
Britton Lee Host Software

RSC USER'S GUIDE

(R3v5)

Ma.rch 1988

Pa.rt Number 205-1575-003

This document supersedes all previous documents of the same title. This edition is intended for
use with Britton Lee Host Software Release 3.5 and future releases, until Curt.her notice.

The information contained within this document ia subject to change without notice. Britton Lee
assumes no responsiblity for any errors that may appear in this document.

The software described in this document is furnished under license and may only be used or
copied by the terms or such license.

IDM, Intelligent Database Language and IDL are trademarks of Britton Lee, Inc.

Unix is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

MS-DOS is a trademark of Microsoft Corporation.

·AOS(VS is a trademark of the Data General Corporation.

COPYRIGHT © 1988
BRITTON LEE, INC.

ALL RIGHTS RESERVED
(Reproduction in any form is strictly prohibited)

Table of Contents

1. Introduction to RSC .. 1
1.1. Overview ... 1

1.1.1. Input to RSC ... 1

1.1.2. Precompilation ... 2
1.1.3. Output from RSC ... 4

1.1.4. Compilation .. 6

1.2. Data Types ... 7

1.3. Error Messages .. 8

1.4. References ... 9

1.4.1. RSC (II) .. 9
1.4.2. INITRC ... 9

1.4.3. ID1\1LIB .. 9

1.4.4. SQL .. 9

1.4.5. RIC ... IO

2. Programming with RSC ... 11

2.1. SQL in C Code .. 11
2.1.l. Delineating SQL Commands .. 12

2.1.2. Placement of SQL Commands ... 13
2.2. C Expressions in SQL Commands .. 13

2.2.1. C Declarations Used by RSC ... 14
2.3. Selects .. 15

2.3.1. Singleton Selects .. 16
2.3.2. Looped Selects .. 16
2.3.3. Memory for Strings ... 19
2.3.4. Nested Selects .. 21

2.4. Canceling SQL Commands ... 22

3. Advanced Programming with RSC .. 25
3.1. Stored Commands .. 27

3.1.1. Obtaining Selected Data from Stored Commands 27
3.2. Transactions ... 32

3.2.1. Nested Transactions ... 35
3.2.2. New Transactions ... 38
3.2.3. Nested Operations in Select Loops ... 40

3.3. Deadlock Backout and Recovery ... 41

Appendix A: Stored Programs ... 45

Appendix B: RSC and the C Preprocessor .. 49

Appendix C: Portability of RSC Programs .. 53

Britton Lee iii

iv Britton Lee

Preface

Britton Lee's Integrated Database Management (IDM) system offers the means for shar
ing data among individuals who need direct access to the same information. Britton
Lee systems allow dissimilar host computers to connect with a single data source.

The database resides totally within the Britton Lee hardware, so database tasks such as
processing low-level database commands, maintaining data consistency,. managing
backup and restore operations, regulating resource sharing, scheduling processes, and
monitoring performance are all handled by the Integrated Database Manager (IDM)
RDBMS software running on the special purpose processor.

The IDM host-resident software performs a number of functions which involve commun
ication with the user. A user on a host computer queries a database interactively using
Britton Lee's Intelligent Database Language, IDL, or the IBM-compatible Structured
Query Language, SQL.

It is also possible to query a database from a program running on a. host computer writ
ten in a language which is a combination of a procedural programming language, such
a.s C, and a non-procedural database query language, such as SQL.

Britton Lee has developed a precompiler ca.Bed RSC, which handles SQL queries embed
ded in C. RSC translates program statements written in a mixture of SQL and C into
pure C code which makes calls to Britton Lee's host software subroutine library,
ID:MLIB. The pure C output of the precompiler can then be compiled with a C com
piler.

"Introduction to RSC" contains a general description of RSC and covers general infor
mation for anyone writing programs in RSC.

"Programming with RSC" describes in detail how SQL commands are embedded in C
code, how C expressions may be used in SQL commands, and how SQL select queries
a.re handled in RSC programs.

"Advanced Programming With RSC" describes RSC support for stored commands and
transactions. It also contains some examples of RSC programs which make direct calls
to ID:MLIB. Users of this chapter who are not familiar with ID:MLIB should consult the
ldmlib User's Guide.

The appendices cover various aspects of building a compilable pure C program from
RSC source code.

Britton Lee v

1. Introduction to RSC

RSC is a precompiler which accepts a file with SQL commands embedded in C code a.s
input and generates a file containing pure C code as output. The output makes calls to
the subroutine library, IDMLIB. This C program can then be compiled with- a C com
piler and linked with IDMLIB to create a.n executable object which runs on the host
computer system a.nd accesses data on the Britton Lee database server.

prog.rsc
RSC precompiler prog.c C compiler prog

RSC itself is written in C a.nd has been ported to all operating systems currently sup
ported by Britton Lee Host Software.

The prerequisites for using RSC a.re a solid knowledge of the C programming language
and some knowledge of the Structured Query Language (SQL). The requirement for a
solid knowledge of C cannot be overemphasized. It is not feasible to learn C and RSC
simultaneously, since the power of C is achieved at the cost of considerable difficulty for
the novice. The vast majority of the difficulties novice C programmers encounter using
RSC a.re found to be problems with the finer points of C.

1.1. Overview

Throughout this guide, "source file" refers to the file with embedded SQL commands
precompiled by RSC and "output file" refers to the pure C file produced by RSC to be
compiled by a C compiler. The word "RSC" refers both to the precompiler and to the
embedded language which it precompiles.

1.1.1. Input to RSC

The following RSC program executes a single command on the database server.

88/oe;ee v. 1. 7 Britton Lee 1

Introduction to RSC RSC User's Guide

1 /*
2 ** SIMPLE RSC
s ** This program inserts a row into •myrelation•.
4 •/
5
6 main()
7 {
8
g
10
11
12
13

$insert into myrelation
(num. name)
values (1, •agatha');

14 ex1t(RS_NORM);
15 }

This brief example demonstrates the minimal requirements for any RSC program:

• The RSC source filename must have the suffix rac, or no suffix. We could name
the source file simple. rsc or simplesrc but not simple.arc.

• All RSC programs must call INITRSC with the name of the executabl~ object as
its argument. INITRSC initializes ID:MLIB and the RSC runtime library
environment. INITRSC may be called only once by a RSC program.

• The program contains at least one embedded SQL statement introduced by a
dollar sign ($). RSC would precompile a pure C program without any embedded
SQL statements, but there would be little point to this exercise, since the pur
pose of using RSC is to write programs which contain SQL embedded in C.

• All programs must terminate with an explicit call to the ID.MLIB function exit
with an ID.MLIB return code as its argument. These return codes are listed
under RETCODE in Section 51 of the Host Software Specification for Unix sys
tems and the C Run-Time Library Reference for other systems.

1.1.2. Precompilation

We can precompile simple.rsc with the command

rsc -d "mydatabase" simple.rec

rsc /dbname=mydatabase simple.rec

(Unix)

(other)

The -d or /dbname database option specifies the database to be accessed. There is no
default value for the database, so this option must be specified if the data.base is being
indicated at precompile time.

2 Britton Lee 88/02/22 v. 1. 7

RSC User's Guide Introduction to RSC

An alternative to specifying the database and/or the device connecting the host com
puter with the data.base server at precompile time is specifing them a.t runtime using the
macros RCDEVICE a.nd RCDBNAME. These macros ma.y appear before or after the
call to INITRSC, but they must appear before the first executable SQL command. For
example, we rewrite the program above in Section 1.1.1 as

1 /*
2 ** SIMPLE2.RSC -- this program inserts a row to •myrelation•.
3 **
4 •/
5 main()
6 {
7
e
g

10
11
12
13
14
15
16 }

RCDEVICE(•hostlxns•);
RCDBNAME(•mydatabase•);
INITRSC(•simple");

$insert into myrelation
(num, name)
values (1, '&gatha');

exit(RS_NORM);

These macros are particularly useful if the program gets the data.base na.me from the
command-line using the ID:MLIB function crackargv(}, as demonstrated by the following
example. For more information on bow to use crackargv(}, consult Chapter 4 of the
ldmli"b User's Guide.

88/0£/££ v. 1. 7 Britton Lee 3

Introduction to RSC RSC User 'a Guide

1 /•
2 ** SIMPLE3.RSC -- this program inserts a row into •myrelation•.
3 **
4 ** Gets databt.8• name from th• co111111&Dd-lin• using cractargv.
5 ** Device name is the default in environmental variable IDMDEV.
6 •/
7
8 #include <crackargv. h>
9
10 char •Dbase;
11
12 /• the argument list •/
13 ARGLIST Args [] =
14 {
15 FL.AGPOS. FL.AGSTRING. O. CHARNULL. CHARNULL.
16
17
18 };
19

•Enter database:•. CHARNULL.
'\O'

20
21
22

main(argc. argv)

23 {
24
25
26
27
28
29
30
31

int a.rgc;
char •a.rgv [] ;

INITRSC(•simple•);
crackargv(a.rgv. Args);
RCDBNAME(Dba.se);

$insert into myrelat1on
Cnum. name)
values (1. 'a.gatha');

32 exit(RS_NORM);
33 }

&Dbase.

When the database name is supplied at runtime, the command to precompile the RSC
source is

nc aimple3.nc

1.1.3. Output from RSC

RSC's output from simple.rsc is the following pure C file named simple.c:

Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide

#include <rcinclude.h>
static char •RcProg = ••;
static char •RcCDB = •mydatabase•;
static char •RcDevice = •hostlxns•;
#line 1 •simple.rsc•
I•
** SIMPLE.RSC
** This program inserts a row into •myrelation•.
•I

main()
{

INITRSC(•simp1e•);

{

}

rcutree(getutree(O));
RcResult = rcexec();

#line 12 •simple.rsc•
exit(RS_NORM);

}

#line 15 ••after end of file on simple.rsc•

Introduction to RSC

static char •utrees[J = {
•\000\000\000\000\000\000\001\000\000\000\000\000/\000\006
\OOOagatha\003\000\241\000\004\000name\000\0000\000\001
\000\001\003\000\241\000\003\000num\OOO\OOO·.
•\002\000\000\000\003\000\264\000\002\000\000\000\000\000
\343\000\013\000\000myrelation\000\000)\000\002\000\001
\002\001\000\200\001\000\000\002\000\200\001\000\000\003".
•\000\200\001\000\000\003\000\303\000\000\000\001\000\374
\001\010\000\001\000\000\000\000\000\000\000\377\377\000".
•endoftrees•};

s~atic short utlen[) = {
128, O};

static short utpos[) = {
o. 3};

static !TREE •utp[1);
static ITREE *

getutree(i) int i;
{

}

if (utp[i] == ITNULL)
utp[i) = (ITREE •) rcgetutree{utpos[i).
utpos[i + 1]. utlen[i]. utrees);

return (utp[i]);

A comparison between simple.rsc, the source file in Section 1.1.1, a.nd simple.c, the out.
put file in Section 1.1.3, demonstrates how RSC precompiles a syntactically correct RSC
source file.

as;oe;ee v. 1. 7 Britton Lee 5

Introduction to RSC RSC User's Guide

First, RSC adds four lines of code to the top of the output file. The first line includes
<rcinclude.h> which in turn includes all the header files needed to compile the source.
The next three lines initialize static variables. RcProg holds the names of stored pro
grams which are defined when the RSC source is compiled with the -n or /progname
option. This option is discussed in Appendix A. Since we did not compile this program
with this option, the value of RcProg is an empty string. RcDevice stores the name of
the device connecting the host system to the database server, which here is t.he default
device name taken from the environmental variable IDMDEV. RcCDB stores the name
of the database, which was taken from the command-line option with which RSC was
invoked.

The next line, #line 1 "simple.rsc", is a directive to the C compiler which will ulti
mately compile the output file. It can be translated as "Consider the next line as line 1
for the purpose of error messages". Predictably, the next line in the output file
corresponds to line 1 of the RSC source. These #line directives are used by the C com-.
piler to synchronize the lines in the source file with the lines in the output file. This
enables the C compiler to give error messages which reference lines in the original RSC
source instead of in the pure C file which it is compiling.

From the beginning of main to the closing bracket of the source file, RSC scans the file
copying the input file to the output file until it reads a dollar sign ($). The dollar sign
($) is a signal to RSC that it has encountered either a SQL statement or a C identifier
which is used in a SQL statement. Either situation requires special processing by RSC.
In this example, RSC encounters an SQL statement in the form of the insert command
in lines 10 through 12 of the source. RSC transforms this statement into

{

}

rcutree(getutree(O));
RcResult = rcexec();

in the output file. RSC adds the code for getutree to the bottom of the output file. It
also adds the specific information passed to getutree (in this case the name of the table
and the columns being inserted) as a series of octal bytes comprising the variable utrees.
These bytes define the specific SQL command as a tree which can be understood by the
data.base server. RSC then synchronizes with another #line directive and continues in
this manner until end-of-file.

1.1.4. Compilation

The output file, simple.c, which RSC creates from simple.rsc can be compiled with the
C compiler normally used on the host system. You must load IDMLIB and you may
have to specify the directory containing the IDr.JLIB header files. We can compile
simple. c with the command-line

6 Britton Lee ss;oe;ee v. 1. 1

RSC User's Guide Introduction to RSC

cc -1/usr/include/idm -o simple simple.c -lidmlib

on our Unix system. This produces an executable object ca.lied 1imple. Consult the
entry for RSC (11) in the Host Software Specification for Unix systems a.nd the Com
mand Summary for other systems for instructions on compiling and linking a. RSC pro
gram in your host environment. If the program also makes calls to the standard 1/0
library, consult the appropriate appendix of the ldmlib User's Guide for instructions on
building an object file incorporating IDMLIB and !STDIO in your host environment.

1.2. Data Types

RSC maps C variables to corresponding data structures on the data.base server. The
following table shows the correspondence between these database server types and C
data types.

Database Server Type Length in Bytes C Type

tinyint 1 char
tiny int 1 BOOL
smallint 2 short
integer 4 long
smallftoat 4 float
float 8 double
char variable char[]
fixed char variable char[]
bed variable BCD NO
bcdflt variable BCD NO

The types BOOL and BCDNO a.re macros contained in one of the header files inserted
by RSC.

Data. of the data.base server BINARY data type should be selected from or inserted into
an array of type char[]. Conversion between BINARY and CHAR must be done on the
database server, not on the host, using the binary and string functions within the query
as indicated below.

88/0£/££ v. 1. 7 Britton Lee 7

Introduction to RSC

$char bindata[lOO];

/* insert binary data */
$ insert into .myrelation

(bincolumn)
values (binary ($bindata));

/* select binary data •/
$ select $bindata=s~r1ng(100. bincolumn)

from myrelation;

RSC User's Guide

The database server supports BCD (binary coded decimal) integer and floating point
types which correspond to the C type BCDNO. A BCDNO is defined as a atruct con
taining the type, length and value of a BCD object on the database server. When a
BCD value is retrieved from the database server and stored as a C object of type
BCDNO in a RSC program, the "type" field of the C object gets the value of the type
of the database server attribute. When an object of type BCDNO is sent to the data
base server, it is sent as the (data.base server) type which corresponds to the value of
the "type" field in the BCDNO atruct.

The data.base server cannot perform arithmetic or conversions with floating-point vari
ables, so a program which expects the database server to perform these operations
should convert the variables to type BCDNO.

1.3. Error Messages

RSC produces error messages only for statements beginning with a. dollar sign ($). It
assumes that other statements are valid C and passes them through to the output file
without parsing them. Thus it is perfectly possible for a RSC program which is full of
C syntax errors to come through the precompiler stage eliciting no error messages. The
error messages will appear at compile time.

Because of the #line directives mentioned in Section 1.1.3, error messages from the C
compiler will reference the RSC source, not the C compiler source, so that the RSC pro
grammer can make corrections on the original RSC source file and then run this file
through RSC again. It should never be necessary for the RSC programmer to write on
the RSC output (the .c file).

The line referenced in the error message is always the last line of the statement contain
ing the error. An error mes.sage for a thirty-line atruct declaration with an error in the
fifth line will cite the thirtieth line as the source of the error.

8 Britton Lee 88/02/22 v. 1. 7

RSC User's Guide Introduction to RSC

1.4. References

1.4.1. RSC (11)

An indispensible reference for anyone using RSC is the entry for RSC in Section 11 of
the Host Software Specification for Unix Systems and the Command Summarr for other
systems. This document provides a formal description of the RSC program which
includes

• a synopsis of the invocation of RSC

• a description of all flags and command-line arguments

• a description of what the program does

• a list of SQL queries that ma.y be used in RSC programs

• a. list of SQL functions which may be used in RSC programs

• a synopsis of the use of C expressions in SQL statements

• some examples of invocations of RSC

• a list of related documents

1.4.2. INITRC

The macros INITRSC, RCDBNAME, a.nd RCDEVICE a.re formally documented under
"INITRC" in Section 3 of the Host Software Specification for Unix Systems and the C
Run- Time Library Reference for other systems.

1.4.3. IDMLIB

A formal description of all IDMLIB functions is contained in Section 3 of the Host
Software Specification for Unix Systems and the C Run-Time Library Reference for
other systems.

An informal description of some relevant portions of IDMLIB is a.va.ila.ble in the ldmlib
User's Guide.

1.4.4. SQL

The Structured Query Language (SQL) is documented in the SQL Reference Manual.
Any differences between the interactive version of SQL used in this reference and the
SQL accepted by RSC a.re noted in the reference documentation for RSC (11) listed
above.

88/0£/££ v. 1. 7 Britton Lee 9

Introduction to RSC RSC User's Guide

1.4.5. RIC

Britton Lee also has a precompiler called RIC which precompiles programs containing
IDL statements embedded in C. For more information concerning RIC, consult the RIC
User's Guide.

10 Britton Lee 88/oe;ee v. 1. 1

2. Programming with RSC

This chapter provides basic information needed to use RSC: how to embed SQL state
ments in C code, how to use C expressions in SQL statements, and how to construct
code for selecting data from the database server.

The examples in this chapter assume the following schema for the "books" database:

create table title
(

)

docnum amallint,
title char(35),
onhand amallint

create table author
(

)

authnum amallint,
first char(lO),
last char(15)

create table authttl
(

)

authnum amallint,
docnum smallint

2.1. SQL in C Code

The following RSC program embeds an SQL insert command in C code.

8s/oe;ee v. 1. 1 Britton Lee 11

Programming with RSC RSC User 'a Guide

1 /•
2 ** APPLIT.RSC
3 **
4 **
5 •/

Th1• program 1nserts a row 1nto the •ut1e• table.

6
7
8
g
10
11
12

main()
{

$1nsert 1nto t1tle
(docnum. title. onhand)

13 values Cma.x(docnum) + 1. ·a flag for sunrise·. 7);
14
15 exit(RS_NORM);
16 }

2.1.1. Delineating SQL Commands

An embedded SQL command always begins with a dollar sign ($). If there were no dol
lar sign, RSC would assume that the command was C code and pass it through to the
output file where it would elicit a syntax error from the C compiler.

An embedded SQL command terminates with a semicolon (;} except for a looped select
command which has its SQL portion delineated by a left curly brace ({). This exception
is illustrated in Section 2.3.2.

An SQL command embedded in a RSC program may span more than one line. Multiple
SQL commands may share a single line, as long as each command is preceded by a dol
lar sign and terminated with a semicolon (;) or left curly brace ({). The following
embedded commands a.re valid input to RSC:

12

$select last from author; $select onhand from t1tle;

$1nsert 1nto t1tle
(docnum.
t1tle.
onhand)

values
Cma.x(docnum) + 1.
•a flag for sunrise·.
7);

$select last. f1rst from author
{

pr1ntf(•\n Is. ls\n•. first. last);
}

Britton Lee ss;oe;ee v. 1. 1

RSC User's Guide Programming with RSC

2.1.2. Placement of SQL Commands

Embedded SQL commands may occur anywhere in a RSC source file where executable C
statements may occur.

2.2. C Expressions in SQL Commands

C identifiers which appear in embedded SQL commands must be flagged with a dollar
sign, both where they are declared and in the SQL statement in which they are used.
The following program uses C identifiers in an SQL insert command.

1 /*
2 ** APPVAR.RSC
3 **
4 **
5 **
6 **
7 **
8 **
g •/
10
11
12 ma.in()
13 {

This program inserts rows to the •title• table.
getting input from the user.

Demonstrates the use of c variables in RSC code.
Gets database from the user at runtime using getprompt().

14 /* $ prefaces declaration of c identifiers to be used 1n SQL code •/
15 $cha.r newtitle[36);
16 $short newqua.n;
17 char bu![S];
18 char dbname[13];
19
20 INITRSC(•appva.r•);
21 getprompt(dbna.me. sizeo!(dbna.me). •Enter da.ta.ba.se name •);
22 RCDBNAME(dbna.me);
23
24 /* loop on user input until user signa.ls <REnJRN> •/
25 for (; ;)
26 {
27 /* get user input !or nevtitle and nevquan •/
28 getprompt(nevtitle. s1zeo!(nevtitle).
29 •Enter title or <REnJRN> to quit:•);
30 if (nevtitle[O] == '\O')
31 brea.k;
32 getprompt(buf. sizeof(buf). •Enter quantity: •);
33 nevqua.n = atos(buf);
34
35
36
37
38
39
40

}

/• insert the new row into the •title• table •/
$insert into title

(docnum. title. onhand)
values (max(docnum) + 1. $nevtitle. $newquan);

41 exit(RS_NORM);
42 }

88/0£/ee v. 1. 1 Britton Lee 13

Programming with RSC RSC User's Guide

2.2.1. C Declarations Used by RSC

The C declarations on lines 15 and 16, for newtitle and newquan, a.re prefaced with a
dollar sign ($) because the identifiers a.re used in SQL statements in the executable part
of the program. This is in contrast to the C declarations declared on lines 17 and 18,
for bu/ and dbname, which do not require a. dollar sign ($) because these identifiers are
used only in pure C code.

On line 38, inside the insert command, newtitle and newquan appear prefaced with dol
lar signs ($) because they a.re embedded in SQL code. When these same variables are
used in pure C code, in lines 28, 30, and 33, they a.re not prefaced with a. dollar sign ($).
The point to remember is that the dollar sign ($) must pref ace a C declaration only if
the identifier will later appear in an SQL statement, and the dollar sign ($) must pre
face the identif er when it appears in an SQL statement.

C identifiers used in SQL code can be of any data type and storage class known to C,
except for the register storage class.

The default size of the symbol table maintained for declarations prefaced with dollar
signs ($) is 100. A program which requires more than 100 C identifiers in SQL code
should be precompiled with the -S or /aymtabaize size option, where size is the
desired size of the symbol table.

Any C expression may be used in place of an SQL expression. If the C expression is a
simple C variable name, it need not be enclosed in parentheses when it is used in the
SQL statement:

$short nevquan;

/* no parentheses necessary - nevquan is a simple variable na.me */
$update title set onhand = $newquan;

If the C expression is more complex than a simple variable name, the expression must
be enclosed in parentheses in the SQL statement. In addition, each C identifier used in
the expression must be declared with a dollar sign ($).

$short nevquan;
$short oldquan;
$int num;

/* parentheses necessary for complex expression */
$update title set onhand = $((nevquan + oldquan) I num)

RSC evaluates the types of C expressions pref aced with dollar signs ($) and generates
the code for performing any necesssary type conversions. It will issue an error message
when type conversions a.re not possible or do not make sense such as trying to convert
"abl23" to an int or storing too large a number a.s a abort.

14 Britton Lee 88/0£/ee v. 1. 7

RSC User 'a Guide Procramming with RSC

RSC can handle all C expressions, including casts such as

$update title set docnum =$((short) 3.7) ...

When a C string's length is greater than the length of the column in which -it is to be
stored, the string is truncated.

2.3. Selects

The last program used C expressions as values in an SQL insert command. RSC also
uses C identifiers to store the values of target-list elements fetched from the database
server by an SQL .elect command. Identifiers which will store retrieved data are pre
f aced with dollar signs ($) when they a.re declared and when they a.re used in the body
of the .elect command:

$short
$char

num;
lname [16];

$select Snum = authnum. $lname = last from author
where ...

If the name of the C identifier is identical with the name of the column on the database
server, an explicit assignment is not needed in the aelect command. Below we have
changed the names of the C identifiers to match those of the selected target-list ele
ments to indicate clearly the relationship between the data.base server columns and the
C identifiers and to avoid having to make explicit assignments in the .elect command.
The following code implicitly assigns the selected data to authnum and last.

$short
$char

authnum;
last[16);

$select authnum. last from author
where ...

There are two forms of .elect command in RSC programs, the "singleton" form, which
selects a single row and simply stores its results, and the "looped" form, which may
select more than one row and process selected data as it is fetched.

BB/oe;ee v. 1. 1 Britton Lee 15

Programming with RSC RSC User's Guide

2.3.1. Singleton Selects

This program inserts a row into the "title" table and then selects it.

1 /•
2 ** SINGLE.RSC
3 ••
4 •• This program inserts a specific title to the •title• table
s •• and selects it. Demonstrates singleton selects.
6 **
7 •/
8
g main()
10 {
11 $char title[36];
12 $short onhand;
13 $short docnwa;
14
15 INITRSC(•sing1e•);
16
17 /• insert a new row •/
18 $insert into title
19 (docnum. title. onhand)
20 values Cmax(title.docnwa) + 1. "the color purple'. 7);
21
22 /• select the new row. implicit assignment of target elements •/
23 $select docnwa. title. onhand from title
24 where docnum =
25 (select max(docnum) from title);
26
27 printf(•\nThe new row 1s:\nld\tls\tld\n•. docnum. title, onhand);
28
29 exit(RS_NORM);
30 }

The singleton form of the 11elect command is useful only when a single row will be
selected by the query. If more than one row were to satisfy the qualification, only one
of them would be selected, and RSC cannot guarantee which one. The singleton form is
most commonly used when the select command is qualified by a unique key to the table
or by a.n aggregate with no by clause which yields a. single value, as demonstrated in
the example above.

2.3.2. Looped Selects

Looped select commands in RSC source are precompiled into C for loops in the output
file. C code to process the selected data. is executed inside the for loop for ea.ch selected
row. If no rows a.re selected, the loop body does not execute.

16 Britton Lee 88/oe;ee v. 1. 1

RSC User 'a Guide Programming with RSC

1 /•
2 •* LOOPED.RSC
s ...
4 •• This program selects rows for titles wbicb are low in stock
5 •• from the •title• table. Demonstrates looped •elects.
6 . •I
7
e main()
9 {
10 $char title[36];
11 $short onhand;
12 $short docnum;
13
14 INITRSC(•looped");
15
16 printf("TITL.ES TO BE REORDERED\n");
17
18 /• select rows •/
19 $select docnum. title. onhand from title
20 where onhand < 6
21
22
23
24

{

if Conhand < O)
printf(•\nPOSSIBL.E ERROR IN DATABASE:•);

25 printf(•ld\tls\tld\n•. docnum. title. onhand);
26 }
27
28 exit(RS_NORM);
29 }

It is important to note that the aelect command on lines 19 and 20 is not terminated
by a semicolon (;). Instead, the SQL portion of the command is terminated by the left
curly brace ({) which begins the body of the loop. The presence of the left curly brac"e
({) informs· RSC that this is a looped aelect. If the aelect command were terminated
with a semicolon (;) RSC would treat it as a singleton and generate code to select one
row. As in C, the body of the loop terminates with a right curly brace(}).

The only acceptable way to leave a aelect loop prematurely (before all rows have been
fetched) is by using the C break statement. Never use a return, goto, or longjump
to exit a aelect loop. This point cannot be overemphasized. The precompiler cannot
detect when a. 11elect loop has been improperly exited, but such a situation will produce
strange and unpredictable behavior at runtime.

Each C identifier in which selected data is stored is evaluated n plus 1 times, where n is
the number of rows selected. This is important when the evaluation of this term has a
side effect, as demonstrated in the folJowing example:

88/oe;ee v. 1. 7 Britton Lee 17

Programming with RSC RSC User's Guide

1 /*
2 ** GETDOCS

3 **
4 **
5 **
6 */
7

Selects the rows a.nd puts them in an array, docs[].
Returns the number of rows selected.

8 getdocs(docs)
9 $int docs[];
10 {
11
12

int n = O;

13 $select $(docs[n++]) = docnum from title
14 where onhand < 8
15 {
16 /* just fill the array */
17 continue;
18 }
19 return (n - 1);
20 }

The function recount() provides an alternative method for obtaining the number of rows
affected by the last SQL command executed. Using recount(} the function above would
look like this:

18

1 /*
2 ** GETDOCS
3 **
4 **
5 **

Selects the rows and puts them in an a.rray, docs[].
Returns the number of rows selected.

6
7
8
9
10
11
12
13
14
15
16
17

getdocs(docs)
$int docs[];

{

int n = O;

$select $(docs[n++]) = docnum from title

{
where onha.nd < B

I• just fill the array */
continue;

18 }
19 return (recount());
20 }

Britton Lee 88/02/22 v. 1. 7

RSC User's Guide Programming with RSC

2.3.3. Memory for Strings

It is the programmer's responsibily to allocate memory for selected strings. The follow
ing function illustrates improper usage:

1 /•
2 ** BAI>FUNC -- illustrates improper usage.
3 •/
4
5 badfunc()
6 {
7 $char •last;
e
g /• last does not point to anything •/
10 $select $last from author
11 {
12 printf(•ls •.last);
13 }
14 }

Memory can be allocated statically as in

1 /•
2 ** GOODFUNC -- illustrates proper usage.
3 •/
4
5 goodfunc()
6 {
7 /* allocate for the length of tbe column plus tbe NULL byte •/
e $char last[16];
g
10 $select $last from author
n <
12 pr1ntf(•ls •.last);
13 }
14 }

Memory can also be allocated dynamically using the IDMLIB functions zalloc or aavestr.
The function savestr allocates enough memory to store the selected string and then
copies it. Both functions are documented under xalloc (31) in the Host Software
Specification and C Run-Time Library Reference.

The following program builds a linked list of authors' names from the "author" table,
using zalloc and savestr.

88/oe/ee "· 1. 1 Britton Lee 19

Proaramming with RSC RSC User's Guide

20

1
2
3
4
5
6
7

** LISTAUTHS.RSC

**
**
**
*/

This program builds a linked list of authors names from the
•author• table. Demonstrates xalloc and savestr.

B #include <idmlllpool.h>
g

10
11
12
13

struct list
{

char •name;
struct 11st •next;

14 }
15
16 m1.1nO
17 {
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 }

$char inbuf[26];
struct list •plist = (struct list •) NULL;
struct list •new;
struct list •p;

$select $1nbuf = concat(first. last) from author
{

/* allocate a new list element •/
new= (struct list•) xalloc(sizeof(•new). OefMpool);

}

I• push the new element to the front of the list •/
new ->next = plist;
plist = new;

/* copy the new string into its place •/
new->na.me = savestr(inbuf. OefMpool);

exit(RS_NORM);

Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide Programming with RSC

2.3.4. Nested Selects

It is possible to nest a.n SQL select command inside of another SQL select command.

1 /*
2 ** NEST.RSC

3 **
4 **
5 **
6 **
7 */
8
g main()
10 {

Displays all the books in the •title• table and
for each book displays all its authors.
Demonstrates nested selects.

11 $char name[16];
12 $char title[36];
13 $short docnum;
14
15 INITRSC(•nest•);
16
17 /* outer loop selects and displays titles */
18 $select title. docnum from title
1g {
20 printf(•ls\n•. title);
21
22 /* inner loop selects and displays authors for each title •/
23 $select $name = last from author
24 where author.authnum = authttl.authnum and
25 $docnum = authttl.docnum
26 {
37 printf("\tls\n•. name);
28 }
2g printf(•\n•);
30 }
31
32 exit(RS_NORM);
33 }

The issue of nesting other types of queries, such a.s updates, inside a select loop is dis
cussed in the following chapter in Section 3.2.3.

88/02/22 v. 1. 7 Britton Lee 21

Programming with RSC RSC User 'a Guide

2.4. Canceling SQL Commands

At times it may be desirable to cancel all SQL activity on the database server. To do
this, use the special SQL command, cancel pref aced by a dollar sign. This command is
only available in embedded languages; it does not exist in interactive SQL. The cancel
command cancels all database server activity on the current dbin and any related dbins.
If the cancel occurs inside a eelect loop, the C break command must be used to exit
the loop. If the 1eleet loop is nested, there must be an explicit break command for
every level of nesting outside of the loop in which the cancel command occurs.

The previous example, nest.rsc, could be re--written as follows to cancel all database
server activity if an invalid author name is selected.

22 Britton Lee 88/0t/tt "· 1. 7

RSC User's Guide Programming with RSC

1 /*
2 ** CANCEL.RSC
3 **

Displays all the books in the •title• table and
for each book displays all its authors.

4 **
5 **
6 **
7 **
8 **
g •/

If an author name not beginning with an alphabetic character
is selected. cancels the inner and outer selects.
Demonstrates $cancel.

10
11 #define NOTAL.PHA
12 main()

!(c >= ·a· tt c <= •z• I I c >= 'A' tt c <= 'Z')

13 {
14 $char name[16];
15 $char title[36];
16 $short docnum;
17 char c;
18 BOOL cancelled = FALSE;
19
20 INITRSc(•cance1•);
21
22 /* outer loop selects and displays titles •/
23 $select title. docnum from title
24 {
25 printf(•ls\n•. title);
26
27 /• inner loop selects and displays authors for each title •/
28 $select $name = last from author
29 where author.authnum = authttl.authnum and
30 $docnum = authttl.docnum
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

}

{

}

c = name[O];
if (NOTALPHA)
{

cancelled = TRUE;
$cancel;

}
else

break; /* from inner loop •/

printf(•\tls\n•. name);

if (cancelled)
break; /* from outer loop •/

else

48 exit(RS_NORM);
4g }

BB/oe;ee v. 1. 1 Britton Lee 23

Programming with RSC RSC User's Guide

24 Britton Lee 88/oe;ee v. 1. 1

3. Advanced Programming with RSC

This chapter describes methods for making RSC programs more powerful

• by accessing SQL 's stored commands.

• by taking advantage of SQL's support for transactions

• by invoking IDMLIB's exception handling system for error conditions

Transactions are described in the SQL Reference Manual pages for aet autocommit
off, commit work, and rollback work. Stored commands are described under store
and start.

In addition to the schema used for the examples in Chapter 2, the examples in this
chapter assume the existence of the following stored commands in the "books" data
base:

store addtitle
insert into title
(docnum, title, onhand)
values
(max(title.docnum) + 1, &t, &q)

end store

atore newtitle
insert into title
(docnum, title, onhand)
values
(max(title.docnum) + 1, kt, kq)
aelect docnum, title, onhand from title

where docnum =
(select max(title.docnum))

end store

ss;oe;ee v. 1. 1 Britton Lee 25

Advanced Programming with RSC

26

store newauth
insert into author
(authnum, first, last)
values
(max:(author.authnum) + 1, &f, &I)
select authnum, first, last from author

where authnum ==
(select max:(author.authnum))

end store

store addlink
insert into authttl
(authnum, docnum)
values
(&a, &d)

end store

store getstuff
select docnum, onhand from title
select first, last from author

end store

Britton Lee

RSC User's Guide

88/0£/££ v. 1. 7

RSC User's Guide Advanced Programming with RSC

3.1. Stored Commands

Stored commands may be defined and executed from a RSC program. Para.meters
passed to the stored command may be literal values or C identifiers flagged with dollar
signs. The following program executes the stored command "add title".

2 ** STORED.RSC
3 **
4 ** This program inserts a row into the •title• table
5 ** using the stored command •addtitle•. Parameters passed
6 ** to the stored command are c identifiers fetched from the
7 ** command-line with crackargv{).
8 •/
9
10 #include <crackargv.h>
11
12 $static short Quan;
13 $static char •Title;
14
15 /• the argument list •/
16 ARGLIST Args[) =
17 {
18
19
20

•t• _ FLAGSTRING, O .. CHARNULL, CHARNULL.,
'q' . FL.AG SHORT. 0. CHARNULL. CHARNULL.
'\O'

&Title. •Title: •. CHARNULL.
&Quan. •Quantity: •. CHARNULL.

21 } ;
22
23 main(argc. argv)
24 int argc;
25 char •argv[);
26 {
27 INITRSc(•stored•);
2~ crackargv(argv. Args);
29
30 $start addtitle(q =$Quan. t =$Title);
31 exit(RS_NORM);
32 }

3.1.1. Obtaining Selected Data from Stored Commands

If the stored command contains one or more aelect commands, the start command
must have a block structure delineated by curly braces ({ }). The statements between
the curly braces consist of one or more special obtain commands used to bind selected
data to C program variables. This is a special command which is only available in
embedded SQL; there is no obtain command in interactive SQL. The only kind of $
flagged statements allowed within the start block are obtain statements.

There must be one obtain command flagged with a dollar sign for each aelect com
mand in the stored command.

88/0£/££ v. 1. 7 Britton Lee 27

Advanced Programming with RSC RSC User's Guide

The syntax of an obtain command is

obtain expr [,expr ...]

Each element in the comma-separated list of C expressions must evaluate to_ an object
of a type compatible with the targets returned by the select. The table in Section 1.2
maps database server types to C types.

The first column returned by the select command is assigned to the object indicated by
the first expression passed to obtain; the second column returned by the select is
assigned to the object indicated by the second expression passed to obtain, etc.

The obtain command is terminated either by a pair of curly braces ({ }), which may
enclose a list of executable statements processing the selected data, or by a semicolon
(;), if the only processing of selected data is assignment to the designated C identifiers.
If the obtain command is terminated by a semicolon (;), the command still loops for
every row selected; it does not simply fetch the first row as in a singleton select.

When the curly braces are used, the executable statements in the obtain block must be
C statements, not $-flagged SQL statements. The precompiler checks for $-flagged SQL
statements in the body of the obtain loop, but it is the programmer's respon~ibility to
make certain that no function called from the obtain loop contains any SQL state
ments. This code elicits an error message at precompile time

$obtain $num. $name
{ lf (num = badnum)

$delete from rel where num = $badnum;
else

pr1ntf(•ld. Is•. num. name);
}

but the following code elicits no error message, although it will cause unpredictable
behavior at runtime.

28

$obtain $num. $name
{

1f (num = badnum)
func(badnum);

else
pr1ntf(•ld. Is•. num. name);

}

func(ba.dnum)
$int ba.dnum;
{

$delete from rel where num = $badnum;
return()

}

Britton Lee 88/0£/££ v. 1. 7

RSC User's Guide Advanced Programming with RSC

The following program uses the obtain command to bind data selected from the stored
command "getstuff" into arrays of shorts and character strings. Because the counters
are incremented on the final pass through the obtain loop for which all of the rows have
already been obtained, the counters must be decremented at the end of the loop if their
values are to be used subsequently in the program.

1 /*
2 ** GETDATA.RSC
3 **
4 ** This progra.m executes the stored command •getstuff •.
5 •/
6
7 #define MAXITEM
8 #define MAXNAME
9

15
20

10 ma.in()
11 {
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 }

$short docnums[MAXITEM]. qua.ntities[MAXITEM];
$cha.r fna.mes[MAXITEM] [MAXNAME). lna.mes[MAXITEM] (MAXNAME);
int i. j ,k;

INITRSc(•getdata•);
i = j = O;

$start getstuf f
{

}

/* fill the arrays •/
$obtain($(docnums[i]). $(quantities[i++)));
$obtain($(fnames[j]). $(lna.mes[j++)));

/* decrement the counters •/
j--; i--;

/* print the arrays •/
printf(•\ndocnum\tquantity•);
for (k = O; k < 1; k++)

printf(•\nld\tld•. docnums[k]. quantities[k]);

printf(•\na.uthors•);
for (k = O; k < j; k++)

printf(•\nls\tls•. fna.mes[k], lna.mes[k]);

exit(RS_NORM);

The next program uses the obtain command to bind data selected by the stored com
mands "newtitle" and "newauthor". The obtain command is followed by two printf
statements enclosed in curly braces ({ }). These statements are executed one time for
each row obtained.

88/0£/22 v. 1. 7 Britton Lee 29

Advanced Programming with RSC RSC User's Guide

30

1 /•
2 ** NEWBOOK.RSC
3 **
4 ** This program enters new books into the •books• database.
5 **
6 ** Selects the title from the •title• table.

If 1t is there. adjusts •onhand• column. 7 **
8 **
g **
10 **

If it is not there, adds appropriate row to the •t1t1e•.
•author•. and •authttl• tables. using the stored commands
•newtitle•. •newauth•. and •addlink•.

11 **
12 **
13 **
14 •/

Demonstrates use of the obtain command to execute stored
commands containing selects from a RSC program.

15
16 main()
17 {
18 $char title[36];
19 $char lname[16];
20 $char fname[ll];
21 $short onhand;
22 $short docnum;
23 $short authnum;
24 $char newname[36];
25 $short newquan;
26 char buf[S];
27
28 INITRSc(•newbook•);
29
30 getprompt(newname. sizeof(newname). •Enter title:•);
31 getprompt(buf. sizeof(buf). •Enter quantity: •);
32 newquan = (short) atos(buf);
33
34 /* select the docnum from the •title• table •/
35 $select docnum from title
36 where title = $newname;
37
38 /• if the title is already in the database •/
39 if (docnum != '\O')
40 {
41
42
43
44
45

$update title set onha.nd = titles.onha.nd + $newquan
where title.docnum = $docnum;

$select docnum. title. qua.n from title
where title = $newname;

46 printf(•The new row is:\nld\tls\tld\n•. docnum. title. onhand);
47 exit(RS_NORM);
48 }

Britton Lee 88/0£/££ v. 1. 7

RSC User 'a Guide Advanced Programming with RSC

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92 }

I• &dd the book to the d&tabase •/
{

}

/* invoke stored command •newtitle• •/
$st&rt newtitle(q = $newqu&n. t = $newname)
{

}

/* bind selected data to designated C identifiers •/
$obtain $docnum. $title. $onhand
{

}

printf(•\nThe new row is:\n•);
printf(•ld\tls\tld\n•. docnum. title. onhand);

I• select the &uthor from the •&uthor• t&ble •/
getprompt{fname. sizeof{fname). •Enter &uthor's first name •);
getprompt{lname. sizeof{lname). •Enter &uthor·s la.st name •).
$select &uthnum from author

where first = $fname a.nd la.st = $lname;

I• if the author is not in the d&t&b&se •/
if (&uthnum == '\O')
{

}

I•

I• invoke stored command •new&uth• •/
$st&rt new&uth{f = $fname. 1 = $lname)
{

}

I• bind the new &uthor number with &uthnum) •/
$obtain $&uthnum. $!name. $lname
{

}

printf(•\nThe new row is:\n•);
printf(•ld\tls\tls\n•. &uthnum. fname. lna.me•);

** &dd & row to the •authttl• t&ble using stored

•I
$start &ddlink(a = $&uthnum. d = $docnum);

exit(RS_NORM);

88/0f/ff v. 1. 7 Britton Lee 31

Advanced Programming with RSC RSC User's Guide

3.2. Transactions

A transaction is a sequence of one or more SQL commands which a.re executed as
though they were a single command. Transactions a.re used to ensure consistency in a
database.

None of the commands comprising the transaction may alter the schema of the data
base. An attempt to execute a command such as create table or drop inside a tran
saction will cause a.n exception to be raised.

In interactive SQL, a. transaction begins when the user executes the aet autocommit
off command, or after a. commit work or rollback work command is issued. In
interactive SQL, a transaction ends when a commit work or rollback work command
is issued or when a. aet autocommit on command is executed.

The embedded SQL used by RSC does not use these statements. The precompiler does
not accept the commands aet autocommit, commit work, and rollback work, and
gives an error message if it encounters them. Instead, a begin transaction command
initiates a transaction, an end transaction command terminates a transaction, and an
abort transaction rolls back a transaction, nullifying the effects of its constituent com
mands. At execution time there is no transaction automatically in effect between the
execution of a.n end transaction or abort transaction and the execution of the next
begin transaction.

'f he only commands which can be used in a transaction in a RSC program are:

• abort transaction

• insert

• begin transaction

• drop

• end transaction

• update

• select

•sync

• delete

The begin transaction and end transaction commands which delineate a transaction
must pair up within a function. A begin transaction with no corresponding end
transaction in the same function will elicit an error message from the precompiler.

C code as well as SQL queries may be inserted between the begin transaction and the
end transaction in a RSC program.

32 Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide Advanced Programming with RSC

The following program demonstrates the use of a simple transaction in a RSC program.
Rows are inserted into three tables as a new book is entered in the database. If a tran
saction were not used in an application such as this and the system went down in the
middle of execution, for example after the title was entered but before the author, the
entry for that book would be incomplete. The use of a transaction ensures that entries
are made in all three tables or not at all.

88/02/£2 v. 1. 7 Britton Lee 33

Advanced Programming with RSC RSC User's Guide

34

I•
**TRANS.RSC
**

1
2
3
4
5
6
7
8

** This program enters a new book into the •books• database.
**
** Adds a row to the •title• and •authtt1• tables and may
** add a row to the •author• table.
**

Demonstrates RSC support for transactions.
Aborts if user tries to add a duplicate title.

9 **
10 **
11 **
12 **
13 •/
14

Gets title and author from the command-line using the IDMLIB
function, crackargv.

15 #include <crackargv.h>
16
17 /• variables for command-line arguments •/
18 $short Quan;
19 $char •Title;
20 $char •Fname;
21 $char •Lname;
22
23 /• the argument list •/
24 ARGLIST Args[) =
25 {
26
27
28
29
30
31
32
33

FLAGPOS. FLAGSHORT, O. CHARNULL. CHARNULL.
•Quantity:•. CHARNULL.

FLAGPOS. FLAGSTRING. O. CHARNULL. CHARNULL.
•Title •. CHARNUl.l..

FLAGPOS. FLAGSTRING. O. CHARNULL. CHARNUl.l..
•Author's first name:•. CHARNUl.l..

FLAGPOS, FLAGSTRING. O. CHARNUl.l.. CHARNUl.l..
•Author's last name:•. CHARNUl.l..

34 '\O'
35 };
36
37 main(argc. argv)
38 int argc;
39 char ••argv;
40 {
41 $short authnum;
42 $short docnum;
43
44 INITRSC(•trans•);
45

aQua.n.

~Title.

~name.

~name.

46 /• get values from command-line for Quantity. Title. Fname. Lna.me •/
47 crackargv(argv. Args);
48
49 $begin transaction;
50 $insert into title
51 (docnum. title. onhand)
52 values
53 (
54 max(title.docnum) + 1.
55 $Title.
56 $Quan
57);

Britton Lee 88/0£/££ v. 1. 7

RSC User's Guide Advanced Programming with RSC

s0
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
BO
81
82
83
84
85
86
87
88
89
go
g1
g2
g3
g4
gs
gs
g1
D8 }

$select docnum from t1tle

{

}

where t1tle = $T1tle a.nd docnum

/* check for duplicates •/
1f (recount() > 1)
{

}

pr1ntf(•\nThat title 1s already 1n the databue. •); ·
printf(•\nAbort1ng th1s tra.nsact1on•);
/* control passes to statement after •end tra.nsaction• */
$abort transact1on;

/* check if the author is in the •author• table •/
$select authnum from author

where first = $Fna.me and last = $Lna.me;

/* 1f the author is not 1n the table •/
1f (authnum == '\O')
{

}

$1nsert 1nto author
(authnum. last. first)
values
(

) ;

max(author.authnum) + 1.
$Fna.me.
$Lna.me

$select authnum from author
where authnum =

(select max(author.authnum));

$1nsert 1nto authttl
(authnum. docnum)
values ($authnum. $docnum);

$end tra.nsaction;
ex1t(RS_NORM);

3.2.1. Nested Transactions

A transaction is nested if a begin transaction is executed inside of a transaction.
Nested transactions can occur inside a single function or a.cross function calls. In the
outline below, the transaction in g() is nested when g() is called by f(), but not when g()
is called by e().

88/0£/££ v. 1. 7 Britton Lee 35

Advanced Programming with RSC

f()
{

}

e()
{

}

g()
{

}

$begin tra.ns&etion;
I• stuff •/
g();
$end tra.nsaction;
return();

/* stuff •/
g();
return();

$begin transaction;
I• SQL queries •/
$end transaction;

I• more stuff •/
return();

RSC User's Guide

Since the database server does not commit the transaction until the end transaction
corresponding to the first begin transaction is executed, which in this case is the end
transaction in f(}, the transaction in g() does not have any real meaning when g() is
called by f(}.

When f() calls g(), an abort transaction in g() transfers control to the statement fol
lowing the end transaction in f(). When e(), calls g(), an abort transaction in g()
transfers control to the statement following the end transaction in g().

The following program demonstrates nested transactions.

36 Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide Advanced Programming with RSC

1 /•
2 ** NESTTRANS.RSC
3 **

This progra.m displays all the books in the •title• table
and for each book displays all its authors.

Demonstrates nested transactlons.

4 **
5 **
6 **
7 **
8 **
9 **
10 **
11 **
12 */

Functionally like NEST.RSC. except commands are tr~sactions
If a title is found with no associated author.
an error message is displayed and all processing is
halted by the •abort transaction•.

13
14 ma.in()
15 {
16 $char title[36);
17 $short docnum;
18 void getauths();
19
20 INITRSC(•nesttrans•);
21
22 /• outer loop to select and display titles •/
23 $begin transaction;
24
25 $select t1tle. docnum from title order by docnum
26 {
27 printf(•ls\n•. title);
28 getauths(docnum. title);
29 printf(•\n•);
30 }
31
32 /*
33 ** commit everything from the above select
34 ** and the one in getauths
35 •/
36
37 $end transaction;
38
39 exit(RS_NORM);
40 }
41
42 /•
43 ** GETAUTHS -- select and display the authors of the title
44 ** passed in docnum.
45 */
46
47 void
48 getauths(docnum. title)
49 $short docnum;
50 $char •title;
51 {
52 $char na.me[16);
53
54 /• this is a nested transaction when called from main •/
55 $begin transaction;
56 $select $na.me = last from author
57 where authttl.authnum = author.authnum and
58 authttl.docnum = $docnum;
59 {

88/0t/tt v. 1. 7 Britton Lee 37

Advanced Programming with RSC RSC Uaer 'a Guide

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 }

pr1ntf(•\tls\n•. name);
}

I• 1f the name 1• not there •/
1f (!recount())
{

}

printf(•\nNo entry for a.n author of Is.•. title);
printf(•\JlAborting this tra.nsaction so user can•);
pr1ntf(•\nmod1fy the ·author• a.nd/or •authttl' relat1ons.•);

/* transfers control to statement after end tra.nsaction in main */
$abort transaction;

I• other SQL commands could go here. •/
$end transaction;

3.2.2. New Transactions

In the program above, all processing halts after execution of the abort transaction on
line 70 because the inner transaction in getautha{} is nested in the outer transaction in
main(). If the transaction aborts, control passes to the statement following the end
transaction in main(}, which is exit().

It may be desirable for some applications to ensure that a begin transaction command
initiates a new transaction rather than a nested one. To accomplish this, use the com
mand begin new transaction.

To modify nesttrans. rsc so that a new transaction is initiated in getauths() change the
begin transaction on line 55 to begin new transaction. The result of this
modification is that the transaction in getauths{} is no longer nested in the transaction
in main. When the abort transaction in getautha{} is executed, control passes to the
statement following the end transaction in getauths{) rather than the one in main{).
In this case, the function returns to line 29 in main() and the program continues pro
cessing.

Consider the outline

38 Britton Lee 88/0£/££ v. 1. 7

RSC User's Guide Advanced Programming with RSC

f (x)

{

}

g(y)

{

}

BOOL x;

BOOL y;

$begin tra.nsaction;
y = TRUE;
g(y);

if (x)
$abort transaction;

/• this transaction is committed here •/
$end transaction;
return(TRUE);

BOOL y;

$begin new transaction;
if (y)

$abort transaction;

I• this transaction is committed here •/
$end transaction;

I• control transfers to here on a.n abort tra.nsaction •/
return(TRUE);

An abort transaction in f() will not abort anything that was done in g(), because the
transactions in f() and g() are unrelated as far as the database server is concerned. It is
as though the two transactions were invoked by two separate programs. Unrelated
transactions must be used with caution, however, because they can lead to self-inflicted
infinite waits as illustrated below:

f()
{

}

g()
{

}

$begin transaction;

/• this update locks the whole relation •/
$update title set title= 'untitled';
g();
$end transaction;

$begin new transaction;
$update title set title = 'UNIX SYSTEMS'

where title = 'ARCHAIC OS THEORY';
$end transaction;

88/0£/££ v. 1. 7 Britton Lee 39

Advanced Pl'Ogramming with RSC RSC User's Guide

Since the transaction in g() needs to access some data which the transaction in f() has
locked, g() must wait for the transaction in f() to complete. Function f() however, is
waiting for g() to return before committing its transaction and releasing its locks.
Because the database server cannot detect the dependency between ro and g(), the
deadlock is not signaled and the program goes into an infinite wait.

3.2.3. Neated Operations in Select Loopa

Special issues arise when a program performs an update inside a select loop. The
update cannot simply be nested in the select loop as in nesttrans.rsc because of the way
select loops are implemented; when two operations are so closely related (running in the
same dbin), the IDMLIB software expects all the data from the database server to be
fetched before initiating a new database query. On the other hand, if the update is
begun in a new transaction, as described in section 3.2.2, the select transaction and the
update transaction are completely unrelated; if a deadlock occurs in this situation, there
is no way for the database server to manage a backout because it does not know which
operations a.re related. What is needed is the establishment of a relationship between
the nested transactions, so that communication between them is possible.

This is accomplished with the begin neat n transaction command where n represents
the depth of nesting up to a maximum of 7. The outline below represents two levels of
nesting inside an outer select loop:

func()
{

}

$begin nest 2 transaction;

/* outer select loop •I
$select . . .
{

}

/* inner select loop - first level of nesting •/
$select ...
{

}

/* update - second level of nesting */
$update ...

$end transaction;

The next program, reezam. rsc, demonstrates the use of a single level of nesting to exe
cute an update command inside a select loop. As each row in the "titles" table is
selected, the user is prompted to update the value of the "onhand" column in that row.

40 Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide Advanced Programming with RSC

3.3. Deadlock Backout and Recovery

If several applications are simultaneously accessing and updating· the same data,
deadlock can occur. Deadlock can also occur within a single application which uses the
begin new transaction or begin nest n transaction constructions.

When the database server detects that a deadlock has occurred, it selects one or more
participants, backs out all the work already done by their queries, and signals the host
that a backout is occurring by raising two exceptions: "E:IDM:E55" and
"W:IDM.DONEJCABORT".

By default, RSC generates code which catches the exceptions and attempts to restart
the query immediately.

If you wish your RSC program to take some alternate or additional action when a
deadlock/backout is detected, the program should set a handler to ignore "E:IDM:E55"
and another to manage "W:IDM.DONEJCABORT". For more information about set
ting an exception handler, consult Chapter 3 of the ldmlib User's Guide.

If the query being backed out is a transaction, the exception handler must be set after
the begin transaction and removed after the end tranaaction. If new transactions
are used, the exception handler must be reset after each begin new transaction and
removed after each end transaction.

The next program sets an exception handler called handler() which displays a message
and re-raises the exception.

ss/oe;ee v. 1. 7 Britton Lee 41

Advanced Programming with RSC RSC User's Guide

42

1 /•
2 ** REEXAM.RSC -- runs an update 1nside a •elect loop.
3 **

Select• each row in tbe •title• table. 4 ••
5 **
6 **
7 **
8 **
9 ••

Allow• the user to update the •onhand• column of
the selected row.

Demonstrate• •begln nest <n> transactlon•.

10 **
11 ••

Provide• one level of nesting - one parent and one cblld.
The •begin nest <n> transaction• is nece•sary wben there is
an update ins1de a select loop.

12 **
13
14
15
16
17

•• Set• an exceptlon handler to dl•play a me••age and re-raise
**
**
•I

tbe exception to restart the t~an•action when W:IDM.DONE.XABORT
is rai•ed. Uses canned handler excignore for E:IDM:E55.

18 main()
19 {
20
21
22
23
24
25
26
27

$char title[36];
$abort docnum;
$sbort onhand;
$abort newstock;
char buf[5];
int handler();

28 INITRSC(•reexam•);
29
30 $begin nest 1 transaction;
31
32 /• set exception handlers for deadlocks •/
33 exchandle(•E:IDM ES5•. excignore);
34 exchandle(•W:IDM.DONE.XABORT•. handler);
35 printf(•\nDOCNUM TITLE ONHAND\n•);
36
37 /• run select on parent dbin •/
38 $select docnum. title. onhand from title
39 {
40 printf(•ld\tls\tld\n•. docnum. title. onhand);
41
42 /• get input for the update •/
43 getprompt(buf. sizeof(buf).
44 •Enter new stock or <RETURN> to quit: •);
45 if (buf[O] == '\0')
46 break;
47 newstock = atos(buf);
48
49 if Cnewstock == 0)
50 printf(•\nNo change in# copies of ls.\n•. title);
51 else if Cnewstock > O)
52 printf(•\nAdding Id copies of ls.\n•. newstock. title);
53 else
54 pr1ntf(•\nSubtract1ng Id copies of ls.\n•.
55 newstock • -1. title);
56

Britton Lee 88/oe;ee v. 1. 1

RSC User's Guide Advanced Programming with RSC

57
58
5g
60
61

}

I• run update on nested child dbin •/
$update title set onhand = onhand + $newstock

where docnum = $docnum and title = $title;

62 $end transaction;
63
64 /• remove the exception handlers •/
65 exchandle(•E:IOM ES5". FUNCNULL);
66 exchandle(•w:IOM DONE.XABORT". FUNCNULL);
67
68 exit (RS_NORM);
69 }

I•
** HANDLER

** ** Displays message before attempting to restart the query.
•I

handler(excv)
cha.r ••excv;

{

70
71
72
73
74
75
76
77
78
7g
BO
Bl
B2
B3

fprintf(stderr. •\nYour query has deadlocked with another•);
fprintf(stderr. •application and your work is being backed out•);
fprintf(stderr. "\nAn attempt is being made to restart the query.•);

B4
B5 /• call RSC's exception handler to attempt restart •/
B6 excvraise(excv);
B7 return (O);
BB }

You may wish for a RSC program to catch all exceptions, not just "E:IDM.55", and
"W:IDM·.DONE.XABORT". The following statement declares myhandler(} to handle all
exceptions of severity Error.

exchandle("E:•• myhandler);

88/oe;ee v. 1. 7 Britton Lee 43

Advanced Programming with RSC RSC User's Guide

44 Britton Lee 88/0f!/£!! v. 1. 7

Appendix A: Stored Programs

All of the query trees which RSC builds from SQL code a.re normally stored in the exe
cutable program which is created when the output of RSC is compiled. When the pro
gram is executed, the trees are sent to the database server for processing.

The trees representing the database queries may instead be stored on the database
server as a stored program.

store
program

prog.rsc

myqueries

RSC precompiler
prog.c

C compiler
prog

Queries may be stored on the database server only if the RSC program satisfies the fol
lowing requirements:

• The program operates on a single database server in a. single database which can
be specified at precompilation time.

• The schema of the database is unchanging, meaning that objects in the database
a.re not created, destroyed or otherwise altered structurally during execution of
the program.

When a program is in the development stage, it is generally desirable not to store the
trees on the database server because precompilation time is longer, since the precompiler
must communicate with the database server. But when a. production version of a RSC
program is being precompiled, it is often preferable to store the queries on the database
server, because execution may be faster and the size of the executable program is
smaller.

To precompile a RSC program so that the trees are stored on the database server, use
the -n or /progname progname option. The progname is the unique name under
which the collection of database queries in that program are to be stored.

When the -n or /progna.me progname option is used, the -d or /dbname database
option must also be used.

88/0f/££ v. 1. 7 Britton Lee 45

Appendix A: Stored Programs RSC User's Guide

The database server destroys any stored programs in the specified database previously
stored under progname before precompiling the source file and creating the stored pro
gram.

The following command-line instructs RSC to precompile myprog.rsc, storing the query
trees on the database server as a stored program in the "books" data.base named
"my queries".

rsc -n "myqueries" -d "books" myprog.nsc(Unix)

rsc /progname = myqueries /dbname =books myprog.nsc (other)

If a RSC program contains several modules residing in different source files, the stored
programs for each module should be associated with a unique name. The following
command-lines instruct RSC to precompile a program residing in two source files, and
to store the queries in. main.rsc in a stored program called "mainqueries" and the
queries in /unctions.rsc in a stored program called "funcqueries". Both "mainqueries"
and "funcqueries" are stored in the "books" database:

46

UNIX:

nsc -n "mainqueries" -d "books" main.rac
rsc -n "funcqueries" -d "books" functions.rsc
cc -o prog main.c functions.c -lidmlib

VMS:

rsc /progname=mainqueriea /dbname=books main.nsc
nsc /progname=funcqueries /dbname=books functions.rsc
DEFINE/USER VAXC$1NCLUDE IDM_DIR.
CC main, functions
LINK/EXE=PROG.EXE MA.IN,FUNCTIONS,IDMLIB/OPT

Britton Lee 88/0!!/!!!! v. 1. 7

RSC User's Guide Appendix A: Stored Programs

PC/MS-DOS

rsc /progna.me=ma.inqueries /dbna.me=books ma.in.rsc
rsc /progna.me=funcqueries /dbna.me=books functiona.nc
mac /AL /Gs ma.in.c, main.obj;
mac /AL /Gs functions.c functions.obj;
link /STACK:lOOOO ma.in.obj + functions.obj, prog,, idmlib;

AOS/VS

rsc -n "mainqueries" -d "books" ma.in.rsc
rsc -n "funcqueries" -d "books" functions.rsc
cc ma.in :IDM:include/sea.rch
cc functions :IDM:include/search
cclfo=prog/taaks=4 main.ob functions.ob :IDM:LIB:rclib.lb &,

:IDM:LIB:IDMLIB.lb :IDM:LIB:ITPUSR.lb

BB/oe;ee v. 1. 7 Britton Lee 47

Appendix A: Stored Programs RSC User's Guide

48 Britton Lee 88/oe;ee v. 1. 1

Appendix B: RSC and the C Preprocessor

The C preprocessor is the first pass of the C compiler. It processes lines beginning with
a score (#), such as #define, #include, and #line. On some operating systems, includ
ing many flavors of Unix, it is possible to invoke the C compiler's preprocessor
separately from other passes of the compiler. It may be desirable to run the preproces
sor on a RSC source file before sending it through RSC to obtain atruct definitions and
typedefs given in a header file so that these definitions may be applied to C variables
which are known to RSC.

This technique should be used with caution, though many users can simply use the most
straightforward pipeline their Unix systems and shell allow. Most C preprocessors
require their input files to have a suffix .c and will not preprocess a file with the suffix
.rsc or no suffix.

Flagging Statements for RSC Header Files

A special problem arises when a. RSC source file is run through the C preprocessor
before being run through RSC, if a. header file is to be #included by both the RSC prcr
grams and pure C programs. For RSC, declarations in the hea.der file must be pref aced
with a dollar sign ($) so they will be noticed by RSC, but if decla.rations in a. C prcr
gram are pref aced with a. dollar sign ($), they will elicit syntax errors from the C com
piler.

To overcome these contradictory requirements, a.ll header files which must be acceptable
to RSC a.nd the C compiler should begin with the line

#include <rcflag.h>

In a.ddition, a.ny declarations in the header file which may need to be interpreted by
RSC should be flagged with the word "RCFLAG" instead of a dollar sign {$).

For example, the following bea.der file called e:iample.h

1
2
3
4
5
6
7

I•
** EXAMPLE.H - header file to be used by RSC and a C compiler.
•I

#include <rcflag.h>

RCFLAG int Num;

would be included in the RSC source file by the following two lines

88/0£/ffl v. 1. 7 Britton Lee 49

Appendix B: RSC and the C Preprocessor

#define
#include

RCFl.AG $
•example.h•

RSC User's Guide

Now Num will be Oagged with a dollar sign ($) in the source file processed by RSC but
not in any other files.

The #line Directive

A directive that reads

#line 3 •file.rsc•

instructs the C compiler to consider the next line of text to be the third line read from
a file named file.rsc, regardless of the name of the file it is actually reading or the
number of lines it has actually read. RSC writes many of these directives on the output
file it produces to allow error messages from the C compiler to reference lines in the
RSC source. RSC also reads and interprets any #line directives in its source file and
uses them to formulate its conception of how lines in the input file are to be ref erred to
in error messages.

Unfortunately, there is a la.ck of unanimity among C compilers, and even among various
phases of a single C compiler, concerning the precise syntax of #line directives. RSC
reads and interprets all the following forms identically. Any non-NULL string of blanks
or tabs can be substituted for the blanks in these examples.

(1) # line 3 "file.rsc"

(2) # line 3 "file.rsc"

(3) # 3 "file.rsc"

(4) # line 3 file.rsc

(5) # line 3 file.rsc

(6) # 3 file.rsc

By default, any #line directive emitted by RSC ressembles example 1 above. This
includes directives read from the source file, which RSC always interprets and rewrites.
This is the form pref erred by most C compilers.

If the -1 command-line option is passed to RSC the word line does not appear in the
output directive, producing a line ressembling example 3. This is the form demanded
by the parsing phase of the Unix compiler cc. On some systems it is possible to pass
RSC output which was run through the C preprocessor when it was RSC source directly
to the parsing phase of cc, avoiding a second useless pass through the preprocessor.
This feature is not always documented.

50 Britton Lee 88/oe;ee v. 1. 1

RSC User 'a Guide Appendix B: RSC and the C Preproceuor

If the -q command-line option to RSC, quotation marks will not enclose the filename in
the #line directives. This is required by some C compilers.

88/02/22 v. 1. 7 Britton Lee 51

Appendix B: RSC and the C Preprocessor RSC User's Guide

52 Britton Lee 88/oe;ee v. 1. 7

Appendix C: Portability of RSC Programs

Without Stored Programs

The pure C code produced by the precompiler is not totally porta.ble between different
types of hardware. This is because, when a. RSC program is precompiled, · ea.ch SQL
query is represented as a. series of octa.l bytes (see the variable utreea in the output file
shown in section 1.1.3}. These bytes a.re defined in the C program in the order in which
they appear in storage on the host ma.chine on which the program is precompiled.
Some machines store integers most-significant byte first; others store them least·
significant byte first. Thus, different utrees a.re created on different hardware.

The implications of this for portability a.re as follows:

• If a RSC program which bas been precompiled on a. host that represents integers
most-significant byte first is being ported to a. host that represents integers
least-significant byte first, the RSC source must be precompiled a.gain on the
destination host.

• If a RSC program which has been precompiled on a. host that represents integers
least-significant byte first is being ported to a host that represents integers
most-significant byte first, the RSC source must be precompiled a.gain on the
destination host.

• If the original and destination hosts represent integers in the same order, it is
not necessary to re-precompile the RSC source.

With Stored Programs

If all of the SQL queries are compiled into stored programs, the above problem ·is
avoided: In this case, both the stored program(s) and the C code produced by the
precompiler are machine-independent and a. new precompilation is not necessary when
the RSC program is ported.

However, in order for all of the SQL queries to be compiled as stored programs, the fol
lowing conditions must exist:

(1) The RSC program must have been precompiled with the -n or /progname
option.

(2) No SQL statement may contain a C expression as the first argument to the func·
tions bed(}, bcdflt(}, bcdflt(}, fbcdflt(}, string(), /string(), /char(), or char(}. No
SQL statement may contain a. C expression as either of the first two arguments
to the functions bcdfized(}, subs tr(} or substring{).

(3) · The SQL statements may only be among the following: select, insert, update,
drop, begin transaction, end transaction, or abort transaction.

If conditions 2 and 3 do not exist, but the RSC program is compiled with the -n or
/progname option, the precompiler will create stored programs for the allowable SQL
statements and machine-dependent utrees for the rest. The user is not notified when

88/0£/££ v. 1. 7 Britton Lee 53

Appendix C: Portability of RSC Programs RSC User's Guide

this occurs; the only way to ascertain that both utrees and stored programs have been
created is to examine the pure C output from the precompiler.

With Stored Programs and Utreea

If precompilation of a RSC program creates a combination of stored programs and
machine-dependent C code, and the program is to be ported, the machine-dependent
portion must be precompiled according to the guidelines mentioned above in the section
dealing with RSC programs which do not contain stored programs. If a new precompi
lation is necessary, the programmer may choose to handle it in one of two ways:

(1) Precompile the RSC program on the destination ma.chine using the -n or
/progname option, but give the argument to this option a different name for
every host on which the program is precompiled. For example, the following
command precompiles a program on a VAX running Unix:

rac -n "V AXmyqueries" -d "books" myprog.rac

To port the program to an IBM PC, one could transfer the source to a PC and
precompile it as follows:

rac /progname = "PCmyqueries" /dbname =books myprog.rsc

This is necessary because, if the name of the stored program is not changed, the
original stored program from the original precompilation will be overwritten and
given a new internal identifier. This will make it impossible for the original
RSC program to retrieve its stored program.

This solution causes identical stored programs to be stored on the data.base
server under different internal identification numbers.

(2) Where feasible, a preferable solution is to write the code in such a way that all
queries which become stored programs, that is, those using the commands
select, insert, update, drop, begin transaction, end transaction, or abort
transaction, and not using C expressions as arguments in the functions listed
above, are contained in one precompiler source file. The SQL commands which
produce ma.chine-dependent code go in a second source file. The first file would
be precompiled once on the original host and then its output transferred to all
the destination hosts where it would be compiled. The second file would be
precompiled and compiled on all of the destination hosts. This solution results
in a. single stored program on the database server with individual ma.chine
dependent modules on the various hosts.

54 Britton Lee 88/0t/tt v. 1. 7

abort transaction: 32, 38, 39

BCDNO: 7-8, 8

begin transaction: 32

BOOL: 7

break: 17

cancel: 22-23

crackargv: 3--4

curly brace: 17, 27

database: 2-3, 6

deadlock: 41

declarations: 14

device: 3, 6

directive: 50

dollar sign: 6, 12, 13, 14

end transaction: 32

error messages: 6, 8

exit: 2

expression: 14

filename: 2

identifier: 14

IDMLIB: 6

INITRSO: 2

nested transactions: 35

new transactions: 38

obtain: 27-31

output file: 1, 4

portability: 53

preprocessor: 49

progname: 45

Index of Terme

RcCDB: 6

recount: 18

RCDBNAME: 3

RCDEVICE: 3

RcDevice: 6

RcProg: 6

savestr: 19

selects: 15-21

source file: 1

stored program: 6, 45--47

string: 19

suffix: 2

symbol table: 14

transactions: 32--43

type conversions: 14

xalloc: 19

