
DATE: 15 October 1979

PRODUCT: DMS I I

SUBJECT: DMSII EXCEPTION HANDLING

Burroughs

Technical
Information
Paper

Origin: International Group

The attached paper on DMSII exception handling by
B. Johnson, Melbourne, Australia is reprinted here
courtesy of L. Aube"', International Group.

TO: BMG Communications Code RC

Printed in U.S.A. 1114238-013

Page 1

DMS II EXCEPTION HANDLING {B. JOHNSON, JP.NUARY 79).

l. INTRODUCTION

In most programs, to do the majority of the processing is fairly
routine and easily accomplished. Much more work, however, is
required to handle the multitude of exceptions that may occur.

For example, reading input data is a fairly trivial task, but the
validation of that data against the design rules may take many
pages of code.

This document discusses how, in the same way, a OMS II program
must pay careful attention to the processing of the exceptions
that can occur when using OMS II host language verbs.

2. EXPECTED AND UNEXPECTED EXCEPTIONS

For each OMS II host verb, a variety of circumstances may interfere
with its success.

In some circumstances, such a condition is expected, probably the
most common example being a sequential scan (FIND NEXT) of a data
set or set until a NOTFOUND exception indicates there are no further
records in the data set.

However, uneKpected exceptions are an indication of abnormality in
the system, and appropriate action should be taken.

To ignore such conditions could be likened to accepting input data
that fails validation criteria. Indeed, proper exception
processing is more important, from a system viewpoint, than the use
of the OMS II verbs themselves. To ignore such conditions when
the system is attempting to make them known could place the integrity
of the data-base at risk, at both the physical file and logical
relationship levels.

. . . . /2

'*1S I I EXCEPTION HANDLING

2. EXPECTED ANO UNEXPECTED EXCEPTIONS (cont'd)

To illustrate further, consider the following two classes of
unexpected exceptions:

2.1 IOERROR Exceptions

JOERRORs generally represent a storage failure, and sigmtl a
need for some form of data recovery.

Such an exception occuring in the following -

LOCK NEXT •.• ON EXCEPTION GO TO NO-MORE-RECORDS

Page 2

will generally imply that a record that does exist will not be
used. This could easily lead to logical inconsistencies in the
(fatci held within the database.

2.2 SYSTEMERROR Exceptions

The occurrence of this exception usually indicates that the OMS
routines have detected some form of internal inconsistency in
their proces~ing, implying system software or hardware errors that
may threaten database content integrity. ·

This class of exceptinn should not happen very often, and indeed is
riot expectedto O(:cur. But, if it does, appropriate action needs
to be taken quickly to minimise any impact it may have.

3. "IMPOSSIBLE" EXCEPTIONS

A further reason for omitting processing of particular exceptions is
because it is thought the condition could not occur in the given
circumstances. However, it could be argued that this is why it
Jhould be included.

One of the best indications of error in either program logic or system
software is by the qccurrence of "impossible" conditions.

lt shpuld be pointed out that with proper coding, the overheads of this
~~tra checking should be fairly minimal. By testing for the most
~ornmQn condition first, the extra code for other conditions will not be
executed unless needed; the extra code spice required should be a small
price to pay for the increased robustness of the program, assuming one
w~nted to dispute its necessity in the first place.

DMS II EXCEPTION HANDLING

4. DEADLOCK PROCESSING

It appears that one of the most misunderstood exceptions is
DEADLOCK. Many programs seem to take the attitude that
"it cannot happen to me". which is begging the fate according
to Murphy.

Page 3

The authors of many update programs similarly bypass this exception
because there will only ever be one copy of the program running
at any point in time. Again, Murphy's preachings are overlooked,
the update schedule starts running behind, and .•• Theoretically,
a DEADLOCK may be indicated by any LOCK or BEGIN-TRANSACTION statement,
especially if program or system errors are to be catered· for.

A DEADLOCK may occur with only one program running if it multiply
invokes a particular data set. or it may occur simply because several
programs in the mix are LOCKing records.

The system recognises two levels of DEADLOCK detection. The first
is obvious; program A with record X LOCKed wants to LOCK record Y,
whilst p~ogram B with Y LOCKed is attempting to LOCK X. An obvious
stalemate condition exists, and the. system acts to break the DEADLOCK.

The second level of detection is the recognition of a prolonged state
of contention. Simply stated, if a program waits for a LOCK on a
record for more than a specified period of time, a DEADLPCK by
contention is returned to the user program. This means that someone
else has had the record locked for longer than that period without
releasing it. This is significant for real-time work.

Currently, this time period makes use of HAXWAIT task attribute on
86000/87000 Series OMS IT.

An important effect of receiving a DEADLOCK exception is that all
records currently LOCKed by a program will have been implicitely
FR£Ed. Hence, if a program is to handle this exception, one of the
requirements will be to reLOCK all the previously LOCKed records,
not just the record receiving the DEADLOCK exception.

A further implication· of DEADLOCK detection should be recognised.
If a hitherto LOCKed record is FREEd in this way, the program
should allow for the possibility that its contents.may be cha~g~d
by the second program before the first can reLOCK it. If dec1s1ons
have been made on the record contents, these will not be valid.
If some other records have been updated as a function of its contents
and there are still more to be done, the later records may now need to be
updated according to a possibly different set of criteria.

Page 4

PM~ H EXCEPTION ttANOLING

5. f:8C!PTlON .l>E:Jf:RMIMATION

On small systems (81700/81800}, the system only returns to the program
the category of the exception encountered.

However, on l•rge systems, three parameters are returned to the program
to allow greater refinement of the nature of the exception. These are
as follows:

Ci.1 The category. is the major parameter, and is used to specify
a major class of error. ·

5.2 The ERRORTYPE represents a subcategory and in many cases is
quite predictable. For example, NOTFOUND category on FIND
NEXT on a set should produce an ERRORTYPE of 2 whilst NOTFOUNO
on FIND PRIOR on a set should be 3. In other cases H may be less
obvious. such as in the case of IOERROR. Depending on the
hardware failure, any one of a number of subcategories may occur.

Note that a test for NOTFOUND on a FINO NEXT on a set would still
do well to ensure the correct subcategory of 2 for integrity ·
reasons, as-another value could be indicative of a more serious
problem.

5.3 STRUCTURE. The third.parameter is the STRUCTURE number on which
the error occurred. As this is not always the structure upon ..
which the verb is directly acting (for example, a STORE might
return a DUPLICATES on an automatic SET or SUBSET}. it may
prove useful to examine this item.

5.4 USE OF DMTERMINATE. OMS II provides the three parameters as a
definition of the condition which occurred. If an abnonnal
condition occurs it is desirable that some indication of all
three valses be provided as a complete definition of the
exception. The OMS II Verb DMTERMINATE, available since II.9,
provides this, and may be suitably utilised.

6. RESPONSIBILITIES .QF THE DATA BASE ADMINISTRATOR

The responsibilities of a Data Base Administrator (D.B.A.} have been
much discussed elsewhere, and no attempt will be made here to add to
that discussion. Rather, the simple assumption will be made that
the D.B.A. is responsible for the integrity of the data and relationships
represented in the data base.

This being the case~ the effectiveness of exception processing in.an
application program will be of prime importance to the D.B.A. Poor
exception processing will be the biggest threat to the integrity of
HIS Datab~se. ·

Page 5

OMS II EXCEPTION HANDLING

6. RESPONSIBILITIES OF THE DATA BASE ADMINISTRATOR (cont'd)

It is for this reason that the D.B.A. should establish some level
of stan(jards for the exception processing of programs accessing the
database. He should not allow access to any program that does not
meet those standards because by so doing he would be compromising the
integrity of His Databas·e. ·

The enforcement of such standards may take a variety of forms. It
may simply be a document to which the programmers continually refer
whilst coding the program; it may be a series of standard library
procedures to be used by the programs, at either compile or run time
(that is, either symbolic to be included into the program source, or
a library of precompiled procedures to be called by the application
program).

On the basis that the D.B.A. is not always a programmer, probably
the former approach is the preferable. In either case, the program
design will need reviewing at the end of development to ensure
standards are met before going into production.

The standards, by definition, must be comprehensive. The exception
processing will generally need detailing in conjunction with other
aspects of the system~ not just as a standard on its own. It will
probably vary from application to application.

Exception .Processing is a vital part of the system; it is not
meant to be tacked on as a frill.

7. REFERENCES

The following parts of BURROUGHS 87000/86000 DMS JI HOST REFERENCE
MANUAL (# 5001498) are of particular importance to exception
processing formulation:

(a) Section 6, details methods of incorporating exception processing
into a user program, as well as usage of the three parameters
provided by the OMS II System.

{b) P. 14-12 ... documents the DMTERMINATE verb.

(c) Appendix B ... lists the categories and subcategories that may
be returned to a program as a result of a OMS II verb. In
particular, p.B-8 provides a table cross-reference of the
categories applicable to each DMS II verb. This should
probably be the most important single page in the manual for
the application programmer.

dMS. h t.xetPtIOM HANDLING

' 1. ftEfER~NCES (ttHtt Id)

It ShbuHt lllso be ttoted that ah 11 tNVAltb OPEAANO", rather than
an eMtet:Jtioh .tonditioit, rtsults_ from attanptt to: .· ·

(a) access a databast befbte bj>ening 1t

(b) modify an audited database outside transaction state.

AitAcHMtNt 1 SMALL SYSTEMS DIFFERENCES

the following notes attempt to identify the t>oihts in this document
that differ with stnall systems. rtJlS (relevent to VII.O): .

(i) Siriall systems exceptions prbdu~e. only a CATEGORY for an
exception; ERRORlYPE and ST~UCTU~E are not provided.

(ii) IJ.1TERMINAT£ is not available on sma11 systems

(iii) The time .Period for DEADLOCK by tdntention on small system~
is 3 mihUtes ...
. '

(iv) ''INVALID OPERAND 11 interrupts in large systems OMS (see 1
REFERENCES), the first case produces an OPENERROR and the
second an AUDltEftROR exception. ·

(v) LOCK a.nd MODI FY are exact synohyrns; either may be used on
Lar9eSystems whereas only the latter is provided on Sma11
Systems.

