
c

MacApp® 2.0b5
Feature Overview

August 3, 1988
Curt Bianchi

This document is a brief description of the new features included in MacApp 2.0.

MacApp Source Code Organizatio_n

MacApp 2.0 breaks up the MacApp source code into logically separate units, each of which contains the code for a
distinct part of MacApp. Here's a description of the new units.

Non-Object-Oriented Libraries

These libraries provide non-object-oriented support facilities for MacApp.

UMAUtil

UViewCoords

UFailure

UPat.ch

UBusyCursor

UMemory

UMenuSetup

Wed, Aug 3, 1988

This unit contains a set of constant and type declarations and utility routines that are
used by the other MacApp units. MacApp users will also want to make use of the
routines in this unit

This unit implements the routines dealing with 32-bit view coordinates and the
VPoint and VRect data types, which are analogous to QuickDraw's Point and
Rect types. MacApp users will have to be familiar with the routines in this unit.
Basically, they provide conversion between QuickDraw and view coordinates, and
view coordinate counterparts to many QuickDraw routines (for example, SetVRect,
which is just like QuickDraw's SetRect except that it works in view coordinates).

This unit implements MacApp's failure-handling mechanism. Most users only need
to know how to invoke failure handling and how to write their own failure handlers.
The code in this unit actually implements the failure-handling mechanism.

This unit implements MacApp's trap-patching scheme and is of little interest to
MacApp users as they don't ordinarily patch traps.

This unit implements the MacApp busy cursor. Most MacApp users won't be
interested in this unit unless they want to change the way the busy cursor works.

This unit implements the MacApp memory and segment management system.
MacApp users need to know the philosophy behind MacApp's memory management
and the services provided by this unit If you need to know the gory details, read this
unit's source code.

This unit implements MacApp's menu handling. Mostly this consists of routines to
manipulate menu items via command numbers, and provides the framework in which
menu setup takes place.

© 1988S Apple Computer 1

Object-Oriented Libraries

These units form the core of the MacApp object classes.

UObject

UAssociation

UList

UMacApp

Building Block Units

This unit provides the base support for objects in MacApp and includes the
TObject class.

This unit implements the TAssociation class, which is essentially a dictionary
that associates one string with another.

This unit contains the TList and TSortedList classes, which implements lists
of objects, similar to dynamic arrays. They are widely used by MacApp and by most
MacApp programs. .

This is the main MacApp uniL It contains the classes TApplication,
TDocument,TView,TWindow,TScroller,TControl,TCtlMgr,
TScrollBar, TSScrollBar and TPrintHandler. It also contains global
variables, constants, and type declarations used by MacApp.

These units implement optional classes you may wish to use in your program.

UTE View

UDialog

UGridView

UPrinting

Debugging Units

This unit contains the TTEView class, which implements a text editing view based
on the ROM TextEdit.

This unit is essentially a collection of views that are generally associated with
dialogs. The views defined by this unit are TDialogView, TCluster,
TPicture,Ticon,TRadio,TButton,TCheckBox,TStaticText,
TEditText and TNumberText. You can use these views in any MacApp
window by including this unit in your USES statement

This unit contains a set of views for line- and column-oriented drawing.
TGridView implements a spreadsheet-like view. TTextGridView implements a
grid view whose cells are text-based. TTextListView is a view that consists of a
list of text items.

This unit contains the TStdPrintHandler class, which allows you to print
MacApp views.

These units implement MacApp's debugging facilities.

Ulnspector

UTrace

UWriteLnWindow

Wed, Aug 3, 1988

This unit contains the classes that implement the Inspector debugging windows.

This unit implements the MacApp debugging facilities available in the Debug
window.

This is the underlying implementation for the Debug window. It enables Pascal
WRITE and WRITELNS to be written to the Debug window.

© 1988S Apple Computer 2

c

0

MPW 3.0 Support

We have made modifications to use MacApp 2.0b5 with MPW 3.0. To use MPW 3.0 you must change the
MacAppStartup file in your MacApp folder to set the MPW2 shell variable to false. MPW 3.0 is still changeing
so we cannot guarentee that this release of MacApp will be compatible with future release of MPW 3.0.

At the time of this writing the current release of MPW 3.0 (version a2) contains incomplete Text Edit interfaces.
These interfaces will be completed in the next release of MPW 3.0. Until then you will have to modify the source
file UTEView. p to include the missing Text Edit interfaces. Near the beginning of UTEView. p you will find
the following code:

{$IFC q.MPW2} { TextEdit interface that isn't included in MPW 2.x. }
CONST

doToggle = 32;

TYPE
TEintHook = (intEOLHook, intDrawHook, intWidthHook, intHitTestHook);

' FUNCTION TEContinuousStyle(VAR mode: INTEGER; VAR aStyle: TextStyle;
hTE: TEHandle): BOOLEAN;
INLINE $3F3C, $000A, $A83D;

PROCEDURE SetStylScrap(rangeStart, rangeEnd: LONGINT; newStyles: StScrpHandle;
redraw: BOOLEAN; hTE: TEHandle);
INLINE $3F3C, $0008, $A83D;

PROCEDURE TECustomHook(which: TEintHook; VAR addr: ProcPtr; hTE: TEHandle);
INLINE $3F3C, $000C, $A83D;

FUNCTION TENumStyles(rangeStart, rangeEnd: LONGINT; hTE: TEHandle): LONGINT;
INLINE $3F3C, $0000, $A83D;

{$ENDC qMPW2}

For MPW 3.0a2 this should be changed as noted in boldface:

{$IFC qMPW2} { TextEdit interface that isn't included in MPW 2.x. }
CONST

doToggle = 32;

TYPE
TEintHook = (intEOLHook, intDrawHook, intWidthHook, intHitTestHook);

{$ENDC}

FUNCTION TEContinuousStyle(VAR mode: INTEGER; VAR aStyle: TextStyle;
hTE: TEHandle): BOOLEAN;
INLINE $3F3C, $000A, $A83D;

PROCEDURE SetStylScrap(rangeStart, rangeEnd: LONGINT; newStyles: StScrpHandle;
redraw: BOOLEAN; hTE: TEHandle);
INLINE $3F3C, $000B, $A83D;

PROCEDURE TECustomHook(which: INTEGER.; VAR addr: ProcPtr; hTE: TEHandle);
INLINE $3F3C, $000C, $A83D;

FUNCTION TENumStyles(rangeStart, rangeEnd: LONGINT; hTE: TEHandle): LONGINT;
INLINE $3F3C, $000D, $A83D;

{Take out the $ENDC qMPW2 that was here}

Wed, Aug 3, 1988 © 1988S Apple Computer 3

View Architecture

A major part of the 2.0 effort is a reworking of MacApp's display objects. We have replaced the old TWindow,
TF rame and TView objects with a new set of objects. The attached document "MacApp® 2.0 Display Architecture
Release Notes" describes the changes in detail.

View Resource Templates

A major feature of MacApp 2.0 is the ability to create hierarchies of views from resource definitions in place of
procedure calls. View resources are similar to a 'D ITL • resources and are used to describe MacApp views in much
the same way as a 'D ITL' resources describe dialog items. View resources define the layout of views within a
window. Nearly all fields of a view can be defined in its resource, including its size, location, adornment and text
style, if any, and so on. MacApp provides a set of Rez type definitions so that the view resources can be compiled
with Rez, or decompiled with Derez. Furthermore, a view resource editor is under development that allows you to
create view resources interactively, much like ResEdit creates resources.

The use of view resources is purely optional. Instances of view classes provided by MacApp can be created
procedurally or via resources. Within an application it is possible to have some views and windows created
procedurally and have others created via resources. Which technique you should use is largely a matter of personal
choice. However, a compelling reason for using resources is to allow your program to be localized (adapted to
different natural languages) without affecting the source code.

Chapter Seven of the MacApp 2.x Manual provides a good introduction to using view resources. Also, many of
the sample programs create their views and windows from resources. In particular, DemoDialogs has several
examples and we would suggest that you look their for guidance.

In addition to the material in the manual, here are a few things you should know:

1. The MacApp 2.x Manual shows how to define 'view' resources in your application's .r resource file. With this
technique the 'view' resources are described according to a syntax defined in the file ViewTypes.r in the 'MacApp
Resource Files:' directory. This file includes the definition of the 'view• type and shows what identifiers are
permissible in each field. It would be helpful to print this file and have it on hand for reference as you create
new 'view' resources.

2. A single 'view' resource consists of one or more views, much like a single 'D ITL' resource consists of one
or more dialog items.

3. Each view in a 'view' resource has a type and a class name. The type indicates to Rez and Derez the format
of the rest of the view's data. The class name is the actual name of the view's class. If you were defining a
TWindow object in a resource, its type would be Window and its class name would be "TWindow".
Similarly, if you were defining an object of class TMyWindow, then its type would still be Window but its
class name would be "TMyWindow". Note that the class name is case sensitive. Also, each type has a default
class name assoicated with it If the class name is an empty string then MacApp will use the default class.
This decreases the size of the resource and provides better performance. For example, if you have a window
view and you want its class to be TWindow then you can make the class name an empty string. On the other
hand, if you have a window and whose class is TMyWindow then the class name must be "TMyWindow".

4. The definition for the 'view' resource is contained in the file 'ViewTypes.r' in the 'MacApp Resource Files:'
directory. It is possible to extend the format of the 'view' resource to include data for your own view classes.
To do this you should make a copy of the 'view ' resource in one of your application's .r files and then add
your types to the copied definition.

5. Note that each view can have a unique four-character identifier. By using the TView. F indSubView method
you can get a reference to a view of a given identifier. This is useful when creating views from resources as you
won't readily have references to any of the views in the hierarchy except the top one, usually a window object

Wed, Aug 3, 1988 © 1988S Apple Computer 4

0

The four-character identifier does not have to be unique for views that you won't refer to by id.

6. For the creation of views with resources, the method IRes has been defined. It is analogous to its
IViewclass method except that it initializes the class from resource data rather than from parameters and
default values. Each IRes method is responsible for initializing the fields of the class to which it belongs.
Generally, every view class has an I Res method. There are two reasons you may want to override I Res for
your view classes. Either you wish to initialize some of your fields when the view is created from a resource, or
you have added data to the resource specifically for this class. Here is an example of how IRes is implemented:

PROCEDURE TStaticText.IRes (itsDocument: TDocument;
itsSuperView: TView;
VAR itsParams: Ptr);

TYPE
STextDataPtr =ASTextData;
STextData = RECORD

BEGIN

just: INTEGER;
data: Str255;

END;

fDataHandle := NIL;
INHERITED IRes(itsSuperView, itsParams);

fDefChoice := mStaticTextHit;
WITH STextDataPtr(itsParams)A DO

BEGIN
fJust := just;
SetText(data, kDontRedraw);
END;

OffsetPtrWStr(itsParams, SIZEOF(STextData));
END;

The parameters itsDocument and itsSuperView are self-explanitory. The parameter itsParams points
to the beginning of the view's resource data. It is a VAR parameter and each class's IRes increments
itsParams by the length of the class's resource data. The standard IRes behavior is to 1) initialize any
fields of the class required to free the object, 2) call IN HE RI TED I Res to initialize data inherited from other
classes, 3) initialize the class's data from the resource, and 4) increment itsParams by the size of the class's
data. In the example shown above itsParams was offset with the utility OffsetPtrWStr, which is used
when a variable length string is at the end of the class's data. Even though the string is declared as Str255 in
Pascal, in reality the number of bytes used by the string depends on its length. If there is no variable length
string at the end of the data, then OffsetPtr is used. Given that each class's IRes method increments
itsParams properly, itsParams will point to this class's portion of the resource after INHERITED IRes
has been called.

7. Two TEvtHandler methods have been added to create views from resources. They are

FUNCTION TEvtHandler.DoCreateViews (itsDocument: TDocument;
parentView: TView;
itsRsrcID: INTEGER): TView;

FUNCTION TEvtHandler.CreateAView (itsDocument: TDocument;
itsSuperView: TView;
VAR itsParams: Ptr): TView;

The DoCreateViews method loads the 'view' resource whose id is itsRsrcID, and then proceeds to

Wed, Aug 3, 1988 © 1988S Apple Computer 5

create the views defined in the resource. It calls CreateAView for each view in the resource.
Crea teAView basically clones a prototype view of the given class and then calls its I Res method. The
global function, NewTemplateWindow, can be used to create a view hierarchy whose first view is a window.
It is similar to News imp le Window except that it creates a window and its subviews entirely from a resource
and returns a reference to the window. (Actually it returns the first view in the resource under the assumption
that it is a window.)

In order for CreateAView to clone a prototype view, an instance of every view that may be created from a
resource must be included in a list of prototype views maintained by MacApp. To register a view, you use the
following sequence:

VAR aMyView:
TMyView;

NEW (aMyView);
FailNIL(aMyView);
RegisterType('TMyView', aMyView);

This sequence of code allows MacApp to create views of class TMyView as they are encountered in a 'view'
resource. Note that the string passed to register type is case-sensitive. Usually you register views in your
IYourApplication method, although a view can be registered any time before you attempt to create it from
a resource. All of the view classes defined in UMacApp are automatically registered. Calling InitUTEView
registers TTEView. Similarly, InitUDialog initializes the views defined in UDialog. It is possible to
use a different technique for creating instances of views by overriding CreateAView.

MultiFinder Support

While programs built with MacApp 1.x work under MultiFinder, they don't really take advantage of it.

MacApp 2.0 makes use of the wa i tNextEven t trap and provides a mechanism for identifying the cursor region
and length of time before MultiFinder needs to wake up the application. Three factors determine the value of the
sleep parameter: the application's current "target," whether your application has any co-handlers, and the idle
frequency of your application's event handlers. (Event handlers are objects whose classes descend from
TEvtHandler and include the application itself, documents, windows and views.) Every event handler has a field,
fidleFreq, that determines how often the object requires idle processing. This field represents the minimum
number of ticks (1/60 of a second) that must elapse before the event handler requires idle processing. By default,
fidleFreq is set to MaxLongint, which for practical purposes means the object never requires idle processing.
To cause an object to get idle time, simply set its fidleF req to an appropriate value. A value of zero will cause
the object's Do Idle method to get called as often as possible. Note that there is no way to guarantee that the
object's Do Idle method will be called after fidleFreq ticks have elapsed. It is only guaranteed that its
Do Idle method will not be called more frequently than the fidleF req ticks.

The application's current target determines which event handlers are eligible for idling. The target is the object that
is the focal point of the user's interest. Usually it is a view in the front window. Event handlers form a linked list.
Given that the target is a view of the front window, the target chain usually consists of the view, its window, its
document, and the application. Thus all of those objects are eligible for idling. When another window is activated,
a new view is made the target, and hence the target chain now consists of the new target, its window, its document,
and the application. (Note that this technique is also used to determine which objects can respond to keystrokes and
menu commands. See Chapter Five of the MacApp Interim Manual for more details.) The reason idle processing is
usually restricted to objects in the current target chain is best explained by example. Consider a simple text editor
such as the DemoText sample program. It is possible to open several windows, each with a text editing view.
However, only the active window has a blinking edit caret, where the blinking of the caret is performed at idle time.
If all of the views received idle time, there would be a blinking caret in all of the windows. The TTEView class is
an example of an event handler that requires idling. In TTEView's case, its Do Idle method is used to blink the

Wed, Aug 3, 1988 © 1988S Apple Computer 6

(> /
/

edit caret

Sometimes it is desirable to have event handlers that receive idle processing regardless of the current target. These
objects are known as event co-handlers in MacApp. They are installed in a list of co-handlers that is not affected by
the current target. Possible uses of co-handlers would include objects that poll various I/O devices for input or
output.

The cursor region passed to Wai tNextEvent allows MultiFinder to avoid sending your application needless
"mouse-moved" events. In MacApp 2.0, views can set the cursor region in their DoSetCursor method.
DoSetCursor should set the region in view coordinates. MacApp will convert it to global coordinates as required
by Wai tNextEvent. Unless DoSetCursor is overridden the view return an empty cursor region, forcing
MultiFinder to return mouse-moved events as long as the cursor is in the view.

TSortedList Class

MacApp 2.0 includes a subclass of TList called TSortedList, contained in the unit UList. TSortedList
implements a list of objects that are maintained in sorted order. To do this there must be some way to rank objects
in the list with respect to each other. For this reason the TSortedList class defines the Compare method. Its
purpose is to compare two objects in a list and indicate which object is of greater rank. Since the implementation of
Compare depends on the kind of objects maintained in the list, it must always be overridden. Its definition is:

FUNCTION TSortedList.Compare (iteml, item2: TObject): INTEGER;

Compare returns an integer that is less than, equal to, or greater than zero according to whether i teml is less than,
equal to, or greater than i tem2. As a convenience the following constants are defined:

kALessThanB =
kAEqualB =
kAGreaterThanB

-1;
0;
1;

How you determine the result of Compare is completely up to you. As an example, suppose your objects have a
field of type Str255 called fT it le, and you wish to maintain those objects in a list in ascending order according to
£Title. The Compare method could be implemented as follows:

FUNCTION TSortedList.Compare (iteml, item2: TObject): INTEGER;

BEGIN
IF TMyObject(iteml) .fTitle < TMyObject(item2) .fTitle THEN

Compare := kALessThanB
ELSE IF TMyObject(iteml) .£Title> TMyObject(item2) .£Title THEN

Compare := kAGreaterThanB
ELSE

Compare := kAEqualB;
END;

Note that iteml and item2 must be cast from type TObject to their actual type.

Other methods of the TSortedList class include:

PROCEDURE TSortedList.Insert (item: TObject);
Inserts the given object into the list in sorted order using the Compare method to compare objects.

PROCEDURE TSortedList.GetitemNumber(item: TObject): INTEGER; OVERRIDE;
Returns the item number within the list of the given object, using a binary search to locate the object
within the list Actually, the item number returned may not refer to the same object. The search is
considered successful when the Compare method returns a result of zero. Depending on the kind of

Wed, Aug 3, 1988 © 1988S Apple Computer 7

objects in the list. your Compare method may return zero when comparing two entirely different
objects. (e.g. it could be that more than one object has the same fTitle value in the above
example.)

PROCEDURE TSortedList.Search (
FUNCTION Testitem(anitem: TObject): INTEGER) : TObject;

This method can be used to perform a binary search on a sorted list, where the Test Item function is
used to perform comparisons. Test Item returns an integer which is less than, equal to, or greater
than zero according to whether an Item is less than, equal to , or greater than your search criteria
Search either returns the object that matches the search criteria, or NIL if no object matches.

Search is useful for cases in which you don't have an object to compare to those in the list.
Refering to the example above, suppose we are given a string and wish to determine if any objects in a
list have an fTitle that matches the string. This can be done with the following code fragment:

FUNCTION FindTitle (aTitle: Str255): TMyObject;

FUNCTION TestTitle (anitem: TObject) : INTEGER;
BEGIN

IF TMyObject(anitem) .fTitle < aTitle THEN
TestTitle := -1

ELSE IF TMyObject(anitem) .fTitle > aTitle THEN
TestTitle := 1

ELSE
TestTitle := 0;

END;

BEGIN
FindTitle := gListOfMyObjects.Search(TestTitle);

END;

UDialog Building Block

Significant changes have been made for "dialog" support in MacApp 2.0. The old UDialog unit has been completely
replaced. The thrust of the new dialog unit is to provide a set of view classes that implement the types of views
commonly found in dialogs, and to do away with any reliance on the Dialog Manager.

The distinction between a dialog and a window in MacApp has been purposely blurred. In MacApp 2.0, windows
and dialogs are constructed in basically the same way. Any view, including those in the UDialog unit, can be placed
in any window. Any window can be modeless or modal. This is an improvement over MacApp 1.x in three
respects. First, the techniques used to implement a dialog are the same as those used to implement any MacApp
window. Second, it is easy to make use of controls in a nondialog context, since controls are implemented as
MacApp views. And third, it is easier to have complex views in dialogs. The TDialogView class implements
the basic behavior of modal dialogs (for example, tabbing between editable text fields, handling the default button,
and so on).

The MacApp 2.0 UDialog unit is essentially a collection of view classes for the types of views one commonly uses
in dialogs. Most of these views can be used in any MacApp window, in any context. The exceptions are the
TEdi t Text and TNumbe rText views. These views assume they are directly or indirectly installed in a
TDialogView. The TDialogView handles tabbing among TEditText and TNumberText view. See the
UDialog Release Notes for more information on the class provided in that unit.

Note that the notion of window modality is now a property ofMacApp's TWindow class. TWindow has a field,
fisModal, that indicates whether the window is modal with respect to the other windows, regardless of its
contents. A MacApp modal window still allows the menu bar to be clicked, but it doesn't allow other windows to

Wed, Aug 3, 1988 @ 1988S Apple Computer 8

be activated. Note that MacApp modal windows do not by themselves prevent the application from being switched
out by MultiFinder. This is done by MultiFinder, which prevents switching out if the front window's definition ID
is dBoxP roe.

One final note. MacApp does not necessarily preclude the use of the Dialog Manager. However, there is no support
included for using the Dialog Manager.

UTEView Building Block

The UTEView building block implements the TTEView class. This is a view based on the features of the ROM's
TextEdit. It supports styled text as defined in Inside Macintosh Volume V. The use of styled text requires
system 6.0 or greater. The Demo Text sample program provides an example of its use.

UGridView Building Block

UGridView is a new building block in MacApp 2.0. It contains a set of view classes that are organized as rows and
columns of cells, much like a spreadsheet Examples of its use can be found in the samples DemoDialogs and Cale.
The Inspector debugging windows also use UGridView. See the GridView Release Notes for more info.

Object Inspecting

An object inspector has been added to MacApp's debugging facilities. The inspector provides an easy way to display
the fields of any instantiated object Each time the New Inspector Window command of the Debug menu is selected,
a new inspector window is displayed. An inspectoi window is shown on the next page.

The upper left pane is a list of class names in alphabetical order for which at least one object has been instantiated.
Clicking one of the class names fills the upper right pane with a list of objects of that class. Clicking one of the
objects causes the bottom pane to display the fields of that object Once an object is displayed in the bottom pane,
it is also possible to click on a field that is one of the following types: a reference to another object, a Graf Ptr, a
WindowPtr, a ControlHandle, a TEHandle, or a RgnHandle. Clicking one of these fields causes the
bottom pane to display the field that was clicked.

Note that the bottom pane is not automatically updated when changes occur in the data being displayed. (Refreshing
the window, or clicking the object in the upper-right pane will reflect the object's current values.)

Wed, Aug 3, 1988 © 1988S Apple Computer 9

§0 Inspector 1
TLIST
TBRO\rr'SER
TSHAPEAP
TPRINTHA
TDESKSCR
T\rr' INDO'w'

After selecting the New Inspector Window
command from the Debug menu

Inspector 1
TLIST
TBRO\rr'SER
TSHAPEAP
TPRINTHA

fDocument:
fls:Active:
fls:Resizable:
flsClosab le :
fFreeOnClosing:
fDisposeOnFree :
fClosesDocumen ... :
10penlnitially :
fMoveBounds:
fResizelimits :
fTarget:

$026004
$025E60
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
(4 I 24)/(508 I 338)
(0 I 0)/(410 I 200)
$025E44

After clicking on the window 'Untitled-1'

Inspector 1
TLIST
TBRO\rr'SER
TSHAPEAP
TPRINTHA
TDESKSCR

$025EAO: Clipboard
$025E2C: Untitled-1

After clicking on "TWindow" in the list of
classes

TDESKSCR
T\rr'INDOW
TBOX
TCIRCLE

TShapeDocument
fShapeView: $025E44

~~~~:~~~e:w: :1 ~6~1 ~6~1:~ ~.il.J.J.:·.11.: 
fDocState .theN ... : 
fDocState.the'W ... : (16161, 16161)/(16 mm 
fDocState.theS ... : (16161, 16161) iHlil 
fReopening : FALSE :1:1:1 

T~::~:~~mman .. ' ~~LSE 1!~!1 
fw'indowList : $025E58 
fViewl ist : $025E54 l2J 

After clicking on the fDocument field of 
the window 

Wed, Aug 3, 1988 © 1988 .S Apple Computer 10 



0 

(~, 

/ 

To implement the inspector, we've added two new methods to objects: TObject. Get InspectorName and 
TObject. Fields. (MacApp 1.x users should note that the Inspect method is still around, and will still work 
in the Debug Window. To make use of the Inspector windows you should replace your Inspect methods with 
Fields methods.) 

GetinspectorName is used to provide some identification of the object when it is listed in the upper right pane 
of an Inspector window. For example, the method TWindow. Get InspectorName returns the window's title. 
It is defined as: 

PROCEDURE TObject.GetinspectorName (VAR inspectorName: Str255); 

The Fields method returns information about the fields of a particular class. It has already been implemented for 
all classes defined by MacApp, so you only need to implement it for your classes. The definition of Fields is: 

PROCEDURE TObject.Fields (PROCEDURE DoToField( fieldName: Str255; 
fieldAddr: Ptr; 
fieldType: INTEGER)); 

The purpose of the Fields method is to call DoToField on each field defined by its class. It is used by the 
Inspector windows as well as for the Inspect command in the MacApp debugger. The general sequence of a Fields 
method is to first call DoToField to report the class name, then call DoToField for each field in the class, and 
finally call INHERITED Fields (DoToField) for the inherited data. For example, suppose we have the class 
defined below: 

TShape OBJECT (TObject) 
fRect : Re ct; 
fColor: RGBColor; 

END; 

The Fields method for TShape would be: 

PROCEDURE TShape.Fields (PROCEDURE DoToField( fieldName: Str255; 
fieldAddr: Ptr; 
fieldType: INTEGER)); 
OVERRIDE; 

BEGIN 
DoToField('TShape', NIL, bClass); 
DoToField('fRect', @fRect, bRect); 
DoToField('fColor•, @fColor, bRGBColor); 
INHERITED Fields(DoToField); 

END; 

Wed, Aug 3, 1988 © 1988S Apple Computer 11 



The constants bClass, bRect, and bRGBColor are among constants defined in UMAUtil and indicate the type 
of data pointed to by the second parameter to DoToF ie ld. Here is the complete list of field type constants defined 
in UMAUtil: 

binteger 
bHexinteger 
bLongint 
bHexLongint 
bString 
bBoolean 
bChar 
bPointer 
bHandle 
bPoint 
bRect 
bObject 
bByte 
bCmd.Number 
bClass 

an INTEGER, converted to a decimal string. 
an INTEGER, converted to a hexdecimal string. 
a LONG INT, converted to a decimal string. 
a LONGINT, converted to a hexidecimal string. 
a STRING of any length. 
a BOOLEAN. 
a CHAR. 
a pointer of any type, converted to a hexidecimal string. 
a handle of any type, converted to a hexidecimal string. 
a QuickDraw Point. 
a QuickDraw Rect. 
a reference to another object 
a single byte, converted to a decimal string. 
a field of type CmdNumber. 
announces the start of a class's fields. 
a field of type OS Type, converted to a 4-character string. 
a WindowPtr. 
a ControlHandle. 
a TEHandle. 

bOSType 
bWindowPtr 
bControlHandle 
bTEHandle 
bLowByte 
bHighByte 
bPattern 
bFixed 
bRgnHandle 
bRGBColor 
bTitle 

= -1; 
=-2; 
=-3; 
=-4; 
=-5; 
= -6; 
= -7; 
= -8; 
= -9; 
= -10; 
= -11; 
=-12; 
=-13; 
= -14; 
= -15; 
= -16; 
= -17; 
= -18; 
=-19; 
= -20; 
= -21; 
= -22; 
= -23; 
=-24; 
=-25; 
= -26; 
=-27; 
= -28; 
= -29; 
=-30; 
= -31; 
=-32; 
=-33; 
=-34; 
=-36; 
=-37; 

the low byte of a 2-byte word (integer), converted to a hex string. 
the high byte of a 2-byte word (integer), converted to a hex string. 
a QuickDraw Pattern. 
a field of type Fixed. 
a RgnHandle. 
a field of type RGBColor. 

bGraf Ptr 
bStyle 
bVCoordinate 
bVPoint 

field data is ignored-only its title is displayed in an Inspector window. 
a pointer to a QuickDraw graf port. 

bVRect 
bFontName 
bStringHandle 
bCntlAdornment 
bIDType 
bResType 

a QuickDraw Style record. 
a VCoordinate. 
a VPoint. 
a VRect. 
a font number, converted to a font name. 
a handle to a string. 
a field of type CntlAdornment. 
a field of type ID Type, converted to a 4-character string. 
a field of type Res Type, converted to a 4-character string. 

Record structures can be inspected by calling DoToFields for each field in the record. The procedure 
TextStyleFields in UMAUtil is an example of this. It is defined as: 

PROCEDURE TextStyleFields (aTitle: Str255; VAR aStyle: TextStyle; 
PROCEDURE DoToField (field.Name: Str255; 

fieldAddr: Ptr; 
fieldType: INTEGER)); 

BEGIN 
DoToField(aTitle, NIL, bTitle); 
DoToField(' Font', @aStyle.tsFont, bFontName); 
DoToField(' Face', @aStyle.tsFace, bStyle); 
DoToField(' Size', @aStyle.tsSize, binteger); 
DoToField(' Color', @aStyle.tsColor, bRGBColor); 

END; 

Note that the Text Style record passed to TextStyleFields must be a VAR parameter because each call to 

Wed, Aug 3, 1988 © 1988S Apple Computer 12 



C' \ 
,/ 

DoToField in TextStyleFields passes an address within the TextStyle record-these addresses are 
converted to offsets within the object being inspected unless the object is the application object If the Text Style 
record wasn't a VAR parameter then you would be passing addesses within a copy of the Texts t y le record on the 
stack. Note that if the object is the application object then the address returned by DoToF ield is considered an 
address to global data. Thus you can inspect your application's global data by overriding the Fields method for 
your application object. 

It is also possible to extend the types of fields that can be inspected to include your own data types. Here's what to 
do to add your own field types: 

1. Define constants for the field types that you handle. By convention the names of these constants start with 
a 'b'. MacApp reserves the numbers 0 to MAXINT and -1 to -99 for its use. Applications can use numbers 
less than -99. 

2. Define a procedure with the following interface: 

PROCEDURE MyFieldToString (theData: Ptr; 
fieldType: INTEGER; 
VAR theString: Str255); 

The purpose of this routine is to convert the data pointed to by theData, and whose type is defined by 
fieldType, into the string theString. UMAUtil has already implemented a routine such as this 
called StdFieldToString, which converts data of any type described above (from binteger to 
bResType) into a string. Your routine should use a CASE statement to convert the data types that it is 
capable of converting, and call S tdF ieldToS t ring if it doesn't handle the given data type. 

3. In your application object's initialization method set the global variable gFieldToStrRtn to point to 
your field-to-string routine. 

An example implementation is shown on the next page. It converts floating-point data types to string for the 
purpose of inspecting floating-point fields in objects. 

Wed, Aug 3, 1988 © 1988S Apple Computer 13 



CONST 
bReal = 
bSingle = 
bDouble = 
bExtended = 

-100; 
-101; 
-102; 
-103; 

PROCEDURE TMyApplication.IMyApplication; 
BEGIN 

gFieldToStrRgn := @MyFieldToString; 

END; 

{$IFC qDebug} 
{$IFC qTrace}{$D+}{$ENDC} 
{$S MADebug} 
PROCEDURE MyFieldToString (theData: Ptr; 

fieldType: INTEGER; 
VAR theString: Str255); 

TYPE 
TAlias = RECORD 

VAR 

CASE INTEGER OF 
bReal, 
bSingle: 
bDouble: 
bExtended: 
END; 

(asReal: REAL); 
(asDouble: DOUBLE); 
(asExtended: EXTENDED); 

alias: 
aDecFonn: 
x: 

"TAlias; 
DecFo:cm; 
EXTENDED; 

BEGIN 

{ Note this hasn't been compiled and is only an illustration of how 
to implement a routine of this type. It may have errors. } 

alias := Pointer(theData); 
WITH alias" DO 

END; 

CASE f ieldType OF 
bReal, 
bSingle: 

BEGIN 
aDecFonn.style := FloatDecimal; aDecFo:cm.digits := 2; 
x :• asReal; 
NumToStr(aDecForm, x, theString); 
END; 

bDouble: 
BEGIN 
aDecForm.style := FloatDecimal; aDecForm.digits := 2; 
x := asDouble; 
NumToStr(aDecForm, x, theString); 
END; 

bExtended: 
BEGIN 
aDecForm.style := FloatDecimal; aDecFonn.digits := 2; 
NumToStr(aDecFonn, asExtended, theString); 
END; 

OTHERWISE 
StdFieldToString(theData, fieldType, theString); 

END; 

{$IFC qTrace}{$D++}{$ENDC} 
{$ENDC qDebug} 

Wed, Aug 3, 1988 © 1988S Apple Computer 14 

.~ 
\_. I 
'-._,/ 



{c , The Debug Window Resource 

() 

Various attributes of the Debug Window can now be defined in your application's resource file by including a 
resource of type 'DBUG' and id 300. The format of the 'DBUG' resource is: 

type 'dbug' 
rect; 
integer normal 4; 
integer normal = 9; 
integer normal = 25; 
integer normal 80; 
pstring; 
} ; 

/* Bounding rect for debug window */ 
/* Debug window font rsrc ID */ 
/* Debug window font size */ 
/* Number of lines */ 
/* Width of lines in characters */ 
/* Window title */ 

The rect defines the window's bounding rectangle in global coordinates. The first two integers define the font and 
font size of the text in the Debug Window. normal refers to Monaco-9. The last two integers define the number 
of lines of text to retain in memory for scrolling, and the number of characters per line. MacApp will allocate a 
buffer whose size is the number of lines * the characters per line. 

A List of MacApp 2.0 View Classes 

One of the major efforts of MacApp 2.0 is to provide a richer set of views from which to work. To this end, the 
following view classes have been implemented: 

UMacApp View Classes 

TView 

TWindow 

TScroller 

TControl 

TCtlMgr 

TScrollBar 

TSScrollBar 

An abstract class (one which must be overridden in order to produce something 
useful) that defines a set of features and operations common to all views. These 
features include nesting, drawing, mouse handling, moving, and resizing. 

A subclass of TView that implements a Toolbox window. The window may be 
modal or modeless. 

A subclass of TView that is able to "scroll" its contents by effecting a coordinate 
transformation. 

A subclass of TView, TControl is an abstract class that defines the features and 
operations common to all MacApp controls, of which the Control Manager controls 
are considered a subset 

A subclass of TControl, TCtlMgr is an abstract class that implements Control 
Manager controls. 

A subclass of TCt !Mgr that implements scroll bars generically. 

A subclass of TS c ro l lBa r that implements scroll bars specifically for scrolling 
MacApp views. 

UTEView View Classes 

TTEView A subclass of TView that implements a text edit view based on the ROM TextEdit. 

Wed, Aug 3, 1988 © 1988S Apple Compute_r 15 



UDialog View Classes 

TButton 

TRadio 

TCheckBox 

TDialogView 

TCluster 

TPicture 

TI con 

TPattern 

TStaticText 

TEditText 

1NumberText 

UGridView Classes 

A subclass of TCt lMgr that implements push buttons. 

A subclass of TCtlMgr that implements radio buttons. 

A subclass of TCt lMgr that implements check boxes. 

A subclass of TView that implements a "dialog." A dialog view is used to provide 
tabbing between editable text fields, and to implement some standard behavior for the 
Return key and for push buttons. 

A subclass of TControl that is used to organize a set of views as a single group 
for the purpose of localizing relationships between the views. The most typical use 
of a cluster is to group together a set of radio buttons. 

A subclass of TCont rol that displays a QuickDraw picture. 

A subclass of TControl that displays an icon. 

A subclass of TCont rol that fills itself with a pattern. 

A subclass of TControl that displays static (uneditable) text. 

A subclass of TStaticText that displays text and allows it to be edited. Dialog 
views implement tabbing between edit text views. 

A subclass of TE di t Text that displays an integer value and allows it to be edited. 

TGridView A subclass of TView that implements a line- and column-oriented view such as a 
spreadsheet 

TTextGridView A subclass of TGridView specifically for text 

TTextListView A subclass of TTextGridView that implements a single-column list of text 
items, such as the list of files in a Standard File dialog. 

The Samples 

Here is a list of the sample programs included with MacApp 2.0. 

Cale 

Cards 

Demo Dialogs 

Wed, Aug 3, 1988 

A conversion of the spreadsheet program that appeared on one the MacApp 
Developers Association disks. It demonstrates the use of the GridView building 
block. It should be considered a "work-in-progress" as it is still somewhat buggy 
and feature incomplete. 

A conversion of the MacApp l .x program. It implements a simple note card file 
and a disk-based document object 

A completely new program, bearing no relation to the l.x DemoDialogs. It 
demonstrates the use of the dialog building block and defining views in resources. It 

© 1988S Apple Computer 16 



Demo Text 

Draw Shapes 

Nothing 

Pat View 

Puzzle 

Two Doc Kinds 

0 

Wed,Aug3, 1988 

shows how modal dialogs can be used and implements a couple of custom controls. 

A conversion of the 1.x program that shows multiple styles in a single TEView 
and the use of view resource templates. 

A conversion of the the 1.x program. 

The simplest MacApp program, converted to 2.0. It also demonstrates the use of 
view resources rather than creating views procedurally. 

A program that allows views to be drawn and moved about a background view, much 
as DrawShapes does with shapes. This program demonstrates the use of a large view 
(a view greater than QuickDraw's coordinate space) and view nesting. 

A conversion of the MacApp 1.x program. 

A conversion of the MacApp 1.x program. 

© 1988S Apple Computer 17 



.. ;,·· 

C~~. 1 
/ 


