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Letter from the Publisher

Xilinx Ecosystem of Development Environments 
Gives You Great Choices

Xilinx® has provided hardware designers with FPGA-based development 
tools for more than 30 years. In the past few years, it has also created 
the SDx™ line of tools—including the SDSoC™, SDAccel™ and SDNet™ 
development environments—that target developers unfamiliar with hard-
ware description languages like Verilog and VHDL, allowing them to pro-
gram Xilinx devices using software languages such as C/C++ and Open-
CL™. Xilinx is not the only source for such tools; notable third parties 
delivering popular design environments that accommodate Xilinx devices 
include MathWorks® (MATLAB™ and Simulink™), National Instruments 
(LabVIEW and LabVIEW FPGA), and Topic Embedded Products (Dyplo).

I watched a demo of Topic’s Dyplo for the Xilinx Zynq®-7000 SoC at this 
winter’s Embedded World conference in Nuremberg, Germany, and came 
away impressed. Dyplo, which stands for Dynamic Process Loader, allows 
your program to swap custom-compiled hardware accelerator blocks in 
and out of the Zynq-7000 SoC’s programmable logic programmable using 
the SoC’s partial-reconfiguration capability. As I wrote in an Xcell Daily 
blog post, “This is a really neat trick.” (See “Topic Embedded’s Dyplo 
framework turns Zynq-7000 SoCs into multitasking hardware/sofware ex-
ecution engines.”)

If you have a preconceived notion of how you’re “supposed” to develop 
code for Xilinx devices, you really should shake up those assumptions. 
Go and check out SDSoC and the other Xilinx SDx development  envi-
ronments and, by all means, check out the offerings from MathWorks, 
National Instruments and Topic Embedded Products.

Kudos and Goodbye to Mike Santarini
Xcell Software Journal and Xilinx owe a great debt to Mike 
Santarini, who served as the publisher of Xcell Journal for the 
past eight years and who started this magazine as well. Mike 
has moved on to other things, but the contribution he made 
was significant. Mike, all of us here at Xilinx say “Thank you!” 
and wish you good luck in your future endeavors.

mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
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https://forums.xilinx.com/t5/Xcell-Daily-Blog/Topic-Embedded-s-Dyplo-framework-turns-Zynq-7000-SoCs-into/ba-p/685626
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Topic-Embedded-s-Dyplo-framework-turns-Zynq-7000-SoCs-into/ba-p/685626
http://www.mathworks.com/
http://www.ni.com/en-us.html
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When the System Software team at Xilinx® 
and DornerWorks brought up the Xen 
Project hypervisor on Xilinx’s Zynq® Ultra- 
scale+™ MPSoC, we found that we could 
run the popular 1993 videogame Doom to 
demonstrate the system and test it. The 
visually striking game allowed the team to 
visit Xen engineering topics with the aim of 
passing on knowledge and experience to 
future hypervisor users.

Our team used an emulation model of 
the Zynq UltraScale+ MPSoC available for 
QEMU (the open-source Quick Emula-
tor) to prepare the software for the Doom 
demonstration, enabling us to bring it up 
in hours, not days, when silicon arrived.

Before we detail the steps of how to 
run Doom on Xen on top of QEMU for 
the Zynq UltraScale+ MPSoC, let’s review 
what hypervisors are and how they work 
in relation to the processors on the Zynq 
UltraScale+ MPSoC. 

HYPERVISORS AND HOW THEY WORK
A hypervisor is a computer program that 
virtualizes processors. Applications and 
operating systems running on the virtu-
alized processors appear to own the sys-
tem completely, but in fact the hypervisor 
manages the virtual processors’ access to 
the physical machine resources, such as 
memory and processing cores. Hypervisors 

W



EXITSUPER. In addition, in USER mode all of the  
instructions can only read and write a subset of 
memory—for example, from address 0x0000_0100 
to 0x0FFF_FFFF. In USER mode, if a program tries 
to execute an instruction it shouldn’t or access a 
register or memory location to which it doesn’t 
have access, the processor will halt on the offend-
ing instruction. 

In SUPER mode, the processor’s instructions can 
read and write all of the registers indicated above, in-
cluding RegisterSuper and SuperProgramCounter. 
All of the instructions listed above, including EXIT-
SUPER, can execute, as can an additional instruc-
tion, ENTERHYPER (more on that instruction lat-
er). Further, in SUPER mode the instructions can 
access all memory (from 0x0000_0000 to 0x7FFF_
FFFF) in our system.

Having a processor with modes lets us use design 
compartmentalization to simplify solving software en-
gineering problems. In the example above, there is only 
one way to enter SUPER mode: Execute the ENTERSU-
PER instruction. Likewise, there is only one way to leave 
SUPER mode: Execute EXITSUPER. In addition, pro-
grams can access only a subset of the machine’s memory 
while in USER mode. With this scheme, we could write 
a program that would allow a processor to run multiple 
USER mode programs at the same time. This “operating 
system” (OS) program would run in SUPER mode and 
manage programs running in USER mode. 

When the OS runs, it would look at all the USER 
mode programs that it needs to run, pick one to run 
and then instruct the processor to switch into USER 
mode to run it with an instruction such as EXITSUPER. 
The selected program would run until an event caused 
the processor to switch back into SUPER mode. Such 
an event could be an ENTERSUPER instruction from 
the USER mode program or an external event, such as 
a timer that would switch the processor into SUPER 
mode without alerting the program that was running 
in USER mode. Regardless of how the switch happens, 
we could construct the OS to select and run USER  

are popular because they provide design compartmen-
talization and isolation between the independent soft-
ware elements running on the system.

To support virtualization, the physical processor 
must provide a special “mode” in which the hypervisor 
will run. Thus, describing a processor mode is a useful 
place to start in understanding how a hypervisor ac-
complishes this processor magic trick.

All processors have instructions that operate on val-
ues stored in registers and can read and write memory. 
A processor’s mode is a collection of its instructions 
and registers, along with rules for using those instruc-
tions to access registers and memory. For this expla-
nation, we will describe a generic processor as an ex-
ample and will use architecture-agnostic terminology.

In our example, the processor has specific registers, 
instructions and modes. Registers include RegisterA, 
RegisterB, RegisterC, UserProgramCounter, Register-
Super and SuperProgramCounter. Instructions include 
the following.

ADD Register3 Register1 Register2 adds Regis-
ter1 to Register2 and puts the result in Register3, i.e., 
Register3 = Register1 + Register2.

MOVTO Register2 Register1 moves the contents of 
the memory at the address in Register1 to Register2.

MOVFROM Register2 Register1 moves the con-
tents of Register1 to the memory at the address in 
Register2.

ENTERSUPER enters the SUPER mode of the pro-
cessor.

EXITSUPER leaves SUPER mode and enters 
USER mode.

In USER mode, the processor’s instructions 
are limited in what they can do. In our exam-
ple, the instructions can read and write (op-
erate on) all of the registers except for Regis-
terSuper and SuperProgramCounter, and the 
processor can execute all of the instructions except  
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EXITSUPER leaves SUPER mode and enters 
USER mode.

ENTERHYPER enters the HYPER mode of the processor.

EXITHYPER exits the HYPER mode of the processor.

SWITCHSUPER RegisterHyper switches to the 
SUPER program that will execute next using the value 
in RegisterHyper.

The additional instructions and registers in HY-
PER mode allow the processor to switch which 
program is running in SUPER mode, just as the SU-
PER mode allows the processor to switch which 
program is running in USER mode. One feature of 
HYPER mode is the ability to switch which memo-
ry SUPER modes see; when a program running in 
HYPER mode executes SWITCHSUPER Register-
Hyper, the underlying memory completely switch-
es out. This means that when the next SUPER 
program runs after the program in HYPER mode 
executes EXITHYPER, the actual physical memo-
ry that the SUPER mode sees will differ from the 
physical memory used by another program running 
in SUPER mode. The SUPER mode program will 
still access the memory using the same address, 
but that address will point to a different physical 
location. Figure 1 shows the processor’s view of 
memory before and after it executes SWITCHSU-
PER RegisterHyper.

HYPER mode is useful because it allows many SU-
PER programs to run. Each of the programs in SU-
PER mode could be an OS; those OSes themselves 
would allow many USER programs to run in paral-
lel. This would mean, for example, that we could run 
multiple OSes, such as Windows and Linux, on the 
same hardware; 20 instances of Linux on one pro-
cessor; or any combination in between. Since each 
instance of a virtualized OS cannot see the other OS 
instances, if one crashes, it doesn’t crash the other 
instances. The features of HYPER mode have oth-
er applications: We can partition system resources  

programs according to some policy, one after anoth-
er, each time the event occurs. When the switch hap-
pens quickly, the user perceives USER programs to 
be running at the same time.

The SUPER processor mode also prevents USER 
programs from interfering with the programs running 
in SUPER mode or other USER mode programs. Any 
errors or misbehavior on the part of a USER mode 
program can be contained to just its own instance, 
and not corrupt or interfere with the system memory 
and registers reserved for SUPER mode operation.

Sounds good—but can we gain something with an-
other mode?

Expanding our machine a bit, we can introduce 
HYPER mode. HYPER mode can read and write all 
of the original registers (RegisterA, RegisterB, Reg-
isterC, UserProgramCounter, RegisterSuper and Su-
perProgramCounter) as well as two additional regis-
ters: RegisterHyper and HyperProgramCounter.
The instructions in HYPER mode include the origi-
nal set and the italicized additions below.

ADD Register3 Register1 Register2 adds Reg-
ister1 to Register2 and puts the result in Register3, 
i.e., Register3 = Register1 + Register2.

MOVTO Register2 Register1 moves the contents 
of the memory at the address in Register1 to Regis-
ter2.

MOVFROM Register2 Register1 moves the con-
tents of Register1 to the memory at the address in 
Register2.

MOVTOPHYS Register2 Register1 moves the 
contents of the memory at the physical address in 
Register1 to Register2.

MOVFROMPHYS Register2 Register1 moves the 
contents of Register1 to the physical memory at the 
address in Register2.

ENTERSUPER enters the SUPER mode of the 
processor.

ISSUE 3, FIRST QUARTER 2016
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HYPER mode is useful because it allows many SUPER programs  
to run. Each of the programs in SUPER mode could be an OS; those 

OSes themselves would allow many USER programs to run in parallel. 



SUPER). In addition, USER programs can only read 
and write memory from 0x0000_0100 to 0x0FFF_
FFFF. Once in SUPER mode, the processor allows 
instructions to talk to RegisterSuper and Super-
ProgramCounter, and allows the execution of EX-
ITSUPER and ENTERHYPER. In addition, SUPER 
programs can access memory from 0x0000_0000 to 
0x7FFF_FFFF. 

Finally, once the processor enters HYPER mode, 
its instructions can act on RegisterHyper and Hyper-
ProgramCounter, and programs can execute SWITCH-
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between multiple OSes, monitor the execution of 
each OS from the HYPER mode to restart it if it 
crashes, and keep tabs on system status while the 
virtualized OSes are running.

As a processor moves from USER to SUPER mode 
and then from SUPER to HYPER mode, the machine 
gives more privileges to the executing code. In our 
example, USER mode programs have the privilege 
to use only four registers (RegisterA, RegisterB, 
RegisterC and UserProgramCounter) and four in-
structions: (ADD, MOVTO, MOVFROM and ENTER-
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Figure 1 — Before and after execution of  SWITCHSUPER RegisterHyper in HYPER mode



ture (for example, ARMv8-A) as well as the proces-
sor (for example, Cortex-A53).

There are four exception levels in the ARMv8 archi-
tecture (source: ARM Architecture Reference Manual, 
D1-1404):

1.  Exception Level 0 (EL0), which executes without 
privilege; 

2.  Exception Level 1 (EL1), which executes an OS and 
anything else that executes privileged instructions; 

3.  Exception Level 2 (EL2), which allows the hard-
ware to be virtualized; and 

4.  Exception Level 3 (EL3), which allows switching 
between secure and nonsecure processor states.

The following programs would typically run in these 
modes, as described in the ARM Architecture Reference 
Manual (D1–1404): EL0, applications; EL1, the OS kernel 
and associated functions that are typically described as 

SUPER and EXITHYPER. HYPER mode also allows 
the processor to read and write all virtual memory, 
0x0000_0000 to 0xFFFF_FFFF, and to read and write 
the actual physical memory. These levels of privilege 
are typically visualized as rings (Figure 2). The master, 
HYPER ring grants permissions to the lower rings and 
ultimately can control the whole system.

MAPPING THEORY TO PRACTICE
ARM® creates processor designs that ARM partners can 
use to build chips. An ARM processor contains one or 
more cores. Each core implements an ARM architecture. 

For instance, the Zynq UltraScale+ MPSoC contains 
an ARM Cortex™-A53 processor complex with four 
physical ARMv8-A cores (Figure 3).

The distinction is important when looking at 
documentation and code for an ARM processor; to 
get a complete understanding of a “chip” with an 
ARM core, consult documentation on the architec-
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Figure 2 — Modes visualized as rings
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privileged; EL2, the hypervisor; and EL3, a secure monitor.
Our theoretical example maps directly onto ARMv8 

execution modes EL0 to EL2: USER is EL0, SUPER is 
EL1 and HYPER is EL2. ARM adds a fourth privilege 
level, EL3, which we could use to switch EL0 and EL1 
between operation in secure and nonsecure contexts. 
While the use of EL3 is an important topic that adds 
considerable capability to the architecture, for the 
purposes of this example we will ignore it and focus 
on EL0 to EL2 for virtualization with hypervisors. If 
you’re curious about how a computer can secure a 
financial transaction, however, the ARMv8 EL3 doc-
umentation (free and open registration required) is a 
good place to get extremely specific details.

GETTING INTO AND OUT OF EXCEPTION MODES
In a real system, transitioning between modes is a bit 
more complex than in our example. ARM summarizes 
the behavior of the ARMv8-A architecture in the ref-

erence manual. It explains that execution can move 
between exception levels only upon taking an excep-
tion or returning from an exception. Upon taking an 
exception, the exception level can only increase or re-
main the same; upon returning from an exception, the 
exception level can only decrease or remain the same. 

There are only three instructions that generate an ex-
ception targeting the next exception level: SVC (Super-
visor Call), which generates an exception targeting EL1; 
HVC (Hypervisor Call), which generates an exception 
targeting EL2; and SMC (Secure Monitor Call), generat-
ing an exception targeting EL3. These instructions take 
values from 0 to 65,555, allowing for 216 unique system 
calls per exception level. The instructions target the 
next exception level and are the only mechanisms by 
which a program running at a lower exception level can 
request something from a program running at a high-
er exception level. In our theoretical example, SVC is 
SWITCHSUPER and HVC is SWITCHHYPER. 
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Figure 3 — Zynq UltraScale+ MPSoC
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In the previous section, we talked about an event 
that would cause the program operating in USER 
mode (EL0) to enter SUPER mode (EL1). One event 
that most programs running in USER mode generate 
is a request for memory. When a user space program 
running in EL0 requests memory from an OS run-
ning in EL1, the C code for that user space program 
will likely call a function such as malloc(), which in 
turn will call mmap() or sbrk(), to request a point-
er to available memory from the OS. On Linux in the 
ARMv8-A architecture, this will translate behind the 
scenes to an SVC system call. That system call will 
transition the processor to EL1, thus passing control 
back to the OS, which in turn will interpret the call 
and provide an appropriate response—in this case, a 
pointer to the requested memory region or an error 
indicating that no additional memory was available. 

DEMO CREATION AND TOOLS
Now let’s turn to the steps our team used to run Doom 
on the Zynq UltraScale+ QEMU Model. The steps show 
how to get and construct each component required to 
run the demo, how to run each component and in what 
order, and how to interact with the demonstration. Af-
ter successfully completing this demo, you will have 
an environment on which to experiment with the Xen  
hypervisor running on an emulated Zynq UltraScale+ 
MPSoC. Porting this to Zynq UltraScale+ MPSoC silicon 
is left as an exercise for you to undertake. 

To make this process easier, Xilinx has provided 
a base root file system, which spares users the time 
and hassle of building it themselves. All downloads 
required for this demo are available at: www.wiki.xil-
inx.com/Doom+on+Xen+Demo.

The demo starts with updating a precompiled root 
File System (rootFS) provided by Xilinx to include the 
required components. We then leverage Xilinx’s Peta-
Linux Tools to run the demo. A rootFS contains most 
of the programs that run on a Linux system—specifi-
cally, a set of scripts to bring up the system, and the set 
of applications and libraries that implement the sys-
tem. The two tools we use to extend the base rootFS 

in this demo are Buildroot and PetaLinux. We use  
Buildroot to build the Doom binaries for the base 
rootFS supplied by Xilinx, and we use PetaLinux to 
create the rest of the rootFS and boot the demo.

Buildroot
Buildroot is a simple build system for creating a 
rootFS for a Linux system. It uses a make menuconfig 
interface, a popular method that configures the Linux 
kernel itself. Buildroot includes default support for 
PrBoom, which helps with this demo. (PrBoom is 
the GNU General Public License [GPL] version of 
the Doom game we are using. We will use the terms  
PrBoom and Doom interchangeably here.) Build-
root doesn’t have native support for building Xen 
(though it does create all the necessary libraries 
and toolchains to build Xen), so Xilinx has provided 
Xen, Xen Tools and the Xen libraries precompiled 
for users, as well as some other required libraries to 
make the process straightforward.

PetaLinux
The PetaLinux Tools contain a set of commands that 
allow users to create and extend Linux systems easily 
on Xilinx FPGAs and SoCs. This demo leverages the 
petalinux-build and petalinux-boot commands. The 
petalinux-build command creates all of the required 
components. The petalinux-boot command (plus a 
few arguments) starts all of the components running 
on the QEMU emulator. Descriptions of all of the com-
mands in the PetaLinux Tools is beyond the scope of 
this article, but with the demo system it should be easy 
to explore what these and other commands can do. 
Consult PetaLinux Tools Documentation — Refer-
ence Guide UG1144 (v2015.4) for more information. 

Project prerequisites 
This project requires a workstation or virtual ma-
chine running Linux with an environment meeting the  
PetaLinux Tools Installation Requirements outlined 
in UG1144 (v2015.4) and with Xilinx PetaLinux Tools 
v2015.4 installed in this environment.

The PetaLinux Tools contain a set of commands 
that allow users to create and extend Linux  

systems easily on Xilinx FPGAs and SoCs.

www.wiki.xilinx.com/Doom+on+Xen+Demo
www.wiki.xilinx.com/Doom+on+Xen+Demo
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2015_4/ug1144-petalinux-tools-reference-guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2015_4/ug1144-petalinux-tools-reference-guide.pdf
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STEP 1: BUILDING THE ROOTFS
First, we have to build the rootFS. Download the 
doom_demo.tar.gz from Xilinx and open a terminal 
in the download directory; you can find all required 
files at www.wiki.xilinx.com/Doom+on+Xen+Demo.  
We will call that directory the <down_dir>.

We unpack the archive.

$ cd <down_dir>

$ tar -xzf doom_demo.tar.gz && cd doom_demo

We will see one folder, which we will build into our root 
file systems (one for Dom0 and the other for DomU). Now 
we need to build PrBoom and copy it into the rootFS. 

First we need to download the Linux kernel so that 
we can build the rootFS later. We are using the v4.3 tag.

$ git clone -b v4.3 https://github.com/tor-
valds/linux.git

We download the Buildroot source and change to 
the Buildroot directory.

$ git clone https://git.buildroot.net/buildroot 
&& cd buildroot

Now we need to configure Buildroot to build pack-
ages we can use.

$ make menuconfig

    We select the following options:

Target options ---> Target Architecture ---> AArch64 
(little endian)

Target packages —> Games ---> prboom ---> [*]

Target packages —> Games ---> shareware Doom 
WAD file ---> [*]

All required libraries should automatically be selected.

$ make # (This could take a few minutes, depending on 
your machine.)

Now we copy all the PrBoom related files into the 
targetfs directory, making sure we are in the ./output/

target/ directory under the buildroot directory.

$ for i in $(find ./ -name ‘*oom*’); do cp ${i} 
<down_dir>/doom_demo/targetfs/${i}; done

We have now finished with Buildroot. We go up one 
directory to the doom_demo directory.

$ make # Build the host and guest rootFS. (This 
could take a few minutes, depending on your machine.)

Note: Depending on which kernel version you use, 
there might be extra config options that are not pre-
selected by our supplied config. You should be fine 
using the default options (just press enter).

STEP 2: BUILDING THE BASE SETUP
Next we will build the rest of the embedded system soft-
ware for the platform, including the boot loader, ARM 
Trusted Firmware (ATF), Linux kernel and device trees. 
Xilinx’s PetaLinux Tools make this process straightfor-
ward. We create a PetaLinux project targeting the Xil-
inx ZCU102 board. Reference quick-start material for 
QEMU and PetaLinux for MPSoC in 2015.4 UG1144 and 
AR#66249. Go to www.xilinx.com and download the 
ZCU102 BSP (Board Support Package) to a location that 
we will refer to as <petalinux_bsp_dir>.

$ cd <down_dir>
$ petalinux-create --type project -s <petali-
nux_bsp_dir>/ Xilinx-ZCU102-v2015.4-final.bsp 
--name doom_demo_zynqMP

This will create our PetaLinux project in <down_
dir>/doom_demo_zynqMP.

We go to the PetaLinux project and build PetaLinux.

$ cd <down_dir>/doom_demo_zynqMP

$ petalinux-build

Now we need to edit the device tree manually for 
our use case.

Edit the xen-overlay.dtsi file (subsystems/linux/
configs/device-tree/xen-overlay.dtsi).

Once you see Doom start up, you should be able to control 
the game using your keyboard and mouse. Remember that 
you might need to hit the escape key to start a game. 

http://doom_demo.tar.gz
http://www.wiki.xilinx.com/Doom
http://doom_demo.tar.gz
https://github.com/torvalds/linux.git
https://github.com/torvalds/linux.git
https://git.buildroot.net/buildroot
http://www.xilinx.com
http://Xilinx-ZCU102-v2015.4-final.bsp
http://xen-overlay.dtsi
http://xen-overlay.dtsi
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Replace

‘reg = <0x0 0x80000 0x3100000>;’

under dom0 with

‘reg = <0x0 0x80000 0x4100000>;’

Replace

‘xen,xen-bootargs = “console=dtuart dtuart=serial0 
dom0_mem=512M bootscrub=0 maxcpus=1 time    r_
slop=0”;’

under chosen with

‘xen,xen-bootargs = “console=dtuart dtuart=serial0 
dom0_mem=512M bootscrub=0 maxcpus=4 timer_
slop=0”;’

Replace

‘xen,dom0-bootargs = “console=hvc0 earlycon=xen 
earlyprintk=xen maxcpus=1”;’

under chosen with

‘xen,dom0-bootargs = “rdinit=/bin/sh console=hvc0 
earlycon=xen earlyprintk=xen maxcpus=4”;’

Edit the zynqmp.dtsi file (subsystems/linux/configs/
device-tree/zynqmp.dtsi).

Replace

‘compatible = “cdns,uart-r1p12”;’

under uart0 with

‘compatible = “cdns,uart-r1p8”, “cdns,uart-r1p12”;’

Now manually build the Xen device tree.

$ dtc -I dts -O dtb -i ./subsystems/linux/con-
figs/device-tree/ -o ./images/linux/xen.dtb ./
subsystems/linux/configs/device-tree/xen.dts

Finally, we need to replace the rootFS built by Peta- 
Linux with the one we built before. This is required 
because PetaLinux doesn’t include PrBoom, so we 

are supplying our own rootFS. We also need to replace 
the xen.ub image with one prebuilt by Xilinx, as the 
Xen and Xen tool versions must match.

$ rm <down_dir>/doom_demo_zynqMP/images/linux/
Image && rm <down_dir>/doom_demo_zynqMP/images/
linux/xen.ub

$ cp <down_dir>/doom_demo/Image <down_dir>/doom_
demo_zynqMP/images/linux/Image && cp <down_dir>/
doom_demo/xen.ub <down_dir>/doom_demo_zynqMP/im-
ages/linux/xen.ub

Boot using u-boot bootloader.

$ petalinux-boot --qemu --u-boot --qemuargs=”-
net nic -net nic -net nic -net nic -net us-
er,net=192.168.129.0,dhcpstart=192.16
8.129.50,host=192.168.129.1,hostfwd=t
cp:127.0.0.1:5900-192.168.129.50:5900”

    > setenv serverip 192.168.129.1 
    > tftpb 4000000 xen.dtb; tftpb 0x80000 Image; tftpb 
6000000 xen.ub; bootm 6000000 - 4000000

# /boot.sh 
    # /xen-doom.sh 1

STEP 3: FIRING IT UP
Now we can fire up a virtual network computing 
(VNC) viewer and, on the machine running QEMU, 
connect to localhost:5900 to see the Doom game. 
(Note: The command line above will only redirect 
port 5900, which will only allow you to connect to the 
first instance of Doom when you fire up your demo. 
If you would like to connect to multiple instances, 
add more hostfwd arguments to QEMU and connect 
to the next available port [5901 for the next instance, 
5902 for the one after that and so on], and then con-
nect to those instances.)

Once you see Doom start up, you should be able 
to control the game using your keyboard and mouse. 
Remember that you might need to hit the escape key 
to start a game. Also remember that it’s been a while 

http://zynqmp.dtsi
http://zynqmp.dtsi
http://xen.dtb
http://xen.dts
http://xen.ub
http://xen.ub
http://xen.ub
http://xen.ub
http://xen.dtb
http://xen.ub
http://boot.sh
http://xen-doom.sh
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since you’ve played Doom, so you may not make it 
very far. Don’t feel discouraged. Working with the sys-
tem you built is definitely “work.”

XEN DEEPER DIVE
As described in “Zynq MPSoC Gets Xen Hypervisor 
Support” (Xcell Journal, Issue 93), a Type 1 hypervisor 
runs natively on the hardware, whereas a Type 2 hyper-
visor is not the lowest layer of software and gets hosted 
on an OS. Xen is a Type 1 hypervisor (Figure 4).

Earlier, we mentioned virtual processors (also known 
as virtual machines). In Xen, these are referred to as do-
mains. The most privileged domain is called Dom0; the 
unprivileged guest domains are DomU domains.

Dom0 is the initial domain that the Xen hypervisor 
creates upon booting. It is privileged and drives the 
devices on the platform. Xen virtualizes CPUs, mem-
ory, interrupts and timers, providing virtual machines 
with one or more virtual CPUs, a portion of the mem-
ory of the system, a virtual interrupt controller and a 
virtual timer. Unless configured otherwise, Dom0 will 
get direct access to all devices and drive them. Dom0 

also runs a set of drivers called paravirtualized (PV) 
back ends to give the unprivileged virtual machines 
access to disk, network and so on. Xen provides all 
the tools for discovery and initial communication 
setup. The OS running as DomU gets access to a set 
of generic virtual devices by running the correspond-
ing PV front-end drivers. A single back end can ser-
vice multiple front ends, depending on how many 
DomUs there are. A pair of PV drivers exists for all 
of the most common device classes (disk, network, 
console, frame buffer, mouse, keyboard, etc.). The PV 
drivers usually live in the OS kernel, i.e., Linux. A few 
PV back ends can also run in user space, usually in 
QEMU. The front ends connect to the back ends using 
a simple ring protocol over a shared page in memory.

Interacting with the hypervisor from Dom0 re-
quires programs that use the defined hypervisor 
calls (similar to system calls). Xen provides a ref-
erence toolset with libraries called Xen Tools (also 
written as xen-tools). The xen-tools include a pro-
gram called xl that, among other things, can inspect 
state and create guests.

Dom0 DomU

Xen

Hardware

PV front endsPV back ends

HW drivers

DomU

PV front ends

DomU

PV front ends
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Figure 4 — As a Type 1 hypervisor, Xen runs natively on hardware, and virtual machines run on top of Xen  
(source: “Xen ARM with Virtualization Extensions” white paper).

http://www.xilinx.com/publications/archives/xcell/Xcell93.pdf
http://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
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The “create” command in xl takes a configuration 
file describing a guest, and if the configuration file 
specifies that the guests want a virtual frame buffer 
(VFB) backed by a VNC session, xl will automatical-
ly launch virtualization code in the Dom0 user space 
(one per guest in our demo).

The configuration file for the doom VM looks like this:

# Guest name

name = “guest1”

# Kernel image to boot

kernel = “/boot/Image”

# Kernel command line options

extra = “console=hvc0 rdinit=/doom.sh”

# Initial memory allocation (MB)

memory = 56

# Number of VCPUS

vcpus = 1

vfb = [ ‘type=vnc, vnclisten=0.0.0.0’ ]

DEVICES IN XEN
There are three common ways to expose a device 
to a guest: emulation, paravirtualization and pass-
through (Figure 5).

With device emulation, when a guest writes to the 
memory of the emulated device, the write triggers 
a trap. The trap is typically a page fault. The trap 
allows the processor to switch into the hypervisor, 
which emulates the device. Emulation is flexible 
but slow because of all the traps, and someone must 
write models for all of the devices that require em-
ulation. It’s also hard to find tricks to speed emula-
tion because there’s little to no hardware accelera-
tion; it’s an all-software approach.

With device paravirtualization, there is agree-
ment between the hypervisor and the guest on how 
communications will progress. There is typically a 
shared-memory area (plus protocol) that looks like a 
device, and the hypervisor services requests on this 
area. For example, to support a paravirtualized frame 
buffer on Linux, a Linux front-end driver would write 
the buffer of the frame it got from user space into a 
shared memory area; it would then signal the hyper-
visor using hypervisor calls to output the frame via a 
back-end driver. The guest can only talk to the host 
(Dom0) and other guests (DomU) through paravirtu-
alized drivers. Some benefits of this approach are that 
you can share devices among many guests, it runs fast, 
and a guest can run a mostly unchanged kernel. The 
changes required are under standard interfaces, so to 
the applications and the rest of the kernel the front-
end driver just looks like a normal network interface, 

With device paravirtualization, there is agreement between the 
hypervisor and the guest on how communications will progress. 

Popular communication protocols are Xen Bus and VirtIO.

Speed Device Sharing Security

Emulated Slow Yes Yes

Paravirtualized Medium Yes Yes

Pass-through Fast No Yes (but only if you have an SMMU*)
*System Memory Management Unit
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Figure 5 — Comparison of emulated, paravirtualized and pass-through approaches

http://doom.sh
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disk or other device. Two popular protocols for sup-
porting guest communication are Xen Bus and VirtIO.

In pass-through mode, the host “gives” a device 
to the guest. This means only one guest can use the 
device at a time.

DEVICE PERFORMANCE AND SECURITY
In general, emulated devices have lower performance 
than devices exposed via pass-through, and the para-
virtualization approach tends to have sufficient per-

formance. A benefit of the paravirtualized and em-
ulation approaches is that the hypervisor can allow 
device access to multiple entities without exposing 
those entities to one another. 

UNDER THE HOOD
The processing contexts of the Doom-on-Zynq Ultra- 
Scale+ MPSoC are like an onion, with many layers 
(Figure 6). In the Cortex-A53 cluster are the four 
ARMv8 cores. On each core, the hypervisor runs in 

Dom0

Model of ARM Cortex-A53

DomU0 DomU1

Virtualization
code

Virtualization
code

PrBoom
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VNC
Server

VNC
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UART
Xen (EL2)
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(1.2)
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xen-fbfront

PrBoom
(Doom)

Linux Kernel
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xen-fbfront

VNC ViewerVNC Viewer

Figure 6 – Under the hood of the demo: QEMU launched from PetaLinux Tools running on an x86

http://device.Two
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EL2, and the guests (Dom0 or DomU) run in EL0/EL1. 
Each DomU guest runs Linux; Doom (PrBoom) runs 
in the user space. Doom uses the Simple Direct Me-
dia Layer (SDL), which talks to a frame buffer front-
end driver via the SVC instruction (eventually). The 
frame buffer front end writes the buffer into a shared 
memory area set up by Dom0. The front-end driver 
communicates with virtualization code running on 
Dom0 via a protocol such as Xen Bus or VirtIO using 
the HVC instruction (eventually). The virtualization 

code running on Dom0 provides a back end for dis-
play which then is encoded by the virtualization code’s 
VNC server and sent over a network to a VNC client.

This information and the demo should provide a 
good foundation for further hypervisor study and ex-
perimentation. After you are able to run the demo in 
emulation on QEMU, you can use PetaLinux Tools to 
run it on Zynq UltraScale+ MPSoC silicon. 

For more great developer resources, visit Xilinx’s 
Software Developer Zone. n

http://www.xilinx.com/products/design-tools/software-zone.html
https://itunes.apple.com/us/app/xilinx-go/id1063287962
https://play.google.com/store/apps/details?id=com.marketing.xilinxgo
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Wireless communications will play a key role in a 
wide range of emerging technologies, from fleets of 
self-driving autonomous vehicles to heterogeneous 
networks connecting millions of industrial sensors. 
Such applications will demand reconfigurable soft-
ware-defined radios (SDRs) capable of changing 
modulation schemes, frequency bands and system 
protocols on the fly. By integrating the critical RF 
signal path and high-speed programmable logic in 
a fully verified system-on-module (SOM), Avnet’s 
PicoZed SDR delivers the flexibility of software-de-
fined radio in a device the size of deck of cards, en-
abling frequency-agile, wideband 2x2 receive and 
transmit paths in the 70-MHz to 6.0-GHz range for 
diverse fixed and mobile SDR applications.

PicoZed SDR combines the Analog Devices AD9361 in-
tegrated RF Agile Transceiver™ with the Xilinx® Z-7035 
Zynq®-7000 All Programmable SoC. [1] The architecture 
is ideal for mixed software-hardware implementations of 
complex applications, such as digital receivers, in which 
the digital front end (physical layer) is implemented in 
programmable logic, while the upper protocol layers run 
in software on dual ARM® Cortex™-A9 processors. Let’s 
look at the software-related features of PicoZed SDR 
throughout the development process.

FAST PROOF OF CONCEPT WITH  
PICOZED SDR RADIO-IN-THE-LOOP
Leveraging the full potential of PicoZed SDR calls 
for a robust, multidomain simulation environment  
to model the entire signal chain, from the RF analog 

W

mailto:Robin.Getz@analog.com
mailto:Luc.Langlois@avnet.com


can invoke various methods to stream data through 
the System object during simulation. The Commu-
nications System Toolbox™ Support Package for 
Xilinx Zynq-Based Radio from MathWorks contains 
predefined classes for the PicoZed SDR receiver 
and transmitter, each with tunable configuration at-
tributes for the AD9361, such as RF center frequen-
cy and sampling rate. The code example in Figure 2 
creates a PicoZed SDR receiver System object to re-
ceive data on a single channel, with the AD9361 local 
oscillator frequency set to 2.5 GHz and a baseband 
sampling rate of 1 megasample/second (Msps). The 
captured data is saved using a log.

LIBIIO LIBRARY
Analog Devices has developed the Libiio library [3, 4] 
to ease the development of software interfacing to Li-
nux Industrial I/O (IIO) devices, such as the AD9361 
on the PicoZed SDR SOM. The open-source (GNU 
Lesser General Public License V2.1) library abstracts 
the low-level details of the hardware and provides a 
simple yet complete programming interface that can 
be used for advanced projects.

The library comprises  a high-level application pro-
gramming interface and a set of back ends, as shown 
in Figure 3. 
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electronics to the baseband digital algorithms. This is 
the inherent value of Model-Based Design, a methodol-
ogy from MathWorks® that places the system model at 
the center of the development process, spanning from 
requirements definition through design, code genera-
tion, implementation and testing. Avnet worked with 
Analog Devices and MathWorks to develop a support in-
frastructure for PicoZed SDR in each facet of the design 
process, starting at the initial prototyping phase. [2]

Faced with the constant pressures of shorter devel-
opment cycles, engineers seek solutions for fast, accu-
rate proof of concept on proven hardware to demon-
strate the feasibility of a product under “real world” 
conditions. Using a MATLAB® software construct 
called System objects™, MathWorks created a sup-
port package for Xilinx Zynq-Based Radio that enables 
PicoZed SDR as an RF front end to prototype SDR de-
signs right out of the box. Optimized for iterative com-
putations that process large streams of data, System 
objects automate streaming data between PicoZed 
SDR and the MATLAB and Simulink® environments in 
a configuration known as radio-in-the-loop (Figure 1).

Akin to concepts of object-oriented programming, 
System objects are created by a constructor call to 
a class name, either in MATLAB code or as a Sim-
ulink block. Once a System object is instantiated, you 



either physical layers (QPSK, QAM, OFDM, etc.) or 
entire media access controllers (MACs). Libiio sup-
ports both streaming (losing no samples) at medium 
data rates (approximately 8 Msps) and burst mode 
(capturing bursts of samples (up to ~1Msample, los-
ing data between bursts) at the maximum data rate 
(61.44 Msps). Typically, you would use lower-data-rate 
streaming when working on PHY development and 
then use burst mode to verify the design at speed be-
fore HDL/C-code generation.

SYSTEM INTEGRATION WITH HW/SW  
CO-DESIGN FOR PICOZED SDR
Once you have fully verified an algorithmic model 
with PicoZed SDR radio-in-the-loop, the next phase 
would be to generate the HDL/C code and package an 
intellectual-property core for integration into a larger 

•  The local back end interfaces the Linux kernel 
through the kernel’s sysfs virtual file system. This 
back end has bindings for C, C++ and Python to sup-
port remotely deployed applications running on the 
PicoZED SDR.

•  The network back end interfaces the IIO Daemon 
(iiod) server through a network link. The network 
back end supports multiple operating systems  
(Linux, OS X, Windows) to enable remote GUI-
based debug on more-powerful host platforms, 
running applications such as MATLAB and Simulink 
[5], GNURadio [6] or the IIO Oscilloscope [7].

You would use Libiio to interface to a PicoZED 
SDR during a project’s prototyping phase in order to 
stream samples to and from models in tools such as 
MATLAB, Simulink or GNURadio, which can model 

ISSUE 3, FIRST QUARTER 2016

23

You would use Libiio to interface to a PicoZED SDR during a 
project’s prototyping phase in order to stream samples to and 
from models in tools such as MATLAB, Simulink or GNURadio.

Figure 2 — PicoZed SDR receiver MATLAB System object



faces, AXI4-Stream video interfaces, and external 
ports. The MathWorks HDL Workflow Advisor IP core 
generation workflow lets you insert your generated IP 
core into a predefined embedded system project in the 
Xilinx Vivado® integrated design environment. [8] HDL 
Workflow Advisor contains all the elements Vivado 
IDE needs to deploy your design to the SoC platform, 
except for the custom IP core and embedded software 
that you generate.

 If you have a MathWorks Embedded Coder® li-
cense, you can automatically generate the software in-
terface model, generate embedded C/C++ code from it, 
and build and run the executable on the Linux kernel 
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system. For example, a wireless receiver subsystem 
modeled in MATLAB and Simulink might be destined 
for a point-to-point radio link streaming real-time 
video from an Avnet camera module mounted on the  
PicoZed SDR carrier card. 

The hardware-software co-design workflow in HDL 
Coder™ from MathWorks lets you explore the op-
timal partition of your design between software and 
hardware targeting the Zynq SoC (Figure 4). The part 
destined for programmable logic can be automatically 
packaged as an IP core, including hardware interface 
components such as ARM AMBA® AXI4 or AXI4-Lite 
interface-accessible registers, AXI4 or AXI4-Lite inter- 
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back end

Network
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Network Link
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Figure 3 — Libiio API and back ends



osc app on Linux, and prebuilt Windows binaries exist.
Figure 5 shows the FFT of two channels (I/Q) of the 

PicoZED SDR, with markers set up to look at single 
tones and measure harmonics.

 Building directly on the PicoZED SDR is a simple 
matter of (1) downloading the source:

> git clone https://github.com/analogdevic-
esinc/iio-oscilloscope.git

> cd iio-oscilloscope

> git checkout origin/master

and (2) building and installing it:

rgetz@pinky:~/iio-oscilloscope$ make

rgetz@pinky:~/iio-oscilloscope$ sudo make install

With the powerful processing system (dual ARM 
Cortex-A9 processors running at 1 GHz, plus 1-Gbyte 
DDR3 SDRAM) at your disposal, compiling natively on 
the Zynq SDR SOM is a quick process.

on the ARM processor within the Zynq SoC. The gen-
erated embedded software includes AXI driver code, 
generated from the AXI driver blocks, that controls the 
HDL IP core. Alternatively, you can write the embedded 
software and manually build it for the ARM processor.

IIO OSCILLOSCOPE 
The ADI IIO Oscilloscope (osc) is an example appli-
cation that demonstrates how to interface different 
Linux IIO devices within a Linux system. The applica-
tion allows you to plot the captured data in four modes 
(time domain, frequency domain, constellation and 
cross-correlation) and to view and modify several IIO 
device settings. 

The osc application supports Linux, Windows and 
OS X. It can run on a remotely connected host PC or 
on the PicoZed SDR FMC Carrier because it supports 
HDMI video display and, therefore, a graphical envi-
ronment. Instructions are available for building the 
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Figure 4 – MathWorks hardware-software  
co-design workflow

Figure 5 — ADI IIO Oscilloscope

The osc application supports Linux, Windows and OS X. It can 
run on a remotely connected host PC or on the PicoZed SDR 

FMC Carrier, since it supports HDMI video display.

https://github.com/analogdevicesinc/iio-oscilloscope.git
https://github.com/analogdevicesinc/iio-oscilloscope.git


as pipelines. A typical capture pipeline will capture video 
from the camera receiver, optionally process the video 
and then send the content to an external frame buffer 
using a video DMA engine. Avnet provides a Vivado IP In-
tegrator-compatible “camera receiver” IP core with HDL 
source code, provided without a fee or royalty, and V4L2 
subdevice Linux drivers available as a Linux patch. 

As we have shown here, through the automated 
workflows provided in Avnet’s PicoZed SDR, you can 
substantially reduce your development times from 
concept to deployment, while focusing on your SDR 
products’ differentiating features. n
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REAL-TIME VIDEO CAPTURE WITH  PICOZED SDR
High-performance video has become a key compo-
nent of intelligent systems in wireless applications 
such as autonomous vehicles, military vision systems, 
surveillance systems and drones. These applications 
combine high-pixel-rate video capture with real-time 
analytics that can exceed the performance limitations 
of purely software-based implementations. With the 
Zynq SoC and Xilinx’s SDSoC™ development environ-
ment, embedded vision system designers have access 
to the best of both worlds, leveraging the rich heri-
tage of existing software-based image processing al-
gorithms through hardware acceleration for real-time 
processing of high-definition video at high frame rates.

The Avnet ON PYTHON-1300 camera module features 
ON Semiconductor’s PYTHON-1300 color image sensor, 
which is capable of SXGA resolution (1,280 x 1,024 pix-
els) at 210 frames per second. [9]. Avnet supports the 
module on several of its Zynq SoC-based development 
platforms, including PicoZed SDR (for transmission of 
video analytics over the air). System designers can inte-
grate the camera module into a complete Linux system 
using Avnet software drivers that adhere to the Video4Li-
nux2 API specification (V4L2; Figure 6). The V4L2 frame-
work can implement complete video data paths known 

Figure 6 — V4L2 capture pipeline with Avnet ON PYTHON-1300 camera module
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Product Bene� ts/Features:

• Combines the Analog Devices AD9361 integrated RF Agile Transceiver™ with the Xilinx Z7035

Zynq®-7000 All Programmable SoC

• Running Linux on the dual core ARM A9, the PicoZed SDR provides a full software environment

which can be used from prototyping to production

• Userspace I/O (UIO), Industrial I/O (IIO) subsystems and drivers

• Supports Avnet camera modules with V4L2 drivers for realtime video capture

• Frequency-agile 2x2 receive and transmit paths with independent LO from 70 MHz to 6.0 GHz

• Handheld form-factor, ideal for a broad range of � xed and mobile SDR applications

• Full support in MATLAB and Simulink
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AMP up Your  
Next SoC Project

Harness real-time 
performance and 
the rich features 
of Linux.
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E
mbedded systems usually fall 
into one of two categories: those 
that require hard real-time per-
formance and those that don’t. In 
the past, we had to pick our poi-

son—the performance of our “go to” real-time 
operating system or the rich feature set of our 
favorite Linux distribution—and then struggle 
with its shortcomings.

Today, embedded developers no longer need 
to choose between the two. Asymmetric multi-
processing (AMP) offers the best of both worlds.

Several modern system-on-chip (SoC) product 
offerings integrate multiple CPUs, a broad vari-
ety of standard I/O peripherals and programma-
ble logic. The Xilinx® Zynq-7000® All Programma-
ble SoC family, for example, includes a dual-core 
ARM® Cortex™-A9, standard peripherals (such 
as Gigabit Ethernet MACs, USB, DMA, SD/MMC, 
SPI and CAN) and a large programmable logic ar-
ray. We can use these SoC products as the basis 
of a Linux/RTOS AMP system that provides con-
siderable flexibility. 

In many ways, the typical AMP configuration 
is similar to a PCI-based system, with the Linux 
domain functioning as the host, the RTOS do-
main functioning as an adapter, and one or 
more shared memory regions used for commu-
nication between the two domains. Unlike PCI, 
however, an AMP configuration can more con-
veniently—and dynamically—assign resourc-
es (both the standard peripherals and custom 
logic) to one domain or the other. In addition, 
a Linux/RTOS AMP system can dynamically re-
configure programmable logic based on runtime 
requirements, such as the presence or absence 
of various external devices.

This level of flexibility is often coupled with 
concerns about complexity and the degree of 
difficulty involved in bringing up an AMP sys-
tem. Rest assured that the Linux development 
community has introduced many features into 
the kernel that greatly simplify AMP configura-
tion and use.



kernel command line parameter controls the num-
ber of cores that the SMP kernel uses following sys-
tem initialization. Once the kernel is running, various 
command line utilities control the number of cores as-
signed to the kernel. The ability to dynamically control 
the number of cores used by the kernel is a primary 
reason AMP developers prefer the SMP kernel over 
the UP kernel.

The Remote Processor Framework
The Remote Processor (remoteproc) Framework is 
the Linux component that is responsible for starting 
and stopping individual cores (remote processors), as 
well as for loading a core’s software in an AMP system. 
For example, we can dynamically reconfigure the SMP 
system shown in Figure 1 into the AMP system shown 
in Figure 2, and then back again to SMP, using the ca-
pabilities of remoteproc.

We can fully control reconfiguration via a user- 
space application or system initialization script.  
Reconfiguration control allows user applications to 
stop, reload and run a variety of RTOS applications 
based on the dynamic needs of the system.

The core’s software (in our example, the RTOS and 
user application) is loaded from a standard Executable 
and Linkable Format (ELF) file that contains a special 
section known as the resource table. The resource 
table is analogous to the PCI configuration space in 
that it describes the resources that the RTOS requires. 
Among those resources is the memory needed for the 
RTOS code and data.

Trace buffers
Trace buffers are regions of memory that automati-
cally appear as files in a Linux file system. As their 
name suggests, trace buffers provide basic tracing 
capabilities to the remote processor. A remote pro-
cessor writes trace, debug and status messages to 
the buffers, where the messages are available for 
inspection via the Linux command line or by cus-
tom applications.
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I/O

Internal Interconnect

XCELL SOFTWARE JOURNAL: XCELLENCE WITH LINUX
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kernel can run simultaneously on multiple cores.
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LINUX MULTIPROCESSING IN A NUTSHELL
With respect to multiprocessing, the Linux kernel 
comes in two flavors: the uniprocessor (UP) kernel and 
the symmetric multiprocessor (SMP) kernel. The UP 
kernel can only run on a single core, regardless of the 
number of available cores. AMP systems can incorpo-
rate two or more instances of the uniprocessor kernel.

The SMP kernel, however, can run on one core or si-
multaneously on multiple cores (Figure 1). An optional 
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Remote Processor
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Linux (SMP) RTOS

Standard 
I/O

Internal Interconnect

Figure 2 — AMP with the Linux SMP kernel



specific drivers. For example, if a remote processor 
announces the service dlinx-h323-v1.0, the kernel can 
search for, load and initialize the driver bound to that 
name. This greatly simplifies driver management in 
systems where services are dynamically installed on 
remote processors.

Managing interrupts
Interrupt management can be a little tricky, espe-
cially when starting and stopping cores. Ultimate-
ly, the system needs to redirect specific interrupts 
dynamically to the remote processor domain when 
the remote processor is started, then reclaim those 
interrupts when the remote processor is stopped. 
In addition, the system must protect the interrupts 
from inadvertent allocation by potentially miscon-
figured drivers. In short, interrupts must be man-
aged systemwide.

For the Linux SMP kernel, this is a routine matter—
and a further reason that the SMP kernel is preferred 
in AMP configurations. The remote processor frame-
work conveniently manages interrupts with only mini-
mal support from the device driver.

Device drivers
Device driver development is always a concern be-
cause it requires a skill set that may not be readily 
available. Fortunately, the Linux kernel’s remoteproc 
and rpmsg frameworks do most of the heavy lifting; 
drivers need only implement a handful of standard 
driver routines. A fully functional driver may only re-
quire a few hundred lines of code. The kernel source 
tree includes sample drivers that embedded develop-
ers can adapt to their requirements.

Generic open-source device drivers are also avail-
able from vendors. DesignLinx Hardware Solutions 
provides generic rpmsg drivers for both Linux and 
FreeRTOS. Since the generic driver makes no assump-
tions about the format of the messages that are ex-
changed, embedded developers can use it for a variety 
of AMP applications without any modifications.

One or more trace buffers may be requested via 
entries in the resource table. Although they typical-
ly contain plain text, trace buffers may also contain 
binary data such as application state information or 
alarm indications.

Virtual I/O devices
We can also use the resource table to define virtual 
input/output devices (VDEVs), which are basically 
pairs of shared memory queues that support message 
transfer between the Linux kernel and the remote 
processor. The VDEV definition includes fields that 
negotiate the size of the queues as well as the inter-
rupts used to signal between the processors.

The Linux kernel handles initialization of the vir-
tual I/O queues. The software running on a remote 
processor need only include a VDEV description in its 
resource table and then use the queues once it begins 
execution; the kernel handles the rest.

Remote Processor Messaging Framework
The Remote Processor Messaging (rpmsg) Framework 
is a software messaging bus based on the Linux ker-
nel’s virtual I/O system. The messaging bus is similar 
to a local area subnetwork in which individual proces-
sors can create addressable endpoints and exchange 
messages, all via shared memory.

The kernel’s rpmsg framework acts as a switch, 
routing messages to the appropriate endpoint based 
on the destination address contained in the message. 
Because the message header includes a source ad-
dress, ad hoc connections can be established between 
various processors.

Naming service
Processors can dynamically announce a particular ser-
vice by sending a message to the rpmsg framework’s 
naming service. By itself, the naming service feature is 
only marginally useful. The rpmsg framework, howev-
er, allows service names to be bound to device drivers 
to support the automatic loading and initialization of 
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The ability to dynamically control the number of 
cores used by the kernel is a primary reason AMP 

developers prefer the SMP kernel over the UP kernel.
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MOVING INSIDE THE PINS           
The kernel’s multiprocessing support is not limited to 
homogeneous multiprocessing systems (systems using 
only the same kind of processor). All of the features 
described above can also be used in heterogeneous 
systems (systems with different kinds of processors). 
These multiprocessing features are especially useful 
when migrating existing designs “inside the pins.”

Modern SoC products let designers conveniently 
move various hardware designs from a printed-cir-
cuit board to a system-on-chip (Figure 3). What was 
once implemented as a collection of discrete proces-
sors and components on a PCB can be implemented 
entirely inside the pins of an SoC.

For example, we can implement the original PCB 
hardware architecture of Figure 3 with a Xilinx Zynq-
7000 family SoC using one of the ARM processors as 
the control CPU and soft processors (such as Xilinx 
MicroBlaze™ processors) in the programmable logic 
to replace the discrete microprocessors. We can use 
the remaining ARM processor to run the Linux SMP 
kernel (Figure 4).

The addition of Linux to the original design provides 
all of the standard multiprocessing features described 
above for both the ARM cores and the soft core pro-
cessors (such as start, stop, reload, trace buffers and 
remote messaging). But it also brings the broad Li-
nux feature set, which supports a variety of network 
interfaces (Ethernet, Wi-Fi, Bluetooth), networking 
services (Web servers, FTP, SSH, SNMP), file systems 
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ing unit (GPU) and a host of other peripherals—and, 
of course, a healthy helping of programmable logic. 
This is fertile ground for designers who understand 
how to harness the performance of real-time operat-
ing systems coupled with the rich feature set of the 
Linux kernel.

For more information on designing a Linux/RTOS 
AMP system, contact DesignLinx Hardware Solutions. 
A premier member of the Xilinx Alliance Program, 
DesignLinx specializes in FPGA design and support, 
including systems design, schematic capture and elec-
tronic packaging/mechanical engineering design, and 
signal integrity. n

(DOS, NFS, cramfs, flash memory) and other interfac-
es (PCIe, SPI, USB, MMC, video), to name just a few. 
These features offer a convenient pathway to new ca-
pabilities without significantly altering tried-and-true 
architectures.

THE CORES KEEP COMING
The past several years have seen an increase in mul-
ticore SoC offerings that target the embedded market 
and are well suited for AMP configurations.

The Xilinx UltraScale+™ MPSoC architecture, for 
example, includes a 64-bit quad-core ARM Cortex-A53, 
a 32-bit dual-core ARM Cortex-R5, a graphics process-
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Modern SoC products let designers conveniently 
move various hardware designs from a  

printed-circuit board to a system-on-chip.

Support for 
Xilinx Zynq® Ultrascale+™ 
and Zynq-7000 families 

► Concurrent debugging and 

 tracing of ARM Cortex-A53/-R5, -A9 

 and MicroBlaze™ soft processor core

► RTOS support, including Linux 

 kernel and process debugging

► Run time analysis of functions and 

 tasks, code coverage, system trace

http://www.designlinxhs.com/
http://www.xilinx.com/alliance.html
http://www.lauterbach.com


A Recipe for 
Embedded  
Systems
As embedded systems have  
become ubiquitous, we can  
benefit from accumulated  
development knowledge to  
build better systems.
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E
ngineers never lose sight of the need to de-
liver projects that hit the quality, schedule 
and budget targets. You can apply the les-
sons learned by the community of embed-

ded system developers over the years to ensure that 
your next embedded system project achieves those 
goals. Let’s explore some important lessons that have 
led to best practices for embedded development. 

THINK SYSTEMATICALLY
Systems engineering is a broad discipline covering 
development of everything from aircraft carriers and 
satellites, for example, to the embedded systems that 
enable their performance. We can apply a systems engi-
neering approach to manage the embedded systems en-
gineering life cycle from concept to end-of-life disposal.

The first stage in a systems engineering approach 
is not, as one might think, to establish the system re-
quirements, but to create a systems engineering man-
agement plan. This plan defines the engineering life 
cycle for the system and the design reviews that the 
development team will perform, along with expected 
inputs and outputs from those reviews. The plan sets a 
clear definition for the project management, engineer-
ing and customer communities as to the sequence of 
engineering events and the prerequisites at each stage. 
In short, it  lays out the expectations and deliverables.

With a clear understanding of the engineering life 
cycle, the next step of thinking systematically is to 
establish the requirements for the embedded system 
under development. A good requirement set will ad-
dress three areas. Functional requirements define 
how the embedded system performs. Nonfunctional 
requirements define such aspects as regulatory com-
pliance and reliability. Environmental requirements 
define such aspects as the operational temperature 
and shock and vibration requirements, along with the 
electrical environment (for example, EMI and EMC).

Within a larger development effort, those require-
ments will be flowed down and traceable from a 

mailto:aptaylor@theiet.org


higher-level specification, such as a system or sub- 
system specification (Figure 1). If there is no higher- 
level specification, we must engage with stakeholders 
in the development to establish a clear set of stake-
holder requirements and then use those to establish 
the embedded system requirements.

Generating a good requirement set requires that we 
put considerable thought into each requirement to en-
sure that it meets these standards:

1.  It is necessary. Our project cannot achieve suc-
cess without the requirement.

2.  It is verifiable. We must ensure that the require-
ment can be implemented via inspection, test, 
analysis or demonstration.

3.  It is achievable. The requirement is technically 
possible, given the constraints.

4.  It is traceable. The requirement can be traced 
from lower-level requirements and can trace to 
higher-level requirements.

5.  It is unique. This standard prevents contraction 
between requirements. 

6.  It is simple and clear. Each requirement specifies 
one function.

It is also common to use specific language when defin-
ing requirements to demonstrate intention. Typically, we 
use SHALL for a mandatory requirement and SHOULD 

Customer System Subsystem
(Equipment)

Device
(FPGA)

Requirements Flow Down & Reviews SRR, SDR, PDR

Verification and Compliance & Reviews CDR, MRR, TRR, TRB, DRB 

SRR = System Requirement Review
SDR = System Design Review
PDR = Preliminary Design Review
CDR = Critical Design Review 

MRR = Manufacturing Review 
TRR = Test Readiness Review
TRB = Test Review Board 
DRB = Delivery Review Board 
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Figure 1 — Within a development effort, requirements flow down and are traceable from a higher-lever specification.
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for a nonmandatory requirement. Nonmandatory require- 
ments let us express desired system attributes. 

After we have established our requirements base-
line, best practice is to create a compliance matrix, 
stating compliance for each requirement. We can also 
start establishing our verification strategy by assign-
ing a verification method for each requirement. These 
methods are generally Test, Analysis, Inspection, 
Demonstration and Read Across. Creating the require-
ments along with the compliance and verification ma-
trices enables us to:

•  Clearly understand the system behavior. 

•   Demonstrate the verification methods to both internal 
test teams and external customers. This identifies any 
difficult test methods early on in the development and 
allows us to determine the resources required. 

•   Identify technical performance metrics. These spring 
from the compliance matrix and comprise require-
ments that are at risk of not achieving compliance. 

ASSIGN ENGINEERING BUDGETS
Every engineering project encompasses a number 
of budgets, which we should  allocate to solutions 
identified within the architecture. Budget allocation 
ensures that the project achieves the overall require-
ment and that the design lead for each module un-
derstands the module’s allocation in order to create 
an appropriate solution. Typical areas for which we 



these at-risk requirements should have a clear mitiga-
tion plan that demonstrates how we will achieve the 
requirement. One of the best ways to demonstrate this 
is to use technology readiness levels (TRLs). There are 
nine TRL levels, describing the progression of the ma-
turity of the design from its basic principles observed 
(TRL 1) to full function and field deployment (TRL 9).

Assigning a TRL to each of the technologies used in 
our architecture, in conjunction with the compliance 
matrix, lets us determine where the technical risks 
reside. We can then effect a TRL development plan 
to ensure that as the project proceeds, the low TRL 
areas increase to the desired TRL. The plan could in-
volve ensuring that we implement and test the correct 
functionality as the project progresses, or performing 
functional or environmental/dynamic testing during 
the project’s progression.

allocate budgets are the total mass for the function; 
the total power consumption for the function; reli-
ability, defined as either mean time between failures 
or probability of success; and the allowable cross-
talk between signal types within a design (generally 
a common set of rules applicable across a number 
of functions). One of the most important aspects of 
establishing the engineering budgets is to ensure that 
we have a sufficient contingency allocation. We must 
defeat the desire to pile contingency upon contingen-
cy, however, as this becomes a significant technical 
driver that will affect schedule and cost.

MANAGE TECHNICAL RISK
From the generation of the compliance matrix and 
the engineering budgets, we should be able to iden-
tify the technically challenging requirements. Each of 
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Assigning a technology readiness level to each technology used 
in our architecture, in conjunction with the compliance matrix,  

enables us to determine where the technical risks reside. 
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Figure 2 — In this power architecture example, the output rails from the module will require subregulation.



tecture. The output rails from this module will require 
subregulation to provide voltages for the processing 
core and conversion devices. We must take care to guard 
against significant degradation of switching losses and 
efficiency in these stages. As we decrease efficiency, we 
increase the system thermal dissipation, which can af-
fect the unit reliability if not correctly addressed. 

 We must also take care to understand the behavior 
of the linear regulators used and the requirements for 
further filtering on the power lines. This need arises 
as devices such as FPGAs and processors switch at 
far higher frequencies than a linear regulator’s control 
loop can address. As the noise increases in frequency, 
the noise rejection of the linear regulator decreases, 
resulting in the need for additional filtering and de-
coupling. Failure to understand this relationship has 
caused issues in mixed-signal equipment.

Another important consideration is the clock 
and reset architecture, especially if there are sev-
eral boards that require synchronization. At the 
architectural level, we must consider the clock 
distribution network: Are we fanning out a single 
oscillator across multiple boards or using multiple 
oscillators of the same frequency? To ensure the 
clock distribution is robust, we must consider: 

•  Oscillator startup time. We must ensure that the  
reset is asserted throughout that period if required.

•  Oscillator skew. If we are fanning out the oscilla-
tor across several boards, is timing critical? If so, we 
need to consider skew both on the circuit cards (in-
troduced by the connectors) and skew introduced 
by the buffer devices themselves.

•  Oscillator jitter. If we are developing a mixed-sig-
nal design, we need to ensure a low-jitter clock 
source because increases in jitter reduce the 
mixed-signal converter’s signal-to-noise ratio. This 
is also the case when we use multigigabit serial links, 
as we require a low-jitter source to obtain a good bit  
error rate over the link.
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CREATE THE ARCHITECTURES
Once we understand the required behavior of the 
embedded system, we need to create an architecture 
for the solution. The architecture will comprise the 
requirements grouped into functional blocks. For 
instance, if the embedded system must process an 
analog input or output, then the architecture would 
contain an analog I/O block. Other blocks may be 
more obvious, such as power conditioning, clocks 
and reset generation. 

The architecture should not be limited to the hard-
ware (electrical) solution, but should include the ar-
chitecture of the FPGA/SoC and associated software. 
Of course, the key to modular design is good docu-
mentation of the interfaces to the module and the 
functional behavior. 

One key aspect of the architecture is to show how 
the system is to be created at a high level so that the 
engineering teams can easily understand how it will be 
implemented. This step is also key for supporting the 
system during its operational lifetime. 

When determining our architecture, we need to 
consider a modular approach that not only allows re-
use on the current project but also enables reuse in 
future projects. Modularity requires that we consider 
potential reuse from day one and that we document 
each module as a standalone unit. In the case of inter-
nal FPGA/SoC modules, a common interface standard 
such as the ARM® AMBA® Advanced Extensible Inter-
face (AXI) facilitates reuse.

An important benefit of modular design is the po-
tential ability to use commercial off-the-shelf modules 
for some requirements. COTS modules let us develop 
systems faster, as we can focus our efforts on those 
aspects of the project that can best benefit from the 
added value of our expertise. 

The system power architecture is one area that can 
require considerable thought. Many embedded systems 
will require an isolating AC/DC or DC/DC converter to 
ensure that failure of the embedded system cannot prop-
agate. Figure 2 provides an example of a power archi-

The architecture should not be limited to the hardware  
(electrical) solution, but should include the architecture of  
the FPGA/SoC and associated software.



Connectorization is one of the first areas in 
which we begin to use aspects of the previously 
developed budgets. In particular, we can use the 
crosstalk budget to guide us in defining the pinout.

The example in Figure 3 illustrates the impor-
tance of this process. Rearranging the pinout to 
place the ground reference voltage (GND) pin be-
tween Signal 1 and Signal 2 would reduce the mu-
tual inductance and hence the crosstalk.

 The ICD must also define the grounding of the sys-
tem, particularly when the project requires external 
EMC. In this case, we must take care not to radiate the 
noisy signal ground.  

Engineers and project managers have a number 
of strategies at their disposal to ensure they deliver 
embedded systems that meet the quality, cost and 
schedule requirements. When a project encoun-
ters difficulties, however, we can be assured that 
its past performance will be a good indicator of its 
future performance, without significant change on 
the project. n

FURTHER READING

1.  Nuts and Bolts of Designing an FPGA into Your
Hardware. Xcell Journal, 82, 42-49.

2.  A Pain-Free Way to Bring Up Your Hardware
Design. Xcell Journal, 85, 48-51.

3.  Design Reliability: MTBF Is Just the Beginning.
Xcell Journal, 88, 38-43.

We must also pay attention to the reset architec-
ture, ensuring that we only apply the reset where it 
is actually required. SRAM-based FPGAs, for exam-
ple, typically do not need a reset. 

If we are using an asynchronous assertion of the 
reset, we need to ensure that its removal cannot 
result in a metastability issue. 

CLEARLY DEFINE INTERFACES
Formal documentation of both internal and ex-
ternal interfaces provides clear definition of the 
interfaces at the mechanical, physical and electri-
cal levels, along with protocol and control flows. 
These formal documents are often called interface 
control documents (ICDs). Of course, it is best 
practice to use standard communication interfaces 
wherever possible. 

One of the most important areas of interface 
definition is the “connectorization” of the exter-
nal interfaces. This process takes into account  
the pinout of the required connector, the power  
rating of the connector  pins and the number of mat-
ing cycles required, along with any requirements  
for shielding. 

As we consider connector types for our system, 
we should ensure that there cannot be inadvertent 
cross connection due to the use of the same con-
nector type within the subsystem. We can avoid the 
possibility of cross connection by using different 
connector types or by employing different connec-
tor keying, if supported. 
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Figure 3 — Connectorization is one of the most important aspects of interface definition.
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Neuroscientists once believed the human brain’s struc-
ture to be immutable and its neurons �xed after early 
childhood. Research has since proved that the brain is 
in fact plastic; it dynamically alters its structure, func-
tions and neural connections—even growing new neu-
rons via neurogenesis—in response to environmental 
stimuli and through the very act of thought. Further, 
this neuroplasticity persists into old age.

The proven plasticity of the brain is inspiring trans-
formative digital business models founded on flexible, 
powerful and made-to-measure cloud computing in-
frastructures as a service (IaaS). Customizable cloud-
based IaaS promises to enable innovative product dif-
ferentiation by synthesizing optimized computations 
relative to the service requested, bringing added value 
to the end user by delivering a specific quality of ser-
vice (QoS). The paradigm requires special attention 
to such design parameters as the performance, cus-
tomization and security of the computer architecture 
behind the compute-intensive functionality or applica-
tion. These technical features, already present in the 
DNA of reconfigurable hardware technology and de-
ployable today in FPGA-driven cloud computing infra-
structures, are poised to change the rules of the game 
in digital business.

NEUROPLASTICITY AND CLOUD COMPUTING
Recent advances in neuroscience have shown that we 
can rewire our brains simply by adopting new patterns 
of thinking and acting. The neural pathways that the 
brain and nervous system use to navigate activities 
connect relatively distant areas of the brain, and each 

N



watchers have predicted that the bulk of future IT 
infrastructure spending in the coming years will be 
on cloud platforms and applications.

That said, can we find a relationship between the 
discovery of neuroplasticity and the explosion of 
cloud computing that might inspire a new digital busi-
ness model? 

Imagine abstracting the natural neuroplasticity of 
the human nervous system and porting the concept 
directly to the computing infrastructure of the cloud. 
With the support of the reconfigurable hardware tech-
nology available in FPGA and SoC devices, disruptive 
IaaS models can adapt and optimize the computer ar-
chitecture of the servers allocated in the data centers 
of any cloud computing infrastructure to the consum-
er’s specific computational needs at any given time, 
transforming the resultant computation into value 
added. Reinforcing the neuroscience analogy, we use 
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pathway is associated with a particular domain or be-
havior. New thoughts and skills carve out and pave 
new pathways. Every time we think, feel or do some-
thing, we strengthen the associated pathways through 
repetition and practice, until actions become habits. 

As neuroscience has advanced our understand-
ing of the brain, cloud computing technology has 
evolved over the past decade to deliver computing, 
networking and storage services over the Internet 
to billions of users around the globe. Individuals, 
companies and other institutions are embracing 
cloud services such as storage, video, messaging, 
social networking, online gaming and Web search-
ing. Cloud computing is not merely an IT phenom-
enon; increasingly, it is an engine for enterprises to 
grow their businesses while decreasing their costs, 
enabling innovation and business transformation fu-
eled by ever-growing computational power. Industry 



puting infrastructures tailored to the specific needs 
of their customers, quantified through valuable QoS 
parameters such as response time, cybersecurity 
and, of course, performance. The cloud computing 
infrastructure of any digital enterprise could drasti-
cally change with the deployment of reconfigurable 
hardware technology, to the extent that an enterprise 
would cease treating infrastructure as a commodity 
and would instead leverage it as a key link in the value 
chain of the business. 

Three intrinsic properties sustain the proposed neu-
roplastic cloud computing infrastructure based on re-
configurable hardware: high performance (faster time 
to result), flexibility (optimized computation, with an 
architecture fully adapted to the specific app that will 
run) and security (data privacy, encryption and protec-
tion by design against cybersecurity threats). Joint ex-
ploitation of these characteristics promises to empow-
er disruptive innovation in the digital business era.

HPC MOVES TO THE CLOUD
High-performance computing (HPC) is basically the 
use of parallel processing to run advanced application 
programs ef�ciently, reliably and quickly. Historically, 
access to HPC was restricted to academics, engineers 
and scientists; indeed, HPC became virtually synony-
mous with the supercomputing centers that perform 
the complex computations used in simulations of the-
oretical physical models. Typical �elds of application 
for HPC have included climate modeling, crash sim-
ulations and bioinformatics—domains that are com-
pute-intensive by nature. 

The cloud computing phenomenon is putting HPC 
within everyone’s reach. Day by day, the demand for 
this computational power is extending further be-
yond traditional supercomputing centers into public, 
private, hybrid, community and even personal clouds 
that users access through portable—or even wear-
able—embedded devices.  

For many services and applications, the ever-in-
creasing demand for computational power translates 

the term neuroplastic cloud to describe a physical 
cloud computing infrastructure that merges proces-
sor soft cores with programmable logic (FPGAs) to 
yield a heterogeneous hardware-software processing 
ecosystem through which data center servers custom-
ize and adapt their computational power to the specif-
ic application in use in the cloud (Figure 1).

This concept encourages a cloud computing para-
digm shift in that the adaptability of any computation-
al “brain”—once synthesized in reconfigurable hard-
ware as a made-to-measure computing unit ported to 
the cloud—can deliver a clear competitive advantage 
to digital businesses that perform cloud services un-
der stringent and specific computational requirements 
often not achievable through today’s standard cloud 
solutions. Fields of application that could benefit 
from this approach include financial trends analysis; 
real-time medical image processing; bioinformatics; 
computational biology; genome sequencing; real-time 
control of energy, oil and gas distribution; big-data an-
alytics; and deep learning.

The notion of introducing reconfigurable hardware 
technology into the cloud computing arena originated 
with academic research. The reconfigurable-computing 
community has been exploring opportunities for cou-
pling FPGAs with general-purpose processors for some 
time, and a number of research groups are convinced 
that FPGAs are the future enablers of application-spe-
cific accelerators in cloud computing servers. This un-
derstanding has not yet translated into widely available 
commercial solutions; but cloud technology leaders 
such as Microsoft, IBM, Intel, Qualcomm and Baidu, to-
gether with FPGA vendors, are strongly advocating for 
FPGA optimization of data center workloads. 

At a time when the digital services economy is 
fueling cloud computing growth, cloud computing 
stakeholders increasingly believe that FPGA adoption 
in the data center will provide better performance/
power efficiency than the alternatives in place today. 
That means cloud service providers could soon have 
new strategies at their disposal for delivering com-
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A number of research groups are convinced that 
FPGAs are the future enablers of application-specific 

accelerators in cloud computing servers.



vice over the Internet. Many enterprises acknowledge 
that cloud hardware infrastructure is indispensable to 
their business, but they treat it as a commodity that 
does not bring them any competitive advantage, as 
their competitors use essentially the same technology 
to offer essentially the same QoS. 

Reconfigurable hardware technology can disrupt 
this model. The technology brings compelling per-
formance/watt gains, lowers total cost and serves 
as a scalable reconfigurable acceleration platform 
that can be optimized on demand to any workload, 
thereby enabling clear differentiation. Data center 
servers equipped with FPGA devices can propel hard-
ware-software computing platforms that are optimiz-
able for specific computations. Flexible hardware 
will be key to bringing end users access to a wealth 
of features strongly tied to the cloud infrastructure, 
such as application-specific high-performance com-
puting by design. 

Several factors argue in favor of a shift to flexible 
computing in the cloud. FGPAs’ parallel processing 
capabilities are one clear advantage. Moreover, the 
integration of heterogeneous hardware resources in 
the cloud through FPGAs offers an opportunity to 
improve computational efficiency without relying on 
continued CPU performance scaling.

Additionally, to increase the throughput of any spe-
cific computation task, it is often possible to pipeline 
its implementation in FPGA resources. Meticulously 
pipelining the end-user application through flexible 
hardware can deliver a customized solution with opti-
mized performance.

It is further possible to leverage partial reconfigura-
tion of the hardware resources in the FPGA, swapping 
different custom coprocessors in and out on specific 
resources at runtime in order to compute—on demand 
and dynamically, in a multiplexed way—the most com-
pute-intensive stages of the demanded application al-
gorithm. The approach incurs nearly no degradation in 
execution time while delivering a cost-effective solu-
tion that balances area and performance.
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to stringent response time mandates, requiring pro-
viders to update their computing platforms with the 
latest technology. Real-time image processing, video 
streaming and big-data analytics are among the ap-
plications in which lower latencies and faster time 
to results are major contributors to the QoS that end 
users value. Big corporations as well as startups and 
small and midsized enterprises (SMEs) increasingly 
believe that advanced computational infrastructures 
will bring competitive advantages. As HPC goes main-
stream, cloud computing is becoming critical to HPC 
delivery—particularly for engineering and scientific 
applications that already use cluster and grid comput-
ing—by enabling shared, elastic access to unlimited 
compute resources.

As cloud infrastructure workloads demand higher 
computing capabilities, greater flexibility and more 
power efficiency, pioneering FPGA-based alterna-
tives can deliver high-performance solutions that 
exceed industry needs. Computing platforms pow-
ered by parallel processing through reconfigurable 
hardware technology promise an immediate and bal-
anced solution, especially in applications that require 
extremely fast processing of real-time data. Through 
collaborations with key stakeholders, FPGA vendors 
are working to enable higher-performance, more en-
ergy-efficient data centers by attaching accelerators 
synthesized in FPGA logic to the existing processors 
in order to achieve dramatic latency reductions.

FLEXIBLE COMPUTING IN THE DATA CENTER
As end users become increasingly comfortable with 
and reliant upon hosting their personal data in the 
cloud, the expectation is that cloud computing will 
become the default method of IT delivery. An associ-
ated trend is the transformation of products into ser-
vices, broken down into units that can be recombined 
to suit customers’ precise requirements in a pay-per-
use business model. IaaS is a way of providing cloud 
computing hardware infrastructure (servers, storage, 
network and operating systems) as an on-demand ser-



criteria for the cloud system architecture. The follow-
ing factors argue in favor of hardware-strengthened 
trusted cloud computing. 

•  Hardware security primitives and protection 
against tampering. FPGAs provide certain securi-
ty features, such as physical unclonable functions 
(PUFs), an alternative mechanism for key storage 
that provides a unique identifier for each integrated 
circuit. FPGAs are also suitable for implementing 
true random-number generators (TRNGs), required 
for creating cryptographic keys.

•  Hardware-based implementation of cryp-
tographic algorithms. The Advanced Encryp-
tion Standard (AES) and Elliptic Curve Cryp-
tography (ECC) are examples of cryptographic 
algorithms performed in hardware. The cryp-
tographic primitives (rotations, XOR operations, 
etc.) of such algorithms are better suited to de-
ployment in FPGA hardware than to sequential 
software execution on CPUs. AES, for instance, 
is decomposed in a set of stages or steps, exe-
cuted sequentially, with each stage decomposed 
internally as a loop of basic operations. These 
loops can be performed faster by unrolling them 
in hardware, making use of parallel execution. 
Moreover, the steps can be pipelined to increase 
performance. These techniques optimize the syn-
thesis of cryptographic algorithms in hardware.

•  Data privacy at any time (data-in-motion, data- 
in-use and data-at-rest). Performance degra-
dation is a key concern when developing security 
solutions. Hardware-based solutions offer advan-
tages over software approaches because the hard-
ware can perform low-latency data encryption and 
decryption with virtually no overhead. In this way, 
all of the information that the application manages 
through the cloud can be sent, received and stored 
encrypted—i.e., as ciphertext instead of plaintext—
guarding it against cyberattack. 

To sum up, made-to-measure cloud computing can 
bring key differentiation to providers and practitioners 
in a number of fields. For example, finance computing 
applications powered by specific computer infrastruc-
tures, instead of standard ones, can speed brokers’ anal-
ysis of financial trends so that they can move to buy or 
sell shares more quickly than their competitors. Medi-
cal staff can improve imaging quality and response time 
in surgeries performed remotely if the computer that 
handles the requisite real-time processing algorithms is 
specifically optimized to perform them. Big-data analyt-
ics on convolutional neural networks and online gam-
ing are other computational fields in which high QoS, 
measured in terms of latency and overhead, can bring a 
clear competitive advantage.

TRUSTED CLOUD COMPUTING
Cybersecurity and data privacy challenges are the 
main barriers to universal cloud computing adoption. 
Because the cloud infrastructure, to varying degrees, 
is always an open and shared resource, it is a target 
for malicious attacks from both insiders and outsid-
ers, and today the security implications of executing 
certain computations or storing sensitive data on 
shared resources make cloud computing inadvisable 
for critical applications. Side-channel attacks, identi-
ty hijacking and distribution of malicious code have 
all been observed in current cloud platforms and in-
frastructure. Trusted cloud computing solutions that 
eliminate such breaches are therefore critical to the 
efforts to enable customizable cloud computing any-
time, anywhere, by anyone. 

Adoption of reconfigurable hardware for cloud-
based IaaS not only would make cloud computing 
more accessible and customizable but also would en-
hance security compared with software-based solu-
tions. By design, FPGA devices offer a substantially 
smaller and more well-defined attack surface than 
the software-based solutions traditionally used in the 
cloud. Designers of FPGA-based cloud computing in-
frastructure can push security to the top of the design 
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Adoption of reconfigurable hardware for cloud-based IaaS 
not only would make cloud computing more accessible and 

customizable but also would enhance cybersecurity.
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•  Hardware-based firewalls. Hardware security  
modules filter all data going through the system 
communication bus, strengthening the data’s resil-
ience against specific kinds of attacks. 

•  Digital signature. Hardware approaches also sup- 
port user authentication as well as verifiable at-
testation and certificate management, thereby em-
powering Root-of-Trust (RoT).

ADDITIONAL BENEFITS
Industry use cases illustrate how hardware-based 
cloud solutions support the key attributes of se-
curity, high performance and flexibility. They in-
clude the Google Project Vault, which embeds 
cryptographic computing synthesized in hardware 
into a microSD device; the FPGA-based Microsoft 
Azure SmartNIC, allocated in the servers to off-
load software-defined networking functions from 
the CPU; the Catapult Project, a push by Microsoft 
to speed Bing’s search engine through FPGA tech-
nology; and the Bitfusion Cloud Adaptor initiative, 
which lets developers use FPGAs in the cloud. 
FPGA technology is already available to prove 
the neuroplastic cloud-based computing concept 
in data center servers; the Xilinx® Kintex® Ultra- 
Scale™ FPGA and Xilinx Zynq® Ultrascale+™ MP-
SOC device series are valid examples.

Further considerations that argue for FPGA-based 
cloud computing infrastructures include:

•  Scalability. Cloud computing is bringing great 
cost reductions by leveraging economies of scale 
in data centers. FPGA-based cloud computing solu-
tions scale far more easily than solutions based on 
CPUs and GPUs.

•  Low power. More important than raw performance 
in the context of data centers is performance per 
watt. Data centers require high performance but 
at a power profile within the limits of data center 
server requirements. FPGA-based solutions can 

deliver much higher performance/watt than other 
alternatives in the market. Clearly, maximizing per-
formance/watt is essential to improving data center 
reliability and managing operating costs.

•  Environmental friendliness. Extending the argu-
ment of reduced power consumption, FPGA-based 
cloud computing is emerging as an unsurpassed 
way to reduce computing’s carbon footprint.

•  Redundancy. FPGA technology, managing the het-
erogeneity of hardware resources, lets developers 
synthesize customized solutions with the specific 
redundancies required.

Consumers of IT services want it all: mobility, 
connectivity, instant access to information, imme-
diate computation results and security by design. 
Cloud computing offers enterprises the means to 
shift tasks from their local IT infrastructure to 
remote, optimized computing clusters. But realiz-
ing the full potential of the cloud to serve today’s 
tech-savvy users will require new business models 
that leverage a scalable and customizable set of 
computing, networking and storage resources to 
create value for all customers. 

Neuroplastic cloud computing overlays high-per-
formance and trusted computing architectures on top 
of fine-grained FPGA devices equipped with heteroge-
neous resources to improve computational capability, 
flexibility and security. Hardware neuroplasticity will 
revolutionize the way people do business by adding 
personalized, individually tailored computing capabil-
ities to the cloud’s established connectivity and mo-
bility features.

Gauging by the frenetic stakeholder activity al-
ready under way, the rapid assimilation of reconfig-
urable hardware technology into the cloud is not far 
off. The combination of software code running on the 
data center server CPUs with critical sections of the 
application processed directly in hardware will en-
able technological differentiation that delivers a clear 
competitive advantage to the end user. n

Realizing the full potential of the cloud to serve today’s tech-savvy 
users will require new business models that leverage a scalable and 
customizable set of computing, networking and storage resources.
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