
A!UX® Network
Applications
Programming

Beta/Final Draft

09/19/88

Michael Hinkson

Developer Technical Publications

This document contains preliminary

information.

It does not include:

• final technical information

• final editorial corrections

•an index

•Final art

©Apple Computer, Inc. 1988

:(

ti APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be
copied, in whole or part, without
wrinen consent of Apple, except
in the normal
use of the software or to make
a backup copy of the software.
The same proprietary and
copyright notices must be
affixed to any permitted copies
as were affixed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with
all backup copies) may be sold,
given, or loaned to another
person. Under the law, copying
includes translating into another
language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc., 1987
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010
Apple, the Apple logo,
AppleTalk, Macintosh,
MacTerminal, ImageWriter, and
LaserWriter are registered
trademarks of Apple Computer,
Inc. Apple Desktop Bus,
EtherTalk, and A/UX are
trademarks of Apple Computer,
Inc.
ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade
marks of International Typeface
Corporation.
Microsoft is a registered trade
mark of Microsoft Corporation.

II

PostScript is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorporated.
DEC and VflOO are trademarks
of Digital Equipment
Corporation.
UNIX is a registered trademark of
AT&T Information Systems.
Simultaneously published in the
United States and Canada.
LIMITED WARRANTY ON
MEDIA AND REPLACEMENT

If you discover physical defects in
the manuals distributed with an
Apple product or in the media on
which a software produc.t is distrib
uted, Apple will replace the media
or manuals at no charge to you,
provided you return the item to be
replaced with proof of purchase to
Apple or an authorized Apple dealer
during the ~day period after you
purchased the software. In addition,
Apple will replace damaged software
media and manuals for as long as
the software produc.t is included in
Apple's Media Exchange Program.
While not an upgrade or update
method, this program offers addi
tional protection for up to two years
or more from the date of your
original purchase. See your author
ized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check whh your
authorized Apple dealer.

ALL IMPLIED WARRANTIES
ON THE MEDIA AND
MANUALS, INCLUDING
IMPLIED WAR-RANTIES OF
MERCHANTABIL-ITY AND
FITNESS FOR A
PARTICULAR PURPOSE,
ARE LIMITED IN DURATION
TO NINETY (90) DAYS
FROM THE DATE OF THE
ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.

Even though Apple has tested the
software and reviewed the docu
mentation, APPLE MAKES NO
WARRANTY OR
REPRESENTA-TION,
EITHER EXPRESS OR
IMPLIED, WITH RESPECT
TO SOFTWARE, ITS
QUALITY, PERFORMANCE,
MERCHANT-ABILITY, OR
FITNESS FOR A
PARTICULAR PURPOSE. AS
A RESULT, THIS SOFTWARE
IS SOLD .. AS IS," AND YOU
THE PURCHASER ARE
ASSUMING
THE ENTIRE RISK AS TO
ITS QUALITY AND
PERFORMANCE.

IN NO EVENT WILL APPLE
BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT IN THE SOFTWARE
OR ITS DOCUMENTATION,
even if advised of the possibility of
such damages. In particular, Apple
shall have no liability for any
programs or data stored in or used
with Apple products, including the
costs of recovering such programs
or data.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLU-SIVE
AND IN UEU OF ALL
OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer,
agent, or employee is authorized to
make any modifi-cation, extension,
or addition to
this warranty.

Some states do not allow the
exclusion or limitation or implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

WARNING
This equipment has been certified
to comply with the limits for a
Oass B computing device pursuant
to Subpart J of Part 15 of PCC
rules. Only peripheral devices
(computer input/output devices,
terminals, printers, and so on)
certified to comply with Class B
limits may be attached to this
computer.

Operation with noncertified
peripheral devices is likely to result
in interference to radio and
television reception.

Iii

Contents

1. About this manual

2. Terminology

Chapter 1
Introduction

3. Overview of networking concepts
3.1 Connectivity • • • • • • • • •
3.2 The client/server model • • • •
3.3 Addressing versus naming • • • • •
3.4 Data integrity • • • • • • • •
3.5 Error detection •
3.6 Error recovery • • • •
3.7 Flow control • •

4. The OSI model • • • • • •
4.1 NFS and yellow pages facilities • •

Figures

Figure 1·1. The client/server model

Figure 1·2. The OSI reference model

Figure 1·3. NFS and yellow pages facilities on the

1

1

2
2
3
4
4
4
4
4

s
8

3

6

network • • • • • • • . . • • 8

- i -

• II •

Chapter 1

Introduction

1. About this manual
This manual documents the A/UX networking capabilities at the level
required to write networic software applications.

For the B-NET Tnub"PC'rt Control Protocol/Internet Protocol (TCP/IP)
networking implementation, software applications can access the
network through the socket absirac+Jon at the level of interproeess
communication (IPC). At this level A/UX is basically compatible with
4.3 BSD netw<X'king. Chapters 2 and 3 of this mancal are the
introduct0ry and advanced 4.3 BSD tutorials on IPC, modified to
document only what A/UX suppons.

For the Network File System \NFS) implemenration. software
applications can access remote systems by using the remote procedure
call (RPC). At this level A/fJX uses Sun Microsystems' Release 3.0
NFS. Chapter 4 ofthis maniml is Sun's Release 3.0 RPC Programmi."lg
Guide, modified to reflect A/UX-specific information wilere required.
Appendixes A through D contain the Release 3.0 protocol
specifications.

2. Termlnolngy
The following te!nlS are used in this manual.

host A machine en the netwak: otten refened to as local host
and remo~ irost.

node

socket

A mac.'tlne on the network. Network design may be
described using graoh theory. m wtaich the CllClponent
maclUnes (micro~. p.'inters, retminals) are viewed
as nodes, ccnnected by 2J'l:S.

A logical abstr.1e:ion. A soc.kc' Clay be implemented in
many different ways, but is generally used to esW>lisn a

!ntrodudion 1-1

Insert A, page 1-1

For the AppleTalk® implementation, software applications can access
the printing services of AppleTalk-capable printers (LaserWriter®
printers, for example) over Apple's low-cost LocalTalk™ cable
system. Chapter 5 of this manual presents a programmer's overview
of the A/UX implementation of AppleTalk with a description of the
supported protocols and several programming examples.

connection.

protocol A well-known set of conventions (about how data is
represented. checked. transmitted, and so forth) that must
be implemented at both ends of a connection before any
communication can take place.

protocol layers
A modular implementation of protocols, in which each
''layer'• hides the details of its functioning from the user
as well as from other layers. Each protocol layer is built
on top of its predecessor. Protocol layers allow for peer
to-peer communication, with processes from the same
protocol layer on two different machines talking to each
other. See "The OSI Model" later in this chapter for
more infonnation.

internet A group of networks interconnected by gateways or
bridges (or both). The word Internet when capitalized
and used as a noun, usually refers to the Defense Data
Network (DON), heir to the networking reasearch and
development performed on the DARPA internet (also
called ARPANET). When capitalized and used as an
adjective (for example, Internet domain), Internet refers to
a standard used by the DDN.

gateway A connector between two or more different types of
network.

bridge A connector between two similar networks.

3. Overview of networking concepts
This section defines networking concepts used in this manual.

3.1 Connectivity
Connectivity denotes a type of network service ranging from
connected to connectionless. A protocol is said to provide connected
service when the protocol layer "knows" about an exchange of
infonnation between two parties. A standard analogy for connected
service is a telephone call; a wire completes the circuit, and the
telephone company "knows" about the exchange between two parties.

1-2 A/UX Network Applications Programming

(

. (

(

A protocol provides connectionless service when there is no
established connection. as for example, when packets are broadcast on
the network. Each communication delivered is considered a separate
job accomplished.

3.2 The cllent/server model
The client/server model is a commonly used paradigm in constructing
distributed applications: client applications request services from a
server process. lbat is, the client actively initiates communication
while the server passively "listens" on its sockeL

Although this paradigm has been extended to hardware servers, the
model referred to here is that of client process and server process.
Depending on whether a protocol is symmetric or asymmetric, client
and server processes may be able to switch roles. In a symmetric
protocol, either side may play the server or client role. An
asymmetric protocol is one in which the client always initiates
communication.

For example, in. the NFS software, the client invokes a remote
procedure call. The remote procedure call library encodes data in
external data representation (XDR) form, as illusttated in Figure 1-1 .
The server, in tum, responds to the request by sending back an XDR
resulL

Figure 1·1. The client/server model

Client process Server process

XDR results

lntrodudion 1-3

etwor osts or ennues may be accesse y using network 1ddr:sses
or a host name or entity name. Addressing U£es the network ad<h-ess;
for the B-NET software, this is a four-byte internet address expl""...ssed

In$ e \" t' B in decimal or hexadecimal form. L....-----..... ~ .. When naming is used. a host name is translated into the network
number with tables (such as the /etc/hosts file for the :S-NET
software), served databases (such as the yellow pages distri~c:ed
database), or the Internet name domain service. Higher level protocols
allow you to use names as well as numbers.

3.4 Data integrity
Data integrity refers to how !Tll:.ch and what r;pe of checking is done
to establish whether data has been receive~. if i: has been com:pted, or
if pans of lhe data are out of order. Generally scea.king, there are two
types of sockets: low data i..1tegrity and high fl2.ta integrity sxketS.
For example, a stream socKet is a high dat.a i.iitegrity socket that
provides for the bidirecticnal, reliable, sequenced, and unduplicated

· .aow of data without record oour.daries. A datagram socket is a low
data integrity socket that supports bidirectional flow of data that is not
~teed to be sequenced, rell&ble, :>r unauplicated.

3.5 error detection
Error detection is the task of establishing that data is corrupted or out
of sequence. When an em>r .is detec:ed, the user is inf onne.d cf it.

3.6 Errcr "ecovery
l!!rror rte:>~ery is tile •ask cf recompiling tt'e data into ~ts !)lOJ.'f"..r order
~1d/or inte::ity. As thiJ L a r.iuch bigger jo)) tllan merely :let~ting the
OCCUITP.nc.e o~ errors, ~'lC:>.l.s may µro'<ide enor detectiur. wit.t,out
attemptir.g to supply :he '"8er with error recovery functions.

3. 7 Flow cont•ol
Fbw control is !.he regulation of the passage of daai., so that '>rly l
certain ponion is sent at a time. This is useful to ensure that the
network is not overloaded with data.

1-4 .t\IUX Network Appl!c:it!ons Programming

(
Insert B, page 1-4

Network hosts or entities may be accessed by using network
addresses or a host name or entity name. Addressing uses the
network address. For TCP/IP, this network address is a four-byte
internet address expressed in decimal or hexadecimal form. For
AppleTalk, this network address is a 32-bit number comprising an
internet address, a network address, and a node address.

When naming is used, a host name or entity name is translated into
the network number in one of several ways:

• with tables, such as the I etc I host s file for TCP /IP, or the
Names Table for AppleTalk

• with served databases (such as the Yellow Pages distributed
database or the AppleTalk Names Directory

• by the Internet name domain service.

Higher-level protocols allow you to use names as well as numbers.

1-lfA

(

4. The OSI model
The International Srandards Organization (ISO) seven-layer Open
Systems InrercoMecrion (OSI) model is a mO<!el for network protocol
layers and their interworicings.

The OSI m~l <kfines an o~n architecwre that uses accepted
standard protocol layers. It presumes a modularization of netw0rk
support software based on a layer function. Each module forms a layer
in the model and is r-..sponsi'ble for providing selected network services
to the layer above. These services are provided by functions performed
within that layer and through services available from the layer(s)
below.

Each layer in the OSI model descn'bes a type of required functionality
and is assumed to communicate with the same layer on another
machine, as illusuared in Figure 1-2. Thus, the software for any layer
may be replaced with a new version without affecting the user's
perception of network operation.

Introduction 1-5

I

Figure 1·2. The OSI reference model

layers

User
program

Le.yet 7,
application

Layer t>,
presentation

Layer 5,
session

Layer 4,
transµ<..r;

Layer J,
network

!..ayer 2,
data linl<

Layer i,
physical

t

1-6

Function Layers

Application programs (not part of User
the OSI model) program

Provides all services directly
compr9hensible to application
programs

Transforms data to and from
negotiated star.dard formats

Synchronizgs and manages
dialogs

Provides transoarent, reliabie
data iransier from end-nooe to
end-node

Provides message routing for
data transfer between 'lodes

Det&cts errors fer :na:ltages
moved betwevn no<.iE.s

Electrically encodes and
physically tra.isi&rs messages
between ncoi:ts

Layer 7.
aopl!cati\:m

Layer a,
presentation

Layer 5,
sessior:

Layer4,
transoort

Layer3,
nt:ttwork

Layer?.,
dat.?. link

La1ar 1 ,

physical

t

.~t,;X Network ApplicaGons Programming

(

The OSI model is concerned not only with reliable data transfer. but
al.so with providing network functions to the user. These are supplied
by layei- 7, the application layer, which pro·\Ti.des lhe user with functions
such 115 file transf~. electronic mail, virtual terminals, and procedures
that can be called by user programs.

To guarantee the intemetworking of coo~ting end systems (that is,
devices that CO'ltair. ail seven layers of tne OSI model), a common
language or daU representation must be t~ed so t!u?t the cooperating
end systems can understand each other. This common data
representation is provided by layer 6, the presentation layer.

Another factor needed·to guarantee the i.11temetworking of end systems
is control over the way a conversation between two systems is
conducted. This conversation control is pro,,ided by layer 5, the
session layer.

The actual movement of data between end systems is provided by
!ayers 4 through 1 of the OSI model. Layer 4, the transpon layer,
provides for reliable end-to-end transfer of messages between end
systems. Layer 3, the network layer, provides for !he routing and
relaying of messag-...s between end systems 'Jf the network iayer. Layer
2. the data link byer, provides for error deieetion and correction of
packets moved between end systems. Layer 1, the physical layer,
arbitrates access to the physical networlc, elecaically encodes packeLS,
3Jld physically trar.smits the packets across the physical network. The
actual cable, although not a pan of lhe OSI reference model, is often
included in Llyer 1.

Each layer of the OSI model on an end system is the peer of its
c01Tesponding layer on another end system. The advantage of peer-to
peer over master-sU!ve communications is the ability of communicating
end syste.'lls to negotiate protocol options wit.'1 each other. There is a
one-to-cne relationship between layers, whether lhe transfer of data is
directly between eud systems .Jr beLWeer. end S)'stems !hat "llUSt
traverse intermediate systems 'D ~h ~ch other.

Each layer requests services from the la)'er below. Two types of
information, control information and data, are p-dSsed ~tween 4aye:s m
providing these ~ces. The cont."Ol infommtion is the basis for all

Introduction 1-7

the servk:es that are reqcirP..d to process the message. As each layer
provides its ~of tho~ suvices, the remaining conttol infonn::uion is
passed to the next lower layer.

The data passed down to a lower layer is generally ttanspOrted
unchanged. An exception to this happens in the presentation layer,
where data is refonnatted. Each layer prefaces the data with conttol
infonr.adon before requesting the services of the next lower layer. This
control information is inteipreted by the corresponding layer in the
receiving end system.

4.1 NFS and yellow pages facilities
The relation of the NFS and yellow pages facilities to each other and to
the netwN~ is shc-wn in Figure 1-3.

Flguta '!·S. NFS arid yellow pagas facil!ties on the network

I

NFS
access

~IFS
mount

XOR

Yellow
pagas

~---L Communications {TCP/iP)

T4e XDR. RPC, and NFS protocols are ail built on l'JP of each other
:md on top of B-NET's TCP/IP ccmmunication facilities. ~h of the
NFS services accesses the underlying suucture.

>
1-8 NUX Network Applic3tions P!'Ograrnmir.g

(
Insert C, page 1-8

4.2 AppleTalk

The AppleTalk protocols correspond roughly to the OSI model.
Chapter 5 of this manual explains this correspondence in detail.

Part 2

Changes to A/UX Man Pages
for AppleTalk

(

(

ti~ Apple" A/UX™ System
Administrator's
Reference

//

' \ /
'-· /

appletalk(lM) appletalk(lM)

NAME
appletalk - configure and view AppleTalk® network inter
faces

SYNOPSIS
appletalk [-i interface [-n] [-u] [-d] [-s] [-t]
[-r CRTS-attempts]]

DESCRIPITON
appletalk is a utility for configuring and/or viewing AppleTalk
network interfaces and the AppleTalk network. appletalk can
be used at any time to view network interface parameters, or to
bring up or down an AppleTalk interface.

The following arguments are supported.

- i interface

-n

-u

-d

The interface parameter defines the interface to
configure or view; this parameter is a string
such as localtalkO. appletalk defaults
to the DDP (Datagram Delivery Protocol) inter
face defined in appletalkrc(4).

Displays the AppleTalk interface initial and
current node addresses. If the AppleTalk net
work has not been activated, these addresses
will be zero. The initial address is the address
which this interface first uses during the ALAP
(AppleTalk Link Access Protocol) dynamic
node assignment phase. Once a unique address
is found, it is saved for use as this interface's
initial node address. The current address is the
unique AppleTalk logical address assigned to
this interface.

Brings this interface online (up). If this inter
face is the DDP interface (as specified in
appletalkrc(4)), the AppleTalk NBP
(Name Binding Protocol) daemon
(/etc/at nbpd) will be started as well.
You must be the superuser to use this option.

Brings this interface offline (down). If this
interface is the DDP interface (as specified in
appletalkrc(4), the AppleTalk NBP dae
mon (/etc/at nbpd) will be shut down as
well. You must be the superuser to use this flag
option.

- 1 - September 15, 1988

appletalk(lM)

-s

-t

appletalk(lM)

Displays statistics and error count for this inter
face. If the AppleTalk network is active, DDP
statistics and error count will also be displayed.

Displays the ALAP types registered on this
interface. By default, DDP short and long
datagram types are registered on circuits 1 and
2.

-r RTS-attempts (LocalTalk™ interfaces only). Displays the
number of RTS attempts to make when
transmitting an ALAP frame. Supplying an
optional numeric parameter sets the number of
RTS attempts to RTS-attempts. You must be
the superuser to use this RTS-attempts option.

EXAMPLES
appletalk -i locatalkO -u
appletalk -s

The first command brings the interface localtalkO online; the
second displays statistics and error counts for the DDP interface.

FILES
/etc/appletalk
/etc/appletalkrc
/dev/appletalk/ddp/socket
/dev/appletalk/lap/*/control
/etc/at_nbpd

SEE ALSO
appletalkrc(4), appletalk(7); "Installing and Administer
ing AppleTalk," in AIUX Network System Administration.

-2- September 15, 1988

fwdload(lM) fwdload(lM)

NAME
fwdload - load an application onto an intelligent peripheral

SYNOPSIS
fwdload [-a) [-v) [-fdev] [-nname] file

DESCRIPTION
The utility fwdload loads a program onto an intelligent peri
pheral. The peripheral must have a "forwarder" configured for it
(see forwarder(7). If the -f flag option is used, the peripheral
is dev; otherwise, standard output will be used.

The -n flag option allows custom names, otherwise the file name
will be used.

The -v flag option provides diagnostics in verbose format

The parameter file is the application to download and is in COFF
format Before the download, a reset is issued.

If the [-a) is used, there is no reset Once the load is complete,
execution of the downloaded application will begin at the ST ART
indicated by the COFF file.

EXAMPLE
fwdload -f /dev/icp13 at_load

will download the AppleTalk® driver onto the default AppleTalk
peripheral.

FILES
/etc/fwdload
/etc/startup.d/fwdicp.d/at load
/etc/startup.d/fwdicp.d/tt:=load

SEE ALSO
fwd_lkup{lM), forwarder{7); "AppleTalk Programming
Guide,'' in AIUX Network Applications Programming.

- 1 - September 15, 1988

fwd_lkup(lM) fwd_ lkup(lM)

NAME
fwd_lkup - look up the application that is loaded onto a Front
End Processor

SYNOPSIS
fwd_lkup [-fdev] [-v]

DESCRIPTION
fwd_lkup looks up the name of the application loaded onto a
Front End Processor. The PEP must have a "forwarder"
configured for it If the -f flag option is used, the peripheral is
dev; otherwise standard input will be used.

The -v ftag option provides diagnostics in verbose format

EXAMPLE
fwd_lkup -f /dev/fwdicp13

will find out what application is running on the ICP card in slot 13.
If it is currently running AppleTalk®, it will print the following:

begin start name
0 0 at_load
7fff 0 AVAIL
7fff 0 END

This indicates that at_load, the AppleTalk load module is
loaded on the ICP, and that it is occupying all 7fff bytes of the
ICP's memory.

FILES
/usr/bin/fwd_lkup

SEE ALSO
fwdload(lM), forwarder(7); "AppleTalk Programming
Guide," in AJUX Network Applicaiions Programming.

- 1 - September 15, 1988

(

newunix(lM) newunix(lM)

NAME
newunix - prepare for new kernel configuration

SYNOPSIS
/ete/newunix [bnet] [nfs] [nonet] [toolbox]
[notoolbox] [loealtalk] [notalk] [tc] [note] [slip]
[noslip] [asttty] [noasttty]

DESCRIPTION
newunix begins the process of configuring a new kernel by ins
talling (or uninstalling) the appropriate scripts and driver object
files needed by autoconfig(lM). The appropriate argument to
newunix depends on the type of kernel desired:

bnet
basic networking

nfs
Network File System

nonet
non-networking

toolbox
A/UX toolbox

no toolbox
no toolbox capabilities

The arguments you specify also depend on the optional peri
pherals and interfaces you desire:

loealtalk
LocalTalk™ support

notalk
no LocalTalk™ support

asttty
support for serial port expansion board

noasttty
no support for serial port expansion board

t c support for the tape catridge

note
no support for the tape catridge

slip
support for the Serial Line Internet Protocol

- 1 - September 15, 1988

newunix(lM) newunix(lM)

slip
no support for the Serial Line Internet Protocol

In order to complete the kernel configuration process,
autoconfig(lM) should be run after newunix.

EXAMPLES
To prepare an NFS kernel, use

/etc/newunix nfs

To add the software that supports the tape controller to the kernel,
use

/etc/newunix tc
After adding the tape controller software, should you decide to
remove the tape controller software from the kernel, use

/etc/newunix note

In all three examples above, after running newunix run auto
config to create a new kernel and then reboot to begin using the
new kernel.

FILES
/etc/boot.di*
/etc/install.di*
/etc/master.di*
/etc/startup.di*
/etc/uninstall.d/*
/etc/init.d/*

SEE ALSO
autoconfig(lM), finstall(lM).

driver object files
installation scripts
script files
startup programs
uninstallation scripts
initialization scripts

''Installing and Administering AppleTalk,'' in AIUX Network Sys
tem Administration.

-2- September 15, 1988

(

appletalk(7) appletalk(7)

NAME
appletalk - general AppleTalk socket interface and l/O and
STREAMS modules controls

DESCRIPTION
This manual page describes the AppleTalk 1/0 control calls (see
ioctl(2)). device files, and the general nature of the A/UX
AppleTalk interface.

Before beginning, several points should be noted. The AppleTalk
library routines automatically set up and invoke the correct ioctl
requests that are necessary for most AppleTalk requirements.
While the ioctls give the programmer more control than the
AppleTalk library routines, they require a much greater under
standing of the A/UX implementation of AppleTalk. In addition,
AppleTalk ioctl calls are subject to change, while AppleTalk
library functions will not change. It is, therefore, strongly recom
mended that the library routines be used whenever possible
instead of the more complicated ioctl calls.

Apple Talk itself is implemented as a series of protocol layers built
into STREAMS drivers and modules. Each layer is built on top of
(and uses) the previous layer. The order of layers, from lowest
(closest to the physical transport) to highest (closest to the applica
tion), is AppleTalk Link Access Protocol (ALAP); Datagram
Delivery Protocol (DDP); AppleTalk Transaction Protocol (A1P);
and Printer Access Protocol (PAP), Name Binding Protocol
(NBP), and Zone Information Protocol (ZIP) (in the same layer).

The lower layers (ALAP/DDP) are normally used only for new
network testing and development, such as building a new layer
using TCP/IP on top of DDP. To reduce system call overhead, the
final-new-layer is best completed as an additional STREAMS
module or driver to be configured into the existing kemel/FEP
code.

Note: Module/driver work is not recommended except for
the most experienced A/UX programmers, and the infor
mation necessary to accomplish this task is beyond the
scope of this manual page.

Required Reading
See Inside AppleTalk (published by Apple Computers).
"AppleTalk Programming Guide," inA!UX Network Applications
Programming and at ident(3N), atp(3N), ddp(3N),
lap(3N), nbp(3N), pap(3N), and zip(3N) in AIUX

- 1 - September 15, 1988

appletalk(7) appletalk(7)

Programmer's Reference for details for definitions and use of the
specific AppleTalk protocols and Apple Talk library routines.

The A/UX AppleTalk interface uses STREAMS and you should
be familiar with AT&T's UNIX System V STREAMS
Programmer's Guide. It also uses special Front End Processor
(FEP) communications software of which the programmer should
have some working knowledge; see forwarder(7) in AJUX Sys
tem Administrator's Reference for more information.

STREAMS ioctl Calls
Because AppleTalk under A/UX is implemented with AT&T-style
STREAMS, AppleTalk modules must be controlled with
STREAMS-style ioctl calls.

To review, a standard ioctl(2) call is made as follows:

int ioctl ifd, request, arg)
int fd, request;
char *arg;

To turn this standard ioctl call into a STREAMS ioctl call, the
AppleTalk socket value is supplied asfd (see ''AppleTalk Sock
ets," below). The request argument is set with the token I_STR
(defined in /usr/include/sys/stropts .h), and arg is a
pointer to a strioctl structure.

strioctl is defined as follows in
/usr/include/sys/stropts.h

struct strioctl {
int ic_cmd;
int ic_timout;
int ic_len;
int ic_dp;

I* streams ioctl request */
I* ACK/NAK timeout */
I* length of data arg */
I* pointer to data arg */

The user must prepare the data, allocate and fill the strioctl
structure, and then make the standard ioctl call. See UNIX System
V STREAMS Programmers Guide for more information on using
STREAMS ioctl calls.

Note: Remember that all the ioctl tokens described below
(unless otherwise noted) are STREAMS ioctls, and are
passed in the ic cmd field of the strioctl structure.

Also note that when the standard ioctl call hits the stream
head it becomes a streams ioctl call.

-2- September 15, 1988

•

..
appletalk(7) appletalk{7)

AppleTalk Sockets
A process uses a socket as the end point of communication in
sending and receiving data. In AppleTalk under the Macintosh
operating system, a socket is a DDP endpoint Under A/UX, how
ever, a socket becomes a file descriptor that gives you access to
AppleTalk resources. These file descriptors are called
"AppleTalk sockets."

Note: Note that the AppleTalk socket ID is different from
the file descriptor that it returns. For example, if you open
the special file /dev/appletalk/ddp/socket21,
the file descriptor returned is most likely not 21.

A process must "own" an AppleTalk socket to use it; it acquires
ownership of the socket by requesting it via one of several possi
ble Apple Talk library open calls (see "Apple Talk Programming
Guide"). A process can request a "static" AppleTalk socket
assignment by giving the AppleTalk socket's complete path (if
using the standard AIUX open; see open(2) in AIUX
Programmer's Reference), or by supplying the AppleTalk socket
number to one of the AppleTalk library open calls.

A process can also request a "dynamic" AppleTalk socket
assignment; in this case, a free AppleTalk socket number (a file
descriptor) is returned to the user. This is done by doing an
open(2) on the file /dev/appletalk/ddp/socket, or by
passing a socket value of zero to one of several AppleTalk library
open calls. By definition, each AppleTalk socket aquired this
way returns a single unique file descriptor.

Note: The ALAP layer does not use AppleTalk socket
although it is accessed through them. ALAP delivers data
node-to-node only via LocalTalk. Its AppleTalk library
open call does, however, return a standard file descriptor
that is used to access the ALAP streams driver. Only the
DDP and higher level layers use AppleTalk sockets.

AppleTalk socket are identified by a number in the range of 1
through 254. Numbers in the range of 1 through 63 (static sock
ets) are reserved; socket numbers 64 through 127 ("experimen
tal" static sockets) are reserved for system developers, but are not
to be used in final applications. Numbers ranging from 128 to 254
(dynamic sockets) are generally available for use. The values 0
and 255 are reserved and used by AppleTalk for special cases.

-3- September 15, 1988

appletalk(7) appletalk(7)

See Inside AppleTalk for more information. The C header files in
/usr/include/at contain defines for the values of these
sockets (see <at/ddp.h>).

An AppleTalk socket's internet address is comprised of a network
number, a node number, and an AppleTalk socket number; it is
formed by enclosing the values in braces. For example,

struct nbp_addr a;

a= {10,40,128}

Because the numeric addresses are awkward to use and can vary
from time-to-time, AppleTalk provides a mechanism for specify
ing objects by name instead of by number. See the sections on the
Name Binding Protocol in '' AppleTalk Programming Guide'' and
Inside AppleTalk for more information.

A final note on AppleTalk sockets, most of the functions that an
AppleTalk applications programmer is likely to need are imple
mented via AppleTalk library routines and STREAMS ioctl calls.
The few "normal" 1/0 functions are done via the standard A/UX
read(2) and write(2) system calls.

The AppleTalk Model
The following diagram describes the A/UX implementation of
AppleTalk and gives the programmer some idea of how to pro
gram in its environment

As previously stated, most AppleTalk protocol layers are imple
mented as STREAMS modules. The two exceptions are the DDP
and ALAP layers. The majority of applications require the pro
grammer to push one or more modules into the open stream in
order to achieve the proper layering for that application.

The first application illustrated (at_printer) shows the
configuration for communicating with a network print server.
Note that the A'IP module must be pushed before the PAP
module. While it is possible to reverse the pushing order,
unpredictable results can occur if this is done.

The second and third applications (at_cho_prn and
at_nbpd) are normally used together. When AppleTalk is
brought up a special application daemon, nbpd, is invoked. It
opens an AppleTalk socket and pushes the module at_ nbpd into

-4- September 15, 1988

(

(

appletalk(7) appletalk(7)

the stream. This "application" is used by subsequent applica
tions, such as at nvelkup(l), to open a socket and push the
module at nbp- into the stream. Modules at nbp and
at nbpd communicate at the ALAP level to complete users
requests for name binding information.

Print
Request
Modules

User Processes

1----------1 1----------1 1---------1
I I I I I I
lat_printerl lat cho prnl I at_nbpd I
I I I - - I I I
1------·---I 1------·---I l------·--1

I I I I I I
I I I I I I

l---v--------------v---------------v------1
I I
I Stream Head I
I I
1------·--------------·---------------·---1

I I I I I I
I I I I I I
I I I I I I

l---v------1 l---v------1 Name I I
I I I I Binding! I
I PAP I I NBP I Module I I
I I I I I I Name
1------·--- I 1------ ·---1 I I Binding

I I I I I I Daemon
I I I I I I Module

l---v------1 I I l---v------1
I I I I I I
I ATP I I I I NBPD I
I I I I I I
1------·---I I I 1------·---I

I I I I I I
I I I I I I

l---v--------------v---------------v------1
I I
I Stream Driver: DDP/ALAP I
I I
1---1

THE APPLET ALK PROTOCOLS
The AppleTalk protocols use S1REAMS ioctls (I STR) which
take buffer (ic_dp), length (ic_len), and timeout
(ic_timout) values as parameters. As noted in "S1REAMS
ioctl Calls," these fields are defined as part of the ioc_cmd
structure.

Note: Remember that library routines are provided which

-5- September 15, 1988

appletalk(7) appletalk(7)

feed the correct parameters to the ioctls for most applica
tions; therefore, it is recommended that whenever possible
you use the AppleTalk library functions instead of the ioctl
calls.

AppleTalk Link Access Protocol
The AppleTalk Link Access Protocol (ALAP}, as described in
Inside Appletalk, provides node-to-node "best effort" data
delivery. The NUX implementation of AppleTalk tries as well as
possible to give the user direct access to this basic AppleTalk
building block, but due to the relatively high level of the user
interface, some restrictions are imposed. These restrictions
include reduced throughput due to the overhead of system calls,
some small speed penalty due to the layers being writting in C
rather than 68k machine code, and some additional confusion due
to the nature of the forwarder/STREAMS driver implementation
of the interface.

Two special files provide access to the ALAP layer as do several
AppleTalk library functions:

/dev/appletalk/lap/localtalkO/control
/dev/appletalk/lap/localtalkO/circuits

The ALAP implementation is multiplexing. This means that there
is one connection downstream (the network), and multiple con
nections upstream. The connections upstream are viewed from
the user interface as a "cloneable" file with the name cir
cuits. Direct control of ALAP is done through the other entry
point, control.

In addition, the file

/dev/appletalk/lap/localtalkO/.atnode

contains the last valid ALAP node number.

Note: Remember that ALAP is not accessed through the
AppleTalk socket like DDP and the other higher level
AppleTalk protocols. Also note that ALAP is part of this
implementation's STREAMS driver, along with DDP, and
does not require pushing or popping as would a module.
Refer to "The AppleTalk Model" for more information.

-6- September 15, 1988

..

..

(

(

appletalk(7) appletalk(7)

The following streams I_STR ioctls, as defined in
<at I a lap. h>, are available at the ALAP layer:

AT LAP GET CFG
- ThiS ioctl gets the configuration table from the ALAP

stream end. ic dp should contain a pointer to a buffer of
the type at lap C:fg t, as defined in <at/alap.h>,
which it thenfills with the table.

AT LAP LOOKUP
- ThiS ioctl returns a table of registered ALAP types. ic dp

should contail a pointer to a buffer of the iYPe
at_lap_entry_t, (defined in <at/alap.h>).

AT LAP OFFLINE
- ThiS ioctl takes the network offline; all local AppleTalk

sockets become inoperative immediately. You must be the
superuser to perform this function.

AT LAP ONLINE
- ThiS ioctl brings the network online. All buffers and statis

tics are reset and the system's AppleTalk node ID is arbi
lrated for per the guidelines in Inside Appletalk. Note that
the last valid ALAP node number is contained in the file
/dev/appletalk/lap/localtalkO/.atnode.
You must be the superuser to perform this function.

AT LAP REGISTER
- ThiS ioctl registers an ALAP type. A pointer to the struc

ture at_lap_entry_t must be passed in arg->ic_dp,
with the type and name filled in by the calling application.
Upon return, the circuit field will contain the virtual
circuit on which that type is registered. Note that the final
close will deregister the ALAP type.

Note: The only ALAP types supported in the
current distribution are DDP short and DDP long.

AT LAP SET CFG
- Thii ioctl sets the configuration table in the ALAP stream

end. You must pass an arg->ic_dp a pointer to a buffer
of the type at lap cfg t, as defined in
<at/alap.h>. If they are nonzero, the following fields
from the at_lap_cfg structure are copied into appropri
ate values in the ALAP stream end:

-7- September 15, 1988

appletalk(7)

initial node

appletalk(7)

the first ALAP node number to tty
on startup (All other fields in
at_lap_cfg are ignored.)

rts_attempts the total number of retry attempts

AT SYNC
- This ioctl blocks until the downstream and upstream queues

are drained. It is useful for determining that a message has
been sent. not only from node-to-node, but also from
socket-to-socket and from internet-to-internet

AppleTalk Datagram Delivery Protocol
The Apple Talk Datagram Delivery Protocol · (DDP) extends
ALAP's "best effort" to perform socket-to-socket delivery of
datagrams over a LocalTalk internet The A/UX implementation
of AppleTalk tries as well as possible to give the user direct access
to this low-level AppleTalk building block.

DDP uses AppleTalk socket as already described. Refer to the
section "AppleTalk Sockets" for information on opening and
cloning DDP AppleTalk sockets.

The following I STR ioctl, defined in <at/ddp.h>, is avail
able at the DDP layer:

AT DDP GET CFG
- ThiS ioctl returns the DDP configuration information.

ic_dp must contain a pointer to a buffer of the type
at_ ddp _ cfg_ t, as defined in <at I ddp. h>.

Reading DataGrams
The data read from the AppleTalk socket is defined and contained
in the structure at ddp t (defined in <at/ddp.h>).
at_ ddp _ t is an extended datagram (LAP type 2) without a LAP
header. Short datagrams (LAP type 1) that are received are con
verted to the extended type for the user. Datagrams received that
have no listener or have an error are thrown away. Error statistics
are kept and can be accessed. (See appletalk(lM) in A!UX
System Administrator's Reference, lap getinfo(3N) in A!UX
Programmer's Reference, and the ioctl call AT LAP GET CFG
in this manual.) A read(2) call will return the lenith of data
read, from 13 bytes (minimum length of a DDP packet) to 599
bytes (maximum length of a DDP packet). Values outside this
range are unreasonable.

- 8- September 15, 1988

•

(

appletalk(7) appletalk(7)

If the DDP packet length is greater than the maximum length
specified in the read(2) call, the bytes not read from the DDP
packet will be silently (that is, with no indication of error) thrown
away. Remember that read must be supplied with a count>=
the largest number of characters expected to fill the DDP structure
(i.e., 599 bytes). This is the default mode of the stream head for
AppleTalk, with the RMSGD stream read option set. The read
option may be changed by the user. See UNIX System V
STREAMS Programmers Guide for more infonnation on the use
of STREAMS read options.

The read will always block until either a packet is received for
the AppleTalk socket, an end-of-file condition occurs or an error
condition occurs.

Reading Pending Datagrams
The length of the next (if any) datagram may be determined by
using a standard ioctl call, as follows:

int status;
int nextdg_len;

status a ioctl<.fd,FIONREAD, &nextdg_len);

where fd is the AppleTalk socket, FIONREAD is a constant
defined in <sys/ ioctl. h>; and &nextdg len is a pointer to
an integer variable in which the number of bytes of the next
datagram to be read will be returned. If no datagram exists for the
AppleTalk socket, a value of zero will be placed in
next_ dg_ len.

Other A/UX calls you may find useful are select(2N),
FIOASYNC, and FIONBIO. For more information on thees calls,
see termio(7).

As always, upon successful completion of a read, the returned
value indicates the number of bytes actually read. Upon error, a
-1 is returned, and errno is set to indicate the error.

Writing Datagrams on a DDP Socket
The same parameters apply as for reading datagrams, namely, a
buffer of the type at_ddp_t, (defined in <at/ddp.h>).
should be written using write(l). Unlike reading datagrams,
none of the standard ioctl calls are available.

-9- September 15, 1988

appletalk(7) appletalk(7)

When wnung datagrams, the following fields in structure
at_ddp_t, must be filled in by the user:

dst net
The current network number; if this is zero, the current net
work number will be filled in by DDP.

dst socket
The actual AppleTalk socket number; or, you may specify
zero as this field and the number will be supplied.

dst node
The current node number; or, you may specify zero, as this
field and the number will be supplied.

checksum
If the DDP checksum field is zero, no checksum will be
computed. If the field contains a nonzero value, a checksum
will be computed and put in the field.

A write(2) call must write data from 13 bytes (minimum length
of a DDP packet) to 599 bytes (maximum length of a DDP
packet). Values outside this range are unreasonable.

As always, upon successful completion of a write, the returned
value indicates the number of bytes actually written. Upon error,
a-1 is returned, and errno is set to indicate the error.

Name Binding Protocol
The Name Binding Protocol (NBP) is a STREAMS module that
converts the name of a network entity into a AppleTalk internet
address. By "name" we mean an NBP tuple (see "NBP Packet
Formats" in Inside AppleTa/k for details) where the complete
internet address is given in the form
<obj_len>object<type _len>type<zone _len>zone.

In AppleTalk, names are dynamic; this means that a service can
change locations and the clients can follow, as opposed to having
fixed 1/0 resources or devices assigned to specific clients or ser
vices. The network itself still needs a few fixed services (such as
the NBP, one of the static AppleTalk sockets that function like a
post office) to be able to find anyone.

As with the other modules, it is necessary to push module
at _nbp into the opened stream before starting requests.

Note: The NBPD daemon module at nbpd and its asso
ciated daemon, /etc/at nbpd, are already loaded at
AppleTalk startup time. See appletalk(lM) for more

-10- September 15, 1988

(

(

appletalk(7) appletalk(7)

information.

The following I_STR ioctls, defined in <at/nbp.h>, are
available at the NBP layer.

AT NBP LOOKUP
-Thisioctl looks up services, returning the names of all enti

ties matching the request, along the their network addresses.
ic_dp should contain a pointer to a buffer large enough to
hold an array of type at nve (defined in <at/nbp.h>)
structures, at least NBP _NAME_ MAX characters in size.

AT NBP CONFIRM
-ThiSioctl confirms the name and address supplied as that of

the service indicated. The data structure returned to the
buffer pointed to by ic_dp is an array of type at_nve
(defined in <at/nbp.h>).

AT NBP REGISTER
-ThiSloctl registers a name on an AppleTalk socket. The data

structure returned to the buffer pointer to by ic _ dp is an
array of type at_nve (defined in <at/nbp.h>) containing
all pertinent information registered with the local AppleTalk
NBP daemon, at_ nbpd.

AT NBP LOOK LOCAL
-Thisioctl IOoks up a service locally (that is, with the local

NBP daemon at _nbpd), and returns into the buffer pointed
to by ic_dp an array of type at_nve (defined in
<at I nbp • h>).

AT NBP DELETE
-Thisioctl cancels registration for the AppleTalk socket used

for the call. Requires no passing of parameters.

AT NBP DELETE NAME
-ThiSioctl cancels registration for a named AppleTalk socket

ic _ dp must point to a buffer that contains an AppleTalk
tuple name.

AT NBP SHUTDOWN
-This ioctl shuts down network registration. Requires

superuser permission for access.

-11- September 15, 1988

app1etalk{7) app1eta lk (7)

AppleTalk Transaction Protocol
The AppleTalk Transaction Protocol (ATP) is a STREAMS
module that provides reliable transport of client data packets from
a source AppleTalk socket to a destination AppleTalk socket

A ATP connection can be opened with one of the ATP AppleTalk
library routines, or in the manner described in the previous sec
tion, • • AppleTalk Sockets.'' As with the other modules, it is
necessary to push module at_atp into the opened stream before
starting requests. This is done for the user if the AppleTalk library
ATP open function is used (see atp(3N)).

The ATP implementation of AppleTalk provides two interface
formats, synchronous and asynchronous. The synchronous inter
face is much simpler to use than the asynchronous interface and is
suitable for most applications.

In A/UX, only one ioctl call can be pending on a stream at any
one time. Synchronous calls wait; asynchronous calls do not wait

If you wish to allow more than one process access to the
AppleTalk socket, or wish for a process to have more than one
transaction in progress at the same time, you must use the asyn
chronous interface.

The following table shows possible ATP request-response type
combinations. The combination shown in italics
(asynchronous/synchronous) is most common, as it allows the
server to await requests, while the client can send requests
immediately.

Server Client
synchronous synchronous
asynchronous synchronous
synchronous asynchronous
asynchronous asynchronous

ATP packets must be preceded by both an ATP header and a DDP
extended header (A LAP header is also appended, but this is done
automatically as part of the module communication between DDP

· and LAP.) Packets being sent must have appropriate parts of
these headers filled in. Other parts of the packets (such as the
DDP source address) are filled in by ATP, DDP, or ALAP as part
of the streams module communications as the packet is sent down
stream. In particular, the following fields must be filled in by the
user:

-12- September 15, 1988

•

(

appletalk(7)

The variables in the DDP Header are:

dst_net
dst node
dst socket

appletalk(7)

These three fields (part of structure at ddp t as defined in
<at/ddp.h>) identify the remote- ApPfeTalk internet
address with which the transaction is being exchanged.

When originating, these variables should be filled in with
values returned from a previous NBP lookup request or other
broadcast function.

In replying to a previous message, these variables should be
filled in with the solll'Ce internet address values contained in
the requesting message.

The variables in the ATP Header, which are are part of structure
at_atp as defined in <at/atp.h>, are:

at atp xo
-Thisis set to nonzero when making a transaction request to

indicate that "exactly-once" service is required; see Inside
AppleTalk.

at_atp_bitmap_seqno
On a request, this mask is used to indicate the number of
packets to be returned. Starting with bit 0, a bit is set for
each packet that can be received (up to a maximum of 8
packets). When you receive such a request, respond only
with the packets corresponding to the bits set. (Only in
execute-at-least-once mode does this packet differ from what
the requester sent). When replying to a request, this field
contains the reply ID number (0-7), which identifies the
packet's order in the response; see Inside AppleTalk.

at atp transaction id
-When originating, this variable should be incremented to

insure a unique number for each new ATP transaction.

When replying, this field should be the same as that in the
request to which the reply is being made. This, along with
the DDP information, identifies the transaction to which you
are replying; see Inside AppleTalk.

Use the following macros (defined in <at/atp.h>) to help
access the headers of ATP packets:

-13- September 15, 1988

appletalk(7) appletalk(7)

AT ATP HDR SIZE
- A constant that contains the size of the required ATP/DDP

header.

AT ATP DATA SIZE
-The -total maximum size of an ATP packet (this is the size

you should use when allocating buffers, in particular those
used when getting requests).

Note: The at_ddp_t slIUcture contains type
at_atp (also a slIUcture) as a subpart in the data
field. These defines set default values for most fields.
If you need to set your own default values (via an
AT_ATP_SET_DEFAULT). a SIIUcture of type
at_atp_set_defaults will be prefixed to the
at_ ddp _ t SIIUCture.

ATP Synchronous ioctl Calls
The following ioctls can be used to perform synchronous ATP
functions. Make sure that the DDP AppleTalk socket address and
ATP transaction ID are filled in in the buffer before use. Each
ioctl has corresponding library routines that can be called instead.

AT ATP GET REQUEST
-Thisioctl-blocks until an incoming request arrives. The

request is copied into the buffer pointed to by ic_dp and will
be a structure of type at ddp t (defined in
<at/ddp.h>). - -

AT ATP SEND RESPONSE
-Thisioctl sends a response message to a remote ATP/DDP

socket (specified in the message's header) in response to a
message received via an AT_ATP_GET_REQUEST ioctl.
The at_atp_bitmap_seqno field (defined in
<at I at p . h>) must be filled in with the packet's response
index. (See Inside AppleTalk.) It responds with a slIUcture
of type at_ddp_t (defined in <at/atp.h>) pointed to
by ic_dp.

AT ATP SEND RESPONSE EOF
-ThiSioctl isthe same as iiie one above, except that it denotes

the last message of a response.

AT ATP RELEASE RESPONSE
-Thisioctl relea8es (cancels) a pending response. It requires

-14- September 15, 1988

•

(

appletalk(7) appletalk(7)

that the DDP/A1P header (a structure of type at ddp t
that would normally be passed as part of a response)be sent
with iL

AT_ATP_ISSUE_REQUEST
AT ATP ISSUE REQUEST DEF

- Both of these-ioctls send-the A 1P packet, a structure of type
at_ ddp _ t pointed to by ic_dp, as a request to a remote
AppleTalk socket The at_atp_xo field (defined in
<at/atp.h>) in the ATP header should be set to indicate
whether or not execute-only-once mode is to be used for this
transaction. You must fill in the header's
at atp bitmap seqnofield (defined in <at/atp.h>)
with a bitmap corresponding to the number of packets
expected to be returned. The requesting buffer is replaced by
the response. If there is more than one response message, the
rest of the messages are appended, in order, after the header.
Only one copy of the header is returned, of a structure type
atp result (defined in <at/atp.h>). The
AT_ATP_ISSUE_REQUEST_DEF ioctl requires an
atp set default structure to be prefixed to the ATP
packet buffer, and thus sets up the user's prefered defaults.

ATP Asynchronous ioctl Calls
Most asynchronous calls, such as responses to incoming requests,
are nonblocking.

Normally the server side of an asynchronous transaction includes
getting requests and polling to see if the request is complete. The
client is notified when the transaction is complete.

Two synchronous calls, however, do perform blocking. The two
asynchronous transactions that do block are
AT_ATP_ISSUE_REQUEST which issues a request to a remote
system and AT_ATP_GET_REQUEST which waits for incoming
requests. Both ioctl's will block until the request completes or a
time out occurs.

The basic asynchronous mechanism is to issue a command (such
as a request) using the variant "no wait" form (ioctl: cmd NW,
where cmd is the preceding ioctl name), which will return
immediately. At a later time, the user then issues a poll ioctl
(AT_ATP_POLL_REQUEST) to see if the action has completed.

-15- September 15, 1988

appletalk(7) appletalk(7)

A variant of the basic asynchronous transaction begins with the
issue of a "note" request The "note" request asks the AST
streams module to send a single byte to the calling AppleTalk
socket when the action is complete. This byte must be read before
making the poll call to get the results. Failure to do so can cause
eronious data to be returned.

This technique can also allow a user to use the select(2N) sys
tem call to wait for the completion of several file system actions
while waiting for pending Apple Talk transactions to complete.

Another variant of the "issue request" call, the "cmd_OEF"
(short for "default") versions take the same arguments, except
that the ATP packet passed to the ioctl must have space for a
atp set default data structure in front of it Two additional
paraiiieters-are passed in the atp_set_default data struc
ture, the rate and the number of retries.

The following are the "normal" nonblocking asynchronous ioctls.
Their calling parameters are the same as those just described.
They all return their transaction ID as an integer, which should be
used to identify the transaction when polling for the it's comple
tion. You may have many pending transactions outstanding at any
onetime.

AT ATP ISSUE REQUEST NW
-The-three ''iio wait" requests return immediately. They

allow a uro byte to be read from the AppleTalk socket (via a
poll; see AT_ATP_POLL REQUEST, below) later, when

. the transaction is complete.

AT ATP ISSUE REQUEST NOTE
-The ''note" requests are the same as the "no wait" requests,

except that a single byte can be read from the AppleTalk
socket when the transaction is complete. This byte contains a
binary 1, to distinguish it from notes from incoming transac
tions.

AT ATP POLL REQUEST
- PollrequesiS use the transaction ID number returned when a

nonblocking request was made to poll to see if the transaction
has completed and if a response is available. If it returns 0,
the transaction has succeeded and the responses have been
returned. If the transaction has not completed, it will return
-1 with the error code EAGAIN. Otherwise, it completed
with error and returned an appropriate error code in errno.

-16- September 15, 1988

(

appletalk(7)

AT_ATP_GET_REQUEST_NW
AT ATP GET REQUEST NOTE

appletalk(7)

-When you wish to connect with an incoming request asyn
chronously, you must first notify ATP that you wish to
receive incoming requests. You may have more than one
request outstanding at any one time (this is a good idea, in
order not to miss incoming requests).

These two ioctls are defined to notify ATP that it may receive
incoming requests. Note that they do not return a transaction
ID as do the "issue request" calls above. These two variants
on the synchronous form, "no wait" and "note," work in a
similar manner to the "no wait" and "note" calls described
above, except that, when a note call completes, a zero byte
can be read at the input.

AT ATP GET POLL
- The'' get next poll" call polls from the responding side to

see if an ATP request has arrived. If so, it returns O; other
wise, it returns -1 with the error EAGAIN.

Issuing A 1P Requests
The response message from an ATP request has a header prefixed
to it. This header, described by a structure atp_result
(defined in <at/atp.h>), provides information about the
number of response packets returned, the offset to the DDP header
returned, the offsets to the ATP headers & the data that follow
them for each of the responses, and the lengths of the response
packets (including ATP headers).

All offsets and counts must be given in bytes and the offsets are
absolute offsets from the beginning of the ATP packet.

AT ATP SET DEFAULT
-When issuing an ATP request, you can specify your own

values for the number of retries and the rate of retries of the
transaction on the network. If you do not specify them,
default values are used. These defaults, attributes of an open
ATP socket, can be set and changed with a call to
AT ATP SET DEFAULT. The default values will be
changed- until either a close or the next
AT_ATP _SET_DEFAULT is received.

- 17 - September 15, 1988

appletalk(7) appletalk(7)

The data structure atp_set_default has two fields:

def rate
Ts the retry rate in hundredths of a second The internal ATP
timer may not be able to resolve timeouts this small. If it
cannot resolve the timeout, it makes a best effort instead.

def retries
Ts the number of times to retry the transaction before giving
up. The value ATP INFINITE RETRIES can be used to
say "retry forever.''- -

Printer Access Protocol
The Printer Access Protocol (PAP) is designed primarily to send
data to printers and print servers. It is constructed in a
server/client relationship, where the server is the printer or print
server and the client is the application that wants to do the print
ing.

For a client process, the AppleTalk socket can be opened with one
of the AppleTalk library functions (such as
at_pap_open_nve(3N)) or in the manner described in the sec
tion on AppleTalk socket.

Note: remember that if a direct open of the AppleTalk
socket is done, you must push the ATP (at_atp) and
PAP (at_pap) modules into the stream in that order.
Failure to do so can cause unpredictable results.

Also · note that· the AppleTalk library function
at_pap_open_nve(3N) does this for the user and in the
correct order. (see pap(3N) for details)

The same proceadure is used to turn an AppleTalk socket into a
server process, only the other PAP module, at _papd, is used.

The following stream I STR ioctls, defined in <at /pap • h>,
are available at the PAP level:

AT PAPD GET NEXT JOB
-This i.Ocd c8n is made by a server; that is, a stream that has

the at_papd module pushed on, when it is ready to
respond to a new PAP client. You pass a pointer to sttucture
at_ddp_t (datagram packet) in ic_dp. at_ddp_t con
tains the sttucture at_atp (AppleTalk transaction packet)
with an atp set default sttucture prefixed to it. It
returns the same stnlcture with the destination fields filled in
by the client that has been waiting the longest for service.

-18- September 15, 1988

t

(

appletalk{7) appletalk{7)

The returned structure is suitable to be reused in a
AT PAP SETHDR ioctl command used to inform the PAP
client that you are accepting the job.

AT PAP SETHDR
- Thisioctl sets the fields in the PAP header so they do not

have to be set on each ioctl call for a given transaction. The
following fields should be filled in with this call:

ddp = ATP_DDP_HDR(&buf[sizeof(struct atp_set_default)]);
/* this will always be a PAP request */

ddp->type = 3;
atp = ATP_ATP_HDR(&buf[sizeof(struct atp_set_default)]);

I* 1 if exactly once, otherwise 0 *I
atp->at_atp_xo = X;

/* set true only on last message */
atp->at_atp_eom = O;

/* send transaction status, normally 0 *I
atp->at_atp_sts = O;

I* always 0 */
atp->at_atp_unused = O;

I* Should be set 0 */
atp->at_atp_user_bytes[O] = O;

/* and reset after use */
atp->at_atp_user_bytes[l) O;
atp->at_atp_user_bytes[2] O;
atp->at_atp_user_bytes[3] 0;

If the destination fields are filled in, the connection ID must
beplacedin at_atp_user_bytes[O].

AT PAP SET STATUS
-ThisioctCchanges the status string associated with a PAP

server AppleTalk socket This is the string returned to a PAP
client in a PAP open connection reply or status reply packet.
ic dp points to a non-null-terminated string and
ic-length contains the length of that string. Strings
longer than 255 characters are truncated.

AT PAP READ
ThiSloctI reads data from a client PAP AppleTalk socket and
places up to 512 characters into the buffer pointed to by
ic dp. Data are read from one ATP response packet at a
time, and any data left in an ATP packet after ic len
bytes are copied are lost. A value of -1 is returned if the

- 19- September 15, 1988

appletalk(7) appletalk(7)

connection to the other end has been broken.

AT PAP READ IGNORE
-ThiSloctl requests a read from the other side but to throw

data away if the data actually arrives. This is useful for print
ing to a LaserWriter.

Note: LaserWriters require that a client read request
be pending at all times in order to take LaserWriter
generated status/error messages. Because S1REAMS
ioctl calls are synchronous AIUX AppleTalk cannot
read and write at the same time. Therefore, we
always have a read request pending for which we
discard the results.

AT PAP WRITE
-ThiSloctl sends ic_length bytes pointed to by ic_dp to

the other end of the current PAP connection. ic_length
cannot exceed 512 bytes.

Note: Another LaserWriter idiosyncracy is that all
packets (except the last end-of-file packet) must have
exactly 512 bytes of PAP data. Failure to do so can
cause the print job to be ignored or cause the printer
to hangup.

AT_PAP WRITE EOF
ThiSloctl sends ic_length bytes (pointed to by ic_dp)
to the other end of the PAP session. ic length cannot
exceed 512 mefsmes (bytes). It also sends a PAP end-of
file indication to the other end to indicate that no more data
will be senL It does an implicit AT_PAP _WRITE_FLUSH.

AT PAP WRITE FLUSH
-ThiSloctl sends ic_length bytes (pointed to by ic_dp)

to the other end of the PAP session. ic length cannot
exceed 512 (bytes). Since PAP runs on top of A1P, PAP
writes are queued up on the receive side until either a com
plete A1P response is available (up to 4K bytes) or an A1P
end of message is sent. This call sends an A 1P end of mes
sage, which causes all waiting PAP writes to be read by the
PAP module on the other end. This should be done if a
higher level protocol (for example, a handshake with a Laser
Writer) needs to do a write followed by a read.

-20- September 15, 1988

/

(

appletalk(7) appletalk(7)

MACHINE DEPENDENCIES
Some computers (notably the MC68000 processor used on the
AST-ICP) require certain data types to be aligned on memory
boundaries. Because of variables (such as header length) used in
the AppleTalk protocols. alignment on address boundaries cannot
be guaranteed. and access to short and long fields must be done in
special ways.

For example. the at_net type represents the internetwork net
identifier. This identifier occupies 2 bytes. The ALAP header is 3
bytes long and it is reasonable to expect that if a ALAP frame is
read into an even-aligned buffer. the DDP component will start on
an odd boundary. A short read of the net_id would then result
in the generation of an address e1T0r by a 68000-family processor.
The solution is to use routines that read and write by bytes.

Packet Size Limitations
Packet size limitations are as follows:

Protocol Packet data size (bytes)
ALAP 600
DDP 586
ATP (response) 8 packets of 578 (see below)
PAP 512
NBP 8192

where the ATP response packet data size is 582 bytes if the ATP
user bytes are filled.

Signed Versus Unsigned
The difference between the C language types signed (the
default) and unsigned is that signed types can represent nega
tive numbers. For example. the program

{

char
unsigned char

c - 254;
UC • 254;

printf("char - %d, unsigned char• %d0, c, uc);

will print out

char - -2, unsigned char • 254

So. you can see that you have to be careful. Signed types will do
two things: sign-extend and one's-fill. Sign extension occurs
when ones are added at the beginning of a variable to keep it a

-21- September 15, 1988

appletalk(7)

negative number. For example, in the following:

ui = c

appletalk(7)

where c is from the program above, and ui is an unsigned
int, ui will be equal to Oxffffe. One's-fill occurs when a
variable is shifted right, that is,>>. In signed quantities, whatever
is the Most Significant Bit will be duplicated and made the new
MSB. With unsigned quantities, a shift right will fill the vacated
MSB with zeros.

When dealing with fields that are packed into communication
packets, (such as the ATP bitmap) you must be careful not to
change the values unexpectedly when changing from type to type.

Bit Manipulation
Another little-used programming area is bit manipulation. This is
particularly valuable when dealing with the ATP bitmap/sequence
field. To test if the fifth response came back, you might use:

if (bitmap & 1<<4)
{
}

Remember that bits are numbered right-to-left 0 ... 32. To turn
on bit 2, you might use:

bitmap I= 1<<2;

Or, to tum off bit 2, you might use:

bitmap&= -(1<<2);

ERRORS
The following error codes pertain to all (or most) layers. Errors
lag behind the event; an error caused by a write will not be
seen at the completion of that write, but will be seen on some
subsequent access to the stream, usually the next one. Once a
stream is in an error condition, it behaves very poorly, and only a
close will reset it. This holds for those layers that are part of the
stream itself (ALAP and DDP).

Most PAP and ATP errors do not have such dire consequences.
These error conditions are passed back as a field in a structure.

Possible error messages from read or write commands used
in any of the protocol layers are as follows:

[EACCES] You tried to open a static socket and you
are not a superuser.

-22- September 15, 1988

(

appletalk(7)

[EBADF]

[EFAULT]

[ERANGE]

[ENOSPC]

[EINTR]

[ENXIO]

[EBADMSG]

[ENODATA]

[ENETDOWN]

[ENOTCONN]

[ENOTSOCK]

appletalk(7)

fd is not a valid file descriptor open for
read/write

buf points outside the allocated address
space.
Message size outside legal range.

Downstream write queue is full, and the
O_NDELAY flag is set.
A signal was caught while waiting for
downstream queue space or a message
buffer.
An M HANGUP message was received at
the stream head; the minor number is
greater than the number of AppleTalk
sockets for this network.
Message waiting to be read is not of type
M DATA.

No message waiting to be read, and
0 NDELAY set.

The network is down, and cannot receive
data.

The module is not connected. It is likely
that a close connection request was
received from the other side.
You specified an invalid dst_socket.

[EADDRNOTAVAIL] You specified an invalid dst_node.

[EMSGSIZE] Your message length exceeded the limits
of a DDP DataGram.

[ERANGE]

[ENETDOWN]

[ENOBUFS]

The wrtoffset you specified was too
small.
The net is down.
No buffers are available to hold your mes
sage.

For other errors, see ioctl(2), open(2), write(2), and
read(2).

-23- September 15, 1988

appletalk(7) appletalk(7)

WARNING
The AppleTalk library routines automatically set up and invoke
the correct ioctl requests. The ioctls give the programmer more
control, but they require a much greater understanding of the
A/UX AppleTalk software. In addition, AppleTalk ioctl calls are
subject to change, while AppleTalk library functions will not
change. It is, therefore, strongly recommended that the library
routines be used whenever possible instead of the more compli
cated ioctl calls.

FILES
/dev/appletalk/socket
/dev/appletalk/socketl
/dev/appletalk/socket2

/dev/appletalk/socket127
/etc/at nbpd
/dev/appletalk/lap/localtalkO/control
/dev/appletalk/lap/localtalkO/circuits
/dev/appletalk/lap/localtalkO/.atnode

SEE ALSO
appletalk(lM), creat(2), dup(2), fcntl(2), ioctl(2),
open(2), at ident(3N), atp(3N), ddp(3N), lap(3N),
nbp(3N), pap(3N), zip(3N), forwarder(7); "AppleTalk
Programming Guide" in AIUX Network Applications Program
ming; Inside AppleTalk; UNIX System V STREAMS Programmer's
Guide.

-24- September 15, 1988

forwarder(?) forwarder(?)

NAME
forwarder -forwarder device driver

DESCRIPTION
The forwarder is a specalized streams device driver written so as
to be able to run on a wide range of Front End Processors (FEP).

Note: Apple® currently only supports the forwarder
software on the AST Intelligent Communications Pro
cesser (AST-ICP). It can, however, be ported to any
nwnber of other communications processers.

The FEP generally has a CPU, a memory, J/O circuitry devices,
and a means of communicating with the host Macintosh® II via
the NuBusTM. {Modules are nonnally downloaded onto the FEP
allowing for offloading of the host processer.)

The forwarder software is actually a twin situation; an identical
copy is kept in the kernel on the host and in the minioperating sys
tem found on the FEP. The twins work together (as a matched
pair) to pass messages and data across the NuBus. From the ker
nel it looks like a stream driver, from the actual stream driver (or
modules) it looks like a stream head.

The forwarder software knows that there is a processing or space
separation (the NuBus) between the operating system and the
remote modules and streams driver. It is the only module that
needs to know about this division of powers; it hides this fact from
the other layers.

Because the NuBus exists, however, there are some stream restric
tions of which the implementor must be aware. Any operation
that transverses the forwarder must pass through the forwarder's
queue processing. For example,

q->q_next->q_next

would be incorrect because it is trying to access the queue beyond
the forwarder, and that is impossible. Careful thought and an
understanding of the forwarder's task should help prevent such
errors.
When it is next to a forwarder, the stream head behaves dif
ferently when it receives an I PUSH ioctl. It first checks the
module id number downstream. If the ID number is ;;:.: FORWARD
ERMIN but ::; FORWARDERMAX, it sends an I PUSH via an
M_IOCTL message. The forwarder passes the request to its twin
on the board, which tries to open the indicated module. The for
warder then responds with an "acknowledge" if the open

-1- September 15, 1988

forwarder(?) forwarder(7)

completed. If the open did not complete successfully. a ''nega
tive acknowledge" is returned. If the module is not found on the
board, a message is returned to that effect and the stream head
continues the push as if the forwarder were not there. The process
is the same for popping, except there would be no "not found"
case.

Control of the forwarder is done via stream I STR ioctls. The
following stream I STR ioctls, defined in <fwd.h>. are avail-
able. -

·r_FWD_LOOKUP

I FWD RESET - -

I_FWD_DOWNLD

I FWD UPLD - -

Returns a table of the installed applica
tion strings and places it in the location
pointed to by arg->ic_dp.
I FWD LOOKUP returns a table into
arg->Ic dp, where the line entries are
of type struct fwd_entry, found in
<fwd.h>. The length of the table is
found in arg->ic len, but is always
less than the streaffi maximum of 1024
Kbytes.

An ioctl that resets the board into a state
ready for downloading. This ioctl must
be used when the system first comes up,
or when an FEP panic occurs. A
I FWD RESET will also disable any
oilier applications currently talking to the
board with EIO errors. Note that there
are many examples of FEPs where
software cannot issue a reset to the
board. In this case, if the forwarder has
lost communication with its twin,
I FWD RESET will have no effect and
you rebOOt the system to reset the for
warder.

Causes the binary data contained in
fwd record.data to be downloaded
to the FEP starting at FEP memory loca
tion fwd record.begin. The struc
ture fwd_record is defined in
<fwd.h>.

Causes the binary data to be uploaded
from the FEP memory into the data field

-2- September 15, 1988

•

(

(

forwarder(?) forwarder(?)

fwd record.data.
fwd-record. ld length is the
number of bytes to be uploaded from the
FEP. The structure fwd record is
defined in <fwd. h> . -

I FWD START Instructs the loader to transfer execution
to the address contained in
fwd entry. start. The name field
will be placed in the forwarder's applica
tion table.

EXAMPLE
int dev_fd;
struct strioctl i_str;

FILES

if ((dev_fd - open (dev_file, O_NDELAY)) < 0)
HANDLE_ ERROR() ;

i_str.ic_cmd • I_FWD_DOWNLD;
i_str.ic_timout - 4;
i_str.ic_len - fwd_record.begin;
i_str.ic_dp • fwd_record;

if(ioctl(dev_fd, I_STR, &i_str) < 0)
HANDLE_ERROR ();

I dev I fwdicpll
/etc/startup.d/fwdicp.d/at load
/etc/startup.d/fwdicp.d/tt=load

SEE ALSO
fwd lkup(lM), fwdload(lM); AT&T UNIX System V
STREAMS Programming Guide.

-3- September 15, 1988

..

("
, ••

(

Apple • A/UX™ Command
Reference

(

at_cho_prn(l) at_cho_prn(l}

NAME
at_cho_prn - choose a user's default printer on the
AppleTalk® network

SYNOPSIS
at_cho_prn [-t type] [-z zone]

DESCRIPTION
at_cho_prn interrogates the network to find out what printers
have been registered on that network. By default, the command
will display all entities of the types LaserWriter, Image
Writer, and AuxLpServer in the current zone.

at_cho_prn then prompts you to enter the number of the
printer you want to select from the list it displays. It stores infor
mation about this printer in /usr/lib/PrinterChoices,
keyed by your user-ID. This information is then used by
at_printer(l} to determine your default printer.

EXAMPLE
The command:

at_cho_prn -t LaserWriter

would produce output such as:

ITEM OBJECT TYPE ZONE NET NODE SOCKET
1: docl LaserWriter * 5678 Oxcb Oxaa
2: doc2 LaserWriter * 5678 Oxd4 Oxaa

P: ITEM number (0 to make no selection)?

where OBJECT is the name of the registered printer; TYPE is its
type; ZONE is its zone name (where * designates the current
zone); NET is its network number; NODE is its node number; and
SOCKET is its AppleTalk socket number. The latter three
numbers are in hexadecimal format

FILES
/usr/bin/at_cho_prn
/usr/lib/PrinterChoices

SEE ALSO
at_nvelkup(l), at_printer(l), at_server(l},
at_status(l); Inside AppleTalk; "Installing and Administering
Apple Talk," in A/UX Network System Administration;
"AppleTalk Programming Guide" in AIUX Network Applications
Programming.

- 1 - September 15, 1988

at_nvelkup(l) at_nvelkup(l)

NAME
at_nvelkup - look up NVEs registered in the AppleTalk®
network

SYNOPSIS
at_nvelkup (-1] [-t type] [-z zone] [-o object]

DESCRIPTION
at nvelkup queries the NBP (Name Binding Protocol) module
for the addresses of all NVEs (network visible entitites) registered
on the AppleTalk zone. The default is to use the local zone (*)
that matches the name specified by the user. The object, type, and
zone of the NVEs may be specified to limit the lookup.

If the -1 flag option is used. only the NVE•s registered on the
local node will be displayed.

Information about the NVEs is displayed in a table format. one
line per NVE. containing the object, type, and zone names. and the
network. node. and socket numbers in hexadecimal format.
respectively. If the -1 flag option is used, the ID of the process
that registered the NVE and the time of registration will also be
printed.

EXAMPLE
The command

at_nvelkup

will query the NBP daemon for all NVE•s registered on the local
AppleTalk zone. The following table is displayed:

OBJECT TYPE
docl LaserWriter
doc2 LaserWriter

FILES
/usr/bin/at_nvelkup

SEB ALSO

ZONE NET ND SK
* 5587 c6 aa
* 2222 d4 da

at_cho_prn(l), at_printer(l), at_server(l),
at_status(l); Inside AppleTalk.

- 1 - September 15, 1988

\
'--

'

(

at_printer(l) at_printer(l)

NAME
at_printer - copy data to a remote PAP server

SYNOPSIS
at_printer [-o object] [-t type] [-z zone] [-u uid]

DESCRIPTION
at_printer opens a PAP (Printer Access Protocol)
AppleTalk® connection to a remote PAP server, such as a Laser
Writer®, and then copies its standard input to the remote server
until it reaches an end-of-file. This command can be used to send
"raw" PostScript™ to a LaserWriter (it will not engage in a dia
log with a LaserWriter about fonts, or load PostScript header files
in the same manner as a Macintosh™ Operating System does).

This command will check to see if the invoking user has previ
ously "chosen" a default printer with the at_cho_prn(l) com
mand. The name of the chosen server is stored on a per-user basis
(by the user's UID) in the file /usr/lib/PrinterChoices.

A user may override the default object, type, and zone choices
with the -o, -t, and -z flag options. If a user has not specified a
printer choice with at_cho_prn, but explicitly specifies the
object, type, or zone, these values will default to the values
specified below.

at_printer takes the following parameters:

-o object The object name of the remote server. A list of
available objects can be obtained using the
at nvelkup(l) command. If the object name is a
wiidcard (=), it will match the first available server
with a matching type and zone. If this parameter is
omitted, it defaults to=.

-t type

-z zone

The type of the remote server. If the type name is a
wildcard (•), it will match the first available server
with a matching object and zone. If omitted, this
parameter defaults to LaserWriter.

This is the network zone in which the server exists.
To access a server in the same zone as yourself you
should use *. Wildcarding of zones is not allowed.
Networks without bridges do not have zones and
should always use the default *. If this parameter is
omitted, it defaults to *.

- 1 - September 15, 1988

at_printer(l) at_printer(l)

-u uid This overrides a user's current user-ID when choos-
ing a default printer from the file
/user/lib/PrinterChoices. Typically,
this flag option will be used by only lp interface
programs.

at_printer will output a message designating to which server
it is connected prior to transferring data.

EXAMPLE
at_printer -1 < test.ps

will copy the PostScript file test . ps to the first available Laser
Writer.

WARNING
at_printer does not attempt to interpret contents of input files.
To print properly on a PostScript printer, ASCII files must be
preprocessed through pstext(l) or enscript(l) and troff.
formatted files must be preprocessed through psdit(l).

FILES
/usr/bin/at_printer
/usr/lib/PrinterChoices

SEE ALSO
at_cho_prn(l), at_nvelkup(l), at_server(l),
at_status(l), enscript(l), pstext(l), psdit(l); Inside
App/eTalk; Inside Postscript!LaserWriter; "AppleTalk Program
ming Guide," in A!UX Network Applications Programming; "Ins
talling and Administering AppleTalk," in AIUX Network System
Administration.

-2- September 15, 1988

(

at_server(l) at_server(l)

NAME
at_server -a generic PAP server

SYNOPSIS
at_ server -c command -o object [-t type]

DESCRIPTION
at_server is a simple generic PAP (Printer Access Protocol)
server. It opens a PAP server AppleTalk® socket and registers
itself on the local server with the name

object: type@*

When an incoming PAP request is received, at server forks a
process to read the data from the remote client and executes a
command from the command parameter. Incoming data from the
server is written to a pipe that can be read by the command as
standard input Note that the server is "one-way;" it only reads
from the remote client. It does not engage in a dialogue with a
client in the same manner that a LaserWriter does with the Macin
tosh Operating System.

The parameters that at_server takes are

command A shell command to be executed when an incoming
connection is requested.

object The object name of the server; this is required and
must not be a wildcard (=).

type The type name of the server (this is optional). If
omitted, it defaults to LaserWriter. Again, wild
cards are not permitted.

EXAMPLE
at_server -c 'lp -dziffel -s' -o piggie -t LaserWriter &

creates a PAP server of type LaserWriter called piggie that
will accept incoming PAP requests from the network. Each one
will have its data spooled locally by lp for printing on printer
ziffel.

at_printer -o piggie -t LaserWriter < x.list

will send x. list to this server to be printed.

at_printer -o - -t LaserWriter < x.list

will send x. list to any available printer.

- 1 - September 15, 1988

at_server(l)

FILES
/usr/bin/at_server

SEE ALSO
at_cho__prn(l), at_nvelkup(l),
at_status(l);Jnside AppleTalk.

-2-

• at_server(l)

at __printer(l),

September 15, 1988

(

:(

(

at_status{l) at_status{l)

NAME
at_status -return status from a PAP server

SYNOPSIS
at_ status -o object [-t type] [-z zone]

DESCRIPTION
at_status gets the status string from an AppleTalk® PAP
(Printer Access Protocol) server such as a LaserWriter®. It takes
the parameters

object

type

zone

The object name of the PAP server. This parameter is
required and wildcards are not permitted.

Wildcards are not permitted; if this name is omitted, it
defaults to LaserWriter.

The zone of the PAP server. Wildcards are not per
mitted; if zone is omitted, it defaults to *, your local
zone.

FILES
/usr/bin/at_status

SEE ALSO
at_cho_prn(l), at_nvelkup{l), at_printer{l),
at_server{l); Inside App/eTalk.

- 1 - September 15, 1988

•

Appl ea A/UX™ Programmer's
Reference

,

\.

..
atp(3N) atp(3N)

NAME
atp_open, atp_close, atp_sendreq, atp_getreq,
atp_sendrsp - AppleTalk® Transaction Protocol (ATP)
interface

SYNOPSIS
#include <at/appletalk.h>
#include <at/atp.h>

int atp open (socket)
at_socket *socket;

int atp_close (fd)
int/d;

int atp_sendreq(fd, dest, buf, len, userdata, xo,
tid, resp, retry, comp, param);

int/d;
at inet t *dest;
char *bUJ;
int len, userdata, xo;
u_short *tid;
at_resp_t *resp;
at retry t *retry;
int (*comp) (), param;

int atp _getreq (fd, src, bu/, len, userdata,
xo, tid, bitmap, comp, param) ;

int *fd
at inet t *src;
char *bUJ;
int *len, *userdata, *xo;
u short *tid;
u=char bitmap;
int *nresp, (*compO () , param;

int atp_sendrsp (fd, dest, xo, tid,
resp, comp, param);

int/d;
at inet t *dest;
intxo; -
u_short tid;
at resp t *resp;
int <*comp) () , param;

- 1 - September 15, 1988

atp(3N) atp(3N)

DESCRIPl'ION
The ATP interface provides applications with access to the ser
vices of the AppleTalk Transaction Protocol.

These routines use the following sttuctures, defined in
<at/appletalk.h>.

at_inet_t specifies the AppleTalk internet address of a DDP
AppleTalk socket endpoinL

typedef struct
u_short
at_node

at_inet {
net;
node;
socket; at socket

} at_inet_t;

at_retry_t specifies the retry interval and maximum count for
a transaction.

typedef struct at_retry {
short interval;
short retries;

at_retry_t;

The members of this structure are

interval The interval in seconds before ATP retries a requesL

retries The maximum number of retries for this ATP request.
If retries is AT_INF_RETRY, the request will be
repeated infinitely.

at resp t, defined in <at/atp.h>, specifies buffers to be
used for re$ponse data.

typedef struct
int

at_resp

struct iovec
int

} at_resp_t;

count;
resp[AT_ATP_TRESP_MAX];
userdata[AT_ATP_TRESP_MAX];

The members of this structure are

count The maximum number of responses expected (and for
which buffers are allocated).

resp An iovec structure describing the response buffers
and their lengths.

userdata An array of 32-bit words holding the user bytes for
each ATP response.

-2- September 15, 1988

•

(

(

atp(3N) atp(3N)

atp_open opens an ATP AppleTalk socket and returns a file
descriptor for use with the remaining ATP calls.

socket A pointer to the static DDP AppleTalk socket number
to open. If the socket number is zero, a socket is
dynamically assigned, and the socket number is
returned in socket.

atp_close closes the ATP AppleTalk socket identified by the
file descriptor f d.

atp_sendreq sends an ATP request to another socket. In syn
chronous mode, this call blocks until a response is received.

fd The ATP file descriptor to use in sending the request.

dest The AppleTalk internet address of the AppleTalk
socket to which the request should be sent.

bu/ Specifies the request data buffer.

len Specifies the size of request data buffer size.

userdata Contains the user bytes for the ATP request header.
This is the user-supplied data to be passed by the ATP
request and will be a PAP (Printer Access Protocol)
packet or other user-supplied data.

xo Should be true (1) if the request is to be an exactly
once (XO) transaction.

tid On return, contains the transaction identifier for this
transaction. tid can be NULL if the caller is not
interested in the transaction identifier.

atp_sendreq requires a pointer to an at_resp_t structure
containing two arrays for the response data: resp, an eight-entry
iovec array, and userdata, an eight-entry array. The field
iov base in each iovec entry, points to a buffer to contain
resj}onse data. The field iov _len specifies the length of the buffer.
The field bitmap indicates the responses expected; on return, it
indicates the responses received. On r~tum, each iov _len entry
indicates the length of the actual response data. If the number of
responses is less than expected, either an EOM was received or
the retry count was exceeded. In the latter case an error is
returned. Each userdata entry in resp contains the user data for
the respective ATP response packet. The retry pointer specifies
the ATP request retry timeout in seconds and the maximum retry
count. If retry is NULL, the default timeout,
AT_ ATP _DEF - INTERVAL, and the default retries,

-3- September 15, 1988

atp(3N) atp(3N)

AT _ATP _DEF_ RETRIES. are used. The retries field of retry can
be set to AT INF RETRY. in which case the transaction will be
repeated infiruteiy-:-

a t p _get req receives at ATP request sent from another
AppleTalk socket. It completes when a request is received.

fd The ATP file descriptor to use in receiving the
request.

src The AppleTalk internet address of the AppleTalk
socket from which the request was sent.

bu/ Specifies the data buffer in which to store the incom
ing request.

len Specifies the data buff er size in which to store the the
incoming request.

userdata On return. contains the user bytes from the ATP
request header. userdata can be NULl.. if the caller is
not interested in the userdata.

xo Will be true (1) if the request is to be an XO transac-
tion.

tid Contains the transaction identifier for this transaction.

bitmap Indicates the responses expected by the requester.

xo, tid, and bitmap are always returned, since the transaction may
require a response.

atp_sendrsp sends an ATP response to another AppleTalk
socket. All response data is passed in one at_sendrsp call. In
the case of an XO transaction, the call does not return until a
release is received from the requester, or the release timer expires.
In the latter case, an error is returned.

fd The ATP file descriptor to use in sending the
response.

dest The AppleTalk internet address of the AppleTalk
socket to which the response should be sent.

tid Contains the transaction identifier for this transaction.

atp_sendrsp requires a pointer to an at_resp_t structure
containing two arrays for the response data: resp, an eight-entry
iovec array, and userdata. an eight-entry array. The field
iov _base in each iovec entry points to a buffer containing
response data. The field iov _len specifies the length of the

-4- September 15, 1988

(

atp(3N) atp(3N)

response data. Each userdata entry in resp contains the user data
to be sent with the respective ATP response packet. The field bit
map indicates the responses to be sent.

ERRORS
All routines return -1 on error with a detailed error code in
errno. For additonal errors returned by the underlying DDP and
Al.AP modules, see ddp(3N) and lap(3N).

[EBADF)

[ENOTTY)

[EINTR)

[EAGAIN]

[EINVAL]

[ENOENT]

fd is not a valid file descriptor (all).

fd is not a TIT, that is, not a special device
(all).

The request was interrupted by signal (all).

The request failed due to a temporary resource
limitation; try again. An XO transaction will
not have been initiated if this error occurs (all).

Invalid dest, len, resp, or retry parameter
(atp sendreq).
InvallCi /en parameter (at p _get req).
Invalid dest or resp parameter
(atp_sendrsp).

An attempt to send a response to a nonexistent
transaction (atp_sendrsp).

[ETIMEDOUTJ The request exceeded the maximum retry count
(atp_sendreq).

[EMSGSIZE] The response is larger than the buffer, or more
responses were received than expected. Trun
cated to available buffer space
(atp sendreq).
The request buffer is too small for request data,
truncated (atp getreq).

WARNINGS

The response -is too large; maximum is
AT ATP DATA SIZE bytes
(atP_sendrsP}.

The parameters comp and param allow asynchronous sending and
receiving of ATP requests. At this release, asynchronous requests
are not supported, and these parameters should be set to NULL to
indicate synchronous operation.

-5- September 15, 1988

atp(3N) atp(3N)

The length of each response buffer, specified in iov _len, is
overwritten by the actual response length when atp_sendreq
returns.

SEE ALSO
ddp(3N), lap(3N), nbp(3N), pap(3N), rtmp(3N),
appletalk(7); Inside AppleTalk; "AppleTalk Programming
Guide," inA/UX Network Applications Programming.

-6- September 15, 1988

(

ddp(3N) ddp(3N)

NAME
ddp_open, ddp_close - AppleTalk® Datagram Delivery
Protocol (DDP) interface

SYNOPSIS
#include <at/appletalk.h>
#include <at/ddp.h>

int ddp open (socket)
at_socket *socket;

int ddp_close Cfd>
int/d;

DESCRI17I'ION
The DDP interface, when included in applications, provides
access to the AppleTalk Datagram Delivery Protocol operations.

ddp _open opens a static or dynamic DDP Apple Talk socket and
returns a DDP AppleTalk socket file descriptor which can be used
to read and write DDP datagrams.

socket A pointer ordering the DDP AppleTalk socket number
to open. If the AppleTalk socket number is 0, a DDP
AppleTalk socket is dynamically assigned, and the
socket number is returned in socket.

An error condition will result if there are no more dynamic
Apple Talk sockets available, if the maximum number of open files
has been exceeded at a process or system level, or if the network
is offline.

Only the superuser can open a static DDP AppleTalk socket.

ddp _close closes the DDP AppleTalk socket identified by the
file descriptor f d.

Datagrams are sent and received with the long DDP header for
mat, using standard A/UX read(2) and write(2) system calls.
If the datagram is directed to a LocalTalk™ interface on the same
network, the DDP protocol module will send it with a short DDP
header. The long header DDP datagram is defined by the follow
ing structure in <at I ddp . h>.

typedef struct {
at_length
at chksum
at net
at net

length;
checksum;
dst_net;
src_net;

- 1 - September 15, 1988

ddp(3N)

at_node
at_node
at socket
at_socket
at_type
u char

at_ddp_t;

dst_node;
src_node;
dst_socket;
src_socket;
type;

ddp(3N)

data[AT_DDP_DATA SIZE];

When writing a datagram, only the fields checksum, dst_net,
dst node, dst socket, type, and data need to be set.
length is the DDP packet length and hop count field. The hop
count is in the 6 most significant bits of this field; the length is in
the 10 least significant bits.

checksum contains the DDP checksum. When writing
datagrams, a checksum is only computed if this field is nonzero.

Datagrams can be sent and received asynchronously using stan
dard A/UX facilities: select(2N); o NDELAY fcntl(2); or
FIONREAD, FIONBIO, and FIOASYNC1octls (see ioctl(2)).

ERRORS
All routines return -1 on error with detailed error code in errno:

[EBADF] fd is not a valid file descriptor (all).

[ENOTTY] fd is not a TTY, that is, not a special dev
ice (all).

[EINTR] The request was interrupted by signal
(all).

[EAGAIN] The request failed due to a temporary
resource limitation; try again (all).

[EACCES] A nonsuperuser attempt to open a static
AppleTalk socket (ddp_open).

[EINVAL] An attempt is made to open an invalid
Apple Talk socket number (ddp _open).

[EADDRINUSE] The static socket is in use, or all dynamic
sockets are in use (ddp_open).

[EADDRNOTAVAIL] A write is attempted to an invalid node
number.

[EMSGSIZE] A datagram is too large.

[ENETDOWN] The network interface is down (all).

-2- September 15, 1988

(

ddp(3N)

[ENXIO]

[EWOULDBLOCK]

[ENODATA]

ddp(3N)

Out of file descriptors (all).

Asynchronous read or write would
block, except for read with O_NDELAY
would block

Asynchronous read with o NDELAY
would block. -

Routines also return any additional error codes returned by the
underlying ALAP module (see lap(3N)) and by standard A/UX
open(2), close(2), read(2), write(2), and ioctl(2) sys
tem calls.

FILES
/dev/appletalk/ddp/*
/etc/appletalk

SEE ALSO
close(2), fcntl(2), ioctl(2), open(2), read(2),
select(2N), write(2), atp(3N), ddp(3N), lap(3N),
nbp(3N), pap(3N), rmtp(3N), fcntl(S), termio(7),
appletalk(7); Inside AppleTalk; "AppleTalk Programming
Guide" in AIUX Network Applications Programming.

- 3 - September 15, 1988

('-

lap(3N) lap(3N)

NAME
lap bind, lap close, lap default, lap getinfo,
lap-init, lap name, lap open, lap-setinfo,
lap=shutdown --AppleTalk® Liiik Access ProtOCol (ALAP)
interface

SYNOPSIS
finclude <at/appletalk.h>
#include <at/alap.h>
#include <at/lap.h>

int lap_bind(if_id, type, name)
int if id;
short type;
char *name;

int lap close(if id)
int if id; -

char *lap_default()

int lap_getinfo(if_id, info>
int if id;
at ifinfo t *info; - -
int lap_init <if_id)
int if id;

char lap_narne <if_id)
int if_id;

int lap_open (interface_name)
char *interface_name;

int lap_setinfo <if_id, info)
int if_id;
at_ifinfo_t *info;

int lap_shutdown(if_id)
int if_id;

- 1- September 15., 1988

lap(3N) lap(3N)

DESCRIPTION
The ALAP library provides a generic interface that allows the user
to control and examine AppleTalk interfaces. This is the preferred
method of accessing and controlling ALAP interfaces (as opposed
to ioctl(2) calls which are implementation and driver specific).

The library does not provide a way to read from and write to these
interfaces; the read(2) and wr i te(2) system calls should be
used for this purpose. Any interface-dependent functions must
also be accessed directly through implementation-dependent
features of its interface driver.

All AppleTalk sockets (DDP naming space) are tied to a single
interface, regardless of the number of physical interfaces installed.
This interface is determined at system installation time, and the
interface named is stored in the file /etc/appletalkrc (see
appletalkrc(4) in AIUX Programmer's Reference).

The following ALAP library routines are available in
/usr/lib/libat.a.

lap_bind registers an ALAP listener for the LAP packet type
specified. The name specified must be a 1 to 13 character null
terminated string. Only one listener on a given LAP interface can
be registered per type. In addition, only one ALAP type ID
number can be used on a given ALAP interface; thus, prere
gistered ALAP type 1 (DDP short) and type 2 (DDP long) cannot
be used by other processes other than through ddp(3N) library
routines. Once a listener is registered, ALAP packets of the
registered type can be read. The format of these packets (beyond
the three bytes of the ALAP header) is specific to the interface
type. See ddp(3N) for information on ALAP types 1 and 2.

The total number of ALAP types that can be bound to a given
ALAP interface is limited. In the case of localtalkO (see
below) this limit is 5, two of which are already in use.

You must be the superuser to use this routine.

if _id The file descriptor returned from a previous
lap_open call.

type The ALAP packet type number. Currently known are
1 (DDP short) and 2 (DDP long). See Inside
AppleTalk for details.

name A null-terminated string representing the registered
type.

-2- September 15, 1988

lap(3N) lap(3N)

lap_close closes the interface file descriptor opened with
lap_ open. It only affects the local program.

if _id The file descriptor returned from a previous
lap_open call.

lap_default returns a character pointer to the interface name
of the default interface as defined in /etc/appletalkrc. It
returns NULL on error.

lap_ name returns a character pointer to the name of the
specified interface. It returns NULL on error.

if_id The file descriptor returned from a previous
lap_ open call.

lap_open opens an AppleTalk networking interface and returns
a file descriptor for a unique ALAP circuit.

interface name
- A null-terminated string which contains the interface

name. such as localtalkO. Note that the interface
name is actually a directory name located in
I dev I appletalk/ lap which contains the
groups• special files.

lap getinfo gets at ifinfo t ALAP and DDP informa
tion associated with the interface. DDP information is valid only
if at least one interface is up and running.

if _id The file descriptor returned from a previous
lap_open call.

info A pointer to struct at if info that will be filled
with current ALAP and DDP information associated
with this interface.

lap_init brings the AppleTalk specified interface online. You
must be the superuser to use this routine.

if_id A file descriptor returned from a previous lap_ open
call.

lap setinfo sets at ifinfo t information for the ALAP
and -DDP associated with the interface. All fields except
u.alap.node. u.alap.initial node. and
u.alap.rts_attempts are ignored. -

if_ id A file descriptor returned from a previous lap_ open
call.

-3- September 15. 1988

lap(3N)

info

lap(3N)

A pointer to struct at_ if info that will be used
to set ALAP and DDP characteristics associated with
this interface.

lap _shutdown brings the specified AppleTalk interface offiine.
You must be the superuser to use this routine.
if_id A file descriptor returned from a previous lap_ open

call.

The ALAP and DDP information statistics is defined by the struc
ture at_ifinfo_t defined in <at/ lap. h>.

I* Link level info and statistics */

typedef struct at_ifinfo
u_int flags; /* see AF_IFF below */
struct {

/* Statistics for all interfaces types */
u_long rcv_bytes;
u_long rcv_packets;
u_long xmit_bytes;
u_long xmit_packets;
u_long too_long_errors;
u_long too_short_errors;
u_long unknown_mblks;
u_long ioc_unregistered;
u_long type_unregistered;

I* Fields specific to individual interface types */
union {

struct {
I* LocalTalk configuration */
at_node node;
at_node initial_node;
u_int rts_attempts;

I* LocalTalk statistics */
u_long timeouts;
u_long collisions;
u_long crc_errors;
u_long unknow_irupts;
u_long overrun_errors;
u_long abort_errors;
u_long defers;
u_long underrun_errors;

-4- September 15, 1988

(

(

lap(3N)

u_long miss_sync_irupt;

alap;

lapinfo;

struct {
I* DDP configuration */
u_short this_net;
at node this_node;
at node a_bridge;

I* DDP statistics */
/* receive errors *I
int socket_unregistered;
int rcv_socket_outrange;
int rcv_length_errors;
int rcv_checksum_errors;
I* transmit errors */
int tag_room_errors;

ddpinfo;

at_ifinfo_t;

lap(3N)

I* Possible values for flags field of at_ifinifo_t */

tdefine AT_IFF_IFMASK
fdefine AT IFF LOCALTALK

Oxfff
Oxl

idefine AT_IFF_RUNNING OxlOOOO
#define AT_IFF_DDP_RUNNING Ox20000

ERRORS
Unless otherwise noted, all routines return -1 on error with a
detailed error code in errno.

[ENOENT]

[EINVAL]

No AppleTalk interface exists (lap_default
and lap_name).

if_ id is not a valid ALAP file descriptor
(lap name, lap bind, lap setinfo).
Invalid listener name (lap bind).
Attempt to set invalid value(lap_setinfo).

- 5 - September 15, 1988

lap(3N)

[EEXIST]

lap(3N)

if_id is not a valid ALAP file descriptor
(lap_bind).

[EALREADYJ The interface is already online (lap_init).
The interface is already offtine
(lap_ shutdown).

[EACCESSJ The user must be the superuser (lap_init,
lap_setinfo, and lap_shutdown).

See open(2), close(2), and ioctl(2) for additional errors.

Fll.ES
/dev/appletalk/lap/*/ ..•
/dev/appletalk/ddp/*
/etc/appletalkrc

SEE ALSO
close(2), ioctl(2), open(2), read(2), write(2), atp(3N),
ddp(3N), nbp(3N), pap(3N), rtmp(3N), appletalkrc(4).
appletalk(7); Inside AppleTalk,· "AppleTalk Programming
Guide," in AIUX Network Applications Programming.

-6- September 15, 1988

•

(

;(

(~

nbp(3N) nbp(3N)

NAME
at_decompose_en, at confirm nve,
at deregister name nve, at lookup-nve,
at=nbp_shutdown, at_register_nve =- AppleTalk®
Name Binding Protocol (NBP) interface

SYNOPSIS
#include <at/appletalk.h>
#include <at/nbp.h>

int at decompose en (entity, ent len, object,
- type, object_len, -

type Zen, zone, zone Zen)
char *entity, *object~ *type, *zone; -
int ent_len, *object_len, *type_Zen, *zone_len;

int at_confirm_nve (object, object_len, type, type_len,
zone, zone len, trys, secs, net,
node, socket)

char *object, *zone, *type;
int object_len, type_len, zone_len, trys, secs, net,

node, socket;

int at deregister name nve (object, object_Zen,
- - type, - type _len)

char *object, *type;
int object_len;

int at_lookup_nve (object, object_len, type, zone,
type_len, zone_Zen, trys, secs)

char *object, *zone, *type;
int object_Zen, type_len, zone_len, trys, secs;

int at_nbp_shutdown()

int at_register_nve (object, object_len, type,
type_len, socket, trys, secs)

char *object, *type;
int object_len, type_len, socket, trys, secs;

DESCRIPTION
The NBP interface provides applications with access to the ser
vices of the AppleTalk Name Binding Protocol routines.

- 1 - September 15, 1988

nbp(3N) nbp(3N)

at_decompose_en decomposes an entity name string of the
form

object : type@zone
into its object, type, and zone components, and returns their
length.

entity

ent_len

object

A pointer to a character string containing the NVE
name to be decomposed. The string can not be
greater than AT_NBP_TUPLE_STRING_MAXLEN
characters.

The length of the entity-name character string. If this
argument is z.ero, the length of the entity name will be
calculated by treating it as a null-byte-terminated
string.

A pointer to a character string in which the object
name will be returned. The string can not be greater
than AT_NBP_TUPLE_STRING_MAXLEN charac
ters.

object _len The returned length of the object-name character
string.

type A pointer to a character string in which the type name
will be returned. The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

type _len The returned length of the type-name character string.

zone A pointer to a character-string in which the wne
name will be returned. The string can not be greater
than AT_NBP_TUPLE_STRING_MAXLEN charac
ters.

zone_ len The returned length of the zone-name character
string.

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned.

at_confirm_nve is used to confirm that an entity is still
registered at a given address. This is useful when time has
elapsed between the lookup operation and the actual use of the
AppleTalk internet address found in the lookup.

object A pointer to a character string that is the object name.
This string is, in general, the one returned by the
lookup operation to be confirmed.

-2- September 15, 1988

•

(

(. '

·'

nbp(3N) nbp(3N)

object _/en The length of the object-name character string. If this
argument is zero, the length of the object-name string
will be calculated by treating it as a null-byte
terminated string. The string cannot be greater than
AT_NBP_TUPLE_STRING_MAXLEN.

type A pointer to a character string that is the type name.
This string is, in general, the one returned by the
lookup operation to be confirmed.

type _len The length of the type-name character string. If this
argument is zero, the length of the type-name string
will be calculated by treating it as a null-byte
terminated string. The string cannot be greater than
AT_NBP_TUPLE_STRING_MAXLEN.

zone A pointer to a character string that is the zone name.
This string is, in general, the one returned by the
lookup operation to be confirmed.

zone len The length of the zone-name character string. If this
argument is 0, the length of the zone-name string will
be calculated by treating it as a null-byte-terminated
string. The string cannot be greater than
AT_NBP_TUPLE_STRING_MAXLEN.

trys The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If this argu
ment is 0 (recommended), the NBP daemon will use a
standard default value (5).

secs

net

node

socket

The number of seconds that the NBP daemon will
wait before issuing the repeat of the broadcast request
to look up this NVE. If this argument is zero (recom
mended), the NBP daemon will use a standard default
value (60).

The number of the network found in the lookup
operation.

The number of the node found in the lookup opera
tion.

The number of the AppleTalk socket found in the
lookup operation.

A value of -1 is returned when the lookup failed or when more
than one NVE with a that name was found; 0 indicates that the
NVE is no longer there; 2 indicates that there is an NVE with a

- 3 - September 15, 1988

nbp(3N) nbp(3N)

different net number or that there is an NVE with a different
socket number; 3 indicates that there is an NVE with a different
node number.

object A pointer to a string containing the object name.

object _len The length of this string.

type is a pointer to a string containing the object name.

type_ len is the length of this string.

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned. An NVE is always deregistered if found.
Errors range from an invalid NVE to an attempted deregistration
of a valid NVE by a user other than the one that registered it.

at deregister name nve is used to tell the NBP daemon
to remove an NVE with ~given object and type names from the
list of NVEs for this node. Removing the NVE makes the
resource represented by the NVE inaccessible to the network.
You must have created the name (or be the superuser) in order to
do this.

at_lookup_nve queries the NBP daemon for a list of NVEs
that match the object, type, and zone name specification given in
the arguments. It returns a count of the number of NVEs found
that match the specification. A doubly-linked list of typedef
at_nve is built and may be referred to via the external variables
at nve lkup reply head and
at=nve=lkup=reply=tail.
object A pointer to a character string that is the object name.

The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

object _len The length of the object-name character string. If this
argument is zero, the length of the object-name string
will be calculated by treating it as a null-byte
terminated string.

type

type_len

A pointer to a character string that is the type name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

The length of the type-name character string. If this
argument is zero, the length of the type name string
will be calculated by treating it as a null-byte
terminated string.

-4- September 15, 1988

..

"

('

(

nbp(3N) nbp(3N)

zone A pointer to a character string that is the zone name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

zone len The length of the zone-name character string. If this
argument is zero, the length of the zone-name string
will be calculated by treating it as a null-byte
tenninated string.

trys The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If this argu
ment is zero (recommended), the NBP daemon will
use a standard default value (5).

secs The number of seconds that the NBP daemon will
wait before issuing a repeat of a broadcast request to
look up this NVE. If this argument is zero (recom
mended), the NBP daemon will use a standard default
value (60).

Upon successful completion, the number of NVEs found is
returned. If no NVEs were found, a value of 0 is returned. Upon
error, a value of -1 is returned.

at nbp shutdown shuts down the NBP daemon. You must be
the supeiiiser to do this. Upon successful completion, a value of 0
is returned if the shutdown is successful. A value of -1 is returned
if the user is not the the superuser or if there is a streams I/O error.

at register nve registers an NVE for the process with the
NBP daemon. An NVE says, in effect, that this node on this
AppleTalk socket has a resource of this type, named with this
unique name.

object A pointer to a character string that is the object name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

object _/en The length of the object-name character string. If this
argument is zero, the length of the object-name string
will be calculated by treating it as a null-byte
terminated string.

type A pointer to a character string that is the type name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

type _len The length of a type-name character string. If this
argument is zero, the length of the type-name string

-5- September 15, 1988

nbp(3N)

socket

trys

secs

nbp(3N)

will be calculated by treating it as a null-byte
tenninated string.

The AppleTalk socket number on which to register
thisNVE.

The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If this argu-
ment is zero (recommended), the NBP daemon will
use a standard default value (5).

The number of seconds that the NBP daemon will
wait before issuing a repeat of the broadcast request
to look up this NVE. If this argument is zero (recom
mended), the NBP daemon will use a standard default
value((>()).

Upon successful completion, a value that is the NBP daemon
registration number is returned. The registration number is used
only to tell the NBP to deregister this NVE at a later time. Other
wise, a value of -1 is returned. There are two kinds of errors. If
the global variable at nve lkup reply count is zero, the
NVE did not respond:° If at nve lkup-reply count is
nonzero, the NVE was not registered because-the name is already
in use. In that case, the duplicate name(s) are linked onto the list
pointed to by at_nve_lkup_reply_head .

GLOBALS
at_nve_lkup_reply_head

This is a pointer to the head of the linked list of
at nve structures. f there are no NVEs found, this
wilf have a value of NULL. If this variable has a
non-NULL value upon entry to the
at lookup nve function, it is assumed that it is
pointing to a linked list of at nve structures from a
previous call to at_lookupjive and the linked list
members will be freed (via free(3)) first.

at nve lkup reply tail
- - This-is a painter to the tail of the linked list of

at nve structures. If there are no NVEs found, the
poiii'ter will have a value of NULL.

at_nve_lkup_reply_count
This is the count of the number of members in the
linked list pointed to by
at_lookup_reply_head.

-6- September 15, 1988

•

(

(

nbp(3N) nbp(3N)

ERRORS
All routines return -1 on error with a detailed error code in
errno.

[EBADF]

[ENOTTY]

[EINTR]

[ENXIO]

[EAGAIN]

[ENETDOWN]

[EPROTOTYPE]

[EBUSY]

fd is not a valid file descriptor.

fd is not a 'ITY (that is, not a special dev
ice).

The request was interrupted by signal.

Out of file descriptors.

The request failed due to a temporary
resource limitation; try again.

The network interface is down.

The protocol type requested is inappropriate
for that AppleTalk socket

The requested service is unavailable at this
time; try again.

[EPERM] The user does not have permission to per
form the requested task; user must be the
superuser.

[EINVAL] Designates an invalid argument

See open(2), close(2), read(2), write(2), and ioctl(2) for
additional error codes; see also errors returned in the underlying
ATP, DDP and ALAP modules.

SEE ALSO
close(2), ioctl(2) open(2), read(2), write(2), atp(3N),
ddp(3N), lap(3N), pap(3N), rtmp(3N), appletalk(7);
Inside AppleTalk; "AppleTalk Programming Guide, in AIUX Net
work Applications Programming.

-7- September 15, 1988

(

pap(3N) pap(3N)

NAME
at_pap_close, at_papsl_deregister_nve,
at_papsl_get_next_job, at_papsl_heres_status,
at_papsl_init_nve, at_pap_open_nve,
at_pap_read_ignore, at_pap_read,
at_papsl_register_nve, at_papsl_status_nve,
at_pap_write, at_pap_write_eof,
at_pap_write_flush - AppleTalk® Printer Access Proto
col (PAP) interface

SYNOPSIS
tinclude <at/appletalk.h>
tinclude <at/pap.h>

void at_pap_close (socket)
int socket;

int at_papsl_deregister_nve (object, object_len,
type, type _len) ;

char *object, *type;
int object_len, type_len;

int at_papsl_get_next_job (fd)
int/d;

int at_papsl_heres_status (fd, status)
int/d;
char *status;

int at_papsl_init_nve (object, object_len, type,
type_len, trys, secs, status)

char *object, *type, *status;
int object_len, type_len, trys, secs;

int at_pap_open_nve (object, object_len, type,
type_len, zone, zone_len,
trys, secs, retry, name)

char *object, *zone, *name, *type;
int object_len, type_len, zone_len, trys, secs, retry;

int at_pap_read_ignore (jd)

int at_pap_read (jd, data, len)
int/d, len;

- 1 - September 15, 1988

pap(3N) pap(3N)

char *data;

int at_papsl_register_nve (fd, object, objectJen,
type, type_len, trys, secs)

int fd, object_len, object_len, trys, secs;
char *object, *type;

int at_papsl_status_nve (object, object_len, type,
type_len, zone, zone_len,
trys, secs)

char *object, *type, *zone;
int object_len, type_len, zone_len, trys, secs;

int at_pap_write ifd, data, len)
int/d, len;
char *data;

int at_pap_write_eof (fd, data, len)
int/d, len;
char *data;

int at_pap_write_flush (fd, data, len)
int/d, len;
char *data;

DESCRIPl'ION
The PAP interface provides applications with access to the
AppleTalk Printer Access Protocol operations.
at_pap_close closes an open PAP server or client AppleTalk
socket.

socket The AppleTalk socket that is to be closed. It returns
void upon completion.

at_papsl_deregister_nve deregisters a server's name
previously registered by a call to at_papsl_register_nve
or at_papsl_init_nve.

object A pointer to a string containing the object part of the
name to be deregistered.

objectJen The length of the object-name string. If object_len is
zero, the string is assumed to be null-terminated and
its true length is used.

-2- September 15, 1988

pap(3N)

type

type_len

pap(3N)

A pointer to a string containing the type part of the
name to be deregistered.

The length of the type-name string. If type len is
zero, the string is assumed to be null-terminated and
its true length is used.

A value of 0 is returned if the name existed and was deleted. Oth
erwise, -1 is returned.

at_papsl_get_next_job is called by a server when it is
ready to respond to a new PAP client. It returns a PAP-client
AppleTalk-socket descriptor that is set up for PAP reading and
writing from and to the client that has been waiting the longest.

fd A PAP-server AppleTalk socket descriptor from a
previous open.

Upon successful completion, a PAP-client AppleTalk socket
descriptor is returned. Otherwise, if the network has gone down
since the last server access, -1 is returned

at_papsl_heres_status changes the status string asso
ciated with an open PAP-server AppleTalk socket. This is the
string returned to a PAP-client from an open or
at_papsl_status_nve call.

fd An open PAP-server AppleTalk socket returned from
an at_papsl_init_nve call.

status A pointer to a null-terminated character string con
taining the status string being posted. Strings
longer than 255 characters are truncated.

Upon successful completion, a value of 0 is returned. Otherwise,
if the Apple Talk socket is no longer open, -1 is returned.

at_papsl_init_nve opens a PAP-server AppleTalk socket
for a PAP server. At the same time, it registers a name for the
server and posts a status string on it.

object A pointer to a string to be used as the object portion
of the name being registered with NBP for this server.
Wildcard names are not allowed.

object_len The length of the object A length of zero means that
the string is null-terminated and its true length should
be used.

type A pointer to a string to be used as the type portion of
the name being registered with NBP for this server.

- 3 - September 15, 1988

pap(3N) pap(3N)

Wildcard names are not allowed.
type _len The length of the type. A length of zero means that

the string is null-terminated and its true length should
be used.

trys The number of times the server name is searched for
on the network before deciding the name is unique
during registration.

secs The number of seconds between such attempts .
. status A pointer to a null-terminated string used to post the

server's status string.

Upon successful completion, the AppleTalk socket descriptor of
the PAP server AppleTalk socket created is returned. Otherwise,
-1 is returned.

at_pap_open_nve opens a PAP client AppleTalk socket to a
server. It searches first for a server with a registered name that
matches that described by the object, type, and zone parameters.
The object and type may be wildcards (=). Though some PAP
servers may be unavailable, at_pap_open_nve tries to access
all available PAP servers the number of times specified by retry
until one is found that will accept a client connection.

object A is pointer to a character string that is the object
name. The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

object_len The length of an object-name character string. If this
argument is zero, the length of the object-name string
will be calculated by treating it as a null-byte
terminated string.

type A pointer to a character string that is the type name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

type_len The length of the type-name character string. If this
argument is zero, the length of the type-name string
will be calculated by treating it as a null-byte
terminated string.

zone A pointer to a character string that is the zone name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

-4- September 15, 1988

•
pap(3N) pap(3N)

zone len The length of a zone-name character string. If this
argument is zero, the length of the zone-name string
will be calculated by treating it as a null-byte
terminated string.

trys The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If this argu
ment is zero (recommended}, the NBP daemon will
use a standard default value (5).

secs The number of seconds that the NBP daemon will
wait before issuing a repeat of the broadcast request
to look up this NVE. If this argument is zero (recom
mended), the NBP daemon will use a standard default
value (60).

retry The number of times to search for a PAP server. Dur
ing searching, a list of all available PAP servers is
made, and a connection is attempted to each server in
turn. This parameter specifies the number of times
that all available PAP servers will be polled before
the connection gives up. It does not specify the
number of printers to be polled. If retry is less than
zero, it retries indenfinitely.

name If this is non-NULL, the object name of the PAP
server connected to it (maximum 32 characters) will
be returned to the character array to which it points.
If NULL, nothing is returned.

The global variable at_pap_status is a character array that
contains the status string returned from the last connection
request attempted. A special status string No Printers or
Unreachable is returned when there are no printers registered,
or the last printer registered did not respond, respectively.

Upon successful completion, this routine returns a PAP client
AppleTalk socket connected to the server requested. Otherwise,
-1 is returned.

at_pap_read_ignore issues a PAP read request and ignores
any returned data. This is used to allow LaserWriters to function
when they want to return "status" messages.

fd The streams file descriptor returned by
at_pap_open_nve.

-5- September 15, 1988

pap(3N) pap(3N)

at_pap_read reads data from a client PAP socket opened by a
at_pap_open or at_papsl_get_next_job call.
fd AP AP client AppleTalk socket descriptor from a pre

vious open.

data The address of the data to be returned. The maximum
data length returned is 512 bytes.

length The maximum length to be read
Upon successful completion. the number of bytes read is returned;
0 is returned if an end-of-file has been reached; -1 is returned if
the connection to the server has been broken.
at_papsl_register_nve registers a name for the PAP
server described by the AppleTalk socket descriptor passed to iL
fd A PAP server AppleTalk socket descriptor for the

server being registered.

object A pointer to a character string that is the object name.
The string cannot be greater than
AT _NBP _TUPLE _STRING_MAXLEN characters.

object_len The length of the object-name character string. If this
argument is zero, the length of the object-name string
will be calculated by treating it as a null-byte
terminated string.

type A pointer to a character string that is the type name.

trys

The string cannot be greater than
AT _NBP _TUPLE_ STRING_MAXLEN characters.
The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If the argu
ment is zero (recommended), the NBP daemon will
use a standard default value (5).

secs The number of seconds that the NBP daemon will
wait before issuing a repeat of the broadcast request
to look up this NVE. If the argument is zero (recom
mend), the NBP daemon will use a standard default
value (60).

A value of 0 is returned if the registration succeeded. A value of
-1 is returned if either the AppleTalk socket is invalid or the name
is already in use.

September 15, 1988

. ..

• •

(

pap(3N) pap(3N)

at_papsl_status_nve locates a PAP server and returns its
status string. at_pap_status is a global array of characters
that contains the returned device•s status string.

object A pointer to a character string that is the object name.
The string cannot be greater than
AT_ NBP _TUPLE_ s TRING _ MAXLEN characters.

object_len The length of the object-name character string. If this
argument is zero. the length of the object-name string
will be calculated by treating it as a null-byte
terminated string.

type A pointer to a character string that is the type name.
The string cannot be greater than
AT_ NBP _TUPLE_ STRING_MAXLEN characters.

type _len The length of the type-name character string. If 'this
argument is zero. the length of the type-name string
will be calculated by treating it as a null-byte
terminated string.

zone A pointer to a character string that is the zone name.
The string can not be greater than
AT_NBP_TUPLE_STRING_MAXLENcharacters.

zone len The length of the zone-name character string. If this
argument is zero, the length of the zone-name string
will be calculated by treating it as a null-byte
terminated string.

trys The number of times that the NBP daemon will issue
a broadcast request to look up this NVE. If the argu
ment is zero (recommended). the NBP daemon will
use a standard default value (5).

secs The number of seconds that the NBP daemon will
wait before issuing a repeat of the broadcast request
to look up this NVE. If the argument is zero (recom
mended). the NBP daemon will use a standard default
value (60).

Upon successful completion. a value of 0 is returned; if no
printer•s status can be recovered, -1 is returned.

at_pap_write sends the data passed to it to the other end of a
PAP client session.

fd A valid PAP client AppleTalk-socket descriptor from
a call to at_pap_open_nve or

-7- September 15. 1988

pap(3N) pap(3N)

at_papsl_get_next_job.

data A pointer to the data being written.

len The length of the data being written; this must not
exceed 512 bytes.

Upon successful completion, a value of 0 is returned; if the
write cannot be completed, -1 is returned.

at_pap_write_eof sends the data passed to it to the other end
of a PAP-client session. It also sends a PAP end-of-file indication
to the other end to indicate that no more data will be sent. It does
an implicit at_pap_write_flush.

fd A valid PAP client AppleTalk socket descriptor
returned from a call to
at_papsl_get_next_job or
at_pap_open_nve.

data A pointer to the data being written.

len The length of the data being written; this must not
exceed 512 bytes.

Upon successful completion, a value of 0 is returned; if the
write cannot be completed, -1 is returned.

at_pap_write_flush sends the data passed to it to the other
end of a PAP client session. Since PAP runs on top of A 1P, PAP
writes are queued up until either a complete A 1P response is
available (about 4 Kbytes) or an end-of-message is sent. This call
sends an A1P end-of-message, which causes all waiting PAP
writes to be sent to the other end. This should be done if a higher
level protocol (for example, a handshake with a LaserWriter)
needs to do a write followed by a read.

fd A valid PAP-client AppleTalk socket descriptor from
a call to at_papsl_get_next_job or
at_pap_open_nve.

data A pointer to the data being written.

len The length of the data being written; this must not
exceed 512 bytes.

Upon successful completion, a value of 0 is returned; if the
write cannot be completed, -1 is returned.

-8- September 15, 1988

•· ...

.. ..

(

(

pap(3N) pap(3N)

ERRORS
All routines return -1 on error with a detailed error code in
errno.

[EBADF]

[ENOTTY]

[EINTR]

[ENXIO]

[EAGAIN]

fd is not a valid file descriptor.

fd is not a TTY (that is, not a special device).

The request was interrupted by signal.

Out of file descriptors.

The request failed due to a temporary resource
limitation; try again.

[ETIMEDOUTJ The connection is timed out.

[ESHUTDOWNJ The requested AppleTalk socket has already
been closed.

[ENETDOWN] The network interface is down.

See open(2), close(2), read(2), write(2), and ioctl(2) for
additional error codes; see also errors returned by the underlying
NBP, ATP, DDP and ALAP modules.

SEE ALSO
close(2), ioctl(2), open(2), read(2), write(2), atp(3N),
ddp(3N), lap(3N), nbp(3N), rtrnp(3N), appletalk(7);
Inside AppleTalk; "AppleTalk: Programming Guide," in A/UX
Network Applications Programming.

-9- September 15, 1988

... ..

.. ..

(

rtmp(3N) rtmp(3N)

NAME
at get net number,
at-get-bridge number
addresses -

at get node number,
identify AppleTalk® node

SYNOPSIS
#include <at/appletalk.h>

int at_get_net_number()
int at get node number()
int at:get:bridge_number ()

DESCRIPTION
The following routines allow the user to determine AppleTalk
node addresses.

at get net number returns the value of a node's current net
worlc number. -A network number is supplied by an AppleTalk
bridge node and is not built into the nodes on a network. There
fore, if there are no bridge nodes on the network, the network
number will be zero.

Upon successful completion, a value from 0 through 65,535
(Oxffff) is returned. Zero means that there is not an AppleTalk
bridge node around to supply the network number. Network
numbers are 16-bits (unsigned) and range from 1 through 65,535.
Otherwise, -1 is returned.

at get node number returns the node number of the node
on which the Cilrrent process is running. Node numbers are
dynamically assigned by the ALAP layer when it is brought up. A
node number lies in the range of 1 through 254.

Upon successful completion, a value from 1 through 254 is
returned. Otherwise, -1 is returned.

at get bridge number returns the number of the local
bridge. Abridge number lies in the range of 1through254. If the
value is 0, there is no bridge present.

SEE ALSO
atp(3N), ddp(3N), lap(3N), nbp(3N), pap(3N),
appletalk(7); Inside AppleTalk; "AppleTalk Programming
Guide," inAIUX Network Applications Programming.

- 1- September 15, 1988

... ...

'" ...

. ..

(

zip(3N) zip(3N)

NAME
zip_getmyzone, zip_getzonelist - AppleTalk Zone
lnfonnation Protocol (ZIP) interface

SYNOPSIS
#include <at/appletalk.h>
#include <at/atp.h>
#include <at/nbp.h>
#include <at/zip.h>

int zip_getmyzone (zone)
at_nvestr_t *zone;

int zip_getzonelist (start, bu/)
int start;
at_nvestr_t *zone [];

DBSCRIYrION
The ZIP interface provides applications with access to the
AppleTalk Zone Information Protocol operations.

zip getmyzone obtains the zone name for the local network.
This -routine sends a ZIP request to a local bridge for the zone
name of the default network, and returns this zone name to the
caller.

zone A pointer to the zone name. The zone string is defined
by the following structure (see <at/nbp. h>):

typedef struct at_nvestr {
u_char len;
u_char str[AT_NVE_STR_SIZE];

at_nvestr_t;

len The size of the string in bytes.

str Contains the zone name.

This routine returns 0 upon success.

zip_getzonelist is used to obtain a complete list of all the
zone names defined in the internet. This routine sends a ZIP
request to a bridge for the list of zone names in the internet. The
list is placed into the supplied buff er as concatenated
at_nvestr_t structures.

start The starting index for the get zone list request. The start
index is the value of the index at which to start, includ
ing zone names in the response. It is used to obtain a
zone list that may not fit into one ATP The sesponse

- 1 - September 15, 1988

-- ---------------- ------

zip(3N) zip(3N)

packet. Th start index should initially be 1. While
zip getzonelist does not return 0, the caller must
reissue zip_getzonelist calls, specifying a start
index of the previous start index plus the previous return
valueofzip_getzonelist.

bu/ is a buffer to hold this list of zone names. Each zone
name is an at nvestr t structure. The zone list
buffer must be 8t least AT ATP DATA SIZE bytes.
Upon successful completiorl, this-routines returns the
number of zone names in the list When all zones in the
bridge's Zone Information Table have been returned,
this routine returns 0.

DIAGNOSTICS
Both routines return -1 on error with a detailed error code stored
inerrno.

[EINTR]

[EAGAIN)

[ENETUNREACH]

[EINVAL]

The request was interrupted by signal
(all).

The request failed due to a temporary
resource limitation; try again (all).

A bridge node could not be found to pro
cess the request (all).

Invalid parameter (all).

Routines also return any error codes returned by the underlying
ATP, DDP, or ALAP layers.

WARNJNGS
The returned zone strings are not null-terminated.

SEE ALSO
ddp(3N), lap(3N), nbp(3N), pap(3N); rtmp(3N); Inside
AppleTalk,· "AppleTalk Programming Guide," in AIUX Network
Applications Programming.

-2- September 15, 1988

..

. .,..

(

(\

/

appletalkrc(4) appletalkrc(4)

NAME
appletalkrc -AppleTalk® network configuration file

DESCRIPTION
The appletalkrc file contains information for configuring an
AppleTalk network. The file is created at boot time by the
AppleTalk startup routine. It does not need to be modified by a
system administrator. The format of the file consists of a list of
parameters and values, one per line:

parameter=value

Comments are indicated by a # character, and continue until the
newline. The following parameters are de.fined.

interface Defines the interface which will host all DDP
(Datagram Delivery Protocol) sockets on this system.

value A null-terminated string such as local talkO.

No matter how many AppleTalk interfaces are active on the sys
tem, all DDP sockets are tied to one ALAP (AppleTalk Link
Access Protocol) address space. Note that this is a DDP address
space and naming requirement; it has no relationship to routing of
DDP packets through any particular ALAP interface.

EXAMPLE
The default appletalkrc file created by AppleTalk startup for
a system with one AppleTalk card:

AppleTalk configuration file
Do not change the contents of this
file while AppleTalk is active!

interface= localtalkO

FILES
/etc/appletalkrc
/etc/startup.d
/etc/newunix

SEE ALSO

DDP interface

appletalk(lM), newunix(lM), appletalk(7); "Installing
and Administering AppleTalk," in A/UX Network System
Administration. Inside AppleTalk. "AppleTalk Programming
Guide," in AIUX Network Applications Programming.

- 1 - September 15, 1988

, fito!". r •

