
,O'R INFORMATION CAL'L

NORM ZARESKI
lRITTON UHE1 INC.

U1 N. SEPULVEDA BLVD.
~UHE 250

MNNWA1't4\,~ 8£<\CH. CA 90268
'(;l:ilft.t.. ~11.mi •.. fi:"""""' .<:..., .. ,·~PJ -~ .• L....., 't."ilJP~~

NTELLIGENT
DATABASE

MACHINES
Relational databases have received By Philip A. Naecker
more press than just about any other

software topic lately, except possibly networking stand
ards. Britton Lee, Inc. (BLI), Los Gatos, Califor
nia, markets intelligent database machines and rela
tional servers that combine both of those hot topics
and add the lure of data sharing, high-peiformance
computing on PCs, and possibilities for excellent price
peifonnance ratios for database operations. Britton
Lee has taken the flexible approach to databases,
allowing the user to mix-and-match the language,
host machine, and peiformance to match the applica
tion. And, for some users, it looks like the Britton
Lee approach might just be the ticket to efficient and
host-independent database access. In Part 1, we'll
examine some of the issues involved in special-purpose
vs. general-pwpose processing, look inside the BL!

architecture, and explore the options that database
hardware offers.

formance Debate." On one side are system
managers and some MIS managers, who argue
that the unreasonably large amounts of

'resources are consumed by applications built
using relational database software running on
a general-purpose computer. On the other side
are application developers and database gurus.
In the first place, they argue, it's better that the
machine do the work than the programmer,
and what you need to look at is total produc
tivity-value for your dollar. Because of the
inherent flexibility of relational databases, they
say, there are tremendous opportunities for
reducing software development and mainten
ance costs by using the relational database
approach.

Britton Lee's
Hardware Approach
to Database
Management Can
Lead to Efficient and
Host-independent
Database Access.
Part 1.

Much of the press addressing relational
databases has revolved around "The Great Per-

To deal with the "performance problem,"
real or imagined, and to provide rapid and
uniform response time for on-line processing,
there are two strong players in the database
m.achine market. Teradata Corporation, Los
Angeles, is considered the Big Gun. They
build very big, very costly, highly parallel
machines for time-critical applications.

Reprinted from DEC PROFESSIONAL, Vol. 5, No. 10, October 1986, and Vol. 5, No. 11,
November 1986, Professional Press Inc., 921 Bethlehem Pike, Spring House, PA 19477,
(215) 542-7008. November 1986.
This magazine is no1 sponsored or approved by or connected in any way with Digital Equipment Corporation. "DEC" is a registered trademark
of Digital Equipment Corporation. Digital Equipment Corporation is the owner of the trademark "DEC" and is the source of all "DEC" products.

DEC PROFESSIONAL

DATABASE
PROCESSOR

MEMORY
Integrated DBMS and OS

Host 110 Butter
Disk Cache

User Query Better

Query Language

Report Writer ~
Data Entry Translated. Query

Other Applications

Precompilers

Run Time Library

• OBA Utilities
Results

Drivers

"-

DATABASE
ACCELERATOR

Aeia1ional Data Management
Transaction Management

Security

Optimized Access Path Selection

RAM Cache for Disk Blocks
Concurrency Control

Audit Logs

Crash Recovery

Dump & Load of Data

Random Access file System

TAPE
DRIVE(S)

The Britton Lee database architecture.

Teradata machines run as a back end for IBM

mainframes, and are typically found in such
time-critical database applications as on-line
credit card validation for major banks. They
can handle many gigabytes of on-line storage
and hundreds of complete database transac
tions per second, and cost more than most
VAX installations.

OCTOBER 1986

Britton Lee is taking a lower-end ap
proach, building small- to medium-scale
machines with capacity for a few hundred
megabytes to a few gigabytes of storage and
processing capacity in the range of five or 10
transactions per second, up to perhaps 20 per
second if the transactions are very simple and
use indexes efficiently. The Britton Lee
machines are much cheaper, though, starting
at around $50,000 for a complete machine
from the Relational Server 300 line. The Brit-

ton Lee boxes connect easily with VAXs;
indeed, most of BLI's installed base of
about 600 machines has at least one
VAX connected to the database machine.

The BLI Architecture
The Britton Lee approach to relational
databases is simple: Database operations
are relatively simple 1/0 and computa
tional tasks. They do not need the sup
port and consequent overhead of a
generalized computing architecture. In
the case of the VAX, there are some three
hundred instructions, a dozen or so
addressing mechanisms, and an architec
ture to support a virtually unlimited
number of 1/0 device types (Figure 1).

While this makes the VAX a
wonderful place to develop software,
Britton Lee and others who promote the
database machine concept feel they can
avoid the associated overhead and do the
same amount of work as a VAX-11/780
with a Z-8000 processor and a few pieces
of specialized hardware. In fact, the ELI
benchmarks put some models of its
database machines at several times the
performance of a dedicated 11/780.

In the BLI database architecture,
there are distinct phases in database
access (Figure 2).

In the first phase, a query is con
structed, either by accepting interactive
input from a user in a database query
language such as SQL or QUEL, or by
operating on SQL statements imbedded
in a third-generation language such as
FORTRAN or COBOL. This phase takes
place on the host machine, which may
be any of a long list of processors and
operating systems, from VAXs to IBM

mainframes to PCs (Table 1).
The host also translates the query

into a standard message format, and
then transmits it to the database machine
via a standard communications pro
tocol. In keeping with its stated goal of
providing database machine access to all
users in an organization, BL! supports
four different communications protocols
(RS232, IEEE-488, IBM Channel inter-

HOST
COMMUNICATIONS
NETWORK DATABASE MACHINE

Query Processing

+
Query Translation ---.. Query Transmission__.,.. Data Retrieval

Data Presentation .---Results Transmission ~J
+

VAXs •running VMS, ULTRIX, System V UNIX, BSDA.2 or 4.3
AT&T 3Bs
PCs running PC-DOS and MS-DOS
IBM 43XXs and 30XXs running VM/CMS
Apollo
Pyramid
Sperry 1100s

Supported hosts for BLI database machines.

faces, and XNS Ethernet). So, it's a good
bet that if you're a VAX user you'll have
no trouble communicating with the
database machine. The host software
also translates any data in the query (say,
numbers or text strings) into a standard
format so that the database machine
doesn't have to know what kind of host
it's communicating with.

At this point, the database machine
takes over. Since the query already has
been parsed and translated into a stand
ard format, the work that's left to be
done is quite well defined, if not sim
ple. The BL! machines run an improved
implementation of the standard rela
tional database software (first developed
in the public domain at UC. Berkeley

in the early 1970s) similar to many soft
ware packages available on VAXs. BL!
also gives the software a hardware boost
by using specialized disk controllers, a
special on-disk format for the data (after
all, they only need to store one kind of
file on the disk!), and a hardware ac
celerator they call a "search engine."
The search engine helps search indexes
or search when the item of interest is
not rapidly available via the index
structure that the relational database
software maintains. The database
machine software also does many fre
quently used numerical operations, such
as calculate averages, count items, and

DEC PROFESSIONAL

Britton Lee's ''family" of relational database management systems.

the like, offloading these tasks from the
host as well.

While the query is being processed
on the database machine, the host is free
to do whatever it wants. In a general
timesharing environment like a VAX
running VMS, this means that the host
CPU can be busy doing the work of
other users on the system. This contrasts
with the software-only approach to
databases, where the software system
does the database retrieval, disk accesses,
record locking, and other tasks
associated with database operations.

When the database machine is
finished processing the query, it returns
the results, en masse, to the host.
Actually, it returns the results in a stand
ard relational form, called a table, which
js how the relational software running
on the host probably wants to see it any
way. In the last processing phase, it's up
to the host software to convert the table
into whatever format the user might
want, which could be displaying it on
the screen, putting it into a file, feeding
it to a program one record at a time, or
even putting it into a Lotus spreadsheet.

The host software also translates from
the standard BL! data format into
whatever data format the host requires,
thereby completing the process.

Special Purpose or
General Purpose?
The initial ballyhoo about. database
machines was the potential for vastly
improved price-performance when
compared to a general purpose com
puter like a VAX. But, pnce
performance calculations are full of
unspoken assumptions and real-world
complexities.

There is the potential for significant
price-performance gains because of the
application of special-purpose software
to the database problem. It stands to
reason that a specially designed, single
purpose computer can do a better job
of a single task than can a more com
plex, multipurpose machine. So, if you
have to expand your hardware anyway,
why not add a few special-purpose pro
cessors instead of another general
purpose timesharing machine?

In some cases, this argument may
be enough to carry the decision. If you

have a database load that fits nicely onto
one of the many BL! boxes available,
you may be able to just pick up your ap
plication and put it on the database
machine. More likely, a new application
may come along, and the expansion
decision is between upgrading your
VAX or expanding your VAXcluster and
adding a database machine for the new
load. Indeed, BL! finds that most of its
customers are buying the machines for
new applications, rather than to port
existing applications to the higher
performance environment.

The host software (to do the query
processing and translation phases) takes
very little host CPU time, so it's not
likely to be a big load on the host unless
you have very, very many simultaneous
accessors to the database machine.
Even then, users on many different
machines can all communicate with the
same database machine to access the
same database, so you can distribute
your host load over several VAXs or a
combination of VAXs and other
machines, including PCs.

If your software development staff
is familiar with and happy on a VAX,
they don't really have to learn much
about the database machine. Since you
do all the software development on the
VAX (or other host), you still can use the
VAX debugger, software development
tools, and editors to build the software.
But, when the system actually starts
accessing data in a production mode,
most of the work is done on the data
base machine, and the VAX has a
substantially reduced workload when
compared to a software-only approach
in which database software on the VAX
does the job of managing the database.

On top of all this, some applica
tions may be very response-critical. A
telephone directory application, for ex
ample, may demand response times of
less than two seconds. To get this kind
of response time with a software rela-

DEC PROFESSIONAL

The real strength of the BLI
architecture is its tremendous
egalitarian attitude toward data.

tional database product running on a
general-purpose computer may require
the purchase of a very large processor.
It would be largely idle, however,
because the transaction volume doesn't
keep it busy all the time. A database
machine might be a considerable price/
performance win in this sort of cir
cumstance, because the special-purpose
hardware can provide more rapid
response to queries.

Of course, there is a down side to
the purchase of a special-purpose
machine. The most serious drawback is
the same as its major advantage, oddly
enough: it's a special-purpose machine
and it only can do one thing - process
relational database requests. If you run
out of cycles on your host VAX, you still
are going to have to upgrade it-you
won't be able to offload any non-data
base work to the database machine. This
contrasts with the solution of, say,
adding another 8600 to your cluster,
where the added machine can be used
to satisfy any and all processing re
quirements, not just a certain class of
problem.

Another problem is that the data
base machine, although it is a special
purpose computer, still is a computer
with an operating system, utilities,
several different kinds of hardware and
all the headaches attendant to those
components. For example, don't expect
to find VMS BACKUP on a BLI database
machine - there is a special utility for
backing up databases, and someone is
going to have to learn how to use it. The
hardware is mostly standard compon
ents (Eagle drives and the like) and DEC
Field Service is available.

And, speaking of fixing things,
there is the problem of redundancy. One
of the beauties of VAXclusters is that
you can keep critical applications run
ning when a processor fails, because a
VAX is a VAX is a VAX - you can run
most applications on any of the pro
cessors in the cluster. But, if you have
only one database machine, and that
fails ... You might want to take part of
the dollars you saved with the price/
performance win you got when yob
decided on the database machine, and
plow it back into a little redundancy in
your database processors. Even so, the
disk drives on a database machine aren't
connected to a common interface like an
HSC, so you'll have to do some cable
swapping or at least some fancy soft
ware footwork on the host to get the
right database up on the right machine
after a hardware failure. (One good
thing here - some of the database
machines provide builHn disk shadow
ing, so at least you can pay extra bucks
for additional drives and have protection
from disk crashes.)

To sum up the price/performance
issue, if you can't keep the special
purpose machine busy a substantial
amount of time doing things that would
otherwise be done on the host, and by
so doing avoid upgrading your host,
then the argument that it's cheaper to
get a special-purpose machine becomes
a little thin. The down side (reliabil
ity/redundancy, additional operations

overhead to maintain another machine,
etc.) starts to add up.

But, don't give up hope of getting
one of these little puppies just yet.

Data Switch
The real strength of the BLI architecture
is its tremendous egalitarian attitude
toward data. A BLI database machine
doesn't care who it's talking to (or, more
specifically, what kind of host machine
you're using). Besides your friendly
VAX or MICROVAX, the BL! machine
will talk to PCs running PC-DOS or
MS-DOS, UNIX boxes, Big Blue boxes,
and a whole host of minis. All of the
hosts connected to the database machine
can access the same database, at the same
time, in a shared read-write mode. When
you consider that it wasn't until V4 of
VMS that you could have multi-CPU
shared read-write access to a file on an
HSC in a cluster, you begin to see how
impressive an achievement this really is.
The VMS folks gave us multi-CPU ac
cess in a pretty homogeneous environ
ment (you can't even have a PDP-11 in
there playing ball). But, the BLI folks
have linked machines with completely
different architectures and data formats,
not to mention manufacturers.

Now, you may be one of thbse
lucky folks who doesn't have anything
in the computer room that doesn't say
"VAX" on the front. But, before you let
that smile on your face grow too broad,
you might take a look beyond the com
puter room. Have you ever heard one
of your PC users say to you, "Can you
help me download the data from the
VAX to my Lotus spreadsheet?" Or, has
the VP Finance come to you and said,
"I want this new Corporate Budgeting
application to be available from both the
IBM and the VAX. And, oh yeah - I
·want to update the information using
my IBM PC and Joe's Rainbow. Can you
do it?"

With a BLI machine, you can use
your existing Ethernet or RS-232 con
nections to access data on the database
machine from almost any of the other

DEC PHOFESSIONAL

machines in the organization. Using ex
isting software, you can upload parts of
databases into Lotus or Multiplan spread
sheets, RMS files, or provide it to a host
language program running on any of the
processors connected to the box. And,
you can update the database from any
of the connected hosts too, provided the
user has the appropriate access clearance
on the BLI machine. Pretty slick, huh?

Well, BLI thinks this is a pretty slick
thing, too, and they intend to play it for
all it's worth. New software products
are on their way, emphasizing the con
nectivity of the BLI boxes and providing
new, easier-to-use interfaces for users to
get to their own data, probably from the
PC they have sitting on their desks.
There also are new software products to
aid in the development of full-blown
applications, running on the VAX with
the database providing back-end data
base management.

Not to take anything away from
BLI, I should add that there are begin
ning to be some software-only products
in the VAX market that hold the promise
of data sharing between dissimilar ma
chines. Two that come to mind immedi
ately are INGRES from Relational
Technology, Berkeley, California (See
DEC PROFESSIONAL, Volume 5
Number 8, August, 1986 p. 68.), and
gds!GALAXY from Groton Database
Systems, Groton, New Hampshire
(watch for our review in a future issue
of DEC PROFESSIONAL). INGRES
just announced INGRES/STAR, a prod
uct that they say will allow a single
database to exist homogeneously on dis
similar computers. And, the just-re
leased, gds!GALAXY, certainly appears
to have all the bases covered in distri
bution across VAXs, UNIX boxes, and
Sun and Apollo workstations. Although
I haven't done a detailed review,
gds!GALAXY has the apparent advan
tage of being designed from the ground
up with distribution across dissimilar
machines built in, whereas INGRES has

OCTOBER 1986

Typical Minimum
Data Storage (MB) 100-1200 150-1200 300-1200

Minimum Concurrent
Queries* 18 33 74

Simultaneous Users 250 400 500

RAM(MB) 2 3 4

* F0(queries of maximum complexity.

Intelligent Database Machine 500 Series models.

~~~(~.~?;·:'.b< 
Controllers: • ··.. . ... , < . 

CommuniCation Interlaces> · 

High-end BLI database machine - Model IDMSOOXLE. 

been around for awhile without that 
capability. But, both of these are soft
ware solutions, whereas the BLI product 
is a hardware solution. 

The Options 
Let's take a look now at the options 
available from BLI. Just like the menu in 
a Chinese restaurant, there are more 
combinations of entrees and side dishes 
than you may care to calculate. We'll 
look first at the main course, the data
base machine hardware. Then we'll look 
at the side dishes that make the meal 
really tasty. 

For the database machine itself, 

there are two families - the low-end 
Relational Server 300s and the high-end 
Intelligent Database Machine SOOs 
{IDMs). The IDMs were out first, hitting 
the street in 1981. There are now three 
basic versions of the IDMs: the 
IDMSOOX, SOOXL and SOOXLE. (Sound a 
little like Mercedes models, don't they? 
Do you think that was on purpose?) All 
three offer large disks and potential for 
connection to a large number of hosts. 
They also have the horsepower to sup
port numerous simultaneous connec-

!. 

I 



One nifty 
thing that all 
the IDM 
models offer 1s 
disk mirroring. 

tions and a large number of simultan
eous users. See Table 2 for the details of 
the three base configurations. Basically, 
each of the models can be upgraded to 
the top of the line, which is described 
in Table 3. 

The search engine available on the 
high-end models is specifically geared 
toward doing string searches and similar 
activities on a large number of records. 
This can be used when the retrieval of 
information is not based on an index. 
Indexes can be expensive to maintain if 
they are on large data items (like names 
of chemical compounds), and of less 
help if you are doing a search that might 
return a large number of the records in 
the database. Further, indexes on strings 
are more difficult to process when used 
in retrieval for wildcarded values such 
as "*methane*". The database search 
engine is just the ticket for this sort of 
pathological case. The search engine also 
gives a hardware assist to sorting. 

There also are a number of fancy 
options you can get for your IDM: Reel
to-reel nine-track tape and Megatape 
high density tape (see related article on 
page 158), optional SMDE disk controllers, 
and of course, a wide variety of com
munications interfaces. One nifty thing 
that all the IDM models offer is disk 
mirroring. This is widely considered the 
best, if not only way, to protect valuable 
data from disk crashes. In a mirrored 
disk configuration, the hardware main
tains two exact copies of the data. If at 
any time the two don't agree, the soft
ware figures out which one is right and 
takes the failing disk off-line. Users 

OCTOBER 1986 

familiar with the VAXJHSC cooperative 
disk shadowing facility will find this 
concept familiar. However, the BLI mir
roring facility does not support an on
line catchup process at this time. 

The Relational Server 300 family is 
the newer, but lower-end, addition to 
the BLI line. Unlike the IDM family, the 
RS boxes operate in an office environ
ment, not just a controlled computer 
room environment. The RSs also use the 
Small Computer Systems Interface 
(SCSI) internally, allowing BLI more 
flexibility in the packaging and design 
ofhardware. Using a six-slot MultiBus 
card cage, the basic RS310 has a meg of 
memory, an 86-MB Winchester and a 
60-MB cartridge tape. You also can pur
chase an eight-channel RS232 interface 
to supplement the standard XNS 
Ethernet LAN interface. 

But, the really great part of the 
RS300 series is that it is 100 percent soft
ware compatible with the older IDMs. 
Actually, when you think about it, that 
fact is just a natural outgrowth of the 
whole BL! architecture, which is one of 
the things that makes the approach 
attractive. A user on a PC, or a VAX on 
the Ethernet, can connect with either the 
RS or the IDM and perform database 
operations with identical software on 
the host processor, using identical 
commands. 

In Part 2, we'll examine host soft
ware, distributed processin~ and redun
dancy in a BLI database machine 
environment. 

Philip A. Naecker is a Southern 
California-based consulting software 
engineer. 

Britton Lee Intelligent Database 
Machines 
Britton Lee, Inc. 
14600 Winchester Blvd. 
Los Gatos, CA 95030 
(408) 378-7000 
Price: $50,000 (Relational Series 
310) to $300,000 (IDM 500XLE). 



DBMS 

NTELLIGENT 
DATABASE 

By Philip A; Naecker 
In Part 1, we diswssed the issue cif 
special-purpose versus general-p111posc 

database sol11tio11s, the architecture tf the Britton Lee, 
Inc. (BLI) database 111achi11e, and the options 
available rising this hardware approach. Now, we will 
look at host software, distributed processing, and 
redundancy. 

Tl;ird-generation language progranuners 
also can write programs with imbedded SQL 
or IDL code. These programs then are precom
,Piled to use subroutine calls to a standard BL! 

run-time library, and passed to the host 
language compiler. Alternately, the program
mer can make calls to the run-time library 
directly. Not every host and operating system 
supports all the languages, but on the VAX, 
there is a C precompiler, and a FORTRAN 
precompiler is said to be on the way. 

Britton Lee's 
Hardware Approach 
To Database 
Management Can 
Lead To Efficient 
And Host
Independent 
Database Access. 
Part 2. 

NOVEMBER 1986 

The BL! database machines don't really 
have a user interface. The functions of query 
processing and display of results are left to the 
host computer, which communicates with the 
database machine in a proprietary protocol 
packaged within a public communications 
protocol, such as IEE-488 or XNS. The term 
"host" may be misleading, though, since it can 
refer merely to a low-end PC that allows users 
to compile requests in a language *uch as SQL, 
or using one of the several end-user query 
generators. 

At its simplest level (if not the simplest 
to use), you can query a BL! database machine 
by constructing a query in SQL or IDL (a BL! 

variant of QUEL, and yet another SQL-like 
query language for relational databases). For 
an application developer or experienced 
database user, this is a perfectly acceptable, and 
perhaps even efficient, means of accessing data. 
IDL and SQL are supported on all hosts that 
interface with the database machines. BL! states 
that its SQL is compliant with the recently 
proposed ANSI Standard for SQL. 

There also is a version of OMNIBASE, 
available from Signal Technology, Goleta, 
California that uses the BL! machines as a 
database back end. OMNIBASE is an applica
tion development package designed to aid 
users in managing data, and as a run-time 
library for programmers to call for data 
manipulation. 

OMNIBASE provides a number of ways 
to develop applications that access the database 
machines, including a pair of components 
called SmartDesign and SmartQuery. Smart
Design lets you build a form using an FMS-like 
forms editor, then create a database directly 
from that form. It's about as easy as falling off 
a log. Then, using SmartQuery, you or some
one else can operate on that database - ad
ding, deleting, modifying, and retrieving data. 
Both systems are fully supported by online 
help that's more than adequate for most casual 
users, as well as for those with significant 
experience. 

With SmartQuery, you can do a fill
in-the-blank type of query, including Boolean 



The SmartQuery Keypad 
Junctions far VT100- and 
vnOO-series terminals. 

logic statements like "greater than," 
"less than," and "not equal to." You can 
create such queries using the keypad on 
your VTJOO or VT200 terminal, touching 
the main keyboard only to input search 
elements, such as names or numbers 
(see Figure 1 ). 

You're not going to build full
blown, disk-crunching relational 
database applications using these tools, 
but they certainly give non-sophisticates 
access to relational techniques. Of 
course, databases created using 
OMNIBASE also can be accessed via 
any of the other host software tools 
available for the database machines, and 
vice versa. I used SmartDes(~n and 
SmartQuery, and found them to be con
sistent. They are a reasonable com
promise between power and ease of use. 

Also available on the VAX, is a tool 
called Freefor111, from Dimension Soft
ware Systems, Inc., Grand Prairie, Texas. 
Freeform is more of an application 
generator, and not quite as geared to the 
end-user. But it has powerful retrieval 
methods, and provides good assistance 
for the user trying to do a sophisticated 
query. Besides running on VAXs under 

<RETURN> 
<TAB> 
<BACKSPACE> 
<DELETE> 
<LINE FEED> 
<CTRL/R) 

LEFT RIGHT 

Hove to Start of next Field 
Hove to Start of next Field 
Hove to Start of Prev Field 
Rubout a character to left 
Rubout a word to the left 
Refresh the Screen 

l8iliitl To EXIT SHARTGUERY, Press the 
ke!jpad ke~s <COLD> then <EXIT> or 
the ~-e~board ke!j <ESC> fo 11 owed 
b!! the top row ~.e~board ~.e!J 0 

APPL = APPLICATION NAHE 

•. 3::~ .. -= 
SCAN INS CHAR DEL WORD 

-lffi.i§W 

--WORD ADV 

ADVANCE LINE 

EXIT 

DEL CHAR 

CHAR ADV APPEH1I 
or 

llODifY 

::.a 
=-~:iE SPACE BAR to continue or a ~e se uence for lts hel rnfor~a1::• 

VMS, Freeform also is available under 
UNIX and PC-DOS. 

ELI has the PC software market 
well covered. Another product called 
PC/SQL, from Boulder, Colorado
based Micro Decisionware, has been out 
for over a year, providing users with 
query access to relational databases on 
the BL! database machine. BL! 

co-markets PCISQL. Since virtually 
every one of its sites has at least one PC, 

the market seems significantly large. 
PCISQL walks the user through the 

creation of sqL statements to retrieve 
information from the database machine. 
Using a windowing scheme close to the 
familiar "index card" paradigm, the user 
walks through a tree of questions to 
build a valid series of SQL statements. 
Once the query is complete, a keystroke 
sends the results off to the database 
machine. The machine returns the 
results as a single relational table that the 
user can view, or convert to another, 
more useful format. Included with the 
software, is the capability to convert the 
results to several standard spreadsheet 
formats (SYLK, Lotus, etc.), as well as 
the capability to form a coherent display 
of the results on the PC screen. 

As of today, there is no update 
capability included with PC/SQL. This 

is not unlike a number of other end-user 
tools for relational databases. The prob
lem with updating, is that there is a lot 
less room for ambiguity in the specifica
tion of the records of interest. After all, 
if you perform a query and get a few 
extra records or fields, you probably 
won't care. But, if you access a few extra 
records for an update of your shipping 
database, you might get some nasty calls 
from customers asking why their bills 
are so large this month! Of course, the 
BLI databases support all the traditional 
access protections to prevent unauthor
ized users from modifying the database, 
but that's not the issue here. In a friendly 
end-user database access tool, it's tough 
to make sure that a user who has the 
right to modify the database, performs 
only the modifications intended. 

PCISQL has a number of other 
convenient features. First, you can select 
the database machine from any on the 
XNS network, or you can select one 
connected via a PC RS232 link. If you 
want, the machine, and even the data-

DEC PROFESSIONAL 



" d " . . . meta ata, 
literally, is "data 
about data" ... 

base of interest (there may be many 
databases on a single database machine), 
can be specified in a startup file on the 
PC, so the user need not even know 
how to connect to the database machine. 

The fact that you're dealing with a 
relational database itself, provides the 
best indication of ease of use. One 
attribute of a true relational database is 
that all the information about the struc
ture of the database is itself stored in the 
database. This information, called 
"metadata," literally, is "data about 
data;' and is stored in special parts of the 
database called the "system relations." 
All databases have the same system rela
tions, which describe things such as the 
data relations found in the database, the 
type and size (number of bytes) of all the 
fields in the database, the fields found 
in each relation, the keys or indexes in 
the various relations, etc. For a product 
such as PC/SQL, the system relations are 
a gold mine. PC/SQL downloads the 
system relations the first time it opens 
the database; then, it can tell the user all 
about the database. 

How does it download the system 
relations? Since system relations are 
exactly like any other data in the 
database, PCISQL just generates some 
SQL statements to query the database 
machine, which politely returns the 
system tables as data to the PC! 

For example, suppose a novice user 
asks PC/SQL for information from a 
particular database. The user may not 
even know the names of the fields in the 
database, or the names of the relations. 
He doesn't have to: PCISQL finds the 

NOVEMBER 1986 

information by querying the system 
relations. If the user says, "I want some 
information," PCISQL puts up a menu 
with the names of all the relations in the 
database, and asks the user to select the 
one he wants, with the cursor. 

Besides making navigation of the 
database simpler, this approach also 
reduces keystrokes. If there's a database 
you access repeatedly, PCISQL allows 
you to save the metadata definitions on 
the PC. Hence, it doesn't have to 
perform that metadata query and 
download each time you do an informa
tion retrieval. 

Now, there's nothing magic about 
the BU database machine that makes the 
operation of PCISQL better than with 
any other relational database. All "true" 
relational databases have the same kind 
of system relations, with the same kind 
of available information. But a tool like 
PCISQL, lets casual users with PCs get 
to a vast corporate database storea on 
a database machine, and do useful things 
with the data. Since the SQL statements 
generated by the menus are plainly visi
ble on the machine, PCISQL also is a 
teaching tool to help new or occasional 
users learn SQL for direct database 
access. 

There are other user interfaces for 
access to the BU database machines, but 
as of this writing, they aren't yet fully 
available. Among them, is a product 
called BL TOday, from BB] Computer 
Services, Inc., an Australian company 
with offices in Santa Clara, California. 
This is a powerful application-genera
tion tool closer to systems like Cognos' 
Powerhouse (see article on page 80), Focus, 
from Information Builders, Inc. of New 
York City, or DEC's Rally. Look for 
reviews of BL Tbday and Focus in up
coming issues.) 

BL Today is written in C. It is the 
intent of BU to port it to all of its major 
markets, including VMS, all of the UNIX 

variants, and PC-DOS/MS-DOS. The 
PC-DOS version is about to enter alpha 
testing, thus, it may not be too far off. 
Already, there are entire applications 
developed in BL Today that are on the 
market as standalone vertical applica-

tions rmming on BU database machines. 
Some cost as much as $100,000. 

Distribution And Redundancy 
If you spend much time looking at data
base solutions, you'll soon find each 
vendor claiming to have a "relational 
database." Sadly, most vendors offer 
products having woefully few relational 
features, much less adhering to the rela
tional approach entirely. Some claim 
"this" or "that" relational feature, then 
discount the other tenets of the rela
tional model with statements such as, 
"That feature's not needed in the real 
world," or, "That feature isn't consistent 
with good performance." 

Today, having a relational database 
is not like being pregnant - you can be 
partially relational, but the most worthy 
vendors admit their products don't have 
all the relational attributes that a perfect 
relational database should have. They 
state openly that they're seeking ways 
to add additional relational capability. 
For those looking at BL! as a relational 
database solution, I'm happy to report 
that the company falls into this latter 
category. 

Distributed Processing 
Distributed capability is one of those 
features that the less sophisticated ven
dor calls "unnecessary." But nowadays, 
it's not enough to have a fantastic rela
tional solution; it's essential that it be 
distributed, too. Distributed processing 
requires more than just spreading the 
disks out over the computer room or the 
state, however; it necessitates a far more 
rigorous design and implementation of 
the relational approach. And, like all 
other relational features, there are 
various degrees of support for the 
distribution of databases. 

If you'd like to have a database ex
ist simultaneously at several locations, 
BL! database machines may be the solu
tion. For these machines, the situation 
is meaningful only when the synchro
nization between databases is on the 



order of minutes, and not instantaneous. 
For example, one BLI customer has 
phone directories throughout West Ger
many. Each machine has many operators 
performing simultaneous queries and 
updates to the database propagate, 
through all the machines, and in a mat
ter of thirty minutes or so. 

This sort of update process, where 
copies of the database are maintained in 
a loosely coupled fashion, obviously 
would not suffice if the data were bank 
balances instead of phone numbers. 
First, bank balances change a lot more 
frequently than phone numbers (and 
mostly in a downward direction, it 
seems). Second, I wouldn't want to keep 
my money at a financial institution that 
allows a husband and wife to simultan
eously withdraw their entire balance 
from two different branches! 

The truly distributed database re
quires a two-phase commit. A "com
mit" is database lingo for telling the 
database to make the change permanent. 
The opposite is a "rollback," in which 
the transaction actually is rolled back, 
as if it never occurred. For you database 
types, a two-phase commit reduces to 
roughly the following steps: 
1. Tell database A to prepare to commit. 
2. Tell database B to prepare to commit. 
3. Wait for both A and B to tell you 
everything is OK. 

4. If both databases answer in the affir
mative, tell both databases to commit; 
otherwise, tell them both to rollback. 

A database may tell you it can't 
commit for a variety of reasons. It may 
be that someone just pulled the plug on 
the disk, for example. Or, perhaps it 
doesn't tell you anything at all - the 
communications line was cut by the 
phone company. In any case, at least you 
have a fighting chance at keeping both 
databases in synch. 

I say "fighting chance" because of 
one small problem that I don't believe 
commercially available database man
agement systems have solved: What if 
both databases answer the affirmative to 

In most cases, a little human intervention, 
should the database say "I'm confused;' 
isn't such an intolerable thing ... 

step three, but in step four, it turns out 
one of them lied? For example, in that 
fraction of a second between the time 
the database says "OK," and the 
mediating host gives the go-ahead to 
commit, the communications line might 
go down or the disk head finally hit that 
proverbial floating smoke particle. 

Simply put, although the database 
claimed it was ready to commit, it 
couldn't make good on the promise. 
This problem requires what is called a 
"three-way handshake;' and a great deal 
of code to implement the solution, 
which only recently has been under
stood in the technical literature. Of 
course, you may not care about this 
relatively low-probability event, unless 
you are a bank making transactions for 
millions of dollars. In most cases, a lit
tle human intervention, should the data
base say "I'm confused," isn't such an 
intolerable thing, as long as both 
databases knor that things are "not 
right" and it's something that can be 
fixed once both machines come back up. 

BLI says it is working on a two
phase commit, but as of today, BLI 

database machines can't give you this 
Nth degree of functionality. What they 
can give is good redundancy for access 
to a single database, much like the 
shared disk access on VAXs. In this 
scheme, called a dual system, database 
machine A is given both read and write 
access to the database, while machine B 

has read-only access. This provides a 
good measure of redundancy if either 
database machine fails. Crossover from 
one machine to the other in the case of 
a failure is mediated by the host (no sim
ple task in itself). And, since this scheme 

is based on dual-ported disks, what we 
really are talking about is redundant data 
access rather than true distribution of 
the database. Together with disk 
shadowing, however, this level of redun
dancy may be all you need in your data

'base product. 

Is It Good Enough? 
Now that we know that the BLI answer 
has several advantages over some of the 
software-only solutions available in the 
relational database market, you may 
want to know about some of the short
comings of this approach and its specific 
implementation. 

In Part 1, we discussed the poten
tial pitfalls in the price/performance 
game. Whether price/performance is a 
big enough win depends on your spe
cific circumstances with respect to 
capacity, expansion, the size of your 
existing and potential new database 
applications, frequency of use of the 
database machine, and related factors. 

One potential difficulty in the BLI 

implementation is that it doesn't provide 
support for "cursors." Simply put, cur
sors are pointers into streams of records 
being passed from the database to the 
application. They allow the application 
to get a single record at a time. With 
multiple cursors, the application can 
even hang onto a record from "here," 
another from "there," and make deci
sions based on both records. 

One use of cursors is to imbed an 
update in a query. Your program can 
construct a query with an update inside 

DEC PROFESSIONAL 



the loop that's retrieving the records in 
a one-at-a-time fashion. Then, if you 
decide you want to update the "current" 
record, a cursor will· let you tell the 
database which record you're referenc
ing. In the BLI case, you'll have to use 
the current record to construct a unique 
key, then submit a new record stream 
(from within the query record stream, 
if you like) to update that record. A bit 
of a pain, but not disastrous unless this 
type of operation is a frequent one in 
your application environment. 

Another limitation is that only C 
currently is supported by a precompiler. 
Although a real database jock may want 
to diddle with calls to the database, fot 
the most part you want the development 
assist of a good precompiler. Not only 
is it easier to imbed a fourth-generation 
language (e.g., SQL} code inside your 
program, it takes fewer lines of code to 
write an application using a precom
piler. And, a good precompiler often 
actually can improve performance over 
what a non-jock might generate. 

Not many data management pro
grammers are fluent in C, and C is not 
known for lending itself to highly main
tainable code. A FORTRAN precompiler 
is on its way, I'm told, but there is no 
mention yet of a precompiler for 
COBOL or other languages. 

There also has been a lot of press 
in the past year or so about Britton Lee 
having difficulty keeping customers. 
When I asked about this, the firm ad
mitted some problems leading to some 
customers abandoning their machines. 
It also accepts blame for some problems 
in the area of hardware and software 
support after the sale. But in at least 
some cases, it appears the problems were 
the same as for many software-only 
databases - the customer underesti
mated the resources required to get a 
large project up and running. Of course, 
with a software product, no one can tell 

PllBritton 
WLee,Inc. 
14600 Winchester Boulc,ard 
Los Gatos. California 95030 
(408) 378-7000 
Telex: 172-585 

NOVEMBER 1986 

whether it's running or not, so perhaps 
we shouldn't be so hard on BLI or the 
customers who've pulled their machines. 

My assessment of the BLI offerings 
is that they are well crafted. There seems 
to be a solid commitment toward a first
rate relational database, and it certainly 
isn't a here-today, gone-tomorrow 
organization; not with roughly $30 
million in annual revenue and an in
stalled base of 600 ID Ms and a bunch of 
RSs. 

What I saw in two days (not much 
time), was that the firm has a good 
product that fills an important niche in 
the information management market: 
that of a data sharing device between 
dissimilar machines. I am most im-

pressed with the richness of the user 
software offerings, and with the breadth 
of choices in hardware and host en
vironments. There simply are not that 
many alternatives available if you want 
to access a database from PCs, VAX.s, and 
other large hosts. The languages offered 
are good implementations of the various 
flavors of SQL, and I found the error 
messages to be clear and well formatted. 

If you find you need a database 
machine, Britton Lee should be near the 
top of your list. 

Philip A. Naecker is a Southern 
California-based consulting software 
engineer. 

Britton Lee Intelligent Database Machines 
Britton Lee, Inc. 
14600 Winchester Boulevard 
Los Gatos, CA 95030 
(408) 378-7000 
Price: From $50,000 (Relational Series 310) to $300,000 (IDM 500XLE). 

BL Today 
BBJ Computer Services, Inc. 
2946 Scott Boulevard 
Santa Clara, CA 95054 
(408) 727-4464 
Hardware Environment: Runs on more than 60 different operating systems and com
puters, including VAX/VMS, most UNIX and XENIX minis and micros, MS-DOS, 
and HP3000, 9000, and VECTRA systems. 
Price: From $950 to $15,000, depending on configuration. Runtime library - from 
$150 to $6,000. 

Freeform 
Dimension Software Systems, Inc. 
605 East Safari, Suite C3 
Grand Prairie, TX $050 
(214) 262-8201 
Hardware Environment: Britton Lee database machines; VAX UNIX, ULTRIX, VMS 
systems. Also, ATT UNIX System 5, IBM PC MS-DOS, Alpha Micro. 
Price: From $7500 to $25,000, depending on configuration. 

OMNIBASE 
Signal Technology, Inc. 
5951 Encina Road 
Goleta, CA 93117 
(805) 683-3771 
(800) 235-5 787 
Hardware Environment: Britton Lee IDM or RS 310. 
Price: From $21,000 for a MICROVAX 11/IDM configuration, to $50,000 for a VAX 
8600/IDM configuration. 

PC SQL 
Micro Decisionware 
2995 Wilderness Place 
Boulder, CO 80301 
(303) 443-2706 
Hardware Environment: Britton Lee database machines; IBM MVS, VM; Teradata 
database machines. 
Price: $5,000 for the first five PC licenses, to $295 for 500 PCs or over. 

J 




