
Issue 73
Fourth Quarter 2010

Xcell journalXcell journal
S O L U T I O N S F O R A P R O G R A M M A B L E W O R L DS O L U T I O N S F O R A P R O G R A M M A B L E W O R L D

INSIDE

FPGA Partial Reconfiguration
Goes Mainstream

Resurrecting the Mighty
Cray on a Spartan-3 FPGA

How Hardware Accelerators
Can Speed Your Processor’s
Sine Calculations

Xilinx Releases 2009
Quality Report

INSIDE

FPGA Partial Reconfiguration
Goes Mainstream

Resurrecting the Mighty
Cray on a Spartan-3 FPGA

How Hardware Accelerators
Can Speed Your Processor’s
Sine Calculations

Xilinx Releases 2009
Quality Report

www.xilinx.com/xcell/

FPGAs Enable
Greener Future

for Industrial
Motor Control

FPGAs Enable
Greener Future

for Industrial
Motor Control

©Avnet, Inc. 2010. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Introducing the First-ever
Battery-powered Xilinx FPGA
Development Board
The low-cost Xilinx® Spartan®-6 FPGA LX16 Evaluation

Kit, designed by Avnet, combines a Spartan-6 LX16

FPGA with a Cypress PSoC® 3 controller and LPDRAM

memory. This kit demonstrates a versatile battery-

powered solution for low-power applications and

provides a sound development environment for the

most demanding applications. The baseboard can also

be expanded with new FPGA Mezzanine Card (FMC)

modules, making design porting and FMC swapping

nearly seamless between Avnet and Xilinx platforms.

FMC modules for ISM Networking, Dual Image Sensing

and DVI I/O are currently available from Avnet.

Spartan®-6 FPGA LX16
Evaluation Kit Includes:

Spartan-6 LX16 DSP FPGA
LCD add-on panel
USB A-mini B cable
ISE® WebPACK™ DVD
AvProg configuration & programming utility
Downloadable documentation
& reference design

To purchase this kit, visit
www.em.avnet.com/spartan6lx-evl
or call 800.332.8638.

Toggle among banks of internal signals for incremental real-time internal measurements without:

See how you can save time by downloading our
free application note.

www.agilent.com/find/fpga_app_note

Quickly see inside your FPGA

u.s. 1-800-829-4444 canada 1-877-894-4414© Agilent Technologies, Inc. 2009

Also works with all InfiniiVision
and Infiniium MSO models.

L E T T E R F R O M T H E P U B L I S H E R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2010 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim it
might have against Xilinx for any loss, damage, or
expense caused thereby.

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
408-626-5981

EDITOR Jacqueline Damian

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Associates
1-800-493-5551

ADVERTISING SALES Dan Teie
1-800-493-5551
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang, Asia Pacific
melissa.zhang@xilinx.com

Christelle Moraga, Europe/
Middle East/Africa
christelle.moraga@xilinx.com

Miyuki Takegoshi, Japan
miyuki.takegoshi@xilinx.com

REPRINT ORDERS 1-800-493-5551

Xcell journal

www.xilinx.com/xcell/

Xilinx Demonstrates Quality Commitment to Customers
few years ago, I wrote a cover story for EDN magazine on the subject of reliability in elec-
tronic design. In the process of researching the topic, I learned many interesting things—
first of which is that most companies don’t want to speak publicly about the quality of

their products. Most, not all.
That original article was inspired by a shopping experience. While ringing up an Xbox 360 that

I was purchasing for the kids, the salesperson strongly suggested I also buy an aftermarket cooling
unit that plugged into the console to keep it from getting too hot. At the time it seemed absurd that
after forking over hundreds of dollars for a videogame system I’d need to pony up extra money to
make up for the possibility that there were deficiencies in the Xbox 360’s design.

Needless to say, I didn’t buy the cooling gizmo, and a year later (and a year after I wrote the
reliability article) my Xbox 360 experienced what many Xbox 360 owners collectively called “the
red ring of death.” Microsoft subsequently fixed the defect (rumored to be a thermal issue with
an ASIC) for free for all its customers. The company
must have forked over untold amounts of cash to respin
the ASIC, set up the infrastructure to refurbish units,
cover postage and organize the training for customer
service folks to say “I’ve never heard of the term ‘red
ring of death’” with some attempt at sincerity. Given
the quasi recall, one has to wonder how much more
successful the Xbox would have been had Microsoft not
encountered the quality issue.

Quality is really something everyone in electronics
should be more mindful of, especially as IC silicon
processes continue to shrink and can accommodate ever-
more-elaborate designs that power a broader range of
applications, spanning from consumer electronics to
medical and mission-critical systems.

So given this background, I was very proud to see our
quality team establish one of the few corporate quality
reports available for public consumption. For many years,
our customers have recognized Xilinx for its outstanding
quality. The 2009 quality report—downloadable in PDF
form at https://docs.google.com/viewer?url=http://www.xilinx.com/publications/prod_mktg/2009-quality-
annual-report.pdf—highlights Xilinx’s continued improvements in quality and customer satisfaction.

“Quality is no longer just about silicon,” said Vincent Tong, senior vice president of worldwide
quality and new product introductions. “The whole Xilinx design experience and IP ecosystem are
now being transformed into the types of programs we’ve run for decades to drive relentless quality
improvements and superb customer experiences.”

In keeping with this thrust, Tong says this year’s report will focus on Xilinx’s Targeted Design
Platforms, with an emphasis on how quality is important in each element of what Xilinx delivers to
its customers. “We offer outstanding FPGAs, but our commitment to quality does not end with sil-
icon,” said Tong. “We are committed to improving the overall customer experience. Our customers
have done amazing things with our products and we are committed to helping them become even
more successful in creating wonderful new innovations.”

I encourage you to give the 2009 quality report a read.

A

Mike Santarini
Publisher

C O N T E N T S

VIEWPOINTS XCELLENCE BY DESIGN
APPLICATION FEATURES 2020

2424

Letter From the Publisher
At Xilinx, Quality Extends Beyond Silicon…4 Xcellence in Industrial

FPGAs Fuel a Revolution
in Intelligent Drive Design…12

Xcellence in A&D
Using FPGAs in
Mission-Critical Systems…16

Xcellence in Wireless Comms
Virtex-4 Forms Foundation
for GSM Security…20

Xcellence in Networking
Research Design Platform Ignites
Real-World Network Advances…24

Xcellence in New Applications
A Flexible Operating System
for Dynamic Applications…30

Cover Story
FPGAs Create a Greener Future
for Industrial Motor Control 88

1616

F O U R T H Q U A R T E R 2 0 1 0 , I S S U E 7 3

Xperiment Resurrecting the
Cray-1 in a Xilinx FPGA…36

Xperts Corner FPGA Partial Reconfiguration
Goes Mainstream…42

Xplanation: FPGA 101 Multirate Signal
Processing for High-Speed Data Converters…50

Ask FAE-X How to Speed Sine Calculations
for Your Processor…54

XTRA READING

THE XILINX XPERIENCE FEATURES

5050

Are You Xperienced? Take advantage
of a simplified training experience…60

Xtra, Xtra The latest Xilinx tool
updates and patches, as of September 2010…62

Xclamations! Share your wit and wisdom by
supplying a caption for our cartoon, and win an
SP601 Evaluation Kit…66

3636

5454

Xcell Journal recently received
2010 APEX Awards of Excellence in the

categories “Magazine & Journal Writing” and
“Magazine & Journal Design and Layout.”

CHANCE TO

W
IN A SPARTAN-6

FPGA KIT – PAGE 66

by Mike Santarini
Publisher, Xcell Journal
Xilinx, Inc.
mike.santarini@xilinx.com

Electric motors are everywhere—running
toys and appliances in your home, cooling
your office and powering cars, trains and fac-
tory assembly lines worldwide. They are even
found in robots on Mars. Given this wide
range of applications, it isn’t surprising that
there are dozens of types of electric motors,
each with advantages and disadvantages.
Function, size, power consumption/efficien-
cy, performance, reliability, product life and,
of course, cost are all attributes companies
take into account when designing new elec-
tric motors and deciding which ones to
incorporate in their products.

Today, however, the electric motor is at
the dawning of a new era of maximum effi-
ciency and automation built upon highly
sophisticated FPGA-powered motor con-
trol systems. These new systems are just
starting to make their way into the facto-
ries that create the world’s products and
consume a huge percentage of the world’s
power. In the first quarter of 2011, Xilinx
will deliver a Targeted Design Platform
that will allow companies to quickly devel-
op the most advanced motor control sys-
tems to date and help factories reach new
levels of automation and efficiency.

8 Xcell Journal Fourth Quarter 2010

Xilinx FPGAs: Creating a Greener
Future for Industrial Motor Control

FPGAs are advancing the sophistication of industrial
motor control products. An upcoming Targeted
Design Platform aims to push it further.

FPGAs are advancing the sophistication of industrial
motor control products. An upcoming Targeted
Design Platform aims to push it further.

COVER STORY

The Growing Complexity
of Factory Motor Control
Joe Mallett, senior product line manager in
Xilinx’s industrial, scientific and medical
group, breaks industrial motor control into
five elements: communications, control,
drive, feedback and diagnostics.

At a minimum, said Mallett, all industri-
al motor control systems employ some type
of communications to the outside world to
allow a motor to work with other motors via
master controllers or enterprise software.
“Traditionally, the communications part of
motor control for the factory has been based
on serial communications, but it is rapidly
moving to Ethernet due to the real-time
requirements of communications, especially
in safety applications, and to more easily
link with the enterprise, which has been
Ethernet based for years,” said Mallett.

Then comes an element called “control,”
which is the term the industry generally uses
to describe the algorithm at the heart of the
motor control system. This algorithm con-
trols another element called drive—essen-
tially, the silicon power devices that switch
the current on and off to drive the motor.
The control and drive work together in
what’s called “the control and drive loop” to
run motors at optimum performance and
efficiency given their application.

The next element in a motor control sys-
tem is feedback. “These are sensors that
monitor various aspects of a motor in real
time, including position, speed and torque,
among others,” said Mallett. “To ensure reli-
ability, many companies are trying to mini-
mize the number of sensors they use in their
motor control systems. As such, many are
moving to sensorless control, which requires
high-performance, advanced algorithms to
retrieve the feedback information.”

The final piece of the system puzzle is
diagnostics. “Being able to predict when a
motor is likely to fail is becoming a com-
mon requirement,” said Mallett. Here

medical markets at Xilinx, pointed out that
it’s quite complex to create a motor control
unit that makes even one motor more effi-
cient because for maximum efficiency, the
control algorithms must be tailored to a
given motor’s targeted task in the factory.
The complexity of the algorithm grows
exponentially if it needs to control multiple
motors and even more so if the motor needs
to incorporate feedback or diagnostics.

Corradi explained that even the most
basic motor control systems employ com-
plex algorithms to regulate the amount of
power going into a motor or series of
motors. Incorporating feedback and diag-
nostics adds another level of complexity,
but delivers systems that will instantly warn
operators if there is a potential problem
with a motor, and perhaps identify what
the problem is and gauge its severity. The
most advanced systems even estimate how
long the motor will last given the problem.

“All motors will eventually wear out, but
it’s extremely valuable if you can estimate if
and when it will happen,” said Corradi. “If
a motor in an assembly line fails unexpect-
edly, it can bring an entire factory to a
standstill. Creating algorithms to control
the efficiency of a motor is very complex,
but adding these diagnostic capabilities on
top of efficiency controls requires a far more
sophisticated algorithm, and a sophisticated
device to execute that algorithm.”

The most advanced control systems
today include active, real-time safety features
such as sensors that spot cracks in machinery
and stop the machines in milliseconds to
avoid catastrophic failure or conditions that
could injure factory workers. Mallett notes
that in many cases these advanced safety fea-
tures are also becoming standardized and
mandated by government. The IEC 61508
standards effort, for example, stipulates that
control systems include functionality to
detect potentially dangerous conditions and
prevent hazardous events. In Europe, the

too, “prediction and diagnostics require
fast decisions and sophisticated signal-
processing capabilities.”

In recent years, most of the R&D and
work in the motor control segment—
whether it be for factory equipment, auto-
mobiles or even toys—has focused on
improving motor efficiency.

Factories depend heavily on electric
motors to power robots, tools, assembly lines
and HVAC (heating, cooling and ventila-
tion) systems. Many run all this machinery
24 hours a day, seven days a week, to fill
orders and keep revenue coming in. As such,
reliability and efficiency are paramount, as an
unexpected failure in an electric motor can
bring an entire assembly line or factory to a
halt, and may even harm workers.

Advanced Motor Control Combines
Efficiency, Reliability and Safety
Further, with 24/7 operation, energy con-
sumption has a drastic impact on the total
cost of ownership and bottom line. In the
factory space, efficiency is increasingly
mandatory, said Mallett.

“It’s always great to drive down energy
bills, but the fact is, many factories have no
choice in the matter,” said Mallett. “They
have to comply with government mandates
to reduce the pollution they create and the
energy they consume. However, most facto-
ries can’t afford to shut down for a long peri-
od of time and replace their entire
manufacturing lines with newer, more effi-
cient ones. What they would prefer to do is
run their existing machinery more efficient-
ly and swap in newer, more efficient motors
over time, as needed—keeping factory
downtime to a minimum.” To that end,
equipment manufacturers are racing to
develop the most efficient motor and con-
trol combination possible to help factories
meet their energy-savings goals, Mallett said.

However, Giulio Corradi, ISM systems
architect for the industrial, scientific and

Fourth Quarter 2010 Xcell Journal 9

‘Creat ing a lgor i thms to contro l the e f f ic iency o f a motor is
very complex, and adding these d iagnost ic capabi l i t ies on top o f
e f f ic iency contro ls requires a far more sophis t ica ted a lgor i thm.’

COVER STORY

Machinery Directive 2006/42/EC went into
effect in December 2009, mandating that
machinery manufacturers provide products
that comply with IEC 61508.

But motor control in the factory is not
restricted to monitoring efficiency, safety
and motor longevity, Corradi explained.
Companies also leverage motor controls to
make robots perform ever-more-sophisticat-
ed and exacting functions. “A single robot
has several motors and they must be able to
perform several functions,” said Corradi.
“They must be programmable to change
tasks and they must work in concert with
other robots. The algorithms to run the
motors in a robot are extremely advanced.”

Even an HVAC system motor control is
vitally important. Many factories use chemi-
cals, solvents and contaminants and must
ventilate them properly. Clean rooms must
also minimize contaminants. These
machines must operate correctly all the time.

Mallett points out that in modern facto-
ries all these systems—assembly lines, robots

and HVAC—are interrelated and intercon-
nected. They must be orchestrated in concert
with one another. In many cases, newer sys-
tems use high-speed wired interconnect stan-
dards such as Industrial Ethernet, while some
are starting to even use wireless communica-
tions. Since factories tend to be noisy envi-
ronments, the latter trend adds further layers
of complexity to motor control designs.

FPGAs Displacing Off-the-Shelf
Processors in Advanced Motor Control
Because of all this complexity on the factory
floor, the demand for processing perform-
ance is growing exponentially and program-
mable logic control is increasingly displacing
traditional processor-based motor control.

Historically, engineers have used micro-
controllers for factory-class motor control,
said Corradi. But that design approach is
hitting a wall. “The new factory systems are
so sophisticated now and integrate so many
functions that you would have to use sever-
al microcontrollers, and often the biggest

and most expensive ones,” he said. “Then,
after you’ve done that, you are fairly restrict-
ed in what functionality you can add to your
motor control. With an FPGA, you can add
all the advanced features required to a single
chip and even add new functions after you’ve
deployed the system in a factory.”

A prime example of this elevated com-
plexity is a new trend called “networked
control systems,” in which motor control
feedback is routed via networking to
enterprise software systems, not just to a
local operator’s station. In this application,
“not only are the control algorithms more
complex, but also, the network is essen-
tially ‘in-the-loop,’ demanding real-time
performance far beyond what standard
off-the-shelf processors can handle,”
Corradi said. “By contrast, FPGAs can
perform networking and control support
simultaneously” (see Figure 2).

“A single FPGA can really do the work
of dozens of microcontrollers,” said
Corradi. “It’s much easier to have this com-

10 Xcell Journal Fourth Quarter 2010

Motor

Enterprise to
Factory Bridge/Gateway

Industrial Networking
and Field Bus

Figure 1 – Xilinx FPGAs play an increasing role in advanced motor control at multiple points
in the factory and even the connection between the factory and the enterprise.

COVER STORY

Fourth Quarter 2010 Xcell Journal 11

plexity in one device rather than distributed
across a board with many processors.”

What’s more, FPGAs excel at parallel as
well as serial operations. This means design-
ers can program a single FPGA to coordi-
nate multiple motor controller functions for
a variety of motors simultaneously. The real-
time requirements don’t stop there, but also
include functional safety features, with the
concomitant need to shut down a line in
milliseconds if attached sensors detect
unsafe conditions. “Functional safety is
enabled within FPGAs by using silicon-spe-
cific functions, dedicated hardware IP and a
software stack that, combined, make the
complete system,” said Corradi.

Corradi noted that customers can leverage
an FPGA’s reliability and the design tech-
niques Xilinx has refined over 20 years for
aerospace applications to implement safety
features in their motor control systems.
“Companies that add safety features to their
motor control units typically have to design
specific chips dedicated to safety,” said
Corradi. “In an FPGA, you can partition a
segment of the chip just for this purpose and
have a clear separation between the safety and
nonsafety segments of the chip. This makes it
easier if they need to create derivative systems
or upgrade systems, because they can simply
leave the safety part of the chip alone.”

Another option would be to add dupli-
cate or triplicate functions in the design to
ensure space-quality safety controls in
these systems.

In fact, the companies that specialize in
the safety aspect of motor control have
been the early adopters of FPGA technolo-
gy. “They see the advantage in how the
FPGA could clearly bring a reduction in
development times and additional reliabili-
ty, and a clear separation of safety and non-
safety functions,” Corradi said.

Xilinx Readies Industrial Ethernet
Motor Control Targeted Design Platform
It is for these reasons that companies are
turning to FPGAs over processor-based
systems for industrial motor control.
Mallett predicts that the pace of adoption
will advance rapidly over the next few
years, especially once engineers get their
hands on the upcoming Xilinx Targeted
Design Platform tailored for factory
automation and motor control.

This market-specific platform will pull
all the pieces together for the end customer
developing advanced motor controllers.
The development environment will
include the hardware, tools and IP needed
to integrate Industrial Ethernet and motor
control into a single platform. Corradi said

the Targeted Design Platform will also
include a targeted reference design to help
customers shorten their development cycles
and differentiate their products.

Xilinx will base the first-generation sys-
tem on a Spartan®-6 FPGA running a
MicroBlaze® processor. Looking forward,
one can envision a platform leveraging
Xilinx’s ARM® MPU-based Extensible
Processing Platform, further accelerating
the role of programmable logic in motor
control design—potentially saving factories
millions of dollars and ensuring the safety
of industrial workers worldwide.

A key part of the factory automation
Targeted Design Platform is a library of
general-purpose and market-specific IP
that Xilinx and its alliance partners will
offer to help customers develop Spartan-6-
based integrated motor controllers quickly
(see related story, page 12).

Mallett predicts that as companies
become more familiar with programming
FPGAs for motor control systems that end
up in factories, they will start to use
FPGA-based motor control across other
product lines and for other control appli-
cations. “Companies are always seeking
ways to build a better motor or at least a
better way to control them, and FPGAs are
ideal for the job,” said Mallett.

Communication
Monitoring/Setup

Motor Control and Drive

Feedback

Eth
Port

Ethernet
PHY

Crystal
Oscillator

JTAG

PROM

Encoder

Encoder

Program
Memory 16K

Data
Memory 2K

Interrupt
Controller

Industrial
Ethernet

UART

Clock
Mgmt

Position and
Angle

MicroBlaze
Control

Processor

W
atchdog

Tim
er/C

ounter
C

lo
ck

Bridge (2)

ADC

ADC

ADC

ADC

ADC

F
O

C

v

P
LB

I/F

ADC
Controller

Stator Current
(1)

Stator Current
(2)

DC Bus Voltage

P
W

M

Bridge (1)

F
O

C

v

P
W

M
S

in
c3

S
in

c3
S

in
c3

S
in

c3
S

in
c3

Spartan-6
FPGA

Figure 2 – Engineers can implement many motor control features on a single FPGA.

COVER STORY

by Kasper Feurer
Embedded Systems Engineer
Xilinx Ireland
kasper.feurer@xilinx.com

Richard Tobin
Embedded Systems Engineer
Xilinx Ireland
richard.tobin@xilinx.com

Manufacturers of intelligent drives, as well
as many other players in the automotive
and ISM sectors, are facing numerous
challenges to satisfy new market demands
and meet constantly evolving standards.
In modern industrial and automotive
applications, motors must provide maxi-
mum efficiency, low acoustic noise, a wide
speed range and reliability, all at an
acceptable cost. On today’s factory floor,
motor-driven equipment consumes two-
thirds of total electricity energy, leading to
the urgent need to develop more energy-
efficient systems. Interoperability is also a
critical design requirement, as in many
cases a drive will serve as a component in
a large-scale process. A key factor that
influences this requirement is the breadth
of industrial networking protocols (the
field buses) and associated device profiles,
which serve to standardize the representa-
tion of a drive within a network. The field
buses themselves (for example, CAN and
Profibus) are diverse, and despite sharing
the same generic name they are not readi-
ly interchangeable. In an attempt to
reduce cost and improve communications
between industrial controllers, field bus

providers have developed Ethernet-based
industrial networking solutions, and sev-
eral new protocols, such as EtherCAT,
Profinet and EtherNet I/P among others,
have emerged in recent years. However,
these are also divergent technologies and
drive manufacturers struggle to support
all the major players.

Xilinx Design Services (XDS) has
addressed all of these issues in developing
an FPGA-based prototype motor control
platform supporting the CANopen and
EtherCAT interfaces for a key player in
the ISM space. Our role was to design
and implement a fully functional and
modular system fit for reuse in the cus-
tomer’s next-generation intelligent drives.
The Xilinx® Spartan®-6 FPGA SP605
Evaluation Kit Base Targeted Design
Platform, along with third-party IP, pro-

vided state-of-the art motor control algo-
rithms and industrial networking support
in a modular system architecture, yielding
an efficient and scalable design.

Choosing the FPGA Path
The customer’s existing, microcontroller-
based solutions did not deliver what the
customer wanted most: a scalable platform.
A Spartan-6 FPGA-based intelligent drive
control system provides all the necessary
scalability, logic and compute power in a
single chip, reducing costs while also avoid-
ing obsolescence. Such a platform can be
upgraded for years to come with the latest
standards of industrial networking and the
most efficient motor control algorithms. In
addition, the reprogrammable nature of
FPGAs facilitates customization of a single
base motor control system to meet specific

12 Xcell Journal Fourth Quarter 2010

Revolutionizing Intelligent Drive
Design with the Spartan-6
Xilinx Design Services uses the SP605 Evaluation Kit
and state-of-the-art motor control IP to prototype an
interface-independent intelligent drive control system.

XCEL LENCE IN INDUSTR IAL

customer requirements, allowing easy inte-
gration into the existing industrial net-
work. In short, the Spartan-6 FPGA fulfills
all the challenging requirements of the
industrial space.

For newcomers to the world of FPGA-
based system design, like our customer,
Xilinx’s Targeted Design Platforms offer
the ideal starting point by providing a
robust set of well-integrated and tested ele-
ments right out of the box. You can auto-
mate an even greater portion of the final
design by adding domain-specific and mar-
ket-specific platform offerings to the Base
platform. These targeted reference designs
reduce the learning curve by demonstrating
FPGA implementations of real-world con-
cepts, allowing customers to put their mus-
cle into the design and development of the
differentiating features of the final product.

Our solution combined the Spartan-6
SP605 Evaluation Kit with third-party
offerings—namely the NetMot FMC
board and IP from QDeSys plus industrial
networking IP from Bosch and Beckhoff.
Not only were all the basic building blocks
of the desired system in place from the
start, but we could proceed with prototype
development without the need for a cus-
tom FPGA board, thus allowing the cus-
tomer to verify the viability of this new
platform at minimum cost. To further
enhance the time-to-market and reduce the
risks involved with a first-time FPGA sys-
tem design, the customer asked us to not
only deliver this prototype but also to sup-
port the adoption of FPGAs in its next-
generation intelligent drives.

Ultimately, both engineers and their
managers benefited by this approach. The
former learned FPGA-based design faster,
armed with best practices gleaned from
XDS, while the management slashed the
time it took to deliver product along with
the business risks.

Intelligent Drive Control System Prototype
The XDS portfolio covers the entire
FPGA design development cycle, from
specification creation through coding,
verification, timing closure and system
integration. Drawing on years of experi-
ence in embedded-processor system and

Depending on the combination of PLC
and the type of intelligent drive (CAN or
EtherCAT), the industrial network is either
a serial bus or a standard 100-Mbit
Ethernet interface. For both solutions the
prototype uses a direct line link between
the PLC and the motor—either a two-wire
serial interface for CAN, or a standard
RJ45 100Base-TX Ethernet connection for
EtherCAT.

The motor control printed-circuit
board, typically one of a number of PCBs
in an intelligent drive, is dedicated to con-
trolling the motor via commands from the
PLC. This motor control board is where
the flexibility of an FPGA comes into
play. Rather than a single interface and
single motor control algorithm solution,
as in the conventional ASIC/microproces-
sor approach, the Spartan-6 FPGA can be
reprogrammed with dedicated networking
and motor control IP blocks, as well as the
control software to suit the customer’s spe-
cific needs. In this manner, a single FPGA-
based PCB can fulfill the functions of
many ASIC-based boards. At the same
time, it future-proofs the intelligent drive
by providing a mechanism to update the IP
to the latest standards.

Rather than designing this motor con-
trol board from scratch, XDS exploited the

software application design, along with
the ability to integrate third-party IP,
good project management practices and a
fully certified ISO9001 development
process, XDS delivered the intelligent
drive control system prototype very early
in the customer’s product development
cycle. The resulting custom Targeted
Design Platform enabled the customer’s
engineers to familiarize themselves with
FPGA design processes and hence opti-
mize the power of this new technology in
their next-generation products.

Let’s look more closely at the main com-
ponents of this intelligent drive control sys-
tem prototype as illustrated in Figure 1.

The programmable logic controller
(PLC) operates the intelligent drive, which
is attached to the industrial network in real
time. For the purpose of this prototype, we
used two PC-based PLCs to handle the
two industrial networking standards the
system supports: miControl mPLC for the
controller-area network (CAN) and
TwinCAT for the EtherCAT industrial
Ethernet field bus system. The PLC gener-
ates predefined command messages (for
example, start and stop) and verifies the
correct behavior of the motor by analyzing
the responses received (current speed, tem-
perature, voltage and so on).

Fourth Quarter 2010 Xcell Journal 13

Industrial Network

Intelligent Drive FPGA-based
Motor Control PCB

Industrial
Network IP

Motor
Control IP

MicroBlaze
with

Control
Software

Spartan-6 FPGA

Figure 1 – The drive control system prototype

XCEL LENCE IN INDUSTR IAL

Targeted Design Platform concept, inte-
grating all the customer’s desired elements
by combining the Xilinx Spartan-6 SP605
Evaluation Kit, the NetMot FMC board,
and industrial networking and motor con-
trol IP, thus delivering this proof-of-con-
cept prototype before the customer had
completed its new PCB. Figure 2 shows
how we combined the various compo-
nents to yield the prototype development
platform. As a result, the customer greatly
reduced the integration effort and was
able to explore the best design options
without re-engineering the final design.

The SP605 Base Targeted Design
Platform is a general-purpose FPGA plat-
form that hosts a Spartan-6 LX45T in a
proven implementation, alongside many
commonly needed peripherals such as
DDR3 RAM, flash memories for pro-
gram/bitstream storage, UART for debug
and JTAG for FPGA programming.
Another key element of the SP605 as well
as all recent Xilinx boards is the FPGA
Mezzanine Card (FMC) connector, which
enables designers to expand the base board
with custom functions and interfaces.

This feature of the SP605 enabled us
to build on this base by using features pro-
vided by the QDeSys NetMot FMC
(www.qdesys.com), which implements the

power electronics required for motor con-
trol, such as voltage inverters and ADCs
for obtaining sensor data. You can connect
the motor directly to these inputs/outputs
as shown in Figure 2. The NetMot FMC
also expands the industrial network con-
nectivity features of the SP605 by adding
two CAN and two Ethernet physical-layer
interfaces. They are accessible to the FPGA
via the FMC connector and a PLC over
standard interfaces.

The test PC functions as both a host for
the PLC software and an FPGA program-
ming/debug platform using the UART and
JTAG interfaces. In addition, we used this
test PC to develop the MicroBlaze™
embedded-processor system for the
SP605’s LX45T FPGA with Xilinx’s ISE®

12.1 Design Suite. This embedded system
is responsible for processing the commands
received from the PLC and controlling the
motor accordingly.

The MicroBlaze software application,
networking and motor control IP blocks
seen in Figure 2 represent the modules of
the design that change depending on the
interface (EtherCAT or CANopen) and
motor type chosen. One of the main chal-
lenges for XDS was to ensure that the
process of switching between these options
be as simple as possible, thus ensuring that

the customer would be able to reuse the
same methods in the future for further
industrial network types like Profinet and
for new motors.

Implementation Details
Let’s examine these parts of the Spartan-6
embedded system in greater detail. As shown
in Figure 3, the motor control IP block that
we used—the Xilinx Motor Control Library
(XMCLIB)—is identical for both versions of
the design. This custom IP core, which per-
mits the FPGA to control the NetMot
FMC’s motor power electronics, plugs direct-
ly into Xilinx’s Embedded Development Kit
(EDK). This allowed us to add the IP to our
embedded design from the Xilinx Platform
Studio (XPS) project and configure it to suit
the motor that was connected to the FPGA
via the FMC connector. The XMCLIB soft-
ware driver is a set of low-level functions giv-
ing the motor control application access to
the XMCLIB register interface.

The networking IP, on the other hand, is
where the system differs for the two variants.
For the CAN version of the design we chose
the standard LogiCORE™ IP XPS
Controller Area Network, delivered with the
ISE 12.1 design suite and licensed by Bosch
GmbH. For the EtherCAT version, we used
Beckhoff ’s EtherCAT Slave Controller IP

14 Xcell Journal Fourth Quarter 2010

Test PC

PLC
TwinCAT / mPLC

JTAG
Programming I/F

NetMot FMC

Ethernet /
CAN PHY

I/Fs

Motor
Power

Electronics

FMC Connector Flash DDR3

MicroBlaze
Software Application

Motor

Standard
Peripherals

(MPMC,
UARTLite

MDM, etc.)

Networking
IP

Motor
Control IP

M
icroB

laze

UART Debug
Console

S
P

605

LX
45T

 F
P

G
A

U
A
R
T

J
T
A
G

Figure 2 – Prototype Spartan-6 FPGA-based motor control board

XCEL LENCE IN INDUSTR IAL

Fourth Quarter 2010 Xcell Journal 15

Core (www.beckhoff.com) for Xilinx FPGAs.
Both of these IP cores are also available from
the XPS tools’ IP Catalog tab, making inte-
gration and configuration in the design very
straightforward. In this case, instead of using
a simple driver to provide access to the net-
working IP, we used Port’s (www.port.de)
CANopen and EtherCAT Stack solutions,
which offer fully featured protocol imple-
mentations right out of the box.

Finally, we designed a custom embed-
ded-software application to run on
Micrium’s (www.micrium.com) µC/OS-II
on the MicroBlaze processor system. This
embedded operating system enhances the
prototype system’s real-time capabilities
and provides multitasking, message queues
and semaphores, among other features.

We also recognized that it was important
to structure the application in a way that
would allow us to retarget it to different
network interfaces. To achieve this, we
designed an interface abstraction layer that
lets us encapsulate the communications and
motor control elements of the software.

On one side of this interface (Figure 4), we
implemented a networking module (Port’s
CANopen or EtherCAT) to manage the com-
munications for the networking IP available
in the system. These modules plug in seam-
lessly to our interface abstraction layer. At the
top level of these stacks, we pass communica-
tions and control data (such as PDOs, SDOs
and NMT state transitions) into the abstrac-
tion layer, which interprets the data and pres-
ents it to the motor control application as
commands such as start/stop or rotate at a
specified velocity or to a specified position.

To determine a common set of messages
and commands for the interface abstraction,
we researched existing publications in the
area of industrial networking and encoun-
tered the IEC 61800-7 standard. For the
existing field bus technologies, several
schemes are used to standardize the commu-
nications with a drive device (such as CiA-
402 for CANopen or PROFIdrive for
Profinet). IEC 61800-7 presents a common
representation of a drive and proceeds to pro-
vide a set of mappings between this represen-
tation and the existing drive profiles.

The concepts presented in this standard
allowed us to develop our interface abstrac-
tion, which in turn allowed us to encapsu-
late the networking component of the
system. We can therefore change the net-
working interface present in the system, and
we only need to tailor a small portion of the
software to make it compatible with the
existing motor control application.

Going Forward
The successful delivery of the intelligent drive
control system prototype has clearly illustrat-
ed the potential power of FPGAs in industri-
al Ethernet networking, field buses and motor
control. Although some work remains to
develop a fully featured product, XDS tai-
lored a Targeted Design Platform and
enhanced it for the customer, creating a cus-
tom solution that will greatly reduce the risks
and effort required to come to a final, engi-
neered product. As a next step, XDS is inves-
tigating expanding this Targeted Design
Platform to support the Profinet IP core and
stack, demonstrating that the modular
approach and the design practices adopted are
very effective for the customer.

Spartan-6 LX45T

MicroBlaze

Micrium µC/OS-II

Motor Control Application

Interface
Abstraction

Layer

Port
EtherCAT

OR
CANopen

EtherCAT IP
OR

CAN IP

NetMot FMC
Ethernet Ports

NetMot FMC
Power Electronics

Standard
Xilinx SW

Drivers

XMCLIB
SW Driver

Standard Xilinx
IP

(UART, MDM,
MPMC, etc.)

XMCLIB IP

Motor
Control

Application

CANopen

Message
passing

Interface

EtherCAT

Figure 3 – CAN/EtherCAT embedded system

Figure 4 – Interface abstraction layer

XCEL LENCE IN INDUSTR IAL

by Adam Peter Taylor
Principal Engineer
EADS Astrium
aptaylor@theiet.org

Dramatic surges in FPGA technology,
device size and capabilities have over the
last few years increased the number of
potential applications that FPGAs can
implement. Increasingly, these applica-
tions are in areas that demand high relia-
bility, such as aerospace, automotive or
medical. Such applications must func-
tion within a harsh operating environ-
ment, which can also affect the system
performance. This demand for high reli-
ability coupled with use in rugged envi-
ronments often means you as the
engineer must take additional care in the
design and implementation of the state
machines (as well as all accompanying
logic) inside your FPGA to ensure they
can function within the requirements.

One of the major causes of errors with-
in state machines is single-event upsets
caused by either a high-energy neutron or
an alpha particle striking sensitive sections
of the device silicon. SEUs can cause a bit
to flip its state (0 -> 1 or 1 -> 0), resulting
in an error in device functionality that
could potentially lead to the loss of the sys-
tem or even endanger life if incorrectly
handled. Because these SEUs do not result
in any permanent damage to the device
itself, they are called soft errors.

16 Xcell Journal Fourth Quarter 2010

Using FPGAs in
Mission-Critical Systems
Using FPGAs in
Mission-Critical Systems
SEU-resistant state machines hold the key
to adapting programmable logic devices
for high-reliability applications.

XCEL LENCE IN AEROSPACE & DEFENSE

The backbone of most FPGA design is
the finite state machine, a design methodol-
ogy that engineers use to implement con-
trol, data flow and algorithmic functions.
When implementing state machines within
FPGAs, designers will choose one of two
styles, binary or “one hot,” although in
many cases most engineers allow the synthe-
sis tool to determine the final encoding
scheme. Each implementation scheme pres-
ents its own challenges when designing reli-
able state machines for mission-critical

systems. Indeed, even a simple state machine
can encounter several problems (Figure 1).
You must pay close attention to the encod-
ing scheme and in many cases take the deci-
sion about the final implementation
encoding away from the synthesis tool.

Detection Schemes
Let’s first look at binary implementations
(sequential or “gray” encoding), which
often have leftover, unused states that the

startup following reset release. Typically,
these states also keep the outputs in a safe
state; should they be accidentally entered,
the machine will cycle around to its idle
state again.

One-hot state machines have one flip-
flop for each state, but only the current
state is set high at any one time.
Corruption of the machine by having
more than one flip-flop set high can
result in unexpected outcomes. You can
protect a one-hot machine from errors by

monitoring the parity of the state regis-
ters. Should you detect a parity error, you
can reset the machine to its idle state or to
another predetermined state.

With both of these methods, the state
machine’s outputs go to safe states and the
state machine restarts from its idle position.
State machines that use these methods can
be said to be “SEU detecting,” as they are
capable of detecting and recovering from
an SEU, although the state machines’ oper-

state machine does not enter when it is
functioning normally. Designers must
address these unused states to ensure that
the state machine will gracefully recover in
the event that it should accidentally enter
an illegal state. There are two main meth-
ods of achieving this recovery. The first is to
declare all 2N number of states when defin-
ing the state machine signal and cover the
unused states with the “others clause” at the
end of the case statement. The others
clause will typically set the outputs to a safe

state and send the state machine back to its
idle state or another state, as identified by
the design engineer. This approach will
require the use of synthesis constraints to
prevent the synthesis tool from optimizing
these unused states from the design, as
there are no valid entry points. This typi-
cally means synthesis constraints within the
body of the RTL code (“syn_keep”).

The second method of handling the
unused states is to cycle through them at

Fourth Quarter 2010 Xcell Journal 17

XCEL LENCE IN AEROSPACE & DEFENSE

Read
Write

Inco
rre

ct
sta

te tra
nsiti

on Incorrect state transition

State ch
ange to

 unmapped st
ate

State change to unmapped state

No Recovery Back
to Idle State

Idle

State Encoding 00

Write
State Encoding 10

Read
State Encoding 01

Unmapped State
State Encoding 11

Figure 1 – Even a simple state machine can encounter several types of errors.

ation will be interrupted. You must take
care during synthesis to ensure that register
replication does not result in registers with
a high fanout being reproduced and hence
left unaddressed by the detection scheme.
Take care also to ensure that the error does
not affect other state machines that this
machine interacts with.

Many synthesis tools offer the option of
implementing a “safe state machine”
option. This option often includes more

logic to detect the state machine entering an
illegal state and send it back to a legal one—
normally the reset state. For a high-reliability
application, design engineers can detect and
verify these illegal state entries more easily
by implementing any of the previously
described methods. Using these approaches,
the designers must also take into account
what would happen should the detection
logic suffer from an SEU. What effect
would this have upon the reliability of the

design? Figure 2 is a flow chart that attempts
to map out the decision process for creating
reliable state machines.

Correction Schemes
The techniques presented so far detect or
prevent an incorrect change from one legal
state to another legal state. Depending
upon the end application, this could result
in anything from a momentary system
error to the complete loss of the mission.

XCEL LENCE IN AEROSPACE & DEFENSE

State Machine
Required

Protection
Required

Implement State
Machine as

Normal

Protection
Required

Correction
Required

Detection or
Correction

Implement State
Machine Using
Triple-Modular
Redundancy

Implement State
Machine Using
State Encoding
with a Hamming

Distance of Three

Sequential
or One-Hot

Implementation

Detection
Required

Sequential

One-Hot

Implement State
Machine to Cycle
Through Unused

States

Implement State
Machine to

Preserve Unused
States

Implement State
Machine Using
State Encoding
with a Hamming
Distance of Two

Implement State
Machine With

Parity Protection

18 Xcell Journal Fourth Quarter 2010

Figure 2 – This flow chart maps out the decision process for creating reliable state machines.

XCEL LENCE IN AEROSPACE & DEFENSE

Fourth Quarter 2010 Xcell Journal 19

Techniques for detecting and fixing
incorrect legal transitions are triple-modu-
lar redundancy and Hamming encoding.
The latter provides a Hamming distance of
three and covers all possible adjacent states.
A simpler technique for preventing legal
transitions is the use of Hamming encod-
ing with a Hamming distance of two
(rather than three) between the states, and
not covering the adjacent states. This, how-
ever, will increase the number of registers
your design will require.

Triple-modular redundancy, for its part,
involves implementing three instantiations
of the state machine with majority voting
upon the outputs and the next state. This is
the simpler of the two approaches and
many engineers have used it in a number
of applications over the years. Typically, a
TMR implementation will require spatial
separation of the logic within the FPGA to
ensure that an SEU does not corrupt more
than one of the three instantiations. It is
also important to remove any registers
from the voter logic, since they can create a
single-point failure in which an SEU could
affect all three machines.

The use of a state machine with encod-
ing that provides a Hamming distance of
three between states will ensure both SEU
detection and correction. This guarantees
that more than a single bit will change
between states, meaning an SEU cannot
make the state transition from one legal
state to another erroneously. The use of a
Hamming distance of two between states is
similar to the implementation for the
sequential machine, where the unused states
are addressed by the “when others” clause or
reset cycling. However, as the states are
explicitly declared to be separate from each
other by a Hamming distance of two with-
in the RTL, the state machine cannot move
from one legal state to another erroneously
and will instead go to its idle state should
the machine enter an illegal state. This pro-
vides a more robust implementation than
the binary one mentioned above.

If you wish to implement a state machine
that will continue to function correctly
should an SEU corrupt the current state reg-
ister, you can do so by using a Hamming-
code implementation with a Hamming

distance of three and ensuring its adjacent
states are also addressed within the state
machine. Adjacent states are those which are
one bit different from the state register and
hence achievable should an SEU occur. This
use of states adjacent to the valid state to
correct for the error will result in N*(M+1)
states, where N is the number of states and
M is the number of bits within the state reg-
ister. It’s possible to make a small high-relia-
bility state machine using this technique,
but crafting a large one can be so complicat-
ed as to be prohibitive. The extra logic foot-
print associated with this approach could
also result in lower timing performance.

Deadlock and Other Issues
There are other issues to consider when
designing a high-reliability state machine
beyond the state encoding schemes.
Deadlock can occur when the state machine
enters a state from which it is never able to
leave. An example would be one state
machine awaiting an input from a second
state machine that has entered an illegal state
and hence been reset to idle without gener-
ating the needed signal. To avoid deadlock,
it is therefore good practice to provide time-
out counters on critical state machines.
Wherever possible, these counters should
not be included inside the state machine but
placed within a separate process that outputs
a pulse when it reaches its terminal count.
Be sure to write these counters in such a way
as to make them reliable.

When checking that a counter has
reached its terminal count, it is preferable
to use the greater-than-or-equal-to opera-
tor, as opposed to just the equal-to oper-
ator. This is to prevent an SEU from
occurring near the terminal count and
hence no output being generated. You
should declare integer counters to a
power of two and, if you are using
VHDL, they should also be modulo the
power of two to ensure in simulation that
they will wrap around as they will in the
final implementation [count <= (count +
1) Mod 16; for a 0- to 15-bit integer
counter]. Unsigned counters do not
require this, since there is no simulation
mismatch between RTL and post-route
simulation regarding wraparound.

You can replicate data paths within the
design and compare outputs on a cycle-
by-cycle basis to detect whether one of
them has been subjected to an SEU
event. Wherever possible, edge-detect sig-
nals to enable the design to cope with
inputs that are stuck high or stuck low.
You should analyze each module within
the design at design time to determine
how it will react to stuck-high or stuck-
low inputs. This will ensure it is possible
to detect these errors and that they can-
not have an adverse effect upon the func-
tion of the module.

Simulation and Verification
Once you have designed the state
machine, you will of course wish to simu-
late it to ensure it meets requirements. It
is also possible during simulation to try to
test how the machine will behave when
subjected to an SEU (it is worth noting
that this can take considerable time and
effort to achieve in full). You can corrupt
the state machine using the force option
within the ModelSim utilities library from
a test bench. When attempting to simu-
late the effects of SEUs, it is important to
remember that they are asynchronous
events that can occur at any point in time.
There are also third-party tools available
that can test designs for SEU perform-
ance. One free offering, which injects
SEUs into the design, is the ESA Single
Event Upsets Simulation Tool, available at
http://www.nebrija.es/~jmaestro/esa/.

Designers can undertake a similar
approach upon the post-route simulation.
However, it’s a better idea to verify the
correct performance of the RTL code with
regard to functionality and SEU tolerance
and then conduct a formal equivalence
check between the RTL and the post-
route simulation netlist to ensure that
they both behave in the same manner.

FPGAs will continue to be used in an
increasing number of mission-critical
applications as the growth in capability
and performance demanded of these sys-
tems increases. The techniques present-
ed here will provide you with the
methodology required to make such a
design a success.

by Mansoor Naseer
Assistant Professor
Bahria University, E-8, Islamabad, Pakistan
mansoor.naseer@gmail.com

Mobile telephony, the Internet and stream-
ing applications enable people to communi-
cate over long distances and find
information and entertainment online. But
with the explosion in mobile communica-
tions usage, the tremendous volume of
information transmitted in the air is vulner-
able to security risks. In order to maintain
security, engineers use cryptographic tech-
niques to disguise the data. For the Global
System for Mobile communication (GSM)
standard, their algorithm of choice is the
A5/1. Using A5/1, the encryption and
decryption are performed over the network,
both at the handset and at the base station.

This article will walk you through an
implementation of the A5/1 stream cipher,
taking note of the code snippets used to
implement different blocks of the cipher.
We will also take a look at a couple of new
and different twists on the original A5/1
algorithm for enhanced security. In partic-
ular, I am changing how the feedback func-
tion behaves as well as reworking the
combiner output. For this work, I used a
Xilinx® Virtex®-4 LX series FPGA for
hardware implementation and the Xilinx
ISE® for synthesis. I used Mentor
Graphics’ ModelSim 6.0 for simulation.

Before plunging into implementation
details, let us begin with a brief description
of the A5/1 algorithm.

20 Xcell Journal Fourth Quarter 2010

Virtex-4 FPGA Forms Foundation
for Secure GSM Standards
Virtex-4 FPGA Forms Foundation
for Secure GSM Standards
Here are some design mechanisms and tips you can try when implementing
current and future A5/x algorithms using Xilinx FPGAs.
Here are some design mechanisms and tips you can try when implementing
current and future A5/x algorithms using Xilinx FPGAs.

XCEL LENCE IN WIRELESS COMMS

Ins and Outs of A5/1 Algorithm
In the GSM standard, information travels
over the airwaves as sequences of frames.
Frame sequences contain a digitized version
of the user’s voice as well as streaming audio
and video data used in mobile Internet
browsing. The system transmits each frame
sequentially, 4.6 milliseconds apart. A
frame consists of 228 bits; the first 114 bits
are called “uplink data” and the next 114
bits are known as “downlink data.”

We initialize A5/1 using a 64-bit secret
key together with a known frame number
that is 22 bits wide. The next step is to
feed the input bits of the frame and secret
key into three linear feedback shift regis-
ters (LFSRs) that are 19, 22 and 23 bits in
size respectively. The feedback is provided
after XOR’ing of selected taps, which
helps increase randomness in the final
output. I will call the three LFSRs R0,
R1 and R2, such that each LFSR follows
a primitive function. R0, R1 and
R2 respectively use x19+x5+x2+x+1,
x22+x+1 and x23+x15+x2+x+1 as their
primitive functions.

other. The session key KC takes 64
cycles in loading whereas Fn takes
another 22 cycles. In every cycle, the
input bit is XOR’ed with a linear feed-
back value coming from selective taps.

3. Next, allow the LFSRs to clock for
100 cycles, a process called mixing.
Linear feedback is active and so are
the chip enables, allowing a shift/no-
shift that is also active.

4. After the mixing step is complete, the
next 228 cycles result in the final out-
put key stream. The uplink and down-
link streams (each consisting of 114
bits) are used for decryption and
encryption operations. This step
employs nonlinear feedback and a
modified combiner as against the tra-
ditional A5/1 algorithm defined above.

5. You can repeat the previous steps for
every new frame Fn. The frame num-
bers are updated where the session key
remains unchanged until authentica-
tion protocols provoke it.

Hardware Implementation
I did the hardware implementation of the
proposed algorithm on Xilinx Virtex-4
series FPGAs. Because we designed the
implementation logic for compactness, I
targeted the smallest device in the Virtex-4
family, namely the XC4VLX15. Figure 1
shows the overall architecture of the top-
level module.

The top level comprises two building
blocks and glue logic. I designed the glue
logic to provide chip connectivity, start
logic and data-loading features. There are
two other building blocks, Majority/Tap
rule and LFSR bank, each with its own
unique functions.

The Majority/Tap rule block receives
the selective tap positions from the LFSR
bank and performs two separate functions
independently. As the selection criteria for
Majority or Tap rule are based on the last
tap of R0, R1 and R2, the logic for
Majority rule and Tap rule is implemented
in parallel. I also performed one other opti-
mization in the implementation of
Majority rule. The pseudo algorithm for
selecting majorities is described as:

The clocking sequences of LFSRs use a
particular mechanism; otherwise, it would
be very easy to decipher the output of
LFSRs. Therefore, clocking is based on a
majority rule. This rule uses one tap each
from R0, R1 and R2, and determines
whether the taps are mainly 0 or 1. That is,
two or more taps with a value of 0 imply a
majority value 0; otherwise, it is 1. Once
the majority is established, clock the LFSRs
if their input bit matches the majority bit.
If the input bit does not match the majori-
ty value, no input bit will be inserted in the
LFSR and hence, no shifting will take
place. Additionally, we get the output by
XOR’ing each output bit of R0, R1 and R2
in the original A5/1. In this work, I have
replaced the standard XOR’ing with a
more sophisticated output-generating
function that we call a “combiner.”

The key setup routine of the A5/1 algo-
rithm is as follows:

1. Initialize R0, R1 and R2 with 0.

2. Load the value of session key KC and
frame Fn into the LFSRs, one after the

Fourth Quarter 2010 Xcell Journal 21

Id23

Id22

Id19

R0

R1

R2

clk

frame

key

start

Load Logic

LFSR Bank

C
om

bi
ne

r

ce19

ce22

ce23

Majority / Tap
Rule

ce_universal

Figure 1 – Architectural diagram of the top module

XCEL LENCE IN WIRELESS COMMS

If (R0[13] + R1[12] + R2[16])

>= 2 then maj1 = 1

else then maj1 = 0

Similarly, we find the value of maj2
based on tap numbers 7, 5 and 8. Based on
these majority functions, we define the
chip enable for R0 as:

If (R0[13]== maj1) AND (R0[7] ==

maj2) then chip enable for Majority

rule is 1 else 0.

I implemented the pseudo code for
selecting maj1 and maj2 in the form of
simple and/or gates. Similarly, the pseudo
code for chip enables maps onto a simple
XNOR function, combining all the logic
and reducing area.

The technique implements the Tap rule
algorithm using case statements. The orig-
inal A5/1 algorithm determines the shift
operation or chip enable for LFSRs based
on the majority rule only. As I have intro-
duced a modified Majority rule and an
additional Tap rule for shifting LFSRs, I
needed another mechanism. Thus, make
the final selection of chip enables for R0,

R1 and R2 based on the PoliSel signal,
which determines whether to output the
chip enable signal established by Majority
or Tap rule. The PoliSel signal imple-
ments this equation: PoliSel = R0[18]
XOR R1[21] XOR R2[22].

The LFSR Bank
The LFSR bank module houses multiple
functions and implementations. This
module instantiates a core LFSR with
varying parameters for establishing R0,
R1 and R2 LFSRs. The width of these
LFSRs is 19, 22 and 23 respectively. This
module also instantiates an improved
linear feedback function from A5/1.
Additionally, the LFSR bank imple-
ments our novel nonlinear feedback
logic. I also implemented in this block
the combiner that produces the final
output. Figure 2 shows the block dia-
gram for the LFSR bank. Here, the
LFSRs are serial-in, parallel-out shift
registers. Xilinx Virtex-4 devices allow
convenient mapping of these shift regis-
ters onto hardware. Using the standard

template for LFSRs as shown below, we
can infer generic serial registers.

module lsr (clk, ce, si, po);

parameter width = 18;

input clk, ce, si;

output [width-1:0] po;

reg [width-1:0] shftreg = 0;

always @ (posedge clk)

begin

if (ce) shftreg <=

{shftreg[width-2:0], si};

end

assign po = shftreg;

endmodule

With the use of parameters, it becomes
easy to instantiate LFSRs at the higher
level. By passing the parameters using the
“defparam” feature of Verilog, we can infer
the required LFSRs of width 19, 22 and
23 bits at the top level. The inference is
conveniently done by using the following
lines of code:

lsr lfsr19bit (clk, ce19, si19,

lfsr19);

defparam lfsr19bit.width = 19;

22 Xcell Journal Fourth Quarter 2010

Modified
Input Logic

Linear Feedback R0

Linear Feedback R1

Linear Feedback R2

Combiner

Nonlinear
Feedback
Controller

Supportive
Nonlinear
Functions

Figure 2 – Logic blocks at the input and output of R0, R1 and R2 in LFSR bank module

XCEL LENCE IN WIRELESS COMMS

Fourth Quarter 2010 Xcell Journal 23

(The latter controls the parameter width
inside instance lsr.)

As seen from the following code snippet,
the input loading path of the LFSRs is well-
defined in terms of simple XOR operations.

wire frameXor19, keyXor19, si19input;

assign frameXor19 = frame ^ si19lfb;

assign keyXor19 = key ^ si19lfb;

assign si19input = (frameXor19 ^

keyXor19) ? frameXor19:keyXor19;

The existence of asynchronous gates
increases the length of the critical path.
However, here it is well within tolerable
limits, as the critical path in the current
case consists of only three XORs and one
multiplexer.

After loading is completed, the feed-
back path chooses between either linear or
nonlinear feedback. The nonlinear feed-
back controller makes this selection deci-
sion. A choice of nonlinear feedback
suddenly changes the design specifications
and parameters. For instance, the nonlin-
ear feedback function is activated periodi-
cally every 11 clock cycles and remains
active for 10 clock cycles. To keep the
implementation area small, we have imple-
mented counters rather than adders to
enforce the periodic behavior of the non-
linear feedback function. The imple-
mentation requires separate counters for

R0, R1 and R2 for counting the number
of 1’s. The pseudo algorithm for this
implementation is as follows:

1. Detect falling edge on ldlfsr signal.

2. Start counting for 100 cycles.

3. After 100 cycles, for every 10 cycles
activate the stream breaker, then
deactivate for 10 cycles until 114
clocks elapse.

Stream breaker pseudo code:

4. Sum the contents of lfsr 19, 22, 23.

5. If count19 > 10, count22 > 11 or
count23 > 11

6. pass 1 into the LFSR

7. else

8. pass 0 into the LFSR.

Since the decision of inserting 1’s or 0’s
in the input of R0, R1 and R2 needs to be
taken every clock cycle, once the nonlinear
feedback is activated, the number of coun-
ters and adders significantly increases in
area and critical path.

The combination of chip enable and
input causes the nonlinear feedback path to
assume 0 or 1 based on the algorithm of the
stream breaker. Figure 3 shows a hardware
building block implementing this scheme.

Using counters with defined thresh-
olds assists the implementation of the

nonlinear feedback controller. Do not
allow the counter to decrement after
approaching 0 or to increment after
reaching the high value corresponding to
R0, R1 and R2, namely 19, 22 and 23
respectively. The following code snippet
provides one example implementation of
the counter:

reg [4:0] sum19=5'd0;

wire inc_sum19, dec_sum19;

assign inc_sum19 = si19 & ce19;

assign dec_sum19 = lfsr19[18] & ce19;

always @ (posedge clk)

begin

case ({inc_sum19, dec_sum19})

2'b01:

begin

if (sum19 == 5'd0) sum19<=5'd0;

else sum19<=sum19-1;

end

2'b10:

begin

if (sum19 == 5'd18) sum19<=5'd18;

else sum19<=sum19+1;

end

default: sum19 <= sum19;

endcase

end

This code also shows how the incre-
ment and decrement functions are
dependent on chip enable signals and not
just the value at the input of LFSR on
every rising edge of the clock.

It is extremely important to imple-
ment tight and secure encryption algo-
rithms for future mobile communication
standards. As the bandwidth require-
ments are rapidly evolving and streaming-
data volume is on an exponential rise, it is
all the more necessary to be able to imple-
ment vary fast and parallel ciphers for
data security. A Xilinx Virtex-4 device
offers the perfect solution for parallelism,
high speed and bandwidth requirements
in this application. With low-voltage
operations and ultralow power consump-
tion, this platform can easily adapt to the
upcoming secure mobile applications.
With the small tricks and snippets of
code presented here, you can easily map
the A5/1 and its future variants onto
Xilinx FPGAs.

sum 19

sum 23

sum 22

10

11

11

ce 19

ce 22

ce 23

fbsel 19

fbsel 22

fbsel 23

> =

> =

> =

Figure 3 – Nonlinear feedback controller and input selection values

XCEL LENCE IN WIRELESS COMMS

by Michaela Blott
Senior Research Engineer
Xilinx, Inc.
mblott@xilinx.com

Jonathan Ellithorpe
PhD Candidate
Stanford University

Nick McKeown
Professor of Electrical Engineering and Computer Science
Stanford University

Kees Vissers
Distinguished Engineer
Xilinx, Inc.

Hongyi Zeng
PhD Candidate
Stanford University

Stanford University, together with Xilinx
Research Labs, is building a second-gener-
ation high-speed networking design plat-
form called the NetFPGA-10G specifically
for the research community. The new plat-
form, which is poised for completion this
year, uses state-of-the art technology to
help researchers quickly build fast, complex
prototypes that will solve the next crop of
technological problems in the networking
domain. As with the first-generation plat-
form, which universities worldwide have
eagerly adopted, we hope the new platform
will spawn an open-source community that
contributes and shares intellectual proper-
ty, thus accelerating innovation.

24 Xcell Journal Fourth Quarter 2010

FPGA Research Design Platform
Fuels Network Advances
FPGA Research Design Platform
Fuels Network Advances
Xilinx and Stanford University are teaming up to create an FPGA-based reference
board and open-source IP repository to seed innovation in the networking space.
Xilinx and Stanford University are teaming up to create an FPGA-based reference
board and open-source IP repository to seed innovation in the networking space.

XCEL LENCE IN NETWORKING

This basic platform will provide every-
thing necessary to get end users off the
ground faster, while the open-source com-
munity will allow researchers to leverage
each other’s work. The combination effec-
tively reduces the time spent on the actual
implementation of ideas to a minimum,
allowing designers to focus their efforts on
the creative aspects.

In 2007, we designed the first-genera-
tion board, dubbed NetFPGA-1G, around
a Xilinx® Virtex®-II Pro 50, primarily to
teach engineering and computer science
students about networking hardware.
Many EE and CS graduates go on to devel-
op networking products, and we wanted to
give them hands-on experience building
hardware that runs at line rate, uses an
industry-standard design flow and can be
placed into an operational network. For
these purposes, the original board had to be
low in cost. And with generous donations
from several semiconductor suppliers, we
were able to bring the design in at an end
price of under $500. As a result, universi-
ties were quick to adopt the board and
today about 2,000 NetFPGA-1Gs are in
use at 150 schools worldwide.

But the NetFPGA very quickly became
more than a teaching vehicle. Increasingly,
the research community began to use it
too, for experiments and prototypes. For
this purpose, the NetFPGA team provided
free, open-source reference designs and
maintains a repository of about 50 con-
tributed designs. We support new users,
run online forums and offer tutorials, sum-
mer camps and developers’ workshops.

Trend Toward Programmability
For more than a decade, networking tech-
nology has trended toward more-program-
mable forwarding paths in switches, routers
and other products. This is largely because

designs in addition to FPGA silicon so as
to speed up the design process.

To realize this vision, we will deliver a
board with matching FPGA infrastructure
design in the form of both basic and
domain-specific IP building blocks to
increase ease of use and accelerate develop-
ment time. We further will develop refer-
ence designs, such as a network interface
card and an IPv4 reference router, as well as
basic infrastructure that assists with build-
ing, simulating and debugging designs. The
idea is to allow users to truly focus their
development time on their particular area
of expertise or interest without having to
worry about low-level hardware details.

Unlike the mainstream Targeted Design
Platforms, our networking platform targets
a different end-user group, namely, the larg-
er research community, both academic and
commercial. Semiconductor partners are
heavily subsidizing this project to assist in
the effort to keep the board cost to an
absolute minimum so as to encourage
broad uptake. Not only Xilinx but other
key component manufacturers such as
Micron, Cypress Semiconductor and
NetLogic Microsystems are donating parts
for the academic end user. (Commercial
researchers will pay a higher price.)

Part of the project’s strength is the fact that
this platform is accompanied by a communi-
ty as well as an open-source hardware reposi-
tory that facilitates the sharing of software, IP
and experiences beyond the initial base pack-
age. The result is an ever-growing IP library
that we hope will eventually encompass a
wide range of reference components, net-
working IP, software and sophisticated infra-
structure thanks to contributions from many
well-known universities, research groups and
companies. We hope that by providing a
carefully designed framework, some light-
weight coordination to share expertise and IP

networking hardware has become more
complicated, thanks to the advent of more
tunneling formats, quality-of-service
schemes, firewall filters, encryption tech-
niques and so on. Coupled with quickly
changing standards, those factors have
made it desirable to build in programma-
bility, for example using NPUs or FPGAs.

Researchers often want to change some
or all of the forwarding pipeline. Recently,
there has been lots of interest in entirely
new forwarding models, such as
OpenFlow. Researchers can try out new
network architectures at the national scale
at national testbeds like GENI in the
United States (http://geni.net) and FIRE in
the EU (http://cordis.europa.eu/fp7/ict/
fire/calls_en.html).

Increasingly, researchers are embracing
the NetFPGA board as a way to prototype
new ideas—new forwarding paradigms,
scheduling and lookup algorithms, and
new deep-packet inspectors—in hardware.
One of the most popular reference designs
in the NetFPGA canon is a fully function-
al open-source OpenFlow switch, allowing
researchers to play with variations on the
standard. Another popular reference design
accelerates the built-in routing functions of
the host computer by mirroring the kernel
routing table in hardware and forwarding
all packets at line rate.

NetFPGA, Take Two
For the second-generation platform, the
so-called NetFPGA-10G, we have
expanded our original design goals to also
include ease of use, with the aim of sup-
plying end customers with a basic infra-
structure that will simplify their design
experience. This goal is closely aligned
with the objective of Xilinx’s mainstream
Targeted Design Platforms, which pro-
vide users with tools, IP and reference

Fourth Quarter 2010 Xcell Journal 25

An open-source hardware repository facilitates the sharing

of software, IP and design experiences, promoting technological

solutions to the next generation of networking problems.

XCEL LENCE IN NETWORKING

in a systematic way, and a well-designed
plug-and-play architecture with standardized
interfaces, the open-source hardware reposi-
tory will grow, promoting technological
solutions to the next generation of network-
ing problems.

The NetFPGA-10G is a 40-Gbit/second
PCI Express® adapter card with a large
FPGA fabric that could support as many

applications as possible. As shown in Figure
1, the board design revolves around a large-
scale Xilinx FPGA, namely a Virtex-5
XC5VTX240T-2 device [1].

The FPGA interfaces to five subsystems
(see Figure 2). The first of these, the net-
work interface subsystem, hosts four 10-
Gbps Ethernet interfaces with PHY devices

through which the network traffic enters
the FPGA. The memory subsystem, for its
part, consists of several QDRII and
RLDRAMII components. The majority of
the I/Os are used for this interface, to max-
imize the available off-chip bandwidth for
functionality such as routing tables or
packet buffering. The FPGA also interfaces
to the PCIe subsystem.

The fourth subsystem is an expansion
interface designed to host a daughter card or
to communicate with another board. For
that purpose we brought all remaining high-
speed serial I/O connections out to two
high-speed connectors. Finally, the fifth sub-
system is concerned with the configuration
of the FPGA.

Overall, the board is implemented as a
dual-slot, full-size PCIe® adapter. Two slots
are required for reasons of heat/power and
height. Like high-end graphics cards, this
board needs to be fed with an additional
ATX power supply, since power consump-
tion—given absolute maximum load on
the FPGA—could exceed the PCIe single-
slot allowance of 50 watts. However, the
board can also operate standalone outside a
server environment.

Memory Subsystem
A central focus in our design process was
the interface to SRAM and DRAM com-
ponents. Since the total number of I/Os on
the FPGA device limits the overall avail-
able off-chip bandwidth, we had to strike a
carefully considered compromise to facili-
tate as many applications as possible.
Trying to support applications ranging
from network monitoring through security
and routing to traffic management impos-
es greatly varying constraints.

In regard to external memory access,
for example, a network monitor would
require a large, flow-based statistics table
and most likely a flow classification
lookup. Both accesses would require short
latencies, as the flow classification needs
more than one lookup with intradepen-
dencies, and the update in a flow statistics
table would typically encompass a read-
modify-write cycle. Hence, SRAM would
be an appropriate device selection.
However, a traffic manager would mainly
need a large amount of memory for pack-
et buffering, typically implemented
through DRAM components due to den-
sity requirements. As a final example, con-
sider an IPv4 router that needed a
routing-table lookup as well as packet
buffering in respect to external memory.

Summing up the requirements from a
range of applications, we realized that cer-
tain functionality would consume external
memory bandwidth, whether it be SRAM
or DRAM. Where packet buffering (requir-
ing a large storage space) would point to
DRAM, SRAM would be the choice for
flow classification search access, routing-
table lookup, flow-based data table for sta-
tistics or rule-based firewall, memory

26 Xcell Journal Fourth Quarter 2010

Figure 1 – The NetFPGA-10G board is built around a Virtex-5 FPGA.

Network
Interface

Subsystem
Expansion
Interface

Power
Subsystem

PCIe
Subsystem

Memory
Subsystem

Configuration
Subsystem

Figure 2 – The board connects to five subsystems: network interface,
PCIe, expansion, memory, configuration and power.

XCEL LENCE IN NETWORKING

Fourth Quarter 2010 Xcell Journal 27

management tables for packet buffer
implementations and header queues.

All of this functionality needs to be car-
ried out on a per-packet basis. Therefore,
given the worst case of minimum-size
packets of 64 bytes with 20 bytes of over-
head, the system needs to service a packet
rate of roughly 60 Megapackets per second.
Second, we need to differentiate the access-
es further. To begin with, many memory
components such as QDR SRAM and
RLDRAM SIO devices have separate read
and write data buses. Since the access pat-
terns cannot be assumed to be symmetri-

cally distributed, we cannot pool the
overall access bandwidth, but must consid-
er the operations individually.

What’s more, there is a third type of
access, namely “searches.” Searches can be
ideally implemented through TCAM-
based devices, which give guaranteed
answers with fixed latencies. However, we
ruled out this type of device for our board
for price and power reasons, along with
the fact that TCAMs further constrain
the use of the I/O. Searches can also be
implemented in many other ways such as
decision trees, hash algorithms and
decomposition approaches, with or with-
out caching techniques, to name a few
[2]. For the purpose of this discussion, we
assumed that a search can be approximat-
ed through two read accesses on average.
Given these facts and making some com-
mon assumptions on data widths, we

refined our requirements further as seen
in Table 1.

Assuming a clock speed of 300 MHz on
the interface, a QDRII interface can service
2*300 = 600 million accesses/second for
read and for write operations. Hence, three
QDRII x36-bit interfaces could fulfill all of
our requirements.

In regard to DRAM access, we consid-
ered mainly the case of packet storage,
where each packet is written and read once
from memory. This translates into a data
access bandwidth of roughly 62 Gbps once
you have removed the packet overhead

from the originally incoming 2*40 Gbps.
In terms of physical resources, an
RLDRAMII access can probably achieve
an efficiency of around 97 percent, where-
as DDR2 or DDR3 devices would more
likely come in at around 40 percent [3],
hence requiring significantly more I/O. We
therefore chose RLDRAMII CIO compo-
nents. Two 64-bit RLDRAMII interfaces at
300 MHz deliver a combined bandwidth
that is roughly enough to service the
requirement.

Network Interface
The network interface of the NetFPGA-
10G consists of four subsystems that can be
operated as 10-Gbps or 1-Gbps Ethernet
links. To maximize usage of the platform as
well as minimize power consumption, we
chose four Small Form-Factor Pluggable
Plus (SFP+) cages as the physical interface.

Compared with other 10G transceiver
standards such as XENPAK and XFP,
SFP+ has significant advantages in terms
of power consumption and size. With
SFP+ cages, we can support a number of
interface standards, including 10GBase-
LR, 10GBase-SR, 10GBase-LRM and
low-cost direct-attach SFP+ copper cable
(Twinax). Furthermore, SFP modules for
1-Gbps operation can be utilized, thereby
supporting the 1000Base-T or 1000Base-
X physical standards as well.

Each of the four SFP+ cages connects to
a NetLogic AEL2005 device via the SFI

interface. The AEL2005 is a 10-Gigabit
Ethernet physical-layer transceiver with an
embedded IEEE 802.3aq-compliant elec-
trical-dispersion compensation engine.
Besides regular 10G mode, the PHY device
can support Gigabit Ethernet (1G) mode.
On the system side, these PHY devices
interface to the FPGA via a 10-Gigabit
Attachment Unit Interface (XAUI). When
operating in 1G mode, one of the XAUI
lanes works as a Serial Gigabit Media
Independent Interface (SGMII).

Suitable interface IP cores are available
inside the Virtex-5 FPGA. For 10-Gbps
operation, Xilinx markets the XAUI
LogiCORE™ IP as well as a 10-Gigabit
Ethernet media-access controller
(10GEMAC) LogiCORE IP [4, 5]. For 1G
operation, the interfaces can be directly
connected to the embedded Xilinx Tri-
Mode Ethernet MAC core [6].

Data width #Reads #Writes #Reads #Writes
(bits) per packet per packet per x36 interface per x36 interface

Flow classification (5tupel + return key) 144 2 0 8 0

Routing-table lookup (dip + next hop) 96 2 0 6 0

Flow-based information 128 2 0 8 0

Packet buffer memory management 32 2 2 2 2

Header queues 32 1 1 1 1

Total number of accesses 25 3

Total number of accesses per second (MAps) 1,500 180

Table 1 – SRAM bandwidth requirements

XCEL LENCE IN NETWORKING

PCIe Subsystem
The NetFPGA-10G platform utilizes the
Open Component Portability Infrastructure
(OpenCPI) as its main interconnect imple-
mentation between the board and the host
computer over PCIe [7]. Presently we sup-
port the x8 first generation, but might
potentially upgrade to second generation in
the future. OpenCPI is a generalized, open-
source framework for interconnecting
blocks of IP that may each use varied types
of communication interfaces (streaming,
byte-addressable and so on), with varied
bandwidth and latency requirements. In its
essence, OpenCPI is a highly configurable
framework that provides the critical com-
munication “glue” between IP that is need-
ed to realize a new design quickly.

OpenCPI delivers a few key features for
the NetFPGA-10G platform. On the soft-
ware side, we are able to provide a clean
DMA interface for transferring data (pri-
marily including packets, although not

limited in any way to this type of informa-
tion) and for controlling the device via pro-
grammed input/output. For networking
applications, we provide a Linux network
driver that exports a network interface for
each of the physical Ethernet ports on the
NetFPGA device. This allows user-space
software to transfer network packets to the
device as well as read any host-visible regis-
ter in the design.

On the hardware side, OpenCPI pro-
vides us with a clean, or even multiple,
data-streaming interfaces, each config-
urable through the OpenCPI framework.
In addition, OpenCPI handles all of the
host-side and hardware-side buffering and
PCIe transactions, so that users can focus
on their particular application rather than
the details of device communication.

Expansion Interface, Configuration Subsystem
The purpose behind the expansion sub-
system is to allow users to increase port

density by connecting to a second
NetFPGA-10G board—to add different
flavors of network interfaces through an
optical daughter card, for example—or to
connect additional search components
such as knowledge-based processors with
high-speed serial interfaces. We bring out
20 GTX transceivers from the FPGA and
connect them through AC-coupled trans-
mission lines to two high-speed connec-
tors. Designed for transmission interfaces
such as XAUI, PCIe, SATA and
Infiniband, these connectors can link to
another board either directly, with mating
connector, or via cable assemblies. Each
transmission line is tested to operate at
6.5 Gbps in each direction, thereby pro-
viding an additional 130-Gbps data path
in and out of the FPGA.

Configuring FPGAs with ever-increas-
ing bitstream size can potentially be a
problem when the configuration time of
the device exceeds the PCIe limits. This is

28 Xcell Journal Fourth Quarter 2010

FPGA

PCIe EP with DMA

XAUI

XAUI

XAUI

XGMII
AXI-Stream
AXI-Lite
Custom

XAUI

MDIO
if

10
GEMAC

Input
arbiter/
output
arbiter

QDR memory
interface

RLDRAM memory
interface

clk & rst &
pwr with

test

MicroBlaze
subsystem

AXI interconnect

Configuration control
and bitstream gear box

UART
report

CPLD (flash controller and
configuration circuit)

Figure 3 – The FPGA design architecture for 10G operation relies on the AXI protocol.

XCEL LENCE IN NETWORKING

Fourth Quarter 2010 Xcell Journal 29

the case with the V5TX240T. The access
speed of the platform flash devices, which
is significantly below what the V5TX240T
can theoretically handle, imposes a bottle-
neck. As countermeasures, designers might
consider configuration of partial bit-
streams, as well as accessing platform flash
devices in parallel and configuring the
FPGA at maximum speed. To facilitate
the latter possibility, we equipped the
board with two platform flash devices that
connect through a CPLD to the FPGA’s
configuration interface. In addition, the
board also supports the standard JTAG
programming interface.

The FPGA Design
A key aspect behind a successful open-
source hardware repository must be a clean
architectural specification with standard-
ized, abstracted and well-defined interfaces.
In fact, we believe these interfaces to be
crucial to providing a building-block sys-
tem that enables easy assembly of compo-
nents contributed from a large global
community. Standardization ensures physi-
cal compatibility, and a rigorous definition
that goes beyond physical connectivity
reduces the potential for misunderstanding
on the interface protocols. Ideally, users can
then deploy abstracted components with-
out further knowledge of their intrinsic
implementation details.

As part of the full platform release, we
will provide the complete architectural
specification as well as a reference design
with key components. These key compo-
nents include:

• PCIe endpoint from OpenCPI [4]

• Four XAUI LogiCORE IP blocks and
four 10GEMAC LogiCORE cores
(the latter under licensing agreement)
in 10G mode [7,8]

• Two RLDRAMII memory controllers
based on the XAPP852 [8]

• Three QDRII memory controllers
based on MIG3.1 [9]

• Clocking and reset block that checks
clock frequencies and power-OK signals,
and generates all required system clocks

• Tri-Mode Ethernet MAC (TEMAC)
for 1G operation [9]

• MDIO interface for configuration of
the PHY devices

• Control processor in the form of a
MicroBlaze®, with a support system
that handles all administrative tasks

• UART interface

• Configuration control and bitstream
gear box, which provides a program-
ming path to the platform flash devices

• Input arbiter that aggregates all
incoming traffic into one data stream

• Output arbiter that distributes the
traffic to the requested output port

Figure 3 illustrates how these compo-
nents are interconnected for 10G opera-
tion. For data transport we chose the
AMBA®4 AXI streaming protocol, and for
control traffic the interface is based on
AMBA4 AXI-Lite. You can find further
details on these interface specifications on
www.arm.com (and on the Xilinx webpage
in the near future).

Status and Outlook
Design verification of the board is com-
plete. Once production test development is
finished, the board should shortly be
released for manufacturing. Initial FPGA
designs are running and we are working
now toward a first code release.

You can order through HiTech Global,
which is manufacturing and distributing
the board (http://www.hitechglobal.com/
Boards/PCIExpress_SFP+.htm). Different
pricing models apply to academic and
commercial customers. For the most up-to-
date information on the project, please visit
our website, www.netfpga.org, or subscribe
to the netfpga-announce mailing list:
https://mailman.stanford.edu/mailman/
listinfo/netfpga-announce.

The first code releases, planned for the
coming months, will open up the source
code to the wider community. It basically
contains the design detailed in the FPGA
design section and implements the intro-
duced architecture. In addition, we will put

significant effort into providing the right
type of infrastructure for building, simulat-
ing and debugging the design. A last focus
point in the coming months will be the
repositories and framework that enable the
efficient sharing of experience, expertise and
IP within the NetFPGA community.

Acknowledgements
Many thanks to the following people for their
help with this project: Shep Siegel, CTO of
Atomic Rules and driving force behind
OpenCPI; John Lockwood, CEO of Algo-Logic
Systems, driving force behind the first genera-
tion of NetFPGA and an active contributor to
the current platform; Paul Hartke from Xilinx
University Program (XUP) for his endless ener-
gy and support; Rick Ballantyne, senior staff
engineer at Xilinx, for his invaluable advice on
board design; Adam Covington and Glen Gibb
at Stanford for their support; Fred Cohen from
HiTech Global for his cooperation.

Furthermore, we would like to thank the
National Science Foundation and the following
sponsors for donating their components, namely
Micron, Cypress Semiconductor and NetLogic
Microsystems.

References

[1] XC5VTX240T data sheet:
http://www.xilinx.com/support/documentation/
data_sheets/ds202.pdf

[2] David E. Taylor, “Survey and Taxonomy
of Packet Classification Techniques,” ACM
Computing Surveys (CSUR), volume 37, No. 3,
September 2005

[3] Bob Wheeler and Jag Bolaria, Linley Report:
“A Guide to Network Processors,” 11th Edition,
April 2010

[4] XAUI data sheet: http://www.xilinx.com/
products/ipcenter/XAUI.htm

[5] 10GEMAC data sheet:
http://www.xilinx.com/products/ipcenter/
DO-DI-10GEMAC.htm

[6] Tri-Mode Ethernet MAC
http://www.xilinx.com/support/documentation/
ip_documentation/hard_temac.pdf

[7] www.opencpi.org

[8] XAPP852 (v2.3) May 14, 2008:
http://www.xilinx.com/support/documentation/
application_notes/xapp852.pdf

[9] MIG data sheet: http://www.xilinx.com/
products/ipcenter/MIG.htm

XCEL LENCE IN NETWORKING

by Fabrice Muller
Associate Professor
University of Nice Sophia, Antipolis, France – LEAT - CNRS
fabrice.muller@unice.fr

Jimmy Le Rhun
Research Engineer
Thales
jimmy.lerhun@thalesgroup.com

Fabrice Lemonnier
Project Manager
Thales
fabrice.lemonnier@thalesgroup.com

Benoît Miramond
Associate Professor
ETIS, UMR 8051 CNRS - ENSEA - UCP
benoit.miramond@ensea.fr

Ludovic Devaux
PhD
University of Rennes 1/ Cairn Inria team
ludovic.devaux@irisa.fr

An autonomous robot finding its way in
unknown terrain; a video decoder changing
its decompression format according to sig-
nal strength; a broadband electronic coun-
termeasure system; an adaptive
image-tracking algorithm for automotive
applications. These are among the many
emerging embedded or mission-critical
applications that show dynamic behavior
with strong dependency on an unpre-
dictable environment. Where statically
resolved worst-case allocation was once an
answer to strong real-time constraints, flex-
ibility is now also a requirement. The solu-
tion proposed in a French research project is
an operating system distributed onto the
FPGA resources that manages both hard-
ware and software threads.

30 Xcell Journal Fourth Quarter 2010

A Flexible Operating System
for Dynamic Applications
A Flexible Operating System
for Dynamic Applications
By using the dynamic reconfiguration
capabilities of Xilinx FPGAs, software flexibility
and hardware performance meet in a
homogeneous multithread execution model.

By using the dynamic reconfiguration
capabilities of Xilinx FPGAs, software flexibility
and hardware performance meet in a
homogeneous multithread execution model.

XCEL LENCE IN NEW APPL ICAT IONS

In recent years, denser systems-on-chip
(SoCs) have made it possible to meet the
design constraints by parallelizing tasks and
data, thereby increasing the number of com-
putation units, in particular in embedded
systems. This trend continues today with the
addition of heterogeneity of computing
cores. But this technique becomes a wall of
complexity which dictates a higher level of
abstraction in the programming model.

To surmount these challenges, we pro-
pose to define a unified execution model
that is used whether the threads are
mapped onto hardware or software. The
hardware implementation of this execution
model relies strongly on the use of dynam-
ically reconfigurable logic. Coupled with a
traditional multicore software subsystem, a
fully distributed architecture provides the
best of both worlds. The software part is
well-suited to intelligent event-based con-
trol and decision making, while the hard-
ware part excels in power efficiency, high
throughput and number crunching. In
between, we get the ability to balance per-
formance and resource utilization, not just
for each specific application, but also for a
specific state of an application.

The high integration capabilities of mod-
ern, platform FPGAs make it possible to put
a full, heterogeneous and dynamic comput-
ing system into one or two chips, with a
high level of flexibility and scalability.

The adaptive hardware is very useful in
applications such as missile electronics and
software-defined radio, where power con-
sumption and system size are limited, and
which must be highly reactive to the envi-
ronment. Thanks to dynamic reconfigura-
tion, you can implement dedicated
architectures for the different application
modes without increasing the power con-
sumption of your system or the size of the
board. The classical solutions centralize the

you can deploy the application threads in
software (processors) or in hardware
(reconfigurable units), either statically or
dynamically, with indifferent access to the
distributed services.

We have implemented operating-sys-
tem services in hardware, next to the
reconfigurable zones, to reach a high level
of efficiency. We have implemented a
communication layer between heteroge-
neous OS kernels to ensure the homo-
geneity of the services from the
application’s point of view. So, deploying
the OS on the architecture as a large num-
ber of modules and execution units takes
advantage of the virtualization mecha-
nisms that allow the application threads to
run and communicate without a priori
knowledge of assignment.

From the programmer’s point of view,
the application is just a set of threads. We
use the dynamic reconfiguration capabilities
of Xilinx® FPGAs to propose the new con-
cept of hardware threads, along with an
implementation of this concept with the
same behavior as software threads. Our
implementation takes advantage of the per-
formance of dedicated computing IP blocks.

Along with the execution units present
in the multiprocessor SoC, the memory
organization must meet several require-
ments: the storage of the data needed by the
application threads, the storage of the exe-
cution context of each thread and the
exchange of data between threads.
Regarding the storage of execution contexts,
we envisage several possibilities. One of
these is to centralize the execution contexts
and thus provide a medium for their distri-
bution to different execution units. We
identify three types of communication
streams within the platform: application
data, control signals and configuration/exe-
cution contexts. The high-bandwidth data

control and do not, today, seem able to
address effectively both the number of exe-
cution units and their heterogeneity. Only
a distributed approach that is both flexible
and scalable can take up this challenge of
creating a future-proof architecture.

Despite the potential of this technology,
the use of dynamic reconfiguration is still
a challenge for the industry. Engineers
need a clear design methodology to get
the full benefit of dynamic reconfigura-
tion, without impacting on application
description, and, above all, with no
increase in development costs. In an
attempt to combine dynamicity and per-
formance, we propose to abstract the het-
erogeneity by means of an execution
model based on multithreading. The
developer will be able to program their
application as a set of threads, irrespective
of whether the threads are executed on a
standard processor or on dedicated hard-
ware. In this context, dynamic reconfigura-
tion becomes a method for thread
preemption and context switching. The
FOSFOR project (Flexible Operating
System for Reconfigurable platform), spon-
sored by the French National Research
Agency (ANR), is dedicated to developing
this new generation of embedded, distrib-
uted real-time operating systems.

FOSFOR Architecture Basics
Our goal is to define an architecture that
supports a new kind of system partitioning,
where hardware and software components
follow the same execution model. This
requires a very flexible and scalable operat-
ing system, one that provides similar inter-
faces to the software and hardware
domains. Unlike classical approaches, this
OS can be completely distributed, with the
whole platform being homogeneous from
the application’s point of view. This means

Fourth Quarter 2010 Xcell Journal 31

XCEL LENCE IN NEW APPL ICAT IONS

Our goal is to define an architecture that supports a
new kind of system parti t ioning, where hardware and sof tware

components fol low the same execution model. This requires
a very f lexible and scalable operating system.

paths between hardware threads use a dedi-
cated network-on-chip (NoC).

The Global Architecture
The global architecture is depicted in
Figure 1 and consists of:

• A set of nonspecialized, or general-pur-
pose, processors (GPPs). A GPP sup-
ports the execution of software threads.
It also supports a set of OS services,
one of which schedules the threads.
The GPPs are not necessarily homoge-
neous in terms of instruction-set archi-
tecture and number of offered services.

• A set of dynamically reconfigurable
zones (called the reconfigurable region,
RR), which are in charge of the simul-
taneous or sequential execution of a set
of hardware threads. Like a GPP, an RR
supports the execution of OS services
thanks to a hardware OS (HwOS).
These regions correspond to fine-
grained (FPGA) or coarse-grained
(reconfigurable processor) architectures.

• Virtual channels of communication—
control, data and configuration—that
can share one or more physical com-
munication channels. The control
channels allow communication

between OS services distributed onto
the execution units (GPP and RR).
The data channels convey information
related to the environment (devices,
sensors) and the exchange between the
threads. The configuration channels
allow the transfer of the configurations
of the software threads (binary code)
and hardware threads (partial bit-
streams) between the configuration
memory and the execution units.

Each processor has its own local mem-
ory. This memory stores the local data
and, where applicable, the software code.
A shared memory, connected to the data
channel, allows data sharing between
threads on different processors. Each exe-
cution unit has access to shared memory,
containing the data and the programs of
software execution resources. Each
resource also has access to a configuration
memory, to save and restore its execution
context. This structure makes it possible
to implement any thread or service on any
execution resource.

Within the RR, only the hardware tasks
need to be dynamically reconfigured. The
dynamic region (DR), the area hosting the
tasks, is surrounded by the static region
(SR), which contains hardware implemen-

tation of OS services, along with communi-
cation media both internal and external to
the RR. Internal data-stream communica-
tions rely on a dedicated network-on-chip.
The interfaces between DR and SR use a
bus macro, and have a fixed location. To
abstract this constraint, and the heterogene-
ity of the communication medium, we pro-
pose a middleware approach that provides
virtualized access to the reconfigurable zone.
An RR is organized according to the model
defined in Figure 2. The FOSFOR proto-
type platform consists of dynamically recon-
figurable FPGA devices that can already
support this architecture model. We select-
ed Virtex®-5 devices for their ability to
reconfigure rectangular regions.

We have defined a scheduling/place-
ment algorithm that ensures efficient use of
the FPGA elements (LUTs, registers, dis-
tributed memory, I/O) inside each RR
according to the precomputed resource
needs of the application threads.

OS, NoC and Middleware
To be flexible, the FOSFOR architecture
uses at least two instances of operating sys-
tems: a software OS that runs on each
processor and handles software threads, and
a hardware OS that is able to manage hard-
ware threads. To correctly balance the

32 Xcell Journal Fourth Quarter 2010

Thread
Thread

Thread
ThreadApplication

Middleware
(virtualization, distribution, flexibility)

OS1
(X services)

OSn
(Y services)

Hardware Abstraction Layer (HAL)

Software Communication Unit Hardware Communication Unit

Software Nodes
(GPP)

Hardware Nodes
(Reconfigurable Regions)

Shared
Memory

NoC

H
ar

dw
ar

e
S

of
tw

ar
e

F
le

xi
bl

e
O

S

Figure 1 – Generic FOSFOR architecture

XCEL LENCE IN NEW APPL ICAT IONS

Fourth Quarter 2010 Xcell Journal 33

trade-offs between performance, develop-
ment time and standardization, we used an
existing operating system for the software
part, but we designed the hardware operat-
ing system from scratch.

The requirements for the software OS
are real-time behavior, the ability to han-
dle multiple processors and the availabili-
ty of basic interprocess communication
services. We chose a free, open-source OS,
namely RTEMS (Real-Time Executive for

Multiprocessor Systems; see http://www.
rtems.org/). For compatibility reasons, we
selected the LEON Sparc soft-core proces-
sor, which is also free and open-source, as
the software node.

Thanks to partial dynamic reconfigura-
tion provided by Xilinx FPGAs, the HwOS
can schedule hardware threads with as
much flexibility as a classical operating sys-
tem would with software threads. A hard-
ware thread consists of two parts, one
dynamic and one static. The dynamic part
includes an IP block that implements the
thread functionality and a finite state

machine to synchronize the service call
sequence with the HwOS. The static part
contains a control interface with the
HwOS, and a network interface for data
exchange with the other tasks, both hard-
ware and software.

To support diverse interthread data
transfer needs, we have developed a flex-
ible network-on-chip called DRAFT.
Communication services of a classical
operating system are sufficient to support

communications between software
threads. However, in our case, the OS
also needs to support communications
between hardware threads. We specifical-
ly designed the DRAFT network for this
purpose. We synthesize each hardware
thread for one or more DRs, and stati-
cally define each DR interface.

The static definition of the communi-
cation interface allows us to define a static
network-on-chip. In general, the hard-
ware threads need large bandwidth and
low latency, so the NoC must provide
high performance. The topology we chose

for DRAFT is an extension of the Fat-
Tree topology. The main objective of our
design is to limit resource overhead while
allowing high-performance interthread
communication.

The heterogeneity of the hardware plat-
form is a major factor of complexity when
designers deploy their applications. In the
FOSFOR project, this heterogeneity comes
not only from the different embedded
processors in the software domain, but

above all from the presence of both soft-
ware and hardware computation models in
a single platform.

The middleware solves this problem by
proposing an abstraction layer between
hardware and software and providing a
homogeneous programming model. It
implements a set of virtual channels that
allow communication between threads,
independently of their implementation
domain. These services are distributed
across the platform and thus offer a scalable
and flexible abstraction layer that com-
pletes the FOSFOR concept.

Static Region Reconfigurable Region Static Region

Control

Context
(bitstream)

Data

Hardware Zone

HwOS N
oC

control data

Dynamic
Region

Thread

Figure 2 – Reconfigurable region structure

XCEL LENCE IN NEW APPL ICAT IONS

Thanks to partial dynamic reconfiguration provided by Xilinx FPGAs,
the hardware OS can schedule hardware threads with as much flexibility

as a classical operating system would with software threads.

Performance Speedup
The main reasons for building a hardware
OS are performance and flexibility. The OS
could have been fully software or fully hard-
ware. Since each call to an OS primitive

involves overhead and means a waiting time
for the thread, the faster the OS is, the less
time wasted. To evaluate this overhead, we
must compare the HwOS timings with the
original software OS, RTEMS.

Hardware local operations need only a
few tens of cycles, while hardware global
operations require a few hundred cycles
due to shared memory access. We have
evaluated a speedup of about 60 times on
local creation-and-deletion operations,
and about 50 times for other operations,
compared with results from the software
operating system.

The resource usage of the HwOS (Table
1) varies greatly, depending upon the num-
ber and the capabilities of activated services.
For example, we select the number of
objects (semaphores, threads and so on) for
each service. We use a Xilinx Virtex-5
FX100T to implement the system. The
table lists the resources that the HwOS uses.
The remaining space can be used to imple-
ment other system components and the
hardware threads themselves.

Concerning network performance for a
configuration where DRAFT connects
eight elements with a word width of 32 bits,
a buffer depth of four words and a 100-
MHz frequency, the network-on-chip sup-
ports a data rate of up to 1,040
Mbits/second per connected element. The
topology and the routing protocol of the
network guarantee that no contention and
no congestion can occur. At least one com-

munication path is always available between
two connected elements. Data travels
through DRAFT with an average latency
near 45 clock cycles (450 nanoseconds),
which is compliant with many applications.

Looking Ahead
We have proposed an innovative OS that
provides a homogeneous execution model
based on multithreading, on a heteroge-
neous multicore architecture composed of

processors and dynamically reconfigurable
hardware IP blocks. A hardware OS man-
ages the hardware threads, typically for
thread creation and suppression but also for
semaphore and message queue services. In
terms of communications, we have pro-
posed improvements to the Fat-Tree NoC
for data exchanges, a dedicated bus for hard-
ware thread management and a communi-
cation layer for inter-OS synchronization.

The next step, from an industrial point
of view, is to demonstrate that the hardware
functions, which were added to ensure
homogeneity of the execution model, lead
to a real improvement in programming effi-
ciency while keeping a low performance
overhead on the dedicated IP blocks.

We will demonstrate our approach on a
representative Thales application, based on
a search-and-track algorithm. The tracking
threads are mapped onto reconfigurable
zones and are created dynamically, depend-
ing on the target detection.

34 Xcell Journal Fourth Quarter 2010

Number of implemented structures 8 16 32

CLB slices 2,408 (15%) 3,151 (20%) 4,327 (27%)

D flip-flops 5,498 (8.5%) 6,650 (10.4%) 8,918 (13.9%)

BRAMs 8 (3.5%) 16 (7%) 32 (14%)

Table 1 – Resource usage of the HwOS (Virtex-5 FX100)

XCEL LENCE IN NEW APPL ICAT IONS

Time to market, engineering expense, complex fabrication, and board trouble-
shooting all point to a ‘buy’ instead of ‘build’ decision. Proven FPGA boards from the
Dini Group will provide you with a hardware solution that works — on time, and
under budget. For eight generations of FPGAs we have created the biggest, fastest,
and most versatile prototyping boards. You can see the benefits of this experience in
our latest Vir tex-6 Prototyping Platform.

We started with seven of the newest, most powerful FPGAs for 37 Million ASIC
Gates on a single board. We hooked them up with FPGA to FPGA busses that run
at 650 MHz (1.3 Gb/s in DDR mode) and made sure that 100% of the board
resources are dedicated to your application. A Marvell MV78200 with Dual ARM
CPUs provides any high speed interface you might want, and after FPGA configu-
ration, these 1 GHz floating point processors are available for your use.

Stuffing options for this board are extensive. Useful configurations start below
$25,000. You can spend six months plus building a board to your exact specifications,
or start now with the board you need to get your design running at speed. Best of
all, you can troubleshoot your design, not the board. Buy your prototyping hardware,
and we will save you time and money.

www.dinigroup.com • 7469 Draper Avenue • La Jolla, CA 92037 • (858) 454-3419 • e-mail: sales@dinigroup.com

DN2076K10 ASIC Prototyping Platform

Why build your own ASIC prototyping hardware?

Daughter Cards

Custom, or:

FMC

LCDDRIVER

ARM TILE

SODIMMR FS

FLASHSOCKET

ECT

Intercon

OBS

MICTOR DIFF

DVI

V5T

V5TPCIE

S2GX

AD-DA

USB30 USB20

PCIE SATA

Custom, or:

RLDRAM-II
SSRAM

MICTOR

QUADMIC

INTERCON

FLASH

DDR1

DDR2

DDR3

SDR

SE

QDR

RLDRAM

USB

12V Power

JTAG Mictor SATA

SATA

Seven
50A Supplies

10/100/1000
Ethernet

SMAs for
High Speed

Serial

SODIMM Sockets

PCIe 2.0

PCIe to Marvell
CPU

PCIe 2.0

USB 2.0

USB 3.0

10/100/1000
Ethernet

10 Gb
Ethernet

GTX
Expansion
Header

3rd Party
DeBug

Test
Connector

12V Power

All the gates and features you need are — off the shelf.

SODIMM SODIMM

by Christopher Fenton

The year was 1976. Disco was still popular,
the Cold War was in full swing and I
wouldn’t even be born for another nine
years when the Cray-1 burst onto the com-
puting scene. Personal computing was bare-
ly in its infancy (the MITS Altair had been
introduced a year earlier) at the time, and
companies like Control Data Corp. and
IBM dominated the high end. The Cray-1
was one of those legendary machines that
helped define the term “supercomputer” in
the public imagination. Its iconic C-shape
structure housed a fire-breathing machine
running at 80 MHz—something desktops
wouldn’t reach until almost two decades
later. The Cray had speed. It had style.

Now let’s fast-forward 33 years, to the
morning in early 2009 when I woke up and
just decided I wanted to own one.

I first got into FPGA-based retro-com-
puting, something I lovingly refer to as
“computational necromancy,” shortly after
graduating from the University of Southern
California with a BSEE in December 2007.
As a newly minted electrical engineer and all-
around fan of arcane computer architectures,
I saw this pursuit as the perfect excuse to
improve my Verilog skills. Starting with a
Digilent Spartan®-3E 1200 board that I
bought myself as a graduation present, my
first machine was another abandoned relic of
the 1980s, the NonVon-1. This was one of
the first “massively parallel” machines, simi-
lar to the more successful Connection
Machine series of the same vintage, although
geared more toward databases. It was a won-
derfully odd machine, composed of a binary
tree of 8-bit processors (with 1-bit ALUs).

36 Xcell Journal Fourth Quarter 2010

Resurrecting the Cray-1
in a Xilinx FPGA
Want a classic, mammoth, number-crunching
supercomputer of your own? Build one.

XPER IMENT

After a few months of tinkering, I
eventually found myself the proud owner
of a 31-node supercomputer dwarfed in
computing power by any modern wrist-
watch. As useless as it was, however, the
machine made me realize just how far
Moore’s Law has brought us. And it whet-
ted my appetite for more.

After my success with the NonVon-1, I
was casting around for a new project (and
my Verilog skills were still a bit lacking). I
realized that low-end FPGAs had grown to
the point that they could handle some pret-
ty serious hardware—even 32-bit “soft”
processors are fairly common these days.
Searching about for a new target to try to
revive, I considered a few—the UNIVAC is
an interesting machine, but it’s a bit too old
for me. Digital Equipment Corp.’s PDP
series has been emulated before. Simulators
for Z80 machines are commonplace. That’s
where the Cray comes in.

What is the Cray-1?
The Cray-1 was Seymour Cray’s first
machine after splitting off from Control
Data and founding his own company, Cray
Research, in the early 1970s. It was a ruth-
less number cruncher that required a room
full of computers and disks to keep it fed
with data. It also had a full-time staff of
engineers just to keep it running, and near-
ly required its own power plant just to boot
up. This is a machine that redefined the
term “supercomputer” (I mean, it’s a
Cray)—and, fortunately, it’s also beautiful-
ly simple in its design. Thankfully, it’s
incredibly well-documented too (Figure 1).
The Cray-1 Hardware Reference Manuals
(readily available on the Internet) go into a
level of detail that’s almost shocking to
modern-day readers used to being handed
black boxes. Nearly every op-code, register
and timing diagram is documented in
exquisite detail.

store instructions) or between two operand
registers and a destination register (all
arithmetic/logic instructions). Instructions
are either 16 or 32 bits long. The machine
uses three different types of registers:
address, scalar and vector registers. The

The computer itself is a 64-bit,
pipelined processor with in-order instruc-
tion issue and a mere 128 unique instruc-
tions. It has a very RISC-like instruction
set, with all instructions being either
between memory and registers (load or

Fourth Quarter 2010 Xcell Journal 37

Figure 1 – Fortunately for hobbyists, the Cray architecture is
beautifully simple in its design and very well-documented.

XPER IMENT

The Cray-1 was one of those legendary machines that helped define the
term ‘supercomputer’ in the public imagination. Its iconic C-shape structure

housed a fire-breathing machine running at 80 MHz—something desktops
wouldn’t reach until almost two decades later.

address registers are 24 bits wide and let the
machine address up to 4 Megawords (32
Mbytes) of main memory. The scalar regis-
ters, which are 64 bits wide, are used for
computation. Each vector register contains
sixty-four 64-bit registers, giving the
machine great performance when doing
scientific calculations on large matrices.

Inside the CPU, instructions can be
issued to 13 independent, fully pipelined
“functional units.” Heavy pipelining was

crucial to achieving the Cray’s insanely
high (for the time) 80-MHz clock fre-
quency. Separate functional units handle
logical operations, shifting, multiplication
and so on. A floating-point multiply
instruction, for instance, takes seven cycles
to complete, but the computer can issue a
new multiply instruction on every cycle
(assuming no register conflicts exist). An
interesting consequence of this design is
that there is no “divide” instruction.
Instead, the machine uses “division by
reciprocal approximation.” Rather than
computing X / Y, you compute (1 / Y) * X.
A separate floating-point “reciprocal
approximation” functional unit can calcu-
late a reciprocal in 14 clock periods.

The Marathon
When I first began working on this project,
I still hadn’t convinced myself it would be
possible to re-create such a sophisticated
computing machine by myself. The origi-
nal Cray-1 took a whole team of people
years to design and build. Was I motivated
enough to stick with it? (As it turned out,

yes, I was.) Was my FPGA big enough to
actually fit it? (As it turned out, no, it was
not.) Even if the design is fairly straight-
forward, it’s still a large design (currently
~5,600 lines of Verilog and counting). I
just had to get myself into the right mind-
set. Building your own supercomputer is a
marathon, not a sprint. I could only hope
to accomplish it one step at a time.

I started, one by one, with creating the
functional units. Like building your own

hot rod, building a complete computer gets
you acquainted with every aspect of a
design in a way you would rarely experi-
ence otherwise. I explored multiplier and
adder design. I reopened textbooks on
floating-point arithmetic. I learned how to
use three iterations of the Newton-
Raphson method to compute a reciprocal
approximation to 30 bits of accuracy (did I
mention how detailed the hardware refer-
ence manual is?).

One by one, the functional units took
shape. This was a strictly “free-time” proj-
ect, so progress came in fits and starts. I
started with the easiest blocks first, and fin-
ished the two address functional units (a
simple adder and a multiplier) without
much difficulty. My momentum started to
falter as I tackled the scalar functional units
(an adder, a logical unit, a shifter and a
population/leading zero count). I hit a low
point in my motivation as I fiddled with
the three floating-point functional units
(an adder, a multiplier and the infamous
reciprocal approximation unit). As I said,
this was a marathon, not a sprint. I started

working on the Cray-1 in early 2009 and
probably spent 19 to 20 months total on it.

I started to get my second wind toward
the end of the floating-point units’ design,
and regained steam as I moved on to the
vector units. As I mentioned earlier, the
Cray-1 was designed as a number-crunch-
ing behemoth. It has eight vector registers,
each of which holds sixty-four 64-bit regis-
ters. When a vector instruction executes,
say an addition operation, one entry from
each operand will be added and stored in a
third (result) vector on every cycle.

An awesome feature that the Cray-1
supports is called “vector chaining.” The
vector add unit, for instance, only takes
three cycles to generate the first result. If
we’re adding two 64-entry vectors together,
however, we don’t want to wait for all 64
entries to finish adding before we do some-
thing with the result. Vector chaining
allows us to “chain” the result coming out
of the adder unit straight into the input of
another unit, without waiting for the oper-
ation to finish. We can start multiplying
the result with a third vector two cycles
after the first result is available. For some
large matrix calculations, you could almost
sustain two floating-point operations per
clock cycle—at 80 MHz, that’s a peak rate
of 160 MFLOPS! Common desktop com-
puters didn’t catch up to the Cray-1 until
the mid-1990s.

With the functional units in place, I
could almost see the light at the end of the
tunnel. Surely it was just a matter of adding
in a bit of glue logic and being done with it,
right? Well, close. It turns out there’s a lot
of glue logic. Even though the Cray-1 is
well-documented, it’s not that well-docu-
mented. I knew exactly what every instruc-
tion was supposed to do, but I got stuck
reverse-engineering minor (and not-so-
minor) details like instruction issuing, haz-
ard detection and vector chaining. Some
things, like big 64-bit data buses, are prob-
ably easier to build with discrete logic chips
than with FPGAs designed for narrower
datapaths. The vector registers gave me a
routing headache.

A few features I also had to fudge. The
Cray-1 had a 16-bank all-SRAM memory
system the size of my refrigerator that could

38 Xcell Journal Fourth Quarter 2010

XPER IMENT

Building your own supercomputer
is a marathon, not a sprint.

I could only hope to accomplish it
one step at a time. I started, one by one,

with the functional units, creating
the easiest blocks first.

Fourth Quarter 2010 Xcell Journal 39

sustain 640 Mbytes/second of bandwidth
(one 64-bit word per cycle at 80 MHz) to
its 4 Megawords of memory, something the
measly DDR memory chip on my develop-
ment kit could never approach. I wound
up using nearly all of my FPGA’s on-die
Block RAM to scrounge together a mere 4
kilowords of memory space, by far my
Cray’s biggest limitation at the moment.
And I had to leave a few features out alto-
gether: DMA-style I/O channels designed
to communicate with disk drives and
“host” minicomputers, and rapid context-
switching support. These might make it
back in once I get a useful amount of mem-
ory and a bit of software for the machine.

Hardware Obstacles
I should take a few words to make note of
some of the FPGA-related challenges I ran
into along the way. First of all, my original
Spartan-3E 1200 chip didn’t prove to be up
to the challenge. As soon as I added the
Cray’s mammoth vector registers to my
design, I overflowed the chip’s meager logic
resources. I started to sweat a bit at this
point—I was already more than a year into
this project, and the price tag of bigger
FPGAs seems to go up exponentially with
size. The larger Virtex® chips could handle
my design with ease, but development
boards typically exceed a few years’ worth
of my hobby budget. Fortunately, Digilent
also sells a slightly larger Spartan-3E 1600
board for a still-hobbyist-friendly price. It
proved to be just large enough to fit the
whole system (and significantly boosted the
amount of Block RAM I had to play with).

The other problem I ran into was sim-
ply one of speed. Despite 30 odd years of
Moore’s Law, the Cray-1’s original 80-
MHz design proved to be too much for
my poor Spartan-3E. My initial design
topped out at about 33 MHz, with the
critical path running through cascaded
adders I used in my rather naive imple-
mentation of a floating-point multiplier.
Fortunately, the Spartan-3E is equipped
with a number of 18-bit hardware multi-
pliers that were able to boost the speed up
to nearly 50 MHz (and shave off 5 percent
of the area), but at that point the rest of
the design starts to run into a wall. The

Cray-1’s spaghetti bowl of 64-bit data-
paths and complicated instruction-issue
logic limit the cycle time to 20 nanosec-
onds or so on the Spartan-3E. For now
I’m satisfied, but maybe one of the newer
Spartan-6 chips will be up to the challenge
of hitting the magical 8-0 mark.

Case Construction
With the hardware in mostly working order,
I moved on to the fun part—the case. Sure,
the circuit design is the interesting part for
any engineer, but what fun is owning your
own Cray-1 if it doesn't look like a Cray-1?
It also gave my friend Pat the perfect project
to try out his new CNC milling machine. A
few trips to Home Depot and a busy

Saturday in Pat’s garage (see Figure 2) left
me with something that was definitely start-
ing to look like a miniature Cray. The square
shape of the development board meant I had
to get a bit creative with the base (squares
and C-shapes don’t play nicely together),
but the board’s compact dimensions conve-
niently meant that my design worked out to
be almost exactly 1/10 scale.

Another few weeks of sanding, painting
and polishing followed. Finally, a trip to the
local fabric store let me finish off the design
with a tiny replica of the Cray-1’s distinctive

built-in “pleather” couch. Finally, Mattel’s
new Computer Engineer Barbie had some-
where to rest her weary feet!

The Software
With the CPU in mostly working shape
and a matching case all ready to go, I was
prepared to declare victory. I was flawlessly
executing simple loops and programs of a
few instructions. But what about real soft-
ware? One of the unfortunate things about
my shiny new Cray-1 was its total lack of
software, and a computer without software
is only marginally more useful than the
sand it’s built from. The Cray-1 unfortu-
nately suffers from the double-whammy of
existing in a pre-Internet world and being

sold primarily to government agencies with
scary-sounding acronyms. I spent months
trawling the depths of the Internet looking
for software, but came up dry. I e-mailed
people at some of our national labs. I even
filed a Freedom of Information Act request
with the National Nuclear Security Agency
(government watch-list, here I come), but
struck out there too.

Seeing that I needed a little more help, I
finally decided to enlist the citizens of the
Internet. I added a page on my micro-Cray
(and adorable 1/10-scale case) to my web-

Figure 2 – Putting together the iconic C-shaped case
took some finessing and the help of a handy friend.

XPER IMENT

site, told a few of my friends with Twitter
accounts about the project and let the
Internet do its thing. Within a few days the
story had been posted all over a number of
news aggregator sites, flooding my in-box
with e-mails from all over the world. Many
were nostalgic messages from former
“Crayons,” sympathetic with my plight.
Gradually, however, a few people surfaced
with decades-old source code on stacks of
paper, nine-track tapes and even a reel of
microfiche. Someone even e-mailed me a
20-year old PhD thesis, including their
source code for a Cray-compatible compil-
er for an obscure programming language
(written, of course, in that same obscure
programming language). It was the ulti-

mate moment of pack-rat vindication for
people storing obsolete software and docu-
mentation “just in case.”

The Future
What does the future hold for my mini
mainframe (Figure 3)? I’d still like to iron
out some more of the machine’s bugs and
finish up the missing features. I haven’t
completely solved my software problem,
but things are starting to improve. One
helpful netizen dug up a copy of a DOS-
based Cray simulator from the late 1980s
that also doubles as a simple assembler (and
still runs perfectly under Windows 7).
Programming in Cray Assembly Language
is a dream compared with using straight

40 Xcell Journal Fourth Quarter 2010

octal machine code. If I can overcome the
challenges of obsolete media, it looks like I
might also be able to get my hands on the
source code for at least one operating sys-
tem as well as a real Fortran compiler.

My obscure hobby also caught the eye of
someone at the Computer History Museum
(http://www.computerhistory.org/), so maybe
my tiny Cray will retire to Mountain View,
Calif., someday. In the meantime, though,
I’m already starting to think about what my
next project could be.

Figure 3 – The final micro mainframe, built on a Spartan-3E.

C h r i s t o p h e r
Fenton, an elec-
trical engineer
living in New
York City, is an
active member
of his local
Hackerspace ,
NYCResistor.
He is an avid

historical-computing enthusiast and
enjoys building impractical and
unnecessarily complicated projects in
his free time. Details on the Cray-1
and other projects are available on his
website, www.chrisfenton.com.

XPER IMENT

by John McCaskill
President
Faster Technology
jhmccaskill@fastertechnology.com

David Lautzenheiser
Business Development
Faster Technology
dlautzenheiser@fastertechnology.com

Recognizing that it is no longer sufficient
to just build an ever-larger FPGA, Xilinx
has put the spotlight on the partial-recon-
figuration capabilities of its devices as a
powerful weapon in the competitive land-
scape, and more importantly has dedicated
the resources and support to make partial
reconfiguration an equally powerful capa-
bility for users. The tools and methodology
are now in place to enable a much broader
set of design teams to take advantage of
partial reconfiguration than the avid early
adopters of the past. This design technique
is truly ready for prime time.

Xilinx’s main-line FPGAs, by the very
nature of the static-memory cells used to
hold configuration information, have
always been reconfigurable. In the earliest
days, designers viewed this shape-shifting
as a big headache because of the novelty
of logic that “forgot” its function when
the power was turned off. The initial neg-
ative perception was soon overcome as
designers and their management realized
the ultimate power of a logic device that
could be reconfigured, enabling endless
engineering experimentation, last-minute
design changes or fixes and—to a few
early visionaries—the idea that a system
could be conceived of with multiple per-
sonalities. Thus was born the notion of
partial reconfiguration.

In early devices, there was such a large
transistor overhead burden of static mem-
ory to hold configuration data that the
programming mechanisms had to be as
simple and “lean” as possible. To keep

things simple, early FPGA families could
only be configured or reconfigured as a
whole. Even in this restricted environ-
ment, some clever users decoded bit-
streams and figured out how to change
LUT functions and a few other things in
attempts to allow some on-the-fly changes
to devices in their systems—a very early
form and use of reconfiguration on the fly.

As Moore’s Law progressed, an ever-
increasing number of transistors became
available for FPGA architects to consider
using in new and novel ways. Early archi-
tectural experiments with completely ran-
dom access to configuration data, such as
the Xilinx® 6200 family, or with multiple
configuration memory planes, such as the
Prism project, tested what might be possi-
ble if some of this flood of transistors was
applied to configuration schemes beyond
just full-chip programming.

42 Xcell Journal Fourth Quarter 2010

FPGA Partial Reconfiguration
Goes Mainstream
FPGA Partial Reconfiguration
Goes Mainstream
This PR primer shows that techniques
to reconfigure portions of a device
on the fly are well within the
reach of any design group.

This PR primer shows that techniques
to reconfigure portions of a device
on the fly are well within the
reach of any design group.

XPERTS CORNER

At the same time, design methods shift-
ed from logic captured in schematics to
functionality detailed in hardware descrip-
tion languages. The move to HDL design
enabled a design team to conceive and
implement more complex designs, but also
removed them from many of the intricate
low-level details of early FPGA design. This
shift enabled teams to consider higher-level
system functionality and alternative solu-
tions more rapidly than previously possible.

All of the experiments and best thinking
to that date went into the first Virtex® fam-
ily. At this point, it became possible to put
hardware capabilities into the device archi-
tecture that the tools flow could not imme-
diately support. The hope, or perhaps
dream at the time, was that tools would
rapidly improve to take advantage of new
and novel architectural capabilities. While
it was a noble goal, designers never really
got access to the vast majority of the really
clever things in the first Virtex family—
including the first commercially available
true partial-reconfiguration capability.
Figure 1 illustrates this concept of partial
reconfiguration.

With the never-ending pace of improve-
ments in FPGA devices and tools, the first
Virtex family soon gave way to Virtex-2
and then II-Pro, 4, 5, 6 and, now, Virtex-7.

stumbling block to broader acceptance has
been the lack of a well-defined methodolo-
gy and supporting tools that fit with the
design style of a significant and substantial
fraction of the FPGA design community.

But today, the tools and support are
finally in place and this powerful design
approach is poised for broad uptake. The
balance of this article will provide a primer
on how an average designer can approach
partial reconfiguration (PR) as a unique
system capability and be successful at it,
without diving as deeply into FPGA anato-
my as was previously required. Those unfa-
miliar with PR terminology will find a
cheat sheet on the lingo in Table 1.

Some Definitions and Requirements
While implementing PR in a design is
largely automated with the latest releases,
ISE® 12.1 or newer, of Xilinx design tools,
the innovation involved in determining
where to use partial reconfiguration is still
very much a manual process. Only the
ingenuity of a designer is able (at this point
in tools evolution) to see where to apply PR
and how to manage the overall system to

Throughout this evolution, a small contin-
gent of dedicated users took whatever tools
they could find, or in some cases created
their own, and figured out very clever sys-
tem uses for partial reconfiguration. A key

Fourth Quarter 2010 Xcell Journal 43

XPERTS CORNER

Full Bit
File

Configuration
Port

or ICAP

Partial Bit
Files

F
unction C

3

F
unction B

1

F
unction A

2

Reconfigurable partition (RP)

Reconfigurable module (RM)

Static logic

Configuration

Partition pins

Proxy logic

Configuration frame

Internal Configuration
Access Port (ICAP)

Bottom-up synthesis

Reconfigurable logic

Partition

Design hierarchy instance marked by the user for reconfiguration;
a physical area of the FPGA that will be configured

A specific instance of the logical design that occupies the RP

Smallest addressable segment of configuration memory space

Internal connections to the SelectMAP interface
for FPGA configuration

Synthesis of individual partitions with no optimizations across
boundaries, resulting in a separate netlist for each partition

A logical section of a design at a hierarchy boundary

Any logic that is part of a reconfigurable module

LUT1s inserted automatically on each partition pin to anchor
connections between static logic and the RMs

Pins at ports on a partition that interface between static
and reconfigurable logic

A full design consisting of static logic and one RM for each RP

All of the logic in the design that is not reconfigurable

Figure 1 – Partial reconfiguration is the ability to dynamically modify blocks of logic by downloading
partial bit files while the remaining logic continues to operate without interruption.

Table 1 – Talking the talk: a PR glossary

use it successfully. Some considerations and
guidelines include:

• What modules can or should be
“swapped” using PR?

• What is the impact of swapping on the
state of the balance of the design and
what steps are needed to make the
swapped logic function properly (isola-
tion/decoupling requirements, and
how do I manage those in my system)?

• What is the impact on performance
(timing relationships, etc.) and on
verification?

• How am I going to manage the PR
process, including storing and deliver-
ing the configuration files? How con-
cerned am I about the reliability of the
PR process?

• What constraints does PR impose on
clocks and clock resources?

Let’s examine each of these questions
briefly as we prepare to use PR in an actu-
al design.

What Modules Can Be Swapped Using PR?
The key for using PR is to identify por-
tions of the design that do not need to be
active all the time in all uses of the FPGA
design. For the most part, you can identi-
fy these sections simply by looking at a

high-level block diagram or function list
and asking a few basic questions:

• Is this piece of functionality depend-
ent on some external event, option,
user command, etc. that initiates its
use separate from some other, similar
function?

• Would the implementation of this
function be the result of a decision
such as “If X then Y” or “If X then Y
else Z,” or perhaps a case statement?

• Are there large sequential processing
functions in the design that do not
overlap? (Even in the case of some
overlapping functions, alternating
functions vs. purely sequential ones
might be candidates for swapping.)

• Are there parts of the design that are
never going to be operating at the
same time? This is only obvious to
someone familiar with the overall sys-
tem architecture, but is one of the
most basic uses of PR dating back to
the beginning of FPGAs.

• Conversely, is there a portion of the
logic that should be locked in place
and never changed or reconfigured?
This might serve as a base static-logic
set, with all else potentially considered
for PR.

• Some end equipment constraints might
force a startup-time constraint on the
FPGA. For large FPGAs it might be
possible to configure only the minimal
portion required for startup and have
the remainder as one or more reconfig-
urable modules (RMs) that get loaded
after startup is complete. PCI Express®

implemented in a large Virtex device is
a candidate for PR in this mode of
operation. (See Xilinx Answer Record
35380 for details.)

Using PR in a design should be consid-
ered as akin to “hot-swapping” a device or
board in a system. As the reconfigurable par-
tition (RP) is reconfigured, routing
resources, logic functions, RAM blocks and
so forth will be changing state. The designer
must consider this and use implementation
techniques that will prevent any spurious
data within the RM from affecting operation
of the static logic while the RP is being con-
figured. Best practices include forcing the
RP into a reset state prior to starting recon-
figuration, and holding it in reset until after
reconfiguration has been completed and suf-
ficient time or clock cycles have occurred so
that it will emerge in a known-stable state.
Figure 2 illustrates this practice. In addition,
we strongly suggest that you place isolation
registers in both the static logic and the RM
at the boundaries for all inputs and outputs.

44 Xcell Journal Fourth Quarter 2010

XPERTS CORNER

Static Logic — Operating

RM 1
Operating

RM 2
Operating

RM 1
Reset

RM 2
Reset

A
ssert

D
eassert

R
eset

R
eset

Synchronization Halted

Partial Reconfiguration

Figure 2 – Synchronization best practice

Fourth Quarter 2010 Xcell Journal 45

Impact on Verification
Clearly, the addition of isolation registers
at the boundaries between static logic
and RMs may add cycles of latency to the
overall operation of the combination of
the static logic and each RM that gets
swapped into the RP. However, these reg-
isters will also make timing closure easier.
Also, the additional constraints of put-
ting boundaries on where the RM logic
can be located may cause some decrease
in the maximum operating speed and
achievable density.

Only the designer can make the deci-
sion about the impact of these trade-offs
to the overall design, or the propriety of
eliminating isolation registers on a case-
by-case basis, for example. Because it is
just another FPGA design, you must
manage the logic inside the RM using the
same techniques to achieve the desired
system performance.

You must verify the combination of the
static logic and each RM as a unit, just as
if it were all static logic. Where verification
becomes more complex and the current

state of tools does not help is in the transi-
tion from one RM to another, and the
overall system operation during that
process. At this time, there is no means to
simulate the FPGA during the reconfigura-
tion process. Therefore, you can only do
verification up to the point where a recon-
figuration is initiated, and can only start
from the point where reconfiguration has
been completed going forward.

You can emulate the process of partial
reconfiguration by using a code wrapper in
your simulation to swap out which RM is
being used, with the appropriate time
pause for the reconfiguration to complete
and the new RM to become active. This
will be much easier and yield more realistic
results if you follow the reset and isolation
register guidelines.

Reconfiguration is a subset of complete
device configuration and uses essentially
the same hardware and techniques. While
the tools flow will properly produce the
appropriate configuration files, the design-
er must figure out what method of pro-
gramming is appropriate for the system

being designed, and what precautions or
safety measures are required based on the
nature of the end equipment. The method-
ology section later in this article discusses
this issue further, but the designer must
consider it when contemplating use of PR
in the overall system design. Biometrics,
software-defined radio, cryptography,
high-performance computing and net-
working are among the system applications
beginning to use PR today.

Methodology and Tools
Standard tools for Xilinx FPGA designs
have advanced to the point of being com-
pletely applicable to PR designs. You will
need a separate license from Xilinx to
enable the various aspects of the tools that
are specific to PR, so talk to your Xilinx
representative if you want to try them out.
The design flow is built around the
PlanAhead™ tool. If you are not familiar
with PlanAhead, now is the time to sign up
for a class to become expert with it.

You implement a design that will take
advantage of PR just like a regular design,

XPERTS CORNER

MGT

MGT

EMAC

EMAC

FSL

FSL

Virtex-4 FPGA ICAP

RP
PLB

Network

PCI
Controller

DDR2
Controller

DDR2 Memory
(SO DIMM)

Mini-SD
Card

FTL
Packet

Processing
Engine

• PPC
• PLB BRAM
• PLB20PB
• FTL Board Support
• SRAM • SRAM cntlr
• MiniSD cntlr
• Console RS 232
• etc...

Embedded
Linux

Figure 3 – Design example block diagram

but you must use a “bottom-up” synthesis
flow. This simply means that no optimiza-
tions will be done across the boundaries
between the static logic and the RMs that
will be swapped. To accomplish this, each
of the partitions will be a separate synthesis
project with its own separate netlist.

The general steps for a design using
PR are:

1. Set up the design structure, deciding
on static vs. reconfigurable logic.
Synthesize all netlists, define RMs and
create partitions. Then, assign RM
netlists to the appropriate RPs.

2. Provide the proper constraints for
each RP based on the assigned RMs.

3. Run the PR-specific design rule
checks (DRCs) that are in PlanAhead.

4. Place and route, remembering that
each configuration is a complete
design (static logic and one netlist for
each RP). Create a “golden reference”
for the static logic and iterate to close
timing on all combinations of static
logic and RMs.

5. Create the bit files.

6. Test the design.

Design Example
We will present an actual design to show
the steps involved in implementing PR in
the real world. The design uses a Xilinx
XCV4FX60 FPGA to process network
packets that are streaming into it from a
Gigabit Ethernet interface. Two sets of
operations are to be performed on the
packets based on input from the user. In
case 1, packets are inspected for Ping pack-
ets. When a Ping is received, the system
immediately returns it to the sender with
the proper MAC and IP address reversal
and CRC. We did this design in VHDL.

In case 2, the packets are similarly
received and inspected, but here the sys-
tem is looking for UDP packets. When it
receives one, it performs MAC and IP
address reversal and proper port assign-
ment before returning it to the sender
with the corrected CRC. We did this
design in Impulse C to show that the RM

logic can come from different sources;
only the synthesized netlist is important.
In both cases, turnaround time from
receipt to response is critical, so all of the
packet manipulation is done immediately
after receipt by the MAC. Figure 3 shows
a block diagram of this system.

The hardware for this example uses a
Virtex-4-based FPGA accelerator card from
Faster Technology (FTL): the P-6 card,
with a XCV4FX60 FPGA. SFP modules
provide direct access to the FPGA from
Gigabit Ethernet connections of either
copper or fiber-optic media. The P-6 is
equipped with a robust embedded Linux
system, which greatly simplifies the imple-
mentation of this example, as well as pro-
viding a means to demonstrate use of the
Internal Configuration Access Port (ICAP)
block for partial reconfiguration from an
embedded processor.

The first step, of course, is the creative
one of deciding what logic will be in the
static area and what logic will be in the
one or more modules that will be swapped
into or out of the static design. Once you
have settled on that basic structure, then
you can use the design flow to implement
those decisions.

For our example design, the embed-
ded Linux system with the PCI interface,
the basic Gigabit Ethernet MACs and
the ICAP interface will be in the static
logic. Each of the packet-processing
engine implementations will be in a sep-
arate RM, since they are never used at
the same time. While this is a simple
example of mutually time-exclusive func-
tions, it is readily extensible to a wide
variety of system uses.

The netlist structure and the physical
partitions on the device mirror each
other. Because the netlist will determine
the size of RP needed, it is generally best
to synthesize all of the modules that are
RM candidates to determine the logic
resources needed before deciding on the
partition sizes and shapes.

In the example design, the P-6 card
supplies the elements of the embedded
Linux. The design uses a number of spe-
cial IP blocks supplied by FTL, includ-
ing a PCI interface, a dual Gigabit
Ethernet MAC wrapper around the
Xilinx hard macros and some special IP
blocks to simplify the integration of user
IP into the overall Linux system. Because
the PR flow deals with the netlists, the

46 Xcell Journal Fourth Quarter 2010

XPERTS CORNER

Figure 4 – EDK view of the design example

Fourth Quarter 2010 Xcell Journal 47

blocks in the system can come from vari-
ous sources and flows.

We created the simple Ping-return RM
in VHDL as a separate ISE project. We
developed the more complex packet-pro-
cessing block as a module in C, using the
Impulse C tools from Impulse
Accelerated Technology. Figure 4 shows
the EDK view of the “golden” implemen-
tation with the UDP response design in
place. The FSL bus connects the RM to
the static logic in this design.

Once you have synthesized all the
netlists, create a project within
PlanAhead and add the netlists to it; PR
designs are based on the netlist, not the
HDL code. Create the partitions that will
contain each RM or group of RMs by
selecting the netlist from the project tree
(right click on it, and select “Set
Partition”). This will bring up a wizard to
walk you through the process. One of the
options will be to make the partition
reconfigurable. Partition boundaries are
not required to align with reconfigurable
frame boundaries, but you will achieve
the most efficient design results when
they are aligned. Frame boundaries and
the resources in each frame are different
for different FPGA families, so be sure to
check the documentation for the family
you are using.

Since clocking resources cannot be
partially reconfigured, all global clock
nets that an RM might use must be rout-
ed to the RP that the RM will occupy.
Routing congestion can result if many
clocks are used in multiple clock regions.
You can minimize this effect by reducing
the number of clocks that an RP requires
and the number of clock regions it spans.
In general, short and wide regions are bet-
ter than tall and narrow ones.

You may also use regional clocks. They
may cross the partition boundary in some
generations of FPGAs, but at the cost of
using general-purpose routing instead of
the dedicated clock resources. You may use
BUFIOs and I/O clocks in PR partitions,
but they may not cross partition bound-
aries. Figure 5 shows the RP (the white-
bounded area) that will contain either of
the two RMs in our example design.

XPERTS CORNER

Figure 7 – Design implementation with UDP response

Figure 6 – Design implementation with black-box RP

Figure 5 – Reconfigurable partition defined

Assign each RM to the RP that it will
occupy by selecting the partition in the
netlist tree, right clicking on it and select-
ing “Assign Reconfigurable Module.” This
will allow you to choose the netlists of the
RMs that will occupy that RP.

Constraints, Placing and Routing
Constraints for the static-logic portion of
the design are propagated down to each of
the RMs. In most instances the top-level
UCF will be sufficient. If one or more
RMs require constraints beyond that of
the static-logic constraints, you can add
them in this step. For example, it may be
necessary to assign some specific compo-
nent placement constraints to meet critical
timing requirements. In general, the con-
straints inherited from the top level will be
sufficient. Our example design required no
additional constraints within the two
RMs. If necessary, use the tpsync constraint
to help constrain the paths that cross the
reconfiguration boundary.

For designs that utilize PR, use addi-
tional DRCs beyond those required for a
conventional design to check various
aspects of the PR implementation. You can
initiate these DRCs from the tools menu.

Perform an initial implementation run
to get a “golden reference” for the static
part of the design. This will include the
static routes that cross reconfigurable par-
titions, as well as the proxy pins that are
inside the reconfigurable partitions. Since
all of the reconfigurable modules that may
be loaded into an RP must contain these
static elements, if you reimplement the
static part of the design, you must also
reimplement all of the RMs. Perform mul-
tiple implementation runs to get the rest of
the RMs implemented.

To provide a test case against which to
compare the two “real” designs, we did the
first implementation of our example design
with a “black box” for the packet-processing
engine. Note that a black box for an RM
will create a reset region of the FPGA; that’s
a handy way to reduce the power of a device
when a function is not needed. Figure 6
shows the black-box configuration, while
Figure 7 shows the same static logic with
the UDP packet response logic in place.

As each configuration is implemented,
the place-and-route tools strive to meet the
timing constraints. After each place-and-
route run, timing analysis is automatically
run on that configuration. Unless there are
combinatorial paths connecting two RPs,
nothing special should be required. If there
are such combinatorial paths, use the
tpsync constraint to break the path into
two independent paths.

Create the Bit Files
Bit files are created for each combination
of static logic and RMs from the imple-
mentation step just completed. Once you
have a successful implementation run for
enough configurations to cover all of the
RMs, and have promoted the results, you
can highlight one or more configurations
in the design runs window, right click and
select “Generate Bitstream.” This will gen-
erate a full bitstream for each selected con-
figuration and partial bitstreams for each
RM in those configurations. No special
options are required.

Once the design has been completed,
you need to load it into the target FPGA.
For the power-on configuration, load the
full bit file including all of the static logic
and the first RM in each RP. In some
designs, the static logic may be loaded

without any logic in any or all of the RPs.
This is the “trick” used in the PCI Express
case to reduce configuration load time.
The overall configuration process is short-
ened when subsequent PR configuration
load cycles are initiated.

In a partial-reconfiguration process, the
FPGA already has an active configuration
loaded. The DONE pin is not deasserted
and no configuration memory is cleared, as
this could cause glitches in logic or routes
that are not being reconfigured. The FPGA
is reconfigured one configuration frame at
a time. Each configuration frame covers an
area that is one clock region tall by one
design element wide. The design elements
are CLBs, BRAMs, DSP blocks and the
like. As each configuration frame is loaded,
it becomes active.

Delivery of the partial bit files uses
standard interfaces: SelectMap, serial or
JTAG configuration ports or the ICAP
port. All FPGA bitstreams have CRC to
check their validity. In a full configura-
tion, CRC is checked before the device is
allowed to become active to prevent the
possibility of damage from internal con-
tention. In a partial configuration, the
bitstream is being loaded into an already
active FPGA. Also, the logic becomes
active immediately when a frame is

48 Xcell Journal Fourth Quarter 2010

XPERTS CORNER

Figure 8 – ChipScope view of packet processing

Fourth Quarter 2010 Xcell Journal 49

loaded, but the CRC check is not done
until the full reconfiguration has been
completed. Therefore, if it fails the CRC
check after being loaded, there is a small
chance of damaging the FPGA if you fail
to take corrective action quickly.

There are several options. You can
reload the same bitstream in case it was
just a temporary error or load a different
known-good bitstream, such as an empty
black box. Alternatively, reconfigure the
entire FPGA or check the integrity of the
bitstream inside the FPGA before it is
loaded via the ICAP interface.

For that fourth option, Xilinx has a ref-
erence design that will add extra CRCs to
the bitstream for each configuration
frame. It then checks the CRC of each

frame before it is loaded into the ICAP. In
this way, any CRC error is caught before
the frame is used. (See Xilinx Answer
Record 35381 for more information.)

For the example design, the P-6 card
contains a Spartan® FPGA that reads the
initial configuration from a MiniSD card
and programs the main V4FX60 FPGA.
Once the FPGA is operating, the embed-
ded Linux system in the Virtex-4 FPGA
swaps in the selected RM for the packet-
processing function the user desires.

We used the ChipScope™ tool to cap-
ture operations within the logic of the
FPGA to show the operation of the different
packet-processing engines. Figure 8 shows
the Virtex-4 receiving a UDP packet, pro-
cessing it and sending it back to the source.

Straightforward Flow
Partial reconfiguration, or the notion
that a system can modify itself during
operation, is no longer just for explor-
ers on the extreme edge of design. The
PR design flow is straightforward
enough so that mainstream design
teams can use it, reaping the attendant
advantages in system flexibility and
adaptability, power savings and poten-
tial system cost savings.

The design example discussed here
should encourage everyone to consider PR
for their next design. Going forward,
Faster Technology will offer a series of Web
demonstrations and live examples that you
can access over the Internet. Look for these
at www.fastertechnology.com.

XPERTS CORNER

by Luc Langlois
Global Technical Marketing, DSP
Avnet
luc.langlois@avnet.com

Recent advances in high-speed data con-
verters are expanding the boundaries of
performance in a vast range of systems,
including communications, medical and
aerospace. As these trends intensify, the art
of combining the high-speed analog signal
chain with high-performance digital signal
processing grows increasingly challenging.
FPGAs have emerged as the solution of
choice to meet these challenges, providing
high-speed interfaces to the latest-genera-
tion data converters and digital signal pro-
cessing at high sampling rates.

Selected concepts of multirate digital
signal processing form the basis for effi-
cient high-speed data converter interfaces
in Xilinx® Virtex®-6 and Spartan®-6
FPGAs. By combining certain features of
the FPGA architecture with parallel-pro-
cessing techniques, your next design can
attain performance beyond that of the
FPGA fabric.

50 Xcell Journal Fourth Quarter 2010

Multirate Digital Signal Processing
for High-Speed Data Converters
Multirate Digital Signal Processing
for High-Speed Data Converters
By combining certain features of the FPGA architecture with
parallel-processing techniques, your next design can attain
performance beyond that of the FPGA fabric.

By combining certain features of the FPGA architecture with
parallel-processing techniques, your next design can attain
performance beyond that of the FPGA fabric.

XP LANAT ION:FPGA 101

Multirate Digital Signal Processing
In many systems, it is desirable to use a fast ana-
log-to-digital converter (ADC) to oversample at
a rate fs (Megasamples per second, or MSPS)
that is beyond the minimum sampling rate
defined by Nyquist, or twice the signal band-
width fb. For example, a digital receiver for LTE
(Long Term Evolution) wireless communica-
tions may sample the analog signal at 122.88
MSPS, while the baseband sampling rate may
be as low as 7.68 MSPS. Oversampling spreads
the quantization noise inherent in the sam-
pling process evenly across a wider bandwidth,
leaving less noise power in the signal band-
width of interest (Figure 1). Subsequent atten-
uation of the out-of-band noise through a
digital filter yields an improved signal-to-noise
ratio compared with a critically sampled signal.

Once the signal has been oversampled by
the ADC and captured in the FPGA, it enters
the digital domain. At this point there is every
motivation to reduce the sampling rate prior to
extracting the information content of the sig-
nal. Reducing the sampling rate of a digital sig-
nal is called decimation, and its benefits
include lower FPGA resource usage, lower
computation rate, lower power consumption
and easier timing closure of the design.
However, decimation alone will simply undo
the benefits of oversampling by aliasing the
quantization noise back into the signal of
interest, thereby degrading the SNR anew. To
find an efficient way to preserve the processing
gain from oversampling, let us first review the
basic theory of decimation.

Decimation Theory
The relationship between the input and out-
put spectra of a discrete-time decimated signal
without prior filtering is expressed in
Equation 1 and shown in Figures 2 and 3.

Notice how decimation has the effect of
overlaying D spectral replicas of the original
spectrum, each stretched by a factor D and
shifted at intervals of 2π rad/sample. This can
cause irreparable distortion due to aliasing
unless the decimator is preceded by a low-
pass filter to attenuate any spectral content
beyond π/D (rad/sample).

To preserve the SNR benefits of oversam-
pling, you must combine decimation with dig-
ital filtering to attenuate out-of-band noise, a
combination known as a decimation filter.

Fourth Quarter 2010 Xcell Journal 51

fB fs
2

Signal

Quantization Noise
frequency

FPGA

ADC
x(n)

D
D
sfsf

YD(n)

Aliasing
Decimator D = 2

–2π 2π–π π0

–2π 2π–π π0

Figure 1 – Band-limited signal, 4x oversampled

Figure 2 – Decimation without prior filtering

Figure 3 – Aliasing due to decimation without prior filtering

XP LANAT ION:FPGA 101

Equation 1

Polyphase Filters
While the simple series cascade of filter and
decimator of Figure 4 is functionally correct,
there exists a more efficient decimation filter
topology based on polyphase decomposition
(as P.P. Vaidyanathan points out in Multirate
Systems and Filter Banks, Prentice Hall, 1993).

A polyphase decimator comprises D sub-
filters Hd(z–1), each of which contains a subset
of the total set of coefficients (Figure 5).
Compared with a simple series-cascaded filter
and decimator, the polyphase decimator is a
parallel processor with the advantage that each
subfilter operates at the slow sample rate, eas-
ing timing closure of the design.

The combination of delay of increasing
order followed by decimation that distrib-
utes fast incoming samples sequentially to
each subfilter is often depicted as a com-
mutator, as shown in Figure 6, for a tradi-
tional 4x polyphase decimator. It assumes
that incoming samples from the ADC
arrive sequentially at the input of the
polyphase decimator.

Alternatively, you may concatenate
incoming samples in groups of length D by
a serial-to-parallel converter and present
them to the input of the polyphase structure
at a slower rate in block fashion (Figure 7).
Such a mechanism, while functionally
equivalent to the amalgam of delays and
decimators, can greatly enhance the per-
formance of polyphase filters in Virtex-6
and Spartan-6 FPGAs due to their dedicat-
ed serial-to-parallel converters.

Help from ISERDES, DSP48 Slices
Xilinx Virtex-6 and Spartan-6 FPGAs contain
dedicated ISERDES serial-to-parallel convert-
ers in each I/O block. The ISERDES avoids
the additional timing complexities encoun-
tered when constructing deserializers in the
FPGA fabric. Designed for high-speed source-
synchronous applications, the ISERDES can
implement an efficient polyphase decimator
by concatenating incoming samples from
high-speed ADCs to support sampling rates
beyond 1 GSPS. Such high data rates would
otherwise overwhelm a decimation filter
implemented with fabric-based deserializers.

In addition, the Virtex-6 and Spartan-6
FPGAs contain dedicated hardware known
as DSP48E1/A1 slices that are optimized

52 Xcell Journal Fourth Quarter 2010

FPGA

ADC
x(n)

DH(z)
D

sf
sf

YD

Filter Decimator

(n)

4

4

4

4

x(n)

D
sf

sff

yD(n)

H0(z-1)

H1(z-1)

H2(z-1)

H3(z-1)

z-1

z-2

z-3

FPGA

ADC a b c d x(n)

D
sfsf

yD(n)

H0(z-1)

H1(z-1)

H2(z-1)

H3(z-1)

FPGA

ADC a b c d x(n)

sf

a

b

c

d

Serial to
Parallel

Converter
1:4

H0(z-1)

H1(z-1)

H2(z-1)

H3(z-1)

yD(n)

4
sf

Figure 4 – Series-cascaded filter and decimator

Figure 5 – 4x polyphase decimator

Figure 6 – Traditional 4x polyphase decimator

Figure 7 – 4x polyphase decimator with serial-to-parallel converter

XP LANAT ION:FPGA 101

Fourth Quarter 2010 Xcell Journal 53

for high-performance digital signal pro-
cessing. Not only do the DSP48 slices
avoid the additional timing complexities
encountered when implementing digital
signal-processing functions in FPGA fab-
ric, they are also very power-efficient. The
DSP48 slices are the ideal building blocks
for the polyphase subfilters.

The optimal design employs the DSP48
slices near their maximum performance rat-
ing (DSP48E1 fmax = 600 MHz, 1 speed

grade; DSP48A1 fmax = 390 MHz, 4 speed
grade). For example, the first decimation
stage in Virtex-6 for a 1-GSPS ADC might
use a 2x polyphase decimator in which each
subfilter operates at 500 MSPS (Figure 8).

The same 1-GSPS ADC could be
processed through a 4x polyphase decima-
tor in Spartan-6, with each subfilter operat-
ing at 250 MSPS (Figure 9).

Faster ADCs can accommodate higher
decimation rates, employing increased par-

allelism and slower throughput in each sub-
filter. Xilinx FIR Compiler IP can assist
designers in making the optimal trade-offs
for the polyphase subfilters, providing
pushbutton implementation of differing
hardware architectures such as overclocked
DSP48 slices to process several coefficients
in time-multiplexed fashion.

Polyphase Interpolator
There are situations that require an increase
in the sampling rate, known as interpola-
tion. For example, a cable modem typically
employs an FPGA-based digital upconvert-
er to interpolate the baseband data up to a
faster sampling rate suitable for driving a
high-speed digital-to-analog converter
(DAC). The motivation here stems from
the fact that the higher the DAC sampling
rate, the greater the separation in the fre-
quency domain between spectral images at
the output of the DAC. This eases the task
of post-DAC analog filtering, yielding an
improvement in signal-to-noise ratio.

As was the case for decimation, an inter-
polation filter based on a polyphase structure
has advantages over a simple series-cascaded
interpolator followed by a filter. That’s
because each subfilter operates at the slower
computation rate, easing timing closure.
When combined with the dedicated parallel-
to-serial converter (OSERDES) in each
Virtex-6 or Spartan-6 I/O block, you can
construct high-performance interpolation
filters with minimal FPGA fabric. Figure 10
shows a 4x polyphase interpolator in a
Spartan-6 driving a DAC at 1 GSPS.

Ripe for Customization
We have shown an efficient design method-
ology for high-performance polyphase digital
filters. Now you can customize the critical
processing stages of your high-speed data
converter designs by harnessing the unique
features of Virtex-6 and Spartan-6 FPGAs
for multirate digital signal processing.

The techniques described in this arti-
cle are part of an Avnet Speedway design
workshop titled “FPGA-Based System
Design with High-Speed Data Con-
verters,” to be held across the globe this
fall. For more information, please go to
www.em.avnet.com/adcspeedway.

Virtex-6 FPGA

ADC a b
a

b

ISERDES
1:4

500 MHz

500 MSPS1 GSPS

DSP48E1 DSP48E1

DSP48E1 DSP48E1

YD (n)

Spartan-6 FPGA

ADC

a

bISERDES
1:4

250 MHz

250 MSPS1 GSPS

DSP48A1 DSP48A1

DSP48A1 DSP48A1

c DSP48A1 DSP48A1

d DSP48A1 DSP48A1

a b c d

Spartan-6 FPGA

DAC
OSERDES

4:1

250 MHz

1 GSPS250 MSPS

DSP48A1 DSP48A1

DSP48A1 DSP48A1

DSP48A1 DSP48A1

DSP48A1 DSP48A1

Figure 8 – 2x polyphase decimator with serial-to-parallel converter in Virtex-6

Figure 9 – 4x polyphase decimator with serial-to-parallel converter in Spartan-6

Figure 10 – 4x polyphase interpolator with parallel-to-serial converter in Spartan-6

XP LANAT ION:FPGA 101

by Karsten Trott
Field Application Engineer
Xilinx GmbH, Munich, Germany

There are many ways to calculate a sine
value for single-precision floating-point
numbers, but one of the most powerful is
to add hardware accelerators. That was our
conclusion after exploring a number of
approaches to providing a good, fast and
efficient solution when a customer applica-
tion required this type of sine calculation.

To determine which implementation
works best for your application, first start by
profiling your code base to find out which
function needs some improvement. Then,
because software is easier and quicker to
change than hardware, check to see if soft-

ware changes will deliver the higher speed
you need (sometimes they do). But if you
still require more performance, then think
about implementing parts of the algorithm
in hardware. With hardware acceleration,
you can easily outperform any microcon-
troller or DSP on the market.

To get a feel for the process, let’s walk
through a real-world case of how we han-
dled a military application that needed a
sine calculation for single-precision float
numbers. For cost/performance reasons,
the customer had already chosen a
Spartan®-6 FPGA with an embedded
MicroBlaze® that functioned as the main
system controller. The software algorithm
that handles the sine calculation should
run on that MicroBlaze.

The customer’s algorithm heavily uti-
lized floating-point operations. Due to
the complexity of the algorithm, chang-
ing over to fixed-point arithmetic was not
an option. Also, the customer tried to
avoid over- and underrun situations that
can happen when fixed-point arithmetic
is being used.

The customer was aware that the
MicroBlaze IP provides two types of float-
ing-point units (FPUs), and had already
chosen the extended (as opposed to the
basic) version to accelerate the algorithm.
However, this choice makes it impossible
to use the math emulation libraries that are
delivered together with the EDK as part of
the GNU tool chain. The software emula-
tion routines from the math library are

54 Xcell Journal Fourth Quarter 2010

How to Speed Sine Calculations
for Your Processor
How to Speed Sine Calculations
for Your Processor
If software changes don’t deliver the
speed you need, it’s easier than you might
think to add hardware accelerators to your design.

ASK FAE -X

pretty slow; you should avoid them under
all circumstances for performance-critical
parts of an algorithm.

The customer knows also that both ver-
sions of the MicroBlaze FPUs can process
only single-precision data, but not double-
precision data. The customer’s algorithm
explicitly used float precision data only. But
sometimes implicit conversions are done
when you start using math functions. These
conversions can force your algorithm to use
double-precision data without being noticed.

Step 1: Analyze the Problem
Our customer had already run his algo-
rithm, but found out that it was running
slowly on the MicroBlaze processor.
Upon profiling the code base, the cus-
tomer found that it was the sine calcula-
tion that was causing the slowdown. The
next step was to find out why this was the
case and figure out what to do to speed
up the processing.

The first approach involved using the
standard sine function provided by the
math library and to run the algorithm
completely as the customer wrote it, with-
out any modifications. The major draw-
back is that the math library functions are
created for double-precision data only.
That means the prototype of the sine func-
tion looks like this:

double sin(double angle);

But the customer would like to use it
the following way:

float sin_val;

float angle;

...

sin_val = sin(angle);

This is, of course, possible and the C
compiler automatically adds the required
conversions for the parameter angle to
double and to convert the result of the
function call back to float value. Again, the
math library functions usually execute
these two additional conversion functions
and even the sine calculation.

Remembering that the FPU of the
MicroBlaze is a single-precision version
only leads to the following execution:

sin_val = (float)sin((double)angle);

function call. These are the key parameters,
and the customer told us that he sometimes
has to calculate multiple sine values in a
row (when, for example, filling small tables
before processing them).

A lookup table filled with all the values
is obviously not possible due to the
required size of that table. The minimum
number of entries is 360,000 float values
(4 bytes per value). The customer was
looking for a fast solution, but it had to be
size-efficient too.

Our proposed solution made use of the
following equation:

sin(xi) with xi = x + d

results in:
sin(x+d) = sin(x)*cos(d) +

cos(x)*sin(d)

where d is a value that is always less than the
smallest possible x value (that is, greater
than zero).

What’s the benefit of this solution? We
need less space for the tables, but some
additional calculations. The tables are split
into four tables at the beginning:

cos(x)

sin(x)

cos(d)

sin(d)

Figures 1 and 2 demonstrate the resolu-
tion required for all four tables and how
these values typically look. The tables
show entries for only 16 values to demon-
strate what we had to place into our
lookup tables. We use much more in our
final solution.

In fact, we used 1,024 values in each
table. The smallest value for x results in:
360/1024 = 0.3515625 degree. All values
for d will be less than or equal to this num-
ber. This strategy reduces the memory con-
sumption regarding a full-blown lookup
table to 4,096 entries (4 bytes each).

The overall precision for the argument
that we will reach using this approach is:

360/(1024*1024) = 0,000343 degree

And the precision is pretty good. The cal-
culation fully utilizes the MicroBlaze FPU.

The real calculation takes some clock
cycles—specifically, two fmul operations

Because of the double-precision declara-
tion of the sine function by the math
library, the FPU cannot do the sine calcu-
lation. Instead, a pure-software solution is
required. The drawback of this implemen-
tation is that it was quite slow and did not
fit the customer’s requirements.

We verified that the calculation of the
sine value using double-precision data was
the reason for the slow execution. First we
created the assembler code directly from
our executable file by using:

mb-objdump.exe -D executable.elf

>dump.txt

Checking the assembler code, we found
the following line:

brlid r15,-15832 // 4400d300 <sin>

This is exactly the call to the math
library for double-precision sine calcula-
tion. Then we measured a single sine calcu-
lation utilizing the math library functions.
It takes around 38,700 CPU cycles.

Special single-precision functions are
available for certain jobs, such as calculat-
ing the square root:

float sqrt_f(float h);

The usage of that special function
avoids the conversion from single- to dou-
ble-precision data and can make use of the
MicroBlaze FPU.

Unfortunately, there is no such func-
tion to process the sine calculation on the
FPU. At this point, we started developing
several versions to speed up the calcula-
tion of the sine value so as to gain more
performance.

Step 2: Create a Better Software Algorithm
Creating hardware accelerators usually
takes some time and debugging effort, so
we tried to avoid that approach in the first
run. We discussed the performance issue
with our customer to get the key parame-
ters for the sine calculation.

The customer algorithm requires a pre-
cision of 1/100 degree resolution for the
parameter angle of the sine calculation.
And the calculated sine-value precision
should be better than 0.1 percent com-
pared with the result of the math library

Fourth Quarter 2010 Xcell Journal 55

ASK FAE -X

and one fadd operation. But we needed
some additional calculations. First, we
have to split the argument xi into the two
values for x and d. Then we have to read
out the values from our tables, and finally
we have to calculate the result using our
new algorithm.

When we implemented the algorithm
in software and tested it, we got an overall
clock cycle count of 6,520 clocks.

To further increase the resolution we
could use the following quadrant relations:

First quadrant:
sin(x) = sin(x)

Second quadrant:
sin(x) = sin(π - x)

Third quadrant:
sin(x) = -sin(π + x)

Fourth quadrant:
sin(x) = -sin(2* π - x)

This would increase the overall resolu-
tion fourfold while keeping the tables at
the same size. On the other hand, we need
some additional computations to find out
which quadrant we have to calculate for.
There is still some room to improve the
algorithm or to decrease the size of the
tables (by a factor of four). We have not yet
implemented that additional step.

Step 3: Optimize the Algorithm
Because the solution we have reached so
far was still not fast enough for our cus-
tomer, we tried to optimize the algorithm
a little bit more, still keeping everything
on the software side running on the
MicroBlaze processor. There is one sim-
ple optimization possible, but it costs
some precision. That’s why we created a
software model (running on the PC to
get more speed) that runs over all possi-
ble values and compares the original dou-
ble value from sin() with the sine values
created by our software algorithm. We
decided to run that algorithm on a stan-
dard PC because doing the comparison
and calculation on the MicroBlaze takes
quite a long time (remember that our
MicroBlaze is running at a much lower
speed than the PC).

Now we started to optimize the calcula-
tion to get the sine value:

sin(x+d) = sin(x)*cos(d) +

cos(x)*sin(d)

Since we used 1,024 values in each
table, that means that d is always less than
360 degrees/1,024 steps. Or:

cos(2* π /1024) = 0.99998

and this is nearly equal to 1.0.

For small values of d, the following
equation is valid:

cos(d) = ~1.0

That simplifies our formula to the follow-
ing equation:

sin(x+d) = sin(x) + cos(x)*sin(d)

Using our PC model, we checked the
precision of that new equation before we
implemented it on the MicroBlaze and
found out that the maximum error was

56 Xcell Journal Fourth Quarter 2010

1.5

1

0.5

0

-0.5

-1

-1.5

0 1 2 3 4 5 6 7

sin(x)

cos(x)

1.2

1

0.8

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4

sin(x)

cos(x)

Figure 1 – Sine and cosine tables for the x-values, which have the range 0 to 360 degrees

Figure 2 – Sine and cosine tables for the d-values, which have the range 0 to 360/16 degrees

ASK FAE -X

Fourth Quarter 2010 Xcell Journal 57

still below the target of our customer.
Now we implemented this algorithm on

the MicroBlaze as a software algorithm, still
using tables with 1,024 entries each. The
new algorithm requires only three tables,
one less than in the previous implementa-
tion. This saves memory space—and makes
time for the additional calculations.

We measured the algorithm on our
hardware. It required 6,180 cycles for a sin-
gle calculation.

Step 4: Further Optimizations
Another optimization that seemed possible
was to convert the floating-point value of
the sine calculation and use an integer argu-
ment here. The algorithm we were using
allowed us to create ~1E6 different values
(1,024*1,024). An integer argument was
sufficient to hold that number.

This optimization allowed us to use a
much simpler calculation for the splitting of
the xi value into x and d. The splitting is just
a simple AND operation plus some shifting
by 10 bits. The upper 10 bits of our parame-
ter angle are xi while the lower 10 bits are d.

We again created a software model on the
PC, checked it and then implemented it on
the MicroBlaze processor system. This took
5,460 cycles for a single sine calculation.

Step 5: Thinking about
Hardware Implementation
Even though the speed of the algorithm was
much improved compared with the original
calculation from the math library, the cus-
tomer required a much faster implementa-
tion. But the last step above showed us a
version that can be easily converted to
hardware.

It requires some operations for the split-
ting of the xi value. In hardware, however,
you can accomplish it by just a wiring of
the required bits. Then we need three
tables; we used inferred ROMs with prede-
fined values calculated by our PC model
and then transferred into the VHDL code
of the IP. The IP reads all three tables at the
same time, again saving some computation
time. And finally, we require one float-
MUL and one float-ADD operation. For
this job, we found that the CORE
Generator™ module for floating-point

operations works pretty well.
We instantiated two of these hardware

modules, a job that required some slices
and some multipliers. Both cores required a
latency of four to five cycles to match our
timing of the design. The latency was not
an issue yet and will be discussed in the
next steps.

We implemented the final IP as a Fast
Simplex Link (FSL) IP for the MicroBlaze.
The first estimation on timing showed:

• one clock cycle to transfer the data
from the MicroBlaze to the FSL bus

• one clock cycle to transfer the data
from the FSL bus into FSL IP (data
will be immediately read from the
BRAMs when the argument of the
sinus calculation is read from FSL bus,
so this doesn’t require any clock cycles)

• four clock cycles to process the MUL
operation (cos(x)*sin(d))

• one clock cycle to store the result of
that equation in a register

• four clock cycles to process the ADD
operation

• one clock cycle to send the data back
to the FSL bus

• one clock cycle for the MicroBlaze to
read the data from the FSL IP

Please note that the data for the argu-
ment has to be stable over the whole time,
assuming you do not use any additional
pipelining (we will discuss this in the next
step). That means that the MicroBlaze can
only request a single sine calculation and
has to read the value after at least 13 clock
cycles before it can ask for another calcula-
tion.

Thus we estimated that it would take
13 clock cycles to run that implementa-
tion. And of course, a few more clock
cycles are required for handling the func-
tion calls on the software plus some addi-
tional operations.

We implemented this IP in less than a
day simply by putting some standard

FSL_Data
Read ROM

sin(d)
1024 x 32

ROM
sin(x)

1024 x 32

SRL16

fmul

ROM
cos(x)

1024 x 32

fadd

FSL_Data
Write

FSL_WriteFSL_Read

Figure 3 – Accelerator IP without pipelining

ASK FAE -X

clocks together, and measured the algo-
rithm in hardware. The whole algorithm
(mixed software/hardware) took 360 clock
cycles (including all function calls). This
was a big step forward, but still not enough
to meet the customer’s needs.

We used one SRL16 to delay the writing
of the signal until our accelerator IP was
processing all data.

The algorithm was now running in par-
allel to our MicroBlaze—but it can only
calculate one value at a time.

Step 6: Adding Pipelining
and Adapting Customer Code
At this point in the design, we started to
add pipelining to our core. The CORE
Generator modules for float-ADD and
float-MUL are already pipelined, so there
was nothing for us to do here. The first ver-
sion required that the argument stay con-
stant over time until the calculation is done.

After a new calculation starts (argu-
ment data arrived inside the FSL IP), two
BRAMs are immediately read and the
float-MUL is executed. The result of that
operation is valid after few clock cycles.

Our argument xi of sin(xi) is a 20-bit-
wide integer number, split into x and d.
Therefore, we had to delay the MSB part x of
our argument xi a few clock cycles to read the
content of the BRAM, storing xi, to match
to the result of the MUL operation. We used
a few SRL16 elements, 10 in all, for our 10-
bit-wide number, eating up to 10 LUTs (but
due to LUT combining in the Spartan-6, it
will require only five LUTs thanks to that
device’s wider LUT6 structure). The final
effort was quite minimal for our implemen-
tation. The additional SRL16x10 bit is
marked with the red circle in Figure 4.

Then we changed our FSL bus FIFOs
using the EDK wizards to allow storing of
multiple values (we decided that storing
eight values was sufficient for our purposes,
but you can easily add more if needed).

That means that our customer can
request up to eight values before he even asks
for the first result. This was sufficient for our
customer’s current needs, but in case he
wants to request more sine values, he can eas-
ily expand the FIFO buffers to larger values.

We discussed this new approach with
the customer and found out that it is fur-

ther possible to split the sine calculation
into two parts:

1. Requesting of the sine calculation
(fslput operation)

2. Requesting of the result of the sine
calculation (fslget operation)

Because we have a fixed latency in the
calculation, if both of these operations exe-
cute immediately one after the other, the
MicroBlaze will stall and wait until the FSL
IP has processed the request.

If we can split the two operations—
which was possible in the customer algo-
rithm—then we can further improve the
overall speed of the calculation.

With the additional pipelining, the final
code for execution on the MicroBlaze looks
like this:

putfsl(arg1,fsl1_id);

putfsl(arg2,fsl1_id);

putfsl(arg3,fsl1_id);

putfsl(arg4,fsl1_id);

putfsl(arg5,fsl1_id);

putfsl(arg6,fsl1_id);

putfsl(arg7,fsl1_id);

putfsl(arg8,fsl1_id);

...

getfsl(result1,fsl1_id);

getfsl(result2,fsl1_id);

getfsl(result3,fsl1_id);

getfsl(result4,fsl1_id);

getfsl(result5,fsl1_id);

getfsl(result6,fsl1_id);

getfsl(result7,fsl1_id);

getfsl(result8,fsl1_id);

This put us into a very good position.
The core is fully pipelined and allows the
splitting of the two calls of the sine opera-
tion. The latency of the IP core is still there,
but not visible anymore. The MicroBlaze
will no longer stall and wait for a pending
IP calculation, and this improves the over-
all performance.

The customer agreed to change his code
accordingly, which was a minor effort for
him. By using C macros instead of func-
tion calls, we were being able to in-line all
the required calls into the code base.

The final implementation of that algo-
rithm took only four clock cycles for a

58 Xcell Journal Fourth Quarter 2010

FSL_Data
Read ROM

sin(d)
1024 x 32

ROM
sin(x)

1024 x 32

SRL16

fmul

20 10 LSB

10 MSB

10 MSB

ROM
cos(x)

1024 x 32

SRL16x
10

fadd

FSL_Data
Write

FSL_WriteFSL_Read

Figure 4 – Accelerator core with pipelining

ASK FAE -X

Fourth Quarter 2010 Xcell Journal 59

single calculation. The whole latency of
the processing is no longer visible, but is
hidden by the splitting of calling and
requesting of the result. And the overall
IP required a few additional BRAMs (six
for our three tables) and a few additional
multipliers/DSP slices plus some addi-
tional slices.

But the results are quite astonishing. Our
MicroBlaze now behaves like a super-high-
end processor core, but is still running at a
pretty low frequency (it is now ~9,600 times
faster than the original sine calculation).

Step 7: Further Optimization?
When we reached this level of implemen-
tation, our customer was satisfied with the
result and we finished our work on the
accelerator IP. The speed and the precision
were good enough.

Of course, there is one final optimiza-
tion that could be done. The algorithm can
be further refined if we evaluate the sin(d)
values for very small values of d:

sin(d) = ~d

where d is less than 2*π/1024 – means less
than 0,0061359, and the overall error is
less than 1E-8 (for tables containing
1,024 values).

The final step for our algorithm could be:

sin(x+d) = sin(x) + cos(x) * d

This would introduce only a very small
additional error. But we could get rid of the
third table.

Of course, we would have to keep the
fadd and fmul operators.

There might be other ways to calculate
a sine value for float values, but this
approach shows the power of additional
hardware accelerators. Our experience
shows that you need not be afraid if the
algorithm to be placed into hardware con-
tains floating-point operations.

Karsten Trott is a Xilinx FAE in Munich,
Germany. He holds a PhD in analog chip
design and has a strong background in chip
design and synthesis. You can reach him at
Karsten.Trott@xilinx.com.

Figure 5 – The EDK enables a FIFO with a depth of eight
for the FSL buses, to improve pipelining.

ASK FAE -X

Over the last year, Xilinx has invested
heavily in making the design experience

easier for our customers. Xilinx® has devel-
oped a unified silicon platform upon which
Artix™-7, Kintex™-7 and Virtex®-7 devices
are built, allowing for the greatest degree of
flexibility and scalability for customers. Xilinx
is also working toward a unified design
methodology, integrating the FPGA design
flow into one, seamless design flow.

With the recent ISE® Design Suite 12.3
release, Xilinx takes a bold leap in this journey.
In this version, users will see two significant
changes. First, ISE Design Suite 12.3 will
begin supporting the AMBA® AXI4 Stream
Protocol Specification. This will allow design-
ers to leverage a wide variety of existing IP in
their FPGA designs, thereby reducing time-to-
market. Second, Xilinx has invested heavily in
the PlanAhead™ design cockpit to provide a
simpler, more consolidated view into your
design. This cockpit lets you manage your
entire design from within PlanAhead.

Enabled by a new and improved graph-
ical user interface, PlanAhead now offers
an RTL-to-bitstream pushbutton task-
based flow with three main steps: synthe-
sis, implementation, and program and
debugging. The tool has all the necessary
features to efficiently manage projects by
adding HDL file sources, IP cores, con-
straints and other resources. You can visu-
alize the design at any flow stage and any
time for analysis, including a clear view of
design resources and timing closure.

The AXI4 interconnect, meanwhile, is a
point-to-point interface developed to
address system-on-chip performance chal-
lenges. It supports pipelining, multiple
clock domains and data upsizing and
downsizing. AXI4 also includes features
such as address pipelining, out-of-order

completion and multithreaded transac-
tions. All of these features, when taken
together, allow much higher-performance
systems than those built over other bus
architectures. When converted to AXI4,
Xilinx’s embedded-platform targeted refer-
ence design provides twice the bandwidth
of the previous targeted reference design.

Taking full advantage of these changes
requires a bit of a shift in the way users
think about their design. Xilinx has invest-
ed heavily in developing training to help
designers do just that.

Aligning Training to the
ISE Design Suite 12.3 Release
In step with the focus of the ISE 12.3
release, Xilinx customer training is updat-
ing the following courses to align with
the further progress of the PlanAhead
design cockpit and the AXI4 IP prepro-
duction release.

• Essential Design with the PlanAhead
Analysis and Design Tool: Learn to
manage design performance, plan an
I/O pin layout and implement using
the PlanAhead software tool.

• Advanced Design with the PlanAhead
Analysis and Design Tool: Advanced
capabilities of PlanAhead software help
you to increase design performance
and achieve repeatable performance.

• Embedded-Systems Design: We have
updated the embedded design courses
to include the new AXI interface, while
retaining the option to also utilize the
PLB bus. This course teaches experi-
enced FPGA designers to develop
embedded systems using the Embedded
Development Kit (EDK). The lectures
and labs also cover the features and
capabilities of the Xilinx MicroBlaze®

soft processor and the PowerPC® 440.

• Advanced Features and Techniques
of Embedded-Systems Design: This
course provides developers with the
necessary training to develop complex

embedded systems and enables them
to improve their designs by using the
tools available in the EDK.

• Embedded-System Software Design:
This course introduces you to soft-
ware design and development for
Xilinx embedded-processor systems.
You will learn the basic tool use and
concepts required for the software
phase of the design cycle, after the
hardware design is completed.

Additionally, we have updated the fol-
lowing classes.

• Xilinx Partial Reconfiguration Tools
and Techniques: This course demon-
strates how to use the ISE, PlanAhead
and EDK software tools to construct,
implement and download a partially
reconfigurable (PR) FPGA design.

• Designing a LogiCORE® PCI
Express® System: Updated to utilize
the connectivity targeted reference
design as the primary lab design, this
class will give you a working knowl-
edge of how to implement a Xilinx
PCI Express core in your applications.

• Labs targeting Virtex-6 demonstra-
tion boards (ML605) have updated
content.

• Free recorded E-learning content
now includes the latest devices and
software (available at http://www.
xilinx.com/training/).

A Global Push
Each of these classes is available world-
wide today. There are 26 Xilinx
Authorized Training Providers operating
in nearly 50 countries (see chart). Space
is limited, so sign up today. To view the
new, interactive worldwide training
schedule, go to http://www.xilinx.com/
t ra in in g /wo r l dw id e - s c h edu l e . h tm .
Otherwise, contact your local ATP for
more details: http://www.xilinx.com/
training/atp.htm.

Take Advantage of a Simplified Design Experience

ARE YOU XPER IENCED?

by Tom Thomas
Training Program Manager

Rhett Whatcott
Customer Training Development Manager
Xilinx, Inc.

60 Xcell Journal Fourth Quarter 2010

Fourth Quarter 2010 Xcell Journal 61

AUTHORIZED TRAINING PARTNER CONTACT COUNTRY/REGION(S) SUPPORTED

Xilinx Training Worldwide www.xilinx.com/training Worldwide

AMERICAS registrar@xilinx.com

Anacom Eletrônica www.anacom.com.br Brazil

Bottom Line Technologies www.bltinc.com Delaware, District of Columbia, Maryland, New Jersey, New York,
Eastern Pennsylvania, Virginia

Doulos www.doulos.com/xilinxNC Northern California

Faster Technology www.fastertechnology.com Arkansas, Colorado, Louisiana, Montana, Oklahoma, Texas, Utah, Wyoming

Hardent www.hardent.com Alabama, Connecticut, Eastern Canada, Florida, Georgia, Maine,
Massachusetts, Mississippi, New Hampshire, North Carolina, Rhode Island,
South Carolina, Tennessee, Vermont

Multi Videa Designs (MVD) www.mvd-fpga.com Argentina, Brazil, Mexico

North Pole Engineering www.npe-inc.com Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South
Dakota, Wisconsin

Technically Speaking www.technically-speaking.com Arizona, British Columbia, Southern California, Idaho, New Mexico, Nevada,
Oregon, Washington

Vai Logic www.vailogic.com Indiana, Kentucky, Michigan, Ohio, Western Pennsylvania, West Virginia

EUROPE, MIDDLE EAST & AFRICA (EMEA) eurotraining@xilinx.com

Arcobel Embedded Solutions www.arcobel.nl The Netherlands, Belgium, Luxembourg

Bitsim AB www.bitsim.com/education Sweden, Norway, Denmark, Finland, Lithuania, Latvia, Estonia

Doulos www.doulos.com/xilinx United Kingdom, Ireland

Inline Group www.plis.ru Moscow Region

Logtel Computer Communications www.logtel.com Israel, Turkey

Magnetic Digital Systems www.magneticgroup.ru Urals Region

Mindway www.mindway-design.com Italy

Multi Video Designs (MVD) www.mvd-fpga.com France, Spain, Portugal, Switzerland

Pulsar Ltd. pulsar.co.ua/en/index Ukraine

Programmable Logic Competence Center (PLC2) www.plc2.de Germany, Switzerland, Poland, Hungary, Czech Republic, Slovakia, Slovenia,
Greece, Cyprus, Turkey, Russia

SO-Logic Consulting www.so-logic.co.at Austria, Brazil, Czech Republic, Hungary, Slovakia, Slovenia

ASIA PACIFIC education_ap@xilinx.com

Active Media Innovation www.activemedia.com.sg Malaysia, Singapore, Thailand

Black Box Consulting www.blackboxconsulting.com.au Australia, New Zealand

E-elements www.e-elements.com China, Hong Kong, Taiwan

Libertron www.libertron.com Korea

OE-Galaxy Co., Ltd. edu-electronic@oegalaxy.com.vn Vietnam

Sandeepani Programmable Solutions Pvt. Ltd. www.sandeepani-vlsi.com India

Symmid www.symmid.com Malaysia

WeDu Solution www.wedusolution.com Korea

JAPAN education_kk@xilinx.com

Avnet Japan www.jp.avnet.com Japan

Paltek www.paltek.co.jp Japan

Shinko Shoji Co., Ltd. xilinx.shinko-sj.co.jp Japan

Tokyo Electron Device Ltd. ppg.teldevice.co.jp Japan

ARE YOU XPER IENCED?

New Device Support
ISE Design Suite 12.3 adds support for the
Spartan-6 Lower Power (-1L) and XA
Spartan-6 production devices (via the 12.3
speed files patch); XA Spartan-6 -3 speed
grade; and defense-grade Virtex®-6Q
Devices (I-Grade only).

ISE Design Suite: Logic Edition

Ultimate productivity for FPGA logic design
Latest version number: 12.3
Date of latest release: October 2010
Previous release: 12.2
URL to download the latest release:
www.xilinx.com/download

Revision highlights:
The ISE Design Suite Logic Edition
includes several updates, most notably the
final release of ModelSim Xilinx Edition-
III and Xilinx’s emphasis on its ISIM
simulator as its flagship simulation envi-
ronment going forward. For more infor-
mation, please see change notice XCN
10028 at http://www.xilinx.com/support/
d o c u m e n t a t i o n / c u s t o m e r _ n o t i c e s /
xcn10028.pdf.

Project Navigator: Integration is improved
thanks to support for custom SmartXplorer
strategy files from within Project Navigator,
the ability to save only “N” best results in
order to efficiently manage disk space,
additional resource-utilization data dis-
played in the SmartXplorer Results window
and the ability to abort individual
SmartXplorer runs.

In addition, the project archive now has
the ability to archive sources only, along
with a new option to exclude generated
files when creating a project archive. The
tool includes a new option to create VHDL
libraries based on file directory name and
will automatically add all VHDL files from
a selected directory.

PlanAhead: PlanAhead boasts a number of
new features, the biggest of which are an
updated AXI IP core in the IP Catalog and
integration with CORE Generator™; pin-
planning usability improvements, includ-
ing table-based constraint editing, package
pin location swaps and improved visibility
of configuration settings; and improved
SSN prediction for Spartan-6 devices.

The tool also includes a number of
project infrastructure improvements, such
as the ability to launch runs without

unnecessary copying of sources, improve-
ments to functionality for when directory
trees are added as sources, manual file-
ordering control for synthesis, backups to
journal and log files, passing PCF files to
bitgen and copy run features.

Among several GUI improvements
and changes, the 12.3 version has
removed on-the-fly creation of user-
defined attributes and offers additional
options for find-in files. Other GUI
changes include the ability to open a proj-
ect directly from the Getting Started page;
UCF file order display; the ability to open
a file browser in a run directory; improved
identification of read-only files; tool tips
for missing files; and an option to clear all
output from the Tcl console view.

This version of PlanAhead includes
floorplanning improvements for swap-
ping macro location constraints for Block
RAMs and DSPs, improvements to
ChipScope™ integration for CDC file
export and a more consistent debug core-
naming convention. It also includes a
new tutorial for Tcl and SDC commands.

ChipScope Pro: ISE Design Suite: Logic
Edition includes IBERT Support for
IBERT CORE Generator and an analyzer
IBERT console, both for Virtex-6 GTH
rev2.0. An example file for IBERT CORE
Generator GUI for the Virtex-6 GTX shows
you how to include IBERT core logic in
your designs. Also, an AXI monitor in XPS
supports AXI4-based designs for Spartan-6
and Virtex-6 families, along with AXI4-
Memory Map and AXI4-Lite interfaces.

Implementation (place and route): The ISE
Design Suite implementation tools now
support intelligent clock gating for
Spartan-6 FPGAs (including BRAM
optimizations).

62 Xcell Journal Fourth Quarter 2010

Xilinx Tool & IP Updates
XTRA, XTRA

In early October, Xilinx made available the ISE® Design Suite 12.3. This
new version features the rollout of several intellectual-property (IP) cores
that meet the AMBA® AXI4 specification for interconnecting functional
blocks in system-on-chip (SoC) design. It also introduces several productivity
enhancements to the PlanAhead™ tool, most notably a new RTL-to-bit-
stream design flow that has a new and improved user interface and project
management capabilities. ISE Design Suite 12.3 also includes intelligent
clock-gating support for reducing dynamic power consumption in
Spartan®-6 FPGA designs. The download is available at http://www.xil-
inx.com/support/download/index.htm.

ISE Design Suite: DSP Edition

Flows and IP tailored to the needs of algo-
rithm, system and hardware developers
Latest version number: 12.3
Date of latest release: October 2010
Previous release: 12.2
URL to download the latest release:
www.xilinx.com/download

Revision highlights:
All ISE Design Suite Editions include
the enhancements listed above for the
ISE Design Suite: Logic Edition. Specific
to the DSP Edition, ISE 12.3 introduces
several enhancements to both System
Generator for DSP and DSP IP.

AXI4 support: System Generator and
CORE Generator 12.3 contain new
AXI4 IP, specifically the complex mul-
tiplier 4.0, DDS Compiler 5.0, FFT
8.0 and FIR Compiler 6.0. The DSP
Edition also includes beta support for
AXI Pcore generation. That is, bus
abstraction will make it possible to port
existing designs over to AXI by just
selecting a radio button on the EDK
block in System Generator. You can
import and co-simulate AXI-based
EDK designs using hardware co-simu-

lation. The DSP Edition also includes
SDK co-debug of AXI systems. In par-
ticular, it offers software debug with
SDK of AXI systems, Pcore design and
debug in System Generator and an
updated tutorial for the AXI FIR and
AXI Pcore.

Run-time improvements: The tool pro-
vides a 2x to 3x decrease in run-time
for the entire flow, from design loading
to netlisting, in System Generator 12.3.
It also includes improvements in the
Compile (Ctrl-D), Initialization,
Simulation and Netlisting steps.

XPS Ports View can now group ports as
part of a bus or an I/O interface. It now
includes the ability to easily connect ports of an
interface to a module outside the EDK subsys-
tem. Users can rearrange the order in which IP
blocks are shown in the System Assembly View
and customize the view to suit their design.

SDK enhancements: The 12.3 version of SDK
supports AXI-based designs. MicroBlaze
v8.00a includes little-endian support (AXI
only) and a GNU tool chain update, includ-
ing a new –m little-endian switch.
MicroBlaze also includes make-file genera-
tion and software tool updates, including
SDK, XMD, Libgen and FlashWriter.

System Generator co-debug is now enabled
for AXI IP. The SDK also supports drivers and
BSP for AXI IP, along with sample application
generation and Xilkernel support. An AXI
interface is available for MDM v2.00a.

SDK 12.3 has several interface updates. In
this version, relative paths for repositories are
allowed if the repository is at the same direc-
tory level as the BSP directory or one level
above. Repository paths are refreshed when
importing BSP projects. Manual modifica-
tion of the BSP settings file (MSS) now trig-
gers a rebuild. Restoring defaults in C/C++
build settings no longer removes inferred
options. Default suggested Windows work-
space location has been changed.

A Hello World SDK sample application
supports MDM UART, while a screencast
demonstrating how to use SDK is available
from the SDK Welcome page. Several bug
patches are provided with 12.3 Answer
Record 36777 at http://www.xilinx.com/
support/answers/36777.htm.

Xilinx CORE Generator
& IP Updates
Name of IP: ISE IP Update 12.3
Type of IP: All

AXI support:
With the release of ISE Design Suite 12.3,
Xilinx is introducing CORE Generator IP with

ISE Design Suite:
Embedded Edition

An integrated software solution for
designing embedded processing systems
Latest version number: 12.3
Date of latest release: October 2010
Previous release: 12.2
URL to download the latest patch:
www.xilinx.com/download

Revision highlights:
All ISE Design Suite Editions include the
enhancements listed above for the ISE
Design Suite: Logic Edition. The following is
the list of enhancements specific to the
Embedded Edition.

XPS enhancements: With ISE 12.3, XPS
includes support for AXI-based designs. To
accomplish this, Xilinx has added Base System
Builder support for single-MicroBlaze® AXI-
based designs along with the ability to stitch
together a system with AXI-based IP inter-
faces. Each AXI master or slave can run at a
different frequency; XPS automatically han-
dles any clock conversion logic. The XPS
System Assembly View connectivity panel pro-
vides a mechanism to capture sparse connec-
tivity between various AXI masters and slaves
for AXI interconnect IP. The AXI Interconnect
IP Configuration GUI includes a dialog to
change master- or slave-specific settings. In the
System Assembly View, it will automatically
add a slave module at the time of instantiation.

Support for embedded-software develop-
ment is not available in XPS for AXI-based
designs. The Xilinx SDK remains the primary
embedded-software development tool. XPS
continues to support software development for
PLB designs in a deprecated mode.

XPS includes streamlined integration of
MIG flows for AXI-based DDR interfaces,
along with AXI ChipScope Monitor support
and the ability to cascade multiple AXI inter-
connect IP blocks in a system, as well as the
ability to easily connect to an AXI module that
is outside the EDK subsystem.

Fourth Quarter 2010 Xcell Journal 63

XTRA, XTRA

the AXI4 interface. Xilinx has updated the
latest versions of the CORE Generator IP
listed below with various forms of AXI4
interface support.

In general, the latest version of a given
piece of IP for Virtex-6 and Spartan-6 device
families will support the AXI4 interface.
Older “production” versions of IP will contin-
ue to support the legacy interface for the
respective core on Virtex-6, Spartan-6, Virtex-
5, Virtex-4 and Spartan-3 device families.

For general information on Xilinx AXI4
support, see www.xilinx.com/axi4.htm. For
more information on Xilinx AXI4 IP support,
see www.xilinx.com/ipcenter/axi4_ip.htm.

Connectivity IP: Aurora 8b/10b v6.1 is now
available with the AXI4-Stream interface.
Performance capabilities are retained from
the LocalLink version with minimal core
size increases. CAN v4.1 and DisplayPort
v2.1 now come with an AXI4-Lite interface.
The PCI Express® core retains the perform-
ance capabilities of the TRN version with a
minimal increase in core size. The Spartan-6
and Virtex-6 integrated block for PCI
Express v2.1 is now available with the AXI4-
Stream interface.

DSP IP: FIR Compiler v6.0, DDS Compiler
v5.0, Complex Multiplier v4.0 and Fast
Fourier Transform (FFT) v8.0 are now avail-

able with the AXI4-Stream interface. The
release provides a demonstration VHDL
testbench for the selected CORE Generator
configuration and supports the upgrade
from the previous version with a legacy
interface. (Please note that this upgrade will
only affect core parameters. You must adapt
the core instantiation in the design to use
the AXI4-Stream interface. For further
information, please refer to the section on
migrating from earlier versions in the
respective IP data sheet.

Memory and storage elements: FIFO
Generator v7.2 is now available with AXI4,
AXI4-Lite and AXI4-Stream and native
interfaces. The FIFO Generator automati-

cally uses write-first mode for Spartan-6
SDP BRAM-based FIFO configurations
when different clocks are used for reduced
BRAM utilization. MIG v3.6 is now avail-
able with AXI4 and native interfaces.

Embedded processor IP: Platform Studio now
includes more than 30 new AXI4-compli-
ant cores, such as MicroBlaze version 8.00a
supporting both PLBv46 and AXI inter-
faces, AXI Ethernet and AXI Ethernet Lite,
AXI USB 2.0 Device, AXI-based DMAs
and AXI Serial Peripheral Interface.

Wireless IP: The new 3GPP LTE Channel
Estimator v1.0 is available with AXI4-
Stream interface. This latest component of
Xilinx’s LTE Baseband Targeted Design
Platform provides an optimized channel-
estimation function for the physical-
uplink shared channel (PUSCH) in LTE
base stations. Antenna configurations up
to and including 2 x 2 multiuser MIMO
are supported. You can tailor this config-
urable function to meet the unique needs
of your application.

Additional IP Highlights

• Digital predistortion (DPD) v3.0 gets
its first release in CORE Generator.
This market-leading DPD solution for
common wireless standards reduces base
station equipment capital and operating
expenditures by increasing power
amplifier efficiency. Configurable to
support different algorithmic perform-
ance and area combinations, it allows
customers to uniquely tune the core
implementation to their needs.
Supporting up to eight antennas, it
offers the smallest, lowest-power and
lowest-cost FPGA-based DPD solution
available in the market today.

• Soft-error mitigation (SEM) v1.1 auto-
matically detects and corrects soft errors
caused by ionizing radiation to enable the
highest system reliability and availability
and reduce system costs. You can config-

ure this feature to support multiple
error-correction methods. Optional error
classification and error injection are
included. The IP, which is delivered in
CORE Generator, supports the Xilinx
Virtex-6 FPGA family.

• Block Memory Generator v4.3 has new
write-first mode support for single dual-
port (SDP) memory type for Spartan-6
devices. Use the write-first mode instead
of read first for SDP BRAM when the
read and write ports are clocked by dif-
ferent clocks to avoid address space over-
lap issues. The core also supports soft
Hamming error correction in SDP
BRAM configurations for data widths <
64 bits (Virtex-6, Virtex-5 and Spartan-6
devices only).

You will find a comprehensive listing of
cores that have been updated in this release at
www.xilinx.com/ipcenter/coregen/12_3_datash
eets.htm. For more information, see www.xil-
inx.com/ipcenter/coregen/updates_12_3.htm.

Additional CORE Generator Enhancements
The CORE Generator catalog now includes
a new “AXI4” column highlighting IP cores
with AXI4 support. The IP information
panel displays information on supported
AXI4 and native interfaces.

You can expand IP symbols to display the
components and their bit allocation on a sin-
gle Tdata channel. For example, you can
expand a complex multiplier’s s_axis_a_tdata
[31:0] pin symbol to show the packing of
real[15:0] and imaginary[31:16] components.

You can now access supplementary IP
documents such as user guides from the pull-
down menu in the IP GUI as well as from
the IP information panel.

Additional PlanAhead
IP Design Flow Enhancements
A new “AXI4” column in the IP catalog
highlights IP cores with AXI4 support,
while the IP information panel displays
information on supported AXI4 and native
interfaces.

XTRA, XTRA

64 Xcell Journal Fourth Quarter 2010

WITH ELECTRICITY BILLS
accounting for a large part of operating

expenses (OPEX), and OPEX itself

accounting for ~70% of total costs,

operators have had to pay attention

to power consumption. Traditionally,

silicon suppliers have looked at transistor

and process technology to find ways

to lower power consumption. While a

major contributor, transistors are not the

only factor and can only get you so far.

Power reduction is better achieved

with a more holistic system-level

approach. The best results are achieved

by taking into consideration silicon

process technology, leveraging

power-aware tools, designing code

for low power, adjusting system-level

architectures, and applying algorithms

that can significantly reduce system-level

power (e.g., digital pre-distortion [DPD]

in a remote radio head application).

Choosing the right silicon partner

can help. Xilinx approaches power

management as just described —

holistically — rather than just focusing

myopically on transistors and process

node technology. Xilinx® FPGA platform

solutions help designers adopt power-

optimizing design approaches and system-

level design and integration techniques

that broadly address the power problem.

At the design level, Xilinx power-aware

tools, as well as an extensive library

of power-efficient reference designs

and application notes help engineers

optimize overall power consumption.

Dedicated teams of Xilinx application

engineers can also help designers meet

stringent power goals. Xilinx engineers

can walk customers through design

optimization techniques such as folding

a DSP-intensive design to reduce the size

of the design, therefore lowering static

power consumption and cost by using a

smaller device.

At the system level, Xilinx’s attention

to integration has yielded great results.

For example, integrating multiple discrete

components into a single FPGA greatly

reduces the total amount of system I/O,

which can account for a significant

amount of the power draw. Furthermore,

using advanced algorithms like DPD in

a remote radio head allows telecom

equipment manufacturers (TEM) to use

a lower-power, lower-cost power

amplifier — having the most significant

impact on system-level power

consumption.

Certainly Xilinx recognizes that

transistor and process node technology

cannot be completely ignored when

reducing power. The 28nm Xilinx 7-Series

FPGAs enable a 50% overall power

reduction compared to the previous

40nm generation. In terms of transistor

technology, Xilinx’s low-power process

and use of multiple transistor sizes

minimize static power. Xilinx FPGAs

use hard blocks for DSP, memory, and

SERDES, which greatly minimizes dynamic

power consumption over comparable

DSP and other FPGA designs.

Addressing the power challenge at

the transistor level will get you started

in the quest to lower power and lower

OPEX. However, only by fine-tuning

all levels holistically will you see the

greatest results.

To learn more about Xilinx’s

affordable, power-optimized wireless

solutions, please visit www.xilinx.com/

esp/wireless.

A D V E R T I S E M E N T

By Manuel Uhm

Meeting the Power Challenge:
Transistors Only Take You So Far

~45%
reduction

in cost

Designs based on Xilinx FPGAs can take advantage of industry-leading functional density and
advanced radio algorithms, such as DPD, to minimize external circuitry and reduce the power
consumption of the power amplifier, thereby minimizing power for the complete system.

About the Author: Manuel Uhm is the Director of Wireless Communications at Xilinx Inc. (San Jose, Calif.)
and Chair of the User Requirements Committee, Wireless Innovation Forum (SDR Forum v2.0). Contact
him at more_info@xilinx.com

© Copyright 2010 Xilinx, Inc. Xilinx, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. All other trademarks are the property of their respective owners.

66 Xcell Journal Fourth Quarter 2010

Xpress Yourself
in Our Caption Contest

XCLAMAT IONS!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original and
must be received by 5:00 pm Pacific Time (PT) on December 31, 2010. Official rules available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

Let’s talk turkey. If you have a yen to Xercise your funny bone, here’s your opportunity. In the run-up to the holidays, we invite you
to cook up an engineering- or technology-related caption for this cartoon depicting some unusual goings-on in a corporate

conference room. The image might inspire a caption like “Does anyone know the mathematical formula for gravy?”

Send your entries to xcell@xilinx.com. Include your name, job title, company affiliation and location, and indicate that you have read
the contest rules at www.xilinx.com/xcellcontest and agree to them. After due deliberation, we will print the submissions we like the best
in the next issue of Xcell Journal and award the winner the Xilinx® SP601 Evaluation Kit, our entry-level development environment
for evaluating the Spartan®-6 family of FPGAs (approximate retail value, $295; see http://www.xilinx.com/sp601). Runners-up will gain
notoriety, fame and a cool, Xilinx-branded gift from our SWAG closet.

The deadline for submitting entries is 5:00 pm Pacific Time (PT) on December 31, 2010. So, get writing!

D
A

N
IE

L
G

U
ID

E
R

A

 The Best
Prototyping System
 Just Got Better

� Highest Performance

� Integrated Software Flow

� Pre-tested DesignWare® IP

� Advanced Verification Functionality

� High-speed TDM

HAPS™ High-performance ASIC Prototyping Systems™

For more information visit www.synopsys.com/fpga-based-prototyping

HALF THE
POWER

TWICE THE
PERFORMANCE
A WHOLE NEW WAY OF THINKING.

Powerful, flexible, and built on the only unified
architecture to span low-cost to ultra high-end FPGA
families. Leveraging next-generation ISE Design
Suite, development times speed up, while protecting
your IP investment. Innovate without compromise.

LEARN MORE AT WWW.XILINX.COM / 7

Lowest power
and cost

Best price
and performance

Highest system
performance
and capacity

Introducing the 7 Series. Highest performance,

lowest power family of FPGAs.

© Copyright 2010. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

PN 2463

