@. Macintosh®

Macintosh Programmer’s
Workshop 3.0 Pascal

& APPLE COMPUTER, INC.

This manual and the software described
in it are copyrighted, with all rights
reserved. Under the copyright laws, this
manual or the software may not be
copied, in whole or in part, without
written consent of Apple, except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This excep-
tion does not allow copies to be made
for others, whether or not sold, but all of
the material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another lan-
guage or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for this purpose.

The Apple logo is a registered trademark
of Apple Computer, Inc. Use of the
“keyboard” logo (Option-Shift-K) for
commercial purposes without the prior
written consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

© 1988 Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, LaserWriter,
Macintosh, and MacApp are registered
trademarks of Apple Computer, Inc.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of International

Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT and Adobe Hlustrator are
registered trademarks of Adobe
Systems Incorporated.

Adobe lustrator is a trademark of
Adobe Systems Incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

QMS is a registered trademark of
QMS, Inc.

Linotronic is a registered trademark of
Linotype company.

Smalltalk-80 is a registered trademark of
the Xerox Corporation.

Simultaneously published in the United
States and Canada.

Contents

Tables and Figures xvii

Preface xix

About MPW Pascal 1

About MPW Pascal version 3.0 3

About SADE and MacsBug 4

Object Pascal 5

About the Pascal interface files 6

Using interface files 9

About the Pascal libraries 10

About the Pascal examples 13

Installing MPW Pascal 14

Segmentation control 15

Creating resources 16

Creating an application in MPW Pascal 16
Building an application 17
Compiling an application 17
Linking an application 18

Creating a tool in MPW Pascal 19
Building a tool 20
Compiling a tool 20 .
Linking a tool 20

Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntime library 21
Desk accessory routines 22
Building a desk accessory 23
Linking a desk accessory 23

Creating code for different models of the Macintosh 24
Source code 24

Interface files 24

Compiler options 25
SANE and the Macintosh II 25
Floating-point enhancements 25
MC68881 enhancements 26
MC68020 enhancements 27

Other MPW 3.0 products 27

2 Symbols 29
Symbols 31
Special symbols and reserved words 32
Identifiers 33
- Numbers 34
labels 36
Quoted string constants 36
Quoted character constants 37
Delimiters 38
Directives 38
Special directives for Object Pascal 38
Comments and Compiler directives 39

3 Blocks and Scope 41

Block syntax 43

Scope rules 46
Redeclaration in an enclosed block 46
Position of declaration within its block 46
Redeclaration within a block 47
Declarations in units 47
Predefined identifiers 47 ’
Special rule for object types 48
Scopes, object files, and other languages 48

iv MPW 3.0 Pascal Reference

4 Data Types 49
Simple types 52
Real types 53
Scalar types 55
The integer type 56
The longint type 56
The boolean type 57
The char type 57
Enumerated types 58
Subrange types 59
String types 60
The pointer type 61
Structured types 64
Array types 65
Record types 67
Set types 69
File types 70
Object types 71
Type compatibility 73
Compatible types 73
Assignment-compatible types 74
Type coercion 75
Type declarations 76
- User-defined anonymous types 77

5 Constants and Variables 79

Constant declarations 81
Constant expressions 81
Predefined numeric constants 85
Predefined string constants 86
Variable declarations 86
Variable accesses 88
Qualifiers 89
Arrays and string indexes 90
Records and field designators 92
File window variables 92
Pointers and their identified variables 93
Object references 93

CONTENTS

6 Expressions 95

Operators 97
Arithmetic operators 97
Boolean operators 99
Set operators 100
Result types in set operations 101
Relational operators 101
Comparing numbers 101
Comparing booleans 102
Comparing strings 102
Comparing sets 103
Testing set membership 103
Comparing packed arrays of char 103
The @ operator 103
The @ operator with a variable 104
The @ operator with a value parameter 104
The @ operator with a variable parameter 104
The @ operator with a procedure or function 105
Function calls 105
Set constructors 107
Writing expressions 108
Factors 108
Terms 110
Simple expressions 111
Expression syntax 112

7 Statements 113

Assignment statements 116
Compound statements 117 >
Procedure statements 118
Repetition statements 120

FOR statements 120

WHILE statements 122

REPEAT statements 123

Loop control: a comparison 124
Conditional statements 125

IF statements 125

Nested IF statements 126

vi MPW 3.0 Pascal Reference

W

CASE statements 126
Control statements 128
GOTO statements 128
Cycle statements 129
Leave statements 130
WITH stateinents 130
NULL statements 132

Procedures and Functions 133

Procedure declarations 135
Function declarations 136
Procedure and function directives 139
The FORWARD directive 140
The EXTERNAL and C directives 140
The INLINE directive 141
Parameters 142
Value parameters 144
Variable parameters 144
Procedural parameters 145
Procedure pointers 147
Functional parameters 147
Univ parameters 147
Parameter list compatibility 148

Programs and Units 149

Program syntax 151

Segmentation 152

Unit syntax 152

The USES clause 155 ;
Units that use other units 156

Automatic symbol table loading 158

CONTENTS

vii

10 Files and /O 159 o
Input/Output routines 161
Pascal files 162
Extemal files 162
File variables 162
Structured files 162
Text files 163
Untyped files 163
Predeclared file variables 164
The file window variable 165
Opening a file 165
Closinga file 166
Sequential versus random access 166
Routines for all files 167
The Reset procedure 167
The Rewrite procedure 168
The Open procedure 168
The Close procedure 169
The Eof function 169
The IOResult procedure 170
The ErrNo variable 170
The Seek procedure 173
The PLFilepos function 174
The PLCrunch procedure 174
The PLPurge procedure 174
The PLRename procedure 174
Record-oriented routines 174
The Get procedure 175
The Put procedure 175
The Read procedure with a structured file 175
The Write procedure with a structured file 176
Text-oriented routines 176
The Read procedure 177
Read with a char variable 178
Read with an integer variable 178
Read with a real variable 178
Read with a string variable 179
The Readln procedure 180
The Write procedure 181

///////
Ve \

vili MPW 3.0 Pascal Reference

Write with a char value 182
Write with an integer value 182
Write with a value of type real 183
Write with a string value 184
Write with a packed array of char 184
Write with a boolean value 185

The Writeln procedure 185

The Eoln function 185

The Page procedure 185

The PLSetVBuf procedure 185

The PLFlush procedure 186

The Get and Put procedures with text files 186

Routines for untyped files 187

The Blockread function 187

The Blockwrite function 188

The Byteread and Bytewrite functions 189

11 Predefined Routines 191

Exit and halt procedures 195
The Exit procedure 195
The Halt procedure 195
Dynamic allocation procedures 195
The PLHeaplnit procedure 196
The PLSetHeapCheck procedure 197
The PLSetNonCont procedure 197
The PLSetMErrProc procedure 197
The PLSetHeapType procedure 197
The New procedure 198
The Dispose procedure 199
The Heapresult function 199
The Mark procedure 200
The Release procedure 200
The Memavail function 200
Transfer functions 201
The Trunc function 201
The Round function 201
The Ord4 function 201
The Pointer function 202
Arithmetic functions 202

CONTENTS

ix

The Odd function 203

The Abs function 203

The Sqr function 203

The Sin function 204

The Cos function 204

The Exp function 204

The Ln function 204

The Sqrt function 205

The Arctan function 205
Ordinal functions 205

The Ord function 205

The Chr function 206

The Succ function 206

The Pred function 206
String procedures and functions 207

The Length function 207

The Pos function 207

The Concat function 207

The Copy function 208

The Delete procedure 208

The Insert procedure 208
Byte-oriented procedures and functions 209

The Moveleft procedure 209

The Moveright procedure 210

The Sizeof function 210
Packed character array routines 210

The Scaneq function 211

The Scanne function 211

The Fillchar procedure 211
Logical bit functions and procedures 212

The BAND function 213

The BOR function 213

The BXOR function 213

The BNOT function 213

The BSL function 213

The BSR function 214

The BRotL function 214

The BRotR function 214

The BTst function 214

The HiWrd function 214

MPW 3.0 Pascal Reference

The LoWrd function 215
The BClr procedure 215
The BSet procedure 215

12 Object-Oriented Programming 217

What are objects? 219
Differences from traditional programming 220
Creating objects 221
Declaring object types 222
Object type membership 222
Object reference variables 223
The OVERRIDE directive 224
Declaring methods 224
The Self parameter 225
Calling methods 226
The INHERITED directive 227
Using Object Pascal 227
Object Pascal without MacApp 227
The Object Pascal routines 228
The Member function 228
The ShallowClone function 228
The Clone function 229
The ShallowFree function 229
The Free function 229
Object Pascal with MacApp 229

13 Compiler Options and Directives 231

The MPW Pascal command line 233
Compiler options 233 v
Compiler directives 237
Input file control 240
The $1 directive 240
The $U directive 240
Shell variable substitution in filenames and segment names 240
Control of code generation 241
The $B+ directive 241
The $Ct directive 241
The $J+ directive 242

CONTENTS

xi

The $MC68020% directive 242 oy

The $MC68881% directive 242

The $OV+ directive 242

The $Rt directive 242

The $S directive 243

The $SCE directive 243

The $W+ directive 243
Debugging 243

~ The $D% directive 243

The $H directive 244
Conditional compilation 244

The $SETC directive 244

The $IFC directive 244

The $ELSEC directive 245

The $ENDC directive 245
Output control 245

The $Z+ directive 245

The $N+ directive 245
Other directives 246

The $A1 directive 246

The $AS directive 246

The $E directive 246

The $K directive 246

The $P directive 247

The $PUSH and $POP directives 247

A MPW 3.0 Pascal and Other Pascals 249
MPW 3.0 Pascal and ANS Pascal 251
Exceptions to the ANSI Standard 251
Extensions to ANS Pascal 252
Implementation-dependent features 252
MPW 3.0 Pascal and MPW 2.0 Pascal 253

xii MPW 3.0 Pascal Reference

Special Scope Rules 255
Scope of enumerated scalar constants 257
Scope of pointer base types 258

Rescrved Words and the Character Set 259

Reserved words 261
The character set 261

Syatax Summary 263

MPW 3.0 Pascal Files 289
Pascal compiler and tools 291
PExamples folder 291
Plnterfaces folder 291
PLibraries folder 293

Pascal and C Calling Conventions 295
External calling conventions 297

Parameters 297

Real type parameters 297

Structured type parameters 298

Function results 299

Register conventions 302
C calling conventions 302

C parameters 302

C function results 302

C register conventions 303 v
Interfacing C functions to Pascal 303

Examples of functions declared with the C directive 305

The SANE Library 307

The SANE data types 311
Descriptions of the types 311
Choosing a data type 311
Values represented 312

Range and precision of SANE types 312

CONTENTS

xiii

Example 313
The single type 314
The double type 314
The comp type 315
The extended type 315
Extended arithmetic 316
Special cases 317
Number classes 318
Infinities 318
NaNs 318
Denormalized numbers 320
Exceptional conditions 320
Invalid operation 320
Undedlow 321
Overlow 321
Divide-by-zero 321
Inexact 321
The SANE environment 321
The SANE interfaces and libraries 322
Descriptions of constants and types 322
The DecStrLen constant 332
Exception condition constants 322
The DecStr type 323
The DecForm record type 323
The RelOp type 324
The NumClass type 324
The Exception type 324
The RoundDir type 325
The RoundPre type 325
The Environment type 325 .
Numeric procedures and functions 326
Conversions between numeric binary types 326
The Num2Integer and Num2Longint functions 326
The Num2Extended function 327
Conversions between decimal strings and binary 327
The Num2Str procedure 328
The Str2Num function 328
Arithmetic, auxiliary, and elementary functions 328
The Remainder function 328
The Rint function 329

xiv MPW 3.0 Pascal Reference

The Scalb function 329

The Logb function 329

The CopySign function 329

The NextReal function 329

The NextDouble function 330

The NextExtended function 330

The Log2 function 330

The Ln1 function 330

The Exp2 function 330

The Expl function 330

The Xpwrl function 331

The XpwrY function 331
Financial functions 331

The Compound function 331

The Annuity function 331
Trigonometric functions 332

The Tan function 332
Additional transcendental routines 332

The Arctanh function 332

The Cosh function 332

The Sinh function 333

The Tanh function 333

The Logl0 function 333

The Exp10 function 333

The Arccos function 333

The Arcsin function 333

The SinCos procedure 333
Inquiry functions 334

The ClassReal function 334

The ClassDouble function 334

The ClassExtended function 334

The ClassComp function 335

The SignNum function 335
The RandomX function 335
The NaN function 335
The Relation function 335

Environmental access procedures and functions 336

The rounding direction 336

The GetRound function 336

The SetRound procedure 337

CONTENTS

xvi

Rounding precision 337 S
The GetPrecision function 337
The SetPrecision procedure 337
Exceptions 338
The SetException procedure 339
The TestException function 339
Using exceptional conditions to halt a program 340
The TestHalt function 340
The SetHalt procedure 340
Halts and the 68881 340
Saving and restoring environmental settings 341
The GetEnvironment procedure 341
The SetEnvironment procedure 342
The ProcEntry procedure 342
The ProcExit procedure 343
Support for the 68881 343
SANE and the 68881 344
More about the 68881 345
Register usage 345
Converting between extended formats in mixed-world programs 346

H The PasMat Utility 349
I The PasRef Utility 367
J The ProcNames Utility 377

K Advanced Topics for 68020 Programmers 381

Support for the 68020 383
Faster longint arithmetic 383
Bit-field operations 383

Glossary 385

Index 389

MPW 3.0 Pascal Reference

Tables and Figures

Preface xix
Table P-1 Example of syntax diagram xxvii

About MPW Pascal 1 :

Table 1-1 New interface files used in MPW Pascal 7

Table 1-2 Interface files included for compatibility in MPW Pascal 8
Table 1-3 Interface-file search rules 10

Table 14 Library object files used by MPW Pascal 12

Table 1-5 Example source files used by MPW Pascal 13

Table 146 Linking an application 18

Symbols 29
Table 2-1 Reserved words 32

Data Types 49

Table 4-1 Data types 51
Table 4-2 Realtypes 53

Expressions 95

Table 6-1 Precedence of operators 97

Table 6-2 Binary arithmetic operators 98
Table 6-3 Unary arithmetic operators (signs) 98
Table 64 Boolean operators 99

Table 6-5 Set operators 100

Table 6-6 Relational operators 101

Table 6-7 The pointer operator 103

Programs and Units 149
Figure 9-1 Example of simple unit reference 157

CONTENTS xvii

11

13

Predefined Routines 191
Table 11-1 Bit manipulation routines 212

Compiler Options and Directives 231

Table 13-1 Compiler options 234
Table 13-2 Compiler directives 238

Reserved Words and the Character Set 259
Figure C-1 The characterset 262

Pascal and C Calling Conventions 295

Table F-1 Parameter passing conventions 298
Table F-2 Function result passing conventions 300
Table F-3 C-compatible Pascal types 303

The SANE Library 307

Table G-1 SANE data types 313

Table G-2 NaNcodes 319

Table G-3 Number class descriptions 324
Table G4 Num2Str examples 328

Table G-5 SANE exceptions 338

Table G6 68881 SANE exceptions 339

xvili MPW 3.0 Pascal Reference

S /‘J

Preface

WELCOME TO THE MACINTOSH PROGRAMMER'S WORKSHOP 3.0 PASCAL REFERENCE. This
manual contains complete reference material on the Macintosh Programmer's
Workshop implementation of the Pascal language (called MPW Pascal), as well as
material on the Pascal Compiler and the libraries of predeclared procedures and
functions that are part of the MPW Pascal system. »

Contents

About APDA xxi
User groups xxii
About this manual xxiii
Aids to understanding xxiv
Other reference materials xxv
Notation xxvi
Syntax diagrams xxvii
Ellipses xxviii

xix

About APDA

APDA™ is an excellent source of technical information for anyone interested in
developing Apple-compatible products. Membership in the association allows you to
purchase Apple technical documentation, programming tools, and utilities. For
information on membership fees, available products, and prices, please contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 950146299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

PREFACE

xxi

User groups

Ask your authorized Apple dealer for the name of the Macintosh user group nearest you, or
call 1-800-538-9696. for information about starting your own user group, contact either:

- . The Boston Computer Society
One Center Plaza

Boston, MA 02108

USA

(617) 367-8080

or

Berkeley Macintosh User's Group
1442-A Walnut Street #62
Berkeley, CA 94709

USA

(415) 849-9114

xxii MPW 3.0 Pascal Reference

About this manual

This manual provides information about the MPW Pascal language and the use of the MPW
3.0 Pascal programming system. Here is a brief description of each chapter and appendix:

a Chapter 1, “About MPW Pascal,” contains general information about the MPW 3.0
Pascal language and Compiler and tells about the files you use to build an application
for an Apple® Macintosh™ computer.

s Chapter 2, “Symbols,” describes the fundamental components of the Pascal language.

s Chapter 3, “Blocks and Scope,” explains the block-structured nature of MPW Pascal
and discusses its scope rules.

s Chapter 4, “Data Types,” gives an overview of MPW Pascal’s predefined data types
and type constructors.

s Chapter 5, “Constants and Variables,” describes the forms that variables can take
within a Pascal program.

s Chapter 6, “Expressions,” details the rules governing the structure of Pascal
expressions and includes descriptions of the Pascal operators.

s Chapter 7, “Statements,” defines and gives examples of each of the Pascal statement
types.

s Chapter 8, “Procedures and Functions,” tells how to declare procedures and functions
and defines the use of parameters.

s Chapter 9, “Programs and Units,” discusses the overall structure of Pascal programs and
describes the use of units in writing large programs.

s Chapter 10, “Files and I/O,” explains the use of files and the routines that pefform
input and output tasks in a Pascal program.

s Chapter 11, “Predefined Routines,” provides information on the routines that are built
into the MPW Pascal Compiler and the non-I/O routines that are included in PasLib.

s Chapter 12, “Object-Oriented Programming,” describes the facilities provided in
MPW Pascal for creating and manipulating objects. *

s Chapter 13, “Compiler Options and Directives,” contains information on Compiler
options and directives.

s Appendix A, “MPW 3.0 Pascal and Other Pascals,” explainé how this version of Pascal
relates to the ANSI Standard and other Apple versions of Pascal. .

s Appendix B, “Special Scope Rules,” covers MPW Pascal scope rules that are applicable i
in special situations.

= Appendix C, “Reserved Words and the Character Set,” contains quick reference
information on these topics.

PREFACE

xxiii

Appendix D, “Syntax Summary,” lists all the syntax diagrams used in this book. bt

Appendix E, “MPW 3.0 Pascal Files,” is a complete list of the files that constitute the
MPW Pascal system.

Appendix F, “Pascal and C Calling Conventions,” explains how the Compiler passes
parameters and tells how to declare procedures using the C directive.

Appendix G, “The SANE Library,” describes the routines in the Pascal library that
implement the Standard Apple Numerics Environment (SANE) and provides special
information about the use of SANE and the 68881 floating-point coprocessor.
Appendix H, “The PasMat Utility,” tells how to use the Pascal utility program that
converts your source text into standard format.

Appendix I, “The PasRef Utility,” tells how to use the Pascal utility program that

. generates a cross-referenced list of the identifiers in your program.

Appendix J, “The ProcNames Utility,” tells how to use the Pascal utility program that
displays Pascal procedure and function names.

Appendix K, “Advanced Topics for 68020 Programmers,” gives special information for
those programmers using the 68020 central processing unit.

Aids to understanding

Look for these visual cues throughout the manual:

A Warning Warnings like this indicate potential problems. a

A Important Text set off in this manner presents important information. a

¢ Note: Text set off in this manner presents notes, reminders, and hints.

Computer words and phrases appear in boldface type when they are introduced. The term
is defined in the Glossary.

xxiv MPW 3.0 Pascal Reference

Other reference materials

The following books contain important reference material that you'll need when writing

programs in MPW Pascal:

e Apple Computer, Inc., Apple Numerics Manual, Addison-Wesley, 1986. A description
of the Standard Apple Numeric Environment and how it is invoked in the Macintosh.

s Apple Computer, Inc., Inside Macintosh (Volumes I-1IT), Addison-Wesley, 1985. The
complete story of the architecture and operation of the 128K and 512K Macintosh,
including details of its ROM routines.

s Apple Computer, Inc., Inside Macintosh (Volume IV), Addison-Wesley, 1986.
Additional and updated material covering the Macintosh and Macintosh Plus.

s Apple Computer, Inc., Inside Macintosh (Volume V), APDA, 1987. Additional and
updated material covering the Macintosh II and Macintosh SE.

s Apple Computer, Inc., Macintosh Programmer'’s Workshop 3.0 Reference, APDA, 1988.
A full description of how to use the MPW program preparation tools, including the
Pascal Compiler. ' ‘

In addition, you may find the following books helpful as a supplement to this manual:

s Henry Ledgard, The American Pascal Standard, with Annotations, Springer-Verlag,
1984. An annotated guide to ANS Pascal, as defined by the American National
Standards Institute.

m Apple Computer, Inc., MacApp 2.0 Programmer's Reference, APDA, 1987. How to use
MacApp™ with Object Pascal. For a brief description of MacApp, see Chapter 12.

s Apple Computer, Inc., Macintosh Programmer’s Workshop 3.0 Assembler Reference,
APDA, 1988. How to write assembly-language programs that you can link with MPW
Pascal.

® Apple Computer, Inc., Macintosh Programmer’s Workshop 3.0 C Reference, APDA,
1988. How to write C programs that you can link with MPW Pascal.

s Kurt]. Schmucker, Object-Oriented Programming for tRe Macintosh, Hayden Book
Co., 1986. A comprehensive introduction to Object Pascal and the theory behind
MacApp.

s Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, 3rd edition,
Springer-Verlag, 1985. Revised by Andrew B. Mickel and James F. Miner. The original,
and in many ways best, definition of Pascal.

PREFACE

XXV

You may want to find further information about the MC68020 and the MC68881 in these
volumes:

® Motorola, MC68020 32-Bit Microprocessor User’s Manual, 2nd edition, Prentice-Hall,
1985. The latest complete information for engineers, software architects, and
computer designers working on hardware and software systems using the MC68020.

= Motorola, MC68881 Floating-Point Coprocessor User’s Manual, 1st edition, Motorola,
1985. The latest complete information for engineers, software architects, and
computer designers to aid in the implementation of hardware and software systems
using the MC68881.

Notation

This manual uses typographic conventions to distinguish between different types of
words and symbols. Four fonts are used:

» Ordinary English is printed in plain Roman letters, the kind you are reading now.

m Special technical terms are printed in boldface when they are first defined. After that,
they are treated as ordinary English. Such terms are also defined in the Glossary at the
end of this manual.

m Elements of the Pascal language (or any other computer language) are printed in
computer voice. This helps you avoid confusing them with ordinary English words.

s Artificial terms, which have meaning only in this book, are printed in italics. Such
terms are sometimes called metasymbols; they are used primarily to indicate parts of
syntax diagrams that you replace with actual Pascal symbols.

Within the Pascal language, using the computer voice font, the following capitalization
conventions are used:
m Reserved words are printed in ALL CAPITALS.

» The names of predefined procedures and functions (that is, those that are part of the
MPW Pascal language) are printed in Initial Capitals.

s The names of data types and constants are printed in Lowercase.

~

Here is an example of how these fonts work together:

“The value of each write parameter, p,, is given by an output expression, which may
be of type char, integer, real, STRING, PACKED ARRAY OF char, Of boolean.”

xxvi MPW 3.0 Pascal Reference

Syntax diagrams

Throughout this manual, the syntax of MPW Pascal is illustrated with syntax diagrams.
These diagrams show you the rules that govern the way the elements of the language are
used. Figure P-1 is an example of a syntax diagram.

Within the syntax diagrams, words enclosed in rounded bubbles are reserved words or
other Pascal symbols. Words enclosed in boxes with square comers are higher-level
constructs, many of which have their own syntax diagrams.

s Figure P-1 Example of syntax diagram (identifier syntax)

> letter >—r>
L __J 4
| underscore letter

digit

identifier

i

\—— underscore

{

This diagram shows that an identifier begins with a letter or an underscore, and that this
letter may be followed by a letter, a digit, an underscore, or nothing. From there, you can
loop back to add another letter, digit, or underscore, or nothing at all.

The notation used to describe the syntax of predefined procedures and functions is
different. Here's an example of the format:

Write (fp Dle Pae s Py

This represents the actual syntax of the predefined procedure write. Notice the

following details:

s The terms £ p,, p,, and p, stand for actual parameters. The types and interpretations of
the parameters are given in the discussion of each procedure or function.

s The notation *p,, p,, ..., p,” means that any number of actual parameters can appear
here, separated by commas.

m Square brackets, [], indicate parts of the syntax that can be omitted.

Hence the example shows that you must pass to the procedure write parameters that
correspond to fand p,. Additional parameters are optional.

PREFACE xxvii

Ellipses
A sequence of three dots (...) in a syntax diagram indicates repetition of the preceding
material. \ :

- A sequence of two dots (..) indicates a scalar range. For example, 0..127 means “0 through
127

A sequence of three hyphens (—--) in a sample source text listing indicates lines not
specified in the sample.

xxviii MPW 3.0 Pascal Reference

Chapter 1 About MPW Pascal

MPW 3.0 PASCAL IS AN IMPLEMENTATION of the Pascal language that is part of the
Macintosh Programmer’s Workshop 3.0. It consists of several disk files:
s the MPW 3.0 Pascal compiler

s three special tools, PasMat and PasRef, for formatting and cross-referencing
Pascal programs (described in Appendixes H and I, respectively) and
ProcNames, for producing lists of the procedures and functions in your
Pascal programs or units (described in Appendix J)

s files of interface declarations that provide access to the Pascal, SANE, and
Macintosh routines

s the Pascal and SANE libraries

s several sample programs, with instructions for building them (including the

sample program, TestPerf.p for the performance tool PerfformReport, which
is located in the Tools folder on the MPW 3.0 disk)

A complete list of the MPW 3.0 Pascal files is included in Appendix E. =

Contents

About MPW Pascal version 3.0 3

About SADE and MacsBug 4

Object Pascal 5

About the Pascal interface files 6

Using interface files 9

About the Pascal libraries 10

About the Pascal examples 13

Installing MPW Pascal 14

Segmentation control 15

Creating resources 16

Creating an application in MPW Pascal 16
Building an application 17
Compiling an application 17
Linking an application 18

Creating a tool in MPW Pascal 19

Building a tool 20
Compiling a tool 20
Linking a tool 20
Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntime library 21
Desk accessory routines 22
Building a desk accessory 23
Linking a desk accessory 23
Creating code for different models of the Macintosh 24
Source code 24
Interface files 24
Compiler options 25
SANE and the Macintosh I 25
Floating-point enhancements 25
MC68881 enhancements 26
MC68020 enhancements 27
Other MPW 3.0 products 27

2 MPW 3.0 Pascal Reference

About MPW Pascal version 3.0

MPW 3.0 Pascal is a replacement version of MPW Pascal 2.0. If you're familiar with MPW
Pascal 2.0, see Appendix A for a list of the differences between the two versions.
Appendix A also contains a compliance statement about MPW Pascal’s relationship to the
American National Standards Institute’s definition of Pascal (ANS Pascal).

Besides providing nearly all the capabilities of Pascal described in the ANS Pascal
Standard, MPW 3.0 Pascal includes the following new features that expand the power and
flexibility of Pascal programming:

» support for SADE, the symbolic debugger (described in Chapter 13)

= a replacement for the $LoAD directive (described in "Automatic Symbol Loading" in
Chapter 9 and "The -noload, -clean, and -rebuild options" in Chapter 13)

s the use of character constants as valid string expressions

s extended and improved symbol support for MacsBug (described in Chapter 13)
= support for greater than 32K global data (described in Chapter 13)

» less strict requirements for forward class references

= new interface file organization

CHAPTER 1 About MPW Pascal

About SADE and MacsBug

The new Symbolic Apple Debugging Environment (SADE) is a symbolic debugger with an
interactive graphic interface like that of the MPW Shell. You can monitor the execution of
your program simultaneously at the processor level and the symbolic program source level.
This first release of SADE includes

s source display and source breakpoints

s variable display according to type (including records)

s display of Macintosh system structures

m programmable, extensible command language

SADE is included with the MPW 3.0 program but documented separately in the SADE
Reference. The familiar MacsBug application has been improved for MPW 3.0, and is also
documented in a separate volume, MacsBug Reference.

MacsBug fully supports the MC68000 and MC68020 processors, as well as the MC68881 and
MC68851 coprocessors. It is installed at startup, resides in RAM with your computer, and
runs on all Macintosh computers, including the Macintosh SE and the Macintosh II. With
MacsBug, you can examine memory, trace through a program, or set up break conditions
and execute a program until these conditions occur. See the SADE Reference for
instructions on using MacsBug and Appendix F of the Macintosh Programmer’s Workshop
3.0 Reference for the object file format.

4 MPW 3.0 Pascal Reference

Object Pascal

MPW Pascal includes a set of extensions, collectively known as Object Pascal, that
provide you with the ability to write object-oriented programs.

Object-oriented languages, such as Smalltalk-80 and Simula-67, let you strucwre your
programs in ways that allow for greater control over the ways they process data. Object-
oriented programming couples data and routines to produce powerful, easily
maintainable code. It also gives you the ability to write programs using MacApp, Apple’s
*expandable” Macintosh application.

MacApp provides a skeleton Macintosh application. It supplies a framework that
implements many of the features of the Macintosh interface, to which you add the unique
features of your own application. See the MacApp 2.0 Programmer's Reference for more
information.

The Object Pascal extensions are described at various places in this manual. If you're new
to object-oriented programming, you may want to read an introductory book on the
subject before you attempt to use Object Pascal. For suggestions, see “Other Reference
Materials” in the Preface.

The philosophy behind object-oriented programming is summarized briefly in Chapter 12.

Link, the Linker tool described in the Macintosh Programmer’s Workshop 3.0 Reference,
now contains the optimizing code for Object Pascal. It is available as the —opt option,
and it eliminates any need for the Optimize tool distributed with MacApp.

MPW Pascal provides strict error reporting for object errors. For details, see “Compiler
Options” in Chapter 13.

CHAPTER 1 About MPW Pascal

5

About the Pascal interface files

The MPW 3.0 Pascal interface files contain declarations for the routines in the MPW 3.0
Pascal libraries and the MPW 3.0 libraries, as well as the User Interface Toolbox and
Operaiing System routines that are built into tiie Macintosh ROMs. The Macintosh ROM
routines are described in detail in Inside Macintosh, Volumes 1 through 5. The interfaces to
these routines are divided into files according to their “Manager,” as described in Inside
Macintosh.

Here is a list of the changes in the Pascal interface files since MPW Pascal 2.0:

Toolbox and operating system interfaces have been divided into files according to
Manager rather than being divided between ToolInt £.pand osintf£.p. This
parallels the organization of Inside Macintosh as well as the C include files.

MemTypes.p, 0SIntf.p, ToolIntf.p,PackIntf.p, PickerIntf.p,
SCSIIIntf.p,and videoInt£.p are retained for compatibility; however, they
have been modified to include the appropriate new interface files. It is often
preferable to use the new interfaces directly. It is unlikely that you will need all of the
new interfaces previously included in 0sInt£.p and ToolInt£. p, so only use the
new interfaces that your program depends upon.

The new interface files will include the files that they depend upon, if necessary.

Sound.p has been updated to include all the Macintosh sound routines previously
included in sound.p and 0SIntf.p.

Printing.pand PrintTraps.p perform essentially the same function; however,
Printing.p checks to find out if it can use the apppropriate ROM routines and
includes the necessary glue to work with 64K ROMs. Print Traps . p generates more
efficient code that calls the ROM directly.

See Appendix G for more about SANE and the MC68881.

6

MPW 3.0 Pascal Reference

i \««"/"

Table 1-1 lists the new interface files.

s Table 1-1 New interface files used in MPW Pascal

Interface file Conteuts
Controls.p Control Manager interface
Desk.p Desk Manager interface
DeskBus.p Apple Desktop Bus Manager interface
Devices.p Device Manager interface
Dialogs.p Dialog Manager interface
DisAsmLookup.p SADE and MacsBug symbols
DiskInit.p Disk Initialization package interface
Disks.p Disk Driver interface
Errors.p Error file
Events.p Event Manager interface
Files.p File Manager interface

_Fonts.p Font Manager interface
HyperXCmd.p HyperCard 'XCMD' interface
Lists.p List Manager interface
Memory.p Memory Manager interface
Menus.p Menu Manager interface
Notification.p Notification Manager interface
OSEvents.p Operating System Event Manager interface
OSuUtils.p Operating System Utilities interface
Packages.p Package Manager interface
Palettes.p Palette Manager interface
Picker.p Color Picker Manager interface
Printing.p Printing interface
Resources.p Resources Manager interface
Retrace.p Vertical Retrace Manager interface
Scrap.p Scrap Manager interface
SCSI.p SCSI Manager interface
SegLoad.p Segment Loader interface
Serial.p Serial Driver interface
Shutdown.p Shutdown Manager interface
Slots.p Slot Manager interface
Start.p Start Manager interface
Strings.p String conversion routines

(Continued)

CHAPTER 1 About MPW Pascal

= Table 1-1 (Continued) New interface files used in MPW Pascal
Interface file Contents

TextEdit.p Text Edit interface

Timer.p Timer Manager interface
ToolUtils.p Toolbox Utilities interface

Types.p Common types

Video.p Video interface

Windows.p Window Manager interface

Table 1-2 lists the old Pascal interfaces along with the new interfaces to use directly.

= Table 1-2 Interface files included for compatibility in MPW Pascal

Instead of this file Use a subset of

MacPrint.p Printing.p

MemTypes.p Types.p

0SIntf.p OSUtils.p, Events.p, Files.p,
Devices.p, DeskBus.p, DiskInit.p,
Disks.p, Errors.p, Memory.p, OSEvents.p,
Retrace.p, Segload.p, Serial.p, Shutdown.p,
Slots.p, Sound.p, Start.p, Timer.p

PackIntf.p Packages.p

PickerIntf.p Picker.p

SCSIIntf.p SCSI.p

ToolIntf.p ToolUtils.p, Events.p, Controls.p,
Desk.p, Windows.p, TextEdit.p,
Dialogs.p, Fonts.p, Lists.p, Menus.p,
Resources.p, Scrap.p,

VideoIntf.p Video.p

8 MPW 3.0 Pascal Reference

Using interface files

The interface files for the Pascal and MPW libraries as well as the Macintosh ROMs are in
the {PInterfaces} directory. You can determine which interface files to use for a specific
routine or data type by finding out which library or Macintosh Manager the routine or data
type belongs to. You can also find out the library or Managei' name by searching the
{PInterfaces} directory for the routine or type name with the MPW Search command,
described in the Macintosh Programmer's Workshop 3.0 Reference.

The compiler searches several directories for interface files, until the specified file is
found. It searches the directory containing the current input file, directories specified
using the —1i option to the compiler, and directories specified in the Shell variable
{PInterfaces}. ‘

You specify the units needed for your programs by using the uses statement:
uses unitname, unitname, ... ;

The compiler assumes that a unit 'unitname' will be found in the file 'unitname.p'. This is
the file for which it then searches. To override this assumption, use the {$U} directive. See
"Compiler Directives" in Chapter 13 for details.

The form of the pathname also determines where the compiler looks for the interface file.
If a full pathname is specified, the compiler uses exactly that name and performs no
search. A full pathname contains at least one colon () but doesn't begin with a colon. If a
partial pathname is specified, the compiler searches several directories for the file. Partial
pathnames either begin with a colon or don't contain any colons.

Interface files can be nested up to five levels deep.

CHAPTER 1 About MPW Pascal

9

Table 1-3 summarizes the compiler’s interface-file search rules.

s Table 1-3 Interface-file search rules

Full pathnames

uses filename Use the name as specified.

Partial pathnames

uses filename Search the following directories, in this order:
1. The directory of the source file that contains the uses
statement '
2. Directories specified by the compiler’s -i option, in the order
specified
3. Directories specified by the Shell variable {PInterfaces}

About the Pascal libraries

The MPW 3.0 Pascal files include several libraries that contain the executable object
code for most of the predefined Pascal procedures and functions (described in

Chapter 11) as well as the code for more specialized routines. In addition, libraries include
code needed to access the Macintosh ROM routines. A full description of the Macintosh
ROM routines is included in Inside Macintosh.

Certain libraries are shared by Pascal and one or more other languages; they are in the
directory identified by the MPW 3.0 Shell variable { Libraries}. Three libraries
(PasLib.o, SANELib.o,and SANELib881.0) are specific to Pascal; they are in the
directory {PLibraries}.

Every MPW 3.0 Pascal program must be linked with the libraries Runt ime. o,
Interface.o, and PasLib. o. Others are required for different program operations,
as summarized below. For further information about using these libraries, see the
Macintosh Programmer's Workshop 3.0 Reference.

10 MPW 3.0 Pascal Reference

MPW Pascal includes the following libraries.

s The Standard Pascal Library in the file {PLibraries}PasLib. o contains all of the
standard Pascal 1/0 routines, the heap initialization routines, and certain special 1/O
routines described in Chapter 10. Every MPW Pascal program must be linked with this
library. The names of the special I/O routines all begin with p; if you call any of them
explicitly, you must use the interface file PasLibInt £. p. The standard Pascal I/O
routines are implemented implicitly by the compiler and do not require an interface
file.

s The Pascal SANE libraries in the file {PLibraries)SANELib.o contain the
procedures and functions described in Appendix G. These procedures and functions
provide accurate, extended-precision floating-point arithmetic. If you use any of
them in your program, you must use the interface file SANE. p in your compilation and
link it with the library {PLibraries}SANELib.o. SANELib. o will use the MC68881
when one is available.

s The Pascal SANE Library for the MC68881 floating-point coprocessor is included in the
file (PLibraries}SANELib881 . o and contains alternate SANE routines that call
the MC68881 directly. This library does not work on machines without an MC68881.

Table 1-4 lists the library object files used with MPW Pascal. The first eight files, provided
with the Macintosh Programmer’s Workshop, are shared with other languages and appear
(' in the {Libraries} directory. The remaining files, provided with MPW Pascal, are used only
- with Pascal and appear in the {PLibraries} directory.

CHAPTER 1 About MPW Pascal

11

s Table 14 Library object files used by MPW Pascal
Libraries that may be used
with MPW Pascal Use

Interface.o
ToolLibs.o

DRVRRuntime.o

ObjLib.o

PerformLib.o

Stubs.o

Runtime.o
HyperXLib.o
Paslib.o

SANELib.o

SANELib881.o

Inside Macintosh libraries shared with other languages.
Contains the code for the cursor control and manager
routines described in the Macintosh Programmer’s
Workshop 3.0 Reference. If you use any of these
procedures in your program, you must include the
appropriate interface file in your compilation and link
it with this library.

Run-time support for desk accessories and other
drivers. If your program is a desk accessory, you must
link it with this library.

Facilities described in Chapter 12 that implement
object-oriented programming without MacApp. If you
use any of these techniques without using MacApp, use
the interface file objInt £.p in your compilation and
link it with this library.

Performance measurement routines. (See the MPW 3.0
Reference for more information on performance
measurement.)

Stubs used by the Linker to replace unused library
routines for tools.

Data initialization routines.

HyperCard 'XCMD' routines

Standard Pascal library containing all standard Pascal
I/0 routines and heap initialization routines.

SANE Library of procedures and functions that provide
accurate, extended-precision floating-point
arithmetic.

SANE Library that is functionally equivalent to the
library SANELib.o except this version must be used
when you have invoked the -Mc68881 compiler
option.

See “Linking an Application” later in this chapter for more information on using these

libraries.

12 MPW 3.0 Pascal Reference

About the Pascal examples

The Pascal files consist of eight sample Pascal programs included with MPW Pascal: an
application, a tool, a desk accessory, and a program that demonstrates the use of
performance tools. In addition, the makefiles containing the commands needed to build
each of the examples are provided in the same folders. These files are in {PExamples}.

Table 1-5 lists these files.

s Table 1-5 Example source files used by MPW Pascal

Source files PExamples folder

Makefile Makefile for building sample programs

Instructions Instructions for building sample programs.

Sample.p Sample Pascal application. This is the sample
application described in “A Simple Example Program”
in Chapter 1 of Inside Macintosh, Volume 1. It is a simple
MultiFinder-aware sample application.

TESample Simple MultiFinder-aware TextEdit application.

SillyBalls.p Simple color QuickDraw sample application

TubeTest.p Simple color QuickDraw and Palette Manager

ResEqual.p Sample application: an MPW tool.

Memory.p Sample desk accessory. The Memory desk accessory
displays the current free space in the application and
system heaps, the free space on the default volume, and
the name of the default volume. This information is
updated every 5 seconds. When Memory is first opened,
itcalls _MaxMem to purge memory, thus showing the
upper bounds on free space in the heaps.

EditCdev.p Sample Control Panel device with a TextEdit item.

TestPerf.p A sample program that uses the Pascal Perfformance

Tools.

The file Instructions contains step-by-step instructions for building each of the
sample programs. After installing MPW and MPW Pascal, as described in the Macintosh
Programmer’s Workshap 3.0 Reference, open this file and follow the instructions.

CHAPTER 1 About MPW Pascal

13

Installing MPW Pascal

Instructions for installing MPW Pascal on a hierarchical file system (HFS) hard disk 20 or
20SC appear in the Macintosh Programmer’s Workshop 3.0 Reference. After installing MPW
by following those instructions, run the MPW Install script and insert the MPW Pascal disk.

Alternatively, you can install Pascal with these steps:

1. Copy the file Pascal (the compiler) to the {MPW1Tools folder.
2. Copy the folder PExamples to the {MPW}Examples folder.

3. Copy the folder Plnterfaces to the {MPW]Interfaces folder.
4. Copy the folder PLibraries to the {MPW]Libraries folder.

¢ Note. You can put the compiler, examples, and libraries in different directories,
provided you change the default values of various Shell variables defined in the
Startup file. You can modify the file Startup itself or, preferably, modify the file
UserStartup. The following variables determine the locations of files supplied with
MPW Pascal.

s {Commands} A comma-separated list of directories containing tools
and applications. The directory containing the Pascal
compiler should appear in this list.

= {PInterfaces} A comma-separated list of directories to search for
Pinterface files. This should include the Plnterfaces
directory.

s (PLibraries} The directory containing PLibrary files. This should be
the pathname of the PLibraries directory.

For more information, see the Macintosh Programmer’s Workshop 3.0 Reference.

14 MPW 3.0 Pascal Reference

Segmentation control

A segment is a part of code that can be separately loaded into memory. Your program can
be written without explicit segmentation or it can contain a number of different
segments.

Each *copE" resource in the application’s resource fork corresponds to a segment
containing one or more routines. (The ' CODE* resource with ID 0 contains the jump table;
other *CODE* resources contain routines.) At run time, a segment is automatically loaded
by the Segment Loader when you call one of the routines contained in the segment. The
segment is not unloaded until the application explicitly unloads it by calling un1ocadseg.
See Inside Macintosh for more information about the Segment Loader.

You can specify which routines are placed in which segments in two ways. This section
tells how to use the $s directive to specify segmentation. The Macintosh Programmer’s
Workshop 3.0 Reference explains how to use the Link command to modify a program’s
segmentation.

Segmentation helps you reduce your program’s run-time memory requirements. A typical
segmentation scheme divides a program into an initialization segment and 2 main
processing segment. You can also put routines that are seldom executed—printing
routines, for instance—in a separate segment that is not loaded when the program begins
executing. This allows the program to be loaded faster because the printing routines are
not loaded until they are needed. If you don't specify segmentation, the compiler puts
the entire program into a segment called Main.

The $s directive also lets you specify several segments within a single source file. To
assign source code to a segment, precede the code with a compiler directive of the form

{$S segment-name)

The code following this directive is placed in the named segment until the compiler reads
another $s or the end of the source file.

N

¢ Note Inan ss directive, segment names are case sensitive. Leading spaces are not
significant, and all characters are included, up to the end of the comment character.

CHAPTER 1 About MPW Pascal

15

Code for a given segment does not have to be contiguous within the source file. The
program may take the following form:

{$S SegA}
Sfunction

{$S segB}
Sunction

{$S Sega}

and so forth. The code following an $s directive is placed in the named segment uatil the
next $s directive is encountered or the compiler reads the end of the source file.

The compiler marks each routine with the name of its segment. Then the Linker collects all
-of the functions and procedures for a segment from various input files and places them
into one code segment in the output file.

Creating resources

Noncode resources, such as the resources that specify menus, windows, and dialogs, can
be created using the Resource Editor (ResEdit) and the Resource compiler (Rez). These
tools are described in the Macintosh Programmer’s Workshop 3.0 Reference and the
ResEdit Reference.

Creating an application in MPW Pascal

An application is a program that can be run under the Macintosh Finder or MultiFinder.
Applications can also be run from the MPW Shell: execution of the MPW Shell is
suspended, and the application takes over the computer's memory and display while
executing. >

The code for an application is contained in * CODE* resources in the resource fork of its
file. Additional resources in the same file describe the menus, windows, dialogs, strings,
and other resources used by the application. Inside Macintosh explains in detail how to
write a Macintosh application.

This section outlines the steps for building an application in MPW Pascal. The Instructions
file in the PExamples folder describe some of the tools that can be used to automate the
process. The MakeFile file in the PExamples folder illustrates the use of some of the tools.
The Macintosh Programmer’s Workshop 3.0 Reference describes these tools in detail.

16 MPW 3.0 Pascal Reference

Building an application

The easiest way to build any program in MPW is to use the Build menu. We will build
Sample, an application from the Examples folder. The source files for Sample are Sample.p
and Sample.r. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Select Build from the Build menu and type the program name sample.

You will see something like this on the screen:

3:58:13 PM -==—-- Build of Sample
3:58:13 PM -===- Analyzing dependencies
3:58:14 PM -=--- Executing build commands
3:58:40 PM ----- Done
sample

The Build command compiles and links the application. For details on independently
compiling and linking an application, see the sections “Compiling an Application”and
“Linking an Application” that follow.

Press Enter to launch the sample application. You can cut, paste, copy, and move the
cursor. Quit (Command-Q) returns you to the MPW Shell.

Compiling an application

To compile a Pascal program, first start the MPW Shell application, then enter the Pascal
command in any window. Typically, the command specifies options and the name of the
source file to the compiler, although neither is required. For example, the command

Pascal -p Samplé.p

compiles the source file Sample.p, producing the object file Sample.p.o. The -p option
specifies that progress information should be written to diagnostic output. This
information appears on the screen after the command.

You can find a complete specification of the Pascal command—including input,
output, and diagnostic specifications, status values, and options—in the Macintosh
Programmer's Workshop 3.0 Reference.

CHAPTER 1 About MPW Pascal

17

Linking an application

The Linker is used to combine object files from several separate compilations, together
with any necessary library object files, to produce the executable code resources for a
program. The Linker either creates a new resource file, containing only the code resources
for your program, or replaces the code resources in an existing resource file, leaving other
resources, such as menus and dialogs, intact. This allows you to run the Resource compiler
either before or after running the Linker. The Macintosh Programmer’s Workshop 3.0
Reference describes the Linker in detail.

An appiimtion written partly or totally in Pascal for use on any Macintosh should be linked
with the libraries listed in Table 1-6.

Link code for use on any Macintosh with these libraries:

s Table1-6 Linking an application

Inside Macintosh interfaces Run time support Pascal libraries
{Libraries}Interface.o {Libraries}Runtime.o {PLibraries}PasLib.o
{PLibraries}SANELib.o

Code compiled to use the MC68881 on the Macintosh II:

Inside Macintosh interfaces Run time support Pascal libraries
{Libraries}Interface.o {Libraries}Runtime.o PLgbrariesfPasLib:o
PLibraries}SANELib881.0

It's wise to link new programs with all the libraries that might be appropriate. If you
specify unnecessary files in the Link command, the Linker dnsplays a message listing which
files can be removed from your build instructions.

If you are using the -Mc68881 compiler option, you must place the file
{PLibraries]SANELib881.0 first in your link list. This file contains some definitions that
override 80-bit versions in other libraries. The Linker uses the first definition it reaches,
then displays warning messages when it encounters duplicate definitions. You can use
the -a linker option to suppress warnings about duplicate definitions.

Programs written partly in Pascal and partly in assembly language or C should be linked
with the file CRuntime.o and not the file Runtime.o. The Linker will detect several
duplicate entry points when linking with both the Pascal and the C libraries. All but one of
these duplicates can be safely ignored: the copies of the routines are identical.

18 MPW 3.0 Pascal Reference

The exception is the execution starting point. If execution is expected to begin with the
c functionmain (), no special precautions are necessary. However, if your main program
- is written in assembly language or Pascal but parts of your program are written in C (and
must therefore be linked with file CRuntime.o), the object file containing your main
program must appear before CRuntime.o in the list of object files passed to the Linker.

Creating a tool in MPW Pascal

A tool is a program that operates within the MPW Shell environment. The Pascal compiler,
Rez, and Link are all tools. You can write your own tools in Pascal, C, or assembly language.
The Macintosh Programmer’s Workshop 3.0 Reference describes tools and how they are
created. This section contains specific information about writing tools in Pascal.

You execute a tool by entering an MPW command. The parameters specified in the
command line are passed as parameters to the main program. The Shell variables that are
exported are also passed as a parameter to the main program; they can be accessed
directly or by using the getenv () function from the Pascal Library. To access these
parameters, use interfaces as follows:

USES
CursorCtl,
IntEnv,
PasLibIntf;

You can find additional details about parameters to tools in the Macintosh Programmer’s

Workshap 3.0 Reference.

Tools have direct access to MPW Shell windows and selections. The F1LE variables
stdin, stdout, and stderr refer to MPW’s standard input, standard output, and
diagnostic output, respectively. By default, Pascal Library I/O functions read standard
input (text entered from the Shell) and write to standard Pascal output. Any files opened
by tools, using either Pascal Library functions or Inside Macintosh library functions, read
and write to windows if the file specified is open in a window. The contents of the
window are read or written in place of the data fork of the file. Selections in windows can
also be read and written as if they were files, by adding the suffix .§ to the filename (for
example, HD:MPW:Worksheet.§).

CHAPTER 1 About MPW Pascal

19

Building a tool

The easiest way to build any program in MPW is to use the Build menu. We will build
ResEqual, a sample MPW tool that compares the resources in two files. The source files for
ResEqual are ResEqual.p and ResEqual.r; since a makefile already exists, you don’t need to
create one. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Now select Build from the Build menu and type the program name ResEqual.

You will see something like this on the screen:

10:58:07 PM ~==-- Build of ResEqual.
10:58:08 PM -==-- Analyzing dependencies.
10:58:10 PM ----- Executing build commands.

Rez :Examples:PExamples:ResEqual.r -append -o ResEqual

Pascal :Examples:PExamples:ResEqual.p

Link -w -t MPST -c 'MPS ' "Oya:.MPW:Libraries:"Runtime.o
"Oya:.MPW:Libraries:"Interface.o "Oya:.MPW:PLibraries:"PasLib.o
"Oya: .MPW:PLibraries:"SANELib.o "Oya:.MPW:Libraries:"ToolLibs.o
:Examples:PExamples:ResEqual.p.o -o ResEqual
10:58:35 PM —-===- Done.

ResEqual

Now press Enter.

Compiling a tool

You compile a tool in exactly the same way you compile an application. The previous
information regarding include-file search rules, segmentation, and resources applies
equally to tools and applications.

Linking a tool

The MPW Shell récognizes a tool by the type and creator. Specify the following options
when linking a tool:
Link -t MPST -c "MPS " ..

This command specifies the file type and creator of an MPW tool. Follow the same library
linking rules for tools as for applications (see the section “Linking an Application”). In
addition, if your tool calls any of the spinning cursor or error manager routines, link with
the following libraries:

{Libraries}Stubs.o
{Libraries}ToolLibs.o

20 MPW 3.0 Pascal Reference

//////

The file stubs . o contains a collection of “stubs,” or dummy routines, for several
functions that are defined in the run-time library but are not necessary for MPW tools
running under the MPW Shell. You can use these stubs to reduce the size of a tool.
Stubs. o should be linked in before any of the other libraries.

Creating a desk accessory in MPW Pascal

A desk accessory is a program that you run by selecting it from the Apple menu. It shares
its execution environment with the currently executing application. Information on
writing desk accessories appears in the Desk Manager and Device Manager chapters of
Inside Macintosh and in the Macintosh Programmer's Workshop 3.0 Reference. This section
contains information specific to writing desk accessories in MPW Pascal.

Desk accessory restrictions

A desk accessory has neither a jump table nor a global data area.

s Because it does not have a jump table, a desk accessory must be in a single segment.
Either omit segmentation specifications so that all your code is placed in the default
segment, or use identical segmentation specifications for all of your routines. Use the
Link command to move any library routines you use into your single segment.

s Because it does not have a global data area, a desk accessory written in Pascal must
not use global variables. Furthermore, a desk accessory cannot call library routines that
require global data. Programming hints for avoiding these restrictions appear in the
Macintosh Programmer’s Workshop 3.0 Reference.

The DRVRRuntime library

Desk accessories have traditionally been written in assembly-language source, partly
because of the peculiar resource format used by the system for desk accessories, the
'DRVR' fresource. Setting up the 'DRVR' layout header, passing register-based procedure
parameters, and coping with the nonstandard exit conventions of the driver routines have
made it fairly difficult in the past for programmers not familiar with assembly language to
implement desk accessories in higher-level languages.

CHAPTER 1 About MPW Pascal

21

To overcome these difficulties and simplify the task of writing a desk accessory in Pascal,
MPW provides the library DRVRRuntime.o and the resource type 'DRVW' declared in
MPWTypes.r. Together they compose the driver layout header and the five entry points
that set up the open, prime, status, control,and close functions of a driver.
For more information about ' DRVR ' resources, see the Device Driver chapter of Inside
Macintosh, Volume 2. For an example defining desk accessory resources, see the file
Memory s in the folder PExamples.

Using the library DRVRRuntime.o to create desk accessories offers a number of
advantages:

= No assembly-language source is required. Each of the driver routines—DRVROpen,
DRVRPrime, DRVRStatus, DRVRControl, and DRVRC1lose—can be written in
Pascal.

s The DRVRRuntime library handles desk accessory exit conventions: your routines
simply return a result code.

The DRVRRuntime library consists of a main entry point that overrides the Pascal run-time
initial entry point. The DRVRRuntime entry point contains driver “glue” that sets up the
parameters for you, calls your routine, and performs the special exit code required by a
desk accessory to return control to the system. Your routines perform the actions of the
desk accessory, such as opening a window or responding to mouse clicks in it.

Desk accessory routines

Desk accessories that use the library DRVRRuntime must contain the five functions
DRVROpen, DRVRP rime, DRVRStatus, DRVRCont rol, and DRVRClose. All of these
functions have the same parameter and result types. They are declared as Pascal-
compatible functions so that the library DRVRRuntime can be used for writing desk
accessories in Pascal, C, and assembly language. Each of these five routines should be
declared as follows: .

FUNCTION DRVROpen (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
BEGIN

DRVROpen := resultCode;
END;

Types ParmB1kPt r and DCt 1Pt r are defined in the Files.p file. Type osErz is defined
in MemTypes.p. Details on each function appear in the Macintosh Programmer’s
Workshop 3.0 Reference, in the Desk Manager chapter of Inside Macintosh, Volume 1, and in
the Device Manager chapter of Inside Macintosh, Volume 2.

2 MPW 3.0 Pascal Reference

[,4'
{

Building a desk accessory

The easiest way to build any program in MPW is to use the Build menu. We will build
Memory, a sample desk accessory that displays the memory available in the application
and system heaps, and on the boot disk.

The source files for Memory are Memory.c and Memory.r; since a makefile already exists,
you don’t need to create one. Using the Directory menu, set the curmrent directory to
HD:MPW:Examples:PExamples.

Using the Directory menu, set the directory to HD: MPW: Examples: PExamples. Now
select Build from the Build menu and type the program name Memory. You will see
something like this on the screen:

4:12:40 PM ----- Build of Memory.
4:12:41 PM ----- Analyzing dependencies.
4:12:43 PM ----- Executing build commands.

pascal Memory.c
Link -w -rt DRVW=0 -sg Memory "Oya:MPW:Libraries"DRVRRuntime.o
Memory.p.o
"Oya:MPW:Libraries"Interface.o "Oya:MPW:PLibraries"Paslib.o -o
Memory.DRVW -c "?2222" -t "?2?2°22"

Rez -rd -c DMOV -t DFIL Memory.r -o Memory
4:13:06 PM ====- Done.

'Font /DA Mover' 'Oya:System Folder:System' Memory # Install DA

Press Enter to launch the Font/DA Mover. (If you have two megabytes or less of RAM,
you may not be able to do this under MultiFinder; restart with the Command key held
down, then try again.) Install the Memory DA in your System file. It gives you the current
size of the System Heap and the Application Heap.

Linking a desk accessory

~

A desk accessory written in Pascal must be linked with both DRVRRunt ime.o and
Runt ime.o. DRVRRunt ime.o must precede Runt ime.o in the list of object files passed
to the Linker, for example

LINK {Libraries}DRVRRuntime.o {Libraries}Runtime.o

CHAPTER 1 About MPW Pascal

Creating code for different models of the Macintosh

Using version 3.0 of MPW Pascal, you can create applications that run on all models of the
~ Macintosh. This section outlines the compatibilities among the machines and the
strategies for writing and compiling code that will run on the different models. Two
megabytes of RAM are required.

Source code

You can write your source code to be compatible with one or more models of the
Macintosh. You have four primary options:

s Code written for a Macintosh 512K also runs on a Macintosh XL, a Macintosh Plus, a
Macintosh SE, and a Macintosh II. If you want your program to run on any model,
follow the recommendations in Inside Macintosh, Volumes 1 through 3.

s Code written for a Macintosh Plus also runs on a Macintosh SE and a Macintosh II. If
you want your program to run on either of these models, follow the recommendations
in Inside Macintosh, Volumes 1 through 4. '

s Code written for a Macintosh SE also runs on a Macintosh II and a Macintosh 512Ke or
Macintosh Plus. If you want your code to run on any model with the most recent
system disk, follow the recommendations for a Macintosh SE in Inside Macintosh,
Volume 5.

» Code written for a Macintosh II, using the ROM code that is present only in that
model, runs only on a Macintosh II.

Interface files

A set of interface files provided with MPW Pascal gives you access from Pascal to the
Macintosh Toolbox and Macintosh Operating System routines built into the Macintosh
ROMs. Volume 5 of Inside Macintosh describes the ROM code that is new with the
Macintosh I and the Macintosh SE. Volume 4 of Inside Macintosh describes the code for
the Macintosh Plus.

Much of the new material is usable only on a Macintosh II, because it makes use of
hardware options that are not available on other models. You can include all of the
interface-file definitions in code for use on any model, but you cannot call ROM routines
that are not present on the machine that will run the compiled code.

y’ MPW 3.0 Pascal Reference

See Inside Macintosh, Volume 5, for detailed descriptions of the new material and the
models with which it can be used.

Compiler options

With the addition of the Macintosh II to the product line, there are now compiler
differences among the models as well as ROM code differences. These compiler
differences are discussed in the following sections.

SANE and the Macintosh I

 MPW Pascal includes numeric capabilities that conform to the Institute of Electrical and
Electronics Engineers (IEEE) Standard 754 for Floating-Point Arithmetic. This Standard is
the set of guidelines defined by the IEEE for the design and implementation of systems
that perform floating-point arithmetic.

The Standard Apple Numeric Environment (SANE) is Apple’s implementation of these
guidelines. MPW 3.0 Pascal uses SANE to provide a powerful, flexible environment for
numeric calculations.

The IEEE Standard recommends the implementation of two additional data types for
numeric programming, in addition to the real type that's specified in the ANSI
Standard. MPW Pascal includes these two additional types. They are described in
Appendix G. You'll also find references to SANE in the descriptions of predefined
arithmetic functions in Chapter 11.

SANE includes a library (SANELib) of useful numeric procedures and functions. This
library, described in Appendix G, works on all machines in the Macintosh family.

Floating-point enhancements

~

Applications using the SANE packages (Pack4 and Pack5) run faster on the Macintosh II
because of the 68881 floating-point coprocessor. The default mode of the compiler is to
call these packages for all floating-point operations. For the fastest possible arithmetic
on machines with a 68881, the compiler has an option that forces direct calls to the 68881.
When the option is used, the resulting code will not run on Macintoshes without both a
68020 and a 68381.

CHAPTER 1 About MPW Pascal

25

The SANE interface has been extended to provide support for the 68831: one new
constant for setting the default environment to work in both the 68000 and the 68881
worlds, two new functions for transferring between extended formats, and two new
functions for access to the 68881 trap mechanism. The code for these new features is
included in a new library SANELib881.0. The features are described in the updated
interface file, SANE.p, and are discussed in detail in “Converting Between Extended
Formats in Mixed-World Programs,” in Appendix G.

The setEnvironment (0) call will not work under the -Mc68881 option. Replace it
with SetEnvironment (IEEEDefaultEnv), Which works with or without the
-MC68881 option.

~ MC68881 enhancements

The Motorola 68881 does basic arithmetic and a large number of transcendental functions
very fast. Ordinarily, the MPW Pascal compiler generates calls to the SANE packages
(pack4 and packs5) for floating-point operations; if a 68881 is present, the SANE
packages use it, so floating-point packages are automatically faster. To take better
advantage of the 68881, the Pascal compiler has been modified to provide optional
direct calls to the coprocessor.

To access the 68881 directly for greater speed in basic arithmetic calls, type -Mc68881
on the command line or use the equivalent $Mc68881+ compiler directive (described in
detail in Chapter 13) and link with SANELib881.0 instead of SANELib.o. With the
-MC68881 option, the extended type is 12 bytes long and variables of the extended
type may be allocated to registers.

The -mMc68881 option will result in the use of transcendental functions whose accuracy is
identical to that of the SANE packages. For the faster but less accurate transcendental
functions provided on the 68881, type -4 Elems881=true on the command line. For
details, see Chapter 13.

For details on using the -MCc68881 option, see Appendix G.

A Important Use of the -MCc68881 option can generate instructions incompatible
with the 68000. Your program might not run on a Macintosh without'
the 68881, A

26 MPW 3.0 Pascal Reference

N

MC68020 enhancements

MPW Pascal supports the Motorola 68020 central processing unit with the compiler option
-MC68020 of the equivalent compiler directive $Mc68020+ (described in Chapter 13).
The 68020 yields faster longint arithmetic and improved performance with packed
structures. See Appendix K for advanced programming techniques for the MC68020.

A Important Use of the -MC68020 option can generate instructions incompatible
with the 68000. a

Other MPW 3.0 products

The MPW 3.0 Shell provides an integrated working environment within which you can write
programs in assembly language, Pascal, and C.

If you write programs in Pascal, you can also use MacApp for object-oriented
programming, as described in Chapter 12. The MPW 3.0 Pascal compiler cannot be used as
a stand-alone program.

Besides the assembly-language Assembler and the Pascal and C compilers, the MPW 3.0
Shell also contains a rich complement of editing, linking, and debugging tools including
SADE and MacsBug.

Here’s how to find more information about the ways you can combine your Pascal

programs with other MPW 3.0 facilities:

a For more information about the MPW 3.0 Shell, including how to edit your source text,
how to use the Build Menu facility, how to use Commando, how to use the command
language, how to create resources for your program, and how to use the linking and
debugging tools, consult the Macintosh Programmer’s Workshop 3.0 Reference.

» If you want to use assembly-language subroutines in your Pascal programs, or vice
versa, consult the Macintosh Programmer’s Workshop 3.0 Assembler Reference.

s If you want to write your program partly in Pascal and partly in C, consult the
Macintosh Programmer’s Workshop C 3.0 Reference and Appendix E of this reference.

« If you want to use MacApp to write object-oriented programs in MPW 3.0 Pascal,
consult the MacApp 2.0 Programmer’s Reference and Chapter 12 of this reference.

Many of the books just cited are all listed under “Other Reference Materials” in the
Preface.

CHAPTER 1 About MPW Pascal

’Chapter 2 Symbols

THIS CHAPTER DISCUSSES SYMBOLS, the smallest meaningful units of source text in a
Pascal program. =

Contents

Symbols 31
Special symbols and reserved words 32
Identifiers 33
Numbers 34
Labels 36
Quoted string constants 36
Quoted character constants 37
Delimiters 38
Directives 38
Special directives for Object Pascal 38
Comments and Compiler directives 39

Symbols

This chapter discusses symbols under the following headings:

s special symbols and reserved words

s identifiers

s numbers

s labels

s quoted string constants

s delimiters

m directives

s comments and Compiler directives

Every Pascal source text consists of a succession of such symbols. You write each symbol
as a string of ASCII characters, according to these rules:

s Each symbol must be complete and unbroken; you may not insert one symbol within
another.

s You can write comments anywhere, as long as they do not break up other symbols.
The Pascal Compiler simply skips over them.

= Subject to certain exceptions, explained below, you must write delimiters alternately
with the other symbols. The Compiler uses delimiters to determine where other
symbols begin and end.

The character set used by MPW Pascal is eight-bit extended ASCII, with characters
represented by numeric codes in the range 0..255. See Appendix C for the complete
character set.

The Compiler does not recognize the ASCII control codes (ASCII 0 through ASCII 31),
except tab and carriage return. Otherwise, it processes the following subsets of the ASCII
character set: .

= The letters are those of the English alphabet, A through Zand a through 2.
s The digits are the Arabic numerals 0 through 9.

s The hex digits are the Arabic numerals 0 through 9, the letters A through F, and the
letters a through f.

s The blanks are the space character (ASCII 32), the horizontal tab character (ASCII 9),
the return character (ASCII 13), and option-space (ASCII 202).

s The underscore, ASCII 95.

CHAPTER 2 Symbols

31

Special symbols and reserved words

Special symbols and reserved words are symbols having fixed meanings. If you try to
change their meanings or use them in ways other than their intended uses, the Compiler will
issue an error. The foliowing single characters are special symbols:

+ - * / =< > [1 .,) =z ~ @ { } $ & |

The following character pairs are special symbols:

<> <= >= o= .. (* *) (‘ .) * %

Some of the special symbols are also operators. Operators are defined in Chapter 3.
. & Note: The symbols (. and .) are equivalent to [and].

The reserved words in MPW Pascal are listed in Table 2-1.

= Table 2-1 Reserved words

AND DOWNTO IF NIL PROGRAM TYPE
ARRAY ELSE IMPLEMENTATION NOT RECORD UNIT
BEGIN END IN OF REPEAT UNTIL
CASE FILE INTERFACE OR SET USES
CONST FOR INTRINSIC* OTHERWISE STRING VAR
DIV FUNCTION LABEL PACKED THEN WHILE
DO GO10 MOD PROCEDURE TO WITH

* INTRINSIC is reserved for future use.

These reserved words appear in uppercase letters throughout this book. However, MPW
Pascal is not case sensitive—corresponding uppercase and lowercase letters are
equivalent.

R MPW 3.0 Pascal Reference

Identifiers

Identifiers are the names that denote constants, types, variables, procedures, functions,

units and programs, and fields in records. Here are the rules for writing identifiers:

identifier

An identifier can be of any length, but only the first 63 characters are significant,

They are not case sensitive; corresponding uppercase and lowercase letters are
equivalent.

They may contain only letters, digits, and underscore characters (ASCII 95); in
particular, they may not contain spaces.

Every identifier must begin with a letter or an underscore.

> letter >
L underscore —’] ‘ letter —

digit

underscore pa—

Here are some examples of identifiers:

Z

Knowledge SUM get_byte

An_identifier can_be_as_long_as_you_want_stop

CHAPTER 2 Symbols

33

Numbers

Within an MPW Pascal program, you can use ordinary decimal notation for numbers that
are constants of the data types integer and Longint and the real types (see

Chapter 4). You can also write hexadecimal integer constanis using the § character as a
prefix. Finally, you can use scientific notation (E or e followed by an exponent) for real
types. Here are the syntax diagrams for writing numbers:

digit sequence

hex digit sequence _ hex
L= 7
e > digit sequence
0 hex digit sequence

34 MPW 3.0 Pascal Reference

real-type numbers @
sign 1= »{ NaN -DCZ} ()
b=

sequence

 J
Y

Y
v

Y

sequence

digit
sequence

4
-0
- digt | J
sequence

The letter E or e preceding the scale factor in an unsigned real means “times ten to the
power of.”

These are examples of correct notation for numbers in MPW Pascal programs:

1 +100 -0.1 SE-3 87.35e+8 $A0S5D

Notice that SE- 3 means 5x10-3 and 87 . 35e+8 means 87.35x108. You can omit the plus
sign (+) before the exponent so that 8E+7 and 8E7 are equivalent.

Numbers written with a decimal point or exponent are stored as type extended (unless
explicitly assigned to a variable of another of the real types). Other decimal numbers are
stored as the smallest numerical type (integer or 1ongint) needed for that value. For
example, an integer value from -32768 to 32767 is stored in two bytes, as type
integer. See Chapter 4 for the value limits of different numerical data types.

A hexadecimal constant with one to four digits is stored as an integer (two-byte)
quantity; one with five to eight digits is stored as a 1ongint (four-byte) quantity. An
integral hexadecimal value with more than eight significant digits causes an overflow error.
Leading zeros are counted in hexadecimal digit counts. The sign of the resulting value is
implied by the hexadecimal notation.

CHAPTER 2 Symbols

35

Here are some examples of hexadecimal constants and their integer values:

$F=15

$FFFF=-1 (integer)
$O0FFFF=65535 (longint)
SFFFFF=1048575
$FFFFFFFF=-1 (longint)

Labels

A label is a digit sequence in the range 0..9999. Leading zeros are not significant in labels.
For example, 0078 and 78 are equivalent.

Labels are used with oTo statements, described in Chapter 7.

Quoted string constants

A quoted string constant is a sequence of zero or more characters from the ASCII
character set given in Appendix C. Here are the rules for writing quoted string constants:

s Each constant must be written all on one line of the program source text.
s Each must be enclosed by single quotation marks (apostrophes).

» Blanks count as characters in quoted string constants.

s The maximum number of characters in one constant is 255.

s A quoted string constant with nothing between the single quotation marks denotes
the null string,

s If you want the quoted string constant to contain a single quotation mark, you must
write the single quotation mark twice.

36 MPW 3.0 Pascal Reference

quoled string constant . N\ . e
U/ L <) '
string
character
string character
any char except @ or Retun

-O—0O

These are examples of quoted string constants:

'Baltic' ' NOVOGOROD* 'Don''t Panic!'
1.1

'Al Tty e
The last is a null string. The next to last contains one single quotation mark.

All string values have a length attribute (see “String Types” in Chapter 4). In the case of a
quoted string constant, the length is fixed, it is equal to the actual number of characters in
the string value.

Quoted character constants

Syntactically, a quoted character constant is simply a quoted string constant whose length is exactly
one. 'aA' is an example of a quoted character constant.

quoted character constant '@ . d::ge, O

A quoted character constant is compatible with any char type or STRING type; that is, it
can be used either as a character value or as a string value.

CHAPTER 2 Symbols 37

Delimiters

Delimiters are symbols that separate other symbols in the source text so that the
Compiler can distinguish them as discrete objects. Blanks (spaces, tabs, carriage returns,
and option-spaces) are the principal delimiters. In addition, all the spetial symbois listed
earlier in this chapter serve as delimiters while performing their other functions. Hence the
Compiler can process the expression

2+seven=number_ of_planets

even though it contains no spaces or tabs, because + and = are delimiters.

Comments and Compiler directives (described below) also act as delimiters.

Directives

Directives are words that have special meanings only when used in place of a procedure or
function block. They are not reserved and can be used as identifiers in other contexts.
FORWARD, EXTERNAL, C, and INLINE are the four directives used by MPW Pascal.
INLINE is different from the other three in that it is followed by a list of constants, which
make up a machine-language subprogram used by the Compiler in interpreting the
directive. See Chapter 8 for more information about INLINE.

Special directives for Object Pascal

The words INHERITED and SELF have special meanings only when used in an Object
Pascal method declaration (discussed in Chapter 12). You can use the words inhenited and
self as identifiers anywhere but within a method. In practice, Object Pascal programs
consist almost entirely of methods, so INHERITED and SELF are rarely used as identifiers
in Object Pascal programs. Ordinary Pascal programs never contain methods.

The word OVERRIDE is used like a directive. It has special meaning only when used after a
method heading in an object type declaration. However, OVERRIDE is added to the
method and does not replace its block.

38 MPW 3.0 Pascal Reference

Comments and Compiler directives

The constructs

{ any text not containing right-brace }
(* any text not containing star-right-paren *)

are called comments. They are ignored by the Compiler.

A comment cannot be nested within another comment formed with the same kind of
delimiters. However, a comment formed with { . . . } delimiters can be nested within a
comment formed with (. .. =) delimiters, and vice versa.

¢ Note: The use of nested comments is one of the differences between MPW Pascal and
ANS Pascal. Nested comment structures allow you to “comment out” source text that
contains only one style of comment delimiters—that is, render it invisible to the
Compiler.

A Compiler directive is a comment that contains a $ character immediately after the { or
(* that begins the comment. The $ character is followed by the mnemonic of the
Compiler command. Compiler directives are similar to the Compiler options you enter
through the MPW Pascal command line, the main difference being that you embed
directives in the source text of your program. They are listed in Chapter 13.

CHAPTER 2 Symbols

39

Chapter 3 Blocks and Scope

THE BLOCK IS THE FUNDAMENTAL UNIT of Pascal source text. Each block is part of
one of the following listed items:

s a procedure declaration

s a function declaration

s 2 program

= aunit

Each block consists of declarations and statements, constructed according to
these rules:

s No specific declaration parts are required.

s Declarations may be written or intermixed in any order. =

Contents
Block syntax 43
Scope rules 46

Redeclaration in an enclosed block 46

Position of declaration within its block 46

Redeclaration within a block 47

Declarations in units 47

Predefined identifiers 47 (
Special rule for object types 48

Scopes, object files, and other languages 48

41

Block syntax

The following diagrams specify the overall syntax of any block:

block label \

constant
declaration part

declaration

variable A
declaration
part

procedure and function
declaration part

statement

The label declaration part declares all labels that mark statements in the corresponding
statement part. Each label must mark exactly one statement in the statement part.

CHAPTER 3 Blocks and Scope

it G O

sequence

The digit sequence used for a label must be in the range 0..9999.

The constant declaration part contains all constant declarations local to the block.

constant declaration part consant
'(CONST) ™™ declaration >

The type declaration part contains all type declarations local to the block.

type declaration part ype
'(TYPE) > declaration >

The variable declaration part contains all variable declarations local to the block.

variable declaration ;
=G e |

44 MPW 3.0 Pascal Reference

The procedure and function declaration part contains all procedure and function
declarations local to the block.

Drocedure and function declaration part procedure
declaration

declaration

method

The statement part specifies the actions to be executed by the block.

statement part compound
—_——
statement

4 Note: At run time, all variables except file variables declared within a particular block
have unspecified values each time the statement part of the block is entered. File
variables are initialized to NIL.

The next section discusses the scope of items within the program or unit in which they are
defined. See Chapter 8 for the scope of items defined in the interface part of 2 unit and
referred to in a host program or unit.

CHAPTER 3 Blocks and Scope

45

Scope rules

The appearance of an identifier or label in a declaration defines the identifier or label. All
subsequent occurrences of the identifier or label must be within the scope of its
declaration.

Ordinarily, the scope of an identifier or label extends from its declaration onward to the
end of the current block, including all blocks enclosed by the current block within that
area. There are several exceptions to this rule, however. They are explained below.

& Note. Additional anomalies in the MPW Pascal scope rules are described in
Appendix B.

Redeclaration in an enclosed block

Suppose that outer is a block and 1nner is another block that is enclosed within
outer. If an identifier declared in block outer has a further declaration in block
Inner, then block Inner and all blocks enclosed by Inner are excluded from the scope
of the declaration in block outer.

Object identifiers cannot be redeclared.

Position of declaration within its block

The declaration of an identifier or label must precede all corresponding occurrences of
that identifier or label in the program text. In other words, identifiers and labels cannot
be used until after they are declared. However, there are two exceptions to this rule:

= The base type of a pointer type can be an identifier that has not yet been declared.
In this case, the identifier must be declared somewhere in the same type declaration
part in which the pointer type occurs.

s An object type identifier may appear before it is declared, as long as that appearance
is in the same type declaration part as the declaration.

46 MPW 3.0 Pascal Reference

Redeclaration within a block

An identifier or label cannot be declared more than once in the outer level of a particular
block, except for record and object field identifiers.

A record field identifier is declared within a record type. It is meaningful only in

combination with a reference to a variable of that record type. Therefore, the following

redeclarations are possible:

s A field identifier can be redeclared within the same block, as long as it is not declared
again at the same level within the same record type.

s An identifier that has been declared to denote a constant can be redeclared as a
record field idenu’fier in the same block.

Declarations in units

Identifiers declared in the interface part of a unit have a scope that extends to the end of
aunit. The scope of these identifiers also extends to include any other units or programs
that reference the unit in a uses clause.

Identifiers declared in the implementation part of a unit have a scope that extends to the
end of the unit. These identifiers are hidden from any other units or programs that
reference the unit in a USES clause.

For a more complete discussion of units, the interface part, and the implementation part,
see “Unit Syntax” in Chapter 9.

Predefined identifiers

MPW Pascal provides a set of predefined constants, types, procedures, and functions.
The identifiers of these objects, along with the statement identifiers Cycle and Leave,
behave as if they were declared in a “super-outermost” block enclosing the entire program,
thus, their scope includes the entire program.

CHAPTER 3 Blocks and Scope

47

Special rule for object types

In addition to having normal identifier scope, the scope of any object type
identifier, object field identifier, or method identifier extends over the following
areas:

- w all descendants of its type

» all procedure and function blocks that implement methods of that object type and its
descendants

The following extra redeclaration rules apply to object types and their associated

identifiers:

s If you declare the identifier oBJECT in a program that uses Object Pascal, the
Compiler will issue an error.

» Object field identifiers can be redeclared in objects that are not descendants of the
original object type. However, they cannot be redeclared in any descendant of the
object type where they are originally declared, even if that object is declared in a
different block.

s Method identifiers can be redeclared, but the parameter list and return value (if any)
for the new method must be identical to those for the original method.

Scopes, object files, and other languages

The discussion of scopes in this chapter assumes that programs are written entirely in
Pascal. Pascal provides strong type checking at compile time and a secure mechanism
(the unit) for sharing global declarations across modular compilations. Other languages,
such as C and assembly language, do not have identical mechanisms. To mix Pascal with
other languages, you may need to use some of the Compiler options that modify the
default treatment of Pascal symbols in object files. See the discussion of the $N+, $z*,
" and $z+ options in Chapter 13. .

48 MPW 3.0 Pascal Reference

Chapter 4 Datz Types

YOU MUST SPECIFY A TYPE when you declare a variable. The type determines the set
of values that variable can assume and the operations that can be performed
upon the variable. »

Contents

Simple types 52
Real types 53
Scalar types 55
The integer type 56
The longint type 56
The boolean type 57
The chartype 57
Enumerated types 58
Subrange types 59
String types 60
The pointer type 61
Structured types 64
Array types 65
Record types 67
Set types 69
File types 70
Object types 71
Type compatibility 73
Compatible types 73
Assignment-compatible types 74
Type coercion 75
Type declarations 76
User-defined anonymous types 77

A type declaration associates an identifier with a type.

declaration
ape = 1 identifier —.@—0 type —.®—>

bpe simple

> type ——
structured

1 e ¥

pointer
™ type)

| objea

type

The occurrence of an identifier on the left side of a type declaration declares it as a type
identifier for the block in which the type declaration occurs. The scope of a type
identifier does not include its own declaration, except for pointer types and object
types. The MPW Pascal data types are arranged as shown in Table 4-1.

s Table 41 Data types

Simple types Pointer type Structured types

Real types ARRAY
real, single* RECORD
double* SET
extended’ FILE
comp, computational® OBJECT
Scalar types

integer*

longint*

char*

boolean*

enumerated types

subrange types

String types*

CHAPTER 4 Data Types

51

The types marked with an asterisk in Table 4-1 are predefined; their type declarations are
built into the Compiler. Others are user-defined and require a prior type declaration in
your source text.

The types listed in Table 4-1 are discussed in the rest of this chapter.

Simple types

" All the simple types define ordered sets of values.

stmple type scalar .
type
] real
type
Ly SUing >
type

The simple types include real types, scalar types, and strings.

S2 MPW 3.0 Pascal Reference

Real types

There are four real types in MPW Pascal, all predefined. They are listed in Table 4-2.

s Table 42 Real types

Identifiers Values Memory size

real,single floating-point numbers 4 bytes

double floating-point numbers 8 bytes

extended floating-point numbers 10 bytes (without
-MC68881)

extended floating-point numbers 12 bytes (with
-MC68881)

comp, computational whole numbers 8 bytes

“With -68881, all floating point bpes use 12 bytes.

All the floating-point calculations required in MPW Pascal programs are performed
according to the specifications for the Standard Apple Numeric Environment (SANE).
SANE is based on the IEEE Standard for Floating-Point Arithmetic, which recommends
the use of four floating-point types in high-level languages. In the IEEE Standard, the
types are called single, double, extended, and comp. SANE provides the three
additional floating-point types included in MPW Pascal.

The numeric environment for the real types uses IEEE Standard defaults: numbers are
rounded to the nearest value in extended precision, and all halts are disabled. Each
program begins with these defaults and with all exception flags clear. Functions for
managing the environment and changing these parameters ase included in the SANE library,
which is discussed in Appendix G of this manual.

The ANS rea1 type is identical to the SANE single type. The MPW Compiler will accept
both identifiers and treats them identically. In addition, the Compiler treats the names
comp and computational in exactly the same way.

The real types are written as follows:

real type real
——— type —
identifier

CHAPTER 4 Data Types

53

These are the possible values for real-type variables:

Finite values (a subset of the mathematical real numbers). As constants, these values
can be denoted as described under “Numbers” in Chapter 2. The value zero has a sxgn
like other numbers, which appears in textual output.

Infinite values, +INF and -INF. These arise either as the result of an operation that
overflows its intended storage type or as the result of dividing a finite value by zero.

NaNs (the word NaN stands for Not a Number). NaNs arise as the result of operations
that have no meaningful numeric result. For example, the result of multiplying oo by
zero is 2 NaN. In textual output, 2 NaN appears as NAN, followed by a set of
parentheses enclosing an integer that identifies the source of the NaN.

The four real types differ in the range and precision of values that they can hold and in the
amount of storage space they require:

54

Real (0r single) type variables take up four bytes of storage. The magnitude of
real type values can range from approximately 1.401298464E45 to 3. 402823466538
in scientific notation. They have 7 to 8 digits of precision.

Double type variables take up eight bytes of storage. The magnitude of double
values can range from approximately 5.0E-324 to 1.7E308 in scientific notation. They
have 15 to 16 digits of precision.

Extended type variables take up ten bytes of storage (12 bytes with the -MC68881's
flag). The magnitude of extended type values can range from approximately
1.9E-4951 to 1.1E4932 in scientific notation, They have 19 to 20 digits of precision.

The comp, Of computational, data type holds only integer values in the
approximate range 19.2E18. (The exact range is -263+1 to 263-1; -2} i treated as a
NaN.) comp type variables are used for fixed-point values, where the decimal point is
placed by the application. Although comp values appear to be more like the integer
types than like the other real types, computations using comp values are performed as
with the real types. Comp values are converted to extended before computations are
performed.

Note. rReal values are converted to extended before calculations are performed, so
calculations using the extended data type are faster and more compact than other
real-type calculations. You may want to declare all real-type temporary variables,
formal value parameters, and function results as extended in order to save execution
time and code size. External data should be stored as one of the smaller types rather
than as extended, which varies among SANE implementations.

MPW 3.0 Pascal Reference

Scalar types

Scalar types are simple types with the following special characteristics:

Within a given scalar type, all possible values form an ordered set and each possible
value is associated with an ordinality, which is an integer or 1ongint value. Except
for integer and 1ongint values, the first value of the scalar type has ordinality 0,
the next has ordinality 1, and so on for each value in that scalar type. The ordinality of
an integer Of longint value is the value itself; for example, the ordinality of 10 is
-10. In any scalar type, each value except the first has a predecessor based on this
ordering, and each value except the last has a successor based on this ordering.

The standard function oxd, described in Chapter 11, can be applied to any value of
scalar type; it returns the ordinality of the value.

The standard function Pred, described in Chapter 11, can be applied to any value of
scalar type; it returns the predecessor of the value. For the first value in the scalar type,
the result is unspecified.

The standard function succ, described in Chapter 11, can be applied to any value of
scalar type; it returns the successor of the value. For the last value in the scalar type,
the result is unspecified.

Scalar types are written as follows:

scalar type . subrange

type
enumerated
- type
ordinal

i type

identifier

MPW Pascal has four predefined scalar types—integer, longint, boolean, and
char—and two classes of user-defined scalar types: enumerated types and subrange
types. These are described in the following sections.

CHAPTER 4 Data Types

55

The integer type

Values of type integer are a subset of the whole numbers. As constants, these values can
be denoted as described under “Numbers” in Chapter 2. The predefined integer
constant maxint is defined to be 32767. The range of the type integer is the set of
values

-(maxint+1l), -maxint, ... -1, 0, 1, ... maxint-1l, maxint

that is, =32768 to +32767. These are 16-bit, 2's-complement integers.

The longint type

Values of type 1ongint are a subset of the whole numbers. As constants, these values can

be denoted as described under “Numbers” in Chapter 2. The predefined 1ongint

constant maxlongint is defined to be +2147483647. The range of the type 1ongint is

the set of values

-(maxlongint+l), -maxlongint, ...-1, 0, 1, ...maxlongint-1, maxlongint

that is, -231 to 231-1, or -2147483648 to +2147483647. These are 32-bit, 2's<complement
integers. Arithmetic on integer and 1ongint operands is done in both 16-bit and 32-
bit precision, as follows:

s All integer constants in the range of type integer are considered to be of type

integer. All integer constants in the range of type 1ongint, but not in the range
of type integer, are considered to be of type 1ongint.

s When both operands of an operator (or the single operand of a unary operator) are of
type integer, 16-bit operations are always performed and the result is of type
integer (truncated to 16 bits if necessary). Similarly, if both operands are of type
longint, 32-bit operations are always performed and the result is of type 1ongint.

= When one operand is of type longint and the other is of type integer, the
integer operand is converted to 1longint, 32-bit operatiqns are performed, and
the result is of type 1ongint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

s The expression on the right of an assignment statement is evaluated independently of
the size of the variable on the left. For example, if variable 1ongvar is declared as
type longint, the statement longVar : =maxint+maxint will still cause
integer overflow. If necessary, the result of the expression is truncated or extended
to match the size of the variable on the left.

An important point to remember is that each operator is applied only to its two operands,
5o, at most, one of those operands is converted. If the expression contains other
operands, those are not necessarily converted.

56 MPW 3.0 Pascal Reference

For example, in the expression
onelnt+twoInt+threeInt+onelongint

the value of onexnt is added to twoInt in a 16-bit operation, the result is added to
threeInt in another 16-bit operation, and the result of that is converted to a 1ongint
value and added to oneLongint. The result of the expression is a 1ongint.

The ord4 function described in Chapter 11 can be used to convert an integer value to a
longint value.

& Note: Operations other than division and multiplication on 1ongint values take
approximately one and a half times as long as corresponding operations on integer
values. Division and multiplication take more than twice as long.

The boolean type

The values of the boolean type are truth values denoted by the predefined constant
identifiers £alse and t rue. These values are ordered so that £alse is “less than” t rue.
The function call ord (false) returns zero, and ord (t rue) returns one.

All boolean variables are one byte (except in packed arrays and records). Because of
this, a "garbage" byte may be allocated due to alignment of a subsequent variable (for
example, a boolean variable followed by 2 1ongint or integer variable).

The char type

A variable of type char holds extended eight-bit ASCII values, represented by numeric
codes in the range 0..255. The ordering of the char values is defined by the ordering of
these numeric codes. The function call ord (c¢) , where cis a char value, returns the
numeric code of ¢. The Macintosh character set is given in Appendix C.

A char variable occupies two bytes of storage, except in packed arrays and records.

CHAPTER 4 Data Types

R

Enumerated types

An enumerated type defines an ordered set of values by listing the identifiers that denote
these values. The ordering of these values is determined by the sequence in which the
identifiers are listed.

enumeraled type @ identifier @
list

identifier list

identifier —

+

The occurrence of an identifier within the identifier list of an enumerated type declares it
as a constant for the block in which the enumerated type is declared. The type of this
constant is the enumerated type being declared. These values are constants of the
enumerated type in the same way that the characters *a*, 'B*, and *C"* are constants of
type char and the integers 1, 2, and 3 are constants of type integer.

These are examples of enumerated types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, widowed, single)

Given these declarations, yel1low is a constant of type color, diamond is a constant of
type suit, and so forth.When the ord function is applied to a value of an enumerated
type, it returns an integer representing the ordering of the value with respect to the
other values of the enumerated type. For example, given the declarations above,

ord (red) returns zero, ord (yellow) returns one, and ord (blue) retumns three.

& Note: Certain special scope rules apply to enumerated scalar types. They are described
in Appendix B.

58 MPW 3.0 Pascal Reference

Subrange types

You define a subrange type by giving a range of values from some scalar type, called the
associated scalar type. A subrange type provides for range checking of values withir: the
associated scalar type. The syntax for a subrange type is

subrange pe | constant ___.<:::::::)__4_ constant
expression expression g

Both constants must be of scalar type. The first constant expression in a subrange type
declaration must be smaller than the second constant expression. Both must be of the
same scalar type, or one must be of type integer and the other of type 1ongint. If one
is of type integer and the other of type 1ongint, the associated scalar type is

longint.

& Note: When using a constant expression in a type declaration that is declaring a
subrange type, you cannot use a parenthesis as the first character after the equal sign.
The Compiler distinguishes subrange types from enumerated types by the first symbol
after the equal sign: a left parenthesis in that position signifies an enumerated type. If
a subrange specification needs parentheses, precede it with 0+. This rule applies only
within the type declaration part of a program.

Here are some examples of subrange types:

1..100

~10..+410

red. .green

0+ (constl-const2) DIV 2..const2

A variable of a subrange type possesses all the properti;.s of variables of the associated
scalar type, with the restriction that its runtime value must be in the specified interval. In
addition, the variable may have less space allocated only if the range checking is on.

CHAPTER 4 Data Types

String types

A string value is a sequence of characters that has a dynamic length attribute.

“ The length attribute of a string is the actual number of characters in the sequence at any
time during program execution. An example of a string type declaration is

aString = STRING[15]

where 15 is the maximum size of the string. The size is the maximum limit on the length of
any value of this type. The size attribute of a string type is determined when the string
type is defined, and cannot change. It has a value in the range 1..255. A string type
declared without a size attribute is treated as STRING[255] . '

The length is the actual number of characters in the sequence at any time during program
execution. The current value of the length attribute is returned by the standard function
Length.

~

string bpe size
(O~ e —(D—1

string

identifier

size atiribute constant
expression

The ordering relationship between any two string values is determined by the ordering
relationship of character values in corresponding positions in the two strings. The exact
algorithm is given under “Comparing Strings” in Chapter 6. A capital letter does not have
the same ordering value as the corresponding lowercase letter; for example, 4 is valued
lower than a. '

Remember that the size of a string is the value of the size attribute assigned to the string
type when it is declared, and the length of a string is the number of characters it holds at
any point, regardless of its size attribute. A program can measure the actual length of a
string by using the Length function described under “String Procedures and Functions” in
Chapter 11.

60 MPW 3.0 Pascal Reference

& Note: With a string constant, the size attribute is equal to the length—that is, the
number of characters actually in the string.

Although string types are simple types by definition, they have some characteristics of
structured types. As explained under “Array Types” later in this chapter, individual
characters in a string can be accessed as if they were components of an array. In addition,
all string types are implicitly packed types and all restrictions on packed types apply to
strings. A list of these restrictions is given later in the section *Structured Types.”

A string is stored as a one-byte-length field followed by the characters in the string. You
can therefore change the length of the string by changing its zeroth character. For
example,

myStr([0)] := chr(ord(myStr[0])+n);
changes the length of myst ¢ by the value of n.

Operators applicable to strings are discussed in Chapter 6. Predeclared procedures and
functions for manipulating strings are described in Chapter 11.

The pointer type

You can use the pointer type to define a pointer variable—a variable that holds a memory
address. When you declare a pointer variable, you must specify the data type of the
memory area it points to, which is then called the base type of that pointer variable.

potnter bype _®’ base
type

pointer

base hpe type
' identifier .

CHAPTER 4 Data Types

61

The base type may be an identifier that has not yet been declared. In this case, it must be
declared somewhere in the same type declaration part as the pointer type.

& Note: Certain special scope rules apply to pointer base types. They are described in
Appendix B.

Aside from an address, any pointer variable can also hold the value NIL.

Conceptually, NIL is a pointer type value that does not point to anything. You can assign
NIL to any pointer variable, regardless of type. However, you cannot assign the value of a
pointer variable of one type to a pointer variable of another type, even if the first pointer
variable has the value NIL. You assign the value NIL to a pointer variable, rather than
leaving it with an undefined value, primarily because you can test for NIL.

You can create a pointer in three ways:

s By using the New procedure described in Chapter 11. This allocates a new memory area
in the application heap for a dynamic variable and points the pointer variable to it.
The size of the area is determined by the base type of the pointer variable, including
optionally specified variants; see the discussion of New in Chapter 11. A dynamic
variable is a variable that has no identifier of its own; the only way to access one is
through a pointer.

m By using the @ operator described in Chapter 6. This points to the memory area
occupied by any existing variable. The @ operator pointer function creates a pointer
that is compatible with all other pointer types.

s By using the Pointer function described in Chapter 11. This allows any pointer to be
coerced to any other pointer type.

Every memory address is numeric. You can use the predefined functions ord and ord4 to
convert any address to its corresponding longint type value.

The Pointer function and the @ operator avoid the Compiler's type-checking safeguards
and should be used with caution.

Chapter 5 discusses the syntax for accessing a variable pointed to by a pointer variable.

The following is an example showing how the Pointer function, the @ operator, and the
New procedure can be used to access memory dynamically. Suppose you have these
declarations:

TYPE ptr = “longint;
charPtr = “char;
VAR p: ptr;
thisLong: longint;
cp: charPtr;
thisStr: STRING;

62 MPW 3.0 Pascal Reference

If the address of a 1ongint variable is already known, you can use the Pointer
function to intialize the 1ongint pointer p to it:

p := Pointer($904); ({Point p to address $904 in low memory.}

If the 1ongint variable is already identified, you can use the @ operator to point p to it:
p := @thislong; {Point p to memory location of thislong.}
Here's another example to shows the difference: between Pointer and @:

p:= Q@cp; {p points to the pointer cp}

whereas

p:= Pointer(cp); {p and cp point to the same address}

& Note: The value of the pointer p remains valid only within the scope of the variable
thisLong.

If you want to create a new memory area to hold a dynamic variable of 1ongint type,
you use the New procedure:

New (p) : {Point p to new heap area of longint size.}

Once p is given a value by one of the foregoing techniques, you can alter its value by the
same means. For example, the following assignment moves the area pointed to by p four
bytes toward higher memory:

P := Pointer(Ord4 (p)+4); {Move pointer 4 bytes.}

As an example, this technique lets you access the first character in a string thisstr and
assign its value to the char variable cp:

cp := Pointer(Ord4 (@thisStr)+1l); {Access first char in string.}
{length byte is at Ord4(@thisStr)+0}

N

CHAPTER 4 Data Types

63

Structured types

A structured type is a data type that stores more than one value. Each structured type is
characterized by its structuring method and by the type or types of its components. If
the component type is itself structured, the resulting structured type exhibits more than
one level of structuring. There is no specified limit on the number of levels of structuring a
data type can have.

structured
hpe > :‘;;Z >——>
file b
record |
i type
structured 4
> type
identifier
object
— type J
identifier

The use of the word PACKED in the declaration of a structured type indicates to the
Compiler that data storage should be economized, even if this causes less efficient access
to a component of a variable of this type. Although you can use the word PACKED when
declaring any structured type, PACKED only affects the storage of record and array types.

The word PACKED only affects the representation of -one level of the structured type in
which it occurs. If a component is itself structured, the component’s representation is
packed only if the word PACKED also occurs in the declaration of its type.

(71 MPW 3.0 Pascal Reference

The @ operator is valid on byte-aligned fields of packed structures.

A Important If 68000 programmers get an odd address and try to access more than
a byte, they’ll get an illegal address. a

There are two restrictions on using components of packed variables:

s You can only use components of variables of packed types as actual variable
parameters with procedures or functions if the component is allocated on a byte
boundary.

s You can only use the @ operator on components of variables of packed types if the
component is allocated on a byte boundary.

The implementation of packing is complex; details of memory allocation to components
of a packed variable are not specified in this manual.

Array types

An array type consists of a fixed number of components that are all of one type, called the
component type. The number of elements is determined by one or more index types,
one for each dimension of the array. There is no specified limit on the number of
dimensions. In each dimension, the array can be indexed by every possible value of the
corresponding index type, so the number of elements is the product of the number of
values in each of the index types. However, static global arrays should not contain more
than 32767 bytes unless the -m option is used. See Chapter 13 for details on the -m
Compiler option.

D0 w O

O

index tipe ordinal
type

CHAPTER 4 Data Types

65

The type following the word oF is the component type of the array and can be an existing
type identifier or a new type.

¢ Note: The index type cannot be 1ongint or a subrange of longint.

- Here are some examples of array types:

ARRAY[1..100]) OF real
ARRAY [boolean] OF color
ARRAY[1..Pagesize~-1l] OF char

- 1f the component type of an array type is also an array type, the result can be regarded
either as an array of arrays or as a single multidimensional array. For example,

ARRAY [boolean] OF ARRAY([1..10] OF ARRAY[size] OF real

is equivalent to

ARRAY [boolean, 1..10, size] OF real

Likewise,

PACKED ARRAY([1..10] OF PACKED ARRAY[1..8] OF boolean

is equivalent to

PACKED ARRAY[l..iO,l..B] OF boolean

“Equivalent” means that the Compiler performs the same actions with the two
constructions.

A component of an array can be accessed by following the array’s identifier with one or
more indexes in brackets, separated by commas. For example, the two expressions

myArray[5, 4]
myArray([S] [4] .

both access the fourth element in the fifth subarray of the array myarray. For further
information, see "Arrays and String Indexes” in Chapter 5.

66 MPW 3.0 Pascal Reference

v

Record types

A record type consists of a fixed number of components called fields, which can be of
different types. For each component, the record type declaration specifies the type of
the field and an identifier that names the field.

record
= o
field
: list '

st
L—F fixed —> >
part
part
Jixed part field

field declaration _idanifxer_.@_.wpe_.
list

CHAPTER 4 DataTypes 67

The fixed part of a record type specifies a list of “fixed” fields, giving an identifier and a
type for each field. Each fixed field contains data that is always accessed in the same
way.

" Here is an example of a record typé:

RECORD

year: integer;
month: 1..12;
day: 1..31
END

A variant part allocates memory space with more than one list of fields, thus permitting
the data in this space to be accessed in more than one way. Each list of fields is called a

variant. The variants overlay each other—that is, they occupy the same space in memory.

variant part

CASE
L identifier

[__. 28

lype
1ag field type ordinal
type —>
identifier
variant
constant

68 MPW 3.0 Pascal Reference

e

VVVVV

The variant part allows for an optional identifier, called the tag field identifier. If a tag
field identifier is present, it is automatically declared as the identifier of an additional
fixed field of the record, called the tag field. The value of the tag field may be used by
the program to indicate which variant should be used at a given time. If there is no tag
field, the program must select a variant on some other criterion.

¢ Note: The type 1longint cannot be used as a tag type.

Each variant is identified by one or more constants. All the constants must be distinct and
must be of a scalar type that is the same as or compatible with the tag type. The constants
that introduce a variant are not used for referring to fields of the variant; the actual field
identifiers are used. However, these constants can be used as optional arguments with the
New procedure, described in Chapter 11.

Variant fields are accessed in exactly the same way as fixed fields.

Here are some examples of record types with variants:

RECORD
name, firstName: STRING[80]:
age: 0..99;

CASE married: boolean OF
true: (spousesName: STRING([80]):;
false: ()

END

RECORD
x, y: real;
area: real;
CASE s: shape OF
triangle: (side: real; inclination, anglel, angle2: angle);
rectangle: (sidel, side2: real; skew, angle3: angle);
circle: (diameter: real)
END

~

Set types
A set type defines a group of values, each of which has the same scalar type, called the

set’s base type. Each possible value of a set type is some subset of the possible values of
the base type.

CHAPTER 4 Data Types

& Note: The base type must not have more than 2040 possible values and cannot be
longint of integer. If the base type is a subrange of integer, all its values must
be within the limits 0..2039. Because of the way sets are stored, you cannot specify a
base type range such as 5000..5001.

When you create a variable of a set type, that variable can hold none, one, sevexal, or all of
the values of the set.

set hpe ordinal
SET OF type

The set operators and the way in which set values are denoted in Pascal are discussed in
Chapter 6.

Sets with fewer than 32 possible values in the base type can be held in a register and offer
the quickest access time. For sets larger than that, there is a performance penalty that is
essentially a linear function of the size of the base type.

The empty set [] is a possible value of every set type.

Here are some examples of set types:

SET OF char

SET OF (black, brown, red, yellow, white)

SET OF 1..10

names = (Eliot, Pound, Yeats) {a new scalar type}

poets = SET OF names {a set type using the new scalar type}

File types

A file type is a structured type consisting of a sequence of components that are all of one

type, the component type. The component type may be any type except a file type or
any type containing a file type.

The component data is not in program-addressable memory but is accessed by means of a
peripheral device. The number of components (the length of the file) is not fixed by the
file type declaration.

70 MPW 3.0 Pascal Reference

|
(2
S

The type FILE (without the OF TYPE construct) represents an untyped file, for use with
the Blockread and Blockwrite functions described in Chapter 10.

¢ Note: Although the symbol FILE can be used as a type identifier, it cannot be
redeclared because it is a reserved word.

The predefined file type text denotes a file of characters organized into lines. The file
may be stored on a file-structured device, or it may be a stream of characters from a
character device such as the Macintosh keyboard. Files of type text are supported by
the specialized I/O procedures discussed in Chapter 10.

In a stored file of type text of FILE OF -128. .127, the component values are packed
into bytes on the storage medium. With the type FILE OF char, the component values
of this type are stored in 16-bit words.

In MPW Pascal, files can be passed to procedures and functions as variable parameters.

Chapters 5 and 10 discuss methods of accessing file components and data.

Object types

An object type defines a structure for an object. An object type can have fields, like a
record. The diagram for field lists above and the discussion of record type fields also
.apply to object type fields, except that an object type cannot have a variant part. In
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>