
.. c···.
. '

()

APPLE
PROGRAMMER'S
ANO DEVELOPER'S
ASSOCIATION

290 SW 43rd. Street
Renton, WA 98055
206-251-6548

Macintosh
Development
Utilities
Version 1.0
APDA#: KMSDUl

0

C.
'

About the Macintosh Development Utilities

Contents:
Introduction

About the Macintosh Development Utilities
Resource Editors I Creators

ResEdit: A Macintosh Resource Editor
REdit: A Macintosh Resource Editor
Dialog Creator Instructions
RMak:er

Utilities
JumpStart Documentation
Debugging With MacsBug
Trap Timer Desk-Accessory Documentation
Menu Capture Patch
DivJoin 1.0d8
FreeTerm User's Manual

AppleTalk
AppleTalk Information
AppleTalk Peek
AppleTalk Poke_ .

Printing
Some Words of Wisdom About Using QuickDraw

while Printing
The March 1985 ImageWriter: Programmer's Notes
Optimizing Code for the LaserWriter

Technical Information
Macintosh Plus SCSI Developer Information

This section has been removed. See note below.
Low Memory in Alphabetical Order
Low Memory in Numerical Order
Trap List
Commented Call List

Miscellaneous Information
Registration of File Types and Application

Signatures
Power User Short-Cut Summary
Version Numbers
SANE Information
Welcome to Maug™

Section:

0

1
2
3
4

5
6
7
8
9

10

11
12
13

14
15
16

18
19
20
21

22
23
24
24
25

Note: The catalog description of this product incorrectly states that there are three disks. That
estimation was higher than necessary, and all of the files have been put on two disks.

The Macintosh Plus SCSI Developer Information chapter has been included in a new APDA
product, SCSI Development Package.

About the Macintosh Development Utilities
Macintosh Development Utilities ·Page 0-1

Disks Included in the Macintosh Development Utilities

Macintosh Utilities 1:

Edit
Resource Editors/Creators folder:

Dialog Creator
Dialog Creator Example
REdit
ResEdit
RMaker

Macintosh Utilities 2:

AppleTalk folder:
Peek 3.0
Poke
Poke Packets

Graf3d Stuff folder:
Graf3D.Rel
Graf3DEqu.txt

PrintCalls.rel
Tools I Applicat~ons folder:

DivJoin l.Od8
FreeTerm 1.8
Localizer
MacsBug
Menu Capture
PS Dump 2.5
Screen Maker
JumpStart Folder:

JumpStart
JumpStart Log

Trap Timer folder:
Scrapbook File
Trap Timer DA
Trap Timer Glossary

About the Macintosh Development Utilities
Macintosh Development Utilities Page 0-2

(~/ Description of the Contents of the Disks

•Edit is version 2.0.lbl of Apple's original text-file editor.
•Dialog Creator is a specialized resource editor for creating dialogs. See section 3.
• REdi t is a resource editor that is especially useful for localizing applications in other

languages. See section 2.
•Res Edit is version 1.0 of Apple's resource editor. See section 1.
• RMaker is the original resource creator. It creates resources from descriptions in text files.

See section 4.
• Peek allows "peeking" into an AppleTalk network to monitor packets as they are

transmitted. See section 12.
•Poke allows "poking" packets onto the AppleTalk network. See section 13.
•The files in the Graf3D Stuff folder are necessary for development of applications

that access the 3-D Graphics routines.
• PrintCalls. rel is a replacement for the same-named file in the Macintosh 68000

Development System, version 2.0.
• DivJoin is the newest version 1.0D9 of this program. It is used to break up large files

for storage on 400K or SOOK disks. See section 9.
• FreeTerm is a terminal emulator. See section 10.
•Localizer is used to adapt the Macintosh keyboard to match the local style.
• Macs Bug is the Macintosh debugger, version 5.2.
• The Menu Capture installer document is used to allow capturing of the screen while the

mouse is pressed in a menu. See section 8.
•PS Dump will transmit a text file of PostScript commands over AppleTalk to a LaserWriter.

This is version 2.5 of this program.
• Screen Maker is a program to convert MacPaint picture files to picture files that can be

used as startup screens.
•The JumpStart folder contains the JumpStart·desk-accessory and the

JumpStart Log application, which can be used to speed up loading ofresources at
application launch. See section 5.

•The Trap Timer folder contains the Trap Timer desk-accessory which can be
used to monitor time spent while accessing traps. The Scrapbook file and Trap
Timer Glossary can be used to view the output in a formatted repcrt.

About the Macintosh Development Utilities
Macintosh Development Utilities . Page 0-3

r"
Documents in the Macintosh Development Utilities \\._"'"/

Package

This document, About the Macintosh Development Utilities, describes the contents of this
package, i.e. the disks and the documentation.

ResEdit: A Macintosh Resource Editor describes ResEdit, a full featured utility used to edit
resources, allowing the user to modify old resources or to create new ones.

REdit: A Macintosh Resource Editor describes REdit, a resource editor which is ideal for
changing applications from one language to another. It does not support editing all resource types.

For creating dialogs easily, Dialog Creator Instructions tell how to use this useful utility.

RMaker is the resource creator which uses a text file description of resources as input for creating
resources. This document describes how to use this application.

The JumpStart Documentation describes how to use JumpStart to super-charge applications
and make them load faster. Note the cautions in this document that not all applications will work
after super-charging.

Debugging with MacsBug describes the Macintosh Debugger MacsBug. All commands are
detailed here. Also included is a quick reference page which can be removed. ·

Trap Timer Desk-Accessory Documentation tells about the Trap Timer, which can be used
to discover where an application is spending its time.

The Menu Capture Patch allows capturing a screen while a menu is extended on Macintosh Plus
computers. Note the cautions in this section about redistribution and use.

Instructions for Div Join 1.0d8 are focluded here. DivJoin allows dividing a file that is larger
than 400k (or 800k for double-sided drive users) into sets of files that can be stored on floppies to
be joined back together at a later time.

The FreeTerm User's Manual tells how to use this public-domain terminal program.

AppleTalk Information, AppleTalk Peek, and AppleTalk Poke describe how to
program with AppleTalk, and how to monitor or sent packets over the AppleTalk network.

To speed up printing jobs on an ImageWriter, the document Some Words of Wisdom About
Using QuickDraw while Printing tells some steps that can be taken to save printing time.

The March 1985 Image Writer: Programmer's Notes gives some helpful tips for printing
to the Image Writer: calls available, how to change paper sizes, and more.

Optimizing Code for the LaserWriter gives some ideas for speeding up LaserWriter
printing.

The next four documents are for reference only and are not up to date. They are accurate for the
64K ROM, but not for the 128K ROM. The first two, Low Memory in Alphabetical Order
and Low Memory in Numerical Order list low memory globals. The Trap List is just that, c\
a list of the Macintosh traps that are in ROM. The Commented Call List gives a good idea what j
traps and routines are called as a result of calling a specific trap.

About the Macintosh Development Utilities
Macintosh Development Utilities . Page 0-4

0

The Registration of File Types and Application Signatures page is for sending to
Macintosh Technical Support so that no two applications have the same signatures assigned to
them. ·

A new version of the Power User's Short-Cut Summary document is included. These pages
tell of short-cuts that can be used to increase productivity in your use of the Macintosh. Many of
these tips are in manuals, but are summarized here for quick reference.

Version Numbers describes Apple's numbering scheme for labeling versions of an application.

The SANE Information document tells of requirements for using SANE. If you plan to use
SANE, make sure that you read this document.

Welcome to Maug™ describes the Micronetworked Apple Users Group on CompuServe. This
is a good place to communicate with other Apple product developers and to find utilities.

About the Macintosh Development Utilities
Macintosh Development Utilities ·Page 0-5

C:

(.. ;

."

(·.-

i

ResEdit:
A Macintosh Resource Editor

© 1985 Apple Computer Inc.

This document describes the l .OAJ release of ResEdit.

Contents:

1 About ResEdit
2 Using ResEdit
2 Working V(ith Files
3 Working within a File
4 Working within a Resource Type

Changing a Resource's Type
5 Editing Individual Resources

CURS Resources
DITL Resources
FONT Resources
ICN# Resources
WIND Resources

8 Creating a Resource Template

Note: As in Inside Macintosh, resource type names are shown within single quotes; for
example, 'STR '. The quotes are not part of the name.

About ResEdit
ResEdit is an interactive, graphically based tool for manipulating the various resources in a
Macintosh application. It lets you create and·edit all resource types except 'CODE', and to
copy and paste all resource types (including 'CODE'). ResEdit actually includes a number
of individual resource editors: these include a general resource editor, for editing any
resource in hex format, and several individual resource editors for specific types of
resources. You can also write your own resource editors to use with ResEdit.

ResEdit is especially useful for creating and changing graphic resources such as dialogs or
icons. For example, you can use ResEdit to put together a quick prototype of a user
interface and try out different formats and presentations of resources. ResEdit is also
useftil for translating resources into a foreign language without having to recompile the
program.

ResEdit: A Macintosh Resource Editor
Macintosh Develooment Utilities -Page 1-1

You can also extend ResEdit by creating templates for your own resource types. The
generic way of editing a resource is to fill in the fields of a dialog box-this is the way you
currently edit 'BNDL's, 'FREF's, 'APPL's, etc. The layout of these dialog boxes is
determined from a template in ResEdit's resource file-you can add templates to edit new
resource types.

Using ResEdit
To start ResEdit from the Finder, select and open the ResEdit icon. ResEdit displays a
window that lists the files for each disk volume currently mounted.

Working with Files

To list the resource types for a file, select and open the file name from the list. (You can
·select a name by clicking it or by typing one or more characters of the name.)

When a disk volume window is the active window, the File menu commands act as
follows:

New Creates a new file.

Open Opens. the selected file (this is the same as double-clicking on the file name).

Get Info Displays file information and allows you to change it.

Close Closes the volume window (this is the same as clicking the close box). If
it's a 3 1/2-inch disk, the disk will be ejected ..

Caution: You can edit any file shown in the window, including the System file
and ResEdit itself. However, it's dangerous to edit a file that's currently running.
Edit a copy of the file instead (for example, the System file on a non-boot
volume).

Note that ResEdit will recognize a new disk when it's insert~d and also handles more than
one drive.

Note also that you can use ResEdit to copy or delete files.

Working within a File

When you open a file, a window displays a list of all the resource types in that file. While
this window is the active window, you can create new resources, copy or delete existing
resources, and paste resources from other files.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-2

('

l
,..

File Edit

HD

Figure 2 A File Window

When a file window is the active window, the File menu commands have the following
effects:

New Creates a new resource in the open file.

Open Opens a window displaying all resources of the resource type selected
(select the resource type by clicking it or-by typing its first character).

Note: The resources are displayed by a resource picker-the general
resource picker displays the resources by type, name, and ID number;
there are also special resource pickers for some resource types (for
example, the 'ICON' resource picker displays the icons graphically).
If you hold down the Option key while opening, the resource window
will open with the general resource picker.

Open General Opens the general resource picker.

Close

Revert

Closes the file window and asks if you want to save the changes you
made. Never reboot before closing! If you have made any
changes, rebooting before closing all file windows can leave the
resource files in an inconsistent state.

Changes the resource file back to the version that was last saved to
disk.

The Edit menu commands have the following effects:

Cut Removes all resources of the resource types selected, placing them in
the ResEdit scrap.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-3

Copy Copies all resources of the resource types selected into the ResEdit
scrap.

Paste· Copies the resources from the ResEdit scrap into the file window's
resource type list

Clear Removes all resources of the resource type selected, without placing
them in the ResEdit scrap.

Duplicate Creates duplicates of all resources of the resource types selected, and
assigns a unique resource ID number to each new resource.

Working within a Resource Type

Opening a resource type produces a window that lists each resource of that type in the file.
(This list will take different forms, depending on the underlying resource picker that's
invoked; if you hold down the Option key during the open, the general resource picker is
invoked.)

,..
File Edit -

:t .. ·.·················"·"·""•'-""•'•'•'•'•'"""·'•'•'• .. ·.··········
HD i:t:::--;::=========================

:i Cl Workshop
loo
(D at---;:=====================
·:Cl D
i o D
; [) <$

l\ [) ~
!iD D
~:o o
jo o ,.,,o

Figure 3. A Resource Type Window

When a resource type window is the active window, the File menu commands have the
following effects:

New Creates a new resource and opens its editor. A selection window is
presented to allow you to select the resource type to create.

Open Opens the appropriate editor for the resource you selected.

Open General Opens the general (hexadecimal) resource editor.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-4

Close

Revert

Closes the resource type window.

Changes the entire file back to what it was before opening the resource
type window.

The Edit menu commands have the following effects:

Undo

Cut

Copy

Paste

Clear

Duplicate

May or may not be selectable, depending on the specific editor in use.

Removes the resources that are selected, placing them in the ResEdit
scrap.

Copies all the resources that are selected into the ResEdit scrap.

Copies the resources from ResEdit scrap into the resource type
window's resource list.

Removes the resources that are selected, without placing them in the
ResEdit scrap.

Creates a duplicate of the selected resources and assigns a unique
resource ID number to each new resource. ·

Changing a Resource's Type

If you hold down the Option key when copying or duplicating a resource, a dialog box
with a list of resource types will be presented. You may choose any of these types, or type
in your own type name that the copy/duplicate will be forced to become-that is, you may
coerce the copy to a new resource type. (BE CAREFUL!!! -know what you are doing
before trying this.)

Editing Individual Resources

To open an editor for a particular resource, either double-click on the resource or select it
and choose Open from the File menu. One or more auxiliary menus may appear,
depending on the type of resource being edit~d. Some editors, such as the 'DITL' editor,
allow you to open additional editors for the elements within the resource. All the editors
use File and Edit menus similar to those described above, but operate on individual
resources or individual elements of a resource.

If you hold down the Option key when opening a resource, the general data editor is
invoked-this allows you to edit the resource as hexadecimal data. If you hold down the
Shift and the Option keys while opening, ResEdit shows you a list of all editors and
templates.

Caution: Individual editors may not be appropriate for all resource types.

The menus for some of the editors are discussed below. The use of the remaining editors
should be apparent when you run them.

ResEdit: A Macintosh Resource Editor
Macintosh Develooment Utilities Page 1-5

Note: The general data editor will not edit resources larger than 16K bytes in
length; however, you can move larger resources with the Cut, Copy, Paste, and
Clear commands as described above.

CURS Resources

For 'CURS' resources, the editor displays three images of the cursor. All three images
may be manipulated with the mouse.

The left image shows how the cursor will appear. The middle image is the mask for the
cursor, which affects how the cursor appears on various backgrounds. The right image
shows a gray picture of the cursor with a single point in black-this point is the cursor's
hot spot.

The Cursor menu contains the following commands:

Try Cursor I
Restore Arrow

Data->Mask

DITL Resources

Try Cursor lets you try out the cursor by having it become the
cursor in use. Restore Arrow restores the standard arrow cursor.

'Copies the cursor image to the mask editing area.

For 'DITL' resources, the editor displays an image of the item list as your program would
display it in a dialog or alert box. When you select an item, a size box appears in the
bottom right comer of its enclosing rectangle so that you can change the size of the
rectangle. You can move an item by dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is invoked;
for an 'ICON', for example, the icon editor is invoked. If you hold down the Shift and
Option keys while opening, the 'DITM' editor is invoked instead-this is a special-purpose
editor for editing items in an item list. If you hold down just the Option key while opening,
the general data editor is invoked.

The DITL menu contains the following commands:

Bring to Front

Send to Back

Grid

Allows you to change the order of items in the item list. Bring to
Front causes the selected item to become the last (highest numbered)
item in the list. The actual number of the item is shown by the
'DITM' editor.

Like Bring to Front, except that it makes the selected item the first
item in the list-that is, item #1.

Aligns the item on an invisible 8 pixel by 8 pixel grid. If you
change the item location while Grid is on, the location will be
adjusted such that the top left corner lies on the nearest grid point
above and to the left of the location you gave it. If you change the
size, it will be made a multiple of 8 pixels in both dimensions.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-6

(Use RSRC Rect Restores the enclosing rectangle to the rectangle size stored in the
underlying resource. Note that this works on 'ICON', 'PICT', and
'CNTL' items only; the other items have no underlying resources.

Resize Window Adjusts the window size so that all items in the item list are visible in
the window.

FONT Resources

For 'FONT' resources, the editor window is divided into three panes: a sample text pane,
a character selection pane, and a character editing pane. These are shown in Figure 5.

tonts trom system
At~O
Ch

•••• •• •• •• •• •• •• ~ •• •• •• •• •• • •• • ••••

Figure 5. FONI' Editor Window

The quick
brown foH
jumps ouer
the lazy dog •

@ B

The sample text pane, at the upper right, displays a sample of text in the font being
edited. (Y mi can change this text by clicking in the text pane and using normal Macintosh
editing techniques.)

The character selection pane is below the text pane. You can select a character to edit
by typing it (using the Shift and Option keys if necessary), or by clicking on it in the row
of three characters shown. (Click on the right character in the row to move upward
through the ASCII range; click on the left character to move downward.) The character
you select is boxed in the center of the row with its ASCII value shown below it.

The character editing pane on the left side of the window shows an enlargement of the
selected character. Like FatBits in MacPaint, it's edited by clicking bits on and off. The
black triangles at the bottom of the character editing pane set the left and right bounds (i.e.,
the character width). The three triangles at the left of the pane control the ascent, baseline,
and descent.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-7

Caution: Changing the ascent or descent of a character changes the ascent or descent
for the entire font.

Any changes you make in the character editing pane are reflected in the text pane and the
character selection pane. Remember that you cannot save the changes until you quit.

You can also change the name of a font. The font name is stored as the name of the
resource of that font family with size 0. This resource does not show up in the normal
display of all fonts in a file. To display it, hold down the Option key when you open
FONT from the file window. This will bring up the generic list of fonts. Select the font
with the name you wish to change and choose Get Info.

ICN# Resources

For 'ICN#' resources, the editor displays two panes in the window. The upper pane is
used to edit the icon. It contains an enlargement of the icon on the left and an enlargement
of the icon's mask on the right. The lower pane shows, from left to right, how the icon
will look unselected, selected, and open on both a white a gray background.

To install a new icon for your application when you already have an old one in the Finder's
desktop file: ·

1. Open the file called DeskTop.

2. Open type 'BNDL' and find the bundle that is your application's. (This is the one
that has your owner name in it.) Look through the bundle and mark down the type
and resource ID of all resources bundled together by the bundle (i.e., the 'ICN#'s and
'FREF's).

3. Go back to the DeskTop window and remove these resources along with your
'BNDL' and signature resource (the resource whose type name= your creator type).

4. Now close the DeskTop window, save changes, and quit ResEdit. Your new icon
will be installed

Creating a Resource Template
You can customize ResEdit by creating new templates for your own resource types. The
generic way of editing a resource is to fill in the fields of a dialog box-this is the way you
currently edit 'FREF's, 'BNDL's, 'STR#'s, etc. The layout qf these dialog boxes is set by
a template in ResEdit's resource file. The template specifies the format of the resource and
also specifies what labels should be put beside the editText items in the dialog box that's
used for editing the resource. You can find these templates by opening the ResEdit file and
then opening the type window for 'TMPL's. For example, if you open the template for
'WIND' resources (this is the 'TMPL' with name "WIND"), you'll see that they consist of
the following, in the order listed:

• a RE<;:T (4 words) specifying the boundary of the window

c .

• a word that is the procID for the window (DWRD tells ResEdit to display the word in C'
decimal as opposed to hex) J

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities

• a Boolean indicating whether or not the window is visible (BOOL is 2 bytes in the
resource but is displayed as a radio button in the dialog window used for editing)

• another Boolean indicating whether or not the window has a close box

• a long that is the refCon for the window (DLNG indicates that it should be displayed
in the editor as a decimal number)

• a Pascal string; the title of the window (PSTR)

You can look through the other templates and compare them with the structure of those
resources to get a feeling for how you might define your own resource template.

The types you have to choose from for your editable data fields are:

DBYT, DWRD, DLNG - decimal byte, word, long

HBYT, HWRD, ffi.NG - hex byte, word, long

HEXD - hex dump ?f remaining bytes in resource

PSTR- a Pascal string (length byte followed by the characters)

LSTR-. long string (length long followed by the characters)

WSTR- same as LSTR, but a word rather than a long

ESTR, OSTR-. Pascal string padded to even or odd length (needed for DITLs)

CSTR - a C string

ECST- even-padded C string

OCST- odd-padded C string (padded with nulls)

BOOL- Boolean

BBIT- binary bit

TNAM- type name (like OSType and ResType, i.e., 4 characters)

CHAR- a single character

Hnnn - 3-digit hex number (where nnn < $900); displays nnn bytes in hex format.

ResEdit will do the appropriate type checking for you when you put the editing dialog
window away.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities ·Page 1-9

The template mechanism is flexible enough to describe a repeating sequence of items within
a resource, as in 'STR#'s, 'DI1L's, and 'MENU's. You can also have repeating
sequences within repeating sequences as in 'BNDL's. To terminate a repeating sequence,
put the appropriate code in the template as follows:

terminated by a 0 byte (as in 'MENU's) LSTZ-LSTE

ZCNT/LSTC-LSTE terminated by a zero-based count that starts the sequence (as in
'DITL's)

OCNT/LSTC-LSTE terminated by a one-based count that starts the sequence (as in
'STR#'s)

LSTB-LSTE ends at the end of the resource (no example exists in the given
templates)

To create your own template:

1. Open the ResEdit file window.

2. Open the 'TMPL' ~ype window.

3. Choose New from the File menu.

4. Select the list separator.

5. Choose New from the File menu. You may now begin entering the label,type pairs
that define the template. Before closing the template editing window, choose Get Info
from the File menu and set the name of the template to the name of your resource
type.

6. Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you'll get the dialog box
in the format you have specified.

How to Write an Add-on Editor
This section describes how to add an editor of your own type to ResEdit. It includes an
outline for a sample editor, a description of the ResEd interface file, and explanations of the
ResEd Resource Editor routines that you can use in your code.

There are two types of drivers: pickers and editors. The picker is the code that displays
all the resources of one type in the resource type window. Pickers are given a resource
type and should display all resources of that type in the current resource file, using a
suitable display format. If the picker is given an open call and there's a suitable editor, it
should launch the editor. The editor is the code that displays and allows you to edit a
particular resource. The editor is given a handle to the resource object and should open an
edit window (or windows) for the user. Pickers and editors are separate from the main
code of Res~dit.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-10

(.
. · /r

...,..

(/

Note that pickers and editors can be opened from anywhere: For instance, a dialog editor
might open an icon picker so that the user can choose an appropriate icon. And the user
could, while in the icon picker, open the icon editor to create a new icon if desire~.

Outline for a Sample Editor

The basic structure your editor should have is outlined below.

Note: Routines defined in the ResEd interface file are shown in bold. 'XXXX'
represents your resource type.

The philosophy of the sample editor is that you will first call the "EditBirth" routine when a
new instance of your editor is r.eeded. This routine is passed two handles: a handle to the
resource to be edited (the same handle that would be received by using a GetResource call),
and a handle back to the picker that has launched this editor. The editor should then create
a window and set up any data structures needed to operate. Because the editor will be
loaded in and out of memory during any given session and because the editor doesn't have
access to global variables, you should create a handle to a data structure to hold all data that
nee~ to be preserved between calls and store its handle in the edit data structure
(r:XXX:Xrec in the example). Note that the handle to the edit data structure is stored in the
window's refCon parameter. The main program uses this to identify which subprogram is
to receive a given call. The main program will determine which editor should receive
which events, so you need to do very little event decoding in your editor. Also, during an
update event, the Begin Update and EndUpdate calls are done by the main program, so
don't do them in your editor.

There are several points to consider:

• When writing your editor, always know which resource you are requesting and
where it will come from. Many resource files may be open at any given time, and
you should always make sure which resource file you are accessing by using
U seResFile or similar operations whenever a resource is needed.

• Remember that your editor may be called with an empty handle in order to create an
entirely new instance of the type you edit.

After creating your editor, compile and link. Then us~ ResEdit to copy the 'RSSC'
resource (and any other resources you have created for use by your editor) from the newly
created file into ResEdit itself. ResEdit will then be able to edit using the new editor.
When copying the resource across, be certain to check for and avoid conflicting resource
ID numbers-it's a simple matter to check the ResEdit file (using ResEdit itself)· to see
which ID numbers (and 'RSSC' types) are already taken.

Note: In the following sample editor, routines defined in the ResEd interface file
appear in bold.

UNIT ResXXXXEd;

(XXXX Editor}
INTERFACE
USES ($U-}

($U obj/MemTypes
{$U obj/QuickDraw

MemTypes,
QuickDraw,

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-11

{$U obj/OSintf
{$U obj/Toolintf
{$U obj/Packintf
{$U obj/Listintf
{$U obj/ResEd

{$0V-}{Overflow check off
{$R-} {Range checking off
{$U-} {Lisa Libraries off }
{$X-} {Stack expansion off}
{$M+} {Do this for Mac }

TYPE

OSintf,
Toolintf,
Packintf,
Listintf,
Res Ed;

rXXXXPtr • "rXXXXRec;
rXXXXHandle • "rXXXXptr;
rXXXXRec

RECORD
father:
name:
windPtr:
rebuild:

ParentHandle;
Str64;
WindowPtr;
BOOLEAN;

{Back ptr to dad {normal}

(This view's window} (normal}
{Set TRUE if things have been
(changed} (normal}

hXXXX: Handle;
menuxx'xx: MenuHandle;

END; {rXXXXRec}

{The resource we are working on}
{our menu}

PROCEDURE EditBirth (Thing:Handle; Dad:ParentHandle);
PROCEDURE PickBirth (t:ResType; Dad:ParentHandle);
PROCEDURE DoEvent (VAR Evt:EventRecord; MyXXXX:rXXXXHandle);
PROCEDURE DoinfoUpdate (oldID,newID:INTEGER; MyXXXX:rXXXXHandle);
PROCEDURE DoMenu (Menu,Item:INTEGER; MyXXXX:rXXXXHandle);

IMPLEMENTATION

CONST
forever = FALSE;

TYPE
dummy INTEGER;

VAR
dummy: INTEGER;

PROCEDURE EditBirth {Thing:Handle; Dad:ParentHandle};
VAR

MyXXXX: rXXXXHandle;
w: WindowPtr;
s: Str255;

Begin {EditBirth}
{ Prepare window title and request creation of a new window }
s := 'Window';
SetETit1e (Handle (thing), s);
ConcatStr (s,' from ');
w := WindSetup (100,100,s,dad"".name);
{If we got a new window, then start up the editor}
IF ORD(w) <> 0

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-12

c

c

THEN
BEGIN
FixHand (SIZEOF(WindowRecord),Handle (thing));
{Make sure we have enough room in the handle for a complete·
{ window record. (later this will be assigned to MyXXXXAA.hXXXX)

{Get memory for and handle to our instance record}
MyXXXX := rXXXXHandle (NewHandle(SIZEOF(rXXXXRec)));

HLock(Handle (MyXXXX));
WITH MyXXXXAA DO

BEGIN
{Put information about this incarnation of the editor and
{ the window it is serving into our record. }
{ (always passed around in the handle MyXXXX) .}
windPtr ·= w;
father := dad;
hXXXX : = thing;
{Let the main program know who is to manage this window by
{ giving it both our resource ID number and our instance
{record handle. }
WITH WindowPeek (w)A DO

BEGIN
windowKind := ResEdID;
refCon := ORD(MyXXXX);
END; {WITH}

END; {WITH}
{ Set up menus,the view, etc. for this window }
HUnlock (Handle (MyXXXX));
END; {IF ORD(w)<>O}

END; {EditBirth}

PROCEDURE PickBirth {t:ResType; Dad:ParentHandle};
BEGIN {PickBirth}
END; {PickBirth}

PROCEDURE DoEvent {VAR Evt:EventRecord; MyXXXX:rXXXXHandle};
VAR

MousePoint: Point;
act : BOOLEAN;

BEGIN {DoEvent}
BubbleUp (Handle (MyXXXX));
HLock (Handle (MyXXXX));
WITH MyXXXXAA DO

BEGIN

{Move our item up im :nemory}
{Lock it down}

{Handle event passed to us by main program. Just like a 'real'
{ event loop, except there is no loop and we don't have to
{ handle as much because the main program will do all the stuff
{ that doesn't apply to us. }
mousePoint := evt.where; {Point at which the event occured}
SetPort (windPtr); {Set the port to our window}
GlobalToLocal (mousePoint); {Convert event location to local coordsl
CASE evt.what OF

mouseDown: BEGIN

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-13

END; {mouseDown}
activateEvt:BEGIN

AbleMenu (fileMenu,filetop);
act := ODD(evt.modifiers);

IF act

updateEvt: BEGIN

THEN
BEGIN {Activate event}
END {Activate event}

ELSE
BEGIN {Deactivate event}

, END; {Deactivate event}
END {activateEvt};

END; {updateEvt}
keyDown: BEGIN

END; {keyDown}
END; {CASE evt.what}

END; {WITH MyXXXXAA}
HUnlock (Handle (MyXXXX));
END; {DoEvent}

PROCEDURE DoinfoUpdate {oldID,newID: INTEGER; MyXXXX: rXXXXHandle};
VAR

s: Str255;

BEGIN {DoinfoUpdate}
WITH MyXXXXAA DO

BEGIN {Since our ID has changed, we need to change our window title}
s := 'Window';
SetETitle (Handle (hXXXX), s);
ConcatStr (s,' from');
ConcatStr (s,fatherAA.name);
SetWTitle (wind.Ptr,s);
{Now, let our father object know that our ID has been changed}
CallinfoUpdate (oldID,newID,fatherAA.windA.refCon,

fatherAA.windA.windowkind);
END; {WITH MyXXXXAA}

END; {DoinfoUpdate}

PROCEDURE DoMenu {Menu,Item: INTEGER; MyXXXX: rXXXXHandle};
VAR

saveRefNum: INTEGER;

PROCEDURE DoClose;
BEGIN
WITH MyXXXXAA DO

BEGIN
CloseWindow (wind.Ptr); {Close the window}
Wind.Free (windPtr); {Mark the window record as being available}
InitCursor; {Make sure the cursor is the arrow cursor }
{Delete any menus that we added and redraw menu bar. }

· {Be sure to dispose of any handles you are done with.}
END; {WITH MyXXXXAA}

DisposHandle (Handle(MyXXXX));

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-14

0

c

<~-
END; {DoClose I

BEGIN {DoMenu}
BubbleUp {Handle {MyXXXX));
HLock {Handle {MyXXXX));
WITH MyXXXXAA DO

BEGIN
SetPort (windPtr); {Set the port to our window}
{Again, we handle the menu stuff just as we would in a 'real'
{ application except that we only have to handle those items
{ that apply to ourselves. I
CASE Menu OF

fileMenu: CASE Item OF
Closeitem: BEGIN

DoClose; {Close our window}
EXIT (DoMenu); {Return to main program}
END; fCloseitem}

Revertitem: BEGIN
{The area under window will need to be' updated}
InvalRect (windPtrA.portrect);
{We'll need to restore the cur resource file
{reference number when we're done here.}
saveRefNum := CurrentRes;
{We're going to be using the resource file we }
{ came from. }

UseResFile {HomeResFile (Handle{hXXXX)));
{Read in the old copy from disk (see documentation
{ for revertResource) . Clear it out unless this
{was a newly created resource, in which case don't.}
IF NOT RevertResource (Handle(hXXXX))
THEN

BEGIN
RmveResource (Handie{hXXXX)); ·
MyXXXXAA.fatherAA.rebuild := TRUE;
DoClose;
EXIT (DoMenu);
END; {IF NOT RevertResource... } .

{Go back to using old resource file.}
UseResFile(saveRefNum);
END; {Revertitem}

Getinfoitem:
BEGIN
Showinfo (Handle(hXXXX),ParentHandle{MyXXXX));
END; {Getinfoitem}

END; {FileMenu: CASE Item OF}
EditMenu: CASE Item OF

Cutitem . ,
Copyitem : ;
Pasteitem:;
Clearitem:;
END; {EditMenu: CASE Item OF}

END; {CASE Menu OF }
END; {WITH MyXXXXAA}
END; {DoMenu}
END.

Resource Compiler Input File

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities · Page 1-15

* Resource Compiler input file for a resource editor

RSRC/ResXXXX.rsrc

type RSSC= DRVR
obj/resXXXXed!@XXXX, nnn {Substitute an appropriate ID for nnn}

ResEd Interface File

The ResEd file should be USEd by any Pascal implementation of an add-on picker or
editor. The companion file ResEd68k should be linked with the Pascal to realize the
parti'al.ly linked object file for inclusion in the ResEdit.RSRC file.

Resource Editor Routines from ResEd

The following two routines are used to launch resource type pickers and editors.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle; id:
INTEGER);

Launches a picker for a given resource. An editor will have little use for this routine
unless you want your user to be able to choose other resources to edit from within your
editor. Notice that there is no communication back to the caller as to which item was
chosen, as it is the job of a picker to launch the editor for the item chosen.

PROCEDURE CallEBirth (theResource: Handle; parent: ParentHandle; id:
INTEGER);

Launches an editor for a specific resource. theResource is the handle to that resource as
returned by GetResource and parent is the handle to your own picker record. id is the
resource ID of the resource being edited. This can be a handy routine to call if your
editor also needs to edit other types (for instance, to edit an ICON from within a DITL).
If you use this routine, your editor must also act like a picker-this means that the first
portion of your record must be in the format of a picker record (defined in the ResEd
interface file), and that you must respond to the changed status passed back from the
editor.

The following routines are used to feed events and menu calls to the appropriate code
segments.

PROCEDURE CallinfoUpdate (oldID,newID: INTEGER; object: LONGINT; ID:
::.NTEGER) ;

Tells the picker that launched your editor that something has changed that makes it
necessary to rebuild the picker list (that is, an ID or name has been changed, added, or
deleted).

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-16

(
PROCEDURE PassMenu (menu, item: INTEGER; father: ParentHandle) ;

Passes menu selections on to any son pickers or editors that you have launched with
CallEBirth or CallPBirth. Here is an example of its use:

PassMenu(file,close,myObj); Tell all subsidiary processes
to close}

Note: Most editors won't use the following event- and menu-handling routines.

PROCEDURE CallEvent (VAR evt: EventRecord; object: LONGINT; id:
INTEGER) ;

Passes events on to pickers or editors that you have launched with CallEBirth or
CallPBirth. object identifies the resource and editor; id identifies the resource ID of the
object.

PROCEDURE CallMenu (menu, item: INTEGER; object: LONGINT; ID:
INTEGER);

Passes menu selections on to pickers or editors that you have launched with CallEBirth
or CallPBirth.

Common Utilities Exported by ResEdit

These routines are used for handling windows.

FUNCTION Wind.Allee: WindowPtr;

Returns a pointer to a window record (actually a dialog record) to be used by your
editor. Using this routine instead of allocating your own window pointer can help to
reduce heap fragmentation.

PROCEDURE WindFree (w: WindowPtr);

Releases the window pointer allocated by Wind.Allee. Use this when your editor is
quitting and you are done with the window.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER; pt:Point;
drawProc:INTEGER): ListHandle;

Creates a new empty list and returns a handle to that list. (For more information on
lists, see the "List Manager" chapter in Volume IV of Inside Macintosh.)

PROCEDURE WindOrigin (w: WindowPtr);

Places the window pointed to by w at an offset down and to the right of the current
front window.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-17

FUNCTION WindSetup (width,height: INTEGER; t,s: STR255): WindowPtr;

Creates and automatically positions a new window with the given width and height,
and with the title of ConcatStt(t,s);

Extended Resource Manager Routines which Act on a Single Resource File

The following five routines are the same as their corresponding routines described in Inside
Macintosh, except that they operate only on the currently selected resource file and they
always load the resource into the application heap. (They are selected by UseResFile, etc.)

Nore: These routines are provided in the 128K ROM; they are provided here for
compatibility with 64K ROMs.

FUNCTION CountlType: INTEGER;

PROCEDURE GetlindType (VAR theType: ResType; index: INTEGER);

FUNCTION Count1Re8 (theType: ResType) : INTEGER;

FUNCTION Getlind.Resource (theType: ResType; index: INTEGER):
Handle;

FUNCTION GetlResource (theType: ResType; id: INTEGER) : Handle;

FUNCTION GetResLoad: BOOLEAN;

Returns the current state of SetResLoad.

PROCEDURE GetlMapEntry (VAR theEntry: ResMapEntry; t: ResType; id:
INTEGER);

Note: Map entry .is the same as "resource reference" in I.M.

PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEntry; t:ResType; index:
INTEGER);

PROCEDURE GiveEBirth (h: Handle; pick: PickHandle);

FUNCTION RevertResource (h: Handle): BOOLEAN;

Given a handle to a resource that you are editing, this routine restores it to the state it
was in before the editing started.

~1iscellaneous Routines

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);

~esEdit: A Macintosh Resource Editor
?\1acintosh Development Utilities Page 1-18

0

('
_, . ../

Given a menu in menu and a mask in enable (see the interface file) this routine enables
and disables menu items. (AbleMenu differs from the Resource Manager routines
Enableitem and Disableltem in that it acts on the entire menu.)

PROCEDURE AppRes;

This routine does a UseResFile on the Resource editor itself. This routine is useful if
you need to get a resource from the resource editor, such as an ICON or DITL, for
your editor to use.

FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER; s:
Str255) :BOOLEAN;

Adds a new resource. AddNewRes returns TRUE if successful, and reports an error to
the user if it fails. This is the same as calling AddResource + ResError.

PROCEDURE Bubb1eUp (h: Handle);

Performs the Memory Manager routine MoveHHi with additional error reporting.

FUNCTION Bui1dType (t: ResType; l: ListHandle) : INTEGER;

Given a list that has been initialized with no rows (see the WindList routine above), this
routine builds a list of all resources of type t from the current resource file. If
SetResLoad(TRUE) has been called, all the resources will be loaded in also. It returns
a count of the number of instances now in the list.

PROCEDURE ClearHand (h: Handle);

Clears the data indicated by the handle h to all zeros.

FUNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN; refNum: INTEGER)
:Handle;

Given a handle to a resource, Copy Res makes a copy of the resource to the resource
file specified by refNum. Note that the handle his changed, so don't keep track of
your resource by saving its handle before using this call. If make!D is true, then a
unique ID will be assigned to the copy; otherwise it retains the ID of the original.
CopyRes returns a handle to the new copy (in the new file).

PR(.~~ZDURE ConcatStr (VAR strl: 5tr255; str2: 5tr255) ;

Concatenates str2 to str 1.

PROCEDURE DoListEvt (theEvent: EventRecord; 1: ListHandle);

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-19

Given an event, this routine does the standard dispatch to the List Manager (see Volume
IV of Inside Macintosh). The pon must be set to the window that owns the event.
DoListEvt also enables the File menu and draws controls in the window.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle): Handle;

Takes a resource and duplicates it; adds it to the picker list handle passed; and does an
InvalRect on thePon for the new cell. It also makes the new cell the selection.

FUNCTION ErrorCheck (err,msgID: INTEGER): BOOLEAN;

Given a result code and a message ID, this routine brings up an error dialog if the result
code is nonzero. If msg/D is negative, it is a fatal error message and is retrieved from
'STR#' resource ID= 128; otherwise it is retrieved from 'STR#' resource ID= 129.
Be sure to add your new strings to the end of the existing list of the 'STR#'.

FUNCTION Fi1eNew'rype (types: ListHandle; VAR s: Str255): BOOLEAN;

Puts up a dialog with a list of the types of resources that can be edited. The routine
returns TRUE if a type is being returned, FALSE if Cancel was clicked. The type is
returned in s.

PROCEDURE FixHand (s: LONGINT; h: Handle);

Makes sure the object that h to which is a handle is s bytes long. If it's longer, ,,r-'-'·,
FixHand shrinks it; if it's shorter, FixHand expands it and fills the new pan with zeros.

FUNCTION HandleCheck (h: Handle; msgID: INTEGER) : BOOLEAN;

Checks to see if the handle is nil or empty. If it is either, HandleCheck returns error
msg!D to the user. It returns TRUE if the handle is OK, and FALSE if there's an
error.

PROCEDURE MetaXeys (VAR cmd, shift, opt: BOOLEAN);

Returns the modifier flags for the last event.

FUNCTION NewRes (s: LONGINT; t: ResType; 1: ListHandle; VAR n:
INTEGER) :Handle;

Given a size s, this routine allocates a new handle, clears it, adds it to the current
resource file as a resource of type t, adds it to the list l, and returns the handle to the
nc\v resource.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

Handles all events for standard pickers. Call it from your picker's event procedure.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities . Page 1-20

G PROCEDURE PickinfoUp (oldID,newID: INTEGER; pick: PickHandle) ;

Handles all info updates for standard pickers. Call it from your picker's dolnf9Update
procedure.

PROCEDURE PickMenu (menu, item: INTEGER; pick: PickHandle);

Handles all menu selections for standard pickers. Call it from your picker's DoMenu
procedure.

FUNCTION ResEdID: INTEGER;

Returns the resource ID of the editor/picker that is calling this routine.

PROCEDURE ResEverest;
Sets the current resource file to the last one opened.

PROCEDURE ScrapCopy (VAR h :' Handle) ;

Copies the resource identified by h from the ResEdit scrap.

PROCEDURE ScrapEmpty;

Empties the ResEdit scrap. Call this before doing a paste.

PROCEDURE ScrapPaste (resFile: INTEGER);

Copies the resource identified by h to the ResEdit scrap.

PROCEDURE SetResChanqed (h: Handle);

Marks the resource h as changed so that it will be updated when quitting.

PROCEDURE SetETitle (h: Handle; VAR str: STR255);

Given a handle to a resource, this routine places its ID and name into str (concatenating
them).

FUNC.:ON ResEditRes: INTEGER;

Returns the resource ID of the resource editor.

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-21

PROCEDURE Showinfo (h: Handle; dad: ParentHandle);

Puts up a Getlnfo window for the given resource that belongs to the given father
object.

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER; seedH,seedV: INTEGER);

Given a source and a destination bit image along with a seed location, this routine fills
the bits in the destination with black.

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER);

Calculates a mask for the given source bit image and puts it into the destination.

Constants

CONST
(Standard menus exported by the resource editor shell}

FileMenu 2;
Newitem l;
Openitem 2;
OpnOther 3;
OpnGnrl 4;
Closeitem 5;
Revert Item 6;
Getinfoitem 7;
Quititem 9;

EditMenu 3;
Undoitem l;
Cut Item 3;
Copyitem 4;
Paste Item 5;
Clearitem 6;
Dupitem 8;

fileAll
fileNoOpen
fileTop
fileClose
fileNoRevert
fileNoinfo
fileOpQuOnly
fileQuit
fileNoAsMask

editAll
editNoUndo
editNoDup
editNone
editAcc
edit Copy

$FFFFFEBF;
$FFFFFEE3;
$FFFFFEE1;
$FFFFFE21;
$FFFFFEBF;
$FFFFFE7F;
$FFFFFE1D;
$FFFFFE01;
$FFFFFFF7;

$FFFFFF7B;
$FFFFFF79;
$FFFFFE79;
$FFFFFE01;
$00000078;
$FFFFFEll;

ResEdit: A Macintosh Resource Editor
\facintosh Develooment Utilities

{ All enabled }
{ open disabled - for when editor on top}
{ Close, Getinfo, Revert, Quit enabled }
{ Close, Quit enabled }
{ No revert }
{ No get info
{ Open and Quit enable }
{ Only Quit enabled
{ Mask off the Open as ... selection

{ All enabled
{ All enabled except undo
{ All enabled except undo and dup.
[None enabled }
{ Common enabled for desk acc. }
{ Only copy enabled }

Page 1-22

(·~ · : j

/

(Data Types

TYPE
STR64 = STRING[64];

{map entry def for new resource manager call}
ResMapEntry

RECORD
rID: INTEGER;
rNameOff: INTEGER;
rLocn: Longint;
rHndl: Handle;

END; {ResMapEntry}

Each driver has its own object handle. This handle has to start with a handle to its parent's
object, followed by the name distinguishing the father. This name will be part of the son's
window title. The next field should be the window of the object, which may be used by
son to get back to the father (through the refCon in the window Rec). The rest of the handle
can be of any format.

ParentPtr = ~ParentRec;
ParentHandle = "ParentPtr;
ParentRec =

RECORD
ParentHandle;
Str64;
WindowPeek;

father:
name:
wind:
rebuild: BOOLEAN; {flag set by son to indicate that world}

{ has changed so father should rebuild }
{ list }

END;

The standard picker record is shown below:

PickPtr
PickHandle
PickRec =

"PickRec;
"PickPtr;

{Any type is OK here

RECORD
father:
fName:
wind:
rebuild:
pick ID:
rType:
rNum:
rSize:
ninsts:
instances:
drawProc:
scroll:

END;

ParentHandle;
Str64;
WindowPtr;
BOOLEAN;
INTEGER;
ResType;
INTEGER;
LONGINT;
INTEGER;
ListHandle;
Ptr;
ControlHandle;

Summary of ResEd. Routines

{Back ptr to dad}

{Picker window}

{Resource ID of this picker)
{Type for picker}
{resfile number}
{size of a null resource}
{Number of instances}
{List of instances}
{List draw proc.)
{Scroll bar}

Routines used to give birth to resource pickers and editors:

ResEdit: A Macintosh Resource Editor
\!lacintosh Development Utilities Page 1-23

PROCEDURE CallPBirth (t: ResType; parent: ParentHandle; id:
INTEGER);

PROCEDURE CallEBirth (thing: Handle; parent: ParentHandle; id:
INTEGER);

Routines used to feed events and menu calls to the appropriate code segments:

PROCEDURE CallEvent (VAR evt: EventRecord; object: LONGINT; id:
INTEGER);

PROCEDURE CallMenu (menu, item: INTEGER; object: LONGINT; id:
INTEGER);

PROCEDURE CallinfoUpdate (oldID,newID: INTEGER; object: LONGINT;
id: INTEGER);

PROCEDURE PassMenu (menu, item: INTEGER; father: ParentHandle);

Common utilities exported by ResEdit:

FUNCTION Wind.Alloc: WindowPtr;
PROCEDURE Wind.Free (w: WindowPtr);
FUNCTION WindList (w: WindowPtr; nAcross: INTEGER; pt:Point;

drawProc: INTEGER): ListHandle;
PROCEDURE WindOrigin (w: WindowPtr);
FUNCTION WindSetup (width, height: INTEGER; t, s: STR255) :

WindowPtr;

Extended Resource Manager routines which act only on one resource file:

FUNCTION CurrentRes: INTEGER;
FUNCTION CountlRes (t: ResType) : INTEGER;
FUNCTION CountlType: INTEGER;
FUNCTION Getlindex (t: ResType; index: INTEGER) : Handle;
FUNCTION GetlResource (t: ResType; id: INTEGER) : Handle;
PROCEDURE GetlindType (VAR theType: ResType; i: INTEGER);
FUNCTION GetResLoad: BOOLEAN;
PROCEDURE GetlMapEntry (VAR theEntry: ResMapEntry; t: ResType; id:

INTEGER);
PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEntry; t: ResType;

index: INTEGER);

PROCEDURE GiveEBirth (h: Handle; pick: PickHandle);
FUNCTION RevertResource (h: Handle) : BOOLEAN;

Miscellany:

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);
PROCEDURE AppRes;
FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER; s:

str255) : BOOLEAN;
. XEDURE BubbleUp (h: Handle) ;

;:"···r:TION BuildType (t: ResType; l: ListHandle) : INTEGER;
?F_CEDURE ClearHand (h: Handle);
FuNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN; resNew:

INTEGER): Handle;
P?JCEDURE ConcatStr (VAR strl: STR255; str2: STR255);

ResEdit: A Macintosh Resource Editor
Macintosh Develooment Utilities Page 1-24

(' ,'

..,,.

c .. "

PROCEDURE DoListEvt (e: EventRecord; l: ListHandle) ;
FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle) : Handle;
FUNCTION ErrorCheck (err, rnsgID: INTEGER) : BOOLEAN;
FUNCTION FileNewType (types: ListHandle; VAR s: str255): BOOLEAN;

PROCEDURE FixHand (s: LONGINT; h: Handle);
PROCEDURE GetStr (nurn, list: INTEGER; VAR str: STR255);
FUNCTION GetThePort: GrafPtr;
FUNCTION Hand1eCheck (h: Handle; msgID: INTEGER) : BOOLEAN;

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);
FUNCTION NewRes (s: LONGINT; t: ResType; l: ListHandle; VAR n:

INTEGER) : Handle;
PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);
PROCEDURE PickinfoUp (oldID,newID: INTEGER; pick: PickHandle) ;

PROCEDURE PickMenu (menu, item: INTEGER; pick: PickHandle);
FUNCTION ResEdID: INTEGER;
PROCEDURE ResEverest;
PROCEDURE ScrapCopy (VAR h: Handle);

PROCEDURE ScrapEmpty;
PROCEDURE ScrapPaste (resFile: INTEGER);
PROCEDURE SetRe'schanqed (h: Handle);
PROCEDURE SetETitle (h: Handle; VAR str: STR255);

FUNCTION ResEditRes: INTEGER;
PROCEDURE Showinfo (h: Handle; dad: ParentHandle);
PROCEDURE SeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:

INTEGER; seedH,seedV: INTEGER);
PROCEDURE CalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:

INTEGER);

ResEdit: A Macintosh Resource Editor
Macintosh Development Utilities Page 1-25

c

