
Issue 70
First Quarter 2010

Xcell journalXcell journal
S O L U T I O N S F O R A P R O G R A M M A B L E W O R L DS O L U T I O N S F O R A P R O G R A M M A B L E W O R L D

INSIDE

FPGA-Based Information
Retrieval at the Heart of
Greener Data Center

Downsampling FIR Filter
Design Made Easy

FPGA Reconfigurability Key to
Video-Based Driver Assistance

4G Wireless Sphere Detector
Built with System Generator

INSIDE

FPGA-Based Information
Retrieval at the Heart of
Greener Data Center

Downsampling FIR Filter
Design Made Easy

FPGA Reconfigurability Key to
Video-Based Driver Assistance

4G Wireless Sphere Detector
Built with System Generator

www.xilinx.com/xcell/

Broadcast Evolves to ‘Broader-cast’
Thanks to FPGA-Based Innovations
Broadcast Evolves to ‘Broader-cast’
Thanks to FPGA-Based Innovations

Learn more about the new Spartan-6 and Virtex-6
FPGA baseboards and FMC modules designed by
Avnet at www.em.avnet.com/drc

Avnet Electronics Marketing introduces three new development kits

based on the Xilinx Targeted Design Platform (TDP) methodology.

Designers now have access to the silicon, software tools and

reference designs needed to quickly ramp up new designs. This

approach accelerates time-to-market and allows you to focus on

creating truly differentiated products.

Critical to the TDP methodology is the FPGA Mezzanine Card

(FMC) from the VITA standards body. Avnet has collaborated with

several industry-leading semiconductor manufacturers to create a

host of FMC modules that add functionality and interfaces to the

new baseboards, allowing for easy customization to meet design-

specific requirements.

©Avnet, Inc. 2010. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

New baseboards for Spartan®-6
and Virtex®-6 FPGAs
» Spartan-6 LX16 Evaluation Kit
» Spartan-6 LX150T Development Kit
» Virtex-6 LX130T Development Kit

New FMC Modules for Baseboards

» Dual Image Sensor FMC

» DVI I/O FMC

» Industrial Ethernet FMC

More are soon to be released!

Development kits help ramp up new Spartan®-6 or Virtex®-6 FPGA designs

1 800 332 8638
www.em.avnet.com

Six powerful Vir tex®-6 FPGAs, up to 24 Million ASIC gates, clock speeds to
710 Mhz: this new board races ahead of last generation solutions. The Dini Group

has implemented new Xilinx V6 technology in an easy to use PCIe hosted or stand
alone board that features:

• 4 DDR3 SODIMMs, up to 4GB per socket

• Hosted in a 4-lane PCIe, Gen 1 slot

• 4 Serial-ATA ports for high speed data transfer

• Easy configuration via PCIe, USB, or GbE

• Three independent low-skew global clock networks

The higher gate count FPGAs, with 700 MHz LVDS chip to chip interconnects, provide
easier logic partitioning. The on-board Marvell Dual Sheeva processor provides multiple
high speed interfaces optimized for data throughput. Both CPUs are capable of
2 GFLOPS and can be dedicated to customer applications.

Order this board stuffed with 6 SX475Ts—that’s 12,096 multipliers and more than 21
million ASIC logic gates—an ideal platform for your DSP based algorithmic acceleration
and HPC applications.

Don’t spin your wheels with last year’s FPGAs, call Dini Group today and run your
bigger designs even faster.

www.dinigroup.com • 7469 Draper Avenue • La Jolla, CA 92037 • (858) 454-3419 • e-mail: sales@dinigroup.com

DNV6F6PCIe

L E T T E R F R O M T H E P U B L I S H E R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2010 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim it
might have against Xilinx for any loss, damage, or
expense caused thereby.

Mike Santarini
Publisher

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
408-626-5981

EDITOR Jacqueline Damian

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Associates
1-800-493-5551

ADVERTISING SALES Dan Teie
1-800-493-5551
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang, Asia Pacific
melissa.zhang@xilinx.com

Christelle Moraga, Europe/
Middle East/Africa
christelle.moraga@xilinx.com

Miyuki Takegoshi, Japan
miyuki.takegoshi@xilinx.com

SUBSCRIPTIONS All Inquiries
www.xcellpublications.com

REPRINT ORDERS 1-800-493-5551

Xcell journal

www.xilinx.com/xcell/

Xilinx Boards International Space Station
n 1988, only a few years after Xilinx was founded, the company established a group focusing
solely on the aerospace and defense (A&D) market. In the two decades since then, a growing
number of government contractors and agencies have discovered the advantages of Xilinx’s

A&D-grade FPGAs. Fast turnaround, reprogrammability and high performance have sent these
devices into a slew of products ranging from satellites, weapons systems and radar to the two robot-
geologist Mars Exploration Rovers, which are still at work on the red planet six years after the end
of their expected operational lifetime. But while some have long seen that Xilinx’s SRAM-based
FPGAs offer unmatched advantages for this market, others have questioned whether they are
resilient enough to stand up to the extremities of space, questioning in particular whether FPGAs
can withstand bombardment by various cosmic rays, common in space and at high altitudes.

Roughly eight years ago, Xilinx’s Carl Carmichael went on a mission to prove that FPGAs are
tough enough for the job. He and Gary Swift, then an engineer at the Jet Propulsion Laboratory and
now the single-event upset (SEU) expert in Xilinx’s A&D Group, formed the SEU Consortium.
Very recently Carmichael, Swift and the roughly 100 members of the consortium celebrated a
milestone that could further increase the pace of adoption of Xilinx FPGAs for A&D applications.

In November of 2009, NASA astronauts brought two very important Xilinx-based experiments
up to the International Space Station on space shuttle Atlantis’ mission STS-129. The first,
SEUXSE, is testing Xilinx® Virtex®-4 and Virtex-5 FPGAs to measure each product’s intrinsic sus-
ceptibility and the efficacy of upset mitigation to shake off (via Xilinx Triple Module Redundancy
software) the effects of various types of radiation strikes in real time. The second, SpaceCube, is
testing the efficacy of an FPGA-based computing platform in space.

Created with the guidance of the SEU Consortium and co-funded by Xilinx, Sandia Labs and
the Naval Research Lab, SEUXSE will not only show how each device while running stands up to
radiation in space, but will also enable comparison of radiation hit rates with predictions from
laboratory radiation-beam testing.

“This is the first time the consortium has run an experiment in space,” said Swift. “Normally
we use ground-based accelerators to simulate space radiation. The FPGAs in SEUXSE are fully
powered and are recording and scrubbing radiation hits live. So far, we’ve taken a handful of radi-
ation hits without any functional errors or system issues, so it is going fabulously.”

SpaceCube, for its part, is an FPGA-based reprogrammable general computing platform developed
by space-avionics designer Gordon Seagrave for NASA/Goddard. Seagrave is another champion of
Xilinx and of reconfigurability in space.

Last July, NASA first flew a Virtex-4 version of SpaceCube on the Hubble Servicing Mission
(STS-125) to test its capability and, more so, its reliability in space. During that mission,
SpaceCube recorded radiation strikes and successfully scrubbed all of them while executing an
autonomous docking program for capturing the Hubble Space Telescope.

The latest version of the SpaceCube is now functioning in close proximity to SEUXSE. NASA
engineers are running a series of video-based experiments on it to further test its reliability. With a
successful demonstration, NASA could give the SpaceCube architecture a greater role in future
missions. “The SpaceCube is the most sophisticated piece of electronics on the space shuttle,” said
Seagrave. It may be the most sophisticated piece of electronics in space today. In fact, NASA
engineers recently named SpaceCube NASA’s Invention of the Year for 2009.

I

F I R S T Q U A R T E R 2 0 1 0 , I S S U E 7 0

XCELLENCE BY DESIGN APPLICATION FEATURES

Xperts Corner How to Achieve Timing Closure on FPGAs… 24

Xplanation: FPGA 101 Easy Route to Simple MicroBlaze Microcontroller… 28

Xperiment FPGAs Hold Key to Greener Search… 32

Ask FAE-X Implementing Downsampling FIR Filters in Xilinx FPGAs… 38

XTRA READING

THE XILINX XPERIENCE FEATURES

1212
Xcellence in Wireless Communications 4G Wireless Sphere Detector Built on FPGA… 12

Xcellence in Automotive & ISM Driver Assistance System Rides FPGA Reconfigurability… 18

Publisher’s Letter Xilinx Boards International Space Station… 4

Xtra, Xtra The latest Xilinx tool updates and patches, as of December 2009… 48

Xclamations! Supply an Xceptional caption for our artwork
and win an SP601 Evaluation Kit…50

Cover Story Broadcast Evolves to ‘Broader-cast’
Thanks to FPGA-Based Innovations 66

1818

2828

3232

6 Xcell Journal First Quarter 2010

From Broadcast to ‘Broader-cast’
with FPGA-Based Innovations
From Broadcast to ‘Broader-cast’
with FPGA-Based Innovations
Xilinx devices propel television to HD, 3D and beyond. Xilinx devices propel television to HD, 3D and beyond.

COVER STORY

high unit costs but relatively low volumes.
Companies that play in these markets build
just about every piece of equipment that
brings a TV signal to your new digital TV,
or a movie to the IMAX or screen at your
local theater. Runyan notes that the cinema
market is usually the early adopter of new
broadcast technologies (see sidebar), but
TV broadcasters are adopting new technol-
ogy at an ever-more-rapid pace as the
demand for high-quality broadcasts
increases. “If you ever have the chance to
tour a local TV studio or visit a network,
you will be amazed by the massive amount
of equipment and miles and miles of wiring
that cover seemingly every inch of available
space in the ceilings and walls,” said
Runyan. “What it takes—in terms of both
effort and technology—to bring a program
to a TV is remarkable.”

For example, in a live-news broadcast,
the reporter on your screen is speaking into
a microphone while looking into a very
advanced and expensive digital video cam-
era. That camera sends—by wire or wire-
lessly—an uncompressed raw signal of voice
and video to an on-the-scene news van that
typically contains portable video viewing
and editing equipment along with radio
gear. All of the equipment in the van is able
to instantly perform very light signal com-
pression and send a live feed or related
taped content directly to a transmission
tower or to the broadcast studio via satellite.

In turn, the studio uses an elaborate
array of equipment to receive the broadcast
feed from the field, record a version of the
content in a storage server and send the sig-
nal to mixing and editing equipment and
multiscreen monitors in a control room.
Program technicians, directors and produc-
ers then mix the content with other outside
feeds and in-studio camera outputs (such as
live-news anchor coverage) and add on-
screen text or ticker tape graphics to coor-
dinate the order of events and ultimately
create a master program.

The broadcasters then send this master
program to the transmission part of the stu-
dio, which will in turn compress it into mul-
tiple codec (coder/decoder) standards, each
suited for transmission on particular media,
such as cable, satellite, terrestrial and wired

by Mike Santarini
Publisher, Xcell Journal
Xilinx, Inc.
mike.santarini@xilinx.com

Over the last 10 years, the electronics
industry has delivered a dazzling array of
flat-panel TVs and related technologies,
pushing cathode-ray tubes, rear-projection
television and analog standard-definition
signal broadcasting into the dusty halls of
antiquity. Today, companies are rolling out
new TV technologies at a dramatic pace.
But to bring the full value of this rapidly
evolving technology to consumers requires
an elaborate chain of equipment that
allows broadcast companies and movie stu-
dios to send the latest advanced program-
ming to the living room, the local cineplex
and, soon, to your handheld device and
your automobile.

Companies competing in the broadcast
and cinema equipment markets have long
used Xilinx® FPGAs as their primary logic
ICs for most, if not all, broadcast equip-
ment, from ultrahigh-end video cameras to
just about every form of studio editing and
signal-transport gear. Today, design teams
in this market are well into the process of
building out the FPGA-based equipment
that will make 1080p broadcasting main-
stream. They have even begun rolling out
FPGA-based 3DTV equipment that will
allow broadcasters to put Avatar-quality
television onto the small screen. A closer
look at the largest of these markets, the TV
broadcast market, shows how designers are
leveraging FPGAs across the entire broad-
cast equipment chain to bring ever-more-
advanced programming to consumers.

Broadcast 101: From the Scene to Your Screen
Ben Runyan, marketing manager at
Xilinx’s Broadcast Segment Marketing
Group, said that broadcast is one of those
markets in which just about everyone sees
the end result but few know how much
goes into it. A great deal of complex tech-
nology is involved and a lot of work goes
on behind the scenes to make it happen.

While out of the mainstream limelight,
the broadcast and cinema markets are, in
fact, highly competitive ones that involve

First Quarter 2010 Xcell Journal 7

COVER STORY

broadcasting (for Internet Protocol TV) or
wireless broadcasting (for cell phones). The
studio then broadcasts these compressed
bands through wired and wireless carrier net-
works (see cover story, Xcell Journal Issue 68)
to get to your cable or satellite set-top box,
digital TV, PC or handheld device. On the
consumer end, these systems will decompress
the signal and display the program.

Runyan said this entire broadcasting
chain—especially live, on-the-fly broadcast-
ing—requires a tremendous amount of
high-bandwidth fiber and satellite resources
along with high-performance video editing
and vast arrays of storage. The equipment
must also be extremely reliable, because it
has to run 24 hours a day and seven days a
week without losing one byte of video data.
All of these requirements—high through-

put, flexibility and reliability—have made
FPGAs the ideal choice for broadcast equip-
ment manufacturers (see Figure 1).

“From the cameras on the scene to the
equipment in the news van, to the editing
equipment (via switchers, routers and mul-
tiviewers) in the studio, to post-editing
equipment and large video server storage
farms, to the compression and transmission
equipment—Xilinx FPGAs play a key role
in all of it,” said Runyan (see Figure 2). “In
fact, broadcast is one market in which
FPGAs long ago displaced ASICs and
ASSPs and are now the dominant logic IC.”
The volumes of these highly advanced sys-
tems simply don’t justify the costs of creat-
ing an ASIC, he said. Meanwhile, ASSPs
“don’t have the raw hardware performance
to cut it in this market,” Runyan said.

As the market moves to 1080p, 3D and
mobile broadcasting over the course of the
next few years, the specifications of TV
broadcast equipment will become even
more demanding, requiring greater raw per-
formance, reliability and, particularly, flexi-
bility. As such, the usage of FPGAs will also
increase, said Runyan. To help further speed
up innovation and productivity, Xilinx has
launched its Targeted Design Platform strat-
egy in support of its latest FPGAs, the
Virtex®-6 and Spartan®-6 families.

Specifically, the soon-to-be released
Virtex-6 FPGA Broadcast Connectivity Kit
will give equipment makers a major leg up
in this market.

“With Targeted Design Platforms, cus-
tomers can spend more time on product
differentiation and less time developing a

8 Xcell Journal First Quarter 2010

Monitors

Intercom

Lighting Ctrl

Cameras

Microphones

Signal Gen

Monitor Wall

ON AIR

Switcher

Transmission
Automation

Character Gen

Audio Mix

Advert Insert

Teletext

Suntitling

Intercom

IRD

Regional Rx Sat/Microwave

Outside Broadcast

Wireless Cameras

Cable

Telecom

Cellular

Terrestrial

Satellite

Content Protect

Compression

FEC Coding &
Modulation

DVD

VTR

RAID

Servers

Non-Linear Edit

Color Correct

Cross Convert

Telecine

Audio Mix

Digital Cinema
Picture & Signal

Quality

Router or
LAN/WAN

Set Top/Display

Set Top/Display

Set Top/Display

Set Top/Display

Mobile/Handset

STUDIO

CINEMA &
PRODUCTION

STORAGE &
SERVERS

TEST &
MEASUREMENT

CONTROL ROOM

INGEST &
NEWS GATHERING TRANSMISSION

C
O

N
SU

M
ER

NETWORK

IP WAN

Figure 1 – Just about every piece of technology in the broadcast chain leverages Xilinx FPGAs.

COVER STORY

First Quarter 2010 Xcell Journal 9

system from the ground up,” said Runyan.
“We offer a number of broadcast-specific
platforms that we’ve specifically tailored to
help companies create equipment that
requires advanced video, audio and net-
work connectivity; real-time high-defini-
tion video processing; multichannel
professional encoding and decoding, as
well as high-speed digital signal processing
for transmission and modulation.”

Top TV Broadcasting Trend: 1080p
The reason the broadcast industry is
advancing so rapidly today is because many
people fought many standards battles, big
and small, over the last 25 years to create
the playing field for the digital-TV age,
said Douglas I. Sheer, CEO and chief ana-
lyst with DIS Consulting Corp. (the broad-
cast-analyst partner of Strategy Analytics)
and a 40-year veteran of the broadcast
community. “This is allowing companies
to create new types of broadcasts—audio
and video—and deliver them to us in a

growing number of ways,” said Sheer.
“What’s been remarkable is the blending of
IT with traditional broadcasting—a lot of
people use their computers and, going for-
ward, their handhelds to watch program-
ming. It’s what the National Association of
Broadcasters calls ‘Broader-casting.’ ”

Today, most TV broadcast companies
are in the process of updating their studios
or building new ones outfitted with 3-
Gbps technology to support 1080p-resolu-
tion, full high-definition and wireless
video broadcasting.

Roughly eight years ago, while most of
the industry was still defining the high-def
road map, some television networks, such
as ESPN, made the bold move to build
million-dollar transmission equipment and
full digital 720p HDTV studios. Many
other networks, however, held on to their
legacy equipment as long as possible.

Due in part to government regulation,
the North American and, now, worldwide
markets are seeing a mass migration to dig-

ital broadcasting, said Xilinx’s Runyan. In
the United States, many of the companies
that resisted going to 720p are bypassing
720p altogether to build or update studios
that will support 1080p HD broadcasting.

“The move isn’t a trivial matter, even for
the early adopters of 720p,” said Runyan.
“The 720p progressive-scan format uses
HD serial digital interface rates of roughly
1.5 Gbps, while 1080p at 60 frames per
second has a data rate of about 3 Gbps.
That’s twice the bit rate and twice the
bandwidth [of 720p], so you can get twice
the amount of data.”

A lot of people use the term “HD”
broadly, he said, “and at the store perhaps
they don’t see a big difference in their TV
resolutions. But in terms of broadcast
equipment sophistication, there is a huge
difference between 720p and 1080p.”

Analyst Sheer said that over the last 10
years, most broadcast companies have had to
take the first big step toward HD—and a
hefty financial hit—by buying and installing

Applications

Technologies

Xilinx Enablers

CRT
Analog > Digital

Analog Tape

Standard Definition
HD-SDI
MPEG-2

Xilinx Focuses on Market
Drives HD-SDI Adoption

Xilinx Enables H.264/AVC

LCD
Digital HD

Digital Tape

1080p HD
H.264 & JPEG2000

3G-SDI

First 3G-SDI Interop
TCON & Processing in Displays
Launch Video over IP solutions

LCD > OLED
Digital 3D
Solid State

3D Codecs
4K Monitors & Projectors

EthernetAVB & DisplayPort

Used for 3D processing
Begins work on 10G Networks
Supports UHDTV Development

1995 2005 2010

COVER STORY

Figure 2 – Xilinx continues to deliver enabling technologies to broadcast innovators through the Targeted Design Platforms.

digital transmission equipment. They are
now following up by starting to purchase 3-
Gbps equipment to support 1080p as most
consumers upgrade their sets to more rea-
sonably priced 1080p HDTVs. “It’s a push-
and-pull as to what drives what,” he said.
“The 1080p consumer TV market was grow-
ing before the recession and declined during
the recession, but has begun to rebound as
the economy seems to be improving. Most
broadcasters see that 1080p is where the con-
sumer demand is headed, and so they are just
now starting to buy equipment for it.”

Runyan notes that at the data rate
requirements for 1080p, every piece of
equipment in the broadcast studio and
throughout the entire TV chain needs
greater bandwidth and some amount of
hardware programmability to handle new
functionality and any changes the industry
may make to codec standards.

“For most companies, this move to
1080p is a huge capital investment,” said
Runyan. “Some of these companies have
been using the same equipment for 20
years and now they have to change to new
equipment. In some cases, they are being
forced to do it simply because no one is
building the equipment to support their
legacy equipment.”

For example, studios employ several
broadcast quality gurus who monitor each
video feed for quality. In the past these spe-
cialists have used ultrahigh-end CRT TVs,
but today no one is making them, so
broadcasters must move to new flat-panel
formats. “There’s a big debate among the
folks who have trained eyes that spot every
artifact, every color and shade, as to which
format—LCD, plasma or OLED—and
which brands make the best studio-quality
monitors,” said Runyan.

In the transition to 1080p, Runyan said,
broadcast equipment will mainly use the
new H.264/MPEG-4 AVC codec standard,
but will also have to support MPEG-2 and
other legacy standards. The H.264/MPEG-
4 AVC codec is associated with Blu-ray and
ultrahigh-definition streaming video. As is
the case with most emerging video specifi-
cations, H.264/AVC is a multipart stan-
dard. Today the base features are fully
defined, but the standard continues to
evolve with new derivatives such as the
Scalable Video Codec (SVC) and Multi-
Viewer Codec (MVC) for 3D broadcasts.
The standard will be more solidly defined as
the broadcast companies put MPEG-4 to
greater use and discover what additional
functionality they will need for fast and reli-
able broadcasting in HD and 3D.

“These codecs are often works in
progress as equipment vendors strive to

10 Xcell Journal First Quarter 2010

In the Footsteps of Digital Cinema

Where TV broadcasting today is ramping up to 1080p and 3D, digital cinema is light years ahead. It has a base resolu-
tion of 2K pixels (2,048 x 1,080 pixels), which requires double the bit rate of 1080p HDTV. The higher-resolution

digital-cinema cameras operate at 4,520 x 2,540 pixels (4K x 2K).
But TV will get there one day.
“Cinema usually leads the way in terms of video technology,” said Ben Runyan, marketing manager at Xilinx’s Broadcast

Segment Marketing Group. “These big-budget films like Avatar have the budgets to use the most bleeding-edge equipment,
much of it custom in this early stage. Eventually, the technology makes its way to the TV broadcast market, but it usually takes
some time because they have to build the infrastructure to support it.”

Because these signals are so large, every piece of equipment—from super-high-end cameras to the cinematographic and edit-
ing equipment—has to be able to process massive signal feeds very rapidly to shoot movies natively in 3D and create stunning
live images that mix seamlessly with special effects.

It’s not only the movie studios that need more-advanced equipment. Theater equipment that projects these films also has to
become more sophisticated. Runyan notes that the more-advanced movie theaters today have the ability to receive live content
directly from the studios via satellite. Theaters can also now project or rebroadcast live performances and sporting events.

This capability “allows the theaters to focus on selling concessions, which is where they really make their money,” said
Runyan. “At the same time, it helps the studios in multiple ways.”

Traditionally, movie studios would send theaters film canisters, tapes or discs of their films, to be shown by means of high-
end projectors.

Every year, however, movie studios lose a boatload of money to pirates. To curb this theft of their intellectual property, they
are directly downloading and even streaming movies right to theater projectors. Doing so cuts down on distribution costs,
makes it faster for theaters to carry the latest movies and acquire known-good copies of those titles, while also making it hard-
er for pirates to copy the content. This is also driving efforts in high-performance security, encryption and copy protection.

Of course, to support this trend, theaters must have equipment advanced enough to receive and ultimately project the movies.

– Mike Santarini

COVER STORY

First Quarter 2010 Xcell Journal 11

continuously improve video quality, and
parts of the codecs may change, which is
why FPGAs have been and will remain the
best choice for this market,” said Runyan.
“With an FPGA-based system, companies
can add new functionality as their needs
change and as standards evolve. When a
change to a codec occurs, it usually isn’t
one piece of equipment that needs to
change, it’s most of it.” Xilinx and its
intellectual-property (IP) partners offer a
portfolio of codec IP to help customers
quickly add new codec functions to their
products, he said, “even after they’ve
deployed them in the studio.”

Sheer said that 1080p is just one of the
many technologies that the new crop of 3-
Gbps data-rate equipment will enable. “The
timing of all these is a bit tricky,” said Sheer.
“The jury is still out as to exactly when
1080p will reach peak demand and, ulti-
mately, which format will become the most
popular.” Thanks to 3-Gbps equipment,
people will be able to watch broadcasts on
their mobile devices and in their cars.

“Mobile broadcast isn’t too good today,
but at higher data rates, it probably will be,”
said Sheer. Seemingly, as the compute
power and connectivity of handheld devices
increases, wireless broadcasting will increase
to keep pace with consumer demand to
view broadcasts on laptops and netbooks.

The Next Big Market: 3DTV
In addition to building for 1080p broadcast
TV, broadcast equipment manufacturers are
also rolling out equipment that will allow
broadcasters to bring sharper, 3DTV broad-
casting to the home. Sheer and Runyan note
that broadcast companies have been able to
air 3D broadcasts for many decades, but not
with truly sharp pictures. Now a new gener-
ation of high-definition 3D, which con-
sumers have enjoyed in theaters in recent
years, will soon be available in the home.
This year at the Consumer Electronics Show
in Las Vegas, several vendors introduced
3DTVs. Some require that viewers use 3D
glasses, others don’t.

The move to “3DTV will allow pro-
grammers to offer even greater premium
services to subscribers,” said Runyan.
“They will be able to offer digital, HD or

3D cable or satellite TV packages and on-
demand programming. You will not only
be able to watch movies in 3D, but also
live events like football and baseball
games.” In fact broadcasters in the U.K.
(see http://www.televisionbroadcast.com/
article/93870) have already begun to test
live 3D broadcasting and plan to offer it
more broadly for the 2010 World Cup.

For companies that have put 1080p stu-
dio equipment in place, the move to 3D
broadcasting is a relatively small but fairly
significant upgrade, Runyan said. To broad-
cast 3DTV signals the industry will need to
deploy new H.264 codec technology and
MVCs to handle the increased bandwidth
from the multiple camera shots needed for
3DTV. That means the studio equipment
will have to support the functionality and
additional data throughput.

“The studio equipment has to be a bit
more sophisticated,” said Runyan. “At a
minimum they will have to be able to simul-
taneously process two feeds: a 2D broadcast
and a 3D broadcast. In some cases, broad-
casters will use post-editing equipment to
convert regular 2D programs into 3D. The
more sophisticated way to do it is to shoot a
program with 3D cameras the way that
movie studios have done for many years—
this is what James Cameron did for his
blockbuster, Avatar—and then generate a
2D HD version from that content.”

Most of this 3D technology hasn’t been
fully field-tested. Many still question
whether 3DTV that doesn’t require glasses
is sharp enough, and whether viewers will
want to wear 3D glasses every night.

Sheer believes that 3DTV will ramp fair-
ly quickly once the market decides what does
and doesn’t work. “Everyone remembers sit-
ting in theaters with cardboard glasses, but
this generation of 3D technology, stereo-
graphic 3D, is substantially better,” Sheer
said. “It is being embraced by so many peo-
ple in Hollywood, and it is even being used
for live sports broadcasting. Perhaps the most
important thing is that it is able to ride the
back of HD.” Indeed, where high-def “took
a quarter of a century to come to fruition,”
Sheer said, “we believe 3D will do it in a frac-
tion of that time, because much of the infra-
structure is already in place with HD.”

Leading the 3DTV market, in Sheer’s
view, will be 3D Blu-ray DVD players that
can play the growing number of stereo-
graphic 3D movies coming out of the
movie industry. Not long after their
advent, 3DTV to the home will follow.
“The draw of seeing live sports in 3D is
huge,” said Sheer.

Beyond 1080p and 3DTV
One would think that with 1080p TV
broadcasting proliferating worldwide and
3D technology widespread in cinema and
moving rapidly toward mainstream TV, the
pace of broadcast technology advances
would begin to slow as the industry paused
to take a collective breather. Evidently
that’s not the case.

Runyan said companies are already
demonstrating “ultra-HDTV” cameras
that capture images at an astounding
7,680 x 4,320-pixel resolution, or 16
times the resolution of high-definition
TV today. The bit rates required are so
large that cameras can currently capture
only 20 minutes’ worth of images in a
day. Sooner rather than later, with
advances in electronics and the refine-
ment of codecs, the ultra-HDTV-class
video quality will undoubtedly move
toward the mainstream. Or will it?

“If the industry achieves the bit rates
they are talking about for ultra HDTV, we
may not have TV or cinema as we know it
today,” said Runyan. “In fact, the bit
stream will be so large it will be able to sup-
port true holographic projections. Imagine
a live sporting event in holographic
imagery, where you can see every angle.
The zoom-in rate is a minimum 1080p,
essentially the same as what we see on the
sharpest commercial TVs today.”

And at that point, we may not be
watching broadcasts on TVs at all but a
new type of holographic projection device,
surely powered by Xilinx FPGAs.

To learn more about Xilinx’s Targeted Design
Platforms for the broadcast market, visit
www.xilinx.com/broadcast. To learn more
about the Virtex-6 FPGA Broadcast
Connectivity Kit, visit www.xilinx.com/
v6bck.

COVER STORY

by Milos Trajkovic
DSP Engineer
Signum Concepts

Slobodan Denic
Systems Engineer
Signum Concepts

Dragan Vuletic
Vice President of Engineering
Signum Concepts

Chris Dick
DSP Chief Architect
Xilinx, Inc.

Raghu Rao
Baseband System Architect
Xilinx, Inc.

Kiarash Amiri
Graduate Student and former Xilinx Intern
Rice University

WiMAX does for broadband Internet access
what cell phones have done for voice com-
munications. It replaces DSL and cable
services, providing Internet access just
about anywhere you go. A simple task, such
as turning on your computer, connects you
to the closest available WiMAX antenna
and plugs you into the worldwide network.

12 Xcell Journal First Quarter 2010

Implementing 4G Wireless
Sphere Detector in FPGA
System Generator was the key to building a quasi-maximum-likelihood detector
(4x4, 64-QAM) for spatial-multiplexing MIMO-OFDM systems.

XCEL LENCE IN WIRELESS COMMS

One of the greatest challenges in broad-
band Internet access is mobility, and that is
what the latest WiMAX standard defines.
IEEE 802.16e-2005 introduces the usage
of multiple antennas at transmission and
reception in a concept known as MIMO,
or multiple input, multiple output, a key
feature in mobile WiMAX.

Spatial-division multiplexing (SDM)
MIMO processing significantly increases the
spectral efficiency, and hence capacity, of a
wireless communication system. Spatial-
multiplexing MIMO communication sys-
tems have recently drawn attention as a
means to achieve tremendous gains in wire-
less-system capacity and link reliability.

The optimal hard-decision detection for
MIMO wireless systems is the maximum-
likelihood (ML) detector. ML detection is
attractive due to its superior performance
in terms of bit-error rate (BER). However,
direct implementation grows exponentially
with the number of antennas and the mod-
ulation scheme, making an ASIC or FPGA
version unfeasible for all but low-density
modulation schemes that use only a small
number of antennas.

A prominent method for MIMO detec-
tion that maintains BER performance com-
parable to optimum ML detection while
significantly reducing compute complexity
is called sphere detection. This technique
reduces detection complexity in both SDM
and space-division multiple-access systems
while maintaining BER performance com-
parable with that of optimum ML detec-
tion. There are several approaches for
realizing sphere detectors, and the algorith-
mic landscape is rich with methods that
enable the designer to make various trade-
offs among performance metrics—for
example, throughput of the wireless chan-
nel, BER and implementation complexity.

While the algorithm (such as K-best or
depth-first-search) and hardware architec-
ture clearly have a strong influence on the
resulting BER performance of the MIMO
detector, the channel matrix preprocessing
typically conducted prior to sphere detec-
tion likewise has a big impact. The channel
matrix preprocessing can range from very
simple processing that might, for example,
compute a preferred order for processing

required compute complexity by using
simple arithmetic operations, while simul-
taneously retaining the numerical integrity
of the final result. In our approach, the first
step decomposes the complex valued-
channel matrix into an expression that
involves real-valued numbers only. This
operation increases the matrix dimension
while at the same time simplifying the
arithmetic required to manipulate the
matrix elements. The second complexity
reduction involves lowering the number of
symbol candidates the detection scheme
analyzes and processes. QR decomposition
of the channel matrix is a key step here.

Figure 1 illustrates the mathematical
transformations that lead to the final
expression of computing the partial
Euclidian distance metrics that are funda-
mental to the sphere detection process.
The triangular form of the R matrix
enables an iterative method for processing
the candidate symbols starting with the
matrix element rM,M where M is the
dimension of the channel matrix expressed
using real-valued quantities. The solution

the spatially multiplexed data streams,
based on variance computations applied to
the channel matrix, through to much more
sophisticated matrix factorization tech-
niques that determine the preferred order
for processing the streams in a more-opti-
mal (in the BER sense) manner.

Signum Concepts, a San Diego-based
communication systems development
company, working together with Xilinx
and Rice University, designed an FPGA
implementation of a MIMO detector for
spatial-multiplexing MIMO in 802.16e
broadband wireless systems. By utilizing a
channel matrix preprocessor that realizes a
type of successive-interference cancellation
similar in concept to that employed in Bell
Labs Layered Space Time, or BLAST, pro-
cessing, the detector achieves close to max-
imum-likelihood performance.

System Considerations
Ideally, the detection process requires com-
puting the ML solution across all possible
combinations of the symbol vector. The
goal of the sphere detector is to reduce the

First Quarter 2010 Xcell Journal 13

d(s) = || y - R x s ||2, y = QHy

H = QR

s = arg min ||y – Hs ||2

^ ^

_ x

ˇ

s�� MT

Figure 1 — Partial Euclidian distance metric equation for sphere detector-based MIMO detection

XCEL LENCE IN WIRELESS COMMS

is delivered in M iterations defining the
tree traversal structure, where each level of
the tree i corresponds to processing sym-
bols from the ith antenna.

There are several candidate methods
for realizing the tree traversal. Our
implementation employs a breadth-first
search due to the attractive feed-forward
structure (and hence hardware-friendly
nature) of the approach. At each level,
the implementation chooses only the K
survivor nodes with the smallest distance
for the expansion

The order in which the sphere detector
processes the antennas has a profound impact

on the BER performance. Therefore, prior to
sphere detection, our design applies channel
reordering using a V-BLAST-like technique.

The method determines the optimum
detection order of columns of the channel
matrix by calculating the norms of the rows
of the pseudo-inverse of the channel matrix
over several iterations. Depending on the
iteration count, the technique will choose
the row with the maximum or minimum
norm. The row (of the inverse matrix) with
the minimum Euclidian norm represents
the influence of the strongest antenna,
while the row with the maximum
Euclidian norm represents the influence of
the weakest antenna. This novel approach
first processes the weakest stream. All sub-

sequent iterations process the streams from
highest to lowest power.

FPGA Hardware Implementation
To implement the described system, we
used Xilinx® Virtex®-5 FPGA technology.
The design flow employed Xilinx System
Generator for design capture, simulation
and verification. To support the different
number of antenna/user and modulation
orders, we designed the detector for the
most demanding 4x4, 64-QAM case.

Our model assumes that the channel
matrix is perfectly known to the receiver,
which can be accomplished by classical

means of channel estimation. After channel
reordering and QR decomposition, we
apply the sphere detector. In preparation
for engaging a soft-input, soft-output
channel decoder (for example, a turbo
decoder), we produce soft outputs by com-
puting the log-likelihood ratio (LLR) of the
detected bits.

The main architectural elements of the
system include the data subcarrier process-
ing and features for managing the system
submodules to process the desired number
of subcarriers in real time while simultane-
ously minimizing processing latency. The
channel matrix is estimated for every data
subcarrier, which limits the available pro-
cessing time for every channel matrix. For

the selected FPGA, with a target clock fre-
quency of 225 MHz and a communication
bandwidth of 5 MHz (corresponding to
360 data subcarriers in a WiMAX system),
the available number of processing clock
cycles per channel matrix interval is 64.

We used careful pipeling and time-divi-
sion multiplexing (TDM) of the hardware
functional units to meet the real-time dead-
line for a WiMAX OFDM symbol.

Besides the high data rate, managing the
latency of the submodules was also an
important issue guiding the design archi-
tecture. We solved the latency issue by
introducing TDM of the successive channel

matrices. This approach provided more
processing time between the matrix ele-
ments of the same channel while still sus-
taining high data throughput. The number
of channels comprising a TDM grouping
varies as a function of the specific submod-
ule. The channel matrix inversion process
employs five channels in the TDM
scheme, while 15 channels are time-divi-
sion multiplexed in the real-valued QR
decomposition module. Figure 2 is the
high-level diagram of the system.

Channel Matrix Preprocessing
The channel matrix preprocessor deter-
mines the optimum detection order for each
layer in the spatially multiplexed composite

14 Xcell Journal First Quarter 2010

Channel
matrix

estimation

V-BLAST
column

reordering

Modified
real value
decomp.
(m-RVD)

QR
decomp.
on real-
values

Sphere
detector

Detected
symbols

Soft-output
generation

Channel matrix preprocessor

H
~

y~
ŷ y,
H R^Hsort

~

Figure 2 – High-level diagram of the MIMO 802.16e broadband wireless receiver

The order in which the sphere detector processes the antennas has a

profound impact on the BER performance. Therefore, prior to sphere detection,

our design applies channel reordering using a V-BLAST-like technique.

XCEL LENCE IN WIRELESS COMMS

First Quarter 2010 Xcell Journal 15

signal. The preprocessor computes the
norms of the channel matrix pseudo-inverse
and, based on those norms, selects the next
transmit stream that is to be processed. The
row of the pseudo-inverse with the mini-
mum norm corresponds to the strongest
transmission stream (smallest post-detec-
tion noise amplification), while the row
with the largest norm (largest post-detec-
tion noise amplification) represents the
layer with the poorest quality. Our imple-
mentation detects the weakest layer first,
with the following layers being ordered
from lowest to highest noise amplification.
For each step in the ordering process, the
corresponding column in the channel
matrix is then nulled, and this deflated
matrix proceeds to the next stage of the
antenna-ordering processing pipeline.

The calculation of the pseudo-inverse
matrix is the most demanding component
in the preprocessing algorithm. The heart
of the process is matrix inversion, which is
realized using QR decomposition (QRD)
implemented by means of Givens rota-
tions. The high system latency associated
with the well-known algorithms for angle
estimation and planar rotations, such as
CORDIC, were unacceptable for our sys-
tem. Hence, the goal was to find an alter-
native solution for vector rotation and
phase estimation using the FPGA’s embed-
ded DSP resources (the DSP48E, in the
case of Virtex-5 devices).

The systolic-array QRD structure con-
sists of two types of processing cells, diago-
nal, or boundary, cells and off-diagonal or
inner cells. The boundary cells perform a
vectoring function and generate rotation
angles that the inner cells of the array use.
You can obtain the desired rotations by
multiplying the value contained in an off-
diagonal cell with the complex conjugate
number in a diagonal cell and scaling by
reciprocal value of the complex-number
magnitude. The division is done as a mul-
tiplication, with a reciprocal value calculat-
ed using a polynomial approximation on
the defined interval where the function is
observed to be close to linear. Using the
approximation, Figure 3 shows the final
signal flow graph of the complex rotator in
the diagonal systolic cell.

The data sent to the off-diagonal cells
actually consists of in-phase and quadra-
ture components of the rotated vector
scaled by the corresponding approximated
value. We obtained high data throughput
using a pipelined architecture for the diag-
onal and off-diagonal cells, while managing

the latency introduced by the approxima-
tion module and complex multiplier by
means of time-division multiplexing of the
hardware across five channels.

We implemented one diagonal and
seven off-diagonal cells for the 4x4
matrix. The processing time to decom-
pose a single matrix is 4 x 4 = 16 data
cycles. The design delivers data at a rate
of one sample every three clock cycles, so
that total time to decompose a single
matrix is 3 x 4 x 4 = 48 clock cycles (out
of the available 64). We implemented
back substitution of the decomposed
matrix along with further reordering
operations in the same TDM manner.

Sphere Detector
The sphere detector’s partial Euclidian dis-
tance (PED) cells perform the norm compu-
tation. Depending on the level of the tree, we
use three different types of PED cells. The
root-node PED block calculates all possible
PEDs. The second-level PED block com-

putes eight possible PEDs for each of the
eight survivor paths generated in the previ-
ous level. This will give us 64 generated
PEDs for the next tree-level index. The third
type of PED block is used for all other tree
levels that compute the closest-node PED for
all PEDs computed on the previous level.

The pipeline architecture of the sphere
detector (SD) allows data processing on
every clock cycle. As a result, only one PED
block is necessary at every tree level. Thus,
the total number of PED units is equal to
the number of tree levels, which for a 4x4
64-QAM system is eight.

The SD can employ two types of decod-
ing techniques: hard decoding, which

Level 1

Level 2

X

X

I Q TDM : I,Q

Cmplx.
mult

Approx

Approx

Cmplx.
mult

x
1

x
1

22

22

QI

QI

+
+ 22 QI +

1

22 QI +

Input matrix
element

off-diagonal cell
rotation

components

off-diagonal cell
rotation

components
save current

matrix row value

read previous
matrix row value

Figure 3 – Block diagram of the diagonal systolic-array cell

XCEL LENCE IN WIRELESS COMMS

determines the sequence with the mini-
mum distance metric through all levels in
the tree, and soft decoding, which repre-
sents each output bit as a log-likelihood
ratio value. LLR values are typically sup-
plied as an a priori input value to the chan-
nel decoder, e.g. turbo decoder.

FPGA Resource Footprint
The implementation and simulation
included the detection process illustrated in

Figure 2, with the exclusion of the soft-
output generation module. The target chip
was a Virtex-5 XC5VFX130T-2FF1738
FPGA. The design clock frequency was
225 MHz and the achievable data rate in
that case was 83.965 Mbits/second.

Table 1 shows the resource consump-
tion for each of the key functional units in
the design. The percentage utilization val-
ues indicate FPGA area expressed relative
to an XC5VFX130T device.

System Generator and Model-Based Design
We realized the entire detection chain
using the Xilinx System Generator for
DSP design flow. Design validation
employed not only the simulation seman-
tics of the MATLAB®/Simulink® environ-
ment but also the co-simulation
capabilities of System Generator. In-phase
and quadrature components of the channel
matrix coefficients are drawn from a nor-
mal distribution and delivered from MAT-
LAB to the System Generator modeling
environment. We likewise computed the
bit-error rate using this simulation frame-
work. Figure 4 contrasts the BER plots for
our fixed-point hard-decision implementa-
tion, the floating-point version of the
model and the golden ML reference curve.
We developed a hardware demonstration
of the design via Ethernet-based hardware
co-simulation for the Xilinx ML510 devel-
opment platform. The channel matrix
coefficients are delivered to the sphere
detector using the Xilinx AWGN IP core.
We computed the BER by embedding the
design in a self-synchronizing BER tester,
which provided the input to the detector
and captured the bit errors.

This paper has provided a brief overview
of a sphere detector for communication
systems employing spatial-multiplexing
MIMO. We have presented the architec-
tural details of the sphere detector and the
channel matrix preprocessor. There are
many ways to realize the preprocessing, and
while our method is computationally com-
plex, the resulting BER performance is
close to maximum likelihood. While we
have couched our discussion around
WiMAX, designers can apply many of
these methods to 3G LTE (long-term evo-
lution) wireless systems.

The next task for our team is improving
the BER plots by implementing iterative soft
detection using convolutional turbo codes
and a soft-output generation module.

For more information, contact Chris Dick
at chris.dick@xilinx.com. For Signum
Concepts FPGA-based design services,
contact Dragan Vuletic at dragan.
vuletic@signumconcepts.com.

16 Xcell Journal First Quarter 2010

Fixed-point FPGA sphere det./preprocessing
Fixed-point MATLAB sphere det./preprocessing
Maximum likelihood

64 QAM, 4x4
10 0

10 -1

10 -2

10 -3

10 -4

10 -5

0 5 10 15 20 25
EbNo [dB]

R
E
B

Function Slices LUTs/FFs DSP48 Block RAM

Channel 9,999 20,339/29,954 159 105
preprocessing (48%) (24%) (49%) (17%)

RVD QRD 1,715 4,418/5,556 30 27
(8%) (5%) (9%) (4%)

Sphere detector 2,445 3,113/6,525 48 12
(11%) (3%) (15%) (2%)

Table 1 – Resource footprint summary by subsystem

Figure 4 – BER curves comparing the 4x4 64-QAM system for the floating-point MATLAB simulation
(hard decision), System Generator design (hard decision) and maximum-likelihood curve

XCEL LENCE IN WIRELESS COMMS

Toggle among banks of internal signals for incremental real-time internal measurements without:

See how you can save time by downloading our
free application note.

www.agilent.com/find/fpga_app_note

Quickly see inside your FPGA

u.s. 1-800-829-4444 canada 1-877-894-4414© Agilent Technologies, Inc. 2009

Also works with all InfiniiVision

and Infiniium MSO models.

by Christopher Claus
PhD Candidate
Technical University of Munich, Germany
Christopher.Claus@tum.de

Florian Altenried
Master’s Candidate
Technical University of Munich, Germany

Walter Stechele
Professor
Technical University of Munich, Germany
Walter.Stechele@tum.de

Video-based driver assistance systems
demand real-time processing of complex
algorithms in diverse situations. In many
instances, based on available hardware in
automotive environments, a pure software
implementation does not offer this
required real-time processing. Instead, such
systems require hardware acceleration.

Dedicated hardware circuits such as
application-specific integrated circuits
(ASICs) or off-the-shelf application-specific
standard products (ASSPs) can offer the
required real-time processing, but they lack
the necessary flexibility. In addition, the
design times for ASICs and their develop-
ment costs have risen over the past years.
Because video algorithms for driver assis-
tance are not standardized, design changes
are quite frequent, which rarely makes an
ASIC a suitable choice.

18 Xcell Journal First Quarter 2010

Dynamic Partial Reconfiguration
of Xilinx FPGAs Lets Systems
Adapt on the Fly

Dynamic Partial Reconfiguration
of Xilinx FPGAs Lets Systems
Adapt on the Fly
A video-based driver assistance application demonstrates
effective use of situation-adaptive hardware.
A video-based driver assistance application demonstrates
effective use of situation-adaptive hardware.

XCEL LENCE IN AUTOMOTIVE & ISM

FPGAs are an attractive alternative,
since the programmable parts offer faster
time-to-market, reduced costs and an
opportunity for product differentiation.
However, the amount of logical functional-
ity that an FPGA design can realize differs
greatly from that of an ASIC when using
the same process technology.

The Institute for Integrated Systems at
the Technical University of Munich,
Germany, investigates multiprocessor sys-
tem-on-chip architectures (MPSoC) for
embedded systems. Another research focus
is high-level simulation methods for early
design space exploration of MPSoC, includ-
ing networks-on-chip and memory hierar-
chies (www.lis.ei.tum.de). As part of that
work, we undertook to develop a reconfig-
urable FPGA-based system-on-chip archi-
tecture for vision-based driver assistance that
is capable of real-time processing and can
rapidly adapt to any upcoming situation.

Architectural Concept
Our AutoVision architecture uses run-
time reconfigurable hardware accelerator
engines for future video-based driver assis-
tance products. In the AutoVision system,
only a portion of the device changes dur-
ing run-time. A key to this research is the
use of Xilinx® FPGAs, which offer the
unique capability of dynamic partial
reconfiguration (DPR), and embedded
design tools such as Xilinx’s ISE®, EDK
and PlanAhead.™ Before we describe the
architecture in detail, we clearly want to
state that the approach is independent uni-
versity research conducted with broad sup-
port from Xilinx.

Dynamically reconfigurable hardware is
the best choice for video-based driver assis-
tance systems that need a high degree of
flexibility and inherent parallelism to
achieve real-time constraints. Algorithms
for video processing can be grouped into

connection between the static and the
reconfigurable part before, during and
after the reconfiguration. Currently we
use hardwired macros. In the future, these
macros will no longer be necessary as the
Xilinx development tools will one day
guarantee a safe connection without
requiring user intervention.

On the one hand, it’s important to
make design changes for reconfigurability
as small as possible compared with a non-
reconfigurable system. Nobody will accept
DPR if the ICAP controller or other DPR-
related logic occupies a huge number of
Block RAMs (20 or even more) of a device.
Thus, storing the partial bitstream in the
on-chip BRAM is not a suitable solution.

On the other hand, the reconfiguration
has to be as fast as possible. If someone is
using a video-based driver assistance system
in a safety-critical environment, dropping a
video frame due to DPR is not acceptable.
To guarantee a fast transfer from the bit-
stream data to the ICAP controller, we con-
nected the ICAP controller directly to the
Multi-Port Memory Controller (MPMC)
via a Native Port Interface. Adding bus
macros as a reconfigurable interface, an
ICAP controller for self-reconfiguration
and an additional port on the MPMC is
considered DPR overhead. Depending on
the amount of reconfigurations and when
they have to be performed, we can divide
the process into either inter- or intra-video
frame reconfiguration, or InterVFR and
IntraVFR respectively.

We define the InterVFR procedure as
swapping reconfigurable modules between
two consecutive video frames. In Figure
1(a), we denote the time to process an
image with one engine as THW1 and that
required by another engine as THW2. The
reconfiguration time for swapping is
denoted as TR, and includes clearing the
reconfigurable region with a blank bit-

high-level application code and low-level
pixel operations. High-level application
code requires a great deal of flexibility and
thus seems to be a good candidate for an
implementation on an embedded CPU,
such as a PowerPC® or MicroBlaze.™ Pixel
manipulation, on the other hand, requires
applying the same operation on many pix-
els in parallel and, thus, seems to be a good
candidate for hardware acceleration.

Depending on various driving condi-
tions, a system will have to use different
algorithms for video processing. The pixel-
level parts of these algorithms require dif-
ferent hardware accelerator engines, which
we load into the AutoVision chip at run-
time of the system. At the same time, we
remove unused accelerators from the
FPGA in order to save chip area.

Dynamic partial reconfiguration is avail-
able on certain commercial Virtex® families
including the Virtex-5, which is what we
used for this research project. DPR espe-
cially makes sense in mutually exclusive sit-
uations such as daytime-nighttime driving,
forward-backward driving and driving at
different velocities (urban environment vs.
highway) and different weather conditions
(rain, fog, snow and so on).

Logical-Resource Challenges
Prior to making a system reconfigurable,
we first must make some investments in
terms of logical resources by adding a
reconfigurable interface, a controller for
the Internal Configuration Access Port
(ICAP) as well as a high-speed intercon-
nect for the bitstream transfer. These are
compensated for later in the design process
with the help of DPR.

The ICAP allows read and write access
to the configuration memory and thus
can be used for on-chip self-reconfigura-
tion. The reconfigurable interface con-
sists of bus macros that guarantee a safe

First Quarter 2010 Xcell Journal 19

XCEL LENCE IN AUTOMOTIVE & ISM

It’s important to make as few design changes as possible for reconfigurability
vs. a nonreconfigurable system. At the same time, reconfiguration has

to be fast. If someone is using a video-based driver assistance system in a
safety-critical environment, dropping a video frame is not acceptable.

stream and loading the new module by
using a second, partial bitstream. If THW1
+ TR + TSW< 32.25ms (31 frames per sec-
ond), then InterVFR is possible, which
means that processing an image with an
engine and reconfiguring the device can be
done before THW2 starts.

The IntraVFR, for its part, involves
swapping multiple reconfigurable modules
within one video frame. The hardware
accelerator for an FPGA-based optical flow
calculation [1] can serve as an example here.
It consists of two engines that execute
sequentially and cannot be pipelined. The
time to process an image with the first
engine is denoted as THW1 and that
required by the second engine as THW2.
The partial bitstreams for both of the
engines are considered to be the same size.
Thus, the reconfiguration time for both
engines is equal and is denoted as TR (blank
and module bitstream) in Figure 1(b). If
THW1 + THW2 + 2 _ TR < 32.25ms (31
fps), then IntraVFR is possible.

In the best case, the reconfiguration
time TR overlaps with the time used to
process the intermediate results on a CPU
(denoted as TSW in the figure). As
Figure 1(a) shows, no additional time
need be reserved in InterVFR, because
TR completely overlaps with TSW. This
is also true for the second reconfigura-
tion, when two sequentially running
engines are swapped using IntraVFR. In
that case the total processing time for one
video frame will increase by the time for

one reconfiguration TR.
Before an InterVFR or IntraVFR sys-

tem could be implemented, the designers
had to perform several steps in advance.

After creating a software (SW) proto-
type of the algorithm, we profiled the
code in order to identify the perform-
ance-intensive parts, since these are the
ones that should run in hardware (HW)
later. We implemented hardware acceler-
ators for the pixel operations by utilizing
a modular, building-block-based pixel
processing chain. Thus, we need imple-
ment from scratch only the operation on
a single pixel and its neighborhood, as
the modular AutoVision concept makes
it possible to reuse the data-input, inter-
mediate-data and data-output path.

By utilizing defined interfaces
between hardware and software, we can
implement a hardware accelerator in par-
allel to the high-level application code
that’s intended to run on embedded
CPUs (HW/SW co-design).

After we simulated and tested the HW
accelerator, we set up a nonreconfigurable
system containing all necessary IP cores
and interconnects. We use this system to
verify the correctness of the overall system
before generating partial bitstreams. If
everything works well, we use the
PlanAhead tool to floor-plan the design
and perform some design rule checks.

Finally, we use an “early access” ver-
sion of the reconfiguration tools (modi-
fied MAP, place and route) to generate

partial bitstreams. These we store on a
CompactFlash card on our development
board. From there we copy the bitstreams
into main memory (DDR or DDR2
SDRAM, which also serves as video
frame buffer) during the initialization
phase of the system in order to have faster
access to this data. When a reconfigura-
tion process is triggered, the first bytes of
the partial bitstreams appear at the ICAP
input around 20 cycles later.

Since a hardware accelerator engine
has to finish its job before it is reconfig-
ured, it’s important to establish a recon-
figuration schedule. All the IP cores in
the AutoVision system communicate via
interrupts. Once a video frame has been
completely transferred to the main mem-
ory, the video input notifies the embed-
ded CPU, such as the PowerPC or
MicroBlaze, by using an interrupt signal.

Suddenly the CPU sends the start sig-
nal to the HW accelerator, along with the
address for where to fetch the pixel data
from memory and an interrupt to the
CPU. If the system receives a reconfigu-
ration trigger during the processing of
the engine, it will execute the reconfigu-
ration right after receiving the engine
interrupt. If it does not receive a recon-
figuration trigger (or immediately after
the reconfiguration process has started),
the embedded CPU will start executing
the high-level application code.

Before starting the reconfiguration
itself, the CPU sends a command to dis-

20 Xcell Journal First Quarter 2010

Total processing time

Engine
interrupt

ICAP
interrupt

32.25 ms t

S

H

IDLE

IDLE

IDLE IDLETSW

TRTHW1 THW1

Total processing time

Engine
interrupt

ICAP
interrupt

Engine
interrupt

ICAP
interrupt

32.25 ms t

S

H

IDLE

IDLE

IDLE IDLETSW

TRTRTHW1 THW2 THW1

(a) (b)

Figure 1 – Depending on the number of reconfigurations and when they are performed,
the process is either inter- or intra-video frame reconfiguration, or InterVFR (a) and IntraVFR (b).

XCEL LENCE IN AUTOMOTIVE & ISM

First Quarter 2010 Xcell Journal 21

connect the bus macros and the reconfig-
urable part from the rest of the system.
The ICAP controller can initiate transfers
using direct memory access and burst
transfers without involving the CPU. The
CPU just sends the memory address
where the partial bitstream is stored along
with the number of bursts to be trans-
ferred to the ICAP controller, and the
reconfiguration process starts.

Because the high-level application code
executes in parallel, the design does not
need to allocate any additional time for the
reconfiguration itself. Before a new engine
is loaded, a blank bitstream clears out the
partial reconfigurable region (PRR). The
ICAP controller informs the CPU that the
module has been removed via an interrupt
and the final step can be launched.

To complete the reconfiguration, the
ICAP controller fetches the partial bitstream,
including the new HW accelerator, and par-
tially reconfigures the device. Swapping two
modules within one frame (IntraVFR) and
clearing the reconfigurable region with a
blank bitstream in each case results in four
reconfigurations per video frame.

During the reconfiguration process,
the PRR is held in a reset state so as to
bring all the registers into a defined state.
Immediately after the reconfiguration, the
system disables the reset and initializes the
configuration registers of the engine.
Finally, the new engine can be started. All

these steps can be seen in Figure 3.
To achieve the fastest reconfiguration

times, we tried to discover the maximum
frequency at which to feed the ICAP. On
the Virtex-5 ML507 FPGA, we use a fre-
quency of 300 MHz to push the configu-
ration data into ICAP. The ICAP has an
input width of 4 bytes and Xilinx speci-
fies it up to a frequency of 100 MHz.
Since we want to achieve the shortest
reconfiguration times, we had to over-
clock the ICAP.

Our goal was to provide 4 bytes of
data to the ICAP every clock cycle. Our

current ICAP controller is clocked at a
frequency of 300 MHz, so it requires
some effort to get enough bitstream data
from the main memory into one Virtex-5
FIFO primitive of our ICAP controller.
Two techniques—use of a control finite
state machine and connecting the ICAP
controller to the MPMC via a Native Port
Interface—ensure that the FIFO remains
filled all the time.

Adding an extra port on the MPMC
necessitates another FIFO to temporarily
buffer the data. To verify that the reconfig-
uration was successful at nonspecified fre-

DVI Video
utput DC

R

PLB
IPIF

PL
B

Ar
bi

te
r

Read
Data
Bus

rite
Data
Bus

PPC
Processor

Core

Data
Cache

nit

Instruct.
Cache

nit

DC
R

M
as

te
r

DC
R ICAP

controller NP
I

MPMC

PLB
IPIF

PLB

DDR SDRAM

Camera

PLB
IPIF
Video
Input

PLB
IPIF

Busmacro

DC
R

DC
R

Engine1

Reconfigurable region

Xilinx Device

DCR

Master attachment
Slave attachment
Bus interface

Init
engine

Enable
busmacro

Start
Engine

Processing
done

Engine
interrupt

ICAP
interrupt

ICAP
interrupt

Disable
busmacro

Reconfigure
blank

Reconfigure
engine

Reset
engine

Figure 3 – The reconfiguration must take place at defined points in time.

XCEL LENCE IN AUTOMOTIVE & ISM

Figure 2 – Block diagram of the AutoVision system shows how the ICAP controller links to MPMC via a Native Port Interface.

quencies, we use an online verification
approach. While the bitstream data is
pushed into the ICAP, the system calcu-
lates a cyclic redundancy check (CRC) in
parallel to ensure the bitstream’s integrity.
In addition, the ICAP produces distinct
words at its output, indicating success or
failure of the reconfiguration process. By
merging the verification information
from ICAP’s output and our CRC IP, we
can generate information about the
reconfiguration process at run-time. We
performed more than 7 million reconfig-
urations without observing one single
configuration error.

Demo Application
We have implemented the InterVFR sys-
tem on an XUPV2P board with a Virtex-II
Pro device from Xilinx as a proof of con-
cept. In this demonstrator, we considered
the following scenario.

A car is driving on a highway on a
sunny day. The system can detect other
cars by feature points on their silhouettes.
Then the car approaches a tunnel. Here it
does not make sense to search for feature
points on the silhouettes of other cars. It
makes more sense to mark the dark tunnel
entrance as a region of interest and
enhance the contrast within this region.
Inside the tunnel, meaningful features are
the taillights of cars, which have to be sep-
arated from the tunnel lights. A more

detailed description of this scenario can be
found in our 2007 article describing the
AutoVision system.[2]

We have implemented the current proto-
type for IntraVFR on a Xilinx ML507 devel-
opment board as a proof of concept. You can
find details on the HW accelerator for the
optical flow in our 2009 paper.[1] The opti-

cal flow that we present in this article is
intended for use in the detection of moving
objects, such as pedestrians. It is used for
illustration purposes only. Figure 4 shows
sample outputs from the AutoVision system.

The HW accelerator for the optical
flow consists of two separate engines. The
first of these, the CensusEngine, trans-

22 Xcell Journal First Quarter 2010

Slice Registers Slice L Ts BRAMs

(a) (b) (c) (d)

40 40 40 40

46 46

14

14 -5 -4
4

-1
2

100

2

(a) (b) (c) (d)

32 32 32 32

42 42

26

26 -6
6

-4
0

-2
4

100

2

(a) (b) (c) (d)

44 44 44 44

33 3323

23 -5
2

-2 -1

100

4

CensusEngine MatchingEngine Static Part DPR verhead

Figure 4 – Output of the AutoVision system in different environments: feature-point detection
and motion segmentation on a sunny day (upper left), contrast enhancement on a tunnel

entrance (upper right), taillight detection inside a tunnel (lower left) and motion detection in
urban environments with the optical flow (lower right).

Figure 5 – Worst-case resource saving of a reconfigurable vs. a nonreconfigurable system

XCEL LENCE IN AUTOMOTIVE & ISM

First Quarter 2010 Xcell Journal 23

lates every pixel and its surrounding
15x15-pixel neighborhood in the image
into a signature, which represents the
luminance distribution within this neigh-
borhood. The CensusEngine outputs an
image with the same dimensions as the
input image but with signatures instead
of gray-scale pixel values. This is the so-
called census image.

The system loads two consecutive cen-
sus images into the second HW accelerator,
namely the MatchingEngine. We use this
engine to compare the signatures from two
consecutive images to see if corresponding
signatures can be found. A unique corre-
spondence determines a movement of a
pixel within a predefined (currently a
15x15-pixel) search region. If the system
finds such a movement, it draws a motion
vector into the output image. As these HW
accelerators are running sequentially, they
can be exchanged within one video frame
by using IntraVFR.

Finally, we can show that Inter- as well
as IntraVFR are possible by means of hard-
ware demonstrators. In the demonstrator
for IntraVFR, a frame rate of 31 fps results
in a total of (31 x 4 =) 124 reconfigurations
per second (rps). The demonstrators for
InterVFR and IntraVFR can be combined
in one single demonstrator.

Results and Resources
Figure 5 depicts the resource utilization of
the IntraVFR system. We compare regis-
ter, LUT and BRAM utilization of the
nonreconfigurable system (a), the recon-
figurable system with a blank module
loaded (b), the reconfigurable system with
the CensusEngine loaded (c) and the
reconfigurable system with the
MatchingEngine loaded (d). We consider
the resource utilization of the static system
including both engines as 100 percent.

As you can see, IntraVFR can save 12
percent of the registers, 24 percent of the
LUTs and 19 percent of the BRAMs. This
may not seem impressive at first glance,
but always keep in mind that exchanging
two modules is the worst case we can
think of. Once we have three, four, five or
more hardware accelerators, as in our
AutoVision project (feature detection on

the silhouette, contrast enhancement
during nighttime or at tunnel entries,
taillight or headlamp detection), signifi-
cant reductions in terms of logical
resources are possible.

In addition, video processing accord-
ing to different weather conditions is
imaginable, requiring new HW accelera-
tors for mutually exclusive situations. By
providing data to the ICAP with a 300-
MHz frequency, we measured a through-
put of bitstream data of 1.2 Gbytes/s.
Reconfiguring a device with a partial bit-
stream with a size of 1.1 Mbytes (partial
bitstream size of CensusEngine and
MatchingEngine) takes 1.1 Mbytes/s to
1.2 Gbytes/s = 0.92 ms.

Future research will include addition-
al measurements to determine if the
reconfiguration will increase or decrease
the power consumption compared with
a nonreconfigurable system. If we per-
form only a few reconfigurations per
hour, the impact of DPR on the overall
power consumption is marginal. But
since we are dealing with a rate of 124
rps, the effect on power consumption is
not negligible. When no reconfiguration
is performed, it’s best to switch off the
registers related to the reconfiguration
via clock gating in order to lower the
overall power consumption.

In addition, we have to perform more
tests to make sure that DPR works reliably.
Despite the fact that additional tests are
needed in order to use DPR in an automo-
tive environment, this technique offers
great potential in maximizing the flexibili-
ty and reducing the overall costs in auto-
motive and especially video-based driver
assistance systems.

References:

[1] C. Claus, A. Laika, L. Jia and W. Stechele,

“High-performance FPGA-based optical flow

calculation using the census transformation,”

in Proceedings of IV’09, Xi’an, China, 2009.

[2] C. Claus, W. Stechele and A. Herkersdorf,

“AutoVision: a run-time reconfigurable MPSoC

architecture for future driver assistance systems,”

Information Technology Journal, vol. 49, no.

3, pp. 181–187, 2007.

XCEL LENCE IN AUTOMOTIVE & ISM

by Nelson Lau
Lead Hardware Engineer
Spirent Communications
nelson.lau@spirent.com

Have you ever written code that behaves cor-
rectly under a simulator only to have inter-
mittent failures in the field? Or maybe your
code no longer functions properly when you
compile with a newer version of your tool
chain. You review your test bench and verify
100 percent complete test coverage and that
all tests have passed with no errors—yet the
problem stubbornly remains.

While designers understandably place
great emphasis on coding and simulation,
they often have only a nodding acquain-
tance with the internal workings of the sil-
icon within an FPGA. As a result, incorrect
logic synthesis and timing problems, rather
than logic errors, are the cause of most
logic failures.

But writing FPGA code that creates pre-
dictable, reliable logic is simple if designers
take the right steps.

In FPGA design, logic synthesis and
related timing closure occur during compi-
lation. And many things, including I/O
cell structure, asynchronous logic and tim-
ing constraints, can have a big impact on
the compilation process, varying results
with each pass through the tool chain. Let’s
take a closer look at ways to eliminate these
variances to better and more quickly
achieve timing closure.

24 Xcell Journal First Quarter 2010

Timing Closure on FPGAsTiming Closure on FPGAs
Sleep peacefully at night knowing that your design is in tip-top shape.Sleep peacefully at night knowing that your design is in tip-top shape.

XPERTS CORNER

The I/O Cell Structure
All FPGAs have I/O pins that can be high-
ly customized. The customization affects
timing, drive strength, termination and
many other factors. When your I/O cell
structure is not clearly defined, your tool
chain will often use a default that may or
may not be what you want. In the VHDL
code below, the intent is to create a bidi-
rectional I/O buffer named sda using the
declaration “sda: inout std_logic;”.

tri_state_proc : PROCESS (sys_clk)

BEGIN

if rising_edge(sys_clk) then

if (enable_in = '1') then

sda <= data_in;

else

data_out <= sda;

sda <= 'Z';

end if;

end if;

END PROCESS tri_state_proc;

When the synthesis tool sees this block
of code, there is no clear directive on how
to implement the bidirectional buffer. As
a result, the tool will take a best guess.

One way to accomplish the task would
be to use a bidirectional buffer on the I/O
ring of the FPGA (indeed, this is the
desired implementation). Another option
would be a tristate output buffer and
input buffer, both implemented in lookup
table (LUT) logic. A final possibility
would be to use a tristate output buffer on
the I/O ring along with an input buffer in
an LUT—and this is the option that most
synthesizers will choose. All three meth-
ods yield valid logic, but the last two
implementations result in additional rout-
ing delays when the signal moves between
the I/O pin and the LUT. They also
require additional timing constraints to
ensure timing closure. FPGA Editor
clearly shows in Figure 1 that our bidirec-
tional I/O has portions scattered outside
the I/O buffer.

The lesson? Don’t let your synthesis
tool guess how to implement critical sec-
tions of your code. Even if the synthesized
logic happens to be what you want, it may
change when the synthesis tool goes

While asynchronous logic may seem
easy to spot, in fact it often goes unde-
tected, so designers must be aware of the
many ways that asynchronous logic lurks
in our designs. All clocked logic requires
a minimum setup-and-hold time, and
this also applies to the reset input of flip-
flops. The code below uses an asynchro-
nous reset. Here, there is no possible way
to apply timing constraints to meet the
setup-and-hold time requirements of the
flip-flop.

data_proc : PROCESS (sys_clk,reset)

BEGIN

if (reset = '1') then

data_in <= '0';

elsif rising_edge(sys_clk) then

data_in <= serial_in;

end if;

END PROCESS data_proc;

The next listing uses a synchronous
reset. However, the reset signal for most
systems may be a pushbutton switch or
some other source that is not related to the
system clock. Although reset is mostly stat-
ic, and asserted or deasserted for long peri-
ods, there is still a change in level. It is the

through a new revision. Clearly define
your I/O logic and any critical logic. The
following VHDL code shows how to
implicitly define the I/O buffer using the
Xilinx® primitive IOBUF. Also note that
all electrical properties of the buffer are
likewise clearly defined.

sda_buff: IOBUF

generic map (IOSTANDARD => "LVCMOS25",

IFD_DELAY_VALUE => "0", DRIVE => 12,

SLEW => "SLOW")

port map(o=> data_out, io=> sda,

i=> data_in, t=> enable_in);

In Figure 2, FPGA Editor clearly shows
that our bidirectional I/O has been imple-
mented entirely within the I/O buffer.

Trials of Asynchronous Logic
Asynchronous code results in logic that is
difficult to constrain, simulate and debug.
Errors from asynchronous logic are often
intermittent and nearly impossible to
replicate. It’s also not possible to generate
a test bench to find errors due to asyn-
chronous logic.

First Quarter 2010 Xcell Journal 25

XPERTS CORNER

Figure 1 – The FPGA Ediitor view shows that portions
of the bidirectional I/O are scattered outside the I/O buffer.

deassertion of reset, relative to the rising
edge of the system clock, that can violate
the setup-time requirements of a flip-flop,
and there is no way to constrain this.

data_proc : PROCESS (sys_clk)

BEGIN

if rising_edge(sys_clk) then

if (reset = '1') then

data_in <= '0';

else

data_in <= serial_in;

end if;

end if;

END PROCESS data_proc;

Once we realize that we can’t directly feed
an asynchronous signal into our synchronous
logic, the problem becomes easy to fix. The
code below creates a new reset called
sys_reset that has been synchronized to our
system clock sys_clk. When sampling asyn-
chronous logic, metastability issues can arise.
We can reduce the chance of its occurrence
by using a laddered sample that is ANDed
with the previous stages of the ladder.

data_proc : PROCESS (sys_clk)

BEGIN

if rising_edge(sys_clk) then

reset_1 <= reset;

reset_2 <= reset_1 and reset;

sys_reset <= reset_2 and reset_1

and reset;

end if;

if rising_edge(sys_clk) then

if (sys_reset = '1') then

data_in <= '0';

else

data_in <= serial_in;

end if;

end if;

END PROCESS data_proc;

So, let’s assume you’ve taken care to
make all your logic synchronous.
Nevertheless, if you’re not careful, your
logic can easily become decoupled from
the system clock. Don’t let your tool
chain use local routing resources for your
system clock. Doing so will make your
logic impossible to constrain. Remember
to clearly define all your important logic.

The VHDL code below uses the Xilinx
primitive BUFG to force sys_clk onto a
dedicated high-fan-out buffer that drives
low-skew nets.

gclk1: BUFG port map (I => sys_clk,O

=> sys_clk_bufg);

data_proc : PROCESS (sys_clk_bufg)

BEGIN

if rising_edge(sys_clk_bufg) then

reset_1 <= reset;

reset_2 <= reset_1 and reset;

sys_reset <= reset_2 and reset_1

and reset;

end if;

if rising_edge(sys_clk_bufg) then

if (sys_reset = '1') then

data_in <= '0';

else

data_in <= serial_in;

end if;

end if;

END PROCESS data_proc;

Some designs use a divided version of
their single master clock to process deserial-
ized data. The VHDL code below, process
nibble_proc, shows an example of data
being captured at one-quarter of the system
clock rate.

data_proc : PROCESS (sys_clk_bufg)

BEGIN

if rising_edge(sys_clk_bufg) then

reset_1 <= reset;

reset_2 <= reset_1 and reset;

sys_reset <= reset_2 and reset_1

and reset;

end if;

if rising_edge(sys_clk_bufg) then

if (sys_reset = '1') then

two_bit_counter <= "00";

divide_by_4 <= '0';

nibble_wide_data <= "0000";

else

two_bit_counter

<= two_bit_counter + 1;

divide_by_4 <= two_bit_counter(0) and

two_bit_counter(1);

nibble_wide_data(0)

<= serial_in;

nibble_wide_data(1)

26 Xcell Journal First Quarter 2010

XPERTS CORNER

Figure 2 – With a VHDL code change to clearly define I/O logic and critical logic,
our bidirectional I/O is implemented entirely within the I/O buffer.

First Quarter 2010 Xcell Journal 27

<= nibble_wide_data(0);

nibble_wide_data(2)

<= nibble_wide_data(1);

nibble_wide_data(3)

<= nibble_wide_data(2);

end if;

end if;

END PROCESS data_proc;

nibble_proc : PROCESS (divide_by_4)

BEGIN

if rising_edge(divide_by_4) then

if (sys_reset = '1') then

nibble_data_in <= "0000";

else

nibble_data_in

<= nibble_wide_data;

end if;

end if;

END PROCESS nibble_proc;

It looks like everything is synchronous,
but the nibble_proc uses a product term
divide_by_4 to sample nibble_wide_data
from clock domain sys_clk_bufg. Due to
routing delays, there is no well-defined
phase relationship between divde_by_4
and sys_clk_bufg. Moving divide_by_4
onto a BUFG will not help either, as the
process incurs a routing delay. The solu-
tion is to keep nibble_proc on the
sys_clk_bufg domain and use divide_by_4
as a qualifier, as shown below.

nibble_proc : PROCESS (sys_clk_bufg)

BEGIN

if rising_edge(sys_clk_bufg) then

if (sys_reset = '1') then

nibble_data_in <= "0000";

elsif (divide_by_4 = '1') then

nibble_data_in

<= nibble_wide_data;

end if;

end if;

END PROCESS nibble_proc;

Importance of Timing Constraints
Applying the proper timing constraints is
a necessity if you want your logic to per-
form properly. If you’ve taken care to

ensure that 100 percent of your code is
synchronous and all I/Os are registered,
those steps will greatly simplify timing
closure. Using the above code and assum-
ing that the system clock is 100 MHz, the
timing constraint file is easily done in
four lines, as shown below.

NET sys_clk_bufg TNM_NET =

sys_clk_bufg;

TIMESPEC TS_sys_clk_bufg = PERIOD

sys_clk_bufg 10 ns HIGH 50%;

OFFSET = IN 6 ns BEFORE sys_clk;

OFFSET = OUT 6 ns AFTER sys_clk;

Note that setup-and-hold times for I/O
registered logic on Xilinx FPGAs are pretty
much fixed and don’t change much within
a package. But we still apply them, mainly
as a verification step to ensure that the
design meets its system parameters.

Three Easy Steps
Designers will find that it’s not hard to
implement reliable code if they follow
three simple steps.

• Don’t let your synthesis tool guess at
what you want. Use Xilinx primitives
to clearly define all I/O pins and crit-
ical logic. Be sure to define the elec-
trical properties of your I/O pins.

• Make your logic 100 percent synchro-
nous and reference all logic to your
master clock domain.

• Apply timing constraints to ensure
timing closure.

If you follow these three steps, you will
have removed variances due to synthesis
and timing. Abolishing those two signifi-
cant obstacles will give you code that
works with 100 percent reliability.

XPERTS CORNER

In a follow-up to this article in an upcoming
issue, Nelson Lau will explore methods to
mitigate flow control between unrelated clock
domains, the effects of which become pro-
nounced when the unrelated clocks have a
large difference in operating frequency.

GetPublished

Would you like
to be published

in Xcell
Publications?

It's easier than you think!

Submit an article draft for our Web-based

or printed Xcell Publications and we will

assign an editor and a graphic artist

to work with you to make your work

look as good as possible.

For more information on this

exciting and highly rewarding program,

please contact:

Mike Santarini

Publisher, Xcell Publications

xcell@xilinx.com

by Christophe Charpentier
Processor Specialist FAE
Xilinx, Inc.
christophe.charpentier@xilinx.com

Embedded microcontrollers are commonplace
for a wide range of applications with various
degrees of complexity. Xilinx has been offering
hard (PowerPC® 405 and PowerPC 440) and
fabric-based (MicroBlaze™) embedded micro-
processors since 2000. MicroBlaze has the
great advantage of being able to service com-
plex applications, in some cases running an
operating system, as well as simple general-
purpose applications.

Designers can implement the MicroBlaze
soft processor in all the current Xilinx architec-
tures, providing easy transitions from family to
family as well as unparalleled flexibility.
However, with more than 70 parameters to
choose from and a powerful set of embedded
tools, designing a MicroBlaze system might
prove unwieldy when your application require-
ments call for only a simple microcontroller.

But with the right techniques, you can build
a simple, preconfigured MicroBlaze microcon-
troller, and easily and quickly add it to any
FPGA design. The controller is instantiated
directly into the HDL. You can use it immedi-
ately in a standard FPGA design flow without
special scripts or complicated steps. Only three
files are necessary to get started—two hardware
implementation files and one software defini-
tion file. This methodology thus enables engi-
neers to get started with FPGA embedded
designs with little to no learning curve.

28 Xcell Journal First Quarter 2010

The Simple MicroBlaze
Microcontroller Concept
It’s easy to add this preconfigured controller to any FPGA design.
Better yet, you won’t need special tools or complicated scripts.

XP LANAT ION:FPGA 101

Starting in the ISE® 11.1, MicroBlaze
software development includes a stand-
alone Software Development Kit (SDK)
that will let you create and debug C and
C++ applications without the need for a
full Embedded Development Kit (EDK).

The microcontroller comes preconfigured
with two options, UART and debug. Table 1
shows the size estimate for various FPGA
families based on the microcontroller config-
uration. Additionally, Virtex® devices use
two Block RAMs and Spartan® devices use
four Block RAMs. Once you have debugged
the application code, you can remove the
debug option to reduce the size of the con-
troller. For example a Spartan-6 microcon-
troller would require only 220 slices.

Microcontroller Overview
The simple MicroBlaze microcontroller
consists of a 32-bit MicroBlaze processor, 8
kbytes of RAM/ROM, a 32-bit user inter-
face with 64 kbytes of addressing space,
interrupt support, an optional UART and
an optional JTAG debug interface. Figure 1
shows the system block diagram.

The clock input can be as low as desired
and as high as the implementation tools will
allow. The active high reset input is internal-
ly synchronized with the input clock. An
interrupt input signal—acknowledged using
the interrupt-acknowledge output when
serviced by the microcontroller—provides
interrupt support. A simple address-mapped
user interface, also synchronous to the clock,
enables user customization. Figure 2 shows

Figure 3. You can instantiate the microcon-
troller in Verilog or VHDL at any level of
hierarchy within the FPGA design. Use the
two hardware-related files—the microcon-
troller netlist (smm.ngc) and the Block
RAM memory map file (smm.bmm)—to
complete the implementation of the FPGA.
You won’t need to learn new tools or use
complex, scripted flows. Doing an FPGA
embedded design has never been this easy.
Switching from one microcontroller config-
uration to another is as simple as replacing
a netlist file with the desired one and reim-
plementing the FPGA.

After running the implementation
tools, an additional file will be created that
will indicate the physical location of the
Block RAMs the microcontroller uses
(smm_bd.bmm).

the timing for the user interface. Byte enables
are used for byte and half-word transactions.

You can decode the 16-bit-wide soft-
ware-mapped address bus to connect vari-
ous custom interfaces or peripherals to the
microcontroller. The read data is sampled
two clock cycles after you assert Chip Select.

Some of the preconfigured versions provide
an option for a serial 16450 UART. The
baud rate is programmed in software to keep
the UART independent from the clock input.
The debug option uses internal FPGA
resources and connects directly to the FPGA
JTAG interface, enabling application debug
through the regular FPGA download cable.

FPGA Design Flow
The FPGA design flow follows the standard
ISE FPGA implementation flow as shown in

First Quarter 2010 Xcell Journal 29

Spartan-3 Family Virtex-5 Family Spartan-6 Family Virtex-6 Family

Configuration LUTs FFs Slices LUTs FFs Slices LUTs FFs Slices LUTs FFs Slices

SMM + UART + Debug 1770 1240 1120 1020 1230 460 1350 1200 470 1350 1200 520

SMM + UART 1510 900 1090 830 880 360 1060 860 320 1050 870 350

SMM + Debug 1390 790 820 820 780 330 990 750 410 990 750 430

SMM 1130 450 630 630 440 220 690 440 220 690 440 250

Table 1 – The size of the simple MicroBlaze microcontroller (SMM) will vary depending on FPGA family.

DIN [0 31] D T [0 31]

BE [0 31

ADDR [0 15]

CS

RN

S T (ptional)

INTERR PT _AC

SIN (ptional)

INTERR PT

RESET

CL

Simple
MicroBla e

Microcontroller

Figure 1 – The SMM consists of MicroBlaze processor, memory and interfaces.

XP LANAT ION:FPGA 101

Software Application Design Flow
A single software description file (smm.xml)
contains all the information necessary to
start developing a microcontroller appli-
cation. The development can start inde-
pendently from the FPGA design flow
and could even start before any FPGA
design implementation.

Starting in ISE 11.1, the SDK is available
as a standalone option. It contains all the
tools, drivers, libraries and utilities you will
need to complete a software application.

Figure 4 shows the standard SDK
development flow starting with the soft-
ware definition file. The address space for
the microcontroller includes the 8 kbytes
of RAM, the user interface and the
UART register space when the UART
option is selected.

You can write the software application
in C or C++ and store it inside the micro-
controller Block RAMs. The RAM space
also acts as a ROM for the microcontroller,
since it can be preloaded with the applica-
tion within the FPGA bitstream. After you
have configured the FPGA and deasserted
the microcontroller reset, the application
will simply start executing from the internal
RAM/ROM space. The microcontroller is
completely self-contained.

The debug option enables full source-
level debug of the application, providing
visibility into the memory, registers and
variables. You can set breakpoints within
the application to facilitate debugging.
Designers will debug with the same cable
that’s used to configure the FPGA. Once
finished, you can remove the debug option
to reduce the size of the controller.

Example Design
Let’s take a look at an LCD controller ref-
erence design for a couple of Xilinx devel-
opment boards that pulls in various features
of the simple MicroBlaze microcontroller.
LCD controllers are well suited for a small
microcontroller implementation due to
their slow and simple hardware interface,
long initialization sequences and large
number of character codes.

Through a combination of HDL and
C code, the design outputs messages to
the character LCD screen on the board.

30 Xcell Journal First Quarter 2010

CL

RN

ADDR [0 15]

D T [0 31]

BE [0 3]

CS

rite Cycle Timing

Addr

Data

BE

CL

RN

ADDR [0 15]

D T [0 31]

BE [0 3]

CS

Read Cycle Timing

Addr

Data

BE

Data
sampled

ISE

- design .v .vhd
 - sub_modules .v .vhd
 -
 - smm instantiation

Synthesi e
XST

Constraints
design .ucf design .ngc

Translate
NGDBuild

design .ngd

Map
MAP

Place Route
PAR

design .ncd

Generate Programming File
BitGen

The design .bit and smm_bd.bmm
files will be used by SD

Copy the 2 SMM hardware
files to the ISE pro ect

smm.ngc

smm.bmm

design .bit smm_bd.bmm

Figure 2 – A simple address-mapped user interface is synchronous to the clock.

Figure 3 – The FPGA design flow follows the standard ISE
FPGA implementation flow, with no need for new tools or scripts.

XP LANAT ION:FPGA 101

First Quarter 2010 Xcell Journal 31

The HDL handles the hardware interface
while the software initializes and controls
the LCD screen.

The timing for the LCD module is slow,
but at the same time requires large delays
between instructions or data. For example, the
instruction to clear the display requires a delay
of 1.52 milliseconds before the next instruc-
tion or data can be issued. Some instructions
require a delay of 40 μs, others 1 μs.

While we could use a while loop in the C
code to handle the delay, it would be too
inaccurate and at the mercy of compiler
optimizations. A better option is to create a
software-loadable 32-bit counter in the
FPGA that will trigger an interrupt to the

controller when it reaches the programmed
delay. A MicroBlaze write to address 0x10
starts the timer based on the data that’s
present on the user interface data bus. The
MicroBlaze will then wait for an interrupt
to continue execution.

A MicroBlaze write to the user interface
address 0x0 triggers the LCD controller
hardware interface, the timing of which is
handled in HDL. The user interface data
bus captures the instruction or data value.
A pushbutton input connects to the user
interface at address 0x20.

The FPGA design consists of a top-level
module, an LCD hardware timing module
and a software-addressable programmable

timer. The top-level file also contains the
simple MicroBlaze microcontroller instan-
tiation running at 66 MHz.

The C application is contained in a sin-
gle file. The code enables the MicroBlaze
interrupt, initializes the LCD screen, man-
ages the different delays, prints two lines to
the LCD, waits for a pushbutton input,
clears the screen and outputs a new message.

On the Virtex-6 ML605 board, the design
consumes less than 1 percent of FPGA
resources and provides a more efficient way of
partitioning a design. Compiling and debug-
ging C code is an order of magnitude faster
than implementing and debugging an HDL-
only implementation.

Customizing the Microcontroller
Since the microcontroller is built using
MicroBlaze, the designer will have access
to many standard peripherals and options
to customize the embedded system. A user
might want to employ a different FPGA
architecture or add more main memory, a
floating-point unit or a standard SPI or
I2C peripheral.

To customize the provided systems
would require the EDK. It contains many
varied configurations as embedded proj-
ects, which you can modify based on user
requirements. For example, if you needed
16 kbytes of memory instead of the stan-
dard 8 kbytes, you would open the EDK
project, modify the MicroBlaze RAM space
and generate the new netlist, Block RAM
memory and software description files. You
would then add the new files into the ISE
and SDK projects.

While a simple MicroBlaze microcon-
troller won’t be the answer for all possible
embedded designs, it does address the
needs of users requiring a simple microcon-
troller to efficiently provide control func-
tions. It also offers a concept for teams
wanting to share and distribute EDK
designs. Regardless of the size of the
embedded design, it takes only three files
to implement the whole thing.

For more details on the simple Micro-
Blaze controller concept, see Xilinx appli-
cation note XAPP1141, at http://www.
x i l i nx . c om/ suppo r t / d o cumen ta t i on /
application_notes/xapp1141.pdf.

SDK

MicroBla e

Copy the SMM
software file to the
SD pro ect location

Standalone Software Platform

standalone.mss

Generate Libraries

Application_x

Pre-processor

Compiler

Assembler

App .o

Linker

App .elf

Program FPGA
Data2Mem iMPACT

Debug Application

design .bit

smm_bd.bmm

App linker script
Linker Script Generator

wi ard facilitates
linker script creation

design .bit and
smm_bd.bmm

are generated by ISE

- App .h
- App .c cpp

-Libraries
-drivers.h
-drivers.c

smm.xml

Figure 4 – The SDK development flow starts with the software definition file.

XP LANAT ION:FPGA 101

by Wim Vanderbauwhede
Project Co-Investigator
University of Glasgow
wim@dcs.gla.ac.uk

Leif Azzopardi
Project Co-Investigator
University of Glasgow
leif@dcs.gla.ac.uk

Mahmoud Moadeli
Research Assistant
University of Glasgow
mahmoudm@dcs.gla.ac.uk

Servicing millions of user search requests
and processing very large volumes of infor-
mation takes massive computational
resources that consume huge amounts of
energy. Indeed, energy costs for computing
and cooling have become the dominant cost
in the operation of data centers.[1] With
data centers growing in numbers and size,
projections show that at the current levels of
energy consumption, the CO2 emission
could overtake that of the airline industry
by 2020.[2] This fact is spurring the devel-

opment of energy-efficient solutions for
processing large amounts of data. The
greening of the data center is a win-win sit-
uation—service providers can significantly
reduce their operating costs while also min-
imizing the impact upon the environment.

FPGAs have huge potential for acceler-
ating common data center tasks such as
Web search and similar information
retrieval because of their inherent paral-
lelism and low power consumption.
Recognizing this potential, the Austrian
company Matrixware had acquired an
FPGA platform but lacked the internal
know-how to implement a complex infor-
mation retrieval application. The company
commissioned our team from the
Department of Computing Science at the
University of Glasgow to develop a proof of
concept for an FPGA-accelerated patent-
search solution. The team—which consist-
ed of the three authors and part-time
research assistant Stelios Papanastasious—
blended expertise in information retrieval,
FPGAs and system development to form
the necessary skill set to develop a proto-

type application. After discussion, we
agreed on a real-time patent-filtering appli-
cation with an FPGA-accelerated back end.

The resources for the project were limit-
ed in terms of manpower and time. For
that reason, implementing the filtering
algorithm in an HDL was not feasible, so
we decided on a high-level programming
solution developed by the Swedish compa-
ny Mitrionics.

The prototype application drew much
interest among patent searchers at the
Information Retrieval Facility Symposium,
held in Vienna, Austria, last November.
Processing millions of patents usually
takes a few minutes, but with the FPGA-
accelerated back end, the results flooded
back in seconds.

We published the results and described
subsequent performance improvements at
the ACM SIGIR International Conference
on Information Retrieval Research and
Development in July 2009 [3] and presented
the detailed design of the architecture at FPL
2009, the international Conference on Field
Programmable Logic, last September.[4]

32 Xcell Journal First Quarter 2010

FPGAs Hold Key to Greener Search FPGAs Hold Key to Greener Search
FPGA-accelerated information retrieval may be the fastest
route to energy efficiency in the data center.
FPGA-accelerated information retrieval may be the fastest
route to energy efficiency in the data center.

XPER IMENT

Ins and Outs of Document Filtering
In general, the task of information filter-
ing consists of matching incoming docu-
ments against a given set of information
needs, or profiles.[5] This task can be per-
formed for a number of reasons in a vari-
ety of situations, for example detecting
spam in incoming e-mails, comparing
patent applications against existing
patents, monitoring communications for
terrorist activity, detecting and tracking
news story topics and so on. When faced
with large volumes of incoming docu-
ments, processing needs to happen in real
time, so time-based efficiency is para-
mount. Therefore, our aim was to filter
documents efficiently in terms of both
time and energy by implementing the
most computationally intensive part of
the filtering application on FPGAs.

In this work, we employed the rele-
vance model proposed by Lavrenko and
Croft.[6] Applied to the task of informa-
tion filtering, the idea is to determine the
odds of an incoming document being rel-
evant to the topic profile using a genera-
tive probabilistic language model. If a
document scores above a user-defined
threshold, then it is considered relevant
to the topic profile.

The algorithm implemented on the
FPGA can be expressed as follows: a doc-
ument is modeled as a “bag of words”—
that is, a set D of pairs (t,f) where
f=n(t,d) is the number of occurrences of
the term t in the document d. The profile
M is a set of pairs p=(t,w) where the
weight is given by

The score of a given document against a
given profile is given by

where T is the set of terms occurring in
both D and M. This function is representa-
tive of the kernel of most filtering algo-
rithms, the main difference being the
weighting of terms in profiles.

evaluate the performance, we created
both a C++ reference implementation
and an FPGA-accelerated implementa-
tion. Both versions have the same basic
functionality—they receive the list of doc-
uments constituting the profile over a
TCP/IP interface, construct the profile
using a relevance model and score a mem-

ory-buffered document stream against this
profile, returning a stream of document
scores to the client over TCP/IP. The docu-
ment stream is buffered in memory; other-
wise, the slow disk access would limit the
performance of the application.

We implemented the application on an
SGI Altix 4700 machine that hosts two
RC100 blades. Each blade contains two
Xilinx® Virtex®-4 LX200 FPGAs running
at 100 MHz; each FPGA is connected to
the host platform via the SGI NUMAlink
high-speed I/O interface and has access to
a local 64-Mbyte SRAM bank over a 128-
bit data bus at a maximum speed of 16
Gbytes/second. The host system is an 80-
core, 64-bit NUMA machine running 64-
bit Linux (OpenSuSE). The processors are
dual-core Itanium-2 devices running at 1.6
GHz; each processor has direct access to 4
Gbytes of memory, but can access the com-
plete 320-Gbyte memory space over the
NUMAlink. It is notable that the Itanium

The Application Architecture
The document-filtering application has a
client-server architecture, consisting of a
GUI-based client connected over TCP/IP
to a communication server that acts as a
proxy between the various back-end servers
and the client (see Figure 1). A typical use
case starts with the user issuing a query to

the query server, a conventional search sys-
tem that returns a sorted list of hits. The
user then creates a profile by selecting rele-
vant documents from that list. Next, the
profile server uses the complete text of all
the combined documents to construct the
profile (the list of terms and weights). The
profile server matches this profile against
the complete document collection and
returns a stream of scores to the client.

The modular client-server architecture
facilitates benchmarking of the system,
since it is easy to add a C++ reference
implementation of the profile server run-
ning on the host CPU. As shown in Figure
1, the FPGA-accelerated part of the appli-
cation is limited to the most computation-
ally intensive task, the matching of the
documents against the profile. The host
system handles all other tasks (Figure 2).

The profile server filters a stream of
documents against a profile received from
a client and returns a stream of scores. To

First Quarter 2010 Xcell Journal 33

Client Communication
Server

Query Server

Document
Server

Profile Server
(CP)

Profile Server
(FPGA)

FPGA FPGA

Document
Database

Figure 1 – System architecture centers on a communication
server that acts as a proxy between client and back-end servers.

XPER IMENT

processor consumes approximately 130
watts,[7] whereas each Virtex-4 FPGA con-
sumes only about 1.25 W.[8]

We implemented the application in C++
using the Lemur information retrieval (IR)
framework and the SGI Reconfigurable
Application-Specific Computing (RASC)
libraries for interacting with the FPGA. The
Lemur Toolkit (see www.lemurproject.org) is
an open-source set of tools designed for
research in IR, with support for indexing
and various relevancy and retrieval models.
The RASC library is SGI’s proprietary solu-
tion to integrating FPGAs with host systems
over the high-performance NUMAlink
interconnect fabric. It defines a hardware
abstraction API that provides control over
each hardware element in the system.

We used the Mitrionics software devel-
opment kit (SDK) to convert the domain-
specific Mitrion-C language into VHDL.
The generated VHDL can now be simply
targeted to an FPGA device architecture.
We employed the Xilinx ISE® tool chain
with the XST synthesis tool to create the
bitstream for the Virtex-4.

High-Level FPGA Programming
The Mitrionics SDK provides Mitrion-C
as a high-level language specifically
intended for the rapid development of
applications on FPGAs. However, the
suffix “C” is a bit misleading. Although

the language has a C-style syntax, it is in
fact a single-assignment dataflow lan-
guage following a functional program-
ming style. Mitrion-C has native support
for wide (vector) and deep (pipeline) par-
allelism. As such it is well suited for algo-
rithms that process streams of data, such
as filtering and many other types of text-
and data-mining algorithms.

Mitrion-C also provides a stream data
type that results in pipelined operation
when used in conjunction with the foreach
looping construct; a vector data type for
data-parallel operation; and a list data type
for sequential lists. In particular, you can
filter the output of a foreach loop over a
stream to produce a smaller stream, as seen
in the example Mitrion-C code below.
Furthermore, programmers can create
powerful data types using the tuple con-
struct. A final feature worth noting is the
language’s support for variable-width inte-
ger and floating-point numbers.

type Word = typedef bits:128;

type Stream = typedef Word(..);

type DocId = typedef uint:64;

type Score = typedef int:48;

type DocScore = typedef tuple

{DocId,Score};

type ScoreStream = typedef

DocScore(..);

ScoreStream score_stream =

foreach (Word w in Stream

word_stream) {

score = ... ; // calculate score

keep = score > limit;

} keep ? score

To implement the scoring operation
efficiently on the FPGA, the key issues we
had to address were efficient lookup of the
profile and efficient streaming I/O of the
document stream.

For every term in the document, the
application needs to look up the correspon-
ding profile term to obtain the term
weight. Since most of the lookups will fail
(that is, most terms in most documents will
not occur in the profile), it is important to
discard the negatives first. For that reason
we implemented a Bloom filter [9] in the
FPGA Block RAM. The higher internal
bandwidth of the BRAMs leads to speedy
rejection of negatives. Because of the need
for lookup, the profile must be implement-
ed as some type of hash function. However,
as the size of the profile is not known in
advance, it is impossible to construct a per-
fect hash; imperfect hashes suffer collisions,
which degrade the performance.

To solve this problem, we opted for a
binning approach, partitioning the external
SRAM into bins, each of which can contain
a fixed number of profile terms. The bin
size determines the number of collisions
that can be handled. To assign a profile
term to a bin we simply take the lower part
of the term ID as the memory address;
thus, there is no actual hashing.

Let the SRAM memory capacity be NM
profile terms. The term ID is an unsigned
integer with a range depending on the
vocabulary size, which in our case is about
4 million terms, requiring 24 bits. The
term weight is represented as an 8.32 fixed-
point number, so the profile term takes 64
bits. The SRAM on the RC100 consists of
four banks of 16 Mbytes, hence NM=223.
The number of bins nb=NM/b and the bin
address are computed from the term ID t as
(t&(nb-1)).b.

The probability x of occupancy for a
bin is given by the combinations, with
replacement given the number of bins nb

34 Xcell Journal First Quarter 2010

Host CP
(Itanium)

N MAlink
interconnect

RC100
blade FPGA

(Virtex-4)

Host
memory

SRAM
memory

Scores Algorithm

Profile
Document

stream

Figure 2 – In the FPGA subsystem architecture, Virtex-4 devices
connect to the host platform via SGI’s NUMAlink interface.

XPER IMENT

and the number of terms in the profile np.
Thus we can compute the probability of
bin overflow as a function of the bin size
(and hence the number of bins) as
NM=b.nb. The larger the bin size, the
slower the lookup; however, as the SRAM
bank consists of four independent 64-bit
addressable dual-port SRAMs, we can
actually look up four profile terms in par-
allel. Consequently, the relative perform-
ance decreases as 1/ceil(b/4). Our analysis
showed that even for the largest profiles
(16K; in our study the largest profile was
12K, but in general profiles are much
smaller), the bin overflow probability for
b=4 (best performance) is 10-9. In other
words, the chance that a profile term will
be discarded is less than one in a billion. It
should be noted that this estimate is pes-
simistic, because we assume that the vocab-
ulary size is infinite.

Using a bag-of-words representation for
the document, the document stream is a list
of pairs (document ID, document term pair
set). Physically, the FPGA accepts a stream
of 128-bit words from the NUMAlink at
1.6 Gbytes/s. Consequently, the document
stream must be encoded onto this word
stream. The document term pair di =(ti,fi)
can be encoded in 32 bits: 24 bits for the
term ID (supporting a vocabulary of 16
million terms) and 8 bits for the term fre-
quency. Thus, we can combine four pairs
into a 128-bit word. To mark the start and
end of a document, we insert header and
footer words that contain the document ID
(64 bits) and a marker (64 bits).

Using the lookup-table architecture and
document stream format as described
above, the actual lookup and scoring system
(Figure 3) is quite straightforward. All that’s
needed is to scan the input stream for head-

er and footer words. The header word sets
the document score to 0; the footer word
collects and outputs the document score.
For every four terms in the document, first
the Bloom filter is used to discard negatives
and then four profile terms are read from
the SRAM. The score is computed for each
of these terms in parallel and added (Figure
4). In practice, three out of four profile
term IDs will not match the document
term ID; only for the fourth is the actual
product computed. The score is accumulat-
ed for all terms in the document, and final-
ly the score stream is filtered against a limit
before being output to the host memory.

The host-FPGA interface transfers the
document stream from the memory buffer
to the FPGA and returns a score stream to
the client. On receipt of a list of profile
document IDs from the client, the parent
process forks off a child process that builds
the actual profile, loads it onto the SRAM
and runs the algorithm on the FPGA. Each
child process spawns a separate output
thread that buffers the scores received from
the FGPA and transmits them to the client
over TCP/IP, thus using the network for
multiplexing the score streams. Without
this thread, fluctuations in the network
throughput could degrade the system per-
formance. The main advantage of this host
interface architecture is that it can easily
scale to large numbers of FPGAs.

Order-of-Magnitude Speedup
To evaluate the performance of the FPGA-
accelerated filtering application, we per-
formed a series of experiments to compare
the FPGA-based implementation against
an optimized reference implementation
written in C++ and run on the Altix. For
the comparison, we used three IR test col-
lections (see Table 1): TREC Aquaint, a

0
0

0
0

S
S

S
S

header/footer detection

Document stream (DMA from host memory)

Document score stream (DMA to host memory)

header

init
score 0

collect
score

acc
score

(t,f)

t

t

score

footer

BRAM

test t
in profile

cross
bar
switch

cross
bar
switch

lookup

profile

(pt,w)

term in

Bloom
filter

(t,f)
4 doc terms

External
SRAM
(2 banks,
dual-port)

S score term

Figure 3 – Diagram of FPGA implementation of a filtering application

XPER IMENT

Collection # Docs Avg. Avg.
Doc. Length Unique Terms

Aquaint 1,033,461 437 169

USPTO 1,406,200 1,718 353

EPO 989,507 3,863 705

Table 1– Collection statistics

First Quarter 2010 Xcell Journal 35

benchmarking reference collection provid-
ed by the Text Retrieval Conference
(TREC), along with two collections of
patents, from the U.S. Patent and
Trademark Office (USPTO) and the
European Patent Office (EPO), respective-
ly. We chose these collections to assess the
impact of different document lengths and
sizes of documents on filtering time.

To simulate a number of different fil-
ters, we constructed profiles for each col-
lection by selecting a random document,
using the title as the query and then select-
ing a fixed number of top documents
returned by the query server as pseudo-rel-
evant. We then used the returned docu-
ments to construct a relevance model that
defined the profiles against which each
document in the collection was matched
(as if it were being streamed from the net-
work). The number of documents in the
profile varied from 1 to 50, to determine
the impact on performance as the size of
the profiles increased (both in number of
terms and number of documents). We
repeated this process 30 times and comput-
ed the average processing times.

We have summarized the results in
Table 2 and Figure 5. From the table, it is
clear that the FPGA implementation is

typically an order of magnitude faster than
the standard implementation. From the
figure, it can be seen that as the profile size
(the number of terms that require match-
ing) increases, the standard implementa-
tion becomes slower and slower, while the
FPGA implementation remains relatively
constant. This is because the FPGA imple-
mentation pipelines the profile scoring,
resulting (in first order) in a constant
latency independent of the profile size.

The results clearly demonstrate the
potential of FPGAs for accelerating IR
tasks. The speedups are already quite dra-
matic, especially for large profiles; never-
theless, there is still room for improvement.
Using simulations, we have verified that
the FPGA algorithm scores one document
term per two clock cycles. The limiting fac-
tor is the SRAM access speed of 128
bits/cycle, requiring two cycles to read four
profile terms. At a clock speed of 100
MHz, this means the FPGA is capable of
scoring the EPO collection in 15 seconds.
The current application takes about 8.5
seconds on four FPGAs, so in principle it
should be possible to increase the perform-
ance with a factor of two at least.

The reason for the discrepancy lies in
the streaming I/O: the document stream is

transferred from user memory space to the
NUMAlink via a host operating system
device driver, which instigates a direct
memory access (DMA) transfer. The driver
transfers a buffered block of the stream.
Currently, this transfer is not implemented
optimally in terms of the transferred block
size, leading to suboptimal throughput.
Furthermore, using a separate thread for
queuing the transfers would eliminate the
transfer time from the latency.

Issues and Lessons Learned
The project was interesting not only because
it demonstrated the potential of FPGAs as
accelerators for information retrieval tasks. It
also provided us with valuable insights into
the hardware and software requirements for
FPGA-accelerated systems.

The I/O to the host system is key to per-
formance: it was crucial that a DMA mech-
anism between the NUMA memory and
the FPGA was supported by both the
Mitrionics SDK and the SGI RASClib. In
a previous project, it was necessary to trans-
fer the data to the onboard SRAM before it
could be processed. But this resulted in a
big hit on performance, since the loading of
data and unloading of the results formed a
significant overhead. It also became clear
that IR tasks, in particular, require consid-
erable amounts of on-chip and onboard
memory for maximum efficiency.

Furthermore, to make optimal use of the
FPGAs, two features are essential for future
platforms: it must be possible to transfer
data directly between the FPGAs and it must
be possible to switch off the host processor
(or to control numerous FPGAs with one
host processor). The ability to turn off the
host processor is particularly important: on
the Altix platform, the Itanium processor
cannot be switched off even if it’s complete-
ly idle. Unfortunately, an idle Itanium
processor still consumes 90 percent of the
power of a fully active one. As a result,
although the energy savings resulting from
the FPGA acceleration are considerable, the
power saving in our current system is mini-
mal, despite the fact that the host processor
is idle during the run of the accelerator.

Another aspect of developing FPGA-
accelerated systems is the software. Our

36 Xcell Journal First Quarter 2010

0

f

pt

(pt,w)

term score

(dt,f)

dt

w

0 0 0

+

= = = =

* * * *

Figure 4 — Document term scoring

XPER IMENT

First Quarter 2010 Xcell Journal 37

experience clearly shows that the main com-
plexity is the interfacing between the FPGA
and the host system: the actual FPGA appli-
cation development in Mitrion-C was very
productive; the framework for querying and
serving documents using the Lemur tool kit
was relatively easy to develop. However, the
code interfacing the host application with
the FPGA, using the RASClib, was very
complicated and, because of concurrency
issues, difficult to debug. As a result, this
interface code dominated the development
time by an order of magnitude.

A final issue with high-level program-
ming of FPGAs is the compilation speed.
Developers accustomed to languages like
C++ or Java expect short build times
even for very complex applications. The
current FPGA tools require almost a full
day to perform synthesis and place-and-
route on all but the most trivial designs.
These long build times seriously hamper
productivity and would need to be
reduced to the same order of software
build times to make FPGA acceleration
more attractive.

Tailored Hardware Platforms
With this project we explored the possibil-
ities of FPGA acceleration and demonstrat-
ed the potential of FPGAs as a greener
technology for the data center. We want to
expand this research to investigate the full
chain of tasks required for document pro-
cessing: parsing, stemming, indexing,
search and filtering. As it has become clear
that off-the-shelf systems are limited in
terms of their energy-saving potential, we
want to investigate tailored hardware plat-
forms specifically designed to perform
information retrieval tasks with the highest
possible efficiency. By doing so, it will be
possible to speed up the execution of algo-
rithms by an order of magnitude, while
also reducing the energy consumption by
an order of magnitude to create greener
and faster data centers.

References

[1] C.L. Belady, “In the Data Center, Power and
Cooling Costs More than the IT Equipment it
Supports,” Electronics Cooling, Vol. 13, No. 1, 2007.

[2] McKinsey & Co., “Revolutionizing Data Center
Efficiency,” Uptime Institute, 2008.

[3] L. Azzopardi, W. Vanderbauwhede and M.
Moadeli, “Developing Energy-Efficient Filtering
Systems,” Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, ACM, 2009.

[4] W. Vanderbauwhede, L. Azzopardi and M.
Moadeli, “FPGA-Accelerated Information Retrieval:
High-Efficiency Document Filtering,” Proceedings of
the 19th IEEE International Conference on Field
Programmable Logic and Applications (FPL09), IEEE,
2009.

[5] N.J. Belkin and W.B. Croft, “Information
Filtering and Information Retrieval: Two Sides of the
Same Coin?” Communications of the ACM, Vol. 35,
No. 12, 1992.

[6] V. Lavrenko and W.B. Croft, “Relevance-Based
Language Models,” Proceedings of the 24th ACM
SIGIR Conference, 2001.

[7] C. McNairy and R. Bhatia, “Montecito: A Dual-
Core, Dual-Thread Itanium Processor,” IEEE Micro,
Vol. 25, No. 2, March 2005.

[8] S. Sharp, “Virtex-4 Dynamic Power
Comparison—A Case Study,” December 2005.
http://www.xilinx.com/products/silicon_solutions/
fpgas/virtex/virtex4/resources/Virtex4_Power_
Case_Study.pdf

[9] B. H. Bloom, “Space/Time Trade-offs in Hash
Coding with Allowable Errors,” Communications of
the ACM, Vol. 13, No. 7, July 1970.

CP A uaint
CP EP
CP SPT
FPGA SPT
FPGA EP
FPGA A uaint

1 0

160

140

120

100

0

60

40

20

102 103 104
0

Number of ni ue Terms in Profile (Log Scale)

Ti
m

e
(s

ec
on

ds
)

Collection Profile # Docs Processor # Unique Terms CPU (Seconds) FPGA (Seconds) Gain

1 254 21.3 2.6 8.3x

Aquaint 10 1,444 27.4 2.6 10.5x

50 4,713 34.5 2.6 13.2x

1 28 64.0 7.2 8.9x

USPTO 10 148 68.3 7.1 9.6x

50 615 76.9 7.5 10.3x

1 1,327 107.3 8.4 12.7x

EPO 10 4935 153.3 8.1 19.0x

50 12,314 177.1 8.5 20.8x

Table 2 – Performance statistics

Figure 5 – Time in seconds vs. number of documents in profile

XPER IMENT

by Daniele Bagni
DSP Specialist FAE
Xilinx, Inc.
daniele.bagni@xilinx.com

Over the last two quarters, I’ve had several customers ask for help in
designing and implementing downsampling (aka “decimation”) filters
for digital downconverters, which are common in both software-
defined radio and data-acquisition type applications.

This isn’t a trivial task for even an experienced designer. Indeed,
just figuring out what resources you will need to implement a filter
in an FPGA can be a big problem. Although MATLAB® (by The
MathWorks) has a fantastic tool box for filter design and analysis
(FDA), it presents so many ways to design a filter that a new user
can easily get lost. Further, you have to be able to interpret the
results that MATLAB commands generate in relation to DSP theo-
ry, which alone requires a bit of study.

With these issues in mind, but without getting too mired in
theory, let’s examine the design and implementation of a finite
impulse response (FIR) filter for downsampling. This tutorial
will, in fact, walk you through an easy and understandable flow,
from the generation of the filter coefficients to the implementa-
tion of the decimation filter in the FPGA target device. The only

tools needed are a fairly recent version of MATLAB (I am still
using R2008a) and its FDA tool box, plus the Xilinx CORE
Generator™ tool available in ISE® 11.4. These tools are manda-
tory for designing multirate FIR filters.

Specifically, we’ll walk through two cases of fixed downsampling
rate changes: integer and rational values. You should be able to apply
the MATLAB instructions and the CoreGen graphical user interface
(GUI) settings we’ll go through in this tutorial to your designs. To
illustrate the resource utilization in terms of common logic block
(CLB) slices, 18-kbit memory RAM blocks (BRAM) and DSP48
multiply-and-accumulate (MAC) units, we’ll use the XC6VLX75T-
2ff484 as our target FPGA device.

Integer Factor Downsampler
Let us assume that after the demodulation in baseband, a signal with
bandwidth of only 2.5 MHz is carried out at a rate of 250 MHz. We
have to filter all the frequencies from 2.5 MHz up to 125 MHz, since
they do not convey any useful information; this is the purpose of the
low-pass FIR filter we plan to design and implement. According to
the Nyquist theorem, the output data rate is twice the bandwidth of
the signal; therefore, we need to downsample it by an integer factor
of M=50. I will show two possible alternative implementations by
applying a multistage filtering approach: the first method will use a

38 Xcell Journal First Quarter 2010

Implementing Downsampling
FIR Filters in Xilinx FPGAs
Implementing Downsampling
FIR Filters in Xilinx FPGAs
Designing decimation filters for digital
downconverters can be trying.
Here’s a simple, easily understood
flow to get the job done.

Designing decimation filters for digital
downconverters can be trying.
Here’s a simple, easily understood
flow to get the job done.

ASK FAE -X

chain of three FIR decimation filters and the second, both cascade-
integrator-comb (CIC) and FIR filters.

Here is the MATLAB code to design the golden filter. We
assume an attenuation of 0.1 dB and 100 dB respectively in the
passband and stopband frequencies.

%% Golden reference FIR filter
Fs_in = 250e6 % input data rate in Hz
Fs_out = 5e6 % output data rate in Hz
M = Fs_in/Fs_out % down-sampling factor
% Low pass FIR filter design specs
Fp = 0.4*Fs_out % pass band corner freq
Fst = 0.5*Fs_out % stop band corner freq
Ap = 0.1; % pass band attenuation (dB)
Ast = 100.0; % stop band attenuation (dB)
% Filter design with FDA tool
h1=fdesign.decimator(M,'Lowpass',...
'Fp,Fst,Ap,Ast',Fp, Fst, Ap, Ast, Fs_in);
Href = design(h1);
info(Href) % show filter info
fvtool(Href); % plot freq response
title ('reference single stage filter');
legend('reference single stage filter');
axis([0 25 -120 5]) % zoom-in 0 to 25MHz
% generating the COE file
ref_filter = Href.Numerator;
gen_coe_rad10(Href.Numerator,...
'ref_filter_rad10.coe');

Assuming an FPGA clock frequency of Fclk=Fs_in, how many
DSP48 MAC units do we need in the Virtex®-6 device? This is a
filter to downsample by M. The theory—well explained in the
FIR-Compiler 5.0 data sheet (fir_compiler_ds534.pdf)—says that
we can decompose it into M phases; hence the term “polyphase.”
Since each phase is processing at the lower output frequency
Fs_out, the DSP48 MAC can be shared in time-division multi-
plexing. The following theoretical computation shows that the
FIR-Compiler utilizes a minimum of 22 MAC elements
(total_num_MAC_ref) for this filter when it’s implemented via
polyphase decomposition. The filter length is 2100
(total_num_coeff), once padded with zeros to become an integer
multiple of M. Note that this scheme takes coefficients symmetry
into account.

Fclk = Fs_in; num_phases = M;
num_coeff_x_phase = ...
ceil(numel(ref_filter) / num_phases)

% effective total number of coefficients
total_num_coeff = num_phases *...
num_coeff_x_phase

% number of DSP48 utilized per each phase
num_MAC_x_phase = (num_coeff_x_phase * ...
Fs_out / Fclk);

% effective number of DSP48 MAC
total_num_MAC_ref = ceil(num_phases * ...
num_MAC_x_phase /2)+1 % /2 due to symmetry

% pad with zeros the original coeff:
pad_filt = [ref_filter zeros(1, ...
total_num_coeff - numel(ref_filter))];

In MATLAB, it’s easy to model the decimation process as a low-
pass filtering and then downsample by M, producing respectively y
and y_filt output signals. But in the FPGA device, such imple-
mentation is not efficient: it would be foolish to compute values
that must then be thrown away. Instead, the polyphase decimator
downsamples the input signals into M channels wk, each one fil-
tered by its own subfilter ph(k,:). The partial results y_out(k,:) are
then summed together to compose the final output result y_tot.
Comparing y_tot with the reference one y, achieved by native
MATLAB instruction, shows they are the same within a numerical
accuracy of 3e-15 (due to the different order of the operations).

%% Simulating polyphase downsampler
F1 = 1e6; % first freq (Hz)
F2 = 3e6; % second freq (Hz)
N = 2^14; % number of samples
n = 0 : 1 : N-1; % time basis
% Input signal
x = cos(n*2*pi*F1/Fs_in) + ...

cos(n*2*pi*F2/Fs_in);
% Compute single-side amplitude spectrum
% AC component will be doubled and
% DC component will be kept as the same
X = 2*abs(fft(x,N))/N; X(1)=X(1)/2;
% Map the freq bins into frequencies in Hz
f_bin = [0 : 1 : N/2-1]*Fs_in/N;
figure; plot(f_bin, X(1:1:N/2));
grid; xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Input Spectrum');
axis([0 1e7 0 0.8]); % zoom-in 0 to 10 MHz
% Low-pass filtered output signal
y_filt = filter(pad_filt, 1, x);
y = y_filt(1:M:end); % ref down-sampled
NM = length(y);
% Compute single-side amplitude spectrum:
Y = 2*abs(fft(y,NM))/NM; Y(1)=Y(1)/2;
fs_M = [0 : 1 : NM/2-1]*Fs_in/(M*NM);
figure; plot(fs_M, Y(1:1:NM/2));grid;
xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Down-sampled Spectrum');
axis([0 1e7 0 0.8]); % zoom-in 0 to 10 MHz
%% Polyphase decomposition of the filter
ph0 = pad_filt(1 : M : end); % phase 0
w0 = x(1 : M : N); % channel 0 of x(n)

First Quarter 2010 Xcell Journal 39

ASK FAE -X

ph_len = length(ph0); % phase length
% Output from phase 0 filter
y_out(1,:) = filter(ph0,1,w0);
y_tot = y_out(1,:); % initialize final res
for k = 2 : M % loop along the k phases
ph(k,1:ph_len)= pad_filt(k:M:end);
% delay x(n) by k samples:
x_del = filter([zeros(1, k-1), 1],1,x);
% channel k is down-sampled by M:
wk = x_del(1 : M : N);
% output from k phase filter:
y_out(k,1:NM) = filter(ph(k,:),1,wk);
% update partial result:
y_tot = y_tot + y_out(k, :);

end
% Reference vs. polyphase filter outputs
diff = y_tot -y;
sum_abs_diff = sum(abs(diff));
figure; plot(diff);

To design the reference filter, CoreGen FIR-Compiler
requires the text file of coefficients, known as the COE file. The
following MATLAB routine shows how to easily generate this
COE file in decimal radix; FIR-Compiler will then quantize the
coefficients according to the adopted settings.

function gen_coe_rad10(filt_num, fileName);
% max number of coefficients
num_coeffs = numel(filt_num);
fileId = fopen(fileName, 'w')
% header of COE file
fprintf(fileId, 'radix = 10;\n');
% first coefficient
fprintf(fileId,'coefdata = ',...

'%18.17f,\n', filt_num(1)');
for i = 2 : num_coeffs-1

fprintf(fileId,'%18.17f,\n',filt_num(i));
end
% last coefficient
fprintf(fileId,'%18.17f;\n',...

filt_num(num_coeffs));
fclose(fileId);
end

Figures 1 and 2 show the design parameters applied in the
first two pages of the FIR-Compiler GUI; in the remaining two
pages I simply accepted the default values except for
“Optimization Goal,” which I set to “Speed” instead of “Area.”
When not explicitly mentioned, these are the settings I will
adopt throughout this paper and also for the next examples.

After ISE 11.4 placement and routing, the reference single-
stage downsampling filter consumes the following FPGA
resources:

Number of slice flip-flops: 1,265
Number of slice LUTs: 1,744
Number of occupied slices: 502
Number of DSP48 units: 22

40 Xcell Journal First Quarter 2010

Figure 1 – Integer downsampling by 50. Page 1/4 of
FIR-Compiler 5.0 GUI settings for the reference single-stage filter.

Figure 2 – Integer downsampling by 50. Page 2/4 of
FIR-Compiler 5.0 GUI settings for the reference single-stage filter.

ASK FAE -X

First Quarter 2010 Xcell Journal 41

Cascade of Three FIR Filtering Stages
Let us now implement our golden decimation filter as a cascade
of filtering stages. This technique will allow us to save MAC
units by means of time-division multiplexing, since every new
filtering stage will work at a lower data rate, given by the previ-
ous stage. I let the FDA tool decide the optimal filter type: by
applying the MATLAB instruction info, you can see that it will
propose a solution with three stages, respectively, of decimation
factors M1=2, M2=5 and M3=5.

%% Multistage approach with three FIR filters
Hmulti=design(h1, 'multistage');
hm1 = Hmulti.Stage(1);
M1 = Hmulti.Stage(1).DecimationFactor;
hm2 = Hmulti.Stage(2);
M2 = Hmulti.Stage(2).DecimationFactor;
hm3 = Hmulti.Stage(3);
M3 = Hmulti.Stage(3).DecimationFactor;
info(hm1)
info(hm2)
info(hm3)
fvtool(hm1,hm2,hm3, 'Fs', ...
[Fs_in, Fs_in/M1, Fs_in/(M1*M2)])

legend('stage 1','stage 2','stage 3');

title '3-stage filter'
fvtool(hm1,hm2,hm3, 'Fs', ...
[Fs_in, Fs_in/M1, Fs_in/(M1*M2)])

legend('stage 1','stage 2','stage 3');
title 'zooming in 3-stage filter'
axis([0 25 -120 5])
fvtool(Href, cascade(hm1, hm2, hm3), ...

'Fs', [Fs_in])
legend('reference filter',...
'multi-stage FIR filters');

title 'zooming in ref. vs. s-stage filters'
axis([1.5 3 -120 5])
hm1n = hm1.Numerator;
hm2n = hm2.Numerator;
hm3n = hm3.Numerator;
gen_coe_rad10(hm1n,'filt1_rad10.coe');
gen_coe_rad10(hm2n,'filt2_rad10.coe');
gen_coe_rad10(hm3n,'filt3_rad10.coe');

Figure 3 shows the frequency response of the three filters compos-
ing this multistage system. The blue curve represents the first down-
sampling filter (M1=2); the green curve is the second (M2=5),
periodic at multiples of Fs_in/M1; and the red curve represents the
third downsampler (M3=5), periodic at multiples of Fs_in/(M1*M2).

Figure 3 – Decimation by 50 via the cascade of three FIR filtering stages, here shown separately with a zoom in the frequencies from 0 to 25 MHz.

ASK FAE -X

The FIR-Compiler settings for the three-stage filters are pretty
much the same as the ones illustrated in Figures 1 and 2. For the first
stage, the only parameters that differ are the name of the COE file
and the “decimation rate value,” respectively set to filt1_rad10.coe
and M1=2. For the second filter, the COE file is named
filt2_rad10.coe, the decimation rate value is M2=5 and the input
sampling frequency is now 125 MHz, since the second stage takes
input data decimated by M1=2 from the first stage. Finally, the
only differences in the parameters of the third filter are the name
of the COE file, filt3_rad10.coe, the decimation rate value of
M3=5 and the input sampling frequency, which is now 25 MHz,
since the third stage takes input data decimated by M2=5 from the
second stage.

After place-and-route, the three filtering stages occupy the fol-
lowing FPGA resources:

Stage 1 (M1=2):
Number of slice flip-flops: 280
Number of slice LUTs: 208
Number of occupied slices: 62
Number of DSP48 MAC units: 3

Stage 2 (M2=5):
Number of slice flip-flops: 236
Number of slice LUTs: 168
Number of occupied slices: 60
Number of DSP48 MAC units: 3

Stage 3 (M3=5):
Number of slice flip-flops: 357
Number of slice LUTs: 414
Number of occupied slices: 158
Number of DSP48 MAC units: 4

Thanks to this multistage approach, we now utilize 12 fewer
DSP48 MAC units than the 22 originally used by the reference fil-
ter; in relative terms, we save around 30 percent in flip-flops, 55
percent LUTs, 44 percent slices and 54 percent DSP48 elements
compared with the resources taken by the single-stage golden filter.

Cascade with CIC Filters
Another possible approach to the decimation by 50 involves the cas-
cade of a cascaded integrated comb (CIC) and CIC-compensation
downsampling stages, with change rate respectively of M1=10 and
M2=5. CIC filters are a special class of FIR filters that consist of N
comb and integrator sections (hence the term “Nth order”). The
CIC architecture is interesting since it does not require any MAC ele-
ment, although the comb section could also be implemented as a
“traditional” MAC-based FIR filter, thus trading DSP48 units vs.
CLB slices, as also explained in the CoreGen CIC-Compiler 1.3 data
sheet (cic_compiler_ds613.pdf).

The first-stage CIC filter decimating by M1=10 has a poor fre-
quency response and therefore needs a compensation FIR filter

decimating by M2=5 to offset the droop in the passband of the
first-stage CIC filter itself. The following MATLAB code explains
how to design such filters with the FDA tool.

%% Multistage with CIC and FIR filters
% First stage: CIC filter
DD = 1; % CIC differential delay
M1 = 10; % CIC decimation rate change
h2 = fdesign.decimator(M1,'cic',...
DD,'Fp,Ast',Fp,Ast,Fs_in);

Hcic = design(h2);
% let us force a 6-th order CIC
Hcic.NumberOfSections=6;
Nsecs = Hcic.NumberOfSections
info(Hcic)
% gain of CIC filter to be normalized in
% order to get an overall unit gain
gain_cic = 2^(Nsecs*log2(M1));
% Second stage CIC compensator FIR filter
% its stop band decays like (1/f)^2.
M2 = M/M1; % FIR decimation rate change
Ast = 80; % to relax stopband attenuation
h3 = fdesign.decimator(M2,'ciccomp',...
DD,Nsecs,Fp,Fst,Ap,Ast,Fs_in/M1);

Hmc = design(h3, 'equiripple', ...
'StopbandShape', '1/f', ...
'StopbandDecay', 2);
info(Hmc)
% Analyze filters
fvtool(cascade(Hcic,1/gain_cic),...
Hmc,cascade(Hcic,Hmc,1/gain_cic),...
'Fs',[Fs_in,Fs_in/M1,Fs_in],...
'ShowReference','off')

legend('CIC decimator','CIC compensator',...
'Overall response');
title 'multistage with CIC^6 filter'
fvtool(cascade(Hcic,1/gain_cic),...
Hmc,cascade(Hcic,Hmc,1/gain_cic),...
'Fs',[Fs_in,Fs_in/M1,Fs_in],...
'ShowReference','off')

legend('CIC decimator',...
'CIC compensator','Overall response');

title 'zooming in multistage with CIC^6 filter'
axis([0 10 -120 5])
cic_comp_filt = Hmc.Numerator;
gen_coe_rad10(cic_comp_filt,...
['ciccomp_dec', num2str(M2), '.coe']);

fvtool(Href, cascade(hm1, hm2, hm3), ...
cascade(Hcic,Hmc, 1/gain_cic), 'Fs', ...

42 Xcell Journal First Quarter 2010

ASK FAE -X

First Quarter 2010 Xcell Journal 43

[Fs_in, Fs_in, Fs_in]);
legend('reference filter',...
'3-stage FIR filter', ...
'CIC and CIC Comp filters');

title 'ref, 3-stage vs. CIC + CIC Comp'
axis([1.5 3 -110 2])

Figure 4 illustrates the first page of Xilinx CoreGen CIC-
Compiler 1.3 GUI settings; the remaining parameters have
default values, except for the “Use Xtreme DSP Slice” optional
parameter (page 2 of 3 in the GUI), which makes it possible to
implement the comb section with or without DSP48 elements.
The CIC compensation FIR filter design parameters in FIR-
Compiler GUI are the same ones already seen in Figures 1 and
2; the only settings that differ are the COE file name (here, cic-
comp_dec5.coe), the decimation rate value of M2=5 and the
input sampling frequency of 25 MHz.

After place-and-route, the two filtering stages take the follow-
ing FPGA resources:

First stage (CIC decimating by 10,
no “Use Xtreme DSP Slice”)
Number of slice flip-flops: 755
Number of slice LUTs: 592
Number of occupied slices: 172
Number of DSP48 MAX units: 0

First stage (CIC decimating by 10,
with “Use Xtreme DSP Slice”)
Number of slice flip-flops: 248
Number of slice LUTs: 154
Number of occupied slices: 42
Number of DSP48 MAC units: 7

Second stage (CIC compensation
FIR filter decimating by 5)
Number of slice flip-flops: 271
Number of slice LUTs: 312
Number of occupied slices: 114
Number of DSP48 MAC units: 3

Both results are interesting, and the choice of whether to use
Xtreme DSP slices will depend on what resources a designer
most needs to save. Personally I would select the “Use Xtreme
DSP Slice” option. In relative terms we would save about 59
percent of flip-flops, 73 percent LUTs, 69 percent slices and 54
percent DSP48 MAC units, compared with the resources taken
by the single-stage filter. The price is a worse attenuation in the
stopband, which is now 80 dB instead of the 100 dB required,
as shown in Figure 5. Whether a design can accept such an
attenuation value or not is really application dependent.

Figure 5 offers a comparison among the three methods for

downsampling by 50: the single stage, the three stages (ratios 2-
5-5) and the cascade of CIC and CIC-compensation FIR filters
(ratios 10-5).

Downsampling by a Rational Factor
In this second application example, we assume a signal with an
input data rate of 50 MHz that has to be downsampled to 12
MHz, thus requiring a rational, fixed rate change of L/M=6/25
(or in equivalent words, a decimation factor of M/L=25/6). The
FPGA clock frequency is supposed to be 150 MHz.

As also explained in the FIR-Compiler 5.0 data sheet, a filter
with rational rate change ideally requires two processing steps:
interpolation by L, followed by decimation by M. In our specific
case, once the input signal is interpolated by L=6, the output vir-
tual sampling rate Fv will be 300 MHz. Therefore, the frequency
range between Fs_in/2=25MHz and Fv/2=150MHz has to be fil-
tered out to remove the spectra placed at integer multiple of
Fs_in. Called “images” in DSP terminology, they are the reason
for using the interpolation “anti-imaging” low-pass filter.

After this processing step, we need to apply a low-pass filter to
remove the frequencies from Fv/(2*M)=6MHz to
Fv/2=150MHz, named “alias” in DSP terminology, before the
final downsampling by M. Since these two low-pass filters are in
cascade and work at the same virtual data rate Fv, we can use the
one with smaller bandwidth for anti-imaging and anti-aliasing at
the same time, thus saving resources. In our case, the filter with
minimum bandwidth is the decimation filter.

The following MATLAB fragment illustrates how to design
and simulate such a downsampler with a single-stage filter. We
assume an attenuation of 0.05 dB and 70 dB respectively in the
passband and stopband frequencies.

Figure 4 – Settings for the CIC filter decimating by 10.
Page 1/3 of CIC-Compiler 1.3 GUI.

ASK FAE -X

%% Golden reference model
M = 25; % downsample factor
L = 6; % upsample factor
Fs_in = 50e6; % input sampling rate
Fv = L*Fs_in; % virtual output rate
Fout = Fv/M; % effective output rate
rp = 0.05 % passband ripple (dB)
rs = 70 % stopband attenuation (dB)
dens = 20; % density factor
% Deviations in linear scale
dev = [(10^(rp/20)-1)/(10^(rp/20)+1) ...
10^(-rs/20)]

Fpass = 0.40*Fout % passband frequency
Fstop = 0.50*Fout % stopband frequency
% Calculate the filter order using FIRPMORD
[N0, Fo, Ao, W] = firpmord([Fpass, ...
Fstop]/(Fv/2), [1 0], dev);

% Calculate the coefficients using FIRPM
b0 = firpm(N0, Fo, Ao, W, {dens});
Hd0 = dfilt.dffir(b0);
info(Hd0)
hvft= fvtool(Hd0, 'Fs', Fv);
title 'Reference Decimator by 25/6'

legend(hvft,'Reference Decimator by 25/6',...
'Location','NorthEast')

%% Simulation of rational decimation
F1 = 14e6; % first freq
F2 = 4e6; % second freq
N = 2^13; % number of samples of x(n)
n = 0 : 1 : N-1;
% input signal with two sinusoids:
x = 10*cos(n*2*pi*F1/Fs_in) + ...

5*cos(n*2*pi*F2/Fs_in);
% Single-side amplitude spectrum of x(n):
X = 2*abs(fft(x,N))/N; X(1)=X(1)/2;
% mapping of frequency bins:
f_bin = [0 : 1 : N/2-1]*Fs_in/N;
% plot spectrum:
figure; plot(f_bin,X(1:1:N/2)); grid;
xlabel('Frequency (Hz)');
title '1-sided spectrum of input signal x(n)'
% Polyphase interpolation by L
NL = N*L;
filt_len = length(Hd0.Numerator);
real_len = L*ceil(filt_len/L);
num_coef_phase = real_len/L;

44 Xcell Journal First Quarter 2010

ASK FAE -X

Figure 5 – Frequency responses of the three downsamplers with overall rate change of 50 and with zoom in the frequency range from 1.5 to 3 MHz.
The single stage is shown in blue, the three-stage (ratios M1=2, M2=5, M3=5) is in green and the two-stage CIC-based (ratio M1=10, M2=5) is in red.

First Quarter 2010 Xcell Journal 45

reg = zeros(1, num_coef_phase);
filt_coe = [Hd0.Numerator ...

zeros(1, real_len-filt_len)];
poly_phase=reshape(filt_coe,L,...

num_coef_phase);
tap_delay = zeros(1, num_coef_phase);
w2 = zeros(1, NL);
k = 0;
for i = 1 : N
tap_delay = [x(i) tap_delay(1:end-1)];
w2(k+1) = tap_delay * poly_phase(1, :)';
w2(k+2) = tap_delay * poly_phase(2, :)';
w2(k+3) = tap_delay * poly_phase(3, :)';
w2(k+4) = tap_delay * poly_phase(4, :)';
w2(k+5) = tap_delay * poly_phase(5, :)';
w2(k+6) = tap_delay * poly_phase(6, :)';
k = k+6;

end
y = w2(1:M:NL);% real down-sampling by M
NM = length(y); % length of down-sampled data
% Single-side amplitude spectrum:
Y = 2*abs(fft(y,NM))/NM; Y(1)=Y(1)/2;
% mapping of frequency bins:
fsM = [0 : 1 : NM/2-1]*(Fs_in*L/M)/NM;
% plot spectrum: note all repetitions
% removed from Fout/(2M) to Fout/2
figure; plot(fsM,Y(1:1:NM/2));grid;
xlabel('Frequency (Hz)');
title 'spectrum after downsampling by 25/6'
% save COE filter coefficients
gen_coe_rad10(Hd0.Numerator,...

'ref_dec_L6_M25_rad10.coe');

Note that this MATLAB code is just a behavioral model of the
rational downsampling filter. In the real hardware polyphase archi-
tecture, you will only need to implement a single-phase filter and
then change the set of coefficients for every new output sample
(while the processing runs at Fclk rate). This is different from what
happened for the polyphase downsampling filter with integer ratio.

Figure 6 reports the settings of the first FIR-Compiler GUI page.
For the remaining three pages I used the same parameters already
adopted in the first application example of integer downsampling.
Total FPGA resource occupation after place-and-route is:

Number of slice flip-flops: 547
Number of slice LUTs: 451
Number of occupied slices: 153
Number of DSP48 units: 13
Number of BRAM units: 6

Multistage Approach
FIR-Compiler has generated a pretty small core for this
polyphase L/M=6/25 filter. Nevertheless, let us again try the
multistage approach, since it could allow us some further DSP48
and BRAM savings. When manually designing the multistage
system, as in this specific case, all the filtering stages must have
the same passband frequency (Fpass) as the reference filter.

The passband ripple is equal for all stages and is given by the
reference filter passband ripple divided by the number of stages.
What changes from stage to stage is the stopband frequency. The
first stage does not need to cut at Fstop, since the transition
bandwidth would be too sharp (too many coefficients); in reali-
ty, all we need is the first stage to cut at Fstop1=Fs_in/M1-
Fs_in/(2M/L). In fact, Fs_in/M1 and all its multiples will now
be the new sampling frequency at which all the replica are
placed, while Fs_in/(2*M1) is half the bandwidth of the first
replica in Fs_in/M1. Here is the MATLAB code.

%% First stage: rate change by L1/M1=1/4
L1 = 1; M1 = 4; % remember that M=25 L=6
Fs1 = Fs_in/M1 % output data rate
Fstop1 = Fs_in/M1- Fs_in/(2*M/L) % stop band
% Calculate filter order via FIRPMORD
[N1, Fo, Ao, W] = firpmord([Fpass, ...

Fstop1]/(Fs_in/2), [1 0], dev/2);
% Calculate coefficients via FIRPM
b1 = firpm(N1, Fo, Ao, W, {dens});
Hd1 = dfilt.dffir(b1);
info(Hd1)

Figure 6 – Rational downsampling by 25/6. Page 1/4 of
FIR-Compiler 5.0 GUI settings for the reference single-stage filter.

ASK FAE -X

hvft = fvtool(Hd1, 'Fs', Fs_in);
title 'Stage1: Decimation by 4'
legend(hvft,'Stage1: Decimation by 4',...

'Location','NorthEast')
gen_coe_rad10(Hd1.Numerator, ...

'dec_L1_M4_rad10.coe');
%% Second stage: rate change by L2/M2=24/25
L2 = 24; M2 = 25;
Fs2 = L2*Fs1; % virtual data rate
Fstop2 = 0.50*Fs2/M2 % Stop band Freq
% Calculate filter order via FIRPMORD
[N2, Fo, Ao, W] = firpmord([Fpass, ...

Fstop2]/(Fs2/2), [1 0], dev/2);
% Calculate coefficients via FIRPM
b2 = firpm(N2, Fo, Ao, W, {dens});
Hd2 = dfilt.dffir(b2);
info(Hd2)
% plot spectra
info(Hd2)
hvft2 = fvtool(Hd2, 'Fs', Fs2);
title 'Stage2: L2/M2 downsampler'
legend(hvft2,'Stage2: Polyphase L2/M2', ...
'Location','NorthEast')
gen_coe_rad10(Hd2.Numerator,...

'dec_L24_M25_rad10.coe');
%
% Let us compare the frequency response
% of reference L/M=6/25 filter vs.
% 2-stage (L1/M1)*(L2/M2)=(1/4)*(24/25)
%
hvft = fvtool(Hd0, cascade(Hd1, Hd2), ...
'Fs', Fs2);

title 'single vs. multi-stage'
legend(hvft,'6/25 single stage', ...
'(1/4)(24/25) multistage', ...
'Location','NorthEast')

axis([3 8 -100 1]);

Since the first stage is an integer downsampler by M1=4, the
FIR-Compiler GUI settings are very similar to those shown in
Figure 1. The only parameters that differ are the name of the
COE file, dec_L1_M4_rad10.coe; the decimation rate value
(M1=4); the input sampling frequency (50 MHz); and the clock
frequency (150 MHz). On the other hand, the second stage is a
rational rate change of L2/M2=24/25, so the FIR-Compiler set-
tings will be similar to the ones shown in Figure 6, again with
just a few differences. The COE file here is named
dec_L24_M25_rad10.coe, while the interpolation rate value is
set at L2=24 and the input sampling frequency is 12.5 MHz.

After place-and-route, the two filtering stages occupy the fol-
lowing FPGA resources:

Stage 1 (L1/M1= 1/4):
Number of slice flip-flops 321
Number of slice LUTs: 223
Number of occupied slices: 62
Number of DSP48 MAC units: 4
Number of BRAM units: 0

Stage 2 (L2/M2 = 24/25):
Number of slice flip-flops: 206
Number of slice LUTs: 209
Number of occupied slices: 68
Number of DSP48 MAC units: 3
Number of BRAM units: 1

Thanks to the multistage approach, we now save around 3 per-
cent in flip-flop, 4 percent LUT, 15 percent slices, 46 percent
DSP48 and 83 percent BRAM elements compared with the
resources taken by the single-stage golden filter. In particular, we
utilize far fewer MAC and BRAM units, respectively six and five.
This is due to the fact that the second filter works at a lower input
sampling rate, while the first filter, featuring integer rate change,
could exploit the coefficient symmetry.

Additional Resources
In this tutorial we have seen a couple of examples of downsam-
pling filters, either of integer (50) or rational (25/6) ratios, with
emphasis on a methodology for designing the filters in MAT-
LAB and implementing them on Xilinx FPGAs via FIR-
Compiler and CIC-Compiler. The data sheets offer much detail
on the theory behind the parameter setting involved in imple-
menting the filters in CORE Generator.

For those interested in delving further into the subject of
DSP, two books in particular present a great mix of theory and
related MATLAB instructions: Digital Signal Processing
Fundamentals and Applications by Li Tan (Elsevier, 2007) and
Multirate Signal Processing for Communication Systems by Fredric
J. Harris (Prentice Hall, 2004). In addition, Xilinx’s Web site
features a number of great application notes (see especially
Xapp113, 569, 1018 and 936) on multirate digital up- and
downconversion.

Finally, to understand how to implement DSP algorithms
efficiently, I would strongly recommend attending the Xilinx
training course titled “DSP Implementation Techniques for
Xilinx FPGAs.”

Daniele Bagni is a DSP Specialist FAE for Xilinx EMEA in Milan,
Italy. After earning a degree in quantum electronics from the
Politecnico di Milano, he worked for seven years at Philips Research labs
in digital video processing. For the next nine years he was project leader
at STMicroelectronics’ R&D labs, focusing in video coding on VLIW-
architecture embedded processors, while simultaneously teaching a course
in multimedia information coding as an external professor at the State
Milan University. In 2006 he joined the Xilinx Milan sales office.

46 Xcell Journal First Quarter 2010

ASK FAE -X

THERE IS AN INSATIABLE need for bandwidth that

is being driven by fixed mobile convergence and the usage

of more data driven applications. While this provides a

great opportunity for operators and Telecommunications

Equipment Manufacturers (TEMs) to capture growth, it also

presents significant technical and commercial challenges

to be able to deliver on the increased expectations. Long

Term Evolution (LTE) is one promising means to address

the challenges; however, it requires architectural changes in

the channel card in order to meet the need for increased

bandwidth and capacity at lower latencies, creating a tough

technical problem.

Traditional 3G architectures use a co-processor approach

with DSP devices and FPGAs that partitions the baseband

processing functions across the available resources. For

example, while most of the uplink may be done in multiple

DSP devices, the turbo decoding and FFTs may be done in

the FPGA due to the computational load.The issue with this

architecture is that it does not scale adequately for LTE, as the

interface between the DSP devices and FPGAs becomes a

bottleneck.This is particularly true at the high end where one

might have a 20 MHz LTE system with 2x2 or even 4x4 MIMO

(multiple input multiple output).

The way to address this bottleneck is to implement a

simplified sector based architecture where all the processing

required for a single sector is done in a single device. This

removes the bottleneck by not having to go off-chip to do all

the baseband processing. Now the entire uplink, including

the turbo decoding and FFTs, are done in a single chip. This

architecture can also scale up to incorporate sophisticated

MIMO functions. It is also more cost and power efficient than

the co-processor architecture.

In order to reduce the development cost of moving to

the simplified sector based architecture,Xilinx has developed

an LTE Baseband Targeted Design Platform. Based on

Xilinx’s high-performance Virtex®-6 family of FPGAs, the LTE

Baseband Targeted Design Platform provides comprehensive

LTE uplink and downlink IP and reference designs that can

be easily modified to meet a customer’s specific requirements

and areas of differentiation.They are also scalable to be cost

optimized from a femtocell to a three sector macrocell. In

addition, the IP and reference designs are rigorously tested to

the LTE specification using test equipment and software from

Xilinx’s test partner,Agilent.

Formore informationandtowatchavideodemonstration

on accelerating next generation LTE baseband designs with

the Xilinx LTE Baseband Targeted Design Platform, visit

www.xilinx.com/wireless.

A D V E R T I S E M E N T

By Manuel Uhm

Cost Effectively Addressing
the Insatiable Need for Bandwidth

About the Author: Manuel Uhm is the Director of Wireless Communications at Xilinx Inc. (San Jose, Calif.).
Contact him at more_info@xilinx.com

Network
Processor

Layer 2 /
Network
Interface

Figure 1: Traditional 3G co-processor architectures
do not scale to the increased demands of 4G

Figure 2: The simplified sector
based architecture is the best way
to address the demands of LTE and
remove the bottleneck of the co-
processor architecture

© Copyright 2010 Xilinx, Inc. Xilinx, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. All other trademarks are the property of their respective owners.

ISE Design Suite: Logic Edition

Ultimate productivity for FPGA logic design
Latest version number: 11.4
Date of latest release: December 2009
Previous release: 11.3
URL to download the latest patch:
www.xilinx.com/download

New device support:
This latest release of the ISE Design Suite
provides expanded support for both the
Spartan®-6 and Virtex®-6 FPGA device
families.

Spartan-6 FPGA support includes
the following:

• Support for -4 speed grade
• Spartan-6 LX4 devices
• Spartan-6 lower power (-1L) devices
• Spartan-6 XA automotive devices

Virtex-6 FPGA support includes
the following:

• Support for -3 speed grade for Virtex-6
HXT devices

Additional Improvements in the ISE Design
Suite: Logic Edition 11.3

ChipScope™ Pro enhancements: A new
parameter-sweep feature in IBERT 2.0
(Integrated Bit Error Ratio Test) for the
Spartan-6 LXT allows channel testing that

sweeps through various transceiver set-
tings, enabling measurement of transceiver
performance characteristics across that
range of settings.

Core generation of IBERT 2.0 cores has
been improved, providing interaction in
the ChipScope Analyzer with GTX trans-
ceivers in the Virtex-6 HXT devices.

FPGA Editor enhancements: Improvements
include a smaller memory footprint and
faster design loading time.

PlanAhead™ design-analysis tool enhance-
ments: PlanAhead offers a new simultane-
ous switching noise (SSN) prediction
tool for I/O planning in the Virtex-6
family of FPGAs to help deliver
improved signal integrity.

XST enhancements: The new MUX_
MIN_SIZE constraint improves the device
utilization for designs targeting the Virtex-
6 and Spartan-6 FPGA families.

Xilinx Power Analyzer (XPA) enhancements:
The Xilinx Power Analyzer now allows
junction temperature calculation up to
125°C.

In addition, the Xilinx Power Estimator
(XPE) spreadsheets have been updated.
These product-specific spreadsheet-based
power estimation tools deliver significant
improvements in accuracy and ease of use
when compared with other power estima-

tion tools. Visit www.xilinx.com/power to
learn more and to download these XPE
spreadsheets.

Simulation libraries: This latest release of the
ISE Design Suite includes Compxlib sup-
port for the new ModelSim DE product.

ISE Design Suite:
Embedded Edition

An integrated software solution for designing
embedded processing systems
Latest version number: 11.4
Date of latest release: December 2009
Previous release: 11.3
URL to download the latest patch:
www.xilinx.com/download

Revision highlights:
All ISE Design Suite Editions include the
enhancements listed above for the ISE
Design Suite: Logic Edition. The following
are the enhancements specific to the ISE
Design Suite: Embedded Edition.

Xilinx Platform Studio (XPS) and the
Embedded Development Kit (EDK): Xilinx has
enhanced the XPS and EDK to include the
following:

• Base System Builder support for
the Spartan-6 SP601 Base Board

• Flashwriter and GenACE support
for the SP601 Base Board

• Base System Builder support for
the Virtex-6 ML605 Base Board

• Flashwriter and GenACE support
for the ML605 Base Board

• MicroBlaze™ updated to v7.20.d

• System Monitor support for the Virtex-6
FPGA

48 Xcell Journal First Quarter 2010

Xilinx Tool & IP Updates
XTRA, XTRA

Xilinx continues to improve products and intellectual property in the ISE® Design
Suite. Here are the most current updates for Xilinx design products and IP as of
December 2009.

Product updates offer significant enhancements and new features to the ISE Design
Suite. Keeping your installation of ISE up to date with these service packs is an easy
way to ensure the best results for your design.

Updates to the ISE Design Suite are available from the Xilinx Download Center at
www.xilinx.com/download.

For more information or to download a free 30-day evaluation of the ISE Design
Suite, visit www.xilinx.com/ise.

ISE Design Suite: DSP Edition

Flows and IP tailored to the needs of algo-
rithm, system and hardware developers
Latest version number: 11.4
Date of latest release: December 2009
Previous release: 11.3
URL to download the latest patch:
www.xilinx.com/download

Revision highlights:
All ISE Design Suite Editions include the
enhancements listed above for the ISE
Design Suite: Logic Edition. The follow-
ing enhancements are specific to the ISE
Design Suite: DSP Edition.

New device support: System Generator
for DSP now offers support for the
Spartan-6 XA and Spartan-6-1L FPGA
families. In addition, System Generator
for DSP also provides support for the
following new devices:

• Virtex-6 FPGA lower power
(Virtex-6 -1L)

• Virtex-6 HXT FPGA

• Virtex-5Q FPGA

New JTAG hardware co-simulation support:
System Generator for DSP now supports
JTAG hardware co-simulation for the
Spartan-6 FPGA SP605 Development
Platform.

Blockset enhancements in System Generator
for DSP: System Generator for DSP
includes the Complex Multiplier 3.1 and
DSP48 Macro 2.0 building blocks. In
addition, the following forward error cor-
rection (FEC) blocks are included in the
latest release of System Generator for DSP:

• Reed Solomon encoder 7.0

• Reed Solomon decoder 7.0

• Convolution encoder 7.0

• Viterbi decoder 7.0

• Interleaver/de-interleaver 5.1

core, rather than one that needs design by
hand, to potentially meet a multitude of
wireless standards and performance criteria.

Audio, video and image processing:
• Image Edge Enhancement (v1.0) –

Enhances the edges of objects using a set of
programmable Sobel and Laplacian filters to
increase the image contrast in the areas
immediately around an edge. This improves
the apparent sharpness of a frame of video.

• Image Noise Reduction (v1.0) – Provides a
real-time filtering function that is edge adap-
tive to reduce the filter strength near edges so
as to preserve sharpness. The filtering
reduces the noise present in a frame of video.

• Image Statistics Engine (v1.0) – Implements
the computationally intensive metering
functionality common in digital cameras,
camcorders and imaging devices. This core
generates a set of statistics for color his-
tograms, mean and variance values, edge
and frequency content for 16 user-defined
zones on a per-frame basis.

• Motion Adaptive Noise Reduction (v1.0) –
Makes it possible to use the motion-detec-
tion function independently of the noise-
reduction function for applications where
noise reduction is not needed. The noise-
reduction algorithm uses a recursive tempo-
ral filter with a programmable transfer
function, allowing the user to control both
the shape of the motion transfer and the
strength of the noise reduction applied. The
motion-transfer function is also program-
mable at run-time.

Digital signal processing (DSP):
• DSP48 Macro (v2.0) – Provides an easy-to-

use interface that abstracts the XtremeDSP
slice and simplifies its dynamic operation by
enabling the specification of multiple oper-
ations via a set of user-defined arithmetic
expressions. The user selects them via a sin-
gle port on the generated core.

Standard bus interface:
• DisplayPort (v1.2) – Enables transmission

of serial digital video up to 2.75 Gbps for
consumer and professional displays.
DisplayPort is a high-speed serial interface
standard that replaces DVI and HDMI out-
side and LVDS inside the box for higher res-
olution (>FHD), higher frame rate and
color bit depth display.

Xilinx IP Updates

Name of IP: ISE IP Update 11.4
Type of IP: All

Targeted application: Xilinx develops IP cores
and partners with third-party IP providers to
decrease customer time-to-market. The pow-
erful combination of Xilinx FPGAs with IP
cores provides functionality and perform-
ance similar to ASSPs, but with flexibility
not possible with ASSPs.

Latest version number: 11.4
Date of latest release: December 2009
URL to access the latest version:
www.xilinx.com/download

Informational URL: www.xilinx.com/ipcenter/
coregen/updates_11_4.htm
Release notes: www.xilinx.com/support/
documentation/user_guides/xtp025.pdf
Installation instructions: www.xilinx.com/
ipcenter/coregen/ip_update_install_
instructions.htm
Listing of all IP in this release: www.xilinx.com/
ipcenter/coregen/11_4_datasheets.htm

Revision highlights:
Starting with 11.1, all ISE CORE
Generator™ IP updates are bundled with
quarterly ISE software updates. The latest
versions of IP products have been tested and
are delivered with the current IP release.
There are a number of new cores in this
release, as described below.

Communications and networking:
• 10 Gigabit Ethernet PCS/PMA (10GBASE-

R; v1.1) – Provides XGMII interface to a
10-Gbit Ethernet MAC and implements a
10.3125-Gbps serial single-channel PHY,
providing a direct connection to an XFP by
means of the XFI electrical specification or
SFP+ optical module using the SFI electrical
specification.

• 3GPP LTE MIMO Decoder (v1.0) – Offers
a highly resource-optimized and scalable
MIMO decode function for 3GPP-LTE
basestations. A graphical user interface allows
the designer to select product parameters
according to the needs of the application.

• Peak Cancellation Crest Factor Reduction
(PC-CFR; v2.0) – Reduces implementation
time by providing a high-performance CFR
solution to customers as a parameterizable

First Quarter 2010 Xcell Journal 49

XTRA, XTRA

50 Xcell Journal First Quarter 2010

Xpress Yourself
in Our Caption Contest

XCLAMAT IONS!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original and must be
received by 5:00 pm Pacific Time (PT) on April 1, 2010. Official rules available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

G
ET

TY
 IM

A
G

ES

If you have a yen to Xercise your funny bone, here’s your opportunity. We invite
readers to step up to our verbal challenge and submit an engineering- or technolo-
gy-related caption for this evocative photograph of Pucca, the kick-butt noodle

shop delivery girl character who is all the rage in Asia, alongside a less-than-happy busi-
ness-suited companion. The image might inspire a caption like “John’s 3D virtual real-
ity experiments proved successful—but exhausting.”

Send your entries to xcell@xilinx.com. Include your name, job title, company affiliation
and location. After due deliberation, we will print the submissions we like the best in the
next issue of Xcell Journal and award the winner the new Xilinx® SP601 Evaluation Kit,
our entry-level development environment for evaluating the Spartan®-6 family of FPGAs
(approximate retail value, $295; see http://www.xilinx.com/sp601). Runners-up will gain
notoriety, fame and a cool, Xilinx-branded gift from our SWAG closet.

The deadline for submitting entries is 5:00 pm Pacific Time (PT) on April 1, 2010.
So, get writing!

MIKE BLANKENSHIP, the engineering
manager at Golftek, won an SP601
Evaluation Kit with this caption for

the strange, Dali-like image in
Issue 69 of Xcell Journal :

“Jerry’s last thought before drifting off to
sleep was ‘You’ll be sticking your neck out

if you tell management that the project
schedule is unrealistic.’ ”

Congratulations as well
to our two runners-up:

“Scott here, Captain. I’m having a wee bit
of trouble with the new transporter controller.

The Xilinx one worked better.”

– Kirk Hobart, engineer, R2Sonic LLC

“No need to look further! Get real and
stretch out of your nightmare, try the

Xilinx SP601 Evaluation Kit.”

– Sam Sortais, engineer, Ericsson

PN 2447

