
SOFTWARE SOLUTIONS FOR
A PROGRAMMABLE WORLD

SOFTWARE

www.xilinx.com/xcell

ISSUE 3
FIRST QUARTER 2016

Running
Doom on
the Zynq
MPSoC

Speed SDR Development
with Avnet PicoZED SDR’s
Automated Workflows

Linux/RTOS AMP Brings Best
of Both Worlds for Embedded

Tap Embedded Community’s
Accumulated Knowledge
to Build Better Systems

FPGA-based Infrastructure
Poised to Bring Neuroplasticity
to the Cloud

http://www.xilinx.com/xcell

PUBLISHER Mike Santarini

ACTING EDITOR IN CHIEF Steve Leibson
 steve.leibson@xilinx.com
 408-879-2716

EDITOR Diana Scheben

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Assoc.
1-408-842-2627

ADVERTISING SALES Judy Gelwicks
1-408-842-2627
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang,
Asia Pacific
melissa.zhang@xilinx.com

 Christelle Moraga,
Europe/Middle East/Africa
christelle.moraga@xilinx.com

 Tomoko Suto,
Japan
tomoko@xilinx.com

REPRINT ORDERS 1-408-842-2627

EDITORIAL ADVISERS Tomas Evensen

Lawrence Getman

Mark Jensen

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2016 Xilinx, Inc. All rights reserved. XILINX, the Xilinx Logo, and other
designated brands included herein are trademarks of Xilinx, Inc. All
other trademarks are the property of their respective owners.

The articles, information, and other materials included in this issue
are provided solely for the convenience of our readers. Xilinx makes
no warranties, express, implied, statutory, or otherwise, and accepts
no liability with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at the risk of the
user. Any person or entity using such information in any way releas-
es and waives any claim it might have against Xilinx for any loss,
damage, or expense caused thereby.

SOFTWARE

Letter from the Publisher

Xilinx Ecosystem of Development Environments
Gives You Great Choices

Xilinx® has provided hardware designers with FPGA-based development
tools for more than 30 years. In the past few years, it has also created
the SDx™ line of tools—including the SDSoC™, SDAccel™ and SDNet™
development environments—that target developers unfamiliar with hard-
ware description languages like Verilog and VHDL, allowing them to pro-
gram Xilinx devices using software languages such as C/C++ and Open-
CL™. Xilinx is not the only source for such tools; notable third parties
delivering popular design environments that accommodate Xilinx devices
include MathWorks® (MATLAB™ and Simulink™), National Instruments
(LabVIEW and LabVIEW FPGA), and Topic Embedded Products (Dyplo).

I watched a demo of Topic’s Dyplo for the Xilinx Zynq®-7000 SoC at this
winter’s Embedded World conference in Nuremberg, Germany, and came
away impressed. Dyplo, which stands for Dynamic Process Loader, allows
your program to swap custom-compiled hardware accelerator blocks in
and out of the Zynq-7000 SoC’s programmable logic programmable using
the SoC’s partial-reconfiguration capability. As I wrote in an Xcell Daily
blog post, “This is a really neat trick.” (See “Topic Embedded’s Dyplo
framework turns Zynq-7000 SoCs into multitasking hardware/sofware ex-
ecution engines.”)

If you have a preconceived notion of how you’re “supposed” to develop
code for Xilinx devices, you really should shake up those assumptions.
Go and check out SDSoC and the other Xilinx SDx development envi-
ronments and, by all means, check out the offerings from MathWorks,
National Instruments and Topic Embedded Products.

Kudos and Goodbye to Mike Santarini
Xcell Software Journal and Xilinx owe a great debt to Mike
Santarini, who served as the publisher of Xcell Journal for the
past eight years and who started this magazine as well. Mike
has moved on to other things, but the contribution he made
was significant. Mike, all of us here at Xilinx say “Thank you!”
and wish you good luck in your future endeavors.

mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Topic-Embedded-s-Dyplo-framework-turns-Zynq-7000-SoCs-into/ba-p/685626
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Topic-Embedded-s-Dyplo-framework-turns-Zynq-7000-SoCs-into/ba-p/685626
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Topic-Embedded-s-Dyplo-framework-turns-Zynq-7000-SoCs-into/ba-p/685626
http://www.mathworks.com/
http://www.ni.com/en-us.html
http://topicembeddedproducts.com/

VIEWPOINT
Letter from the Publisher
Xilinx Ecosystem of Development
Environments Gives You Great
Choices…3

COVER STORY
Running Doom on
the Zynq MPSoC

CONTENTS

FIRST QUARTER
2016
ISSUE 3

6

20

XCELLENCE IN SDR
Software-Defined Radio from Concept to Deployment …20

XCELLENCE WITH LINUX
AMP up Your Next SoC Project …28

XCELLENCE IN EMBEDDED DEVELOPMENT
A Recipe for Embedded Systems…34

XCELLENCE IN CLOUD COMPUTING
Next Disruptive Digital Business
Model Innovation: Neuroplastic Clouds . . . 40

28

40
34

38

Running Doom on
the Zynq MPSoC
Use this fun tutorial to become familiar
with the Xen hypervisor running on Xilinx’s
Zynq UltraScale+ MPSoC.

by Zach Pfeffer
Director of Embedded Software Development
Xilinx, Inc.
zachp@xilinx.com

Edgar Iglesias
Sr. Staff Software Engineer
Xilinx, Inc.
edgari@xilinx.com

Alistair Francis
Software Engineer
Xilinx, Inc.
alistai@xilinx.com

Nathalie Chan King Choy
Staff Software Engineer
Xilinx, Inc.
nathalie@xilinx.com

Rob Armstrong Jr.
Embedded Specialist Field Application Engineer
Xilinx, Inc.
ra@xilinx.com

XCELL SOFTWARE JOURNAL: COVER STORY

6

mailto:zachp@xilinx.com
mailto:edgari@xilinx.com
mailto:alistai@xilinx.com
mailto:nathalie@xilinx.com
mailto:ra@xilinx.com

Running Doom on
the Zynq MPSoC

ISSUE 3, FIRST QUARTER 2016

7

When the System Software team at Xilinx®
and DornerWorks brought up the Xen
Project hypervisor on Xilinx’s Zynq® Ultra-
scale+™ MPSoC, we found that we could
run the popular 1993 videogame Doom to
demonstrate the system and test it. The
visually striking game allowed the team to
visit Xen engineering topics with the aim of
passing on knowledge and experience to
future hypervisor users.

Our team used an emulation model of
the Zynq UltraScale+ MPSoC available for
QEMU (the open-source Quick Emula-
tor) to prepare the software for the Doom
demonstration, enabling us to bring it up
in hours, not days, when silicon arrived.

Before we detail the steps of how to
run Doom on Xen on top of QEMU for
the Zynq UltraScale+ MPSoC, let’s review
what hypervisors are and how they work
in relation to the processors on the Zynq
UltraScale+ MPSoC.

HYPERVISORS AND HOW THEY WORK
A hypervisor is a computer program that
virtualizes processors. Applications and
operating systems running on the virtu-
alized processors appear to own the sys-
tem completely, but in fact the hypervisor
manages the virtual processors’ access to
the physical machine resources, such as
memory and processing cores. Hypervisors

W

EXITSUPER. In addition, in USER mode all of the
instructions can only read and write a subset of
memory—for example, from address 0x0000_0100
to 0x0FFF_FFFF. In USER mode, if a program tries
to execute an instruction it shouldn’t or access a
register or memory location to which it doesn’t
have access, the processor will halt on the offend-
ing instruction.

In SUPER mode, the processor’s instructions can
read and write all of the registers indicated above, in-
cluding RegisterSuper and SuperProgramCounter.
All of the instructions listed above, including EXIT-
SUPER, can execute, as can an additional instruc-
tion, ENTERHYPER (more on that instruction lat-
er). Further, in SUPER mode the instructions can
access all memory (from 0x0000_0000 to 0x7FFF_
FFFF) in our system.

Having a processor with modes lets us use design
compartmentalization to simplify solving software en-
gineering problems. In the example above, there is only
one way to enter SUPER mode: Execute the ENTERSU-
PER instruction. Likewise, there is only one way to leave
SUPER mode: Execute EXITSUPER. In addition, pro-
grams can access only a subset of the machine’s memory
while in USER mode. With this scheme, we could write
a program that would allow a processor to run multiple
USER mode programs at the same time. This “operating
system” (OS) program would run in SUPER mode and
manage programs running in USER mode.

When the OS runs, it would look at all the USER
mode programs that it needs to run, pick one to run
and then instruct the processor to switch into USER
mode to run it with an instruction such as EXITSUPER.
The selected program would run until an event caused
the processor to switch back into SUPER mode. Such
an event could be an ENTERSUPER instruction from
the USER mode program or an external event, such as
a timer that would switch the processor into SUPER
mode without alerting the program that was running
in USER mode. Regardless of how the switch happens,
we could construct the OS to select and run USER

are popular because they provide design compartmen-
talization and isolation between the independent soft-
ware elements running on the system.

To support virtualization, the physical processor
must provide a special “mode” in which the hypervisor
will run. Thus, describing a processor mode is a useful
place to start in understanding how a hypervisor ac-
complishes this processor magic trick.

All processors have instructions that operate on val-
ues stored in registers and can read and write memory.
A processor’s mode is a collection of its instructions
and registers, along with rules for using those instruc-
tions to access registers and memory. For this expla-
nation, we will describe a generic processor as an ex-
ample and will use architecture-agnostic terminology.

In our example, the processor has specific registers,
instructions and modes. Registers include RegisterA,
RegisterB, RegisterC, UserProgramCounter, Register-
Super and SuperProgramCounter. Instructions include
the following.

ADD Register3 Register1 Register2 adds Regis-
ter1 to Register2 and puts the result in Register3, i.e.,
Register3 = Register1 + Register2.

MOVTO Register2 Register1 moves the contents of
the memory at the address in Register1 to Register2.

MOVFROM Register2 Register1 moves the con-
tents of Register1 to the memory at the address in
Register2.

ENTERSUPER enters the SUPER mode of the pro-
cessor.

EXITSUPER leaves SUPER mode and enters
USER mode.

In USER mode, the processor’s instructions
are limited in what they can do. In our exam-
ple, the instructions can read and write (op-
erate on) all of the registers except for Regis-
terSuper and SuperProgramCounter, and the
processor can execute all of the instructions except

XCELL SOFTWARE JOURNAL: COVER STORY

8

EXITSUPER leaves SUPER mode and enters
USER mode.

ENTERHYPER enters the HYPER mode of the processor.

EXITHYPER exits the HYPER mode of the processor.

SWITCHSUPER RegisterHyper switches to the
SUPER program that will execute next using the value
in RegisterHyper.

The additional instructions and registers in HY-
PER mode allow the processor to switch which
program is running in SUPER mode, just as the SU-
PER mode allows the processor to switch which
program is running in USER mode. One feature of
HYPER mode is the ability to switch which memo-
ry SUPER modes see; when a program running in
HYPER mode executes SWITCHSUPER Register-
Hyper, the underlying memory completely switch-
es out. This means that when the next SUPER
program runs after the program in HYPER mode
executes EXITHYPER, the actual physical memo-
ry that the SUPER mode sees will differ from the
physical memory used by another program running
in SUPER mode. The SUPER mode program will
still access the memory using the same address,
but that address will point to a different physical
location. Figure 1 shows the processor’s view of
memory before and after it executes SWITCHSU-
PER RegisterHyper.

HYPER mode is useful because it allows many SU-
PER programs to run. Each of the programs in SU-
PER mode could be an OS; those OSes themselves
would allow many USER programs to run in paral-
lel. This would mean, for example, that we could run
multiple OSes, such as Windows and Linux, on the
same hardware; 20 instances of Linux on one pro-
cessor; or any combination in between. Since each
instance of a virtualized OS cannot see the other OS
instances, if one crashes, it doesn’t crash the other
instances. The features of HYPER mode have oth-
er applications: We can partition system resources

programs according to some policy, one after anoth-
er, each time the event occurs. When the switch hap-
pens quickly, the user perceives USER programs to
be running at the same time.

The SUPER processor mode also prevents USER
programs from interfering with the programs running
in SUPER mode or other USER mode programs. Any
errors or misbehavior on the part of a USER mode
program can be contained to just its own instance,
and not corrupt or interfere with the system memory
and registers reserved for SUPER mode operation.

Sounds good—but can we gain something with an-
other mode?

Expanding our machine a bit, we can introduce
HYPER mode. HYPER mode can read and write all
of the original registers (RegisterA, RegisterB, Reg-
isterC, UserProgramCounter, RegisterSuper and Su-
perProgramCounter) as well as two additional regis-
ters: RegisterHyper and HyperProgramCounter.
The instructions in HYPER mode include the origi-
nal set and the italicized additions below.

ADD Register3 Register1 Register2 adds Reg-
ister1 to Register2 and puts the result in Register3,
i.e., Register3 = Register1 + Register2.

MOVTO Register2 Register1 moves the contents
of the memory at the address in Register1 to Regis-
ter2.

MOVFROM Register2 Register1 moves the con-
tents of Register1 to the memory at the address in
Register2.

MOVTOPHYS Register2 Register1 moves the
contents of the memory at the physical address in
Register1 to Register2.

MOVFROMPHYS Register2 Register1 moves the
contents of Register1 to the physical memory at the
address in Register2.

ENTERSUPER enters the SUPER mode of the
processor.

ISSUE 3, FIRST QUARTER 2016

9

HYPER mode is useful because it allows many SUPER programs
to run. Each of the programs in SUPER mode could be an OS; those

OSes themselves would allow many USER programs to run in parallel.

SUPER). In addition, USER programs can only read
and write memory from 0x0000_0100 to 0x0FFF_
FFFF. Once in SUPER mode, the processor allows
instructions to talk to RegisterSuper and Super-
ProgramCounter, and allows the execution of EX-
ITSUPER and ENTERHYPER. In addition, SUPER
programs can access memory from 0x0000_0000 to
0x7FFF_FFFF.

Finally, once the processor enters HYPER mode,
its instructions can act on RegisterHyper and Hyper-
ProgramCounter, and programs can execute SWITCH-

XCELL SOFTWARE JOURNAL: COVER STORY

10

between multiple OSes, monitor the execution of
each OS from the HYPER mode to restart it if it
crashes, and keep tabs on system status while the
virtualized OSes are running.

As a processor moves from USER to SUPER mode
and then from SUPER to HYPER mode, the machine
gives more privileges to the executing code. In our
example, USER mode programs have the privilege
to use only four registers (RegisterA, RegisterB,
RegisterC and UserProgramCounter) and four in-
structions: (ADD, MOVTO, MOVFROM and ENTER-

Physical Memory

0x0001

0x0203

0x0607

0x0809

0x0A0B

0x0C0D

0x0E0F

0x0000

....

....

Memory SUPER
mode sees

0x0001

0x0203

0x0607

0x0809

....

Address

0x0000_0000

0x0000_0004

Processor

Mode

0x7FFF_FFF8

0x7FFF_FFFC

Hyper

Before

Physical Memory

0x0001

0x0203

0x0607

0x0809

0x0A0B

0x0C0D

0x0E0F

0x0000

....

....

Memory SUPER
mode sees

0x0A0B

0x0C0D

0x0E0F

0x0000

....

Address

0x0000_0000

0x0000_0004

Processor

Mode

0x7FFF_FFF8

0x7FFF_FFFC

Hyper

After

Figure 1 — Before and after execution of SWITCHSUPER RegisterHyper in HYPER mode

ture (for example, ARMv8-A) as well as the proces-
sor (for example, Cortex-A53).

There are four exception levels in the ARMv8 archi-
tecture (source: ARM Architecture Reference Manual,
D1-1404):

1. Exception Level 0 (EL0), which executes without
privilege;

2. Exception Level 1 (EL1), which executes an OS and
anything else that executes privileged instructions;

3. Exception Level 2 (EL2), which allows the hard-
ware to be virtualized; and

4. Exception Level 3 (EL3), which allows switching
between secure and nonsecure processor states.

The following programs would typically run in these
modes, as described in the ARM Architecture Reference
Manual (D1–1404): EL0, applications; EL1, the OS kernel
and associated functions that are typically described as

SUPER and EXITHYPER. HYPER mode also allows
the processor to read and write all virtual memory,
0x0000_0000 to 0xFFFF_FFFF, and to read and write
the actual physical memory. These levels of privilege
are typically visualized as rings (Figure 2). The master,
HYPER ring grants permissions to the lower rings and
ultimately can control the whole system.

MAPPING THEORY TO PRACTICE
ARM® creates processor designs that ARM partners can
use to build chips. An ARM processor contains one or
more cores. Each core implements an ARM architecture.

For instance, the Zynq UltraScale+ MPSoC contains
an ARM Cortex™-A53 processor complex with four
physical ARMv8-A cores (Figure 3).

The distinction is important when looking at
documentation and code for an ARM processor; to
get a complete understanding of a “chip” with an
ARM core, consult documentation on the architec-

ISSUE 3, FIRST QUARTER 2016

11

0x0000_0000

0x0000_00FF

0x0000_0100

0x0FFF_0FFF

ADD
MOVTO

MOVFROM
ENTERSUPER

RegisterA

RegisterB

RegisterC

UserProgramCounter

0x1000_0000

0x7FFF_FFFF

0x8000_0000

0xFFFF_FFFF

....

....

....

....

USER

USER

SUPER

HYPER

EXITSUPER
ENTERHYPER

RegisterSuper

SuperProgramCounter

SUPER

MOVTROPHYS
MOVFROMPHYS

EXITHYPER
SWITHCHSUPER

RegisterSuper

SuperProgramCounter

HYPER

Figure 2 — Modes visualized as rings

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet7/DDI0487A_f_armv8_arm.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet7/DDI0487A_f_armv8_arm.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet7/DDI0487A_f_armv8_arm.pdf

XCELL SOFTWARE JOURNAL: COVER STORY

12

privileged; EL2, the hypervisor; and EL3, a secure monitor.
Our theoretical example maps directly onto ARMv8

execution modes EL0 to EL2: USER is EL0, SUPER is
EL1 and HYPER is EL2. ARM adds a fourth privilege
level, EL3, which we could use to switch EL0 and EL1
between operation in secure and nonsecure contexts.
While the use of EL3 is an important topic that adds
considerable capability to the architecture, for the
purposes of this example we will ignore it and focus
on EL0 to EL2 for virtualization with hypervisors. If
you’re curious about how a computer can secure a
financial transaction, however, the ARMv8 EL3 doc-
umentation (free and open registration required) is a
good place to get extremely specific details.

GETTING INTO AND OUT OF EXCEPTION MODES
In a real system, transitioning between modes is a bit
more complex than in our example. ARM summarizes
the behavior of the ARMv8-A architecture in the ref-

erence manual. It explains that execution can move
between exception levels only upon taking an excep-
tion or returning from an exception. Upon taking an
exception, the exception level can only increase or re-
main the same; upon returning from an exception, the
exception level can only decrease or remain the same.

There are only three instructions that generate an ex-
ception targeting the next exception level: SVC (Super-
visor Call), which generates an exception targeting EL1;
HVC (Hypervisor Call), which generates an exception
targeting EL2; and SMC (Secure Monitor Call), generat-
ing an exception targeting EL3. These instructions take
values from 0 to 65,555, allowing for 216 unique system
calls per exception level. The instructions target the
next exception level and are the only mechanisms by
which a program running at a lower exception level can
request something from a program running at a high-
er exception level. In our theoretical example, SVC is
SWITCHSUPER and HVC is SWITCHHYPER.

ARMv8-A

ARM Cortex-R5

Programmable Logic

Processing System

NEON

Floating Point Unit

32 KB
I-Cache
w/Parity

32 KB
D-Cache
w/ECC

Memory
Management

Unit

Embedded
Trace

Macrocell 1 2

GIC-400 SCU CCI/MMU 1 MB L2 w/ECC

3 4

ARMv7R

GIC

Vendor Floating
Point Unit

Memory Protection
Unit

1 2

1 2
128 KB

TCM w/ECC
32 KB I-Cache

w/ECC
32 KB D-Cache

w/ECC

DDR4/3/3L
LPDDR4/3

32/64 bit w/ECC

256 KB OCM
with ECC

Memory

System
Management

Power
Management

Functional
Safety

Platform
Management Unit

Configuration and
Security Unit

Config AES
Decryption,

Authentication
Secure Boot

Voltage Temp
Monitor

TrustZone

Graphics Processing Unit
ARM Mali-400 MP2

Geometry
Processor

Pixel
Processor

Memory Management Unit

64 KB L2 Cache

System
Functions

Multichannel DMA

Timers
WDT, Resets

Clocking & Debug

DisplayPort v1.2a

USB 3.0

SATA 3.1

PCIe 1.0/2.0

PS-GTR

General Connectivity
GbE

USB 2.0
CAN

UART
SPI

Quad SPI NOR
NAND

SD/eMMC

High-speed
Connectivity

Storage & Signal Processing

Block RAM

UltraRAM

DSP

High-speed Connectivity

GTH

GTY

100G EMAC

PCIe@Gen4

General-purpose I/O

High-performance HDIO

High-density HDIO Interlaken

Video Codec
H.265/H.264

System Monitor

Figure 3 — Zynq UltraScale+ MPSoC

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet7/DDI0487A_f_armv8_arm.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet7/DDI0487A_f_armv8_arm.pdf

ISSUE 3, FIRST QUARTER 2016

13

In the previous section, we talked about an event
that would cause the program operating in USER
mode (EL0) to enter SUPER mode (EL1). One event
that most programs running in USER mode generate
is a request for memory. When a user space program
running in EL0 requests memory from an OS run-
ning in EL1, the C code for that user space program
will likely call a function such as malloc(), which in
turn will call mmap() or sbrk(), to request a point-
er to available memory from the OS. On Linux in the
ARMv8-A architecture, this will translate behind the
scenes to an SVC system call. That system call will
transition the processor to EL1, thus passing control
back to the OS, which in turn will interpret the call
and provide an appropriate response—in this case, a
pointer to the requested memory region or an error
indicating that no additional memory was available.

DEMO CREATION AND TOOLS
Now let’s turn to the steps our team used to run Doom
on the Zynq UltraScale+ QEMU Model. The steps show
how to get and construct each component required to
run the demo, how to run each component and in what
order, and how to interact with the demonstration. Af-
ter successfully completing this demo, you will have
an environment on which to experiment with the Xen
hypervisor running on an emulated Zynq UltraScale+
MPSoC. Porting this to Zynq UltraScale+ MPSoC silicon
is left as an exercise for you to undertake.

To make this process easier, Xilinx has provided
a base root file system, which spares users the time
and hassle of building it themselves. All downloads
required for this demo are available at: www.wiki.xil-
inx.com/Doom+on+Xen+Demo.

The demo starts with updating a precompiled root
File System (rootFS) provided by Xilinx to include the
required components. We then leverage Xilinx’s Peta-
Linux Tools to run the demo. A rootFS contains most
of the programs that run on a Linux system—specifi-
cally, a set of scripts to bring up the system, and the set
of applications and libraries that implement the sys-
tem. The two tools we use to extend the base rootFS

in this demo are Buildroot and PetaLinux. We use
Buildroot to build the Doom binaries for the base
rootFS supplied by Xilinx, and we use PetaLinux to
create the rest of the rootFS and boot the demo.

Buildroot
Buildroot is a simple build system for creating a
rootFS for a Linux system. It uses a make menuconfig
interface, a popular method that configures the Linux
kernel itself. Buildroot includes default support for
PrBoom, which helps with this demo. (PrBoom is
the GNU General Public License [GPL] version of
the Doom game we are using. We will use the terms
PrBoom and Doom interchangeably here.) Build-
root doesn’t have native support for building Xen
(though it does create all the necessary libraries
and toolchains to build Xen), so Xilinx has provided
Xen, Xen Tools and the Xen libraries precompiled
for users, as well as some other required libraries to
make the process straightforward.

PetaLinux
The PetaLinux Tools contain a set of commands that
allow users to create and extend Linux systems easily
on Xilinx FPGAs and SoCs. This demo leverages the
petalinux-build and petalinux-boot commands. The
petalinux-build command creates all of the required
components. The petalinux-boot command (plus a
few arguments) starts all of the components running
on the QEMU emulator. Descriptions of all of the com-
mands in the PetaLinux Tools is beyond the scope of
this article, but with the demo system it should be easy
to explore what these and other commands can do.
Consult PetaLinux Tools Documentation — Refer-
ence Guide UG1144 (v2015.4) for more information.

Project prerequisites
This project requires a workstation or virtual ma-
chine running Linux with an environment meeting the
PetaLinux Tools Installation Requirements outlined
in UG1144 (v2015.4) and with Xilinx PetaLinux Tools
v2015.4 installed in this environment.

The PetaLinux Tools contain a set of commands
that allow users to create and extend Linux

systems easily on Xilinx FPGAs and SoCs.

www.wiki.xilinx.com/Doom+on+Xen+Demo
www.wiki.xilinx.com/Doom+on+Xen+Demo
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2015_4/ug1144-petalinux-tools-reference-guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2015_4/ug1144-petalinux-tools-reference-guide.pdf

XCELL SOFTWARE JOURNAL: COVER STORY

14

STEP 1: BUILDING THE ROOTFS
First, we have to build the rootFS. Download the
doom_demo.tar.gz from Xilinx and open a terminal
in the download directory; you can find all required
files at www.wiki.xilinx.com/Doom+on+Xen+Demo.
We will call that directory the <down_dir>.

We unpack the archive.

$ cd <down_dir>

$ tar -xzf doom_demo.tar.gz && cd doom_demo

We will see one folder, which we will build into our root
file systems (one for Dom0 and the other for DomU). Now
we need to build PrBoom and copy it into the rootFS.

First we need to download the Linux kernel so that
we can build the rootFS later. We are using the v4.3 tag.

$ git clone -b v4.3 https://github.com/tor-
valds/linux.git

We download the Buildroot source and change to
the Buildroot directory.

$ git clone https://git.buildroot.net/buildroot
&& cd buildroot

Now we need to configure Buildroot to build pack-
ages we can use.

$ make menuconfig

 We select the following options:

Target options ---> Target Architecture ---> AArch64
(little endian)

Target packages —> Games ---> prboom ---> [*]

Target packages —> Games ---> shareware Doom
WAD file ---> [*]

All required libraries should automatically be selected.

$ make # (This could take a few minutes, depending on
your machine.)

Now we copy all the PrBoom related files into the
targetfs directory, making sure we are in the ./output/

target/ directory under the buildroot directory.

$ for i in $(find ./ -name ‘*oom*’); do cp ${i}
<down_dir>/doom_demo/targetfs/${i}; done

We have now finished with Buildroot. We go up one
directory to the doom_demo directory.

$ make # Build the host and guest rootFS. (This
could take a few minutes, depending on your machine.)

Note: Depending on which kernel version you use,
there might be extra config options that are not pre-
selected by our supplied config. You should be fine
using the default options (just press enter).

STEP 2: BUILDING THE BASE SETUP
Next we will build the rest of the embedded system soft-
ware for the platform, including the boot loader, ARM
Trusted Firmware (ATF), Linux kernel and device trees.
Xilinx’s PetaLinux Tools make this process straightfor-
ward. We create a PetaLinux project targeting the Xil-
inx ZCU102 board. Reference quick-start material for
QEMU and PetaLinux for MPSoC in 2015.4 UG1144 and
AR#66249. Go to www.xilinx.com and download the
ZCU102 BSP (Board Support Package) to a location that
we will refer to as <petalinux_bsp_dir>.

$ cd <down_dir>
$ petalinux-create --type project -s <petali-
nux_bsp_dir>/ Xilinx-ZCU102-v2015.4-final.bsp
--name doom_demo_zynqMP

This will create our PetaLinux project in <down_
dir>/doom_demo_zynqMP.

We go to the PetaLinux project and build PetaLinux.

$ cd <down_dir>/doom_demo_zynqMP

$ petalinux-build

Now we need to edit the device tree manually for
our use case.

Edit the xen-overlay.dtsi file (subsystems/linux/
configs/device-tree/xen-overlay.dtsi).

Once you see Doom start up, you should be able to control
the game using your keyboard and mouse. Remember that
you might need to hit the escape key to start a game.

http://doom_demo.tar.gz
http://www.wiki.xilinx.com/Doom
http://doom_demo.tar.gz
https://github.com/torvalds/linux.git
https://github.com/torvalds/linux.git
https://git.buildroot.net/buildroot
http://www.xilinx.com
http://Xilinx-ZCU102-v2015.4-final.bsp
http://xen-overlay.dtsi
http://xen-overlay.dtsi

ISSUE 3, FIRST QUARTER 2016

15

Replace

‘reg = <0x0 0x80000 0x3100000>;’

under dom0 with

‘reg = <0x0 0x80000 0x4100000>;’

Replace

‘xen,xen-bootargs = “console=dtuart dtuart=serial0
dom0_mem=512M bootscrub=0 maxcpus=1 time r_
slop=0”;’

under chosen with

‘xen,xen-bootargs = “console=dtuart dtuart=serial0
dom0_mem=512M bootscrub=0 maxcpus=4 timer_
slop=0”;’

Replace

‘xen,dom0-bootargs = “console=hvc0 earlycon=xen
earlyprintk=xen maxcpus=1”;’

under chosen with

‘xen,dom0-bootargs = “rdinit=/bin/sh console=hvc0
earlycon=xen earlyprintk=xen maxcpus=4”;’

Edit the zynqmp.dtsi file (subsystems/linux/configs/
device-tree/zynqmp.dtsi).

Replace

‘compatible = “cdns,uart-r1p12”;’

under uart0 with

‘compatible = “cdns,uart-r1p8”, “cdns,uart-r1p12”;’

Now manually build the Xen device tree.

$ dtc -I dts -O dtb -i ./subsystems/linux/con-
figs/device-tree/ -o ./images/linux/xen.dtb ./
subsystems/linux/configs/device-tree/xen.dts

Finally, we need to replace the rootFS built by Peta-
Linux with the one we built before. This is required
because PetaLinux doesn’t include PrBoom, so we

are supplying our own rootFS. We also need to replace
the xen.ub image with one prebuilt by Xilinx, as the
Xen and Xen tool versions must match.

$ rm <down_dir>/doom_demo_zynqMP/images/linux/
Image && rm <down_dir>/doom_demo_zynqMP/images/
linux/xen.ub

$ cp <down_dir>/doom_demo/Image <down_dir>/doom_
demo_zynqMP/images/linux/Image && cp <down_dir>/
doom_demo/xen.ub <down_dir>/doom_demo_zynqMP/im-
ages/linux/xen.ub

Boot using u-boot bootloader.

$ petalinux-boot --qemu --u-boot --qemuargs=”-
net nic -net nic -net nic -net nic -net us-
er,net=192.168.129.0,dhcpstart=192.16
8.129.50,host=192.168.129.1,hostfwd=t
cp:127.0.0.1:5900-192.168.129.50:5900”

 > setenv serverip 192.168.129.1
 > tftpb 4000000 xen.dtb; tftpb 0x80000 Image; tftpb
6000000 xen.ub; bootm 6000000 - 4000000

/boot.sh
 # /xen-doom.sh 1

STEP 3: FIRING IT UP
Now we can fire up a virtual network computing
(VNC) viewer and, on the machine running QEMU,
connect to localhost:5900 to see the Doom game.
(Note: The command line above will only redirect
port 5900, which will only allow you to connect to the
first instance of Doom when you fire up your demo.
If you would like to connect to multiple instances,
add more hostfwd arguments to QEMU and connect
to the next available port [5901 for the next instance,
5902 for the one after that and so on], and then con-
nect to those instances.)

Once you see Doom start up, you should be able
to control the game using your keyboard and mouse.
Remember that you might need to hit the escape key
to start a game. Also remember that it’s been a while

http://zynqmp.dtsi
http://zynqmp.dtsi
http://xen.dtb
http://xen.dts
http://xen.ub
http://xen.ub
http://xen.ub
http://xen.ub
http://xen.dtb
http://xen.ub
http://boot.sh
http://xen-doom.sh

XCELL SOFTWARE JOURNAL: COVER STORY

16

since you’ve played Doom, so you may not make it
very far. Don’t feel discouraged. Working with the sys-
tem you built is definitely “work.”

XEN DEEPER DIVE
As described in “Zynq MPSoC Gets Xen Hypervisor
Support” (Xcell Journal, Issue 93), a Type 1 hypervisor
runs natively on the hardware, whereas a Type 2 hyper-
visor is not the lowest layer of software and gets hosted
on an OS. Xen is a Type 1 hypervisor (Figure 4).

Earlier, we mentioned virtual processors (also known
as virtual machines). In Xen, these are referred to as do-
mains. The most privileged domain is called Dom0; the
unprivileged guest domains are DomU domains.

Dom0 is the initial domain that the Xen hypervisor
creates upon booting. It is privileged and drives the
devices on the platform. Xen virtualizes CPUs, mem-
ory, interrupts and timers, providing virtual machines
with one or more virtual CPUs, a portion of the mem-
ory of the system, a virtual interrupt controller and a
virtual timer. Unless configured otherwise, Dom0 will
get direct access to all devices and drive them. Dom0

also runs a set of drivers called paravirtualized (PV)
back ends to give the unprivileged virtual machines
access to disk, network and so on. Xen provides all
the tools for discovery and initial communication
setup. The OS running as DomU gets access to a set
of generic virtual devices by running the correspond-
ing PV front-end drivers. A single back end can ser-
vice multiple front ends, depending on how many
DomUs there are. A pair of PV drivers exists for all
of the most common device classes (disk, network,
console, frame buffer, mouse, keyboard, etc.). The PV
drivers usually live in the OS kernel, i.e., Linux. A few
PV back ends can also run in user space, usually in
QEMU. The front ends connect to the back ends using
a simple ring protocol over a shared page in memory.

Interacting with the hypervisor from Dom0 re-
quires programs that use the defined hypervisor
calls (similar to system calls). Xen provides a ref-
erence toolset with libraries called Xen Tools (also
written as xen-tools). The xen-tools include a pro-
gram called xl that, among other things, can inspect
state and create guests.

Dom0 DomU

Xen

Hardware

PV front endsPV back ends

HW drivers

DomU

PV front ends

DomU

PV front ends

Sort(In[2],Out[2])
{
 Out[0] = min(In[0],In[1]);
 Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated
Pixel

Activated
Pixel

Highest
Value

Lowest
Value

Figure 4 — As a Type 1 hypervisor, Xen runs natively on hardware, and virtual machines run on top of Xen
(source: “Xen ARM with Virtualization Extensions” white paper).

http://www.xilinx.com/publications/archives/xcell/Xcell93.pdf
http://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper

ISSUE 3, FIRST QUARTER 2016

17

The “create” command in xl takes a configuration
file describing a guest, and if the configuration file
specifies that the guests want a virtual frame buffer
(VFB) backed by a VNC session, xl will automatical-
ly launch virtualization code in the Dom0 user space
(one per guest in our demo).

The configuration file for the doom VM looks like this:

Guest name

name = “guest1”

Kernel image to boot

kernel = “/boot/Image”

Kernel command line options

extra = “console=hvc0 rdinit=/doom.sh”

Initial memory allocation (MB)

memory = 56

Number of VCPUS

vcpus = 1

vfb = [‘type=vnc, vnclisten=0.0.0.0’]

DEVICES IN XEN
There are three common ways to expose a device
to a guest: emulation, paravirtualization and pass-
through (Figure 5).

With device emulation, when a guest writes to the
memory of the emulated device, the write triggers
a trap. The trap is typically a page fault. The trap
allows the processor to switch into the hypervisor,
which emulates the device. Emulation is flexible
but slow because of all the traps, and someone must
write models for all of the devices that require em-
ulation. It’s also hard to find tricks to speed emula-
tion because there’s little to no hardware accelera-
tion; it’s an all-software approach.

With device paravirtualization, there is agree-
ment between the hypervisor and the guest on how
communications will progress. There is typically a
shared-memory area (plus protocol) that looks like a
device, and the hypervisor services requests on this
area. For example, to support a paravirtualized frame
buffer on Linux, a Linux front-end driver would write
the buffer of the frame it got from user space into a
shared memory area; it would then signal the hyper-
visor using hypervisor calls to output the frame via a
back-end driver. The guest can only talk to the host
(Dom0) and other guests (DomU) through paravirtu-
alized drivers. Some benefits of this approach are that
you can share devices among many guests, it runs fast,
and a guest can run a mostly unchanged kernel. The
changes required are under standard interfaces, so to
the applications and the rest of the kernel the front-
end driver just looks like a normal network interface,

With device paravirtualization, there is agreement between the
hypervisor and the guest on how communications will progress.

Popular communication protocols are Xen Bus and VirtIO.

Speed Device Sharing Security

Emulated Slow Yes Yes

Paravirtualized Medium Yes Yes

Pass-through Fast No Yes (but only if you have an SMMU*)
*System Memory Management Unit

Sort(In[2],Out[2])
{
 Out[0] = min(In[0],In[1]);
 Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated
Pixel

Activated
Pixel

Highest
Value

Lowest
Value

Figure 5 — Comparison of emulated, paravirtualized and pass-through approaches

http://doom.sh

XCELL SOFTWARE JOURNAL: COVER STORY

18

disk or other device. Two popular protocols for sup-
porting guest communication are Xen Bus and VirtIO.

In pass-through mode, the host “gives” a device
to the guest. This means only one guest can use the
device at a time.

DEVICE PERFORMANCE AND SECURITY
In general, emulated devices have lower performance
than devices exposed via pass-through, and the para-
virtualization approach tends to have sufficient per-

formance. A benefit of the paravirtualized and em-
ulation approaches is that the hypervisor can allow
device access to multiple entities without exposing
those entities to one another.

UNDER THE HOOD
The processing contexts of the Doom-on-Zynq Ultra-
Scale+ MPSoC are like an onion, with many layers
(Figure 6). In the Cortex-A53 cluster are the four
ARMv8 cores. On each core, the hypervisor runs in

Dom0

Model of ARM Cortex-A53

DomU0 DomU1

Virtualization
code

Virtualization
code

PrBoom
(Doom)

VNC
Server

VNC
Server

net

Linux Kernel Linux Kernel

GIC SMMU Generic
Timers

Buffer

Buffer

UART
Xen (EL2)

EL1

EL0

Zynq MPSoC
Hardware

SDL

libSDL
(1.2)

/dev/fb0
xen-fbfront

PrBoom
(Doom)

Linux Kernel

SDL

libSDL
(1.2)

/dev/fb0
xen-fbfront

VNC ViewerVNC Viewer

Figure 6 – Under the hood of the demo: QEMU launched from PetaLinux Tools running on an x86

http://device.Two

ISSUE 3, FIRST QUARTER 2016

19

EL2, and the guests (Dom0 or DomU) run in EL0/EL1.
Each DomU guest runs Linux; Doom (PrBoom) runs
in the user space. Doom uses the Simple Direct Me-
dia Layer (SDL), which talks to a frame buffer front-
end driver via the SVC instruction (eventually). The
frame buffer front end writes the buffer into a shared
memory area set up by Dom0. The front-end driver
communicates with virtualization code running on
Dom0 via a protocol such as Xen Bus or VirtIO using
the HVC instruction (eventually). The virtualization

code running on Dom0 provides a back end for dis-
play which then is encoded by the virtualization code’s
VNC server and sent over a network to a VNC client.

This information and the demo should provide a
good foundation for further hypervisor study and ex-
perimentation. After you are able to run the demo in
emulation on QEMU, you can use PetaLinux Tools to
run it on Zynq UltraScale+ MPSoC silicon.

For more great developer resources, visit Xilinx’s
Software Developer Zone. n

http://www.xilinx.com/products/design-tools/software-zone.html
https://itunes.apple.com/us/app/xilinx-go/id1063287962
https://play.google.com/store/apps/details?id=com.marketing.xilinxgo

Software-Defined
Radio from Concept
to Deployment
Use Avnet PicoZed SDR’s automated
workflows to cut development time
and differentiate your design.

XCELL SOFTWARE JOURNAL: XCELLENCE IN SDR

20

Software-Defined
Radio from Concept
to Deployment

by Robin Getz
Director of Engineering, Global Alliances Group
Analog Devices, Inc.
Robin.Getz@analog.com

Luc Langlois
Director, Global Solutions Team
Avnet Electronics Marketing
Luc.Langlois@avnet.com

ISSUE 3, FIRST QUARTER 2016

21

Wireless communications will play a key role in a
wide range of emerging technologies, from fleets of
self-driving autonomous vehicles to heterogeneous
networks connecting millions of industrial sensors.
Such applications will demand reconfigurable soft-
ware-defined radios (SDRs) capable of changing
modulation schemes, frequency bands and system
protocols on the fly. By integrating the critical RF
signal path and high-speed programmable logic in
a fully verified system-on-module (SOM), Avnet’s
PicoZed SDR delivers the flexibility of software-de-
fined radio in a device the size of deck of cards, en-
abling frequency-agile, wideband 2x2 receive and
transmit paths in the 70-MHz to 6.0-GHz range for
diverse fixed and mobile SDR applications.

PicoZed SDR combines the Analog Devices AD9361 in-
tegrated RF Agile Transceiver™ with the Xilinx® Z-7035
Zynq®-7000 All Programmable SoC. [1] The architecture
is ideal for mixed software-hardware implementations of
complex applications, such as digital receivers, in which
the digital front end (physical layer) is implemented in
programmable logic, while the upper protocol layers run
in software on dual ARM® Cortex™-A9 processors. Let’s
look at the software-related features of PicoZed SDR
throughout the development process.

FAST PROOF OF CONCEPT WITH
PICOZED SDR RADIO-IN-THE-LOOP
Leveraging the full potential of PicoZed SDR calls
for a robust, multidomain simulation environment
to model the entire signal chain, from the RF analog

W

mailto:Robin.Getz@analog.com
mailto:Luc.Langlois@avnet.com

can invoke various methods to stream data through
the System object during simulation. The Commu-
nications System Toolbox™ Support Package for
Xilinx Zynq-Based Radio from MathWorks contains
predefined classes for the PicoZed SDR receiver
and transmitter, each with tunable configuration at-
tributes for the AD9361, such as RF center frequen-
cy and sampling rate. The code example in Figure 2
creates a PicoZed SDR receiver System object to re-
ceive data on a single channel, with the AD9361 local
oscillator frequency set to 2.5 GHz and a baseband
sampling rate of 1 megasample/second (Msps). The
captured data is saved using a log.

LIBIIO LIBRARY
Analog Devices has developed the Libiio library [3, 4]
to ease the development of software interfacing to Li-
nux Industrial I/O (IIO) devices, such as the AD9361
on the PicoZed SDR SOM. The open-source (GNU
Lesser General Public License V2.1) library abstracts
the low-level details of the hardware and provides a
simple yet complete programming interface that can
be used for advanced projects.

The library comprises a high-level application pro-
gramming interface and a set of back ends, as shown
in Figure 3.

XCELL SOFTWARE JOURNAL: XCELLENCE IN SDR

Figure 1 — Streaming data with PicoZed SDR using System objects

22

electronics to the baseband digital algorithms. This is
the inherent value of Model-Based Design, a methodol-
ogy from MathWorks® that places the system model at
the center of the development process, spanning from
requirements definition through design, code genera-
tion, implementation and testing. Avnet worked with
Analog Devices and MathWorks to develop a support in-
frastructure for PicoZed SDR in each facet of the design
process, starting at the initial prototyping phase. [2]

Faced with the constant pressures of shorter devel-
opment cycles, engineers seek solutions for fast, accu-
rate proof of concept on proven hardware to demon-
strate the feasibility of a product under “real world”
conditions. Using a MATLAB® software construct
called System objects™, MathWorks created a sup-
port package for Xilinx Zynq-Based Radio that enables
PicoZed SDR as an RF front end to prototype SDR de-
signs right out of the box. Optimized for iterative com-
putations that process large streams of data, System
objects automate streaming data between PicoZed
SDR and the MATLAB and Simulink® environments in
a configuration known as radio-in-the-loop (Figure 1).

Akin to concepts of object-oriented programming,
System objects are created by a constructor call to
a class name, either in MATLAB code or as a Sim-
ulink block. Once a System object is instantiated, you

either physical layers (QPSK, QAM, OFDM, etc.) or
entire media access controllers (MACs). Libiio sup-
ports both streaming (losing no samples) at medium
data rates (approximately 8 Msps) and burst mode
(capturing bursts of samples (up to ~1Msample, los-
ing data between bursts) at the maximum data rate
(61.44 Msps). Typically, you would use lower-data-rate
streaming when working on PHY development and
then use burst mode to verify the design at speed be-
fore HDL/C-code generation.

SYSTEM INTEGRATION WITH HW/SW
CO-DESIGN FOR PICOZED SDR
Once you have fully verified an algorithmic model
with PicoZed SDR radio-in-the-loop, the next phase
would be to generate the HDL/C code and package an
intellectual-property core for integration into a larger

• The local back end interfaces the Linux kernel
through the kernel’s sysfs virtual file system. This
back end has bindings for C, C++ and Python to sup-
port remotely deployed applications running on the
PicoZED SDR.

• The network back end interfaces the IIO Daemon
(iiod) server through a network link. The network
back end supports multiple operating systems
(Linux, OS X, Windows) to enable remote GUI-
based debug on more-powerful host platforms,
running applications such as MATLAB and Simulink
[5], GNURadio [6] or the IIO Oscilloscope [7].

You would use Libiio to interface to a PicoZED
SDR during a project’s prototyping phase in order to
stream samples to and from models in tools such as
MATLAB, Simulink or GNURadio, which can model

ISSUE 3, FIRST QUARTER 2016

23

You would use Libiio to interface to a PicoZED SDR during a
project’s prototyping phase in order to stream samples to and
from models in tools such as MATLAB, Simulink or GNURadio.

Figure 2 — PicoZed SDR receiver MATLAB System object

faces, AXI4-Stream video interfaces, and external
ports. The MathWorks HDL Workflow Advisor IP core
generation workflow lets you insert your generated IP
core into a predefined embedded system project in the
Xilinx Vivado® integrated design environment. [8] HDL
Workflow Advisor contains all the elements Vivado
IDE needs to deploy your design to the SoC platform,
except for the custom IP core and embedded software
that you generate.

 If you have a MathWorks Embedded Coder® li-
cense, you can automatically generate the software in-
terface model, generate embedded C/C++ code from it,
and build and run the executable on the Linux kernel

XCELL SOFTWARE JOURNAL: XCELLENCE IN SDR

24

system. For example, a wireless receiver subsystem
modeled in MATLAB and Simulink might be destined
for a point-to-point radio link streaming real-time
video from an Avnet camera module mounted on the
PicoZed SDR carrier card.

The hardware-software co-design workflow in HDL
Coder™ from MathWorks lets you explore the op-
timal partition of your design between software and
hardware targeting the Zynq SoC (Figure 4). The part
destined for programmable logic can be automatically
packaged as an IP core, including hardware interface
components such as ARM AMBA® AXI4 or AXI4-Lite
interface-accessible registers, AXI4 or AXI4-Lite inter-

Client
Application
on Linux

Client
Application
on Windows

IIOD Daemon Server

Libiio/Linux

High-level API

Local
back end

Network
back end

Network Link

Libiio/Windows

High-level API

Network back end

Linux Kernel

IIO devices

Figure 3 — Libiio API and back ends

osc app on Linux, and prebuilt Windows binaries exist.
Figure 5 shows the FFT of two channels (I/Q) of the

PicoZED SDR, with markers set up to look at single
tones and measure harmonics.

 Building directly on the PicoZED SDR is a simple
matter of (1) downloading the source:

> git clone https://github.com/analogdevic-
esinc/iio-oscilloscope.git

> cd iio-oscilloscope

> git checkout origin/master

and (2) building and installing it:

rgetz@pinky:~/iio-oscilloscope$ make

rgetz@pinky:~/iio-oscilloscope$ sudo make install

With the powerful processing system (dual ARM
Cortex-A9 processors running at 1 GHz, plus 1-Gbyte
DDR3 SDRAM) at your disposal, compiling natively on
the Zynq SDR SOM is a quick process.

on the ARM processor within the Zynq SoC. The gen-
erated embedded software includes AXI driver code,
generated from the AXI driver blocks, that controls the
HDL IP core. Alternatively, you can write the embedded
software and manually build it for the ARM processor.

IIO OSCILLOSCOPE
The ADI IIO Oscilloscope (osc) is an example appli-
cation that demonstrates how to interface different
Linux IIO devices within a Linux system. The applica-
tion allows you to plot the captured data in four modes
(time domain, frequency domain, constellation and
cross-correlation) and to view and modify several IIO
device settings.

The osc application supports Linux, Windows and
OS X. It can run on a remotely connected host PC or
on the PicoZed SDR FMC Carrier because it supports
HDMI video display and, therefore, a graphical envi-
ronment. Instructions are available for building the

ISSUE 3, FIRST QUARTER 2016

25

MATLAB and Simulink
Algorithm and System Design

HDL IP Core
Generation

Embedded System
Tool Integration

SW Interface
Model Generation

FPGA Bitstream SW Build

SoC Platform

Figure 4 – MathWorks hardware-software
co-design workflow

Figure 5 — ADI IIO Oscilloscope

The osc application supports Linux, Windows and OS X. It can
run on a remotely connected host PC or on the PicoZed SDR

FMC Carrier, since it supports HDMI video display.

https://github.com/analogdevicesinc/iio-oscilloscope.git
https://github.com/analogdevicesinc/iio-oscilloscope.git

as pipelines. A typical capture pipeline will capture video
from the camera receiver, optionally process the video
and then send the content to an external frame buffer
using a video DMA engine. Avnet provides a Vivado IP In-
tegrator-compatible “camera receiver” IP core with HDL
source code, provided without a fee or royalty, and V4L2
subdevice Linux drivers available as a Linux patch.

As we have shown here, through the automated
workflows provided in Avnet’s PicoZed SDR, you can
substantially reduce your development times from
concept to deployment, while focusing on your SDR
products’ differentiating features. n

REFERENCES
1. PicoZed SDR Development Kit

2. Wireless Communications Design with MATLAB

3. What is libiio?

4. analogdevicesinc/libiio GitHub

5. IIO System Object

6. GNU Radio

7. IIO Oscilloscope

8. ADI Reference Designs HDL User Guide

9. Avnet ON PYTHON-1300-C Camera Module

XCELL SOFTWARE JOURNAL: XCELLENCE IN SDR

26

REAL-TIME VIDEO CAPTURE WITH PICOZED SDR
High-performance video has become a key compo-
nent of intelligent systems in wireless applications
such as autonomous vehicles, military vision systems,
surveillance systems and drones. These applications
combine high-pixel-rate video capture with real-time
analytics that can exceed the performance limitations
of purely software-based implementations. With the
Zynq SoC and Xilinx’s SDSoC™ development environ-
ment, embedded vision system designers have access
to the best of both worlds, leveraging the rich heri-
tage of existing software-based image processing al-
gorithms through hardware acceleration for real-time
processing of high-definition video at high frame rates.

The Avnet ON PYTHON-1300 camera module features
ON Semiconductor’s PYTHON-1300 color image sensor,
which is capable of SXGA resolution (1,280 x 1,024 pix-
els) at 210 frames per second. [9]. Avnet supports the
module on several of its Zynq SoC-based development
platforms, including PicoZed SDR (for transmission of
video analytics over the air). System designers can inte-
grate the camera module into a complete Linux system
using Avnet software drivers that adhere to the Video4Li-
nux2 API specification (V4L2; Figure 6). The V4L2 frame-
work can implement complete video data paths known

Figure 6 — V4L2 capture pipeline with Avnet ON PYTHON-1300 camera module

http://zedboard.org/product/picozed-sdr-development-kit
http://www.mathworks.com/solutions/wireless-systems/
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://github.com/analogdevicesinc/libiio
https://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/matlab_simulink
https://wiki.analog.com/resources/tools-software/linux-software/gnuradio
https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope?rev=1453737524
https://wiki.analog.com/resources/fpga/docs/hdl
http://www.em.avnet.com/en-us/design/drc/Pages/ON-Semiconductor-PYTHON-1300-C-Camera-Module.aspx

Product Bene� ts/Features:

• Combines the Analog Devices AD9361 integrated RF Agile Transceiver™ with the Xilinx Z7035

Zynq®-7000 All Programmable SoC

• Running Linux on the dual core ARM A9, the PicoZed SDR provides a full software environment

which can be used from prototyping to production

• Userspace I/O (UIO), Industrial I/O (IIO) subsystems and drivers

• Supports Avnet camera modules with V4L2 drivers for realtime video capture

• Frequency-agile 2x2 receive and transmit paths with independent LO from 70 MHz to 6.0 GHz

• Handheld form-factor, ideal for a broad range of � xed and mobile SDR applications

• Full support in MATLAB and Simulink

For more information, visit picozed.org/sdr

Lifecycle Technology

facebook.com/avnet twitter.com/avnet youtube.com/avnet

Software-De� ned Radio
from Concept to Production

** SEE THE FEATURED ARTICLE IN THIS ISSUE **

facebook.com/avnet twitter.com/avnet youtube.com/avnet

http://picozed.org/sdr

AMP up Your
Next SoC Project
by Scott McNutt
Senior Software Engineer
DesignLinx Hardware Solutions, LLC
smcnutt@designlinxhs.com

XCELL SOFTWARE JOURNAL: XCELLENCE WITH LINUX

28

mailto:smcnutt@designlinxhs.com

AMP up Your
Next SoC Project

Harness real-time
performance and
the rich features
of Linux.

ISSUE 3, FIRST QUARTER 2016

29

E
mbedded systems usually fall
into one of two categories: those
that require hard real-time per-
formance and those that don’t. In
the past, we had to pick our poi-

son—the performance of our “go to” real-time
operating system or the rich feature set of our
favorite Linux distribution—and then struggle
with its shortcomings.

Today, embedded developers no longer need
to choose between the two. Asymmetric multi-
processing (AMP) offers the best of both worlds.

Several modern system-on-chip (SoC) product
offerings integrate multiple CPUs, a broad vari-
ety of standard I/O peripherals and programma-
ble logic. The Xilinx® Zynq-7000® All Programma-
ble SoC family, for example, includes a dual-core
ARM® Cortex™-A9, standard peripherals (such
as Gigabit Ethernet MACs, USB, DMA, SD/MMC,
SPI and CAN) and a large programmable logic ar-
ray. We can use these SoC products as the basis
of a Linux/RTOS AMP system that provides con-
siderable flexibility.

In many ways, the typical AMP configuration
is similar to a PCI-based system, with the Linux
domain functioning as the host, the RTOS do-
main functioning as an adapter, and one or
more shared memory regions used for commu-
nication between the two domains. Unlike PCI,
however, an AMP configuration can more con-
veniently—and dynamically—assign resourc-
es (both the standard peripherals and custom
logic) to one domain or the other. In addition,
a Linux/RTOS AMP system can dynamically re-
configure programmable logic based on runtime
requirements, such as the presence or absence
of various external devices.

This level of flexibility is often coupled with
concerns about complexity and the degree of
difficulty involved in bringing up an AMP sys-
tem. Rest assured that the Linux development
community has introduced many features into
the kernel that greatly simplify AMP configura-
tion and use.

kernel command line parameter controls the num-
ber of cores that the SMP kernel uses following sys-
tem initialization. Once the kernel is running, various
command line utilities control the number of cores as-
signed to the kernel. The ability to dynamically control
the number of cores used by the kernel is a primary
reason AMP developers prefer the SMP kernel over
the UP kernel.

The Remote Processor Framework
The Remote Processor (remoteproc) Framework is
the Linux component that is responsible for starting
and stopping individual cores (remote processors), as
well as for loading a core’s software in an AMP system.
For example, we can dynamically reconfigure the SMP
system shown in Figure 1 into the AMP system shown
in Figure 2, and then back again to SMP, using the ca-
pabilities of remoteproc.

We can fully control reconfiguration via a user-
space application or system initialization script.
Reconfiguration control allows user applications to
stop, reload and run a variety of RTOS applications
based on the dynamic needs of the system.

The core’s software (in our example, the RTOS and
user application) is loaded from a standard Executable
and Linkable Format (ELF) file that contains a special
section known as the resource table. The resource
table is analogous to the PCI configuration space in
that it describes the resources that the RTOS requires.
Among those resources is the memory needed for the
RTOS code and data.

Trace buffers
Trace buffers are regions of memory that automati-
cally appear as files in a Linux file system. As their
name suggests, trace buffers provide basic tracing
capabilities to the remote processor. A remote pro-
cessor writes trace, debug and status messages to
the buffers, where the messages are available for
inspection via the Linux command line or by cus-
tom applications.

Core 0 Core 1

Logic

Linux (SMP)

Standard
I/O

Internal Interconnect

XCELL SOFTWARE JOURNAL: XCELLENCE WITH LINUX

Figure 1 — Symmetric multiprocessing. The SMP
kernel can run simultaneously on multiple cores.

30

LINUX MULTIPROCESSING IN A NUTSHELL
With respect to multiprocessing, the Linux kernel
comes in two flavors: the uniprocessor (UP) kernel and
the symmetric multiprocessor (SMP) kernel. The UP
kernel can only run on a single core, regardless of the
number of available cores. AMP systems can incorpo-
rate two or more instances of the uniprocessor kernel.

The SMP kernel, however, can run on one core or si-
multaneously on multiple cores (Figure 1). An optional

Core 0 Core 1
Remote Processor

Logic

Linux (SMP) RTOS

Standard
I/O

Internal Interconnect

Figure 2 — AMP with the Linux SMP kernel

specific drivers. For example, if a remote processor
announces the service dlinx-h323-v1.0, the kernel can
search for, load and initialize the driver bound to that
name. This greatly simplifies driver management in
systems where services are dynamically installed on
remote processors.

Managing interrupts
Interrupt management can be a little tricky, espe-
cially when starting and stopping cores. Ultimate-
ly, the system needs to redirect specific interrupts
dynamically to the remote processor domain when
the remote processor is started, then reclaim those
interrupts when the remote processor is stopped.
In addition, the system must protect the interrupts
from inadvertent allocation by potentially miscon-
figured drivers. In short, interrupts must be man-
aged systemwide.

For the Linux SMP kernel, this is a routine matter—
and a further reason that the SMP kernel is preferred
in AMP configurations. The remote processor frame-
work conveniently manages interrupts with only mini-
mal support from the device driver.

Device drivers
Device driver development is always a concern be-
cause it requires a skill set that may not be readily
available. Fortunately, the Linux kernel’s remoteproc
and rpmsg frameworks do most of the heavy lifting;
drivers need only implement a handful of standard
driver routines. A fully functional driver may only re-
quire a few hundred lines of code. The kernel source
tree includes sample drivers that embedded develop-
ers can adapt to their requirements.

Generic open-source device drivers are also avail-
able from vendors. DesignLinx Hardware Solutions
provides generic rpmsg drivers for both Linux and
FreeRTOS. Since the generic driver makes no assump-
tions about the format of the messages that are ex-
changed, embedded developers can use it for a variety
of AMP applications without any modifications.

One or more trace buffers may be requested via
entries in the resource table. Although they typical-
ly contain plain text, trace buffers may also contain
binary data such as application state information or
alarm indications.

Virtual I/O devices
We can also use the resource table to define virtual
input/output devices (VDEVs), which are basically
pairs of shared memory queues that support message
transfer between the Linux kernel and the remote
processor. The VDEV definition includes fields that
negotiate the size of the queues as well as the inter-
rupts used to signal between the processors.

The Linux kernel handles initialization of the vir-
tual I/O queues. The software running on a remote
processor need only include a VDEV description in its
resource table and then use the queues once it begins
execution; the kernel handles the rest.

Remote Processor Messaging Framework
The Remote Processor Messaging (rpmsg) Framework
is a software messaging bus based on the Linux ker-
nel’s virtual I/O system. The messaging bus is similar
to a local area subnetwork in which individual proces-
sors can create addressable endpoints and exchange
messages, all via shared memory.

The kernel’s rpmsg framework acts as a switch,
routing messages to the appropriate endpoint based
on the destination address contained in the message.
Because the message header includes a source ad-
dress, ad hoc connections can be established between
various processors.

Naming service
Processors can dynamically announce a particular ser-
vice by sending a message to the rpmsg framework’s
naming service. By itself, the naming service feature is
only marginally useful. The rpmsg framework, howev-
er, allows service names to be bound to device drivers
to support the automatic loading and initialization of

ISSUE 3, FIRST QUARTER 2016

31

The ability to dynamically control the number of
cores used by the kernel is a primary reason AMP

developers prefer the SMP kernel over the UP kernel.

XCELL SOFTWARE JOURNAL: XCELLENCE WITH LINUX

32

MOVING INSIDE THE PINS
The kernel’s multiprocessing support is not limited to
homogeneous multiprocessing systems (systems using
only the same kind of processor). All of the features
described above can also be used in heterogeneous
systems (systems with different kinds of processors).
These multiprocessing features are especially useful
when migrating existing designs “inside the pins.”

Modern SoC products let designers conveniently
move various hardware designs from a printed-cir-
cuit board to a system-on-chip (Figure 3). What was
once implemented as a collection of discrete proces-
sors and components on a PCB can be implemented
entirely inside the pins of an SoC.

For example, we can implement the original PCB
hardware architecture of Figure 3 with a Xilinx Zynq-
7000 family SoC using one of the ARM processors as
the control CPU and soft processors (such as Xilinx
MicroBlaze™ processors) in the programmable logic
to replace the discrete microprocessors. We can use
the remaining ARM processor to run the Linux SMP
kernel (Figure 4).

The addition of Linux to the original design provides
all of the standard multiprocessing features described
above for both the ARM cores and the soft core pro-
cessors (such as start, stop, reload, trace buffers and
remote messaging). But it also brings the broad Li-
nux feature set, which supports a variety of network
interfaces (Ethernet, Wi-Fi, Bluetooth), networking
services (Web servers, FTP, SSH, SNMP), file systems

Core 0
(Linux SMP)

Logic Core 1
(RTOS)

Standard
I/O

Internal Interconnect

Internal Interconnect

Soft Core
µP

Soft Core
µP

Soft Core
µP

Soft Core
µP

Custom
Logic

Custom
Logic

Custom
Logic

Custom
Logic

Figure 4 — Multiprocessing inside the pins

µP
(RTOS)

Control CPU
(RTOS)

µP
(RTOS)

µP
(RTOS)

µP
(RTOS)

PCB

SoC

µP

Core 0

µP µP µP

Core 1

Figure 3 — Moving discrete PCB elements ‘inside the pins’ of an SoC

ing unit (GPU) and a host of other peripherals—and,
of course, a healthy helping of programmable logic.
This is fertile ground for designers who understand
how to harness the performance of real-time operat-
ing systems coupled with the rich feature set of the
Linux kernel.

For more information on designing a Linux/RTOS
AMP system, contact DesignLinx Hardware Solutions.
A premier member of the Xilinx Alliance Program,
DesignLinx specializes in FPGA design and support,
including systems design, schematic capture and elec-
tronic packaging/mechanical engineering design, and
signal integrity. n

(DOS, NFS, cramfs, flash memory) and other interfac-
es (PCIe, SPI, USB, MMC, video), to name just a few.
These features offer a convenient pathway to new ca-
pabilities without significantly altering tried-and-true
architectures.

THE CORES KEEP COMING
The past several years have seen an increase in mul-
ticore SoC offerings that target the embedded market
and are well suited for AMP configurations.

The Xilinx UltraScale+™ MPSoC architecture, for
example, includes a 64-bit quad-core ARM Cortex-A53,
a 32-bit dual-core ARM Cortex-R5, a graphics process-

ISSUE 3, FIRST QUARTER 2016

33

Modern SoC products let designers conveniently
move various hardware designs from a

printed-circuit board to a system-on-chip.

Support for
Xilinx Zynq® Ultrascale+™
and Zynq-7000 families

► Concurrent debugging and

 tracing of ARM Cortex-A53/-R5, -A9

 and MicroBlaze™ soft processor core

► RTOS support, including Linux

 kernel and process debugging

► Run time analysis of functions and

 tasks, code coverage, system trace

http://www.designlinxhs.com/
http://www.xilinx.com/alliance.html
http://www.lauterbach.com

A Recipe for
Embedded
Systems
As embedded systems have
become ubiquitous, we can
benefit from accumulated
development knowledge to
build better systems.

XCELL SOFTWARE JOURNAL: XCELLENCE IN EMBEDDED DEVELOPMENT

34

by Adam Taylor
Chief Engineer
e2v
aptaylor@theiet.org

ISSUE 3, FIRST QUARTER 2016

35

E
ngineers never lose sight of the need to de-
liver projects that hit the quality, schedule
and budget targets. You can apply the les-
sons learned by the community of embed-

ded system developers over the years to ensure that
your next embedded system project achieves those
goals. Let’s explore some important lessons that have
led to best practices for embedded development.

THINK SYSTEMATICALLY
Systems engineering is a broad discipline covering
development of everything from aircraft carriers and
satellites, for example, to the embedded systems that
enable their performance. We can apply a systems engi-
neering approach to manage the embedded systems en-
gineering life cycle from concept to end-of-life disposal.

The first stage in a systems engineering approach
is not, as one might think, to establish the system re-
quirements, but to create a systems engineering man-
agement plan. This plan defines the engineering life
cycle for the system and the design reviews that the
development team will perform, along with expected
inputs and outputs from those reviews. The plan sets a
clear definition for the project management, engineer-
ing and customer communities as to the sequence of
engineering events and the prerequisites at each stage.
In short, it lays out the expectations and deliverables.

With a clear understanding of the engineering life
cycle, the next step of thinking systematically is to
establish the requirements for the embedded system
under development. A good requirement set will ad-
dress three areas. Functional requirements define
how the embedded system performs. Nonfunctional
requirements define such aspects as regulatory com-
pliance and reliability. Environmental requirements
define such aspects as the operational temperature
and shock and vibration requirements, along with the
electrical environment (for example, EMI and EMC).

Within a larger development effort, those require-
ments will be flowed down and traceable from a

mailto:aptaylor@theiet.org

higher-level specification, such as a system or sub-
system specification (Figure 1). If there is no higher-
level specification, we must engage with stakeholders
in the development to establish a clear set of stake-
holder requirements and then use those to establish
the embedded system requirements.

Generating a good requirement set requires that we
put considerable thought into each requirement to en-
sure that it meets these standards:

1. It is necessary. Our project cannot achieve suc-
cess without the requirement.

2. It is verifiable. We must ensure that the require-
ment can be implemented via inspection, test,
analysis or demonstration.

3. It is achievable. The requirement is technically
possible, given the constraints.

4. It is traceable. The requirement can be traced
from lower-level requirements and can trace to
higher-level requirements.

5. It is unique. This standard prevents contraction
between requirements.

6. It is simple and clear. Each requirement specifies
one function.

It is also common to use specific language when defin-
ing requirements to demonstrate intention. Typically, we
use SHALL for a mandatory requirement and SHOULD

Customer System Subsystem
(Equipment)

Device
(FPGA)

Requirements Flow Down & Reviews SRR, SDR, PDR

Verification and Compliance & Reviews CDR, MRR, TRR, TRB, DRB

SRR = System Requirement Review
SDR = System Design Review
PDR = Preliminary Design Review
CDR = Critical Design Review

MRR = Manufacturing Review
TRR = Test Readiness Review
TRB = Test Review Board
DRB = Delivery Review Board

XCELL SOFTWARE JOURNAL: XCELLENCE IN EMBEDDED DEVELOPMENT

Figure 1 — Within a development effort, requirements flow down and are traceable from a higher-lever specification.

36

for a nonmandatory requirement. Nonmandatory require-
ments let us express desired system attributes.

After we have established our requirements base-
line, best practice is to create a compliance matrix,
stating compliance for each requirement. We can also
start establishing our verification strategy by assign-
ing a verification method for each requirement. These
methods are generally Test, Analysis, Inspection,
Demonstration and Read Across. Creating the require-
ments along with the compliance and verification ma-
trices enables us to:

• Clearly understand the system behavior.

• Demonstrate the verification methods to both internal
test teams and external customers. This identifies any
difficult test methods early on in the development and
allows us to determine the resources required.

• Identify technical performance metrics. These spring
from the compliance matrix and comprise require-
ments that are at risk of not achieving compliance.

ASSIGN ENGINEERING BUDGETS
Every engineering project encompasses a number
of budgets, which we should allocate to solutions
identified within the architecture. Budget allocation
ensures that the project achieves the overall require-
ment and that the design lead for each module un-
derstands the module’s allocation in order to create
an appropriate solution. Typical areas for which we

these at-risk requirements should have a clear mitiga-
tion plan that demonstrates how we will achieve the
requirement. One of the best ways to demonstrate this
is to use technology readiness levels (TRLs). There are
nine TRL levels, describing the progression of the ma-
turity of the design from its basic principles observed
(TRL 1) to full function and field deployment (TRL 9).

Assigning a TRL to each of the technologies used in
our architecture, in conjunction with the compliance
matrix, lets us determine where the technical risks
reside. We can then effect a TRL development plan
to ensure that as the project proceeds, the low TRL
areas increase to the desired TRL. The plan could in-
volve ensuring that we implement and test the correct
functionality as the project progresses, or performing
functional or environmental/dynamic testing during
the project’s progression.

allocate budgets are the total mass for the function;
the total power consumption for the function; reli-
ability, defined as either mean time between failures
or probability of success; and the allowable cross-
talk between signal types within a design (generally
a common set of rules applicable across a number
of functions). One of the most important aspects of
establishing the engineering budgets is to ensure that
we have a sufficient contingency allocation. We must
defeat the desire to pile contingency upon contingen-
cy, however, as this becomes a significant technical
driver that will affect schedule and cost.

MANAGE TECHNICAL RISK
From the generation of the compliance matrix and
the engineering budgets, we should be able to iden-
tify the technically challenging requirements. Each of

ISSUE 3, FIRST QUARTER 2016

37

Assigning a technology readiness level to each technology used
in our architecture, in conjunction with the compliance matrix,

enables us to determine where the technical risks reside.

Isolating
DC/DC

Intermediate
Voltage

IP Voltage Switching
Regulator

Switching
Regulator

Switching
Regulator

Linear
Regulator

Reset Reset

I/O Voltage

Core Voltage

Figure 2 — In this power architecture example, the output rails from the module will require subregulation.

tecture. The output rails from this module will require
subregulation to provide voltages for the processing
core and conversion devices. We must take care to guard
against significant degradation of switching losses and
efficiency in these stages. As we decrease efficiency, we
increase the system thermal dissipation, which can af-
fect the unit reliability if not correctly addressed.

 We must also take care to understand the behavior
of the linear regulators used and the requirements for
further filtering on the power lines. This need arises
as devices such as FPGAs and processors switch at
far higher frequencies than a linear regulator’s control
loop can address. As the noise increases in frequency,
the noise rejection of the linear regulator decreases,
resulting in the need for additional filtering and de-
coupling. Failure to understand this relationship has
caused issues in mixed-signal equipment.

Another important consideration is the clock
and reset architecture, especially if there are sev-
eral boards that require synchronization. At the
architectural level, we must consider the clock
distribution network: Are we fanning out a single
oscillator across multiple boards or using multiple
oscillators of the same frequency? To ensure the
clock distribution is robust, we must consider:

• Oscillator startup time. We must ensure that the
reset is asserted throughout that period if required.

• Oscillator skew. If we are fanning out the oscilla-
tor across several boards, is timing critical? If so, we
need to consider skew both on the circuit cards (in-
troduced by the connectors) and skew introduced
by the buffer devices themselves.

• Oscillator jitter. If we are developing a mixed-sig-
nal design, we need to ensure a low-jitter clock
source because increases in jitter reduce the
mixed-signal converter’s signal-to-noise ratio. This
is also the case when we use multigigabit serial links,
as we require a low-jitter source to obtain a good bit
error rate over the link.

XCELL SOFTWARE JOURNAL: XCELLENCE IN EMBEDDED DEVELOPMENT

38

CREATE THE ARCHITECTURES
Once we understand the required behavior of the
embedded system, we need to create an architecture
for the solution. The architecture will comprise the
requirements grouped into functional blocks. For
instance, if the embedded system must process an
analog input or output, then the architecture would
contain an analog I/O block. Other blocks may be
more obvious, such as power conditioning, clocks
and reset generation.

The architecture should not be limited to the hard-
ware (electrical) solution, but should include the ar-
chitecture of the FPGA/SoC and associated software.
Of course, the key to modular design is good docu-
mentation of the interfaces to the module and the
functional behavior.

One key aspect of the architecture is to show how
the system is to be created at a high level so that the
engineering teams can easily understand how it will be
implemented. This step is also key for supporting the
system during its operational lifetime.

When determining our architecture, we need to
consider a modular approach that not only allows re-
use on the current project but also enables reuse in
future projects. Modularity requires that we consider
potential reuse from day one and that we document
each module as a standalone unit. In the case of inter-
nal FPGA/SoC modules, a common interface standard
such as the ARM® AMBA® Advanced Extensible Inter-
face (AXI) facilitates reuse.

An important benefit of modular design is the po-
tential ability to use commercial off-the-shelf modules
for some requirements. COTS modules let us develop
systems faster, as we can focus our efforts on those
aspects of the project that can best benefit from the
added value of our expertise.

The system power architecture is one area that can
require considerable thought. Many embedded systems
will require an isolating AC/DC or DC/DC converter to
ensure that failure of the embedded system cannot prop-
agate. Figure 2 provides an example of a power archi-

The architecture should not be limited to the hardware
(electrical) solution, but should include the architecture of
the FPGA/SoC and associated software.

Connectorization is one of the first areas in
which we begin to use aspects of the previously
developed budgets. In particular, we can use the
crosstalk budget to guide us in defining the pinout.

The example in Figure 3 illustrates the impor-
tance of this process. Rearranging the pinout to
place the ground reference voltage (GND) pin be-
tween Signal 1 and Signal 2 would reduce the mu-
tual inductance and hence the crosstalk.

 The ICD must also define the grounding of the sys-
tem, particularly when the project requires external
EMC. In this case, we must take care not to radiate the
noisy signal ground.

Engineers and project managers have a number
of strategies at their disposal to ensure they deliver
embedded systems that meet the quality, cost and
schedule requirements. When a project encoun-
ters difficulties, however, we can be assured that
its past performance will be a good indicator of its
future performance, without significant change on
the project. n

FURTHER READING

1. Nuts and Bolts of Designing an FPGA into Your
Hardware. Xcell Journal, 82, 42-49.

2. A Pain-Free Way to Bring Up Your Hardware
Design. Xcell Journal, 85, 48-51.

3. Design Reliability: MTBF Is Just the Beginning.
Xcell Journal, 88, 38-43.

We must also pay attention to the reset architec-
ture, ensuring that we only apply the reset where it
is actually required. SRAM-based FPGAs, for exam-
ple, typically do not need a reset.

If we are using an asynchronous assertion of the
reset, we need to ensure that its removal cannot
result in a metastability issue.

CLEARLY DEFINE INTERFACES
Formal documentation of both internal and ex-
ternal interfaces provides clear definition of the
interfaces at the mechanical, physical and electri-
cal levels, along with protocol and control flows.
These formal documents are often called interface
control documents (ICDs). Of course, it is best
practice to use standard communication interfaces
wherever possible.

One of the most important areas of interface
definition is the “connectorization” of the exter-
nal interfaces. This process takes into account
the pinout of the required connector, the power
rating of the connector pins and the number of mat-
ing cycles required, along with any requirements
for shielding.

As we consider connector types for our system,
we should ensure that there cannot be inadvertent
cross connection due to the use of the same con-
nector type within the subsystem. We can avoid the
possibility of cross connection by using different
connector types or by employing different connec-
tor keying, if supported.

ISSUE 3, FIRST QUARTER 2016

39

Signal 1

Signal 2

Signal 1

Signal 2

GND GND

Figure 3 — Connectorization is one of the most important aspects of interface definition.

http://www.xilinx.com/publications/archives/xcell/Xcell82.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell85.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell88.pdf

Next Disruptive
Digital Business Model
Innovation:
Neuroplastic
Clouds

FPGA-based infrastructure is poised
to bring neuroplasticity to IaaS,
enabling high-performance,
customized, secure-by-design
cloud computing services.

by Francesc Fons
Dr.-Ing, MBA
ESADE Business School, Barcelona, Spain
francesc.fons@alumni.esade.edu

XCELL SOFTWARE JOURNAL: XCELLENCE IN CLOUD COMPUTING

40

mailto:francesc.fons@alumni.esade.edu

ISSUE 3, FIRST QUARTER 2016

41

Neuroscientists once believed the human brain’s struc-
ture to be immutable and its neurons �xed after early
childhood. Research has since proved that the brain is
in fact plastic; it dynamically alters its structure, func-
tions and neural connections—even growing new neu-
rons via neurogenesis—in response to environmental
stimuli and through the very act of thought. Further,
this neuroplasticity persists into old age.

The proven plasticity of the brain is inspiring trans-
formative digital business models founded on flexible,
powerful and made-to-measure cloud computing in-
frastructures as a service (IaaS). Customizable cloud-
based IaaS promises to enable innovative product dif-
ferentiation by synthesizing optimized computations
relative to the service requested, bringing added value
to the end user by delivering a specific quality of ser-
vice (QoS). The paradigm requires special attention
to such design parameters as the performance, cus-
tomization and security of the computer architecture
behind the compute-intensive functionality or applica-
tion. These technical features, already present in the
DNA of reconfigurable hardware technology and de-
ployable today in FPGA-driven cloud computing infra-
structures, are poised to change the rules of the game
in digital business.

NEUROPLASTICITY AND CLOUD COMPUTING
Recent advances in neuroscience have shown that we
can rewire our brains simply by adopting new patterns
of thinking and acting. The neural pathways that the
brain and nervous system use to navigate activities
connect relatively distant areas of the brain, and each

N

watchers have predicted that the bulk of future IT
infrastructure spending in the coming years will be
on cloud platforms and applications.

That said, can we find a relationship between the
discovery of neuroplasticity and the explosion of
cloud computing that might inspire a new digital busi-
ness model?

Imagine abstracting the natural neuroplasticity of
the human nervous system and porting the concept
directly to the computing infrastructure of the cloud.
With the support of the reconfigurable hardware tech-
nology available in FPGA and SoC devices, disruptive
IaaS models can adapt and optimize the computer ar-
chitecture of the servers allocated in the data centers
of any cloud computing infrastructure to the consum-
er’s specific computational needs at any given time,
transforming the resultant computation into value
added. Reinforcing the neuroscience analogy, we use

1

 Client

Client

Client
Client

Internet/Ethernet

Client

Data Center Server

Neuroplastic Cloud

SW application

HW accelerators

HW crypto

HW firewall

CPU
DOMAIN

FPGA
DOMAIN

XCELL SOFTWARE JOURNAL: XCELLENCE IN CLOUD COMPUTING

Figure 1 — Neuroplastic cloud system architecture

42

pathway is associated with a particular domain or be-
havior. New thoughts and skills carve out and pave
new pathways. Every time we think, feel or do some-
thing, we strengthen the associated pathways through
repetition and practice, until actions become habits.

As neuroscience has advanced our understand-
ing of the brain, cloud computing technology has
evolved over the past decade to deliver computing,
networking and storage services over the Internet
to billions of users around the globe. Individuals,
companies and other institutions are embracing
cloud services such as storage, video, messaging,
social networking, online gaming and Web search-
ing. Cloud computing is not merely an IT phenom-
enon; increasingly, it is an engine for enterprises to
grow their businesses while decreasing their costs,
enabling innovation and business transformation fu-
eled by ever-growing computational power. Industry

puting infrastructures tailored to the specific needs
of their customers, quantified through valuable QoS
parameters such as response time, cybersecurity
and, of course, performance. The cloud computing
infrastructure of any digital enterprise could drasti-
cally change with the deployment of reconfigurable
hardware technology, to the extent that an enterprise
would cease treating infrastructure as a commodity
and would instead leverage it as a key link in the value
chain of the business.

Three intrinsic properties sustain the proposed neu-
roplastic cloud computing infrastructure based on re-
configurable hardware: high performance (faster time
to result), flexibility (optimized computation, with an
architecture fully adapted to the specific app that will
run) and security (data privacy, encryption and protec-
tion by design against cybersecurity threats). Joint ex-
ploitation of these characteristics promises to empow-
er disruptive innovation in the digital business era.

HPC MOVES TO THE CLOUD
High-performance computing (HPC) is basically the
use of parallel processing to run advanced application
programs ef�ciently, reliably and quickly. Historically,
access to HPC was restricted to academics, engineers
and scientists; indeed, HPC became virtually synony-
mous with the supercomputing centers that perform
the complex computations used in simulations of the-
oretical physical models. Typical �elds of application
for HPC have included climate modeling, crash sim-
ulations and bioinformatics—domains that are com-
pute-intensive by nature.

The cloud computing phenomenon is putting HPC
within everyone’s reach. Day by day, the demand for
this computational power is extending further be-
yond traditional supercomputing centers into public,
private, hybrid, community and even personal clouds
that users access through portable—or even wear-
able—embedded devices.

For many services and applications, the ever-in-
creasing demand for computational power translates

the term neuroplastic cloud to describe a physical
cloud computing infrastructure that merges proces-
sor soft cores with programmable logic (FPGAs) to
yield a heterogeneous hardware-software processing
ecosystem through which data center servers custom-
ize and adapt their computational power to the specif-
ic application in use in the cloud (Figure 1).

This concept encourages a cloud computing para-
digm shift in that the adaptability of any computation-
al “brain”—once synthesized in reconfigurable hard-
ware as a made-to-measure computing unit ported to
the cloud—can deliver a clear competitive advantage
to digital businesses that perform cloud services un-
der stringent and specific computational requirements
often not achievable through today’s standard cloud
solutions. Fields of application that could benefit
from this approach include financial trends analysis;
real-time medical image processing; bioinformatics;
computational biology; genome sequencing; real-time
control of energy, oil and gas distribution; big-data an-
alytics; and deep learning.

The notion of introducing reconfigurable hardware
technology into the cloud computing arena originated
with academic research. The reconfigurable-computing
community has been exploring opportunities for cou-
pling FPGAs with general-purpose processors for some
time, and a number of research groups are convinced
that FPGAs are the future enablers of application-spe-
cific accelerators in cloud computing servers. This un-
derstanding has not yet translated into widely available
commercial solutions; but cloud technology leaders
such as Microsoft, IBM, Intel, Qualcomm and Baidu, to-
gether with FPGA vendors, are strongly advocating for
FPGA optimization of data center workloads.

At a time when the digital services economy is
fueling cloud computing growth, cloud computing
stakeholders increasingly believe that FPGA adoption
in the data center will provide better performance/
power efficiency than the alternatives in place today.
That means cloud service providers could soon have
new strategies at their disposal for delivering com-

ISSUE 3, FIRST QUARTER 2016

43

A number of research groups are convinced that
FPGAs are the future enablers of application-specific

accelerators in cloud computing servers.

vice over the Internet. Many enterprises acknowledge
that cloud hardware infrastructure is indispensable to
their business, but they treat it as a commodity that
does not bring them any competitive advantage, as
their competitors use essentially the same technology
to offer essentially the same QoS.

Reconfigurable hardware technology can disrupt
this model. The technology brings compelling per-
formance/watt gains, lowers total cost and serves
as a scalable reconfigurable acceleration platform
that can be optimized on demand to any workload,
thereby enabling clear differentiation. Data center
servers equipped with FPGA devices can propel hard-
ware-software computing platforms that are optimiz-
able for specific computations. Flexible hardware
will be key to bringing end users access to a wealth
of features strongly tied to the cloud infrastructure,
such as application-specific high-performance com-
puting by design.

Several factors argue in favor of a shift to flexible
computing in the cloud. FGPAs’ parallel processing
capabilities are one clear advantage. Moreover, the
integration of heterogeneous hardware resources in
the cloud through FPGAs offers an opportunity to
improve computational efficiency without relying on
continued CPU performance scaling.

Additionally, to increase the throughput of any spe-
cific computation task, it is often possible to pipeline
its implementation in FPGA resources. Meticulously
pipelining the end-user application through flexible
hardware can deliver a customized solution with opti-
mized performance.

It is further possible to leverage partial reconfigura-
tion of the hardware resources in the FPGA, swapping
different custom coprocessors in and out on specific
resources at runtime in order to compute—on demand
and dynamically, in a multiplexed way—the most com-
pute-intensive stages of the demanded application al-
gorithm. The approach incurs nearly no degradation in
execution time while delivering a cost-effective solu-
tion that balances area and performance.

XCELL SOFTWARE JOURNAL: XCELLENCE IN CLOUD COMPUTING

44

to stringent response time mandates, requiring pro-
viders to update their computing platforms with the
latest technology. Real-time image processing, video
streaming and big-data analytics are among the ap-
plications in which lower latencies and faster time
to results are major contributors to the QoS that end
users value. Big corporations as well as startups and
small and midsized enterprises (SMEs) increasingly
believe that advanced computational infrastructures
will bring competitive advantages. As HPC goes main-
stream, cloud computing is becoming critical to HPC
delivery—particularly for engineering and scientific
applications that already use cluster and grid comput-
ing—by enabling shared, elastic access to unlimited
compute resources.

As cloud infrastructure workloads demand higher
computing capabilities, greater flexibility and more
power efficiency, pioneering FPGA-based alterna-
tives can deliver high-performance solutions that
exceed industry needs. Computing platforms pow-
ered by parallel processing through reconfigurable
hardware technology promise an immediate and bal-
anced solution, especially in applications that require
extremely fast processing of real-time data. Through
collaborations with key stakeholders, FPGA vendors
are working to enable higher-performance, more en-
ergy-efficient data centers by attaching accelerators
synthesized in FPGA logic to the existing processors
in order to achieve dramatic latency reductions.

FLEXIBLE COMPUTING IN THE DATA CENTER
As end users become increasingly comfortable with
and reliant upon hosting their personal data in the
cloud, the expectation is that cloud computing will
become the default method of IT delivery. An associ-
ated trend is the transformation of products into ser-
vices, broken down into units that can be recombined
to suit customers’ precise requirements in a pay-per-
use business model. IaaS is a way of providing cloud
computing hardware infrastructure (servers, storage,
network and operating systems) as an on-demand ser-

criteria for the cloud system architecture. The follow-
ing factors argue in favor of hardware-strengthened
trusted cloud computing.

• Hardware security primitives and protection
against tampering. FPGAs provide certain securi-
ty features, such as physical unclonable functions
(PUFs), an alternative mechanism for key storage
that provides a unique identifier for each integrated
circuit. FPGAs are also suitable for implementing
true random-number generators (TRNGs), required
for creating cryptographic keys.

• Hardware-based implementation of cryp-
tographic algorithms. The Advanced Encryp-
tion Standard (AES) and Elliptic Curve Cryp-
tography (ECC) are examples of cryptographic
algorithms performed in hardware. The cryp-
tographic primitives (rotations, XOR operations,
etc.) of such algorithms are better suited to de-
ployment in FPGA hardware than to sequential
software execution on CPUs. AES, for instance,
is decomposed in a set of stages or steps, exe-
cuted sequentially, with each stage decomposed
internally as a loop of basic operations. These
loops can be performed faster by unrolling them
in hardware, making use of parallel execution.
Moreover, the steps can be pipelined to increase
performance. These techniques optimize the syn-
thesis of cryptographic algorithms in hardware.

• Data privacy at any time (data-in-motion, data-
in-use and data-at-rest). Performance degra-
dation is a key concern when developing security
solutions. Hardware-based solutions offer advan-
tages over software approaches because the hard-
ware can perform low-latency data encryption and
decryption with virtually no overhead. In this way,
all of the information that the application manages
through the cloud can be sent, received and stored
encrypted—i.e., as ciphertext instead of plaintext—
guarding it against cyberattack.

To sum up, made-to-measure cloud computing can
bring key differentiation to providers and practitioners
in a number of fields. For example, finance computing
applications powered by specific computer infrastruc-
tures, instead of standard ones, can speed brokers’ anal-
ysis of financial trends so that they can move to buy or
sell shares more quickly than their competitors. Medi-
cal staff can improve imaging quality and response time
in surgeries performed remotely if the computer that
handles the requisite real-time processing algorithms is
specifically optimized to perform them. Big-data analyt-
ics on convolutional neural networks and online gam-
ing are other computational fields in which high QoS,
measured in terms of latency and overhead, can bring a
clear competitive advantage.

TRUSTED CLOUD COMPUTING
Cybersecurity and data privacy challenges are the
main barriers to universal cloud computing adoption.
Because the cloud infrastructure, to varying degrees,
is always an open and shared resource, it is a target
for malicious attacks from both insiders and outsid-
ers, and today the security implications of executing
certain computations or storing sensitive data on
shared resources make cloud computing inadvisable
for critical applications. Side-channel attacks, identi-
ty hijacking and distribution of malicious code have
all been observed in current cloud platforms and in-
frastructure. Trusted cloud computing solutions that
eliminate such breaches are therefore critical to the
efforts to enable customizable cloud computing any-
time, anywhere, by anyone.

Adoption of reconfigurable hardware for cloud-
based IaaS not only would make cloud computing
more accessible and customizable but also would en-
hance security compared with software-based solu-
tions. By design, FPGA devices offer a substantially
smaller and more well-defined attack surface than
the software-based solutions traditionally used in the
cloud. Designers of FPGA-based cloud computing in-
frastructure can push security to the top of the design

ISSUE 3, FIRST QUARTER 2016

45

Adoption of reconfigurable hardware for cloud-based IaaS
not only would make cloud computing more accessible and

customizable but also would enhance cybersecurity.

XCELL SOFTWARE JOURNAL: XCELLENCE IN CLOUD COMPUTING

46

• Hardware-based firewalls. Hardware security
modules filter all data going through the system
communication bus, strengthening the data’s resil-
ience against specific kinds of attacks.

• Digital signature. Hardware approaches also sup-
port user authentication as well as verifiable at-
testation and certificate management, thereby em-
powering Root-of-Trust (RoT).

ADDITIONAL BENEFITS
Industry use cases illustrate how hardware-based
cloud solutions support the key attributes of se-
curity, high performance and flexibility. They in-
clude the Google Project Vault, which embeds
cryptographic computing synthesized in hardware
into a microSD device; the FPGA-based Microsoft
Azure SmartNIC, allocated in the servers to off-
load software-defined networking functions from
the CPU; the Catapult Project, a push by Microsoft
to speed Bing’s search engine through FPGA tech-
nology; and the Bitfusion Cloud Adaptor initiative,
which lets developers use FPGAs in the cloud.
FPGA technology is already available to prove
the neuroplastic cloud-based computing concept
in data center servers; the Xilinx® Kintex® Ultra-
Scale™ FPGA and Xilinx Zynq® Ultrascale+™ MP-
SOC device series are valid examples.

Further considerations that argue for FPGA-based
cloud computing infrastructures include:

• Scalability. Cloud computing is bringing great
cost reductions by leveraging economies of scale
in data centers. FPGA-based cloud computing solu-
tions scale far more easily than solutions based on
CPUs and GPUs.

• Low power. More important than raw performance
in the context of data centers is performance per
watt. Data centers require high performance but
at a power profile within the limits of data center
server requirements. FPGA-based solutions can

deliver much higher performance/watt than other
alternatives in the market. Clearly, maximizing per-
formance/watt is essential to improving data center
reliability and managing operating costs.

• Environmental friendliness. Extending the argu-
ment of reduced power consumption, FPGA-based
cloud computing is emerging as an unsurpassed
way to reduce computing’s carbon footprint.

• Redundancy. FPGA technology, managing the het-
erogeneity of hardware resources, lets developers
synthesize customized solutions with the specific
redundancies required.

Consumers of IT services want it all: mobility,
connectivity, instant access to information, imme-
diate computation results and security by design.
Cloud computing offers enterprises the means to
shift tasks from their local IT infrastructure to
remote, optimized computing clusters. But realiz-
ing the full potential of the cloud to serve today’s
tech-savvy users will require new business models
that leverage a scalable and customizable set of
computing, networking and storage resources to
create value for all customers.

Neuroplastic cloud computing overlays high-per-
formance and trusted computing architectures on top
of fine-grained FPGA devices equipped with heteroge-
neous resources to improve computational capability,
flexibility and security. Hardware neuroplasticity will
revolutionize the way people do business by adding
personalized, individually tailored computing capabil-
ities to the cloud’s established connectivity and mo-
bility features.

Gauging by the frenetic stakeholder activity al-
ready under way, the rapid assimilation of reconfig-
urable hardware technology into the cloud is not far
off. The combination of software code running on the
data center server CPUs with critical sections of the
application processed directly in hardware will en-
able technological differentiation that delivers a clear
competitive advantage to the end user. n

Realizing the full potential of the cloud to serve today’s tech-savvy
users will require new business models that leverage a scalable and
customizable set of computing, networking and storage resources.

http://www.synopsys.com/haps-80

n 4 Minutes to Error-Free 100G Ethernet Operation using Xilinx UltraScale+ Integrated 100G IP

n Avnet introduces $699 Zynq-based, Multiprotocol, Industry 4.0/IIoT MicroZed Kit

n 3 Eyes are Better than One for 56Gbps PAM4 Communications: Xilinx silicon goes 56Gbps for future Ethernet

n Tiny Zynq Board “does absolutely nothing, and that’s a good thing” explains Servaes Joordens

n How I got lost and beer-buzzed in Prague just so I could see Sphericam’s Zynq-based, 360-degree, 4K video VR camera

https://forums.xilinx.com/t5/Xcell-Daily-Blog/4-Minutes-to-Error-Free-100G-Ethernet-Operation-using-Xilinx/ba-p/687281
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Avnet-introduces-699-Zynq-based-Multiprotocol-Industry-4-0-IIoT/ba-p/686682
https://forums.xilinx.com/t5/Xcell-Daily-Blog/3-Eyes-are-Better-than-One-for-56Gbps-PAM4-Communications-Xilinx/ba-p/686673
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-starts-new-SDSoC-design-article-series-on-Embedded/ba-p/664749
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Tiny-Zynq-Board-does-absolutely-nothing-and-that-s-a-good-thing/ba-p/685997
https://forums.xilinx.com/t5/Xcell-Daily-Blog/How-I-got-lost-and-beer-buzzed-in-Prague-just-so-I-could-see/ba-p/685982
http://www.forums.xilinx.com/t5/Xcell-Daily/bg-p/Xcell

	p01_03_cover_02
	p02_snickerdoodle-xcell-ad
	p03_02_publetter
	p04-05_TOC
	p06-19_03_Cover Story
	p20-26_03_avnet
	p27_avnet ad
	p28-33_03_designlinx
	p34-39_03_Taylo
	p40-46_03_ESADE_03
	p47_synopsys_haps
	p48_02_xcelldailyad

