
Pl Britton 
WLee,lnc. 

111 N. SEPULVEDA BLVD. 
MANHATTAN BEACH, CA 90266 
(213) 318-7009 

May 6, 1986 

System Development Corp. 
2500 Colorado Ave. M.S. 91-10 
Santa Monica, CA 90406 

DON SMITH 
DIRECTOR 

WESTERN REGIONAL SALES 

Enclosed are various benchmarks detailing transaction rates. 
Please note they were performed with a 6 MHz DBP and SMD 
Disk Controllers. I've included a benchmark (#11) which 
shows the relative performance of the 10 MHz and 6 MHz pro
cessor. This will give you an idea of the performance improve
ment. Unfortunately, there are no published SMD vs. SMDE 
benchmarks as it was just released from beta. I would like 
to mention that the SMDE controller supports a transfer rate 
of 3.0 Mbytes/sec., which more than doubles the current SMD 
Controller's 1.2 Mbytes/sec. maximum rate. 

Please let me know if I can be of further assistance. 

Sincerely, 

C. Williams 
Sales System Engineer 

CW:ns 
Enc ls. 



IDM Performance Test 1 Revision 1 

IDM Performance Test 1: 
Simple Retrieves Varying the Number of Users 

Michael Tossy 
C> 1983 Britton Lee, Inc. 

Purpose 

This performance test was designed to characterize the effect on IDM performance as the 
number of users grew. 

Overall summary 

We demonstrated that the IDM has greater •throughput" as the number of users is 
increased. The IDM with 24 users processed querys at 2.73 times the single user rate. 

Background 

As users are added to a computer system the "throughput" (the rate at which the system 
does work) changes. 

Normally two effects - one negative, one positive - are seen when adding users to a 
system. In general additional users increase the system overhead, swapping is an example of 
this negative effecL But additional users also allow overlapping processing. One user 
executing (using the CPU) while another is doing 1/0 (using the disk conttoller) is an example 
of this positive effect. Up to a point, more efficent resource utilization more than 
compensates for the additional overhead. 

Some systems show a negative throughput curve when they become overloaded. For 
example, most timesharing systems "thrash" when overloaded. 

Benchmark Background 

The benchmark simulates a series of production type queries by multiple users. All 
queries were RETRIEVES with a simple restriction on one attribute. The attribute had either a 
clustered or nonclustered index. A single relation of 150,000 tuples was used. The relation 
had nine attributes, and the average tuple was 100 bytes wide. About two thirds (213) of the 
retrieves were on the nonclustered attribute, the other one third (113) were on the attribute with 
the clustered index. 

The benchmark was done under UNIX. Scripts of IDL Queries were prepared. Each script 
had ten (10) retrieves. Multiple users were simulated by spawning several IDL processes each 
reading from a different script. A single master process was used to spawn the individual user 



IDM Performance Test 1 Revision 1 

processes, the times were obtained by timing the master process. This procedure restricted us 
to simulating a maximum of 24 users. 

All relations on the IDM were created with logging. However, since no updates were 
done, this did not affect performance. 

The Conditions 

The host computer was a VAX 111750 running UNIX BSD 4.1. The IDM was a 500 
with a Database Accelerator and 1.5 Megabytes of memory. The IDM had a single 160 
Megabyte disk drive. The IDM was running release 24 of the IDM code (release 1 of the 
WCS). The IDM and host were connected by a RS 232 serial connection running at 9600 
baud. 

Both host and IDM were idle except for the benchmark. 

Data collection 

The Ad Hoc queries were run using a "master" shell script on UNIX (4.1 BSD). This 
"master" shell script spawned all the user processes and then waited until they all completed. 
The benchmark: timings were of the "master" shell script obtained by the "time" command. 
These values were then stored on the IDM. The IDM was used to display and calculate the 
perfonnance numbers from the collected data. 

Timings 

This table shows the number of concurrent users, the time to run all the queries, and the 
system throughput 

The attributes are: 
users 
time 
per_user 
thruput 

the number of users 
the time to run the queries 
users divided by time 
(users • 12.1) I time 

lusers I time lper_user I thruput I 
!------------------------------------------I 
I 1 I 12 .1 I 12. I 1. I 
I 2 I 14.330 I 7.1760 I 1.6880 I 
I 4 I 22.8 I 5.70 I 2.1230 I 
I 8 I 37.6 I 4.70 I 2.5740 I 
I 14 I 63.0 I 4.50 I 2.6890 I 
I 16 I 72.8 I 4.55 I 2.6590 I 
I 18 I 83.170 I 4.62 I 2.1690 I 
I 24 I 106.20 I 4.4250 I 2.7340 I 

!------------------------------------------I 

2 



IDM Performance Test 1 Revision 1 

Timing summary 

As you can see, to run these queries as a single user takes about 12 seconds. As we add 
users, and queries, the times, as you would expect, increase. 

Look at the first record. The attribute "per_ user" shows one user took 12.1 seconds to 
run. Now look at the second record. A value of 12.1 in this field would mean that two users 
took twice as long as a single user. A value greater than 12.1 means that the system is 
running slower with multiple users. A value less than 12.1 means th<t some effective overlap 
of resources is going on. The real value is 7.17, that means considerable overlap is occurring. 

This same effect is shown in the "thruput" attribute. Here we show the amount of work 
done by the IDM per unit time, normalized so that the single user case is one. You can see 
that the "thruput" attribute increases, up to 2.73 for 24 users. This means that, with 24 users, 
throughput of the IDM is 1. 73 times greater than with 1 user. 

Overhead 

The simulation process had some overhead. We tried to estimate the overhead by running 
the master script modified to spawn zero user processes. It consistently took two (2) seconds 
to run thebenchmark with zero (0) users. 

Extensions to the Benchmark 

There are several additional tests that could be done to extend the usefulness of this 
benchmark: 

Rerunning the tests without an accelerator. 
Rerunning the tests on an IDM 200. 
Using a greater mix of queries. Including some replaces, and appends, or some retrieves 
that do not use any indices. 
Simulation of more users. 
Use of multiple hosts. 

Summary 

We demonstrated that the IDM has greater "throughput" as the number of users is 
increased. The IDM with 24 users processed querys at 2.73 times the single user rate. 

3 



IDM Performance Test 1 Revision 1 

Appendix A: The Data 

users !time I 

----------------------------! 
01 2. 
01 2. 
01 2. 
01 2. 
01 2. 
11 13.01 
11 11.0 I 
11 13.01 
11 12.01 
11 13.01 
11 12.01 
11 13.01 
11 11.01 
11 12.01 
1 11.0 I 
2 14.01 
2 15.01 
2 14.01 
2 13.01 
2 14.01 
2 16.01 
4 22.01 
4 21.0 I 
4 24.01 
4 24.01 
4 23.01 
8 42.01 
8 37.01 
8 36.01 
8 36.01 
8 37.01 

14 61.01 
14 61.01 
14 62.01 
14 68.01 
16 67.01 
16 70.01 
161 79.01 
161 75.01 
161 73.01 
181 79.01 
181 83.01 
181 87.01 
181 80.01 
181 84.01 
181 86.01 
241 100.01 
241 97.01 
241 110.01 
241 112 .O I 
241 112.01 

1----------------------------1 

4 



IDM Performance Test 1 Revision 1 

Appendix B: graphing the results 

175 ( c C"; l cul at 1~ d ) 
170 s i 11 ~1 le US L'l" ,. i:-• i:" 

165 
160 I 

155 I 
150 I 
145 

I 
140 
135 I 
130 I 
125 I 

R 120 • 
e 115 I Ac'l.t•iil 
a 110 I results 
l 105 I 

100 I T 95 
i 90 I 
m 85 I 
e 80 I 

75 
i 70 I 

n 65 I 

60 I 
s 55 I e 50 
c 45 I 

0 40 I 
n 35 
d 30 
!> 25 

20 
15 
10 

5 
0 

' I 
0 2 4 6 8 10 12 14 16 18 20 22 24 

Number of Users 

5 



IDM Performance Test 2 Revision 1 

IDM Performance Test 2: 
Simple Rettieves Varyingthe Number of Tuples 

Michael Tossy 
C 1983 Britton Lee, Inc. 

Purpose 

This perfonnance test characterizes the performance of the IDM doing retrieves on 
relations of different sizes. 

C>verallsu1nntary 

We proved that, for queries that do not use an index, the IDM retrieval time is linearly 
dependent on the number of tuples. Queries that use an index do not show this dependency, 
those rettieval times seem to be nearly constant for the range examined. Oustered indices are 
about 10% faster than nonclustered indices. 

We also demonstrated that the Database Accelerator always speeds retrieval times. For 
retrievals using an index, the Database Accelerator improves query times by about 140%. 

Background 

The time to run a query on the IDM is known to be dependent on many factors: 
complexity of where clause(s), number of tuples examined, number of tuples that qualify, 
number of atttibutes in relation, and number of relations, are just some of them. Two major 
factors are the access method (type of index used) and the presence, or absence, of a Database 
Accelerator (DAC). 

There are three methods used, by the IDM, to access relations. The simplest, and 
slowest, method is a "scan" of the relation. A "scan" simply reads all tuples and checks if they 
meet the qualification. This method is normally used only when other methods are not 
available. The other two methods use a B* tree index to give direct access to the desired 
tuple(s). A "clustered index" sorts the relation into an order based on a specified atttibute(s), 
this provides quick access when the query includes a restriction on that attribute(s). A 
"nonclustered index" is similar, but does not sort the relation, therefore it must build a more 
complex index. We would expect the clustered index to be faster than the nonclustered index. 

Benchmark Background 

This benchmark is designed look a query speed as a factor of relation size. We examined 
relations of eight different sizes (100, 1000, 5000, 10000, 25000, 50000, 100000, and 150000 
tuples). We examined these relations using all six combinations of access method (no index, 
clustered index, and nonclustered index) and Database Accelerator (present and absent). All 
other factors were held constant 



IDM Performance Test 2 Revision 1 

The benchmark simulates a series of queries by a single user. All queries were 
RETRIEVES with a simple resttiction on one awibute. That awibute had either a clustered or 
nonclustered index. 

The relations &1ad nine atttibutes, and the average tuple was 100 bytes wide. All relations 
on the IDM were created with logging. However, since no updates were done, this did not 
affect performance. 

The Conditions 

The host computer was av AX nnso running UNIX BSD 4.1. The IDM was a 500 with 
1.S Megabytes of memory. The IDM had a single 160 Megabyte disk drive. The IDM was 
running release 24 of the IDM code (release 1 of the WCS for runs with an Accelerator). The 
IDM and host were COMected by a RS 232 serial connection running at 9600 baud. 

Both host and IDM were idle except for the benchmark. 

Data collection 

IDM "set S" times were used. These are times, returned by the IDM, that indicate the real 
time inside the IDM from beginning to end of the query. These times include all processing 
within the IDM and all data transfer between the Host and the IDM, they do not include 
"parsing" time on the Host 

These times were stored on the IDM, and the IDM was used to display and calculate the 
performance numbers from the collected data. 

TbDings by relation size 

(The data displayed in this section has been graphed. The graphs are in Appendix 
A.)There are six tables, one for each combination of DAC usage (yes or no) and index type 
(clustered, noncl~tered, and no index). Each table shows the number of tuples and the average 
time to run a simple retrieve in that configuration. 

The attributes are: 
number of tuples (in the relation) 
access speed (in milliseconds) 

, 



IDM Performance Test 2 

lnumber of laccess I 
I tuples I speed I 
1-----------------------1 
I 1001 128.751 
I 10001 137.251 
I 50001 170.501 
I 100001 191.251 
I 250001 178.751 
I 500001 183. I 
I 1000001 195.751 
I 1500001 195.501 
1-----------------------1 

Table 1 
Access speed: DAC, 
clustered index 

number of !access I 
tuples I speed I 
-----------------------! 

1001 158. I 
10001 250. I 
50001 8203.751 

100001 16462.251 
250001 40716.501 
500001 85541. I 

1000001 176666.251 
1500001 268270.501 

-----------------------! 
Table 3 

Access speed: DAC, 
no index 

!number of !access 
I tuples I speed I 
1-----------------------1 
I 1001 345.751 
I 10001 316.251 
I 50001 391.501 
I 100001 503.751 
I 250001 545.501 
I 500001 637.251 
I 1000001 653.501 
I 1500001 437.251 
1-----------------------1 

Table 5 
Access speed: no DAC, 

nonclustered index 

3 

Revision 1 

!number of laccess 
I tuples I speed 

1-----------------------
1 1001 145.75 
I 10001 150. 
I 50001 174.75 
I 100001 191.50 
I 250001 178.75 
I 500001 212. 
I 1000001 233. 
I 1500001 195.50 

1-----------------------
Table 2 

Access speed: DAC, 
nonclustered index 

number of 
tuples 

I access 
I speed 

1001 308. 
10001 266. 
50001 345.50 

100001 466.50 
250001 491.50 
500001 558. 

1000001 583. 
1500001 349.75 

Table 4 
Access spee~: no DAC, 
clustered index. 

number of laccess I 
tuples I speed I 
-----------------------! 

1001 478.751 
10001 983. I 
50001 10507.751 

100001 21157.751 
250001 51966.251 
500001 106262.251 

1000001 218774.751 
1500001 318745.5 I 

-----------------------! 
Table 6 

Access speed: no DAC, 
no index. 



IDM Performance Test 2 Revision 1 

Timing discussion 

Looking at table 1 (clustered index and DAC) we can see that the access time is fairly 
constant The number of tup~es varies by three orders of magnitude (1500 times more tuples), 
yet the difference between thz fastest and slowest query is only 52% (1.52 times as long). The 
first two cases (100 and 1000 tuples) had only a single level index, while the others had a two 
level index index structure, that may explain the large jump difference in query times between 
those two groups. 

Table 4 (clustered index, no DAC) shows a similarly consistent retrieval time, varying by 
only 119% (2.19 times as long). The DAC times are consistently faster (see later section). 
The effect of the additional index level is not as clear in this data. The 150,000 tuple case is 
m.arlcedly faster than expected; the cause isn't known. 

The nonclustered index data (Tables 2 and 5) show the same consistent times as the 
clustered indices. Query times for table 2 vary ~y only 59% (1.59 times as fast). Query times 
for table 5 vary by 107% (2.07 times as fast). Again, the DAC always helps (see later 
section) and the clustered index is almost always faster than the nonclustered index (see later). 

Now look at table 3 (DAC, no index). Starting with the 5000 tuple case we get times 
that increase linearly with the number of tuples, just as we would expect (Below 5000 tuples 
this effect is clouded by other factors, such as query analysis, and disk cacheing). 

Table 6 (No DAC, no index) shows the same effect as table 3; the query times go up 
linearly with the number of tuples. The effect of the DAC is still noticeable, although not as 
significant These querys require a complete scan of the relation and are therefore VO bound. 

Timing summary 

Access times are do not vary significantly for indexed queries. For unindexed queries the 
time is linearly proportional to the number of tuples. 

This information is particularly useful to users who wish to prototype a large system. 
Access times can be predicted by prototyping a 10th, lOOth, or even lOOOth scale model of the 
production database. 

Comment 
I 

There is no direct way to discover how many levels there are in an IDM index. By 
calculation, I would have expected three nonclustered index levels for the 25,000, 50,000, 
100,000, and 150,000 tuple relations, two levels for 1,000, 5,000, and 10,000 tuples, and one 
level for 100 tuples. The query times do not seem to support this hypothesis. 

Effect of Accelerator on times 

There are three tables, one for each access type (clustered index, nonclustered index, no 
index). Each table shows the average effect of the DAC, and the effect of the DAC by relation 
size. 

4 



IDM Performance Test 2 

'The attributes are: 
number of tuples (in the relation) 
Time without DAC divided by time with DAC 

Overall improvement for this access method: 

number of lno DAC time 
tuples I I DAC time 

1001 2.1905 
10001 1. 8652 
50001 2.0022 

100001 2.4637 
250001 3.0245 
500001 3 .2679 

1000001 2.6051 
1500001 1. 7819 

I average 
I improvement I 
1---------------1 
I 2.40431 
1---------------1 

Table 7: Increase in speed using DAC, 
access via clustered index. 

number of lno DAC time 
tuples I I DAC time 

1001 
10001 
50001 

10000 I 
250001 
500001 

1000001 
1500001 

2.3861 
2.0626 
2.1847 
2.5404 
2.9699 
2.9898 
2.7663 
2 .1117 

I average 
!improvement I 
1---------------1 
I 2.52581 
1---------------1 

Table 8: Increase in speed using DAC, 
access via nonclustered index. 

I number of I no DAC time 
!tuples I I DAC time 

!-------------------------
' 1001 2.9026 
I 10001 2.2251 
I 50001 1.2727 
I 100001 1.2652 
I 250001 1.2676 
I 500001 1.2290 
I 1000001 1.2178 
I 1500001 1.1743 

,!-------------------------

I average 
I improvement I 
1---------------1 
I 1.20671 
1---------------1 

Table 9: Increase in speed using DAC, 
access via scan (no index) . 

5 

Revision 1 



IDM Performance Test 2 Revision 1 

DAC effect discussion 

Tables 7 and 8 represent produ::tion type queries, and both tables 7 and 8 show a 
consistent boost in performance with the DAC. Table 9 is interesting since it shows a 
consistently declining (as the relation size increases) boost by the DAC. This was expected, 
because these queries are 1/0 bound and tend to become more so as the size of the relation 
increases. 

DAC effect summary 

The DAC consistently helps all queries. The CPU bound queries are helped more than 
the 1/0 bound queries. Non-indexed queries were helped about 20% by the DAC; index queries 
were helped between 140% and 150%. 

Effect of Index on times 

This section shows the difference in query times between clus~ and nonclustered index 
access. The sub-tables show the difference by relation size and the average of all cases. 

The attributes in the left sub-table are: 
number of tuples (in the relation) 
presence of Database Accelerator (DAC) 
nonclustered index time divided by clustered index time 

number off !improvement I 
tuples IDAC fin speed I 

---------------------------! 
lOOIN 1.1225601 

lOOOIN 1.1889101 
50001N 1.133140 I 

lOOOOIN 1. 079850 
250001N 1.109870 
500001N 1.142030 

lOOOOOIN 1.120930 
150pOOIN 1.250180 

lOOIY 1.132040 
lOOOIY 1.092900 
50001Y 1. 024930 

10000 I Y 1.001310 
250001Y 1.000000 
500001Y 1.158470 

lOOOOOIY 1.190290 
1500001Y 1.000000 

Table 10 

!average increase I 
1-----------------1 
I 1.1185501 
1-----------------1 

lave~age increase I 
lwith DAC I 
1-----------------1 
I 1.0727901 
1-----------------1 

!average increase I 
!without DAC I 
1-----------------1 
I 1.1373101 
1-----------------1 

Speed advantage of clustered 
index over nonclustered index 

6 



IDM Performance Test 2 Revision 1 

Index effect summary 

In general the clustered index seems to have about a 10% speed advantage over the 
nonclustered index. The presence of the DAC seems to moderate the difference. 

Overall summary 

We demonstrated that, for queries that do not use an index, the IDM retrieval time is 
linearly dependent on the number of tuples. Queries that use an index do not demonstrate this 
dependency, rather the retrieval times seem to be nearly constant for the range examined. 
Clustered indices are faster than nonclustered indices, but not substantially so. 

We also demonstrated that the Database Accelerator always speeds retrieval times; in 
production type queries the DAC more than doubled the IDM performance. 

Extensions to the Benchmark 

There are several additional tests that could be done to extend the usefulness of this 
benchmark: 

Increasing the number of tuples. 
Rerunning the tests on an IDM 500/0. 
Repeating the test with queries that require joins. 
Investigate why the 150,000 tuple relation runs faster than the 100,000 tuple relation. 
Repeat test using stored commands. 

7 



R 

• .. 
l 

T 
i 

• • 
i 
n 

• • 
c 
0 
n 
d 

• 

IDM Performance Test 2 

400 • 
390 
380 
370 
360 
3~0 
340 
330 
320 
310 
300 
290 
280 
270 
260 
2~0 
240 
230 
220 
210 
200 
190 
180 
170 
160 
150 
140 
130 
120 
110 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

• + --GUERY I I 
10 2!5 

Appendix A: eraphing the results 

• 
I 

50 

8 

I 
100 

Revision 1 

No index 
DAC 



R 

• • 
1 

T 
1 

• • 
1 
n 

.. 
1 
1 
1 
i 

• • 
c 
0 

n 
d 

• 

IDM Performance Test 2 
Revision 1 

1000 
97, 
9,0 
925 
900 
875 
8,0 
825 
800 
77, 
750 
725 
700 
675 
6,0 
625 
600 
~75 
525 
,2, 
500 
475 
450 
425 
400 
375 
350 
325 
300 
275 
250 
225 
200 
17, 
150 
125 
100 
75 
50 
25 

Na ind•x 
Na DAC 

1 1 

No ind•x 
DAC 

No DAC 
Nonclust•r•d 

Index 

No DAC 
Clustered 

Index 

DAC 
None lustered 

Index 

- -----::..::::====-=-
------~=====:;::::::;:::- DAC 

~...:::::---· Clustered 
- Index 

+ ___ + ·~--~~----~~--· 
GUERV . I I 

3 
I 
4 

I , I 
6 

I 
7 9 10 1 iiZ e 

Nu•b•r of <thous•nd> Tupl•• in R•l•tion 

9 



Date: 11 April 1985 
Section: 3 (IDM performance) 
Subsection: 3 (The IDM only) 
Article: 7 (#5 of The Britton Lee IDM Performance Study Series) 

I 

Title: 
Author: 

IDM Perfonnance Test #5: DAC Performance 
Ed Simon 

Copyright: Britton Lee, Inc. 
Copy: You may copy and distribute. 

Synopsis: Part of a series of papers maintained by the Britton Lee Sales 
Support group and designed to point out various aspects of the 
IDM's performance. All of the previous papers study the effect of 
the DAC on the perf onnance of a specific simple command but this 
paper looks at the effects of the DAC in a wide variety of 
operations. It also separates the effects of disk I/O time from CPU 
performance in evaluating the DAC improvements. 



IDM Performance Test S Revision 1 

IDM Performance Test 5: 
DAC Perfonnance 

Ed Simon 
© 1985 Britton Lee, Inc. 

Summary 

The major difference between the IDM 500/l TM and the IDM 500/2TM is that the IDM 
50012 includes the Database AcceleratorTM (DAC). an optional high performance "search 
engine·. As can be seen below, the DAC significantly improves the IDM's performance on 
some queries. 

Medium Length Queries 

10 
9 

8 

7 
6 

Seoorrls 5 
4 

3 

2 
1 
0 

1a 1b 2a 2b 3a 3b 
Query 

(Time without DAG shown on left, time with DAG shown on right) 



IDM Performance Test S Revision 1 

Short Queries 

0.5 

0.4 

0.3 
Seoonds 

0.2 

0.1 

0.0 
4 5 

Query 

(Time without DAC shown on left, time with DAC shown on right} 

Long Queries 

250 

200 

150 
Seoonds 

100 

50 

0 
6 7 8 

Query 

(Time without DAC shown on left, time with DAC shown on right) 

2 



IDM Performance Test 5 Revision I 

Two general statements can also be made about the results of this study: 

• A query that is CPU bound will show larger relative performance improvement than a 
query that is disk 1/0 limited. 

•The improvement in performance can be estimated by looking at the DAC time, SET 
44, returned by the IDM. 

Note 

This report replaces the original report on DAC performance dated March 1983. In this 
report, some of the experiments performed in the earlier report are repeated with the current 
software revisions (IDM release 31, UNIX release 3 IDL). 

Background 

The Database Accelerator (DAC) is a high performance (8 MlPS), single board processor 
which plugs into any free slot of an IDM 500. The major difference between the IDM 500/l™ 
and the IDM 500/2TM is that the IDM 500/2 includes the Database Accelerator™ (DAC). The 
DAC offloads certain functions from the microprocessor based Database Processor (DBP). The 
major improvement in IDM performance contributed by the DAC occurs largely from 
exploiting the "90 - 10 rule" (90% of the time is spent in 10% of the code). By placing that 
10% in a very fast processor (about 10 times faster than the main processor) Britton Lee has 
achieved significant performance improvements. (In a relational system much time is spent 
looking for patterns in records, and that is the DACs primary function.) 

When the DAC is not present the DAC functions are simulated by the slower main 
processor (DBP). The "DAC" attribute in the IDM monitor relation and the SET 44 time both 
indicate how much time is spent by the DAC (if present) or by the DBP simulating DAC time 
{if the DAC absent). 

Introduction 

From the descriptions in the background section you can guess that the impact of the 
DAC depends on the query being run. Furthermore it should be possible to estimate the 
impact of adding a DAC to an IDM without one, by looking at either the SET 44 times or 
DAC attribute in the monitor relation. A rule of thumb for estimating the benefits of adding 
the DAC assistance to an existing application is to look at the value returned by the SET 44 
option on the query. Assume that 90% of this time would be saved with a DAC. This study 
will be used to verify that assertion. 

This report is meant to give easily reproduced results on a simple set of queries against a 
small, simple relation. More complete studies that observe relative performance with and 
without the DAC have been published. The most informative of these is the pair of studies by 
Boral and DeWitt [BORA84] and Hawthorn [HA Wf85]. 

3 



IDM Performance Test S Revision 1 

All experiments in this test use a relation with 24001 tuples on about 170 pages. Tne 
relation is: 

create dictionary (word=c30, length•i2) go 
create clustered index on dictionary (word) go 

All of the studies in this report were done using the perfonnance reporting options on the 
IDM. This allows us to control the query relative to disk performance as well as observing the 
effect of wait queues on results. The times with the DAC were perfonned on an IDM 500/2 
(with 2 Megabytes of memory and a DAC). The times without a DAC were performed on the 
same IDM 500/2 with the DAC software disabled and thus simulating a 500/l with 2 
Megabytes of memory. None of the studies involve returning large amounts of data to the 
host, so that host 1/0 wait times as well as disk access times could be controlled. 

Simple Retrieves 

These examples show processing time saved by using a DAC on simple indexed and 
unindexed retrievals. For each experiment in this section, the times were measured with the 
data resident on disk and with the data already in cache memory. The following command 
performs a minimal amount of work on each tuple in a sequential scan: 

Example 1 

range of d is dfrtionary 
retrieve (x-counJ(d.word)) go 

Condition In memory 

Without DAC: 3.8 sec 
With DAC: 1.1 sec 

Difference: 2.7 sec 
Factor: 3.5 times 

On disk 0.9 x SET 44 

7.3 sec 2.8 sec 
4.8 sec 

2.5 sec 
1.5 times 

Notice that the difference in processing time for this 24,000 tuple scan between the DAC 
and No DAC cases is independent of the disk access time. The Factor shows how many times 
faster the process proceeded with the DAC. For comparison, 90% of the SET 44 value 
returned in the No DAC case is also given. In this case the actual time saved was about 2.6 
seconds; the SET 44 rule predicts 2.8 seconds. 

4 



IDM Performance Test 5 Revision 1 

In the next example, a restriction is placed on the unindexed length attribute: 

Example2 

retrieve (x-count(d.word where d.length >-13)) go 

Condition In memory On disk 0.9 x SET 44 

Without DAC: 5.9 sec 9.3 sec 5.1 sec 
WithDAC: 0.6 sec 3.9 sec 

Difference: 5.3 sec 5.4 sec 
Factor: 9.5 times 2.4 times 

Here the effect of the DAC is more dramatic; the SET 44 rule even underestimates the 
savings. The additional restriction forces both fields of each tuple to be referenced, nearly 
doubling the processing time in memory. Note that the time to read the relation from the disk 
is essentially fixed. 

In the next example we place a restriction on the indexed attribute that allows the query to 
reference fewer pages: 

Example 3 

retrieve (x-count( d. word 
where d.word • "s*" and d.length >-13)) go 

Condition In memory On disk 0.9 x SET 44 

Without DAC: 1.7 sec 2.8 sec 1.6 sec 
WithDAC: 0.3 sec ' 1.3 sec 

Difference: 1.4 sec 1.5 sec 
Factor: 6.3 times 2.2 times 

Again the SET 44 value slightly underestimates the savings. 

Simple Updates 

A single update does not require scanning much of the query, so it tends to run relatively 
quickly. The time to append a tuple does not depend on the size of the relation. In this 
example we simply add a word to the relation. For the balance of the examples, the processing 
time from disk will not be included: 

5 



IDM Performance Test S Revision 1 

Example4 

append to dictionary (word•'1DM", length •3) go 

Condition Total time 0.9 x SET44 

Without DAC: .27 sec .18 sec 
WithDAC: .08 sec 

Difference: .19 sec 
Factor: 3.4 times 

The next example does a replace on a single tuple, that can be located with one traversal 
of the index: 

Examples 

replaced (word-"DaJaBaseManageml!nlSystem", length-24) 
where d.word - "databasemanagementsystem" 
and d.length - 10 go 

Condition Total time 0.9 x SET44 

Without DAC: .43 sec .24 sec 
With DAC: .13 sec 

Difference: .30 sec 
Factor: 3.3 times 

In the next example, a global Revlace is performed, where all words beginning with ·s" 
are replaced by their current value (this doesn't change the relation, but requires the same 
processing time). In this case, only part of the relation is scanned, but this processes over 
2200 updates for this relation. 

Example 6 

replaced (word- d.word) where d.word • "s*" go 

Condition Total time 0.9 x SET44 

Without DAC: 114. sec 81. sec 
WithDAC: 32. sec 

Difference: 82. sec 
Factor: 3.6 times 

6 



IDM Performance Test 5 Revision I 

Conclusion 

We have seen several reproducible and useful results from this study: 

• The Factor of improvement may not be the best measure of DAC enhancement 

• The formula that specifies that 90% of the SET 44 value returned by the IDM can be 
saved by installing a DAC is very accurate for most common queries. 

• The time saved by DAC processing is all CPU time. Disk access time has no effect on 
the saving. 

Bibliography 

[BORA84] Boral, H., De Witt. D., "A Methodology for Database System Performance 
Evaluation", Proceedings, SIGMOD, Boston, 1984. 

[HA WT85] Hawthorn, P., "Variations on a Benchmark", Britton Lee Inc., 1985. 

8 



Date: 28 July1985 
Section: 3 (IDM performance) 
Subsection: 3 (The IDM only) 
Article: 10 (#8 of The Britton Lee IDM Performance Study Series) 

Title: 
Author: 

IDM Performance Test 10: Mirrored Disk Performance 
Ed Simon 

Copyright: Britton Lee, Inc. 
Copy: You may copy and distribute. 

Synopsis: The mirrored disk option was introduced to improve data reliability 
and availability by addressing the issue of hardware failure at the 
weakest point in the system, the disk drives. To extend the 
protection from hardware failure BLI recommended that mirrors be 
placed on separate controllers. 

Initial performance expectations for the option were that: 
- Disk read operations would be faster. 
- Write operations would be slower. 
- The typical application would run about the same speed with 

or without mirrored disks provided disk pairs were 
connected to' separate controllers. 

In general, these expectations are borne out with the exception that 
multiuser disk reads are so much faster with mirrored disks (on a 
single as well as separate controllers) that mirroring should be 
considered a significant option for the performance improvement of 
some applications. 



IDM Performance Test 8 

Summary 

IDM Performance Test 8: 
Mirrored Disk Performance 

Ed Simon 
June 1985 

<O 1985 Britton Lee, Inc. 

Revision 1 

The performance of Mirrored disks on the Britton-Lee IDM 500 was measured for a 
variety of user processes and compared to the performance for the same processes on 
non-mirrored disks. In general, update performance for mirrors with a single disk controller 
was somewhat degraded (5% to 15%), while multi-user disk reads were observed to run up to 
260% faster on Mirrored disks. 

Adding a second disk controller improved performance considerably. Mirrored updates 
ranged from 6% faster to 10% slower. Reads were up to 340% faster for Mirrored disks in 
multi-user situations. 

Introduction 

The Mirrored disk feature of the IDM is attractive for reasons of data security. The 
Mirrored disk feature permits one disk device to be a physical mirror of a second device, thus 
protecting the physical database from losses due to single disk failures. In addition, some hard 
disk errors are automatically repaired by the block being remapped and copied from the 
unaffected mirror. When combined with the other data security and integrity features of the 
IDM, the Mirrored disk option provides a capable backup and integrity system for user data, 
while optimizing on-line availabilty. ' 

In general, users expect to pay some performance cost for data security, so to investigate 
this implication, we measured the time necessary to complete a variety of tasks on the IDM. 
We expected updates to run somewhat slower, due to the fact that two disks had to be written 
for each update. We also expected data retrieval to run somewhat faster due to the availability 
of a second drive. 

The algorithm used for reading disk data with Mirrored drives permits each block request 
to be filled by the drive closest to that disk block. To keep one drive from getting all of the 
exercise on reads, the algorithm is reversed every so often. For writes, the data is written to 
bothdevices simultaneously, so there may be an extra cost of waiting until both disk 
operations have completed. This cost was expected to be higher for a system with a single 
disk controller. 



IDM Performance Test 8 Revision 1 

Configuration 

The benchmark was performed on an IDM 50012 with a database accelerator (DAC), 2 
Megabytes of memory (450 disk cache pages), serial connection to a VAX 785 running Ultrix 
and parallel connection to a VAX 11n50 running VMS. The IDM had 3 160-megabyte disk 
drives initially on a single controller. The IDM software was release 32. Drive 1, the Fujitsu 
system drive, was not Mirrored while drives 2 and 3, CDC drives, were Mirrored. At one point 
in the experiment, one of the CDC drives was intentionally downed to see that the IDM 
continued with the remaining drive. Performance measurements were repeated on the 
remaining drive to obtain the same results for non-mirrored drives. The downed Mirror was 
then brought back on-line and re-mirrored. The measurements were again checked. In the next 
phase of the experiment, one of the Mirrored disks was placed on a second controller, and all of 
the studies were repeated. 

The experiment was performed on two databases that resided on separate logical disks on 
the CDC drives. Each drive was subdivided into three logical disks, so that the position of the 
target data on the disk could be controlled. The relation used to make the measurements was 
the "tenk:tup" benchmark relation defined by David DeWitt in his paper at the University of 
Wisconsin(1983). This relation contains 10,000 tuples and occupies 1000 disk blocks. Since 
the IDM had only 450 cache pages, a scan of the relation required I 000 disk reads. 

The queries that were measured were queries that were largely disk bound. The queries 
selected all had measurable amounts of disk reads and writes. Some performed primarily reads, 
some performed only writes, some did both. The object was to extract the effect of mirroring 
the clisks. Each measurement was repeated several times when possible. Some measurements 
were made for multi-user conditions when this was relevant 

Each table contains the times necessary to perform the measured function with Mirrored 
and Non-mirrored disks. The Mirrored disk times are given for both the single controller and 
the tandem controller cases. While times for the Non-mirrored and single controller cases 
were fairly consistent on repeated trials (within 1 second in most cases), times for the Mirrored 
case with separate controllers varied much more. For these studies, the mean time is given, 
and the observed range follows in parentheses. The percentage difference in time is given by: 

\ 

Mirrored - Non-mirrored 
difference - x 100 

Mirrored 

Negative values for the difference indicate a performance 
enhancement by Mirrored disks. 

IDMCOPYIN 

The process of copying a relation into the IDM from tape or host is one that requires 
considerable disk l/O. In this experiment, the tenktup relation and another, smaller relation 
("eds5") were copied from the VMS host. The times were the same for the IDM tape, since 
this utility is limited by the IDM performance. 

2 



IDM Performance Test 8 Revi!ion 1 

Relation Mirrored(sec) Non-mirrored(sec) differe!'lce 

tenktu~ (1 controller) 
tenktup (2 controllers) 

105. 96. 9% 
107.5(106-109) 10% 

eds5 (1 controller) 85. 81. 5% 

Mirrored disks were slightly slower in recording the relations, most likely due to factors 
explained above. 

RETRIEVE-Relation Scan 

A retrieve command that causes the entire relation to be scanned, but does not output 
large volumes to the host is a good measure of the disk read performance on the IDM. The 
command used here required 1000 disk reads to scan the relation. 

range oft is tenktup 
retrieve ( c-count(t.uniquel )); 

Controllers ?vfirrored(sec) 

1 
2 

18.7 
18.0(17-19) 

Non-mirrored (sec) difference 

18.8 0% 
-4% 

No significant difference in performance for the Mirrored and Non-mirrored disks was seen 
with one controller. With 2 controllers, the Mirrored disks performed somewhat faster most of 
the time. 

CREATE NONCLUSTERED INDEX 

To create a nonclustered index, the entire relation must be read and the index structure 
created. 

create nonclustered index on tenktup( unique]); 

Controllers .Mirrored(sec) 

1 
2 

42.7 
43.2(42-45) 

Non-mirrored (sec) difference 

46.~ -8% 
-7% 

The Mirrored disk configuration was somewhat faster. This operation involves mostly 
reads of the disk. 

3 



IDM Performance Test 8 Revision l 

CREA TE CLUSTERED INDEX 

The create clustered index command causes the entire relation to be sorted on disk. The 
original relation is scanned, a new, sorted relation is written, and then the original is destroyed. 
The operation requires both CPU and disk reads and writes. 

creaJe clustered index on tenktup(wzique2); 

Controllers Mirrored (sec) 

1 
2 

88.1 
80. (77-8) 

Non-mirrored (sec) difference 

77.8 12% 
3% 

We see the cost of writing to disk in this case. The benefits derived from sequential 
reading of disk blocks are obscured by interleaved processing and writing of the new relation. 
Again, the two controller configuration performs considerably better. 

RETRIEVE INTO 

The IDL retrieve into command is actually more demanding than creating a clustered 
index. This command is considered an update, so that all changes must be written to the batch 
log or transaction log before the change is performed. It is used as a better indication of disk 
writes than simple Appends would provide. 

REPLACE 

range oft is tenhup 

Controllers Mirrored(sec) 

1 
2 

88.8 
85.7(78-91) 

Non-mirrored (sec) difference 

79.7 10% 
7% 

Replace, like retrieve into, requires all changes to be written to a log before being 
committed. In this case the log must be read back, after being written to disk and applied to 
the original relation. The command used in this experiment changes every tuple to its current 
contents. The cost is the same as if the attribute were altered The process required 4000 reads 
and 4000 writes for the 1000-block relation when a non-clustered index existed ... 

range oft is tenlctup 
replace t (two=t.two); 

Controllers l\1i.rrored(sec) Non-mirrored (sec) difference 

1 
2 

217. 184. 
174. (168-180) 

4 

15% 
-6% 



IDM Performance Test 8 Revision 1 

This operation has the largest cost factor for single-controller Mirrored disks of any of 
those measured. It is also an illustration of a clear improvement in performance for the second 
controller. The large number of disk operations certainly provides an extreme case for disk 
performance. 

Multi-User RETRIEVES 

This is a special case where the presence of the Mirrored disk feature provides a significant 
enhancement to performance. Three cases were investigated. In each case, two users invoked a 
command to scan the relation on the disk simultaneously. 

In the first case (labeled "Shared"), the two users shared data, that is they were trying to 
scan the same relation in the same order. Each user profited from the disk operations of the 
other, so that neither process suffered much in performance. 

In the second case (labeled "Same disk"), the users scanned relations on the same disk 
(Mirrored or Non-mirrored). 

In the third case (labeled "Diff disk"), the users scanned relations on different physical disk 
drives. 

For these measurements, the same scan that was illustrated above was run by each user. 
The times given are the average times for each of the two user processes. 

Case./cntrl Mirrored (sec) Non-mirrored (sec) difference 

Shared/I I8.6 I8.8 I% 
Shared/2 I8.6 I% 
Same disk/I 25.6 91.8 -260% 
Same disk/2 20.0 -350% 
Diff disk/I 2S.6 
Diff disk/2 22.0 

Note that the two users complete their scan in the same time when they are sharing data. 
The two processes are in many ways symmetrical, each doing half of the disk reads and waiting 
on the other half. 

When the users are scanning data on the same disk, but different locations, they must 
compete for the same read-write head Not only must each user wait for the disk to read the 
competing data, but he must also wait for the seek times between the tracks. The two 
processes alternate diskblocks, causing excessive seeks in the Non-mirrored case. In the 
Mirrored case, each Mirror will read the blocks of one user, providing performance identical to 
having the data located on separate disks. 

5 



IDM Performance Test 8 Revision 1 

The "Diff disk" measurement actually had one user scanning the Non-mirrored disk and 
the other scanning data on the Mirrored disk. The two processes share the CPU and available 
cache memory, but most processing is overlapped with disk 110 for the other job. 

Other Possible Factors for Investigation 

Some experiments have not been perf orrned in this study: 

Multiple user queries may provide a mix of the performance seen, but they have not been 
explicitly investigated. 

Mirrored system disks may give different results. It is possible that the cost of writing 
system relations may add to all queries. This too will be the subject of a later investigation. 

6 



Performance Test 11 Revision 0 April 23, 1986 

IDM Perf onnance Test 
Relative Performance of 10 and 6 MHz Database Processors 

Ed Simon 
C 1986 Britton Lee, Inc. 

In order to express the relative performance of the 10 MHz database processor in terms 
of the current 6 MHz processor, siA queries were perf orrned and the effective transaction rate for 
eoch query calculated. 

For each query, two types of comparisons were made. Fmt, the effect of the DAC on 
the query performance was calculated for both the 6 MHz and 10 MHz cases. Second the 
percent improvement of the 10 MHz over the 6 MHz DBP was calculated. 

As might be expected, the improvement of the 10 MHz DBP over the 6 MHz DBP was 
greater without the DAC. The improvement with the DAC was greatest for those queries that 
made least use of the DAC. 

For these 6 queries, the average perf onnance improvement of the 10 MHz DBP over the 6 
MHz DBP was 59% without the DAC, 52% with the DAC. 

For the first 3 queries, the 6 MHzJDAC was faster than the 10 MHz.INODAC. For the 
last 3 queries, the 10 MHzJNODAC was faster than the 6 MHzJDAC. 

Benchmark Conditions 

Ea:::h experiment was perf ooned on an IDM with 2 Megabytes of memory and: 

6 MHz/DAC - 6 MHz DBP with the database accelerator 

6 MHz/NODAC - 6 MHz DBP without database accelerator 

10 MHzJDAC - 10 Ml-4 DBP with the database accelerator 

10 MH7./DAC - 10 MHz DBP without database accelerator 

All times were taken from set 5 times on queries run on the onektup relation defined by 
DeWitt in his 1983 benchmark. The relation (100 disk pages) was cached before the 
standalone series of queries. Per-process performance monitoring was used to insure that no 
disk 110 or host 110 contributed to the elapsed times. The queries were repeated several times 
in four configurations, and found to vary little with repetition. The set 5 time for each query 
was recorded in ticks (tiOths of a second) and the transa:::tion rate calculated by: 

60 
rate .. ---------

set 5 (ticks) 

1be percent 10 MHz improvement was then found by: 



Performance Test 11 Revision 0 April. 23, 1986 

rate(lOMHz) - rate(6MHz) 

percent • ------------------------ x 100 
rate(6MHz) 

The percent DAC improvement was then found by: 

rate(DAC) - rate(NODAC) 
percent .. x 100 

rate(DAC) 

Summary Results 

Query 1: Scan relation searching integer field. 

retrieve (c=count (o.two where o.unique2=488)),· 

Effective Transaction throughput for this query: 

l:lOI2AC tlAC 
6 MHz 100% 333% I 

I 
10 MHz 150% 500% I 

I 

DAC Improvement• 233% (6 MHz), 233% (10 MHz) 
10 MHz Improvement• SO% (NODAC), 50% (DAC) 

Query 2: Scan relation searching on string field 

retrieve (c=count (o.two where o.stringu2="G*.")); 

Effective Transaction throughput for this query: 

NQI:l~ tlAC 
6 MHz 100% 385% I 

I 
10 MHz 162% 524% I 

I 

DAC Improvement• 285% (6 MHz), 223% (10 MHz) 
10 ~Improvement • 62% (NODAC), 36% (DAC) 

2 



Performance Test 11 Revision 0 

Query 3: Aggregate function on integers 

retrieve f c=avg (int4(o.thousand) by o.ten)); 

Effective Transaction throughput for this query: 

NOO.M:: DAC 
6 MHz I 100% 181% I 

I· I 
10 MHz I 155% 268% I 

I I 

DAC Improvement • 81 % (6 MHz), 73% (10 MHz) 
10 MHz Improvement• SS% (NODAC), 48% (DAC) 

Query 4: Aggregate function with bed conversion 

retrieve (c=avg(bcdjlt(O,o.thousand) by o.ten)); 

Effective Transaction throughput for this query: 

NOD AC DAC 
6 MHz 100% 133% 

10 MHz 158% 208% 

DAC Improvement - 33% (6 MHz), 32% (10 MHz) 
10 MHz Improvement• S8% (NODAC), S6% (DAC) 

April 23, 1986 

Query 5: Scan relation searching on string with lead wild card. 

retrieve (c=count(o.two where o.stringu2="*G*")); 

\ 

Effective Transaction throughput for this query: 

NOQAC DAC 
6 MHz 100% 119% I 

~~~~~~~~~' 
10 MHz 170% 200% I 

~~~~~~~~~' 

DAC Improvement• 19% (6 MHz), 18% (10 MHz) 
10 MHz Improvement • 70% (NODAC), 69% (DAC) 

3 



Performance Test 11 RevisionO April 23, 1986 

Query 6: Scan relation using OR clause to force sort of tuple ids. 

retrieve (c=count(o.two where o.two=l or o.two=O)); 

Detail Results 

Effective Transaction throughput for this query: 

NOD AC PAC 
6 MHz 100% 139% I 

~~~~~~~~~-' 
10 MHz 159% 217% I 

~~~~~~~~~-' 

DAC Improvement'"' 39% (6 MHz), 37% (10 MHz) 
10 .MHz Improvement'"' 61 % (NODAC), 56% (DAC) 

QUERY TIMES (60ths of a second) 

Query 6MHzJNODAC lOMHz/NODAC 6MHz/DAC lOMHzJDAC 

1 30 20 9 6 
2 42 26 11 8 
3 267 174 151 102 
4 492 315 315 243 
5 101 60 86 51 
6 65 41 47 30 

QUERY TRANSACTION RA TES (Queries/second) 

\ 

Query 6MHz/NODAC lOMJWNODAC 6MHz/DAC lOMlh/DAC 

l 
2 
3 
4 
5 
6 

Conclusion 

2.0 
1.43 
0.22 
0.12 
0.59 
0.92 

3.0 
2.31 
0.34 
0.19 
1.00 
1.46 

6.7 
5.5 
0.40 
0.16 
0.70 
1.28 

10.0 
7,5 
0.59 
0.25 
1.18 
2.00 

It can be seen that the overall range in processor performance indicated by these studies is 
between a factor of 2 and a factor of S. In some cases, the Database Accelerator provides 
considerably more throughput enhancement than the faster DBP; in others the 10 MHz DBP 
actually provides a somewhat larger enhancement than the DAC. Taken together, the two high 
perfonnance processors can endow the IDM 500 with considerably better performance for query 
processing. 

4 


