 9

SR16CE 8 8 8 16 8 8 8 8

SR16CLE 9 9 9 17 9 9 9 9

SR16CLED 17 17 17 34 17 17 17 17

SR16RE 8 16 16 16 16 16 8 8

SR16RLE 24 20 20 33 20 20 9 9

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
Libraries Guide, 2.1i 2-7



Libraries Guide, 2.1i
SR16RLED 25 19 19 50 19 19 17 17

UPAD - - - 1 - - - -

XNOR2 1 - - 1 - - 1 1

XNOR3 1 - - 1 - - 1 1

XNOR4 1 - - 1 - - 1 1

XNOR5 1 1 1 2 1 1 1 1

XNOR6 2 1 1 2 1 1 1 1

XNOR7 2 1 1 3 1 1 1 1

XNOR8 2 1 1 3 1 1 2 2

XNOR9 2 1 1 3 1 1 2 2

XOR2 1 - - 1 - - 1 1

XOR3 1 - - 1 - - 1 1

XOR4 1 - - 1 - - 1 1

XOR5 1 1 1 2 1 1 1 1

XOR6 2 1 1 2 1 1 1 1

XOR7 2 1 1 3 1 1 1 1

XOR8 2 1 1 3 1 1 2 2

XOR9 2 1 1 3 1 1 2 2

X74_42 5 5 5 10 5 5 - -

X74_L85 14 9 9 20 9 9 - -

X74_138 5 5 5 9 5 5 - -

X74_139 2 2 2 4 2 2 - -

X74_147 8 6 6 12 6 6 - -

X74_148 10 6 6 14 6 6 - -

X74_150 11 6 6 13 6 6 - -

X74_151 6 3 3 7 3 3 - -

X74_152 5 3 3 6 3 3 - -

X74_153 6 3 3 6 3 3 - -

X74_154 17 16 16 33 16 16 - -

X74_157 4 2 2 4 2 2 - -

X74_158 4 2 2 4 2 2 - -

X74_160 8 6 6 11 6 6 - -

X74_161 9 5 5 9 5 5 - -

X74_162 8 6 6 13 6 6 - -

X74_163 10 9 9 17 9 9 - -

X74_164 5 4 4 8 4 4 - -

X74_165S 8 5 5 9 5 5 - -

X74_168 9 7 7 11 7 7 - -

X74_174 7 4 4 6 4 4 - -

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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X74_194 7 5 5 12 5 5 - -

X74_195 5 3 3 5 3 3 - -

X74_273 9 5 5 8 5 5 - -

X74_280 3 2 2 5 2 2 - -

X74_283 4 6 6 8 6 6 - -

X74_298 4 2 2 4 2 2 - -

X74_352 6 3 3 6 3 3 - -

X74_377 9 4 4 8 4 4 - -

X74_390 3 3 3 4 3 3 - -

X74_518 9 4 4 6 4 4 - -

X74_521 9 4 4 6 4 4 - -
*LC4 count
**Combined count for the two slices
- = zero (0) or the component is not applicable for that architecture

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Spartan2** Virtex**
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Relationally Placed Macros
This section lists the Relationally Placed Macros (RPMs). RPMs are “soft” macros that 
contain relative location constraint (RLOC) information. For more details, see the  
“Relationally Placed Macros (RPMs)” section of the “Attributes, Constraints, and 
Carry Logic” chapter.

The following table lists RPMs (except for CY4_* carry mode symbols) by library for 
easy identification. A check mark (√) in the column under the library name means the 
element is an RPM in that library. Refer to the  “Applicable Architectures” section of 
the “Xilinx Unified Libraries” chapter for information on the specific device architec-
tures supported in each library.

Note: The CY4_* RPMs are not listed here. To see a list of predefined carry mode 
names and their corresponding symbols (CY4_*), refer to the  “Carry Logic Primitives 
and Symbols” section of the “Attributes, Constraints, and Carry Logic” chapter.

Element Name XC4000E XC4000X XC5200 Spartan SpartanXL Spartan2 Virtex

ACC4 √ √ √ √ √ √ √
ACC8 √ √ √ √ √ √ √
ACC16 √ √ √ √ √ √ √
ADD4 √ √ √ √ √ √ √
ADD8 √ √ √ √ √ √ √
ADD16 √ √ √ √ √ √ √
ADSU4 √ √ √ √ √ √ √
ADSU8 √ √ √ √ √ √ √
ADSU16 √ √ √ √ √ √ √
AND6 √ √
AND7 √ √
AND8 √ √ √ √ √ √ √
AND9 √ √ √ √ √ √ √
AND12 √ √ √
AND16 √ √ √
CC8CE √ √ √ √ √ √ √
CC8CLE √ √ √ √ √ √ √
CC8CLED √ √ √ √ √ √ √
CC8RE √ √ √ √ √ √ √
CC16CE √ √ √ √ √ √ √
CC16CLE √ √ √ √ √ √ √
CC16CLED √ √ √ √ √ √ √
CC16RE √ √ √ √ √ √ √
COMPMC8 √ √ √ √ √ √ √
COMPMC16 √ √ √ √ √ √ √
CY_INIT √
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CY_MUX √
DECODE4 √ √ √ √ √ √ √
DECODE8 √ √ √ √ √ √ √
DECODE16 √ √ √ √ √ √ √
DECODE32 √ √ √
DECODE64 √ √ √
DEC_CC4 √
DEC_CC8 √
DEC_CC16 √
NAND6 √ √
NAND7 √ √
NAND8 √ √ √ √ √ √ √
NAND9 √ √ √ √ √ √ √
NAND12 √ √ √
NAND16 √ √ √
NOR6 √ √
NOR7 √ √
NOR8 √ √ √ √ √ √ √
NOR9 √ √ √ √ √ √ √
NOR12 √ √ √
NOR16 √ √ √
OR6 √ √
OR7 √ √
OR8 √ √
OR9 √ √
OR12 √ √ √
OR16 √ √ √
XNOR6 √ √
XNOR7 √ √
XNOR8 √ √
XNOR9 √ √
XOR6 √ √
XOR7 √ √
XOR8 √ √
XOR9 √ √

Element Name XC4000E XC4000X XC5200 Spartan SpartanXL Spartan2 Virtex
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Functional Categories
This section categorizes, by function, the logic elements that are described in detail in 
the “Design Elements” sections. Each category is briefly described. Tables under each 
category identify all the available elements for the function and indicate which 
libraries include the element.

Elements are listed in alphanumeric order under each category. There are a number of 
standard TTL 7400-type functions in the different libraries. All 7400-type functions 
start with a “X74” prefix and are listed after all other elements. The numeric sequence 
following the “X74” prefix uses ascending numbers, for example, X74_42 precedes 
X74_138.

A check mark (√) in the column under the library name means that the element 
applies to the devices that use that library. (Refer to the  “Applicable Architectures” 
section of the “Xilinx Unified Libraries” chapter for information on the specific device 
families that use each library.) A blank column means that the element does not apply.

The categories are as follows.

• Arithmetic Functions

• Buffers

• Comparators

• Counters

• Data Registers

• Decoders

• Edge Decoders

• Encoders

• Flip-Flops

• General

• Input/Output Flip-Flops

• Input/Output Functions

• Input Latches

• Latches

• Logic Primitives

• Map Elements

• Memory Elements

• Multiplexers

• Shift Registers

• Shifters

Note: When converting your design between FPGA families, use elements that have 
equivalent functions in each of the architectural families (libraries) to minimize re-
designing.
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Arithmetic Functions
There are three types of arithmetic functions: accumulators (ACC), adders (ADD), and 
adder/subtracters (ADSU). With an ADSU, either unsigned binary or twos-comple-
ment operations cause an overflow. If the result crosses the overflow boundary, an 
overflow is generated. Similarly, when the result crosses the carry-out boundary, a 
carry-out is generated. The following figure shows the ADSU carry-out and overflow 
boundaries.

Figure 2-1 ADSU Carry-Out and Overflow Boundaries

ACC1 1-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous 
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

ACC4, 8, 16 4-, 8-, 16-Bit Loadable Cascadable Accumulators with Carry-In, Carry-Out, and 
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

ADD1 1-Bit Full Adder with Carry-In and Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

ADD4, 8, 16 4-, 8-, 16-Bit Cascadable Full Adders with Carry-In, Carry-Out, and Overflow

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Buffers
The buffers in this section route high fan-out signals, 3-state signals, and clocks inside 
a PLD device. The  “Input/Output Functions” section later in this chapter covers off-
chip interface buffers.

ADSU1 1-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

ADSU4, 8, 16 4-, 8-, 16-Bit Cascadable Adders/Subtracters with Carry-In, Carry-Out and Overflow

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X74_280 9-Bit Odd/Even Parity Generator/Checker

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_283 4-Bit Full Adder with Carry-In and Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

ACLK Alternate Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUF General-Purpose Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

BUF4, 8, 16 General-Purpose Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUFCF Fast Connect Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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BUFE, 4, 8, 16 Internal 3-State Buffers with Active High Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √∗ √ √ √ √
* not supported for XC9500XL and XC9500XV devices

 BUFFCLK Global Fast Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUFG Global Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

BUFGDLL Clock Delay Locked Loop Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

 BUFGE Global Low Early Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUFGLS Global Low Skew Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

BUFGP Primary Global Buffer for Driving Clocks or Longlines (Four per PLD Device)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

BUFGS Secondary Global Buffer for Driving Clocks or Longlines (Four per PLD Device)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √
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Comparators
There are two types of comparators, identity (COMP) and magnitude (COMPM).

 BUFGSR Global Set/Reset Input Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUFGTS Global Three-State Input Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BUFOD Open-Drain Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

BUFT, 4, 8, 16 Internal 3-State Buffers with Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √∗ √ √ √ √
* not supported for XC9500XL and XC9500XV devices

GCLK Global Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

 COMP2, 4, 8, 16 2-, 4-, 8-, 16-Bit Identity Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

COMPM2, 4, 8, 16 2-, 4-, 8-, 16-Bit Magnitude Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

COMPMC8, 16 8-, 16-Bit Magnitude Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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Counters
There are six types of counters with various synchronous and asynchronous inputs. 
The name of the counter defines the modulo or bit size, the counter type, and which 
control functions are included. The counter naming convention is shown in the 
following figure.

Figure 2-2 Counter Naming Convention

A carry-lookahead design accommodates large counters without extra gating. On TTL 
7400-type counters with trickle clock enable (ENT), parallel clock enable (ENP), and 
ripple carry-out (RCO), both the ENT and ENP inputs must be High to count. ENT is 
propagated forward to enable RCO, which produces a High output with the approxi-
mate duration of the QA output. The following figure illustrates a carry-lookahead 
design.

X74_L85 4-Bit Expandable Magnitude Comparator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_518 8-Bit Identity Comparator with Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_521 8-Bit Identity Comparator with Active-Low Enable and Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X4577

Binary (B)
BCD (D)
Binary, Carry Logic (C)
Johnson (J)
Ripple (R)

Counter

Asynchronous Clear (C)
Synchronous Reset (R)

Modulo (Bit Size)

Loadable

C B 1 6 C L E D

Clock Enable

Directional
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Figure 2-3 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of 
the second stage and all subsequent stages. The RCO output of the second stage and 
all subsequent stages is connected to the ENT input of the next stage. The ENT of the 
second stage is always enabled/tied to VCC. CE is always connected to the ENT input 
of the first stage. This cascading method allows the first stage of the ripple carry to be 
built as a prescaler. In other words, the first stage is built to count very fast.

CB2CE, CB4CE, 
CB8CE, CB16CE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CB2CLE, CB4CLE, 
CB8CLE, CB16CLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchro-
nous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CB2CLED, CB4CLED, 
CB8CLED, CB16CLED

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable 
and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
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CB2RE, CB4RE, 
CB8RE, CB16RE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CB2RLE, CB4RLE, 
CB8RLE, CB16RLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Synchro-
nous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CB2X1, CB4X1, CB8X1, 
CB16X1

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable 
and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CB2X2, CB4X2, CB8X2, 
CB16X2

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable 
and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CC8CE, CC16CE 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

CC8CLE, CC16CLE 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchronous 
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

CC8CLED, CC16CLED 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and 
Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

CC8RE, CC16RE 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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CD4CE 4-Bit Cascadable BCD Counter with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CD4CLE 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CD4RE 4-Bit Cascadable BCD Counter with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CD4RLE 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CJ4CE, CJ5CE, CJ8CE 4-, 5-, 8-Bit Johnson Counters with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CJ4RE, CJ5RE, CJ8RE 4-, 5-, 8-Bit Johnson Counters with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CR8CE, CR16CE 8-, 16-Bit Negative-Edge Binary Ripple Counters with Clock Enable and Asynchronous 
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X74_160 4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low Load Enable, and 
Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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Data Registers
There are three TTL 7400-type data registers designed to function exactly as the TTL 
elements for which they are named.

X74_161 4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low Load Enable, and 
Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_162 4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low Load Enable, and 
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_163 4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low Load Enable, and 
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_168 4-Bit BCD Bidirectional Counter with Parallel and Trickle Clock Enables and Active-
Low Load Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_390 4-Bit BCD/Bi-Quinary Ripple Counter with Negative-Edge Clocks and Asynchronous 
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_174 6-Bit Data Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_273 8-Bit Data Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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Decoders
Decoder names, shown in the following figure, indicate the number of inputs and 
outputs and if an enable is available. Decoders with an enable can be used as multi-
plexers. This group includes some standard TTL 7400-type decoders whose names 
have an “X74” prefix.

Figure 2-4 Decoder Naming Convention

X74_377 8-Bit Data Register with Active-Low Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

D2_4E 2- to 4-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

D3_8E 3- to 8-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

D4_16E 4- to 16-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

DEC_CC4, 8, 16 4-, 8-, 16-Bit Active Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

X74_42 4- to 10-Line BCD-to-Decimal Decoder with Active-Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X4619

D 2 _ 4 E
Decoder

Number of Inputs

Number of Outputs

Output Enable
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Edge Decoders
Edge decoders are open-drain wired-AND gates that are available in different bit 
sizes.

Encoders
There are two priority encoders (ENCPR) that function like the TTL 7400-type 
elements they are named after. There is a 10- to 4-line BCD encoder and an 8- to 3-line 
binary encoder.

X74_138 3- to 8-Line Decoder/Demultiplexer with Active-Low Outputs and Three Enables

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_139 2- to 4-Line Decoder/Demultiplexer with Active-Low Outputs and Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_154 4- to 16-Line Decoder/Demultiplexer with Two Enables and Active-Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

DECODE4, 8, 16 4-, 8-, 16-Bit Active-Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

DECODE32, 64 32- and 64-Bit Active-Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

X74_147 10- to 4-Line Priority Encoder with Active-Low Inputs and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_148 8- to 3-Line Cascadable Priority Encoder with Active-Low Inputs and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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Flip-Flops
There are three types of flip-flops (D, J-K, toggle) with various synchronous and asyn-
chronous inputs. Some are available with inverted clock inputs and/or the ability to 
set in response to global set/reset rather than reset. The naming convention shown in 
the following figure provides a description for each flip-flop. D-type flip-flops are 
available in multiples of up to 16 in one macro.

Figure 2-5 Flip-Flop Naming Convention

FD D Flip-Flop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FD_1 D Flip-Flop with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FD4, 8, 16  Multiple D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FD4CE, FD8CE, 
FD16CE

4-, 8-, 16-Bit Data Registers with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FD4RE, FD8RE, 
FD16RE

4-, 8-, 16-Bit Data Registers with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X4579

D-Type (D)

Flip-Flop

JK-Type (JK)
Toggle-Type (T)

Asynchronous Preset (P)
Asynchronous Clear (C)
Synchronous Set (S)
Synchronous Reset (R)

Inverted Clock

Clock Enable

F D P E _ 1
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FDC D Flip-Flop with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDC_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FDCE D Flip-Flop with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDCE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FDCP D Flip-Flop with Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

FDCP_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDCPE D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

FDCPE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and 
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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FDE D Flip-Flop with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDE_1 D Flip-Flop with Negative-Edge Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDP D Flip-Flop with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FDP_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

FDPE D Flip-Flop with Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FDPE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

FDR D Flip-Flop with Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

FDR_1 D Flip-Flop with Negative-Edge Clock and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDRE D Flip-Flop with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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FDRE_1 D Flip-Flop with Negative-Clock Edge, Clock Enable, and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDRS D Flip-Flop with Synchronous Reset and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDRS_1 D Flip-Flop with Negative-Clock Edge and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDRSE D Flip-Flop with Synchronous Reset and Set and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDRSE_1 D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDS D Flip-Flop with Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDS_1 D Flip-Flop with Negative-Edge Clock and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

FDSE D Flip-Flop with Clock Enable and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FDSE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
Libraries Guide, 2.1i 2-27



Libraries Guide, 2.1i
FDSR D Flip-Flop with Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

FDSRE D Flip-Flop with Synchronous Set and Reset and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

FJKC J-K Flip-Flop with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FJKCE J-K Flip-Flop with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FJKCP J-K Flip-Flop with Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FJKCPE J-K Flip-Flop with Asynchronous Clear and Preset and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FJKP J-K Flip-Flop with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FJKPE J-K Flip-Flop with Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FJKRSE J-K Flip-Flop with Clock Enable and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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FJKSRE J-K Flip-Flop with Clock Enable and Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTC Toggle Flip-Flop with Toggle Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTCE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTCLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTCLEX Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

FTCP Toggle Flip-Flop with Toggle Enable and Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FTCPE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FTCPLE Loadable Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear and 
Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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FTP Toggle Flip-Flop with Toggle Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FTPE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FTPLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

FTRSE Toggle Flip-Flop with Toggle and Clock Enable and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTRSLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Synchronous Reset and 
Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTSRE Toggle Flip-Flop with Toggle and Clock Enable and Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

FTSRLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Synchronous Set and 
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
2-30 Xilinx Development System



Selection Guide
General
General elements include FPGA configuration functions, oscillators, boundary scan 
logic, and other functions not classified in other sections.

BSCAN Boundary Scan Logic Control Circuit

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

BSCAN_SPARTAN2 Spartan2 Boundary Scan Logic Control Circuit 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BSCAN_VIRTEX Virtex Boundary Scan Logic Control Circuit 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BYPOSC Bypass Oscillator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CAPTURE_SPARTAN2 Spartan2 Register State Capture for Bitstream Readback

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CAPTURE_VIRTEX Virtex Register State Capture for Bitstream Readback

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CK_DIV Internal Multiple-Frequency Clock Divider

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CLB CLB Configuration Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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CLKDLL Clock Delay Locked Loop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

CLKDLLHF High Frequency Clock Delay Locked Loop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

CONFIG Repository for Schematic-Level (Global) Attributes

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

CY_INIT Initialization Stage for Carry Chain

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

GND Ground-Connection Signal Tag

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

GXTL Crystal Oscillator with ACLK Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

IOB IOB Configuration Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

KEEPER KEEPER Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LUT1, 2, 3, 4 1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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LUT1_D, LUT2_D, 
LUT3_D, LUT4_D

1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LUT1_L, LUT2_L, 
LUT3_L, LUT4_L

1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MD0 Mode 0, Input Pad Used for Readback Trigger Input

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

MD1 Mode 1, Output Pad Used for Readback Data Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

MD2 Mode 2, Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

OSC Crystal Oscillator Amplifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

OSC4 Internal 5-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OSC5 Internal Multiple-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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OSC52 Internal Multiple-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

PULLDOWN Resistor to GND for Input Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

PULLUP Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

READBACK FPGA Bitstream Readback Controller

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

STARTUP User Interface to Global Clock, Reset, and 3-State Controls

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

STARTUP_SPARTAN2 Spartan2 User Interface to Global Clock, Reset, and 3-State Controls

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

STARTUP_VIRTEX Virtex User Interface to Global Clock, Reset, and 3-State Controls

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

TCK Boundary Scan Test Clock Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

TDI Boundary Scan Test Data Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √
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Input/Output Flip-Flops
Input/Output flip-flops are configured in IOBs. They include flip-flops whose 
outputs are enabled by 3-state buffers, flip-flops that can be set upon global set/reset 
rather than reset, and flip-flops with inverted clock inputs. The naming convention 
specifies each flip-flop function and is illustrated in the following figure.

Figure 2-6 Input/Output Flip-Flop Naming Convention

TDO Boundary Scan Data Output Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

TIMEGRP Schematic-Level Table of Basic Timing Specification Groups

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

TIMESPEC Schematic-Level Timing Requirement Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

TMS Boundary Scan Test Mode Select Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

VCC VCC-Connection Signal Tag

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

IFD, 4, 8, 16 Single- and Multiple-Input D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X4580

Output (O), Input (I)

Flip-Flop

D-Type

Active High Enable (E)
Active Low Enable (T)

Inverse of Normal Initial State

Inverted Clock

O F D E I _ 1
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IFD_1 Input D Flip-Flop with Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

 IFDI Input D Flip-Flop (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IFDI_1 Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IFDX, 4, 8, 16 Single- and Multiple-Input D Flip-Flops with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IFDX_1 Input D Flip-Flop with Inverted Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IFDXI Input D Flip-Flop with Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IFDXI_1 Input D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFD, 4, 8, 16 Single- and Multiple-Output D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OFD_1 Output D Flip-Flop with Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
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OFDE, 4, 8, 16 D Flip-Flops with Active-High Enable Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OFDE_1 D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

OFDEI D Flip-Flop with Active-High Enable Output Buffer (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDEI_1 D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock (Asynchronous 
Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDEX, 4, 8, 16 D Flip-Flops with Active-High Enable Output Buffers and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDEX_1 D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDEXI D Flip-Flop with Active-High Enable Output Buffer and Clock Enable (Asynchronous 
Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDEXI_1 D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, and Clock Enable 
(Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √
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OFDI Output D Flip-Flop (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFDI_1 Output D Flip-Flop with Inverted Clock (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFDT, 4, 8, 16 Single and Multiple D Flip-Flops with Active-Low 3-State Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OFDT_1 D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

OFDTI D Flip-Flop with Active-Low 3-State Output Buffer (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDTI_1 D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock (Asynchronous 
Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDTX, 4, 8, 16 Single and Multiple D Flip-Flops with Active-Low 3-State Output Buffers and Clock 
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDTX_1 D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √
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Input/Output Functions
Input/Output Block (IOB) resources are configured into various I/O primitives and 
macros for convenience, such as, output buffers (OBUFs) and output buffers with an 
enable (OBUFEs). Pads used to connect the circuit to PLD device pins are also 
included.

Virtex and Spartan2 have multiple variants (primitives) to choose from for each 
selectI/O buffer. The I/O interface for each variant corresponds to a specific I/O stan-
dard. 

OFDTXI D Flip-Flop with Active-Low 3-State Output Buffer and Clock Enable (Asynchronous 
Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDTXI_1 D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, and Clock Enable 
(Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

OFDX, 4, 8, 16 Single- and Multiple-Output D Flip-Flops with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFDX_1 Output D Flip-Flop with Inverted Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFDXI Output D Flip-Flop with Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OFDXI_1 Output D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

IBUF, 4, 8, 16 Single- and Multiple-Input Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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IBUF_selectIO Single Input Buffer with Selectable I/O Interface (16 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

IBUFG_selectIO Dedicated Input Buffer with Selectable I/O Interface (16 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

IOBUF_selectIO Bi-Directional Buffer with Selectable I/0 Interface (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

IOPAD, 4, 8, 16 Single- and Multiple-Input/Output Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

IPAD, 4, 8, 16 Single- and Multiple-Input Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OBUF, 4, 8, 16 Single- and Multiple-Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OBUF_selectIO Single Output Buffer with Selectable I/O Interface (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OBUFE, 4, 8, 16 3-State Output Buffers with Active-High Output Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OBUFT, 4, 8, 16 Single and Multiple 3-State Output Buffers with Active Low Output Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Input Latches
Single and multiple input latches can hold transient data entering a chip. Input latches 
use the same naming convention as I/O flip-flops.

OBUFT_selectIO Single 3-State Output Buffer with Active-Low Output Enable and Selectable I/O Inter-
face (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OPAD, 4, 8, 16 Single- and Multiple-Output Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

UPAD Connects the I/O Node of an IOB to the Internal PLD Circuit

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

ILD, 4, 8, 16 Transparent Input Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

ILD_1 Transparent Input Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

ILDI Transparent Input Data Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ILDI_1 Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ILDX, 4, 8, 16 Transparent Input Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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ILDX_1 Transparent Input Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ILDXI Transparent Input Data Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ILDXI_1 Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ILFFX Fast Capture Input Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ILFFXI Fast Capture Input Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ILFLX Fast Capture Transparent Input Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ILFLX_1 Fast Capture Input Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ILFLXI_1 Fast Capture Input Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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Latches
Latches (LD) are only available in the XC4000X, XC5200, XC9000, Spartan2, Spar-
tanXL, and Virtex architectures. XC3000 and XC4000E latches that existed in previous 
macro libraries are not recommended for new designs.

LD Transparent Data Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

LD_1 Transparent Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LD4, 8, 16  Multiple Transparent Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LDC Transparent Data Latch with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LDC_1 Transparent Data Latch with Asynchronous Clear and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LDCE Transparent Data Latch with Asynchronous Clear and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LDCE_1 Transparent Data Latch with Asynchronous Clear, Gate Enable, and Inverted Gate 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

LD4CE, LD8CE, 
LD16CE

Transparent Data Latches with Asynchronous Clear and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √
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LDCP Transparent Data Latch with Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDCP_1 Transparent Data Latch with Asynchronous Clear and Preset and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDCPE Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDCPE_1 Transparent Data Latch with Asynchronous Clear and Preset, Gate Enable, and Inverted 
Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDE Transparent Data Latch with Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDE_1 Transparent Data Latch with Gate Enable and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDP Transparent Data Latch with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LDP_1 Transparent Data Latch with Asynchronous Preset and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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Logic Primitives
Combinatorial logic gates that implement the basic Boolean functions are available in 
all architectures with up to five inputs in all combinations of inverted and non-
inverted inputs, and with six to nine inputs non-inverted.

LDPE Transparent Data Latch with Asynchronous Preset and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

LDPE_1 Transparent Data Latch with Asynchronous Preset, Gate Enable, and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

AND2-9 2- to 9-Input AND Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

AND12, 16 12- and 16-Input AND Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

INV, 4, 8, 16 Single and Multiple Inverters

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

MULT_AND Fast Multiplier AND

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

NAND2-9 2- to 9-Input NAND Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

NAND12, 16 12- and 16-Input NAND Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √
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NOR2-9 2- to 9-Input NOR Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

NOR12, 16 12 and 16-Input NOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

OAND2 2-Input AND Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ONAND2 2-Input NAND Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ONOR2 2-Input NOR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OOR2 2-Input OR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OR2-9 2- to 9-Input OR Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

OR12, 16 12- and 16-Input OR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √

 OXNOR2 2-Input Exclusive-NOR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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 OXOR2 2-Input Exclusive-OR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

SOP3-4 Sum of Products

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

WAND1, 4, 8, 16 Open-Drain Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

WOR2AND 2-Input OR Gate with Wired-AND Open-Drain Buffer Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

XNOR2-9 2- to 9-Input XNOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

XOR2-9 2- to 9-Input XOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

XORCY XOR for Carry Logic with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

XORCY_D XOR for Carry Logic with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

XORCY_L XOR for Carry Logic with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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Map Elements
Map elements are used in conjunction with logic symbols to constrain the logic to 
particular CLBs or particular F or H function generators.

Memory Elements
The XC4000, Spartan, and SpartanXL architectures have a number of static RAM 
configurations defined as macros. In the Virtex and Spartan2 architectures, they are 
defined as primitives. These 16- or 32-word RAMs are 1, 2, 4, and 8 bits wide. There 
are two ROMs in the XC4000, Spartan and SpartanXL architectures, 16X1 and 32X1. 

The Virtex and Spartan2 series have dedicated blocks of on-chip 4096-bit single-port 
and dual-port synchronous RAM. Each port is configured to a specific data width. 
There are five single-port block RAM primitives and 30 dual-port block RAM primi-
tives.

CLBMAP Logic-Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

F5MAP 5-Input Function Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FMAP F Function Generator Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

HMAP H Function Generator Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √

RAM16X1 16-Deep by 1-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X1D 16-Deep by 1-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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RAM16X1D_1 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X1S 16-Deep by 1-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM16X1S_1 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X2 16-Deep by 2-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X2D 16-Deep by 2-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

 RAM16X2S 16-Deep by 2-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM16X4 16-Deep by 4-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X4D 16-Deep by 4-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM16X4S 16-Deep by 4-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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RAM16X8 16-Deep by 8-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM16X8D 16-Deep by 8-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM16X8S 16-Deep by 8-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM32X1 32-Deep by 1-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM32X1S 32-Deep by 1-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM32X1S_1 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM32X2 32-Deep by 2-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM32X2S 32-Deep by 2-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM32X4 32-Deep by 4-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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RAM32X4S 32-Deep by 4-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAM32X8 32-Deep by 8-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAM32X8S 32-Deep by 8-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

RAMB4_Sn 4096-Bit Single-Port Synchronous Block RAM with Port Width (n) Configured to 1, 2, 4, 
8, or 16 Bits (5 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

RAMB4_Sn_Sn 4096-Bit Dual-Port Synchronous Block RAM with Port Width (n) Configured to 1, 2, 4, 8, 
or 16 Bits (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

ROM16X1 16-Deep by 1-Wide ROM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

ROM32X1 32-Deep by 1-Wide ROM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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Multiplexers
The multiplexer naming convention shown in the following figure indicates the 
number of inputs and outputs and if an enable is available. There are a number of TTL 
7400-type multiplexers that have active-Low or inverted outputs.

Figure 2-7 Multiplexer Naming Convention

CY_MUX 2-to-1 Multiplexer for Carry Logic

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

F5_MUX 2-to-1 Lookup Table Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

M2_1 2-to-1 Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

M2_1B1 2-to-1 Multiplexer with D0 Inverted

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

 M2_1B2 2-to-1 Multiplexer with D0 and D1 Inverted

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

M2_1E 2-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X4620

M 8 _ 1 E
Multiplexer

Number of Inputs

Number of Outputs

Output Enable
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M4_1E 4-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

M8_1E 8-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

M16_1E 16-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

MUXCY 2-to-1 Multiplexer for Carry Logic with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXCY_D 2-to-1 Multiplexer for Carry Logic with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXCY_L 2-to-1 Multiplexer for Carry Logic with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXF5 2-to-1 Lookup Table Multiplexer with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXF5_D 2-to-1 Lookup Table Multiplexer with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXF5_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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MUXF6 2-to-1 Lookup Table Multiplexer with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXF6_D 2-to-1 Lookup Table Multiplexer with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

MUXF6_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OMUX2 2-to-1 Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

X74_150 16-to-1 Multiplexer with Active-Low Enable and Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_151 8-to-1 Multiplexer with Active-Low Enable and Complementary Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_152 8-to-1 Multiplexer with Active-Low Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_153 Dual 4-to-1 Multiplexer with Active-Low Enables and Common Select Input

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_157 Quadruple 2-to-1 Multiplexer with Common Select and Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
2-54 Xilinx Development System



Selection Guide
Shift Registers
Shift registers are available in a variety of sizes and capabilities. The naming conven-
tion shown in the following figure illustrates available features.

Figure 2-8 Shift Register Naming Convention

X74_158 Quadruple 2-to-1 Multiplexer with Common Select, Active-Low Enable, and Active-
Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_298 Quadruple 2-Input Multiplexer with Storage and Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_352 Dual 4-to-1 Multiplexer with Active-Low Enables and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

SR4CE, SR8CE, 
SR16CE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock Enable and Asynchronous 
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

SR4CLE, SR8CLE, 
SR16CLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers with Clock Enable 
and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

X4578

Bit Size

Shift Register

Asynchronous Clear (C)
Synchronous Reset (R)

Clock Enable

Loadable

S R 8 R L E D

Directional
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SR4CLED, SR8CLED, 
SR16CLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

SR4RE, SR8RE, 
SR16RE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock Enable and Synchronous 
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

SR4RLE, SR8RLE, 
SR16RLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers with Clock Enable 
and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

SR4RLED, SR8RLED, 
SR16RLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

SRL16 16-Bit Shift Register Look-Up-Table (LUT)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

SRL16_1 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Clock Edge

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

SRL16E 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

SRL16E_1 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
2-56 Xilinx Development System



Selection Guide
Shifters
Shifters are barrel shifters (BRLSHFT) of four and eight bits.

X74_164 8-Bit Serial-In Parallel-Out Shift Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_165S 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_194 4-Bit Loadable Bidirectional Serial/Parallel-In Parallel-Out Shift Register

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

X74_195 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

BRLSHFT4, 8 4-, 8-Bit Barrel Shifters

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Chapter 3

Design Elements (ACC1 to BYPOSC)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order. 

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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ACC1

1-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, 
and Synchronous Reset

ACC1 can add or subtract a 1-bit unsigned-binary word to or from the contents of a 1-
bit data register and store the results in the register. The register can be loaded with a 
1-bit word. The synchronous reset (R) has priority over all other inputs and, when 
High, causes the output to go to logic level zero during the Low-to-High clock (C) 
transition. Clock (C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Load

When the load input (L) is High, CE is ignored and the data on the input D0 is loaded 
into the 1-bit register during the Low-to-High clock (C) transition.

Add

When control inputs ADD and CE are both High, the accumulator adds a 1-bit word 
(B0) and carry-in (CI) to the contents of the 1-bit register. The result is stored in the 
register and appears on output Q0 during the Low-to-High clock transition. The 
carry-out (CO) is not registered synchronously with the data output. CO always 
reflects the accumulation of input B0 and the contents of the register, which allows 
cascading of ACC1s by connecting CO of one stage to CI of the next stage. In add 
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract

When ADD is Low and CE is High, the 1-bit word B0 and CI are subtracted from the 
contents of the register. The result is stored in the register and appears on output Q0 
during the Low-to-High clock transition. The carry-out (CO) is not registered 
synchronously with the data output. CO always reflects the accumulation of input B0 
and the contents of the register, which allows cascading of ACC1s by connecting CO 
of one stage to CI of the next stage. In subtract mode, CO acts as a borrow, and CO 
and CI are active-Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A

X3862

ACC1

C

D0

B0

CI Q0

CO

L

CE

ADD

R
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Design Elements (ACC1)
Figure 3-1 ACC1 Implementation XC9000
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ACC4, 8, 16

4-, 8-, 16-Bit Loadable Cascadable Accumulators with Carry-In, 
Carry-Out, and Synchronous Reset

ACC4, ACC8, ACC16 can add or subtract a 4-, 8-, 16-bit unsigned-binary, respectively 
or twos-complement word to or from the contents of a 4-, 8-, 16-bit data register and 
store the results in the register. The register can be loaded with the 4-, 8-, 16-bit word. 

In the XC4000, Spartan, and SpartanXL, these accumulators are implemented using 
carry logic and relative location constraints, which assure most efficient logic place-
ment.

The synchronous reset (R) has priority over all other inputs, and when High, causes 
all outputs to go to logic level zero during the Low-to-High clock (C) transition. Clock 
(C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol. 

Load

When the load input (L) is High, CE is ignored and the data on the D inputs is loaded 
into the register during the Low-to-High clock (C) transition. ACC4 loads the data on 
inputs D3 – D0 into the 4-bit register. ACC8 loads the data on D7 – D0 into the 8-bit 
register. ACC16 loads the data on inputs D15 – D0 into the 16-bit register.

Unsigned Binary Versus Twos Complement

ACC4, ACC8, ACC16 can operate, respectively, on either 4-, 8-, 16-bit unsigned binary 
numbers or 4-, 8-, 16-bit twos-complement numbers. If the inputs are interpreted as 
unsigned binary, the result can be interpreted as unsigned binary. If the inputs are 
interpreted as twos complement, the output can be interpreted as twos complement. 
The only functional difference between an unsigned binary operation and a twos-
complement operation is how they determine when “overflow” occurs. Unsigned 
binary uses CO, while twos complement uses OFL to determine when “overflow” 
occurs.

Unsigned Binary Operation

For unsigned binary operation, ACC4 can represent numbers between 0 and 15, inclu-
sive; ACC8 between 0 and 255, inclusive; and ACC16 between 0 and 65535, inclusive. 
In add mode, CO is active (High) when the sum exceeds the bounds of the adder/
subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the 
difference exceeds the bounds. The carry-out (CO) is not registered synchronously 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

X3863
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Design Elements (ACC4, 8, 16)
with the data outputs. CO always reflects the accumulation of the B inputs (B3 – B0 
for ACC4, B7 – B0 for ACC8, B15 – B0 for ACC16) and the contents of the register. This 
allows cascading of ACC4s, ACC8s, or ACC16s by connecting CO of one stage to CI of 
the next stage. An unsigned binary “overflow” that is always active-High can be 
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ACC4 can represent numbers between -8 and +7, 
inclusive; ACC8 between -128 and +127, inclusive; ACC16 between -32768 and 
+32767, inclusive. If an addition or subtraction operation result exceeds this range, the 
OFL output goes High. The overflow (OFL) is not registered synchronously with the 
data outputs. OFL always reflects the accumulation of the B inputs (B3 – B0 for ACC4, 
B7 – B0 for ACC8, B15 – B0 for ACC16) and the contents of the register, which allows 
cascading of ACC4s, ACC8s, or ACC16s by connecting OFL of one stage to CI of the 
next stage.

CO should be ignored in twos-complement operation.

Topology for XC4000, Spartan, SpartanXL

This is the ACC4 (4-bit), ACC8 (8-bit), and ACC16 (16-bit) topology for XC4000E, 
XC4000X, Spartan, and SpartanXL devices.
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Topology for XC5200

This is the ACC8 (8-bit) and ACC16 (16-bit) topology for XC5200 devices.
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Design Elements (ACC4, 8, 16)
Figure 3-2 ACC8 Implementation XC3000
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Figure 3-3 ACC8 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Design Elements (ACC4, 8, 16)
Figure 3-4 ACC8 Implementation XC5200
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Figure 3-5 ACC8 Implementation Spartan2, Virtex
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Design Elements (ACC4, 8, 16)
Figure 3-6 ACC4 Implementation XC9000
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Figure 3-7 ACC8 Implementation XC9000
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Design Elements (ACLK)
ACLK

Alternate Clock Buffer

ACLK, the alternate clock buffer, is used to distribute high fan-out clock signals 
throughout a PLD device. One ACLK buffer on each device provides direct access to 
every Configurable Logic Block (CLB) and Input Output Block (IOB) clock pin. The 
ACLK buffer is slightly slower than the global clock buffer (GCLK) but otherwise 
similar. Unlike GCLK, the routing resources used for the ACLK network can be used 
to route other signals if it is not used. For this reason, if only one of the GCLK and 
ACLK buffers is used, GCLK is preferred. The ACLK input (I) can come from one of 
the following sources.

• A CMOS-level signal on the dedicated BCLKIN pin. BCLKIN is a direct CMOS-
only input to the ACLK buffer. To use the BCLKIN pin, connect the input of the 
ACLK element to IBUF and IPAD elements.

• A CMOS- or TTL-level external signal. To connect an external input to the ACLK 
buffer, connect the input of the ACLK element to the output of the IBUF for that 
signal. Unless the corresponding IPAD element is constrained otherwise, PAR 
typically places that IOB directly adjacent to the ACLK buffer.

• The on-chip crystal oscillator. The output of the XTAL oscillator on XC3000 
devices is directly adjacent to the ACLK buffer input. If the GXTL element is used, 
the output of the XTAL oscillator is automatically connected to the ACLK buffer; 
do not use the ACLK element for anything else.

• An internal signal. To drive the ACLK buffer with an internal signal, connect that 
signal directly to the input of the ACLK element.

For a negative-edge clock, insert an INV (inverter) element between the ACLK output 
and the clock input. Inversion is performed inside the CLB, or in the case of IOB clock 
pins, on the IOB clock line (that controls the clock sense for the IOBs on an entire edge 
of the chip).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A N/A

X3883
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ADD1

1-Bit Full Adder with Carry-In and Carry-Out

ADD1 is a cascadable 1-bit full adder with carry-in and carry-out. It adds two 1-bit 
words (A and B) and a carry-in (CI), producing a binary sum (S0) output and a carry-
out (CO).

Figure 3-8 ADD1 Implementation XC9000
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Design Elements (ADD4, 8, 16)
ADD4, 8, 16

4-, 8-, 16-Bit Cascadable Full Adders with Carry-In, Carry-Out, and 
Overflow

ADD4, ADD8, and ADD16 add two words and a carry-in (CI), producing a sum 
output and carry-out (CO) or overflow (OFL). ADD4 adds A3 – A0, B3 – B0, and CI 
producing the sum output S3 – S0 and CO (or OFL). ADD8 adds A7 – A0, B7 – B0, and 
CI, producing the sum output S7 – S0 and CO (or OFL). ADD16 adds A15 – A0, B15 – 
B0 and CI, producing the sum output S15 – S0 and CO (or OFL).

ADD4, ADD8, and ADD16 are implemented in the XC4000, Spartan, and SpartanXL 
using carry logic and relative location constraints, which assure most efficient logic 
placement.

Unsigned Binary Versus Twos Complement

ADD4, ADD8, ADD16 can operate on either 4-, 8-, 16-bit unsigned binary numbers or 
4-, 8-, 16-bit twos-complement numbers, respectively. If the inputs are interpreted as 
unsigned binary, the result can be interpreted as unsigned binary. If the inputs are 
interpreted as twos complement, the output can be interpreted as twos complement. 
The only functional difference between an unsigned binary operation and a twos-
complement operation is how they determine when “overflow” occurs. Unsigned 
binary uses CO, while twos-complement uses OFL to determine when “overflow” 
occurs. Therefore, if you want to interpret the inputs as unsigned binary, you should 
follow the CO output. If you want to interpret the inputs as twos complement, you 
should follow the OFL output.

Unsigned Binary Operation

For unsigned binary operation, ADD4 can represent numbers between 0 and 15, 
inclusive; ADD8 between 0 and 255, inclusive; ADD16 between 0 and 65535, inclu-
sive. CO is active (High) when the sum exceeds the bounds of the adder.

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ADD4 can represent numbers between -8 and +7, 
inclusive; ADD8 between -128 and +127, inclusive; ADD16 between -32768 and 
+32767, inclusive. OFL is active (High) when the sum exceeds the bounds of the 
adder.

CO is ignored in twos-complement operation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro
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Topology for XC4000, Spartan, SpartanXL

This is the ADD4 (4-bit), ADD8 (8-bit), and ADD16 (16-bit) topology for XC4000E, 
XC4000X, Spartan, and SpartanXL devices.
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Design Elements (ADD4, 8, 16)
Topology for XC5200

This is the ADD8 (8-bit) and ADD16 (16-bit) topology for XC5200 devices.
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Figure 3-9 ADD8 Implementation XC3000
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Design Elements (ADD4, 8, 16)
Figure 3-10 ADD8 Implementation XC4000E, XC4000X, Spartan, SpartanXL

CO

OFL

OFOR3

XOR2

OR3

OFOR1

OFOR2

I1
I2
I3
I4

O

FMAPOR3

OFL

COR2

CO

COR1

COR3

C6
A7

S6

S7B7

A7
C7_M

B7

S[7:0]S7

C5

C4

C3

B4

B5

B6
A6

A5

A4

S3

S4

S5

S6

S4

S5

C2

C1

B2

B3
A3

A2
S2S2

S3

C0

B1
A1

S1

S1

A0

ADD

B1

A1

B0

CY4

CIN

COUT

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

S2
XOR3

S1
XOR3

C1

A0

ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

C_INCY4_13
ADDSUB-FG-CI

CY4_13

S0

XOR3

B0
A0
C_IN

S0

I1
I2
I3
I4

O

FMAP

CI

B[7:0]

B0

B1

CY4_39
FORCE-F1

A[7:0]

A0

A1

S0

C3

A0

ADD

B1
A1

B0

CIN

COUT

COUT0

(F3)
(F1)
(F2)

(G4)
(G1)

CARRY MODE

CY4_13

S3
XOR3

S4
XOR3

B2

B3

A3

A2

A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F1)

(F2)

(G4)

(G1)

CARRY MODE

ADDSUB-FG-CI

S6

XOR3
S5

XOR3

B5

B4
A5

A4

C5
CY4_12
ADDSUB-F-CI

S7
XOR3

B6
A6

A7

AND2

RLOC=R0C0.F

RLOC=R0C0.G

RLOC=R0C0

AND2

AND2

A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

CY4_42
EXAMINE-CI

C7

B7
A7
C7_M

AND2

B7

B7

AND2

AND2

A7

C7_M

C4

C2

C0

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

X4333

C6

COUT0

COUT0

A0

ADD

B1
A1

B0

(F3)
(F1)
(F2)

(G4)
(G1) COUT

CY4

CY4

CARRY MODE

ADDSUB-FG-CI

(F3)
Libraries Guide, 2.1i 3-19



Libraries Guide, 2.1i
Figure 3-11 ADD8 Implementation XC5200
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Design Elements (ADD4, 8, 16)
Figure 3-12 ADD8 Implementation Spartan2, Virtex
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Figure 3-13 ADD4 Implementation XC9000

XOR2

XOR2

XOR2

XOR2

X2

X3

X1
KEEP

GND

AND3

AND2

AND4

AND4

AND3

AND3

AND3

AND2

AND2

AND2

AND3B1

AND3B2

OR2

OR4

OR5

OR3

OR2

AND5

AND5

AND4

AND2

XOR2

XOR2

OR2

XOR2

XOR2

X0

CI_ORO

KEEP

KEEP

KEEP

A0

B0

A1

B1

A2

B2

CI

A3

B3

S0

S1

S2

S3

CO

OFL

S3
A3
B3

X7613
3-22 Xilinx Development System



Design Elements (ADD4, 8, 16)
Figure 3-14 ADD8 Implementation XC9000
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ADSU1

1-Bit Cascadable Adder/Subtracter with Carry-In and Carry-Out

When the ADD input is High, two 1-bit words (A0 and B0) are added with a carry-in 
(CI), producing a 1-bit output (S0) and a carry-out (CO). When the ADD input is Low, 
B0 is subtracted from A0, producing a result (S0) and borrow (CO). In add mode, CO 
represents a carry-out, and CO and CI are active-High. In subtract mode, CO repre-
sents a borrow, and CO and CI are active-Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A

Table 3-1 Add Function, ADD=1

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Table 3-2 Subtract Function, ADD=0

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 1 0

0 1 0 0 0

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 1

1 1 1 0 1

A0

S0

ADD CO

CI

X4035

B0
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Design Elements (ADSU1)
Figure 3-15 ADSU1 Implementation XC9000
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ADSU4, 8, 16

4-, 8-, 16-Bit Cascadable Adders/Subtracters with Carry-In, Carry-
Out, and Overflow

When the ADD input is High, ADSU4, ADSU8, and ADSU16 add two words and a 
carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). ADSU4 
adds two 4-bit words (A3 – A0 and B3 – B0) and a CI, producing a 4-bit sum output 
(S3 – S0) and CO or OFL. ADSU8 adds two 8-bit words (A7 – A0 and B7 – B0) and a CI 
producing, an 8-bit sum output (S7 – S0) and CO or OFL. ADSU16 adds two 16-bit 
words (A15 – A0 and B15 – B0) and a CI, producing a 16-bit sum output (S15 – S0) and 
CO or OFL.

When the ADD input is Low, ADSU4, ADSU8, and ADSU16 subtract Bz – B0 from 
Az– A0, producing a difference output and CO or OFL. ADSU4 subtracts B3 – B0 from 
A3 – A0, producing a 4-bit difference (S3 – S0) and CO or OFL. ADSU8 subtracts B7 – 
B0 from A7 – A0, producing an 8-bit difference (S7 – S0) and CO or OFL. ADSU16 
subtracts B15 – B0 from A15 – A0, producing a 16-bit difference (S15 – S0) and CO or 
OFL.

In add mode, CO and CI are active-High. In subtract mode, CO and CI are active-Low. 
OFL is active-High in add and subtract modes.

ADSU4, ADSU8, and ADU16 are implemented in the XC4000, Spartan, and Spar-
tanXL using carry logic and relative location constraints, which assure most efficient 
logic placement. 

ADSU4, ADSU8, and ADSU16 CI and CO pins do not use the CPLD carry chain.

Unsigned Binary Versus Twos Complement

ADSU4, ADSU8, ADSU16 can operate, respectively, on either 4-, 8-, 16-bit unsigned 
binary numbers or 4-, 8-, 16-bit twos-complement numbers. If the inputs are inter-
preted as unsigned binary, the result can be interpreted as unsigned binary. If the 
inputs are interpreted as twos complement, the output can be interpreted as twos 
complement. The only functional difference between an unsigned binary operation 
and a twos-complement operation is how they determine when “overflow” occurs. 
Unsigned binary uses CO, while twos complement uses OFL to determine when 
“overflow” occurs.

With adder/subtracters, either unsigned binary or twos-complement operations 
cause an overflow. If the result crosses the overflow boundary, an overflow is gener-
ated. Similarly, when the result crosses the carry-out boundary, a carry-out is gener-
ated. The following figure shows the ADSU carry-out and overflow boundaries.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro
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Design Elements (ADSU4, 8, 16)
Figure 3-16 ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation

For unsigned binary operation, ADSU4 can represent numbers between 0 and 15, 
inclusive; ADSU8 between 0 and 255, inclusive; ADSU16 between 0 and 65535, inclu-
sive. In add mode, CO is active (High) when the sum exceeds the bounds of the 
adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low 
when the difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be generated by gating 
the ADD signal and CO as follows.

unsigned overflow = CO XNOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ADSU4 can represent numbers between -8 and +7, 
inclusive; ADSU8 between -128 and +127, inclusive; ADSU16 between -32768 and 
+32767, inclusive. If an addition or subtraction operation result exceeds this range, the 
OFL output goes High.

CO is ignored in twos-complement operation.
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Topology for XC4000, Spartan, SpartanXL

This is the ADSU4 (4-bit), ADSU8 (8-bit), and ADSU16 (16-bit) topology for XC4000E, 
XC4000X, Spartan, and SpartanXL devices.
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Design Elements (ADSU4, 8, 16)
XC5200 Topology

This is the ADSU8 (8-bit) and ADSU16 (16-bit) topology for XC5200 devices.

A
LC3

LC2

LC1

LC0

15 S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

B15

A14

B14
A13

B13

A12

B12

A
LC3

LC2

LC1

LC0

11

B11

A10

B10
A9

B9

A8

B8

A
LC3

LC2

LC1

LC0

7

B7

A6

B6
A5

B5

A4

B4

A
LC3

LC2

LC1

LC0

3

B3

A2

B2
A1

B1

A0

B0

CY_INIT
LC3

OFL*

CO

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

S7

S6

S5

S4

S3

S2

S1

S0

A
LC3

LC2

LC1

LC0

7

B 7

A 6

B 6
A 5

B 5

A 4

B 4

A
LC3

LC2

LC1

LC0

3

B 3

A 2

B 2
A 1

B 1

A 0

B 0

CY_INIT
LC3

OFL*
LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

16-Bit

8-Bit

X8210
Libraries Guide, 2.1i 3-29



Libraries Guide, 2.1i
Figure 3-17 ADSU8 Implementation XC3000
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Design Elements (ADSU4, 8, 16)
Figure 3-18 ADSU8 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Figure 3-19 ADSU8 Implementation XC5200
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Design Elements (ADSU4, 8, 16)
Figure 3-20 ADSU8 Implementation Spartan2, Virtex
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Figure 3-21 ADSU4 Implementation XC9000

Figure 3-22 ADSU8 Implementation XC9000
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Design Elements (AND2-9)
AND2-9

2- to 9-Input AND Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

AND2, 
AND2B1, 
AND2B2, 
AND3,
AND3B1, 
AND3B2, 
AND3B3, 
AND4,
AND4B1, 
AND4B2, 
AND4B3, 
AND4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

AND5, 
AND5B1, 
AND5B2, 
AND5B3, 
AND5B4, 
AND5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive Primitive

AND6, 
AND7, 
AND8, 
AND9

Macro Macro Macro Macro Primitive Macro Macro Macro Macro
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Figure 3-23 AND Gate Representations

The AND function is performed in the Configurable Logic Block (CLB) function 
generators for XC3000, XC4000E, XC4000X, XC5200, Spartan, and SpartanXL.

AND functions of up to five inputs are available in any combination of inverting and 
non-inverting inputs. AND functions of six to nine inputs are available with only non-
inverting inputs. To make some or all inputs inverting, use external inverters. Because 
each input uses a CLB resource in FPGAs, replace functions with unused inputs with 
functions having the appropriate number of inputs.

Refer to “AND12, 16” for information on additional AND functions for the XC5200, 
Spartan2, and Virtex.

AND2 AND3 AND4 AND5 AND6
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AND3B3 AND4B3 AND5B3
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Design Elements (AND2-9)
Figure 3-24 AND5 Implementation XC5200

Figure 3-25 AND8 Implementation XC3000

Figure 3-26 AND8 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 3-27 AND8 Implementation XC5200
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Figure 3-28 AND8 Implementation Spartan2, Virtex
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Design Elements (AND12, 16)
AND12, 16

12- and 16-Input AND Gates with Non-Inverted Inputs

AND12 and AND16 functions are performed in the Configurable Logic Block (CLB) 
function generator.

The 12- and 16-input AND functions are available only with non-inverting inputs. To 
invert all of some inputs, use external inverters.

Refer to “AND2-9” for information on more AND functions.

Figure 3-29 AND12 Implementation XC5200
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Figure 3-30 AND12 Implementation Spartan2, Virtex
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Design Elements (AND12, 16)
Figure 3-31 AND16 Implementation XC5200
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Figure 3-32 AND16 Implementation Spartan2, Virtex
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Design Elements (BRLSHFT4, 8)
BRLSHFT4, 8

4-, 8-Bit Barrel Shifters

BRLSHFT4, a 4-bit barrel shifter, can rotate four inputs (I3 – I0) up to four places. The 
control inputs (S1 and S0) determine the number of positions, from one to four, that 
the data is rotated. The four outputs (O3 – O0) reflect the shifted data inputs.

BRLSHFT8, an 8-bit barrel shifter, can rotate the eight inputs (I7 – I0) up to eight 
places. The control inputs (S2 – S0) determine the number of positions, from one to 
eight, that the data is rotated. The eight outputs (O7 – O0) reflect the shifted data 
inputs.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 3-3 BRLSHFT4 Truth Table

Inputs Outputs

S1 S0 I0 I1 I2 I3 O0 O1 O2 O3

0 0 a b c d a b c d

0 1 a b c d b c d a

1 0 a b c d c d a b

1 1 a b c d d a b c

Table 3-4 BRLSHFT8 Truth Table

Inputs Outputs

S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 a b c d e f g h a b c d e f g h

0 0 1 a b c d e f g h b c d e f g h a

0 1 0 a b c d e f g h c d e f g h a b

0 1 1 a b c d e f g h d e f g h a b c

1 0 0 a b c d e f g h e f g h a b c d

1 0 1 a b c d e f g h f g h a b c d e

1 1 0 a b c d e f g h g h a b c d e f

1 1 1 a b c d e f g h h a b c d e f g

X3856
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Figure 3-33 BRLSHFT8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (BSCAN)
BSCAN

Boundary Scan Logic Control Circuit

The BSCAN symbol indicates that boundary scan logic should be enabled after the 
programmable logic device (PLD) configuration is complete. It also provides optional 
access to some special features of the XC5200 boundary scan logic.

Note: For specific information on boundary scan for each architecture, refer to The 
Programmable Logic Data Book.

To indicate that boundary scan remains enabled after configuration, connect the 
BSCAN symbol to the TDI, TMS, TCK, and TDO pads. The other pins on BSCAN do 
not need to be connected, unless those special functions are needed. A signal on the 
TDO1 input is passed to the external TDO output when the USER1 instruction is 
executed; the SEL1 output goes High to indicate that the USER1 instruction is active. 
The TDO2 and SEL2 pins perform a similar function for the USER2 instruction. The 
DRCK output provides access to the data register clock (generated by the TAP 
controller). The IDLE output provides access to a version of the TCK input, which is 
only active while the TAP controller is in the Run-Test-Idle state. The RESET, 
UPDATE, and SHIFT pins of the XC5200 BSCAN symbol represent the decoding of 
the corresponding state of the boundary scan internal state machine. These functions 
are not available in the XC4000E, XC4000X, Spartan, and SpartanXL.

If boundary scan is used only before configuration is complete, do not include the 
BSCAN symbol in the design. The TDI, TMS, TCK, and TDO pins can be reserved for 
user functions.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A
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BSCAN_SPARTAN2

Spartan2 Boundary Scan Logic Control Circuit

The BSCAN_SPARTAN2 symbol is used to create internal boundary scan chains in a 
Spartan2 device. The 4-pin JTAG interface (TDI, TDO, TCK, and TMS) are dedicated 
pins in Spartan2. To use normal JTAG for boundary scan purposes, just hook up the 
JTAG pins to the port and go. The pins on the BSCAN_SPARTAN2 symbol do not 
need to be connected, unless those special functions are needed to drive an internal 
scan chain. 

A signal on the TDO1 input is passed to the external TDO output when the USER1 
instruction is executed; the SEL1 output goes High to indicate that the USER1 instruc-
tion is active.The DRCK1 output provides USER1 access to the data register clock 
(generated by the TAP controller). The TDO2 and SEL2 pins perform a similar func-
tion for the USER2 instruction and the DRCK2 output provides USER2 access to the 
data register clock (generated by the TAP controller). The RESET, UPDATE, and 
SHIFT pins represent the decoding of the corresponding state of the boundary scan 
internal state machine. The TDI pin provides access to the TDI signal of the JTAG port 
in order to shift data into an internal scan chain.

Note: For specific information on boundary scan for an architecture, refer to The 
Programmable Logic Data Book. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive N/A

X8894
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Design Elements (BSCAN_VIRTEX)
BSCAN_VIRTEX

Virtex Boundary Scan Logic Control Circuit

The BSCAN_VIRTEX symbol is used to create internal boundary scan chains in a 
Virtex device. The 4-pin JTAG interface (TDI, TDO, TCK, and TMS) are dedicated pins 
in Virtex. To use normal JTAG for boundary scan purposes, just hook up the JTAG 
pins to the port and go. The pins on the BSCAN_VIRTEX symbol do not need to be 
connected, unless those special functions are needed to drive an internal scan chain. 

A signal on the TDO1 input is passed to the external TDO output when the USER1 
instruction is executed; the SEL1 output goes High to indicate that the USER1 instruc-
tion is active.The DRCK1 output provides USER1 access to the data register clock 
(generated by the TAP controller). The TDO2 and SEL2 pins perform a similar func-
tion for the USER2 instruction and the DRCK2 output provides USER2 access to the 
data register clock (generated by the TAP controller). The RESET, UPDATE, and 
SHIFT pins represent the decoding of the corresponding state of the boundary scan 
internal state machine. The TDI pin provides access to the TDI signal of the JTAG port 
in order to shift data into an internal scan chain.

Note: For specific information on boundary scan for an architecture, refer to The 
Programmable Logic Data Book. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A N/A Primitive

X8679
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BUF

 General-Purpose Buffer

BUF is a general purpose, non-inverting buffer. 

In FPGA architectures, BUF is usually not necessary and is removed by the parti-
tioning software (MAP). The BUF element can be preserved for reducing the delay on 
a high fan-out net, for example, by splitting the net and reducing capacitive loading. 
In this case, the buffer is preserved by attaching an X (explicit) attribute to both the 
input and output nets of the BUF.

In CPLD architecture, BUF is usually removed, unless you inhibit optimization by 
applying the OPT=OFF attribute to the BUF symbol or by using the 
LOGIC_OPT=OFF global attribute.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3830
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Design Elements (BUF4, 8, 16)
BUF4, 8, 16

 General-Purpose Buffers

BUF4, 8, 16 are general purpose, non-inverting buffers. 

In CPLD architecture, BUF4, BUF8, and BUF16 are usually removed, unless you 
inhibit optimization by applying the OPT=OFF attribute to the BUF4, BUF8, or BUF16 
symbol or by using the LOGIC_OPT=OFF global attribute.

Figure 3-34 BUF8 Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A
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BUFCF

Fast Connect Buffer

BUFCF is a single fast connect buffer used to connect the outputs of the LUTs and 
some dedicated logic directly to the input of another LUT. Using this buffer implies 
CLB packing. No more than four LUTs may be connected together as a group.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

X3830
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BUFE, 4, 8, 16

Internal 3-State Buffers with Active High Enable

BUFE, BUFE4, BUFE8, and BUFE16 are single or multiple tristate buffers with inputs 
I, I3 – I0, I7 – I0, and I15 – I0, respectively; outputs O, O3 – O0, O7 – O0, and O15 – O0, 
respectively; and active-High output enable (E). When E is High, data on the inputs of 
the buffers is transferred to the corresponding outputs. When E is Low, the output is 
high impedance (Z state or Off). The outputs of the buffers are connected to horizontal 
longlines in FPGA architectures.

The outputs of separate BUFE symbols can be tied together to form a bus or a multi-
plexer. Make sure that only one E is High at any one time. If none of the E inputs is 
active-High, a “weak-keeper” circuit (FPGAs) keeps the output bus from floating but 
does not guarantee that the bus remains at the last value driven onto it.

In XC3000, XC4000E, XC4000X, Spartan, and SpartanXL, the E signal in BUFE macros 
is implemented by using a BUFT with an inverter on the active-Low enable (T) pin. 
This inverter can add an extra level of logic to the data path. Pull-up resistors can be 
used to establish a High logic level if all BUFE elements are Off. 

In the XC5200 architecture, pull-ups cannot be used in conjunction with BUFT or 
BUFE macros because there are no pull-ups available at the ends of the horizontal 
longlines.

For XC9500 devices, BUFE output nets assume the High logic level when all 
connected BUFE/BUFT buffers are disabled. On-chip 3-state multiplexing is not avail-
able in XC9500XL devices.

For Virtex and Spartan2, BUFE elements need a PULLUP element connected to their 
output. NGDBuild inserts a PULLUP element if one is not connected.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

BUFE Macro Macro Macro Macro Primitive* Macro Macro Primitive Primitive

BUFE4,
BUFE8,
BUFE16

Macro Macro Macro Macro Macro* Macro Macro Macro Macro

* not supported for XC9500XL and XC9500XV devices

Inputs Outputs
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Figure 3-35 BUFE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 3-36 BUFE8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 3-37 BUFE8 Implementation XC9000, Spartan2, Virtex
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BUFFCLK

Global Fast Clock Buffer

BUFFCLK (FastCLK buffer) provides the fastest way to bring a clock into the 
XC4000X device. Four of these buffers are present on those devices — two on the left 
edge of the die and two on the right edge.

Using BUFFCLK, you can create a very fast pin-to-pin path by driving the F input of 
the CLB function generator with BUFFCLK output.

You can use BUFFCLK to minimize the setup time of input devices if positive hold 
time is acceptable. Use BUFFCLK to clock the Fast Capture latch and a slower clock 
buffer to capture the standard IOB flip-flop or latch. Either the Global Early buffer 
(BUFGE) or the Global Low-Skew buffer (BUFGLS) can be used for the second storage 
element (the one used should be the same clock as the internal related logic).

You can also use BUFFCLK to provide a fast Clock-to-Out on device output pins.

These buffers can access IOBs on one half of the die edge only. They can each drive 
two of the four vertical lines accessing the IOBs on the left edge of the device or two of 
the eight vertical lines accessing the IOBs on the right edge of the device. They can 
only access the CLB array through single and double-length lines.

BUFFCLKs must be driven by the semi-dedicated IOBs. They are not accessible from 
internal nets.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A N/A N/A N/A

X4210
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BUFG

Global Clock Buffer

BUFG, an architecture-independent global buffer, distributes high fan-out clock 
signals throughout a PLD device. The Xilinx implementation software converts each 
BUFG to an appropriate type of global buffer for the target PLD device. If you want to 
use a specific type of buffer, instantiate it manually.

To use a BUFG in a schematic, connect the input of the BUFG symbol to the clock 
source. Depending on the target PLD family, the clock source can be an external PAD 
symbol, an IBUF symbol, or internal logic. For a negative-edge clock input, insert an 
INV (inverter) symbol between the BUFG output and the clock input. The inversion is 
implemented at the Configurable Logic Block (CLB) or Input Output Block (IOB) 
clock pin.

For an XC3000 design, you can use a maximum of two BUFG symbols (assuming that 
no specific GCLK or ACLK buffer is specified). For XC3000 designs, MAP always 
selects an ACLK, then a GCLK.

For XC4000, Spartan, or SpartanXL designs, you can use a maximum of eight BUFG 
symbols (assuming that no specific BUFGP or BUFGS buffers are specified). For 
XC4000, Spartan, or SpartanXL designs, MAP always selects a BUFGS before a 
BUFGP. 

For XC9000 designs, consult the device data sheet for the number of available global 
pins. For XC9000 designs, BUFG is always implemented using an IOB. Connect the 
input of BUFG to an IPAD or an IOPAD that represents an external signal source. Each 
BUFG can drive any number of register clocks in a design. For XC9000 designs, the 
output of a BUFG may also be used as an ordinary input signal to other logic else-
where in the design.

In Virtex and Spartan2, the BUFG cannot be driven directly from a pad. It can be 
driven from an IBUFG to indicate to use the dedicated pin (GCLKIOB pin) or from an 
internal driver to create an internal clock. BUFG can also be driven with an IBUF to 
represent an externally driven clock that does not use the dedicated pin.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3831
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BUFGDLL

Clock Delay Locked Loop Buffer

BUFGDLL is a special purpose clock delay locked loop buffer for clock skew manage-
ment. It is provided as a user convenience for the most frequently used configuration 
of elements for clock skew management. Internally, it consists of an IBUFG driving 
the CLKIN pin of a CLKDLL followed by a BUFG that is driven by the CLK0 pin of 
the CLKDLL. Because BUFGDLL already contains an input buffer (IBUFG), it can 
only be driven by a top-level port (IPAD).

Any DUTY_CYCLE_CORRECTION attribute on a BUFGDLL applies to the under-
lying CLKDLL symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive
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O

X8719
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BUFGE

Global Low Early Clock Buffer

Eight Global Early buffers (BUFGE), two on each corner of the device, provide an 
earlier clock access than the potentially heavily loaded Global Low-Skew buffers 
(BUFGLS).

BUFGE can facilitate the fast capture of device inputs using the Fast Capture latches 
ILFFX and ILFLX. For fast capture, take a single clock signal and route it through both 
a BUFGE and a BUFGLS. Use the BUFGE to clock the fast capture latch and the 
BUFGLS to clock the normal input flip-flop or latch.

You can also use BUFGE to provide a fast Clock-to-Out on device output pins.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A N/A N/A N/A

X4210
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BUFGLS

Global Low Skew Clock Buffer

Each corner of the XC4000X or SpartanXL device has two Global Low-Skew buffers 
(BUFGLS). Any of the eight buffers can drive any of the eight vertical global lines in a 
column of CLBs. In addition, any of the buffers can drive any of the four vertical lines 
accessing the IOBs on the left edge of the device and any of the eight vertical lines 
accessing the IOBs on the right edge of the device.

IOBs at the top and bottom edges of the device are accessed through the vertical 
global lines in the CLB array. Any global low-skew buffer can, therefore, access every 
IOB and CLB in the device.

The global low-skew buffers can be driven by either semi-dedicated pads or internal 
logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

X4210
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BUFGP

Primary Global Buffer for Driving Clocks or Longlines (Four per 
PLD Device)

BUFGP, a primary global buffer, is used to distribute high fan-out clock or control 
signals throughout PLD devices. In Virtex and Spartan2, BUFGP is equivalent to an 
IBUFG driving a BUFG. In CPLD designs, BUFGP is treated like BUFG. A BUFGP 
provides direct access to Configurable Logic Block (CLB) and Input Output Block 
(IOB) clock pins and limited access to other CLB inputs. Four BUFGPs are available on 
each XC4000E and Spartan device, one in each corner. The input to a BUFGP comes 
only from a dedicated IOB.

Alongside each column of CLBs in an XC4000E or Spartan device are four global 
vertical lines, which are in addition to the standard vertical longlines. Each one of the 
four global vertical lines can drive the CLB clock (K) pin directly. In addition, one of 
the four lines can drive the F3 pin, a second line can drive the G1 pin, a third can drive 
the C3 pin, and a fourth can drive the C1 pin. Each of the four BUFGPs drives one of 
these global vertical lines. These same vertical lines are also used for the secondary 
global buffers (refer to the “BUFGS” section for more information).

Because of its structure, a BUFGP can always access a clock pin directly. However, it 
can access only one of the F3, G1, C3, or C1 pins, depending on the corner in which 
the BUFGP is placed. When the required pin cannot be accessed directly from the 
vertical line, PAR feeds the signal through another CLB and uses general purpose 
routing to access the load pin.

To use a BUFGP in a schematic, connect the input of the BUFGP element directly to 
the PAD symbol. Do not use any IBUFs, because the signal comes directly from a 
dedicated IOB. The output of the BUFGP is then used throughout the schematic. For a 
negative-edge clock, insert an INV (inverter) element between the output of the 
BUFGP and the clock input. This inversion is performed inside each CLB or IOB.

A Virtex or Spartan2 BUFGP must be sourced by an external signal. Other BUFGPs 
can be sourced by an internal signal, but PAR must use the dedicated IOB to drive the 
BUFGP, which means that the IOB is not available for use by other signals. If possible, 
use a BUFGS instead, because it can be sourced internally without using an IOB.

The dedicated inputs for BUFGPs are identified by the names PGCK1 through PGCK4 
in pinouts in XC4000E and Spartan. The package pin that drives the BUFGP depends 
on which corner the BUFGP is placed by PAR.

Figure 3-38 BUFGP Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive N/A Macro N/A Primitive N/A Primitive Primitive

X3902

X8117

I O

BUFG
3-58 Xilinx Development System



Design Elements (BUFGS)
BUFGS

Secondary Global Buffer for Driving Clocks or Longlines (Four per 
PLD Device)

BUFGS, a secondary global buffer, distributes high fan-out clock or control signals 
throughout a PLD device. In CPLD designs, BUFGS is treated like BUFG. BUFGS 
provides direct access to Configurable Logic Block (CLB) clock pins and limited access 
to other CLB inputs. Four BUFGSs are available on each XC4000E and Spartan device, 
one in each corner. The input to a BUFGS comes either from a dedicated Input Output 
Block (IOB) or from an internal signal.

Alongside each column of CLBs in an XC4000E or Spartan device are four global 
vertical lines, which are in addition to the standard vertical longlines. Each one of the 
four global vertical lines can drive the CLB clock (K) pin directly. In addition, one of 
the four lines can drive the F3 pin, a second line can drive the G1 pin, a third can drive 
the C3 pin, and a fourth can drive the C1 pin. Each of the four BUFGSs can drive any 
of these global vertical lines and are also used as the primary global buffers (refer also 
to the “BUFGP” section for more information).

Because of its structure, a BUFGS can always access a clock pin directly. Because the 
BUFGS is more flexible than the BUFGP, it can use additional global vertical lines to 
access the F3, G1, C3, and C1 pins but requires multiple vertical lines in the same 
column. If the vertical lines in a given column are already used for BUFGPs or another 
BUFGS, PAR might have to feed signals through other CLBs to reach the load pins.

To use a BUFGS in a schematic, connect the input of the BUFGS element either directly 
to the PAD symbol (for an external input) or to an internally sourced net. For an 
external signal, do not use any IBUFs, because the signal comes directly from the 
dedicated IOB. The output of the BUFGS is then used throughout the schematic. For a 
negative-edge clock, insert an INV (inverter) element between the output of the 
BUFGS and the clock input. This inversion is performed inside each CLB or IOB.

The dedicated inputs for BUFGSs are identified by the names SGCK1 through SGCK4 
in pinouts in XC4000E and Spartan. The package pin that drives the BUFGS depends 
on which corner the BUFGS is placed by PAR.

Figure 3-39 BUFGS Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive N/A Macro N/A Primitive N/A N/A N/A
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BUFGSR

Global Set/Reset Input Buffer

BUFGSR, an XC9000-specific global buffer, distributes global set/reset signals 
throughout selected flip-flops of an XC9000 device. Global Set/Reset (GSR) control 
pins are available on XC9000 devices; consult device data sheets for availability.

BUFGSR always acts as an input buffer. To use it in a schematic, connect the input of 
the BUFGSR symbol to an IPAD or an IOPAD representing the GSR signal source. 
GSR signals generated on-chip must be passed through an OBUF-type buffer before 
they are connected to BUFGSR.

For global set/reset control, the output of BUFGSR normally connects to the CLR or 
PRE input of a flip-flop symbol, like FDCP, or any registered symbol with asynchro-
nous clear or preset. The global set/reset control signal may pass through an inverter 
to perform an active-low set/reset. The output of BUFGSR may also be used as an 
ordinary input signal to other logic elsewhere in the design. Each BUFGSR can control 
any number of flip-flops in a design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Primitive N/A N/A N/A N/A

X3831
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BUFGTS

Global Three-State Input Buffer

BUFGTS, an XC9000-specific global buffer, distributes global output-enable signals 
throughout the output pad drivers of an XC9000 device. Global Three-State (GTS) 
control pins are available on XC9000 devices; consult device data sheets for avail-
ability.

BUFGTS always acts as an input buffer. To use it in a schematic, connect the input of 
the BUFGTS symbol to an IPAD or an IOPAD representing the GTS signal source. GTS 
signals generated on-chip must be passed through an OBUF-type buffer before they 
are connected to BUFGTS.

For global 3-state control, the output of BUFGTS normally connects to the E input of a 
3-state output buffer symbol, OBUFE. The global 3-state control signal may pass 
through an inverter or control an OBUFT symbol to perform an active-low output-
enable. The same 3-state control signal may even be used both inverted and non-
inverted to enable alternate groups of device outputs. The output of BUFGTS may 
also be used as an ordinary input signal to other logic elsewhere in the design. Each 
BUFGTS can control any number of output buffers in a design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Primitive N/A N/A N/A N/A

X3831
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BUFOD

Open-Drain Buffer

BUFOD is a buffer with input (I) and open-drain output (O). When the input is Low, 
the output is Low. When the input is High, the output is off. To establish an output 
High level, a pull-up resistor is tied to output O. One pull-up resistor uses the least 
power; two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to the pull-up symbol 
attached to the output (O) node. Refer to the appropriate CAE tool interface user 
guide for details.

Figure 3-40 BUFOD Implementation XC4000E, XC4000X

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

X3903

X7777

I O
WAND1
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BUFT, 4, 8, 16

Internal 3-State Buffers with Active-Low Enable

BUFT, BUFT4, BUFT8, and BUFT16 are single or multiple 3-state buffers with inputs I, 
I3 – I0, I7 – I0, and I15 – 10, respectively; outputs O, O3 – O0, O7 – O0, and O15 – O0, 
respectively; and active-Low output enable (T). When T is Low, data on the inputs of 
the buffers is transferred to the corresponding outputs. When T is High, the output is 
high impedance (Z state or off). The outputs of the buffers are connected to horizontal 
longlines in FPGA architectures.

The outputs of separate BUFT symbols can be tied together to form a bus or a multi-
plexer. Make sure that only one T is Low at one time. If none of the T inputs is active 
(Low), a “weak-keeper” circuit (FPGAs) prevents the output bus from floating but 
does not guarantee that the bus remains at the last value driven onto it. 

Pull-up resistors can be used to establish a High logic level if all BUFT elements are off 
in XC3000, XC4000, Spartan, and SpartanXL. 

In the XC5200 architecture, pull-ups cannot be used in conjunction with BUFT or 
BUFE macros because there are no pull-ups available at the ends of the horizontal 
longlines.

For XC9500 devices, BUFT output nets assume the High logic level when all 
connected BUFE/BUFT buffers are disabled. On-chip 3-state multiplexing is not avail-
able in XC9500XL devices.

For Virtex and Spartan2, when all BUFTs on a net are disabled, the net is High. For 
correct simulation of this effect, a PULLUP element must be connected to the net. 
NGDBuild inserts a PULLUP element if one is not connected so that back-annotation 
simulation reflects the true state of the Virtex or Spartan2 chip.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

BUFT Primitive Primitive Primitive Primitive Primitive* Primitive Primitive Primitive Primitive

BUFT4, 
BUFT8, 
BUFT16

Macro Macro Macro Macro Macro* Macro Macro Macro Macro

* not supported for XC9500XL and XC9500XV devices
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Figure 3-41 BUFT8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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BYPOSC

Bypass Oscillator

BYPOSC provides for definition of a user clock for the charge pump via its I pin. 
When the BYPOSC symbol is not used or its I pin is not connected, the charge pump 
uses an internal clock.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A N/A

BYPOSC

I

X8236
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Chapter 4

Design Elements (CAPTURE_SPARTAN2 to DECODE64)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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CAPTURE_SPARTAN2

Spartan2 Register State Capture for Bitstream Readback

CAPTURE_SPARTAN2 provides user control over when to capture register (flip-flop 
and latch) information for readback. Spartan2 devices provide the readback function 
through dedicated configuration port instructions, instead of with a READBACK 
component as in other FPGA architectures. The CAPTURE_SPARTAN2 symbol is 
optional. Without it readback is still performed, but the asynchronous capture func-
tion it provides for register states is not available. 

Note: Spartan2 only allows for capturing register (flip-flop and latch) states. 
Although LUT RAM, SRL, and block RAM states are read back, they cannot be 
captured.

An asserted High CAP signal indicates that the registers in the device are to be 
captured at the next Low-to-High clock transition. The Low-to-High clock transition 
triggers the capture clock (CLK) which clocks out the readback data. 

By default, data is captured after every trigger (transition on CLK while CAP is 
asserted). To limit the readback operation to a single data capture, you can add the 
ONESHOT attribute to CAPTURE_SPARTAN2. Refer to the “ONESHOT” section of 
the “Attributes, Constraints, and Carry Logic” chapter for information on the 
ONESHOT attribute.

For details on the Spartan2 readback functions, refer to the Xilinx web site, http://
support.xilinx.com.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive N/A

X8895

CAPTURE_SPARTAN2

CAP

CLK
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CAPTURE_VIRTEX

Virtex Register State Capture for Bitstream Readback

CAPTURE_VIRTEX provides user control over when to capture register (flip-flop and 
latch) information for readback. Virtex devices provide the readback function through 
dedicated configuration port instructions, instead of with a READBACK component 
as in other FPGA architectures. The CAPTURE_VIRTEX symbol is optional. Without 
it readback is still performed, but the asynchronous capture function it provides for 
register states is not available. 

Note: Virtex only allows for capturing register (flip-flop and latch) states. Although 
LUT RAM, SRL, and block RAM states are read back, they cannot be captured.

An asserted High CAP signal indicates that the registers in the device are to be 
captured at the next Low-to-High clock transition. The Low-to-High clock transition 
triggers the capture clock (CLK) which clocks out the readback data. 

By default, data is captured after every trigger (transition on CLK while CAP is 
asserted). To limit the readback operation to a single data capture, you can add the 
ONESHOT attribute to CAPTURE_VIRTEX. Refer to the “ONESHOT” section of the 
“Attributes, Constraints, and Carry Logic” chapter for information on the ONESHOT 
attribute.

For details on the Virtex readback functions, refer to the Virtex datasheets on the 
Xilinx web site, http://support.xilinx.com.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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CB2CE, CB4CE, CB8CE, CB16CE

2-, 4-, 8-,16-Bit Cascadable Binary Counters with Clock Enable and 
Asynchronous Clear

CB2CE, CB4CE, CB8CE, and CB16CE are, respectively, 2-, 4-, 8-, and 16-bit (stage), 
asynchronous, clearable, cascadable binary counters. The asynchronous clear (CLR) is 
the highest priority input. When CLR is High, all other inputs are ignored; the Q 
outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, inde-
pendent of clock transitions. The Q outputs increment when the clock enable input 
(CE) is High during the Low-to-High clock (C) transition. The counter ignores clock 
transitions when CE is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE 
input of the next stage and connecting the C and CLR inputs in parallel. CEO is active 
(High) when TC and CE are High. The maximum length of the counter is determined 
by the accumulated CE-to-TC propagation delays versus the clock period. The clock 
period must be greater than n(tCE-TC), where n is the number of stages and the time 
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use 
the CEO output if the counter uses the CE input; use the TC output if it does not. 

The counter is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE C Qz – Q0 TC CEO

1 X X 0 0 0

0 0 X No Chg  No Chg 0

0 1 ↑ Inc TC CEO
z= 1 for CB2CE; z = 3 for CB4CE; z = 7 for CB8CE; z = 15 for CB16CE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE
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Design Elements (CB2CE, CB4CE, CB8CE, CB16CE)
Figure 4-1 CB8CE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 4-2 CB2CE Implementation XC9000

Figure 4-3 CB8CE Implementation XC9000
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Design Elements (CB2CLE, CB4CLE, CB8CLE, CB16CLE)
CB2CLE, CB4CLE, CB8CLE, CB16CLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock 
Enable and Asynchronous Clear

CB2CLE, CB4CLE, CB8CLE, and CB16CLE are, respectively, 2-, 4-, 8-, and 16-bit 
(stage) synchronously loadable, asynchronously clearable, cascadable binary 
counters. The asynchronous clear (CLR) is the highest priority input. When CLR is 
High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock 
enable out (CEO) go to logic level zero, independent of clock transitions. The data on 
the D inputs is loaded into the counter when the load enable input (L) is High during 
the Low-to-High clock transition, independent of the state of clock enable (CE). The Q 
outputs increment when CE is High during the Low-to-High clock transition. The 
counter ignores clock transitions when CE is Low. The TC output is High when all Q 
outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE 
input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is 
active (High) when TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the clock period. The 
clock period must be greater than n(tCE-TC), where n is the number of stages and the 
time tCE-TC is the CE-to-TC propagation delay of each stage. When cascading 
counters, use the CEO output if the counter uses the CE input; use the TC output if it 
does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE C Dz – D0 Qz – Q0 TC CEO

1 X X X X 0 0 0

0 1 X ↑ Dn dn TC CEO

0 0 0 X X No Chg No Chg 0

0 0 1 ↑ X Inc TC CEO
z= 1 for CB2CLE; z = 3 for CB4CLE; z = 7 for CB8CLE; z = 15 for CB16CLE
dn = state of referenced input (Dn) one setup time prior to active clock transition.
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE
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Figure 4-4 CB8CLE Implementation XC3000
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Design Elements (CB2CLE, CB4CLE, CB8CLE, CB16CLE)
Figure 4-5 CB8CLE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex
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Figure 4-6 CB2CLE Implementation XC9000

Figure 4-7 CB8CLE Implementation XC9000
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Design Elements (CB2CLED, CB4CLED, CB8CLED, CB16CLED)
CB2CLED, CB4CLED, CB8CLED, CB16CLED

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary 
Counters with Clock Enable and Asynchronous Clear

CB2CLED, CB4CLED, CB8CLED, and CB16CLED are, respectively, 2-, 4-, 8- and 16-bit 
(stage), synchronously loadable, asynchronously clearable, cascadable, bidirectional 
binary counters. The asynchronous clear (CLR) is the highest priority input. When 
CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and 
clock enable out (CEO) go to logic level zero, independent of clock transitions. The 
data on the D inputs is loaded into the counter when the load enable input (L) is High 
during the Low-to-High clock (C) transition, independent of the state of clock enable 
(CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-
High clock transition. The Q outputs increment when CE and UP are High. The 
counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For 
counting down, the TC output is High when all Q outputs and UP are Low. To 
cascade counters, the CEO output of each counter is connected to the CE pin of the 
next stage. The clock, UP, L, and CLR inputs are connected in parallel. CEO is active 
(High) when TC and CE are High. The maximum length of the counter is determined 
by the accumulated CE-to-TC propagation delays versus the clock period. The clock 
period must be greater than n(tCE-TC), where n is the number of stages and the time 
tCE-TC is the CE-to-TC propagation delay of each stage. 

When cascading counters, use the CEO output if the counter uses the CE input; use 
the TC output if it does not. For CPLD designs, refer to the “CB2X1, CB4X1, CB8X1, 
CB16X1” section for high-performance cascadable, bidirectional counters.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted with an inverter in front of 
the GR/GSR input of STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs
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1 X X X X X 0 0 0

0 1 X ↑ X Dn dn TC CEO

0 0 0 X X X No Chg No Chg 0

0 0 1 ↑ 1 X Inc TC CEO

0 0 1 ↑ 0 X Dec TC CEO
z = 1 for CB2CLED; z = 3 for CB4CLED; z = 7 for CB8CLED; z = 15 for CB16CLED
dn = state of referenced input (Dn), one setup time prior to active clock transition
TC = (Qz•Q(z-1)•Q(z-2)•...•Q0•UP) + (Qz•Q(z-1)•Q(z-2)•...•Q0•UP)
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Figure 4-8 CB8CLED Implementation XC3000
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Design Elements (CB2CLED, CB4CLED, CB8CLED, CB16CLED)
Figure 4-9 CB8CLED Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex
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Figure 4-10 CB4CLED Implementation XC9000
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Design Elements (CB2RE, CB4RE, CB8RE, CB16RE)
CB2RE, CB4RE, CB8RE, CB16RE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable 
and Synchronous Reset

CB2RE, CB4RE, CB8RE, and CB16RE are, respectively, 2-, 4-, 8-, and 16-bit (stage), 
synchronous, resettable, cascadable binary counters. The synchronous reset (R) is the 
highest priority input. When R is High, all other inputs are ignored; the Q outputs, 
terminal count (TC), and clock enable out (CEO) go to logic level zero during the 
Low-to-High clock transition. The Q outputs increment when the clock enable input 
(CE) is High during the Low-to-High clock (C) transition. The counter ignores clock 
transitions when CE is Low. The TC output is High when both Q outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE 
input of the next stage and connecting the C and R inputs in parallel. CEO is active 
(High) when TC and CE are High. The maximum length of the counter is determined 
by the accumulated CE-to-TC propagation delays versus the clock period. The clock 
period must be greater than n(tCE-TC), where n is the number of stages and the time 
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use 
the CEO output if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R CE C Qz – Q0 TC CEO

1 X ↑ 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 1 for CB2RE; z = 3 for CB4RE; z = 7 for CB8RE; z = 15 for CB16RE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0)
CEO = TC•CE
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Figure 4-11 CB8RE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (CB2RE, CB4RE, CB8RE, CB16RE)
Figure 4-12 CB2RE Implementation XC9000

Figure 4-13 CB8RE Implementation XC9000
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CB2RLE, CB4RLE, CB8RLE, CB16RLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock 
Enable and Synchronous Reset

CB2RLE, CB4RLE, CB8RLE, and CB16RLE are, respectively, 2-, 4-, 8-, and 16-bit 
(stage), synchronous, loadable, resettable, cascadable binary counter. The synchro-
nous reset (R) is the highest priority input. The synchronous R, when High, overrides 
all other inputs and resets the Q outputs, terminal count (TC), and clock enable out 
(CEO) outputs to Low on the Low-to-High clock (C) transition.

The data on the D inputs is loaded into the counter when the load enable input (L) is 
High during the Low-to-High clock (C) transition, independent of the state of CE. The 
Q outputs increment when CE is High during the Low-to-High clock transition. The 
counter ignores clock transitions when CE is Low. The TC output is High when all Q 
outputs are High. The CEO output is High when all Q outputs and CE are High to 
allow direct cascading of counters.

Larger counters are created by connecting the CEO output of the first stage to the CE 
input of the next stage and by connecting the C, L, and R inputs in parallel. The 
maximum length of the counter is determined by the accumulated CE-to-CEO propa-
gation delays versus the clock period. When cascading counters, use the CEO output 
if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A

Inputs Outputs

R L CE C Dz – D0 Qz – Q0 TC CEO

1 X X ↑ X 0 0 0

0 1 X ↑ Dn dn TC CEO

0 0 0 X X No Chg No Chg 0

0 0 1 ↑ X Inc TC CEO
z = 1 for CB2RLE; z = 3 for CB4RLE; z = 7 for CB8RLE; z = 15 for CB16RLE
dn = state of referenced input (Dn) one setup time prior to active clock transition
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE
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Design Elements (CB2RLE, CB4RLE, CB8RLE, CB16RLE)
Figure 4-14 CB2RLE Implementation XC9000

Figure 4-15 CB8RLE Implementation XC9000
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CB2X1, CB4X1, CB8X1, CB16X1

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary 
Counters with Clock Enable and Asynchronous Clear

CB2X1, CB4X1, CB8X1, and CB16X1 are, respectively, 2-, 4-, 8-, and 16-bit (stage), 
synchronously loadable, asynchronously clearable, bidirectional binary counters. 
These counters have separate count-enable inputs and synchronous terminal-count 
outputs for up and down directions to support high-speed cascading in the CPLD 
architecture.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all 
other inputs are ignored; data outputs (Q) go to logic level zero, terminal count 
outputs TCU and TCD go to zero and one, respectively, clock enable outputs CEOU 
and CEOD go to Low and High, respectively, independent of clock transitions. The 
data on the D inputs loads into the counter on the Low-to-High clock (C) transition 
when the load enable input (L) is High, independent of the CE inputs.

The Q outputs increment when CEU is High, provided CLR and L are Low, during the 
Low-to-High clock transition. The Q outputs decrement when CED is High, provided 
CLR and L are Low. The counter ignores clock transitions when CEU and CED are 
Low. Both CEU and CED should not be High during the same clock transition; the 
CEOU and CEOD outputs might not function properly for cascading when CEU and 
CED are both High.

For counting up, the CEOU output is High when all Q outputs and CEU are High. For 
counting down, the CEOD output is High when all Q outputs are Low and CED is 
High. To cascade counters, the CEOU and CEOD outputs of each counter are 
connected directly to the CEU and CED inputs, respectively, of the next stage. The 
clock, L, and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these counter compo-
nents is unaffected by the number of cascaded stages for all counting and loading 
functions. The TCU terminal count output is High when all Q outputs are High, 
regardless of CEU. The TCD output is High when all Q outputs are Low, regardless of 
CED.

When cascading counters, the final terminal count signals can be produced by AND 
wiring all the TCU outputs (for the up direction) and all the TCD outputs (for the 
down direction). The TCU, CEOU, and CEOD outputs are produced by optimizable 
AND gates within the component. This results in zero propagation from the CEU and 
CED inputs and from the Q outputs, provided all connections from each such output 
remain on-chip. Otherwise, a macrocell buffer delay is introduced. 

The counter is initialized to zero (TCU Low and TCD High) when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A
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Design Elements (CB2X1, CB4X1, CB8X1, CB16X1)
Inputs Outputs

CLR L CEU CED C Dz–D0 Qz–Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD

0 1 X X ↑ Dn dn TCU TCD CEOU CEOD

0 0 0 0 X X No Chg No Chg No Chg 0 0

0 0 1 0 ↑ X Inc TCU TCD CEOU 0

0 0 0 1 ↑ X Dec TCU TCD 0 CEOD

0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
z = 1 for CB2X1; z = 3 for CB4X1; z = 7 for CB8X1; z = 15 for CB16X1
dn = state of referenced input (Dn) one setup time prior to active clock transition
TCU = Qz•Q(z-1)•Q(z-2)•...•Q0
TCD = Qz•Q(z-1)•Q(z-2)•...•Q0 
CEOU = TCU•CEU
CEOD = TCD•CED
Libraries Guide, 2.1i 4-21



Libraries Guide, 2.1i
Figure 4-16 CB4X1 Implementation XC9000
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Design Elements (CB2X2, CB4X2, CB8X2, CB16X2)
CB2X2, CB4X2, CB8X2, CB16X2

2-, 4-, 8-, and 16-Bit Loadable Cascadable Bidirectional Binary 
Counters with Clock Enable and Synchronous Reset

CB2X2, CB4X2, CB8X2, and CB16X2 are, respectively, 2-, 4-, 8-, and 16-bit (stage), 
synchronous, loadable, resettable, bidirectional binary counters. These counters have 
separate count-enable inputs and synchronous terminal-count outputs for up and 
down directions to support high-speed cascading in the CPLD architecture.

The synchronous reset (R) is the highest priority input. When R is High, all other 
inputs are ignored; the data outputs (Q) go to logic level zero, terminal count outputs 
TCU and TCD go to zero and one, respectively, and clock enable outputs CEOU and 
CEOD go to Low and High, respectively, on the Low-to-High clock (C) transition. The 
data on the D inputs loads into the counter on the Low-to-High clock (C) transition 
when the load enable input (L) is High, independent of the CE inputs.

All Q outputs increment when CEU is High, provided R and L are Low during the 
Low-to-High clock transition. All Q outputs decrement when CED is High, provided 
R and L are Low. The counter ignores clock transitions when CEU and CED are Low. 
Both CEU and CED should not be High during the same clock transition; the CEOU 
and CEOD outputs might not function properly for cascading when CEU and CED 
are both High.

For counting up, the CEOU output is High when all Q outputs and CEU are High. For 
counting down, the CEOD output is High when all Q outputs are Low and CED is 
High. To cascade counters, the CEOU and CEOD outputs of each counter are, respec-
tively, connected directly to the CEU and CED inputs of the next stage. The C, L, and 
R inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these counter compo-
nents is unaffected by the number of cascaded stages for all counting and loading 
functions. The TCU terminal count output is High when all Q outputs are High, 
regardless of CEU. The TCD output is High when all Q outputs are Low, regardless of 
CED. 

When cascading counters, the final terminal count signals can be produced by AND 
wiring all the TCU outputs (for the up direction) and all the TCD outputs (for the 
down direction). The TCU, CEOU, and CEOD outputs are produced by optimizable 
AND gates within the component. This results in zero propagation from the CEU and 
CED inputs and from the Q outputs, provided all connections from each such output 
remain on-chip. Otherwise, a macrocell buffer delay is introduced. 

The counter is initialized to zero (TCU Low and TCD High) when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A
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Inputs Outputs

R L CEU CED C Dz – D0 Qz – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD

0 1 X X ↑ Dn dn TCU TCD CEOU CEOD

0 0 0 0 X X No Chg No Chg No Chg 0 0

0 0 1 0 ↑ X Inc TCU TCD CEOU 0

0 0 0 1 ↑ X Dec TCU TCD 0 CEOD

0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
z = 1 for CB2X2; z = 3 for CB4X2; z = 7 for CB8X2; z = 15 for CB16X2
d = state of referenced input (Dn) one setup time prior to active clock transition
TCU = Qz•Q(z-1)•Q(z-2)•...•Q0
TCD = Qz•Q(z-1)•Q(z-2)•...•Q0 
CEOU = TCU•CEU
CEOD = TCD•CED
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Design Elements (CB2X2, CB4X2, CB8X2, CB16X2)
Figure 4-17 CB4X2 Implementation XC9000
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CC8CE, CC16CE

8-, 16-Bit Cascadable Binary Counters with Clock Enable and 
Asynchronous Clear

CC8CE and CC16CE are, respectively, 8- and 16-bit (stage), asynchronous, clearable, 
cascadable binary counters. These counters are implemented using carry logic with 
relative location constraints to ensure efficient placement of logic. The asynchronous 
clear (CLR) is the highest priority input. When CLR is High, all other inputs are 
ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic 
level zero, independent of clock transitions. The Q outputs increment when the clock 
enable input (CE) is High during the Low-to-High clock (C) transition. The counter 
ignores clock transitions when CE is Low. The TC output is High when all Q outputs 
are High.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the C and CLR inputs in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, with Low outputs, when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro Macro Macro

Inputs Outputs

CLR CE C Qz – Q0 TC CEO

1 X X 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 7 for CC8CE; z = 15 for CC16CE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE
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Design Elements (CC8CE, CC16CE)
Topology for XC4000, Spartan, SpartanXL

This is the CC8CE (8-bit) and CC16CE (16-bit) topology for XC4000E, XC4000X, 
Spartan, and SpartanXL devices.
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Topology for XC5200

This is the CC8CE (8-bit) and CC16CE (16-bit) topology for XC5200 devices.
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Design Elements (CC8CE, CC16CE)
Figure 4-18 CC8CE Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Figure 4-19 CC8CE Implementation XC5200
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Design Elements (CC8CE, CC16CE)
Figure 4-20 CC8CE Implementation Spartan2, Virtex
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CC8CLE, CC16CLE

8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable 
and Asynchronous Clear

CC8CLE and CC16CLE are, respectively, 8- and 16-bit (stage), synchronously load-
able, asynchronously clearable, cascadable binary counter. These counters are imple-
mented using carry logic with relative location constraints to ensure efficient 
placement of logic.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all 
other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out 
(CEO) go to logic level zero, independent of clock transitions. The data on the D 
inputs is loaded into the counter when the load enable input (L) is High during the 
Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q 
outputs increment when CE is High during the Low-to-High clock transition. The 
counter ignores clock transitions when CE is Low. The TC output is High when all Q 
outputs are High.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the C, L, and CLR inputs in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, with Low output, when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro Macro Macro

Inputs Outputs

CLR L CE C Dz – D0 Qz – Q0 TC CEO

1 X X X X 0 0 0

0 1 X ↑ Dn dn TC CEO

0 0 0 X X No Chg No Chg 0

0 0 1 ↑ X Inc TC CEO
z = 7 for CC8CLE; z = 15 for CC16CLE
dn = state of referenced input (Dn) one setup time prior to active clock transition
TC = Qz•Q(z-1)•Q(z-2)•...•Q0 
CEO = TC•CE
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Design Elements (CC8CLE, CC16CLE)
Topology for XC4000, Spartan, SpartanXL

This is the CC8CLE (8-bit) and CC16CLE (16-bit) topology for XC4000E, XC4000X, 
Spartan, and SpartanXL devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators. 
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB 
as indicated in the illustration.
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Topology for XC5200

This is the CC8CLE (8-bit) and CC16CLE (16-bit) topology for XC5200 devices.
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Design Elements (CC8CLE, CC16CLE)
Figure 4-21 CC8CLE Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Figure 4-22 CC8CLE Implementation XC5200
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Design Elements (CC8CLE, CC16CLE)
Figure 4-23 CC8CLE Implementation Spartan2, Virtex
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CC8CLED, CC16CLED

8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with 
Clock Enable and Asynchronous Clear

CC8CLED and CC16CLED are, respectively, 8- and 16-bit (stage), synchronously load-
able, asynchronously clearable, cascadable, bidirectional binary counters. These 
counters are implemented using carry logic with relative location constraints, which 
assures most efficient logic placement.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all 
other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out 
(CEO) go to logic level zero, independent of clock transitions. The data on the D 
inputs is loaded into the counter when the load enable input (L) is High during the 
Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q 
outputs decrement when CE is High and UP is Low during the Low-to-High clock 
transition. The Q outputs increment when CE and UP are High. The counter ignores 
clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For 
counting down, the TC output is High when all Q outputs and UP are Low. To 
cascade counters, the count enable out (CEO) output of each counter is connected to 
the CE pin of the next stage. The clock, UP, L, and CLR inputs are connected in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, outputs Low, when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro Macro Macro

Inputs Outputs

CLR L CE C UP Dz – D0 Qz – Q0 TC CEO

1 X X X X X 0 0 0

0 1 X ↑ X Dn dn TC CEO

0 0 0 X X X No Chg No Chg 0

0 0 1 ↑ 1 X Inc TC CEO

0 0 1 ↑ 0 X Dec TC CEO
z = 7 for CC8CLED; z = 15 for CC16CLED
dn = state of referenced input (Dn) one setup time prior to active clock transition
TC = (Qz•Q(z-1)•Q(z-2)•...•Q0•UP) + (Qz•Q(z-1)•Q(z-2)•...•Q0•UP)
CEO = TC•CE

Q[7:0]

X4287

CC8CLED

C

CLR

CE

D[7:0]

L

UP

CEO

TC

Q[15:0]

X4285

CC16CLED

C

CLR

CE

D[15:0]

L

UP

CEO

TC
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Design Elements (CC8CLED, CC16CLED)
Topology for XC4000, Spartan, SpartanXL

This is the CC8CLED (8-bit) and CC16CLED (16-bit) topology for XC4000E, XC4000X, 
Spartan, and SpartanXL devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators. 
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB 
as indicated in the illustration.
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Topology for XC5200

This is the CC8CLED (8-bit) and CC16CLED (16-bit) topology for XC5200 devices.
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Design Elements (CC8CLED, CC16CLED)
Figure 4-24 CC8CLED Implementation XC4000E, XC4000X, Spartan, SpartanXL

X
75

99

L
C

E C

U
P

D
0

Q
0L

M
D

2_
U

P

M
D

2_
U

P

M
D

4_
U

P

M
D

5_
U

P

M
D

6_
U

P

D
7

Q
7L

M
D

6_
U

P

D
[7

:0
]

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

T
Q

6_
U

P

C
4_

U
P

C
3_

U
P

C
2_

U
P

C
1_

U
P

C
0_

U
P

C
6_

U
P

M
D

4_
U

P

M
D

0_
U

P

M
D

3_
U

P

M
D

1_
U

P

T
Q

5_
U

P

T
Q

4_
U

P

T
Q

3_
U

P

T
Q

2_
U

P

T
Q

1_
U

P

T
Q

0_
U

P

C
0_

U
PD
1

Q
1LL

Q
2

C
1_

U
P

C
2_

U
PD
3

Q
3L

C
3_

U
PD
4

Q
4LL

Q
5

C
4_

U
PL

Q
6

D
6

C
5_

U
P

T
Q

7_
U

P
C

6_
U

P

C
5_

U
P

M
D

7_
U

P

M
D

0_
U

P

M
D

1_
U

P

M
D

3_
U

P

C
O

_U
P

C
O

_D
N

D
5

D
2

M
D

5_
U

P

R
L

O
C

=R
1C

0.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
1C

0.
F

I1I2I3I4

O

F
M

A
P

X
O

R
2

M
D

6_
U

P

D
0

D
1

O

S
0

M
2_

1

C
Y

4_
19

IN
C

-F
G

-1R
L

O
C

=R
3C

0

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

C
A

R
R

Y
 M

O
D

E

C
A

R
R

Y
 M

O
D

E

C
A

R
R

Y
 M

O
D

E

R
L

O
C

=R
4C

0

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

R
L

O
C

=R
1C

0

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

C
A

R
R

Y
 M

O
D

E
C

A
R

R
Y

 M
O

D
E

C
Y

4_
18

IN
C

-F
G

-C
I R

L
O

C
=R

2C
0

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

C
A

R
R

Y
 M

O
D

E
C

A
R

R
Y

 M
O

D
E

C
Y

4_
18

IN
C

-F
G

-C
I

C
Y

4_
18

IN
C

-F
G

-C
I

C
Y

4_
42

E
X

A
M

IN
E

-C
I

R
L

O
C

=R
0C

0

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

C
A

R
R

Y
 M

O
D

E
C

A
R

R
Y

 M
O

D
E

R
L

O
C

=R
4C

1

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

D
E

C
-F

G
-C

I
C

Y
4_

25

D
E

C
-F

G
-C

I
C

Y
4_

25

D
E

C
-F

G
-C

I
C

Y
4_

25

X
O

R
2

X
O

R
2

X
O

R
2

X
O

R
2

X
O

R
2

R
L

O
C

=R
3C

1

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

R
L

O
C

=R
2C

1

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

C
Y

4_
42

E
X

A
M

IN
E

-C
I

R
L

O
C

=R
0C

1

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

M
D

0_
U

P

D
0

D
1

O

S
0

M
2_

1M
D

1_
U

P

D
0

D
1

O

S
0

M
2_

1M
D

2_
U

P

D
0

D
1

O

S
0

M
2_

1M
D

3_
U

P

D
0

D
1

O

S
0

M
2_

1M
D

5_
U

P

D
0

D
1

O

S
0

M
2_

1

C
Y

4_
26

D
E

C
-F

G
-0

IN
V

R
L

O
C

=R
1C

1

A
0

A
D

D

B
1

A
1

B
0

C
Y

4

C
IN

C
O

U
T

C
O

U
T

0

(F
3)

(F
1)

(F
2)

(G
4)

(G
1)

R
L

O
C

=R
4C

0.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
3C

0.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
2C

0.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
2C

0.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
3C

0.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
4C

0.
G

I1I2I3I4

O

F
M

A
P

X
O

R
2

M
D

7_
U

P

D
0

D
1

O

S
0

M
2_

1 M
D

4_
U

P

D
0

D
1

O

S
0

M
2_

1

M
D

7_
U

P

C
L

R

C
6_

D
N

C
3_

D
N

C
4_

D
N

C
5_

D
N L

C
E C

U
P

C
L

R

M
D

4_
U

P

M
D

7_
U

P

C
O

_U
P

M
D

6_
U

P

M
D

5_
U

P

L
_C

E

T
C

A
N

D
2

T
C

_U
P

T
C

_D
N

M
D

0

T
Q

7_
D

N

T
Q

6_
D

N

M
D

7

M
D

6

T
Q

5_
D

N

T
Q

4_
D

N

M
D

5

T
Q

3_
D

N

T
Q

2_
D

N

M
D

3

M
D

2

M
D

1

T
Q

1_
D

N

T
Q

0_
D

N

M
D

4

M
D

7

C
6_

D
N

M
D

7_
U

PQ
7

L
_U

P

M
D

6

C
5_

D
N

M
D

6_
U

PQ
6

L
_U

P

M
D

5

C
4_

D
N

M
D

5_
U

PQ
5

L
_U

P

L
_U

P
Q

4
M

D
4_

U
P

C
3_

D
N

M
D

4

L
_U

P
Q

3
M

D
3_

U
P

C
2_

D
N

M
D

3

M
D

2

C
1_

D
N

M
D

2_
U

PQ
2

L
_U

P

L
_U

P
Q

1
M

D
1_

U
P

C
0_

D
N

M
D

1

L
_U

P
Q

0
M

D
0_

U
P

M
D

0

M
D

0

D
0

D
1

O

S
0

M
2_

1

O
R

2

O
R

2

Q
7

R
L

O
C

=R
1C

1.
F

F
Y

F
D

C
E

Q
D

C
L

R

C
E

C

Q
5

R
L

O
C

=R
2C

1.
F

F
Y

F
D

C
E

Q
D

C
L

R

C
E

C

Q
4

R
L

O
C

=R
2C

1.
F

F
X

F
D

C
E

Q
D

C
L

R

C
E

C

Q
3

R
L

O
C

=R
3C

1.
F

F
Y

F
D

C
E

Q
D

C
L

R

C
E

C

Q
2

R
L

O
C

=R
3C

1.
F

F
X

F
D

C
E

Q
D

C
L

R

C
E

C

Q
0

R
L

O
C

=R
4C

1.
F

F
X

F
D

C
E

Q
D

C
L

R

C
E

C

Q
1

R
L

O
C

=R
4C

1.
F

F
Y

F
D

C
E

Q
D

C
L

R

C
E

C

M
D

5

D
0

D
1

O

S
0

M
2_

1 M
D

4

D
0

D
1

O

S
0

M
2_

1 M
D

2

D
0

D
1

O

S
0

M
2_

1M
D

3

D
0

D
1

O

S
0

M
2_

1 M
D

1

D
0

D
1

O

S
0

M
2_

1M
D

7

D
0

D
1

O

S
0

M
2_

1

X
N

O
R

2

X
N

O
R

2

X
N

O
R

2

X
N

O
R

2

X
N

O
R

2

X
N

O
R

2

IN
V

Q
6

R
L

O
C

=R
1C

1.
F

F
X

F
D

C
E

Q
D

C
L

R

C
E

C

M
D

6

D
0

D
1

O

S
0

M
2_

1

X
N

O
R

2

O
R

2

R
L

O
C

=R
1C

1.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
1C

1.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
2C

1.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
2C

1.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
3C

1.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
3C

1.
F

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
4C

1.
G

I1I2I3I4

O

F
M

A
P

R
L

O
C

=R
4C

1.
F

I1I2I3I4

O

F
M

A
P

A
N

D
2

A
N

D
2B

2

C
E

O

L
_U

P

Q
7

Q
[7

:0
]

Q
1

Q
0

Q
2

Q
3

Q
4

Q
5

Q
6

C
1_

D
N

C
0_

D
N

C
2_

D
N

M
D

0_
U

P

M
D

1_
U

P

M
D

2_
U

P

M
D

3_
U

P

Libraries Guide, 2.1i 4-41



Libraries Guide, 2.1i
Figure 4-25 CC8CLED Implementation XC5200
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Design Elements (CC8CLED, CC16CLED)
Figure 4-26 CC8CLED Implementation Spartan2, Virtex
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CC8RE, CC16RE

8-, 16-Bit Cascadable Binary Counters with Clock Enable and 
Synchronous Reset

CC8RE and CC16RE are, respectively, 8- and 16-bit (stage), synchronous, resettable, 
cascadable binary counters. These counters are implemented using carry logic with 
relative location constraints to ensure efficient placement of logic. The synchronous 
reset (R) is the highest priority input. When R is High, all other inputs are ignored; the 
Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on 
the Low-to-High clock (C) transition. The Q outputs increment when the clock enable 
input (CE) is High during the Low-to-High clock transition. The counter ignores clock 
transitions when CE is Low. The TC output is High when all Q outputs and CE are 
High.

Larger counters are created by connecting the CEO output of the first stage to the CE 
input of the next stage and connecting the C and R inputs in parallel. CEO is active 
(High) when TC and CE are High. The maximum length of the counter is determined 
by the accumulated CE-to-TC propagation delays versus the clock period. The clock 
period must be greater than n(tCE-TC), where n is the number of stages and the time 
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use 
the CEO output if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, with Low outputs, when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR (XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro Macro Macro

Inputs Outputs

R CE C Qz – Q0 TC CEO

1 X ↑ 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 7 for CC8RE; z = 15 for CC16RE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0•CE
CEO = TC•CE

Q[7:0]

X4288

CC8RE

C

R

CE CEO

TC

Q[15:0]

X4283

CC16RE

C

R

CE CEO

TC
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Design Elements (CC8RE, CC16RE)
Topology for XC4000, Spartan, SpartanXL

This is the CC8RE (8-bit) and CC16RE (16-bit) topology for XC4000E, XC4000X, 
Spartan, and SpartanXL devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators. 
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB 
as indicated in the illustration.
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Topology for XC5200

This is the CC8RE (8-bit) and CC16RE (16-bit) topology for XC5200 devices.
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Design Elements (CC8RE, CC16RE)
Figure 4-27 CC8RE Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Figure 4-28 CC8RE Implementation XC5200
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Design Elements (CC8RE, CC16RE)
Figure 4-29 CC8RE Implementation Spartan2, Virtex
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CD4CE

4-Bit Cascadable BCD Counter with Clock Enable and 
Asynchronous Clear

CD4CE is a 4-bit (stage), asynchronous, clearable, cascadable binary-coded-decimal 
(BCD) counter. The asynchronous clear input (CLR) is the highest priority input. 
When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), 
and clock enable out (CEO) go to logic level zero, independent of clock transitions. 
The Q outputs increment when clock enable (CE) is High during the Low-to-High 
clock (C) transition. The counter ignores clock transitions when CE is Low. The TC 
output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal 
count sequence within two clock cycles for FPGA architectures, as shown in the 
following state diagram. For XC9000, the counter resets to zero or recovers within the 
first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the CLR and clock inputs 
in parallel. CEO is active (High) when TC and CE are High. The maximum length of 
the counter is determined by the accumulated CE-to-TC propagation delays versus 
the clock period. The clock period must be greater than n(tCE-TC), where n is the 
number of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. 
When cascading counters, use the CEO output if the counter uses the CE input; use 
the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse to 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Design Elements (CD4CE)
Figure 4-30 CD4CE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 4-31 CD4CE Implementation XC9000
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CD4CLE

4-Bit Loadable Cascadable BCD Counter with Clock Enable and 
Asynchronous Clear

CD4CLE is a 4-bit (stage), synchronously loadable, asynchronously clearable, binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is the highest 
priority input. When CLR is High, all other inputs are ignored; the Q outputs, 
terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of 
clock transitions. The data on the D inputs is loaded into the counter when the load 
enable input (L) is High during the Low-to-High clock (C) transition. The Q outputs 
increment when clock enable input (CE) is High during the Low- to-High clock transi-
tion. The counter ignores clock transitions when CE is Low. The TC output is High 
when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal 
count sequence within two clock cycles for FPGAs, as shown in the following state 
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the CLR, L, and C inputs in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Figure 4-32 CD4CLE Implementation XC3000
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Design Elements (CD4CLE)
Figure 4-33 CD4CLE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 4-34 CD4CLE Implementation XC9000
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CD4RE

4-Bit Cascadable BCD Counter with Clock Enable and 
Synchronous Reset

CD4RE is a 4-bit (stage), synchronous, resettable, cascadable binary-coded-decimal 
(BCD) counter. The synchronous reset input (R) is the highest priority input. When R 
is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock 
enable out (CEO) go to logic level zero on the Low-to-High clock (C) transition. The Q 
outputs increment when the clock enable input (CE) is High during the Low-to-High 
clock transition. The counter ignores clock transitions when CE is Low. The TC output 
is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal 
count sequence within two clock cycles for FPGAs, as shown in the following state 
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the R and clock inputs in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Design Elements (CD4RE)
Figure 4-35 CD4RE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 4-36 CD4RE Implementation XC9000
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Design Elements (CD4RLE)
CD4RLE

4-Bit Loadable Cascadable BCD Counter with Clock Enable and 
Synchronous Reset

CD4RLE is a 4-bit (stage), synchronous, loadable, resettable, binary-coded-decimal 
(BCD) counter. The synchronous reset input (R) is the highest priority input. When R 
is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock 
enable out (CEO) go to logic level zero on the Low-to-High clock transitions. The data 
on the D inputs is loaded into the counter when the load enable input (L) is High 
during the Low-to-High clock (C) transition. The Q outputs increment when the clock 
enable input (CE) is High during the Low-to-High clock transition. The counter 
ignores clock transitions when CE is Low. The TC output is High when Q3 and Q0 are 
High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal 
count sequence within two clock cycles for FPGAs, as shown in the following state 
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the 
first stage to the CE input of the next stage and connecting the R, L, and C inputs in 
parallel. CEO is active (High) when TC and CE are High. The maximum length of the 
counter is determined by the accumulated CE-to-TC propagation delays versus the 
clock period. The clock period must be greater than n(tCE-TC), where n is the number 
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When 
cascading counters, use the CEO output if the counter uses the CE input; use the TC 
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro
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Figure 4-37 CD4RLE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Inputs Outputs

R L CE D3 – D0 C Q3 Q2 Q1 Q0 TC CEO

1 X X X ↑ 0 0 0 0 0 0

0 1 X D3 – D0 ↑ d3 d2 d1 d0 TC CEO

0 0 1 X ↑ Inc Inc Inc Inc TC CEO

0 0 0 X X No Chg No Chg No Chg No Chg TC 0

0 0 1 X X 1 0 0 1 1 1
d = state of referenced input one setup time prior to active clock transition
TC = Q3•Q2•Q1•Q0
CEO = TC•CE
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Figure 4-38 CD4RLE Implementation XC9000
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CJ4CE, CJ5CE, CJ8CE

4-, 5-, 8-Bit Johnson Counters with Clock Enable and 
Asynchronous Clear

CJ4CE, CJ5CE, and CJ8CE are clearable Johnson/shift counters. The asynchronous 
clear (CLR) input, when High, overrides all other inputs and causes the data (Q) 
outputs to go to logic level zero, independent of clock (C) transitions. The counter 
increments (shifts Q0 to Q1, Q1 to Q2,and so forth) when the clock enable input (CE) 
is High during the Low-to-High clock transition. Clock transitions are ignored when 
CE is Low. 

For CJ4CE, the Q3 output is inverted and fed back to input Q0 to provide continuous 
counting operation. For CJ5CE, the Q4 output is inverted and fed back to input Q0. 
For CJ8CE, the Q7 output is inverted and fed back to input Q0.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 4-1 CJ4CE Truth Table

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3

1 X X 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg

0 1 ↑ q3 q0 q1 q2
q = state of referenced output one setup time prior to active clock transition

Table 4-2 CJ5CE Truth Table

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3 Q4

1 X X 0 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg No Chg

0 1 ↑ q4 q0 q1 q2 q3
q = state of referenced output one setup time prior to active clock transition
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Figure 4-39 CJ8CE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Table 4-3 CJ8CE Truth Table

Inputs Outputs

CLR CE C Q0 Q1 – Q7

1 X X 0 0

0 0 X No Chg No Chg

0 1 ↑ q7 q0 – q6
q = state of referenced output one setup time prior to active clock transition
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CJ4RE, CJ5RE, CJ8RE

4-, 5-, 8-Bit Johnson Counters with Clock Enable and Synchronous 
Reset

CJ4RE, CJ5RE, and CJ8RE are resettable Johnson/shift counters. The synchronous 
reset (R) input, when High, overrides all other inputs and causes the data (Q) outputs 
to go to logic level zero during the Low-to-High clock (C) transition. The counter 
increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE) 
is High during the Low-to-High clock transition. Clock transitions are ignored when 
CE is Low. 

For CJ4RE, the Q3 output is inverted and fed back to input Q0 to provide continuous 
counting operation. For CJ5RE, the Q4 output is inverted and fed back to input Q0. 
For CJ8RE, the Q7 output is inverted and fed back to input Q0.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 4-4 CJ4RE Truth Table

Inputs Outputs

R CE C Q0 Q1 Q2 Q3

1 X ↑ 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg

0 1 ↑ q3 q0 q1 q2
q = state of referenced output one setup time prior to active clock transition

Table 4-5 CJ5RE Truth Table

Inputs Outputs

R CE C Q0 Q1 Q2 Q3 Q4

1 X ↑ 0 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg No Chg

0 1 ↑ q4 q0 q1 q2 q3
q = state of referenced output one setup time prior to active clock transition
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Figure 4-40 CJ8RE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Table 4-6 CJ8RE Truth Table

Inputs Outputs

R CE C Q0 Q1 – Q7

1 X ↑ 0 0

0 0 X No Chg No Chg

0 1 ↑ q7 q0 – q6
q = state of referenced output one setup time prior to active clock transition
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CK_DIV

Internal Multiple-Frequency Clock Divider

CK_DIV divides a user-provided external clock signal with different divide factors on 
either or both of the outputs. Only one CK_DIV may be used per design. The CK_DIV 
is not available if the OSC5 element is used.

The clock frequencies of the OSC1 and OSC2 outputs are determined by specifying 
the DIVIDE1_BY=n1 attribute for the OSC1 output and the DIVIDE2_BY=n2 attribute 
for the OSC2 output. n1 and n2 are integer numbers by which the clock input (C) is 
divided to produce the desired output clock frequency. The available values of n1 and 
n2 are shown in the following table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A N/A

n1 n2

4 2

16 8

64 32

256 128

1,024

4,096

16,384

65,536

X4970

@DIVIDE1_BY=
@DIVIDE2_BY=

C

CK_DIV

OSC2

OSC1
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Design Elements (CLB)
CLB

CLB Configuration Symbol

The CLB symbol enables you to manually specify a CLB configuration. It allows you 
to enter portions of a logic design directly in terms of the physical CLB, rather than 
schematically. Using the CLB symbol provides precise partitioning control and 
requires knowledge of the CLB architecture. Use it in place of the equivalent captured 
logic and not in conjunction with it.

A blank XC3000 CLB primitive symbol and its corresponding configured CLB primi-
tive and circuit are shown in the following figure.

Figure 4-41 XC3000 CLB Primitive Example and Equivalent Circuit

CLB symbol pins correspond to actual CLB pins. Signals connected to these pins in a 
schematic are connected to the corresponding CLB pins in the design. You must 
specify the BASE, CONFIG, EQUATE_F, and EQUATE_G commands for the CLB. It is 
not necessary for the translator program to parse the commands specifying the CLB 
configuration. The mapping program from the LCA Xilinx netlist to the LCA design 
checks these commands for errors.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A N/A
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The configuration commands must be consistent with the connections. For example, if 
you use the A input in an equation, connect a signal to the A pin. Refer to the appli-
cable CAE tool interface user guide for more information on specifying the CLB 
configuration commands in the schematic.

You can specify the location of a CLB on the device using the LOC attribute. When 
specifying the LOC attribute, a valid CLB name (AA, AB, and so forth) must be used. 
Refer to the “LOC” section of the “Attributes, Constraints, and Carry Logic” chapter 
for more information.
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CLBMAP

Logic-Partitioning Control Symbol

The CLBMAP symbol is used to control logic partitioning into XC3000 family CLBs. 
The CLBMAP symbol is not a substitute for logic. It is used in addition to combina-
tional gates, latches, and flip-flops for mapping control.

At the schematic level, you can implement a portion of logic using gates, latches, and 
flip-flops and specify that the logic be grouped into a single CLB by using the 
CLBMAP symbol. You must name the signals that are the inputs and outputs of the 
CLB, then draw the signals to appropriate pins of the CLBMAP symbol, or name the 
CLBMAP signals and logic signals correspondingly. The symbol can have uncon-
nected pins, but all signals on the logic group to be mapped must be specified on a 
symbol pin.

CLBMAP primitives and equivalent circuits are shown for XC3000 families in the 
following figure.

Figure 4-42 XC3000 CLBMAP Primitive Example and Equivalent

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Use the MAP=type parameter with the CLBMAP symbol to further define how much 
latitude you want to give the mapping program. The following table shows MAP 
option characters and their meanings.

Possible types of MAP parameters for FMAP are: MAP=PUC, MAP=PLC, MAP=PLO, 
and MAP=PUO. The default parameter is PUO. If one of the “open” parameters is 
used (PLO or PUO), only the output signals must be specified.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into 
PUC and PUO, respectively.

You can lock individual pins using the “P” (Pin lock) parameter on the CLBMAP pin 
in conjunction with the PUC parameter. Refer to the appropriate CAE tool interface 
user guide for information on changing symbol parameters for your schematic editor.

MAP Option 
Character

Function

P Pins.

C Closed — Adding logic to or removing logic from the CLB 
is not allowed.

L Locked — Locking CLB pins.

O Open — Adding logic to or removing logic from the CLB is 
allowed.

U Unlocked — No locking on CLB pins.
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CLKDLL

Clock Delay Locked Loop

CLKDLL is a clock delay locked loop used to minimize clock skew. CLKDLL synchro-
nizes the clock signal at the feed back clock input (CLKFB) to the clock signal at the 
input clock (CLKIN). The locked output (LOCKED) is high when the two signals are 
in phase. The signals are considered to be in phase when their rising edges are within 
250 ps of each other.

The frequency of the clock signal at the CLKIN input must be in the range 25 - 90 
MHz. The CLKIN pin must be driven by an IBUFG or a BUFG.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the 
global clock network driven by a BUFG, a global clock buffer. The BUFG input can 
only be connected to the CLK0 or CLK2X output of CLKDLL. The BUFG connected to 
the CLKFB input of the CLKDLL must be sourced from either the CLK0 or CLK2X 
outputs of the same CLKDLL. The CLKIN input should be connected to the output of 
an IBUFG, with the IBUFG input connected to a pad driven by the system clock.

Off-chip synchronization is achieved by connecting the CLKFB input to the output of 
an IBUFG, with the IBUFG input connected to a pad. Either the CLK0 or CLK2X 
output can be used but not both. The CLK0 or CLK2X must be connected to the input 
of OBUF, an output buffer.

The duty cycle of the CLK0 output is 50-50 unless the DUTY_CYCLE_CORRECTION 
attribute is set to FALSE, in which case the duty cycle is the same as that of the CLKIN 
input. The duty cycle of the phase shifted outputs (CLK90, CLK180, and CLK270) is 
the same as that of the CLK0 output. The duty cycle of the CLK2X and CLKDV 
outputs is always 50-50. The frequency of the CLKDV output is determined by the 
value assigned to the CLKDV_DIVIDE attribute.

The master reset input (RST) resets CLKDLL to its initial (power-on) state. The signal 
at the RST input is synchronized to the clock signal at the CLKIN input. The reset 
becomes effective at the second Low-to-High transition of the clock signal at the 
CLKIN input after assertion of the RST signal.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Table 4-7 CLKDLL Outputs

Output Description

CLK0 Clock at 1x CLKIN frequency

CLK90 Clock at 1x CLKIN frequency, shifted 90o with regards to CLK0

CLK180 Clock at 1x CLKIN frequency, shifted 180o with regards to CLK0

CLK270 Clock at 1x CLKIN frequency, shifted 270o with regards to CLK0

CLK2X Clock at 2x CLKIN frequency

CLKDV Clock at (1/n)x CLKIN frequency, n=CLKDV_DIVIDE value

LOCKED CLKDLL locked

X8678

CLKDLL

LOCKED

CLKDV

CLK2X

CLKFB

CLK270

CLKIN CLK0

CLK180

RST

CLK90
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Note: Refer to the "PERIOD Specifications on CLKDLLs" section of the "Using Timing 
Constraints" chapter in the Development System Reference Guide for additional informa-
tion on using the TNM, TNM_NET, and PERIOD attributes with CLKDLL compo-
nents.
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CLKDLLHF

High Frequency Clock Delay Locked Loop

CLKDLLHF is a high frequency clock delay locked loop used to minimize clock skew. 
CLKDLLHF synchronizes the clock signal at the feed back clock input (CLKFB) to the 
clock signal at the input clock (CLKIN). The locked output (LOCKED) is high when 
the two signals are in phase. The signals are considered to be in phase when their 
rising edges are within 250 ps of each other. 

The frequency of the clock signal at the CLKIN input must be in the range 60 - 180 
MHz. The CLKIN pin must be driven by an IBUFG or a BUFG.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the 
global clock network driven by a BUFG, a global clock buffer. The BUFG input can 
only be connected to the CLK0 output of CLKDLLHF. The BUFG connected to the 
CLKFB input of the CLKDLLHF must be sourced from the CLK0 output of the same 
CLKDLLHF. The CLKIN input should be connected to the output of an IBUFG, with 
the IBUFG input connected to a pad driven by the system clock.

Off-chip synchronization is achieved by connecting the CLKFB input to the output of 
an IBUFG, with the IBUFG input connected to a pad. Only the CLK0 output can be 
used. CLK0 must be connected to the input of OBUF, an output buffer.

The duty cycle of the CLK0 output is 50-50 unless the DUTY_CYCLE_CORRECTION 
attribute is set to FALSE, in which case the duty cycle is the same as that of the CLKIN 
input. The duty cycle of the phase shifted output (CLK180) is the same as that of the 
CLK0 output. The frequency of the CLKDV output is determined by the value 
assigned to the CLKDV_DIVIDE attribute.

The master reset input (RST) resets CLKDLL to its initial (power-on) state. The signal 
at the RST input is synchronized to the clock signal at the CLKIN input. The reset 
becomes effective at the second Low-to-High transition of the clock signal at the 
CLKIN input after assertion of the RST signal.

Note: Refer to the "PERIOD Specifications on CLKDLLs" section of the "Using Timing 
Constraints" chapter in the Development System Reference Guide for additional informa-
tion on using the TNM, TNM_NET, and PERIOD attributes with CLKDLLHF compo-
nents.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Table 4-8 CLKDLLHF Outputs

Output Description

CLK0 Clock at 1x CLKIN frequency

CLK180 Clock at 1x CLKIN frequency, shifted 180o with regards to CLK0

CLKDV Clock at (1/n)x CLKIN frequency, n=CLKDV_DIVIDE value

LOCKED CLKDLL locked

X8680

CLKDLLHF

LOCKED

CLKDV

CLKFB

CLKIN CLK0

CLK180

RST
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COMP2, 4, 8, 16

2-, 4-, 8-, 16-Bit Identity Comparators

COMP2, COMP4, COMP8, and COMP16 are, respectively, 2-, 4-, 8-, and 16-bit identity 
comparators. The equal output (EQ) of the COMP2 2-bit, identity comparator is High 
when the two words A1 – A0 and B1 – B0 are equal. EQ is high for COMP4 when A3 – 
A0 and B3 – B0 are equal; for COMP8, when A7 – A0 and B7 – B0 are equal; and for 
COMP16, when A15 – A0 and B15 – B0 are equal.

Equality is determined by a bit comparison of the two words. When any two of the 
corresponding bits from each word are not the same, the EQ output is Low.

Figure 4-43 COMP8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (COMPM2, 4, 8, 16)
COMPM2, 4, 8, 16

2-, 4-, 8-, 16-Bit Magnitude Comparators

COMPM2, COMPM4, COMPM8, and COMPM16 are, respectively, 2-, 4-, 8-, and 16-
bit magnitude comparators that compare two positive binary-weighted words.

COMPM2 compares A1 – A0 and B1 – B0, where A1 and B1 are the most significant 
bits. COMPM4 compares A3 – A0 and B3 – B0, where A3 and B3 are the most signifi-
cant bits. COMPM8 compares A7 – A0 and B7 – B0, where A7 and B7 are the most 
significant bits. COMPM16 compares A15 – A0 and B15 – B0, where A15 and B15 are 
the most significant bits. 

The greater-than output (GT) is High when A>B, and the less-than output (LT) is High 
when A<B. When the two words are equal, both GT and LT are Low. Equality can be 
measured with this macro by comparing both outputs with a NOR gate.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 4-9 COMPM2 Truth Table

Inputs Outputs

A1 B1 A0 B0 GT LT

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 1 0 0

1 1 0 0 0 0

1 1 1 0 1 0

1 1 0 1 0 1

1 1 1 1 0 0

1 0 X X 1 0

0 1 X X 0 1

X4123

COMPM2
A0

A1

B0

B1

GT

LT

X4127

COMPM4

B1

B2

B3

B0

A3

A2

A1

A0

LT

GT

A[7:0] COMPM8

B[7:0]
LT

GT

X4132

A[15:0] COMPM16

B[15:0]
LT

GT

X4134
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Table 4-10 COMPM4 Truth Table

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A3>B3 X X X 1 0

A3<B3 X X X 0 1

A3=B3 A2>B2 X X 1 0

A3=B3 A2<B2 X X 0 1

A3=B3 A2=B2 A1>B1 X 1 0

A3=B3 A2=B2 A1<B1 X 0 1

A3=B3 A2=A2 A1=B1 A0>B0 1 0

A3=B3 A2=B2 A1=B1 A0<B0 0 1

A3=B3 A2=B2 A1=B1 A0=B0 0 0

Table 4-11 COMPM8 Truth Table (also representative of COMPM16)

Inputs Outputs

A7, B7 A6, B6 A5, B5 A4, B4 A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A7>B7 X X X X X X X 1 0

A7<B7 X X X X X X X 0 1

A7=B7 A6>B6 X X X X X X 1 0

A7=B7 A6<B6 X X X X X X 0 1

A7=B7 A6=B6 A5>B5 X X X X X 1 0

A7=B7 A6=B6 A5<B5 X X X X X 0 1

A7=B7 A6=B6 A5=B5 A4>B4 X X X X 1 0

A7=B7 A6=B6 A5=B5 A4<B4 X X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3>B3 X X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3<B3 X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2>B2 X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2<B2 X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1>B1 X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1<B1 X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0>B0 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0<B0 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0=B0 0 0
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Design Elements (COMPM2, 4, 8, 16)
Figure 4-44 COMPM8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 4-45 COMPM8 Implementation XC9000
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Design Elements (COMPMC8, 16)
COMPMC8, 16

8-, 16-Bit Magnitude Comparators

COMPMC8 is an 8-bit, magnitude comparator that compares two positive binary-
weighted words A7 – A0 and B7 – B0, where A7 and B7 are the most significant bits. 
COMPMC16 is a 16-bit, magnitude comparator that compares two positive binary-
weighted words A15 – A0 and B15 – B0, where A15 and B15 are the most significant 
bits. 

These comparators are implemented using carry logic with relative location 
constraints to ensure efficient logic placement. 

The greater-than output (GT) is High when A>B, and the less-than output (LT) is High 
when A<B. When the two words are equal, both GT and LT are Low. Equality can be 
flagged with this macro by connecting both outputs to a NOR gate.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro Macro Macro

Table 4-12 COMPMC8 Truth Table (also representative of COMPMC16)

Inputs Outputs

A7, B7 A6, B6 A5, B5 A4, B4 A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A7>B7 X X X X X X X 1 0

A7<B7 X X X X X X X 0 1

A7=B7 A6>B6 X X X X X X 1 0

A7=B7 A6<B6 X X X X X X 0 1

A7=B7 A6=B6 A5>B5 X X X X X 1 0

A7=B7 A6=B6 A5<B5 X X X X X 0 1

A7=B7 A6=B6 A5=B5 A4>B4 X X X X 1 0

A7=B7 A6=B6 A5=B5 A4<B4 X X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3>B3 X X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3<B3 X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2>B2 X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2<B2 X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1>B1 X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1<B1 X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0>B0 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0<B0 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0=B0 0 0

A[7:0] COMPMC8

B[7:0]

GT

X4264

LT

A[15:0] COMPMC16

B[15:0]
LT

GT

X4265
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Topology for XC4000, Spartan, SpartanXL

This is the COMPMC8 (8-bit) and COMPMC16 (16-bit) topology for XC4000E, 
XC4000X, Spartan, and SpartanXL devices.

In the process of combining the logic that loads GT and LT, the place and route soft-
ware might map the logic that generates GT and LT to different function generators. If 
this mapping occurs, the GT and LT logic cannot be placed in the uppermost CLB, as 
indicated in the illustration.
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Design Elements (COMPMC8, 16)
Figure 4-46 COMPMC8 Implementation XC4000E, XC4000X, Spartan, 
SpartanXL
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Figure 4-47 COMPMC8 Implementation XC5200
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Design Elements (COMPMC8, 16)
Figure 4-48 COMPMC8 Implementation Spartan2, Virtex
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CONFIG

Repository for Schematic-Level (Global) Attributes

The CONFIG primitive is a table that you can use to specify up to eight attributes that 
affect the entire design (global attributes such as PART or PROHIBIT). 

When using certain CAE software packages, global properties cannot be attached to 
the “Schematic” or “Sheet.” Instead, they must be attached to the CONFIG symbol. 
Enter attributes using the same syntax that you would use in a UCF file. The global 
attributes can be any length, but only 30 characters are displayed in the CONFIG 
window. The CONFIG table is shown in the following figure.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

CONFIG

X7763
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Design Elements (CR8CE, CR16CE)
CR8CE, CR16CE

8-, 16-Bit Negative-Edge Binary Ripple Counters with Clock Enable 
and Asynchronous Clear

CR8CE and CR16CE are 8-bit and 16-bit, cascadable, clearable, binary, ripple counters. 
The asynchronous clear (CLR), when High, overrides all other inputs and causes the 
Q outputs to go to logic level zero. The counter increments when the clock enable 
input (CE) is High during the High-to-Low clock (C) transition. The counter ignores 
clock transitions when CE is Low.

Larger counters can be created by connecting the last Q output (Q7 for CR8CE, Q15 
for CR16CE) of the first stage to the clock input of the next stage. CLR and CE inputs 
are connected in parallel. The clock period is not affected by the overall length of a 
ripple counter. The overall clock-to-output propagation is n(tC - Q), where n is the 
number of stages and the time tC - Q is the C-to-Qz propagation delay of each stage.

The counter is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE C Qz – Q0

1 X X 0

0 0 X No Chg

0 1 ↓ Inc
z = 7 for CR8CE; z = 15 for CR16CE.

X4116

CR8CE

C

CLR

CE

Q[7:0]

X4120

CR16CE
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CLR

CE

Q[15:0]
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Figure 4-49 CR8CE Implementation XC3000

Figure 4-50 CR8CE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex
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Design Elements (CR8CE, CR16CE)
Figure 4-51 CR8CE Implementation XC9000
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CY_INIT

Initialization Stage for Carry Chain

CY_INIT is used to initialize the carry chain in the XC5200 architecture. It is used in 
conjunction with multiple CY_MUX elements to implement high speed carry-propa-
gate or high speed cascade logic. CY_INIT must be placed in the logic cell (LC) imme-
diately below the least-significant carry element (CY_MUX) in the carry/cascade 
chain. The INIT input is driven from the direct input (DI) to LC. The CY_INIT carry-
out (COUT) drives the C in input of the first LC in the carry chain. The COUT output 
reflects the state of the DI input. This figure represents the schematic implementation 
of CY_INIT.

Figure 4-52 CY _INIT 4-Bit Adder Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Macro N/A N/A N/A N/A N/A
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Design Elements (CY_MUX)
CY_MUX

2-to-1 Multiplexer for Carry Logic

CY_MUX is used to implement a 1-bit high-speed carry propagate function. One such 
function can be implemented per logic cell (LC), for a total of 4-bits per configurable 
logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the 
CY_MUX. The carry in (CI) input of an LC is connected to the CI input of the 
CY_MUX. The select input (S) of the CY_MUX is driven by the output of the lookup 
table (LUT) and configured as an XOR function. The carry out (CO) of the CY_MUX 
reflects the state of the selected input and implements the carry out function of each 
LC. When Low, S selects DI; when High, S selects CI.

The following figure depicts the application of the CY_MUX for a 4-bit adder. Also 
shown are the associated FMAP symbols and the CY_INIT function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A N/A
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Figure 4-53 CY_MUX 4-Bit Adder Schematic XC5200
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Design Elements (D2_4E)
D2_4E

2- to 4-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D2_4E decoder/demultiplexer is High, one of four 
active-High outputs (D3 – D0) is selected with a 2-bit binary address (A1 – A0) input. 
The non-selected outputs are Low. Also, when the EN input is Low, all outputs are 
Low. In demultiplexer applications, the EN input is the data input.

Figure 4-54 D2_4E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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D3_8E

3- to 8-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D3_8E decoder/demultiplexer is High, one of 
eight active-High outputs (D7 – D0) is selected with a 3-bit binary address (A2 – A0) 
input. The non-selected outputs are Low. Also, when the EN input is Low, all outputs 
are Low. In demultiplexer applications, the EN input is the data input.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Design Elements (D3_8E)
Figure 4-55 D3_8E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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D4_16E

4- to 16-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D4_16E decoder/demultiplexer is High, one of 16 
active-High outputs (D15 – D0) is selected with a 4-bit binary address (A3 – A0) input. 
The non-selected outputs are Low. Also, when the EN input is Low, all outputs are 
Low. In demultiplexer applications, the EN input is the data input. 

Refer to the “D3_8E” section for a representative truth table derivation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Design Elements (D4_16E)
Figure 4-56 D4_16E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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DEC_CC4, 8, 16

4-, 8-, 16-Bit Active Low Decoders

These decoders are used to build wide-decoder functions. They are implemented by 
cascading CY_MUX elements driven by lookup tables (LUTs). The C_IN pin can only 
be driven by a CY_INIT or by the output (O) of a previous decode stage. When one or 
more of the inputs (A) are Low, the output is Low. When all the inputs are High and 
the C_IN input is High, the output is High. You can decode patterns by adding 
inverters to inputs.

Figure 4-57 DEC_CC4 Implementation XC5200
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Design Elements (DEC_CC4, 8, 16)
Figure 4-58 DEC_CC4 Implementation Spartan2, Virtex

Figure 4-59 DEC_CC8 Implementation XC5200, Spartan2, Virtex
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DECODE4, 8, 16

4-, 8-, 16-Bit Active-Low Decoders

Figure 4-60 DECODE Representations

In the XC4000 architectures, decoders are open-drain, wired-AND gates. When one or 
more of the inputs (A) are Low, output (O) is Low. When all the inputs are High, the 
output is High or Off. A pull-up resistor must be connected to the output node to 
achieve a true logic High. A double pull-up resistor can be used to achieve faster 
performance; however, it uses more power. The software implements these macros 
using the open-drain AND gates around the periphery of the devices. (Diamonds in 
library symbols indicate an open-drain output.)

In XC5200, decoders are implemented by cascading CY_MUX elements driven by 
lookup tables (LUTs). When one or more of the inputs are Low, the output is Low. 
When all the inputs are High, the output is High. You can decode patterns by adding 
inverters to inputs. Pull-ups cannot be used on XC5200 longlines.

In Virtex and Spartan2, decoders are implemented using combinations of LUTs and 
MUXCYs.
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Design Elements (DECODE4, 8, 16)
Figure 4-61 DECODE8 Implementation XC4000E, XC4000X

Figure 4-62 DECODE8 Implementation XC5200
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Figure 4-63 DECODE8 Implementation Spartan2, Virtex
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Design Elements (DECODE32, 64)
DECODE32, 64

32- and 64-Bit Active-Low Decoders

DECODE32 and DECODE64 are 32- and 64-bit active-low decoders. In XC5200, 
decoders are implemented by cascading CY_MUX elements driven by lookup tables 
(LUTs). When one or more of the inputs are Low, the output is Low. When all the 
inputs are High, the output is High. You can decode patterns by adding inverters to 
inputs. Pull-ups cannot be used on XC5200 longlines. 

In Virtex and Spartan2, decoders are implemented using combinations of LUTs and 
MUXCYs.

Refer to the “DECODE4, 8, 16” section for a representative schematic.
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Chapter 5

Design Elements (F5MAP to FTSRLE)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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F5MAP

5-Input Function Partitioning Control Symbol

The F5MAP symbol is used to control the logic partitioning of 5-input functions into 
the top or bottom half of a CLB. The F5MAP symbol is not a substitute for logic. It is 
used in addition to combinatorial gates for mapping control.

At the schematic level, any 5-input logic function can be implemented using gates and 
mapped into half of a single CLB by using the F5MAP symbol. The signals that are the 
inputs and outputs of the 5-input function must be labelled and connected to appro-
priate pins of the F5MAP symbol, or the F5MAP signals and logic signals must have 
identical labels. The symbol can have unconnected pins, but all signals on the logic 
group to be mapped must be specified on a symbol pin.

Using F5MAP forces any 5-input function to be implemented by two lookup tables 
(LUTs), the direct input (DI), and the F5_MUX primitive, which are contained within 
adjacent CLB logic cells LC0 and LC1 or LC2 and LC3.

 The connections within a CLB are shown in the “Two LUTs in Parallel Combined to 
Create a 5-Input Function” figure. An F5MAP primitive example is shown in the 
“F5MAP Primitive Example” figure.

Figure 5-1 Two LUTs in Parallel Combined to Create a 5-Input Function

Figure 5-2 F5MAP Primitive Example
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Design Elements (F5_MUX)
F5_MUX

2-to-1 Lookup Table Multiplexer

F5_MUX provides a multiplexer function in one half of a CLB. The output from the 
lookup table (LUT) in LC1 is connected to the I1 input of the F5_MUX. The output 
from the LUT in LC0 is connected to the I2 input. The direct input (DI) of LC0 is 
connected to the DI input of the F5_MUX. The output (O) reflects the state of the 
selected input. When Low, DI selects I1; when High, DI selects I2. Similarly, the 
F5_MUX can connect to the LUTs in LC2 and LC3. The F5_MUX can also implement 
any 5-input function in the top or bottom half of a CLB when the mapping of the func-
tion is controlled by F5MAP.

Figure 5-3 F5_MUX Representation
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FD

D Flip-Flop

FD is a single D-type flip-flop with data input (D) and data output (Q). The data on 
the D inputs is loaded into the flip-flop during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Refer to the “FD4, 8, 16” section for information on multiple D flip-flops for the 
XC9000.

Figure 5-4 FD Implementation XC3000, XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL
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Design Elements (FD)
Figure 5-5 FD Implementation XC9000
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FD_1

D Flip-Flop with Negative-Edge Clock

FD_1 is a single D-type flip-flop with data input (D) and data output (Q). The data on 
the D input is loaded into the flip-flop during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for 
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-6 FD_1 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Design Elements (FD4, 8, 16)
FD4, 8, 16

Multiple D Flip-Flops

FD4, FD8, FD16 are multiple D-type flip-flops with data inputs (D) and data outputs 
(Q). FD4, FD8, and FD16 are, respectively, 4-bit, 8-bit, and 16-bit registers, each with a 
common clock (C). The data on the D inputs is loaded into the flip-flop during the 
Low-to-High clock (C) transition. 

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-7 FD8 Implementation XC9000
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FD4CE, FD8CE, FD16CE

4-, 8-, 16-Bit Data Registers with Clock Enable and Asynchronous 
Clear

FD4CE, FD8CE, and FD16CE are, respectively, 4-, 8-, and 16-bit data registers with 
clock enable and asynchronous clear. When clock enable (CE) is High and asynchro-
nous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corre-
sponding data outputs (Q) during the Low-to-High clock (C) transition. When CLR is 
High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is 
Low, clock transitions are ignored.

The flip-flops are asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Design Elements (FD4CE, FD8CE, FD16CE)
Figure 5-8 FD8CE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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FD4RE, FD8RE, FD16RE

4-, 8-, 16-Bit Data Registers with Clock Enable and Synchronous 
Reset

FD4RE, FD8RE, and FD16RE are, respectively, 4-, 8-, and 16-bit data registers. When 
the clock enable (CE) input is High, and the synchronous reset (R) input is Low, the 
data on the data inputs (D) is transferred to the corresponding data outputs (Q0) 
during the Low-to-High clock (C) transition. When R is High, it overrides all other 
inputs and resets the data outputs (Q) Low on the Low-to-High clock transition. 
When CE is Low, clock transitions are ignored.

The flip-flops are asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Design Elements (FD4RE, FD8RE, FD16RE)
Figure 5-9 FD8RE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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FDC

D Flip-Flop with Asynchronous Clear

FDC is a single D-type flip-flop with data (D) and asynchronous clear (CLR) inputs 
and data output (Q). The asynchronous CLR, when High, overrides all other inputs 
and sets the Q output Low. The data on the D input is loaded into the flip-flop when 
CLR is Low on the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-10 FDC Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 5-11 FDC Implementation XC9000
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Design Elements (FDC_1)
FDC_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Clear

FDC_1 is a single D-type flip-flop with data input (D), asynchronous clear input 
(CLR), and data output (Q). The asynchronous CLR, when active, overrides all other 
inputs and sets the Q output Low. The data on the D input is loaded into the flip-flop 
during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-12 FDC_1 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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FDCE

D Flip-Flop with Clock Enable and Asynchronous Clear

FDCE is a single D-type flip-flop with clock enable and asynchronous clear. When 
clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data 
input (D) of FDCE is transferred to the corresponding data output (Q) during the 
Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and 
resets the data output (Q) Low. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

For XC9500XL and XC9500XV devices, logic connected to the clock enable (CE) input 
may be implemented using the clock enable product term (p-term) in the macrocell, 
provided the logic can be completely implemented using the single p-term available 
for clock enable without requiring feedback from another macrocell. Only FDCE and 
FDPE flip-flops primitives may take advantage of the clock-enable p-term.
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Design Elements (FDCE_1)
FDCE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and 
Asynchronous Clear

FDCE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous 
clear (CLR) inputs, and data output (Q). The asynchronous CLR input, when High, 
overrides all other inputs and sets the Q output Low. The data on the D input is 
loaded into the flip-flop when CLR is Low and CE is High on the High-to-Low clock 
(C) transition. When CE is Low, the clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for 
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-13 FDCE_1 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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FDCP

D Flip-Flop Asynchronous Preset and Clear

FDCP is a single D-type flip-flop with data (D), asynchronous preset (PRE) and clear 
(CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the Q 
output High; CLR, when High, resets the output Low. Data on the D input is loaded 
into the flip-flop when PRE and CLR are Low on the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. Virtex and Spartan2 simulate power-on when global set/reset 
(GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter 
in front of the GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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Design Elements (FDCP_1)
FDCP_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Preset 
and Clear

FDCP_1 is a single D-type flip-flop with data (D), asynchronous preset (PRE) and 
clear (CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the 
Q output High; CLR, when High, resets the output Low. Data on the D input is loaded 
into the flip-flop when PRE and CLR are Low on the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDCPE

D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

FDCPE is a single D-type flip-flop with data (D), clock enable (CE), asynchronous 
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asyn-
chronous PRE, when High, sets the Q output High; CLR, when High, resets the 
output Low. Data on the D input is loaded into the flip-flop when PRE and CLR are 
Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the 
clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. Virtex and Spartan2 simulate power-on when global set/reset 
(GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter 
in front of the GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

Figure 5-14 FDCPE Implementation XC9000
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Design Elements (FDCPE_1)
FDCPE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and 
Asynchronous Preset and Clear

FDCPE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous 
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asyn-
chronous PRE, when High, sets the Q output High; CLR, when High, resets the 
output Low. Data on the D input is loaded into the flip-flop when PRE and CLR are 
Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the 
clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDE

D Flip-Flop with Clock Enable

FDE is a single D-type flip-flop with data input (D), clock enable (CE), and data 
output (Q). When clock enable is High, the data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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Design Elements (FDE_1)
FDE_1

D Flip-Flop with Negative-Edge Clock and Clock Enable

FDE_1 is a single D-type flip-flop with data input (D), clock enable (CE), and data 
output (Q). When clock enable is High, the data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDP

D Flip-Flop with Asynchronous Preset

FDP is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs 
and data output (Q). The asynchronous PRE, when High, overrides all other inputs 
and presets the Q output High. The data on the D input is loaded into the flip-flop 
when PRE is Low on the Low-to-High clock (C) transition. 

For FPGAs, the flip-flop is asynchronously preset, output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The active level of the GR/GSR 
defaults to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol. 

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-15 FDP Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

Figure 5-16 FDP Implementation XC9000
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FDP_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Preset

FDP_1 is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs 
and data output (Q). The asynchronous PRE, when High, overrides all other inputs 
and presets the Q output High. The data on the D input is loaded into the flip-flop 
when PRE is Low on the High-to-Low clock (C) transition. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global reset (GR for XC5200) or global set/reset (GSR for 
XC4000, Spartans, Virtex) is active. The active level of the GR/GSR defaults to active-
High but can be inverted by adding an inverter in front of the GR/GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-17 FDP_1 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL
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FDPE

D Flip-Flop with Clock Enable and Asynchronous Preset

FDPE is a single D-type flip-flop with data (D), clock enable (CE), and asynchronous 
preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, over-
rides all other inputs and sets the Q output High. Data on the D input is loaded into 
the flip-flop when PRE is Low and CE is High on the Low-to-High clock (C) transi-
tion. When CE is Low, the clock transitions are ignored. 

For FPGAs, the flip-flop is asynchronously preset, output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The active level of the GR/GSR 
defaults to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol. 

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

For XC9500XL and XC9500XV devices, logic connected to the clock enable (CE) input 
may be implemented using the clock enable product term (p-term) in the macrocell, 
provided the logic can be completely implemented using the single p-term available 
for clock enable without requiring feedback from another macrocell. Only FDCE and 
FDPE flip-flops primitives may take advantage of the clock-enable p-term.

Figure 5-18 FDPE Implementation XC5200
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FDPE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and 
Asynchronous Preset

FDPE_1 is a single D-type flip-flop with data (D), clock enable (CE), and asynchro-
nous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, 
overrides all other inputs and sets the Q output High. Data on the D input is loaded 
into the flip-flop when PRE is Low and CE is High on the High-to-Low clock (C) tran-
sition. When CE is Low, the clock transitions are ignored. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global reset (GR for XC5200) or global set/reset (GSR for 
XC4000, Spartans, Virtex) is active. The active level of the GR/GSR defaults to active-
High but can be inverted by adding an inverter in front of the GR/GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-19 FDPE_1 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL
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FDR

D Flip-Flop with Synchronous Reset

FDR is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and 
data output (Q). The synchronous reset (R) input, when High, overrides all other 
inputs and resets the Q output Low on the Low-to-High clock (C) transition. The data 
on the D input is loaded into the flip-flop when R is Low during the Low-to-High 
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-20 FDR Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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FDR_1

D Flip-Flop with Negative-Edge Clock and Synchronous Reset

FDR_1 is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and 
data output (Q). The synchronous reset (R) input, when High, overrides all other 
inputs and resets the Q output Low on the Low-to-High clock (C) transition. The data 
on the D input is loaded into the flip-flop when R is Low during the High-to-Low 
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDRE

D Flip-Flop with Clock Enable and Synchronous Reset

FDRE is a single D-type flip-flop with data (D), clock enable (CE), and synchronous 
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, 
overrides all other inputs and resets the Q output Low on the Low-to-High clock (C) 
transition. The data on the D input is loaded into the flip-flop when R is Low and CE 
is High during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-21 FDRE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Primitive Primitive

Inputs Outputs

R CE D C Q

1 X X ↑ 0

0 0 X X No Chg

0 1 1 ↑ 1

0 1 0 ↑ 0

X3719

FDRE

C

CE

QD

R

Q

X7935

C

AND3B2

AND3B1

FD

D

C

Q

RLOC=R0C0

OR2

CR

D

R A0

A1
QD
5-28 Xilinx Development System



Design Elements (FDRE)
Figure 5-22 FDRE Implementation XC9000
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FDRE_1

D Flip-Flop with Negative-Clock Edge, Clock Enable, and 
Synchronous Reset

FDRE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous 
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, 
overrides all other inputs and resets the Q output Low on the Low-to-High clock (C) 
transition. The data on the D input is loaded into the flip-flop when R is Low and CE 
is High during the High-to-Low clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDRS

D Flip-Flop with Synchronous Reset and Set

FDRS is a single D-type flip-flop with data (D), synchronous set (S), and synchronous 
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High, 
overrides all other inputs and resets the Q output Low during the Low-to-High clock 
(C) transition. (Reset has precedence over Set.) When S is High and R is Low, the flip-
flop is set, output High, during the Low-to-High clock transition. When R and S are 
Low, data on the (D) input is loaded into the flip-flop during the Low-to-High clock 
transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-23 FDRS Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 5-24 FDRS Implementation XC9000
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Design Elements (FDRS_1)
FDRS_1

D Flip-Flop with Negative-Clock Edge and Synchronous Reset and 
Set

FDRS_1 is a single D-type flip-flop with data (D), synchronous set (S), and synchro-
nous reset (R) inputs and data output (Q). The synchronous reset (R) input, when 
High, overrides all other inputs and resets the Q output Low during the High-to-Low 
clock (C) transition. (Reset has precedence over Set.) When S is High and R is Low, the 
flip-flop is set, output High, during the High-to-Low clock transition. When R and S 
are Low, data on the (D) input is loaded into the flip-flop during the High-to-Low 
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDRSE

D Flip-Flop with Synchronous Reset and Set and Clock Enable

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S), 
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High, 
overrides all other inputs and resets the Q output Low during the Low-to-High clock 
transition. (Reset has precedence over Set.) When the set (S) input is High and R is 
Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. 
Data on the D input is loaded into the flip-flop when R and S are Low and CE is High 
during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-25 FDRSE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 5-26 FDRSE Implementation XC9000

QD

C

FD

C

AND2 Q

X7813

D

OR3

AND2B1

S

AND2

VCC
+5

CE

AND2B1

R

Libraries Guide, 2.1i 5-35



Libraries Guide, 2.1i
FDRSE_1

D Flip-Flop with Negative-Clock Edge, Synchronous Reset and 
Set, and Clock Enable

FDRSE_1 is a single D-type flip-flop with synchronous reset (R), synchronous set (S), 
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High, 
overrides all other inputs and resets the Q output Low during the High-to-Low clock 
transition. (Reset has precedence over Set.) When the set (S) input is High and R is 
Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. 
Data on the D input is loaded into the flip-flop when R and S are Low and CE is High 
during the High-to-Low clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex 
and Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults 
to active-High but can be inverted by adding an inverter in front of the GSR input of 
the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDS

D Flip-Flop with Synchronous Set

FDS is a single D-type flip-flop with data (D) and synchronous set (S) inputs and data 
output (Q). The synchronous set input, when High, sets the Q output High on the 
Low-to-High clock (C) transition. The data on the D input is loaded into the flip-flop 
when S is Low during the Low-to-High clock (C) transition.

For Virtex and Spartan2, the flip-flop is asynchronously preset, output High, when 
power is applied. For all other devices, the flip-flop is asynchronously cleared, output 
Low, when power is applied. For CPLDs, the power-on condition can be simulated by 
applying a High-level pulse on the PRLD global net. FPGAs simulate power-on when 
global reset (GR) or global set/reset (GSR) is active. GR for XC3000 is active-Low. GR 
for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-27 FDS Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Primitive Primitive

Inputs Outputs

S D C Q

1 X ↑ 1

0 1 ↑ 1

0 0 ↑ 0

Q

X3722

D FDS

C

S

QD

D

C

FD

S

C OR2

Q

Q

X7562
Libraries Guide, 2.1i 5-37



Libraries Guide, 2.1i
FDS_1

D Flip-Flop with Negative-Edge Clock and Synchronous Set

FDS_1 is a single D-type flip-flop with data (D) and synchronous set (S) inputs and 
data output (Q). The synchronous set input, when High, sets the Q output High on 
the High-to-Low clock (C) transition. The data on the D input is loaded into the flip-
flop when S is Low during the High-to-Low clock (C) transition.

For Virtex and Spartan2, the flip-flop is asynchronously preset, output High, when 
power is applied. Virtex and Spartan2 simulate power-on when global set/reset (GSR) 
is active. GSR defaults to active-High but can be inverted by adding an inverter in 
front of the GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDSE

D Flip-Flop with Clock Enable and Synchronous Set

FDSE is a single D-type flip-flop with data (D), clock enable (CE), and synchronous set 
(S) inputs and data output (Q). The synchronous set (S) input, when High, overrides 
the clock enable (CE) input and sets the Q output High during the Low-to-High clock 
(C) transition. The data on the D input is loaded into the flip-flop when S is Low and 
CE is High during the Low-to-High clock (C) transition.

For Virtex and Spartan2, the flip-flop is asynchronously preset, output High, when 
power is applied. For all other devices, the flip-flop is asynchronously cleared, output 
Low, when power is applied. For CPLDs, the power-on condition can be simulated by 
applying a High-level pulse on the PRLD global net. FPGAs simulate power-on when 
global reset (GR) or global set/reset (GSR) is active. GR for XC3000 is active-Low. GR 
for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-28 FDSE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 5-29 FDSE Implementation XC9000
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FDSE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and 
Synchronous Set

FDSE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous 
set (S) inputs and data output (Q). The synchronous set (S) input, when High, over-
rides the clock enable (CE) input and sets the Q output High during the High-to-Low 
clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low 
and CE is High during the High-to-Low clock (C) transition.

For Virtex and Spartan2, the flip-flop is asynchronously preset, output High, when 
power is applied. Virtex and Spartan2 simulate power-on when global set/reset (GSR) 
is active. GSR defaults to active-High but can be inverted by adding an inverter in 
front of the GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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FDSR

D Flip-Flop with Synchronous Set and Reset

FDSR is a single D-type flip-flop with data (D), synchronous reset (R) and synchro-
nous set (S) inputs and data output (Q). When the set (S) input is High, it overrides all 
other inputs and sets the Q output High during the Low-to-High clock transition. (Set 
has precedence over Reset.) When reset (R) is High and S is Low, the flip-flop is reset, 
output Low, on the Low-to-High clock transition. Data on the D input is loaded into 
the flip-flop when S and R are Low on the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans) default to active-High but can be inverted by adding an inverter in front of 
the GR/GSR input of the STARTUP symbol.

Figure 5-30 FDSR Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 5-31 FDSR Implementation XC9000
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Design Elements (FDSRE)
FDSRE

D Flip-Flop with Synchronous Set and Reset and Clock Enable

FDSRE is a single D-type flip-flop with synchronous set (S), synchronous reset (R), 
and clock enable (CE) inputs and data output (Q). When synchronous set (S) is High, 
it overrides all other inputs and sets the Q output High during the Low-to-High clock 
transition. (Set has precedence over Reset.) When synchronous reset (R) is High and S 
is Low, output Q is reset Low during the Low-to-High clock transition. Data is loaded 
into the flip-flop when S and R are Low and CE is High during the Low-to-high clock 
transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans) default to active-High but can be inverted by adding an inverter in front of 
the GR/GSR input of the STARTUP symbol.

Figure 5-32 FDSRE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 5-33 FDSRE Implementation XC9000
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Design Elements (FJKC)
FJKC

J-K Flip-Flop with Asynchronous Clear

FJKC is a single J-K-type flip-flop with J, K, and asynchronous clear (CLR) inputs and 
data output (Q). The asynchronous clear (CLR) input, when High, overrides all other 
inputs and resets the Q output Low. When CLR is Low, the output responds to the 
state of the J and K inputs, as shown in the following truth table, during the Low-to-
High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-34 FJKC Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 5-35 FJKC Implementation XC9000
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Design Elements (FJKCE)
FJKCE

J-K Flip-Flop with Clock Enable and Asynchronous Clear

FJKCE is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous 
clear (CLR) inputs and data output (Q). The asynchronous clear (CLR), when High, 
overrides all other inputs and resets the Q output Low. When CLR is Low and CE is 
High, Q responds to the state of the J and K inputs, as shown in the following truth 
table, during the Low-to-High clock transition. When CE is Low, the clock transitions 
are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-36 FJKCE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 5-37 FJKCE Implementation XC9000
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Design Elements (FJKCP)
FJKCP

J-K Flip-Flop with Asynchronous Clear and Preset

FJKCP is a single J-K-type flip-flop with J, K, asynchronous clear (CLR), and asynchro-
nous preset (PRE) inputs and data output (Q). The asynchronous clear input (CLR), 
when High, overrides all other inputs and resets the Q output Low. The asynchronous 
preset (PRE) input, when High, overrides all other inputs and sets the Q output High. 
When CLR and PRE are Low, Q responds to the state of the J and K inputs during the 
Low-to-High clock transition, as shown in the following truth table.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-38 FJKCP Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A Macro N/A N/A N/A N/A

Inputs Outputs

CLR PRE J K C Q

1 0 X X X 0

0 1 X X X 1

0 0 0 0 X No Chg

0 0 0 1 ↑ 0

0 0 1 0 ↑ 1

0 0 1 1 ↑ Toggle

Q

J

C

FJKCP

 K

PRE

CLR
X4390

Q

X8124

C

AND2B1

FDCP

D

C

Q
PRE

OR2
K

AND2B1

PRE

CLR

Q

J

CLR
Libraries Guide, 2.1i 5-49



Libraries Guide, 2.1i
FJKCPE

J-K Flip-Flop with Asynchronous Clear and Preset and Clock 
Enable

FJKCPE is a single J-K-type flip-flop with J, K, asynchronous clear (CLR), asynchro-
nous preset (PRE), and clock enable (CE) inputs and data output (Q). The asynchro-
nous clear input (CLR), when High, overrides all other inputs and resets the Q output 
Low. The asynchronous preset (PRE) input, when High, overrides all other inputs and 
sets the Q output High. When CLR and PRE are Low and CE is High, Q responds to 
the state of the J and K inputs, as shown in the following truth table, during the Low-
to-High clock transition. Clock transitions are ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-39 FJKCPE Implementation XC9000
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Design Elements (FJKP)
FJKP

J-K Flip-Flop with Asynchronous Preset

FJKP is a single J-K-type flip-flop with J, K, and asynchronous preset (PRE) inputs and 
data output (Q). The asynchronous preset (PRE) input, when High, overrides all other 
inputs and sets the Q output High. When PRE is Low, the Q output responds to the 
state of the J and K inputs, as shown in the following truth table, during the Low-to-
High clock transition.

For FPGAs, the flip-flop is asynchronously preset, output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The GR/GSR active level defaults to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.
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Figure 5-40 FJKP Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 5-41 FJKP Implementation XC9000
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Design Elements (FJKPE)
FJKPE

J-K Flip-Flop with Clock Enable and Asynchronous Preset

FJKPE is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous 
preset (PRE) inputs and data output (Q). The asynchronous preset (PRE), when High, 
overrides all other inputs and sets the Q output High. When PRE is Low and CE is 
High, the Q output responds to the state of the J and K inputs, as shown in the truth 
table, during the Low-to-High clock (C) transition. When CE is Low, clock transitions 
are ignored.

For FPGAs, the flip-flop is asynchronously preset, output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The GR/GSR active level defaults to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.
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Figure 5-42 FJKPE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 5-43 FJKPE Implementation XC9000
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Design Elements (FJKRSE)
FJKRSE

J-K Flip-Flop with Clock Enable and Synchronous Reset and Set

FJKRSE is a single J-K-type flip-flop with J, K, synchronous reset (R), synchronous set 
(S), and clock enable (CE) inputs and data output (Q). When synchronous reset (R) is 
High, all other inputs are ignored and output Q is reset Low. (Reset has precedence 
over Set.) When synchronous set (S) is High and R is Low, output Q is set High. When 
R and S are Low and CE is High, output Q responds to the state of the J and K inputs, 
according to the following truth table, during the Low-to-High clock (C) transition. 
When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-44 FJKRSE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 5-45 FJKRSE Implementation XC9000
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Design Elements (FJKSRE)
FJKSRE

J-K Flip-Flop with Clock Enable and Synchronous Set and Reset

FJKSRE is a single J-K-type flip-flop with J, K, synchronous set (S), synchronous reset 
(R), and clock enable (CE) inputs and data output (Q). When synchronous set (S) is 
High, all other inputs are ignored and output Q is set High. (Set has precedence over 
Reset.) When synchronous reset (R) is High and S is Low, output Q is reset Low. When 
S and R are Low and CE is High, output Q responds to the state of the J and K inputs, 
as shown in the following truth table, during the Low-to-High clock (C) transition. 
When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Figure 5-46 FJKSRE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Figure 5-47 FJKSRE Implementation XC9000
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Design Elements (FMAP)
FMAP

F Function Generator Partitioning Control Symbol

The FMAP symbol is used to control logic partitioning into XC4000 4-input function 
generators. For XC4000, Spartan, and SpartanXL, the place and route software 
chooses an F or a G function generator as a default, unless you specify an F or G. The 
FMAP symbol is used in an XC5200, a Virtex, or a Spartan2 device to map logic to the 
function generator of a slice. Refer to the appropriate CAE tool interface user guide 
for information about specifying this attribute in your schematic design editor.

For the XC4000, Spartan, and SpartanXL devices, the FMAP symbol is usually used 
with the HMAP symbol, which partitions logic into the 3-input generator of the 
Configurable Logic Block (CLB). You can implement a portion of logic using gates, 
latches, and flip-flops and specify the logic to be grouped into F, G, and H function 
generators by naming logic signals and FMAP/HMAP signals correspondingly. These 
symbols are used for mapping control in addition to the actual gates, latches, and flip-
flops, not as a substitute for them.

The following figure gives an example of how logic can be placed using FMAP and 
HMAP symbols.

Figure 5-48 Partitioning Logic Using FMAP and HMAP Symbols
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The MAP=type parameter can be used with the FMAP symbol to further define how 
much latitude you want to give the mapping program. The following table shows 
MAP option characters and their meanings.

Possible types of MAP parameters for FMAP are MAP=PUC, MAP=PLC, MAP=PLO, 
and MAP=PUO. The default parameter is PUO. If one of the “open” parameters is 
used (PLO or PUO), only the output signals must be specified.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into 
PUC and PUO, respectively.

The FMAP symbol can be assigned to specific CLB locations using LOC attributes. 
Refer to the “Mapping Constraint Examples” section of the “Attributes, Constraints, 
and Carry Logic” chapter and to the appropriate CAE tool interface user guide for 
more information on assigning LOC attributes.

MAP Option 
Character

Function

P Pins.

C Closed — Adding logic to or removing logic from the CLB 
is not allowed.

L Locked — Locking CLB pins.

O Open — Adding logic to or removing logic from the CLB is 
allowed.

U Unlocked — No locking on CLB pins.
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FTC

Toggle Flip-Flop with Toggle Enable and Asynchronous Clear

FTC is a synchronous, resettable toggle flip-flop. The asynchronous clear (CLR) input, 
when High, overrides all other inputs and resets the data output (Q) Low. The Q 
output toggles, or changes state, when the toggle enable (T) input is High and CLR is 
Low during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-49 FTC Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Figure 5-50 FTC Implementation XC9000
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FTCE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous 
Clear

FTCE is a toggle flip-flop with toggle and clock enable and asynchronous clear. When 
the asynchronous clear (CLR) input is High, all other inputs are ignored and the data 
output (Q) is reset Low. When CLR is Low and toggle enable (T) and clock enable (CE) 
are High, Q output toggles, or changes state, during the Low-to-High clock (C) transi-
tion. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-51 FTCE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Figure 5-52 FTCE Implementation XC9000
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FTCLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and 
Asynchronous Clear

FTCLE is a toggle/loadable flip-flop with toggle and clock enable and asynchronous 
clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored 
and output Q is reset Low. When load enable input (L) is High and CLR is Low, clock 
enable (CE) is overridden and the data on data input (D) is loaded into the flip-flop 
during the Low-to-High clock (C) transition. When toggle enable (T) and CE are High 
and L and CLR are Low, output Q toggles, or changes state, during the Low- to-High 
clock transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-53 FTCLE Implementation XC3000
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Figure 5-54 FTCLE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 5-55 FTCLE Implementation XC9000
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FTCLEX

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and 
Asynchronous Clear

FTCLEX is a toggle/loadable flip-flop with toggle and clock enable and asynchronous 
clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored 
and output Q is reset Low. When load enable input (L) is High, CLR is Low, and CE is 
High, the data on data input (D) is loaded into the flip-flop during the Low-to-High 
clock (C) transition. When toggle enable (T) and CE are High and L and CLR are Low, 
output Q toggles, or changes state, during the Low- to-High clock transition. When 
CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for 
XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be inverted 
by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 5-56 FTCLEX Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex
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FTCP

Toggle Flip-Flop with Toggle Enable and Asynchronous Clear and 
Preset

FTCP is a toggle flip-flop with toggle enable and asynchronous clear and preset. 
When the asynchronous clear (CLR) input is High, all other inputs are ignored and 
the output (Q) is reset Low. When the asynchronous preset (PRE) input is High, all 
other inputs are ignored and Q is set High. When the toggle enable input (T) is High 
and CLR and PRE are Low, output Q toggles, or changes state, during the Low-to-
High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.
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FTCPE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous 
Clear and Preset

FTCPE is a toggle flip-flop with toggle and clock enable and asynchronous clear and 
preset. When the asynchronous clear (CLR) input is High, all other inputs are ignored 
and the output (Q) is reset Low. When the asynchronous preset (PRE) input is High, 
all other inputs are ignored and Q is set High. When the toggle enable input (T) and 
the clock enable input (CE) are High and CLR and PRE are Low, output Q toggles, or 
changes state, during the Low-to-High clock (C) transition. Clock transitions are 
ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-57 FTCPE Implementation XC9000
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FTCPLE

Loadable Toggle Flip-Flop with Toggle and Clock Enable and 
Asynchronous Clear and Preset

FTCPLE is a loadable toggle flip-flop with toggle and clock enable and asynchronous 
clear and preset. When the asynchronous clear (CLR) input is High, all other inputs 
are ignored and the output (Q) is reset Low. When the asynchronous preset (PRE) 
input is High, all other inputs are ignored and Q is set High. The load input (L) loads 
the data on input D into the flip-flop on the Low-to-High clock transition, regardless 
of the state of the clock enable (CE). When the toggle enable input (T) and the clock 
enable input (CE) are High and CLR, PRE, and L are Low, output Q toggles, or 
changes state, during the Low-to-High clock (C) transition. Clock transitions are 
ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.
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Figure 5-58 FTCPLE Implementation XC9000
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FTP

Toggle Flip-Flop with Toggle Enable and Asynchronous Preset

FTP is a toggle flip-flop with toggle enable and asynchronous preset. When the asyn-
chronous preset (PRE) input is High, all other inputs are ignored and output Q is set 
High. When toggle-enable input (T) is High and PRE is Low, output Q toggles, or 
changes state, during the Low-to-High clock (C) transition. 

For FPGAs, the flip-flop is asynchronously preset to output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The GR/GSR active level defaults to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or the STARTUP_VIRTEX symbol. 

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-59 FTP Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 5-60 FTP Implementation XC9000
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FTPE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous 
Preset

FTPE is a toggle flip-flop with toggle and clock enable and asynchronous preset. 
When the asynchronous preset (PRE) input is High, all other inputs are ignored and 
output Q is set High. When the toggle enable input (T) is High, clock enable (CE) is 
High, and PRE is Low, output Q toggles, or changes state, during the Low-to-High 
clock transition. When CE is Low, clock transitions are ignored. 

For FPGAs, the flip-flop is asynchronously preset to output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The GR/GSR active level defaults to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.

Figure 5-61 FTPE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex
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Figure 5-62 FTPE Implementation XC9000
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FTPLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and 
Asynchronous Preset

FTPLE is a toggle/loadable flip-flop with toggle and clock enable and asynchronous 
preset. When the asynchronous preset input (PRE) is High, all other inputs are 
ignored and output Q is set High. When the load enable input (L) is High and PRE is 
Low, the clock enable (CE) is overridden and the data (D) is loaded into the flip-flop 
during the Low-to-High clock transition. When L and PRE are Low and toggle-enable 
input (T) and CE are High, output Q toggles, or changes state, during the Low-to-
High clock transition. When CE is Low, clock transitions are ignored. 

For FPGAs, the flip-flop is asynchronously preset to output High, when power is 
applied. FPGAs simulate power-on when global reset (GR for XC5200) or global set/
reset (GSR for XC4000, Spartans, Virtex) is active. The GR/GSR active level defaults to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol. 

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is 
applied. The power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net.
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Design Elements (FTPLE)
Figure 5-63 FTPLE Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex

Figure 5-64 FTPLE Implementation XC9000
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FTRSE

Toggle Flip-Flop with Toggle and Clock Enable and Synchronous 
Reset and Set

FTRSE is a toggle flip-flop with toggle and clock enable and synchronous reset and 
set. When the synchronous reset input (R) is High, it overrides all other inputs and the 
data output (Q) is reset Low. When the synchronous set input (S) is High and R is 
Low, clock enable input (CE) is overridden and output Q is set High. (Reset has prece-
dence over Set.) When toggle enable input (T) and CE are High and R and S are Low, 
output Q toggles, or changes state, during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-65 FTRSE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (FTRSE)
Figure 5-66 FTRSE Implementation XC9000
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FTRSLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and 
Synchronous Reset and Set

FTRSLE is a toggle/loadable flip-flop with toggle and clock enable and synchronous 
reset and set. The synchronous reset input (R), when High, overrides all other inputs 
and resets the data output (Q) Low. (Reset has precedence over Set.) When R is Low 
and synchronous set input (S) is High, the clock enable input (CE) is overridden and 
output Q is set High. When R and S are Low and load enable input (L) is High, CE is 
overridden and data on data input (D) is loaded into the flip-flop during the Low-to-
High clock transition. When R, S, and L are Low and CE is High, output Q toggles, or 
changes state, during the Low-to-High clock transition. When CE is Low, clock transi-
tions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.
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Design Elements (FTRSLE)
Figure 5-67 FTRSLE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Figure 5-68 FTRSLE Implementation XC9000
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FTSRE

Toggle Flip-Flop with Toggle and Clock Enable and Synchronous 
Set and Reset

FTSRE is a toggle flip-flop with toggle and clock enable and synchronous set and 
reset. The synchronous set input, when High, overrides all other inputs and sets data 
output (Q) High. (Set has precedence over Reset.) When synchronous reset input (R) 
is High and S is Low, clock enable input (CE) is overridden and output Q is reset Low. 
When toggle enable input (T) and CE are High and S and R are Low, output Q toggles, 
or changes state, during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 5-69 FTSRE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (FTSRE)
Figure 5-70 FTSRE Implementation XC9000
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FTSRLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and 
Synchronous Set and Reset

FTSRLE is a toggle/loadable flip-flop with toggle and clock enable and synchronous 
set and reset. The synchronous set input (S), when High, overrides all other inputs 
and sets data output (Q) High. (Set has precedence over Reset.) When synchronous 
reset (R) is High and S is Low, clock enable input (CE) is overridden and output Q is 
reset Low. When load enable input (L) is High and S and R are Low, CE is overridden 
and data on data input (D) is loaded into the flip-flop during the Low-to-High clock 
transition. When the toggle enable input (T) and CE are High and S, R, and L are Low, 
output Q toggles, or changes state, during the Low-to- High clock transition. When 
CE is Low, clock transitions are ignored.

For FPGAs, the flip-flop is asynchronously cleared, output Low, when global reset 
(GR for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The 
GR/GSR active level defaults to active-High but can be inverted by adding an 
inverter in front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol. 

For CPLDs, the flip-flop is asynchronously preset when a High-level pulse is applied 
on the PRLD global net. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S R L CE T D C Q

1 0 X X X X ↑ 1

0 1 X X X X ↑ 0

0 0 1 X X 1 ↑ 1

0 0 1 X X 0 ↑ 0

0 0 0 0 X X X No Chg

0 0 0 1 0 X X No Chg

0 0 0 1 1 X ↑ Toggle
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D
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Q

S
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Design Elements (FTSRLE)
Figure 5-71 FTSRLE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Figure 5-72 FTSRLE Implementation XC9000
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Chapter 6

Design Elements (GCLK to KEEPER)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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GCLK

Global Clock Buffer

GCLK, the global clock buffer, distributes high fan-out clock signals. One GCLK 
buffer on each device provides direct access to every Configurable Logic Block (CLB) 
and Input Output Block (IOB) clock pin. If it is not used in a design, its routing 
resources are not used for any signals. Therefore, the GCLK should always be used for 
the highest fan-out clock net in the design. The GCLK input (I) can come from one of 
the following sources.

• From a CMOS-level signal on the dedicated TCLKIN pin (XC3000 only). TCLKIN 
is a direct CMOS-only input to the GCLK buffer. To use the TCLKIN pin, connect 
the input of the GCLK element to the IBUF and IPAD elements.

• From a CMOS or TTL-level external signal. To connect an external input to the 
GCLK buffer, connect the input of the GCLK element to the output of the IBUF for 
that signal. Unless the corresponding IPAD element is constrained otherwise, 
PAR typically places the IOB directly adjacent to the GCLK buffer.

• From an internal signal. To drive the GCLK buffer with an internal signal, connect 
that signal directly to the input of the GCLK element.

The output of the GCLK buffer can drive all the clock inputs on the chip, but it cannot 
drive non-clock inputs. For a negative-edge clock, insert an INV (inverter) element 
between the GCLK output and the clock input. This inversion is performed inside the 
CLB, or in the case of IOB clock pins, on the IOB clock line (which controls the clock 
sense for the IOBs on an entire edge of the chip).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A N/A

X3884
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Design Elements (GND)
GND

Ground-Connection Signal Tag

The GND signal tag, or parameter, forces a net or input function to a Low logic level. 
A net tied to GND cannot have any other source.

When the logic-trimming software or fitter encounters a net or input function tied to 
GND, it removes any logic that is disabled by the GND signal. The GND signal is only 
implemented when the disabled logic cannot be removed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3858
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GXTL

Crystal Oscillator with ACLK Buffer

The GXTL element drives an internal ACLK buffer with a frequency derived from an 
external crystal-controlled oscillator. The GXTL (or ACLK) output is connected to an 
internal clock net.

There are two dedicated input pins (XTAL 1 and XTAL 2) on each FPGA device that 
are internally connected to pads and input/output blocks that are in turn connected 
to the GXTL amplifier. The external components are connected as shown in the 
following figure. 

Refer to The Programmable Logic Data Book for details on component selection and 
tolerances.

Figure 6-1 GXTL Implementation XC3000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro N/A N/A N/A N/A N/A N/A N/A N/A

X3886
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GXTL
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OSC_OUT

ACLK

O

@PULSELO=@PULSEL

@PULSEHI=@PULSEH X8265

OSC
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Design Elements (HMAP)
HMAP

H Function Generator Partitioning Control Symbol

The HMAP symbol is used to control logic partitioning into 3-input H function gener-
ators for XC4000 and Spartans. It is usually used with FMAP, which partitions logic 
into F and G function generators. You can implement a portion of logic using gates, 
latches, and flip-flops and specify the logic to be grouped into F, G, and H function 
generators by naming logic signals and HMAP/FMAP signals correspondingly. These 
symbols are used for mapping control in addition to the actual gates, latches, and flip-
flops and not as a substitute for them. The following figure gives an example of how 
logic can be placed using HMAP and FMAP symbols.

Figure 6-2 Partitioning Logic Using FMAP and HMAP Symbols

The MAP=type parameter can only be set to the default value, PUC, for the HMAP 
symbol. PUC means pins are not locked to the signals but the CLB is closed to addi-
tion or removal of logic.

The HMAP symbol can be assigned to specific CLB locations using LOC attributes. 
Refer to the “LOC” section of the “Attributes, Constraints, and Carry Logic” chapter 
for more information on assigning LOC attributes.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A N/A
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IBUF, 4, 8, 16

Single- and Multiple-Input Buffers

IBUF, IBUF4, IBUF8, and IBUF16 are single- and multiple-input buffers. An IBUF 
isolates the internal circuit from the signals coming into a chip. IBUFs are contained in 
input/output blocks (IOBs). IBUF inputs (I) are connected to an IPAD or an IOPAD. 
IBUF outputs (O) are connected to the internal circuit.

For Virtex and Spartan2, refer to the “IBUF_selectIO” section for information on IBUF 
variants with selectable I/O interfaces. IBUF, 4, 8, and 16 use the LVTTL standard.

Figure 6-3 IBUF8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

IBUF Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

IBUF4,
IBUF8,
IBUF16

Macro Macro Macro Macro Macro Macro Macro Macro Macro
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IBUF16
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I6 O6
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6-6 Xilinx Development System



Design Elements (IBUF_selectIO)
IBUF_selectIO

Single Input Buffer with Selectable I/O Interface

For Virtex and Spartan2, IBUF and its variants (listed below) are single input buffers 
whose I/O interface corresponds to a specific I/O standard. The name extensions 
(LVCMOS2, PCI33_3, PCI33_5, etc.) specify the standard. For example, 
IBUF_SSTL3_II is a single input buffer that uses the SSTL3_II I/O-signaling standard.

An IBUF isolates the internal circuit from the signals coming into a chip. For Virtex 
and Spartan2, the dedicated GCLKIOB pad is input only. IBUF inputs (I) are 
connected to an IPAD or IOPAD. IBUF outputs (O) are connected to the internal 
circuit.

The hardware implementation of the I/O standards requires that you follow a set of 
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage Rules” 
section below for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Component I/O Standard VREF

IBUF LVTTL N/A

IBUF_LVCMOS2 LVCMOS2 N/A

IBUF_PCI33_3 PCI33_3 N/A

IBUF_PCI33_5 PCI33_5 N/A

IBUF_PCI66_3 PCI66_3 N/A

IBUF_GTL GTL 0.80

IBUF_GTLP GTL+ 1.00

IBUF_HSTL_I HSTL_I 0.75

IBUF_HSTL_III HSTL_III 0.90

IBUF_HSTL_IV HSTL_IV 0.75

IBUF_SSTL2_I SSTL2_I 1.10

IBUF_SSTL2_II SSTL2_II 1.10

IBUF_SSTL3_I SSTL3_I 0.90

IBUF_SSTL3_II SSTL3_II 1.50

IBUF_CTT CTT 1.50

IBUF_AGP AGP 1.32

X3830
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SelectI/O Usage Rules

The Virtex and Spartan2 architectures include a versatile SelectI/O interface to 
multiple voltage and drive standards. To select an I/O standard, you must choose the 
appropriate component from the Virtex or Spartan2 library. Each standard has a full 
set of I/O buffer components (input, in/out, output, 3-state output). For example, for 
an input buffer of the GTL standard, you would choose IBUF_GTL. Refer to the 
“IBUF_selectIO”, “IBUFG_selectIO”, “IOBUF_selectIO”, “OBUF_selectIO”, and 
“OBUFT_selectIO” sections for information on the various input/output buffer 
components available to implement the desired standard.

The hardware implementation of the various I/O standards requires that certain 
usage rules be followed. As shown in the following table, each I/O standard has 
voltage source requirements for input reference (VREF), output drive (VCCO), or 
both. Each Virtex and Spartan2 device has eight banks (two on each edge). Each bank 
has voltage sources shared by all I/O in the bank. Therefore, in a particular bank, the 
voltage source (for either input or output) must be of the same type. The Input 
Banking (VREF) Rules section and the Output Banking (VCCO) Rules section below 
summarize the SelectI/O component usage rules based on the hardware implementa-
tion.

Input Banking (VREF) Rules

The low-voltage I/O standards that have a differential amplifier input require a 
voltage reference input (VREF). The VREF voltage source is provided as an external 
signal to the chip that is banked internal to the chip.

• Any input buffer component that does not require a VREF source (LVTTL, 
LVCMOS2, PCI*) can be placed in any bank.

• All input buffer components that require a VREF source (GTL*, HSTL*, SSTL*, 
CTT, AGP) must be of the same I/O standard in a particular bank. For example, 

I/O Standard VCCO VREF

LVTTL 3.3 N/A

LVCMOS2 2.5 N/A

PCI33_3 (PCI 33MHz 3.3V) 3.3 N/A

PCI33_5 (PCI 33MHZ 5.0V) 3.3 N/A

PCI66_3 (PCI 66MHz 3.3V) 3.3 N/A

GTL N/A 0.80

GTL+ N/A 1.00

HSTL_I 1.5 0.75

HSTL_III 1.5 0.90

HSTL_IV 1.5 0.75

SSTL2_I 2.5 1.10

SSTL2_II 2.5 1.10

SSTL3_I 3.3 0.90

SSTL3_II 3.3 1.50

CTT 3.3 1.50

AGP 3.3 1.32
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Design Elements (IBUF_selectIO)
IBUF_SSTL2_I and IBUFG_SSTL2_I are compatible since they are the same I/O 
standard (SSTL2_I).

• If the bank contains any input buffer component that requires a VREF source, the 
following conditions apply.

• One or more VREF sources must be connected to the bank via an IOB. 

• The number of VREF sources is dependent on the device and package. 

• The locations of the VREF sources are fixed for each device/package. 

• All VREF sources must be used in that bank.

• If the bank contains no input buffer component that requires a VREF source, the 
IOBs for VREF sources can be used for general I/O.

• Output buffer components of any type can be placed in the bank.

Output Banking (VCCO) Rules

Because Virtex and Spartan2 have multiple low-voltage standards and also needs to 
be 5V tolerant, some control is required over the distribution of VCCO, the drive 
source voltage for output pins. To provide for maximum flexibility, the output pins 
are banked. In comparison to the VREF sources described above, the VCCO voltage 
sources are dedicated pins on the device and do not consume valuable IOBs.

• Any output buffer component that does not require a VCCO source (GTL, GTL+) 
can be placed in any bank.

• To be placed in a particular bank, all output buffer components that require 
VCCO must have the same supply voltage (VCCO). For example, OBUF_SSTL3_I 
and OBUF_PCI33_3 are compatible in the same output bank since VCCO=3.3 for 
both.

• Input buffer components of any type can be placed in the bank.

• The configuration pins on a Virtex and Spartan2 device are on the right side of the 
chip. When configuring the device through a serial prom, the user is required to 
use a VCCO of 3.3V in the two banks on the right hand side of the chip. If the user 
is not configuring the device through a serial prom, the VCCO requirement is 
dependent upon the configuration source.

Banking Rules for OBUFT_selectIO with KEEPER

If a KEEPER symbol is attached to an OBUFT_selectIO component (3-state output 
buffer) for an I/O standard that requires a VREF (for example, OBUFT_GTL, 
OBUFT_SSTL3_I), then the OBUFT_selectIO component follows the same rules as an 
IOBUF_selectIO component for the same standard. It must follow both the input 
banking and output banking rules. The KEEPER element requires that the VREF be 
properly driven.
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IBUFG_selectIO

Dedicated Input Buffer with Selectable I/O Interface

IBUFG and its variants (listed below) are dedicated input buffers for connecting to the 
clock buffer (BUFG) or CLKDLL. The name extensions (LVCMOS2, PCI33_3, PCI33_5, 
etc.) specify the I/O interface standard used by the component. For example, 
IBUFG_CTT is an input buffer that uses the CTT I/O- signaling standard. 

The Xilinx implementation software converts each BUFG to an appropriate type of 
global buffer for the target PLD device. The IBUFG output can only be connected to 
the CLKIN input of a CLKDLL or to the input of a BUFG. The IBUFG can only be 
driven by an IPAD. 

The hardware implementation of the I/O standards requires that you follow a set of 
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage Rules” 
section under the IBUF_selectIO section for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Component I/O Standard VREF

IBUFG LVTTL N/A

IBUFG_LVCMOS2 LVCMOS2 N/A

IBUFG_PCI33_3 PCI33_3 N/A

IBUFG_PCI33_5 PCI33_5 N/A

IBUFG_PCI66_3 PCI66_3 N/A

IBUFG_GTL GTL 0.80

IBUFG_GTLP GTL+ 1.00

IBUFG_HSTL_I HSTL_I 0.75

IBUFG_HSTL_III HSTL_III 0.90

IBUFG_HSTL_IV HSTL_IV 0.75

IBUFG_SSTL2_I SSTL2_I 1.10

IBUFG_SSTL2_II SSTL2_II 1.10

IBUFG_SSTL3_I SSTL3_I 0.90

IBUFG_SSTL3_II SSTL3_II 1.50

IBUFG_CTT CTT 1.50

IBUFG_AGP AGP 1.32

X3830
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Design Elements (IFD, 4, 8, 16)
IFD, 4, 8, 16

Single- and Multiple-Input D Flip-Flops

The IFD D-type flip-flop is contained in an input/output block (IOB), except for 
XC5200 and XC9000. The input (D) of the flip-flop is connected to an IPAD or an 
IOPAD (without using an IBUF). The D input provides data input for the flip-flop, 
which synchronizes data entering the chip. The data on input D is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q). The 
clock input can be driven by internal logic or through another external pin.

The flip-flops are asynchronously cleared with Low outputs when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global 
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR 
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an 
inverter in front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD, 
4, 8, 16” section.

Figure 6-4 IFD Implementation XC4000E, XC4000X, Spartan, SpartanXL

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

IFD Primitive Macro Macro Macro Macro Macro Macro Macro Macro
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Macro Macro Macro Macro Macro Macro Macro Macro Macro
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Figure 6-5 IFD Implementation XC5200, Spartan2, Virtex

Figure 6-6 IFD Implementation XC9000
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Design Elements (IFD, 4, 8, 16)
Figure 6-7 IFD8 Implementation XC3000, XC4000E, XC4000X, XC5200, XC9000, 
Spartan, SpartanXL, Spartan2, Virtex
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IFD_1

Input D Flip-Flop with Inverted Clock

The IFD_1 D-type flip-flop is contained in an input/output block (IOB) except for 
XC5200. The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D 
input also provides data input for the flip-flop, which synchronizes data entering the 
chip. The D input data is loaded into the flip-flop during the High-to-Low clock (C) 
transition and appears at the output (Q). The clock input can be driven by internal 
logic or through another external pin.

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) 
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD, 
4, 8, 16” section.

Figure 6-8 IFD_1 Implementation XC3000, XC4000E, XC4000X, Spartan, 
SpartanXL

Figure 6-9 IFD_1 Implementation XC5200, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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IFDI

Input D Flip-Flop (Asynchronous Preset)

The IFDI D-type flip-flop is contained in an input/output block (IOB). The input (D) 
of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input 
for the flip-flop, which synchronizes data entering the chip. The data on input D is 
loaded into the flip-flop during the Low-to-High clock (C) transition and appears at 
the output (Q). The clock input can be driven by internal logic or through another 
external pin. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the 
“ILDI” section.

Figure 6-10 IFDI Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-11 IFDI Implementation Spartan2, Virtex
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IFDI_1

Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

The IFDI_1 D-type flip-flop is contained in an input/output block (IOB). The input 
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data 
input for the flip-flop, which synchronizes data entering the chip. The data on input D 
is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at 
the output (Q). The clock input can be driven by internal logic or through another 
external pin. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the 
“ILDI” section.

Figure 6-12 IFDI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-13 IFDI_1 Implementation Spartan2, Virtex
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Design Elements (IFDX, 4, 8, 16)
IFDX, 4, 8, 16

Single- and Multiple-Input D Flip-Flops with Clock Enable

The IFDX D-type flip-flop is contained in an input/output block (IOB). The input (D) 
of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D 
input provides data input for the flip-flop, which synchronizes data entering the chip. 
The data on input D is loaded into the flip-flop during the Low-to-High clock (C) tran-
sition and appears at the output (Q). The clock input can be driven by internal logic or 
through another external pin. When CE is Low, flip-flop outputs do not change.

The flip-flops are asynchronously cleared with Low outputs when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the 
“ILDX, 4, 8, 16” section.

Figure 6-14 IFDX Implementation Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

IFDX N/A Primitive Primitive N/A N/A Primitive Primitive Macro Macro

IFDX4,
IFDX8,
IFDX16

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

CE Dn C Qn

1 Dn ↑ dn

0 X X No Chg
dn = state of referenced input (Dn) one setup time prior to active clock transition

Q

X6009

D IFDX

C

CE

X6010

IFDX4

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CE

Q[7:0]

X6011

D[7:0] IFDX8

C

CE

Q[15:0]

X6012

D[15:0] IFDX16

C

CE

X8742

FDCE
QD

CE
C

IBUF
D_IN

IOB=TRUE

D
CE
C CLR

Q

GND
Libraries Guide, 2.1i 6-17



Libraries Guide, 2.1i
Figure 6-15 IFDX8 Implementation XC4000E, XC4000X, Spartan, SpartanXL, 
Spartan2, Virtex
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Design Elements (IFDX_1)
IFDX_1

Input D Flip-Flop with Inverted Clock and Clock Enable

The IFDX_1 D-type flip-flop is contained in an input/output block (IOB). The input 
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input also provides 
data input for the flip-flop, which synchronizes data entering the chip. The data on 
input D is loaded into the flip-flop during the High-to-Low clock (C) transition and 
appears at the output (Q). The clock input can be driven by internal logic or through 
another external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously cleared with Low output, when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the 
“ILDX, 4, 8, 16” section.

Figure 6-16 IFDX_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-17 IFDX_1 Implementation Spartan2, Virtex
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IFDXI

Input D Flip-Flop with Clock Enable (Asynchronous Preset)

The IFDXI D-type flip-flop is contained in an input/output block (IOB). The input (D) 
of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input 
for the flip-flop, which synchronizes data entering the chip. The data on input D is 
loaded into the flip-flop during the Low-to-High clock (C) transition and appears at 
the output (Q). The clock input can be driven by internal logic or through another 
external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output, when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol. 

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to 
the “ILDXI” section.

Figure 6-18 IFDXI Implementation Spartan2, Virtex
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Design Elements (IFDXI_1)
IFDXI_1

Input D Flip-Flop with Inverted Clock and Clock Enable 
(Asynchronous Preset)

The IFDXI_1 D-type flip-flop is contained in an input/output block (IOB). The input 
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data 
input for the flip-flop, which synchronizes data entering the chip. The data on input D 
is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at 
the output (Q). The clock input can be driven by internal logic or through another 
external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to 
the “ILDXI” section.

Figure 6-19 IFDXI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-20 IFDXI_1 Implementation Spartan2, Virtex
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ILD, 4, 8, 16

Transparent Input Data Latches

ILD, ILD4, ILD8, and ILD16 are single or multiple transparent data latches, which can 
be used to hold transient data entering a chip. The ILD latch is contained in an input/
output block (IOB), except for XC5200 and XC9000. The latch input (D) is connected to 
an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data 
on the inputs (D) appears on the outputs (Q). Data on the D inputs during the High-
to-Low G transition is stored in the latch.

The latch is asynchronously cleared with Low output when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

ILDs and IFDs for XC3000

The XC3000 ILD is actually the input flip-flop master latch. If both ILD and IFD 
elements are controlled by the same clock signal, the relationship between the trans-
parent sense of the latch and the active edge of the flip-flop is fixed as follows: a trans-
parent High latch (ILD) corresponds to a falling edge-triggered flip-flop (IFD_1), and 
a transparent Low latch (ILD_1) corresponds to a rising edge-triggered flip-flop (IFD). 
Because the place and route software does not support using both phases of a clock 
for IOBs on a single edge of the device, certain combinations of ILD and IFD elements 
are not allowed. 

Refer to the following figure for legal IFD, IFD_1, ILD, and ILD_1 combinations for 
the XC3000.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Design Elements (ILD, 4, 8, 16)
Figure 6-21 Legal Combinations of IFD and ILD for a Single Device Edge of an 
XC3000 IOB

ILDs and IFDs for XC4000E, XC4000X, Spartan, SpartanXL

In XC4000, Spartan, and SpartanXL, the ILD is actually the input flip-flop master 
latch. It is possible to access two different outputs from the input flip-flop: one that 
responds to the level of the clock signal and another that responds to an edge of the 
clock signal. When using both outputs from the same input flip-flop, a transparent 
High latch (ILD) corresponds to a falling edge-triggered flip-flop (IFD_1). Similarly, a 
transparent Low latch (ILD_1) corresponds to a rising edge-triggered flip-flop (IFD).

Refer to the following figure for legal IFD, IFD_1, ILD, and ILD_1 combinations for 
the XC4000, Spartan, and SpartanXL.

Figure 6-22 Legal Combinations of IFD and ILD for a Single IOB in XC4000E, 
XC4000X, Spartan, or SpartanXL
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Figure 6-23 ILD Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-24 ILD Implementation XC5200, Spartan2, Virtex

Figure 6-25 ILD Implementation XC9000
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Design Elements (ILD, 4, 8, 16)
Figure 6-26 ILD8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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ILD_1

Transparent Input Data Latch with Inverted Gate

ILD_1 is a transparent data latch, which can be used to hold transient data entering a 
chip. When the gate input (G) is Low, data on the data input (D) appears on the data 
output (Q). Data on D during the Low-to-High G transition is stored in the latch. 

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for 
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD, 
4, 8, 16” section.

Figure 6-27 ILD_1 Implementation XC3000

Figure 6-28 ILD_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-29 ILD_1 Implementation XC5200, Spartan2, Virtex
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Design Elements (ILDI)
ILDI

Transparent Input Data Latch (Asynchronous Preset)

ILDI is a transparent data latch, which can hold transient data entering a chip. When 
the gate input (G) is High, data on the input (D) appears on the output (Q). Data on 
the D input during the High-to-Low G transition is stored in the latch. 

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

ILDIs and IFDIs

The ILDI is actually the input flip-flop master latch. It is possible to access two 
different outputs from the input flip-flop: one that responds to the level of the clock 
signal and another that responds to an edge of the clock signal. When using both 
outputs from the same input flip-flop, a transparent High latch (ILDI) corresponds to 
a falling edge-triggered flip-flop (IFDI_1). Similarly, a transparent Low latch (ILDI_1) 
corresponds to a rising edge-triggered flip-flop (IFDI). 

Refer to the following figure for legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations.

Figure 6-30 Legal Combinations of IFDI and ILDI for a Single IOB in XC4000E, 
XC4000X, Spartan, or SpartanXL
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Figure 6-31 ILDI Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-32 ILDI Implementation Spartan2, Virtex
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Design Elements (ILDI_1)
ILDI_1

Transparent Input Data Latch with Inverted Gate (Asynchronous 
Preset)

ILDI_1 is a transparent data latch, which can hold transient data entering a chip. 
When the gate input (G) is Low, data on the data input (D) appears on the data output 
(Q). Data on D during the Low-to-High G transition is stored in the latch. 

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the 
“ILDI” section.

Figure 6-33 ILDI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-34 ILDI_1 Implementation Spartan2, Virtex
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ILDX, 4, 8, 16

Transparent Input Data Latches

ILDX, ILDX4, ILDX8, and ILDX16 are single or multiple transparent data latches, 
which can be used to hold transient data entering a chip. The latch input (D) is 
connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G) 
is High, data on the inputs (D) appears on the outputs (Q). Data on the D inputs 
during the High-to-Low G transition is stored in the latch.

The latch is asynchronously cleared, output Low, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

ILDXs and IFDXs

The ILDX is actually the input flip-flop master latch. Two different outputs can be 
accessed from the input flip-flop: one that responds to the level of the clock signal and 
another that responds to an edge of the clock signal. When using both outputs from 
the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling 
edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corre-
sponds to a rising edge-triggered flip-flop (IFDX).

Refer to the following figure for legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations.

Figure 6-35 Legal Combinations of IFDX and ILDX for a Single IOB in XC4000E, 
XC4000X, Spartan, or SpartanXL
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Design Elements (ILDX, 4, 8, 16)
Figure 6-36 ILDX Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-37 ILDX Implementation Spartan2, Virtex
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Figure 6-38 ILDX8 Implementation XC4000E, XC4000X, Spartan, SpartanXL, 
Spartan2, Virtex
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ILDX_1

Transparent Input Data Latch with Inverted Gate

ILDX_1 is a transparent data latch, which can be used to hold transient data entering a 
chip. When the gate input (G) is Low, data on the data input (D) appears on the data 
output (Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously cleared with Low output, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the 
“ILDX, 4, 8, 16” section.

Figure 6-39 ILDX_1 Implementation Spartan2, Virtex
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ILDXI

Transparent Input Data Latch (Asynchronous Preset)

ILDXI is a transparent data latch, which can hold transient data entering a chip. When 
the gate input (G) is High, data on the input (D) appears on the output (Q). Data on 
the D input during the High-to-Low G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

ILDXIs and IFDXIs

The ILDXI is actually the input flip-flop master latch. Two different outputs can be 
accessed from the input flip-flop: one that responds to the level of the clock signal and 
another that responds to an edge of the clock signal. When using both outputs from 
the same input flip-flop, a transparent High latch (ILDXI) corresponds to a falling 
edge-triggered flip-flop (IFDXI_1). Similarly, a transparent Low latch (ILDXI_1) corre-
sponds to a rising edge-triggered flip-flop (IFDXI). Refer to the following figure for 
legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations.

Figure 6-40 Legal Combinations of IFDXI and ILDXI for a Single IOB
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Figure 6-41 ILDXI Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 6-42 ILDXI Implementation Spartan2, Virtex
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ILDXI_1

Transparent Input Data Latch with Inverted Gate (Asynchronous 
Preset)

ILDXI_1 is a transparent data latch, which can hold transient data entering a chip. 
When the gate input (G) is Low, data on the data input (D) appears on the data output 
(Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to 
the “ILDXI” section.

Figure 6-43 ILDXI_1 Implementation Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Macro Macro

Inputs Outputs

GE G D Q

0 X X No Chg

1 1 X No Chg

1 0 1 1

1 0 0 0

1 ↑ D d
d = state of referenced input one setup time prior to Low-to-High gate transition

Q

X6028

D ILDXI_1

G

GE

X8751

LDPE

PRE QD

GE
G

IBUF
D_IN

IOB=TRUE

D
GE
G

Q

GND

INV

GB
6-36 Xilinx Development System



Design Elements (ILFFX)
ILFFX

Fast Capture Input Latch

ILFFX, an optional latch that drives the input flip-flop, allows the very fast capture of 
input data. Located on the input side of an IOB, the latch is latched by the output 
clock — the clock used for the output flip-flop — rather than the input clock. Thus, 
two different clocks can be used to clock the two input storage elements. The 
following figure shows an example IOB block diagram of the XC4000X IOB. After the 
data is captured, it is then synchronized to the internal clock (C) by the IOB flip-flop.

Figure 6-44 Block Diagram of XC4000X IOB

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). 
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is 
stored during the Low-to-High GF transition. The captured INODE data appears at 
output (Q) during a Low-to-High clock (C) transition. 

The fast latch is asynchronously cleared when power is applied. FPGAs simulate 
power-on when global set/reset (GSR) is active. GSR defaults to active-High but can 
be inverted by adding an inverter in front of the GSR input of the STARTUP symbol.
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Inputs Outputs
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ILFFXI

Fast Capture Input Latch (Asynchronous Preset)

ILFFXI, an optional latch that drives the input flip-flop, allows the very fast capture of 
input data. Located on the input side of an IOB, the latch is latched by the output 
clock — the clock used for the output flip-flop — rather than the input clock. Thus, 
two different clocks can be used to clock the two input storage elements. See “Block 
Diagram of XC4000X IOB” figure in the ILFFX section. After the data is captured, it is 
then synchronized to the internal clock by the IOB flip-flop.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). 
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is 
stored during the Low-to-High GF transition. The captured INODE data appears at 
output (Q) during a Low-to-High clock (C) transition. 

This component is identical to ILFFX except that on active GSR it is preset instead of 
cleared. The latch is asynchronously preset, output High, when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.
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ILFLX

Fast Capture Transparent Input Latch

ILFLX, an optional latch that drives the input latch, allows the very fast capture of 
input data. Located on the input side of an IOB, the latch is latched by the output 
clock — the clock used for the output flip-flop — rather than the input clock. Thus, 
two different clocks can be used to clock the two input storage elements. See the 
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is 
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). 
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is 
stored during the Low-to-High GF transition. The captured INODE data appears at 
output (Q) when gate (G) is high. 

Figure 6-45 ILFLX Implementation XC4000X, SpartanXL
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ILFLX_1

Fast Capture Input Latch with Inverted Gate

ILFLX_1, an optional latch that drives the input latch, allows the very fast capture of 
input data. Located on the input side of an IOB, the latch is latched by the output 
clock — the clock used for the output flip-flop — rather than the input clock. Thus, 
two different clocks can be used to clock the two input storage elements. See the 
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is 
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). 
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is 
stored during the Low-to-High GF transition. The captured INODE data appears on 
the output (Q) when the gate (G) is Low. 

The fast latch is asynchronously cleared when power is applied. FPGAs simulate 
power-on when global set/reset (GSR) is active. GSR defaults to active-High but can 
be inverted by adding an inverter in front of the GSR input of the STARTUP symbol.
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ILFLXI_1

Fast Capture Input Latch with Inverted Gate (Asynchronous 
Preset)

ILFLXI_1, an optional latch that drives the input latch, allows the very fast capture of 
input data. Located on the input side of an IOB, the latch is latched by the output 
clock — the clock used for the output flip-flop — rather than the input clock. Thus, 
two different clocks can be used to clock the two input storage elements. See the 
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is 
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF). 
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is 
stored during the Low-to-High GF transition. The captured INODE data appears on 
the output (Q) when the gate (G) is Low. 

The fast latch is asynchronously preset when power is applied. FPGAs simulate 
power-on when global set/reset (GSR) is active. GSR defaults to active-High but can 
be inverted by adding an inverter in front of the GSR input of the STARTUP symbol.
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INV, 4, 8, 16

Single and Multiple Inverters

INV, INV4, INV8, and INV16 are single and multiple inverters that identify signal 
inversions in a schematic.

Figure 6-46 INV8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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IOB

IOB Configuration Symbol

The IOB symbol is used to manually specify an IOB configuration. Use it in place of, 
not in conjunction with, other I/O primitives. The configuration of the IOB is speci-
fied using the BASE and CONFIG commands. Enter these commands on the sche-
matic; the translator puts them into the CFG records in the LCA Xilinx netlist file. It is 
not necessary for the translator program to parse the commands specifying the IOB 
configuration. The mapping program from the LCA Xilinx netlist to the FPGA design 
checks these commands for errors.

Refer to the appropriate CAE tool interface user guide for more information on speci-
fying the IOB configuration commands in a schematic.

The XC3000 blank IOB primitive symbol and its corresponding configured IOB primi-
tive and circuit are shown in the “XC3000 IOB Primitive Example and Equivalent 
Circuit” figure.

The configuration commands must be consistent with the connections to the pins on 
the symbol. For example, if the configuration commands specify the IOB as a 3-state 
buffer, the T and O pins must be connected to signals.

You can specify the location of the IOB on the device. When specifying the LOC 
attribute, a valid IOB location name must be used. Refer to the “LOC” section of the 
“Attributes, Constraints, and Carry Logic” chapter for more information on the LOC 
attribute.

Figure 6-47 XC3000 IOB Primitive Example and Equivalent Circuit
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IOBUF_selectIO

Bi-Directional Buffer with Selectable I/0 Interface

IOBUF and its variants (listed below) are bi-directional buffers whose I/O interface 
corresponds to a specific I/O standard.The name extensions (LVCMOS2, PCI33_3, 
PCI33_5, etc.) specify the standard. The S, F, and 2, 4, 6, 8, 12, 16, 24 extensions specify 
the slew rate (SLOW or FAST) and the drive power (2, 4, 6, 8, 12, 16, 24 mA) for the 
LVTTL standard variants. For example, IOBUF_F_2 is a bi-directional buffer that uses 
the LVTTL I/O-signaling standard with a FAST slew and 2mA of drive power.

IOBUF (LVTTL) has selectable drive and slew rates using the DRIVE and FAST or 
SLOW constraints. The defaults are DRIVE=12 mA and SLOW slew. 

IOBUFs are composites of IBUF and OBUFT elements. The O output is X (unknown) 
when IO (input/output) is Z. IOBUFs can be implemented as interconnections of their 
component elements.

The hardware implementation of the I/O standards requires that you follow a set of 
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage Rules” 
section under the IBUF_selectIO section for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Component I/O Standard VCCO VREF

IOBUF LVTTL 3.3 N/A

IOBUF_S_2 LVTTL 3.3 N/A

IOBUF_S_4 LVTTL 3.3 N/A

IOBUF_S_6 LVTTL 3.3 N/A

IOBUF_S_8 LVTTL 3.3 N/A

IOBUF_S_12 LVTTL 3.3 N/A

IOBUF_S_16 LVTTL 3.3 N/A

IOBUF_S_24 LVTTL 3.3 N/A

IOBUF_F_2 LVTTL 3.3 N/A

IOBUF_F_4 LVTTL 3.3 N/A

IOBUF_F_6 LVTTL 3.3 N/A

IOBUF_F_8 LVTTL 3.3 N/A

IOBUF_F_12 LVTTL 3.3 N/A

IOBUF_F_16 LVTTL 3.3 N/A

IOBUF_F_24 LVTTL 3.3 N/A

IOBUF_LVCMOS2 LVCMOS2 2.5 N/A

IOBUF_PCI33_3 PCI33_3 3.3 N/A

IOBUF_PCI33_5 PCI33_5 3.3 N/A

T

I IO

O

X8406
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IOBUF_PCI66_3 PCI66_3 3.3 N/A

IOBUF_GTL GTL N/A 0.80

IOBUF_GTLP GTL+ N/A 1.00

IOBUF_HSTL_I HSTL_I 1.5 0.75

IOBUF_HSTL_III HSTL_III 1.5 0.90

IOBUF_HSTL_IV HSTL_IV 1.5 0.75

IOBUF_SSTL2_I SSTL2_I 2.5 1.10

IOBUF_SSTL2_II SSTL2_II 2.5 1.10

IOBUF_SSTL3_I SSTL3_I 3.3 0.90

IOBUF_SSTL3_II SSTL3_II 3.3 1.50

IOBUF_CTT CTT 3.3 1.50

IOBUF_AGP AGP 3.3 1.32

Component I/O Standard VCCO VREF
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IOPAD, 4, 8, 16

Single- and Multiple-Input/Output Pads

IOPAD, IOPAD4, IOPAD8, and IOPAD16 are single and multiple input/output pads. 
The IOPAD is a connection point from a device pin, used as a bidirectional signal, to a 
PLD device. The IOPAD is connected internally to an input/output block (IOB), 
which is configured by the software as a bidirectional block. Bidirectional blocks can 
consist of any combinations of a 3-state output buffer (such as OBUFT or OFDE) and 
any available input buffer (such as IBUF or IFD). Refer to the appropriate CAE tool 
interface user guide for details on assigning pin location and identification.

Note: The LOC attribute cannot be used on IOPAD multiples.
 

Figure 6-48 IOPAD8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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IPAD, 4, 8, 16

Single- and Multiple-Input Pads

IPAD, IPAD4, IPAD8, and IPAD16 are single and multiple input pads. The IPAD is a 
connection point from a device pin used for an input signal to the PLD device. It is 
connected internally to an input/output block (IOB), which is configured by the soft-
ware as an IBUF, IFD, or ILD. Refer to the appropriate CAE tool interface user guide 
for details on assigning pin location and identification.

For Virtex and Spartan2, IPADs must be used to drive IBUF and IBUFG inputs. An 
IPAD can be inferred by NGDBUILD if one is missing on an IBUF or IBUFG input.

Note: The LOC attribute cannot be used on IPAD multiples.

Figure 6-49 IPAD8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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KEEPER

KEEPER Symbol

KEEPER is a weak keeper element used to retain the value of the net connected to its 
bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER 
drives a weak/resistive 1 onto the net. If the net driver is then tri-stated, KEEPER 
continues to drive a weak/resistive 1 onto the net.

For additional information on using a KEEPER element with SelectI/O components, 
refer to the “SelectI/O Usage Rules” in the "IBUF_selectIO" section.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

O
X8718
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Chapter 7

Design Elements (LD to NOR16)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: “XC3000 Library,” “XC4000E Library,” “XC4000X Library,” 
“XC5200 Library,” “XC9000 Library,” “Spartan Library,” “SpartanXL Library,” 
“Spartan2 Library,” and “Virtex Library.”

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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LD

Transparent Data Latch

LD is a transparent data latch. The data output (Q) of the latch reflects the data (D) 
input while the gate enable (G) input is High. The data on the D input during the 
High-to-Low gate transition is stored in the latch. The data on the Q output remains 
unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs, 
the power-on condition can be simulated by applying a High-level pulse on the PRLD 
global net. FPGAs simulate power-on when global reset (GR) or global set/reset 
(GSR) is active. GR (XC5200) and GSR (XC4000, Spartans, Virtex) default to active-
High but can be inverted by adding an inverter in front of the GR/GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Refer to the “LD4, 8, 16” section for information on multiple transparent data latches 
for the XC4000X, XC9000, and SpartanXL.

Figure 7-1 LD Implementation XC4000X, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Macro Macro Macro N/A Macro Primitive Primitive

Inputs Outputs
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1 0 0

1 1 1

0 X No Chg

↓ D d
d = state of input one setup time prior to High-to-Low gate transition
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Design Elements (LD)
Figure 7-2 LD Implementation XC5200

Figure 7-3 LD Implementation XC9000
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LD_1

Transparent Data Latch with Inverted Gate

LD_1 is a transparent data latch with an inverted gate. The data output (Q) of the latch 
reflects the data (D) input while the gate enable (G) input is Low. The data on the D 
input during the Low-to-High gate transition is stored in the latch. The data on the Q 
output remains unchanged as long as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-4 LD_1 Implementation XC4000X, SpartanXL

Figure 7-5 LD_1 Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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d = state of input one setup time prior to Low-to-High gate transition
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Design Elements (LD4, 8, 16)
LD4, 8, 16

Multiple Transparent Data Latches

LD4, LD8, and LD16 have, respectively, 4, 8, and 16 transparent data latches with a 
common gate enable (G). The data output (Q) of the latch reflects the data (D) input 
while the gate enable (G) input is High. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output remains 
unchanged as long as G remains Low. 

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs, 
the power-on condition can be simulated by applying a High-level pulse on the PRLD 
global net. FPGAs simulate power-on when global set/reset (GSR) is active. GSR 
defaults to active-High but can be inverted by adding an inverter in front of the GSR 
input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Refer to the “LD” section for information on single transparent data latches.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Macro N/A Macro N/A Macro Macro Macro

Inputs Outputs

G D Q

1 0 0

1 1 1

0 X No Chg

↓ D d
d = state of input one setup time prior to High-to-Low gate transition

Q0

X4611

D0 LD4

G

Q1D1

Q2D2

Q3D3

Q[7:0]D[7:0]

X4612

LD8

G

Q[15:0]D[15:0]

X4613

LD16

G

Libraries Guide, 2.1i 7-5



Libraries Guide, 2.1i
Figure 7-6 LD8 Implementation XC4000X, XC9000, SpartanXL, Spartan2, Virtex
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Design Elements (LDC)
LDC

Transparent Data Latch with Asynchronous Clear

LDC is a transparent data latch with asynchronous clear. When the asynchronous 
clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output 
Low. Q reflects the data (D) input while the gate enable (G) input is High and CLR is 
Low. The data on the D input during the High-to-Low gate transition is stored in the 
latch. The data on the Q output remains unchanged as long as G remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-7 LDC Implementation XC4000X, SpartanXL

Figure 7-8 LDC Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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LDC_1

Transparent Data Latch with Asynchronous Clear and Inverted 
Gate

LDC_1 is a transparent data latch with asynchronous clear and inverted gate. When 
the asynchronous clear input (CLR) is High, it overrides the other inputs (D and G) 
and resets the data (Q) output Low. Q reflects the data (D) input while the gate enable 
(G) input and CLR are Low. The data on the D input during the Low-to-High gate 
transition is stored in the latch. The data on the Q output remains unchanged as long 
as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-9 LDC_1 Implementation XC4000X, SpartanXL

Figure 7-10 LDC_1 Implementation XC5200
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Design Elements (LDCE)
LDCE

Transparent Data Latch with Asynchronous Clear and Gate Enable

LDCE is a transparent data latch with asynchronous clear and gate enable. When the 
asynchronous clear input (CLR) is High, it overrides the other inputs and resets the 
data (Q) output Low. Q reflects the data (D) input while the gate (G) input and gate 
enable (GE) are High and CLR is Low. If GE is Low, data on D cannot be latched. The 
data on the D input during the High-to-Low gate transition is stored in the latch. The 
data on the Q output remains unchanged as long as G or GE remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-11 LDCE Implementation XC4000X, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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LDCE_1

Transparent Data Latch with Asynchronous Clear, Gate Enable, 
and Inverted Gate

LDCE_1 is a transparent data latch with asynchronous clear, gate enable, and inverted 
gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs 
and resets the data (Q) output Low. Q reflects the data (D) input while the gate (G) 
input and CLR are Low and gate enable (GE) is High. If GE is Low, the data on D 
cannot be latched. The data on the D input during the Low-to-High gate transition is 
stored in the latch. The data on the Q output remains unchanged as long as G remains 
High or GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-12 LDCE_1 Implementation XC5200
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Design Elements (LD4CE, LD8CE, LD16CE)
LD4CE, LD8CE, LD16CE

Transparent Data Latches with Asynchronous Clear and Gate 
Enable

LD4CE, LD8CE, and LD16CE have, respectively, 4, 8, and 16 transparent data latches 
with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is 
High, it overrides the other inputs and resets the data (Q) outputs Low. Q reflects the 
data (D) inputs while the gate (G) input is High, gate enable (GE) is High, and CLR is 
Low. If GE for is Low, data on D cannot be latched. The data on the D input during the 
High-to-Low gate transition is stored in the latch. The data on the Q output remains 
unchanged as long as GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR 
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be 
inverted by adding an inverter in front of the GR/GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs
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0 1 1 1 1
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0 1 0 X No Chg

0 1 ↓ Dn dn
Dn = referenced input, for example, D0, D1, D2
Qn = referenced output, for example, Q0, Q1, Q2
dn = referenced input state, one setup time prior to High-to-Low gate transition
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Figure 7-13 LD4CE Implementation XC4000X, XC5200, SpartanXL, Spartan2, 
Virtex

Figure 7-14 LD8CE Implementation XC4000X, XC5200, SpartanXL, Spartan2, 
Virtex
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Design Elements (LDCP)
LDCP

Transparent Data Latch with Asynchronous Clear and Preset

LDCP is a transparent data latch with data (D), asynchronous clear (CLR) and preset 
(PRE) inputs. When CLR is High, it overrides the other inputs and resets the data (Q) 
output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q 
reflects the data (D) input while the gate (G) input is High and CLR and PRE are Low. 
The data on the D input during the High-to-Low gate transition is stored in the latch. 
The data on the Q output remains unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

CLR PRE G D Q

1 X X X 0

0 1 X X 1

0 0 1 1 1

0 0 1 0 0

0 0 0 X No Chg

0 0 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition
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LDCP_1

Transparent Data Latch with Asynchronous Clear and Preset and 
Inverted Gate

LDCP_1 is a transparent data latch with data (D), asynchronous clear (CLR) and 
preset (PRE) inputs. When CLR is High, it overrides the other inputs and resets the 
data (Q) output Low. When PRE is High and CLR is Low, it presets the data (Q) 
output High. Q reflects the data (D) input while gate (G) input, CLR, and PRE are 
Low. The data on the D input during the Low-to-High gate transition is stored in the 
latch. The data on the Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Design Elements (LDCPE)
LDCPE

Transparent Data Latch with Asynchronous Clear and Preset and 
Gate Enable

LDCPE is a transparent data latch with data (D), asynchronous clear (CLR), asynchro-
nous preset (PRE), and gate enable (GE). When CLR is High, it overrides the other 
inputs and resets the data (Q) output Low. When PRE is High and CLR is Low, it 
presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input 
and gate enable (GE) are High and CLR and PRE are Low. The data on the D input 
during the High-to-Low gate transition is stored in the latch. The data on the Q output 
remains unchanged as long as G or GE remain Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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LDCPE_1

Transparent Data Latch with Asynchronous Clear and Preset, Gate 
Enable, and Inverted Gate

LDCPE_1 is a transparent data latch with data (D), asynchronous clear (CLR), asyn-
chronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the 
other inputs and resets the data (Q) output Low. When PRE is High and CLR is Low, it 
presets the data (Q) output High. Q reflects the data (D) input while gate enable (GE) 
is High and gate (G), CLR, and PRE are Low. The data on the D input during the Low-
to-High gate transition is stored in the latch. The data on the Q output remains 
unchanged as long as G is High or GE is Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Design Elements (LDE)
LDE

Transparent Data Latch with Gate Enable

LDE is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q 
reflects the data (D) while the gate (G) input and gate enable (GE) are High. The data 
on the D input during the High-to-Low gate transition is stored in the latch. The data 
on the Q output remains unchanged as long as G or GE remain Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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LDE_1

Transparent Data Latch with Gate Enable and Inverted Gate

LDE_1 is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q 
reflects the data (D) while the gate (G) input is Low and gate enable (GE) is High. The 
data on the D input during the Low-to-High gate transition is stored in the latch. The 
data on the Q output remains unchanged as long as G is High or GE is Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex and 
Spartan2 simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.
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d = state of input one setup time prior to Low-to-High gate transition

Q

G

LDE_1

X8374

D

GE
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Design Elements (LDP)
LDP

Transparent Data Latch with Asynchronous Preset

LDP is a transparent data latch with asynchronous preset (PRE). When the PRE input 
is High, it overrides the other inputs and resets the data (Q) output High. Q reflects 
the data (D) input while gate (G) input is High and PRE is Low. The data on the D 
input during the High-to-Low gate transition is stored in the latch. The data on the Q 
output remains unchanged as long as G remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. For Virtex and Spartan2, 
GSR defaults to active-High but can be inverted by adding an inverter in front of the 
GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

PRE G D Q

1 X X 1

0 1 0 0

0 1 1 1

0 0 X No Chg

0 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition

Q

G

LDP

PRE

X8375

D
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LDP_1

Transparent Data Latch with Asynchronous Preset and Inverted 
Gate

LDP_1 is a transparent data latch with asynchronous preset (PRE). When the PRE 
input is High, it overrides the other inputs and resets the data (Q) output High. Q 
reflects the data (D) input while gate (G) input and PRE are Low. The data on the D 
input during the Low-to-High gate transition is stored in the latch. The data on the Q 
output remains unchanged as long as G remains High.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. For Virtex and Spartan2, 
GSR defaults to active-High but can be inverted by adding an inverter in front of the 
GSR input of the STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

PRE G D Q

1 X X 1

0 0 0 0

0 0 1 1

0 1 X No Chg

0 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition

Q

G

LDP_1

PRE

X8376

D
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Design Elements (LDPE)
LDPE

Transparent Data Latch with Asynchronous Preset and Gate 
Enable

LDPE is a transparent data latch with asynchronous preset and gate enable. When the 
asynchronous preset (PRE) is High, it overrides the other input and presets the data 
(Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable 
(GE) are High. If GE is Low, data on D cannot be latched. The data on the D input 
during the High-to-Low gate transition is stored in the latch. The data on the Q output 
remains unchanged as long as G or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 7-15 LDPE Implementation XC4000X, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Macro N/A N/A N/A Macro Primitive Primitive

Inputs Outputs

PRE GE G D Q

1 X X X 1

0 0 X X No Chg

0 1 1 0 0

0 1 1 1 1

0 1 0 X No Chg

0 1 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition

QD

PRE

X6954

G

LDPE

GE

D

GB

INV

GE

RLOC=R0C0

PRE

G

QD

GE

G

PRE

Q

LDPE_1

X7416
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LDPE_1

Transparent Data Latch with Asynchronous Preset, Gate Enable, 
and Inverted Gate

LDPE_1 is a transparent data latch with asynchronous preset, gate enable, and 
inverted gated. When the asynchronous preset (PRE) is High, it overrides the other 
input and presets the data (Q) output High. Q reflects the data (D) input while the 
gate (G) input is Low and gate enable (GE) is High.

If GE is low, data on D cannot be latched. The data on the D input during the Low-to-
High gate transition is stored in the latch. The data on the Q output remains 
unchanged as long as G remains High or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive Primitive Primitive

Inputs Outputs

PRE GE G D Q

1 X X X 1

0 0 X X No Chg

0 1 0 0 0

0 1 0 1 1

0 1 1 X No Chg

0 1 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition

Q

PRE

LDPE_1D

G

X7573

GE
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Design Elements (LUT1, 2, 3, 4)
LUT1, 2, 3, 4

1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

LUT1, LUT2, LUT3, and LUT4 are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables 
(LUTs) with general output (O). 

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for 
the number of inputs, must be attached to the LUT to specify its function.

LUT1 provides a look-up-table version of a buffer or inverter.

LUTs are the basic Virtex and Spartan2 building blocks. Two LUTs are available in 
each CLB slice; four LUTs are available in each CLB. The variants, “LUT1_D, LUT2_D, 
LUT3_D, LUT4_D” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L,” provide additional 
types of outputs that can be used by different timing models for more accurate pre-
layout timing estimation. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Table 7-1 LUT3 Function Table

Inputs Outputs

I2 I1 I0 O

0 0 0 INIT[0]

0 0 1 INIT[1]

0 1 0 INIT[2]

0 1 1 INIT[3]

1 0 0 INIT[4]

1 0 1 INIT[5]

1 1 0 INIT[6]

1 1 1 INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

O

IO

LUT1

X8358

LUT2

X8379

I0

O

I1

LUT3

X8382

I0 O

I2

I1

LUT4

X8385

I0

I3

I1
O

I2
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LUT1_D, LUT2_D, LUT3_D, LUT4_D

1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

LUT1_D, LUT2_D, LUT3_D, and LUT4_D are, respectively, 1-, 2-, 3-, and 4-bit look-
up-tables (LUTs) with two functionally identical outputs, O and LO. The O output is a 
general interconnect. The LO output is used to connect to another output within the 
same CLB slice and to the fast connect buffer. 

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for 
the number of inputs, must be attached to the LUT to specify its function.

LUT1_D provides a look-up-table version of a buffer or inverter.

See also “LUT1, 2, 3, 4” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L.”

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Table 7-2 LUT3_D Function Table

Inputs Outputs

I2 I1 I0 O LO

0 0 0 INIT[0] INIT[0]

0 0 1 INIT[1] INIT[1]

0 1 0 INIT[2] INIT[2]

0 1 1 INIT[3] INIT[3]

1 0 0 INIT[4] INIT[4]

1 0 1 INIT[5] INIT[5]

1 1 0 INIT[6] INIT[6]

1 1 1 INIT[7] INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

I0

LUT1_D

X8377

LO

O

LUT2_D

X8380

I0

LOI1

O

LUT3_D

X8383

I0 O

I2

I1

LO

LUT4_D

X8386

I0

I3

I1

LOI2

O
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Design Elements (LUT1_L, LUT2_L, LUT3_L, LUT4_L)
LUT1_L, LUT2_L, LUT3_L, LUT4_L

1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

LUT1_L, LUT2_L, LUT3_L, and LUT4_L are, respectively, 1-, 2-, 3-, and 4- bit look-up-
tables (LUTs) with a local output (LO) that is used to connect to another output within 
the same CLB slice and to the fast connect buffer. 

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for 
the number of inputs, must be attached to the LUT to specify its function.

LUT1_L provides a look-up-table version of a buffer or inverter.

See also “LUT1, 2, 3, 4” and “LUT1_D, LUT2_D, LUT3_D, LUT4_D.”

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Table 7-3 LUT3_L Function Table

Inputs Outputs

I2 I1 I0 LO

0 0 0 INIT[0]

0 0 1 INIT[1]

0 1 0 INIT[2]

0 1 1 INIT[3]

1 0 0 INIT[4]

1 0 1 INIT[5]

1 1 0 INIT[6]

1 1 1 INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

I0

LUT1_L

X8378

LO

LUT2_L

X8381

I0

LOI1

LUT3_L

X8384

I0

I2

I1

LO

LUT4_L

X8387

I0

I3

I1
LO

I2
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MD0

Mode 0, Input Pad Used for Readback Trigger Input

The MD0 input pad is connected to the Mode 0 (M0) input pin, which is used to deter-
mine the configuration mode on XC4000 and XC5200 devices. Following configura-
tion, MD0 can be used as an input pad, but it must be connected through an IBUF to 
the user circuit. However, the user input signal must not interfere with the device 
configuration. XC5200 devices allow an MD0 pad to be used as an output pad; 
XC4000 devices do not. The IOB associated with the MD0 pad has no flip-flop or latch. 
This pad is usually connected (automatically) to the RTRIG input of the READBACK 
function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A N/A

X3896

MD0
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Design Elements (MD1)
MD1

Mode 1, Output Pad Used for Readback Data Output

The MD1 output pad is connected to the Mode 1 (M1) output pin, which is used to 
determine the configuration mode on XC4000 and XC5200 devices. Following config-
uration, MD1 can be used as a 3-state or simple output pad, but it must be connected 
through an OBUF or an OBUFT to the user circuit. However, the user output signal 
must not interfere with the device configuration. XC5200 devices allow an MD1 pad 
to be used as an input pad; XC4000 devices do not. The IOB associated with an MD1 
pad has no flip-flop or latch. This pad is usually connected to the DATA output of the 
READBACK function, and the output-enable input of the 3-state OBUFT is connected 
to the RIP output of the READBACK function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A N/A

X3898

MD1
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MD2

Mode 2, Input Pad

The MD2 input pad is connected to the Mode 2 (M2) input pin, which is used to deter-
mine the configuration mode on XC4000 and XC5200 devices. Following configura-
tion, MD2 can be used as an input pad, but it must be connected through an IBUF to 
the user circuit. However, the user input signal must not interfere with the device 
configuration. XC5200 devices allow an MD2 pad to be used as an output pad; 
XC4000 devices do not. The IOB associated with it has no flip-flop or latch.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A N/A

X3900

MD2
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Design Elements (M2_1)
M2_1

2-to-1 Multiplexer

The M2_1 multiplexer chooses one data bit from two sources (D1 or D0) under the 
control of the select input (S0). The output (O) reflects the state of the selected data 
input. When Low, S0 selects D0 and when High, S0 selects D1.

Figure 7-16 M2_1 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S0 D1 D0 O

1 1 X 1

1 0 X 0

0 X 1 1

0 X 0 0

D0
D1
S0

O

X4026

X7661

M0
D0

D1

S0

M1

OAND2B1

AND2

OR2
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M2_1B1

2-to-1 Multiplexer with D0 Inverted

The M2_1B1 multiplexer chooses one data bit from two sources (D1 or D0) under the 
control of select input (S0). When S0 is Low, the output (O) reflects the state of D0. 
When S0 is High, O reflects the state of D1.

Figure 7-17 M2_1B1 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S0 D1 D0 O

1 1 X 1

1 0 X 0

0 X 1 0

0 X 0 1

D0

D1
S0

O

X4027

X7662

M0
D0

D1

S0

M1

OAND2B2

AND2

OR2
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Design Elements (M2_1B2)
M2_1B2

2-to-1 Multiplexer with D0 and D1 Inverted

The M2_1B2 multiplexer chooses one data bit from two sources (D1 or D0) under the 
control of select input (S0). When S0 is Low, the output (O) reflects the state of D0. 
When S0 is High, O reflects the state of D1.

Figure 7-18 M2_1B2 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S0 D1 D0 O

1 1 X 0

1 0 X 1

0 X 1 0

0 X 0 1

D0

D1
S0

O

X4028

X7663

M0
D0

D1

S0

M1

OAND2B2

AND2B1

OR2
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M2_1E

2-to-1 Multiplexer with Enable

M2_1E is a 2-to-1 multiplexer with enable. When the enable input (E) is High, the 
M2_1E chooses one data bit from two sources (D1 or D0) under the control of select 
input (S0). When E is High, the output (O) reflects the state of the selected input. 
When Low, S0 selects D0 and when High, S0 selects D1. When E is Low, the output is 
Low.

Figure 7-19 M2_1E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E S0 D1 D0 O

0 X X X 0

1 0 X 1 1

1 0 X 0 0

1 1 1 X 1

1 1 0 X 0

D0
D1

S0

O

X4029

E

AND3B1

AND3

D1

X7858

M1

E

OR2

O

M0
D0

S0
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Design Elements (M4_1E)
M4_1E

4-to-1 Multiplexer with Enable

M4_1E is an 4-to-1 multiplexer with enable. When the enable input (E) is High, the 
M4_1E multiplexer chooses one data bit from four sources (D3, D2, D1, or D0) under 
the control of the select inputs (S1 – S0). The output (O) reflects the state of the 
selected input as shown in the truth table. When E is Low, the output is Low.

Figure 7-20 M4_1E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

Figure 7-21 M4_1E Implementation Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E S1 S0 D0 D1 D2 D3 O

0 X X X X X X 0

1 0 0 D0 X X X D0

1 0 1 X D1 X X D1

1 1 0 X X D2 X D2

1 1 1 X X X D3 D3

D0

O

X4030

D1
D2

D3
S0
S1
E

O
D1

D0

S0

M2_1E

M01 O
D1

D0

S0

M2_1

0
O

D1

D0

S0

M2_1E

M23

O
M01

M23
E

E

D2

D0

D1

D3

S0

E

S1

X7859

O
D1

D0

S0

M2_1E

M01 O
D1

D0

S0

MUXF5

0
O

D1

D0

S0
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M23

O
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M23
E
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D2

D0

D1

D3
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E
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X8715
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M8_1E

8-to-1 Multiplexer with Enable

M8_1E is an 8-to-1 multiplexer with enable. When the enable input (E) is High, the 
M8_1E multiplexer chooses one data bit from eight sources (D7 – D0) under the 
control of the select inputs (S2 – S0). The output (O) reflects the state of the selected 
input as shown in the truth table. When E is Low, the output is Low.

Figure 7-22 M8_1E Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E S2 S1 S0 D7 – D0 O

0 X X X X 0

1 0 0 0 D0 D0

1 0 0 1 D1 D1

1 0 1 0 D2 D2

1 0 1 1 D3 D3

1 1 0 0 D4 D4

1 1 0 1 D5 D5

1 1 1 0 D6 D6

1 1 1 1 D7 D7
Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).
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Design Elements (M8_1E)
Figure 7-23 M8_1E Implementation Spartan2, Virtex
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M16_1E

16-to-1 Multiplexer with Enable

M16_1E is a 16-to-1 multiplexer with enable. When the enable input (E) is High, the 
M16_1E multiplexer chooses one data bit from 16 sources (D15 – D0) under the 
control of the select inputs (S3 – S0). The output (O) reflects the state of the selected 
input as shown in the truth table. When E is Low, the output is Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E S3 S2 S1 S0 D15 – D0 O

0 X X X X X 0

1 0 0 0 0 D0 D0

1 0 0 0 1 D1 D1

1 0 0 1 0 D2 D2

1 0 0 1 1 D3 D3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 0 0 D12 D12

1 1 1 0 1 D13 D13

1 1 1 1 0 D14 D14

1 1 1 1 1 D15 D15
Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).
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X4032
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Design Elements (MULT_AND)
MULT_AND

Fast Multiplier AND

MULT_AND is an AND component used exclusively for building fast and smaller 
multipliers. The I1 and I0 inputs must be connected to the I1 and I0 inputs of the asso-
ciated LUT. The LO output must be connected to the DI input of the associated 
MUXCY, MUXCY_D, or MUXCY_L. See the “Example Multiplier Using 
MULT_AND” figure.

Figure 7-24 Example Multiplier Using MULT_AND

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Output

I1 I0 LO

0 0 0

0 1 0

1 0 0

1 1 1

X8405

I1

I0
LO

X8733

B1

I1
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O O

MULT_AND

I3
I2
I1
IO

LUT4

LO
S

MUXCY_L

XORCY

SUM1

CI

CI
LI

10
DI

A1
B0
A0

CO
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MUXCY

2-to-1 Multiplexer for Carry Logic with General Output

MUXCY is used to implement a 1-bit high-speed carry propagate function. One such 
function can be implemented per logic cell (LC), for a total of 4-bits per configurable 
logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the 
MUXCY. The carry in (CI) input of an LC is connected to the CI input of the MUXCY. 
The select input (S) of the MUX is driven by the output of the lookup table (LUT) and 
configured as an XOR function. The carry out (O) of the MUXCY reflects the state of 
the selected input and implements the carry out function of each LC. When Low, S 
selects DI; when High, S selects CI.

The variants, “MUXCY_D” and “MUXCY_L,” provide additional types of outputs 
that can be used by different timing models for more accurate pre-layout timing esti-
mation. 
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Design Elements (MUXCY_D)
MUXCY_D

2-to-1 Multiplexer for Carry Logic with Dual Output

MUXCY_D is used to implement a 1-bit high-speed carry propagate function. One 
such function can be implemented per logic cell (LC), for a total of 4-bits per config-
urable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of 
the MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the 
MUXCY_D. The select input (S) of the MUX is driven by the output of the lookup 
table (LUT) and configured as an XOR function. The carry out (O and LO) of the 
MUXCY_D reflects the state of the selected input and implements the carry out func-
tion of each LC. When Low, S selects DI; when High, S selects CI. 

Outputs O and LO are functionally identical. The O output is a general interconnect. 
The LO output is used to connect to other inputs within the same CLB slice. 

See also “MUXCY” and “MUXCY_L.”
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MUXCY_L

2-to-1 Multiplexer for Carry Logic with Local Output

MUXCY_L is used to implement a 1-bit high-speed carry propagate function. One 
such function can be implemented per logic cell (LC), for a total of 4-bits per config-
urable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of 
the MUXCY_L. The carry in (CI) input of an LC is connected to the CI input of the 
MUXCY_L. The select input (S) of the MUX is driven by the output of the lookup table 
(LUT) and configured as an XOR function. The carry out (LO) of the MUXCY_L 
reflects the state of the selected input and implements the carry out function of each 
LC. When Low, S selects DI; when High, S selects CI.

The LO output can only connect to other inputs within the same CLB slice. 

See also “MUXCY” and “MUXCY_D.”
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Design Elements (MUXF5)
MUXF5

2-to-1 Lookup Table Multiplexer with General Output

MUXF5 provides a multiplexer function in one half of a Virtex or Spartan2 CLB for 
creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the 
associated lookup tables. The local outputs (LO) from the two lookup tables are 
connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any 
internal net. When Low, S selects I0. When High, S selects I1.

The variants, “MUXF5_D” and “MUXF5_L,” provide additional types of outputs that 
can be used by different timing models for more accurate pre-layout timing estima-
tion. 
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MUXF5_D

2-to-1 Lookup Table Multiplexer with Dual Output

MUXF5_D provides a multiplexer function in one half of a Virtex or Spartan2 CLB for 
creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the 
associated lookup tables. The local outputs (LO) from the two lookup tables are 
connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any 
internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. 
The LO output is used to connect to other inputs within the same CLB slice. 

See also “MUXF5” and “MUXF5_L.”
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Design Elements (MUXF5_L)
MUXF5_L

2-to-1 Lookup Table Multiplexer with Local Output

MUXF5_L provides a multiplexer function in one half of a Virtex or Spartan2 CLB for 
creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the 
associated lookup tables. The local outputs (LO) from the two lookup tables are 
connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any 
internal net. When Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice. 

See also “MUXF5” and “MUXF5_L.”
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MUXF6

2-to-1 Lookup Table Multiplexer with General Output

MUXF6 provides a multiplexer function in a full Virtex or Spartan2 CLB for creating a 
function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated 
four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in 
the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven 
from any internal net. When Low, S selects I0. When High, S selects I1.

The variants, “MUXF6_D” and “MUXF6_L,” provide additional types of outputs that 
can be used by different timing models for more accurate pre-layout timing estima-
tion. 
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N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

S I0 I1 O

0 1 X 1

0 0 X 0

1 X 1 1

1 X 0 0

I0

I1

S

O

X8434
7-44 Xilinx Development System



Design Elements (MUXF6_D)
MUXF6_D

2-to-1 Lookup Table Multiplexer with Dual Output

MUXF6_D provides a multiplexer function in a full Virtex or Spartan2 CLB for 
creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the 
associated four lookup tables and two MUXF5s. The local outputs (LO) from the two 
MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is 
driven from any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. 
The LO output is used to connect to other inputs within the same CLB slice. 

See also “MUXF6” and “MUXF6_L.”
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MUXF6_L

2-to-1 Lookup Table Multiplexer with Local Output

MUXF6_L provides a multiplexer function in a full Virtex or Spartan2 CLB for 
creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the 
associated four lookup tables and two MUXF5s. The local outputs (LO) from the two 
MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is 
driven from any internal net. When Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice. 

See also “MUXF6” and “MUXF6_D.”
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Design Elements (NAND2-9)
NAND2-9

2- to 9-Input NAND Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

NAND2, 
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive Primitive

NAND6,
NAND7,
NAND8,
NAND9

Macro Macro Macro Macro Primitive Macro Macro Macro Macro
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Figure 7-25 NAND Gate Representations

The NAND function is performed in the Configurable Logic Block (CLB) function 
generators for XC3000, XC4000, XC5200, Spartan, and SpartanXL. NAND gates of up 
to five inputs are available in any combination of inverting and non-inverting inputs. 
NAND gates of six to nine inputs are available with only non-inverting inputs. To 
invert inputs, use external inverters. Since each input uses a CLB resource, replace 
gates with unused inputs with gates having the necessary number of inputs.

Refer to the “NAND12, 16” section for information on additional NAND functions for 
the XC5200, Spartan2, and Virtex.
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Design Elements (NAND2-9)
Figure 7-26 NAND5 Implementation XC5200

Figure 7-27 NAND8 Implementation XC3000

Figure 7-28 NAND8 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 7-29 NAND8 Implementation XC5200
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Figure 7-30 NAND8 Implementation Spartan2, Virtex
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Design Elements (NAND12, 16)
NAND12, 16

12- and 16-Input NAND Gates with Non-Inverted Inputs

The NAND function is performed in the Configurable Logic Block (CLB) function 
generators for XC5200, Spartan2, and Virtex. The 12- and 16-input NAND functions 
are available only with non-inverting inputs. To invert some or all inputs, use external 
inverters.

Refer to the “NAND2-9” section for more information on NAND functions.

Figure 7-31 NAND12 Implementation XC5200
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Figure 7-32 NAND12 Implementation Spartan2, Virtex
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Design Elements (NAND12, 16)
Figure 7-33 NAND16 Implementation XC5200
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Figure 7-34 NAND16 Implementation Spartan2, Virtex
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Design Elements (NOR2-9)
NOR2-9

2- to 9-Input NOR Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

NOR2, 
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive Primitive

NOR6,
NOR7,
NOR8,
NOR9

Macro Macro Macro Macro Primitive Macro Macro Macro Macro
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Figure 7-35 NOR Gate Representations

The NOR function is performed in the Configurable Logic Block (CLB) function 
generators for XC3000, XC4000, XC5200, Spartan, and SpartanXL. NOR gates of up to 
five inputs are available in any combination of inverting and non-inverting inputs. 
NOR gates of six to nine inputs are available with only non-inverting inputs. To invert 
some or all inputs, use external inverters. Since each input uses a CLB resource, 
replace gates with unused inputs with gates having the necessary number of inputs.

Refer to the “NOR12, 16” section for information on additional NOR functions for the 
XC5200, Spartan2, and Virtex.
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Design Elements (NOR2-9)
Figure 7-36 NOR5 Implementation XC5200

Figure 7-37 NOR8 Implementation XC3000

Figure 7-38 NOR8 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 7-39 NOR8 Implementation XC5200
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Figure 7-40 NOR8 Implementation Spartan2, Virtex
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Design Elements (NOR12, 16)
NOR12, 16

12- and 16-Input NOR Gates with Non-Inverted Inputs

The 12- and 16-input NOR functions are available only with non-inverting inputs. To 
invert some or all inputs, use external inverters.

Refer to the “NOR2-9” section for more information on NOR functions.

Figure 7-41 NOR16 Implementation XC5200
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Figure 7-42 NOR16 Implementation Spartan2, Virtex
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Chapter 8

Design Elements (OAND2 to OXOR2)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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OAND2

2-Input AND Gate with Invertible Inputs

OAND2 is a 2-input AND gate that is implemented in the output multiplexer of the 
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there 
is no library component showing inverted inputs. The mapper will automatically 
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

F
O

I0

X6955
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Design Elements (OBUF, 4, 8, 16)
OBUF, 4, 8, 16

Single- and Multiple-Output Buffers

OBUF, OBUF4, OBUF8, and OBUF16 are single and multiple output buffers. An 
OBUF isolates the internal circuit and provides drive current for signals leaving a 
chip. OBUFs exist in input/output blocks (IOB). The output (O) of an OBUF is 
connected to an OPAD or an IOPAD. 

For XC9000 CPLDs, if a high impedance (Z) signal from an on-chip 3-state buffer (like 
BUFE) is applied to the input of an OBUF, it is propagated to the CPLD device output 
pin.

For Virtex and Spartan2, refer to the “OBUF_selectIO” section for information on 
OBUF variants with selectable I/O interfaces. The I/O interface standard used by 
OBUF, 4, 8, and 16 is LVTTL. Also, Virtex and Spartan2 OBUF, 4, 8, and 16 have select-
able drive and slew rates using the DRIVE and SLOW or FAST constraints. The 
defaults are DRIVE=12 mA and SLOW slew.

Figure 8-1 OBUF8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OBUF Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OBUF4,
OBUF8,
OBUF16

Macro Macro Macro Macro Macro Macro Macro Macro Macro

X3785

OBUF

X3792

OBUF4

OBUF8

X3804

OBUF16

X3816

X7654

IO O0

OBUF
I1 O1

OBUF
I2 O2

OBUF
I3 O3

OBUF
I4 O4

OBUF
I5 O5

OBUF
I6 O6

OBUF
I7

I[7:0]

O[7:0]

O7

OBUF
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OBUF_selectIO

Single Output Buffer with Selectable I/O Interface

OBUF and its variants (listed below) are single output buffers whose I/O interface 
corresponds to a specific I/O standard. The name extensions (LVCMOS2, PCI33_3, 
PCI33_5, etc.) specify the standard. The S, F, and 2, 4, 6, 8, 12, 16, 24 extensions specify 
the slew rate (SLOW or FAST) and the drive power (2, 4, 6, 8, 12, 16, 24 mA) for the 
LVTTL standard variants. For example, OBUF_F_12 is a single output buffer that uses 
the LVTTL I/O-signaling standard with a FAST slew and 12mA of drive power.

OBUF has selectable drive and slew rates using the DRIVE and SLOW or FAST 
constraints. The defaults are DRIVE=12 mA and SLOW slew. 

An OBUF isolates the internal circuit and provides drive current for signals leaving a 
chip. OBUFs exist in input/output blocks (IOB). The output (O) of an OBUF is 
connected to an OPAD or an IOPAD.

The hardware implementation of the I/O standard requires that you follow a set of 
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage Rules” 
section under the IBUF_selectIO section for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Component I/O Standard VCCO

OBUF LVTTL 3.3

OBUF_S_2 LVTTL 3.3

OBUF_S_4 LVTTL 3.3

OBUF_S_6 LVTTL 3.3

OBUF_S_8 LVTTL 3.3

OBUF_S_12 LVTTL 3.3

OBUF_S_16 LVTTL 3.3

OBUF_S_24 LVTTL 3.3

OBUF_F_2 LVTTL 3.3

OBUF_F_4 LVTTL 3.3

OBUF_F_6 LVTTL 3.3

OBUF_F_8 LVTTL 3.3

OBUF_F_12 LVTTL 3.3

OBUF_F_16 LVTTL 3.3

OBUF_F_24 LVTTL 3.3

OBUF_LVCMOS2 LVCMOS2 2.5

OBUF_PCI33_3 PCI33_3 3.3

OBUF_PCI33_5 PCI33_5 3.3

X3830
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Design Elements (OBUF_selectIO)
OBUF_PCI66_3 PCI66_3 3.3

OBUF_GTL GTL N/A

OBUF_GTLP GTL+ N/A

OBUF_HSTL_I HSTL_I 1.5

OBUF_HSTL_III HSTL_III 1.5

OBUF_HSTL_IV HSTL_IV 1.5

OBUF_SSTL2_I SSTL2_I 2.5

OBUF_SSTL2_II SSTL2_II 2.5

OBUF_SSTL3_I SSTL3_I 3.3

OBUF_SSTL3_II SSTL3_II 3.3

OBUF_CTT CTT 3.3

OBUF_AGP AGP 3.3

Component I/O Standard VCCO
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OBUFE, 4, 8, 16

3-State Output Buffers with Active-High Output Enable

OBUFE, OBUFE4, OBUFE8, and OBUFE16 are 3-state buffers with inputs I, I3 – I0, I7 – 
I0, and I15-I0, respectively; outputs O, O3 – O0, O7 – O0, and O15-O0, respectively; 
and active-High output enable (E). When E is High, data on the inputs of the buffers is 
transferred to the corresponding outputs. When E is Low, the output is High imped-
ance (off or Z state). An OBUFE isolates the internal circuit and provides drive current 
for signals leaving a chip. An OBUFE output is connected to an OPAD or an IOPAD. 
An OBUFE input is connected to the internal circuit.

Figure 8-2 OBUFE Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex

Figure 8-3 OBUFE8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OBUFE Macro Macro Macro Macro Primitive Macro Macro Macro Macro

OBUFE4,
OBUFE8,
OBUFE16

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E I O

0 X Z

1 1 1

1 0 0
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E
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OBUFE4

E
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E
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E

O

T

I
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INV

T
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IO O0

OBUFE

I[7:0]

E

O[7:0]

I1 O1

OBUFE

E

E

I2 O2

OBUFE

E

I3 O3

OBUFE

E

I4 O4

OBUFE

E

I5 O5

OBUFE

E

I6 O6

OBUFE

E

I7 O7

OBUFE

E
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Design Elements (OBUFT, 4, 8, 16)
OBUFT, 4, 8, 16

Single and Multiple 3-State Output Buffers with Active-Low Output 
Enable

OBUFT, OBUFT4, OBUFT8, and OBUFT16 are single and multiple 3-state output 
buffers with inputs I, I3 – I0, I7 – I0, I15 – I0, outputs O, O3 – O0, O7 – O0, O15 – O0, 
and active-Low output enables (T). When T is Low, data on the inputs of the buffers is 
transferred to the corresponding outputs. When T is High, the output is high imped-
ance (off or Z state). OBUFTs isolate the internal circuit and provide extra drive 
current for signals leaving a chip. An OBUFT output is connected to an OPAD or an 
IOPAD.

For Virtex and Spartan2, refer to the “OBUFT_selectIO” section for information on 
OBUFT variants with selectable I/O interfaces. OBUFT, 4, 8, and 16 use the LVTTL 
standard. Also, Virtex and Spartan2 OBUFT, 4, 8, and 16 have selectable drive and 
slew rates using the DRIVE and SLOW or FAST constraints. The defaults are 
DRIVE=12 mA and SLOW slew.

Figure 8-4 OBUFT8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OBUFT Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OBUFT4,
OBUFT8,
OBUFT16

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

T I O
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OBUFT
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T
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OBUFT4

T
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T

I O[7:0]

OBUFT16

X3817

T

I[15:0] O[15:0]

X7651

IO O0

OBUFT

I[7:0]

T

O[7:0]

I1 O1

OBUFT

T

T

I2 O2

OBUFT

T

I3 O3

OBUFT

T

I4 O4

OBUFT

T

I5 O5

OBUFT

T

I6 O6

OBUFT

T

I7 O7

OBUFT
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OBUFT_selectIO

Single 3-State Output Buffer with Active-Low Output Enable and 
Selectable I/O Interface

OBUFT and its variants (listed below) are single 3-state output buffers with active-
Low output Enable whose I/O interface corresponds to a specific I/O standard. The 
name extensions (LVCMOS2, PCI33_3, PCI33_5, etc.) specify the standard. The S, F, 
and 2, 4, 6, 8, 12, 16, 24 extensions specify the slew rate (SLOW or FAST) and the drive 
power (2, 4, 6, 8, 12, 16, 24 mA) for the LVTTL standard. For example, OBUFT_S_4 is a 
3-state output buffer with active-Low output enable that uses the LVTTL I/O 
signaling standard with a SLOW slew and 4mA of drive power.

OBUFT has selectable drive and slew rates using the DRIVE and FAST or SLOW 
constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the input of the buffer is transferred to the output. When T is 
High, the output is high impedance (off or Z state). OBUFTs isolate the internal circuit 
and provide extra drive current for signals leaving a chip. An OBUFT output is 
connected to an OPAD or an IOPAD.

The hardware implementation of the I/O standards requires that you follow a set of 
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage Rules” 
section under the IBUF_selectIO section for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

T I O

1 X Z

0 1 1

0 0 0

Component I/O Standard VCCO

OBUFT LVTTL 3.3

OBUFT_S_2 LVTTL 3.3

OBUFT_S_4 LVTTL 3.3

OBUFT_S_6 LVTTL 3.3

OBUFT_S_8 LVTTL 3.3

OBUFT_S_12 LVTTL 3.3

OBUFT_S_16 LVTTL 3.3

OBUFT_S_24 LVTTL 3.3

OBUFT_F_2 LVTTL 3.3

T

X8720
8-8 Xilinx Development System



Design Elements (OBUFT_selectIO)
OBUFT_F_4 LVTTL 3.3

OBUFT_F_6 LVTTL 3.3

OBUFT_F_8 LVTTL 3.3

OBUFT_F_12 LVTTL 3.3

OBUFT_F_16 LVTTL 3.3

OBUFT_F_24 LVTTL 3.3

OBUFT_LVCMOS2 LVCMOS2 2.5

OBUFT_PCI33_3 PCI33_3 3.3

OBUFT_PCI33_5 PCI33_5 3.3

OBUFT_PCI66_3 PCI66_3 3.3

OBUFT_GTL GTL N/A

OBUFT_GTLP GTL+ N/A

OBUFT_HSTL_I HSTL_I 1.5

OBUFT_HSTL_III HSTL_III 1.5

OBUF_HSTL_IV HSTL_IV 1.5

OBUFT_SSTL2_I SSTL2_I 2.5

OBUFT_SSTL2_II SSTL2_II 2.5

OBUFT_SSTL3_I SSTL3_I 3.3

OBUFT_SSTL3_II SSTL3_II 3.3

OBUFT_CTT CTT 3.3

OBUFT_AGP AGP 3.3

Component I/O Standard VCCO
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OFD, 4, 8, 16

Single- and Multiple-Output D Flip-Flops

OFD, OFD4, OFD8, and OFD16 are single and multiple output D flip-flops except for 
XC5200 and XC9000. The flip-flops exist in an input/output block (IOB) for XC3000, 
XC4000, Spartan, and SpartanXL. The outputs (for example, Q3 – Q0) are connected to 
OPADs or IOPADs. The data on the D inputs is loaded into the flip-flops during the 
Low-to-High clock (C) transition and appears on the Q outputs.

The flip-flops are asynchronously cleared with Low outputs when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global 
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR 
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an 
inverter in front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 8-5 OFD Implementation XC4000E, XC4000X, Spartan, SpartanXL

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OFD Primitive Macro Macro Macro Macro Macro Macro Macro Macro

OFD4, 
OFD8, 
OFD16

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

D C Q

D ↑ dn
dn = state of referenced input one setup time prior to active clock transition

Q

X3778

D OFD

C

X3800

OFD4

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

Q[7:0]

X3812

D[7:0] OFD8

C

Q[15:0]

X3834

D[15:0] OFD16

C D

C

D

CE

C

Q

OFDX

Q

X6484

VCC
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Design Elements (OFD, 4, 8, 16)
Figure 8-6 OFD Implementation XC5200, Spartan2, Virtex

Figure 8-7 OFD Implementation XC9000
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Figure 8-8 OFD8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (OFD, 4, 8, 16)
Figure 8-9 OFD8 Implementation XC9000
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OFD_1

Output D Flip-Flop with Inverted Clock

OFD_1 is located in an input/output block (IOB) except for XC5200. The output (Q) of 
the D flip-flop is connected to an OPAD or an IOPAD. The data on the D input is 
loaded into the flip-flop during the High-to-Low clock (C) transition and appears on 
the Q output.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs 
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for 
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to 
active-High but can be inverted by adding an inverter in front of the GR/GSR input of 
the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-10 OFD_1 Implementation XC3000, XC4000E, XC4000X, Spartan, 
SpartanXL

Figure 8-11 OFD_1 Implementation XC5200, Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro N/A Macro Macro Macro Macro

Inputs Outputs

D C Q
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d = state of referenced input one setup time prior to active clock transition
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IOB=TRUE (Spartan 2, VIRTEX)
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Design Elements (OFDE, 4, 8, 16)
OFDE, 4, 8, 16

D Flip-Flops with Active-High Enable Output Buffers

OFDE, OFDE4, OFDE8, and OFDE16 are single or multiple D flip-flops whose 
outputs are enabled by tristate buffers. The flip-flop data outputs (Q) are connected to 
the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to 
OPADs or IOPADs. These flip-flops and buffers are contained in input/output blocks 
(IOB) for XC3000 and XC4000. The data on the data inputs (D) is loaded into the flip-
flops during the Low-to-High clock (C) transition. When the active-High enable 
inputs (E) are High, the data on the flip-flop outputs (Q) appears on the O outputs. 
When E is Low, outputs are high impedance (Z state or Off).

The flip-flops are asynchronously cleared with Low outputs when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global 
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR 
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an 
inverter in front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 8-12 OFDE Implementation XC3000, XC4000E, XC4000X, Spartan, 
SpartanXL

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OFDE Macro Macro Macro Macro Macro Macro Macro Macro Macro
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Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

E D C O
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1 1 ↑ 1

1 0 ↑ 0

Q

X3782

D OFDE

E

C

X3802

OFDE4

C

D3

D2

D1

D0 Q0

Q1

Q2

Q3

E

Q[7:0]

X3814

D[7:0] OFDE8

C

E

Q[15:0]

X3836

D[15:0] OFDE16

C

E

O

C

D

C

D

E

Q

T

INV OFDT

X6365
Libraries Guide, 2.1i 8-15



Libraries Guide, 2.1i
Figure 8-13 OFDE Implementation XC5200, Spartan2, Virtex

Figure 8-14 OFDE Implementation XC9000

Figure 8-15 OFDE8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (OFDE_1)
OFDE_1

D Flip-Flop with Active-High Enable Output Buffer and 
Inverted Clock

OFDE_1 and its output buffer are located in an input/output block (IOB) except for 
XC5200. The data output of the flip-flop (Q) is connected to the input of an output 
buffer or OBUFE. The output of the OBUFE is connected to an OPAD or an IOPAD. 
The data on the data input (D) is loaded into the flip-flop on the High-to-Low clock 
(C) transition. When the active-High enable input (E) is High, the data on the flip-flop 
output (Q) appears on the O output. When E is Low, the output is high impedance (Z 
state or Off).

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) 
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-16 OFDE_1 Implementation XC3000, XC4000E, XC4000X, Spartan, 
SpartanXL

Figure 8-17 OFDE_1 Implementation XC5200, Spartan2, Virtex
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OFDEI

D Flip-Flop with Active-High Enable Output Buffer (Asynchronous 
Preset)

OFDEI is a D flip-flop whose output is enabled by a 3-state buffer. The data output (Q) 
of the flip-flop is connected to the input of an output 3-state buffer or OBUFE. The 
output of the OBUFE (O) is connected to an OPAD or an IOPAD. These flip-flops and 
buffers are contained in input/output blocks (IOB). The data on the data input (D) is 
loaded into the flip-flop during the Low-to-High clock (C) transition. When the 
active-High enable input (E) is High, the data on the flip-flop output (Q) appears on 
the O output. When E is Low, the output is high impedance (Z state or off). 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-18 OFDEI Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Design Elements (OFDEI_1)
OFDEI_1

D Flip-Flop with Active-High Enable Output Buffer and Inverted 
Clock (Asynchronous Preset)

OFDEI_1 and its output buffer exist in an input/output block (IOB). The data output 
of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The output 
of the OBUFE is connected to an OPAD or an IOPAD. The data on the data input (D) is 
loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
High enable input (E) is High, the data on the flip-flop output (Q) appears on the O 
output. When E is Low, the output is high impedance (Z state or off). 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-19 OFDEI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDEX, 4, 8, 16

D Flip-Flops with Active-High Enable Output Buffers and Clock 
Enable

OFDEX, OFDEX4, OFDEX8, and OFDEX16 are single or multiple D flip-flops whose 
outputs are enabled by tristate buffers. The flip-flop data outputs (Q) are connected to 
the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to 
OPADs or IOPADs. These flip-flops and buffers are contained in input/output blocks 
(IOB). The data on the data inputs (D) is loaded into the flip-flops during the Low-to-
High clock (C) transition. When the active-High enable inputs (E) are High, the data 
on the flip-flop outputs (Q) appears on the O outputs. When E is Low, outputs are 
high impedance (Z state or Off). When CE is Low and E is High, the outputs do not 
change.

The flip-flops are asynchronously cleared with Low outputs when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

Figure 8-20 OFDEX Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Design Elements (OFDEX, 4, 8, 16)
Figure 8-21 OFDEX8 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDEX_1

D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, 
and Clock Enable

OFDEX_1 and its output buffer are located in an input/output block (IOB). The data 
output of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The 
output of the OBUFE is connected to an OPAD or an IOPAD. The data on the data 
input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When 
the active-High enable input (E) is High, the data on the flip-flop output (Q) appears 
on the O output. When E is Low, the output is high impedance (Z state or Off). When 
CE is Low and E is High, the output does not change.

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

Figure 8-22 OFDEX_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Design Elements (OFDEXI)
OFDEXI

D Flip-Flop with Active-High Enable Output Buffer and Clock 
Enable (Asynchronous Preset)

OFDEXI is a D flip-flop whose output is enabled by a tristate buffer. The data output 
(Q) of the flip-flop is connected to the input of an output buffer or OBUFE. The output 
of the OBUFE (O) is connected to an OPAD or an IOPAD. These flip-flops and buffers 
are contained in input/output blocks (IOB). The data on the data input (D) is loaded 
into the flip-flop during the Low-to-High clock (C) transition. When the active-High 
enable input (E) is High, the data on the flip-flop output (Q) appears on the O output. 
When E is Low, the output is high impedance (Z state or Off). When CE is Low and E 
is High, the output does not change. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-23 OFDEXI Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDEXI_1

D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, 
and Clock Enable (Asynchronous Preset)

OFDEXI_1 and its output buffer are located in an input/output block (IOB). The data 
output of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The 
output of the OBUFE is connected to an OPAD or an IOPAD. The data on the data 
input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When 
the active-High enable input (E) is High, the data on the flip-flop output (Q) appears 
on the O output. When E is Low, the output is high impedance (Z state or Off). When 
CE is Low and E is High, the output does not change. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-24 OFDEXI_1 Implementation XC4000E, XC4000X, Spartan, 
SpartanXL
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Design Elements (OFDI)
OFDI

Output D Flip-Flop (Asynchronous Preset)

OFDI is contained in an input/output block (IOB). The output (Q) of the D flip-flop is 
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-25 OFDI Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 8-26 OFDI Implementation Spartan2, Virtex
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OFDI_1

Output D Flip-Flop with Inverted Clock (Asynchronous Preset)

OFDI_1 exists in an input/output block (IOB). The D flip-flop output (Q) is connected 
to an OPAD or an IOPAD. The data on the D input is loaded into the flip-flop during 
the High-to-Low clock (C) transition and appears on the Q output. 

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP, 
STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-27 OFDI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 8-28 OFDI_1 Implementation Spartan2, Virtex
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Design Elements (OFDT, 4, 8, 16)
OFDT, 4, 8, 16

Single and Multiple D Flip-Flops with Active-Low 3-State Output 
Enable Buffers

OFDT, OFDT4, OFDT8, and OFDT16 are single or multiple D flip-flops whose outputs 
are enabled by a tristate buffers. The data outputs (Q) of the flip-flops are connected to 
the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected 
to OPADs or IOPADs. These flip-flops and buffers are located in input/output blocks 
(IOB) for XC3000 and XC4000. The data on the data inputs (D) is loaded into the flip-
flops during the Low-to-High clock (C) transition. When the active-Low enable inputs 
(T) are Low, the data on the flip-flop outputs (Q) appears on the O outputs. When T is 
High, outputs are high impedance (Off).

The flip-flops are asynchronously cleared with Low outputs, when power is applied. 
For CPLDs, the power-on condition can be simulated by applying a High-level pulse 
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global 
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR 
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an 
inverter in front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

Figure 8-29 OFDT Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Figure 8-30 OFDT Implementation XC5200, Spartan2, Virtex

Figure 8-31 OFDT Implementation XC9000

Figure 8-32 OFDT8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (OFDT_1)
OFDT_1

D Flip-Flop with Active-Low 3-State Output Buffer and Inverted 
Clock

OFDT_1 and its output buffer are located in an input/output block (IOB). The flip-
flop data output (Q) is connected to the input of an output buffer (OBUFT). The 
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D) 
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O 
output. When T is High, the output is high impedance (Off).

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. 
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) 
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-33 OFDT_1 Implementation XC3000, XC4000E, XC4000X, Spartan, 
SpartanXL

Figure 8-34 OFDT_1 Implementation XC5200, Spartan2, Virtex
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OFDTI

D Flip-Flop with Active-Low 3-State Output Buffer (Asynchronous 
Preset)

OFDTI and its output buffer are contained in an input/output block (IOB). The data 
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The 
output of the OBUFT is connected to an OPAD or an IOPAD. The data on the data 
input (D) is loaded into the flip-flop on the Low-to-High clock (C) transition. When 
the active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on 
the output (O). When T is High, the output is high impedance (off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-35 OFDTI Implementation XC4000E, XC4000X, Spartan, SpartanXL
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Design Elements (OFDTI_1)
OFDTI_1

D Flip-Flop with Active-Low 3-State Output Buffer and Inverted 
Clock (Asynchronous Preset)

OFDTI_1 and its output buffer are contained in an input/output block (IOB). The data 
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The 
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D) 
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O 
output. When T is High, the output is high impedance (off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the STARTUP 
symbol.

Figure 8-36 OFDTI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDTX, 4, 8, 16

Single and Multiple D Flip-Flops with Active-Low 3-State Output 
Buffers and Clock Enable

OFDTX, OFDTX4, OFDTX8, and OFDTX16 are single or multiple D flip-flops whose 
outputs are enabled by a tristate buffers. The data outputs (Q) of the flip-flops are 
connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) 
are connected to OPADs or IOPADs. These flip-flops and buffers are located in input/
output blocks (IOB) for XC4000E. The data on the data inputs (D) is loaded into the 
flip-flops during the Low-to-High clock (C) transition. When the active-Low enable 
inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the O outputs. 
When T is High, outputs are high impedance (Off). When CE is Low and T is Low, the 
outputs do not change.

The flip-flops are asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OFDTX N/A Primitive Primitive N/A N/A Primitive Primitive N/A N/A

OFDTX4,
OFDTX8,
OFDTX16

N/A Macro Macro N/A N/A Macro Macro N/A N/A

Inputs Outputs

CE T D C Q

X 1 X X Z

1 0 D ↑ d

0 0 X X No Chg
d = state of referenced input one setup time prior to active clock transition

Q
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X6004

D[7:0] OFDTX8

C

T

CE

Q[15:0]

X6005

D[15:0] OFDTX16

C

T

CE
8-32 Xilinx Development System



Design Elements (OFDTX, 4, 8, 16)
Figure 8-37 OFDTX8 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDTX_1

D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, 
and Clock Enable

OFDTX_1 and its output buffer are located in an input/output block (IOB). The flip-
flop data output (Q) is connected to the input of an output buffer (OBUFT). The 
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D) 
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O 
output. When T is High, the output is high impedance (Off). When CE is High and T 
is Low, the outputs do not change.

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

Figure 8-38 OFDTX_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL
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OFDTXI

D Flip-Flop with Active-Low 3-State Output Buffer and Clock 
Enable (Asynchronous Preset)

OFDTXI and its output buffer are contained in an input/output block (IOB). The data 
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The 
output of the OBUFT is connected to an OPAD or an IOPAD. The data on the data 
input (D) is loaded into the flip-flop on the Low-to-High clock (C) transition. When 
the active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on 
the output (O). When T is High, the output is high impedance (Off). When CE is Low 
and T is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A N/A

Inputs Outputs

CE T D C O

X 1 X X Z

1 0 1 ↑ 1

1 0 0 ↑ 0

0 0 X X No Chg
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OFDTXI_1

D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, 
and Clock Enable (Asynchronous Preset)

OFDTXI_1 and its output buffer are contained in an input/output block (IOB). The 
data output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). 
The OBUFT output is connected to an OPAD or an IOPAD. The data on the data input 
(D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When the 
active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the 
O output. When T is High, the output is high impedance (Off). When CE is Low and T 
is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP symbol.

Figure 8-39 OFDTXI_1 Implementation XC4000E, XC4000X, Spartan, 
SpartanXL
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OFDX, 4, 8, 16

Single- and Multiple-Output D Flip-Flops with Clock Enable

OFDX, OFDX4, OFDX8, and OFDX16 are single and multiple output D flip-flops. The 
flip-flops are located in an input/output block (IOB) for XC4000E. The Q outputs are 
connected to OPADs or IOPADs. The data on the D inputs is loaded into the flip-flops 
during the Low-to-High clock (C) transition and appears on the Q outputs. When CE 
is Low, flip-flop outputs do not change.

The flip-flops are asynchronously cleared with Low outputs, when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-40 OFDX Implementation Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OFDX N/A Primitive Primitive N/A N/A Primitive Primitive Macro Macro

OFDX4,
OFDX8,
OFDX16

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

CE D C Q

1 D ↑ dn

0 X X No Chg
dn = state of referenced input one setup time prior to active clock transition

Q

X4988

D OFDX

C

CE

X4989

OFDX4

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CE

Q[7:0]

X4990

D[7:0] OFDX8

C

CE

Q[15:0]

X4991

D[15:0] OFDX16

C

CE

X8754

FDCE
QD

CE
C

IOB=TRUE

D
CE

C CLR

Q

GND

OBUF

Q_OUT
Libraries Guide, 2.1i 8-37



Libraries Guide, 2.1i
Figure 8-41 OFDX8 Implementation XC4000E, XC4000X, Spartan, SpartanXL, 
Spartan2, Virtex
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Design Elements (OFDX_1)
OFDX_1

Output D Flip-Flop with Inverted Clock and Clock Enable

OFDX_1 is located in an input/output block (IOB). The output (Q) of the D flip-flop is 
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition and appears on the Q output. When 
the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously cleared with Low output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-42 OFDX_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 8-43 OFDX_1 Implementation Spartan2, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

CE D C Q

1 D ↓ d

0 X X No Chg
d = state of referenced input one setup time prior to active clock transition

Q

X4992

D OFDX_1

C

CE

INV

CB

D

CE

C

Q
D

CE

C

Q

OFDX

X6406

X8755

Q_OUT QD

CE
C

IOB=TRUE

D
CE

C
CB

INV

OBUF

CLR

Q

GND

FDCE
Libraries Guide, 2.1i 8-39



Libraries Guide, 2.1i
OFDXI

Output D Flip-Flop with Clock Enable (Asynchronous Preset)

OFDXI is contained in an input/output block (IOB). The output (Q) of the D flip-flop 
is connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q). When 
CE is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-44 OFDXI Implementation Spartan2, Virtex
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Design Elements (OFDXI_1)
OFDXI_1

Output D Flip-Flop with Inverted Clock and Clock Enable 
(Asynchronous Preset)

OFDXI_1 is located in an input/output block (IOB). The D flip-flop output (Q) is 
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition and appears on the Q output. When 
CE is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output when power is applied. 
FPGAs simulate power-on when global set/reset (GSR) is active. GSR defaults to 
active-High but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP, STARTUP_SPARTAN2, or STARTUP_VIRTEX symbol.

Figure 8-45 OFDXI_1 Implementation XC4000E, XC4000X, Spartan, SpartanXL

Figure 8-46 OFDXI_1 Implementation Spartan2, Virtex
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OMUX2

2-to-1 Multiplexer

The OMUX2 multiplexer chooses one data bit from two sources (D1 or D0) under the 
control of the select input (S0). The output (O) reflects the state of the selected data 
input. When Low, S0 selects D0 and when High, S0 selects D1.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

Inputs Outputs

S0 D1 D0 O

1 1 X 1

1 0 X 0

0 X 1 1

0 X 0 0

D0
D1
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Design Elements (ONAND2)
ONAND2

2-Input NAND Gate with Invertible Inputs

ONAND2 is a 2-input NAND gate that is implemented in the output multiplexer of 
the XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though 
there is no library component showing inverted inputs. The mapper will automati-
cally bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

X6963

F

I0
O
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ONOR2

2-Input NOR Gate with Invertible Inputs

ONOR2 is a 2-input NOR gate that is implemented in the output multiplexer of the 
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there 
is no library component showing inverted inputs. The mapper will automatically 
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

X6956
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Design Elements (OOR2)
OOR2

2-Input OR Gate with Invertible Inputs

OOR2 is a 2-input OR gate that is implemented in the output multiplexer of the 
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there 
is no library component showing inverted inputs. The mapper will automatically 
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A
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OPAD, 4, 8, 16

Single- and Multiple-Output Pads

OPAD, OPAD4, OPAD8, and OPAD16 are single and multiple output pads. An OPAD 
connects a device pin to an output signal of a PLD. It is internally connected to an 
input/output block (IOB), which is configured by the software as an OBUF, an 
OBUFT, an OBUFE, an OFD, or an OFDT.

Refer to the appropriate CAE tool interface user guide for details on assigning pin 
location and identification.

Figure 8-47 OPAD8 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OPAD Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OPAD4,
OPAD8,
OPAD16

Macro Macro Macro Macro Macro Macro Macro Macro Macro
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OR2-9

2- to 9-Input OR Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive Primitive

OR6,
OR7,
OR8,
OR9

Macro Macro Macro Macro Primitive Macro Macro Macro Macro
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Figure 8-48 OR Gate Representations

The OR function is performed in the Configurable Logic Block (CLB) function genera-
tors for FPGAs. OR functions of up to five inputs are available in any combination of 
inverting and non-inverting inputs. OR functions of six to nine inputs are available 
with only non-inverting inputs. To invert some or all inputs, use external inverters. 
Since each input uses a CLB resource, replace functions with unused inputs with func-
tions having the necessary number of inputs.

Refer to the “OR12, 16” section for information on additional OR functions for the 
XC5200, Spartan2, and Virtex.
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Design Elements (OR2-9)
Figure 8-49 OR5 Implementation XC5200

Figure 8-50 OR8 Implementation XC3000

Figure 8-51 OR8 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

Figure 8-52 OR8 Implementation Spartan2, Virtex
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OR12, 16

12- and 16-Input OR Gates with Non-Inverted Inputs

Refer to the “OR2-9” section for information on OR functions.

Figure 8-53 OR16 Implementation XC5200
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Design Elements (OR12, 16)
Figure 8-54 OR16 Implementation Spartan2, Virtex
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RLOC=R0C0.S1

O
MUXCY

VCC

S3

S2

S1

S0

S

DI CI

C2

C1

C0

CIN

0 1

S

DI CI
0 1

RLOC=R1C0.S1
S

DI CI
0 1

RLOC=R1C0.S1
S

DI CI
0 1

NOR4

NOR4

NOR4

NOR4

GND

I3

I2

I1

I0

I7

I6

I5

I4

I11

I10

I9

I8

I15

I14

I13

I12

FMAP

FMAP

FMAP

FMAP

X8706

MUXCY_L

MUXCY_L

MUXCY_L
LO

LO

LO
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OSC

Crystal Oscillator Amplifier

The OSC element’s clock signal frequency is derived from an external crystal-
controlled oscillator. The OSC output can be connected to an ACLK buffer, which is 
connected to an internal clock net.

Two dedicated input pins (XTAL 1 and XTAL 2) on each FPGA device are internally 
connected to pads and input/output blocks that are connected to the OSC amplifier. 
The external components are connected as shown in the following example. Refer to 
The Programmable Logic Data Book for details on component selection and tolerances.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A N/A

X3885

OSC

X8266

IPAD OPAD

OSC ACLK
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Design Elements (OSC4)
OSC4

Internal 5-Frequency Clock-Signal Generator

OSC4 provides internal clock signals in applications where timing is not critical. The 
available frequencies are determined by FPGA device components, which are process 
dependent. Therefore, the available frequencies vary from device to device. Nominal 
frequencies are 8 MHz, 500 kHz, 16 kHz, 490 Hz, and 15 Hz. Although there are five 
outputs, only three can be used at a time, with 8 MHz on one output and one 
frequency each on any two of the remaining four outputs. An error occurs if more 
than three outputs are used simultaneously.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A N/A

X3912

F15

OSC4

F490

F16K
F500K

F8M
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OSC5

Internal Multiple-Frequency Clock-Signal Generator

OSC5 provides internal clock signals in applications where timing is not critical. The 
available frequencies are determined by FPGA device components that are process 
dependent. Therefore, the available frequencies vary from device to device. Use only 
one OSC5 per design. The OSC5 is not available if the CK_DIV element is used.

The clock frequencies of the OSC1 and OSC2 outputs are determined by specifying 
the DIVIDE1_BY=n1 attribute for the OSC1 output and the DIVIDE2_BY=n2 attribute 
for the OSC2 output. n1 and n2 are integer numbers by which the internal 16-MHz 
clock is divided to produce the desired clock frequency. The available frequency 
options are shown in the table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A N/A

n1 OSC1 Frequency n2 OSC2 Frequency

4 4 MHz 2 8 MHz

16 1 MHz 8 2 MHz

64 250 kHz 32 500 kHz

256 63 kHz 128 125 kHz

1,024 16 kHz

4,096 4 kHz

16,384 1 kHz

65,536 244 Hz

X4971

OSC5

OSC2

@DIVIDE1_BY=
@DIVIDE2_BY=

OSC1
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Design Elements (OSC52)
OSC52

Internal Multiple-Frequency Clock-Signal Generator

OSC52 provides internal clock signals in applications where timing is not critical. The 
available frequencies are determined by FPGA device components, which are process 
independent. Therefore, the available frequencies vary from device to device. Only 
one OSC52 may be used per design.

The oscillator frequencies of the OSC1 and OSC2 outputs are determined by speci-
fying theDIVIDE1_BY=n1 attribute for the OSC1 output and DIVIDE2_BY=n2 
attribute for the OSC2 output. n1 and n2 are integer numbers by which internal 16-
MHz clock is divided to produce the desired clock frequency. The available frequency 
options appear in the table that follows.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A N/A

n1 OSC1 Frequency n2 OSC2 Frequency

4 4 MHz 2 8 MHz

16 1 MHz 8 2 MHz

64 250 kHz 32 500 kHz

256 63 kHz 128 125 kHz

1,024 16 kHz

4,096 4 kHz

16,384 1 kHz

65,536 244 Hz

OSC1

OSC2C

OSC52

X8051
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OXNOR2

2-Input Exclusive-NOR Gate with Invertible Inputs

OXNOR2 is a 2-input exclusive NOR gate that is implemented in the output multi-
plexer of the XC4000X and SpartanXL IOB. The F pin is faster than I0. Input pins can 
be inverted even though there is no library component showing inverted inputs. The 
mapper will automatically bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

X6965

F

I0
O
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Design Elements (OXOR2)
OXOR2

2-Input Exclusive-OR Gate with Invertible Inputs

OXOR2 is a 2-input exclusive OR gate that is implemented in the output multiplexer 
of the XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even 
though there is no library component showing inverted inputs. The mapper will auto-
matically bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A N/A

X6964

F

I0
O
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Chapter 9

Design Elements (PULLDOWN to ROM32X1)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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PULLDOWN

Resistor to GND for Input Pads

PULLDOWN resistor elements are available in each XC4000, Spartan, or SpartanXL 
Input/Output Block (IOB). They are connected to input, output, or bidirectional pads 
to guarantee a logic Low level for nodes that might float.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive Primitive Primitive

X3860
9-2 Xilinx Development System



Design Elements (PULLUP)
PULLUP

Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

PULLUP resistor elements are available in each XC3000, XC4000, Spartan, and Spar-
tanXL Input/Output Block (IOB). XC3000 IOBs only use PULLUP resistors on input 
pads. XC4000, Spartan, and SpartanXL IOBs connect PULLUP resistors to input, 
output, or bidirectional pads to guarantee a logic High level for nodes that might 
float.

The pull-up elements also establish a High logic level for open-drain elements and 
macros (DECODE, WAND, WORAND) or 3-state nodes (TBUF) when all the drivers 
are off.

The buffer outputs are connected together as a wired-AND to form the output (O). 
When all the inputs are High, the output is off. To establish an output High level, a 
PULLUP resistor(s) is tied to output (O). One PULLUP resistor uses the least power, 
two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two PULLUP resistors, append a DOUBLE parameter to the pull-up 
symbol attached to the output (O) node. Refer to the appropriate CAE tool interface 
user guide for details.

The PULLUP element is ignored in XC9000 designs. Internal 3-state nodes (from 
BUFE or BUFT) in CPLD designs are always pulled up when not driven.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive N/A Primitive Primitive Primitive Primitive

X3861
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RAM16X1

16-Deep by 1-Wide Static RAM

RAM16X1 is a 16-word by 1-bit static read-write random access memory. When the 
write enable (WE) is High, the data on the data input (D) is loaded into the word 
selected by the 4-bit address (A3 – A0). The data output (O) reflects the selected 
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is 
unaffected by address or input data transitions. Address inputs must be stable before 
the High-to-Low WE transition for predictable performance.

You can initialize RAM16X1 during configuration. See “Specifying Initial Contents of 
a RAM” in this section.

Mode selection is shown in the following truth table.

Specifying Initial Contents of a RAM

You can use the INIT attribute to specify an initial value directly on the symbol only if 
the RAM is 1 bit wide and 16 or 32 bits deep. The value must be a hexadecimal 
number, for example, INIT=ABAC.

If the INIT attribute is not specified, the RAM is initialized with zero.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D O

0(read) X Data

1(write) D Data
Data = word addressed by bits A3 – A0

X4124

RAM16X1

A3
A2

A1
A0
WE

D O
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Design Elements (RAM16X1D)
RAM16X1D

16-Deep by 1-Wide Static Dual Port Synchronous RAM

RAM16X1D is a 16-word by 1-bit static dual port random access memory with 
synchronous write capability. The device has two separate address ports: the read 
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports 
are completely asynchronous. The read address controls the location of the data 
driven out of the output pin (DPO), and the write address controls the destination of a 
valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 
ignored and data stored in the RAM is not affected. When WE is High, any positive 
transition on WCLK loads the data on the data input (D) into the word selected by the 
4-bit write address. For predictable performance, write address and data inputs must 
be stable before a Low-to-High WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the 
WCLK input net is absorbed into the block.

You can initialize RAM16X1D during configuration. See “Specifying Initial Contents 
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO 
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive Primitive

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d 

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D D data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4950

RAM16X1D

A2

DPRA3

DPRA2

DPRA1

DPRA0

A3

A1

A0

WCLK

WE

D

SPO

DPO
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RAM16X1D_1

16-Deep by 1-Wide Static Dual Port Synchronous RAM with 
Negative-Edge Clock

RAM16X1D_1 is a 16-word by 1-bit static dual port random access memory with 
synchronous write capability and negative-edge clock. The device has two separate 
address ports: the read address (DPRA3 – DPRA0) and the write address (A3 – A0). 
These two address ports are completely asynchronous. The read address controls the 
location of the data driven out of the output pin (DPO), and the write address controls 
the destination of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 
ignored and data stored in the RAM is not affected. When WE is High, any negative 
transition on WCLK loads the data on the data input (D) into the word selected by the 
4-bit write address. For predictable performance, write address and data inputs must 
be stable before a High-to-Low WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the 
WCLK input net is absorbed into the block.

You can initialize RAM16X1D_1 during configuration. See “Specifying Initial 
Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO 
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d 

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↓ D D data_d

1 (read) ↑ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X8419

RAM16X1D_1

A2
A3

A1

A0
WCLK

D

WE SPO

DPRA2
DPRA3

DPRA1

DPRA0

DPO
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Design Elements (RAM16X1S)
RAM16X1S

16-Deep by 1-Wide Static Synchronous RAM

RAM16X1S is a 16-word by 1-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data input (D) into the word 
selected by the 4-bit address (A3 – A0). For predictable performance, address and data 
inputs must be stable before a Low-to-High WCLK transition. This RAM block 
assumes an active-High WCLK. However, WCLK can be active-High or active-Low. 
Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at 
the location defined by the values on the address pins.

You can initialize RAM16X1S during configuration. See “Specifying Initial Contents 
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive Primitive

Inputs Outputs

WE(mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ 0 D

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4942

RAM16X1S

A2

A3

A1

A0

WCLK

WE

D

O
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RAM16X1S_1

16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge 
Clock

RAM16X1S_1 is a 16-word by 1-bit static random access memory with synchronous 
write capability and negative-edge clock. When the write enable (WE) is Low, transi-
tions on the write clock (WCLK) are ignored and data stored in the RAM is not 
affected. When WE is High, any negative transition on WCLK loads the data on the 
data input (D) into the word selected by the 4-bit address (A3 – A0). For predictable 
performance, address and data inputs must be stable before a High-to-Low WCLK 
transition. This RAM block assumes an active-High WCLK. However, WCLK can be 
active-High or active-Low. Any inverter placed on the WCLK input net is absorbed 
into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at 
the location defined by the values on the address pins.

You can initialize RAM16X1S_1 during configuration. See “Specifying Initial Contents 
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

WE(mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↓ 0 D

1 (read) ↑ X Data
Data = word addressed by bits A3 – A0

X8418

RAM16X1S_1

A2
A3

A1

A0
WCLK

D

WE Q
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Design Elements (RAM16X2)
RAM16X2

16-Deep by 2-Wide Static RAM

RAM16X2 is a 16-word by 2-bit static read-write random access memory. When the 
write enable (WE) is High, the data on data inputs (D1 – D0) is loaded into the word 
selected by the 4-bit address (A3 – A0). The data outputs (O1 – O0) reflect the selected 
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is 
unaffected by address or data input transitions. Address inputs must be stable before 
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X2 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section. 

Mode selection is shown in the following truth table.

Figure 9-1 RAM16X2 Implementation XC4000E, XC4000X

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE (mode) D1 – D0 O1 – O0

0 (read) X Data

1 (write) D1 – D0 Data
Data = word addressed by bits A3 – A0

X4128

RAM16X2 O0

A1

A2

A3

A0

WE

D1

D0

O1

D
WE

A0

A1

A2

A3

O

RAM16X1

D
WE

A0

A1

A2

A3

O

RAM16X1

D1
WE

A0

A1

A2
A3

D0 O0

O1

X7745

O1

O2
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RAM16X2D

16-Deep by 2-Wide Static Dual Port Synchronous RAM

RAM16X2D is a 16-word by 2-bit static dual port random access memory with 
synchronous write capability. The device has two separate address ports: the read 
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports 
are completely asynchronous. The read address controls the location of data driven 
out of the output pin (DPO1 – DPO0), and the write address controls the destination 
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 
ignored and data stored in the RAM is not affected. When WE is High, any positive 
transition on WCLK loads the data on the data input (D1 – D0) into the word selected 
by the 4-bit write address. For predictable performance, write address and data inputs 
must be stable before a Low-to-High WCLK transition. This RAM block assumes an 
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter 
placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X2D cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO 
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D1-D0 SPO1-SPO0 DPO1-DPO0

0 (read) X X data_a data_d 

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D1-D0 D1-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4951

RAM16X2D

A2

DPRA3

DPRA2

DPRA1

DPRA0

A3

A1

A0

WCLK

WE

D1

D0

SPO0

SPO1

DPO0

DPO1
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Design Elements (RAM16X2S)
RAM16X2S

16-Deep by 2-Wide Static Synchronous RAM

RAM16X2S is a 16-word by 2-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data input (D1 – D0) into the 
word selected by the 4-bit address (A3 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O1 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X2S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D1-D0 O1-O0

0 (read) X X Data

1(read) 0 X Data

1(read) 1 X Data

1(write) ↑ D1-D0 D1-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4944

RAM16X2S

A1

A3

A2

A0

WCLK

D1
D0

WE O0

O1
Libraries Guide, 2.1i 9-11



Libraries Guide, 2.1i
RAM16X4

16-Deep by 4-Wide Static RAM

RAM16X4 is a 16-word by 4-bit static read-write random access memory. When the 
write enable (WE) is High, the data on data inputs (D3 – D0) is loaded into the word 
selected by the 4-bit address (A3 – A0). The data outputs (O3 – O0) reflect the selected 
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is 
unaffected by address or data input transitions. Address inputs must be stable before 
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X4 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X data

1(write) D3 – D0 Data
Data = word addressed by bits A3 – A0

X4135

RAM16X4 O0

A1

A2

A3

A0

WE

D3

D2

O1

O2

O3

D1

D0
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Design Elements (RAM16X4)
Figure 9-2 RAM16X4 Implementation XC4000E, XC4000X

D
WE
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RAM16X4D

16-Deep by 4-Wide Static Dual Port Synchronous RAM

RAM16X4D is a 16-word by 4-bit static dual port random access memory with 
synchronous write capability. The device has two separate address ports: the read 
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports 
are completely asynchronous. The read address controls the location of data driven 
out of the output pin (DPO3 – DPO0), and the write address controls the destination 
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 
ignored and data stored in the RAM is not affected. When WE is High, any positive 
transition on WCLK loads the data on the data input (D3 – D0) into the word selected 
by the 4-bit write address. For predictable performance, write address and data inputs 
must be stable before a Low-to-High WCLK transition. This RAM block assumes an 
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter 
placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X4D cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO 
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D3-D0 SPO3-SPO0 DPO3-DPO0

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D3-D0 D3-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4952
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A2

DPRA3

DPRA2

DPRA1

DPRA0

A3

A1

A0

WCLK

D3

D2

D1
D0

WE SPO0

DPO0
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Design Elements (RAM16X4S)
RAM16X4S

16-Deep by 4-Wide Static Synchronous RAM

RAM16X4S is a 16-word by 4-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data input (D3 – D0) into the 
word selected by the 4-bit address (A3 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O3 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X4S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D3 – D0 O3 – O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D3-D0 D3-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4945

RAM16X4S

WCLK

A1

A0

D3

A3

A2
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WE O0

O1
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O3
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RAM16X8

16-Deep by 8-Wide Static RAM

RAM16X8 is a 16-word by 8-bit static read-write random access memory. When the 
write enable (WE) is High, the data on data inputs (D7 – D0) is loaded into the word 
selected by the 4-bit address (A3 – A0). The data outputs (O7 – O0) reflect the selected 
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is 
unaffected by address or data input transitions. Address inputs must be stable before 
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X8 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X Data

1(write) D7 – D0 Data
Data = word addressed by bits A3 – A0

X4142

RAM16X8

A0
WE

D[7:0] O[7:0]

A1
A2
A3
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Design Elements (RAM16X8)
Figure 9-3 RAM16X8 Implementation XC4000E, XC4000X
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RAM16X8D

16-Deep by 8-Wide Static Dual Port Synchronous RAM

RAM16X8D is a 16-word by 8-bit static dual port random access memory with 
synchronous write capability. The device has two separate address ports: the read 
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports 
are completely asynchronous. The read address controls the location of data driven 
out of the output pin (DPO7 – DPO0), and the write address controls the destination 
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 
ignored and data stored in the RAM is not affected. When WE is High, any positive 
transition on WCLK loads the data on the data input (D7 – D0) into the word selected 
by the 4-bit write address (A3 – A0). For predictable performance, write address and 
data inputs must be stable before a Low-to-High WCLK transition. This RAM block 
assumes an active-High WCLK. However, WCLK can be active-High or active-Low. 
Any inverter placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X8D cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO 
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 SP7-SPO0 DPO7-DPO0

0 (read) X X data_a data_d 

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D7-D0 D7-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4953
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Design Elements (RAM16X8D)
Figure 9-4 RAM16X8D Implementation XC4000E, XC4000X, Spartan, 
SpartanXL
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RAM16X8S

16-Deep by 8-Wide Static Synchronous RAM

RAM16X8S is a 16-word by 8-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on data inputs (D7 – D0) into the 
word selected by the 4-bit address (A3 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O7 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X8S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 O7-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D7-D0 D7-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4946
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A0

WE
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Design Elements (RAM16X8S)
Figure 9-5 RAM16X8S Implementation XC4000E, XC4000X, Spartan, 
SpartanXL
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RAM32X1

32-Deep by 1-Wide Static RAM

RAM32X1 is a 32-word by 1-bit static read-write random access memory. When the 
write enable (WE) is High, the data on the data input (D) is loaded into the word 
selected by the 5-bit address (A4 – A0). The data output (O) reflects the selected 
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is 
unaffected by address or input data transitions. Address inputs must be stable before 
the High-to-Low WE transition for predictable performance.

You can initialize RAM32X1 during configuration. See “Specifying Initial Contents of 
a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D O

0(read) X Data

1(write) D Data
Data = word addressed by bits A4 – A0
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RAM32X1 O
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A4
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Design Elements (RAM32X1S)
RAM32X1S

32-Deep by 1-Wide Static Synchronous RAM

RAM32X1S is a 32-word by 1-bit static random access memory with synchronous 
write capability. When the write enable is Low, transitions on the write clock (WCLK) 
are ignored and data stored in the RAM is not affected. When WE is High, any posi-
tive transition on WCLK loads the data on the data input (D) into the word selected 
by the 5-bit address (A4 – A0). For predictable performance, address and data inputs 
must be stable before a Low-to-High WCLK transition. This RAM block assumes an 
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter 
placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at 
the location defined by the values on the address pins.

Mode selection is shown in the following truth table.

Specifying Initial Contents of a RAM32X1S

You can initialize RAM32X1S during configuration using the INIT attribute. The value 
must be a hexadecimal number, for example, INIT=ABAC. If the INIT attribute is not 
specified, the RAM is initialized with zero.

For XC4000E, XC4000X, Spartan, and SpartanXL, lower INIT values get mapped to 
the F function generator and upper INIT values get mapped to the G function gener-
ator.

For Virtex and Spartan2, lower INIT values get mapped to the G function generator 
and upper INIT values get mapped to the F function generator.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive Primitive

Inputs Outputs

WE (mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D D

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0

X4943

RAM32X1S
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RAM32X1S_1

32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge 
Clock

RAM32X1S_1 is a 32-word by 1-bit static random access memory with synchronous 
write capability. When the write enable is Low, transitions on the write clock (WCLK) 
are ignored and data stored in the RAM is not affected. When WE is High, any nega-
tive transition on WCLK loads the data on the data input (D) into the word selected 
by the 5-bit address (A4 – A0). For predictable performance, address and data inputs 
must be stable before a High-to-Low WCLK transition. This RAM block assumes an 
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter 
placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at 
the location defined by the values on the address pins.

You can initialize RAM32X1S_1 during configuration. See “Specifying Initial Contents 
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

Specifying Initial Contents of a RAM32X1S_1

You can initialize RAM32X1S_1 during configuration using the INIT attribute. The 
value must be a hexadecimal number, for example, INIT=ABAC. If the INIT attribute 
is not specified, the RAM is initialized with zero.

For Virtex and Spartan2, lower INIT values get mapped to the G function generator 
and upper INIT values get mapped to the F function generator.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Outputs

WE (mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↓ D D

1 (read) ↑ X Data
Data = word addressed by bits A4 – A0

X8417

RAM32X1S_1

A3
A4

A1

A0
WCLK

D

WE Q

A2
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Design Elements (RAM32X2)
RAM32X2

32-Deep by 2-Wide Static RAM

RAM32X2 is a 32-word by 2-bit static read-write random access memory. When the 
write enable (WE) is High, the data on the data inputs (D1 – D0) is loaded into the 
word selected by the address bits (A4 – A0). The data outputs (O1 – O0) reflect the 
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM 
content is unaffected by address or input data transitions. Address inputs must be 
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X2 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table. 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D1 – D0 O1 – O0

0(read) X Data

1(write) D1 – D0 Data
Data = word addressed by bits A4 – A0

X4129

RAM32X2
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A3

A4
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WE
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D0 O0
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RAM32X2S

32-Deep by 2-Wide Static Synchronous RAM

RAM32X2S is a 32-word by 2-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data input (D1 – D0) into the 
word selected by the 5-bit address (A4 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O1 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X2S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D0-D1 O0-O1

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D1-D0 D1-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0

X4947
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Design Elements (RAM32X4)
RAM32X4

32-Deep by 4-Wide Static RAM

RAM32X4 is a 32-word by 4-bit static read-write random access memory. When the 
write enable (WE) is High, the data on the data inputs (D3 – D0) is loaded into the 
word selected by the address bits (A4 – A0). The data outputs (O3 – O0) reflect the 
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM 
content is unaffected by address or input data transitions. Address inputs must be 
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X4 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X Data

1(write) D3 – D0 Data
Data = word addressed by bits A4 – A0

X4136

RAM32X4 O0
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RAM32X4S

32-Deep by 4-Wide Static Synchronous RAM

RAM32X4S is a 32-word by 4-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data inputs (D3 – D0) into the 
word selected by the 5-bit address (A4 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O3 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X4S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE WCLK D3-D0 O3-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D3-D0 D3-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0

X4948

RAM32X4S

WCLK

A1

A0

D3

A4

A2

A3

D2

D1

D0

WE O0

O1

O2

O3
9-28 Xilinx Development System



Design Elements (RAM32X8)
RAM32X8

32-Deep by 8-Wide Static RAM

RAM32X8 is a 32-word by 8-bit static read-write random access memory. When the 
write enable (WE) is High, the data on the data inputs (D7 – D0) is loaded into the 
word selected by the address bits (A4 – A0). The data outputs (O7 – O0) reflect the 
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM 
content is unaffected by address or input data transitions. The address inputs must be 
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X8 cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X Data

1(write) D7 – D0 Data
Data = word addressed by bits A4 – A0

X4143

RAM32X8

A0
WE

 D[7-0]         Q[7-0]

A1
A2
A3

A4
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Figure 9-6 RAM32X8 Implementation XC4000E, XC4000X
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Design Elements (RAM32X8S)
RAM32X8S

32-Deep by 8-Wide Static Synchronous RAM

RAM32X8S is a 32-word by 8-bit static random access memory with synchronous 
write capability. When the write enable (WE) is Low, transitions on the write clock 
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High, 
any positive transition on WCLK loads the data on the data inputs (D7 – D0) into the 
word selected by the 5-bit address (A4 – A0). For predictable performance, address 
and data inputs must be stable before a Low-to-High WCLK transition. This RAM 
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O7 – O0) is the data that is stored in the 
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X8S cannot be specified directly. Initial contents may be 
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying 
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro N/A N/A Macro Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 O7-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D7-D0 D7-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0

X4949

RAM32X8S

WCLK

A1

A0

WE

A4

A3

A2

D[7:0]

O[7:0]
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Figure 9-7 RAM32X8S Implementation XC4000E, XC4000X, Spartan, Spartan2, 
SpartanXL, Virtex
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Design Elements (RAMB4_Sn)
RAMB4_Sn

4096-Bit Single-Port Synchronous Block RAM with Port Width (n) 
Configured to 1, 2, 4, 8, or 16 Bits

RAMB4_S1, RAMB4_S2, RAMB4_S4, RAMB4_S8, and RAMB4_S16 are dedicated 
random access memory blocks with synchronous write capability. They provide the 
capability for fast, discrete, large blocks of RAM in each Virtex and Spartan2 
device.The RAMB4_Sn cell configurations are listed in the following table.

The enable (EN) pin controls read, write, and reset. When EN is Low, no data is 
written and the output (DO) retains the last state. When EN is High and reset (RST) is 
High, DO is cleared during the Low-to-High clock (CLK) transition; if write enable 
(WE) is High, the memory contents reflect the data at DI. When EN is High and WE is 
Low, the data stored in the RAM address (ADDR) is read during the Low-to-High 
clock transition. When EN and WE are High, the data on the data input (DI) is loaded 
into the word selected by the write address (ADDR) during the Low-to-High clock 
transition and the data output (DO) reflects the selected (addressed) word.

The above description assumes an active High EN, WE, RST, and CLK. However, the 
active level can be changed by placing an inverter on the port. Any inverter placed on 
a RAMB4 port is absorbed into the block and does not use a CLB resource.

RAMB4_Sn’s may be initialized during configuration. See the “Specifying Initial 
Contents of a Block RAM” section below.

Block RAM output registers are asynchronously cleared, output Low, when power is 
applied. The initial contents of the block RAM are not altered. Virtex and Spartan2 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Component Depth Width Address Bus Data Bus

RAMB4_S1 4096 1 (11:0) (0:0)

RAMB4_S2 2048 2 (10:0) (1:0)

RAMB4_S4 1024 4 (9:0) (3:0)

RAMB4_S8 512 8 (8:0) (7:0)

RAMB4_S16 256 16 (7:0) (15:0)

X8416

RAMB4_S1

DI[0]

ADDR[11:0]
CLK

EN
RST

WE DO[0]

X8415

RAMB4_S2

DI[1:0]

ADDR[10:0]
CLK

EN
RST

WE DO[1:0]

X8414

RAMB4_S4

DI[3:0]

ADDR[9:0]
CLK

EN
RST

WE DO[3:0]

X8413

RAMB4_S8

DI[7:0]

ADDR[8:0]
CLK

EN
RST

WE DO[7:0]

X8412

RAMB4_S16

D1[15:0]

ADDR[7:0]
CLK

EN
RST

WE DO[15:0]
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Specifying Initial Contents of a Block RAM

You can use the INIT_0x attributes to specify an initial value during device configura-
tion. The initialization of each RAMB4_Sn is set by 16 initialization attributes (INIT_00 
through INIT_0F) of 64 hex values for a total of 4096 bits. See the “INIT_0x” section of 
the “Attributes, Constraints, and Carry Logic” chapter for more information on these 
attributes.

If any INIT_0x attribute is not specified, it is configured as zeros. Partial initialization 
strings are padded with zeros to the left.

Inputs Outputs

EN RST WE CLK ADDR DI DO RAM Contents

0 X X X X X No Chg No Chg

1 1 0 ↑ X X 0 No Chg

1 1 1 ↑ addr data 0 RAM(addr) <=data

1 0 0 ↑ addr X RAM(addr) No Chg

1 0 1 ↑ addr data data RAM(addr) <=data
addr=RAM address 
RAM(addr)=RAM contents at address ADDR
data=RAM input data
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Design Elements (RAMB4_Sn_Sn)
RAMB4_Sn_Sn

4096-Bit Dual-Port Synchronous Block RAM with Port Width (n) 
Configured to 1, 2, 4, 8, or 16 Bits

Figure 9-8 RAMB4_Sn_Sn Representations

The RAMB4_Sn_Sn components listed in the following table are 4096-bit dual-ported 
dedicated random access memory blocks with synchronous write capability. Each 
port is independent of the other while accessing the same set of 4096 memory cells. 
Each port is independently configured to a specific data width.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive
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Each port is fully synchronous with independent clock pins. All port A input pins 
have setup time referenced to the CLKA pin and its data output bus DIA has a clock-
to-out time referenced to the CLKA. All port B input pins have setup time referenced 
to the CLKB pin and its data output bus DIB has a clock-to-out time referenced to the 
CLKB.

The enable ENA pin controls read, write, and reset for port A. When ENA is Low, no 
data is written and the output (DOA) retains the last state. When ENA is High and 
reset (RSTA) is High, DOA is cleared during the Low-to-High clock (CLKA) transi-
tion; if write enable (WEA) is High, the memory contents reflect the data at DIA. 
When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is 
read during the Low-to-High clock transition. When ENA and WEA are High, the 
data on the data input (DIA) is loaded into the word selected by the write address 
(ADDRA) during the Low-to-High clock transition and the data output (DOA) 
reflects the selected (addressed) word.

The enable ENB pin controls read, write, and reset for port B. When ENB is Low, no 
data is written and the output (DOB) retains the last state. When ENB is High and 
reset (RSTB) is High, DOB is cleared during the Low-to-High clock (CLKB) transition; 
if write enable (WEB) is High, the memory contents reflect the data at DIB. When ENB 
is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during 
the Low-to-High clock transition. When ENB and WEB are High, the data on the data 
input (DIB) is loaded into the word selected by the write address (ADDRB) during the 
Low-to-High clock transition and the data output (DOB) reflects the selected 
(addressed) word.

Component
Port A
Depth

Port A
Width

Port A
ADDR

Port A
DI

Port B
Depth

Port B
Width

Port B
ADDR

Port B
DI

RAMB4_S1_S1 4096 1 (11:0) (0:0) 4096 1 (11:0) (0:0)

RAMB4_S1_S2 4096 1 (11:0) (0:0) 2048 2 (10:0) (1:0)

RAMB4_S1_S4 4096 1 (11:0) (0:0) 1024 4 (9:0) (3:0)

RAMB4_S1_S8 4096 1 (11:0) (0:0) 512 8 (8:0) (7:0)

RAMB4_S1_S16 4096 1 (11:0) (0:0) 256 16 (7:0) (15:0)

RAMB4_S2_S2 2048 2 (10:0) (1:0) 2048 2 (10:0) (1:0)

RAMB4_S2_S4 2048 2 (10:0) (1:0) 1024 4 (9:0) (3:0)

RAMB4_S2_S8 2048 2 (10:0) (1:0) 512 8 (8:0) (7:0)

RAMB4_S2_S16 2048 2 (10:0) (1:0) 256 16 (7:0) (15:0)

RAMB4_S4_S4 1024 4 (9:0) (3:0) 1024 4 (9:0) (3:0)

RAMB4_S4_S8 1024 4 (9:0) (3:0) 512 8 (8:0) (7:0)

RAMB4_S4_S16 1024 4 (9:0) (3:0) 256 16 (7:0) (15:0)

RAMB4_S8_S8 512 8 (8:0) (7:0) 512 8 (8:0) (7:0)

RAMB4_S8_S16 512 8 (8:0) (7:0) 256 16 (7:0) (15:0)

RAMB4_S16_S16 256 16 (7:0) (15:0) 256 16 (7:0) (15:0)
ADDR=address bus for the port
DI=data input bus for the port
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Design Elements (RAMB4_Sn_Sn)
The above descriptions assume active High control pins (ENA, WEA, RSTA, CLKA, 
ENB, WEB, RSTB, and CLKB). However, the active level can be changed by placing an 
inverter on the port. Any inverter placed on a RAMB4 port is absorbed into the block 
and does not use a CLB resource.

RAMB_Sn_Sn’s may be initialized during configuration. See “Specifying Initial 
Contents of a Block RAM” section below.

Block RAM output registers are asynchronously cleared, output Low, when power is 
applied. The initial contents of the block RAM are not altered. Virtex and Spartan2 
simulate power-on when global set/reset (GSR) is active. GSR defaults to active-High 
but can be inverted by adding an inverter in front of the GSR input of the 
STARTUP_SPARTAN2 or STARTUP_VIRTEX symbol.

Mode selection is shown in the following truth table.

Address Mapping

Each port accesses the same set of 4096 memory cells using an addressing scheme that 
is dependent on the width of the port. The physical RAM location that is addressed 
for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following table shows address mapping for each port width.

Inputs Outputs

EN(A/B) RST(A/B) WE(A/B) CLK(A/B) ADDR(A/B) DI(A/B) DO(A/B) RAM Contents

0 X X X X X No Chg No Chg

1 1 0 ↑ X X 0 No Chg

1 1 1 ↑ addr data 0 RAM(addr) <=data

1 0 0 ↑ addr X RAM(addr) No Chg

1 0 1 ↑ addr data data RAM(addr) <=data
addr=RAM address of port A/B
RAM(addr)=RAM contents at address ADDRA/ADDRB
data=RAM input data at pins DIA/DIB

Table 9-1 Port Address Mapping

Port Width Port Addresses

1 4096 <----- 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

2 2048 <----- 07 06 05 04 03 02 01 00

4 1024 <----- 03 02 01 00

8 512 <----- 01 00

16 256 <----- 00
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Port A and Port B Conflict Resolution

A RAMB4_Sn_Sn component is a true dual-ported RAM in that it allows simulta-
neous reads of the same memory cell. When one port is performing a write to a given 
memory cell, the other port should not address that memory cell (for a write or a read) 
within the clock-to-clock setup window.

• If both ports write to the same memory cell simultaneously, violating the clock-to-
setup requirement, the data stored will be invalid.

• If one port attempts to read from the same memory cell that the other is simulta-
neously writing to, violating the clock setup requirement, the write will be 
successful but the data read will be invalid.

Specifying Initial Contents of a Block RAM

You can use the INIT_0x attributes to specify an initial value during device configura-
tion. The initialization of each RAMB4_Sn_Sn is set by 16 initialization attributes 
(INIT_00 through INIT_0F) of 64 hex values for a total of 4096 bits. See the “INIT_0x” 
section of the “Attributes, Constraints, and Carry Logic” chapter for more information 
on these attributes. 

If any INIT_0x attribute is not specified, it is configured as zeros. Partial initialization 
strings are padded with zeros to the left.
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Design Elements (READBACK)
READBACK

FPGA Bitstream Readback Controller

The READBACK macro accesses the bitstream readback function. A Low-to-High 
transition on the TRIG input initiates the readback process. The readback data 
appears on the DATA output. The RIP (readback-in-progress) output remains High 
during the readback process. If you use the ReadAbort:Enable option in BitGen, a 
High-to-Low transition on the TRIG input aborts the process. The signal on the CLK 
input clocks out the readback data; if no signal is connected to the CLK input, the 
internal CCLK is used. Set the ReadClk option in BitGen to indicate the readback 
clock source. (Refer to the Development System Reference Guide for information on 
BitGen.)

Typically, READBACK inputs are sourced by device-external input pins and outputs 
drive device-external output pins. If you want external input and output pins, connect 
READBACK pins through IBUFs or OBUFs to pads, as with any I/O device. 
However, you can connect READBACK pins to device-internal logic instead. For 
details on the READBACK process for each architecture, refer to The Programmable 
Logic Data Book.

Note: Virtex and Spartan2 provide the readback function through dedicated configu-
ration port instructions, instead of with a READBACK component as in other FPGA 
architectures. For Virtex, refer to the “CAPTURE_VIRTEX” section for information on 
capturing register (flip-flop and latch) information for the Virtex readback function. 
For Spartan2, refer to the “CAPTURE_SPARTAN2” section.

Figure 9-9 READBACK Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Macro Macro Macro N/A Macro Macro N/A N/A
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RIP
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RIP
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X7866
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ROM16X1

16-Deep by 1-Wide ROM

ROM16X1 is a 16-word by 1-bit read-only memory. The data output (O) reflects the 
word selected by the 4-bit address (A3 – A0). The ROM is initialized to a known value 
during configuration with the INIT=value parameter. The value consists of four hexa-
decimal digits that are written into the ROM from the most-significant digit A=FH to 
the least-significant digit A=0H. For example, the INIT=10A7 parameter produces the 
data stream

0001 0000 1010 0111

An error occurs if the INIT=value is not specified. Refer to the appropriate CAE tool 
interface user guide for details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive Primitive

X4137

ROM16X1A0

A1

A2

A3

O
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ROM32X1

32-Deep by 1-Wide ROM

ROM32X1 is a 32-word by 1-bit read-only memory. The data output (O) reflects the 
word selected by the 5-bit address (A4 – A0). The ROM is initialized to a known value 
during configuration with the INIT=value parameter. The value consists of eight hexa-
decimal digits that are written into the ROM from the most-significant digit A=1FH to 
the least-significant digit A=00H. For example, the INIT=10A78F39 parameter 
produces the data stream

0001  0000  1010  0111  1000  1111  0011  1001

An error occurs if the INIT=value is not specified. Refer to the appropriate CAE tool 
interface user guide for details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive Primitive

X4130

ROM32X1
O

A2

A3

A4

A1

A0
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Chapter 10

Design Elements (SOP3 to XORCY_L)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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SOP3-4

Sum of Products

Figure 10-1 SOP Gate Representations

Sum Of Products (SOP) macros and primitives provide common logic functions by 
OR gating the outputs of two AND functions or the output of one AND function with 
one direct input. Variations of inverting and non-inverting inputs are available.

Figure 10-2 SOP3 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

Macro Macro Macro Macro Macro Macro Macro Macro Macro

SOP4B4

SOP4B3

SOP4B2B

SOP4B2A

SOP4B1

SOP4

SOP3B3

SOP3B2B

SOP3B2A

SOP3B1B

SOP3B1A

SOP3

X7867

I1

I0

X8111

I2

O

OR2AND2

I01
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Design Elements (SOP3-4)
Figure 10-3 SOP4 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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O
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SR4CE, SR8CE, SR16CE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock 
Enable and Asynchronous Clear

SR4CE, SR8CE, and SR16CE are 4-, 8-, and 16-bit shift registers, respectively, with a 
shift-left serial input (SLI), parallel outputs (Q), and clock enable (CE) and asynchro-
nous clear (CLR) inputs. The CLR input, when High, overrides all other inputs and 
resets the data outputs (Q) Low. When CE is High and CLR is Low, the data on the SLI 
input is loaded into the first bit of the shift register during the Low-to-High clock (C) 
transition and appears on the Q0 output. During subsequent Low-to-High clock tran-
sitions, when CE is High and CLR is Low, data is shifted to the next highest bit posi-
tion as new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so forth). The 
register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the last Q output (Q3 for SR4CE, Q7 for 
SR8CE, or Q15 for SR16CE) of one stage to the SLI input of the next stage and 
connecting clock, CE, and CLR in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE SLI C Q0 Qz – Q1

1 X X X 0 0

0 0 X X No Chg No Chg

0 1 1 ↑ 1 qn-1

0 1 0 ↑ 0 qn-1
z = 3 for SR4CE; z = 7for SR8CE; z = 15 for SR16CE
qn-1 = state of referenced output one setup time prior to active clock transition

X4145

SR4CE

C

CE

SLI

Q3

Q2

Q1

Q0

CLR

X4151

SR8CE

C

CE

SLI
Q[7:0]

CLR

X4157

SR16CE

C

CE

SLI
Q[15:0]

CLR
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Design Elements (SR4CE, SR8CE, SR16CE)
Figure 10-4 SR8CE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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X7868
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SR4CLE, SR8CLE, SR16CLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers 
with Clock Enable and Asynchronous Clear

SR4CLE, SR8CLE, and SR16CLE are 4-, 8-, and 16-bit shift registers, respectively, with 
a shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control 
inputs: clock enable (CE), load enable (L), and asynchronous clear (CLR).The register 
ignores clock transitions when L and CE are Low. The asynchronous CLR, when High, 
overrides all other inputs and resets the data outputs (Q) Low. When L is High and 
CLR is Low, data on the Dn – D0 inputs is loaded into the corresponding Qn – Q0 bits 
of the register. When CE is High and L and CLR are Low, data on the SLI input is 
loaded into the first bit of the shift register during the Low-to-High clock (C) transi-
tion and appears on the Q0 output. During subsequent clock transitions, when CE is 
High and L and CLR are Low, the data is shifted to the next highest bit position as 
new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so forth).

Registers can be cascaded by connecting the last Q output (Q3 for SR4CLE, Q7 for 
SR8CLE, or Q15 for SR16CLE) of one stage to the SLI input of the next stage and 
connecting clock, CE, L, and CLR inputs in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE SLI Dn – D0 C Q0 Qz – Q1

1 X X X X X 0 0

0 1 X X Dn – D0 ↑ d0 dn

0 0 1 SLI X ↑ SLI qn-1

0 0 0 X X X No Chg No Chg
z = 3 for SR4CLE; z = 7 for SR8CLE; z = 15 for SR16CLE
dn = state of referenced input one setup time prior to active clock transition
qn-1 = state of referenced output one setup time prior to active clock transition

X4147

C

CE

L

SR4CLE

D3

D2

D1

D0

SLI

Q3
Q2

Q1
Q0

CLR

X4153

C

CE

L

SR8CLE
D[7:0]

SLI

Q[7:0]

CLR

X4159

C

CE

L

SR16CLE
D[15:0]

SLI

Q[15:0]

CLR
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Design Elements (SR4CLE, SR8CLE, SR16CLE)
Figure 10-5 SR8CLE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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SR4CLED, SR8CLED, SR16CLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Asynchronous 
Clear

SR4CLED, SR8CLED, and SR16CLED are 4-, 8-, and 16-bit shift registers, respectively, 
with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), and four 
control inputs: clock enable (CE), load enable (L), shift left/right (LEFT), and asyn-
chronous clear (CLR). The register ignores clock transitions when CE and L are Low. 
The asynchronous clear, when High, overrides all other inputs and resets the data 
outputs (Qn) Low. When L is High and CLR is Low, the data on the D inputs is loaded 
into the corresponding Q bits of the register. When CE is High and L and CLR are 
Low, data is shifted right or left, depending on the state of the LEFT input. If LEFT is 
High, data on the SLI is loaded into Q0 during the Low-to-High clock transition and 
shifted left (to Q1, Q2, and so forth) during subsequent clock transitions. If LEFT is 
Low, data on the SRI is loaded into the last Q output (Q3 for SR4CLED, Q7 for 
SR8CLED, or Q15 for SR16CLED) during the Low-to-High clock transition and 
shifted right (to Q2, Q1,... for SR4CLED; to Q6, Q5,... for SR8CLED; and to Q14, Q13,... 
for SR16CLED) during subsequent clock transitions. The truth tables for SR4CLED, 
SR8CLED, and SR16CLED indicate the state of the Q outputs under all input condi-
tions for SR4CLED, SR8CLED, and SR16CLED.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 10-1 SR4CLED Truth Table

Inputs Outputs

CLR L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D3– D0 ↑ d0 d3 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q2 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 and qn+1 = state of referenced output one setup time prior to active clock transition

X4149

C

CE

L

SR4CLED

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

CLR

SRI

LEFT

X4155

C

CE

L

SR8CLED
D[7:0]

SLI

Q[7:0]

CLR

SRI

LEFT

X4161

C

CE

L

SR16CLED
D[15:0]

SLI

Q[15:0]

CLR

SRI

LEFT
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Design Elements (SR4CLED, SR8CLED, SR16CLED)
Table 10-2 SR8CLED Truth Table

Inputs Outputs

CLR L CE LEFT SLI SRI D7 – D0 C Q0 Q7 Q6 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D7 – D0 ↑ d0 d7 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q6 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition

Table 10-3 SR16CLED Truth Table

Inputs Outputs

CLR L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D15 – D0 ↑ d0 d15 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q14 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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Figure 10-6 SR8CLED Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (SR4CLED, SR8CLED, SR16CLED)
Figure 10-7 SR8CLED Implementation XC9000
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SR4RE, SR8RE, SR16RE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock 
Enable and Synchronous Reset

SR4RE, SR8RE, and SR16RE are 4-, 8-, and 16-bit shift registers, respectively, with 
shift-left serial input (SLI), parallel outputs (Qn), clock enable (CE), and synchronous 
reset (R) inputs. The R input, when High, overrides all other inputs during the Low-
to-High clock (C) transition and resets the data outputs (Q) Low. When CE is High 
and R is Low, the data on the SLI is loaded into the first bit of the shift register during 
the Low-to-High clock (C) transition and appears on the Q0 output. During subse-
quent Low-to-High clock transitions, when CE is High and R is Low, data is shifted to 
the next highest bit position as new data is loaded into Q0 (SLI→Q0, Q0→Q1, 
Q1→Q2, and so forth). The register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the last Q output (Q3 for SR4RE, Q7 for 
SR8RE, or Q15 for SR16RE) of one stage to the SLI input of the next stage and 
connecting clock, CE, and R in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R CE SLI C Q0 Qz – Q1

1 X X ↑ 0 0

0 0 X X No Chg No Chg

0 1 1 ↑ 1 qn-1

0 1 0 ↑ 0 qn-1
z = 3 for SR4RE; z = 7 for SR8RE; z = 15 for SR16RE
qn-1 = state of referenced output one setup time prior to active clock transition
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R

10-12 Xilinx Development System



Design Elements (SR4RE, SR8RE, SR16RE)
Figure 10-8 SR8RE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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SR4RLE, SR8RLE, SR16RLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers 
with Clock Enable and Synchronous Reset

SR4RLE, SR8RLE, and SR16RLE are 4-, 8-, and 16-bit shift registers, respectively, with 
shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control 
inputs: clock enable (CE), load enable (L), and synchronous reset (R). The register 
ignores clock transitions when L and CE are Low. The synchronous R, when High, 
overrides all other inputs during the Low-to-High clock (C) transition and resets the 
data outputs (Q) Low. When L is High and R is Low, data on the D inputs is loaded 
into the corresponding Q bits of the register. When CE is High and L and R are Low, 
data on the SLI input is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During subsequent clock 
transitions, when CE is High and L and R are Low, the data is shifted to the next 
highest bit position as new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so 
forth).

Registers can be cascaded by connecting the last Q output (Q3 for SR4RLE, Q7 for 
SR8RLE, or 15 for SR16RLE) of one stage to the SLI input of the next stage and 
connecting clock, CE, L, and R inputs in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R L CE SLI Dz – D0 C Q0 Qz – Q1

1 X X X X ↑ 0 0

0 1 X X Dz – D0 ↑ d0 dn

0 0 1 SLI X ↑ SLI qn-1

0 0 0 X X X No Chg No Chg
z = 3 for SR4RLE; z = 7 for SR8RLE; z = 15 for SR16RLE
dn = state of referenced input one setup time prior to active clock transition
qn-1 = state of referenced output one setup time prior to active clock transition

X4146

C

CE

L

SR4RLE

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

R

X4152

C

CE

L

SR8RLE
D[7:0]

SLI

Q[7:0]

R

X4158

C

CE

L

SR16RLE
D[15:0]

SLI

Q[15:0]

R

10-14 Xilinx Development System



Design Elements (SR4RLE, SR8RLE, SR16RLE)
Figure 10-9 SR8RLE Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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SR4RLED, SR8RLED, SR16RLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Synchronous 
Reset

SR4RLED, SR8RLED, and SR16RLED are 4-, 8-, and 16-bit shift registers, respectively, 
with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), and four 
control inputs — clock enable (CE), load enable (L), shift left/right (LEFT), and 
synchronous reset (R). The register ignores clock transitions when CE and L are Low. 
The synchronous R, when High, overrides all other inputs during the Low-to-High 
clock (C) transition and resets the data outputs (Q) Low. When L is High and R is Low, 
the data on the D inputs is loaded into the corresponding Q bits of the register. When 
CE is High and L and R are Low, data is shifted right or left, depending on the state of 
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during the Low-to-
High clock transition and shifted left (to Q1, Q2, and so forth) during subsequent 
clock transitions. If LEFT is Low, data on the SRI is loaded into the last Q output (Q3 
for SR4RLED, Q7 for SR8RLED, or Q15 for SR16RLED) during the Low-to-High clock 
transition and shifted right (to Q2, Q1,... for SR4RLED; to Q6, Q5,... for SR8RLED; or 
to Q14, Q13,... for SR16RLED) during subsequent clock transitions. The truth table 
indicates the state of the Q outputs under all input conditions.

The register is asynchronously cleared, outputs Low, when power is applied. For 
CPLDs, the power-on condition can be simulated by applying a High-level pulse on 
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, 
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in 
front of the GR/GSR input of the STARTUP, STARTUP_SPARTAN2, or 
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro Macro Macro

Table 10-4 SR4RLED Truth Table

Inputs Outputs

R L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D3 – D0 ↑ d0 d3 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q2 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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Design Elements (SR4RLED, SR8RLED, SR16RLED)
Table 10-5 SR8RLED Truth Table

Inputs Outputs

R L CE LEFT SLI SRI D7– D0 C Q0 Q7 Q6 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D7 – D0 ↑ d0 d7 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q6 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition

Table 10-6 SR16RLED Truth Table

Inputs Outputs

R L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D15 – D0 ↑ d0 d15 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q14 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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Figure 10-10 SR8RLED Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL, Spartan2, Virtex
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Design Elements (SRL16)
SRL16

16-Bit Shift Register Look-Up-Table (LUT)

SRL16 is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select the 
output length of the shift register. The shift register may be of a fixed, static length or 
it may be dynamically adjusted.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal 
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value of four zeros 
(0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High 
clock (CLK) transition. During subsequent Low-to-High clock transitions data is 
shifted to the next highest bit position as new data is loaded. The data appears on the 
Q output when the shift register length determined by the address inputs is reached.

Static Length Mode

To get a fixed length shift register, drive the A3 through A0 inputs with static values. 
The length of the shift register can vary from 1 bit to 16 bits as determined from the 
following formula:

Length = (8*A3) +(4*A2) + (2*A1) + A0 +1

If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are 
all ones (1111), it is 16 bits long.

Dynamic Length Mode

The length of the shift register can be changed dynamically by changing the values 
driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) 
and A3 toggles between a one (1) and a zero (0), the length of the shift register changes 
from 16 bits to 8 bits.

Internally, the length of the shift register is always 16 bits and the input lines A3 
through A0 select which of the 16 bits reach the output.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Output

CLK D <SR(1)> <SR(i)> Q

1 X No Chg No Chg No Chg

0 X No Chg No Chg No Chg

↑ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8420

SRL16

A2
A3

A1

A0
CLK

D Q
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SRL16_1

16-Bit Shift Register Look-Up-Table (LUT) with Negative-Clock 
Edge

SRL16_1 is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select 
the output length of the shift register. The shift register may be of a fixed, static length 
or it may be dynamically adjusted. Refer to “Static Length Mode” and “Dynamic 
Length Mode” in the "SRL16" section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal 
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value of four zeros 
(0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the High-to-Low 
clock (CLK) transition. During subsequent Low-to-High clock transitions data is 
shifted to the next highest bit position as new data is loaded. The data appears on the 
Q output when the shift register length determined by the address inputs is reached.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Output

CLK D <SR(1)> <SR(i)> Q

1 X No Chg No Chg No Chg

0 X No Chg No Chg No Chg

↓ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8422

SRL16_1
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A0
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D Q
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Design Elements (SRL16E)
SRL16E

16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

SRL16E is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select 
the output length of the shift register. The shift register may be of a fixed, static length 
or dynamically adjusted. Refer to “Static Length Mode” and “Dynamic Length Mode” 
in the "SRL16" section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal 
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value of four zeros 
(0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the 
Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transi-
tions, when CE is High, data is shifted to the next highest bit position as new data is 
loaded. The data appears on the Q output when the shift register length determined 
by the address inputs is reached. 

When CE is Low, the register ignores clock transitions.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Output

CE CLK D <SR(1)> <SR(i)> Q

0 X X No Chg No Chg No Chg

1 1 X No Chg No Chg No Chg

1 0 X No Chg No Chg No Chg

1 ↑ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8423
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A0
CLK
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D Q
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SRL16E_1

16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge 
Clock and Clock Enable

SRL16E_1 is a shift register look up table (LUT) with clock enable (CE). The inputs A3, 
A2, A1, and A0 select the output length of the shift register. The shift register may be 
of a fixed, static length or dynamically adjusted. Refer to “Static Length Mode” and 
“Dynamic Length Mode” in the "SRL16" section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal 
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value of four zeros 
(0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the 
High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transi-
tions, when CE is High, data is shifted to the next highest bit position as new data is 
loaded. The data appears on the Q output when the shift register length determined 
by the address inputs is reached.

When CE is Low, the register ignores clock transitions.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

Inputs Output

CE CLK D <SR(1)> <SR(i)> Q

0 X X No Chg No Chg No Chg

1 1 X No Chg No Chg No Chg

1 0 X No Chg No Chg No Chg

1 ↓ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8421
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STARTUP

User Interface to Global Clock, Reset, and 3-State Controls

The STARTUP primitive is used for Global Set/Reset, global 3-state control, and the 
user configuration clock. The Global Set/Reset (GSR) input, when High, sets or resets 
every flip-flop in the device, depending on the initialization state (S or R) of the flip-
flop. Following configuration, the global 3-state control (GTS), when High, forces all 
the IOB outputs into high impedance mode, which isolates the device outputs from 
the circuit but leaves the inputs active.

Including the STARTUP symbol in a design is optional. You must include the symbol 
under the following conditions.

• If you intend to exert external control over global set/reset, you must connect the 
GSR pin to an IPAD and an IBUF, as shown here. (For the XC5200, connect the GR 
pin to an IPAD and an IBUF.)

• If you intend to exert external control over global tristate, you must connect the 
GTS pin to an IPAD and IBUF, as shown here.

• If you wish to synchronize startup to a user clock, you must connect the user clock 
signal to the CLK input, as shown here. Furthermore, “user clock” must be 
selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is 
accessed.

The STARTUP outputs (Q2, Q3, Q1Q4, and DONEIN) display the progress/status of 
the start-up process following the configuration. Refer to The Programmable Logic Data 
Book for additional details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A
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STARTUP_SPARTAN2

Spartan2 User Interface to Global Clock, Reset, and 3-State 
Controls

The STARTUP_SPARTAN2 primitive is used for Global Set/Reset, global 3-state 
control, and the user configuration clock. The Global Set/Reset (GSR) input, when 
High, sets or resets all flip-flops, all latches, and every block RAM (RAMB4) output 
register in the device, depending on the initialization state (S or R) of the component. 

Note: Block RAMB4 content, LUT RAMs, delay locked loop elements (CLKDLL, 
CLKDLLHF, BUFGDLL), and shift register LUTs (SRL16, SRL16_1, SRL16E, 
SRL16E_1) are not set/reset.

Following configuration, the global 3-state control (GTS), when High—and BSCAN is 
not enabled and executing an EXTEST instruction—forces all the IOB outputs into 
high impedance mode, which isolates the device outputs from the circuit but leaves 
the inputs active.

Including the STARTUP_SPARTAN2 symbol in a design is optional. You must include 
the symbol under the following conditions.

• If you intend to exert external control over global set/reset, you must connect the 
GSR pin to a top level port and an IBUF, as shown here.

• If you intend to exert external control over global tristate, you must connect the 
GTS pin to a top level port and IBUF, as shown here.

• If you wish to synchronize startup to a user clock, you must connect the user clock 
signal to the CLK input, as shown here. Furthermore, “user clock” must be 
selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is 
accessed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive N/A
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Design Elements (STARTUP_VIRTEX)
STARTUP_VIRTEX

Virtex User Interface to Global Clock, Reset, and 3-State Controls

The STARTUP_VIRTEX primitive is used for Global Set/Reset, global 3-state control, 
and the user configuration clock. The Global Set/Reset (GSR) input, when High, sets 
or resets all flip-flops, all latches, and every block RAM (RAMB4) output register in 
the device, depending on the initialization state (S or R) of the component. 

Note: Block RAMB4 content, LUT RAMs, delay locked loop elements (CLKDLL, 
CLKDLLHF, BUFGDLL), and shift register LUTs (SRL16, SRL16_1, SRL16E, 
SRL16E_1) are not set/reset.

Following configuration, the global 3-state control (GTS), when High—and BSCAN is 
not enabled and executing an EXTEST instruction—forces all the IOB outputs into 
high impedance mode, which isolates the device outputs from the circuit but leaves 
the inputs active.

Including the STARTUP_VIRTEX symbol in a design is optional. You must include the 
symbol under the following conditions.

• If you intend to exert external control over global set/reset, you must connect the 
GSR pin to a top level port and an IBUF, as shown here.

• If you intend to exert external control over global tristate, you must connect the 
GTS pin to a top level port and IBUF, as shown here.

• If you wish to synchronize startup to a user clock, you must connect the user clock 
signal to the CLK input, as shown here. Furthermore, “user clock” must be 
selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is 
accessed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A N/A Primitive

X8682

STARTUP_VIRTEX

GTS

GSR

CLK

X8683

STARTUP_VIRTEX

GTS

GSR

CLK

X8684

STARTUP_VIRTEX

GTS

GSR

CLK

X8685

STARTUP_VIRTEX

GTS

GSR

CLK
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TCK

Boundary Scan Test Clock Input Pad

The TCK input pad is connected to the boundary scan test clock, which shifts the 
serial data and instructions into and out of the boundary scan data registers. The func-
tion of the TCK pad is device configuration dependent and can be used as follows.

• During configuration TCK is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TCK pad is unrestricted and 
can be used by the routing tool as an input/output pad.

• After configuration, if boundary scan is used, the TCK pad can be used for user-
logic input by connecting it directly to the user logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A

X3895

TCK
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Design Elements (TDI)
TDI

Boundary Scan Test Data Input Pad

The TDI input pad is connected to the boundary scan TDI input. It loads instructions 
and data on the Low-to-High TCK transition. The function of the TDI pad is device 
configuration dependent and can be used as follows.

• During configuration, TDI is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TDI pad is unrestricted and 
can be used by the routing tools as an input/output pad.

• After configuration, if boundary scan is used, the TDI pad can be used for user-
logic input by connecting the TDI pad directly to the user logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A

X3897

TDI
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TDO

Boundary Scan Data Output Pad

The TDO data output pad is connected to the boundary scan TDO output. It is 
connected to the external circuit to provide the boundary scan data for each Low-to-
High TCK transition. The function of the TDO pad is device configuration dependent 
and can be used as follows.

• During configuration, TDO is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TDO pad can be used as a 3-
state output pad by the routing tool.

• After configuration, if boundary scan is used, the TDO pad is still used as an 
output from the boundary scan logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A

X3899 

TDO
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Design Elements (TIMEGRP)
TIMEGRP

Schematic-Level Table of Basic Timing Specification Groups

The TIMEGRP primitive table defines timing groups used in “from-to” TIMESPEC 
statements in terms of other groups. The TIMEGRP table is shown in the following 
figure.

These groups can include predefined groups, such as “ffs,” groups created by using 
TNM attributes, such as TNM-reg on schematics, and other groups defined by a state-
ment in the TIMEGRP symbol.

The following sample statement defines groups in a TIMEGRP symbol.

TIMEGRP=all_but_regs=ffs:except:regs

The table can contain up to 8 statements of any character length, but only 30 charac-
ters are displayed in the symbol.

Note: When entering timegroup properties into a TIMEGRP symbol, some property 
names should not be used because they cause a conflict with the predefined 
(reserved) property names of the TIMEGRP primitive.

The standard procedure for adding a property to a symbol is to use the following 
command.

PROPERTY = property_name VALUE=value

For property_name you must not use any of the system reserved names LIBVER, INST, 
COMP, MODEL, or any other names reserved by your schematic capture program. 
Please consult your schematic capture documentation to familiarize yourself with 
reserved property names.

For more on time group attributes, see the “Time Group Attributes” section of the 
“Attributes, Constraints, and Carry Logic” chapter.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X4699

TIMEGRP
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TIMESPEC

Schematic-Level Timing Requirement Table

The TIMESPEC primitive is a table that you can use to specify up to eight timing 
attributes (TS). TS attributes can be any length, but only 30 characters are displayed in 
the TIMESPEC window. The TIMESPEC table is displayed in the following figure.

For more information on "TS" timing attributes refer to the “TSidentifier” section of 
the “Attributes, Constraints, and Carry Logic” chapter.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3866

TIMESPEC
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Design Elements (TMS)
TMS

Boundary Scan Test Mode Select Input Pad

The TMS input pad is connected to the boundary scan TMS input. It determines 
which boundary scan operation is performed. The function of the TMS pad is device 
configuration dependent and can be used as follows.

• During configuration, TMS is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TMS pad is unrestricted and 
can be used by the routing tools as an input/output pad.

• After configuration, if boundary scan is used, the TMS pad can be used for user-
logic input by connecting the TMS pad directly to the user logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A N/A

X3901

TMS
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UPAD

Connects the I/O Node of an IOB to the Internal PLD Circuit

A UPAD allows the use of any unbonded IOBs in a device. It is used the same way as 
a IOPAD except that the signal output is not visible on any external device pins.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive N/A Primitive Primitive Primitive Primitive

UPAD

X3843
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Design Elements (VCC)
VCC

VCC-Connection Signal Tag

The VCC signal tag or parameter forces a net or input function to a logic High level. A 
net tied to VCC cannot have any other source.

When the placement and routing software encounters a net or input function tied to 
VCC, it removes any logic that is disabled by the VCC signal. The VCC signal is only 
implemented when the disabled logic cannot be removed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

VCC

X8721
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WAND1, 4, 8, 16

Open-Drain Buffers

WAND1, WAND4, WAND8, and WAND16 are single and multiple open-drain 
buffers. Each buffer has an input (I) and an open-drain output (O). When any of the 
inputs is Low, the output is Low. When all the inputs are High, the output is off. To 
obtain a High output, add pull-up resistors to the output (O). One pull-up resistor 
uses the least power, and two pull-up resistors achieve the fastest Low-to-High transi-
tion.

To indicate two pull-up resistors, add a DOUBLE parameter to the pull-up symbol 
attached to the output (O) node. Refer to the appropriate CAE tool interface user 
guide for details.

Figure 10-11 WAND8 Implementation XC4000E, XC4000X

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

WAND1 N/A Primitive Primitive N/A N/A N/A N/A N/A N/A

WAND4,
WAND8.
WAND16

N/A Macro Macro N/A N/A N/A N/A N/A N/A

X3905

WAND1

X3915

I4

I2

I1

O

WAND4

I3

X3916

O

WAND8I[7:0]

X3917

O

WAND16I[15:0]

X7873

I0

I1

I2

I3

I4

I5

I6

I7

I[7:0]

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1

O
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Design Elements (WOR2AND)
WOR2AND

2-Input OR Gate with Wired-AND Open-Drain Buffer Output

WOR2AND is a 2-input (I1 and I2) OR gate/buffer with an open-drain output (O). It 
is used in bus applications by tying multiple open-drain outputs together. When both 
inputs (I1 and I2) are Low, the output (O) is Low. When either input is High, the 
output is off; WOR2AND cannot source or sink current. To establish an output High 
level, tie a pull-up resistor(s) to the output (O). One pull-up resistor uses the least 
power, two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to the pull-up symbol 
attached to the output (O) node. Refer to the appropriate CAE tool interface user 
guide for details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A Primitive Primitive N/A N/A N/A N/A N/A N/A

X3906
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XNOR2-9

2- to 9-Input XNOR Gates with Non-Inverted Inputs

Figure 10-12 XNOR Gate Representations

The XNOR function is performed in the Configurable Logic Block (CLB) function 
generators in XC3000, XC4000, Spartan, and SpartanXL. XNOR functions of up to nine 
inputs are available. All inputs are non-inverting. Because each input uses a CLB 
resource, replace functions with unused inputs with functions having the necessary 
number of inputs.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

XNOR2,
XNOR3,
XNOR4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

XNOR5 Primitive Primitive Primitive Macro Macro Primitive Primitive Primitive Primitive

XNOR6,
XNOR7,
XNOR8,
XNOR9

Macro Macro Macro Macro Macro Macro Macro Macro Macro

X6966

XNOR2

XNOR3

XNOR4

XNOR5

XNOR7

XNOR6

XNOR8

XNOR9
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Design Elements (XNOR2-9)
Figure 10-13 XNOR5 Implementation XC5200

Figure 10-14 XNOR5 Implementation XC9000

Figure 10-15 XNOR6 Implementation XC9000

Figure 10-16 XNOR7 Implementation XC3000

Figure 10-17 XNOR7 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

Figure 10-18 XNOR7 Implementation XC9000
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O
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X8205
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Figure 10-19 XNOR7 Implementation Spartan2, Virtex

Figure 10-20 XNOR8 Implementation XC3000

Figure 10-21 XNOR8 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

Figure 10-22 XNOR8 Implementation XC9000
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Design Elements (XNOR2-9)
Figure 10-23 XNOR8 Implementation Spartan2, Virtex

Figure 10-24 XNOR9 Implementation XC3000

Figure 10-25 XNOR9 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL

Figure 10-26 XNOR9 Implementation XC9000
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Figure 10-27 XNOR9 Implementation Spartan2, Virtex
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Design Elements (XOR2-9)
XOR2-9

2- to 9-Input XOR Gates with Non-Inverted Inputs

Figure 10-28 XOR Gate Representations

The XOR function is performed in the Configurable Logic Block (CLB) function gener-
ators in XC3000, XC4000, Spartan, and SpartanXL. XOR functions of up to nine inputs 
are available. All inputs are non-inverting. Because each input uses a CLB resource, 
replace functions with unused inputs with functions having the necessary number of 
inputs.

Figure 10-29 XOR5 Implementation XC5200

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

XOR2,
XOR3,
XOR4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

XOR5 Primitive Primitive Primitive Macro Macro Primitive Primitive Primitive Primitive

XOR6,
XOR7,
XOR8,
XOR9

Macro Macro Macro Macro Macro Macro Macro Macro Macro

XOR2

XOR3

XOR4

XOR5

XOR6

XOR7

XOR8

XOR9

x6811

I4

I3

I2

I1

I0

I35

X7881

XOR3 O

XOR3
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Figure 10-30 XOR5 Implementation XC9000

Figure 10-31 XOR6 Implementation XC9000

Figure 10-32 XOR7 Implementation XC9000

Figure 10-33 XOR8 Implementation XC3000

Figure 10-34 XOR8 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL
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Design Elements (XOR2-9)
Figure 10-35 XOR8 Implementation XC9000

Figure 10-36 XOR8 Implementation Spartan2, Virtex

Figure 10-37 XOR9 Implementation XC9000
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XORCY

XOR for Carry Logic with General Output

XORCY is a special XOR with general O output used for generating faster and smaller 
arithmetic functions.

Its O output is a general interconnect. See also“XORCY_D” and “XORCY_L.”

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

X8410

LI

CI
O
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Design Elements (XORCY_D)
XORCY_D

XOR for Carry Logic with Dual Output

XORCY_D is a special XOR used for generating faster and smaller arithmetic func-
tions.

XORCY_D has two functionally identical outputs, O and LO. The O output is a 
general interconnect. The LO output is used to connect to another output within the 
same CLB slice. 

See also “XORCY” and “XORCY_L.”

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

X8409

LI

CI

LO

O
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XORCY_L

XOR for Carry Logic with Local Output

XORCY_L is a special XOR with local LO output used for generating faster and 
smaller arithmetic functions. The LO output is used to connect to another output 
within the same CLB slice. 

See also “XORCY” an d “XORCY_D.”

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive Primitive

X8404

LI

CI

LO
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Chapter 11

Design Elements (X74_42 to X74_521)

This chapter describes design elements included in the Unified Libraries. The 
elements are organized in alphanumeric order with all numeric suffixes in ascending 
order.

The library applicability table at the beginning of an element description identifies 
how the element is implemented in each library as follows.

• Primitive

A primitive is a basic building block that cannot be broken up into smaller 
components. 

• Macro

A macro is constructed from primitives. Macros whose implementations contain 
relative location constraint (RLOC) information are known as Relationally Placed 
Macros (RPMs). 

Schematics for macro implementations are included at the end of the component 
description. Schematics are included for each library if the macro implementation 
differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit 
versions) typically include just one schematic — generally the 8-bit version. When 
only one schematic is included, implementation of the smaller and larger 
elements differs only in the number of sections. In cases where an 8-bit version is 
very large, an appropriate smaller element serves as the schematic example.

• N/A

Certain design elements are not available in all libraries because they cannot be 
accommodated in all device architectures. These are marked as N/A (Not Avail-
able).

Refer to the “Applicable Architectures” section of the “Xilinx Unified Libraries” 
chapter for information on the specific architectures supported by each of the 
following libraries: XC3000 Library, XC4000E Library, XC4000X Library, XC5200 
Library, XC9000 Library, Spartan Library, SpartanXL Library, Spartan2 Library, and 
Virtex Library.

Note: Wherever XC4000 is used, the information applies to all architectures 
supported by the XC4000E and XC4000X libraries. Wherever Spartans is used, the 
information applies to all architectures supported by the Spartan, SpartanXL, and 
Spartan2 libraries.
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X74_42

4- to 10-Line BCD-to-Decimal Decoder with Active-Low Outputs

X74_42 decodes the 4-bit BCD number on the data inputs (A – D). Only one of the ten 
outputs (Y9 – Y0) is active (Low) at a time, which reflects the decimal equivalent of the 
BCD number on inputs A – D. All outputs are inactive (High) during any one of six 
illegal states, as shown in the truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

D C B A Selected (Low) Output

0 0 0 0 Y0

0 0 0 1 Y1

0 0 1 0 Y2

0 0 1 1 Y3

0 1 0 0 Y4

0 1 0 1 Y5

0 1 1 0 Y6

0 1 1 1 Y7

1 0 0 0 Y8

1 0 0 1 Y9

1 0 1 0 All Outputs High

1 0 1 1 All Outputs High

1 1 0 0 All Outputs High

1 1 0 1 All Outputs High

1 1 1 0 All Outputs High

1 1 1 1 All Outputs High
Selected output is Low (0) and all others are High

X4162

X74_42

D

C

B

A

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0
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Design Elements (X74_42)
Figure 11-1 X74_42 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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NAND4B3
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B
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Y5

Y6

NAND4B2
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X7887
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X74_L85

4-Bit Expandable Magnitude Comparator

X74_L85 is a 4-bit magnitude comparator that compares two 4-bit binary-weighted 
words A3 – A0 and B3 – B0, where A3 and B3 are the most significant bits. The 
greater-than output, AGBO, is High when A>B. The less-than output, ALBO, is High 
when A<B, and the equal output, AEBO, is High when A=B. The expansion inputs, 
AGBI, ALBI, and AEBI, are the least significant bits. Words of greater length can be 
compared by cascading the comparators. The AGBO, ALBO, and AEBO outputs of 
the stage handling less-significant bits are connected to the corresponding AGBI, 
ALBI, and AEBI inputs of the next stage handling more-significant bits. For proper 
operation, the stage handling the least significant bits must have AGBI and ALBI tied 
Low and AEBI tied High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 AGBI ALBI AEBI AGBO ALBO AEBO

A3>B3 X X X X X X 1 0 0

A3<B3 X X X X X X 0 1 0

A3=B3 A2>B2 X X X X X 1 0 0

A3=B3 A2<B2 X X X X X 0 1 0

A3=B3 A2=B2 A1>B1 X X X X 1 0 0

A3=B3 A2=B2 A1<B1 X X X X 0 1 0

A3=B3 A2=B2 A1=B1 A0>B0 X X X 1 0 0

A3=B3 A2=B2 A1=B1 A0<B0 X X X 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 1 0 0 1 0 0

A3=B3 A2=B2 A1=B1 A0=B0 0 1 0 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 1 0 0 1

A3=B3 A2=B2 A1=B1 A0=B0 0 1 1 0 1 1

A3=B3 A2=B2 A1=B1 A0=B0 1 0 1 1 0 1

A3=B3 A2=B2 A1=B1 A0=B0 1 1 1 1 1 1

A3=B3 A2=B2 A1=B1 A0=B0 1 1 0 1 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 0 0 0 0
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Design Elements (X74_L85)
Figure 11-2 X74_L85 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 11-3 X74_L85 Implementation XC9000
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Design Elements (X74_138)
X74_138

3- to 8-Line Decoder/Demultiplexer with Active-Low Outputs and 
Three Enables

X74_138 is an expandable decoder/demultiplexer with one active-High enable input 
(G1), two active-Low enable inputs (G2A and G2B), and eight active-Low outputs (Y7 
– Y0). When G1 is High and G2A and G2B are Low, one of the eight active-Low 
outputs is selected with a 3-bit binary address on address inputs A, B, and C. The non-
selected outputs are High. When G1 is Low or when G2A or G2B is High, all outputs 
are High.

X74_138 can be used as an 8-output active-Low demultiplexer by tying the data input 
to one of the enable inputs.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

C B A G1 G2A G2B Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 1 0 0 1 1 1 1 1 1 1 0

0 0 1 1 0 0 1 1 1 1 1 1 0 1

0 1 0 1 0 0 1 1 1 1 1 0 1 1

0 1 1 1 0 0 1 1 1 1 0 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1 1 1

1 0 1 1 0 0 1 1 0 1 1 1 1 1

1 1 0 1 0 0 1 0 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 1 1

X X X 0 X X 1 1 1 1 1 1 1 1

X X X X 1 X 1 1 1 1 1 1 1 1

X X X X X 1 1 1 1 1 1 1 1 1
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Y4
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Y0
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Figure 11-4 X74_138 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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Design Elements (X74_139)
X74_139

2- to 4-Line Decoder/Demultiplexer with Active-Low Outputs and 
Active-Low Enable

X74_139 implements one half of a standard 74139 dual 2- to 4-line decoder/demulti-
plexer. When the active-Low enable input (G) is Low, one of the four active-Low 
outputs (Y3 – Y0) is selected with the 2-bit binary address on the A and B address 
input lines. B is the High-order address bit. The non-selected outputs are High. Also, 
when G is High all outputs are High.

X74_139 can be used as a 4-output active-Low demultiplexer by tying the data input 
to G.

Figure 11-5 X74_139 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G B A Y3 Y2 Y1 Y0

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 X X 1 1 1 1
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X74_147

10- to 4-Line Priority Encoder with Active-Low Inputs and Outputs

X74_147 is a 10-line-to-BCD-priority encoder that accepts data from nine active-Low 
inputs (I9 – I1) and produces a binary-coded decimal (BCD) representation on the four 
active-Low outputs A, B, C, and D. The data inputs are weighted, so when more than 
one input is active, only the one with the highest priority is encoded, with I9 having 
the highest priority. Only nine inputs are provided, because the implied “zero” condi-
tion requires no data input. “Zero” is encoded when all data inputs are High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

I9 I8 I7 I6 I5 I4 I3 I2 I1 D C B A

1 1 1 1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 0 X 1 1 0 1

1 1 1 1 1 1 0 X X 1 1 0 0

1 1 1 1 1 0 X X X 1 0 1 1

1 1 1 1 0 X X X X 1 0 1 0

1 1 1 0 X X X X X 1 0 0 1

1 1 0 X X X X X X 1 0 0 0

1 0 X X X X X X X 0 1 1 1

0 X X X X X X X X 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1

X4166

X74_147
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Design Elements (X74_147)
Figure 11-6 X74_147 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_148

8- to 3-Line Cascadable Priority Encoder with Active-Low Inputs 
and Outputs

X74_148 8-input priority encoder accepts data from eight active-Low inputs (I7 – I0) 
and produces a binary representation on the three active-Low outputs (A2 – A0). The 
data inputs are weighted, so when more than one of the inputs is active, only the 
input with the highest priority is encoded, I7 having the highest priority. The active-
Low group signal (GS) is Low whenever one of the data inputs is Low and the active-
Low enable input (EI) is Low.

The active-Low enable input (EI) and active-Low enable output (EO) are used to 
cascade devices and retain priority control. The EO of the highest priority stage is 
connected to the EI of the next-highest priority stage. When EI is High, the data 
outputs and EO are High. When EI is Low, the encoder output represents the highest-
priority Low data input, and the EO is High. When EI is Low and all the data inputs 
are High, the EO output is Low to enable the next-lower priority stage.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

EI I7 I6 I5 I4 I3 I2 I1 I0 A2 A1 A0 GS EO

1 X X X X X X X X 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 1 1 1 0 1

0 1 1 1 1 1 1 0 X 1 1 0 0 1

0 1 1 1 1 1 0 X X 1 0 1 0 1

0 1 1 1 1 0 X X X 1 0 0 0 1

0 1 1 1 0 X X X X 0 1 1 0 1

0 1 1 0 X X X X X 0 1 0 0 1

0 1 0 X X X X X X 0 0 1 0 1

0 0 X X X X X X X 0 0 0 0 1

X4167
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Design Elements (X74_148)
Figure 11-7 X74_148 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_150

16-to-1 Multiplexer with Active-Low Enable and Output

When the active-Low enable input (G) is Low, the X74_150 multiplexer chooses one 
data bit from 16 sources (E15 – E0) under the control of select inputs A, B, C, and D. 
The active-Low output (W) reflects the inverse of the selected input, as shown in the 
truth table. When the enable input (G) is High, the output (W) is High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G D C B A
Selected Input Appears 

(Inverted) on W

1 X X X X 1

0 0 0 0 0 E0

0 0 0 0 1 E1

0 0 0 1 0 E2

0 0 0 1 1 E3

0 0 1 0 0 E4

0 0 1 0 1 E5

0 0 1 1 0 E6

0 0 1 1 1 E7

0 1 0 0 0 E8

0 1 0 0 1 E9

0 1 0 1 0 E10

0 1 0 1 1 E11

0 1 1 0 0 E12

0 1 1 0 1 E13

0 1 1 1 0 E14

0 1 1 1 1 E15
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Design Elements (X74_150)
Figure 11-8 X74_150 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_151

8-to-1 Multiplexer with Active-Low Enable and Complementary 
Outputs

When the active-Low enable (G) is Low, the X74_151 multiplexer chooses one data bit 
from eight sources (D7 – D0) under control of the select inputs A, B, and C. The output 
(Y) reflects the state of the selected input, and the active-Low output (W) reflects the 
inverse of the selected input as shown in the truth table. When G is High, the Y output 
is Low, and the W output is High.

Figure 11-9 X74_151 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A
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Design Elements (X74_152)
X74_152

8-to-1 Multiplexer with Active-Low Output

 

X74_152 multiplexer chooses one data bit from eight sources (D7 – D0) under control 
of the select inputs A, B, and C. The active-Low output (W) reflects the inverse of the 
selected data input, as shown in the truth table.

Figure 11-10 X74_152 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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X74_153

Dual 4-to-1 Multiplexer with Active-Low Enables and Common 
Select Input

When the active-Low enable inputs G1 and G2 are Low, the data output Y1, reflects 
the data input chosen by select inputs A and B from data inputs I1C3 – I1C0. The data 
output Y2 reflects the data input chosen by select inputs A and B from data inputs 
I2C3 – I2C0. When G1 or G2 is High, the corresponding output, Y1 or Y2 respectively, 
is Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G1 G2 B A Y1 Y2

1 1 X X 0 0

1 0 0 0 0 I2C0

1 0 0 1 0 I2C1

1 0 1 0 0 I2C2

1 0 1 1 0 I2C3

0 1 0 0 I1C0 0

0 1 0 1 I1C1 0

0 1 1 0 I1C2 0

0 1 1 1 I1C3 0

0 0 0 0 I1C0 I2C0

0 0 0 1 I1C1 I2C1

0 0 1 0 I1C2 I2C2

0 0 1 1 I1C3 I2C3

X4171
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Design Elements (X74_153)
Figure 11-11 X74_153 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_154

4- to 16-Line Decoder/Demultiplexer with Two Enables and Active-
Low Outputs

When the active-Low enable inputs G1 and G2 of the X74_154 decoder/demultiplexer 
are Low, one of 16 active-Low outputs, Y15 – Y0, is selected under the control of four 
binary address inputs A, B, C, and D. The non-selected inputs are High. Also, when 
either input G1 or G2 is High, all outputs are High.

The X74_154 can be used as a 16-to-1 demultiplexer by tying the data input to one of 
the G inputs and tying the other G input Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G1 G2 D C B A Y15 Y14 Y13 Y12 Y11 Y10 Y9 ... Y0

1 X X X X X 1 1 1 1 1 1 1 ... 1

X 1 X X X X 1 1 1 1 1 1 1 ... 1

0 0 1 1 1 1 0 1 1 1 1 1 1 ... 1

0 0 1 1 1 0 1 0 1 1 1 1 1 ... 1

0 0 1 1 0 1 1 1 0 1 1 1 1 ... 1

- - - - - - - - - - - - - ... -

- - - - - - - - - - - - - ... -

- - - - - - - - - - - - - ... -

0 0 0 0 0 0 1 1 1 1 1 1 1 ... 0
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Design Elements (X74_154)
Figure 11-12 X74_154 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_157

Quadruple 2-to-1 Multiplexer with Common Select and Active-Low 
Enable

When the active-Low enable input (G) of the X74_157 multiplexer is Low, a 4-bit word 
is selected from one of two sources (A3 – A0 or B3 – B0) under the control of the select 
input (S) and is reflected on the four outputs (Y4 – Y1). When S is Low, the outputs 
reflect A3 – A0; when S is High, the outputs reflect B3 – B0. When G is High, the 
outputs are Low.

Figure 11-13 X74_157 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G S B A Y

1 X X X 0

0 1 1 X 1

0 1 0 X 0

0 0 X 1 1

0 0 X 0 0
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X74_158

Quadruple 2-to-1 Multiplexer with Common Select, Active-Low 
Enable, and Active-Low Outputs

When the active-Low enable (G) of the X74_158 multiplexer is Low, a 4-bit word is 
selected from one of two sources (A3 – A0 or B3 – B0) under the control of the 
common select input (S). The inverse of the selected word is reflected on the active-
Low outputs (Y4 – Y1). When S is Low, A3 – A0 appear on the outputs; when S is 
High, B3 – B0 appear on the outputs. When G is High, the outputs are High.

Figure 11-14 X74_158 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A
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X74_160

4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low 
Load Enable, and Asynchronous Clear

 

X74_160 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable, binary-
coded decimal (BCD) counter. The active-Low asynchronous clear (CLR), when Low, 
overrides all other inputs and resets the data (QD, QC, QB, QA) and ripple carry-out 
(RCO) outputs Low. When the active-Low load enable input (LOAD) is Low and CLR 
is High, parallel clock enable (ENP), and trickle clock enable (ENT) are overridden 
and data on inputs A, B, C, and D are loaded into the counter during the Low-to-High 
clock transition. The data outputs (QD, QC, QB, QA) increment when ENP, ENT 
LOAD, and CLR are High during the Low-to-High clock transition. The counter 
ignores clock transitions when ENP or ENT are Low and LOAD is High. RCO is High 
when QD, QA, and ENT are High and QC and QB are Low.

Carry-Lookahead Design

The carry-lookahead design allows cascading of large counters without extra gating. 
Both ENT and ENP must be High to count. ENT is fed forward to enable RCO, which 
produces a High output pulse with the approximate duration of the QA output. The 
following figure illustrates a carry-lookahead design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one set-up time prior to active clock transition
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Figure 11-15 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of 
the second stage and all subsequent stages. The RCO output of the second stage and 
all subsequent stages is connected to the ENT input of the next stage. The ENT of the 
second stage is always enabled/tied to VCC. CE is always connected to the ENT input 
of the first stage. This cascading method allows the first stage of the ripple carry to be 
built as a prescaler. In other words, the first stage is built to count very fast.

The counter recovers from any of six possible illegal states and returns to a normal 
count sequence within two clock cycles.
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Figure 11-16 X74_160 Implementation XC3000
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Figure 11-17 X74_160 Implementation XC4000E, XC4000X, XC5200, Spartan, 
SpartanXL
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Figure 11-18 X74_160 Implementation XC9000
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X74_161

4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low 
Load Enable, and Asynchronous Clear

X74_161 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary 
counter. The active-Low asynchronous clear (CLR), when Low, overrides all other 
inputs and resets the data outputs (QD, QC, QB, QA) and the ripple carry-out output 
(RCO) Low. When the active-Low load enable (LOAD) is Low and CLR is High, 
parallel clock enable (ENP) and trickle clock enable (ENT) are overridden and the 
data on inputs A, B, C, and D is loaded into the counter during the Low-to-High clock 
(CK) transition. The data outputs (QD, QC, QB, QA) increment when LOAD, ENP, 
ENT, and CLR are High during the Low-to-High clock transition. The counter ignores 
clock transitions when LOAD is High and ENP or ENT are Low. RCO is High when 
QD – QA and ENT are High.

The carry-lookahead design accommodates large counters without extra gating. Refer 
to “Carry-Lookahead Design” in the “X74_160” section for more information.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition
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Figure 11-19 X74_161 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 11-20 X74_161 Implementation XC9000
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X74_162

4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low 
Load Enable, and Synchronous Reset

X74_162 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary-coded 
decimal (BCD) counter. The active-Low synchronous reset (R), when Low, overrides 
all other inputs and resets the data (QD, QC, QB, QA) and ripple carry-out (RCO) 
outputs Low during the Low-to-High clock (CK) transition. When the active-Low 
load enable input (LOAD) is Low and R is High, parallel clock enable (ENP) and 
trickle clock enable (ENT) are overridden and data on inputs A, B, C, and D is loaded 
into the counter during the Low-to-High clock transition. The data outputs (QD, QC, 
QB, QA) increment when ENP, ENT, LOAD, and R are High during the Low-to-High 
clock transition. The counter ignores clock transitions when ENP or ENT are Low and 
LOAD is High. RCO is High when QD, QA, and ENT are High and QC and QB are 
Low.

The carry-lookahead design accommodates cascading large counters without extra 
gating. Refer to “Carry-Lookahead Design” in the “X74_160” section for more infor-
mation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition
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Figure 11-21 X74_162 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 11-22 X74_162 Implementation XC9000
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X74_163

4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low 
Load Enable, and Synchronous Reset

X74_163 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary 
counter. The active-Low synchronous reset (R), when Low, overrides all other inputs 
and resets the data outputs (QD, QC, QB, QA) and the ripple carry-out output (RCO) 
Low during the Low-to-High clock (CK) transition. When the active-Low load enable 
(LOAD) is Low and R is High, parallel clock enable (ENP) and trickle clock enable 
(ENT) are overridden and the data on inputs (A, B, C, D) is loaded into the counter 
during the Low-to-High clock (CK) transition. The outputs (QD, QC, QB, QA) incre-
ment when LOAD, ENP, ENT, and R are High during the Low-to-High clock transi-
tion. The counter ignores clock transitions when LOAD is High and ENP or ENT are 
Low; RCO is High when QD – QA and ENT are High.

The carry-lookahead design accommodates large counters without extra gating. Refer 
to “Carry-Lookahead Design” in the “X74_160” section for more information.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition
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Figure 11-23 X74_163 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 11-24 X74_163 Implementation XC9000
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X74_164

8-Bit Serial-In Parallel-Out Shift Register with Active-Low 
Asynchronous Clear

X74_164 is an 8-bit, serial input (A and B), parallel output (QH – QA) shift register 
with an active-Low asynchronous clear (CLR) input. The asynchronous CLR, when 
Low, overrides the clock input and sets the data outputs (QH – QA) Low. When CLR 
is High, the AND function of the two data inputs (A and B) is loaded into the first bit 
of the shift register during the Low-to-High clock (CK) transition and appears on the 
QA output. During subsequent Low-to-High clock transitions, with CLR High, the 
data is shifted to the next-highest bit position as new data is loaded into QA (A and 
B→QA, QA→QB, QB→QC, and so forth).

Registers can be cascaded by connecting the QH output of one stage to the A input of 
the next stage, by tying B High, and by connecting the clock and CLR inputs in 
parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR A B CK QA QB – QH

0 X X X 0 0

1 1 1 ↑ 1 qA – qG

1 0 X ↑ 0 qA – qG

1 X 0 ↑ 0 qA – qG
qA – qG = state of referenced output one setup time prior to active clock transition
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Figure 11-25 X74_164 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_165S

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with 
Clock Enable

X74_165S is an 8-bit shift register with serial-input (SI), parallel- inputs (H – A), 
parallel-outputs (QH – QA), and two control inputs – clock enable (CE) and active-
Low shift/load enable (S_L). When S_L is Low, data on the H – A inputs is loaded into 
the corresponding QH – QA bits of the register on the Low-to-High clock (CK) transi-
tion. When CE and S_L are High, data on the SI input is loaded into the first bit of the 
register during the Low-to-High clock transition. During subsequent Low-to-High 
clock transitions, with CE and S_L High, the data is shifted to the next-highest bit 
position (shift right) as new data is loaded into QA (SI→ QA, QA→QB, QB→QC, and 
so forth). The register ignores clock transitions when CE is Low and S_L is High.

Registers can be cascaded by connecting the QH output of one stage to the SI input of 
the next stage and connecting clock, CE, and S_L inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

S_L CE SI A – H CK QA QB – QH

0 X X A – H ↑ qa qb – qh

1 0 X X X No Chg No Chg

1 1 SI X ↑ si qA – qG
si = state of referenced input one setup time prior to active clock transition
qn = state of referenced output one setup time prior to active clock transition
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Figure 11-26 X74_165S Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_168

4-Bit BCD Bidirectional Counter with Parallel and Trickle Clock 
Enables and Active-Low Load Enable

X74_168 is a 4-stage, 4-bit, synchronous, loadable, cascadable, bidirectional binary-
coded-decimal (BCD) counter. The data on the D – A inputs is loaded into the counter 
when the active-Low load enable (LOAD) is Low during the Low-to-High clock (CK) 
transition. The LOAD input, when Low, has priority over parallel clock enable (ENP), 
trickle clock enable (ENT), and the bidirectional (U_D) control. The outputs (QD – 
QA) increment when U_D and LOAD are High and ENP and ENT are Low during the 
Low-to-High clock transition. The outputs decrement when LOAD is High and ENP, 
ENT, and U_D are Low during the Low-to-High clock transition. The counter ignores 
clock transitions when LOAD and either ENP or ENT are High.

The active-Low ripple carry-out output (RCO) is Low when QD, QA, and U_D are 
High and QC, QB, and ENT are Low. RCO is also Low when all outputs, ENT and 
U_D are Low. The following figure illustrates a carry-lookahead design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

LOAD ENP ENT U_D A – D CK QA – QD RCO

0 X X X A – D ↑ qa – qd RCO

1 0 0 1 X ↑ Inc RCO

1 0 0 0 X ↑ Dec RCO

1 1 0 X X X No Chg RCO

1 X 1 X X X No Chg 1
RCO = (Q3•Q2•Q1•Q0•U_D•ENT) + (Q3•Q2•Q1•Q0•U_D•ENT)
qa – qd = state of referenced input one setup time prior to active clock transition
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Figure 11-27 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of 
the second stage and all subsequent stages. The RCO output of second stage and all 
subsequent stages is connected to the ENT input of the next stage. The ENT of the 
second stage is always enabled/tied to VCC. CE is always connected to the ENT input 
of the first stage. This cascading method allows the first stage of the ripple carry to be 
built as a prescaler. In other words, the first stage is built to count very fast.
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Figure 11-28 X74_168 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL
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Figure 11-29 X74_168 Implementation XC9000
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X74_174

6-Bit Data Register with Active-Low Asynchronous Clear

The active-Low asynchronous clear input (CLR), when Low, overrides the clock and 
resets the six data outputs (Q6 – Q1) Low. When CLR is High, the data on the six data 
inputs (D6 – D1) is transferred to the corresponding data outputs on the Low-to-High 
clock (CK) transition.

Figure 11-30 X74_174 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR D6 – D1 CK Q6 – Q1

0 X X 0

1 D6 – D1 ↑ d6 – d1
dn = state of referenced input one setup time prior to active clock transition
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X74_194

4-Bit Loadable Bidirectional Serial/Parallel-In Parallel-Out Shift 
Register

X74_194 is a 4-bit shift register with shift-right serial input (SRI), shift-left serial input 
(SLI), parallel inputs (D – A), parallel outputs (QD – QA), two control inputs (S1, S0), 
and active-Low asynchronous clear (CLR). The shift register performs the following 
functions.

Registers can be cascaded by connecting the QD output of one stage to the SRI input 
of the next stage, the QA output of one stage to the SLI input of the next stage, and 
connecting clock, S1, S0, and CLR inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Clear When CLR is Low, all other inputs are ignore and outputs QD – 
QA go to logic state zero.

Load When S1 and S0 are High, the data on inputs D –A is loaded 
into the corresponding output bits QD –QA during the Low-to-
High clock (CK) transition.

Shift Right When S1 is Low and S0 is High, the data is to the next-highest 
bit position (right) as new data is loaded into 
QA(SRI→QA,QA→QB, QB→QC, and so forth).

Shift Left When S1 is High and S0 is Low, the data is shifted to the next-
lowest bit position (left) as new data is loaded into QD 
(SLI→QD,QD→QC,QC→QB, and so forth).

Inputs Outputs

CLR S1 S0 SRI SLI A – D CK QA QB QC QD

0 X X X X X X 0 0 0 0

1 0 0 X X X X No Chg No Chg No Chg No Chg

1 1 1 X X A – D ↑ a b c d

1 0 1 SRI X X ↑ sri qa qb qc

1 1 0 X SLI X ↑ qb qc qd sli
Lowercase letters represent state of referenced input or output one setup time prior to
active clock transition
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Figure 11-31 X74_194 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_195

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register

X74_195 is a 4-bit shift register with shift-right serial inputs (J, active High, and K, 
active Low), parallel inputs (D – A), parallel outputs (QD – QA) and QDB, shift/load 
control input (S_L), and active-Low asynchronous clear (CLR). Asynchronous CLR, 
when Low, overrides all other inputs and resets data outputs QD – QA Low and QDB 
High. When S_L is Low and CLR is High, data on the D – A inputs is loaded into the 
corresponding QD – QA bits of the register during the Low-to-High clock (CK) transi-
tion. When S_L and CLR are High, the first bit of the register (QA) responds to the J 
and K inputs during the Low-to-High clock transition, as shown in the truth table. 
During subsequent Low-to-High clock transitions, with S_L and CLR High, the data 
is shifted to the next-highest bit position (shift right) as new data is loaded into QA (J, 
K→QA, QA→QB, QB→QC, and so forth).

Registers can be cascaded by connecting the QD and QDB outputs of one stage to the 
J and K inputs, respectively, of the next stage and connecting clock, S_L and CLR 
inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR S_L J K A – D CK QA QB QC QD QDB

0 X X X X X 0 0 0 0 1

1 0 X X A – D ↑ a b c d d

1 1 0 0 X ↑ 0 qa qb qc qc

1 1 1 1 X ↑ 1 qa qb qc qc

1 1 0 1 X ↑ qa qa qb qc qc

1 1 1 0 X ↑ qa qa qb qc qc
Lowercase letters represent state of referenced input or output one setup time prior to active
clock transition
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Figure 11-32 X74_195 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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X74_273

8-Bit Data Register with Active-Low Asynchronous Clear

X74_273 is an 8-bit data register with active-Low asynchronous clear. The active-Low 
asynchronous clear (CLR), when Low, overrides all other inputs and resets the data 
outputs (Q8 – Q1) Low. When CLR is High, the data on the data inputs (D8 – D1) is 
transferred to the corresponding data outputs (Q8 – Q1) during the Low-to-High 
clock transition (CK).

Figure 11-33 X74_273 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

CLR D8 – D1 CK Q8 – Q1

0 X X 0

1 D8 – D1 ↑ d8 – d1
dn = state of referenced input one setup time prior to active clock transition
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X74_280

9-Bit Odd/Even Parity Generator/Checker

X74_280 parity generator/checker compares up to nine data inputs (I – A) and 
provides both even (EVEN) and odd parity (ODD) outputs. The EVEN output is High 
when an even number of inputs is High. The ODD output is High when an odd 
number of inputs is High.

Expansion to larger word sizes is accomplished by tying the ODD outputs of up to 
nine parallel components to the data inputs of one more X74_280; all other inputs are 
tied to ground.

Figure 11-34 X74_280 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 11-35 X74_280 Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

Number of Ones on A – I EVEN ODD

0, 2, 4, 6, or 8 1 0

1, 3, 5, 7, or 9 0 1
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X74_283

4-Bit Full Adder with Carry-In and Carry-Out

X74_283, a 4-bit full adder with carry-in and carry-out, adds two 4-bit words (A4 – A1 
and B4 – B1) and a carry-in (C0) and produces a binary sum output (S4 – S1) and a 
carry-out (C4).

16(C4)+8(S4)+4(S3)+2(S2)+S1=8(A4+B4)+4(A3+B3)+2(A2+B2)+(A1+B1)+CO
(where “+” = addition)

Figure 11-36 X74_283 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A
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Figure 11-37 X74_283 Implementation XC9000
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X74_298

Quadruple 2-Input Multiplexer with Storage and Negative-Edge 
Clock

X74_298 selects 4-bits of data from two sources (D1 – A1 or D2 – A2) under the control 
of a common word select input (WS). When WS is Low, D1 – A1 is chosen, and when 
WS is High, D2 – A2 is chosen. The selected data is transferred into the output register 
(QD – QA) during the High-to-Low transition of the negative-edge triggered clock 
(CK).

Figure 11-38 X74_298 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

WS A1 – D1 A2 – D2 CK QA – QD

0 A1 – D1 X ↓ a1 – d1

1 X A2 – D2 ↓ a2 – d2
an – dn = state of referenced input one setup time prior to active clock transition

X4186

X74_298

CK

WS

D2

D1

C2

C1

B2

B1

A2

A1

QD

QC

QB

QA

O
D1

D0

S0

M2_1

MA

X7916

D1

D0

S0

M2_1

MB

QD

O

O
D1

D0

S0

M2_1

MC

D1

D0

S0

M2_1

MD

O

FD_1

D

C

Q

FD_1

D

C

Q

FD_1

D

C

Q

FD_1

D

C

Q

QC

QB

QA

QD

QC

QB

QA

MA

MB

MC

MD

A1

B1

C1

WS

A2

B2

D1
D2

C2

CK
Libraries Guide, 2.1i 11-55



Libraries Guide, 2.1i
Figure 11-39 X74_298 Implementation XC9000

C

QD

FD

QA

FD

C

QD

QB

C

QD

FD

QC

C

QD

FD

QD

QA

X7917

QB

QC

QD

INV

A2
AND2B1

OR2

AND2

A1

B2
AND2B1

OR2

AND2

B1

C2
AND2B1

OR2

AND2

C1

D2
AND2B1

OR2

AND2

D1

WS

CK
11-56 Xilinx Development System



Design Elements (X74_352)
X74_352

Dual 4-to-1 Multiplexer with Active-Low Enables and Outputs

X74_352 comprises two 4-to-1 multiplexers with separate enables (G1 and G2) but 
with common select inputs (A and B). When an active-Low enable (G1 or G2) is Low, 
the multiplexer chooses one data bit from the four sources associated with the partic-
ular enable (I1C3 – I1C0 for G1 and I2C3 – I2C0 for G2) under the control of the 
common select inputs (A and B). The active-Low outputs (Y1 and Y2) reflect the 
inverse of the selected data as shown in truth table. Y1 is associated with G1 and Y2 is 
associated with G2. When an active-Low enable is High, the associated output is 
High.

Figure 11-40 X74_352 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G B A IC0 IC1 IC2 IC3 Y

1 X X X X X X 1

0 0 0 IC0 X X X IC0

0 0 1 X IC1 X X IC1

0 1 0 X X IC2 X IC2

0 1 1 X X X IC3 IC3
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X74_377

8-Bit Data Register with Active-Low Clock Enable

When the active-Low clock enable (G) is Low, the data on the eight data inputs (D8 – 
D1) is transferred to the corresponding data outputs (Q8 – Q1) during the Low-to-
High clock (CK) transition. The register ignores clock transitions when G is High.

Figure 11-41 X74_377 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G D8 – D1 CK Q8 – Q1

1 X X No Chg

0 D8 – D1 ↑ d8 – d1
dn = state of referenced input one setup time prior to active clock transition
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X74_390

4-Bit BCD/Bi-Quinary Ripple Counter with Negative-Edge Clocks 
and Asynchronous Clear

X74_390 is a cascadable, resettable binary-coded decimal (BCD) or bi-quinary counter 
that can be used to implement cycle lengths equal to whole and/or cumulative multi-
ples of 2 and/or 5. In BCD mode, the output QA is connected to negative-edge clock 
input (CKB), and data outputs (QD – QA) increment during the High-to-Low clock 
transition as shown in the truth table, provided asynchronous clear (CLR) is Low. In 
bi-quinary mode, output QD is connected to the negative-edge clock input (CKA). As 
shown in the truth table, in bi-quinary mode, QA supplies a divide-by-five output 
and QB supplies a divide-by-two output, provided asynchronous CLR is Low. When 
asynchronous CLR is High, the other inputs are overridden, and data outputs (QD – 
QA) are reset Low.

Larger ripple counters are created by connecting the QD output (BCD mode) or QA 
output (bi-quinary mode) of the first stage to the appropriate clock input of the next 
stage and connecting the CLR inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Count
BCD Bi-Quinary

QD QC QB QA QD QC QB QA

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0

3 0 0 1 1 0 1 1 0

4 0 1 0 0 1 0 0 0

5 0 1 0 1 0 0 0 1

6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 1 0 1

8 1 0 0 0 0 1 1 1

9 1 0 0 1 1 0 0 1

X4189

X74_390

CLR

QC

QB

QACKA

QD

CKB
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Figure 11-42 X74_390 Implementation XC3000, XC4000E, XC4000X, XC5200, 
Spartan, SpartanXL

Figure 11-43 X74_390 Implementation XC9000
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X74_518

8-Bit Identity Comparator with Active-Low Enable

X74_518 is an 8-bit identity comparator with 16 data inputs for two 8-bit words (P7 – 
P0 and Q7 – Q0), data output (PEQ), and active-Low enable (G). When G is High, the 
PEQ output is Low. When G is Low and the two input words are equal, PEQ is High. 
Equality is determined by a bit comparison of the two words. When any of the two 
equivalent bits from the two words are not equal, PEQ is Low.

Figure 11-44 X74_518 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A
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X74_521

8-Bit Identity Comparator with Active-Low Enable and Output

X74_521 is an 8-bit identity comparator with 16 data inputs for two 8-bit words (P7 – 
P0 and Q7 – Q0), active-Low data output (PEQ), and active-Low enable (G). When G 
is High, the PEQ output is High. When G is Low and the two input words are equal, 
PEQ is Low. X74_521 does a bit comparison of the two words to determine equality. 
When any of the two equivalent bits from the two words are not equal, PEQ is High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

Macro Macro Macro Macro Macro Macro Macro N/A N/A

Inputs Outputs

G P7, Q7 P6, Q6 P5, Q5 P4, Q4 P3, Q3 P2, Q2 P1, Q1 P0, Q0 PEQ

1 X X X X X X X X 1

0 P7≠Q7 X X X X X X X 1

0 X P6≠Q6 X X X X X X 1

0 X X P5≠Q5 X X X X X 1

0 X X X P4≠Q4 X X X X 1

0 X X X X P3≠Q3 X X X 1

0 X X X X X P2≠Q2 X X 1

0 X X X X X X P1≠Q1 X 1

0 X X X X X X X P0≠Q0 1

0 P7=Q7 P6=Q6 P5=Q5 P4=Q4 P3=Q3 P2=Q2 P1=Q1 P0=Q0 0
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Figure 11-45 X74_521 Implementation XC3000, XC4000E, XC4000X, XC5200, 
XC9000, Spartan, SpartanXL
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Chapter 12

Attributes, Constraints, and Carry Logic

This chapter lists and describes all the attributes that you can use with your design 
entry software and the constraints that are contained in machine- and user-generated 
files. 

This chapter contains the following major sections.

• “Overview”

• “Information for Mentor Customers”

• “Schematic Syntax”

• “UCF/NCF File Syntax”

• “Constraints Editor”

• “Attributes/Logical Constraints” — This section contains alphabetical listings of 
the attributes and constraints as well as descriptions, syntax, and examples of 
each constraint.

• “Placement Constraints”

• “Relative Location (RLOC) Constraints”

• “Timing Constraints”

• “Physical Constraints”

• “Relationally Placed Macros (RPMs)”

• “Carry Logic in XC4000, Spartan, SpartanXL”

• “Carry Logic in XC5200”

• “Carry Logic in Virtex, Spartan2”

Overview
This section gives an overview of attributes, constraints, and carry logic.

Attributes
Attributes are instructions placed on symbols or nets in an FPGA or CPLD schematic 
to indicate their placement, implementation, naming, directionality, and so forth. This 
information is used by the design implementation software during placement and 
routing of a design. All the attributes listed in this chapter are available in the sche-
matic entry tools directly supported by Xilinx unless otherwise noted, but some may 
not be available in textual entry methods such as VHDL.
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Attributes applicable only to a certain schematic entry tool are described in the docu-
mentation for that tool. For third-party interfaces, consult the interface user guides for 
information on which attributes are available and how they are used. 

Refer to the “Schematic Syntax” section in this chapter for guidelines on placing 
attributes on symbols on a schematic. 

Constraints
Constraints, which are a type, or subset, of attributes, indicate where an element 
should be placed. 

Logical Constraints

Constraints that are attached to elements in the design prior to mapping are referred 
to as logical constraints. Applying logical constraints helps you to adapt your design’s 
performance to expected worst-case conditions. Later, when you choose a specific 
Xilinx architecture and place and route your design, the logical constraints are 
converted into physical constraints.

You can attach logical constraints using attributes in the input design, which are 
written into the Netlist Constraints File (NCF), or with a User Constraints File (UCF). 
Refer to the “UCF/NCF File Syntax” section for the rules for entering constraints in a 
UCF or NCF file.

Three categories of logical constraints are described in detail in the “Attributes/
Logical Constraints” section: placement constraints, relative location constraints, and 
timing constraints. 

The “Placement Constraints” section gives examples showing how to place 
constraints on the various types of logic elements in FPGA designs.

For FPGAs, relative location constraints (RLOCs) group logic elements into discrete 
sets and allow you to define the location of any element within the set relative to other 
elements in the set, regardless of eventual placement in the overall design. Refer to the 
“Relative Location (RLOC) Constraints” section for detailed information on RLOCs.

Timing constraints allow you to specify the maximum allowable delay or skew on any 
given set of paths or nets in your design. Refer to the “Timing Constraints” section for 
detailed information on using timing constraints in a UCF file. 

Physical Constraints

Constraints can also be attached to the elements in the physical design, that is, the 
design after mapping has been performed. These constraints are referred to as phys-
ical constraints and are defined in the Physical Constraints File (PCF), which is 
created during mapping. See the “Physical Constraints” section.

Note: It is preferable to place any user-generated constraint in the UCF file — not in 
an NCF or PCF file.

Carry Logic
Dedicated fast carry logic increases the efficiency and performance of adders, 
subtracters, accumulators, comparators, and counters. See the “Carry Logic in 
XC4000, Spartan, SpartanXL” section, “Carry Logic in XC5200” section, and “Carry 
Logic in Virtex, Spartan2” section at the end of this chapter.
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Information for Mentor Customers
In some software programs, particularly Mentor Graphics, attributes are called prop-
erties, but their functionality is the same as that of attributes. In this document, they 
are referred to as attributes.

There are two types of Mentor Graphics properties. In one, a property is equal to a 
value, for example, LOC=AA. In the other, the property name and the value are the 
same, for example, DECODE. In the first type, “attribute” refers to the property. In the 
second, “attribute” refers to the property and the value.

The Mentor netlist writer program (ENWRITE) converts all property names to lower-
case letters, and the Xilinx netlist reader EDIF2NGD then converts the property names 
to uppercase letters. Because property names are processed in this way, you must 
enter the variable text of certain constraints in uppercase letters only. The most salient 
examples are the following.

• A TSidentifier name should contain only uppercase letters on a Mentor Schematic 
(TSMAIN, for example, but not TSmain or TSMain). Also, if a TSidentifier name is 
referenced in a property value, it must be entered in uppercase letters. For 
example, the TSID1 in the second constraint below must be entered in uppercase 
letters to match the TSID1 name in the first constraint.

TSID1 = FROM: gr1: TO: gr2: 50;
TSMAIN = FROM: here: TO: there: TSID1: /2;

• Group names should contain only uppercase letters on a Mentor schematic 
(MY_FLOPS, for example, but not my_flops or My_flops).

• If a group name appears in a property value, it must also be expressed in upper-
case letters. For example, the GROUP3 in the first constraint below must be 
entered in uppercase letters to match the GROUP3 in the second constraint.

TIMEGRP GROUP1 = gr2: GROUP3;
TIMEGRP GROUP3 = FFS: except: grp5;

Schematic Syntax
This section describes how to place attributes on symbols on a schematic. The 
following guidelines are for specifying locations.

• To specify a single location, use the following syntax.

attribute=location

• To specify multiple locations, use the following syntax.

attribute=location,location,location

A comma separates locations in a list of locations. (Spaces are ignored if entered.)

When you specify a list of locations, PAR (Place and Route) chooses any one of the 
listed locations.

• To define a range by specifying the two corners of a bounding box, use the 
following syntax.

attribute=location:location [SOFT]

A colon is only used to separate the corners of a bounding box. The logic repre-
sented by the symbol is placed somewhere inside the bounding box. If SOFT is 
specified, PAR may place the attribute elsewhere to obtain better results.
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Following are some examples of location attributes.

A name can be composed of any ASCII character except for control characters and 
characters that have special meanings.

Control characters are : (colon) ; (semi-colon) , (comma) and “(double quotes).

Characters with special meaning are / (forward slash) used as the hierarchy separator 
and . (period) used as the pin separator and for extensions.

For additional propagation rules for each constraint and attribute, refer to the “Macro 
and Net Propagation Rules” table in the "Attributes/Logical Constraints" section.

UCF/NCF File Syntax
Logical constraints are found in a Netlist Constraint File (NCF), an ASCII file gener-
ated by synthesis programs, and in a User Constraint File (UCF), an ASCII file gener-
ated by the user. This section describes the rules for entering constraints in a UCF or 
NCF file.

Note: It is preferable to place any user-generated constraint in the UCF file — not in 
an NCF or PCF file.

Following are some general rules for the UCF and NCF files.

• The UCF and NCF files are case sensitive. Identifier names (names of objects in 
the design, such as net names) must exactly match the case of the name as it exists 
in the source design netlist. However, any Xilinx constraint keyword (for 

LOC=CLB_R1C2 Locates the element in the CLB in the first row, 
second column

LOC=CLB_R1C2.LC3 Locates the element in the top-most slice of the 
four slices of the XC5200 CLB located in the first 
row, second column (XC5200)

LOC=CLB_R1C2.S1 Locates the element in the right-most slice of the 
two slices of the Virtex or Spartan2 CLB located in 
the first row, second column

LOC=P12 Assigns the signal to the pin P12 

RLOC=R4C4 Assigns the location relative to other elements in 
the set to row 4, column 4

RLOC=R0Cl.FFX Assigns the location relative to other elements in 
the set to the X flip-flop in row 0, column 1

RLOC=R2C3.LC0 Assigns the location of the element to be one slice 
below another element in the set that has an 
RLOC=R2C3.LC1 attribute (XC5200)

RLOC=R2C3.S0 Assigns the location of the element to be the 
right-most slice of another element in the set that 
has an RLOC=R2C3.S1 attribute (Spartan2, 
Virtex)

RLOC_ORIGIN=R4C4 Fixes the reference CLB of a designated set at row 
4, column 4

RLOC_RANGE=R4C4 : R10C10 Limits the members of a designated set to a range 
between row 4, column 4 and row 10, column 10
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example, LOC, PERIOD, HIGH, LOW) may be entered in either all upper-case or 
all lower-case letters; mixed case is not allowed.

• Each statement is terminated by a semicolon (;).

• No continuation characters are necessary if a statement exceeds one line, since a 
semicolon marks the end of the statement.

• You can add comments to the UCF/NCF file by beginning each comment line 
with a pound (#) sign. Following is an example of part of a UCF/NCF file 
containing comments. 

# file TEST.UCF
# net constraints for TEST design

NET $SIG_0 MAXDELAY 10 ;
NET $SIG_1 MAXDELAY 12 ns ;

• Statements do not have to be placed in any particular order in the UCF/NCF file.

The constraints in the UCF/NCF files and the constraints in the schematic or 
synthesis file are applied equally; it does not matter whether a constraint is entered in 
the schematic or synthesis file or in the UCF/NCF files. If the constraints overlap, 
however, UCF/NCF constraints override the schematic constraint. Refer to the "Using 
Timing Constraints" chapter of the Development System Reference Guide for additional 
details on constraint priorities.

If by mistake two or more elements are locked onto a single location, the mapper 
detects the conflict, issues a detailed error message, and stops processing so that you 
can correct the mistake.

The syntax for constraints in the UCF/NCF files is as follows.

{NET | INST | PIN} full_name constraint ;

or

SET set_name set_constraint ;

where

full_name is a full hierarchically qualified name of the object being referred to. When 
the name refers to a pin, the instance name of the element is also required.

constraint is a constraint in the same form as it would be used if it were attached as an 
attribute on a schematic object. For example, LOC=P38 or FAST, and so forth.

set_name is the name of an RLOC set. Refer to the “RLOC Sets” section for more infor-
mation.

set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint.

Note: To specify attributes for the CONFIG or TIMEGRP primitives (tables), the 
keywords CONFIG or TIMEGRP precede the attribute definitions in the constraints 
files.

CONFIG PROHIBIT=CLB_R6C8 ;

TIMEGRP input_pads=pads EXCEPT output_pads ;

For the TIMESPEC primitive (table), the use of the keyword TIMESPEC in the 
constraints files is optional.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names 
that match internal reserved words will be rejected unless the names are enclosed in 
double quotes. It is good practice to enclose all names in double quotes. 
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For example, the following entry would not be accepted because the word net is a 
reserved word.

NET net OFFSET=IN 20 BEFORE CLOCK;

Following is the recommended way to enter the constraint.

NET “net” OFFSET=IN 20 BEFORE CLOCK;

or

NET “$SIG_0” OFFSET=IN 20 BEFORE CLOCK;

Inverted signal names, for example ~OUTSIG1, must always be enclosed in double 
quotes as shown in the following example.

NET “~OUTSIG1” OFFSET=IN 20 BEFORE CLOCK;

Wildcards
You can use the wildcard characters, * and ?, in constraint statements as follows. The 
asterisk (*) represents any string of zero or more characters. The question mark (?) 
indicates a single character.

In net names, the wildcard characters enable you to select a group of symbols whose 
output net names match a specific string or pattern. For example, the following 
constraint increases the output speed of the pads to which nets with names that begin 
with any series of characters followed by "AT" and end with one single characters are 
connected.

NET *AT? FAST ;

In an instance name, a wildcard character by itself represents every symbol of the 
appropriate type. For example, the following constraint initializes an entire set of 
ROMs to a particular hexadecimal value, 5555.

INST $1I3*/ROM2 INIT=5555 ;

If the wildcard character is used as part of a longer instance name, the wildcard repre-
sents one or more characters at that position.

In a location, you can use a wildcard character for either the row number or the 
column number. For example, the following constraint specifies placement of any 
instance under the hierarchy of loads_of_logic in any CLB in column 8.

INST /loads_of_logic/* LOC=CLB_r*c8 ;

Wildcard characters can be used in dot extensions.

CLB_R1C3.* 

Wildcard characters cannot be used for both the row number and the column number 
in a single constraint, since such a constraint is meaningless.
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Traversing Hierarchies
Note: Top-level block names (design names) are ignored when searching for instance 
name matches.

You can use the asterisk wildcard character (*) to traverse the hierarchy of a design 
within a UCF or NCF file. The following syntax applies (where level1 is an example 
hierarchy level name).

Consider the following design hierarchy.

With the example design hierarchy, the following specifications illustrate the scope of 
the wildcard.

INST * => <everything>

INST /* => <everything>

INST /*/ => <$A1,$B1,$C1>

INST $A1/* => <$A21,$A22,$A3,$A4>

INST $A1/*/ => <$A21,$A22>

INST $A1/*/* => <$A3,$A4>

INST $A1/*/*/ => <$A3>

INST $A1/*/*/* => <$A4>

INST $A1/*/*/*/ => <$A4>

INST /*/*22/ => <$A22,$B22,$C22>

INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C22,$C3>

File Name
By default, NGDBuild reads the constraints file that carries the same name as the 
input design with a .ucf extension; however, you can specify a different constraints 
file name with the -uc option when running NGDBuild. NGDBuild automatically 
reads in the NCF file if it has the same base name as the input XNF or EDIF file and is 
in the same directory as the XNF or EDIF file.

Note: The implementation tools (NGDBuild, MAP, PAR, etc.) require file name exten-
sions in all lowercase (.ucf, for example) in command lines.

* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy level but no further

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571
Libraries Guide, 2.1i 12-7



Libraries Guide, 2.1i
Instances and Blocks
Because the statements in the constraints file concern instances and blocks, these enti-
ties are defined here.

An instance is a symbol on the schematic. An instance name is the symbol name as it 
appears in the EDIF or XNF netlist. A block is a CLB, an IOB, or a TBUF. You can 
specify the block name by using the BLKNM, HBLKNM, or the XBLKNM attribute; by 
default, the software assigns a block name on the basis of a signal name associated 
with the block.

Constraints Editor
The Xilinx Constraints Editor is a GUI tool provided in the Xilinx Development 
System for entering timing constraints and pin location constraints. The Constraints 
Editor’s GUIs simplify constraint entry by guiding you through constraint creation 
without your needing to understand UCF file syntax. 

The Constraints Editor automatically writes out a valid UCF file and a valid NGD file. 
These files are processed by the Map program, which generates a PCF file. Constraints 
created using the Xilinx Constraints Editor appear syntactically in the Editable 
Constraints list the same way they appear in the UCF.

A Constraints Editor "Example" section is included with each attribute/constraint 
description in the "Attributes and Logcal Constraints" section in this chapter. The 
Constraints Editor Example gives information on the appropriate Constraints Editor 
GUI, if one is available, to assist you with entry of that constraint. For a detailed 
description of how to use the editor, see the Constraints Editor Guide.
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Attributes/Logical Constraints

Syntax Summary
This section summarizes attribute and logical constraints syntax. This syntax 
conforms to the conventions given in the “Conventions” section. A checkmark (√) 
appearing in a column means that the attribute/constraint is supported for architec-
tures that use the indicated library. (Refer to the “Applicable Architectures” section of 
the “Xilinx Unified Libraries” chapter for information on the specific device architec-
tures supported in each library.) A blank column means that the attribute/constraint 
is not supported for architectures using that library.

BASE BASE = {F | FG | FGM | IO}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

BLKNM BLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

BUFG  BUFG = {CLK | OE | SR}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CLKDV_DIVIDE CLKDV_DIVIDE={ 1.5 | 2 | 2.5 | 3 | 4 | 5 | 8 | 16}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

COLLAPSE COLLAPSE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

CONFIG* CONFIG = tag value [tag value]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
*The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not confuse this attribute with the CONFIG primitive,

which is a table containing PROHIBIT and PART attributes.
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DECODE DECODE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

DIVIDE1_BY and 
DIVIDE2_BY

DIVIDE1_BY = {4 | 16 | 64 | 256}
DIVIDE2_BY = {2 | 8 | 32 | 128 | 1024 | 4096 | 16384 | 65536}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

DOUBLE DOUBLE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √

DRIVE XC4000X, SpartanXL: DRIVE = {12 |24}
Spartan2, Virtex: DRIVE = {2 | 4 | 6 | 8 | 12 | 16 | 24}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗ √ √ √
* supported for XC4000XV and XC4000XLA designs only

DROP_SPEC TSidentifier=DROP_SPEC

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

DUTY_CYCLE_C
ORRECTION

DUTY_CYCLE_CORRECTION={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

EQUATE_F and 
EQUATE_G

EQUATE_F = equation
EQUATE_G = equation

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

FAST FAST

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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FILE FILE = file_name [.extension]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

HBLKNM HBLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

HU_SET HU_SET = set_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

INIT INIT ={S | R | value}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

INIT_0x INIT_0x = value

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

INREG INREG

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

IOB IOB={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

IOSTANDARD IOSTANDARD=iostandard_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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KEEP KEEP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √∗ √∗
*Only at BEL level

KEEPER KEEPER

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

LOC FPGAs:
LOC=location1[,location2,... , locationn]
or:
LOC=location : location [SOFT ] 
CPLDs: LOC = {pin_name | FBnn | FBnn_mm}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

MAP MAP = [PUC | PUO | PLC | PLO ]*

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
*Only PUC and PUO are observed. PLC and PLO are translated to PUC and PUO, respectively. The default is PUO.

MAXDELAY MAXDELAY = allowable_delay [units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

MAXSKEW MAXSKEW = allowable_skew [units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

MEDDELAY MEDDELAY

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

NODELAY NODELAY

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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NOREDUCE NOREDUCE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OFFSET OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net" [TIMEGRP 
"reggroup"]
or:
NET "name" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net" 
[TIMEGRP "reggroup"]
or:
TIMEGRP "group" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} 
"clk_net" [TIMEGRP "reggroup"]
or:
TSidentifier= [TIMEGRP name] OFFSET = {IN|OUT} offset_time [units] 
{BEFORE|AFTER} "clk_net" [TIMEGRP "reggroup"]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

ONESHOT ONESHOT

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

OPT_EFFORT OPT_EFFORT= {NORMAL | HIGH}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OPTIMIZE OPTIMIZE ={AREA | SPEED | BALANCE | OFF}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √

OUTREG OUTREG

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

PART PART = part_type

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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PERIOD PERIOD = period[units] [{HIGH | LOW} [high_or_low_time [hi_lo_units]]] 
or:
TSidentifier=PERIOD TNM_reference period[units] [{HIGH | LOW} [high_or_low_time 
[hi_lo_units]]]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

PROHIBIT PROHIBIT = location1[, location2, ... , locationn]
or:
PROHIBIT = location : location

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

PULLDOWN PULLDOWN

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

PULLUP PULLUP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

PWR_MODE PWR_MODE ={LOW | STD}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

REG REG={ CE | TFF }

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

RLOC XC4000E, XC4000X: RLOC = RmCn[.extension]
XC5200, Spartan2, Virtex: RLOC = RmCn.extension

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

RLOC_ORIGIN RLOC_ORIGIN = RmCn

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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RLOC_RANGE RLOC_RANGE = Rm1Cn1:Rm2Cn2

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

S(ave) - Net Flag 
Attribute

S

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

SLOW SLOW

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

STARTUP_WAIT STARTUP_WAIT={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

TEMPERATURE TEMPERATURE=value[C | F | K ]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

TIG TIG
or:
TIG= TSidentifier1 [, TSidentifier2, ... ,TSidentifiern]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

Time Group Attributes new_group_name=[RISING | FALLING] group_name1 [EXCEPT group_name2... 
group_namen]
or:
new_group_name=[TRANSHI | TRANSLO] group_name1 [EXCEPT group_name2... 
group_namen]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
Libraries Guide, 2.1i 12-15



Libraries Guide, 2.1i
TNM TNM = [predefined_group:] identifier 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

TNM_NET TNM_NET = [predefined_group:] identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

TPSYNC TPSYNC = identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

TPTHRU TPTHRU = identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

TSidentifier TSidentifier=[MAXDELAY] FROM source_group TO dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group TO dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn] TO 
dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group TO dest_group another_TSid[/ | *] number
or:
TSidentifier=PERIOD TNM_reference period[units] [{HIGH | LOW} [high_or_low_time 
[hi_lo_units]]]
or:
TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number [{HIGH | 
LOW} [high_or_low_time [hi_lo_units]]]
or:
TSidentifier=FROM source_group TO dest_group TIG
or:
TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn] TO 
dest_group TIG

NOTE: The use of a colon (:) instead of a space as a separator is optional.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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U_SET U_SET = name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

USE_RLOC USE_RLOC = {TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √

VOLTAGE VOLTAGE=value[V]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

WIREAND WIREAND

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗
* not supported for XC9500XL and XC9500XV designs

XBLKNM XBLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
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Attributes/Constraints Applicability
Certain constraints can only be defined at the design level, whereas other constraints 
can be defined in the various configuration files. The following table lists the 
constraints and their applicability to the design, and the NCF, UCF, and PCF files.

The CE column indicates which constraints can be entered using the Xilinx 
Constraints Editor, a GUI tool in the Xilinx Development System. The Constraints 
Editor passes these constraints to the implementation tools through a UCF file.

A check mark (√) indicates that the constraint applies to the item for that column.

Table 12-1 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF

BASE √
BLKNM √ √ √
BUFG √ √ √
CLKDV_DIVIDE √ √ √
COLLAPSE √ √ √
COMPGRP √
CONFIG** √
DECODE √ √ √
DIVIDE1_BY √ √
DIVIDE2_BY √ √
DOUBLE √
DRIVE √ √ √ √
DROP_SPEC √ √ √*

DUTY_CYCLE_CORRECTION √ √ √
EQUATE_F √
EQUATE_G √
FAST √ √ √ √
FILE √
FREQUENCY √
HBLKNM √ √ √
HU_SET √ √ √
INIT √ √ √***

INIT_0x √ √ √
INREG √ √ √ √
IOB √ √ √
IOSTANDARD √ √ √ √
KEEP √ √ √
KEEPER √ √ √ √
LOC √ √ √ √ √*
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LOCATE √
LOCK √
MAP √ √ √
MAXDELAY √ √ √ √*

MAXSKEW √ √ √ √*

MEDDELAY √ √ √
NODELAY √ √ √
NOREDUCE √ √ √
OFFSET √ √ √ √*

ONESHOT √
OPT_EFFORT √ √ √
OPTIMIZE √ √ √
OUTREG √ √ √ √
PATH √
PART √ √ √
PENALIZE TILDE √
PERIOD √ √ √ √ √*

PIN √
PRIORITIZE √
PROHIBIT √ √ √ √ √*

PULLDOWN √ √ √ √
PULLUP √ √ √ √
PWR_MODE √ √ √
REG √ √ √
RLOC √ √ √
RLOC_ORIGIN √ √ √ √
RLOC_RANGE √ √ √ √
S(ave) - Net Flag attribute √ √ √
SITEGRP √
SLOW √ √ √ √
STARTUP_WAIT √ √ √
TEMPERATURE √ √ √ √ √
TIG √ √ √ √ √*

Time group attributes √ √ √ √ √
TNM √ √ √ √
TNM_NET √ √ √ √
TPSYNC √ √ √
TPTHRU √ √ √ √

Table 12-1 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF
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TSidentifier √ √ √ √ √*

U_SET √ √ √
USE_RLOC √ √ √
VOLTAGE √ √ √ √ √
WIREAND √ √ √
XBLKNM √ √ √
 *Use cautiously — although the constraint is available, there are differences between the UCF/NCF

and PCF syntax.

**The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not confuse this
attribute with the CONFIG primitive, which is a table containing PROHIBIT and PART attributes.

***INIT is allowed in the UCF for CPLDs only.

Table 12-1 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF
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Macro and Net Propagation Rules
Not all constraints can be attached to nets and macros. The following table lists the 
constraints and stipulates whether they can be attached to a net, a macro, or neither.

Table 12-2 Macro and Net Propagation Rules

Constraint/Attribute
Action when 

attached to a net
Action when attached 

to a macro

BASE illegal illegal

BLKNM illegal Note 4

BUFG Note 2 Note 4

CLKDV_DIVIDE illegal illegal

COLLAPSE Note 2 Note 4

CONFIG* illegal illegal

DECODE Note 1 Note 4

DIVIDE1_BY and DIVIDE2_BY illegal illegal

DOUBLE Note 1 Note 4

DRIVE Note 6 Note4

DROP_SPEC illegal illegal

DUTY_CYCLE_CORRECTION illegal Note 4

EQUATE_F and EQUATE_G illegal illegal

FAST Note 6 Note 4

FILE illegal Note 5

HBLKNM illegal Note 4

HU_SET illegal Note 4

INIT FPGA: illegal
CPLD: Note 1

Note 4

INIT_0x illegal illegal

INREG illegal illegal

IOB illegal Note 4

IOSTANDARD Note 6 Note 4

KEEP Note 3 illegal

KEEPER Note 6 Note 4

LOC All: Note 6
CPLD: Also Note 1

Note 4

MAP illegal illegal

MAXDELAY Note 3 illegal

MAXSKEW Note 3 illegal

MEDDELAY Note 6 Note 4

NODELAY Note 6 Note 4

NOREDUCE Note 3 illegal

OFFSET Note 3 illegal
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ONESHOT illegal illegal

OPT_EFFORT illegal Note 5

OPTIMIZE illegal Note 5

OUTREG illegal illegal

PART illegal illegal

PERIOD Note 3 illegal

PROHIBIT illegal illegal

PULLDOWN Note 3 illegal

PULLUP Note 3 illegal

PWR_MODE Note 1 Note 4

REG Note 1 Note 4

RLOC illegal Note 4

RLOC_ORIGIN illegal Note 4

RLOC_RANGE illegal Note 4

S(ave) - Net Flag Attribute Note 3 illegal

SLOW Note 6 Note 4

STARTUP_WAIT illegal Note 4

TEMPERATURE illegal illegal

TIG Note 2 Note 4

Time Group Attributes illegal illegal

TNM Note 2 Note 4

TNM_NET Note 2 illegal

TPSYNC Note 3 illegal

TPTHRU Note 3 illegal

TSidentifier illegal illegal

U_SET illegal Note 4

USE_RLOC illegal Note 4

VOLTAGE illegal illegal

WIREAND Note 3 illegal

XBLKNM illegal Note 4
Note 1: Attaches to all applicable elements that drive the net.

Note 2: The attribute has a net form and so no special propagation is required.

Note 3: Attribute is a net attribute and any attachment to a macro is illegal.

Note 4: Propagated to all applicable elements in the hierarchy below the module.

Note 5: Attribute is a macro attribute and any attachment to a net is illegal.

Note 6: Attribute is illegal when attached to a net except when the net is connected to a pad. In this
case, the attribute is treated as attached to the pad instance.

*The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not confuse this
attribute with the CONFIG primitive, which is a table containing PROHIBIT and PART attributes.

Table 12-2 Macro and Net Propagation Rules

Constraint/Attribute
Action when 

attached to a net
Action when attached 

to a macro
12-22 Xilinx Development System



Attributes, Constraints, and Carry Logic
Syntax Descriptions
The information that follows describes in alphabetical order the attributes and 
constraints. A checkmark (√) appearing in a column means that the attribute/
constraint is supported for architectures that use the indicated library. (Refer to the 
“Applicable Architectures” section of the “Xilinx Unified Libraries” chapter for infor-
mation on the specific device architectures supported in each library.) A blank column 
means that the attribute/constraint is not supported for architectures that use that 
library.

The description for each attribute contains a subsection entitled “Applicable 
Elements.” This section describes the base primitives and circuit elements to which 
the constraint or attribute can be attached. In many cases, constraints or attributes can 
be attached to macro elements, in which case some resolution of the user’s intent is 
required. Refer to the “Macro and Net Propagation Rules” section for a table 
describing the additional propagation rules for each constraint and attribute.

BASE

Applicable Elements

CLB or IOB primitives

Description

The BASE attribute defines the base configuration of a CLB or an IOB. For an IOB 
primitive, it should always be set to IO. For a CLB primitive, it can be one of three 
modes in which the CLB function generator operates.

• F mode allows the CLB to implement any one function of up to five variables.

• FG mode gives the CLB any two functions of up to four variables. Of the two sets 
of four variables, one input (A) must be common, two (B and C) can be either 
independent inputs or feedback from the Qx and Qy outputs of the flip-flops 
within the CLB, and the fourth can be either of the two other inputs to the CLB (D 
and E). 

• FGM mode is similar to FG, but the fourth input must be the D input. The E input 
is then used to control a multiplexer between the two four-input functions, 
allowing some six- and seven-input functions to be implemented. 

CLB and IOB base configurations of the XC3000 family are illustrated in the “IOB and 
CLB Primitives for Base Configurations XC3000” figure. In this drawing, BASE F, FG, 
and FGM are for CLBs; BASE IO is for IOBs.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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Figure 12-1 IOB and CLB Primitives for Base Configurations XC3000

In a schematic, BASE can be attached to any valid instance. Not supported for UCF, 
NCF, or PCF files.

Syntax

BASE=mode

where mode can be F, FG, or FGM for a CLB and IO for an IOB.

Example

Schematic

Attach to a valid instance.

UCF/NCF file

N/A

Constraints Editor

N/A

BLKNM

Applicable Elements

1. IOB, CLB and CLBMAP (See the Note at the end of this list)

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3, 7, 8

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
2, 3, 4, 6, 7, 

11

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
1, 2, 3, 4, 7, 
8, 9, 10, 11

√
1, 2, 3, 4, 7, 
8, 9, 10, 11

X4708 

QX

QY

F

CLB: BASE F

QX

QY

CLB: BASE FG

F

G

QX

QY

F

CLB: BASE FGM IOB: BASE IO

G

PAD

M

E
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5. HMAP

6. F5MAP

7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Note: You can also attach the BLKNM constraint to the net connected to the pad 
component in a UCF file. NGDBuild transfers the constraint from the net to the pad 
instance in the NGD file so that it can be processed by the mapper. Use the following 
syntax.

NET net_name BLKNM=property_value

Description

BLKNM assigns block names to qualifying primitives and logic elements. If the same 
BLKNM attribute is assigned to more than one instance, the software attempts to map 
them into the same block. Conversely, two symbols with different BLKNM names are 
not mapped into the same block. Placing similar BLKNMs on instances that do not fit 
within one block creates an error.

Specifying identical BLKNM attributes on FMAP and/or HMAP symbols tells the 
software to group the associated function generators into a single CLB. Using 
BLKNM, you can partition a complete CLB without constraining the CLB to a phys-
ical location on the device.

BLKNM attributes, like LOC constraints, are specified from the schematic. Hierar-
chical paths are not prefixed to BLKNM attributes, so BLKNM attributes for different 
CLBs must be unique throughout the entire design. See the section on the 
“HBLKNM” attribute for information on attaching hierarchy to block names.

The BLKNM attribute allows any elements except those with a different BLKNM to be 
mapped into the same physical component. Elements without a BLKNM can be 
packed with those that have a BLKNM. See the section on the “XBLKNM” attribute 
for information on allowing only elements with the same XBLKNM to be mapped 
into the same physical component.

For XC5200, a given BLKNM string can only be used to group a logic cell (LC), which 
contains one register, one LUT (FMAP), and one F5_MUX element. An error will 
occur if two or more registers, two or more FMAPs, or two or more F5_MUX elements 
have the same BLKNM attribute.

Syntax

BLKNM=block_name

where block_name is a valid LCA block name for that type of symbol. For a list of 
prohibited block names, see the “Naming Conventions” section of each user interface 
manual.

For information on assigning hierarchical block names, see the “HBLKNM” section in 
this chapter.
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Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named block1 to a block named 
U1358.

INST $1I87/block1 BLKNM=U1358;

Constraints Editor

N/A

BUFG

Applicable Elements

Any input buffer (IBUF), input pad net, or internal net that drives a CLK, OE, or SR 
pin

Description

When applied to an input buffer or input pad net, th BUFG attribute maps the tagged 
signal to a global net. When applied to an internal net, the tagged signal is brought 
out to a global device control pin and then routed to the connected internal control 
pins via a global net.

Syntax

BUFG={CLK | OE | SR}

where CLK, OE, and SR indicate clock, output enable, or set/reset, respectively.

Example

Schematic

Attach to an IBUF instance of the input pad connected to an IBUF input.

UCF/NCF file

This statement maps the signal named “fastclk” to a global clock net.

NET fastclk BUFG=CLK;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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CLKDV_DIVIDE

Applicable Elements

Any CLKDLL or CLKDLLHF instance

Description

CLKDV_DIVIDE specifies the extent to which the CLKDLL or CLKDLLHF clock 
divider (CLKDV output) is to be frequency divided. 

Syntax

CLKDV_DIVIDE={1.5 | 2.0 | 2.5 | 3.0 | 4.0 | 5.0 | 8.0 | 16.0}

The default is 2.0 if no CLKDV_DIVIDE attribute is specified.

Note: The CLKDV_DIVIDE value must be entered as a real number.

Example

Schematic

Attach to a CLKDLL or CLKDLLHF instance.

UCF/NCF file

This statement specifies a frequency division factor of 8 for the clock divider foo/bar.

INST foo/bar CLKDV_DIVIDE=8;

Constraints Editor

N/A

COLLAPSE

Applicable Elements

Any internal net

Description

COLLAPSE forces a combinatorial node to be collapsed into all of its fanouts.

Syntax

COLLAPSE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

Libraries Guide, 2.1i 12-27



Libraries Guide, 2.1i
Example

Schematic

Attach to a logic symbol or its output net.

UCF/NCF file

This statement forces net $1N6745 to collapse into all its fanouts.

NET $1I87/$1N6745 COLLAPSE;

Constraints Editor

N/A

CONFIG

Applicable Elements

IOB and CLB primitives

Description

CONFIG defines the configuration of the internal options of a CLB or IOB.

Note: Do not confuse this attribute with the CONFIG primitive, which is a table 
containing PROHIBIT and PART attributes. Refer to the “PROHIBIT” section for 
information on disallowing the use of a site and to the “PART” section for information 
on defining the part type for the design.

Syntax

CONFIG=tag value [tag value]

where tag and value are derived from the following tables.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

Table 12-3 XC3000 CLB Configuration Options

Tag BASE F BASE FG BASE FGM*

X F, QX F, QX M, QX

Y F, QY G, QY M, QY

DX DI, F DI, F, G DI, M

DY DI, F DI, F, G DI, M 

CLK K, NOT K, NOT K, NOT

RSTDIR RD RD RD

ENCLK EC EC EC

F A,B,C,D,E,QX, QY A,B,C,D,E,QX, QY A,B,C,D,QX, QY

G None A,B,C,D,E,QX, QY A,B,C,D,QX, QY
*For BASE FGM, M=F if E=0, and M=G if E=1
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Example

Schematic

Attach to a valid instance.

Following is an example of a valid XC3000 CLB CONFIG attribute value.

X:QX Y:QY DX:F DY:G CLK:K ENCLK:EC

UCF/NCF file

N/A

Constraints Editor

N/A

DECODE

Applicable Elements

WAND1

Description

DECODE defines how a wired-AND (WAND) instance is created, either using a BUFT 
or an edge decoder. If the DECODE attribute is placed on a single-input WAND1 gate, 
the gate is implemented as an input to a wide-edge decoder in XC4000 designs.

Syntax

DECODE

DECODE attributes can only be attached to a WAND1 symbol.

Example

Schematic

Attach to a WAND1 symbol.

Table 12-4 XC3000 IOB Configuration Options

Tag BASE IO

IN I, IQ, IKNOT, FF, LATCH, PULLUP

OUT O, OQ, NOT, OKNOT, FAST

TRI T, NOT

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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UCF/NCF file

This statement implements an instantiation of a wired AND using the edge decoder 
$COMP_1

INST address_decode/$COMP_1 DECODE;

Constraints Editor

N/A

DIVIDE1_BY and DIVIDE2_BY

Applicable Elements

OSC5, CK_DIV

Description

DIVIDE1_BY and DIVIDE2_BY define the division factor for the on-chip clock 
dividers.

Syntax

DIVIDE1_BY={4 | 16 | 64 | 256} 

DIVIDE2_BY={2 | 8 | 32 | 128 | 1024 | 4096 | 16384 | 65536} 

Examples

Schematic

Attach to a valid instance.

NCF file

This statement defines the division factor of 8 for the clock divider $1I45678.

INST clk_gen/$1I45678 divide2_by=8;

Note: DIVDE1_BY and DIVIDE2_BY are not supported in the UCF file. 

Constraints Editor

N/A

DOUBLE

Applicable Elements

PULLUP components

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √
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Description

DOUBLE specifies double pull-up resistors on the horizontal longline. On XC3000 
parts, there are internal nets that can be set as 3-state with two programmable pull-up 
resistors available per line. If the DOUBLE attribute is placed on a PULLUP symbol, 
both pull-ups are used, enabling a fast, high-power line. If the DOUBLE attribute is 
not placed on a pull-up, only one pull-up is used, resulting in a slower, lower-power 
line.

When the DOUBLE attribute is present, the speed of the distributed logic is increased, 
as is the power consumption of the part. When only half of the longline is used, there 
is only one pull-up at each end of the longline.

While the DOUBLE attribute can be used for the XC4000, Spartan, and SpartanXL, it is 
not recommended. The mapper activates both pull-up resistors if the entire longline 
(not a half-longline) is used. When DOUBLE is used, PAR will not add an additional 
pull-up to achieve your timing constraints while routing XC4000, Spartan, or Spar-
tanXL designs (refer to the "PAR - Place and Route" Chapter of the Development System 
Reference Guide for information on PAR and timing optimization).

Syntax

DOUBLE

Example

Schematic

Attach to a PULLUP component only.

UCF/NCF file

N/A

Constraints Editor

N/A

DRIVE

Applicable Elements

1. IOB output components (OBUF, OFD, etc.)

2. OBUF, OBUFT, IOBUF instances (with implied LVTTL standards)

Description

For the XC4000XV, XC4000XLA, and SpartanXL, DRIVE programs the output drive 
current from High (24 mA) to Low (12 mA).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗
1

√
1

√
2

√
2

* supported for XC4000XV and XC4000XLA designs only
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For Virtex and Spartan2, DRIVE selects output drive strength (mA) for the compo-
nents that use the LVTTL interface standard.

Syntax

XC4000XV, XC4000XLA, and SpartanXL

DRIVE={12 | 24}

Spartan2, Virtex

DRIVE={2 | 4 | 6 | 8 | 12 | 16 | 24}

where 12 mA is the default.

Example

Schematic

Attach to a valid IOB output component.

UCF/NCF file

This statement specifies a High drive.

INST /top/my_design/obuf DRIVE=24 ;

Constraints Editor

DRIVE current can be selected for any output pad signal in the Ports tab (I/O Config-
uration Options).

DROP_SPEC

Applicable Elements

All timing specifications. Should be used only in UCF or PCF files.

Description

DROP_SPEC allows you to specify that a timing constraint defined in the input 
design should be dropped from the analysis. This constraint can be used when new 
specifications defined in a constraints file do not directly override all specifications 
defined in the input design, and some of these input design specifications need to be 
dropped.

While this timing command is not expected to be used much in an input netlist (or 
NCF file), it is not illegal. If defined in an input design this attribute must be attached 
to a TIMESPEC primitive.

Syntax

TSidentifier=DROP_SPEC

where TSidentifier is the identifier name used for the timing specification that is to be 
removed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Example

Schematic

N/A

UCF/NCF file

This statement cancels the input design specification TS67.

TIMESPEC TSidentifier TS67=DROP_SPEC;

Constraints Editor

N/A

DUTY_CYCLE_CORRECTION

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUFGDLL instance

Description

DUTY_CYCLE_CORRECTION corrects the duty cycle of the CLK0 output.

Syntax

DUTY_CYCLE_CORRECTION={TRUE | FALSE}

where TRUE corrects the duty cycle to be a 50_50 duty cycle and FALSE does not 
change the duty cycle. The default is FALSE.

Example

Schematic

Attach to a CLKDLL, CLKDLLHF, or BUFGDLL instance.

UCF/NCF file

This statement specifies a 50_50 duty cycle for foo/bar.

INST foo/bar DUTY_CYCLE_CORRECTION=TRUE;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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EQUATE_F and EQUATE_G

Applicable Elements

CLB primitive

Description

EQUATE_F and EQUATE_G set the logic equations describing the F and G function 
generators of a CLB, respectively.

Syntax

EQUATE_F=equation

EQUATE_G=equation

where equation is a logical equation of the function generator inputs (A, B, C, D, E, QX, 
QY) using the boolean operators listed in the following table.

Example

Schematic

Attach to a valid instance.

Here are two examples illustrating the use of the EQUATE_F attribute.

EQUATE_F=F=((~A*B)+D))@Q
F=A@B+(C*~D)

UCF/NCF file

N/A

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

Table 12-5 Valid XC3000 Boolean Operators

Symbol Boolean Equivalent

~ NOT

* AND

@ XOR

+ OR

( ) Group expression
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FAST

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the FAST attribute to the net connected to the pad compo-
nent in a UCF file. NGDBuild transfers the attribute from the net to the pad instance 
in the NGD file so that it can be processed by the mapper. Use the following syntax.

NET net_name FAST

Description

FAST increases the speed of an IOB output.

Note:  The FAST attribute produces a faster output but may increase noise and power 
consumption.

Syntax

FAST

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement increases the output speed of the element y2.

INST $1I87/y2 FAST;

This statement increases the output speed of the pad to which net1 is connected.

NET net1 FAST;

Constraints Editor

FAST slew rate can be selected for any output pad signal in the Ports tab (I/O Config-
uration Options).

FILE

Applicable Elements

Macros that refer to underlying non-schematic designs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Description

FILE is attached to a macro (a custom symbol) that does not have an underlying sche-
matic. It identifies the file to be looked at for the logic definition of that macro.The 
type of file to be searched for is defined by the search order of the program compiling 
the design. 

Syntax

FILE=file_name[.extension]

where file_name is the name of a file that represents the underlying logic for the 
element carrying the attribute. Example file types include EDIF, EDN, NMC. 

Schematic

Attach to a valid instance.

UCF/NCF file

N/A

Constraints Editor

N/A

HBLKNM

Applicable Elements

1. IOB, CLB and CLBMAP (See Note below)

2. Registers

3. I/O elements and pads

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

8. PULLUP

9. ACLK, GCLK

10. BUFG

11. BUFGS, BUFGP

12. ROM

13. RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3, 7, 8, 

9, 10,12

√
2, 3, 4, 5, 7, 
8, 10, 11, 12, 

13, 14, 15

√
2, 3, 4, 5, 7, 
8, 10, 12, 13, 

14, 15

√
2, 3, 4, 6, 7, 

10, 15

√
2, 3, 4, 5, 7, 
8, 10, 11, 12, 

13, 14, 15

√
2, 3, 4, 5, 7, 
8, 10, 12, 13, 

14, 15
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14. RAMS and RAMD

15. Carry logic primitives

Note: You can also attach the HBLKNM constraint to the net connected to the pad 
component in a UCF file. NGDBuild transfers the constraint from the net to the pad 
instance in the NGD file so that it can be processed by the mapper. Use the following 
syntax.

NET net_name HBLKNM=property_value

Description

HBLKNM assigns hierarchical block names to logic elements and controls grouping 
in a flattened hierarchical design. When elements on different levels of a hierarchical 
design carry the same block name and the design is flattened, NGDBuild prefixes a 
hierarchical path name to the HBLKNM value.

Like BLKNM, the HBLKNM attribute forces function generators and flip-flops into 
the same CLB. Symbols with the same HBLKNM attribute map into the same CLB, if 
possible. However, using HBLKNM instead of BLKNM has the advantage of adding 
hierarchy path names during translation, and therefore the same HBLKNM attribute 
and value can be used on elements within different instances of the same macro.

For XC5200, a given HBLKNM string can only be used to group a logic cell (LC), 
which contains one register, one LUT (FMAP), and one F5_MUX element. An error 
will occur if two or more registers, two or more FMAPs, or two or more F5_MUX 
elements have the same HBLKNM attribute.

Syntax

HBLKNM=block_name

where block_name is a valid LCA block name for that type of symbol. 

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement specifies that the element this_hmap will be put into the block named 
group1. 

INST $I13245/this_hmap HBLKNM=group1;

This statement attaches the HBLKNM constraint to the pad connected to net1.

NET net1 HBLKNM=$COMP_0;

Note: Elements with the same HBLKNM are placed in the same logic block if 
possible. Otherwise an error occurs. Conversely, elements with different block names 
will not be put into the same block.

Constraints Editor

N/A
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HU_SET

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro Instance

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

Description

The HU_SET constraint is defined by the design hierarchy. However, it also allows 
you to specify a set name. It is possible to have only one H_SET constraint within a 
given hierarchical element (macro) but by specifying set names, you can specify 
several HU_SET sets.

NGDBuild hierarchically qualifies the name of the HU_SET as it flattens the design 
and attaches the hierarchical names as prefixes. The difference between an HU_SET 
constraint and an H_SET constraint is that an HU_SET has an explicit user-defined 
and hierarchically qualified name for the set, but an H_SET constraint has only an 
implicit hierarchically qualified name generated by the design-flattening program. An 
HU_SET set “starts” with the symbols that are assigned the HU_SET constraint, but 
an H_SET set “starts” with the instantiating macro one level above the symbols with 
the RLOC constraints.

For background information about using the various set attributes, refer to the “RLOC 
Sets” section.

Syntax

HU_SET=set_name

where set_name is the identifier for the set; it must be unique among all the sets in the 
design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3, 5, 7, 
8, 9, 10, 12

√
1, 2, 3, 5, 7, 
8, 9, 10, 12

√
1, 2, 4, 6, 7, 

8, 12

√
1, 2, 3, 5, 7, 
8, 9, 10, 12

√
1, 2, 3, 5, 7, 
8, 9, 10, 12

√ 
1,2, 7, 11, 12

√ 
1,2, 7, 11, 12
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Example 

Schematic

Attach to a valid instance.

UCF/NCF file

This statement assigns an instance of the register FF_1 to a set named heavy_set.

INST $1I3245/FF_1 HU_SET=heavy_set;

Constraints Editor

N/A

INIT

Applicable Elements

1. ROM

2. RAM

3. Registers

4. LUTs, SRLs

Description

INIT Initializes ROMs, RAMs, registers, and look-up tables. The least significant bit of 
the value corresponds to the value loaded into the lowest address of the memory 
element. For register initialization, S indicates Set and R indicates Reset. The INIT 
attribute can be used to specify the initial value directly on the symbol with the 
following limitation. INIT may only be used on a RAM or ROM that is 1 bit wide and 
not more than 32 bits deep.

Syntax

INIT={value | S | R}

where value is a 4-digit or 8-digit hexadecimal number that defines the initialization 
string for the memory element, depending on whether the element is 16-bit or 32-bit. 
For example, INIT=ABAC1234. If the INIT attribute is not specified, the RAM is 
initialized with zero.

Note: For RAM32X1S and RAM32X1S_1, mapping of the upper and lower INIT 
values to the F and G function generators are handled differently for Virtex and 
Spartan2 than they are for XC4000E, XC4000X, Spartan, and SpartanXL. Lower INIT 
values get mapped to the F and upper INIT values get mapped to the G for XC4000E, 
XC4000X, Spartan, and SpartanXL. For Virtex and Spartan2, lower INIT values get 
mapped to the G function generator and upper INIT values get mapped to the F func-
tion generator.

S indicates Set and R indicates Reset for registers.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3

√
1, 2, 3

√
3

√
1, 2, 3

√
1, 2, 3

√ 
2, 3, 4

√ 
2, 3, 4
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Note: For XC4000E, XC4000X, Spartan, and SpartanXL, INIT cannot specify a register 
as Set if the reset pin is being used or as Reset if the set pin is being used.

Example

Schematic

Attach to a net, pin, or instance.

UCF/NCF file

INIT={S | R} is supported in both the NCF and UCF files. It is allowed in the UCF to 
control the startup state of registers (primarily for CPLDs).

INIT=value is supported in the NCF file only. This statement defines the initialization 
string for an instantiation of the memory element ROM2 to be the 16-bit hexadecimal 
string 5555.

INST $1I3245/ROM2 INIT = 5555;

Note: INIT=value is not supported in the UCF file. 

Constraints Editor

N/A

INIT_0x

Applicable Elements

Block RAMs

Description

INIT_0x specifies initialization strings for block RAM components.

Syntax

INIT_0x=value

where 

x is any hexadecimal value 0 through F that specifies which 256 bits (see the following 
table) of the 4096-bit block RAM to initialize to the specified value.

value is a string of hexadecimal characters up to 64 digits wide. If the INIT_0x attribute 
has a value less than the required 64 hex digits, the value will be padded with zeros 
from the most significant bit (MSB) side. This fills the 256 bits in the initialization 
string (4 bits per hexadecimal character * 64 characters).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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INIT_0x Usage Rules

A summary of the rules for the INIT_0x attribute follows.

• If no INIT_0x attribute is attached to a block RAM, the contents of the RAM 
defaults to zero.

• Each initialization string defines 256 bits of the 4096-bit block RAM. For example, 
for a 4096-bit deep x 1-bit wide block RAM, INIT_00 assigns the 256 bits to 
addresses 0 through 255 and INIT_01 assigns the 256 bits to addresses 256 
through 511. For a 2048-bit deep x 2-bit wide block RAMs, INIT_00 assigns the 256 
bits to addresses 0 through 127 (a 2-bit value at each address) and INIT_01 assigns 
the 256 bits to addresses 128 through 255.

• If a subset of the INIT_00 through INIT_0F properties are specified for a block 
RAM, the remaining properties default to zero.

• In an initialization string, the least significant bit (LSB) is the right-most value.

• The least significant word of the block RAM address space specified by INIT_0x is 
composed of the least significant bits of the block RAM INIT_0x attribute.

INIT_0x Addresses

4096 x 1 2048 x 2 1024 x 4 512 x 8 256 x 16

INIT_00 255 — 0 127 — 0 63 — 0 31 — 0 15 — 0

INIT_01 511 — 256 255 — 128 127— 64 63 — 32 31 — 16

INIT_02 767 — 512 383 — 256 191 — 128 95 — 64 47 — 32

INIT_03 1023 — 768 511 — 384 255 — 192 127 — 96 63 — 48

INIT_04 1279 — 1024 639 — 512 319 — 256 159 — 128 79 — 64

INIT_05 1535 — 1280 767 — 640 383 — 320 191 — 160 95 — 80

INIT_06 1791 — 1536 895 — 768 447 — 384 223 — 192 111 — 96

INIT_07 2047 — 1792 1023 — 896 511 — 448 255 — 224 127 — 112

INIT_08 2303 — 2048 1151 — 1024 575 — 512 287 — 256 143 — 128

INIT_09 2559 — 2304 1279 — 1152 639 — 576 319 — 288 159 — 144

INIT_0A 2815 — 2560 1407 — 1280 703 — 640 351 — 320 175 — 160

INIT_0B 3071 — 2816 1535 — 1408 767 — 704 383 — 352 191 — 176

INIT_0C 3327 — 3072 1663 — 1536 831 — 768 415 — 384 207 — 192

INIT_0D 3583 — 3328 1791 — 1664 895 — 832 447 — 416 223 — 208

INIT_0E 3839 — 3584 1919 — 1792 959 — 896 479 — 448 239 — 224

INIT_0F 4095 — 3840 2047 — 1920 1023 — 960 511 — 480 255 — 240
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INIT_0x on Block RAMs of Various Widths

The initialization string "fills" the block RAM beginning from the LSB of the 256 bits 
for the specified INIT_0x addresses. The size of the word filling each address depends 
on the width of the block RAM being initialized— 1, 2, 4, 8, or 16 bits. 

For example, if INIT_0C=bcde7, the corresponding binary sequence is as follows:

The appropriate addresses in the RAM are initialized with the binary string content 
depending on the width of the RAM as shown in the following table.

1011 1100 1101 1110 0111 ←LSB

b c d e 7

Block RAM
(depth x width)

Address
(INIT_0C)

Contents

4096 x 1 3072
3073
3074
3075
.
3327

1
1
1
0
.
0

2048 x 2 1536
1537
1538
1539
.
1663

11
01
10
11
.
00

1024 x 4 768
769
770
771
.
831

0111
1110
1101
1100
.
0000

512 x 8 384
385
386
387
.
415

11100111
11001101
00001011
00000000
.
00000000

256 x 16 192
193
194
195
.
207

1100110111101111
0000000000001011
0000000000000000
0000000000000000
.
0000000000000000
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Example

Schematic

Attach to a block RAM instance.

UCF/NCF file

The following statement specifies that the INIT_03 addresses in instance foo/bar be 
initialized, starting from the LSB, to the hex value aaaaaaaaaaaaaaaaaaaa (padded 
with 44 zeros from the MSB side).

INST foo/bar INIT_03=aaaaaaaaaaaaaaaaaaaa;

Constraints Editor

N/A

INREG

Applicable Elements

Flip-flops, latches

Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply the INREG 
attribute to meet fast setup timing requirements. If a flip-flop or latch is driven by an 
IOB, you can specify INREG to enable PAR (Place and Route) to place the flip-flop/
latch close to the IOB so that the two elements can be connected using fast routes. See 
also the “OUTREG” section. 

Syntax

INREG

Example

Schematic

Attach to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB driving it. 

INST $I1 INREG;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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IOB

Applicable Elements

Non-INFF/OUTFF flip-flop and latch primitives, registers

Description

IOB indicates which flip-flops and latches can be moved into the IOB. The mapper 
supports a command line option (-pr i | o | b) that allows flip-flop/latch primitives to 
be pushed into the input IOB (i), output IOB (o), or input/output IOB (b) on a global 
scale. The IOB constraint, when associated with a flip-flop or latch, tells the mapper to 
pack that instance into an IOB type component if possible. The IOB constraint has 
precedence over the mapper "-pr" command line option.

Syntax

IOB={TRUE | FALSE}

where TRUE allows the flip-flop/latch to be pulled into an IOB and FALSE indicates 
not to pull it into an IOB.

Example

Schematic

Attach to a flip-flop or latch instance or to a register.

UCF/NCF file

This statement prevents the mapper from placing the foo/bar instance into an IOB 
component.

INST foo/bar IOB=TRUEE;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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IOSTANDARD

Applicable Elements

IBUF, IBUFG, IOBUF, OBUF, OBUFT

Description

The IOSTANDARD attribute can be used to assign an I/O standard to an I/O primi-
tive. All components with the IOSTANDARD attribute must follow the same place-
ment rules as the SelectI/O components. Refer to the “SelectI/O Usage Rules” in the 
IBUF_selectIO section for information on the placement rules.

Syntax

IOSTANDARD=iostandard_name 

where iostandard_name is one of the following:

The default is LVTTL if no IOSTANDARD attribute is specified.

Example

Schematic

Attach to an I/O primitive.

UCF/NCF file

These statements configure the IO to the GTL standard.

INST "pad_instance_name" IOSTANDARD=GTL;

NET "pad_net_name" IOSTANDARD=GTL;

Constraints Editor

An IOSTANDARD can be selected for an input or output pad signal in the Ports tab 
(I/O Configuration Options).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √

AGP HSTL_I LVCMOS2 SSTL2_I

CTT HSTL_III PCI33_3 SSTL2_II

GTL HSTL_IV PCI33_5 SSTL3_I

GTLP LVTTL PCI66_3 SSTL3_II
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KEEP

Applicable Elements

Nets

Description

When a design is mapped, some nets may be absorbed into logic blocks. When a net is 
absorbed into a block, it can no longer be seen in the physical design database. This 
may happen, for example, if the components connected to each side of a net are 
mapped into the same logic block. The net may then be absorbed into the block 
containing the components. The KEEP constraint prevents this from happening.

In Virtex and Spartan2, KEEP makes the signal visible at the BEL level, not the CLB 
level as in other architectures.

Note: The KEEP property is translated into an internal constraint known as 
NOMERGE when targeting an FPGA. Messaging from the implementation tools will 
therefore refer to the system property NOMERGE—not KEEP.

Syntax

KEEP

Example

Schematic

Attach to a net.

UCF/NCF file

This statement ensures that the net $SIG_0 will remain visible.

NET $1I3245/$SIG_0 KEEP;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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KEEPER

Applicable Elements

Tri-state output pad nets: OBUFT, OBUFT_selectIO, OBUFE, and OBUFE_selectIO 
components

Description

KEEPER retains the value of the output net it is attached to. For example, if logic 1 is 
being driven onto the net, KEEPER drives a weak/resistive 1 onto the net. If the net 
driver is then tri-stated, KEEPER continues to drive a weak/resistive 1 onto the net.

Note: The KEEPER constraint must follow the same banking rules as the KEEPER 
component. Refer to the “SelectI/O Usage Rules” in the "IBUF_selectIO" section for 
information on the banking rules.

Syntax

KEEPER

Example

Attach to an output pad net.

UCF/NCF file

These statements configure the IO to use the KEEPER option. 

NET "pad_net_name" KEEPER;

INST "pad_instance_name" KEEPER;

Constraints Editor

KEEPER can be selected for an output or bidirectional pad signal in the Ports tab (I/O 
Configuration Options).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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LOC

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. IO elements

6. CLB and IOB primitives, CLBMAP

7. CY4

8. CY_MUX

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

13. WAND

14. Clock buffers

15. Edge decoders

16. Any instance

17. RAMB4s

Description for FPGAs

LOC defines where a symbol can be placed within an FPGA. It specifies the absolute 
placement of a design element on the FPGA die. It can be a single location, a range of 
locations, or a list of locations. The LOC constraint can be specified from the schematic 
and statements in a constraints file can also be used to direct placement. 

You can specify multiple locations for the same symbol by using a comma (,) to sepa-
rate each location within the field. It specifies that the symbols be placed in any of the 
locations specified. Also, you can specify an area in which to place a symbol or group 
of symbols.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 5, 6, 12

√
1, 2, 3, 5, 7, 
9, 10, 11, 12, 

13, 14, 15

√
1, 2, 3, 5, 7, 
9, 10, 11, 12, 

13, 14, 15

√
1, 2, 4, 5, 8, 

12, 14

√
1, 5, 16

√
1, 2, 3, 5, 7, 
9, 10, 11, 12, 

13, 14, 15

√
1, 2, 3, 5, 7, 
9, 10, 11, 12, 

13, 14, 15

√
1, 2, 5, 6, 10, 

11, 12, 13, 
14, 15, 16, 

17

√
1, 2, 5, 6, 10, 

11, 12, 13, 
14, 15, 16, 

17
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The legal names are a function of the target part type. However, to find the correct 
syntax for specifying a target location, you can load an empty part into the FPGA 
Editor (the design editor). Place the cursor on any block and click to display its loca-
tion in the FPGA Editor history area. Do not include the pin name such as .I, .O, or .T 
as part of the location.

You can use the LOC constraint for logic that uses multiple CLBs, IOBs, soft macros, 
or other symbols. To do this, use the LOC attribute on a soft macro symbol, which 
passes the location information down to the logic on the lower level. The location 
restrictions are applied to all blocks on the lower level for which LOCs are legal.

XC5200

The XC5200 CLB is divided into four physical site locations that each contain one flip-
flop, one function generator, and one carry logic element. Therefore, for the XC5200, 
each LOC attribute can be used for only one register, one FMAP, one F5_MUX 
element, or one CY_MUX element. An error will occur if two or more registers, two or 
more FMAPs, two or more F5_MUX elements, or two or more CY_MUX elements 
have the same LOC attribute.

Spartan2, Virtex

The physical site specified in the location value is defined by the row and column 
numbers for the array, with an optional extension to define the slice for a given row/
column location. A Virtex or Spartan2 slice is composed of two LUTs (that can be 
configured as RAM or shift registers), two flip-flops (that can also be configured as 
latches), two XORCYs, two MULT_ANDs, one F5MUX, one F6MUX, and one 
MUXCY. Only one F6MUX can be used between the two adjacent slices in a specific 
row/column location. The two slices at a specific row/column location are adjacent to 
one another.

The block RAMs (RAMB4s) have a different row/column grid specification than the 
CLB and TBUFs. A block RAM located at RAMB4_R3C1 is not located at the same site 
as a flip-flop located at CLB_R3C1. Therefore, the location value must start with 
"CLB," "TBUF," or "RAMB4." The location cannot be shortened to reference only the 
row, column, and extension.The optional extension specifies the left-most or right-
most slice for the row/column. While the XC4000, Spartan, and SpartanXL allow 
extensions such as .FFX, .FFY, .F and .G to identify specific flip-flops and LUTs within 
the CLB, these extensions are not required or allowed for Virtex and Spartan2.

The location value for global buffers and DLL elements is the specific physical site 
names for available locations.

Description for CPLDs

 For CPLDs, use the LOC=pin_name attribute on a PAD symbol or pad net to assign 
the signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD, and UPAD. 
You can use the LOC=FBnn attribute on any instance or its output net to assign the 
logic or register to a specific function block or macrocell, provided the instance is not 
collapsed.

Pin assignments and function block assignments are unconditional; that is, the soft-
ware does not attempt to relocate a pin if it cannot achieve the specified assignment. 
You can apply the LOC constraint to as many symbols in your design as you like. 
However, each assignment further constrains the software as it automatically allo-
cates logic and I/O resources to internal nodes and I/O pins with no LOC constraints.
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The LOC=FBnn_mm attribute on any internal instance or output pad assigns the 
corresponding logic to a specific function block or macrocell within the CPLD. If a 
LOC is placed on a symbol that does not get mapped to a macrocell or is otherwise 
removed through optimization, the LOC will be ignored.

Note: Pin assignment using the LOC attribute is not supported for bus pad symbols 
such as OPAD8.

Location Types

Use the following location types to define the physical location of an element.

The wildcard character (*) can be used to replace a single location with a range as 
shown in the following examples.

P12 IOB location (chip carrier)

A12 IOB location (pin grid or CSP package)

B, L, T, R Indicates edge locations (bottom, left, top, right) — 
applies to edge decoders only

LB, RB, LT, RT, BR, TR, BL, TL Indicates half edges (left bottom, right bottom, and 
so forth) — applies to edge decoders only

TL, TR, BL, BR Indicates a corner for global buffer placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000, XC5200, Spartan, Spar-
tanXL

CLB_R4C3 (or .S0 or .S1) CLB location for Spartan2, Virtex

CLB_R6C8.F (or .G) Function generator, RAM, ROM, or RAMS location 
for XC4000, Spartan, SpartanXL

CLB_R6C8.LC0 (or .LC1, .LC2, 
.LC3)

Function generator or register location for XC5200

CLB_R6C8.S0 (or .S1) Function generator or register slice for Spartan2, 
Virtex

CLB_R6C8.LC0 (or .LC2) F5_MUX location for XC5200

CLB_R6C8.FFX (or.FFY) Flip-flop location for XC4000, Spartan, SpartanXL

TBUF_R6C7.1 (or.2) TBUF location for XC4000, Spartan, SpartanXL

TBUF_R6C7.0 (or .1, .2, or .3) TBUF location for XC5200

TBUF_R6C7 (or .0 or .1) TBUF location for Spartan2, Virtex

RAMB4_R3C1 Block RAM location for Spartan2, Virtex

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan2, Virtex

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan2, Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Spartan2, 
Virtex

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000 device
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Note: The wildcard character is not supported for Virtex or Spartan2 global buffer or 
DLL locations. 

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However, 
for the XC5200, range locations will be expanded to include extensions, 
CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper passes a range 
constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right 
bottom, etc.)

• Wildcard character for Virtex or Spartan2 global buffer, global pad, or DLL loca-
tions.

Syntax for FPGAs

Single location

LOC=location

where location is a legal LCA location for the LCA part type. Examples of the syntax 
for single LOC constraints are given in the “Single LOC Constraint Examples” table.

CLB_R*C5 Any CLB in column 5 of an XC4000, XC5200, 
Spartan, or SpartanXL device

CLB_R*C5 Any CLB in either slice in column 5 of a Virtex or 
Spartan2 device

Table 12-6 Single LOC Constraint Examples

Attribute Description

LOC=P12 Place I/O at location P12.

LOC=B Place decode logic on the bottom edge.

LOC=TL Place decode logic on the top left edge, or global 
buffer in the top left corner.

LOC=AA
(XC3000)

Place logic in CLB AA.

LOC=TBUF.AC.2
(XC3000)

Place BUFT in TBUF above and one column to the 
right of CLB AC.

LOC=CLB_R3C5
(XC4000, Spartan, SpartanXL)

Place logic in the CLB in row 3, column 5.

LOC=CLB_R3C5
(Spartan2, Virtex)

Place logic in either slice of the CLB in row3, 
column 5.

LOC=CLB_R4C4.LC0
(XC5200)

Place logic in the lowest slice of the CLB in row 4, 
column 4.

LOC=CLB_R3C5.S0
(Spartan2, Virtex)

Place logic in the right-most slice of the CLB in row 
3, column 5.

LOC=CLB_R4C5.ffx 
(XC4000, Spartan, SpartanXL)

Place CLB flip-flop in the X flip-flop of the CLB in 
row 4, column 5.
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Multiple locations

LOC=location1,location2,...,locationn

Repeating the LOC constraint and separating each such constraint by a comma speci-
fies multiple locations for an element. When you specify multiple locations, PAR can 
use any of the specified locations. Examples of multiple LOC constraints are provided 
in the following table.

Range of locations

LOC=location:location [SOFT]

You can define a range by specifying the two corners of a bounding box. Specify the 
upper left and lower right corners of an area in which logic is to be placed. Use a colon 
(:) to separate the two boundaries. The logic represented by the symbol is placed 
somewhere inside the bounding box. The default is to interpret the constraint as a 
“hard” requirement and to place it within the box. If SOFT is specified, PAR may place 
the constraint elsewhere if better results can be obtained at a location outside the 
bounding box. Examples of LOC constraints used to specify an area (range) are given 
in the “Area LOC Constraint Examples” table.

LOC=CLB_R4C5.F
(XC4000, Spartan, SpartanXL)

Place CLB function generator in the F generator of 
row 4, column 5.

LOC=TBUF_R2C1.1
(XC4000, Spartan, SpartanXL)

Place BUFT in row 2, column 1, along the top.

LOC=TBUF_R4C4.3
(XC5200)

Place BUFT in the top buffer in row 4, column 4.

LOC=TBUF_R*C0
(XC4000, XC5200, Spartan, 
SpartanXL)

Place BUFT in any row in column 0.

LOC=TBUF_R1C2.*
(Spartan2, Virtex)

Place both TBUFs in row 1, column 2.

RAMB4_R*C1
(Spartan2, Virtex)

Specifies any block RAM in column 1 of the block 
RAM array

Table 12-7 Multiple LOC Constraint Examples

Attribute Description

LOC=T,B
(XC4000, Spartan, SpartanXL)

Place decoder (XC4000) on the top or bottom edge.

LOC=clb_r2c4, clb_r7c9
(XC4000, Spartan, SpartanXL)

Place the flip-flop in either CLB R2C4 or CLB R7C9.

LOC=clb_r4c5.s1, 
clb_r4c6.*
(Spartan2, Virtex)

Place the flip-flop in the left-most slice of CLB R4C5 
or in either slice of CLB R4C6

Table 12-6 Single LOC Constraint Examples

Attribute Description
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Note: For area constraints, LOC ranges can be supplemented by the user with the 
keyword SOFT.

Syntax for CPLDs

LOC=pin_name

or

LOC=FBnn

or

LOC=FBnn_mm

where

pin_name is Pnn for PC, PQ, or VQ packages; nn is a pin number. The pin name is rc 
(row number and column number) for CSP and BGA packages. See the appropriate 
data book for the pin package names, for example, p12. Examples are LOC=P24 and 
LOC=G2. This form is valid only on pad instances.

nn is a function block number and mm is a macrocell within a function block number. 
This form is valid on any instances.

Examples

Refer to the “Placement Constraints” section for multiple examples of legal placement 
constraints for each type of logic element (flip-flops, ROMs and RAMs, block RAMS, 
FMAPs and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs, I/Os, edge decoders, global 
buffers) in FPGA designs.

Table 12-8 Area LOC Constraint Examples

Attribute Description

LOC=AA:FF
(XC3000)

Place CLB logic anywhere in the top left 
corner of the LCA bounded by row F and 
column F.

LOC=CLB_R1C1:CLB_R5C5
(XC4000, Spartan, SpartanXL) 

Place logic in the top left corner of the LCA 
in a 5 x 5 area bounded by row 5 and 
column 5.

LOC=CLB_R1C1:CLB_R5C5 
PROHIBIT=CLB_R5C5
(must be specified in one continuous 
line) 
(XC4000, Spartan, SpartanXL) 

Place CLB logic in the top left corner of the 
LCA in a 5 x 5 area, but not in the CLB in 
row 5, column 5.

LOC=CLB_R1C1.LC3:CLB_R4C4.LC0
(XC5200)

Place logic in any slice in the top left corner 
of the LCA bounded by row 4, column 4.

LOC=CLB_R1C1:CLB_R4C4
(Spartan2, Virtex)

Place logic in either slice in the top left 
corner of the LCA bounded by row 4, 
column 4.

LOC=TBUF_R1C1:TBUF_R2C8
(XC4000, XC5200, Spartan, SpartanXL) 

Place BUFT anywhere in the area bounded 
by row 1, column 1 and row 2, column 8.
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Schematic

Attach to an instance.

UCF/NCF file

This specifies that an instance of the element BUF1 be placed above the CLB in row 6, 
column 9. For XC4000, Spartan, or SpartanXL devices, you can place the TBUF above 
or below the CLB. For XC5200 devices, you can place the TBUF in one of four loca-
tions (.0-.3).

INST /DESIGN1/GROUPS/BUF1 LOC=TBUF_R6C9.1 ;

This specifies that each instance found under “FLIP_FLOPS” is to be placed in any 
CLB in column 8.

INST /FLIP_FLOPS/* LOC=CLB_R*C8;

This specifies that an instantiation of MUXBUF_D0_OUT be placed in IOB location 
P110.

INST MUXBUF_D0_OUT LOC=P110 ;

This specifies that the net DATA<1> be connected to the pad from IOB location P111.

NET DATA<1> LOC=P111 ;

Constraints Editor

Location constraints for input and output pad signals can be entered in the Ports tab.

MAP

Applicable Elements

1. FMAP

2. HMAP

3. F5MAP

4. CLBMAP

Description

Place the MAP attribute on an FMAP, F5MAP, HMAP, or CLBMAP to specify whether 
pin swapping and the merging of other functions with the logic in the map are 
allowed. If merging with other functions is allowed, other logic can also be placed 
within the CLB, if space allows.

Syntax

MAP=[PUC | PUO | PLC | PLO]

where 

PUC means that the CLB pins are unlocked, and the CLB is closed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
4

√
1, 2

√
1, 2

√
1, 3

√
1, 2

√
1, 2

√
1

√
1
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PUO means that the CLB pins are unlocked, and the CLB is open.

PLC means that the CLB pins are locked, and the CLB is closed.

PLO means that the CLB pins are locked, and the CLB is open.

“Unlocked” in these definitions means that the software can swap signals among the 
pins on the CLB; “locked” means that it cannot. “Open” means that the software can 
add or remove logic from the CLB; conversely, “closed” indicates that the software 
cannot add or remove logic from the function specified by the MAP symbol.

The default is PUO.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into 
PUC and PUO, respectively.

Example

Schematic

Attach to a map symbol instance.

UCF/NCF file

This statement allows pin swapping and ensures that no logic other than that defined 
by the original map will be mapped into the function generators.

INST $1I3245/map_of_the_world map=puc;

Constraints Editor

N/A

MAXDELAY

Applicable Elements

Nets

Description

The MAXDELAY attribute defines the maximum allowable delay on a net.

Syntax

MAXDELAY=allowable_delay[units]

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attach to a net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
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UCF/NCF file

This statement assigns a maximum delay of 1 us to the net $SIG_4.

NET $1I3245/$SIG_4 MAXDELAY=1us;

Constraints Editor

N/A

MAXSKEW

Applicable Elements

Nets

Description

MAXSKEW defines the allowable skew on a net.

Syntax

MAXSKEW=allowable_skew [units]

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attach to a net.

UCF/NCF file

This statement specifies a maximum skew of 3 ns on net $SIG_6.

NET $1I3245/$SIG_6 MAXSKEW=3;

Constraints Editor

N/A

MEDDELAY

Applicable Elements

Input register

Note: You can also attach the MEDDELAY constraint to a net that is connected to a 
pad component in a UCF file. NGDBuild transfers the constraint from the net to the 

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √
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pad instance in the NGD file so that it can be processed by the mapper. Use the 
following syntax.

NET net_name MEDDELAY

Description

MEDDELAY specifies a medium sized delay for the IOB register.

Syntax

MEDDELAY

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement specifies that the register in the IOB $COMP_6 will have a medium 
sized delay.

INST $1I87/$COMP_6 MEDDELAY;

This statement assigns a medium sized delay to the pad to which net1 is connected.

NET Net1 MEDDELAY ;

Constraints Editor

N/A

NODELAY

Applicable Elements

Input register

Note: You can also attach the NODELAY constraint to a net connected to a pad 
component in a UCF file. NGDBuild transfers the constraint from the net to the pad 
instance in the NGD file so that it can be processed by the mapper. Use the following 
syntax.

NET net_name NODELAY

Description

The default configuration of IOB flip-flops in XC4000, Spartan, and SpartanXL 
designs includes an input delay that results in no external hold time on the input data 
path. However, this delay can be removed by placing the NODELAY attribute on 
input flip-flops or latches, resulting in a smaller setup time but a positive hold time.

The NODELAY attribute can be attached to the I/O symbols and the special function 
access symbols TDI, TMS, and TCK.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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Syntax

NODELAY

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement specifies that IOB register inreg67 not have an input delay.

INST $1I87/inreg67 NODELAY;

This statement specifies that there be no input delay to the pad that is attached to net1.

NET net1 NODELAY ;

Constraints Editor

N/A

NOREDUCE

Applicable Elements

Any net

Description

NOREDUCE prevents minimization of redundant logic terms that are typically 
included in a design to avoid logic hazards or race conditions. NOREDUCE also iden-
tifies the output node of a combinatorial feedback loop to ensure correct mapping. 
When constructing combinatorial feedback latches in a design, always apply NORE-
DUCE to the latch’s output net and include redundant logic terms when necessary to 
avoid race conditions.

Syntax

NOREDUCE

Example

Schematic

Attach to a net.

UCF/NCF file

This statement specifies that there be no Boolean logic reduction or logic collapse from 
the net named $SIG_12 forward.

NET $SIG_12 NOREDUCE;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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Constraints Editor

N/A

OFFSET

Applicable Elements

Global, nets, time groups

Description

OFFSET specifies the timing relationship between an external clock and its associated 
data-in or data-out pin. Used only for pad-related signals and cannot be used to 
extend the arrival time specification method to the internal signals in a design.

OFFSET constraints allow you to do the following.

• Calculate whether a setup time is being violated at a flip-flop whose data and 
clock inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q output of an 
internal flip-flop being clocked from an external device pin.

For CPLD designs, clock inputs referenced by OFFSET constraints must be explicitly 
assigned to a global clock pin (using either the BUFG symbol or applying the 
BUFG=CLK attribute to an ordinary input). Otherwise, the OFFSET constraint will 
not be used during timing-driven optimization of the design.

Syntax

Global method

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in 
the design for the specified clock.

OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net" [TIMEGRP 
"reggroup"]

Net-Specific method

When the NET "name" specifier is used, the constraint is associated with a specific net.

NET "name" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net" 
[TIMEGRP "reggroup"]

Group method

When the TIMEGRP "group" specifier is used, the constraint is associated with a 
group of data pad nets.

TIMEGRP "group" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} 
"clk_net" [TIMEGRP "reggroup"]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Alternate method

Because the global and group OFFSET constraints are not associated with a single 
data net or component, these two types can also be entered on a TIMESPEC symbol in 
the design netlist with TSidentifier.

TSidentifier=[TIMEGRP name] OFFSET = {IN|OUT} offset_time [units] 
{BEFORE|AFTER} "clk_net" [TIMEGRP "reggroup"]

where

group is the name of a time group containing IOB components or pad BELs.

offset_time is the external offset.

units is an optional field to indicate the units for the offset time. The default is nano-
seconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or kHz 
to indicate the intended units.

IN or OUT specifies that the offset is computed with respect to an input IOB or an 
output IOB. For a bidirectional IOB, the IN or OUT lets you specify the flow of data 
(input output) on the IOB.

BEFORE or AFTER indicates whether the data is to arrive (input) or leave (output) the 
device before or after the clock input.

clk_net is the fully hierarchical netname of the clock net between the pad and its input 
buffer. All inputs/outputs are offset relative to clk_net.

reggroup is a previously defined time group of register bels. Only registers in the time 
group clocked by the specified IOB component is checked against the specified offset 
time. The optional time group qualifier, TIMEGRP "reggroup," can be added to any 
OFFSET constraint to indicate that the offset applies only to registers specified in the 
qualifying group. When used with the "Group method," the "register time" group lists 
the synchronous elements that qualify which register elements clocked by "clk_net" 
get analyzed.

Note: CPLD designs do not support the "Group Method" or the TIMEGRP options in 
the other methods described above.

Example

Schematic

N/A

UCF/NCF file

This statement specifies that the data will be present on input43 at least 20 ns before 
the triggering edge of the clock signal CLOCK.

NET input43 OFFSET=IN 20 BEFORE CLOCK;

For a detailed description of OFFSET, please see the "Using Timing Constraints" 
chapter in the Development System Reference Guide.

Constraints Editor

OFFSET IN BEFORE and OFFSET OUT AFTER constraints can be entered in the 
Advanced tab. Global offsets can be entered in the Global tab. Pad-to-Setup and 
Clock-to-Pad offsets can be entered in the Ports tab.
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ONESHOT

Applicable Elements

1. CAPTURE_SPARTAN2

2. CAPTURE_VIRTEX

Description

ONESHOT limits capture of registers for readback to a single capture of all register 
information. After a trigger (transition on CLK while CAP is asserted), all register 
information is captured and no additional captures can occur until the readback oper-
ation is completed. Without the ONESHOT attribute, data is captured after every 
trigger.

Syntax

ONESHOT

Example

Schematic

Attach to a CAPTURE_SPARTAN2 or CAPTURE_VIRTEX instance.

UCF/NCF file

N/A

Constraints Editor

N/A

OPT_EFFORT

Applicable Elements

Any macro or hierarchy level

Description

OPT_EFFORT defines an effort level to be used by the optimizer.

Syntax

OPT_EFFORT={NORMAL | HIGH}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1

√
2

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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Example

Schematic

Attach to a macro.

UCF/NCF file

This statement attaches a High effort of optimization to all of the logic contained 
within the module defined by instance $1I678/adder.

INST $1I678/adder OPT_EFFORT=HIGH;

Constraints Editor

N/A

OPTIMIZE

Applicable Elements

Any macro or hierarchy level

Description

OPTIMIZE defines whether optimization is performed on the flagged hierarchical 
tree. The OPTIMIZE attribute has no effect on any symbol that contains no combina-
tional logic, such as an input/output buffer.

Syntax

OPTIMIZE={AREA | SPEED | BALANCE | OFF}

Example

Schematic

Attach to a macro.

UCF/NCF file

This statement specifies that no optimization be performed on an instantiation of the 
macro CTR_MACRO.

INST /$1I678/CTR_MACRO OPTIMIZE=OFF;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √
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OUTREG

Applicable Elements

Flip-flops, latches

Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply the OUTREG 
attribute to meet fast setup requirements. If a flip-flop or latch is driving an IOB, you 
can specify OUTREG to enable PAR (Place and Route) to place the flip-flop/latch 
close to the IOB so that the two elements can be connected using fast routes. See also 
the “INREG” section.

Syntax

OUTREG

Example

Schematic

Attach to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB that it is driving.

INST $I1 OUTREG;

Constraints Editor

N/A

PART

Applicable Elements

1. Global

2. Attached to CONFIG symbol in schematics

Description

PART defines the part type used for the design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Syntax

PART=part_type

where part_type can be device-speed-package or device-package-speed. For example, 
4028EX-PG299-3 or 4028EX-3-PG299

The package string must always begin with an alphabetic character — never with a 
number.

The speed string must always begin with an numeric character —never with an alpha-
betic character.

The text XC is an optional prefix to the whole part_type string.

In a constraints file, the PART specification must be preceded by the keyword 
CONFIG.

Example

Schematic

Place in a blank area of the schematic for global definition or attach to the CONFIG 
symbol.

UCF/NCF file

This statement specifies a 4005E device, a PQ160C package, with a speed of 5.

CONFIG PART=4005E-PQ160C-5;

Constraints Editor

N/A

PERIOD

Applicable Elements

Nets that feed forward to drive flip-flop clock pins

Description

PERIOD provides a convenient way of defining a clock period for registers attached 
to a particular clock net. 

PERIOD controls pad-to-setup and clock-to-setup paths but not clock-to-pad paths.

Refer to the "Using Timing Constraints" chapter in the Development System Reference 
Guide for more information on clock period specifications.

Special rules apply when using TNM and TNM_NET with the PERIOD constraint for 
Virtex and Spartan2 CLKDLLs and CLKDLLHFs. These rules are explained in the 
"PERIOD Specifications on CLKDLLs" section of the "Using Timing Constraints" 
chapter in the Development System Reference Guide.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √
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Syntax

Simple Method

PERIOD=period[units] [{HIGH | LOW} [high_or_low_time[hi_lo_units]]]

where

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nano-
seconds (ns), but the timing number can be followed by ps, ns, or us to indicate the 
intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

Alternate Method

TSidentifier=PERIOD TNM_reference period [units] [{HIGH | LOW} [high_or_low_time 
[hi_lo_units]]]

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or a net in the clock 
path) using the TNM or TNM_NET attribute. 

Note: When a TNM_NET attribute is traced into the CLKIN input of a CLKDLL or 
CLKDLLHF component, new PERIOD specifications may be created at the CLKDLL/
CLKDLLHF outputs. If new PERIOD specifications are created, new TNM_NET 
groups to use in those specifications are also created. Each new TNM_NET group is 
named the same as the corresponding CLKDLL/CLKDLLHF output net (outputnet-
name). The new PERIOD specification becomes "TS_outputnetname=PERIOD output-
netname." The new TNM_NET groups are then traced forward from the CLKDLL/
CLKDLLHF output net to tag all flip-flops, latches, and RAMs controlled by that clock 
signal. The new groups and specifications are shown in the timing analysis reports. 
Refer to the "PERIOD Specifications on CLKDLLs" section in the "Development 
System Reference Guide" for detailed information.

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nano-
seconds (ns), but the timing number can be followed by ps, ms, us, or % to indicate 
the intended units.

HIGH or LOW indicates whether the first pulse is to be High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.
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hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

Example

The following examples are for the “simple method.”

Schematic

Attach to a net. Following is an example of the syntax format.

PERIOD=40 HIGH 25

UCF/NCF file

This statement assigns a clock period of 40 ns to the net named $SIG_24, with the first 
pulse being High and having a duration of 25 nanoseconds.

NET $SIG_24 PERIOD=40 HIGH 25;

Constraints Editor

Period timing constraints can be entered in the Global tab for each input pad signal 
used as a clock.

PROHIBIT

Applicable Elements

Attached to CONFIG symbol

Description

PROHIBIT disallows the use of a site within PAR, FPGA Editor, and the CPLD fitter.

Location Types

Use the following location types to define the physical location of an element.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √ √

P12 IOB location (chip carrier)

A12 IOB location (pin grid or CSP package)

B, L, R, T Indicates edge locations (bottom, left, top, right) — 
applies to edge decoders only

LB, RB, LT, RT, BR, TR, BL, TL Indicates half edges (left bottom, right bottom, and 
so forth) — applies to edge decoders only

TL, TR, BL, BR Indicates a corner for global buffer placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000 or XC5200

CLB_R4C3 (or .S0 or .S1) CLB location for Spartan2, Virtex

CLB_R6C8.LC0 (or 1, 2, 3) Function generator or register location for XC5200
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The wildcard character (*) can be used to replace a single location with a range as 
shown in the following examples.

Note: The wildcard character is not supported for Virtex and Spartan2 global buffer or 
DLL locations. 

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However, 
for the XC5200, range locations will be expanded to include extensions, 
CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper passes a range 
constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right 
bottom, etc.)

• .F or .G extension for function generator, RAM, ROM, or RAMS location for 
XC4000

• .FFX or .FFY extension for flip-flop location for XC4000

• Wildcard character for Virtex and Spartan2 global buffer, global pad, or DLL loca-
tions.

Syntax

Single location

PROHIBIT=location

Multiple single locations

PROHIBIT=location1, location2, ... , locationn ;

CLB_R6C8.S0 (or .S1) Function generator or register location for Spartan2, 
Virtex

CLB_R6C8.LC0 (or 2) F5_MUX location for XC5200

TBUF_R6C7.1 (or.2) TBUF location for XC4000

TBUF_R6C7.0 (or.1,.2, or.3) TBUF location for XC5200

TBUF_R6C7 (or .0 or .1) TBUF location for Spartan2, Virtex

RAMB4_R3C1 Block RAM location for Spartan2, Virtex

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan2, Virtex

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan2, Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Spartan2, 
Virtex

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000 device

CLB_R*C5 Any CLB in column 5 of an XC4000 or XC5200 
device

CLB_R*C5 Any CLB in either slice in column 5 of a Spartan2, 
Virtex device
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Range of locations

PROHIBIT=location:location

In a constraints file, the PROHIBIT specification must be preceded by the keyword 
CONFIG.

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

Example

Schematic

Place on the schematic as an unattached attribute or attach to a CONFIG symbol.

UCF/NCF file

This statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

This statement prohibits use of the CLB located in Row 6, Column 8.

CONFIG PROHIBIT=CLB_R6C8 ;

This statement prohibits use of the site TBUF_R5C2.2.

CONFIG PROHIBIT=TBUF_R5C2.2 ;

Constraints Editor

PROHIBIT constraints can be entered using a dialog box provided in the Ports tab.

PULLDOWN

Applicable Elements

Input, output, and bidirectional pads and pad nets

Description

PULLDOWN guarantees a logic Low level to allow tri-stated nets to avoid floating 
when not being driven.

Syntax

PULLDOWN

Example

Schematic

Attach to a pad or pad net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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UCF/NCF file

These statements configure the IO to use a PULLDOWN.

NET "pad_net_name" PULLDOWN;

INST "pad_instance_name" PULLDOWN;

Constraints Editor

PULLDOWN can be entered for an output or bidirectional pad signal through the 
Ports tab (I/O Configuration Options).

PULLUP

Applicable Elements

Input, output, and bidirectional pads and pad nets

Description

PULLUP guarantees a logic High level to allow tri-stated nets to avoid floating when 
not being driven.

Syntax

PULLUP

Example

Schematic

Attached to a pad or pad net.

UCF/NCF file

These statements configure the IO to use a PULLUP.

NET "pad_net_name" PULLUP;

INST "pad_instance_name" PULLUP;

Constraints Editor

PULLUP can be entered for an output or bidirectional pad signal through the Ports 
tab (I/O Configuration Options).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
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PWR_MODE

Applicable Elements

1. Nets

2. Any instance

Description

PWR_MODE defines the mode, Low power or High performance (standard power), 
of the macrocell that implements the tagged element.

Note: If the tagged function is collapsed forward into its fanouts, the attribute is not 
applied.

Syntax

PWR_MODE={LOW | STD}

Example

Schematic

Attach to a net or an instance.

UCF/NCF file

This statement specifies that the macrocell that implements the net $SIG_0 will be in 
Low power mode.

NET $1187/$SIG_0 PWR_MODE=LOW;

Constraints Editor

N/A

REG

Applicable Elements

Registers

Description

REG specifies how a register is to be implemented in the CPLD macrocell.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
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Syntax

REG = {CE | TFF}

where

CE, when applied to an FDCE or FDPE primitive, forces the CE pin input to be imple-
mented using the clock enable product term of the XC9500XL or XC9500XV macrocell. 
(XC9500 macrocells do not support clock enable p-terms. For the XC9500, REG=CE 
attributes are ignored.)

TFF indicates that the register is to be implemented as a T-type flip-flop in the CPLD 
macrocell. If applied to a D-flip-flop primitive, the D-input expression is transformed 
to T-input form and implemented with a T-flip-flop. Automatic transformation 
between D and T flip-flops is normally performed by the CPLD fitter.

Example

Schematic

Attach to a flip-flop instance or macro containing flip-flops.

UCF/NCF file

This statement specifies that the CE pin input be implemented using the clock enable 
product term of the XC9500XL or XC9500XV macrocell.

INST Q1 REG=CE;

Constraints Editor

N/A

RLOC

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT (Can only be used if the associated RPM has an RLOC_ORIGIN that causes 
the RLOC values in the RPM to be changed to LOC values.)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3, 5, 7, 
8, 9, 10, 11

√
1, 2, 3, 5, 7, 
8, 9, 10, 11

√
1, 2, 4, 6, 10

√
1, 2, 3, 5, 7, 

8, 9, 10

√
1, 2, 3, 5, 7, 

8, 9, 10

√
1, 2, 8, 9, 10, 

12

√
1, 2, 8, 9, 10, 

12
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11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Description

Relative location (RLOC) constraints group logic elements into discrete sets and allow 
you to define the location of any element within the set relative to other elements in 
the set, regardless of eventual placement in the overall design. See the “Physical 
Constraints” section for detailed information about this type of constraint.

For XC5200, the RLOC attribute must include the extension that defines in which of 
the four slices of a CLB the element will be placed (.LC0, .LC1, .LC2, .LC3). This 
defines the relationship of the elements in the set and also specifies in which of the 
four slices the element will eventually be placed.

For Virtex and Spartan2, the RLOC attribute must include the extension that defines 
in which of the two slices of a CLB the element will be placed (.S0, .S1). 

Syntax

XC4000E, XC4000X, Spartan, SpartanXL

RLOC=RmCn[.extension]

XC5200, Spartan2, Virtex

RLOC=RmCn.extension

where

m and n are integers (positive, negative, or zero) representing relative row numbers 
and column numbers, respectively. 

extension uses the LOC extension syntax as appropriate; it can take all the values that 
are available with the current absolute LOC syntax.

For the XC4000, Spartan, and SpartanXL, the available extensions are FFX, FFY, F, G, 
H, 1, and 2. The 1 and 2 values are available for BUFT primitives, and the rest are 
available for primitives associated with CLBs. See the “LOC” section for more details.

For the XC5200, extension is required to define in which of the four slices of a CLB the 
element will be placed (.LC0, .LC1, .LC2, .LC3).

For Virtex and Spartan2, extension is required to define the spatial relationships (.S0 is 
the right-most slice; .S1 is the left-most slice) of the objects in the RPM. 

The RLOC value cannot specify a range or a list of several locations; it must specify a 
single location. See the “Guidelines for Specifying Relative Locations” section for 
more information.

Example

Schematic

Attach to an instance.
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UCF/NCF file

This statement specifies that an instantiation of FF1 be placed in the CLB at row 4, 
column 4.

INST /4K/design/FF1 RLOC=R4C4;

This statement specifies that an instantiation of elemA be placed in the X flip-flop in 
the CLB at row 0, column 1.

INST /$1I87/elemA RLOC=r0cl.FFX;

Constraints Editor

N/A

RLOC_ORIGIN

Applicable Elements

Instances or macros that are members of sets

Description

An RLOC_ORIGIN constraint fixes the members of a set at exact die locations. This 
constraint must specify a single location, not a range or a list of several locations. For 
more information about this constraint, refer to the “Fixing Members of a Set at Exact 
Die Locations” section.

The RLOC_ORIGIN constraint is required for a set that includes BUFT symbols. The 
RLOC_ORIGIN constraint cannot be attached to a BUFT instance.

Syntax

RLOC_ORIGIN=RmCn

where m and n are positive integers (including zero) representing relative row and 
column numbers, respectively.

Example

Schematic

Attach to an instance that is a member of a set.

UCF/NCF file

This statement specifies that an instantiation of FF1, which is a member of a set, be 
placed in the CLB at R4C4 relative to FF1. For example, if RLOC=R0C2 for FF1, then 
the instantiation of FF1 is placed in the CLB that occupies row 4 (R0 + R4) , column 6 
(C2 + C4).

INST /archive/designs/FF1 RLOC_ORIGIN=R4C4;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √
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RLOC_RANGE

Applicable Elements

Instances or macros that are members of sets

Description

The RLOC_RANGE constraint is similar to the RLOC_ORIGIN constraint except that 
it limits the members of a set to a certain range on the die. The range or list of loca-
tions is meant to apply to all applicable elements with RLOCs, not just to the origin of 
the set.

Syntax

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where the relative row numbers (m1 and m2) and column numbers (n1 and n2) can be 
positive integers (including zero) or the wildcard (*) character. This syntax allows 
three kinds of range specifications, which are defined in the “Fixing Members of a Set 
at Exact Die Locations” section.

Example

Schematic

Attach to an instance that is a member of a set.

UCF/NCF file

This statement specifies that an instantiation of the macro MACRO4 be placed within 
a region that is enclosed by the rows R4-R10 and the columns C4-C10.

INST /archive/designs/MACRO4 RLOC_RANGE=R4C4:R10C10;

Constraints Editor

N/A

S(ave) - Net Flag Attribute

Applicable Elements

Nets

Description

Attaching the SAVE net flag attribute to nets affects the mapping, placement, and 
routing of the design by preventing the removal of unconnected signals.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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√ √ √ √ √ √ √ √
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Syntax

S

The S (save) net flag attribute prevents the removal of unconnected signals. If you do 
not have the S attribute on a net, any signal not connected to logic and/or an I/O 
primitive is removed.

Example

Schematic

Attach to a net.

UCF/NCF file

This statement specifies that the net named $SIG_9 will not be removed.

NET $SIG_9 S;

Constraints Editor

N/A

SLOW

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the SLOW constraint to the net connected to the pad 
component in a UCF file. NGDBuild transfers the constraint from the net to the pad 
instance in the NGD file so that it can be processed by the mapper. Use the following 
syntax.

NET net_name SLOW

Description

SLOW stipulates that the slew rate limited control should be enabled.

Syntax

SLOW

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement establishes a slow slew rate for an instantiation of the element y2.

INST $1I87/y2 SLOW;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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This statement establishes a slow slew rate for the pad to which net1 is connected.

NET net1 SLOW;

Constraints Editor

SLOW slew rate can be selected for any output pad signal in the Ports tab (I/O 
Configuration Options).

STARTUP_WAIT

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUGDGLL instance

Description

STARTUP_WAIT controls whether the DONE signal (device configuration) can go 
HIGH (indicating that the device is fully configured). 

Syntax

STARTUP_WAIT={TRUE | FALSE}

where

TRUE specifies that the DONE signal cannot go High until the instance assigned this 
property locks.

FALSE, the default, specifies that the locking of the instance has no impact on the 
DONE signal.

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement specifies that the DONE signal cannot go High until the foo/bar 
instance locks.

INST foo/bar STARTUP_WAIT=TRUE;

Constraints Editor

N/A

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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TEMPERATURE

Applicable Elements

Global

Description

The TEMPERATURE constraint allows the specification of the operating junction 
temperature. This provides a means of prorating device delay characteristics based on 
the specified temperature. Prorating is a scaling operation on existing speed file 
delays and is applied globally to all delays. (Prorating is applicable only to commer-
cial operating temperature ranges. It is not intended for use by industrial and military 
customers.)

Note: Each architecture has its own specific range of valid operating temperatures. If 
the entered temperature does not fall within the supported range, the constraint is 
ignored and an architecture-specific default value is used instead. Also note that the 
error message for this condition does not appear until PCF processing.

Syntax

TEMPERATURE=value[C |F| K]

where

value is real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin, 
and C is degrees Celsius, the default.

Example

Schematic

Place on the schematic as an unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays 
assumes a junction temperature of 25 degrees Celsius.

TEMPERATURE=25C;

Constraints Editor

Temperature prorating constraints can be specified from the Advanced tab.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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TIG

Applicable Elements

Nets, pins

Description

TIG (Timing IGnore) causes paths that fan forward from the point of application (of 
TIG) to be treated as if they do not exist (for the purposes of the timing model) during 
implementation. 

A TIG may be applied relative to a specific timing specification.

Syntax

TIG

or

TIG=TSidentifier1,..., TSidentifiern

where identifier refers to a timing specification that should be ignored.

Example

Schematic

Attach to a net or pin.

UCF/NCF file

This statement specifies that the timing specifications TS_fast and TS_even_faster will 
be ignored on all paths fanning forward from the net $Sig_5.

 NET $1I567/$Sig_5 TIG=TS_fast, TS_even_faster;

For more on TIG, see the "Using Timing Constraints" chapter in the Development 
System Reference Guide.

Constraints Editor

Nets to be ignored for timing purposes can be specified in the Advanced tab.

Time Group Attributes

Applicable Elements

1. Global in constraints file (preceded by the keyword TIMEGRP)

2. Time group primitive

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Description

Time group properties (attributes) are a set of grouping mechanisms that use existing 
TNMs (Timing Names) to create new groups or to define new groups based on the 
output net that the group sources. The timing group primitive (TIMEGRP) exists for 
the purpose of hosting these properties. In a constraints file, the specification of these 
properties must be preceded with the keyword TIMEGRP.

Note: When entering time group properties into a TIMEGRP symbol, some property 
names may conflict with the predefined property names of the TIMEGRP primitive.

The standard procedure for adding a property to a symbol is to use the following 
format.

PROPERTY=property_name VALUE=value

However, some property names are reserved, and should not be used because they 
cause a conflict. Hence, for property_name you must not use any of the system reserved 
names LIBVER, INST, COMP, MODEL, or any other names reserved by your sche-
matic capture program. Please consult your schematic capture documentation to 
become familiar with reserved property names.

Note: For more on the TIMEGRP symbol, see the “TIMEGRP” section in the "Design 
Elements" chapter.

Syntax

new_group_name=[RISING | FALLING] group_name1 [EXCEPT group_name2... 
group_namen]

or

new_group_name=[TRANSHI | TRANSLO] group_name1 [EXCEPT group_name2... 
group_namen]

where

group_names can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS 
or LATCHES as follows:

• FFS refers to all CLB and IOB flip-flops. (Flip-flops built from function gener-
ators are not included. Shift register LUTs in Virtex and Spartan2 are not 
included.)

• RAMS refers to all RAMs for architectures with RAMS. For Virtex and 
Spartan2, LUT RAMS and Block RAMS are included.

• PADS refers to all I/O pads. 

• LATCHES refers to all CLB or IOB latches. (Latches built from function gener-
ators are not included.)

• a subset of elements in a group predefined by name matching using the following 
syntax.

predefined_group name qualifier1... name_qualifiern

RISING or FALLING creates timing subgroups from the rising or falling edge sensi-
tive flip-flops in a timing group. If the timing group contains non-flip-flop elements, 
these elements are also included in the subgroup; they are not filtered based on edge 
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sensitivity. (Refer to the preceding group_names description for information on 
creating flip-flop only timing groups.)

TRANSHI or TRANSLO is the form of the constraint applied to latches.

EXCEPT excludes the object group.

Example 1

Schematic

The following attribute would be attached to a TIMEGRP primitive to combine the 
elements in two groups to form a new group.

big_group=little_group other_group

UCF/NCF file

The same constraint could appear in a User Constraints File (UCF) as follows.

TIMEGRP big_group=little_group other_group;

Constraints Editor

New timing groups can be created in the Advanced tab.

Example 2

Schematic

The following constraints would be attached to a TIMEGRP primitive to define new 
groups by exclusion.

input_pads=pads except output_pads

UCF/NCF file

The same constraint could appear in a UCF as follows.

TIMEGRP input_pads=pads EXCEPT output_pads;

For more on Time Group Attributes, see the "Using Timing Constraints" chapter in the 
Development System Reference Guide. 

Constraints Editor

New timing groups can be created in the Advanced tab.

TNM

Applicable Elements

Nets, instances, macros

Note:  You can attach the TNM constraint to the net connected to the pad component 
in a UCF file. NGDBuild transfers the constraint from the net to the pad instance in 
the NGD file so that it can be processed by the mapper. Use the following syntax.

NET net_name TNM=property_value

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Description

TNM (Timing Name) tags specific flip-flops, RAMs, pads, and latches as members of 
a group to simplify the application of timing specifications to the group.

TNMs applied to pad nets do not propagate forward through the IBUF/ OBUF. The 
TNM is applied to the external pad. This case includes the net attached to the D input 
of an IFD. See the “TNM_NET” section if you want the TNM to trace forward from an 
input pad net.

TNMs applied to the input pin of an IBUF/ OBUF will cause the TNM to be attached 
to the pad.

TNMs applied to the output pin of an IBUF/OBUF will propagate the TNM to the 
next appropriate element.

TNMs applied to an IBUF or OBUF element stay attached to that element.

TNMs applied to a clock-pad-net will not propagate forward through the clock buffer.

When TNM is applied to a macro, all the elements in the macro will have that timing 
name.

Special rules apply when using TNM with the PERIOD constraint for Virtex and 
Spartan2 CLKDLLs and CLKDLLHFs.

See the "Using Timing Constraints" chapter in the Development System Reference Guide 
for detailed information about this attribute.

Syntax

TNM=[predefined_group:] identifier;

where

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS 
or LATCHES as follows:

• FFS refers to all CLB and IOB flip-flops. (Flip-flops built from function gener-
ators are not included. Shift register LUTs in Virtex and Spartan2 are not 
included.)

• RAMS refers to all RAMs for architectures with RAMS. For Virtex and 
Spartan2, LUT RAMS and Block RAMS are included.

• PADS refers to all I/O pads. 

• LATCHES refers to all CLB or IOB latches. (Latches built from function gener-
ators are not included.)

• a subset of elements in a group predefined by name matching using the following 
syntax.

predefined_group name_qualifier1... name_qualifiern

identifier can be any combination of letters, numbers, or underscores. Do not use 
reserved words, such as FFS, LATCHES, RAMS, or PADS for TNM identifiers.
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Example

Schematic

Attach to a net or a macro.

UCF/NCF file

This statement identifies the element register_ce as a member of the timing group 
the_register. 

NET $1I87/register_ce TNM=the_register;

Constraints Editor

Timing group names can be assigned to pad and flip-flop elements in the Advanced 
tab.

TNM_NET

Applicable Elements

Nets

Description

TNM_NET (Timing Name - Net) tags specific flip-flops, RAMs, pads, and latches as 
members of a group to simplify the application of timing specifications to the group. 
NGDBuild never transfers a TNM_NET constraint from the attached net to a pad, as it 
does with the TNM constraint. 

TNM_NETs applied to pad nets propagate forward through the IBUF/ OBUF.

TNM_NETs applied to a clock-pad-net propagate forward through the clock buffer.

When TNM_NET is applied to a macro, all the elements in the macro will have that 
timing name.

Special rules apply when using TNM_NET with the PERIOD constraint for Virtex and 
Spartan2 CLKDLLs and CLKDLLHFs.

See the "Using Timing Constraints" chapter in the Development System Reference Guide 
for detailed information about this attribute.

Syntax

TNM_NET=[predefined_group:]identifier

where

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS 
or LATCHES. FFS refers to all flip-flops. RAMS refers to all RAMs. PADS refers to 
all I/O pads. LATCHES refers to all latches.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√ √ √ √ √ √ √ √
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• a subset of elements in a group predefined by name matching using the following 
syntax.

predefined_group name_qualifier1... name_qualifiern

identifier can be any combination of letters, numbers, or underscores. Do not use 
reserved words, such as FFS, LATCHES, RAMS, or PADS for TNM identifiers.

Example

Schematic

Attach to a net.

UCF/NCF file

This statement identifies all flip-flops fanning out from the PADCLK net as a member 
of the timing group FFGRP. 

NET PADCLK TNM_NET=FFS(*):FFGRP;

Constraints Editor

Timing group names can be assigned to net elements in the Advanced tab.

TPSYNC

Applicable Elements

Nets, instances, pins

Description

TPSYNC flags a particular point or a set of points with an identifier for reference in 
subsequent timing specifications. You can use the same identifier on several points, in 
which case timing analysis treats the points as a group. See the “Time Group 
Attributes” section.

Defining synchronous points

When the timing of a design must be designed from or to a point that is not a flip-flop, 
latch, RAM, or I/O pad, the following rules apply if a TPSYNC timing point is 
attached to a net, macro pin, output or input pin of a primitive, or an instance.

• A net — the source of the net is identified as a potential source or destination for 
timing specifications.

• A macro pin — all of the sources inside the macro that drive the pin to which the 
attribute is attached are identified as potential sources or destinations for timing 
specifications. If the macro pin is an input pin (that is, if there are no sources for 
the pin in the macro), then all of the load pins in the macro are flagged as synchro-
nous points.

• The output pin of a primitive — the primitive’s output is flagged as a potential 
source or destination for timing specifications.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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• The input pin of a primitive — the primitive’s input is flagged as a potential 
source or destination for timing specifications.

• An instance — the output of that element is identified as a potential source or 
destination for timing specifications.

Syntax

TPSYNC=identifier

where identifier is a name that is used in timing specifications in the same way that 
groups are used.

All flagged points are used as a source or destination or both for the specification 
where the TPSYNC identifier is used.

Note: The name for the identifier must be different from any identifier used for a 
TNM attribute.

Example

Schematic

Attach to a net, instance, or pin.

UCF/NCF file

This statement identifies latch as a potential source or destination for timing specifica-
tions for the net logic_latch.

NET $1I87/logic_latch TPSYNC=latch;

Constraints Editor

N/A

TPTHRU

Applicable Elements

Nets, pins, instances

Description

TPTHRU flags a particular point or a set of points with an identifier for reference in 
subsequent timing specifications. You can use the same identifier on several points, in 
which case timing analysis treats the points as a group. See the “Time Group 
Attributes” section.

Defining through points

The TPTHRU attribute is used when it is necessary to define intermediate points on a 
path to which a specification applies. See the “TSidentifier” section.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Syntax

TPTHRU=identifier

where identifier is a name used in timing specifications for further qualifying timing 
paths within a design.

Note: The name for the identifier must be different from any identifier used for a 
TNM attribute.

Example

Schematic

Attach to a net, instance, or pin.

UCF/NCF file

This statement identifies the net on_the_way as an intermediate point on a path to 
which the timing specification named “here” applies.

NET $1I87/on_the_way TPTHRU=here;

Constraints Editor

Timing THRU points can be created in the Advanced tab.

TSidentifier

Applicable Elements

1. Global in constraints file

2. TIMESPEC primitive

Description

TSidentifier properties beginning with the letters “TS” are placed on the TIMESPEC 
symbol. In a constraints file, the specification of these properties can be preceded with 
the optional keyword TIMESPEC. The value of the TSidentifier attribute corresponds 
to a specific timing specification that can then be applied to paths in the design.

Syntax

Note: All the following syntax definitions use a space as a separator. The use of a 
colon (:) as a separator is optional.

Defining a maximum allowable delay

TSidentifier=[MAXDELAY] FROM source_group TO dest_group allowable_delay [units]

or

TSidentifier=FROM source_group TO dest_group allowable_delay [units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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Defining intermediate points

Note: This form is not supported for CPLDs.

TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn] TO 
dest_group allowable_delay [units]

where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU 
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. The default units 
are nanoseconds (ns), but the timing number can be followed by ps, ns, us, ms, GHz, 
MHz, or kHz to indicate the intended units.

Defining a linked specification

This allows you to link the timing number used in one specification to another specifi-
cation.

TSidentifier=FROM source_group TO dest_group another_TSid[/ | *] number

where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is the name of another timespec.

number is a floating point number.

Defining a clock period

This allows more complex derivative relationships to be defined as well as a simple 
clock period.

TSidentifier=PERIOD TNM_reference period[units] [{HIGH | LOW} [high_or_low_time 
[hi_lo_units]]]

where

identifier is a reference identifier with a unique name.

TNM_reference is the identifier name attached to a clock net (or a net in the clock path) 
using a TNM attribute.

period is the required clock period.

units is an optional field to indicate the units for the allowable delay. The default units 
are nanoseconds (ns), but the timing number can be followed by ps, ns, us, ms, GHz, 
MHz, or kHz to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.
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hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

Specifying derived clocks

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number 
[{HIGH | LOW} [high_or_low_time [hi_lo_units]]]

where

TNM_reference is the identifier name attached to a clock net (or a net in the clock path) 
using a TNM attribute.

another_PERIOD_identifier is the name of the identifier used on another period specifi-
cation.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

Ignoring paths

Note: This form is not supported for CPLDs.

There are situations in which a path that exercises a certain net should be ignored 
because all paths through the net, instance, or instance pin are not important from a 
timing specification point of view.

TSidentifier=FROM source_group TO dest_group TIG

or

TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn]TO 
dest_group TIG

where

identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU 
attribute.

Example

Schematic

Attach to a TIMESPEC primitive.

UCF/NCF file

This statement says that the timing specification TS_35 calls for a maximum allowable 
delay of 50 ns between the groups “here” and “there”.
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TIMESPEC TS_35=FROM here TO there 50;

This statement says that the timing specification TS_70 calls for a 25 ns clock period 
for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC TS_70=PERIOD “clock_a” 25 high 15;

For more information, see the “Timing Constraints” section.

Note: In either example above, a colon can be used instead of a space as the separator. 
(Additional spaces entered before or after the colon are ignored.) The statements then 
become as follows.

TIMESPEC TS_35=FROM:here:TO:there:50;

TIMESPEC TS_70=PERIOD:”clock_a”:25:high:15;

Constraints Editor

Clock period timing constraints can be entered in the Global tab. Input setup time and 
clock-to-output delay can be entered for specific pads in the Ports tab, or for all pads 
related to a given clock in the Global tab. Combinational pad-to-pad delays can be 
entered in the Advanced tab, or for all pad-to-pad paths in the Global tab.

U_SET

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro instance

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT (Can only be used for Virtex and Spartan2 if the associated RPM has an 
RLOC_ORIGIN that causes the RLOC values in the RPM to be changed to LOC 
values.)

13. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1, 2, 3, 5, 7, 
8, 9, 10, 11, 

12

√
1, 2, 3, 5, 7, 
8, 9, 10, 11, 

12

√
1, 2, 4, 6, 7, 

8, 12

√
1, 2, 3, 5, 7, 
8, 9, 10, 11, 

12

√
1, 2, 3, 5, 7, 
8, 9, 10, 11, 

12

√
1, 2, 7, 8, 10, 

11, 12, 13

√
1, 2, 7, 8, 10, 

11, 12, 13
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Description

The U_SET constraint groups design elements with attached RLOC constraints that 
are distributed throughout the design hierarchy into a single set. The elements that 
are members of a U_SET can cross the design hierarchy; that is, you can arbitrarily 
select objects without regard to the design hierarchy and tag them as members of a 
U_SET. For detailed information about this attribute, refer to the “RLOC Sets” section.

Syntax

U_SET=name

where name is the identifier of the set. This name is absolute. It is not prefixed by a 
hierarchical qualifier.

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement specifies that the design element ELEM_1 be in a set called JET_SET.

INST $1I3245/ELEM_1 U_SET=JET_SET;

Constraints Editor

N/A

USE_RLOC

Applicable Elements

Instances or macros that are members of sets

Description

USE_RLOC turns the RLOC constraint on or off for a specific element or section of a 
set. For detailed information about this constraint, refer to the “Toggling the Status of 
RLOC Constraints” section.

Syntax

USE_RLOC={TRUE | FALSE}

where TRUE turns on the RLOC attribute for a specific element, and FALSE turns it 
off. The default is TRUE.

Example

Schematic

Attach to a member of a set.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex
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UCF/NCF file

INST $1I87/big_macro USE_RLOC=FALSE;

Constraints Editor

N/A

VOLTAGE

Applicable Elements

Global

Description

The VOLTAGE constraint allows the specification of the operating voltage. This 
provides a means of prorating delay characteristics based on the specified voltage. 
Prorating is a scaling operation on existing speed file delays and is applied globally to 
all delays. (Prorating is applicable only to commercial operating voltage ranges. It is 
not intended for use by industrial and military customers.)

Note: Each architecture has its own specific range of supported voltages. If the 
entered voltage does not fall within the supported range, the constraint is ignored and 
an architecture-specific default value is used instead. Also note that the error message 
for this condition appears during PCF processing.

Syntax

VOLTAGE=value[V]

where 

value is a real number specifying the voltage.

V indicates volts, the default voltage unit.

Example

Schematic

Place on the schematic as an unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays 
assumes an operating power of 5 volts.

VOLTAGE=5;

Constraints Editor

Voltage prorating constraints can be specified in the Advanced tab.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data
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WIREAND

Applicable Elements

Any net

Description

WIREAND forces a tagged node to be implemented as a wired AND function in the 
interconnect (UIM and Fastconnect).

Syntax

WIREAND

Example

Schematic

Attach to a net.

UCF/NCF file

This statement specifies that the net named SIG_11 be implemented as a wired AND 
when optimized.

NET $I16789/SIG_11 WIREAND;

Constraints Editor

N/A

XBLKNM

Applicable Elements

1. IOB, CLB, and CLBMAP

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

5. HMAP

6. F5MAP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√∗
*Not supported for XC9500XL and XC9500XV designs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Spartan2 Virtex

√
1,2, 3, 7, 8

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
2, 3, 4, 6, 7, 

11

√
2, 3, 4, 5, 7, 
8, 9, 10, 11

√
1, 2, 3, 4, 7, 
8, 9, 10, 11

√
1, 2, 3, 4, 7, 
8, 9, 10, 11

√
1, 2, 3, 4, 7, 
8, 9, 10, 11
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7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Description

XBLKNM assigns LCA block names to qualifying primitives and logic elements. If the 
same XBLKNM attribute is assigned to more than one instance, the software attempts 
to map them into the same LCA block. Conversely, two symbols with different 
XBLKNM names are not mapped into the same block. Placing similar XBLKNMs on 
instances that do not fit within one LCA block creates an error. 

Specifying identical XBLKNM attributes on FMAP and/or HMAP symbols tells the 
software to group the associated function generators into a single CLB. Using 
XBLKNM, you can partition a complete CLB without constraining the CLB to a phys-
ical location on the device.

XBLKNM attributes, like LOC constraints, are specified from the schematic. Hierar-
chical paths are not prefixed to XBLKNM attributes, so XBLKNM attributes for 
different CLBs must be unique throughout the entire design.

The BLKNM attribute allows any elements except those with a different BLKNM to be 
mapped into the same physical component. XBLKNM, however, allows only elements 
with the same XBLKNM to be mapped into the same physical component. Elements 
without an XBLKNM cannot be not mapped into the same physical component as 
those with an XBLKNM.

For XC5200, a given XBLKNM string can only be used to group a logic cell (LC), 
which contains one register, one LUT (FMAP), and one F5_MUX element. An error 
will occur if two or more registers, two or more FMAPs, or two or more F5_MUX 
elements have the same XBLKNM attribute.

Syntax

XBLKNM=block_name

where block_name is a valid LCA block name for that type of symbol. For a list of 
prohibited block names, see the “Naming Conventions” section of each user interface 
manual.

Example

Schematic

Attach to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named flip_flop2 to a block 
named U1358.

INST $1I87/flip_flop2 XBLKNM=U1358;

Constraints Editor

N/A
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Placement Constraints
This section describes the legal placement constraints for each type of logic element, 
such as flip-flops, ROMs and RAMs, FMAPs, F5MAPs, and HMAPs, CLBMAPs, 
BUFTs, CLBs, IOBs, I/Os, edge decoders, and global buffers in FPGA designs. Indi-
vidual logic gates, such as AND or OR gates, are mapped into CLB function genera-
tors before the constraints are read and therefore cannot be constrained. However, if 
gates are represented by an FMAP, F5MAP, HMAP, or CLBMAP symbol, you can put 
a placement constraint on that symbol.

You can use the following constraints (described earlier in the “Attributes/Logical 
Constraints” section) to control mapping and placement of symbols in a netlist.

• BLKNM

• HBLKNM

• XBLKNM

• LOC

• PROHIBIT

• RLOC

• RLOC_ORIGIN

• RLOC_RANGE

Most constraints can be specified either in the schematic or in the UCF file.

In a constraints file, each placement constraint acts upon one or more symbols. Every 
symbol in a design carries a unique name, which is defined in the input file. Use this 
name in a constraint statement to identify the symbol. 

Note: The UCF and NCF files are case sensitive. Identifier names (names of objects in 
the design, such as net names) must exactly match the case of the name as it exists in 
the source design netlist. However, any Xilinx constraint keyword (for example, LOC, 
PROHIBIT, RLOC, BLKNM) can be entered in either all upper-case or all lower-case 
letters; mixed case is not allowed.

The following sections describe various types of placement constraints, explains the 
method of determining the symbol name for each, and provides examples.

BUFT Constraint Examples
You can constrain internal 3-state buffers (BUFTs) to an individual BUFT location, a 
list of BUFT locations, or a rectangular block of BUFT locations. BUFT constraints all 
refer to locations with a prefix of TBUF, which is the name of the physical element on 
the device.

BUFT constraints can be assigned from the schematic or through the UCF file. From 
the schematic, LOC constraints are attached to the target BUFT. The constraints are 
then passed into the EDIF netlist file and after mapping are read by PAR. Alterna-
tively, in a constraints file a BUFT is identified by a unique instance name. 

In the XC3000, BUFT locations are not straightforward. View the device in the FPGA 
Editor to determine the exact BUFT names.
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In XC4000, Spartan, or SpartanXL, BUFT locations are identified by the adjacent CLB. 
Thus, TBUF_R1C1.1 is just above CLB_R1C1, and TBUF_R1C1.2 is just below it. For 
XC4000, Spartan, or SpartanXL, use the following syntax to denote fixed locations.

TBUF_RrowCcol{.1 | .2}

where row is the row location and col is the column location; they can be any number 
between 0 and 99, inclusive. They must be less than or equal to the number of CLB 
rows or columns in the target device. The suffixes have the following meanings.

• 1 indicates that the instance should be placed above the CLB.

• 2 indicates that the instance should be placed below the CLB.

In the XC5200, BUFT locations are identified by the adjacent slice. From bottom to top, 
they are number 0, 1, 2, and 3. Thus, TBUF_R1C1.0 is located toward the bottom of the 
row. TBUF_R1C1.3 is located toward the top of the row. For an XC5200, Use the 
following syntax to denote fixed locations.

TBUF_RrowCcol{.0 | .1 | .2 | .3}

where row is the row location and col is the column location; they can be any number 
between 0 and 99, inclusive. They must be less than or equal to the number of CLB 
rows or columns in the target device. The suffixes have the following meanings.

• 0 indicates that the instance should be placed in the bottom buffer.

• 1 indicates that the instance should be placed in the buffer that is second from 
bottom.

• 2 indicates that the instance should be placed in the buffer that is second from top.

• 3 indicates that the instance should be placed in the top buffer.

For Virtex or Spartan2, use the following syntax to denote fixed locations.

TBUF_RrowCcol{.0 | .1}

where row is the row location and col is the column location; they can be any number 
between 0 and 99, inclusive. They must be less than or equal to the number of CLB 
rows or columns in the target device. The suffixes have the following meanings.

• 0 indicates one TBUF at the specific row/column.

• 1 indicates the second TBUF at the specific row/column.

For the XC4000, XC5200, Spartan, Spartan2, SpartanXL, or Virtex, use the following 
syntax to denote a range of locations from the lowest to the highest.

TBUF_RrowCcol TBUF_RrowCcol 

The following examples illustrate the format of BUFT LOC constraints. Specify LOC= 
and the BUFT location.

The following statements place the BUFT in the designated location.

LOC=TBUF.AA.1 (XC3000)

LOC=TBUF_R1C1.1 (or .2) (XC4000, Spartan, SpartanXL)

LOC=TBUF_R1C1.3 (or .0, .1, .2) (XC5200)

LOC=TBUF_R1C1.0 (or .1) (Spartan2, Virtex)
12-94 Xilinx Development System



Attributes, Constraints, and Carry Logic
The next statements place BUFTs at any location in the first column of BUFTs. The 
asterisk (*) is a wildcard character.

The following statements place BUFTs within the rectangular block defined by the 
first specified BUFT in the upper left corner and the second specified BUFT in the 
lower right corner.

In the following examples, the instance names of two BUFTs are /top-72/rd0 and/
top-79/ed7.

Example 1

This example specifies a BUFT adjacent to a specific CLB.

Place the BUFT adjacent to CLB R1C5. In XC4000, Spartan, and SpartanXL, PAR uses 
either the longline above the row of CLBs or the longline below. In an XC5200, PAR 
places the BUFT in one of the four slices of the CLB at row 1, column 5. In Virtex and 
Spartan2, PAR places the BUFT in one of two slices of the CLB at row 1, column 5.

Example 2

The following example places a BUFT in a specific location.

Place the BUFT adjacent to CLB R1C5. In an XC4000, Spartan, or SpartanXL device, .1 
tag specifies the longline above the row of CLBs; the .2 tag specifies the longline below 
it. In an XC5200 device, the .1 tag specifies the longline associated with the slice above 
the bottom-most slice in the CLB at the location; the .1, .2, .3 tags specify slices above 
the .0 slice for the specified row and column. In Virtex and Spartan2, the .1 tag speci-
fies the second TBUF in CLB R1C5.

BUFTs that drive the same signal must carry consistent constraints. If you specify .1 or 
.2 for one of the BUFTs that drives a given signal, you must also specify .1 or .2 on the 
other BUFTs on that signal; otherwise, do not specify any constraints at all.

Example 3

The next example specifies a column of BUFTs.

Place BUFTs in column 3 on any row. This constraint might be used to align BUFTs 
with a common enable signal. You can use the wildcard (*) character in place of either 
the row or column number to specify an entire row or column of BUFTs.

LOC=TBUF.*A (XC3000)

LOC=TBUF_R*C0 (XC4000, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex)

LOC=TBUF.AA:TBUF.BH (XC3000)

LOC=TBUF_R1C1:TBUF_R2C8 (XC4000, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex)

Schematic LOC=TBUF_r1c5

UCF INST /top-72/rd0 LOC=TBUF_r1c5 ;

Schematic LOC=TBUF_r1c5.1

UCF INST /top-72/rd0 LOC=TBUF_r1c5.1 ;

Schematic LOC=TBUF_r*c3

UCF INST /top-72/rd0 /top-79/ed7 LOC=TBUF_r*c3 ;
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Example 4

This example specifies a row of BUFTs .

Place the BUFT on one of the longlines in row 7 for any column. You can use the wild-
card (*) character in place of either the row or column number to specify an entire row 
or column of BUFTs.

CLB Constraint Examples
You can assign soft macros and flip-flops to a single CLB location, a list of CLB loca-
tions, or a rectangular block of CLB locations. You can also specify the exact function 
generator or flip-flop within a CLB. CLB locations are identified as CLB_RrowCcol for 
XC4000, XC5200, Spartan, Spartan2, SpartanXL, and Virtex or aa for XC3000, where aa 
is a two-letter designator. The upper left CLB is CLB_R1C1 (for XC4000, XC5200, 
Spartan, Spartan2, SpartanXL, and Virtex) or AA (for XC3000).

CLB locations can be a fixed location or a range of locations. Use the following syntax 
to denote fixed locations.

For XC4000, Spartan, SpartanXL:

CLB_R rowCcol{.F | .G | .FFX | .FFY }

For XC5200:

CLB_R rowCcol{.LC0 | .LC1 | .LC2 | .LC3 }

For Spartan2, Virtex:

CLB_R rowCcol{.S0 | .S1}

where

row is the row location and col is the column location; they can be any number 
between 0 and 99, inclusive, or *. They must be less than or equal to the number of 
CLB rows or columns in the target device. The suffixes have the following meanings.

.F means the CLB is mapped into the F function generator.

.G means the CLB is mapped into the G function generator.

.FFX indicates the X flip-flop in the CLB.

.FFY indicates the Y flip-flop in the CLB.

.LC0 means the bottom-most slice in the XC5200 CLB.

.LC1 means the slice above the .LC0 slice in the XC5200 CLB.

.LC2 means the slice above the .LC1 slice in the XC5200 CLB.

.LC3 means top-most slice in the XC5200 CLB.

.S0 means the right-most slice in the Virtex or Spartan2 CLB.

.S1 means the left-most slice in the Virtex or Spartan2 CLB.

Use the following syntax to denote a range of locations from the highest to the lowest.

CLB_Rrow1Ccol:CLB_Rrow2Ccol2

Schematic LOC=TBUF_r7c*

UCF INST /top-79/ed7 LOC=TBUF_r7c* ;
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The following examples illustrate the format of CLB constraints. Enter LOC= and the 
pin or CLB location. If the target symbol represents a soft macro, the LOC constraint is 
applied to all appropriate symbols (flip-flops, maps) contained in that macro. If the 
indicated logic does not fit into the specified blocks, an error is generated.

The following statements place logic in the designated CLB.

The following statements place logic within the first column of CLBs. The asterisk (*) 
is a wildcard character.

The next two statements place logic in any of the three designated CLBs. There is no 
significance to the order of the LOC statements.

The following statements place logic within the rectangular block defined by the first 
specified CLB in the upper left corner and the second specified CLB towards the 
lower right corner.

The next statement places logic in the X flip-flop of CLB_R2C2. For the Y flip-flop, use 
the FFY tag.

You can prohibit PAR from using a specific CLB, a range of CLBs, or a row or column 
of CLBs. Such prohibit constraints can be assigned only through the User Constraints 
File (UCF). CLBs are prohibited by specifying a PROHIBIT constraint at the design 
level, as shown in the following examples.

Example 1

Do not place any logic in the CLB in row 1, column 5. CLB R1C1 is in the upper left 
corner of the device.

LOC=AA (XC3000)

LOC=CLB_R1C1 (XC4000, Spartan, SpartanXL)

LOC=CLB_R1C1.LC0 (XC5200)

LOC=CLB_R1C1.S0 (Spartan2, Virtex)

LOC=*A (XC3000)

LOC=CLB_R*C1 (XC4000, Spartan, SpartanXL)

LOC=CLB_R*C1.LC0 (XC5200)

LOC=CLB_R*C1.S0 (Spartan2, Virtex)

LOC=AA,AB,AC (XC3000)

LOC=CLB_R1C1,CLB_R1C2,CLB_R1C3 (XC4000, Spartan, SpartanXL, 
XC5200, Spartan2, Virtex)

LOC=AA:HE (XC3000)

LOC=CLB_R1C1:CLB_R8C5 (XC4000, XC5200, Spartan, 
SpartanXL, Spartan2, Virtex)

LOC=CLB_R2C2.FFX (XC4000, Spartan, SpartanXL)

Schematic None

UCF CONFIG PROHIBIT=clb_r1c5 ;
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Example 2

Do not place any logic in the rectangular area bounded by the CLB R1C1 in the upper 
left corner and CLB R5C7 in the lower right.

Example 3

Do not place any logic in any row of column 3. You can use the wildcard (*) character 
in place of either the row or column number to specify an entire row or column of 
CLBs.

Example 4

Do not place any logic in either CLB R2C4 or CLB R7C9.

Delay Locked Loop (DLL) Constraint Examples (Virtex and 
Spartan2 Only)

You can constrain Virtex and Spartan2 DLL elements—CLKDLL and CLKDLLHF—to 
a specific physical site name. Specify LOC=DLL and a numeric value (0 through 3) to 
identify the location.

Following is an example.

Edge Decoder Constraint Examples (XC4000 Only)
In an XC4000 design, you can assign the decode logic to a specified die edge or half-
edge. All elements of a single decode function must lie along the same edge; they 
cannot be split across two edges of the die. If you use decoder constraints, you must 
assign all decode inputs for a given function to the same edge. From the schematic, 
attach LOC constraints to the decode logic — either a DECODE macro or a WAND 
gate with the DECODE attribute. The constraints are then passed into the EDIF netlist 
and after mapping is read by PAR.

The format of decode constraints is LOC= and the decode logic symbol location. If the 
target symbol represents a soft macro containing only decode logic, for example, 
DECODE8, the LOC constraint is applied to all decode logic contained in that macro. 
If the indicated decode logic does not fit into the specified decoders, an error is gener-
ated.

To constrain decoders to precise positions within a side, constrain the associated pads. 
However, because PAR determines decoder edges before processing pad constraints, 
it is not enough to constrain the pads alone. To constrain decoders to a specific die 

Schematic None

UCF CONFIG PROHIBIT=clb_r1c1:clb_r5c7 ;

Schematic None

UCF CONFIG PROHIBIT=clb_r*c3 ;

Schematic None

UCF CONFIG PROHIBIT=clb_r2c4, clb_r7c9 ;

Schematic LOC=DLL1

UCF INST buf1 LOC=DLL1;
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side, use the following rule. For every output net that you want to constrain, specify 
the side for at least one of its input decoders (WAND gates), using one of the 
following.

The “Legal Edge Designations for Edge Decoders” table shows the legal edge desig-
nations.

Example 1

Place the decoder along the top edge of the die.

Example 2

Place the decoder logic along the left edge of the die.

Example 3

Place decoders along the top half of the left edge of the die. The first letter in this code 
represents the die edge, and the second letter represents the desired half of that edge.

Note: The edges referred to in these constraints are die edges, which do not neces-
sarily correspond to package edges. View the device in the FPGA Editor to determine 
which pins are on which die edge.

LOC=L LOC=T

LOC=R LOC=B

Schematic LOC=T

UCF INST dec1/$1I1 LOC=T ;

Schematic LOC=L

UCF INST dec1/$1I1 LOC=L ;

Schematic LOC=LT

UCF INST dec1/$1I1 LOC=LT ;

Table 12-9 Legal Edge Designations for Edge Decoders

Edge Code Edge Location

T Top edge

B Bottom edge

L Left edge

R Right edge

TL Left half of top edge

TR Right half of top edge

BL Left half of bottom edge

BR Right half of bottom edge

LT Top half of left edge

LB Bottom half of left edge

RT Top half of right edge

RB Bottom half of right edge
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Flip-Flop Constraint Examples
Flip-flops can be constrained to a specific CLB, a range of CLBs, a row or column of 
CLBs, a specific half-CLB, or one of four specific slices of the XC5200 CLB. Flip-flop 
constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are 
then passed into the EDIF netlist and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and 
to a UCF (User Constraints File). The instance names of two flip-flops, /top-12/fdrd 
and /top-54/fdsd, are used to show how you would enter the constraints in the UCF.

Example 1

Place the flip-flop in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner 
of the device.

Example 2

Place the flip-flop in the rectangular area bounded by the CLB R1C1 in the upper left 
corner and CLB R5C7 in the lower right corner.

Example 3

Place the flip-flops in any row of column 3. You can use the wildcard (*) character in 
place of either the row or column number to specify an entire row or column of CLBs.

In the following example, repeating the LOC constraint and separating each such 
constraint by a comma specifies multiple locations for an element. When you specify 
multiple locations, PAR can use any of the specified locations.

Example 4

Place the flip-flop in either CLB R2C4 or CLB R7C9.

Example 5

Place the flip-flop in CLB R3C5 and assign the flip-flop output to the XQ pin. (Use the 
FFY tag to indicate the YQ pin of the CLB.) If either the FFX or FFY tags are specified, 
the wildcard (*) character cannot be used for the row or column numbers.

Schematic LOC=clb_rlc5

UCF INST /top-12/fdrd LOC=clb_r1c5 ;

Schematic LOC=clb_r1c1:clb_r5c7

UCF INST /top-12/fdrd LOC=clb_r1c1:clb_r5c7 ;

Schematic LOC=clb_r*c3

UCF INST /top-12/fdrd/top-54/fdsd LOC=clb_r*c3 ;

Schematic LOC=clb_r2c4,clb_r7c9

UCF INST /top-54/fdsd LOC=clb_r2c4,clb_r7c9 ;

Schematic LOC=clb_r3c5.ffx

UCF INST /top-12/fdrd LOC=clb_r3c5.ffx ;
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Example 6

Do not place the flip-flop in any column of row 5. You can use the wildcard (*) char-
acter in place of either the row or column number to specify an entire row or column 
of CLBs.

The XC5200 CLB is divided into four specific slices for every row and column location 
on the array. In order to place a flip-flop in a specific slice, use the .LC0, .LC1, .LC2, or 
.LC3 extension on the location constraint as shown in the following example.

Example 7

Place the flip-flop in the top slice of the XC5200 CLB in row 1, column 5.

Global Buffer Constraint Examples 

XC3000

You cannot assign placement to the GCLK or ACLK buffers in the XC3000 family, 
since there is only one each, and their placements are fixed on the die.

XC4000, XC5200, Spartan, SpartanXL

For the XC4000, XC5200, Spartan, and SpartanXL, you can constrain a global buffer — 
BUFG, BUFGP, BUFGS, BUFGLS, BUFGE, or BUFFCLK— to a corner of the die. From 
the schematic, attach LOC constraints to the global buffer symbols; specify LOC= and 
the global clock buffer location. The constraints are then passed into the EDIF netlist 
and after mapping are read by PAR.

Following is an example.

Place the global buffer in the top left corner of the die. The following table shows the 
legal corner designations.

If a global buffer is sourced by an external signal, the dedicated IOB for that buffer 
must not be used by any other signal. For example, if a BUFGP is constrained to TL, 
the PGCK1 pin must be used to source it, and no other I/O can be assigned to that 
pin.

Schematic PROHIBIT=clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c* ;

Schematic LOC=clb_r1c5.LC3

UCF INST /top-12/fdrd LOC=clb_r1c5.LC3 ;

Schematic LOC=TL

UCF INST buf1 LOC=TL ;

Table 12-10 Legal Corner Designations for Global Buffers

Corner Code Corner Location

TL Top left corner

TR Top right corner

BL Bottom left corner

BR Bottom right corner
Libraries Guide, 2.1i 12-101



Libraries Guide, 2.1i
Virtex, Spartan2

You can constrain a Virtex or Spartan2 global buffer—BUFGP, and IBUFG_selectIO 
variants—to a specific buffer site name or dedicated global clock pad in the device 
model. From the schematic, attach LOC constraints to the global buffer symbols. 
Specify LOC= and GCLKBUF plus a number (0 through 3) to create a specific buffer 
site name in the device model. Or, specify LOC= and GCLKPAD plus a number (0 
through 3) to create a specific dedicated global clock pad in the device model.The 
constraints are then passed into the EDIF netlist and after mapping are read by PAR.

Following is an example.

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the 
schematic or through the UCF file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints 
are then passed into the netlist file and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The 
following example shows how the LOC constraint is applied to a schematic and to a 
UCF (User Constraints File). In the examples, the instance names of the I/Os are /top-
102/data0_pad and /top-117/q13_pad. The example uses a pin number to lock to one 
pin.

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is 
used.

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB 
locations are identified by the corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and 
the pin location. If the target symbol represents a soft macro containing only I/O 
elements, for example, INFF8, the LOC constraint is applied to all I/O elements 
contained in that macro. If the indicated I/O elements do not fit into the specified 
locations, an error is generated.

The following statement places the I/O element in location P13. For PGA packages, 
the letter-number designation is used, for example, B3.

LOC=P13

You can prohibit the mapper from using a specific IOB. You might take this step to 
keep user I/O signals away from semi-dedicated configuration pins. Such prohibit 
constraints can be assigned only through the UCF file.

Schematic LOC=GCLKBUF1

UCF INST buf1 LOC=GCLKBUF1;

Schematic LOC=GCLKPAD1

UCF INST buf1 LOC=GCLKPAD1;

Schematic LOC=p17

UCF INST /top-102/data0_pad LOC=p17 ;
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IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG 
keyword, as shown in the following example.

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names 
such as D14, C16, or H15 are used.

Mapping Constraint Examples
Mapping constraints control the mapping of logic into CLBs. They have two parts. 
The first part is a FMAP, HMAP, or CLBMAP component placed on the schematic. 
The second is a LOC constraint that can be placed on the schematic or in the 
constraints file.

CLBMAP (XC3000 Only)

With the CLBMAP symbol, you can specify logic mapping at the schematic level for 
all XC3000 designs. It is used in conjunction with standard logic elements, such as 
gates and flip-flops. It implicitly specifies the configuration of a CLB by defining the 
signals on its pins. Use the CLBMAP symbol to control mapping when the default 
mapping is not acceptable.

Enter the CLBMAP symbol on the schematic and assign signals to its pins. MAP 
processes this symbol and maps the appropriate logic, as defined by the input and 
output signals, into one CLB. The easiest way to define a CLBMAP is to connect a 
labeled wire segment to each pin, which connects that pin to the net carrying the same 
label.

If a CLBMAP specifies an illegal CLB configuration, MAP issues an error explaining 
why the CLBMAP is illegal.

A CLBMAP can be either closed or open. A closed CLBMAP must specify both the 
input and output signals for that CLB. MAP maps a closed CLBMAP exactly as speci-
fied, unless the indicated configuration is illegal. MAP does not add any logic to a 
CLB specified with a closed CLBMAP.

An open CLBMAP specifies the minimum amount of logic to place within a CLB. 
MAP attempts to place more logic within the CLB as long as the CLB remains valid. 
MAP only adds logic on the inputs to the CLB. It does not add logic on the output 
signals. MAP assigns those signals to the CLB output pins and maps the source logic 
into the CLB as appropriate. Use an open CLBMAP to specify the minimum function 
of a CLB.

Specify whether a CLBMAP is open or closed by attaching the appropriate MAP 
attribute to the symbol. See the “Map Attributes for CLBMAP Symbols” table for the 
exact conventions.

The default configuration for a CLBMAP is unlocked and open.

Schematic None

UCF CONFIG PROHIBIT=p36, p37, p41 ;
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Note: Currently, pin locking is not supported. PLC and PLO are translated into PUC 
and PUO, respectively.

Example 1

Place the CLBMAP in CLB CLB_R1C1.

Example 2

Place the CLBMAP in the area bounded by CLB AA in the upper left corner and CLB 
EE in the lower right.

FMAP and HMAP

The FMAP and HMAP symbols control mapping in an XC4000, Spartan, or Spar-
tanXL design. They are similar to the XC3000 CLBMAP symbol. The FMAP may also 
be used to control mapping XC5200, Spartan2, or Virtex designs.

FMAP and HMAP control the mapping of logic into function generators. These 
symbols do not define logic on the schematic; instead, they specify how portions of 
logic shown elsewhere on the schematic should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function generator. The 
mapper assigns this function to an F or G function generator for XC4000, Spartan, and 
SpartanXL, so you are not required to specify whether it belongs in F or G. For the 
XC5200, the four-input function generator defined by the FMAP will be assigned to 
one of the four slices of the CLB. For Virtex and Spartan2, the four-input function 
generator defined by the FMAP will be assigned to one of the two slices of the CLB.

The HMAP symbol defines mapping into a three-input (H) function generator for 
XC4000, Spartan, and SpartanXL. If the HMAP has two FMAP outputs and, option-
ally, one normal (non-FMAP) signal as its inputs, The mapper places all the logic 
related to these symbols into one CLB. 

An example of how to use these symbols in your schematic appears in the “FMAP 
and HMAP Schematics” figure and the “Implementation of FMAP and HMAP” 
figure.

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is 
supported, as well as the LOC constraint. (Currently, pin locking is not supported. 
MAP=PLC or PLO is translated into PUC and PUO, respectively.)

For the HMAP symbol, only MAP=PUC is supported.

Table 12-11 Map Attributes for CLBMAP Symbols

Closed CLB Open CLB

Pins locked MAP=PLC MAP=PLO

Pins unlocked MAP=PUC MAP=PUO (default)

Schematic LOC=CLB_R1C1

UCF INST top/cntq7 LOC=CLB_R1C1 ;

Schematic LOC=AA:EE

UCF INST reg/bit7 LOC=AA:EE ;
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Example 1

Place the FMAP or HMAP symbol in the CLB at row 7, column 3.

Example 2

Place the FMAP or HMAP symbol in either the CLB at row 2, column 4 or the CLB at 
row 3, column 4.

Example 3

Place the FMAP or HMAP symbol in the area bounded by CLB R5C5 in the upper left 
corner and CLB R10C8 in the lower right.

Example 4 (XC4000, Spartan, SpartanXL)

Place the FMAP in the F function generator of CLB R10C11. The .G extension specifies 
the G function generator. An HMAP can only go into the H function generator, so 
there is no need to specify this placement explicitly.

The XC5200 CLB is divided into four specific slices for every row and column location 
in the array. In order to place a function generator in a specific slice, use the .LC0, 
.LC1, .LC2., or LC3 extension on the location constraint on the FMAP as shown in the 
following example.

Example 5 (XC5200)

Place the FMAP in the top slice of the XC5200 CLB in row 10, column 11.

The Virtex or Spartan2 CLB is divided into two specific slices for every row and 
column location in the array. In order to place a function generator in a specific slice, 
use the .S0 (right-most slice) or .S1 (left-most slice) extension on the location constraint 
on the FMAP as shown in the following example.

Example 6 (Virtex, Spartan2)

Place the FMAP in the right-most slice of the Virtex or Spartan2 CLB in row 10, 
column 11.

Schematic LOC=clb_r7c3

UCF INST $1I323 LOC=clb_r7c3;

Schematic LOC=clb_r2c4,clb_r3c4

UCF INST top/dec0011 LOC=clb_r2c4,clb_r3c4;

Schematic LOC=clb_r5c5:clb_r10c8

UCF INST $3I27 LOC=clb_r5c5:clb_r10c8;

Schematic LOC=clb_r10c11.f

UCF INST top/done LOC=clb_r1011.f ;

Schematic LOC=clb_r10c11.LC3

UCF INST /top/done LOC=clb_r10c11.LC3 ;

Schematic LOC=clb_r10c11.S0

UCF INST /top/done LOC=clb_r10c11.S0 ;
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Figure 12-2 FMAP and HMAP Schematics

Figure 12-3 Implementation of FMAP and HMAP

RAM and ROM Constraint Examples
You can constrain a ROM or RAM to a specific CLB, a range of CLBs, or a row or 
column of CLBs. Memory constraints can be assigned from the schematic or through 
the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The 
constraints are then passed into the netlist file and after mapping they are read by 
PAR. For more information on attaching LOC constraints, see the appropriate inter-
face user guide.

Alternatively, in the constraints file a memory is identified by a unique instance name. 
One or more memory instances of type ROM or RAM can be found in the input file. 
All memory macros larger than 16 x 1 or 32 x 1 are broken down into these basic 
elements in the netlist file. 
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In the following examples, the instance name of the ROM primitive is /top-7/rq. The 
instance name of the RAM primitive, which is a piece of a RAM64X8 macro, is /top-
11-ram64x8/ram-3.

Example 1

Place the memory in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner 
of the device. You can only apply a single-CLB constraint such as this to a 16 x 1 or 32 
x 1 memory.

Example 2

Place the memory in either CLB R2C4 or CLB R7C9.

Example 3

Place the LogiBlox module in the rectangular area bounded by the CLB R1C1 in the 
upper left corner and CLB R5C7 in the lower right.

From the schematic, attach the LOC constraint to the LogiBlox symbol for the bigram 
block.

In the UCF file, the /* is appended to the end of the LogiBlox symbol instance. The 
wildcard (*) character here specifies all instances that begin with the /top-17/bigram/ 
prefix, that is, all RAM elements within the LogiBlox block.

Example 4 

Do not place the memory in any column of row 5. You can use the wildcard (*) char-
acter in place of either the row or column number in the CLB name to specify an entire 
row or column of CLBs.

Schematic LOC=clb_r1c5

UCF INST /top-7/rq LOC=clb_r1c5 ;

Schematic LOC=clb_r2c4, clb_r7c9

UCF INST /top-7/rq LOC=clb_r2c4, clb_r7c9 ;

Schematic LOC=clb_r1c1:clb_r5c7

UCF INST /top-17/bigram/* 
LOC=clb_r1c1:clb_r5c7 ;

Schematic PROHIBIT clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c* ;
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RAMB4 (Block RAM) Constraint Examples (Virtex, Spartan2 Only)
You can constrain a Virtex or Spartan2 block RAM to a specific CLB, a range of CLBs, 
or a row or column of CLBs. Memory constraints can be assigned from the schematic 
or through the UCF file. From the schematic, attach the LOC constraints to the 
memory symbol. The constraints are then passed into the netlist file and after 
mapping they are read by PAR. For more information on attaching LOC constraints, 
see the appropriate interface user guide. Alternatively, in the constraints file a 
memory is identified by a unique instance name.

A Virtex or Spartan2 block RAM has a different row/column grid specification than 
CLBs and TBUFs. It is specified using RAMB4_RnCn where the numeric row and 
column numbers refer to the block RAM grid array. A block RAM located at 
RAMB4_R3C1 is not located at the same site as a flip-flop located at CLB_R3C1. 

For example, assume you have a device with two columns of block RAM, each 
column containing four blocks, where one column is on the right side of the chip and 
the other is on the left. The block RAM located in the upper left corner is 
RAMB4_R0C0. Because there are only two columns of block RAM, the block located 
in the upper right corner is RAMB4_R0C1. 

Schematic LOC=RAMB4_R0C0

UCF INST /top-7/rq LOC=RAMB4_R0C0 ;
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Relative Location (RLOC) Constraints
Note: This section applies to all FPGA families except XC3000.

The RLOC constraint groups logic elements into discrete sets. You can define the loca-
tion of any element within the set relative to other elements in the set, regardless of 
eventual placement in the overall design. For example, if RLOC constraints are 
applied to a group of eight flip-flops organized in a column, the mapper maintains the 
columnar order and moves the entire group of flip-flops as a single unit. In contrast, 
absolute location (LOC) constraints constrain design elements to specific locations on 
the FPGA die with no relation to other design elements.

Benefits and Limitations of RLOC Constraints
RLOC constraints allow you to place logic blocks relative to each other to increase 
speed and use die resources efficiently. They provide an order and structure to related 
design elements without requiring you to specify their absolute placement on the 
FPGA die. They allow you to replace any existing hard macro with an equivalent that 
can be directly simulated.

In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related 
primitives, that is, DFF, HMAP, FMAP, and CY4 primitives. You can also use them on 
non-primitive macro symbols. There are some restrictions on the use of RLOC 
constraints on BUFT symbols; for details, see the “Fixing Members of a Set at Exact 
Die Locations” section. You cannot use RLOC constraints with decoders, clocks, or I/
O primitives. LOC constraints, on the other hand, can be used on all primitives: 
BUFTs, CLBs, IOBs, decoders, and clocks.

The following symbols (primitives) accept RLOCs.

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT

11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Guidelines for Specifying Relative Locations
General syntax for assigning elements to relative locations is

RLOC=RmCn [.extension]

where m and n are relative row numbers and column numbers, respectively. 
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The extension uses the LOC extension syntax as appropriate; for example .1 and .2 for 
TBUF location.

The extension is required for XC5200 designs in order to fully specify the order of the 
elements (.LC0, .LC1, .LC2, .LC3). It is required for Virtex and Spartan2 designs to 
specify the spatial relationship of the objects in the RPM (.S0, .S1).

The row and column numbers can be any positive or negative integer including zero. 
Absolute die locations, in contrast, cannot have zero as a row or column number. 
Because row and column numbers in RLOC constraints define only the order and 
relationship between design elements and not their absolute die locations, their 
numbering can include zero or negative numbers. Even though you can use any 
integer in numbering rows and columns for RLOC constraints, it is recommended 
that you use small integers for clarity and ease of use.

It is not the absolute values of the row and column numbers that is important in 
RLOC specifications but their relative values or differences. For example, if design 
element A has an RLOC=R3C4 constraint and design element B has an RLOC=R6C7 
constraint, the absolute values of the row numbers (3 and 6) are not important in 
themselves. However, the difference between them is important; in this case, 3 (6 -3) 
specifies that the location of design element B is three rows away from the location of 
design element A. To capture this information, a normalization process is used at 
some point in the design implementation. In the example just given, normalization 
would reduce the RLOC on design element A to R0C0, and the RLOC on design 
element B to R3C3.

In Xilinx programs, rows are numbered in increasing order from top to bottom, and 
columns are numbered in increasing order from left to right. RLOC constraints follow 
this numbering convention.

The “Different RLOC Specifications for Four Flip-flop Primitives for an XC4000, 
Spartan, or SpartanXL Design” figure demonstrates the use of RLOC constraints. Four 
flip-flop primitives named A, B, C, and D are assigned RLOC constraints as shown. 
These RLOC constraints require each flip-flop to be placed in a different CLB in the 
same column and stacked in the order shown — A above B, C, and D. Within a CLB, 
however, they can be placed either in the FFX or FFY position.

If you wish to place more than one of these flip-flop primitives per CLB, you can 
specify the RLOCs as shown in the “Different RLOC Specifications for Four Flip-flop 
Primitives for an XC4000, Spartan, or SpartanXL Design” figure. The arrangement in 
the figure requires that A and B be placed in a single CLB and that C and D be placed 
in another CLB immediately below the AB CLB. However, within a CLB, the flip-flops 
can be placed in either of the two flip-flop positions, FFX or FFY.

To control the ordering of these flip-flop primitives specifically, you can use the exten-
sion field, as shown in the “Different RLOC Specifications for Four Flip-flop Primi-
tives for an XC4000, Spartan, or SpartanXL Design” figure. In this figure, the same 
four flip-flops are constrained to use specific resources in the CLBs. This specification 
always ensures that these elements are arranged exactly as shown— A must be placed 
in the FFX spot, B in the same CLB at the FFY spot, and so on.
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Figure 12-4 Different RLOC Specifications for Four Flip-flop Primitives for an 
XC4000, Spartan, or SpartanXL Design

RLOC Sets
 RLOC constraints give order and structure to related design elements. This section 
describes RLOC sets, which are groups of related design elements to which RLOC 
constraints have been applied. For example, the four flip-flops in the “Different RLOC 
Specifications for Four Flip-flop Primitives for an XC4000, Spartan, or SpartanXL 
Design” figure are related by RLOC constraints and form a set. Elements in a set are 
related by RLOC constraints to other elements in the same set. Each member of a set 
must have an RLOC constraint, which relates it to other elements in the same set. You 
can create multiple sets, but a design element can belong to one set only.

Sets can be defined explicitly through the use of a set parameter or implicitly through 
the structure of the design hierarchy.

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a 
single set.

• Modification rules dictate how to specify parameters that modify RLOC values of 
all the members of the set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints— U_SET, H_SET, and 
HU_SET. Elements must be tagged with both the RLOC constraint and one of these 
set constraints to belong to a set.

U_SET

U_SET constraints enable you to group into a single set design elements with attached 
RLOC constraints that are distributed throughout the design hierarchy. The letter U in 
the name U_SET indicates that the set is user-defined. U_SET constraints allow you to 
group elements, even though they are not directly related by the design hierarchy. By 
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attaching a U_SET constraint to design elements, you can explicitly define the 
members of a set. The design elements tagged with a U_SET constraint can exist 
anywhere in the design hierarchy; they can be primitive or non-primitive symbols. 
When attached to non-primitive symbols, the U_SET constraint propagates to all the 
primitive symbols with RLOC constraints that are below it in the hierarchy.

The syntax of the U_SET constraint is the following.

U_SET=set_name

where set_name is the user-specified identifier of the set. All design elements with 
RLOC constraints tagged with the same U_SET constraint name belong to the same 
set. Names therefore must be unique among all the sets in the design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design 
elements, the H_SET (hierarchy set) is defined implicitly through the design hier-
archy. The combination of the design hierarchy and the presence of RLOC constraints 
on elements defines a hierarchical set, or H_SET set. You do not use an HSET 
constraint to tag the design elements to indicate their set membership. The set is 
defined automatically by the design hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy 
are considered to be in the same H_SET set unless they are tagged with another type 
of set constraint such as RLOC_ORIGIN or RLOC_RANGE. If you explicitly tag any 
element with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it is 
removed from an H_SET set. Most designs contain only H_SET constraints, since they 
are the underlying mechanism for relationally placed macros. The RLOC_ORIGIN or 
RLOC_RANGE constraints are discussed further in the “Fixing Members of a Set at 
Exact Die Locations” section.

NGDBuild recognizes the implicit H_SET set, derives its name, or identifier, attaches 
the H_SET constraint to the correct members of the set, and writes them to the output 
file.

The syntax of the H_SET constraint as generated by NGDBuild follows.

H_SET=set_name

set_name is the identifier of the set and is unique among all the sets in the design. The 
base name for any H_SET is “hset,” to which NGDBuild adds a hierarchy path prefix 
to obtain unique names for different H_SET sets in the NGDBuild output file.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like 
H_SET, HU_SET is defined by the design hierarchy. However, you can use the 
HU_SET constraint to assign a user-defined name to the HU_SET.

The syntax of the HU_SET constraint is the following.

HU_SET=set_name

where set_name is the identifier of the set; it must be unique among all the sets in the 
design. You must define the base names to ensure unique hierarchically qualified 
names for the sets after the mapper resolves the design and attaches the hierarchical 
names as prefixes.
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This user-defined name is the base name of the HU_SET set. Like the H_SET set, in 
which the base name of “hset” is prefixed by the hierarchical name of the lowest 
common ancestor of the set elements, the user-defined base name of an HU_SET set is 
prefixed by the hierarchical name of the lowest common ancestor of the set elements.

The HU_SET constraint defines the start of a new set. All design elements at the same 
node that have the same user-defined value for the HU_SET constraint are members 
of the same HU_SET set. Along with the HU_SET constraint, elements can also have 
an RLOC constraint. The presence of an RLOC constraint in an H_SET constraint links 
the element to all elements tagged with RLOCs above and below in the hierarchy. 
However, in the case of an HU_SET constraint, the presence of an RLOC constraint 
along with the HU_SET constraint on a design element does not automatically link 
the element to other elements with RLOC constraints at the same hierarchy level or 
above.

Figure 12-5 Macro A Instantiated Twice

Note: In “Macro A Instantiated Twice” figure and the other related figures shown in 
the subsequent sections, the italicized text prefixed by => is added by NGDBuild 
during the design flattening process. You add all other text.

“Macro A Instantiated Twice” figure demonstrates a typical use of the implicit H_SET 
(hierarchy set). The figure shows only the first “RLOC” portion of the constraint. In a 
real design, the RLOC constraint must be specified completely with RLOC=RmCn. In 
this example, macro A is originally designed with RLOC constraints on four flip-flops 
— A, B, C, and D. The macro is then instantiated twice in the design — Inst1 and Inst2. 
When the design is flattened, two different H_SET sets are recognized because two 
distinct levels of hierarchy contain elements with RLOC constraints. NGDBuild 
creates and attaches the appropriate H_SET constraint to the set members: 
H_SET=Inst1/hset for the macro instantiated in Inst1, and H_SET=Inst2/hset for the 
macro instantiated in Inst2. The design implementation programs place each of the 
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two sets individually as a unit with relative ordering within each set specified by the 
RLOC constraints. However, the two sets are regarded to be completely independent 
of each other.

The name of the H_SET set is derived from the symbol or node in the hierarchy that 
includes all the RLOC elements. In the “Macro A Instantiated Twice” figure, Inst1 is 
the node (instantiating macro) that includes the four flip-flop elements with RLOCs 
shown on the left of the figure. Therefore, the name of this H_SET set is the hierarchi-
cally qualified name of “Inst1” followed by “hset.” The Inst1 symbol is considered the 
“start” of the H_SET, which gives a convenient handle to the entire H_SET and 
attaches constraints that modify the entire H_SET. Constraints that modify sets are 
discussed in the “Set Modifiers” section.

The “Macro A Instantiated Twice” figure demonstrates the simplest use of a set that is 
defined and confined to a single level of hierarchy. Through linkage and modification, 
you can also create an H_SET set that is linked through two or more levels of hier-
archy. Linkage allows you to link elements through the hierarchy into a single set. On 
the other hand, modification allows you to modify RLOC values of the members of a 
set through the hierarchy.

RLOC Set Summary

The following table summarizes the RLOC set types and the constraints that identify 
members of these sets.

Table 12-12 Summary of Set Types

Type Definition Naming Linkage Modification

Set A set is a collec-
tion of 
elements to 
which relative 
location 
constraints are 
applied.

U_SET= name All elements 
with the same 
user-tagged 
U_SET 
constraint 
value are 
members of the 
same U_SET 
set.

The name of 
the set is the 
same as the 
user-defined 
name without 
any hierar-
chical qualifica-
tion.

U_SET links 
elements to all 
other elements 
with the same 
value for the 
U_SET 
constraint.

U_SET is modi-
fied by 
applying 
RLOC_ORIGI
N or 
RLOC_RANGE 
constraints on, 
at most, one of 
the U_SET 
constraint-
tagged 
elements.
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Set Linkage
The example in the “Three H_SET Sets” figure explains and illustrates the process of 
linking together elements through the design hierarchy. Again, the complete RLOC 
specification, RLOC=RmCn, is required for a real design.

Note: In this and other illustrations in this section, the sets are shaded differently to 
distinguish one set from another.

H_SET 
(implicit 
through hier-
archy) is not 
available as a 
constraint that 
you can attach 
to symbols.

RLOC on the 
node. Any 
other 
constraint 
removes a node 
from the 
H_SET set.

The lowest 
common 
ancestor of the 
members 
defines the 
start of the set. 
The name is the 
hierarchically 
qualified name 
of the start 
followed by the 
base name, 
“hset.”

H_SET links 
elements to 
other elements 
at the same 
node that do 
not have other 
constraints. It 
links down to 
all elements 
that have 
RLOC 
constraints and 
no other 
constraints. 
Similarly, it 
links to other 
elements up 
the hierarchy 
that have 
RLOC 
constraints but 
no other 
constraints.

H_SET is modi-
fied by 
applying 
RLOC_ORIGI
N and 
RLOC_RANGE 
at the start of 
the set: the 
lowest 
common 
ancestor of all 
the elements of 
the set.

HU_SET= name All elements 
with the same 
hierarchically 
qualified name 
are members of 
the same set.

The lowest 
common 
ancestor of the 
members is 
prefixed to the 
user-defined 
name to obtain 
the name of the 
set.

HU_SET links 
to other 
elements at the 
same node 
with the same 
HU_SET 
constraint 
value. It links 
to elements 
with RLOC 
constraints 
below.

The start of the 
set is made up 
of the elements 
on the same 
node that are 
tagged with the 
same HU_SET 
constraint 
value. An 
RLOC_ORIGI
N or an 
RLOC_RANGE 
can be applied 
to, at most, one 
of these start 
elements of an 
HU_SET set.

Table 12-12 Summary of Set Types

Type Definition Naming Linkage Modification
Libraries Guide, 2.1i 12-115



Libraries Guide, 2.1i
Figure 12-6 Three H_SET Sets

As noted previously, all design elements with RLOC constraints at a single node of the 
design hierarchy are considered to be in the same H_SET set unless they are assigned 
another type of set constraint, an RLOC_ORIGIN constraint, or an RLOC_RANGE 
constraint. In the “Three H_SET Sets” figure, RLOC constraints have been added on 
primitives and non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and R. No RLOC 
constraints were placed on B, E, L, or S. Macros C and D have an RLOC constraint at 
node A, so all the primitives below C and D that have RLOCs are members of a single 
H_SET set. Furthermore, the name of this H_SET set is “A/hset” because it is at node 
A that the set starts. The start of an H_SET set is the lowest common ancestor of all the 
RLOC-tagged constraints that constitute the elements of that H_SET set. Because 
element E does not have an RLOC constraint, it is not linked to the A/hset set. The 
RLOC-tagged elements M and N, which lie below element E, are therefore in their 
own H_SET set. The start of that H_SET set is A/E, giving it the name “A/E/hset.”

Similarly, the Q and R primitives are in their own H_SET set because they are not 
linked through element L to any other design elements. The lowest common ancestor 
for their H_SET set is L, which gives it the name “A/D/L/hset.” After the flattening, 
NGDBuild attaches H_SET=A/hset to the F, G, H, O, P, J, and K primitives; 
H_SET=A/D/L/hset to the Q and R primitives; and H_SET=A/E/hset to the M and 
N primitives.
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Consider a situation in which a set is created at the top of the design. In “Three H_SET 
Sets” figure, there would be no lowest common ancestor if macro A also had an RLOC 
constraint, since A is at the top of the design and has no ancestor. In this case, the base 
name “hset” would have no hierarchically qualified prefix, and the name of the 
H_SET set would simply be “hset.”

Set Modification
The RLOC constraint assigns a primitive an RLOC value (the row and column 
numbers with the optional extensions), specifies its membership in a set, and links 
together elements at different levels of the hierarchy. In “Three H_SET Sets” figure, 
the RLOC constraint on macros C and D links together all the objects with RLOC 
constraints below them. An RLOC constraint is also used to modify the RLOC values 
of constraints below it in the hierarchy. In other words, RLOC values of elements 
affect the RLOC values of all other member elements of the same H_SET set that lie 
below the given element in the design hierarchy.

The Effect of the Hierarchy on Set Modification

When the design is flattened, the row and column numbers of an RLOC constraint on 
an element are added to the row and column numbers of the RLOC constraints of the 
set members below it in the hierarchy. This feature gives you the ability to modify 
existing RLOC values in submodules and macros without changing the previously 
assigned RLOC values on the primitive symbols. This modification process also 
applies to the optional extension field. However, when using extensions for modifica-
tions, you must ensure that inconsistent extensions are not attached to the RLOC 
value of a design element that may conflict with RLOC extensions placed on under-
lying elements. For example, if an element has an RLOC constraint with the FFX 
extension, all the underlying elements with RLOC constraints must either have the 
same extension, in this case FFX, or no extension at all; any underlying element with 
an RLOC constraint and an extension different from FFX, such as FFY or F, is flagged 
as an error.

After resolving all the RLOC constraints, extensions that are not valid on primitives 
are removed from those primitives. For example, if NGDBuild generates an FFX 
extension to be applied on a primitive after propagating the RLOC constraints, it 
applies the extension if and only if the primitive is a flip-flop. If the primitive is an 
element other than a flip-flop, the extension is ignored. Only the extension is ignored 
in this case, not the entire RLOC constraint.

“Adding RLOC Values Down the Hierarchy” figure illustrates the process of adding 
RLOC values down the hierarchy. The row and column values between the paren-
theses show the addition function performed by the mapper. The italicized text 
prefixed by => is added by MAP during the design resolution process and replaces 
the original RLOC constraint that you added.
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Figure 12-7 Adding RLOC Values Down the Hierarchy

The ability to modify RLOC values down the hierarchy is particularly valuable when 
instantiating the same macro more than once. Typically, macros are designed with 
RLOC constraints that are modified when the macro is instantiated. The “Modifying 
RLOC Values of Same Macro and Linking Together as One Set” figure is a variation of 
the sample design in the “Macro A Instantiated Twice” figure. The RLOC constraint 
on Inst1 and Inst2 now link all the objects in one H_SET set. Because the RLOC=R0C0 
modifier on the Inst1 macro does not affect the objects below it, the mapper only adds 
the H_SET tag to the objects and leaves the RLOC values as they are. However, the 
RLOC=R0C1 modifier on the Inst2 macro causes MAP to change the RLOC values on 
objects below it, as well as to add the H_SET tag, as shown in the italicized text.
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Figure 12-8 Modifying RLOC Values of Same Macro and Linking Together as 
One Set

Separating Elements from H_SET Sets

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). The 
HU_SET constraint defines the start of a new set. Like H_SET, HU_SET is defined by 
the design hierarchy. However, you can use the HU_SET constraint to assign a user-
defined name to the HU_SET.

The “HU_SET Constraint Linking and Separating Elements from H_SET Sets” figure 
demonstrates how HU_SET constraints designate elements as set members, break 
links between elements tagged with RLOC constraints in the hierarchy to separate 
them from H_SET sets, and generate names as identifiers of these sets.

Design-top

RLOC = R0C1

RLOC = R0C0 (+R0C1)
= >H_SET = hsetA

X4297

B

C

add R0C1 to shift
the set 1 column
to the right

D

RLOC = R0C0

Inst1 Inst2

= >RLOC = R0C1

RLOC = R1C0 (+R0C1)
= >H_SET = hset
= >RLOC = R1C1

RLOC = R2C0 (+R0C1)
= >H_SET = hset
= >RLOC = R2C1

RLOC = R3C0 (+R0C1)
= >H_SET = hset
= >RLOC = R3C1

M
ac

ro
 A

RLOC = R0C0
= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = R1C0
= >H_SET = hset

RLOC = R2C0
= >H_SET = hset

RLOC = R3C0
= >H_SET = hset

add R0C0—no
change
Libraries Guide, 2.1i 12-119



Libraries Guide, 2.1i
Figure 12-9 HU_SET Constraint Linking and Separating Elements from H_SET 
Sets

The user-defined HU_SET constraint on E separates its underlying design elements, 
namely H, I, J, K, L, and M from the implicit H_SET=A/hset that contains primitive 
members B, C, F, and G. The HU_SET set that is defined at E includes H, I, and L 
(through the element J). The mapper hierarchically qualifies the name value “bar” on 
element E to be A/bar, since A is the lowest common ancestor for all the elements of 
the HU_SET set, and attaches it to the set member primitives H, I, and L. An HU_SET 
constraint on K starts another set that includes M, which receives the HU_SET=A/E/
bar constraint after processing by the mapper. In the “HU_SET Constraint Linking 
and Separating Elements from H_SET Sets” figure, the same name field is used for the 
two HU_SET constraints, but because they are attached to symbols at different levels 
of the hierarchy, they define two different sets.
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Figure 12-10 Linking Two HU_SET Sets

The “Linking Two HU_SET Sets” figure shows how HU_SET constraints link 
elements in the same node together by naming them with the same identifier. Because 
of the same name, “bar,” on two elements, D and E, the elements tagged with RLOC 
constraints below D and E become part of the same HU_SET.

Set Modifiers
A modifier, as its name suggests, modifies the RLOC constraints associated with 
design elements. Since it modifies the RLOC constraints of all the members of a set, it 
must be applied in a way that propagates it to all the members of the set easily and 
intuitively. For this reason, the RLOC modifiers of a set are placed at the start of that 
set. The following set modifiers apply to RLOC constraints.

• RLOC

The RLOC constraint associated with a design element modifies the values of 
other RLOC constraints below the element in the hierarchy of the set. Regardless 
of the set type, RLOC row, column, and extension values on an element always 
propagate down the hierarchy and are added at lower levels of the hierarchy to 
RLOC constraints on elements in the same set.

• RLOC_ORIGIN (see the “RLOC_ORIGIN” section)

• RLOC_RANGE (see the “RLOC_RANGE” section)
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Using RLOCs with Xilinx Macros

Xilinx-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying 
primitive, which allows you to attach an RLOC to the macro symbol. This symbol 
links the underlying primitive to the set that contains the macro symbol. Simply 
attach an appropriate RLOC constraint to the instantiation of the actual Xilinx flip-
flop macro. The mapper adds the RLOC value that you specified to the underlying 
primitive so that it has the desired value.

Figure 12-11 Typical Use of a Xilinx Macro

For example, in the “Typical Use of a Xilinx Macro” figure, the RLOC = R1C1 
constraint is attached to the instantiation (Inst1) of the FDRE macro. It is added to the 
R0C0 value of the RLOC constraint on the flip-flop within the macro to obtain the new 
RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying 
primitive symbol is the lone member of a set. The mapper removes RLOC constraints 
from a primitive that is the only member of a set or from a macro that has no RLOC 
objects below it.

LOC and RLOC Propagation through Design Flattening

NGDBuild continues to propagate LOC constraints down the design hierarchy. It 
adds this constraint to appropriate objects that are not members of a set. While RLOC 
constraint propagation is limited to sets, the LOC constraint is applied from its start 
point all the way down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on 
an element are added to the row and column numbers of the RLOC constraints of the 
set members below it in the hierarchy. This feature gives you the ability to modify 
existing RLOC values in submodules and macros without changing the previously 
assigned RLOC values on the primitive symbols.
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Specifying RLOC constraints to describe the spatial relationship of the set members to 
themselves allows the members of the set to float anywhere on the die as a unit. You 
can, however, fix the exact die location of the set members. The RLOC_ORIGIN 
constraint allows you to change the RLOC values into absolute LOC constraints that 
respect the structure of the set.

The design resolution program, NGDBuild, translates the RLOC_ORIGIN constraint 
into LOC constraints. The row and column values of the RLOC_ORIGIN are added 
individually to the members of the set after all RLOC modifications have been made 
to their row and column values by addition through the hierarchy. The final values are 
then turned into LOC constraints on individual primitives.

Fixing Members of a Set at Exact Die Locations

As noted in the previous section, you can fix the members of a set at exact die loca-
tions with the RLOC_ORIGIN constraint. You must use the RLOC_ORIGIN constraint 
with sets that include BUFT symbols. However, for sets that do not include BUFT 
symbols, you can limit the members of a set to a certain range on the die. In this case, 
the set could “float” as a unit within the range until a final placement. Since every 
member of the set must fit within the range, it is important that you specify a range 
that defines an area large enough to respect the spatial structure of the set.

The syntax of this constraint is the following.

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where the relative row numbers (m1, m2) and column numbers (n1, n2) can be non-
zero positive numbers, or the wildcard (*) character. This syntax allows for three kinds 
of range specifications as follows.

• Rr1Cc1:Rr2Cc2 — A rectangular region enclosed by rows r1, r2, and columns c1, 
c2

• R*Cc1:R*Cc2 — A region enclosed by the columns c1 and c2 (any row number)

• Rr1C*:Rr2C* — A region enclosed by the rows r1 and r2 (any column number)

For the second and third kinds of specifications with wildcards, applying the wild-
card character (*) differently on either side of the separator colon creates an error. For 
example, specifying R*C1:R2C* is an error since the wildcard asterisk is applied to 
rows on one side and to columns on the other side of the separator colon.

Specifying a Range or Area

To specify a range or area, use the following syntax, which is equivalent to placing an 
RLOC_RANGE constraint on the schematic.

set_name RLOC_RANGE=Rm1Cn1:Rm2Cn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for 
either the row number or the column number of both corners of the range.

Note: The bounding rectangle applies to all elements in a relationally placed macro, 
not just to the origin of the set. See the “Relationally Placed Macros (RPMs)” section 
for more information.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values 
of the elements. In fact, the RLOC_RANGE constraint does not change the values of 
the RLOC constraints on underlying elements. It is an additional constraint that is 
attached automatically by the mapper to every member of a set. The RLOC_RANGE 
constraint is attached to design elements in exactly the same way as the 
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RLOC_ORIGIN constraint. The values of the RLOC_RANGE constraint, like 
RLOC_ORIGIN values, must be non-zero positive numbers since they directly corre-
spond to die locations. 

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE 
constraint in the design netlist and is also constrained in the UCF file, the UCF file 
constraint overrides the netlist constraint.

Toggling the Status of RLOC Constraints

Another important set modifier is the USE_RLOC constraint. It turns the RLOC 
constraints on and off for a specific element or section of a set. RLOC can be either 
TRUE or FALSE.

The application of the USE_RLOC constraint is strictly based on hierarchy. A 
USE_RLOC constraint attached to an element applies to all its underlying elements 
that are members of the same set. If it is attached to a symbol that defines the start of a 
set, the constraint is applied to all the underlying member elements, which represent 
the entire set. However, if it is applied to an element below the start of the set (for 
example, E in the “Using the USE_RLOC Constraint to Control RLOC Application on 
H_SET and HU_SET Sets” figure), only the members of the set (H and I) below the 
specified element are affected.You can also attach the USE_RLOC constraint directly 
to a primitive symbol so that it affects only that symbol.

Figure 12-12 Using the USE_RLOC Constraint to Control RLOC Application on 
H_SET and HU_SET Sets

When the USE_RLOC=FALSE constraint is applied, the RLOC and set constraints are 
removed from the affected symbols in the NCD file. This process is different than that 
followed for the RLOC_ORIGIN constraint. For RLOC_ORIGIN, the mapper gener-
ates and outputs a LOC constraint in addition to all the set and RLOC constraints in 
the PCF file. The mapper does not retain the original constraints in the presence of a 
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USE_RLOC=FALSE constraint because these cannot be turned on again in later 
programs.

The “Using the USE_RLOC Constraint to Control RLOC Application on H_SET and 
HU_SET Sets” figure illustrates the use of the USE_RLOC constraint to mask an entire 
set as well as portions of a set.

Applying the USE_RLOC constraint on U_SET sets is a special case because of the 
lack of hierarchy in the U_SET set. Because the USE_RLOC constraint propagates 
strictly in a hierarchical manner, the members of a U_SET set that are in different parts 
of the design hierarchy must be tagged separately with USE_RLOC constraints; no 
single USE_RLOC constraint is propagated to all the members of the set that lie in 
different parts of the hierarchy. If you create a U_SET set through an instantiating 
macro, you can attach the USE_RLOC constraint to the instantiating macro to allow it 
to propagate hierarchically to all the members of the set. You can create this instanti-
ating macro by placing a U_SET constraint on a macro and letting the mapper propa-
gate that constraint to every symbol with an RLOC constraint below it in the 
hierarchy.

The “Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets” 
figure illustrates an example of the use of the USE_RLOC=FALSE constraint. The 
USE_RLOC=FALSE on primitive E removes it from the U_SET set, and 
USE_RLOC=FALSE on element F propagates to primitive G and removes it from the 
U_SET set.

Figure 12-13 Using the USE_RLOC Constraint to Control RLOC Application on 
U_SET Sets

While propagating the USE_RLOC constraint, the mapper ignores underlying 
USE_RLOC constraints if it encounters elements higher in the hierarchy that already 
have USE_RLOC constraints. For example, if the mapper encounters an underlying 
element with a USE_RLOC=TRUE constraint during the propagation of a 
USE_RLOC=FALSE constraint, it ignores the newly encountered TRUE constraint.
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Choosing an RLOC Origin when Using Hierarchy Sets

To specify a single origin for an RLOC set, use the following syntax, which is equiva-
lent to placing an RLOC_ORIGIN attribute on the schematic.

set_name RLOC_ORIGIN=RmCn

The set_name can be the name of any type of RLOC set — a U_SET, an HU_SET, or a 
system-generated H_SET.

The origin itself is expressed as a row number and a column number representing the 
location of the elements at RLOC=R0C0.

When the RLOC_ORIGIN constraint is used in conjunction with an implicit H_SET 
(hierarchy set), it must be placed on the element that is the start of the H_SET set, that 
is, on the lowest common ancestor of all the members of the set.

If you apply an RLOC_ORIGIN constraint to an HU_SET constraint, place it on the 
element at the start of the HU_SET set, that is, on an element with the HU_SET 
constraint. However, since there could be several elements linked together with the 
HU_SET constraint at the same node, the RLOC_ORIGIN constraint can be applied to 
only one of these elements to prevent more than one RLOC_ORIGIN constraint from 
being applied to the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be 
placed on only one element with the U_SET constraint. If you attach the 
RLOC_ORIGIN constraint to an element that has only an RLOC constraint, the 
membership of that element in any set is removed, and the element is considered the 
start of a new H_SET set with the specified RLOC_ORIGIN constraint attached to the 
newly created set.
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Figure 12-14 Using an RLOC_ORIGIN Constraint to Modify an H_SET Set

In the “Using an RLOC_ORIGIN Constraint to Modify an H_SET Set” figure, the 
elements B, C, D, F, and G are members of an H_SET set with the name A/hset. This 
figure is the same as the “Adding RLOC Values Down the Hierarchy” figure except 
for the presence of an RLOC_ORIGIN constraint at the start of the H_SET set (at A). 
The RLOC_ORIGIN values are added to the resultant RLOC values at each of the 
member elements to obtain the values that are then converted by the mapper to LOC 
constraints. For example, the RLOC value of F, given by adding the RLOC value at E 
(R0C1) and that at F (R0C0), is added to the RLOC_ORIGIN value (R2C3) to obtain 
the value of (R2C4), which is then converted to a LOC constraint, LOC = CLB_R2C4.
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Figure 12-15 Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets

The “Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets” figure shows an 
example of an RLOC_ORIGIN constraint modifying an HU_SET constraint. The start 
of the HU_SET A/bar is given by element D or E. The RLOC_ORIGIN attached to E, 
therefore, applies to this HU_SET set. On the other hand, the RLOC_ORIGIN at A, 
which is the start of the H_SET set A/hset, applies to elements B and C, which are 
members of the H_SET set.
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HU_SET = bar

RLOC = R0C1
D E

C

B

RLOC = R0C0 (+R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R3C3)
= > HU_SET = A/bar

G

F RLOC = R0C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

H

I

X4301

add RLOC_ORIGIN
and RLOC below

add RLOC_ORIGIN
to H_SET

= > LOC = CLB_R1C2

= > H_SET = A/hset

= > LOC = CLB_R3C3

= > LOC = CLB_R4C3 = > LOC = CLB_R4C4

= > LOC = CLB_R3C4

add RLOC_ORIGIN
to H_SET
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Timing Constraints
This section describes the syntax for using timing constraints in a UCF file. Timing 
constraints allow you to specify the maximum allowable delay or skew on any given 
set of paths or nets in your design.

There are three steps for applying timing specifications to a design.

1. Add TNM attributes to symbols on your schematic to group them into sets. This 
step is not necessary if you are using only predefined sets. This step can be 
performed in the schematic or in a constraints file. See the "Using Timing 
Constraints" chapter in the Development Systems Reference Guide for instructions.

2. Add a TIMEGRP symbol and add attributes to the symbol. These attributes can 
combine the sets defined in step 1 or by pattern matching into additional, more 
complex, sets, or they can match patterns. This step is optional. You can define 
these groups on the schematic or in the constraints file.

3. Add a TIMESPEC symbol and add attributes to the symbol, defining the timing 
requirements for the sets defined in steps 1 and 2. You can define the timing 
requirements on the schematic or in the constraints file.

TNM Attributes
Timing name (TNM) attributes can be used to identify the elements that make up a 
group and give them a name that can later be used in an actual timing specification. 
The value of the attribute can take several forms and there are several attachment 
mechanisms by which the attribute can identify the elements that make up a group.

TNM attributes can be attached to a net, an element pin, a primitive, or a macro.

TNMs on Nets

The TNM attribute can be placed on any net in the design. It is used to indicate that 
the TNM value should be attached to all valid elements fed by all paths that fan 
forward from the tagged net. Forward tracing stops at any flip-flop, latch, RAM or 
pad. TNMs do not propagate across IBUFs if they are attached to the input pad net. 
(Use TNM_NET if you want to trace forward from an input pad net.)

TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in the design if the 
design entry package allows placement of attributes on macro or primitive pins. It is 
used to indicate that the TNM value should be attached to all valid elements fed by all 
paths that fan forward from the tagged pin. Forward tracing stops at any flip-flop, 
latch, RAM or pad.

TNMs on Primitives

Attaching a TNM attribute directly to a primitive defines that primitive as part of the 
named group.

TNMs on Macro Symbols

A TNM attribute attached to a macro indicates that all elements inside the macro (at 
all levels of hierarchy below the tagged macro) are part of the named group.
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TIMEGRP Constraints
It is sometimes convenient to use existing TNMs to create new groups or to define a 
group based on the output nets that the group sources. A set of grouping mechanisms 
has been created to do this. The Timing Group primitive (TIMEGRP) serves as the 
host for these attributes. Because they contain no keyword, the attributes make no 
sense when used alone.

You can either attach a TIMEGRP constraint to the TIMEGRP schematic symbol or 
specify it with the TIMEGRP keyword in the UCF file. In the UCF file, the statement 
syntax is as follows.

TIMEGRP timegrp_name=timegrp_parameter 

where timegrp_parameter is identical to the text you would attach to the TIMEGRP 
schematic symbol.

You can create groups using the following four methods.

1. Combine multiple groups into one; use the following syntax.

new_group=group1: group2:... groupn

where new_group is the group being defined; group1, group2, and so forth can be a 
valid TNM-defined group, predefined group (FFS, PADS, RAMS, LATCHES), or 
group defined with another TIMEGRP attribute. You can create a time group 
attribute that references another TIMEGRP attribute that appears after the initial 
definition. Do not use reserved words such as FFS, PADS, RISING, FALLING, or 
EXCEPT as group names.

Example

2. Create groups by exclusion; use the following syntax.

new_group=group1:EXCEPT group2

where new_group is the group being defined; group1 and group2 can be a valid 
TNM-defined group, predefined group (FFS, PADS, RAMS, LATCHES), or group 
defined with another TIMEGRP attribute. Do not use reserved words such as FFS, 
PADS, RISING, FALLING, or EXCEPT as group names.

Example

You can also specify multiple groups to include or exclude when creating the new 
group.

new_group=group1:group2:EXCEPT group3:... groupn

where group1, group2, group3, and groupn can be a valid TNM-defined group, 
predefined group (FFS, PADS, RAMS, LATCHES), or group defined with another 
TIMEGRP attribute. Do not use reserved words such as FFS, PADS, RISING, 
FALLING, or EXCEPT as group names.

Schematic NEWGRP=OLD1:OLD2

UCF TIMEGRP NEWGRP=OLD1:OLD2 ;

Schematic FFGRP2=FFS:EXCEPT FFGRP1

UCF TIMEGRP FFGRP2=FFS:EXCEPT FFGRP1 ;
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3. Define groups of flip-flops triggered by rising and falling clock edges; use the 
following syntax.

new_group={RISING | FALLING group | ffs}

where group must be a group that includes only flip-flops. FFS is a predefined 
group.

Example

Defining a group of flip-flops that switch on the falling edge of the clock.

4. Use wildcard characters to define groups of symbols whose associated signal 
names match a specific pattern; use this syntax.

group=predefined_group pattern

where predefined_group can be one of the following predefined groups: FFS, PADS, 
RAMS, LATCHES.

pattern is the string characterizing the output net names of the blocks that you 
want to include in the new group. It can be any string of characters used with one 
or more wildcard characters, which can be either of the following.

An asterisk (*) matches any string of zero or more characters.

A question mark (?) matches one character.

Example

Group created by pattern matching.

TIMESPEC Constraints
After you have defined appropriate groups by attaching TNM attributes to symbols 
and, optionally, by combining these groups using the TIMEGRP symbol, the next step 
is to add the timing specifications to the constraints file with the TSidentifier 
constraint. You can define these timing requirements by the following means.

The actual timing specifications take the form of attributes that are attached to a 
timing specification (TIMESPEC) primitive. The TIMESPEC primitive acts as a place 
to attach attributes and keeps the attributes together. More than one TIMESPEC prim-
itive can be used in a design at any level of the hierarchy.

The sources and destinations can be any synchronous point in the design. The timing 
allowance specified is used explicitly by the timing analysis tools. There is no hidden 
accounting for any clock inversions between registers clocked by the same clock, etc.

If paths are not specified, they are ignored for the purposes of timing analysis. The 
forms described here require the definition of a source and a destination for a specifi-
cation.

Schematic newfall=FALLING ffs

UCF TIMEGRP newfall=FALLING ffs ;

Schematic newfall=FALLING ffs(A*)

UCF TIMEGRP newfall=FALLING ffs(A*) ;
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Basic Form

Syntax for defining a maximum allowable delay is as follows.

TSidentifier=FROM:source_group:TO:dest_group allowable_delay[units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or 
kHz to indicate the intended units.

In a schematic the timespec attribute is attached to the TIMESPEC symbol.

Defining Intermediate Points on a Path

It is sometimes convenient to define intermediate points on a path to which a specifi-
cation applies. This defines the maximum allowable delay and has the following 
syntax.

TSidentifier=FROM:source_group THRU thru_point[THRU thru_point1... 
thru_pointn]:TO:dest_group allowable_delay[units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9. 

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU 
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or 
kHz to indicate the intended units.

Worst Case Allowable Delay (MAXDELAY)

Syntax for maximum delay is as follows.

TSidentifier=MAXDELAY FROM:source_group:TO:dest_group allowable_delay[units]

Syntax for maximum delay using a through point is as follows.

TSidentifier=MAXDELAY FROM:source_group THRU thru_point [THRU thru_point1... 
thru_pointn]:TO:dest_group allowable_delay[units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9. 

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU 
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. 
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Linked Specifications

This allows you to link the timing number used in one specification to another specifi-
cation in terms of fractions or multiples.

Note: Circular links are not allowed.

 Syntax is as follows.

TSidentifier=FROM:source_group:TO:dest_group another_Tsid [/ | *]number

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is a the name of another timespec. 

number is a floating point number.

Defining Priority for Equivalent Level Specifications

A conflict between two specifications at the same level of priority can be resolved by 
defining their priority. You can do this by adding the following text to each of the 
conflicting specifications.

normal_timespec_syntax PRIORITY integer

where

normal_timespec_syntax is the timing specification.

integer represents the priority. The smaller the number, the higher the priority.

Note: The PRIORITY keyword cannot be used with the MAXDELAY, MAXSKEW, or 
PERIOD constraint.

Ignoring Paths

Paths exercising a certain net can be ignored because from a timing specification point 
of view, all paths through a net, instance, or instance pin may not be important.

Syntax is as follows.

TIG=TSidentifier

where identifier is the timing specification name of the specific timespec for which any 
paths through the tagged object should be ignored. The attribute can be attached to a 
net, macro pin or primitive pin. Paths that fan forward from the attribute’s point of 
application are treated as if they don’t exist from the viewpoint of timing analysis 
against the timing specification.

Examples

The following attribute would be attached to a net to inform the timing analysis tools 
that it should ignore paths through the net for specification TS43.

 TIG=TS43

The following attribute would be created in a UCF file to inform the timing analysis 
tools that it should ignore paths through the net $1I567/sometimes_slow for specifica-
tion TS_fast and TS_really_fast.

NET $1I567/sometimes_slow TIG=TS_fast , TS_really_fast;
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Ignoring Paths Through Primitives

The tracing rules for how PAR’s timing analysis handles the traversal of primitives are 
the same as those used for user driven timing analysis. If a user wishes to override the 
default behavior for an element, the element can be tagged with an override attribute 
in the PCF file. For more information, see the "Using Timing Constraints" chapter in 
the Development System Reference Guide.

Defining a Clock Period

A clock period specification is used to define to the timing analysis tools the allowable 
time for paths between elements clocked by the flagged clock signal.

Note: The definition of a clock period is different from a FROM:TO style specification, 
because the timing analysis tools will automatically take into account any inversions 
of the clock signal at register clock pins.

There are two methods for specifying clock periods.

Method 1

The quick, convenient way to define the clock period for registers attached to a partic-
ular clock net is to attach the following parameter directly to a net in the path that 
drives the register clock pin(s).

PERIOD=period[units] [{HIGH | LOW} [high_or_low_time [hi_lo_units]]]

where

period is the required clock period.

units is an optional field to indicate the units for the clock period. The default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, or ms to indicate 
the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time depending on the preceding 
keyword. If an actual time is specified it must be less than the period. If no High or 
Low time is specified the default duty cycle is 50%.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

The PERIOD constraint is forward-traced in exactly the same fashion as a TNM would 
be and attaches itself to all of the flip-flops that the forward tracing reaches. There are 
no rules about not tracing through certain elements. If you need a more complex form 
of tracing behavior, for example, where gated clocks are used in the design, you must 
place the PERIOD on a particular net, or use the preferred method as described in the 
following paragraphs.

Method 2

The preferred method for defining a clock period allows more complex derivative 
relationships to be defined as well as a simple clock period. The following attribute is 
attached to a TIMESPEC symbol in conjunction with a TNM attribute attached to the 
relevant clock net.

TSidentifier=PERIOD TNM_reference period[units][{HIGH | LOW} [high_or_low_time 
[hi_lo_units]]]
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where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or a net in the clock 
path) using a TNM attribute.

period is the required clock period.

units is an optional field to indicate the units for the clock period. Default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, or ms to indicate 
the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time depending on the preceding 
keyword. If an actual time is specified it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is ns, 
but the High or Low time number can be followed by ps, ns, us, ms, or % if the High 
or Low time is an actual time measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk attached to it and the following 
attribute is attached to a TIMESPEC primitive.

 TS_master=PERIOD master_clk 50 HIGH 30

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier, allowing another 
clock period specification to reference it. To define the relationship in the case of a 
derived clock, use the following syntax.

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number 
[{HIGH | LOW} [high_or_low_time [hi_lo_units]]]

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net or a net in the clock 
path using a TNM attribute.

another_PERIOD_identifier is a the name of the identifier used on another period spec-
ification.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time. This must be less than the period, 
depending on the preceding keyword. The default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.
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Example

Clock net sub_clk has the attribute tnm=slave_clk attached to it and the following 
attribute is attached to a TIMESPEC primitive.

 ts_slave1=PERIOD slave_clk master_clk * 4

Controlling Net Skew

You can control the maximum allowable skew on a net by attaching the MAXSKEW 
attribute directly to the net. Syntax is as follows.

MAXSKEW=allowable_skew [units]

where

allowable_skew is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or 
kHz to indicate the intended units.

Controlling Net Delay

You can control the maximum allowable delay on a net by attaching the MAXDELAY 
attribute directly to the net. Syntax is as follows.

MAXDELAY=allowable_delay [units]

where

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are 
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or 
kHz to indicate the intended units.
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Physical Constraints
Note: The information in this section applies only to FPGA families.

When a design is mapped, the logical constraints found in the netlist and the UCF file 
are translated into physical constraints; that is, constraints that apply to a specific 
architecture. These constraints are found in a mapper-generated file called the Phys-
ical Constraints File (PCF). The file contains two sections, the schematic section and 
the user section. The schematic section contains the physical constraints based on the 
logical constraints found in the netlist and the UCF file. The user section can be used 
to add any physical constraints. 

PCF File Syntax
The structure of the PCF file is as follows.

schematic start;

translated schematic and UCF or NCF constraints in PCF format

schematic end;

user-entered physical constraints

You should put all user-entered physical constraints after the “schematic end” state-
ment.

Note: Do not edit the schematic constraints. They are overwritten every time the 
mapper generates a new PCF file.

Global constraints need not be attached to any object but should be entered in a 
constraints file. 

The end of each constraint statement must be indicated with a semi-colon.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names 
that match internal reserved words will be rejected unless the names are enclosed in 
double quotes. It is good practice to enclose all names in double quotes. For example, 
the following entry would not be accepted because the word net is a reserved word.

NET net FAST;

Following is the recommended way to enter the constraint.

NET “net” FAST;

or

NET “$SIG_0” FAST ;

Syntax Descriptions
A description of each legal physical constraint follows.

Note: Although this section describes the constraint’s syntax for the PCF file, it is 
preferable to place any user-generated constraint in the UCF file — not in an NCF or 
PCF file.
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COMPGRP

Description

Identifies a group of components.

Syntax

COMPGRP “ group_name”= comp_item1... comp_itemn [ EXCEPT comp_group] ;

where

comp_item is one of the following,

• COMPONENT “comp_name” 

• COMPGRP “group_name”

FREQUENCY

Description

Identifies the minimum operating frequency for all input pads and sequential output 
to sequential input pins clocked by the specified net. If no net name is given, the 
constraint applies to all clock nets in the design that do not have a specific clock 
frequency constraint.

Syntax

TSidentifier=FREQUENCY frequency_item frequency_value ;

frequency_item FREQUENCY=frequency_value;

where

frequency_item is one of the following,

• NET “net_name” 

• TIMEGRP “group_name”

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

INREG

Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements 
can be connected using fast routes. Because XC5200 IOBs do not have flip-flops or 
latches, you can apply this attribute to meet fast setup timing requirements if a flip-
flop or latch is driven by an IOB.
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Syntax

NET “ net_name”  INREG ;

where net_name is the name of the net that connects the IOB to the INREG instance. 

LOCATE

Description

Specifies a single location, multiple single locations, or a location range.

Syntax

Single or multiple single locations

COMP “ comp_name”  LOCATE=[SOFT] site_item1... site_itemn [LEVEL n];

COMPGRP “ group_name”  LOCATE=[SOFT] site_item1... site_itemn [LEVEL n];

MACRO “ name”  LOCATE=[SOFT] site_item1... site_itemn [LEVEL n];

Range of locations

COMP “ comp_name”  LOCATE=[SOFT] SITE  “ site_name” : “ site_name”  [LEVEL n];

COMPGRP “ group_name”  LOCATE=[SOFT] SITE  “ site_name”  :  “ site_name”  [LEVEL 
n];

MACRO “ macro_name”  LOCATE=[SOFT] SITE “ site_name”  :  “ site_name”  [LEVEL n];

where

site_name is a component site (that is, a CLB or IOB location).

site_item is one of the following,

• SITE “site_name” 

• SITEGRP “site_group_name”

n is 0, 1, 2, 3, or 4.

LOCK

Description

Locks a net that has been previously placed or routed (that is, cannot be unplaced, 
unrouted, moved, swapped, or deleted). Can also be used to lock all nets.

Syntax

A specific net

“net_name” LOCK;

All nets

ROUTING LOCK;
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MAXDELAY

Description

Identifies a maximum total delay for a net or path in the design. If a net is specified, 
the maximum delay constraint applies to all driver-to-load connections on the net. If a 
path is specified, the delay value is the constraint for the path including net and 
component delays.

Syntax

TSidentifier=MAXDELAY path path_value;

path MAXDELAY=path_value;

net_delay_item MAXDELAY=delay_time [units];

where

path is one of the following,

• PATH “path_name” 

• ALLPATHS

• FROM group_item THRU group_item1... group_itemn 

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

path_value is one of the following:

• delay_time [units] 

• units defaults to nanoseconds, but the delay time number can be followed by 
ps, ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds) 
to specify the units

• frequency units 

• units can be specified as GHz, MHz, or kHz (gigahertz, megahertz, or kilo-
hertz)

• TSidentifier [{/ |*} real_number]

net_delay_item is one of the following:

• NET “net_name”

• TIMEGRP “group_name” 

• ALLCLOCKNETS

MAXSKEW

Description

Specifies a maximum signal skew between a driver and loads on a specified clock 
signal. Skew is the difference between minimum and maximum load delays on a 
clock net. If no signal is specified, this constraint applies to all signals which have 
clock pins as loads and do not have a specified skew constraint.
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Syntax

skew_item MAXSKEW=time [units];

where

skew_item is one of the following,

• NET “net_name” 

• TIMEGRP “group_name” 

• ALLCLOCKNETS

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or 
ms (picoseconds, nanoseconds, microseconds, or milliseconds) to indicate the 
intended units.

OFFSET

Description

Specifies the timing relationship between an external clock and its associated data-in- 
or data-out-pin.

Can be used on a group of one or more data components or pads.

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in 
the design for the specified clock. When the COMP "name" specifier is used, the 
constraint is associated with a single clock IOB component. When the TIMEGRP 
"group" specifier is used, the constraint is associated with a group of data pad nets.

Optionally, except for CPLDs, a time group qualifier, TIMEGRP "reggroup," can be 
added to any OFFSET constraint to indicate that the offset applies only to registers 
specified in the qualifying group. When used with the "Group method," the "register 
time" group indicates to which design registers clocked by the clock IOB the offset 
applies.

Syntax

Global method

OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} COMP 
["clk_iob_name"] [TIMEGRP "reggroup"];

Single net method

NET "name" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} COMP 
["clk_iob_name"] [TIMEGRP "reggroup"];

Group method

TIMEGRP "group" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} 
COMP ["clk_iob_namet"] [TIMEGRP "reggroup"];

where

group is the name of a time group containing IOB components or PAD bels.

offset_time is the external offset.

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or 
ms (picoseconds, nanoseconds, microseconds, or milliseconds) to indicate the 
intended units.
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clk_iob_name is the block name of the clock IOB.

reggroup is a previously defined time group of register BELs. Only registers in the time 
group clocked by the specified IOB component is checked against the specified offset 
time.

OUTREG

Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements 
can be connected using fast routes. Because XC5200 IOBs do not have flip-flops or 
latches, you can apply this attribute to meet fast setup timing requirements if a flip-
flop or latch is driving an IOB.

Syntax

NET “ net_name” OUTREG;

where net_name is the name of the net that connects the IOB to the OUTREG instance. 

PATH

Description

Assigns a path specification to a path.

Syntax

PATH “path_name”= path_spec;

where

path_spec is one of the following,

• FROM group_item THRU group_item1... group_itemn 

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

group_item is one of the following,

• PIN “pin_name”

• NET “net_name”

• COMP “comp_name”

• MACRO “macro_name”

• TIMEGRP “group_name”

• BEL “instance_name” 

BEL instance_name is the instance name of a basic element. Basic elements are the 
building blocks that make up a CLB— function generators, flip-flops, carry logic, 
and RAMs.
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PENALIZE TILDE

Description

Penalizes those delays that are reported as only approximate (signified with a tilde (~) 
in delay reports) by a user-specified percentage. When the penalize tilde constraint is 
applied to an approximate delay, the delay will be penalized by the designated 
percentage in subsequent timing checks. Default for percent value is zero.

Syntax

PENALIZE TILDE=percent

PERIOD

Description

Assigns a timing period to a timing specification.

Syntax

TSidentifer=PERIOD period_item period_value [{LOW | HIGH}{time [units]| percent}];

period_item PERIOD=period_value [{LOW | HIGH}{time [units]| percent}];

where

period_item is one of the following, 

• NET “net_name”

• TIMEGRP “group_name” 

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps, 
ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds) to 
indicate the intended units.

• TS identifier [{/ | *} real_number] 

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.
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PIN

Description

Identifies a specific pin.

Syntax

PIN “ pin_name”=pin_spec;

where

pin_spec is one of the following,

• NET "net_name" BEL "instance_name" 

• NET "net_name" COMP "comp_name" 

• COMP "comp_name" NET "net_name" 

• NET "net_name" MACRO "macro_name" 

• MACRO "macro_name" NET "net_name"

• BEL "instance_name" NET "net_name"

BEL instance_name is the instance name of a basic element. Basic elements are the 
building blocks that make up a CLB— function generators, flip-flops, carry logic, and 
RAMs.

PRIORITIZE

Description

Assigns a weighted importance to a net or bus. Values range from 0 through 100, with 
100 being the highest priority and 0 the lowest. The default is 3. Any net with a 
priority of 3 is not considered critical; no constraint will be generated. The prioritize 
constraint is used by PAR, which assigns longlines by net priority and routes higher-
priority nets before routing lower-priority nets. The prioritize constraint is also used 
by BITGEN to determine which nets not to use for tiedown. A net with a priority 
greater than 3 will only be used for tiedown as a last resort.

Syntax

NET "net_name" PRIORITIZE=integer;

PROHIBIT

Description

Disallows the use of a site or multiple sites within PAR, FPGA Editor, and the CPLD 
fitter.

Syntax

Single or multiple single locations

PROHIBIT= site_group;

PROHIBIT= site_group1... ,site_groupn;
12-144 Xilinx Development System



Attributes, Constraints, and Carry Logic
Range of locations

PROHIBIT= site_group : site_group;

where

site_group is one of the following,

• SITE "site_name" 

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is 
not a valid site for the XC4000X or SpartanXL.)

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

SITEGRP

Description

Identifies a group of sites.

Syntax

SITEGRP site_group_name=site_group1... site_groupn ; [EXCEPT site_group];

where

site_group is one of the following,

• SITE "site_name" 

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is 
not a valid site for the XC4000X or SpartanXL.)

TEMPERATURE

Description

Allows the specification of the operating temperature for commercial ranges.

Note: Each architecture has its own specific range of valid operating temperatures. If 
the entered temperature does not fall within the supported range, the constraint is 
ignored and an architecture-specific default value is used instead.

Syntax

TEMPERATURE=value[C |F| K]

where

value is an integer or a real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin, 
and C is degrees Celsius, the default.
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TIMEGRP (Timing Group)

Description

Defines objects that are to be treated as a group for timing considerations.You can 
refer to a group of flip-flops, input latches, pads, or RAMs by using the corresponding 
keywords.

Syntax

TIMEGRP "group_name"=[qualifier1] group_spec1... [qualifiern] group_specn [EXCEPT 
group_spec1... group_specn];

where

qualifier is RISING or FALLING.

group_spec is one of the following,

• PIN "pin_name" 

• NET "net_name" 

• BEL "instance_name" 

• COMP "comp_name" 

• MACRO "macro_name" 

• TIMEGRP "group_name" 

• FFS ["pattern"] 

• LATCHES ["pattern"] 

• RAMS [“pattern”] 

• PADS [“pattern”]

BEL instance_name is the instance name of a basic element. Basic elements are the 
building blocks that make up a CLB— function generators, flip-flops, carry logic, and 
RAMs.

This example shows you one way to use the TIMEGRP attribute. If you have some 
outputs that can be slower than others, you can create timespecs similar to those 
shown below for output signals obc_data(7:0) and ingr_irq_n.

First create the Timegroups.

TIMEGRP slow_outs=PADS(obc_data* : ingr_irq_n) ;

TIMEGRP fast_outs=PADS : EXCEPT : slow_outs ;

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from function genera-
tors; shift register LUTs in Virtex and Spartan2 are not included

LATCHES CLB or IOB latches only; not latches built from function generators 

PADS Input/output pads

RAMS For architectures with RAMS. For Virtex and Spartan2, LUT RAMS 
and Block RAMS are included.
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Then apply a timing spec to the Timegroups.

TIMESPEC TS08=FROM : FFS : TO : fast_outs : 22 ;

TIMESPEC TS09=FROM : FFS : TO : slow_outs : 75 ;

TIG (Timing Ignore)

Description

Identifies paths that can be ignored for timing purposes.

Syntax

ignore_item TIG [=TSidentifier1... TSidentifiern];

where

ignore_item is one of the following,

• PIN “pin_name” 

• NET “net_name” 

• COMP “comp_name” 

• MACRO “macro_name” 

• PATH “path_name”

• BEL “instance_name” 

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemnTO group_item 

• THRU group_item... group_itemn TO group_item }

BEL instance_name is the instance name of a basic element. Basic elements are the 
building blocks that make up a CLB— function generators, flip-flops, carry logic, and 
RAMs.

For a detailed description of TIG, see the "Using Timing Constraints" chapter in the 
Development System Reference Guide.

TSidentifier

Description

Assigns a timing period or frequency to a timing specification.

Syntax

Period

TSidentifer=PERIOD period_item period_value [{LOW | HIGH}{time [units]| percent}];

period_item PERIOD=period_value [{LOW | HIGH}{time [units]| percent}];
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where

period_item is one of the following, 

• NET “net_name”

• TIMEGRP “group_name” 

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps, 
ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds) to 
indicate the intended units.

• TS identifier [{/ | *} real_number] 

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be 
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding 
keyword. If an actual time is specified, it must be less than the period. If no High or 
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is 
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or 
% if the High or Low time is an actual time measurement.

Frequency

TSidentifier=FREQUENCY frequency_item frequency_value ;

frequency_item FREQUENCY=frequency_value;

where

frequency_item is one of the following,

• NET “net_name” 

• TIMEGRP “group_name”

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

VOLTAGE

Description

Allows the specification of the operating voltage for commercial ranges. This provides 
a means of prorating delay characteristics based on the specified voltage.

Note: Each architecture has its own specific range of supported voltages. If the 
entered voltage does not fall within the supported range, the constraint is ignored and 
an architecture-specific default value is used instead.
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Syntax

VOLTAGE=value[V]

where 

value is an integer or real number specifying the voltage.

V specifies volts, the default voltage unit.
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Relationally Placed Macros (RPMs)
The Xilinx libraries contain three types of elements.

• Primitives are basic logical elements such as AND2 and OR2 gates

• Soft macros are schematics made by combining primitives and sometimes other 
soft macros

• Relationally placed macros (RPMs) are soft macros that contain relative location 
constraint (RLOC) information, carry logic symbols, and FMAP/HMAP symbols, 
where appropriate

The last item mentioned above, RPMs, applies only to FPGA families. 

The relationally placed macro (RPM) library uses RLOC constraints to define the 
order and structure of the underlying design primitives. Because these macros are 
built upon standard schematic parts, they do not have to be translated before simula-
tion. The components that are implemented as RPMs are listed in the “Relationally 
Placed Macros” section of the “Selection Guide” chapter.

Designs created with RPMs can be functionally simulated. RPMs can, but need not, 
include all the following elements.

• FMAPs, HMAPs, and CLB-grouping attributes to control mapping. FMAPs and 
HMAPs have pin-lock attributes, which allow better control over routing. FMAPs 
and HMAPs are described in the “Mapping Constraint Examples” section.

• Relative location (RLOC) constraints to provide placement structure. They allow 
positioning of elements relative to each other. They are discussed in the “Benefits 
and Limitations of RLOC Constraints” section.

• Carry logic primitive symbols. Carry logic is discussed in the “Carry Logic in 
XC4000, Spartan, SpartanXL” section.

The RPM library offers the functionality and precision of the hard macro library with 
added flexibility. You can optimize RPMs and merge other logic within them. The 
elements in the RPM library allow you to access carry logic easily and to control 
mapping and block placement. Because RPMs are a superset of ordinary macros, you 
can design them in the normal design entry environment. They can include any prim-
itive logic. The macro logic is fully visible to you and can be easily back-annotated 
with timing information.
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Carry Logic in XC4000, Spartan, SpartanXL
In the XC4000, Spartan, and SpartanXL, the CLB contains a feature called dedicated 
carry logic. This carry logic is independent of the function generators, although it 
shares some of the same input pins. Dedicated interconnect propagates carry signals 
through a column of CLBs.

This section describes the use of carry logic in XC4000, Spartan, and SpartanXL CLBs 
and lists all the carry logic configuration mnemonics available.

Carry Logic Overview
The carry chain in XC4000E devices can run either up or down. At the top and bottom 
of columns where there are no CLBs above and below, the carry is propagated to the 
right as shown in the figure below.

Figure 12-16 Available XC4000E Carry Propagation Paths

In XC4000X, Spartan, and SpartanXL devices the carry chain travels upward only. 
Standard interconnect can be used to route a signal in the downward direction. See 
the figure below.
 

Figure 12-17 Available XC4000X, Spartan, and SpartanXL Carry Propagation 
Paths (dotted lines use general interconnect)
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The CY4_43 carry mode component (Force-G4) forces the signal on the G4 pin to pass 
through to the COUT pin. This component is available only for XC4000X and Spar-
tanXL devices.

Carry logic in each CLB can implement approximately 40 different functions, which 
you can use to build faster and more efficient adders, subtracters, counters, compara-
tors, and so forth. The “XC4000, Spartan, SpartanXL Carry Logic” figure shows the 
carry logic in an XC4000, Spartan, or SpartanXL CLB.

Figure 12-18 XC4000, Spartan, SpartanXL Carry Logic

Carry Logic Primitives and Symbols
The schematic capture libraries that Xilinx supports contain one generic carry logic 
primitive and several specific carry mode primitive symbols. The generic carry logic 
primitive represents the complete carry logic in a single CLB and is shown in the 
“Representative Carry Logic Symbol” figure.

Figure 12-19 Representative Carry Logic Symbol

The carry mode primitive symbols represent unique carry modes, such as ADD-FG-
CI. The “Carry Modes” table lists the carry mode names and symbols.

To specify the particular mode that you wish, connect a carry mode symbol to the C0-
C7 mode pins of the carry logic symbol. It is the pair of symbols that defines the 
specific kind of carry logic desired.

X6969

G4

G3
G

G2

G1

M

M

F4F4

G1

G2

G3

G4 COUT

CIN

F3

F2

F1

F3
F

F2

F1

F3

F2

DOWN

UP

F Carry
Logic

F1

CIN

G4

Configuration Memory Bit

G1

G Carry
Logic

F3

COUT0

COUT1

COUT0

M

M

M

X6962

A label showing the
specific carry mode

appears on the symbol

XXX-X-XX
12-152 Xilinx Development System



Attributes, Constraints, and Carry Logic
A carry logic symbol requires you to place either a LOC or an RLOC constraint on it. If 
a LOC constraint is used, it must be a single LOC= constraint; it cannot be an area or 
prohibit LOC constraint or use wildcards in its syntax.

Table 12-13 Carry Modes

Carry Mode Name Symbol

ADD-F-CI cy4_01

ADD-FG-CI cy4_02

ADD-G-F1 cy4_03

ADD-G-CI cy4_04

ADD-G-F3- cy4_05

ADDSUB-F-CI cy4_12

ADDSUB-FG-CI cy4_13

ADDSUB-G-CI cy4_15

ADDSUB-G-F1 cy4_14

ADDSUB-G-F3- cy4_16

FORCE-0 cy4_37

FORCE-1 cy4_38

FORCE-CI cy4_40

FORCE-F1 cy4_39

FORCE-F3- cy4_41

FORCE-G4 cy4_43*

EXAMINE-CI cy4_42

DEC-F-CI cy4_24

DEC-FG-0 cy4_26

DEC-FG-CI cy4_25

DEC-G-0 cy4_27

DEC-G-CI cy4_29

DEC-G-F1 cy4_28

DEC-G-F3- cy4_30

INC-F-CI cy4_17

INC-FG-1 cy4_19

INC-FG-CI cy4_18

INC-G-1 cy4_20

INC-G-CI cy4_22

INC-G-F1 cy4_21

INC-G-F3- cy4_23

SUB-F-CI cy4_06

SUB-FG-CI cy4_07

SUB-G-1 cy4_08
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Carry Logic Handling
The mapper checks for legal connections between carry logic symbols and also 
performs simple trimming on some carry modes. CY4 symbols might be trimmed as 
follows.

• If neither the COUT0 pin nor the COUT pin is used, the CY4 symbol is removed 
from the design. However, if the signal on the CIN pin connects to other logic, the 
mapper converts the CY4 to the EXAMINE-CI mode. An EXAMINE-CI mode 
CY4 is trimmed only if there is no other load on the signal on the CIN pin.

• If the specified mode does not require any of the A0, B0, A1, B1, and/or ADD CY4 
inputs, signals are removed from these pins, which may save routing resources.

Carry Mode Configuration Mnemonics
The first step in configuring a CLB for carry logic is to choose the appropriate carry 
mode configuration mnemonic. Each of the 43 possible configurations of the carry 
logic has been assigned a three-part mnemonic code, for example:

ADD-FG-CI

• The first field (ADD) describes the operation performed in the CLB function 
generators, in this case, a binary addition. By implication, the carry logic in this 
CLB calculates the carry for this addition.

• The second field (FG) indicates which of the two function generators is used in 
the specified operation, in this case, both F and G.

• The last field (CI) specifies the source of the carry-in signal to the CLB, in this case, 
the CIN pin itself.

Consider another example:

INCDEC-G-F1

This mnemonic describes a CLB in which the G function generator performs an incre-
ment/decrement function. The carry-in to this CLB is sourced by the F1 pin.

All available carry mode configuration mnemonics are listed in the next section, the 
“Carry Logic Configurations” section. 

SUB-G-CI cy4_09

SUB-G-F1 cy4_10

SUB-G-F3- cy4_11

INCDEC-F-CI cy4_31

INCDEC-FG-1 cy4_33

INCDEC-FG-CI cy4_32

INCDEC-G-0 cy4_34

INCDEC-G-CI cy4_36

INCDEC-G-F1 cy4_35
*Available only for XC4000X and SpartanXL devices

Table 12-13 Carry Modes

Carry Mode Name Symbol
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To determine which carry mode primitive corresponds to which mnemonic, see the 
“Carry Modes” table.

Carry Logic Configurations
This section lists and describes all the available carry mode configuration mnemonics. 
The following information is given for each mnemonic.

• The name of the mode mnemonic.

• A brief description of the CLB function.

• The COUT0 and COUT equations performed by the carry logic.

• Default equations for the F and G function generators.

• Default assignments for the F4, G2, and G3 inputs.

The default F and G functions and default F4, G2, and G3 inputs are based on the 
generic CLB function described. You can change these defaults as required, allowing 
for features such as parallel enable or synchronous reset. However, if these defaults 
are changed, the CLB may no longer function as the mnemonic describes.

The COUT0 and COUT equations are absolutely determined by the carry mode 
configuration mnemonic. The only way to change these carry logic outputs is by 
selecting a different mnemonic.

ADD-F-CI

The ADD-F-CI configuration performs a 1-bit addition of A+B in the F function gener-
ator, with the A and B inputs on the F1 and F2 pins. The carry signal enters on the CIN 
pin, propagates through the F carry logic, and exits on the COUT pin. This configura-
tion can be used as the MSB of an adder, with the G function generator accessing the 
carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADD-FG-CI

The ADD-FG-CI configuration performs a 2-bit addition of A+B in both the F and G 
function generators, with the lower-order A and B inputs on the F1 and F2 pins, and 
the higher-order A and B inputs on the G1 and G4 pins. The carry signal enters on the 
CIN pin, propagates through the F and G carry logic, and exits on the COUT pin. This 
configuration comprises the middle bits of an adder.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)
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F4=CIN

G2=COUT0

G3=G3I

ADD-G-F1

The ADD-G-F1 configuration performs a 1-bit addition of A+B in the G function 
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on 
the F1 pin, propagates through the G carry logic, and exits on the COUT pin. This 
configuration comprises the LSB of an adder, where the carry-in signal is routed to F1. 
The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-CI

The ADD-G-CI configuration performs a 1-bit addition of A+B in the G function 
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on 
the CIN pin, propagates through the G carry logic, and exits on the COUT pin. This 
configuration is for the middle bit of an adder, where the F function generator is 
reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-F3-

The ADD-G-F3- configuration performs a 1-bit addition of A+B in the G function 
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on 
the F3 pin, is inverted by the F carry logic, propagates through the G carry logic, and 
exits on the COUT pin. This configuration comprises the LSB of an adder, where the 
inverted carry-in signal is routed to F3. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)
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F4=F4I

G2=COUT0

G3=G3I

SUB-F-CI

The SUB-F-CI configuration performs a 1-bit twos-complement subtraction of A-B in 
the F function generator, with the A input on F1 and the B input on F2. The carry 
signal enters on the CIN pin, propagates through the F carry logic, and exits on the 
COUT pin. This configuration can be used as the MSB of a subtracter, with the G func-
tion generator accessing the carry-out signal or calculating a twos-complement over-
flow.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

SUB-FG-CI

The SUB-FG-CI configuration performs a 2-bit twos-complement subtraction of A-B 
in both the F and G function generators. For the lower bit, the A input is on F1 and the 
B input is on F2. For the upper bit, the A input is on G4 and the B input is on G1. The 
carry signal enters on the CIN pin, propagates through the F and G carry logic, and 
exits on the COUT pin. This configuration comprises the middle bits of a subtracter.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) +COUT0*(G4+~G1)

F4=CIN

G2=COUT0

G3=G3I

SUB-G-1

The SUB-G-1 configuration performs a 1-bit twos-complement subtraction of A-B in 
the G function generator, with the A input on G4 and the B input on G1. The carry-in 
is tied High (no borrow). The carry signal propagates through the G carry logic and 
exits on the COUT pin. This configuration comprises the LSB of a subtracter with no 
carry-in. The F function generator is not used.

F=

COUT0=1

G=(G4@G1)
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COUT=(G4+~G1)

F4=F4I

G2=G2I

G3=G3I

SUB-G-CI

The SUB-G-CI configuration performs a 1-bit twos-complement subtraction of A-B in 
the G function generator, with the A input on G4 and the B input on G1. The carry 
signal enters on the CIN pin, propagates through the G carry logic, and exits on the 
COUT pin. This configuration is for the middle bit of a subtracter, where the F func-
tion generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F1

The SUB-G-F1 configuration performs a 1-bit twos-complement subtraction of A-B in 
the G function generator, with the A input on G4 and the B input on G1. The carry 
signal enters on the F1 pin, propagates through the G carry logic, and exits on the 
COUT pin. This configuration comprises the LSB of a subtracter, where the carry-in 
signal is routed to F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F3-

The SUB-G-F3- configuration performs a 1-bit twos-complement subtraction of A-B in 
the G function generator, with the A input on G4 and the B input on G1. The carry 
signal enters on the F3 pin, is inverted by the F carry logic, propagates through the G 
carry logic, and exits on the COUT pin. This configuration comprises the LSB of a 
subtracter, where the inverted carry-in signal is routed to F3. The F function generator 
is not used.

F=

COUT0=~F3
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G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-F-CI

The ADDSUB-F-CI configuration performs a 1-bit twos-complement add/subtract of 
A+B in the F function generator, with the A input on F1 and the B input on F2. The 
carry signal enters on the CIN pin, propagates through the F carry logic, and exits on 
the COUT pin. The F3 input indicates add (F3=1) or subtract (F3=0). This configura-
tion can be used as the MSB of an adder/subtracter, with the G function generator 
accessing the carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3) 

ADDSUB-FG-CI

The ADDSUB-FG-CI configuration performs a 2-bit twos- complement add/subtract 
of A+B in both the F and G function generators. For the lower bit, the A input is on F1 
and the B input is on F2. For the upper bit, the A input is on G4 and the B input is on 
G1. The carry signal enters on the CIN pin, propagates through the F and G carry 
logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or 
subtract (F3=G3=0): the add/subtract control signal must be routed to both the F3 and 
G3 pins. This configuration comprises the middle bits of an adder/subtracter.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=CIN

G2=COUT0

G3=G3I

ADDSUB-G-CI

The ADDSUB-G-CI configuration performs a 1-bit twos-complement add/subtract of 
A+B in the G function generator, with the A input on G4 and the B input on G1. The 
carry signal enters on the CIN pin, propagates through the G carry logic, and exits on 
the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): 
the add/subtract control signal must be routed to both the F3 and G3 pins. This 
Libraries Guide, 2.1i 12-159



Libraries Guide, 2.1i
configuration is for the middle bit of an adder/subtracter, where the F function gener-
ator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-G-F1

The ADDSUB-G-F1 configuration performs a 1-bit twos-complement add/subtract of 
A+B in the G function generator, with the A input on G4 and the B input on G1. The 
carry signal enters on the F1 pin, propagates through the G carry logic, and exits on 
the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): 
the add/subtract control signal must be routed to both the F3 and G3 pins. This 
configuration comprises the LSB of an adder/subtracter, where the carry-in signal is 
routed to F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I 

G2=COUT0

G3=G3I

ADDSUB-G-F3-

The ADDSUB-G-F3- configuration performs a 1-bit twos-complement add/subtract 
of A+B in the G function generator, with the A input on G4 and the B input on G1. The 
carry signal enters on the F3 pin, is inverted by the F carry logic, propagates through 
the G carry logic, and exits on the COUT pin. Because the F3 input also indicates add 
(F3=1) or subtract (F3=0), the carry-in is always null (0 for add, 1 for subtract). This 
configuration comprises the LSB of an adder/subtracter with no carry-in. The F func-
tion generator is not used. 

F=

COUT0=~F3

G=(G4@G1)

COUT=F3*G4*G1 + ~F3(G4+~G1) 

F4=F4I 

G2=COUT0

G3=G3I
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INC-F-CI

The INC-F-CI configuration performs a 1-bit increment in the F function generator, 
with the input on the F1 pin. The carry signal enters on the CIN pin, propagates 
through the F carry logic, and exits on the COUT pin. The G function generator can be 
used to output the terminal count of a counter.

F=(F1@F4)

COUT0=CIN*F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INC-FG-1

The INC-FG-1 configuration performs a 2-bit increment in both the F and G function 
generator, with the lower-order A input on the F1 pin and the higher-order A input on 
the G4 pin. The carry-in is tied High. The carry signal propagates through the F and G 
carry logic and exits on the COUT pin. This configuration comprises the two least 
significant bits of an incrementer that is always enabled.

F=~(F1)

COUT0=F1

G=G2@G4

COUT=COUT0*G4

F4=F4I or CIN

G2=COUT0

G3=G3I or CIN

INC-FG-CI

The INC-FG-CI configuration performs a 2-bit increment in both the F and G function 
generators, with the lower-order input on the F1 pin and the higher-order input on 
the G4 pin. The carry signal enters on the CIN pin, propagates through the F and G 
carry logic, and exits on the COUT pin. This configuration comprises the middle bits 
of an incrementer.

F=(F1@F4)

COUT0=CIN*F1

G=(G4@G2)

COUT=COUT0*G4

F4=CIN

G2=COUT0

G3=G3I
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INC-G-1

The INC-G-1 configuration performs a 1-bit increment in the G function generator, 
with the input on the G4 pin. The carry-in is tied High. The carry signal propagates 
through the G carry logic and exits on the COUT pin. This configuration comprises 
the LSB of an incrementer that is always enabled. The F function generator is not used. 
This configuration is identical to DEC-G-0, since the LSB of an incrementer is identical 
to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

INC-G-F1

The INC-G-F1 configuration performs a 1-bit increment in the G function generator, 
with the input on the G4 pin. The carry signal enters on the F1 pin, propagates 
through the G carry logic, and exits on the COUT pin. This configuration comprises 
the LSB of an incrementer where F1 is an active-High enable. The F function generator 
is not used.

F=

COUT0=F1

G=(G4@G2)

COUT=COUT0*G4

F4=F4I 

G2=COUT0

G3=G3I

INC-G-CI

The INC-G-CI configuration does a 1-bit increment in the G function generator, with 
the input on the G4 pin. The carry signal enters on the CIN pin, propagates through 
the G carry logic, and exits on the COUT pin. This configuration is for the middle bit 
of an incrementer where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G2)

COUT=COUT0*G4

F4=F4I 

G2=COUT0

G3=G3I
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INC-G-F3-

The INC-G-F3- configuration performs a 1-bit increment in the G function generator, 
with the input on the G4 pin. The carry signal enters on the F3 pin, is inverted in the F 
carry logic, propagates through the G carry logic, and exits on the COUT pin. This 
configuration comprises the LSB of an incrementer where F3 is an active-Low enable. 
The F function generator is not used.

F=

COUT0=~F3

G=(G4@G2)

COUT=COUT0*G4=~F3*G4

F4=F4I 

G2=COUT0

G3=G3I

DEC-F-CI

The DEC-F-CI configuration performs a 1-bit decrement in the F function generator, 
with the input on the F1 pin. The carry signal enters on the CIN pin, propagates 
through the F carry logic, and exits on the COUT pin. The G function generator can be 
used to output the terminal count of a counter.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G3I

DEC-FG-0

The DEC-FG-0 configuration performs a 2-bit decrement in both the F and G function 
generator, with the lower-order input on the F1 pin and the higher order input on the 
G4 pin. The carry-in is tied Low. The carry signal propagates through the F and G 
carry logic and exits on the COUT pin. This configuration comprises the two least 
significant bits of a decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=~(G4@G2)

COUT=COUT=(COUT0*~G4) + G4

F4=F4I

G2=COUT0

G3=G3I
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DEC-FG-CI

The DEC-FG-CI configuration performs a 2-bit decrement in both the F and G func-
tion generators, with the lower-order input on the F1 pin and the higher-order input 
on the G4 pin. The carry signal enters on the CIN pin, propagates through the F and G 
carry logic, and exits on the COUT pin. This configuration comprises the middle bits 
of a decrementer.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=CIN

G2=COUT0

G3=G3I

DEC-G-0

The DEC-G-0 configuration performs a 1-bit decrement in the G function generator, 
with the input on the G4 pin. The carry-in is tied High (no borrow). The carry signal 
propagates through the G carry logic and exits on the COUT pin. This configuration 
comprises the LSB of a decrementer that is always enabled. The F function generator 
is not used. This configuration is identical to INC-G-1, since the LSB of an incrementer 
is identical to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

DEC-G-CI

The DEC-G-CI configuration does a 1-bit decrement in the G function generator, with 
the input on the G4 pin. The carry signal enters on the CIN pin, propagates through 
the G carry logic, and exits on the COUT pin. This configuration is for the middle bit 
of a decrementer, where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=F4I

G2=COUT0

G3=G3I
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DEC-G-F1

The DEC-G-F1 configuration performs a 1-bit decrement in the G function generator, 
with the input on the G4 pin. The carry signal enters on the F1 pin, propagates 
through the G carry logic, and exits on the COUT pin. This configuration comprises 
the LSB of a decrementer where F1 is an active-Low enable. The F function generator 
is not used.

F=

COUT0=F1

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-G-F3-

The DEC-G-F3- configuration performs a 1-bit decrement in the G function generator, 
with the input on the G4 pin. The carry signal enters on the F3 pin, is inverted in the F 
carry logic, propagates through the G carry logic, and exits on the COUT pin. This 
configuration comprises the LSB of a decrementer, where F3 is an active-High enable. 
The F function generator is not used.

F=

COUT0=~F3

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I 

G2=COUT0

G3=G3I 

INCDEC-F-CI

The INCDEC-F-CI configuration performs a 1-bit increment/decrement in the F func-
tion generator, with the input on the F1 pin. The carry signal enters on the CIN pin, 
propagates through the F carry logic, and exits on the COUT pin. The F3 input indi-
cates increment (F3=1) or decrement (F3=0). The G function generator can be used to 
output the terminal count of a counter.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31
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INCDEC-FG-1

The INCDEC-FG-1 configuration performs a 2-bit increment/decrement in both the F 
and G function generator, with the lower- order input on the F1 pin and the higher-
order input on the G4 pin. The F3 and G3 inputs indicate increment (F3=G3=1) or 
decrement (F3=G3=0): the increment/decrement control signal must be routed to both 
the F3 and G3 pins. The carry-in is always active (High in increment mode and Low in 
decrement mode). The carry signal propagates through the F and G carry logic and 
exits on the COUT pin. This configuration comprises the two least significant bits of 
an incrementer/decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=(G2@G4)@~G3

COUT=COUT=~F3*((COUT0*~G4)+G4) + F3*(G4*COUT0)

F4=F4I

G2=COUT0

G3=G3I

INCDEC-FG-CI

The INCDEC-FG-CI configuration performs a 2-bit increment/decrement in both the 
F and G function generators, with the lower-order input on the F1 pin and the higher-
order input on the G4 pin. The carry signal enters on the CIN pin, propagates through 
the F and G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate 
increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control 
signal must be routed to both the F3 and G3 pins. This configuration comprises the 
middle bits of an incrementer/decrementer.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0 

F4=CIN

G2=COUT0

G3=G3I

INCDEC-G-0

The INCDEC-G-0 configuration performs a 1-bit increment/decrement in the G func-
tion generator, with the input on the G4 pin. The carry-in is tied High. The carry signal 
propagates through the G carry logic and exits on the COUT pin. This configuration 
comprises the LSB of an incrementer/decrementer that is always enabled. The F func-
tion generator is not used. F3 is not required for increment/decrement control, since 
the LSB of an incrementer is identical to the LSB of a decrementer; this configuration is 
identical to INC-G-1 and DEC-G-0.

F=

COUT0=0
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G=~(G4)

COUT=G4

F4=F4I 

G2=G2I 

G3=G3I

INCDEC-G-CI

The INCDEC-G-CI configuration performs a 1-bit increment/decrement in the G 
function generator, with the input on the G4 pin. The carry signal enters on the CIN 
pin, propagates through the G carry logic, and exits on the COUT pin. The F3 and G3 
inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decre-
ment control signal must be routed to both the F3 and G3 pins. This configuration is 
for the middle bit of an incrementer/decrementer, where the F function generator is 
reserved for another purpose, although the F3 pin is used by the carry logic.

F=

COUT0=CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0 

F4=F4I

G2=COUT0

G3=G3I

INCDEC-G-F1

The INCDEC-G-F1 configuration performs a 1-bit increment/decrement in the G 
function generator, with the input on the G4 pin. The carry signal enters on the F1 pin, 
propagates through the G carry logic, and exits on the COUT pin. This configuration 
comprises the LSB of an incrementer/decrementer where the carry-in signal is routed 
to F1. The carry-in is active-High for an increment operation and active-Low for a 
decrement operation. The F function generator is not used. The F3 and G3 inputs indi-
cate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control 
signal must be routed to both the F3 and G3 pins.

F=

COUT0=F1

G=(G4@G2)@~G3

COUT=F3*(G4*COUT0) + ~F3*(G4+COUT0)

F4=F4I

G2=COUT0

G3=G3I
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FORCE-0

The FORCE-0 configuration forces the carry-out signal on the COUT pin to be 0.

COUT0=0

COUT=0

FORCE-1

The FORCE-1 configuration forces the carry-out signal on the COUT pin to be 1.

COUT0=1

COUT=1

FORCE-CI

The FORCE-CI configuration forces the signal on the CIN pin to pass through to the 
COUT pin.

COUT0=CIN

COUT=COUT0=CIN

FORCE-F1

The FORCE-F1 configuration forces the signal on the F1 pin to pass through to the 
COUT pin.

COUT0=F1

COUT=COUT0=F1

FORCE-F3-

The FORCE-F3- configuration forces the signal on the F3 pin to pass inverted to the 
COUT pin.

COUT0=~F3

COUT=COUT0=~F3

FORCE-G4

The FORCE-G4 configuration forces the signal on the G4 pin to pass through to the 
COUT pin (XC4000X and SpartanXL only).

COUT0=0

COUT=G4

EXAMINE-CI

The EXAMINE-CI configuration allows the carry signal on the CIN pin to be used in 
the F or G function generators. This configuration forces the signal on the CIN pin to 
pass through to the COUT pin and is equivalent to the FORCE-CI configuration. 
EXAMINE-CI is provided for CLBs in which the carry logic is unused but the CIN 
signal is required.

COUT0=CIN

COUT=COUT0=CIN
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Carry Logic in XC5200
The XC5200 CLB contains a dedicated carry logic feature. This enhances the perfor-
mance of arithmetic functions such as adders, subtracters, counters, comparators, and 
so forth. A carry multiplexer (CY_MUX) represents the dedicated 2:1 multiplexer in 
each logic cell. The multiplexer performs a 1-bit high speed carry propagate per logic 
cell (four bits per CLB).

In addition to providing a high speed carry propagate function, each CY_MUX can be 
connected to the CY_MUX in the adjacent logic cell to provide cascadable decode 
logic. The “XC5200 Carry Logic” figure illustrates how the four-input function gener-
ators can be configured to take advantage of the four cascaded CY_MUXes.

Note: AND and OR cascading are specific cases of a generic decode.

Figure 12-20 XC5200 Carry Logic

XC5200 Carry Logic Library Support
The design entry library contains one carry logic primitive and one carry logic macro. 
The carry multiplexer primitive (CY_MUX) represents the dedicated 2:1 multiplexer 
that performs the high speed carry propagate function. The carry initialize (CY_INIT) 
macro is used to initialize the carry chain for all arithmetic functions. The CY_INIT is 
implemented by forcing a zero onto the select line of the CY_MUX such that the DI 
pin of the CY_MUX is selected to drive the CO pin. See the “Carry Initialize Function 
XC5200” figure.
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Figure 12-21 Carry Initialize Function XC5200

Note: The XC5200 library contains a set of RPMs designed to take advantage of the 
logic. Using the macros as they are or modifying them makes it much easier to take 
advantage of this feature.

Cascade Function
Each CY_MUX can be connected to the CY_MUX in the adjacent logic cell to provide 
cascadable decode logic. The “CY_MUX Used for Decoder Cascade Logic XC5200” 
figure illustrates how the 4-input function generators can be configured to take 
advantage of these four cascaded CY_MUXes.

Note: AND and OR cascading are specific cases of a general decode. In AND 
cascading, all bits are decoded equal to logic one. In OR cascading, all bits are 
decoded equal to logic zero. The flexibility of the LUT achieves this result.
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Figure 12-22 CY_MUX Used for Decoder Cascade Logic XC5200
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Carry Logic in Virtex, Spartan2
A Virtex or Spartan2 CLB contains a dedicated carry logic feature. This enhances the 
performance of arithmetic functions such as adders, subtracters, counters, compara-
tors, and so forth. For detailed information on Carry Logic in Virtex and Spartan2, 
refer to the Xilinx web site, http://support.xilinx.com.
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