
r;J .::\ CONTI\OL DATA
\::I r::;I COI\PO RATION

60471160

COMMUNICATIONS CONTROL INTERCOM
VERSION 3
SYSTEM PROGRAMMERS
REFERENCE MANUAL

CDC@ COMPUTER SYSTEMS

255X HOST COMMUNICATIONS PROCESSOR

255X NETWORK PROCESSOR UNIT

CDC® HOST NETWORK OPERATING SYSTEMS

NOS/BE 1

REVISION RECORD
REVISION

A Initial Release

12/31/79

Publication No.
60471160

REVISION LETTERS I, 0, a AND x ARE NOT USED

©1979
by Control Data Corporation

Printed in the United States of America

ii

DESCRIPTION

Address comments concerning this
manual to:
CONTROL DATA CORPORATION
publications and Graphics Division
P. O. Box 4380-P
Anaheim, CA 92803

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Rev Page Rev Page Rev

Cover -
Title Page -
ii thru xiii A
1-1 thru 1-19 A
2-1 thru 2-12 A
3-1 thru 3-6 A
4-1 thru 4-30 A
5-1 thru 5-29 A
6-1 thru 6-36 A
7-1 thru 7-26 A
8-1 thru 8-13 A
9-1 thru 9-6 A
10-1 thru 10-17 A
11-1 thru 11-28 A
12-1 thru 12-16 A
Index-1 thru

Index-13 A
A-I thru A-11 A
B-1 thru B-5 A
C-1 thru C-21 A
D-1 thru D-14 A
E-1 A
F-1/F-2 A
G-1 thru G-35 A
H-1 thru H-83 A
I-I thru I-13 A
Comment Sheet -
Mailer -
Back Cover -

60471160 A iii/iv

PREFACE

This manual describes those externals of the Communications Control Intercom
(CCI), Version 3.0, necessary to aid a systems programmer in making minor
modifications to standard CCI software. The manual also provides a
sufficient basis to understand those standard programs which interface to
any new terminal interface program which the user writes for a nonstandard
terminal. CCI is used with the CONTROL DATA® 255x Series Network
Processing Unit (NPU).

It is assumed that the reader is already familiar with CCI basic functions
and the role of CCI in network processing. If the reader does not have this
knowledge, he is referred to the CCI 3 reference manual which provides an
introduction to CCI functions.

It is recommended that the user be experienced with the PASCAL programming
language and the CYBER CROSS support system software. If the user plans to
write his own terminal interface program, he should also be familiar with
the state programming language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output.

aln Lowercase letters identify variables for which values are
supplied by the host or terminal user, or by the network
software as output.

[]
{ }

Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

Square brackets enclose entities that are optiona11 if omission
of any entity causes the use of a default entity, the default is
underlined.

Braces enclose entities from which one must be chosen.

Unless otherwise specified, all references to numbers are to decimal
values1 all references to bytes are to 8-bit bytes1 all references to
characters are to 8-bit ASCII-coded characters.

60471160 A v

RELATED MANAULS

Additional information on both the hardware and software elements of the
CONTROL DATA 255x Series Computer Systems and the CCI and related software
can be found in the following documents:

Publication Title

Network Products
UPDATE Reference Manual

Macro Assembler Reference Manual
Mass Storage Operating System

INTERCOM Version 5
Reference Manual

Network Products
Communciations Control Intercom (CCI)
Version 3
Reference Manual

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual

Network Processor Unit
Hardware Maintenance Manual

State Programming Language
Reference Manual

NOS/BE Version 1
Operator's Guide

NOS/BE Version 1
Installation Handbook

CYBERCROSS System Version 1
PASCAL Reference Manual

CYBER CROSS System Version 1
Micro Assembler Reference Manual

CYBER CROSS System Version 1
Macro Assembler Reference Manual

Publication Number

60342500

60361900

60455010

60471150

60471200

60472000

60472200

60493900

60494300

96836100

96836400

96836500

These publications can be ordered from Control Data Corporation, Literature
and Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of undescribed
features or parameters.

vi 60471160 A

1. CC t OVERVIEW

CCI Design
Priority Processing at the

Interfaces
OPS-Level Processing

Downline Message Processing
Upline Message Processing
CCI Features
CCI Modular Structure
CCI Programming Methods

Block Protocol
Block Routing
Point of Interface (POI)

Programs
Direct and Worklist Calls
Direct Calls on Firmware

Level
Special Call to Multiplex

Subsystem
Special Call to Firmware

Interface
Communication Using PASCAL

Globals (Tables)
Line Interface Handling
CCI Programming Languages

2. INITIALIZING AND
CONFIGURING THE NPU

Initializing the NPU
Phase I Initialization
Phase II Initialization

PINIT
PI PROTECT
PIBUFI
PIWLINIT
PIINIT
PIAPPS
PIMLIA
PILININIT
PIBUF2

Load and Dump NPU
Configuring the NPU
Configuring NPU

Line Configuration
Configure Line SM

Configure Line Deletion
Terminal (TCB) Configur­

ation

60471160 A

CONTENTS

1-1

1-3

1-3
1-4
1-5
1-5
1-8
1-9
1-9
1-9

1-13

1-13
1-13

1-15

1-15

1-15

1-16
1-16
1-18

2-1

2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6

2-10

2-10

Configure Terminal SM
TCB Reconfiguration

TCB Deletion

3. FAILURE, RECOVERY, AND
DIAGNOSTICS

Host Failure
NPU Failure
NPU Recovery
Halt Codes and Dump Inter-

pretation
Line Failure
Line Recovery
Terminal Failure
Terminal Recovery
In-line Diagnostic Aids

CE Error Messages
Statistics Messages

4. BASE SYSTEM SOFTWARE

System Monitor
Buffer Handling

Obtaining a Single Buffer
Releasing a Buffer

Releasing a Single Buffer
Releasing Several Buffers

Testing Buffer Availability
Buffer Copying
Other Buffer Handling

Routines
Timing Services
Direct Calls
Worklist Services

Making a Worklist Entry
Extracting a Worklist Entry

Basic Interrupt Processing
Macrointerrupts

Interrupt Priority
PBSMASK - Set Interrupt

Mask
PBAMASK - And Interrupt

Mask (and PBLMASK)
PBOMASK - Or Interrupt

Mask
User Interface

Microinterrupts
PASCAL Globals

2-11
2-12
2-12

3-1

3-1
3-1
3-2

3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-5

4-1

4-1
4-2
4-6
4-7
4-7
7-7
4-7
4-7

4-8
4-8
4-9

4-10
4-12
4-13
4-13
4-13
4-14

4-14

4-14

4-14
4-15
4-16
4-17

vii

Standard Subroutines
Calling Macroassembly

Lanquage Programs from
PASCAL Programs
Defeating Type-Checking

in PASCAL Procedure
Calls

Handling Routines
PBFMAD - Converts from

ASCII Decimal to Binary
PBFMAH - Converts from

ASCII Hexadecimal to
Binary

PBMAX - Funds the Larger
Maximum of Two Numbers

PBMEMBER - Test ASCII
Set Membership

PBMIN - Funds the Smaller
Minimum of Two Numbers
PTOAD - Converts

Binary to ASCII
Decimal

PBTOAH - Converts Binary
to ASCII Hexadecimal

Maintaining Paging
Registers
PBSTPMODE - Sets Paging

Mode
PBPSWITCH - Performs

Page Switching
PBRDPGE - Reads Dynamic

Page Register
PBPUTPAGE - write

Specified Page Register
PBGETPAGE - Reads

Specified Page Register
PB18ADD - 18-Bit

Addresses
PB18BITS - 18-Bit Address

Functions
PB18COMP - Compares Two

18-Bit Addresses
Block Functions

PBCLR - Clears a Block
of Main Memory

PBCOMP - Compares Two
Equal Length Blocks

Set/Clear Protect Bits
PBSETPROT - Set Protect

Bit
PBCLRPOT - Clear Protect

Bit
Miscellaneous Subroutines

PBFILEl - Load/Display
File 1

PBHALT - Stops the NPU
PBILL - Illegal Calls
PBLOAD - Load a User-

Defined Message
Program Execution Timers

viii

4-17

4-17

4-19
4-19

4-20

4-20

4-20

4-20

4-21

4-21

4-22

4-22

4-22

4-22

4-23

4-23

4-23

4-23

4-24

4-24
4-24

4-24

4-24
4-25

4-25

4-25
4-25

4-25
4-26
4-26

4-26
4-27

Console Support 4-27
General Peripheral Pro-

cessing 4-27
Console Support Services 4-28
Console Worklist Entry 4-29
Console Control Messages 4-29

5. MULTIPLEX SUBSYSTEM

Hardware Components
Multiplex Loop Interface

Adapter
Loop Multiplexers
Communications Line

Adapters (CLA)
System and User Interfaces

System Interfaces
Multiplex Level 1

(Firmware)
Multiplex Level 2

(PMWOLP)
Multiplex Subsystem

Firmware Worklist
Entries

Command Driver Work­
list Entr ies

OPS Level

5-1

5-3

5-3
5-3

5-3
5-4
5-4

5-4

5-7

5-8

5-8
5-8

User Interfaces 5-9
Command Driver Interface 5-9

Clear Line Command 5-11
Initialize Line Command 5-11
Control Command 5-11
Enable Line Command

(KLENBL) 5-12
Input Command (NKINPT) 5-15
Output Command (NKDOUT) 5-15
Input After Output

(NKINOUT)
Terminate Input

Command (NKENDIN)
Terminate Output

Command (NKENDOUT)
Disable Line Command

(NKDISL)
Common Multiplex Sub­

routines for TIPs
PMWOLP, Multiplex

Worklist Processor
PTCLAS, CLA Status

Analyzer
CLA Status Overflow

Handling
Modem Response

Timeout Handling
PLINIT, Line

Initializer
PMTISEC, Output Data

5-18

5-19

5-19

5-20

5-21

5-21

5-22

5-24

5-25

5-26

Demand Timing Handler 5-29

60471160 A

6. NETWORK COMMUNICATIONS
SOFTWARE

Block Protocol
Address

Node
Connection Number

BSN/Block Type
Block Serial Number (BSN)

Block Types
BLK (Block) Block
MSG (Message) Block
BACK (Block Acknowledg-

ment) Block
CMD (Command) Block
Service Channel
Data Stream Control

Data Formats
Interactive Format Data
Batch Format Data

Nontransparent Data
Transparent Data

Routing
Directories

Destinations Node
Directory

Source Node Directory
Connection Directo~y
Routing Process

Alternating Directories
Service Messages (SM)

Internal SM processing
Validating and Timing Out

SMs
Generating and Dispatching

Service Messages
Configuring/Enabling/

Disabling/Deleting
Control Blocks

Generating and Sending
Status SMs
Line Status Request SM
Line Count Request SM

Terminal Status Request
SM

Generating and Sending
Statistics SMs

CE Error Messages
Common TIP Subroutines

Point of Interface Routines
(POI)
PBPIPOI, Post Input POI
PBIOPOI, Internal Output

POI
PBPROPOI - Preoutput POI
PBPOPOI - Post Output POI

Standard TIP Subroutines
Output Queuing (PBQ1BLK

and PBQBLKS)

60471160 A

6-1

6-1
6-2
6-2
6-6
6-6
6-6
6-7
6-7
6-7

6-7
6-7
6-8
6-8
6-8

6-10
6-10
6-11
6-12
6-12
6-13

6-13
6-13
6-13
6-13
6-16
6-16
6-17

6-17

6-18

6-18

6-19
6-19
6-20

6-20

6-20
6-21
6-21

6-21
6-22

6-22
6-30
6-30
6-30

6-30

Removing a Message Segment
From Queue PBGTlSET

Saving and Restoring
Registers
PBBEXIT - Save Rl and R4
PBAEXIT - Restore Rl and

R2
Interface to Text Pro­

cessing Firmware,
PTTPINF

Finding Number of Char­
acters to be Processed,
PTCTCHR

Saving and Restoring
LCBs, PTSVxLCB, and
PTRTxLCB

Common Return Control
Routine, PTRETOPS

Common TIP Regulation,
PTREGL

Set Logical Link Regu­
lation, PNLLREG

Set Accept Input/Accept
Output Flags, PTINIT

Discards Non-routab1e
Blocks, PBLOST

Up1ine Abort, PBUPABRT
Downline Abort, PBDNABRT
Send CMD Block to Host,

PTCOMMAND
Up1ine PRU Block Routing,

PBRTEPRU
PRU Block Routing,

PBRTEIA
Check to Find if Block is

to be Sent, PBBCHCHK
Generate Banner and Lace

Records, PTBANLACE

7. HOST INTERFACE PACKAGE
(HIP)

Transaction Protocol
Transfer Functions
Directives Used
Transfer Initiation
Transfer Timing
Error Processing

Host/NPU Word Formats
Coupler Interface Hardware

programming
Coupler Register Use
programming the Coupler By

Use of Function Codes
Host Function Commands
NPU Function Commands

HIP Functions

6-32

6-32
6-32

6-33

6-33

6-33

6-33

6-34

6-34

6-34

6-35

6-35
6-35
6-35

6-35

6-35

6-35

6-35

6-35

7-1

7-1
7-1
7-2
7-2
7-7
7-7
7-7

7-8
7-8

7-10
7-10
7-12
7-12

ix

Single Word Transfers
(Control)

Load/Dump NPU
Multiple Character Data

Transfer (Block Transfer)
Contention for Coupler Use
Regulation of Coupler Use

Host Failure and Recovery
Error Checking and

Timeouts
Interface Protocol Sequences
Buffer Format
HIP States

8. BINARY SYNCHRONOUS
COMMUNICATIONS (BSC) TIP

Operational Features
Remote Batch Facilities

EOR/EOI
Binary Codes
026/029 Codes
Transparent Data
Carriage Control
Interactive Carriage

Control
Punch Files
Compression/Expansion

Terminal Features
Operational Characteristics
2780 Input Nontransparent

Terminal Mode
2780 Input Transparent

Terminal Mode
3780 Input Nontransparent

Terminal Mode
3780 Input Transparent

Terminal Mode
Input Transparent Data

Mode, 2780 and 3780
2780 Output Nontransparent

Transmission Mode
2780 Output Transparent

Transmission Mode
3780 Output Nontrans­

parent Transmission
Mode

Direct Calls to the BSC TIP
Direct Calls from the BSC TIP
Error Processing
Autorecognition

9. ASYNCHRONOUS (TTY) TIP

Operating Modes
Interactive Mode
Tape Mode

x

7-12
7-14

7-16
7-17
7-18
7-18

7-19
7-20
7-25
7-25

8-1

8-2
8-2
8-2
8-2
8-2
8-3
8-3

8-3
8-3
8-4
8-5
8-5

8-5

8-6

8-7

8-7

8-7

8-8

8-10

8-10
8-11
8-12
8-13
8-13

9-1

9-1
9-1
9-2

Carriage Control for Output
Messages

Direct Calls to TTY TIP
Direct Calls from the TTY TIP
Error Processing
Autorecognition

10. MODE 4 TIP

Hardware Considerations
TIP Functions
Terminal Interface

Terminal Addressing
Message Type Indicators
E Codes

Code Conversion
Host Interface
Interactive Interface

Cursor Positioning
Carriage Control
Upline Breaks
Contention Resolution

Card Reader Interface
Printer Interface
Error Handling

Short Term Error Pro­
cessing

Long Term Recovery
Handling of Errors for

CDC 711 Terminal
Duplicating of Write Data

on CRT
Input Regulation
Autorecognition
Mode 4 Protocol Features

Not Supported
Direct Calls to the Mode 4

TIP
Direct Calls from the Mode

4 TIP

11. HASP TIP

Hardware Considerations
Major TIP Functions
HASP Protocol

Terminal Operational
Procedure

Multileaving Block
Descriptions
Control Blocks
Acknowledgment Block

(ACK)
Negative Acknowledge

Block (NAK)
Enquiry Block (ENQ)

9-4
9-4
9-5
9-6
9-6

10-1

10-1
10-1
10-3
10-3
10-3
10-3
10-3
10-7
10-7
10-7
10-8
10-8
10-9
10-9
10-9

10-12

10-12
10-13

10-13

10-13
10-13
10-14

10-16

10-16

10-16

11-1

11-1
11-3
11-4

11-6

11-6
11-6

11-6

11-7
11-7

60471160 A

Idle Block (ACKO)
Control Bytes for Data

Blocks
Block Control Byte (BCB)
Function Control

Sequence (FCS)
Record Control Byte

(RCB)
Subrecord Control Byte

(SRCB)
String Control Byte

(SCB)
Data Block Description
Operator Console Blocks
End-of-File Blocks (EOF)
FCS Change Blocks

User Interface
Workstation Startup and

Termination
Workstation Initialization
Communication Line

Initialization
Signon Block
Signoff Block

Host Interface

A
B
C

0
E

Configuration and
Addressing

Console
Card Reader

Card Reader Non­
transparent Data Mode

Card Reader Transparent
Data Mode

Printer
Printer Nontransparent

Data Mode
Printer Transparent

Data Mode
Command Interface for

the Printer

Glossary
CCI Mnemonics
Service and Command

Message Summary
Block Protocol Summary
Sample Main Memory

Map for NPU

60471160 A

11-8

11-8
11-8

11-10

11-10

11-11

11-12
11-12
11-13
11-13
11-13
11-14

11-14
11-14

11-14
11-15
11-16
11-16

11-16
11-17
11-18

11-19

11-20
11-20

11-20

11-21

11-21

Punch
Error Conditions

CRC-16 Error (Cyclic
Redundancy Checking)

Illegal Block Make-up
Error

Unknown Response Error
Block Control Byte (BCB)

Error
Regulation and Flow Control
Autorecognition
Direct Calls to the HASP TIP
Direct Calls from the HASP

TIP
HASP postprint

12. STATE PROGRAMS

Execution of State Programs
Classes
Components of a State Program
Functions

Input State Programs
Text Processing State

Programs
Firmware Interface to the

Output Data Processing
Modem State Programs

Firmware Interface to the
Modem State Programs

Multiplex Level Status
Handler (PTCLAS)
Interface to the
Modem State Programs

Input State Programs
Interface to the Modem
State Programs

Macroinstructions

APPENDIXES

A-I F CCI Naming Conventions
B-1 G Standard TIP and SVM

Trees
C-l H principal Data
0-1 Structure

I On-line Debugging Aids
E-l

INDEX

11-22
11-22

11-23

11-23
11-23

11-23
11-25
11-25
11-26

11-26
11-27

12-1

12-1
12-2
12-4
12-4
12-5

12-6

12-7
12-8

12-9

12-10

12-10
12-10

F-l

G-l

H-l
I-I

xi

1-1
1-2

1-3

1-4

2-1

2-2

3-1

4-1
4-2

4-3
5-1

5-2

5-3

5-4
5-5

5-6
5-7

5-8

5-9

5-10

6-1

1-1
1-2

1-3

3-1

4-1

xii

Role of NPU in a Network 1-2
Priority and Nonpriority

Tasks in CCI 1-4
Downline Message Pro-

cessing 1-6
Upline Message Pro-

cessing 1-7
NPU Configuration

Sequence 2-4
Line/Terminal Configur-

ation Flowchart 2-7
Format of CE Error,

and Statistics
Messages 3-3

OPS Monitor Table Format 4-4
Buffer Formats and

Stamping 4-5
Worklist Organization 4-11
Basic Elements of the

Multiplex Subsystem 5-2
TIP and Multiplex Sub­

system Wor klist
Communications 5-5

Command Packet General
Format 5-10

Control Command Format 5-12
Enable Line Command

Format 5-13
Input Command Format 5-16
Input After Output

Command Format 5-18
Terminate Input Command

Format 5-20
Terminate Output

Command Format 5-21
PTLINIT Relationships

with Major CCI
Modules 5-27

Communications Paths
for Block Flow Control 6-3

CCI Modules 1-10
Support Programs for

TIPs 1-11
Principal Data

Structures 1-17
Inline Diagnostic

Service Messages 3-5
OPS Monitor Table 4-3

FIGURES

6-2

6-3

6-4

6-5

6-6

7-1

7-2

7-3

7-4
7-5

7-6

7-7

10-1

10-2
11-1

11-2
11-3
11-4
11-5

12-1

TABLES

4-2

4-3
4-4
4-5

5-1

Data Block Header
Formats

Use of Routing
Directories

Simplified Routing
Flow Chart, PBSWITCH

Important Common TIP
Subroutines

Structure of a TCB
Queue

Coupler I/O Trans­
actions

6-4

6-14

6-15

6-23

6-31

I/O Transaction Con­
tention at the Coupler

OPS and Interrupt Levels
for the HIP

7-3

7-5

7-6
7-9 Coupler Registers

Host Interface Protocol
Sequence, NPU Side

Host Interface Protocol
Sequence, Host Side

Standard Data Block
Format Used by the
HIP

Mode 4 Protocol Message
Formats

MTI Codes for Mode 4
Typical HASP Multi­

leaving Data Trans­
mission Block

EOF Block
FCS Change Block
Signon Block Format
Format of Block

Control Byte (BCB)
Error Block

Locating a State
Process

Interrupt State Defi-
nitions (PBINTRAPS)

Interrupt Assignments
Standard Subroutines
NPU Console Control

Commands
Multiplex Level 2

Worklists

7-21

7-23

7-25

10-4
10-5

11-9
11-13
11-14
11-15

11-24

12-3

4-15
4-16
4-18

4-29

5-6

60471160 A

I

\

5-2

5-3

5-4

5-5

6-1
6-2

7-1

7-2

7-3
7-4
7-5
7-6
7-7

8-1

8-2

8-3

8-4

9-1

9-2

TIP/LIP OPS level
Worklists

Optional Modem/Circuit
Functions

PTCLAS Wor kli s t
Analysis and Action

PTLINIT State Transi­
tion Table

Block Types
Command Blocks Used on

Nonzero Connections
Coupler Status Register

Bit Assignment
Orderword Register

Codes
NPU Status Word Codes
Address Register Code
PPU Function Commands
NPU Function Commands
HIP States and

Transitions
Summary of Batch Car­

riage Control Symbols
Summary of Interactive

Carriage Control
Symbols

2780 Batch Carriage
Control Action

3780 Batch Carriage
Control Action

TIP State Transitions,
Interactive Mode

TIP State Transitions,
Tape Mode

60471160 A

5-7

5-14

5-24

5-28
6-6

6-9

7-11

7-13
7-13
7-14
7-15
7-16

7-27

8-4

8-4

8-9

8-11

9-2

9-3

9-3

10-1
10-2

10-3
10-4

10-5
10-6

10-7

10-8

11-1

11-2

11-3

11-4
11-5

11-6

11-7

11-8

12-1

Carriage Control for
TTY Output Messages 9-5

Mode 4 Nomenclature 10-3
Mode 4 Terminal/Cluster

Addresses 10-5
E-Codes 10-6
DBC Codes for Carriage

Control 10-8
Break Codes 10-8
Card Reader Input

Stopped CMD Blocks 10-10
Printer Carriage

Control Codes 10-11
Printer Input Stopped

CMD Blocks 10-11
HASP Workstation

Features 11-2
HASP Protocol Mnemonic

Definitions 11-5
HASP Significant EBCDIC

Characters 11-7
HASP Device Type 11-17
Card Reader Stream

Control CMD Blocks 11-18
Printer Data Stream

Control CMD Blocks 11-20
HASP Printer Carriage

Control Codes 11-21
Punch Data Stream

Control CMD Block 11-22
State Program Macro-

instructions 12-11

xiii

\

CCI OVERVIEW

This section describes Communications Control Intercom (CCI) on a conceptual
level. The description gives the programmer an overview of how CCI
functions in a Network Processor Unit (NPU). For a more complete
description of how CCI functions in a network, refer to the CCI reference
manual.

CCI provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if the
program were connected to a virtual terminal that was connected directly to
a host port. Since virtual terminals must be either batch or interactive,
host processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

• Multiplexing data to and from the terminals

• Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

• Converting all terminal protocols into either an interactive virtual
terminal protocol or into a batch virtual terminal protocol

• Regulating the volume of message traffic handled

CCI is divided into several major subsections to handle these tasks: (See
figure 1-1.)

• Base modules to provide NPQ control and general services to other
major subsections

• Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

• A host interface (HIP and coupler) subsection

• Terminal interface subsections for each major class of terminal

• A multiplex subsystem that provides the hardware and software
interface between the NPU and the various types of terminals

1

60471160 A 1-1

(

NPU M
U
L

INTERNAL T
TERMINAL HOST

PROCESSOR I
P
L
E • • X

S • •
U
B • •
S
y
S

TERMINAL T
E
M

HIP - HOST INTERFACE PACKAGE
SVM - SERVICE MODULE
TIP - TERMINAL INTERFACE PACKAGE M·753

Figure 1-1. Role of NPU in a Network

1-2 60471160 A

CCI passes ASCII and display code messages to and from the host in format.
CCI passes messages to and from the terminals in a code and format
appropriate to the terminal. Downline messages (output from the host) are
switched to the proper terminal and translated from host to terminal format
and code. Upline messages are normally received from the terminals,
converted to host format, and passed to the host.

NOTE

A transparent mode is available. In this case, the message
remains in the terminal code and format throughout the
network.

CCI DESIGN
CCI can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (Host
Interface Package, HIP, on the upline side; multiplex subsystem on the
downline side), hardware and firmware do much of the preparation for a
message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCI is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferable to
defer part of the task processing until later. This is done by generating a
work list that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks, in order of decreasing importance, are as
follows:

• Memory errors
• Multiplex loop errors
• Host coupler events
• Real-time clock count
• Output data demands (multiplex subsystem)
• Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCI interprets
to change its own processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example); others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, Terminal Interface Package (TIP), for example). A few of the
major modules do almost all of their processing on the OPS level (internal
processor and service module).

60471160 A 1-3

OPS-LEVEl PROCESSING

When no priority tasks are pending, CCI processes OPS-level tasks. There is
an OPS Monitor that assigns tasks by scanning all the nonpriority
worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the
worklist.

OPS-level worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCI is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS level) to the multiplex Subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

PRIORITY

NONPRIORITY
(OPS LEVEL)

I
,

HIP

REAL- COUPLER
TIME CLOCK INTERRUPT

HANDLING

TIMED
EVENTS MODULE
(DELAYED CONTROL
OR
PERIODIC)

OPS MONITOR

BASE MODULES

MULTIPLEX
SUBSYSTEM TIPS

I/O PROCES- STATE
SING (WORK- PROGRAMS
LISTS) (ASYNC I/O)

----- ----
MULTIPLEX MODULE
SUBSYSTEM CONTROL
CONTROL

INTERNAL SERVICE
PROCESSOR MODULE

M-379

Figure 1-2. Priority and Nonpriority Tasks in CCI

1-4 60471160 A

DOWNLINE MESSAGE PROCESSING
Downline interactive messages originate in the host in blocks, each block
usually being one output line. It is assumed that the interactive mode is
conversational; that is, a line output is followed by a reply of one input
line entered from the terminal's interactive device. The interactive device
at the terminal is always ready for output unless the connection of the
terminal is preempted by batch transfers or by an input interactive
message. The output block is passed to the Host Interface Program (HIP) and
is handled as a batch mode Physical Record Unit (PRU) block. See
description, following.

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the HIP, which is responsible for all transfers across
the coupler. (See figure 1-3.) The HIP passes the block to an internal
processor, which examines the block header to gain information about the
terminal receiving the message. Each category of terminal is serviced by
one of the Terminal Interface Programs (TIPs). The internal processor
passes the message to the appropriate TIP.

The TIP processes the message (translates it to terminal code and format)
and passes the message to the command driver in the multiplex subsystem.
Before this, the host (through the TIP) must have requested the multiplex
subsystem to prepare the line connecting the NPU to the terminal for a
transmission.

At the multiplex subsystem, the output message block is multiplexed, along
with other message blocks being transmitted to the terminals, and sent to
the terminal one character at a time. Actual timing of the character
transmission depends on an output data demand (ODD) signal sent by the
communication line controller {consisting of the communications line adapter
(CLA)) to the NPU. An output data processor in the multiplex subsystem
handles this activity. The host is informed of message transmission
progress twice: first, when the complete block is accepted by the NPU; and
again after the block is transmitted to the terminal.

UPLINE MESSAGE PROCESSING
Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs that are used to
demultiplex the data into line-oriented input buffers. Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCI/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCI. The message is converted from terminal code and format
to host format. (Note that a transparent mode is also available for
messages.) After a complete block has been assembled, the multiplex
subsystem notifies the appropriate TIP, which finishes processing the
message. Then the TIP passes the message block to an input Point of
Interface (POI) program. That program transforms the batch blocks to PRU
blocks and then passes the block to the HIP by way of an input Point of
Interface (POI) program. The HIP, in turn, passes the block to the host.
Terminals are notified of processing progress according to the demands of
the terminal protocol. Figure 1-4 shows simplified upline message
processing.

60471160 A 1-5

HOST
r--
I PPU L __

1-6

HOST
t-11"'"""'1~INTERFACE

PACKAGE

MESSAGE
ROUTING
(INTERNAL
PROCESSOR)

NETWORK P~OCESSOR UNIT

MESSAGE
TRANSLATION
AND CONTROL
(TERMINAL
INTERFACE
PACKAGE)

1 3 Down11'ne Message Processing Figure - •

OUTPUT
DRIVER
MULTIPLEX
SUB­
SYSTEM)

MLiA
OUTPUT
MULTIPLEX
LOOP

M-316

60471160 A

TERMINAL

•
•
•

TERMINAL

MLIA
INPUT

r---' r-­
ICIRCULARU

INPUT J=.-.+-.
IBUFFER Q--+: 1-;--'1 ~~ H~~I INTERNAL t
L ___ ..J ~ ~.,:tj I TIPS PROCESSOR

~ __ ..J

LlNE·ORI ENTED
INPUT
BUFFERS

NETWORK PROCESSOR UNIT

t INPUT POI PROGRAMS TRANSFORM UPLINE
BLOCKS TO PRU FORMAT.

Figure 1-4. Up1ine Message Processing

60471160 A

I PPU I L ___ ...J

HOST

M-377

1-7

CiCI FEATURES
CCI provides several message processing features:

1-8

• TIPs and Point of Interface (POI) programs relieve host application
programs of needing to handle terminal protocols. The TIPs and POls
convert messages to and from host code (display for batch devices)
for the host.

• Block protocol relieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NPU-added header bytes), the block is declared full. It is
processed for shipment to the host, and another block is started.
Blocks are designed so that the only block, or the last block of a
message, is clearly designated (MSG type block).

• The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

• The NPU regulates its input (rejects incoming messages) under one of
several conditions:

•

•

The entire NPU is short of assignable space (buffers) for message
processing.

An individual TIP is using too many buffers at anyone time.

An accept input/accept output flag is being set by the NPU or by
the host.

Message priority is lower than the current logical link
regulation level.

In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem (input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level.

Programs are written in PASCAL or using state programming
instructions. (A few frequently-used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective language for manipulating table
entries. Much of the CCI processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code.

60471160 A

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demultiplex data and
translate code and format. Every TIP has at least one firmware level
program: an upline input state program. Most TIPs also have at
least one downline firmware level program: the text processor for
translating host code to terminal code and format.

The HIP does not use firmware programs directly. Several of the
general support programs that are written in macroassembly language
contain portions that are written in firmware. These programs should
not be altered by any user.

• Three methods of communication between modules are provided: direct
calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

CCI MODULAR STRUCTURE
CCI can be considered as a group of generalized modules that provide
services for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCI is shown in tables 1-1 and 1-2.

CCI is always
After loading
CCI configure
information.

resident in the NPU. It is downline loaded from the host.
is complete, additional communications between the host and
all the tables that hold line and terminal-oriented
See appendix E for a sample CCI load map.

CCI PROGRAMMING METHODS
CCI provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL

Block protocol defines three principal types of block:

• BLK and MSG blocks carry data. No block can have more than 2048
bytes. The host is responsible for block size downline; the TIP
input state programs and internal process are responsible for block
size upline. MSG blocks carry a full message or the end of a
message. BLK blocks carryall segments of a message except the last
or only segment.

• CMD blocks carry commands and status. The service module (SVM)
handles generalized commands. Some commands can also be directed to
and from TIPs, to start or stop a data stream for a specific terminal.

60471160 A 1-9

• BACK blocks carry communications protocol information, such as
acknowledgment that is sent to the terminal that downline messages
have been received from the host, and acknowledgment that upline
messages have been received by the host.

Each block header has information relating to routing: source/destination
nodes (SN and DN), which are related to the host and NPU, and a connection
number (CN), which is related (through directories) to lines and terminals.

Data (BLK and MSG) blocks have an additional header, which contains control
information and includes a data block clarifier (DBC).

Internal processing handles downline routing by use of the directories.
Upline, the originating terminal is known. Using this information, the
multiplex subsystem passes the block to the appropriate TIP. The input POI
provides destination code information during upline routing, since this data
is to be shipped to the host.

Module

Terminal-Oriented

Mode 4 TIP

TTY TIP

HASP TIP

BSC TIP

Host-Oriented

Host Interface
Program (HIP)

1-10

TABLE 1-1. CCI MODULES

Major Function

Handles synchronous Mode 4A/4C
terminals.

Handles asynchronous terminals
using teletypewriter protocols.

Handles synchronous HASP
workstations.

Handles the bisynchronous
protocol used by IBM 2780/3780
terminals.

Handles block protocol between
host and NPUi transfers use
the host coupler.

Normal Calls

PT4 .••

PTTY .••

{ HS •..
HASP .••

various

PTHIP .••

60471160 A

\

TABLE 1-1. CCI MODULES (Contd)

Module

General Support

Base system

Multiplex
subsystem

Network
communications

Major Function

Includes a monitor, timing,
standard subroutines, NPU
console services, and task
calls (worklists).

Part of the base system;
contains command driver and
input/output multiplex loops.
The multiplex subsystem con­
sists of hardware, software,
and firmware.

Message routing, service
messages, and common TIP
subroutines (including POIs).
This group of modules also
handles upline formatting
of blocks to PRU format.

Normal Calls

PB •••

PM •••

{ PN •••
PT •••

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS

Programs Location t Comments

Host Interface Program (HIP)

GENERAL SUPPORT

Operating system B (Includes program
execution, space
allocation, and
interrupt handling)

Worklist handling B Interprogram task re-
quests

Timing services B

Standard subroutines B

60471160 A 1-11

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS (Contd)

Programs

Host Interface Program (HIP)

Internal processor maintenance

Command driver

Output data processor (ODP)

Input data processor (IDP)

Other multiplex
subsystem routines

Message routing

Service module, SVM

TIP support

Inline diagnostics

NPU console services

Initialization programs

tB
M
N

=
=
=

Base system
Multiplex subsystem
Network communications

Location t

B

M

M

M

M

N

B

N

N

B

Comments

Building directories

Handles most commands
between host and NPU

Includes Point of
Interface (POI)
programs, block
handlers, regula­
tion, and command
block generator

Released when
initialization is
complete

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates either by coupler interrupts or at OPS-level. The HIP does not
process blocks except to the extent that it assures that a complete block is
sent or received. The HIP can reject a request to send an input block
unless enough buffers can be assigned to receive the entire block at the
time the transfer is requested. No effort is made to re-receive or
retransmit portions of a block.

1-12 60471160 A

The service module (SVM) handles most commands between host and NPU other
than those to start and stop a data stream. For service messages, the
connection number (CN) is zero. For downline commands, the SVM processes
the command (such as entering fields in a terminal-related table) and
returns an acknowledgment service message to the host. In processing a
service message, SVM can calIon a TIP or on one or more other support
rou tines.

Commands to start or stop message transmission on a line are sent directly
between the host and the appropriate TIP. In this case, CN is not zero.

BLOCK ROUTING

Block switching downline is done by internal processing. Almost all blocks
are passed to the receiving program (TIP, or SAVM) using a worklist entry.
Invalid blocks are discarded. Upline blocks are routed by internal
processing to the host (directly or through the local NPU), or, in rare
cases, to the NPU console.

POINT OF INTERFACE (POI) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP must fulfill both upline and downline. Common POI programs
are provided for these tasks.

• PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI checks the block serial number to assure
that the block is in sequence. If it is a batch block, the TIP is
called directly to convert the PRU block to a block in terminal
code/format; then queues the block to the TIP or SVM for further
processing.

• PBPOPOI - postoutput POI. This downline POI generates an
acknowledgment to the host that the block has been transmitted to the
terminal. It also gathers statistics for the transfer.

• PBPIPOI - postinput POI. These POls handle the upline block by
building the block header. If it is a batch device block, the block
is reformatted to PRU format. This is done by gathering the data
buffers together to form a PRU size block (note: the UPs have already
converted the data into display code). In all cases, the block is
routed upline immediately, or is queued for upline routine.

• PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other PASCAL
program. At the OPS level, direct calls are freely made between routines of
the same kind (such as SVM routines or TIP routines within the same TIP).
Calls are also made freely from the SVM, a TIP, and the HIP to support
routines (base and network types).

60471160 A 1-13

Direct calls pass task-oriented information in either of two ways:

• Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

• A small parameter list may accompany the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. In this
manual this type of call is depicted as:

MNCALL parml, ..• parmn

MNCALL is at least the first six characters of the entry point
name. Parml •.. parmn are the associated parameters. Parameters
can be omitted, but the delimiting commas cannot (exception:
terminating comma(s».

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists.

A worklist is a packet of information about the requested task. Worklists
are queued on a first in, first out basis to those few modules designated to
receive them. Those modules are the following:

• TIPs
• HIP
• SVM
• Internal processor
• Timing processor
• Multiplex loop interface adapter interrupt processor
• NPU console handler

All of the named modules execute at the OPS level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires CCI to take
appropriate action.

The monitor scans the list of OPS-level programs to find the next event
(task) that must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the requested task.

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

• • • • • • • • • • •

1-14

Communications line adapter status
Output buffer transmitted
Buffer threshold reached in multiplex subsystem
Unsolicited input or output on a line
Bad communications line adapter address
Illegal frame format
Timeout of output data demand (ODD)
Termination of input
CE error message generation
Hardware errors
Calling the TIP at OPS level for further processing

60471160 A

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embedded in the code. Whenever state
programs are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the multiplex subsystem directly, to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet. Information in this packet is used by the multiplex
subsystem to set up the table controlling this message transfer (MLCB).
During the transfer, additional information is added to the MLCB, and all
programs concerned with the transfer (whether software or firmware) refer to
the MLCB for transfer control information. The MLCB for the transfer is
released when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE

A support routine (PTTPINF) is called directly by the OPS-level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a single pass, although PTTPINF returns to OPS level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP. The TPCB is discarded by the
OPS-level TIP when the text processing is completed.

NOTE

Space is reserved in the TPCB for the contents of the first
16 microprocessor file 1 registers. This provides 16 full
words for communication in addition to the words already
defined in the TPCB.

60471160 A 1-15

COMMUNICATION USING PASCAL GLOBALS (TABLES)

Instances of communications between modules and between different levels of
programs (OPS level/firmware level) have already been cited: worklists,
MLCBs, TPCBs. Use of PASCAL globals (tables) is a way of passing
information between programs or saving information for later use. CCI
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task (such as sending a
message block to a terminal) or for one sequence of tasks (such as defining
terminal information from the time when the line is enabled until the line
is disabled). A few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING

Much of the line interface is the responsibility of the multiplex subsystem.

Important aspects of message transfer are as follows:

•

•

•

•

•

1-16

Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
(line). The whole process can be started by a signon from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

Polling synchronous Mode 4 lines for the next input character is
initiated by the command to start polling, which originates in the
host. The TIP, however, determines the exact moment of sending each
successive polling message. The line polling message is passed to
the terminal via the multiplex subsystem. It is a timed output so
that failure to supply another input character in the specified
period is treated as a hardware error. Unsolicited input characters
are also treated as hardware errors.

The NPU may reject input when the entire NPU is running out of
buffers.

Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand (ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

60471160 A

"­
\

Structure

Block format

Service message
formats

Console request
packet

System buffers
and buffer
control block
(BCB)

Worklists,
wor klist
control block
(WLCB)

Timing tables

Logical link
control block
(LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

60471160 A

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Major Functions

Provides vehicle for NPU-to-host
communications.

Part of block format: passes commands,
status, and statistics between NPU and
host.

Controls transfer to and from NPU
console.

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words (2 bytes per word).

Make major task request calls from
module to module. WLCB locates work­
lists queued to a single module.

Provide periodic and delayed calls:
some timing is embedded in LCBs.

Directory information and regula-
tion level: one static block per link.

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs): statistics informa­
tion for the line: one static block
per line.

Terminal-related information, includ­
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured:
released when line disabled or termi­
nal deleted.

Controls information for a multiplex
subsystem I/O: builds the MLCB.

Principal
Users

All modules

SVM, all
modules

Base
modules

Base modules:
all modules
use buffers

Base modules:
all modules
that call
other modules

Base modules:
TIPs, SVM

Routing mod­
ules, SVM

SVM, timing
module, TIPs,
HIP, multiplex
subsystem

SVM, TIPs,
HIP, multiplex
subsystem

Sent from
initializer,
base or TIP
to multiplex
subsystem

1-17

TABLE 1-3. PRINCIPAL DATA STRUCTURES (Contd)

Structure

Port table
(NAPORT)

Mul tiplex line
control block
(MLCB)

Text processing
control block
(TPCB)

TIP-type table

Line table

Modem/CLA
tables

Terminal/device
type tables

Major Functions

Current line (port) status; pointers
to MLCB and state programs controlling
a transfer at the multiplex port; one
static entry per line.

Controls information for a message
transfer to and from a terminal major
device used by OPS level and firmware
level (input state programs) to
exchange information. Dynamically
assigned for a single block transfer
(downline) or message transfer (upline).

Controls information for converting
code and format (downline or second
pass upline) of data blocks; dynami­
cally assigned for a single block.

TIP-related addresses.

Defines principal characteristics of
a line.

Defines modem and communications line
adapter physical characteristics.

Defines physical characteristics of
terminals and devices at a terminal.

principal
Users

Multiplex
subsystem

Multiplex
subsystem

Responsible
TIP

SVM, base
modules

Multiplex
subsystem

Mul tiplex
subsystem

Multiplex
subsystem

The generation of the ODD and polling messages, and the use of worklists for
calls is sometimes referred to as an event-driven processing system.

Physical positioning of CLAs in the loop multiplexer card cage generates a
preferential processing scheme. Since only one line frame (input or output)
is on the multiplex loop at anyone time, the CLA farthest from the loop
multiplexer has first chance to use the loop. As viewed from the front, the
loop multiplexer is in the next to last slot on the right-hand side of the
cage (the last slot is not used). The CLA which has first chance to use the
loop is in the leftmost slot, and is the half of the CLA card associated
with the switches for the top half of the card.

CCI PROGRAMMING LANGUAGES

Commonly-used base programs, especially those with firmware portions, are
written in macroassembly language for speed of execution. These programs
should never be altered in the field. Such programs are listed in an
assembly listing.

1-18 60471160 A

OPS-level support programs, most priority-level multiplex subsystem
programs, and the OPS level of each TIP are written in PASCAL language.
Altering these programs can require altering the data structures (tables)
that these programs use to store and pass programming control information.
These programs are listed in an MPEDIT listing and are especially usable in
a PASCAL EDIT XREF listing.

NOTE

These programs can escape directly to firmware processing
using the PASCAL INST instruction together with the firmware
address of the firmware program.

The firmware parts of the TIP are called input state programs or text
processing state programs. The multiplex subsystem has special firmware
programs called the modem state programs. These are used to process
CLA-generated status. If this status word occurs, it is usually in the same
frame as an input message character.

These programs are written using a predefined set of macroassembly language
macroinstructions called state instructions. These programs are called in
one of three ways:

• A direct call from the internal processor to PTTPINF for a text
processing program.

• An event-driven call, triggered by the placement of data in the
circular input buffer, to the modem state programs.

• A call from a modem state program to an input state program.

The firmware programs communicate with the multiplex subsystem by releasing
control (input state programs or modem state programs) and by storing
information in data structures. Worklist calls can be made to the OPS-level
and multiplex-level multiplex subsystem programs, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
immediately converted to OPS-level calls to the same TIP.)

Text processing programs communicate with the calling TIP by releasing
control and by storing information in the TPCB. Worklist entries to the
OPS-level TIP can also be made.

60471160 A 1-19

,/

INITIALIZING AND CONFIGURING THE NPU

This section describes the loading, initializing, and configuring of the NPU.

Before the CCI can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
installation handbook (see preface) to generate a CCI load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCI.
This case assumes the use of a system configure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. In all cases, changes may need to be made to the SCF itself
and to the CCI tables. Table changes are normally entered by MPEDIT
statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

• Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program is available
for a quick analysis of the dump. Refer to the CCI reference manual
for standard dump formats. If the user has not purchased this
maintenance, he should devise his own programs to make the dumps
readily available for later analysis.

• Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

• Configuring the NPU by specifying the network logical link, line, and
terminal connections for this NPU.

INITIALIZING THE NPU
Initialization takes place in two phases: the first to load and initialize
the micromemory~ the second to load and initialize the macromemory.

PHASE I INITIALIZATION

BEGINA starts initialization after the following occurs:

• The macromemory is downline-loaded with the phase I load file.
• The host sends the start signal.
• The processor starts execution at location 000016 (routine BEGINA).

2

60471160 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCI loops while waiting for the phase II load file.

PHASE II INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs:

• The phase II load file is downline-loaded into the NPU.

• The host sends a start signal.

• The NPU starts execution at memory location 000016 (a jump to
routine BEGINX). BEGINX loads general-purpose registers land 3 with
parameters for dynamic stack management (used during initialization
of recursive routines). Register 1 contains the dynamic stack last
word address~ register 3 contains the dynamic stack first word
address.

• BEGINX executes the PASCAL routine MAIN$. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

PINIT

PINIT controls the remaining macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
the page mode. It then calls each of the other initialization routines.
Before each routine is called, a specified bit is set in the initialization
status word. This word can be checked for debugging purposes if the
initialization procedures fail. (See CCI reference manual.) The routines
are called in the sequence given in the following paragraphs.

PIPROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents OMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. (See appendix I.)

PIBUFI

PIBUFl starts buffer initialization. PIWINIT is called to determine ON
limits, and to allocate the first node in the ON table to the NPU's local
node. The IOLNK and IOTBL tables are allocated and initialized, as is the
ORG ON table. An entry to TUP is allowed if the TUP option has been
selected.

2-2 60471160 A

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCB
tables. SubLCBs for the MLIA, console, and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled.

PIBUFI sets the address limits of the buffer area and calls PIFRI to
initialize the file 1 (firmware) registers. A 256-word array is used.
Dynamic values are assigned FFFF16. Any nonused registers are set to
zero.PBEF transfers the array contents into the file 1 registers. Next,
some file 2 registers are loaded using assembly language (INST) commands.

Finally, PIBUFI initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive; a default size of three is used but no
buffer is assigned.

PIINIT

PIINIT sets the NPU console to the write mode so the CCI banner message can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.
This routine consists of 14 no-op instructions followed by a jump to
PBHALT. The routine starts at memory location 000016. Next, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second).

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPU console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The system is also
halted if the MLIA cannot be initialized correctly.

PILININIT

PILININIT sets up the multiplexer and coupler timing services by adding the
MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2

60471160 A 2-3

PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU initialized message is sent to the host,
interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine), to start normal operation of CCI.

LOAD AND DUMP NPU
A detailed description of loading and dumping an NPU, whether a local or
remote unit, is given in the CCI 3 reference manual.

CONFIGURING THE NPU
After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

• Logical links (LL) are configured by building the LLCB.

• Lines are configured by building the line LCBs.

• Terminals are configured by building the TCBs.

See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and
TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU

Configure line service message • Repeat for

.. Line-configured service message each line in

Enable line service message • the system .

.. Line-enabled service message

Configure TCB service message • Repeat for

.. TCB-configured service message each terminal

INIT block • in the system.

.. INIT block

Figure 2-1. NPU Configuration Sequence

2-4 60471160 A

\. ,

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to Block Protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a full-duplex logical channel
connecting the stations. Connection number zero is reserved as a permanent
servic~ channel for service messages.

CONFIGURING NPU
After the NPU is loaded, the host configures the unit by establishing all
logical links and logical connections for that NPU. (Note: In CCI the
links are preconfigured.) This is done in the following sequence:

• Lines are configured by building the line control blocks (LCB).

• Terminals are configured by building the terminal control blocks
(TCB) •

Refer to appendix H for the definition of the data structures known as LCB
and TCB. Format for the service messages used to configure the LCB and TCB
are given in appendix C.

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to block protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a logical channel connecting the
stations. Connection number zero is reserved as a permanent service channel
for service messages.

The NPU sends an NPU-initialized service message to the host to notify it
that the NPU has entered this active state.

LINE CONFIGURATION

After loading the NPU, the host sends service messages to the NPU to
configure the lines between the NPU and the terminals. These configure line
service messages are handled by the service module in the receiving NPU.
The format of the service message is shown in appendix C.

Line configuration requires sending the following line control block (LCB)
information to the NPU in the FN/FV pairs:

• Port ID for the line.

60471160 A 2-5

• Host identifier.

• Line type - includes type of duplex, CLA, modem, carrier circuit;
answering and turnaround mode; and type of transmission, synchronous
or asynchronous.

• Terminal type (TIP/sub-TIP required to process the terminal's data,
device type, and terminal class).

• . Data necessary to fill the selected fields of the line control block
(LCB) •

Processing of each line is governed by fields in the LCB. The format of the
LCB is shown in appendix H.

A simplified flowchart for line configuration is shown in figure 2-2.
Terminal configuration consists of configuring the terminal control block
(TCB). TCB configuration is shown on the same diagram, to emphasize the
fact that a network cannot use the terminal until both of the terminal's
associated LCB and TeB are configured. After configuration, the following
events occur:

• The host can identify the terminal. The host can also find the
proper regulation level to use.

• CeI can identify the protocol necessary for the data transfers and
can assign a proper TIP to handle that protocol.

• The hardware in the CLA and modem are prepared for data transfers.

After a line is configured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made,
using the enable line service message response message. When the line is
reported operational, TeBs are configured. The host starts the line
configuration process whenever an NPU has been loaded and all links are
configured, or when a network operator has entered a command that generates
a specific type of supervisory message in the host.

Configure Line 8M

For each line to be configured, the host sends a configure line service
message to the NPU connected to that terminal. All configure 8Ms contain a
control block descriptor string (FN/FV). There is one such descriptor
string for each type of configurable block in the NPU. The descriptor
string equates a field number to a field position within the control block,
and allows the associated field value to be entered into that field.
Additionally, an optional action can be defined for the field number. The
action allows such operations as validating the field value, assigning
chains to other structures, and other actions appropriate to the newly
entered field. The service module returns a line configured response to the
host. The host then sends an enable line service message to the NPU. The
service module then attempts to enable the configured line. At the
completion of the enable process, the line enabled response 8M is returned.

2-6 60471160 A

Figure 2-2.

60471160 A

HOST SENDS
CONFIG ,-INE
SM TO NPU

NPU SENDS LINE
CONFIGURED
RESPONSE

HOST SENDS
ENABLE LINE
SM TO NPU

CONDITION
MODEM FOR
OPERATION

NO

NPU SENDS
LINE STATUS
SM TO HOST:
LINE INOP­
ERATIVE

DISCONNECT
LINE SM
TO NPU

DELETE

DELETE
LINE SM
TO NPU

NPU-HOST:
LINE DELETED
SM

M-756

Line/Terminal Configuration Flowchart (Sheet 1 of 3)

2-7

2-8

DEDICATED,
WIO AUTO­
RECOGNITION

NPU-HOST

SEND LINE
ENABLE SM:
LINE OPERATIVE

SWITCHED,
WIO AUTO­
RECOGNITION

NPU-HOST

SEND LINE
ENABLE SM:
WAIT FOR RING

RING IN
!DIAL-INI
OCCURS

NPU SENDS
UNSOLICITED
LINE STATUS
SM TO HOST:
LINE OPERATIVE

DEDICATED,
WITH AUTO­
RECOGNITION

NPU_ HOST

SEND LINE
ENABLE SM:

-AUTO-RECOG-
NITION IN
PROCESS

PERFORM
AUTO­
RECOGNITION

SWITCHED,
WITH AUTO­
RECOGNITION

NPU_HOST

LINE ENABLE
SM WITH
WAIT FOR RING

DIAL-IN
OCCURS

PERFORM
AUTO­
RECOGNITION

M-757

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 2 of 3)

60471160 A

" \

TCB
CONFIGURED
SM

TERMINAL
REMAINS
CONFIGURED

LINE/MODEM
FAILURE

NPU -+ HOST

UNSOLICITED
LINE STATUS SM
LINE INOP­
ERATIVE

M-381

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 3 of 3)

60471160 A 2-9

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.
If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the f9ur major line
types:

• Dedicated line, no autorecognition
• Switched line, no autorecognition
• Dedicated line, autorecognition
• Switched line, autorecognition

The response to configuration of a dedicated line is line enabled (1) if the
modem of a dedicated line indicates data set ready, and (2) if (for a
constant carrier) both clear-to-send and data-carrier-detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecognition is not specified. A
3D-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds, the TIP responds with
line-not-operational; the host then disconnects the line at the earliest
opportunity. If a response is obtained, line operational is reported,
containing the results of autorecognition.

The response to configuration of a switched line is line enabled, if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately, if no ring
indicator is present. This is followed by a line operational SM when a
dial-in connection occurs. At this time, ring indicator is signaled and the

. NPU returns a data-terminal-ready to answer the call. If, when ring
indicator is signaled, the host or logical link is not available, the NPU
ignores the dial-in.

Autorecognition/non-autorecognition is the same for switched lines as it is
for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LeB status to not-configured. eel also
releases all TeBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL (TCB) CONFIGURATION

When the line is operational, the host can configure terminals for the line
by issuing one or more configure terminal service messages. eel responds to
the configure terminal SM by generating the TeB. The amount of information
in a TeB varies, depending on terminal type.

A TeB can be built only when a line is enabled and operational. The block
remains in existence until a delete terminal SM, a disconnect SM, or
delete-line SM is processed.

2-10 60471160 A

Terminals are identified in service messages by specifying the line, the
hardware address, device type, and terminal class. Cluster and terminal
address ranges are as follows (in hexadecimal):

Mode 4A
Mode 4C
TTY
HASP
BSC

Cluster Address

70-7F
70-7F
o
o
o

Terminal Address

60
61-6F
o
0-7
0-1

TA = stream ID of device: console = 1, card reader = 0-7, printers = 0-7,
punches = 0-7.

Punch only. All other devices = O.

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line, but only a
single console terminal on the cluster. Mode 4C can have one or more
cluster controllers per line, and one or more console terminals per
cluster. The TTY TIP does not support any terminal addressing capability.
The HASP TIP uses the terminal address as the stream number and does not use
the cluster address. For HASP, the device type is combined with the
terminal address to form the hardware identifier. Card readers and line
printers can use the full range of stream number, but plotters must share
the range with card punches.

A single line can have numerous terminals and therefore numerous TCBs. Each
terminal has its own TCB, and each TCB is normally established at the close
of the intialization process.

Configure Terminal 8M

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and FN!FV pairs, such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by the host as the result of a line
operational SM received and processed by the host. As in the configure line
service message, the FN!FV pair designates the field number and the value to
be used in the field, and has an optional action associated with entering
the field in the TCB. The SVM sets the fields in the TCB, as directed.
Ranges for the FVs are given in appendix C.

A response SM is sent to the host indicating whether the fields were set or
not.

60471160 A 2-11

TCB Reconfiguration .

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when the host detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is similar to that for the
configure terminal SM, except that the subfunction code (SFC) differs. The
resulting operation in the NPU is the same, except that the TCB should
already exist. The TCB is modified as specified in the SM. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a general mechanism for the host to
control terminals. Any action required coincident with the field change is
also provided by the reconfiguration mechanism. If the toggle bit setting
in the host ordinal byte does not change, an error response is generated.
If the connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, the
host sends a delete terminal SM to delete the TCB and to clean up all table
and data space associated with the TCB. CCI removes the connection from the
logical connection directory. The service module responds to the host with
a TCB-deleted SM. The host is responsible for correctly deleting both ends
of a connection.

Format of the delete terminal SM is similar to that of the configure
terminal SM (above) except the SFC code differs and there are no FN!FV pairs
in the message. Normal response format is similar to that of the reply to
the configure terminal SM response.

2-12 60471160 A

\

FAIWRE, RECOVERY, AND DIAGNOSTICS

Failure and recovery of CCI depends on a number of factors:

• Host failure - If a host fails, the NPU and its software stop message
processing.

• NPU failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

• Line failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

• Terminal failure - Terminal status is re"ported and message is
discarded.

To aid recovery and to assure dependable network operations involving the
CCI, three sets of diagnostic programs are available:

• In-line diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the reason for an
NPU stoppage, and off-line dumps.

• Optional on-line diagnostics - These tests allow checking' of circuits
to terminals, and are available only if a network maintenance contract
is purchased.

• Off-line diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware Maintenance
Manual.

HOST FAILURE

If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable. (See HIP
description, section 7.) The NPU also sends an informative service message
to all connected interactive terminals.

NPU FA:ILURE
The peripheral processor unit (PPU) of the host has a 10-second deadman
timer. If the PPU connected to the NPU fails to receive an anticipated input
or an idle response during this period, a timeout occurs. The host declares
the NPU dead, and the NPU dump and load (or load only) operation is entered
to start NPU recovery.

3

60471160 A 3-1

NPU RECOVERY
The host dumps and reloads an NPU after receiving a request for load. The
stimulus for this reload comes from the host PPU driver. The reasons for
requesting a load are as follows:

• Software failure caused PPU hardware deadman timer to expire.

• Hardware failure caused deadman timer in the PPU to expire.

• Operator initiated a software halt, forcing reloading.

• Operator pressed MASTER CLEAR on the NPU maintenance panel, causing a
reload request.

After n successive attempts to load, the loading operation is aborted. The
NPU is thereafter ignored until manually reactivated. After the NPU is
successfully loaded and initialized, the host sets up all logical links for
that NPU that the present state of the network allows. The methods of
loading and initializing NPUs are described in the CCI 3 reference manual.
The host examines its configuration tables for elements that have been
affected by the change in status. Then the host configures and enables
lines that are supported by the NPU. For any line reported as operational,
an examination of the configuration tables reveals those terminals that can
be connected. For each such terminal, both the terminal and the host
support tables are configured and thereby connected.

HALT CODES AND DUMP INTERPRETATION
Unless the NPU stoppage resulted from a host failure or was initiated by
operator action, some fault in the NPU caused the failure. If a dump is a
normal part of the reloading cycle (and the network is normally set up so
that it is), a dump is sent to the host. The CCI 3 reference manual
describes the mechanics of transmitting the dump. Appendix B of that manual
(Diagnostics) describes the format of the dump and its interpretation with
or without the use of halt codes.

LINE FAILURE
Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to the host using an unsolicited
line status reply SM. The host deletes all TCBs supported by the line using
the disconnect line service message.

LINE RECOVERY
A line cannot recover from a failure spontaneously. The host must first
process the unsolicited status reply (line inoperative) 8M by deleting the
supported TCBs. The host then disables and reenables the line, using the
appropriate service message. At this time, the TIP/HIP commences to check
for a change in status. When the line status changes to operational, this
is reported to the host with an unsolicited line status reply 8M (line
operational). When the host receives a message indicating that line status
has changed to operational, it attempts to configure the supported terminals.

3-2 60471160 A

TERMINAL FAILURE
Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to
the host for network management purposes. An unsolicited terminal status
reply (terminal inoperative) SM reports the failure.

Undeliverable traffic is discarded. The logical connection is not broken on
terminal failure.

TERMINAL RECOVERY
When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to the host
with an unsolicited terminal status reply SM. The host replies with start
message to the TIP, allowing transmission for the terminal to begin.

IN-LINE DIAGNOSTIC AIDS

Three types of in-line diagnostic aids are provided with CCI:

• CE Error SMs. These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

• Statistics SMs. These messages, are optional periodically for each
NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

• Halt messages, dumps, and dump interpretation. When the NPU stops, a
halt message is sent to the NPU console. This message contains a
code indicating the cause of the halt (a halt message indicates the
NPU came to a soft stoP1 in a hard stop situation, the message cannot
be generated), and the dump should be examined. The dump will
disclose the program in control when the halt command was generated.
Dumps are part of the initialization process and are discussed in
detail in appendix B of the CCI 3 reference manual. Dump
interpretation is described in appendix B. Note that the halt
message is delivered using PBQUICKI01 the message does not use an SM.

Format of the SMs used to generate alarm, CE error, and statistics messageS
are given in appendix C. The basic format of all three SMs is shown in
figure 3-1.

Byte I 2 3 4 5 6 7

DN SN CN BT PFC SFC Data (one or
more bytes)

60471160 A 3-l

ON Destination node

SN Source node, the originating NPU

CN Connection number, 00 = services messages

BT Block type, 04 = CMD (see section 6)

PFC Primary function code

OA - CE error or alarm

07 - Statistics

SFC Secondary function code

00 - CE error message, with PFC = OA

DATA

01 - Alarm message 1
00 - NPU statistics
01 - Trunk/line statistics
02 - Terminal statistics

(see table 3-1)

with PFC = 07

Figure 3-1. Format of CE Error, and Statistics Messages

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs), and (indirectly) all connected
hardware: modems, lines and terminals. The creation of the service message
is separate from and in addition to the statistics accumulated in the NPU
and periodically dumped to the host.

TO prevent swapping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented for each error message
generated. When the counter reaches the limit specified at build-time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCl 3 reference manual.

3-4 60471160 A

TABLE 3-1. INLINE DIAGNOSTIC SERVICE MESSAGES

Message PFC SFC Data Bytes

CE Error OA 00 First: Error Code (EC)t

Subsequent: data (if any) - up to 27 bytes

NPU 07 00 Error words 1 thru llt . 2 bytes/word ,
Statistics

Line 07 01 First: P -
port 1

Statistics Second: 00

Third: 00
Subsequent: explanation words 1 thru 47

2 bytes/word t

Terminal 07 02 First: P - port

Statistics Second: 00

Third: CA - cluster address J
Fourth: TA - terminal address See appendix

Fifth: DT - device type for values.

Sixth: CN - connection number

Subsequent: explanation words 1-3,

2 bytes/word

tRefer to appendix B of the CCI 3 reference manual for details.

STATISTICS MESSAGES

Three forms of statistics messages are used: NPU statistics, line
statistics, and terminal statistics. Each type is sent upline to the host
engineering file. The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(coupler TCB for NPU, LCB for lines, TCBs terminals) by a call to PNSGATH.
The call comes from either a TIP (usually via the post-input or post-output
POI) or the HIP.

C

60471160 A 3-5

One stimulus for a statistics report is a request from the timer module
PBTIMAL. The period for this timeout is a system build time parameter.
PNPSTAThandles the periodic request. Two other stimuli cause PNDSTAT to
generate the message: one stimulus arises when anyone of the counters that
keeps the statistics overflows. In that case, the message for the NPU,
line, or terminal is immediately generated. The other stimulus arises when
a line disconnect SM, a delete line SM, or delete terminal SM is received by
the NPU. The affected line and/or terminal statistics blocks are dumped and
the appropriate statistics SM is sent before the normal response SM is
sent. When any statistics message is sent upline, the statistics counters
in that statistics block of the TCB or LCB are cleared.

The search by PNPSTAT for periodic statistics is conducted as follows. The
search cycle begins at the permanently-assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the c~rrect search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. If the LCB has no statistics available, the
search moves to the first TCB. Its statistics are dumped, if available.
The next search is set to begin at the next TCB for this line; then
continues until all the TCBs for the first active line are checked. Then,
the second active line and all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-6 60471160 A

\

BASE SYSTEM SOFTWARE 4

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section describes the support software
for the base system only. Note also that the HIP (section 7) can be
considered as a support program for the TIPs.

The functional grouping of support tasks is as follows:

• Base system - operating system functions (program execution, buffer
allocation, interrupt handling), timing support, and data structures
support. NPU console handling is also described in this grouping.

• Multiplex subsystem - drivers for the multiplexer I/O lines.

• Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
regulation assistance).

The major base subsystem components are the following:

• Monitor, also called OPS monitor
• Space (buffer) allocation
• Timing services
• Direct program calls
• Indirect (worklist-driven) program calls
• Interrupt handling
• Directory maintenance
• Global structures
• Standard code and arithmetic support routines

SYSTEM MONITOR
The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled during
execution of a program that is operating at a higher priority level. When no
interrupt is being processed, the NPU runs at its lowest priority, known as
the operations (OPS) monitor level. (Refer to interrupt lines/priorities in
appendix H.)

NOTE

This priority is not to be confused with the regulation level
priority (discussed in the CCI 3 reference manual) nor with
the host interface priorities (discussed as a part of the
HIP).

60471160 A 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block WLCB that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N)l). Worklist control block (BYLISTCB) contains parameter
(BYMAXCNT) which defines the number of worklist entries to be processed by
the OPS level program before the pointer is moved to the next program (usual
number is 1). If multiple executions are allowed, pointer does not advance
until the N allowable worklist entries have been cleared from the worklist,
or until there are no more worklist entries in the module's queue. If N is
greater than 1, the program is given control successively until either all
the worklists for that program are serviced or until the maximum number of
consecutive executions for that program has been reached. If N is 1, the
scan pointer moves to the next entry each time the program is executed, even
though there may be more worklists attached to this program's queue.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level programs are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and checked by the interrupt level timer routine (PBTIMER)
at specific system-defined intervals. If the timer expires, it indicates
that an OPS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BU~ERHANDUNG

This function allocates any of the four types of buffers (each type has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
also stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

• Data buffer for special TIP application
• Console format
• Integer overlay
• Buffer chaining overlay
• Terminal control blocks (TCBS)
• Physical I/O request packets
• Active TTY LCB list
• Type 1 table entries
• Type 4 table entries
• Timeout buffers
• Diagnostic control block (DCB)
• Mux line control block (MLCB) and text processing control block (TPCB)

4-2 60471160 A

TABLE 4-1. OPS MONITOR TABLE

Table Entry NO~ t Calls NLG
Program Size Entries No. EntrIes Program (Word)

BYWLCB· BOFSWL 1

2 These entries not

3 serviced by the

4 monitor; reserved

5 for generating the

6 worklists

7

••. to here BOCHWL 8 Console 1 PBCONSOLE 2

BOINWL 9 Internal processing 1 PBINTPROC 2

BOMLWL 10 MLIA interrupt
handler]0 PBMLIAOPS 5

Currentj.-. BOSMWL 11 Service module
I (SVM) 2 PNSM\'1L 4

Pointer I BOTINL 12 Timing services 1 PB'rIMAL 1
.. I

13 Reserved POS! t!on I

l BOLIWL 14 Line initializer 1 P'I'LINIT 3

BODGWL 15 (On-line
diagnostics) 0 ------ -

BOCOWL Hi HIP 1 PTHIPOPS 3

BOM4WL 18 Mode 4 TIP 1 PTMD4TIP 3

BOTTYWL 19 TTY TIP (Moile 3) 1 PTTYTIP 3

BOHASP 20 HASP TIP 1 P'I'HSOPSTIP 3

Monitor B027WL 21 2780/3780 TIP 1 PTIP780 3

Pointer BOHHWL 22 Reserved 0 ------ -
recycles ••• BODUMMY 23 Dummy for console;

recycles to entry 8 0 ------ -

tNumber of multiple executions allowed for this program.

60471160 A 4-3

Common·

Used by
OPS
Monitor

Word 15 8 7

0 t BYCNT (count)

1 Put pointer

2 Get pointer

3 First entry index BYINC

4 Not used

5 tt BYMAXCNT BY PAGE

6 BYPRADDR

See appendix H for the format of entries in a worklist.

t Mul ti-WLCB flag
ttBYWLREQ, worklist required flag

BYCNT - number of WLCBs to process in one pass
BYCNT - number of WLCBs to process in one pass

BYWLINDEX - WLCB index

BYMAXCNT - number of WLCBs to process in one pass
BYPAGE - program page address

PYPRADDR - program address

Figure 4-1. OPS Monitor Table Format

o

4-4 60471160 A

Figure 4-2 indicates the types of buffers assigned. Each buffer type has
its own field definitions. The figure also shows the stamping techniques.

o LCD 1 FCD o LCD I FCD o LCD I FCD

FLAGS FLAGS FLAGS

•
•
•

CHAIN CHAIN REVERSE m-l NIL

m-l CHAIN FWD

Buffer of size m
LCD - last character

displacement
FCD - first character

displacement
FLAGS - end indications,

transparent
text, queuing,
etc.

Buffer before assignment.
Chains of free buffers
both forward and reverse.

Buffer after assignment.
No chain, but word for
chaining reserved.

Pointer
to next
entry

o

1

98
99

F status flag
o = put
1 = get

15

>

Buffer stamping area

Address of requestor

Address of buffer

Most recent
150 buffers
assigned or
released

Last buffer entry

A circular buffer, two words/entry

Figure 4-2. Buffer Formats and Stamping

60471160 A

1 0

F

F

4-5

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools, or until all possible
buffer splits have been made from all larger buffer pools, and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buffer maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. If buffer cannot be made available, the system halts
with a diagnostic halt. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes1
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

• 8 words - timing
• 16 words - MLCB and WLCB
• 32 words - TCB and TPCB
• 64 words - data

Buffers are assigned from a buffer pool of the appropriate size, and are
assigned one at a time1 buffers can be released singly or in a chain of
buffers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each 2-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in
appendix H, the buffer subsection.

OBTAINING A SINGLE BUFFER

The calling sequence to obtain a single buffer of a specified size is:

PBGETIBF (parm)

Parm is the address of the pointer to the buffer control block. PBGETIBF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETIBF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buffer and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60471160 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer, or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized

. buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buffer has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words.

Releasing a Single Buffer

The calling sequence to release a single buffer is:

PBRELIBF (parmI, parm2)

ParmI is a pointer to any address within any word of the buffer to be
released, and parmI is the address of the pointer to the buffer control
block. ParmI is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parmI contains the chain value of the last buffer
released.

Releasing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buffer in the chain to be released. The second method will not
return an error indication if the buffer address is zero. In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHN (parmI, parm2) and PBRELZRO (parmI, parm2).

In both cases, parmI designates a pointer to the first buffer in the chain
to be released, and parm2 designates (indirectly) the address of the buffer
pool to which the buffers will be returned. If parmI for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY

The calling sequence to test buffer availability is:

PBBFAVAIL (parmI, parm2, parm3)

PARMI specifies the number of buffers required1 parm2 pointer specifies the
buffer control block required1 and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function1 it returns a true value if the
test indicates that sufficient buffers are available. This calling sequence
can be used at any interrupt level.

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is:

PBCOPYBFRS (parm rcd)

60471160 A 4-7

The parameter record (parm rcd) requires the following:

• The number of source buffers to copy
• Source buffer size
• Data buffer size
• A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. (See figure 4-2.) PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES
Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timing services are available:

•

•

•

•

•

•

4-8

A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-time clock following the
interrupt.

Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. In all cases, a worklist call is made to the
program which requested the delayed call. Timing services use
PBTOQUE to add entries to this chain of delayed calls.

Every 500 ms, PBTIMER checks the deadman timer. The timer is reset,
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OPS-level
program. The NPU stops.

Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBS) for asynchronous terminals. If a
character is received, the timeout is set for the next character. If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the line.

A time-of-day routine, PBTIMEOFDAY, is called every second. The time
of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

60471160 A

• Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. Input or output
is terminated for the line if this is requested. Inactive LCBs are
unchained from the set of active LCBs. Timer services provide the
means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-Ievel programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-Ievel programs, for transferring between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.
Unlike other procedure calls, PBCALL can pass a variable number of
parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms = (pgml ••• pgmn);
var table: array pgms of integer:

index: P9msi
addr (programl , table pgml);

addr programn , table pgmn);

set up index
PBCALL (table index); (call program, no parameters)

The PBCALL calling sequence is:

PBCALL (addr, parml, ... parmn)

addr is the address of the program to be called, and parmI through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;

begin
(store return address in called procedures entry point)
(jump to procedure)

Other switching programs of importance are as follows:

• PBPAGE (parmI) switches control directly from one OPS-Ievel program
to another. ParmI is a worklist index to OPS programs set into an
intermediate array.

60471160 A 4-9

• PBXFER (parmI, parm2) transfers control to a program that may be on
another page of main memory. ParmI is the called program's address,
and parm2 is the dynamic page register base address. Both are global
variables.

• PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL).

WORKLIST SERVICES
Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

• Make (PUT) worklist entries from any priority level (including OPS
level) by terminal type.

• Extract (GET) an entry from a list.

Characteristics of lists managed by list services are as follows:

• First in, first out.

• Entries can be from one to six words in length, but all entries in a
particular list must be the same length.

• Lists are maintained in dynamically assigned space.

• There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resolved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level. Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the following expression is used:

BWWLENTRY LEVELNO. FIELDNAME

4-10 60471160 A

FJ

i..+

~

BYLISTCB

BYCNT

BYPUT

BYGET

BYFEINC I BYINC

BYFEINC

r-+ Entry

Next entry Entry -. to GET

~ Next entry

~~ ~ ;. to PUT

FWD CHAIN I-- FWD CHAIN - FWD CHAIN

F = BYCONTEND - A multiprocessor contention flag for 2552 NPUs

BYCNT

BYINC

BYFEINC

Entry count

Entry size (uniform in anyone work1ist)

Displacement in buffer to first entry

Figure 4-3. Work1ist Organization

, ~

60471160 A 4-11

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (for example, OPS, and
RTC), constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. In such cases, one of the following techniques must be used to
ensure proper data integrity:

• Put all information in the worklist entry and call PBLSPUT before
calling the second program.

• Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

• Save and restore the worklist entry from BWWLENTRY.

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling sequence is:

PBLSPUT (parmI, parm2)

ParmI is the address of the worklist entry, and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is:

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE

The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision:

•

•

4-12

PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist.

PBSWLE - This makes a worklist entry for SWITCH, the procedure used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

60471160 A

EXTRACTING A WORKLIST ENTRY

The PBLSGET routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware sequence speeds up execution and eliminates contention
between software and firmware. Format of the call is:

PBLSGET (parmI, parm2)

ParmI is the address of the worklist entry, and parm2 is the address of the
worklist control block. If the list is not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING
The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command, and the
interrupt system is activated by the enable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing.

with the return address stored, the hardware deactivates the interrupt
system and transfers control to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (including the interrupt mask register and overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interrupt state being processed. The program then saves the current
software priority level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such. interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address
links to permit sequential interrupt processing according to priority level,
with eventual return through the return addresses to the mainstream computer
program.

When processing is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EXI).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred to the return address, and the
interrupt system is again activated.

60471160 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
register. Bit 0 of the mask register corresponds to interrupt state OO~
bit 1 corresponds to interrupt state 01, and so forth. A bit that is set
means that the corresponding interrupt state has a higher priority than the
interrupt state to which the mask belongs. Thus, there can be as many as 17
levels of priority.

NOTE

Priority of any interrupt state can be changed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

• Set interrupt mask.
• Reload interrupt mask.
• Perform a logical AND with the mask.
• Perform a logical OR with the mask.

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is:

PBSMASK (parm)

Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register.

PBAMASK - AND INTERRUPT MASK (AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is:

PBAMASK (parm)

Parm is a value parameter specifying the value to be logically AND,ed with
the current interrupt mask.

PBOMASK - OR INTERRUPT MASK

PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is:

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60471160 A

User Interface

Because each interrupt handler is an independent program, there are no
specific user interfaces. However, pertinent information is necessary to
enable modification of, and additions to, the interrupt handlers.

An array contains interrupt masks for the 16 interrupt states. To access a
particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is
saved.

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are
listed in table 4-3. The seventeenth state (no interrupt line associated)
is the OPS level.

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Exit Instruc- Location of Location of
Interrupt tion Delta of Return First Instruction

State Field Value Address of Interrupt
Handler Program

00 00 0100 0101

01 04 0104 0105

02 08 0108 0109

03 OC OIOC 0100

04 10 0110 Olll

05 14 0114 0115

06 18 0118 0119

07 lC OllC 0110

08 20 0120 0121

09 24 0124 0125

10 28 0128 0129

II 2C 012C 0120

12 30 0130 0131

13 34 0134 0135

14 38 0138 0139

15 3C 013C 0130

60471160 A 4-15

Interrupt
Line

o

1

2

3

4

5

6

7

8

10

11

12

13

15

MICROINTERRUPTS

TABLE 4-3. INTERRUPT ASSIGNMENTS

Software
Priority

PI

P6

P2

P3

P7

P7

P8

P9

PH

P12

P13

P14

Interrupt Description

Memory parity, program protect,
power failure, software breakpoint

NPU console

Multiplex loop error (MLIA)

Multiplex subsystem - Level 2

Coupler 2

Coupler 1

Spare

Real-time clock

Spare

Spare

ODD input parallel

Input line frame received (MLIA)

Macro breakpoint

Three microinterrupts are also serviced:

Handler
Name

PBLNOO

PBLNOI

PBLN02

PBLN03

PBLN05

PBLN06

PBLN08

PBLNOC

PBLNOD

PBLNOF

• The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor (part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

• The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented output buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

•

4-16

The timing services firmware processes the 3.3-millisecond clock
interrupt, which is used as the time base for all timed NPU functions.

60471160 A

(
\

PASCAL GLOBALS
CCl provides a number of PASCAL globals, frequently in the form of fields
embedded in tables. Appendix H shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCl PASCAL
globals is in an MPEDlT listing.

STANDARD SUBROUTINES
Standard subroutines are a miscellaneous group of support routines that
perform the following tasks:

• Convert and handle numbers.
.• Maintain paging registers.

• Perform block functions.

• Set or clear protect bit.
• Perform miscellaneous other tasks.

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.

CALLING MACROASSEMBL Y LANGUAGE
PROGRAMS FROM PASCAL PROGRAMS

A procedure call to a macroassembly source code program from a PASCAL-coded
program is the same as a call to any other PASCAL program. The same calling
sequence code is generated; that is:

RTJ program
ADC parmI

ADC parmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program.

60471160 A 4-17

TABLE 4-4. STANDARD SUBROUTINES

Subroutine
Name

PBCLR
PBCLRPROT

PBCOMP
PBFILEI

PBFMAD
PBFMAH

PBGETPAGE

PBHALT

PBILL

PBLOAD

PBMAX

PBMEMBER

PBMIN

PBPSWITCH

PBPUTPAGE

PBRDPGE
PBSETPROT
PBSTPMODE

PBTOAD
PBTOAH
PB1SADD

PBlSBITS

PBlSCOMP

TO START

TOSTOP

TOTIME

Description

Clears block of main memory.
Clears protect bit.
Compares two blocks.

Loads/displays file 1.

Converts from ASCII to binary.
Converts from ASCII to binary.

Reads page register from
specified bank.

System halt.

Illegal call; passes to TIP
for CCI variants.

Loads a canned message.

Gets max of 2 numbers.

Tests ASCII set membership.

Gets min of 2 numbers.
Loads page registers 30 and 31.

writes page registers to either
bank.

Reads dynamic page register.
Sets protect bit.
Sets page mode.

Converts to ASCII decimal.
Converts to ASCII hexadecimal.
Adds to IS-bit address (paging).

IS-bit address functions (paging).

Compares two IS-bit addresses
(paging).

Starts program execution timer.

Stops program execution timer.

Programs execution timer.

tNI = Noninterruptable
o = OPS level only
R = reentrant

4-1S

Typet

NI
NI
NI

o
R

R

NI

NI

NI

R

NI

NI

NI
NI

NI

NI
o
NI
R

R

R

R

R

R

R

R

Languagett

PP

MA

MA

MA

PF
PF

MA

PP

PP

PP

PF

PF

PF
MA

MA

MA
MA

MA

PP

PP

PP

PP

PP
PP

PP

PP

Type
Checking
Defeated

Yes

Yes
Yes

Yes
No

No

Yes

Yes

Yes
Yes

No

No
No
Yes

Yes

Yes
Yes
Yes
No
No
No

No

No
No

No

No

ttpp = PASCAL procedure
PF = PASCAL function
MA = Macroassembler

60471160 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed •

. Defeating Type-Checking in Pascal Procedure Calls

The PASCAL compiler is a one-pass compiler. When it encounters a procedure
call in source code, it mayor may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence, and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packed record can be variable parameters.

If the calling sequence of a program has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated: however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type-checking can be a useful technique. For
example, arrays with the same element types, but of different lengths, are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

• All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

• PASCAL and macroassembly functions cannot defeat type-checking.

HANDLING ROUTINES

These seven handling routines for number conversion are listed below and
described in the following paragraphs.

• PBFMAD - converts from ASCII decimal to binary.

• PBFMAH - converts ASCII hexadecimal to binary.

• PBMAX - finds larger of two numbers.

• PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code.

• PBMIN - finds smaller of two numbers.

• PBTOAD - converts binary to ASCII decimal.

• PBTOAH - converts binary to ASCII hexadecimal.

60471160 A 4-19

PBFMAD - Converts From ASCII Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into a
binary number contained in one 16-bit word. The calling sequence is:

PBFMAD (parmI, parm2, parm3)

ParmI is integer type~ the converted word is returned in parmI. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. If PBFMAD is true, the conversion was
successful~ otherwise, there was either bad data or a bad index.

PBFMAH - Converts From ASCII Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one 16-bit word. The calling sequence is:

PBFMAH (parmI, parm2, parm3)

ParmI is a variable parameter of type BOOVERLAY~ the converted word is
returned in parmI. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX - Funds the Larger Maximum of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is:

PBMAX (parmI, parm2)

ParmI and parm2 are integers to be compared. The larger of parmI and parm2
is returned by PBMAX.

PBMEMBER - Tests ASCII Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user-defined set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having I-word, 16-element sets by accessing an array of
I-word sets. A character is broken up for testing by the following format:

7 6 4 3 o
Index into Element number
array of sets in set

4-20 60471160 A

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET = array (0 •• 7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2016) is bit
number 2016. Bits of the JSASCIISET array are numbered as follows:

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is:

var JSHEXSET: JSACIISET;
value JSHEXSET = (0, 0, 0, 3F16'

The calling sequence is:

~
digits 0-9

7E16' 0, 0, 0);

---,.,""-.... _--~haracters A-F

PBMEMBER (parmI, parm2)

PARMI is a value parameter of type BOOVERLAY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to
test parmI for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set, and a false value otherwise.

PBMIN - Funds the Smaller Minimum of Two Numbers

PBMIN is a function that returns the smaller minimum of two given numbers.
The calling sequence is:

PBMIN Pparml, parm2)

ParmI and parm2 are integer value parameters. The smaller number of parmI
and parm2 is returned by PBMIN.

PBTOAD - CONVERTS BINARY TO ASCII DECIMAL

PBTOAD converts a binary number contained in one 16-bit word to as many as
five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.
The calling sequence is:

PBTOAD (parmI, parm2, parm3, parm4)

60471160 A 4-21

ParmI is an integer containing the word to be converted1 parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parm4 are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH - Converts Binary to ASCII Hexadecimal

PBTOAHconverts a binary number contained in one l6-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is:

PBTOAH (parmI, parm2, parm3, parm4)

ParmI is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buffer that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop
indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS

Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFF16'
and requires 18 bits.) Three other subroutines allow arithmetic and
functional operations on l8-bit paging type addresses.

PBSTPMODE - Sets Paging Mode

PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. The calling sequence is:

PBSTPMODE (parm)

Parm is the input index:

o - use page mode 01 bank 0 registers
1 - use page mode 11 bank 1 registers
2 - absolute1 no paging

PBPSWITCH - Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. The calling sequence is:

PBPSWITCH (parm).

Parm is the page register base value for the program to be executed
(programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60471160 A

PBRDPGE - Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in the register to the requestor. The calling sequence is:

PBRDPGE

There are no input parameters.

PBPUTPAGE - Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. The calling sequence is:

PBPUTPAGE (parmI, parm2)

ParmI contains the page number; a bank flag uses the leftmost bit (flag = 0
indicates bank 0; flag = 1 indicates bank 1). Parm2 is the 9-bit value to
be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE - Reads Specified Page Register

PBGETPAGE reads the contents of the specified page register and returns them
to the user. The calling sequence is:

PBGETPAGE (parmI, parm2)

ParmI designates the number of the register and uses the leftmost bit as a
bank flag (flag = 0 indicates bank 0; flag = 1 indicates bank 1). Parm2 is
the location used to return the page register contents to the caller.

PB 18ADD - Add Bit Addresses

PB18ADD adds two l8-bit addresses together. Format of an l8-bit address is
as follows:

Word 1 2

lower 16 bi ts

upper 2 bits--------~.
The calling sequence is:

PB18ADD (parmI, parm2)

ParmI and parm2 are the two addresses to be added in B018BITS format.
Output is the single 18-bit address which is properly loaded by PB18BITS.

60471160 A 4-23

PB18BITS - 18·Bit Address Functions

PBISBITS performs one of five possible functions:

• Stores a number into an IS-bit address.
• Reads the specified IS-bit address.
• Clears the protect bit in an IS-bit address.
• Sets the protect bit in an IS-bit address.
• Forms an IS-bit address from a 17-bit address.

The calling sequence is:

PBISBITS (parmI, parm2, parm3)

ParmI is an IS-bit address1 parm2 is the read/store word address, and parm3
specifies the function to be performed. The output is a properly performed
function.

PB18COMP - Compares Two 18·Bit Addresses

PBISCOMP makes a comparison between two IS-bit addresses. The calling
sequence is:

PBISCOMP (parmI, parm2, parm3)

ParmI is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is one of =, ~, > , ~ , < , or
~. The output is a BOOLEAN function: true if ACOMP Bl1 false if any

other condition exists.

BLOCK FUNCTIONS

Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR - Clears a Block of Main Memory

This subroutine is used to clear any block-sized area in main memory. The
calling sequence is:

PBCLR (parmI, parm2)

ParmI is the starting address of the block to be cleared1 parm2 is the
number of consecutive words to be zeroed. Output is a cleared block of
memory.

PBCOMP - Compares two Equal Length Blocks

After block comparison, a Boolean answer (1 represents true1 0, false) is
returned to the caller. The calling sequence is:

PBCOMP (parmI, parm2, parm3)

4-24 60471160 A

ParmI and parm2 are the starting address of the two blocks to be compared~
parm3 is the number of words compared in each block. Output is the Boolean
true-false function, which depends on whether the blocks had identical
contents.

SET/CLEAR PROTECT BITS

The protect bit is bit 17 of the main memory word. It cannot be used for
data, but it can be used to deny unprotected programs access to the word.
The bit (as well as the parity bit) is dropped by most interregister
transfers.

PBSETPROT - Set Protect Bit

PBSETPROT sets the protect bit at a specified address. The calling
sequence is:

PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT - Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. The calling
sequence is:

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES

PBFILE1 - Load/Display File 1

PBFILEI consists of two routines: PBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load
or display operations. Because of firmware timing constraints, a maximum of
12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. The calling sequence is:

PBEF (parml, parm2)

Parml is a value parameter, formatted as follows:

15 7

Number of words to load First File 1 register to load

To load all 256 registers, set parml to O. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

60471160 A 4-25

PBDF transfers the contents of file 1, starting at register n, to memory.
The calling sequence is:

PBDF (parmI, parm2)

ParmI is a value parameter formatted as follows:

15

Number of words to move

7

First file 1 register
to transfer

o

To display all 256 registers, set parmI to O. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.

PBHAL T - Stops the NPU

PBHALT stops the system after a serious error has occurred. The following
information is saved, starting in consecutive words at address 3016'

• Return address of program calling PBHALT, or a value relating to a
halt code.

• Halt code (indicates a reason for the halt).

• Software registers.

The calling sequence is:

PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is:

*HALT xxx xx yyyy

xxxxx is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.

PBILL - Illegal Calls

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCI system. The calling sequence is:

PBILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD - Load a User-Defined Message

The PBLOAD module loads a user-defined message into a buffer starting at the
designated character position. The calling sequence is:

PBLOAD (parmI, parm2, parm3, parm4)

4-26 60471160 A

ParmI points to the location where the user-defined message is to be loaded,
and parm2 specifies the text of the message to be loaded. Parm3 specifies
the starting position in the buffer of the first character in the message,
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. Parm4 overrides the message length.
Example:

VAR Buffer: BOBUFPTR: (assume a 32-word buffer)
MSG JOMLIO:

Value MSG = (B 0123456789 B\.) 1

PBLOAD (BUFFER, MSG, JIFRSTCHAR, JILST32) 1

NOTE

All user-defined messages must have a right bracket (]) as
the end-of-message delimiter unless parm3 minus parm4 is less
than the message length.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART, and TOSTOP) provide execution timing
analysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an external hardware instrument.

CONSOLE SUPPORT
This group of modules provides the Terminal Interface Package (TIP) for the
NPU console. Console devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

• General peripheral processing: these modules assign device, start,
read, and write.

• Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING

These subroutines provide for general peripheral functions.

• Starting I/O and (if necessary) assigning a device. Two routines
perform these services: PBIOSERV and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60471160 A 4-27

PBSTARTIO either starts the I/O, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/O is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/O start command.
The individual driver interrupt handler then takes control.

• Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. If the device status indicates it is ready for
I/O, a ready indication is returned to the caller.

• Off-lin~ quick output, PBOUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

• Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services.

• Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/O channel are in unpacked format, right-justified in the A
register. (0 register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character. Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. In any event,
o and A values are saved for debugging.

PBREAD reads data or status from a peripheral device. The
macroassembler routine, PTGETCHAR, to read the character.
to read the character until a retry threshold is reached.
attempts cease and a reject error is added to the count in
This can cause a peripheral device timeout. In any event,
are saved for debugging.

routine uses the
Attempts are made
At that time, the
reject counter.
o and A values

• Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
identification and a physical request packet address as input.
Completion actions can include one or more of the following:

Releasing message output buffers
Changing I/O request flags
Starting another message transfer
Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one, or both, of these functions is
transferred to a remote console, the corresponding functions must be
deactivated at the local console.

4-28 60471160 A

The orderwire function is employed for both input and output traffic
messages. The diagnostic function is used for input of diagnostic commands
and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is made by the internal process output
procedure for every message placed in an empty console queue. Such entry
contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (I) and end with an
end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and
the results of each.

Several routines constitute or support the console TIP.

• PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not
technically a part of the console TIP. The routine could be used to
support other devices.

NOTE

Every canned message must have a right bracket (]) •

Canned messages use 32-word buffers.

PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message
and to provide 1/0 services. PBDISPLAY also uses system structure JCOPSLRP
(OPS-level console logical request packet).

• PBOFMT formats the output for the console. Characters are converted
to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function

ISup Puts console in supervisory mode.

lORD Puts console in orderwire (diagnostic) mode.

10VL Puts NPU in overlay mode.

IREQ Message interrupted by manual interrupt is requeued to console.

ICAN Message interrupted by manual interrupt is canceled.

IMTQ Flushes console queue.

IN I Controls routing of service messages (input, output, and OUT
LOC locally generated messages).

MSNOP Generates message to NOP.

60471160 A 4-29

• PBTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode, a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

• PBTTYINT is the interrupt handler for the console. Interrupts clear
the I/O timer. Action depends on the interrupt type, such as one of
the following:

Spurious
Alarm
Manual
Data (read)
Data (write)
Other "

Action

Count as spurious interrupt.
Clear console.
Change mode.
Read character.
Write character.
Clear interrupt.

This interrupt handler is composed of several local subroutines.

•

•

4-30

PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs) , output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from
hexadecimal and the buffer headers are prepared. Conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise, the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

60471160 A

MULTIPLEX SUBSYSTEM

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a line7 the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPs.

Line-oriented input and output buffers provide temporary storage for data.
The input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP, and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located7 the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are removed
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various
tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
multiplex 2 level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB),
which is the principal table used to control the transfer.

5

60471160 A 5-1

•
• •

COMMUNICATIONS PROCESSOR

I

INCLUDES COMMAND DRIVER,
, INPUT DATA PROCESSOR, AND

OUTPUT DATA PROCESSOR

MEMORY BUFFERS

I

I

MULTIPLEX
LOOP
INTERFACE
ADAPTER
(MLIAI

INPUT LOOP

OUTPUT LOOP

MULTIPLEX
LOOPS •

•

LOOP
MULTI­
PLEXER

COMMUNI­
CATIONS
LINES OR
TRUNKS

II~.-------------MULTIPLEX SUBSYSTEM ----------------<--.
CLA - COMMUNICATIONS LINE ADAPTER
TIP - TERMINAL INTERFACE PROGRAM

Figure 5-1.

5-2

M-I66

Basic Elements of the Multiplex Subsystem

60471160 A

HARDWARE COMPONENTS
The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAs).

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

• Management of the I/O loops.

• Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory.

• Output data demand (ODD) detection and buffering.

• Multiplex loop error detection.

• Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

Output data demand received
Line frame received
Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAs and the demand-driven multiplex loop. Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signal rate, character length, parity,
and stop bit duration.

60471160 A 5-3

SYSTEM AND USER INTERFACES
To promote a better understanding of the internal multiplex subsystem
interfaces, the system and user interfaces are described in detail in the
following paragraphs.

SYSTEM INTERFACE

A TIP is a multilevel program that executes at three processing levels:

• Multiplex level I (firmware or microcode level)

• Multiplex level 2 (macrocode level)

• OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP must
handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are, in turn, related to the various stages of processing a
message. Each TIP contains decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2, and table 5-2 describes the workcode
functions for OPS level.

Multiplex Level 1 (Firmware)

This level of TIP processing handles all incoming characters and status.
Worklist entries generated by the input state programs are directed to
either multiplex level 2 or to OPS level for processing.

Preliminary handling of CLA status is done by the modem state programs. The
two lowest-numbered input states (which receive control from the modem state
programs) are reserved to handle the following special status conditions:

•

•

5-4

State 0 - is reserved for CLA status such as parity errors and data
transfer overruns.

State 1 - is reserved for data carrier detect (CDC) signal dropped.

60471160 A

0'1
o

"" -..J
.....
0'1
o

>

V1
I

V1

MUX LEVEL 1
(FIRMWARE)

MUX LEVEL 2
(MACROCODE)

GOOD BLOCK, BAD BLOCK, ETC.

TIP I I
~~~~~AMS MMBUTCH ~ PMWOLP RELEASED BUFFERS. EXIT 

MODEM I I I 
STATE • MMCLAS I • PMWOLP ---. PTCLAS CE ERROR. 
PROGRAMS 

MMUNSOD 

MMUNSIN 

M 

MMTIMRE MMFES, MMBREAK 

PMWOLP CE ERROR W 

MMTIMODD;-8MT1SEC 

MMINEND - INPUT 
TERMINATED 

AOWK1---AOWK33 

U 
X PMWOLP I AOHARDERR 

NOTIFY TIP • 
F 
I 
R 
M 
W 
A 
R 
E 

MMORT 
t----''----+---... PMWOLP • TIP 

MMr.ll.flR ,,_. ~- .. • PMWOLP CE ERROR • EXIT 

MMI~~fl • PMWOLP CE ERROR • EXIT 

TERMINATE OUTPUT 

TERMINATE INPUT 

OPTIONAL WORKLIST • TIP 

OPTIONAL WORKLIST • TIP 

I 
I 
I 

OPS LEVEL 
(TIP) 

AOTIMEOUT I TIMING 
SERVICES 

AOQUEOUT 

INTERNAL 
AOSTOP I PROCESS 

AOSMEN 

AOSMTCB 

AOSMDA SERVICE 
MODULE 

AOSMDLTCB 

AOSMRCTCB 

M·386 

Figure 5-2. TIP and Multiplex Subsystem Worklist Communications 



Workcode 

MMCLAS 

MMUNSOD 

MMUNSIN 

MMTIMODD 

MMTIMRE 

MMOBT 

MMBUTCH 

MMCHOUT 

MMCAOR 

MMIFFO 

NMINEND 

MMFES 

MMBREAK 

5-6 

TABLE 5-1. MULTIPLEX LEVEL 2 WORKLISTS 

Workcode 
to TIP 

MMHARDER 

MMOBT 

MMBUTCH 

MMCHOUT 

AOHARDERR 
to OPS 
level 

Functions 

CLA status error, implies line error to TIP. 

Unsolicited output, implies hard error to 
PMWOLP, which disables the line. 

Unsolicited input, implies hard line error to 
PMWOLP, which disables the line. 

ODD timeout, implies hard line error to PMWOLP, 
which disables the line. 

Modern response timeout, implies hard line error 
to TIP. 

Output block transmitted. 

Multiplex subsystem buffer threshold reached. 
Buffers are released. 

100-ms timeout. 

CLA address out of range - not seen by TIP. 

Illegal lineframe format - not seen by TIP. 

Input buffer terminated, response to PMWOLP 
command for hard errors. 

Framing error status, TIP should cause command 
driver to send delimiter to line (asynchronous 
lines) • 

User break, TIP is called (asynchronous lines). 

60471160 A 



TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS 

Workcode to TIP/LIP Description 

AOWKl Good block received from IP input states. 

AOWKn Other workcodes from IP input states. 

AOHARDERR Hard error detected from IP at level 2. 

AOTIMEOUT Line timeout from timing services. 

AOQUEOUT Output buffer queued to IP's TCB. 

AOSMEN Line enabled from service module. 

AOSMTCB TCB configured from service module. 

AOSMDA Disable line command from service module. 

AOSMDLTCB Delete TCB command from service module. 

AOSMRCTCB Reconfigure TCB command from service module. 

Two additional input states are reserved for buffer handling conditions. 
These are called by the input data processor if one of the buffer thresholds 
is exceeded when the multiplex subsystem is trying to store another input 
character when this requires assigning a new buffer. (Note: the character 
is discarded.) 

• State 2 - Number of input buffers being used by this TIP exceeds the 
allowable number (ABL threshold). 

• State 3 - System buffer threshold reached. 

Multiplex Level 2 (PMWOLP) 

This processing runs at the multiplex interrupt level. It is entered by 
means of worklist entries received from the modem state programs, the 
multiplex subsystem firmware, and the command driver. processing at this 
level is primarily of an error nature. Each interface program provides code 
to process the workcodes at this level (MMOBT, MMBUTCH, MMCHOUT, MMFGS, 
MMBREAK) plus any of its own that are generated in multiplex level 1. For 
synchronous TIPs, there is no processing required since the MMOBT entry is 
optional. 

60471160 A 5-7 



Input State Program Worklists from firmware level are passed directly to the 
TIP or LIP at OPS level. 

The primary workcode generated is the CLA status workcode. After the modem 
state programs have analyzed the CLA status for soft errors (data carrier 
detect dropped and others) and determined that this is not a soft error, the 
input processor modem state program generates a CLA status worklist to this 
processing level. The CLA status handler (PTCLAS) analyzes the status and 
generates the appropriate CE error code. If a hard error is detected on the 
line, PMWOLP terminates input and output over the line. All multiplex level 
worklists for the line are discarded until a response from the terminate 
input logic is received. At that time, the TIP is sent an OPS-level 
AOHARDERR worklist. 

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES 

The multiplex subsystem firmware generates nine worklists to the interrupt 
level. These can be divided into three categories: 

• Worklists resulting from hard errors for unsolicited input or output, 
and timeouts for output data demand or modem response. 

• Worklists to the system indicating that the output buffer has been 
transmitted, the buffer threshold has been reached so no more buffers 
can be assigned, or 100 ms have elapsed since the last input 
character was received. 

• Worklists resulting from multiplex loop errors indicating that the 
CLA address is out of range or an illegal line frame format was 
detected. 

COMMAND DRIVER WORKLIST ENTRIES 

The command driver generates worklist entries at the request of the TIP. 
Two optional entries are generated: input terminated and output terminated. 

OPS Level 

The OPS level portion of the TIP handles all line or terminal serv1c1ng, 
output block preparation, input block processing, service module interface 
for configuring lines and terminals, and line error handling. Worklists are 
generated to the interface processor by four different programs: 1) 
interrupt programs multiplex levelland 2~ 2) timing services~ 3) internal 
process~ and 4) service module. 

• 

5-8 

Multiplex level 1 worklist normally indicates a good block has been 
received on input. The block is passed to the Point of Interface 
(POI) program and the interface program resumes its processing at the 
initial entry point or at the saved entry point where processing was 
suspended. 

60471160 A 



• Multiplex level 2 worklist indicates a hard error has occurred on the 
line. Normally, a line nonoperational service message is sent to the 
host. Service on that line is discontinued until the host takes 
continuation action. 

• Timing services worklist is generated whenever the line control block 
timer expires (BZLTIMER). It can be used as a means of delaying 
service on a line or indicating a line failure (failure to respond). 

• Internal processing worklist indicates that output is queued to the 
terminal control block (TCB) for this interface program. This is a 
worklist for interface programs that stop processing when there is 
nothing to do; it must therefore be restarted when the next output 
arrives. 

• The service module (SVM) maintains the interface between the host and 
the interface program. SVM worklists indicate to the interface 
program those lines and terminals that are to be configured or are to 
be deleted from service. 

USER INTERFACES 

User interfaces to the multiplex subsystem can be divided into three 
categories: 

• Command driver interface (PBCOIN and PMCDRV). These modules command 
communications to the multiplex subsystem and control data flow to 
and from the communications lines. These include setting up the 
hardware to start or stop transmissions. 

• Common multiplex subroutines for TIPs are provided. These 
subroutines allow the multiplex subsystem to communicate input events 
to the user. 

• State programs. PMCDRV sets up the operation and calls PMCOIN to 
escape to the firmware. On the firmware level, the input state 
programs provide processing on a character-by-character basis. State 
programs and their OPS-level interfaces are described in section 12. 

Command Driver Interface 

The command driver calling sequence from the OPS level is: 

PBCOIN (parm) 

where parm is the command packet (NKINCOM). The command driver calling 
sequence from level 2 is: 

PMCDRV (parm) 

where parm = NKINCOM is the name of the command packet. The general format 
of a command packet which is used for most commands (NKCMD type) is shown in 
figure 5-3. 

60471160 A 5-9 



WORD 
o 

1 

2 

3 

4 

5 

6 

7 

15 7 o 
Command I Parameter 

. Line Number 

Parameters 

Parameters 

Parameters 

Parameters 

Parameters 

Parameters 

Figure 5-3. Command Packet General Format 

The following commands are available to the user for controlling the flow of 
data to and from the communications lines: 

• NKCLRL - Clear line. 
• NKINIL - Initialize line. 
• NKCONTROL - Control line. 
• NKENBL - Enable line. 
• NKINPT - Input. 
• NKDOUT - Direct output. 
• NKINOUT - Input after output. 
• NKENDIN - Terminate input. 
• NKENDOUT - Terminate output. 
• NKDISL - Disable line. 
• NKTURN - Turn line around (not used). 
• NKSPECIAL - Diagnostic interface. 

Individual subroutines handle the various requests. PMCOIN is the interface 
between the command driver and the firmware. PMCOIN can be used by other 
software users to clear a CLA. If it is so used, it must be followed by a 
clear line command. Inputs to PMCOIN are the two global variables, NGA and 
NGQ, that hold command and port information for use in the A and Q registers 
by the firmware. 

5-10 60471160 A 

( 

'\ 



CLEAR LINE COMMAND 

The clear line command (NKCLRL) causes the subsystem to clear (reset) all 
line-oriented software and hardware (CLA) functions associated with the line 
specified by the line number. The command format is as follows: 

WORD 15 7 0 
0 NKCMD I NKLTYP 

I 1 NKLINO 

NKCMD - Command code (NKCLRL) • 

NKLINO - Line number~ identifies port and subport. 

NKLTYP - Line type; specifies line-type entry; defines physical 
characteristics of port, modem, and circuit type. 

INITIALIZE LINE COMMAND 

The initialize line command (NKINIL) establishes the line type of the 
specified port, and places the line in a mode in which the subsystem 
monitors and processes modem and circuit related status. Other line-related 
functions, such as processing of input and output characters, are inhibited 
while the line is in the initialize mode. The command format is as follows: 

WORD 

o 

NKCMD 
NKLINO 
NKITYP 

1 

15 7 

NKCMD I NKL~YP 
NKLINO 

- Command code (NKINIL). 
- Line number. 
- Line type~ specifies line-type table entry. 

CONTROL COMMAND 

The control command (NKCONTROL) serves a twofold purpose. It can define the 
character transmission characteristics of a given line according to the 
transmission characteristics key (NKTCKY) for input/output signaling rate, 
character length, parity type, stop bit duration, and sync character. The . 
command can also specify up to five modem/circuit control functions, such as 
echo, break, terminal busy, or resync. Such control functions are specified 
in the optional fields of the command packet. 

Generally, the command is used to initialize or alter the character 
transmission characteristics of the line or to generate circuit control 
functions. This command must not be issued before the initialize command. 
The control command format is as shown in figure 5-4. Optional 
modem/circuit functions are defined in table 5-3. 

60471160 A 5-11 



ENABLE LINE COMMAND (NKENBL) 

The enable line command directs the subsystem to activate, as a function of 
line type, the necessary modern signals to allow the local modern to connect 
to the specified communications line. The command also conditions the 
subsystem to monitor and analyze any changes in the modern status for signals 
indicating that a line connect occurred. Character processing functions are 
inhibited during the time the line is in the enable mode. The format for 
the enable line command is shown in figure 5-5. 

WORD 

o 

1 

2 

3 

4 

NKCMD 

NKTCKY 

NKLINO 

Fl thru F5 
and NKFUNI 
thru NKFUN5 

NKZERO 

15 14 7 6 o 
NKCMD NKTCKY 

NKLINO 

Fl NKFUNI F2 NKFUN2 

F3 NKFUN3 F4 NKFUN4 

F5 NKFUN5 NKZERO 

- Command code (NKCONTROL). 

- Optional character transmission key. If nonzero, 
references the character transmission characteristics table. 

- Line number. 

- Optional modern/circuit function; if the associated flag 
(NKSRFI - NKSRF5) is set, the function is to be 
implemented. 

NICSRFI - NKSRF5 is zero, the function is disabled. 

- Delimits end of options. NKZERO is placed in the byte 
following the last requested modern/circuit function; five 
functions can be specified. 

Figure 5-4. Control Command Format 

5-12 60471160 A 



WORD 

o 

1 

2 

3 

4 

5 

6 

15 14 

NKCMD 

NKUOPS 

Fl I 

NKSCHR 

NKCMD - Command code (NKENBL). 

NKTCLS - Terminal class. 

NKLINO - Line number. 

7 o 

1 NKTCLS 

NKLINO 

Not used 

I NKIFCD 

NKBLKL 

Not used 

I 

NKUOPS - Eight user flags (NKUOPI - NKUOP8) can be accessed either 
individually or as an 8-bit field. 

NKIFCD - First character displacement (FCD) of first buffer of input 
block; optional FCD or zero. If zero, use value from the 
terminal characteristics table (NJTECT). 

Figure 5-5. Enable Line Command Format (Sheet 1 of 2) 

60471160 A 5-13 



Fl - NKNOXL, the code translate flag 

1 = translate 
o = do not translate 

NKBLKL - Block length~ optional block length or zero. If zero, use value 
from NJTECT. 

NKSCHR - Special character (optional character or 0). 

Figure 5-5. Enable Line Command Format (Sheet 2 of 2) 

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS 

Function Function 
Mnemonic Provided Description 

NOISR STATUSt Input status request 

NORTS RTS Request to send 

NOSRTS SRTS Secondary request to send (Supervisory Channel) 

NOOM OM Originate mode/auxiliary modem control 

NOLM LM Local mode/auxiliary modem control 

NOLT LT Local test 

NODTR DTR Data terminal ready 

NOTB TB Terminal busy (line busy out) 

NORSYN RSYN t Resynchronize 

NONSYN NSYN New sync 

NOBREAK BREAK Send break 

NODLM DLMt Data line monitor 

NOECHO ECHO Echoplex mode 

NOLBT LBT Loopback test 

NOION ION Input on 

NOOON OON Output on 

5-14 60471160 A 



TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS (Contd) 

Function Function 
Mnemonic Provided Description 

NOISON ISON Input supervision on 

NOPON PON Parity on 

NOPSET PSET Pari ty set (1 = even, 0 = odd) 

NOCLLS CLLS Character length (LSB) 

NOCLMS CLMS Character length (MSB) 

t Pulsed functions, provide momentary signal and need not be reset. 

INPUT COMMAND (NKINPT) 

The input command directs the multiplex subsystem to initiate the processing 
of data on the specified input line (that is, turn on the input side of the 
communications line adapter). The processing functions provided by the 
subsystem are determined by the input processing state program index. 
Additional information is passed by a pointer table address for the input 
processing states. If this option is not used, the information is taken 
from the terminal characteristics table (NJTECT). Parity is stripped for 
normal processing or passed for test purposes. Format of the input command 
is shown in figure 5-6. 

OUTPUT COMMAND (NKDOUT) 

The output command permits output messages to be directed to a specified 
output line. Line, modem, and control functions, as defined in the line 
type tables, are generated by the subsystem as a function of the physical 
line requirements. 

60471160 A 5-15 



WORD 

o 

1 

2 

3 

4 

5 

6 

7 

15 14 13 

NKCMD 

NKUOPS 

F3\ F41 

NKSCHR 

NKCMD - Command code (NKINPT). 

NKLINO - Line number. 

7 6 5 o 

I Not used 

NKLINO 

Not used 

\Fl\F2\ NKISTAI 

NKBLKL 

NKISPTA 

\ NKCNTI 

NKCXLTA 

NKUOPS - Eight user flags (NKUOPI - NKUOP8). NKUOPI is bit 15 in the 
MLCB user flag field, •.. NKUOP8 is bit 8 in that field. NKUOPS 
is moved into MLCB if NKMVB is 1. 

Fl - NKMVB; move block of user flags into MLCB. 

F2 - NKRPRT; strip parity flag. 

1 = strip parity 
o = do not strip parity 

Figure 5-6. Input Command Format (Sheet 1 of 2) 

5-16 60471160 A 



NKISTAI - Input state program index. 

F3 - NKNOXL; code translate flag. 

1 = translate 

F4 - NKSCENBL; change special character flaq. 

NKBL - Block length. If this value is nonzero, this replaces CC2 in 
the MPCB. 

NKISPTA - Pointer to input state program pointer table address. Optional 
address or zero. If zero, use NJTECT value. 

NKSCHR - Special character; moved to MLCB if NKSCENBL flag is set. 

NKCNTI - Character count; moved into the CCI field of the MLCB if the 
value is nonzero. 

NKCXLTA - Code translation table address. If nonzero, this replaces the 
current code translation table address in MLCB. 

Figure 5-6. Input Command Format (Sheet 2 of 2) 

Output continues until the character specified by the last character 
displacement is transmitted. At that point, the subsystem chains to the 
next output buffer, if the chain address in the buffer is nonzero. Output 
stops if the chain address is zero or if the suppress chaining flag 
(BFSUPCHAIN) is set in the flag word of the first output buffer. 

The subsystem generates an optional worklist entry for the user program for 
each data block output by the subsystem. If the buffer output is the last 
data buffer of a transmission block and line turnaround is required, the 
subsystem: 1) generates the proper modem control signals to turn the line 
around, 2) monitors modem status for line turnaround, and 3) notifies the 
appropriate terminal dependent subroutine that the line is ready for input. 
Modem signals and modem status analysis functions are specified by the line 
type tables. 

Either the terminate output or the disable command can be used to terminate 
output processing functions on a specified line. Receipt of either command 
causes the subsystem to immediately cease all processing functions 
associated with the specified line. 

The format of the output command is as follows: 

WORD 

o 

1 

2 

60471160 A 

15 

NKCMD 

7 o 

I Not used 

NKLINO 

NKOBP 

5-17 



NKCMD - Command code (NKDOUT) 
NKLINO - Line number 
NKOBP - Output buffer pointer 

INPUT AFTER OUTPUT (NKINOUT) 

This command permits interactive terminals (such as a display/keyboard 
combination) to be immediately ready to receive input data in response to a 
message displayed at the terminal. An index to the input state process. 
table indicates the treatment of the returned data. The format for this 
command is shown in figure 5-7. 

WORD 

o 

1 

2 

3 

4 

5 

6 

7 

15 14 13 

I F31 

NKCMD 

NKUOPS 

NKSCHR 

NKCMD - Command code (NKINOUT). 

NKLINO - Line number. 

NKOBP - Output buffer pointer. 

7 6 5 o 

I Not used 

NKLINO 

NKOBP 

I FIIF21 NKISTAI 

NKBLKL 

NKISPTA 

I NKCNTI 

NKCXLTA 

NKUOPS - Eight user flags (NKUOPI - NKUOP8). NKUOPI is bit 15 in the 
MLCB user flag wordJ NKUOP8 is bit 8 in that word. NKUOPS is 
moved into MLCB if NKMVB is 1. 

Fl - NKMVBJ move user flags to MLCB. 

F2 - NKRPRTJ strip parity flag. 

1 = strip parity 
o = do not strip parity 

NKBLKL - Block length (CC2). Moved into MLCB if nonzeroJ replaces 
current MLCB block length. 

Figure 5-7. Input After Output Command Format (Sheet 1 of 2) 

5-18 60471160 A 

\ 



F3 - NKSCENBL, special character flag. If set, move NKSCHR into the 
MLCB. 

NKISTAI - Input processing state index. 

NKISPTA - Input processing state pointers table address (optional address 
or O~ if 0, NJTECT value is used). 

NKSCHR - Special character~ moved into MLCB if NKSCENBL flag is set. 

NKCNTI - Character count (CCl). If nonzero, this replaces the current 
character count in the MLCB. 

NKCXLTA - Code translation table address. If nonzero, this replaces the 
current translation table address in MLCB. 

Figure 5-7. Input After Output Command Format (Sheet 2 of 2) 

TERMINATE INPUT COMMAND (NKENDIN) 

This command enables the TIP to direct the multiplex subsystem to 
immediately stop input processing functions on the specified line. All 
input characters and buffers are discarded. The TIP program can, by issuing 
an input command, direct the subsystem to resume input on the line. 
Transmission line characteristics are not altered by the terminate input 
command and therefore the TIP need not generate a control command. The 
format for the terminate input command is shown in figure 5-8. 

After processing the terminate input command, the subsystem optionally 
generates a worklist entry to the TIP as specified in the worklist and 
workcode. 

TERMINATE OUTPUT COMMAND (NKENDOUT) 

This command enables the TIP to direct the multiplex subsystem to terminate 
output processing functions on the specified line immediately. After 
processing the terminate command, an optional worklist entry is generated to 
the TIP, using the specified worklist and workcode. This command is used 
when the TIP interrupts an outgoing message for a higher priority message, 
or when an abnormal line condition occurs. The format of the terminate 
output command is shown in figure 5-9. 

60471160 A 5-19 



DISABLE LINE COMMAND (NKDISL) 

The disable line command directs the multiplex subsystem to terminate all 
processing functions of the specified line. Modern control signals are 
generated to inhibit further exchange. between the local modern and the 
communications line. The subsystem also releases all data structures 
defining the character processing functions for the line. To reactivate the 
line, the system must issue control, initialize, and enable commands, 
followed by either an input or output command. The format for the disable 
line command is as follows: 

15 7 WORD 

o NKCMD Not used 

1 NKLINO 

NKCMD - Command code (NKDISL) 
NKLINO - Line number 

WORD 

o 

NKCMD 

1 

2 

15 

NKCMD 

NKUSRBY 

- Command code (NKENDIN). 

765 

I Fli F21 

NKLINO 

I 

NKWLINDX 

NKWKCOD 

Fl 

F2 

- NKRELBFS~ release buffer flag (release buffer if set). 

- NKWKFL~ send worklist to user (if set). 

NKWLINDX - Worklist index~ used if NKWKFLG is set. 

NKLINO - Line number. 

o 

NKUSRBY User-supplied byte returned in field MMWTCOUNT in worklist. 

NKWKCOD - User workcode in worklist (MMWKCOD). 

Figure 5-8. Terminate Input Command Format 

5-20 60471160 A 

( 



WORD 

o 

1 

2 

NKCMD 

15 

NKCMD 

NKUSRBY 

- Command code (NKENDOUT). 

765 o 
I Fl I F21 NKWLINDX 

NKLINO 

I NKWKCOD 

Fl - NKRELBFS; releases buffer when flag is set. These are buffers 
specified in BZLBTOMUX. 

F2 - NKWKFLG; sends worklist to user when set. 

NKWLINDX - Worklist index; used if NKWKFLG is set. 

NKLINO - Line number. 

NKUSRBY - User-supplied byte to be returned in field MMWTCOUNT in 
worklist. 

NKWKCOD - User workcode in worklist (MMWKCO). 

Figure 5-9. Terminate Output Command Format 

Common Multiplex Subroutines for Tips 

The multiplex subsystem provides a number of common subroutines for the 
interface programs; these are as follows: 

• PMWOLP, the worklist processor on the multiplex level 
• PTCLAS, the CLA status analyzer 
• PTLINIT, the line initializer 
• PMTISEC, the timing supplier for the output data demand (ODD) function 

PMWOLP, MULTIPLEX WORKLIST PROCESSOR 

PMWOLP processes each multiplex worklist by workcode type. Most workcodes 
concern error processing. Workcodes that PMWOLP does not recognize are 
passed directly to the responsible TIP at multiplex level 2. 

If the workcode is a hard error, the line is cleared, and input and output 
are terminated. The terminate input command to the command driver causes 
the driver to return a worklist to PMWOLP. All hard errors from the line 
are discarded until the terminate input worklist is received. The input 
terminated worklist is changed into a hard error worklist (AOHARDERR = 
MMHARDERR) and the worklist is sent to the responsible tip at OPS level. 

If the line is active, all errors, hard or soft, are reported to the CE 
error file. 

60471160 A 5-21 



The multiplex level workcodes are summarized in table 5-1. The actions that 
PMWOLP takes in response to the workcodes are as follows: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

5-22 

MMCLAS - CtA status. This workcode is generated for selected CLA 
status words by one of the modem state programs. (Refer to 
section 12.) PMWOLP calls PTCLAS to analyze the status word. PTCLAS 
returns information to PMWOLP in three ways: 1) the function is set 
true if the worklist is to be sent to the TIP, 2) NRCODE is set to 
nonzero if a CE error is to be reported, or 3) the workcode in the 
intermediate array is changed to AOHARDERR (or MMHARDERR) if a hard 
error is found. 

MMOBUX - Output buffer terminated. This is an optional worklist 
generated by the multiplex firmware after the completion of an output 
message. If the line is to be turned around, PBTOQUE is called to 
provide a 200-ms delay. The worklist is passed to the TIP at level 2 
either immediately (if the line does not require a turnaround delay) 
or when the delay timeout period is completed. 

MMBUTCH - Multiplex buffer threshold reached. This worklist is 
generated by the TIP's input state program 3 (section 12) when the 
multiplex firmware notifies that state program that the buffer 
threshold has been reached. PMWOLP releases any input buffers and 
stops processing. 

MMCAOR - CLA address out of range. The multiplex firmware reports 
this error whenever the CLA address is out of range. The CLA is 
cleared and the error is reported to the CE error file. 

MMUNSOD - Unsolicited output data demand (ODD). The multiplex 
firmware reports this error when an ODD is received on a line that is 
not in output state. The error is reported to the CE error file and 
a hard error is declared. 

MMUNSIN - Unsolicited input. The multiplex firmware reports this 
error in two cases: 1) a status character is received and input 
status flag (ISON) is not set, or 2) a data character is received and 
the input on (ION) flag is not set. In either case, the error is 
reported to the CE error file and a hard error condition is declared. 

MMIFFO - Input framing error. The multiplex firmware reports this 
error when it cannot recognize the input frame. The error is 
reported to the CE error file and no further action is taken. 

MMTIMOD - Modem timeout. PTCLAS reports this error after the 
lO-second timeout for dedicated lines has elapsed without a response 
from the modem. The error is reported to the CE error file and a 
hard error condition is declared. 

MMINEND - Input terminated. PMWOLP generates this error worklist to 
itself after the terminate input command is sent to the command 
driver. The worklist informs PMWOLP that no more worklists will 
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the 
OPS-level TIP. 

60471160 A 



• MMTIMOD - ODD timeout. The multiplex subsystem timing routine 
(PMTISEC) generates this worklist when an active output line has not 
requested a new character (ODD) within the allotted I-second period. 
The error is reported to the CE error file and a hard error condition 
is declared. 

• MMFES - Framing error for synchronous lines. PTCLAS generates this 
error after examining the status word. The error is reported to the 
CE error file and control is passed to the responsible TIP at 
multiplex level 2. The TIP should send a command to the command 
driver to clear this condition. 

• MMBREAK - User break on synchronous lines. PTCLAS generates this 
condition after examining the status word. The user break indicates 
that the user has requested output to be terminated. The condition 
is reported to the CE error file and control is passed to t~e 
responsible TIP at multiplex level 2. 

PTCLAS, CLA STATUS ANALYZER 

Analyzing CLA status is a joint task of the modem state 
PTCLAS. All incoming 2-word status entries (8 bits per 
into one l6-bit status word by the multiplex firmware. 
the responsible modem state program for that line. The 
checks for one of the necessary modem signals: 

• To initialize or enable the line 

programs and 
word) are combined 
Control is passed to 
modem state program 

• To give control to the TIP's appropriate input state program 
• To detect line error conditions 

If the modem state program generates a worklist to PTCLAS, PMWOLP calls 
PTCLAS to analyze the status word. The format of the worklist is as shown: 

15 11 7 o 
Line inop code I Status indicator 1 Workcode 

Line number 

Status word 

The line inoperative code is supplied to PTCLAS for the TIP whenever a hard 
error is detected. When PTCLAS detects a hard error, it changes the 
workcode to MMHARDERR. The status condition indicator is set by the 
originator to indicate the type of status that was detected. PTCLAS 
analyzes the status word and takes one of the following actions: 

• Causes control to be given to the line initializer (PTLINIT) or to a 
TIP. 

• Causes PMWOLP to request a CE error file entry. 

60471160 A 5-23 



",-.. 

• Starts the timeout period for a CLA status overflow condition or for 
a modern signal loss condition (modern timeout). 

See MMCLAS workcode in the PMWOLP subsection, above. Table 5-4 lists the 
status condition indicators and the action that PTCLAS sets up for PMWOLP. 

CLA Status Overflow Handling 

Each time a status word is received, the firmware increments a CLA status 
word overflow counter in the port table (NAPORT). This overflow count is 
cleared by any of the following conditions: 

• Output buffer terminated (OBT) generated. 
• Terminate input buffer state instruction executed. 
• Terminate input command issued. 
• Terminate output command issued. 

When the counter overflows, the firmware builds a MOOVRT status worklist and 
turns off input supervision for the CLA. When PTCLAS receives the first 
status overflow entry, it starts a 10-second timeout period and sets flags 
in the port table. When the 10 seconds expire, PTCLAS receives control with 
a MOOVTO worklist from PBTOQUE. PTCLAS resets the overflow counter in the 
port table, issues a command to turn on input supervision for the CLA, and 
resets the wait bit. If the timeout occurs before another status overflow 
is detected by the firmware, status processing continues normally. However, 
if another overflow entry is received during the timeout period, PTCLAS 
reports the status overflow to the TIP as a hard error. If, at any time, 
there are not enough buffers available to start the timeout, PTCLAS reports 
the status overflow to the TIP as a hard error. 

TABLE 5-4. PTCLAS WORKLIST ANALYSIS AND ACTION 

Condition 
Indicator Reported by Meaning Detected Action 

MOCLAON (0) Modern state Line initialized Any status Control to line 
(MSTLNI) initializer 

MORING (1) Modern state Ring indicator RI status Control to line 
(MSTLNI) ini tializer 

MOENBL (2) Modern state Line enabled DSR or DSR Control to line 
(MSTENB) and DCD ini tializer 

status 

MOHERR (3) Modern state Hard error ILE, OLE, Control to TIP 
(MSTCHK) INVALID RI, (supply INOP code 

loss of DSRt and change work-
code) 

5-24 60471160 A 

A 
I 

I 
\ 



TABLE 5-4. PTCLAS WORKLIST ANALYSIS AND ACTION (Contd) 

Indicator 

MOSOER (4 ) 

MOSIER (5) 

MOSTRT (6) 

MOSTOP (7) 

Reported by Meaning 

Modem state Soft output 
(MSTOUT) error 

Modem state Soft input error 
(MSTINP) 

Modem state start modem 
(MSTCHK) timeout 

Modem state Stop modem 
(MSTCHK) timeout 

MOOVRF (8) Firmware CLA status 
overflow 

MOOVTO (9) PBTOQUE 
(TIMEOUT) 

MOMRTO (A) PBTOQUE 
(TIMEOUT) 

MOBREAK (B) Modem state 
(MSTINP) 

Status overflow 
timeout 

Modem response 
timeout 

Break condition 

Condition 
Detected 

NCNA statust 

DTO, FES, 
loss of DCD 
status t 

Loss of DCD 
on constant 
carrier linet 

DCD status 
during modem 
timeout 

Overflow of 
status 
counter 

10-second 
timer expired 

IS-second 
timer 
expired t 

FES with null 
charactert 

tC.E. error messages generated on these conditions. 

Modem Response Timeout Handling 

Action 

Control to TIP 
(change workcode) 

Control to TIP 
(change workcode) 

Call PBTOQUE to 
start 15-second 
timeout 

Cancel timeout 

Refer to control 
to TIP (change 
workcode) 

Control to TIP 
(change workcode) 

When DCD on constant carrier lines drops, a MOSTRT status worklist is 
generated by the modem state program, and a bit is set in the MLCB 
indicating that a modem timeout is in progress. When PTCLAS receives this 
worklist, it causes a 10-second timeout entry to be generated. If the 
timeout period elapses before DCD comes up, PTCLAS reports a hard error 
(modem timeout) to the TIP. If, during the timeout period, the modem state 
programs receive a status word with DCD set, a MOSTOP worklist is generated 
for PTCLAS. When PTCLAS processes the worklist, it resets the timeout in 
progress flags and cancels the timeout. If, at any time there are not 
enough buffers to start the timeout, PTCLAS immediately reports the 
condition to the TIP as a hard error. 

60471160 A 5-25 



PTLINIT, LINE INITIALIZER 

PTLINIT initializes conditions on a line for input and output operations. 
The program acts like a TIP and is composed of several subroutines. Figure 
5-10 shows the relationship of PTLINIT with other multiplex modules, the 
service module, timing services, and the TIPs. 

Upon receiving control, the line initializer executes the 
Clear-Initialize-Control sequence. As the initializer is state driven, 
BZSTATE is set accordingly. 

On a dedicated line, a check for CLA on is made before issuing the enable 
line command. When the line is enabled, the initializer builds a line 
operational worklist message for the service module and the associated TIP. 

For enabling a switched line, three conditions must be met: 1) the ring 
indicator (RI) must be detected, 2) the host must be up, and 3) buffers must 
be available. If no RI is present, a timer is started. A worklist (line 
status nonoperational~ no ring indicator) is issued if this timer expires 
before an RI is detected. If buffers are not available or if the host is 
down, another timer is started. If this timeout period expires, program 
control is returned to the Clear-Initialize-Control sequence. If the 
timeout period has not expired and RI is received in a status word, PTLIN!T 
again checks for buffer availability and whether or not host is up. with an 
RI present, the host up, and buffers available, the enable line command is 
issued. Line operational worklists are built for the service module and for 
the associated TIP. 

Error messages are generated under the following conditions: 

• A timeout period has expired and a required status has not been 
detected. 

• The status indicates that the line is not operational. 

PTLINIT is state driven with each state defined in table 5-5. 

PTLMUX2, the multiplex level 2 program, merely passes control by generating 
worklist entries to PTLINIT. This is reached through PBXFER. 

After a line has been enabled, a I-second delay is made before notifying the 
TIP. This allows time for line/modem transients to settle. 

5-26 60471160 A 

( 
\ 



AOHARDERR 

HARD 
ERROR 

LEGEND: 

WORKCODE 

WORKLIST 

MULTIPLEX LEVEL 

MMCLAS 

CLA 

BZLCB 

LINE 
CONTROL 
BLOCK 

AOSMEN 

LINE ENABLED 
OR DISABLED 

OPS LEVEL 

AOSMEN OR 
AOSMDA 

AOTIMEOUT 

LINE 
TIMED OUT 

LINE STATUS 
= COLINOP 
OR COLNINOP 

OPERATIONAL 
OR NON· 
OPERATIONAL 
LINE 

M·382 

Figure 5-10. PTLlNlT Relationships with Major CCl Modules 

60471160 A 5-27 



lJ1 
I 

l\J 
00 

0'\ 
o 

"" -..J 
I-' 
I-' 
0'\ 
o 
):I 

State 

Event 

Status 

Timeout 

Hard 
Error 

Enable 
Line 

Disable 
Line 

CLAON 

Ded: 
Enable Line. 
State=CLARDY 
Timer=30 
seconds 

SW: 
State=SWCK 
Timer=l 
second 

Clear Line. 
Send Inop 
Message. 
State= 
Inactive 
Timer=O 

TABLE 5-5. 

SWCK 

Buf Avail! 
Host Up 
Enable Line 
State=SWRDY 
Timer=30 
seconds 

Buf Not 
Avail or 
Host Down 
No Operation 

Send No Ring 
Message. 
State=SWRING 

PTLINIT STATE TRANSITION TABLE 

SWRING 

Buf Avail! 
Host Up 
Enable Line 
State=SWRDY 
Timer=30 
seconds 

Buf Not 
Avail or 
Host Down 
Start Timer, 
if timer is 
off. 

Condi tion 
Line. 
State=CLAON 
Timer=l 
second. 

SWRDY 

Set Up 
Timer for 
I-second 
Delay. 

Set up 
Timer for 
1 second 
delav. 

Disable 
Line. 
Clear Line. 
Send Inop 
Message. 
State= 
Inactive 
Timer=O 

CLARDY 

Timer=O 
Autorecog. 
Send Line 
Enable­
Nonop Msq. 

Other 
Send Line 
Oper Msg. 
Restore TIP 
Type. 

Disahle 
Line. 
Clear Line. 
Send Inop 
Message. 
State= 
Inactive 
Timer=O 

All States 

Build WL 
for TIP. 
T'/pe. 

State= 
Inactive 
Send Line 
Inop 
Message. 

Save!Set 
TIP Type. 
Condition 
Line. 
State=CLAON. 
Timer=l 
second. 

Send Line 
Disable 
Message. 
Clear Line. 
State= 
Inactive. 
Timer=O. 

SWDLY 

Send 
Enah! e \\"L 
to TIP. 
Res tor (_, 
TIP Type. 

State= 
Inactive. 
Send Line 
Inop 
Message. 

Send Line 
Disable 
Message. 
Clear 
Line. 
State= 
Inactive. 
Timer=O. 



PMT1SEC, OUTPUT DATA DEMAND TIMING HANDLER 

This program supplies the timing for the ODD function. If 1 second elapses 
on an active output line without an ODD signal being received, PMT1SEC times 
the line out. A hardware error is declared by generating a multiplex 
worklist, which requests an interrupt to process the error. 

60471160 A 5-29 





NETWORK COMMUNICATIONS SOFTWARE 

Network communications software programs handle routing of blocks, some 
command execution (when the service module executes the command), and common 
TIP subroutines. The block protocol is discussed in this section. 

The functions performed by the network communications programs are as 
follows: 

• Defines the types of blocks that are acceptable for data transfer. 

• Routes blocks. This includes checking the validity of incoming 
blocks and attaching the blocks to an NPU program that will continue 
processing the block. 

• Provides and processes a special type of block reserved for 
command/status/statistics information. All service messages (8M) use 
this kind of block. The modules that process service messages are 
collectively called the service module. CE error, statistics, and 
alarm messages are special classes of service messages. 

• Provides formatting for upline blocks so the block set to the HIP is 
in standard physical record unit (PRU) size and format (if required). 

• Provides acknowledgment to assure that waiting batch data is 
transmitted as rapidly as possible. 

• Provides standard TIP support programs. These include the Point of 
Interface (POI) programs and other standard routines that can be used 
by any TIP. 

BLOCK PROTOCOL 
This is the protocol used to communicate commands and information between 
the NPU and the host. Blocks are composed of consecutive bytes. The 
shortest block consists of only a header (four bytes); the longest block 
consists of 2047 bytes, including the block header. 

Block protocol assumes that the logical connection between processes in the 
host and the NPU is error free (a supportive, lower level protocol provides 
delivery assurance between the processes). However, the logical connection 
can be abnormally broken, either process can fail, or the processes can 
become temporarily congested, leading to regulation of information transfer. 

Failure of a process is usually reported by means of a service message. 
Temporary bottlenecks at a destination process are usually a result of 
inability to deliver data to an associated terminal or to the host. Block 
handling provides a standard method for informing the transmitting process 
of a temporary problem, so that any subsequent data transfers on that 
connection can be held in abeyance until the problem is corrected. 

6 

60471160 A 6-1 



The starting and stopping of a data stream between a host application 
program and a terminal is handled by a special set of command blocks. 

The paths between the two processes are fully symmetrical, as shown in 
figure 6-1. Blocks belong to one of two categories, explained as follows: 

• Forward data (FD) functions are performed by BLK and MSG blocks and 
the command carrying CMD blocks. Two types of command blocks are 
defined: service messages which are handled by the service module, 
and other commands which are handled by the TIPs. 

• Reverse supervision (RS) functions are performed by the BACK blocks 
which acknowledge reception of MSG, BLK, and CMD blocks. 

The first four bytes of any block constitute the block header. Format of 
the block header is as follows: 

t Bve 1 2 3 4 5 
Bit 7 

I 4 I 3 0 Remainder , DN SN CN I I 

! BSN I BT of block 

DN - Destination node 

SN - Source node 

CN Connection number (00 = service message channel) 

BSN - Block sequence number (range 0 - 7) 

BT - Block type (defined in table 6-1) 

The first three bytes of the block header provide a standard network 
address. The fourth byte contains block sequence number (BSN) and block 
type (BT). The content of the remainder of the block, if any, varies with 
the block type. An additional four bytes are reserved for control 
information in data (MSG and BLK type) blocks. Data block header 
information is shown in figure 6-2. 

ADDRE~ 

The address occurs in the first three bytes. It contains the node IDs for 
the source and destination of the block plus a connection number. 

Node 

Each NPU has one unique node ID1 each interface between host and an NPU has 
one unique node ID1 Node ID = 0 is reserved for the host. The remaining 
node IDs range between 1 and 255, and are build-time parameters. For 
example, in a single host, single NPU system, the host ID 0, and the NPU ID 
is 2. Upline traffic from a terminal would have a destination node of 0 and 
a source node of 2. A service message going downline to the NPU would have 
a destination node of 2 and a source node of O. 

6-2 60471160 A 



NPU HOST 

FD - FORWARD DATA 
R - A ROUTING (SUPERVISORY) PROCESS 

RS - REVERSE SUPERVISION 

T - A TERMINAL (DATA SOURCE OR DESTINATION) PROCESS 
M-759 

Figure 6-1. Communications Paths for Block Flow Control 

60471160 A 6-3 



6-4 

TEXT 
BYTE 0 2 3 4 5 6 7 8 

DN SN CN BT D8C TIME I STAMP I LEVEL I DATA 

'-- V' 
J ~ 

NETWORK HEADER OPTIONAL 

DN - DESTINATION NODE t 
SN - SOURCE NODE (ADDRESS PRESENT ON ALL 
CN - CONNECTION NUMBER, 

BLOCKS 

BT - BLOCK TYPE, SAME AS NON-DATA BLOCKS 

DBC - DATA BLOCK CLARIFIER: TWO TYPES - ONE FOR BATCH AND 
ONE FOR INTERACTIVE 

DBC FOR DATA BLOCK 

3 

~ 

o = NON-TRANSPARENT DATA 
1 = TRANSPARENT DATA 

NOT USED 

o = NOT A BANNER BLOCK 
1 = BANNER BLOCK 

o = MESSAGE CONTAINS EOR 
(END-OF-RECORDI 

= MESSAGE CONTAINS EOI 
(END-OF-INFORMATION) 

8ATCH BLOCK - PHYSICAL RECORD UNIT BLOCK (PRUB) 
M-760 

Figure 6-2. Data Block Header Formats (Sheet I of 2) 

I 

60471160 A 



60471160 A 

DBC FOR AN INTERACTIVE BLOCK 

7 6 5 4 3 2 a 

TT~SED 
La = INTERACTIVE BLOCK 

CARRIAGE CONTROL CODE 

a 

2 
3 
4 
5 
6. 7. 14. 15 
8 - 13 

GENERAL FUNCTION 

NEW POSITION 
NEW PAGE 
NEW PHYSICAL LINE 
NEW LOGICAL LINE 
NO SPACE 
NO OPERATION 
INVALID 
SAME AS a - 5 

TIME STAMP - THE OPTIONAL. 2-BYTE TIME STAMP CONTAINS 
THE TIME THE LAST CHARACTER WAS PLACED IN THE PRUB 
FOR BATCH BLOCKS_ INTERACTIVE BLOCKS DO NOT USE THE 
TIME STAMP FIELD_ THE TIME STAMP IS USED FOR 
PERFORMANCE ANALYSIS ONL Y_ 

LEVEL NUMBER - THE LEVEL NUMBER FIELD CONTAINS THE 
FILE LEVEL NUMBER RECEIVED ON THE EOR CARD OF BATCH 
DATA INPUT. INTERACTIVE BLOCKS DO NOT USE THE LEVEL 
NUMBER FIELD. 

M-761 

Figure 6-2. Data Block Header Format (Sheet 2 of 2) 

6-5 



Mnemonic 

BLK 

MSG 

BACK 

CMD 

Name 

Block 

Message 

Block 
Acknowl­
edgment 

Command 

Connection Number 

TABLE 6-1. BLOCK TYPES 

Block 
Type 

1 

2 

3 

4 

Traffic 
Type 

FD 

FD 

RS 

FD 

General Function 

Data block which. is a 
non-end-of-message block of a 
multi-block message 

Data block which is the 
end-of-message block of 
multi-block message or an 
entire single block message 

Acknowledgment for block 
transmitted in opposite 
direction 

Command either a service 
message (CN = 00) or a command 
to a line (CN F 00). 

A logical connection is the association between a terminal's terminal 
control block (TCB) and an application program in the host. This unique 
number therefore fixes the end points of each block transmission in the 
network. The TCB contains all status information relative to a particular 
terminal (or terminal device) and the current transfer. The TCB also 
contains a host-assigned connection number. The connection number is one 
byte long, and has a range of values between 1 and 255. Every block 
traveling downline to a terminal device or upline from a terminal device 
bears the connection number of the associated TCB. Unique connection 
numbers are assigned to all TCBs within a given NPU node associated with a 
particular host node. A CMD message with CN = 0 is a service message. 

BSN/BLOCK TYPE 

The fourth byte contains block serial number and block type information. 

Block Serial Number (BSN) 

Each block (CMD, BACK, BLK, or MSG) contains a block serial number (BSN) in 
bits 4 through 7 of the fourth byte. The BSN field is always zero on the 
service message channel. 

BSNs are assigned sequentially by the transmitting process. This is a 
modulo 16 count that begins with zero when the connection is'established. 
The count continues sequentially until the connection is dissolved. No 
correlation between upline and downline BSNs can be assumed. 

6-6 60471160 A 

( 



The block receiver checks the BSNs of the received block against the 
next-expected serial number. If the number is correct, the next expected 
BSN count is updated. If the NPU detects an out-of-sequence number, the NPU 
sends an upline stop command to the host. 

No specific recovery logic is included to restart a connection when the host 
receives an out-of-sequence upline block or an upline command from the NPU 
signifying receipt of an out-of-sequence block. 

BLOCK TYPES 

The block types are described in detail below. 

BlK (Block) Block 

A BLK block is a data block containing a portion, but not the last segment, 
of a data message. All data blocks contain from I to 2039 bytes of data 
immediately following the 4-byte block header and the additional 4-byte 
MSG/BLK block header. The content of the data field is determined 
arbitrarily by the communicating processes. 

MSG (Message) Block 

A message block is a self-contained unit of data communications. In 
half-duplex, two-party communications, the transmitter signals 
ready-to-receive by sending end-of-message. Thus, a message block is a data 
stream terminated with an end-of-message indicator. 

If a message is 2039 bytes or less in length, it can be transmitted within a 
single MSG block. All segments but the last are transmitted within BLK 
blocks: 1) if a message is longer than 2039 bytes, or 2} if, as is usual, 
the message is segmented by the terminal, or 3) in order to optimize NPU 
dynamic space. The last segment is transmitted within a MSG block. 

Back (Block Acknowledgment) Block 

A BACK block is returned to the transmitter by the receiver as BLK, MSG, and 
CMD blocks are processed, to allow the transmitter to adjust the rate of 
issuing data to the rate of delivery to the receiver. The transmitter 
should not issue unacknowledged blocks in excess of an available block limit 
(ABL) for each connection. The BACK block, which acknowledges a previously 
transmitted block, allows the transmitter to maintain an outstanding block 
count to ensure that the ABL is not exceeded. ABL is established by the 
connection as a part of the configuration process. Note that no data bytes 
are associated with a BACK block. 

CMD (Command) Block 

A CMD block carries a network command and allows connected processes to 
communicate outside the data stream, but concurrently with it. The command 
is received by the destination process in the same order sequence to the 
data stream as existed at the source. For this reason, a set of commands 
(with CN not 0) is defined for stopping and starting stream. These commands 
normally originate in, or are processed by, a TIP. These commands are 
summarized in table 6-2. 

60471160 A 6-7 



The second major group of commands exist where CN is O. These are called 
service messages (SMs). SMs normally originate with, and are processed by, 
the service module. A TIP can be called to perform processing on a service 
message, as well as call the service module to generate a service message • 

. Service Channel 

The logical channel (CN is 0) for service messages is called the service 
channel. Unlike other logical connections which can be dynamically created 
and released, the service channel always exists. Service messages include 
commands, request for status, error information, statistics information, or 
replies to one of these message categories. The service channel can also be 
used to send messages between terminals. Commands traveling via the service 
channel establish logical connections and communicate control, status, and 
error data. 

Service messages are described in detail later in this section. The 
complete summary of service messages is found in appendix C. 

Data Steam Control 

The following rules are a part of the block protocol between NPU and host: 

• Interactive data streams are usually open; therefore, these streams 
do not require start or stop commands. 

• All TIPs start batch input streams by a command from the host, and 
start output streams by the first output block. 

• All INTERCOM commands input at the terminal are passed to the host, 
and may result in a downline CMD to control the TIP. 

• The TIP must notify the host of any terminal condition requiring 
operator intervention. 

• On batch or interactive connections, upline CMD blocks from the NPU 
to the host must be suspended until the host is expecting a block on 
that connection. That is, the host has sent a BACK block 
acknowledging the previous upline block. 

• On batch output connections, upline CMD blocks from the NPU to the 
host cannot be sent unless the host is expecting a BACK block. If 
the upline CMD is stream stopped, the BACK block that is due is 
suspended until a restart stream CMD block is received from the 
host. Then the BACK block is discarded. 

DATA FORMATS 

The data formats for INTERCOM are interactive format and batch format. 

6-8 60471160 A 



0'1 
o 
..". 
....... 
I-' 
I-' 
0'1 
o 

::too 

0'1 
I 

\0 

Traffic 
Type 

RS 

RS 

FD 

FD 

RS 

RS 

FD 

FD 

RS 

TABLE 6-2. 

Primary Primary 

Function Function 
Code 

Start input I 

Stop input 2 

Input 3 
stoppen 

Input 4 

Output 5 

Output 6 
started 

Restart 7 
output 

Stop output 8 

BSN error 9 

COMMAND BLOCKS USED ON NONZERO CONNECTIONS 

Secondary Secondary 

Functions Function Use 
Code 

Initiate, nontransparent 0 Start input from batch device. 

Initiate, transparent I Start input from batch device. 

Resume 2 Start input from batch device. 

Terminate 0 Discard data and stop polling. 

Suspend 1 Stop polling and wait. 

End 0 Normal end. 

Break 1 1 Reason for break defined by 
TIP. 

Break 2 2 Reason for break defined by 
TIP. 

Restart after stop 0 Interactive started resume 
.after break (status only) . 

Break I 0 Reason for stopped break 
defined by TIP. 

Break 2 I Reason for break defined by 
TIP. 

Break 3 2 Reason for break defined by 
TIP. 

Break 4 3 Reason for break defined by 
TIP. 

Break 5 4 Reason for break defined by 
TIP. 

Break 6 5 Reason for break defined by 
TIP. 

Restart after stop 0 Status or.ly. 

- 0 Resume output stream. 

- 0 Discard data and terminate. 

NPU has detected block 0 Diagnostic purposes only. 
sequence number out of 
order 

------ - --- ... ---- -------- ---- -----------



Interactive Format Data 

Interactive data (both upline and downline) is transferred between host and 
NPU over the coupler channel using the 7-bit internal ASCII code set. The 
NPU translates characters between the code set of the terminal and internal 
7-bit ASCII code. All active terminals have at least one interactive 
connection configured. 

Interactive streams are treated independently without concern for 
interference with batch streams. The TIPs resolve contention between 
interactive and batch streams. Interactive streams are always open and do 
not required commands to stop or start. The steams do not notify the host 
when a connection is stopped under normal conditions. A few abnormal 
interactive stoppages and resumes are reported to the host for the purpose 
of updating status. 

Interactive input starts after the first output to the device. It continues 
until the terminal or device fails, or the line or terminal is deleted. If 
contention exists, interactive input is suspended when preempted by batch 
input or output to the same terminal. The interactive input automatically 
resumes whenever possible. 

Upline interactive data blocks generally contain a single line of input from 
the terminal, and are normally followed by a single line of output from the 
host. The TTY TIP provides block mode and paper tape mode which allow 
multiple inputs from the terminal before output. 

Interactive input data is terminated by special characters, by timeouts, or 
by the number of input characters, depending on the TIP and mode of 
operation. The input data is sent either in a BLK or MSG block, depending 
on the terminator. 

nownline interactive data blocks can be terminated by any character. Once 
the NPU has started output to a device in the interactive mode, BLK blocks 
are delivered without allowing input until a MSG block has been delivered. 

The host defines the desired interactive carriage control by specifying a 
logical carriage control function in the data block clarifier (nBC) field of 
each interactive output block. Each TIP translates the nBC codes to an 
equivalent function for output to the interactive device. In cases where 
there is not an equivalent function for the output device, the nBC code is 
either ignored or treated as a new line, depending on the terminal 
characteristics. nBC codes are shown in figure 6-2. 

Batch Format Data 

Batch data (both upline and downline) is transferred between the host and 
NPU over the coupler channel, using physical record unit block (PRUB) 
format. The PRUB is formatted to be directly compatible with a CYBER 
physical (disc) record unit (PRU) with the network block header appended to 
the front. Each data character is a bits, as stored in the NPU memory or 
transferred across the CYBER coupler interface. nata characters are either 
6-bit display code (stored right-justified in each a-bit character) for 
nontransparent modes, or the code of the terminal device for transparent 
data modes. 

6-10 60471160 A 



The PRUB can contain one to three PRUs (either 640 characters, 1280 
characters, or 1920 characters maximum), depending on preset system option. 

The PRU block is terminated by any of three conditions as follows: 

• The maximum number of characters has been stored. 

• An end-of-record (EOR) has been deleted. 

.An end-of-information (EOI) has been deleted. 

After the PRUB is terminated, it is forwarded to its destination. Only 
significant data within the PRUB is transferred across the connection. 

PRUBs containing EOR or EOI must be less than the maximum PRUB size. 
Therefore, a record or file ending on exactly a 640- or 1280-character 
boundary will cause an additional PRUB to be generated which contains no 
data characters, but contains a bare EOR or EOI in the header. This applies 
to both upline and downline blocks. 

The block type (BT) field within the network header specifies MSG if the 
PRUB contains EOR, EOI, or BANNER. The BT field specifies BLK for all other 
types of PRUB blocks. 

NONTRANSPARENT DATA 

For upline blocks, nontransparent data within the PRUB is assumed to be card 
data. For downline blocks, nontransparent data is assumed to be either 
print or punch data. 

Each card input has trailing blanks suppressed and the end-of-card signified 
by at least two binary zero characters on a modulo 10 character boundary. 
That is, the NPU inserts 2 to 11 zeros following the last nonblank character 
on a card so that the total number of characters and zeros is an even 
multiple of 10. 

For downline punch or print data, an 8-bit character of all ones (FF16) 
signifies the end of each card or print line. The FF16 can be preceded by 
one binary zero character. Zero pad characters normally used to specify 
end-of-card or line within the PRU are not to be transferred downline to the 
NPU. The first character of each print line is treated as a carriage 
control character, using standard INTERCOM conventions. 

Where an EOR or EOI card itself is discarded and the appropriate bits are 
set in DBC field of the PRUB header, EOR or EOl conditions are listed below. 

• EOR 7/8/9 punch in column 1 for Mode 4 

• EOI 6/7/8/9 punch in column 1 for Mode 4 

/*EOI in columns 1 to 5 for BSC and HASP 

• with bisynchronous ETX received from the terminal: ETX is generated 
when an ETX is punched in the last column of the last card or when 
the last card is entered with the EOF switch depressed. This is the 
only method of determining EOI when in the transparent mode for a 
bisynchronous terminal. 

60471160 A 6-11 



A 1- or 2-digit level number can be specified in columns 2 and 3 of the EOR 
card. This level number, if present, is converted to an 8-bit binary value 
and transferred upline to the host in the level number field of the header 
of any PRUB containing EOR. The level number field is zero if not present 
in the EOR card. 

Downline PRUBs containing EOR or EO! that are directed to a punch device 
cause an EOR card (7/8/9/ punch) or EOI card (/*EOI) to be punched. The 
level number contained in the header of an EOR block is also punched in 
columns 2 and 3 of the EOR card. 

TRANSPARENT DATA 

Transparent data within the PRUB provides a method of transferring batch 
data between the terminal and the host files without modification by the CCI 
software. The block header is identical to that defined for nontransparent 
data. 

Input data received in the transparent mode is stored in the PRUB without 
code translation, data expansion, or blank suppression. Transparent PRUB 
blocks are terminated and forwarded to the host when one-half the number of 
characters specified for the PRUB size is reached (320/640) or the 
end-of-information is reached. EOR and EOI cards are not recognized in the 
transparent data mode. Therefore, end-of-information is detected by 
receiving ETX from the terminal. 

Transparent input data is specified by three methods, as follows: 

• Optional parameter on the INTERCOM command READ FILE NAME 
• TR in columns 79 and 80 of the job card 
• TR in columns 79 and 80 of the EOR card 

The full 8 bits of each data character are written to disk PRUs for 
transparent upline PRUB blocks. 

Output files can also be specified as transparent. The host marks the 
header of each PRUB as transparent for the files. Transparent PRUBs are 
output to the terminal without modification of the data characters (no code 
translation, data compression, carriage control line folding, etc.). Data 
characters are, however, blocked into the maximum size transmission blocks 
specified for the terminal device receiving the data. Transmission blocks 
are terminated at the last data character of a PRUB block that is marked as 
an EOR or EOI block. 

ROUTING 
Routing of blocks is performed by the internal processing, usually called 
through PBINTPRC. The internal processing call is made from the monitor 
with a worklist entry. 

PB!NTPRC passes the block to be switched to PBSWITCH, the general systems 
block switch. PBSWITCH uses the directories to pass the block to the 
program which must continue processing the block. 

Upline blocks that are completely processed are passed to the HIP for 
transmission to the host. 

6-12 60471160 A 



Down1ine blocks that are to be sent to terminals are queued to the TCB, 
which is associated with the terminal/device that is to receive the message. 

A second source of switching uses PNROUTE. At present, only the service 
module and utilities use this switching method. 

DIRECTORIES 

Each block of information (service messages are a special subclass of 
blocks) has three address elements: The destination node (DN), the source 
node (SN) , and a connection number (CN). There are three directories; one 
associated with each of the three address elements: 

• Destination node directory 
• Source node directory (LLCB for the link) 
• Connection number directory 

The three directories are collectively designated as the routing 
directories. Formats of the three directories are shown in figure 6-3. 

Destination Node Directory 

The destination node directory contains an integer value associated with 
each valid DN address (range: 0-255). For a local node (meaning within the 
same physical node) the directory provides the address of the source node 
directory associated with that logical node. For all external logical 
nodes, the directory entry provides a logical link control block (LLCB) 
address. A zero entry indicates a nonexistent node (an unassigned value of 
DN). 

The destination node directory is a fixed length table with two words per 
entry. The first word contains the index (by node number), and the second 
word points to the appropriate LLCB. 

Source Node Directory 

The local logical node has a source node directory for each local node 
address. Each SN directory is used to select the connection directory 
associated with the pair of nodes indicated by DN and SN. Nonzero entries 
point to the address of the connection directory. 

Connection Directory 

For each logical node there is a connection directory for all terminals, 
with at least one conection defined. An entry in the connection directory 
provides the address of a terminal control block (TCB). The directory is 
indexed by CN and has a pointer to the TCB for that CN. The connection 
directory is located in dynamic buffer space. 

Routing Process 

The PBSWITCH module starts the search of the three directories to perform 
either internode or intranode routing; figure 6-4 indicates the steps of the 
routing search. 

60471160 A 6-13 



6-14 

DESTINATION NODE DIRECTORY 

DELOC ON 

r--

4 

I 00 

LLCB ADDRESS 

I 01 

LLCB ADDRESS 

I 02 

ADDRESS OF SN DIRECTORY 

I 03 

ADDRESS OF SN DIRECTORY 

LLCB CHAIN FOR THIS ON 

POINTER 

I 

• • • 

SN = 0 

POINTER TO CN DIRECTORY 

I SN = 2 

CN DIRECTORY FOR THIS SN 

I 01 

POINTER TO TCB FOR CN = 1 

I 02 

POINTER TO TCB FOR CN = 2 

I 03 

POINTER TO TCB FOR CN = 3 

• • • 

HOST 

HOST 

SN DIRECTORY 
FOR COUPLER 

UPLINE 

SN DIRECTORY } 
FOR TERMINALS DOWN LINE 

SET OF LLCBs FOR 

THIS ON AND ALL SNs 

THAT HAVE LINKS TO THIS 

ON THROUGH THIS NPU. 

I--

I+-

T 

ON AND CN 

DIRECTORIES ARE 

TYPE 1 TAB LES. 

CB ADDRESS 

NOTE: DIRECTORIES SHOWN FOR A ONE NPU NETWORK. 
M-758 

Figure 6-3. Use of Routing Directories 
( 

60471160 A 



SEARCH 
DND USING 
ON AS INDEX 

YES 

NO 

HOST 

YES 

CN=O 

NO 

ERROR. DISCARD 
BLOCK _. COUNT 
AS A BAD BLOCK 

( EXIT ) 

SEND BLOCK 
TO SVM USING 
A WLE 

t THIS IS LLCB FOR TERMINALS 

PREPARE BLOCK 
FOR HIP - SET 
EOT FLAG IN 
LAST BUFFER 

NO 

DIRECTORy t 

SEARCH SND 
USING SN 
AS INDEX 

NO 

SEARCH CND 
USING CN 
AS INDEX 

NO 

PBIOPOI ,.-_--1 __ .;;.. 
PASS BLOCK 
TO PROCESS 
ADDRESS 
INDICATED 
IN TCB 

LLCB 
FOR SN 

M-785 

Figure 6-4. Simplified Routing Flow Chart, PBSWITCH 

60471160 A 6-15 



Following the routing flow, DN indexes the destination node directory to 
obtain an address. If the address obtained is zero, the destination of the 
block is undefined, and PBSWITCH discards the block without notifying the 
sender. However, the bad block count is incremented. 

Service messages are passed to the service module using a worklist entry. 

The LLCB for the terminal load link is searched using SN. The SN/DN LLCB 
has a pointer to the CN directory. This directory is similar to the DN 
directory. It is indexed by CN and has a pointer to the CN's associated 
TCB. Using the TCB address, PBSWITCH calls the internal output POI 
(PBIOPOI) which queues the block to the TCB. 

ALTERING DIRECTORIES 

The modules PNDIRAOO and PNOIROLT add or delete entries to the directories. 
PNOIRAOD requires four input parameters, listed as follows: 

• The first two are PASCAL values in the range 0 to 255, and represent 
ON and SN values respectively. 

• The third is a PASCAL variable in the range 1 to 255, and represents 
CN. 

• The fourth is a PASCAL variable of the buffer pointer type (range 2 
to 65 and 535) that points to a TCB for use in the appropriate 
directory. 

The ON directory can have a new 2-word entry. The CN directory can have new 
entries as well as new chained segments, if necessary. LLCBs (the SN 
directory) are pre-established. 

PNDIROLT removes entries from the ON and CN directories. Three input 
parameters are necessary, listed as follows: 

• The first is a PASCAL value between 0 and 255, and is the index to 
the ON entry to be removed. 

• The second is a PASCAL value between 0 and 255, and is the index to 
the SN entry to be removed. 

• The third is a PASCAL variable in the range 0 and 255, and is the 
index to the CN entry to be removed. 

If the entry removed in the CN directory is the last remaining entry of that 
segment of the directory, that segment of the directory is released. 
Rechaining of directory segments is performed as necessary. 

SERVICE MESSAGES (SM) 
The special group of control messages (SMs) that carry extended command, 
status, and statistics information between the host and NPU nodes are 
processed by the service module (SVM). The procedures that make up the SVM 
are grouped into the following general categories: 

• Internal SM processing. 

• Validating and timing-out service messages. 

6-16 60471160 A 



• Generating and dispatching service messages. 

• Configuring/enabling/disabling/deleting control blocks. These 
include control blocks for lines (LCB) and terminals (TCB). 

• Generating and sending status 8Ms. These include line and terminal 
status 8Ms. 

• Generating and sending statistics 8Ms. 

• Generating and sending broadcast one and broadcast all 8Ms. 

INTERNAL 8M PROCESSING 

Four types of functions are handled by these 8VM modules: 

• Making worklist entries for 8VM and awaiting availability of buffers 
for 8VM processing. 

• The interface to the OP8 monitor so that the monitor can pass control 
to 8VM. 

• An indexing function that finds the proper point in 8VM to resume 
processing after a pause. The necessary marking information is 
contained in the worklist entry. 

• The logic to process the line inoperative and line operative worklist 
entries. The output is a line enable/disable 8M or a status 8M. 

VALIDATING AND TIMING OUT SMS 

The timeout group of modules times out 8Ms and responses to timeout 8Ms. 

The validation group of modules assures that all 8Ms have: 

• A valid primary function code (PFC) and a secondary function code 
(8FC) • 

• The port identification number is within the range of ports assigned 
to this NPU. 

NOTE 

The format for each type of service message is given in 
appendix C. 

The general format of an 8M (appendix C) is as follows: 

2 5 6 byte 

8M = CN 00 EB/RB/ 
8FC PARAMETER 8 

60471160 A 

V 
block header 

NOTE 

Bytes are number starting at DN byte. 

6-17 



DN Destination node 

SN Source node 

CN Connection number = 00 for all service messages. The service 
channel is always assumed to be configured 

BSN Block serial number~ bits 7-4 of byte. Always = 0 for SMs 

BT Block type = 4, command block. This is lower 4 bits of byte 

PFC Primary function code. 

Reserved for network use 00-3F16 
40-9F16 Reserved for intra-host use (error for CCI to 

Receive these messages) 

Reserved for expansion 
Reserved for network use 
Reserved for installations 

AO-BF16 
CO-E0 16 
El-EF16 
EB - Error response SM~ EB = 1, which is bit 7 of byte 5 

RB 
SPC 

- Normal response SM~ EB = 1, which is bit 6 of byte 5 

- Secondary function code, see appendix C, table C-l, 
bits 5 through 0 of byte 5 

Parameters - Defined in bytes. See appendix C 

GENERATING AND DISPATCHING SERVICE MESSAGES 

The following functions are handled by this group of modules: 

• DN and SN of the SM are reversed for use in generating the reply SM. 

• Queues SM to the local NPU console. 

• Releases buffers used for SMs. 

• Generates a message from the operator at the NPU console to the 
network operator (NOP). This process begins when the operator at the 
NPU console places the console in supervisory mode and enters the 
message test. There is no response to this type of service message. 

• Generates PFC and SFC for service messages. 

• Dispatches the SM to: 

The HIP if DN designates the local coupler. 
SVM if DN designates a local CCI action. 

CONFIGURING/ENABLING/DISABLING/DELETING CONTROL BLOCKS 

This set of modules is used for initiation and changing control blocks fOr 
lines and terminals. The format and functional effect of these messages are 
described in detail in the initialization section of the CCI 3 reference 
manual and in section 2 of this manual. 

6-18 60471160 A 

( 



GENERATING AND SENDING STATUS SMS 

This group of modules generates and sends the logical link, line, and 
terminal status messages. Included in these operations is the ability to 
count configured lines. The status also indicates whether or not the line 
is operational. 

Line Status Request SM 

This status request specifies the port used by the line. If the port is not 
specified, the message is treated as a request for status of all lines 
connected to the NPU. A response status SM is sent for each line configured 
and owned by this host. The reply includes a response code (line 
operational, line inoperative, or autorecognition/no ring indicator), line 
type, and configuration state. If an error response is set, the reason code 
specifies one of the following error states: 

• Port invalid. 

• Another line status request is in progress. 

• Illegal configuration state exists (for a single-line response 
message). 

• No lines are configured (for an all lines response message) . 

On a dial-up circuit, a line enabled response is generated by the NPU 
immediately following a configure line SM. When a user dials in, the modem 
interface signals indicate an active line. The NPU then generates an 
unsolicited line status operation SM following autorecognition, if 
applicable (see unsolicited response, below). 

Upon receiving the line status operational SM, the host configures the 
terminals for the line by sending one or more configure terminal SM(s). 

An unsolicited line status request SM is sent whenever the TIP senses 
conditions causing the line to be inoperative, including normal disconnect 
on a dial-up line. 

Line inoperative is reported when line or modem conditions cause the line to 
become inoperative. It is not reported if the line is made inactive by 
terminating its logical connections or by disabling the line. 

The following modem signal conditions cause the line to be reported inoper­
ative. The timeouts involved ensure that a line is not declared inoperative 
because of transient conditions, which are to be normally expected. 

• Data Set Ready (DSR): If the data set ready signal drops at any 
time, data transmit ready (DTR) is immediately turned off, and line 
inoperative is reported. 

• Clear to Send (CTS - 201 and 208 modem): If the clear to send signal 
does not occur within one second of the rise of the ready to send 
(RTS) signal, remain on for the duration of ready to send, and drop 
within one second of the fall of ready to send; the data transmit 
ready signal is turned off (causing a switched line to disconnect) , 
and line inoperative is reported. Clear to send is not monitored for 
the 103/113/202 modems. 

60471160 A 6-19 



• Data Carrier Detect (DCD - for full duplex constant carrier): Once a 
line is operational, if the data carrier detect signal drops and 
remains off for a period of 10 seconds, data transmit ready is turned 
off~ line inoperative is reported. Abnormal operation of a data 
carrier detect on a half duplex or on controlled carrier lines does 
not influence line status. 

TCBs are not automatically deleted when a line becomes inoperative. The 
host must terminate each logical connection explicitly with a delete 
terminal SM, or implicitly by sending a delete line SM or a disconnect line 
SM. The unsolicited SM also contains bytes defining the number of 
terminals, the terminal type, the terminal address and the cluster address, 
line speed and code type, and the device type. For autorecognition 
responses, the terminal address and device type are repeated for each 
terminal that can be detected by the TIP. The TTY TIP reports only one 
terminal address/device type pair. 

Line Count Request SM 

The host sends this message when it requires a count of the line which it 
owns. This occurs following a host failure, or when the NPU causes records 
to be incomplete or erroneous. 

The reply message contains the requested count. 

TERMINAL STATUS REQUEST SM 

The host sends this message when its records are incomplete due to a host 
failure. Status can be requested for one or all terminals on a specified 
line. The request specifies the line to be checked. 

The response may be either for a request, or unsolicited, when the NPU 
detects a terminal failure or a terminal recovery. Response parameters are 
defined in appendix C. 

When terminal failure is detected, the correspondent is informed via the 
logical connection (if any), and the terminal status SM is sent. Terminal 
failure does not change the state of the TCB with regard to the logical 
connection, nor is the state of the line (as recorded in the LCB) modified. 
Operator action is required to delete the terminal, if desired. 

If an error response is sent, the error is one of the following: 

• Invalid line number 
• No terminals configured 
• Line inoperative or not enabled 
• Another terminal status request SM is in progress 
• LCB not configured 

GENERATING AND SENDING STATISTICS SMS 

The network operator can send a message to one or all terminals. This 
message text is carried in a service message to the NPU, where it is copied, 
then sends the terminal-directed messages to the interactive terminals. 

6-20 60471160 A 



The message identifies the cluster and terminal addresses, and the device 
type of the receiving terminal. The network operator produces the text of 
the message. The procedures for entering this message from the host console 
are given in the NOS/BE operator's guide. 

A normal response uses a similar format to acknowledge that the message was 
received and passed to the specified terminal. If the message was not 
delivered, an error response is generated. The possible errors are as 
follows: 

• Invalid line number 
• Invalid device type 
• Terminal or line not configured 
• Terminal or line inoperative 

A broadcast message can be sent to all interactive terminals connected to 
the NPU. In this case, only the text of the message and the ID of the nodes 
being used are necessary in the request message. The network operator 
enters the message at the host console using the procedure outlined in the 
NOS/BE Operator's Guide. 

A normal response is sent when the message is queued to all the interactive 
terminals connected to the destination NPU. Otherwise, an error response is 
sent. Two types of errors are reported, as follows: 

• No logical link established, or this logical link is not established. 

• Another broadcast SM is already in progress. 

CE ERROR MESSAGES 

CE error messages are special SMs that report hardware failures. These 
messages all include a I-byte CE error code, and can include additional 
data. These messages are described in appendix B of the CCI reference 
manual. 

COMMON TIP SUBROUTINES 
These subroutines belong to one of two classes: Point of Interface (POI) 
routines, and other standard TIP support routines. 

POINT OF INTERFACE ROUTINES (POI) 

Four Point of Interface routines are included in the internal processor. 
These routines handle many of the interfaces enabling the TIPs to begin or 
to end processing of a message. The programs are as follows: 

• PBPIPOI - Post input POI 
• PBIOPOI - Internal output POI 
• PBPROPOI - Preoutput POI 
• PBPOPOI - Post output POI 

60471160 A 6-21 



PBPIPOI, Post Input POI 

This POI is called when the TIP has a block to be passed upline to the 
host. PBPIPOI first calls PNSGATH to gather statistics on the transfer. 
(See figure 6-5.) It then calls a group of nested subroutines. These 
subroutines are listed as follows: 

• PBIIPOI determines if the block is from a batch or interactive 
terminal. If it is for an interactive terminal, the block header is 
completed. The subroutines to convert the data to PRU format are 
called. In both cases, the block is routed upline to the host, if 
possible. Otherwise, the block is added to the upline PRU queue. 

• ITPRUPOI determines whether the block from a batch device is a 
command or data. If it is data, the conversion subroutines are 
called; if it is a command, the header is completed. The output 
stopped command is sent immedi.ately if an upline BACK block is 
pending. Other commands are sent immediately unless the terminal is 
waiting for a downline BACK block. 

• BLKTOPRUS processes each buffer in the block to transform the data to 
PRUB format. This consists of setting the level number, setting the 
transparent indicators (if necessary), splitting buffers (as 
necessary), rechaining buffers, and setting character count in the 
transformed buffers. Also, the EOI must be set. 

• ENDPRU performs buffer chaining during the transformation, and 
handles header and chaining operations. 

PBIOPOI, Internal Output POI 

This routine is called by the switch to process downline blocks that are 
routed to TIPs. Tqe POI first checks if the block is in sequence. If it is 
not, PTCOMMAND is called to generate a sequence error message for this 
connection. PBIIPOI sends the message to the host. If the block is for an 
interactive device, PBIOPOI determines the block type as follows: 

• Data blocks are regularly queued to the TCB output for all TIPs 
except the Mode 4 TIP. Data blocks are specially queued for Mode 4 
devices. 

• CMD blocks are queued to the TCB's output queue. 

• BACK blocks cause the outstanding block count to be decremented. If 
another block is waiting to be routed, PBRTEIA does this. 

If the block is for a batch device, the batch downline routing subroutines 
are called. 

• IOPRUPOI checks the block type. 

6-22 

Data blocks are transformed to TIP input blocks if they are 
currently in PRU format. 

60471160 A 

! 



ASSIGN A 
BUFFER FOR 
THE CMD BLOCK 

SET FCD/LCD 
AND 
PFC/SFC 

PBIIPOI 
ROUTES THE 
BLOCK UPLINE 

RELEASE 
ALL BLK 
BUFFERS 

RELEASE 
ALL CMD 
BUFFERS 

RELEASE ALL 
TEXT PROCESSING 
BUFFERS ISOURCE, 
DESTI NATION, 
AND PARAMETERS) 

RESET BACK 
BLOCK 
REQUIRED FLAG 

GENERATES LINE-ORIENTED 
CMD BLOCK (INPUT: PFC/SFC 
DETERMINE CMD TYPE) 

RELEASE ANY 
PARTIAL PRU 
BUFFERS 

RESET COUNTERS: 
RESET TRANS­
PARENT FLAGS, 
EOI DISCARDS, 
AND BACK BLOCK 
DUE FLAGS 

ASSIGN A 
BUFFER FOR 
THE BACK 
BLOCK 

SET FCD/LCD 
BLOCK TYPE, 
BSN, SN, ON 

SWITCH THE 
BLOCK USING 
A WORKLIST 

M-7B6 

Figure 6-5. Important Common TIP Subroutines (Sheet 1 of 7) 

60471160 A 6-23 



6-24 

REMOVE FIRST 
PRU FROM Q; 
RESET POINTERS 
AND CHAIN 

PUT SN/DN 
IN PRU BLOCK 
HEADER 

YES 

SET BSN IN 
BLOCK; 
INCREMENT 
BSN COUNT 

SWITCH BLOCK 
USING A 
WORKLIST 

NO 

EXIT 

Figure 6-5. 

UPLINE PRU 
BLOCK ROUTING 

NO 

YES 

BSOBL = 0; 
ALLOW TIP 
TO INPUT 

INCREMENT OBL 
UNLESS IT IS 
A CMD BLOCK 

PUT BSN IN 
HEADER AND 
BUMP BSN COUNT 

SWITCH THE 
BLOCK USING 
A WORKLIST 

ROUTE BLOCKS 
AS LONG 
AS OBL PERMITS 

M-7B7 

Important Common TIP Subroutines (Sheet 2 of 7) 

60471160 A 



, 

COUNT ALL 
NON-INTERNAL 
OUTPUT BLOCKS 
QUEUED TO TCB 

RESET BACK­
BLOCK DELAYED 
FLAG 

PTBANNER: FI LL 
BUFFERS WITH 
INFORMATION 
TO BUILD A 
BANNER PAGE 

PUNCH 

PTLACE: FILL 
BUFFER(S) WITH 
INFORMATION 
TO PUNCH A 
LACE CARD 

SET BUFFER 
POINTERS 
FOR BLOCK 

GATHER 
STATISTICS 
FOR TRANS­
MITTED BLOCK 

SEND BACK 
BLOCK IF 
REQUIREO 

RELEASE 
THE BLOCK'S 
BUFFERS 

EXIT 

YES 

M-7B9 

Figure 6-5. Important Common TIP Subroutines (Sheet 3 of 7) 

60471160 A 6-25 



BATCH 

IIPRUPOI: 
PROCESS 
PRU BLOCKS 

EXIT 

SWITCHES UPLINE 
BLOCKS FOR TIP 

INTER· 
ACTIVE 

SET UP 
BLOCK 
HEADER 

SET DBC, 
QUEUE 
BLOCK 

PBRTEIA: 
ROUTE 
BLOCK 

OTHER 

BLK 
MSG 

BLKTOPRUS: 
PROCESS PRU 
DATA BUFFERS 

EXIT 

BUILD 
BLOCK 
HEADER 

QUEUE 
WITH PRU 
BLOCKS 

YES 

PBRTEPRU: 
ROUTE 
BLOCK 

NO 

NO 

YES 

M·790 

Figure 6-5. Important Common TIP Subroutines (Sheet 4 of 7) 

6-26 60471160 A 



Figure 6-5. 

60471160 A 

ADJUST PRU 
BOUNDARY 
(END PRU) 

FILL PRU 
SIZE BUFFER 
WITH DATA 

SPLIT INTO A 
SECOND BUFFER 
IF NECESSARY 

ADJUST 
FOR 
PARTIAL 
PRUs 

EXIT 

M-792 

Important Common TIP Subroutines (Sheet 5 of 7) 

6-27 



6-28 

YES 

CMD 

SWITCHES DOWNLINE 
BLOCKS TO TIP 

SEND BAD 
BSN MESSAGE 
TO HOST 

EXIT 

IOPRUPOI: 
CONVERT 
BLOCK TO TIP 
PROTOCOL 

BACK 

DECREMENT 
OUTSTANDING 
BLOCK COUNT 

DISCARD 
THE BACK 
BLOCKS 

PBRTEIA: 
ROUTE ANOTHER 
BLOCK IF 
POSSIBLE 

NORMAL 
QUEUING 
TO TCB 

MODE 4 

SPECIAL 
QUEUING 
TO TCB 

M-793 

Figure 6-5. Important Common TIP Subroutines (Sheet 6 of 7) 

60471160 A 

( 



60471160 A 

BlK 
MSG 

BACK 

CMD 

NO 

YES 

PRUTOBlKS: 
TRANSFORM DATA 
TO TERMINAL 
FORMAT 

RELEASE 
THE BACK 
BLOCK 

RESET BACK 
BLOCK DUE 
FLAG 

PBRTEPRU: 
ROUTE AS MANY 
PRU BLOCKS AS 
POSSIBLE 

PBBCKCHK: 
SEND BACK BLOCK 
IF NECESSARY 

QUEUE THE 
COMMAND 
TO TCB 

EXIT 

Figure 6-5. Important Common TIP Subroutines (7 of 7) 

M·794 

6-29 



CMD blocks are of three types. Restart output CMD blocks cause the 
POI to send a BACK block if the back block threshold has not been 
reached. stop output commands cause all blocks queued to this TCB 
to be released. Start input commands prevent empty EOI blocks from 
being discarded. In all cases, the CMD block is queued to the TCB's 
output queue. 

BACK blocks cause waiting PRU blocks to be routed upline. 

• PRUTOBLKS checks the block use. 

If this is a banner block and banner blocks are to be used, 
PTBANLACE generates the banner block. 

If this is a text block and if text processing is required, PBXFER 
calls the TIP's text processing routine to transform the text to 
terminal format/code at this point. Blocks are queued and BACK 
blocks are sent, or set for later sending, as a function of the 
current TIP state. 

PBPROPOI - Preoutput POI 

This POI is used to update pointers in the output message block that is 
queued to the TIP. 

PBPOPOI - Post Output POI 

This POI is called from the TIP's post output routine to generate the 
statistics for the block (using PNSGATH), and to send a BACK block if one is 
necessary, assuming the block was not internally generated. (BACK blocks 
are always generated for interactive downline blocks.) The POI then 
releases the buffers holding message which the TIP has now finished 
processing. 

STANDARD TIP SUBROUTINES 

OUTPUT QUEUING (PBQ1BLK AND PBQBLKS) 

Output queues are associated with a specific TCB. That TCB contains a 
pointer to the first block in the queue, specifically to the first buffer of 
that block. Figure 6-6 illustrates the queue structure. The queue contains 
one or more data blocks, each of which is composed of one or more buffers. 
The buffers are linked in the order they are removed from the chain. The 
last word of one buffer is the pointer to the next buffer. The last word of 
the last buffer contains NIL. 

Blocks are chained together using the QCHN word of the buffer header (word 3 
of the data buffer header). New blocks are always chained to the previous 
last block. The QCHN word of the newest block is always NIL. 

The TCB output queue is built by two routines: PBQIBLK and PBQBLKS. 

• 

6-30 

PBQIBLK (parm) uses the parameter (block address) to clear the chain 
word of the block to be queued. Then PBQIBLK calls PBQBLKS. 

60471160 A 



MESSAGE BUFFER 
CHAIN IS 
COMPOSED 
OF TWO OR 
MORE BUFFERS 
CHAINED 
TOGETHER TO 
FORM A 
MESSAGE 
BLOCK 

60471160 A 

TERMINAL CONTROL BLOCK 

..c • ,~ 

• I • ~BSQTYPE 
TRUE· 

4 BFLCD I BFFCD BFLCD I BFFCD BFLCD I BFFCD 

FLAGS FLAGS FLAGS 

QCHN - POINT 
~ QCHN = PT 1 ----. QCHN = NIL 

IN NEXT BLOCK 

• • • 
; .. • ;..~ 

I 
• 

J 
.. • ~ 

• • • 
POINTER TO NEXT NIL 
BUFFER 

J + 

+ + 

NIL 

'- V 
./ 

~ FIRST SEGMENT OUT 

NIL 

LAST SEGMENT IN 

MESSAGE BLOCK CHAIN IS COMPOSED OF TWO OR MORE BLOCKS CHAINED TOGETHER 
TO FORM A TERMINAL OUTPUT QUEUE 

M-374 

Figure 6-6. Structure of a TeB Queue 

6-31 



• PBQBLKS (parmI, parm2) uses parmI to find the TCB output queue and 
parm2 to find the buffers to be added to the chain. If the TCB queue 
is empty, a worklist entry is made to the TIP which controls the TCB: 
the TIP can process the queue. 

The TIP which must process the message calls PBQIBLK (or PBTOCONS if the 
message is for the NPU console). PBQIBLK is called indirectly using the 
internal output POI (PBIOPOI). 

REMOVING A MESSAGE SEGMENT FROM QUEUE PBGT1SEG 

The form of the call used to remove a single buffer from the message is as 
follows: 

PBFTISEG (parm) where R3SEGPTR contains a pointer to the buffer to be 
removed from queue. For parameter setup, BITCB is a global variable 
containing a pointer to the TCB associated with the queue. 

PBGTISEG is a PASCAL function that returns as follows: 

A zero value, if the queue was busy and no buffer was removed from the 
queue. A value of one, if the queue was not busy, but was empty, and no 
buffer was removed from the queue. 

A value of two, if the queue was neither busy nor empty and a buffer was 
removed from the queue. 

It is assumed in the foregoing that BITCB does not contain a NIL pointer. 
It should further be noted that the chain word of a returned segment will 
not necessarily be NIL. 

SAVING AND RESTORING REGISTERS 

Two subroutines save and restore the Rl and R2 registers: PBBEXIT & PBAEXIT • 

. PBBEXIT - Save R1 and R2 

PBBEXIT is used to save Rl and R2 before executing the GOTO (EXIT) when the 
GOTO statement occurs within one or more executable WITH statements. 

NOTE 

A GOTO (EXIT) from within a noninterruptable program does not 
perform an UNLOCK operation before exiting. 

PBBEXIT then restores Rl and R2. 

6-32 60471160 A 

! 



PBAEXIT - Restore R1 and R2 

PBAEXIT is used before a GOTO (EXIT) is executed from within one or more 
executable WITH statements. PBBEXIT has previously saved Rl and R2 in a 
specified area so that they can be used as base addresses of the structures 
associated with the first two executable WITH statements. The calling 
sequence is: PBAEXIT (parm) where parm is the name of the 2-word save area 
for Rl and R2. 

Interface to Text Processing Firmware, PTTPINF 

TIPs call this interface to firmware routine to execute the upline or 
downline text processing state programs (upline text processing is used only 
for TIPs that require two-stage input processing, such as the HASP TIP). 
After escaping to firmware processing, PTTPINF periodically returns to OPS 
level to process interrupts (interrupts are inhibited while firmware is 
executing state programs). When the entire text processing sequence is 
completed, PTTPINF returns control to the calling program. If the text 
could not be converted, PTTPINF notifies the calling program of the failure. 

This module is technically a part of the base system; it is discussed here 
since it provides a TIP-related service. 

Finding Number of Characters to be Processed, PTCTCHR 

PTCTCHR counts the number of characters in the buffer to be processed. This 
count includes the complete chain of data buffers in the message. PTCTCHR 
is also a part of the base system. 

Saving and Restoring LCBs, PTSVxLCB, and PTRTxLCB 

Two sets of routines allow TIPs to mark transmissions that must be suspended 
until further terminal or host action occurs. The suspension address in the 
TIP controlling the transfer is saved in the LCB and, upon the necessary 
action being completed, control returns to the TIP at the specified point. 
Transmission processing continues. 

• PTSVILCB or PTSV2LCB - saves the TIP return address in the LCB and 
saves a wait count prior to returning control to the monitor. The 
former is used for input; the latter is used for output. The TIP 
will later receive control by a worklist entry to continue processing 
at this point. 

• PTRTILCB or PTRT2LCB - The TIP for this suspended transmission 
receives control as a result of a worklist entry to it. These 
routines restore TIP processing at the address (next entry point) 
saved by PTSVxLCB. The former is used for input; the latter is used 
for output. 

These modules are also part of the base system. 

60471160 A 6-33 



Common Return Control Routine, PTRETOPS 

PTRETOPS is called by TIPs in order to properly relinquish control to the 
monitor (PBMON). This module is also part of the base system. 

Common Tip Regulation, PTREGL 

The common regulation checking routine is called when the TIP is ready to 
start processing the data (upline or downline). Even though some processing 
of the data may already be completed (for instance, input state processing 
has been completed on upline data), CCI may need protection from an 
additional request for space or processing resources. At the TIP's request, 
PTREGL checks anyone or any combination of the following four regulation 
conditions: 

• The regulation level at this end of the logical link is higher than 
the priority level of the block transmitted to this NPU. 

• The allowable number of blocks that can be queued to this TCB (ABL) 
is greater than the number of blocks already queued to this TCB for 
processing (OBL). 

• The accept input (AI) flag is not set in the TCB (upline data). 

• The buffer availability level in this NPU is below the level set for 
this type (low or high priority) of data block. 

NOTE 

This routine is not called by the mux subsystem for upline 
data. Instead, upline data is accepted from the input loop, 
stored in the CIB, and demultiplexed into a line-oriented 
input buffe~. Then the TIP is called. The TIP has the 
responsibility of checking whether or not the message should 
be rejected (regulation occurs). The mechanism for stopping 
input at the external interface is also a TIP 
responsibility. This is done by breaking the message (input 
stopped or BRK block) and commanding the mux command driver 
to turn off the CLA. Until the CLA state is changed, the mux 
subsystem must continue to accept input data. 

The calling format is: PTREGL (parmI, parm2). ParmI is a pointer to the 
buffer associated with the proposed input operation. Parm2 is the type of 
comparison to be made. 

If the type (or types) of regulation checked does not currently exist, 
PTREGL passes a no regulation flag to the caller. 

PTREGL is technically part of the base system. 

Set Logical Link Regulation, PNLLREG 

This routine is called from the HIP only to set the logical level in the 
LLCB. The levels are UP or DOWN. In the former case, all messages are 
accepted 1 in the latter case, all messages are rejected. The call is 

6-34 60471160 A 

( 
i 
\ 



PNLLREG (parm) 

where: 

parm is the new regulation level, UP or DOWN. 

Set Accept Input/Accept Output Flags, PTINIT 

This routine is called only from the SVM, but it is used to set the accept 
input and accept output flags in the TCBs after the TCB has been completely 
configured. The call is PTINIT. 

Discards Non-Routable Blocks, PBLOST 

This routine is called from the routing function to handle blocks with a 
header (DN/SN/CN) that cannot be routed to an existing node or terminal 
according to the information in the routing directories. The blocks are 
counted as bad address blocks (for NPU statistics), and the block is 
released. No acknowledgment of any sort is generated. The call is PBLOST. 

Upline Abort, PBUPABRT 

This routine is called by a TIP when upline traffic continuity cannot be 
maintained. Partial and full PRU buffers are released. The TCB fields for 
character count, block count, and various other flags are cleared. The call 
is PBUPABRT. This routine is also called by SVM. 

Downline Abort, PBDNABRT 

This routine is called by SVM when a TCB is deleted, or by a TIP when 
downline traffic under internal processing control is to be discarded. All 
BLK and CMD buffers are released, as are all source and destination buffers, 
for a text processing operation in progress. Various TCB fields are 
cleared. The call is PBDNABRT. 

Send CMD Block to Host, PTCOMMAND 

This routine is called to generate the CMD blocks for starting and stopping 
a data stream. The list of such commands is shown in table 6-2. The TIP 
calls the program with: 

PTCOMMAND (parmI, parm2) 

where: 

parmI = PFC. TIP can use these primary function code values: 

3 - input stopped 
4 - input started 
5 - output stopped 
6 - output started 

parm2 = SFC. The TIP uses the secondary function codes, as shown in 
table 6-2. 

60471160 A 6-35 



PTCOMMAND uses PBIIPOI to route the block upline to the host. 

Upline PRU Block Routing, PBRTEPRU 

This routine is called by PBPIPOI. It removes the first upline PRU queued 
to the designated TCB. The routine completes the header including the block 
serial number (BSN) , and uses a worklist to switch the block •. A flag is set 
which causes the NPU to expect a BACK for MSG, BLK, or CMD blocks. After 
the block is switched, the routine checks the number of characters queued 
for this TCB. If it is below the threshold value, BSOBL is set to zero. 
This allows input to be received from the terminal. The call to the routine 
is PBRTEPRU. 

PRU Block Routing, PBRTEIA 

This routine is called for both upline and downline block routing. If there 
are queued blocks and if the block is either a command block or if the 
available buffer limit is below threshold value, the first block is unqueued 
from the TCB. If a data block was unqueued, the BSOBL buffer's counter is 
incremented. The BSN is put in the header and BSN count in the TCB is 
incremented. A worklist is used to switch the block. Call to the routine 
is PBRTEIA. 

Check to Find if Back Block is to be Send, PBBCKCHK 

CCI uses a scheme of sending BACK blocks so that data flow from the host is 
optimized. PBBCKCHK is the routine which counts the number of queued 
non-internal blocks, and sends a BACK block if the number is below a preset 
value (a build time parameter). When the host receives the BACK block, it 
can send more downline blocks (if any are waiting) to this terminal. PTBACK 
sends the BACK block. After sending the BACK block, PBBCKCHK clears the 
flag which indicates there is a BACK block waiting to be sent upline. Call 
to the routine is PBBCKCHK. 

Generate Banner and lace Records, PTBANlACE 

This routine is called from internal processing when a banner record is 
needed for a printer or a lace card is needed for a punch. Call to the 
routine is PTBANLACE, together with an input buffer containing the block 
header and a job name. 

If the device is a punch, PTLACE formats buffer(s) for a lace card of blanks 
(EOL card has been detected or FFl6 has been detected), or with the job 
name. If the device is a printer, PTBANNER builds the banner page buffers 
with the job name. 

6-36 60471160 A 



HOST INTERFACE PACKAGE (HIP) 

This section describes the operation of the Host Interface Package (HIP). 
The CYBER 70/170 channel coupler provides the hardware interface between the 
NPU and the PPU of a CYBER 70/170 host processor. This coupler is operated 
through the cooperation of two programs: one is resident in the host; the 
other is resident in the NPU. The NPU program is called the Host Interface 
Package (HIP). The HIP provides logic to support the following functions: 

• Interrupt processing for coupler generated interrupts. 

• Initiation and control of data transfers across the coupler. 

• Coupler status processing and error recovery. 

• Communication with the host coupler control program to support the 
transaction protocol. 

• The standardized logical (as opposed to physical) interface for all 
NPU resident software involved with data transfers between the host 
and NPU. 

TRANSACTION PROTOCOL 
A special protocol is used for transfers between the NPU and the host. The 
block portion of this protocol is discussed in section 6. The directives 
that pass the blocks across the coupler are discussed here. 

TRANSFER FUNCTIONS 

The coupler's transfer path is half-duplex. This means it is 
bi-directional, but transmission occurs in only one direction at a time. 
Both the host and NPU can bid for the right to transmit over the transfer 
path. The following conventions govern the transfers: 

• When both the PPU and NPU simultaneously bid for the transfer path, 
output from the host takes precedence over input to the host. Input 
to the host is called an upline transfer. Output from the host is 
called a downline transfer. 

• The NPU can reject an output request if it has insufficient space to 
assign for receiving the message. This is called an overload 
condition. 

• Both the host and NPU coupler control programs operate in one of 
three states: idle, sending, or receiving. 

• When an error occurs during a transaction, the receiving processor 
discards all data associated with the transaction and returns to an 
idle state. 

7 

60471160 A 7-1 



• During periods of inactivity, the NPU coupler program generates a 
periodic IDLE INQUIRY status word to verify that the host is still 
operating. The host must respond by reading the NPU status word. If 
the host does not read the word within 10 seconds, the NPU assumes a 
host failure. 

DIRECTIVES USED 

Five directives govern the data transfers~ 

• OUTPUT REQUEST specifies that the host has data to send to the NPU. 

• INPUT REQUEST specifies that the NPU has data to send to the host. 

• READY FOR OUTPUT specifies that the NPU is ready to accept the data 
transfer designated by the current OUTPUT REQUEST. This is a 
response to an OUTPUT REQUEST. 

• NOT READY FOR OUTPUT specifies that the NPU cannot accept the data 
transfer designated by the current OUTPUT REQUEST because there are 
not sufficient buffers to store the data. This is a response to an 
OUTPUT REQUEST. 

• IDLE INQUIRY indicates that the preestablished timeout period for 
another transfer to or from the host has expired without activity. 
The NPU issues this directive to verify that the host is still 
operating. 

TRANSFER INITIATION 

Upline data transfers are initiated by the HIP when the CCI notifies the HIP 
that there is input data queued for transfer to the host. This is an 
OPS-level event. Downline data transfers are initiated when the HIP 
receives an OUTPUT REQUEST orderword from the host. This is an 
interrupt-level event. 

If either the upline or the downline data transfer occurs while the HIP is 
in idle state, the HIP immediately begins to process the request. Requests 
for upline data transfers are queued if the HIP is already sending or 
receiving data. Requests for downline data transfers are accepted if the 
HIP is not already receiving data from the host. 

Figure 7-1 shows typical input and output transactions over the coupler. 
Figure 7-2 shows the resolution of I/O contention at the coupler. Figure 
7-3 shows the division of the HIP tasks between the OPS and interrupt 
levels. The PTxxxxx labels designate HIP subroutines. For further details, 
see a HIP listing. 

7-2 60471160 A 



HOST ACTION 

~~--------~~'-------~" 

Host has data to send 
and initiates trans­
action. 

Host has data to send 
and initiates trans­
action. 

Host has data to send 
and initiates trans­
action. 

Host initiates write 
operation. 

TYPICAL OUTPUT TRANSACTIONS 

PROTOCOL DIRECTIVE 

OUTPUT REQUEST • 

NOT READY FOR OUTPUT 

OUTPUT REQUEST • 

• READY FOR OUTPUT 

NPU ACTION 

,-~--------~~~--------,,, 
HIP in Idle State. 

No buffers avail­
able. HIP returns 
response. 

HIP in Idle State. 

Buffers available. 
HIP sets up coupler 
to receive data: 
returns response. 

The transaction is ended when the coupler generates the completion 
interrupts to the host and NPU. If a transfer error occurs, the data is 
discarded by the HIP and the host must initiate the transfer again. 

Figure 7-1. Coupler I/O Transactions (Sheet 1 of 2) 

60471160 A 7-3 



HOST ACTION 
~~ ____ ..,A. 

Host unable to accept 
data. 

Host can accept data 
and initiates a read 
operation. 

When transfer com­
pletes, channel 
coupler sends 
interrupt. 

TYPICAL INPUT TRANSACTIONS 

PROTOCOL DIRECTIVE 

.. INPUT REQUEST 

NOT READY FOR INPUT .. 

.. INPUT REQUEST 

TRANSACTION COMPLETE., 

NPU ACTION 

~~--~~~~~~~----'" 
HIP has. data to 
send, sets up 
coupler, and 
initiates trans­
action. 

HIP waits up to 1-2 
ms before trying 
again. 

HIP has data to 
send, sets up 
coupler, and 
initiates trans­
action. 

HIP releases data 
buffers. 

Figure 7-1. Coupler I/O Transactions (Sheet 2 of 2) 

7-4 60471160 A 

( 
I 

\ 



INPUT/OUTPUT TRANSACTION CONTENTION 

HOST ACTION 

~~-------'~~--.... --~~ 
Host has data to send 
and initiates trans­
action. 

Host ignores. 

Host initiates write 
operation. 

When transfer comp­
pletes, channel coupler 
sends response. 

Host has data to send 
and initiates trans­
action. 

Host executes a delay 
before sending another 
request. 

.. 

.. 

• 

.. 

PROTOCOL DIRECTIVE 

OUTPUT REQUEST 

INPUT REQUEST ~ 

READY FOR OUTPUT 

TRANSMISSION COMPLETE • 

OUTPUT REQUEST 

INPUT REQUEST L 
NOT READY FOR OUTPUT 

HIP then starts a normal input sequence. 

NPU ACTION 

~,------~~~--.... --,~ 
HIP has data to send, 
sets up coupler, and 
initiates trans­
action. 

HIP discontinues 
input. Buffers are 
available, so HIP 
sets up coupler to 
receive data; 
returns response • 

HIP forwards data to 
internal processor. 

HIP has data to send, 
sets up coupler, and 
initiates trans­
action. 

HIP discontinues 
input. No buffers 
are available, so 
HIP returns a nega­
tive response. 

Figure 7-2. I/O Transaction Contention at the Coupler 

60471160 A 7-5 . 



...,J 
I 

0'1 

0'1 
o 
~ 
...,J 

I-' 
I-' 
0'1 
o 

:J:II 

~--..., 

C 
o 
U 
P 
L 
E 
R 

INTERRUPT LEVEL 

COMMANDS 
+ DATA 

INTERRUPT 

HOST STATE (UP) 

OUTPUT DATA BLOCK 

OPS LEVEL 

SERVICE 
MODULE 
WORK­
LIST 

HIP 
WORK­
LIST 

Figure 7-3. OPS and Interrupt Levels for the HIP 

M-423 



TRANSFER TIMING 

All coupler transfers are timed by means of a deadman timer which is set for 
ten seconds. If the scheduled transfer fails to complete during that period 
(a timeout condition), the HIP declares that the host is down. The HIP then 
causes the service module to send the HOST UNAVAILABLE message to all 
interactive terminals. The NPU rejects all further input from terminals. 
The HIP also discards any output if an output transfer was in progress. If 
an input transfer was in progress, the current block is replaced at the head 
of the output queue. It will be the first block transmitted when the host 
recovers. 

The HIP recognizes that the host has recovered when a valid orderword is 
received. All terminals are notified by a message sent through the service 
module. Input is again accepted from the terminals. 

ERROR PROCESSING 

The HIP provides two types of error processing: 

• For recoverable errors, the HIP retries the transfer. The HIP 
provides an unlimited number of retries to accomplish the transfer. 
However, in practice the number of retries is limited by the host 
stopping the transfer or stopping the NPU and reloading the CCI. The 
recoverable errors are data parity error, hardware timeout, and 
abnormal termination. 

• For unrecoverable errors, the HIP aborts the transaction. The 
unrecoverable errors are memory parity error, memory protect error, 
and chain address zero (the condition that occurs when the HIP 
expects to find a chained data buffer, but finds a zero address for 
that buffer). All of these cause an NPU halt and are, therefore, 
unrecoverable errors. The NPU processor must be downline-Ioaded from 
the host to continue message processing. 

When an error is detected during a downline transfer, the HIP discards the 
data associated with the transfer, and returns to the idle state. 

HOST/NPU WORD!FORMATS 
The host uses a 12-bit byte at the PPU interface. Format is as shown: 

11 7 0 

data byte I 
[reserved for control (output) or'status (input) 

The NPU uses a 16-bit word composed of two 8-bit bytes. Each NPU word 
requires two PPU words. Data transmission to the host is made only over the 
direct memory access (DMA) path. Format is as shown: 

15 7 o 
byte 0 byte 1 

60471160 A 7-7 



Other transfers are made through four sets of special registers in the 
coupler. The NPU uses the internal data channel (IDC) for loading and 
reading these registers. The registers have a 16-bit interface on the NPU 
side and a 12-bit interface on the host side. Transfers to the registers 
are discussed below under coupler interface hardware programming. 

COUPLER INTERFACE HARDWARE PROGRAMMING 
Figure 7-4 shows the coupler hardware that constitutes the host/NPU 
interface. A PPU can interface to one or two couplers, but each coupler 
must connect to a different NPU. An NPU can also have two couplers. If 
there are two couplers, the NPU determines which host loads the NPU at 
initialization time. 

The coupler has three transmission circuits: 

• A half-duplex data circuit for transmission of programs or data 
between the memory of the PPU and the main memory of the NPU. On the 
NPU side, this circuit uses the direct memory access mode of 
transmission. This channel also provides an execution control method 
(function command) used by the PPU to start or stop NPU microprogram 
execution. Micromemory execution must be started at address O. This 
method is used for initial loading and dumping of the NPU. 

• A full-duplex control circuit which the NPU and the PPU use to 
perform transaction setup (handshaking). 

• A supervisory circuit which is set up and monitored by both NPU and 
PPU. Transaction status is made available to both sides of the 
interface by this circuit. 

COUPLER REGISTER USE 
It must be recognized that the names of some of the registers (coupler 
status, orderword, NPU status word) and some of the circuits (supervisory, 
control) do not adequately define coupler operations. For instance, the 
control and set up of the NPU involve the following: 

7-8 

• The host loads the orderword register, and examines the coupler 
status word to determine if the NPU status word is available for 
examination. The NPU status word is then checked. 

• The host sends a function word address to the coupler channel and 
executes an output command for a single word transfer. 

• At a later time, the host sends service messages for further control 
of the NPU using block transfers on the data channel. The NPU 
replies using service messages. 

• In all cases, the host and/or NPU checks and changes coupler status 
register bits to indicate the current status of the transfer 
activities. 

• The host or NPU transmits data (messages) after properly setting up a 
block starting address in the NPU using the memory address registers 
in the coupler. 

60471160 A 

( 

\ 



CJ\ 
o 

"'" -..J 
I-' 
I-' 
CJ\ 
o 
;J:II 

...... 
I 

1.0 

PPU MEMORY 

12 

I COUPLER STATUS 
REGISTER 

\16 

SUPERVISORY 
CIRCUIT 

t I-- (MONITORED 
AND SET BY 
BOTH SIDES) 

\.. 

NPU MAIN MEMORY 

12 

BUFFERS IN HOST 

r 'I °1 r 81 °1 r 201 12 81 °1 

12 

15 98 o 1716 

MEMORY 

8 

8 -

MEMORY 

o 

INPUT/OUTPUT 
DATA/PROGRAM 

ORDER WORD I NPU STl~us WORD ADDRESS ADDRESS 

11 ZERO ONE 

It J 

h~:~ r;;~L'-1 
16 16 16 

CONTROL CIRCUIT 
(FULL DUPLEX) 

ADDRESS 
SETUP VIA 
FOR DATA DMA 
TRANSFER CHANNEL 

I 
j 8 8 

Y 
VIA IDC CHANNEL BYTE 0 BYTE 1 

BUFFERS IN NPU 
~~ CAN BE CHAINED I FOR DATA TRANSFERS J 

M-424 

Figure 7-4. Coupler Registers 



The coupler registers shown in figure 7-4 directly accessed by the PPU 
program for normal data transmission are as follows: 

• Coupler Status Register - A group of 16 hardware-defined flags, the 
low order twelve bits can be read by the PPU. The flags inform the 
NPU of the reason for interrupt, and indicate to both the NPU and PPU 
the status of the transaction and the status of other coupler 
registers. 

.NPU Order Word - A 16-bit register, the low order twelve bits are 
written by the PPU to communicate a software-defined order code to 
the NPU. This code determines the order of regulation across the 
coupler. 

• NPU Status Word - A 16-bit register, the low order twelve bits can be 
read by the PPU. The NPU uses this register to communicate a 
software-defined status code to the PPU. This code indicates the 
type of transfer that the NPU is ready to perform. 

• NPU Address Register - An 18-bit register, the PPU can write all 18 
bits for the purpose of loading or dumping the NPU. The high order 
10 bits (address register bits 17-8, plus bit 8 of the NPU status 
register) are called memory address zero. The low order 8 bits, 
address register bits 7-0, are called memory address one. The PPU 
must perform two function operations to write the entire register. 
Since the highest order bits of the address register (bits 17, 16) 
are actually implemented as bits 9, 8 of the NPU status word, those 
bits cannot be used for other purposes. 

The NPU address register is also set by the NPU to indicate to the 
host the address of the first word to be transferred during a data 
transfer. 

The code/bit assignment for each of these registers is shown in tables 7-1 
through 7-4. 

The NPU receives an interrupt when the PPU writes the order word or 
completes a data transfer. The coupler status register indicates the reason 
for the interrupt to the NPU. Therefore, the PPU does not use a separate 
control circuit to indicate that the transaction is complete~ this 
information is automatically available in the supervisory circuit. 

PROGRAMMING THE COUPLER BY USE OF FUNCTION CODES 
The coupler can be given function codes by either the PPU or the NPU. In 
either case, the codes are treated as one word addressed to the coupler 
equipment. From the NPU side, functions are sent to the coupler over the 
internal data channel. 

HOST FUNCTION COMMANDS 

The coupler is programmed from the host (PPU) side by setting a function 
code (table 7-5) and executing an I/O instruction. The coupler function 
code occupies the low order nine bits of the 12-bit PPU function code. The 
high order three bits of this PPU word contain the equipment code (coupler 
address on the channel). The equipment code is determined by the setting of 
hardware switches on the coupler. 

7-10 60471160 A 



Bit 
Number 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12-13 

60471160 A 

TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT 

I/A 

A 

A 

I 

I 

I 

I 

I 

I 

A 

Flag Name 

Memory parity error 

Memory protect fault 

NPU status word 
loaded 

Memory address 
register loaded 

External cabinet 
alarm 

Transmission 
complete 

Transfer terminated 
by NPU 

Transfer terminated 
by PPU 

Orderword register 
loaded 

NPU status read 

Timeout 

CYBER 170 channel 
parity error 

Unused 

SET Condition 

NPU memory parity 
error 

NPU memory protect 
fault 

NPU writes status 
word 

PPU or NPU writes 
memory address one 

Power failure 

PPU completes any 
input or output 
operation 

NPU terminates 
transfer (not used) 

PPU sets channel 
inactive during 
data I/O 

PPU writes order­
word 

PPU reads NPU 
status word 

Inactive returned 
during a PPU data 
I/O operation 
because coupler was 
selected and active 
for more than 3 
seconds 

12-bit word plus 
parity from data 
channel not odd 
parity. Enable 
parity switch on. 

RESET 
Condition 

t 

t 

PPU reads 
NPU status 
word tt 

t 

t 

t 

t 

NPU reads 
orderword 

t 

t 

Enable 
parity 
switch 
positive 
transi tion.t 

7-11 



TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT (Contd) 

Bit RESET 
Number I/A Flag Name SET Condition Condition 

14 Chain address zero Coupler finds zero t 
in last word of NPU 
buffer. 

15 - Alarm Positive transition t 
of any flag marked 
"A" • 

All flags ( ttexcept bit 2) are reset when NPU or PPU clears the coupler. 
Those flags marked with tare also cleared when the NPU reads the coupler 
status register. All flags are cleared by Master Clear. 

I/A: I = Raising Flag causes NPU Interrupt~ A = Raising Flag causes Alarm. 

The coupler channel is automatically disconnected when the PPU sends the 
function code. The disconnect occurs within one microsecond of executing 
the function code. If a parity error is detected on the function code 
(CYBER 170), the channel is not disconnected. 

NPU FUNCTION COMMANDS 

The NPU commands (table 7-6) are issued over the internal data channel. The 
coupler is not disconnected from the host by these commands. 

HIP FUNCTIONS 
There are two primary functions performed by the HIP: 

• processing single word (control/status) function. 

• Processing block transfers, for control or message processing 
purposes. 

SINGLE WORD TRANSFERS (CONTROL) 

The PPU can write the orderword at any time. The NPU reads the orderword 
only if it has been loaded by the PPU, as indicated by bit 8 of the coupler 
status register. This bit is automatically reset when the NPU reads the 
orderword. 

The NPU can write the NPU status word at any time. The PPU can read the NPU 
status word only if it has been loaded by the NPU. When the PPU reads the 
register, it cannot read the register again until the NPU again writes the 
register. The PPU determines that the NPU status word has been loaded 
(written) by interrogating bit 2 of the coupler status register. This bit 
is automatically reset when the PPU reads the NPU status word. 

7-12 60471160 A 

( 



TABLE 7-2. ORDERWORD REGISTER CODES 

11 8 0 

I Order I Length I Orderword Register Code 

Order 
Code Regulation 
Value Name Level 

1 Output Level 1 (Service Messages) 1 
2 Output Level 2 (High Priority Data) 2 
3 Output Level 3 (Low Priority Data) 3 
5 Not ready for input 

Length - In 8-byte increments, of the output block to be transferred. 
The value is rounded up when the length is not a multiple of 8. 

TABLE 7-3. NPU STATUS WORD CODES 

Code Value 
(hexadecimal) Name Protocol 

0 Ignore value and read again Data transfer 

1 Idle 

4 Ready for output 

7 Not ready for output 

8 Ready for dump Dump transfer 

12 Input available: batch block PRUB Data transfer 

13 Input available, 256 bytes Data transfer 
(non-PRUB) 

14 Input available, 256 bytes Data transfer 
(non-PRUB) 

60471160 A 7-13 



TABLE 7-4. ADDRESS REGISTER CODE 

Bit 16 Bits 15 - 8 Bits 7 - 0 
(first word) 

Used as bit Memory address 0 Memory address 1 
8 of NPU 
status word 

1. Address register increments with each NPU word (16 bits) 
transferred. 

2. Bits 11-8 of the second PPU word and bits 11-9 of the first PPU 
word are discarded when loading register from PPU. 

3. Only 15 bits are loaded from NPU: PPU zero fills the upper sets of 
each word. 

Note that the NPU accesses the orderword and the NPU status word over the 
internal data channel (IDC). 

LOAD/DUMP NPU 

Load/dump transfers use the direct memory access ch~nnel. 

To load or dump the main memory of the NPU, the PPU must first specify a 
starting location by writing memory address zero and memory address one. 
The HIP then performs successive data transfers. The first pair of PPU 
words transferred corresponds to the contents of the specified NPU main 
memory address. The NPU memory address register is automatically 
incremented by one, so that successive word pair transfers correspond to the 
contents of successively higher-numbered NPU main memory locations. The 
memory load or dump is terminated when the PPU sets the channel inactive. 
See the initialization section of this manual for a detailed description of 
dumping and loading an NPU. 

The PPU transfers an even number of PPU words. The first word of a pair of 
words transferred by the PPU corresponds to bits 15 through 8 of the NPU 
word (byte 0). The low order eight bits of the second word of the pair 
transferred by the PPU corresponds to bits 7 through 0 of the NPU word (byte 
1). The high order four bits of the PPU words are not transferred to the 
NPU. When transferring from the NPU, the coupler sets the high order four 
bits of the PPU words to zero. 

After loading, the PPU reads back the NPU main memory contents to verify 
loading of each module prior to issuing the start NPU code. If the load is 
not verified, the PPU retries loading three times before an alarm message is 
sent to the network operator. 

7-14 60471160 A 



TABLE 7-5. PPU FUNCTION COMMANDS 

PPU Function Code 

Clear NPU 

Start NPUt 

Input program 

Output program 

Clear coupler 

Output memory address 
zero and one 

Output orderword 

Input coupler status 

Input NPU status 

Input orderword 

Input data 

Output data 

Octal Value 

200 

040 

007 

015 

400 

010 
Oll 

016 

005 

004 

006 

003 

014 

PPU Usage 

Used prior to loading or dumping 
the NPU. Stops the NPU and sets 
micromemory address register to 
location O. 

Starts the NPU emulator (micro­
code) at the location in the 
micromemory address register. The 
emulator must always be started at 
location O. 

Used to dump NPU main memory. 

Used to load the NPU main memory. 
Micromemory can neither be loaded 
nor dumped directly from the PPU. 

Resets the coupler's control logic 
and most registers. The protocol 
defined allows only the NPU to 
clear the coupler. 

Sets NPU main memory accessing for 
loading and dumping. 

Loads the coupler orderword regis­
ter. Causes an NPU interrupt. 

Used to check the state of various 
registers and flip-flops in the 
coupler. Used to test whether 
the NPU has loaded the NPU status 
word. 

Inputs the NPU status word 
previously loaded by the NPU. 

Allows the PPU to read back the 
orderword it had written. Used 
only prior to dumping the NPU. 

Allows characters to be input to 
the PPU. The coupler must have 
been previously set up by the NPU. 

Allows characters to be output 
from the PPU. The coupler must 
have been previously set up by the 
NPU. 

tMust be delayed at least 10 ms following a clear NPU function code. 

60471160 A 7-15 



TABLE 7-6. NPU FUNCTION COMMANDS 

NPU Command 

Input switch status 

Output buffer 

Clear coupler 

Input coupler status 

Input orderword 

Output NPU status 

Output memory address 

Hexadecimal Value 

0654 

0658 

060C 

0650 

0660 

0648 

066C 

NPU Usage 

Allows the NPU to check PPU 
data channel device address, 
on-line/off-line switch set­
ting, alarm override switch 
setting. Executed during 
initialization. 

Sets the coupler to follow 
the NPU buffer chains for 
the current buffer length in 
use. Executed during ini­
tialization. 

Resets the coupler control 
logic and most registers. 
Used during protocol error 
processing. The contents of 
the NPU status word are not 
affected. 

Used in the NPU interrupt 
handler to determine the 
reason for interrupt. 

Used in the NPU interrupt 
handler to input the order­
word previously loaded by 
PPU. 

Used to send control codes 
to the PPU. 

Used to set up the coupler 
for data transfer. Points 
the coupler to the start of 
an NPU buffer chain. 

Load/dump and multiple character data transfer (described below) take place 
at a maximum instantaneous rate of one PPU word per microsecond. The actual 
instantaneous rate may be lower as transfers to or from NPU memory may cause 
direct memory access contention problems1 however, such delays are unlikely 
to exceed one or two microseconds per character, and happen infrequently. 

MULTIPLE CHARACTER DATA TRANSFER (BLOCK TRANSFER) 

Block transfers use the direct memory access channel. 

When executing the Data Transfer Protocol, an arbitrary number of characters 
are transferred between contiguous locations in the PPU and a set of chained 
buffers in the NPU. The location of the characters in NPU memory and the 
operation of the buffer chaining mechanism are transparent to the PPU. 

7-16 60471160 A 



From the point of view of both NPU and PPU, input means data flowing upline, 
that is, from NPU to PPU. Similarly, output means data flowing downline, 
from PPU to NPU. 

This operation of the coupler requires concurrent action of both the NPU and 
PPU. Either the NPU or the PPU can initiate the operation. When both have 
completed the setup, the transfer takes place. 

The PPU sends a function to the coupler, either to input data or to output 
data. During an output operation the PPU can not directly determine if the 
NPU has set up its side of the coupler to transfer the data. The 
determination is accomplished by the preceding comunications during which 
the NPU and PPU agree that setup for output will be the next thing done by 
both sides. For an input operation, after the PPU has sent a function to 
the coupler and has activated the channel, the PPU can test the channel to 
determine if a first buffer address is specified for the transfer and if the 
NPU status indicates that the NPU has input data available. If so, NPU is 
set up and the transfer can take place. If not, the NPU sets up the 
coupler. The channel should become ready for transfer within 12 ms of the 
input data function command to the coupler. 

The NPU sets up its side of the coupler for data transfer by writing the 
address of the first buffer of a chain to the coupler address register 
(buffer length is set up during initialization). 

The high order four bits of each PPU data word control the operation of the 
output transaction, although bits 10-8 are not used in the defined protocol 
and are always set to zero. (If any of bits 10-8 are set, NPU buffer 
chaining occurs at other than end-of-buffer. This causes excessive buffer 
use in the NPU.) Bit 11 is set to 1 on the last character of the 
transaction; this causes the coupler to stop storing data into the NPU 
memory. The PPU disconnects the channel following transfer of this flagged 
word. 

Input transfer is terminated when the last character of an NPU buffer is 
transmitted, and when bit 11 in the last word of the buffer is 1. The last 
character transferred is stored in PPU memory with bit 11 set. The coupler 
automatically disconnects the channel after this word is transferred. 

It should be noted that a service message is handled by block transfers, 
although such messages have a control rather than a message transfer 
function. Interpretation of service messages is discussed throughout this 
manual according to the type of service message. 

Checking data transfers is discussed below under the timeout and error 
checking heading. 

CONTENTION FOR COUPLER USE 
The coupler performs block mode transfers in only one direction at a time 
(half-duplex protocol). Either the NPU or PPU can request the channel at 
any time. The NPU requests the channel by setting the output memory address 
to point to the start of the input block buffer chain, and then by setting 
the output NPU status with one of the input available status codes. The PPU 
requests the channel by sending a function to the coupler to output the 
orderword with one of the output codes. 

60471160 A 7-17 



If the NPU and PPU both request to use the channel at approximately the same 
time, PPU output is usually favored. This is accomplished by changing the 
value in the coupler's memory address register to point to an output buffer 
chain and responding with a READY FOR OUTPUT flag in the NPU status word. 
The NPU will re-request the channel at the completion of the output 
transaction. 

When the output transaction is completed, the PPU starts a brief (1-10 ms) 
output-continue timer cycle to allow the NPU to request input, if the NPU 
has data queued for the PPU. This timer prevents the PPU from monopolizing 
the channel with output operations and thereby flooding the NPU. 

If the NPU has a scarcity of buffers, it rejects the PPU's request, thus 
regulating NPU input data. To limit the frequency of output-request-driven 
coupler interrupts to the NPU during this data regulation period, a host 
output rejected timer cycle of 100 ms is used. 

REGULATION OF COUPLER USE 
The primary objective of host regulation is to: 

• Prevent saturation or overloading of the host or network in the event 
of an abnormality (emergency regulation). 

• Allow data flow between the network and the host to ensure that 
continuity of service and performance standards are maintained. 

• Smooth data flow (prevent over-regulation) using appropriate feedback 
control techniques. 

The host coupler interface is a controlled, variable bandwidth I/O channel, 
in which the bandwidth is increased or decreased by a combination of 
load-balancing and reaching regulation thresholds. 

Host Failure and Recovery 

A special case of regulation occurs when the host fails and when it recovers. 

When the NPU software determines that communications across the coupler has 
failed, a regulation level of zero is communicated to the other end of each 
logical link terminating at the coupler. This inhibits acceptance of 
further input traffic from terminals logically connected via the coupler. 
Additionally, an informative message will be sent out to each affected 
interactive terminal. 

When the NPU software determines that communications across the coupler have 
been restored, a normal regulation level is communicated to the other end of 
each logical link terminating at the coupler. This enables input from 
terminals logically connected via the coupler and causes an informative 
message to be sent to all affected interactive terminals. 

7-18 60471160 A 



ERROR CHECKING AND TIMEOUTS 

The data transfer physical protocol checks for: 

• Contaminated data 
• Incomplete transaction 
• Failure of interface to respond 

The first two types of errors are handled at the physical protocol level by 
accepting only good blocks, and by discarding bad blocks in their entirety. 
The physical level protocol does not retransmit blocks. The coupler is 
assumed to provide a noise-free channel and to generate only hard (rather 
than intermittent) failure modes. Errors are detected and logged by the 
host. 

Normally, the NPU accepts all input offered by the PPU. When buffer 
availability levels drop below predefined thresholds, the NPU uses the 
priority level defined below to reject downline messages from the host: 

priority Message Type 

1 Service messages 

2 Data blocks and related forward and reverse supervision 
at the highest priority 

3 Data blocks and related forward and reverse supervision 
at the lowest priority 

Each of these message types is kept in a separate queue in the host. 
Regulation in the NPU occurs by the NPU first rejecting output offered at 
level 3, then rejecting levels 3 and 2, and in an extreme situation, 
rejecting all output offered by the PPU. As buffer levels rise above these 
regulation thresholds, the NPU reverses this procedure until the unit is 
again capable of accepting all outputs. 

The order in which the PPU offers the various output levels is determined by 
host considerations. 

There are also two classifications of upline messages: 

Classification Message Type 

1 Data and supervision less than 256 bytes in length 

2 Data and supervision greater than 256 bytes in 
length 

Both types of message are kept on a single queue in the NPU. 

There is no priority associated with the two upline classifications offered 
by the NPU to the PPU; the separation into two length ranges is only to 
allow the PPU to utilize its buffer space more efficiently. 

60471160 A 7-19 



Interface failure causes the interface to be declared down, but the protocol 
returns to the initial state and continues to wait for interface response. 
Both the PPU and NPU have timers implemented locally to accomplish failure 
detection. A keep-alive timer of I-second duration generates a periodic 
idle status, made available to the PPU when no traffic is in progress. The 

.PPU deadman timer provides a 10-second duration signal. This timer expires 
only if the PPU fails to receive either an idle or input request during that 
period. If the timer expires, the PPU declares the NPU to be down and 
enters. the NPU dump/reload sequence. 

The NPU deadman timer also provides a 30-second duration signal. If the NPU 
fails to receive a coupler interrupt within this period, it declares the 
host unavailable. The NPU deadman timer is not explicity shown in the NPU 
protocol flow diagram (figure 7-2) but it is implicit in all places where 
the NPU is waiting for an interrupt. 

INTERFACE PROTOCOL SEQUENCES 
Figures 7-5 and 7-6 show the interface protocol sequences as viewed from the 
host and from the NPU respectively. 

The principal features of the protocol detailed by the flowcharts are as 
follows: 

• The NPU can specify input available and set up the coupler for input 
data transfers at any time. 

• The PPU can order output at any time. 

• If conflict occurs, the NPU normally allows output from the PPU. 

• The NPU can refuse to take PPU output if the NPU does not have 
sufficient buffer space for the transfer. 

• The PPU can refuse input from the NPU by requesting output or by 
responding with a NOT READY FOR INPUT. 

• If either the NPU or the PPU deadman timer expires, protocol is reset 
to the start condition, but continues. 

• If a given output type is refused by the NPU, the PPU performs a 
short timeout before re-requesting output, to prevent swamping the 
NPU with interrupts. The type of output offered in succeeding 
attempts is determined by the host logic. 

• 

• 

• 

7-20 

If output is accepted by the NPU, the PPU allows the NPU to indicate 
if input is available, before again ordering output. 

Once data transfer is initiated, the transaction must be complete. 
If it does not, the entire transaction unit is discarded. 

Error checking is performed by the receiving device. If an error is 
detected, a CE error message is sent to the host engineering file, 
any received data is discarded, and the protocol is reset. No 
attempt is made to retransmit the data. 

60471160 A 



60471160 A 

NO 

DECLARE 
NPU DEAD 

SEND 'NOT 
READY FOR 
INPUT' 

Figure 7-5. Host Interface Protocol Sequence, 
Host Side (Sheet 1 of 2) 

7-21 



7-22 

YES 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 1" 

NO 

NO = REGULATION LEVEL 3 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 2" 

START OUTPUT 
(CONTINUE) 
TIMER 
(HO MS) 

START 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 3" 

START OUTPUT 
(REJECTED) 
TIMER 
(100 MS) 

START 

M-426 

Figure 7-5. Host Interface Protocol Sequence, 
Host Side (Sheet 2 of 2) 

( 

60471160 A 



"\ 

60471160 A 

SET STATUS WORD 
TO NOT READY 
FOR OUTPUT 

DEADMAN 
TIMEOUT 

SET TIMER TO 
KEEP ALIVE 
VALUE 

OUTPUT REQUEST 

t 

SET BUFFER 
ADDRESS IN 
COUPLER 

STATUS WORD 
SET TO READY 
FOR OUTPUT, SET 
TIMER TO DEAD­
MAN VALUE 

NOT READY 
FOR INPUT 

SET TIMER 
TO IDLE 
TIMEOUT VALUE 
(500MS) 

SEND MSG TO 
CE ERROR FILE 
IN HOST 

t SEE NOTE ON 
SHEET 2 

M-427 

Figure 7-6. Host Interface Protocol Sequence, 
NPU Side (Sheet 1 of 2) 

7-23 



t 

NO 

SET STATUS 
WORD SET TO 
IDLE, SET 
TIMER TO IDLE 
VALUE 

t BEFORE LOADING 
THE STATUS REGISTER, THE 
STATUS IS CHECKED TO 
VERIFY IT IS NOT STILL 
LOADED FROM A PREVIOUS 
TIMER. IF IT IS, A WORKLIST 
IS MADE BACK TO THE OPS 
LEVEL HIP TO RE-EXAMINE 
THE STATUS. 

SET TIMER TO 
KEEP ALIVE 
VALUE 
11 SECOND) 

INPUT 
AVAILABLE 

SET BUFFER 
ADDRESS IN 
COUPLER 

Figure 7-6. Host Interface Protocol Sequence, 
NPU Side (Sheet 2 of 2) 

M-428 

7-24 60471160 A 

I , 



BUFFER FORMAT 
The HIP requires all using programs to provide or accept data blocks in 
standard format. Figure 7-7 shows format that is a variation of standard 
block format. 

HIP STATES 

The HIP can be considered a passive program that passes from one state to 
the next as a result of a stimulus from an external event. Table 7-7 shows 
the HIP as a state driven program. 

FWA I " LCD FCD* 

* FWA + 1 LBF FLAGS 

I I I> CHAR. 0 CHAR. 1 

I j CHAR. N-l I CHAR. N 

CHAIN* 

BL 

LWA 

BL = Buffer length (in 16 bit words) BL = 2x, 2 x 7 

FCD = First character displacement (relative to FWA) 4 FCD 253 

FLAGS = Bit indicators that provide additional information about the data 
or data buffers. 

FWA = First word address of buffer (must be an integer multiple of BL) 

LBF = Last buffer flag (1 = last) 

LCD = Last character displacement (relative to FWA) 4 LCD 253, 
BL LCD/2 + 1 

LWA = Last word address of buffer LWA = FWA + BL - 1 

CHAIN = FWA of next data buffer (can contain zero value when LBF = 1) 

Figure 7-7. Standard Data Block Format Used by the HIP 

60471160 A 7-25 



TABLE 7-7. HIP STATES AND TRANSITIONS 

~ 
Transfer Chain 

Transfer Terminated Orderword Address Transaction 
State Complete by PPU Loaded Zero Timeout 

AOPTO Start Send idle 
output inquiry 

IDLE CE=Spurious CE=Spurious (AOPT3) CE=Spurious 
interrupt interrupt Invalid interrupt 

order word 
-Halt 

AOPTI Start out- CK for idle 
put or not response 
Ready for (deadman 
input timeout) 

Idle CE=Spurious CE=Spurious Invalid CE=Spurious Send idle 
Inquiry interrupt interrupt orderword interrupt inquiry 
Sent -Halt 

AOPT2 NORMAL CE=Transfer Terminate CE=Chain Host down 
INPUT term by PPU input, address to SVC mod-
COMPLETION Start zero, Re- ule, Requeue 

output lease input input mes-
block sage 

Input Release in- (AOPT3) 
Completion put block Invalid 

orderword 
-Halt 

AOPT4 NORMAL CE=Transfer CE=End-of- System halt Host down to 
OUTPUT term by PPU operation (JOCHAIN) SVC module, 
COMPLETION missing Release out-

put buffers 

Output Release Release 
Completion output output 

buffers buffers, 
invalid 
orderword 
-Halt 

AOPT5 No action No action No action No action No action 

AOPT6 

Delay 

7-26 60471160 A 



BINARY SYNCHRONOUS COMMUNICATIONS (BSC) TIP 8 

The Binary Synchronous Communications (BSC) TIP provides for the interchange 
of data between an application program in the host computer and a remofe 
2780, 3780, or compatible batch terminal. The line protocol used is BSC, 
operating point-to-point on a dedicated or dial-up line. 

Each BSC terminal consists of a card reader and a line printer. A card 
punch is optional. Remote batch operation with the terminal provides for 
support of the standard INTERCOM remote batch features and commands, with 
the minor extension described later. 

The operational procedures for submitting remote batch jobs and the return 
of generated print or punch files follows the rules described in appendix 
F. The INTERCOM remote batch command set is available to a user at the 
terminal. The commands are entered from pre-prepared cards at the card 
reader. One command per card is allowed. Messages to the terminal operator 
and other unsolicited diagnostic/error messages are directed to the 
printer. Interactive message output is followed by a form feed to position 
the message for reading. Interactive message output occurs only at input 
and output file boundaries. 

For 2780 and 3780 terminal input and output data the entire file is 
transferred before another data transfer can begin; that is, blocks of input 
and output files cannot be interleaved. 

At any time, the TIP must resolve which stream is to be active. Four (or 
optionally five) streams are managed to or from the two (optionally three) 
devices on a terminal. The five possible streams and the associated devices 
are as follows: 

Stream 

Interactive card input 
Interactive card input 
Batch card input 
Batch card output 
Batch punch output 

Device 

Card reader 
Line printer 
Card reader 
Line printer 
Card punch 

After the terminal operator dials up the terminal, the host sends an 
INTERCOM banner message downline, using the interactive output stream. 
Input messages from the terminal's card reader can then be accepted. These 
are treated input. For dedicated lines, input is accepted immediately after 
the terminal is configured (after the banner message is output). 

All input is treated as interactive input until a start input CMD block on 
the batch connection is sent from INTERCOM to the NPU. (INTERCOM generates 
the start batch input CMD block immediately upon receipt of a READ or READ 
FILE NAME message from the terminal.) After receipt of the start input CMD 
block, all subsequent input is assumed to be batch input until EOT is 
received from the terminal. At this time, the TIP reverts to processing 
input as interactive input until the next start input CMD block is sent 

" downline from the host. 

8 

60471160 A 8-1 



NOTE 

stream control CMD blocks are defined in section 6. 

Interactive output is generated by the host and sent to the TIP. All 
interactive output messages in queue are delivered to the line printer 
immediately following the completion of any active batch input or output 
file (EOT received or transmitted) or immediately followingEOT received on 
the interactive input stream. 

After outputting EOT to the terminal, a 3-second delay is initiated by the 
TIP. This allows any waiting input message to be sent upline before another 
output file can be started. 

Input takes precedence when contention exists between input and output batch 
data streams. An output printer stream takes precedence when contention 
exists between two batch output streams. This is the result of the 
printer's TCB being the first output device TCB in the terminal's TCB chain. 

OPERATIONAL FEATURES 
It can generally be assumed that INTERCOM interactive and remote batch 
features are functionally the same as the standard INTERCOM 4.5 release. 
Special job stream command formats and terminal operations are described 
below. 

REMOTE BATCH FACILITIES 

The following remote batch facilities protocols apply. 

EOR/EOI 

Only 7/8/9 and 6/7/9 end-of-record (EOR) and end-of-information (EOI) cards 
are required by CDC terminals. Since IBM readers treat multipunches in 
columns I through 7 as errors, EOI cards for type 2780 or 3780 terminals are 
punched as /*EOI in columns one through five. An EOR card is represented as 
/*EOR in columns one through five. 

A level number placed in columns 2 and 3 of the EOR card is supported. For 
punch output, the level number is punched in columns 2 and 3 of the EOR card. 

Binary Cards 

Binary card deck input or output is not supported by any terminal. 

026/029 Codes 

A 26 or 29 punched in columns 79 and 80 of the JOB CARD or EOR cards changes 
the input code translation for 2780 and 3780 terminals. Output for punched 
cards always uses 026 Code. 

8-2 60471160 A 



Transparent Data 

Transparent data assumes an 8-bit byte. Transparent input can be defined by 
either a READ, FILENAME, or MODE command, where mode specifies transparent, 
or by punching TR in columns 79 and 90 of the EOR card. Transparent mode 
ends on receipt of logical EOI (last card transmitted). /*EOI is not 
detected in the transparent mode. 

Transparent input data is written to rotating mass storage and is stored 
8-bits in l2-bit right-justified characters, with five characters per CYBER 
word. Neither code translation nor character expansion is performed. 

Transparent output is created by using parameters on the ROUTE control 
card. Transparent output is selected to be deliverd to the terminal using 
the DEFINE terminal command. (See INTERCOM reference manual.) Transparent 
output files are delivered to the terminal without performing any character 
compression, code translation, carriage control conversions, print line, or 
card blocking. 

Carriage Control 

Printer carriage control for batch output terminal printers is controlled by 
the first character of each line. The action taken by the 2780 and 3780 
terminals in response to INTERCOM control characters is summarized in table 
8-1. 

The suppress print file carriage control command is supported. The 
horizontal and vertical tab features are not supported. 

Interactive Carriage Control 

Standard INTERCOM carriage control characters are supported. These control 
characters are translated to equivalents when interactive output is being 
delivered to a 2780 or 3780 line printer. Control characters and their 
equivalents are shown in table 8-2. 

Punch Files 

Punch files are supported for the 2780 and 3780 terminals if a punch device 
is present. Punch files are specified by setting the forms code. INTERCOM 
recognizes the forms code and identifies the file to the 255x by the 
connection number. 

Output files to the punch are proceeded by a banner message (generated by 
INTERCOM) which generates a lace file separator card record with nulls in 
columns 1 through 70 and the job name in columns 71 through 80. The card 
record must not contain a carriage control character~ it can contain from 1 
to 80 characters. Short cards can optionally be punched with the BSC record 
separator in the last column for 2780 and 3780 terminals, by selection 
within the INTERCOM DEFINE command. 

Transparent mode output files can be sent to the punch. In this case the 
user is responsible for ensuring that all 80 columns are present. 

60471160 A 8-3 



TABLE 8-1. SUMMARY OF BATCH CARRIAGE 
CONTROL SYMBOLS 

INTERCOM Terminal Type 
Control 
Character 2780 3780 

1 Space 1 New Page 

+ Space 1 No space 

0 Space 1 Space 2 

- Space 1 Space 3 
)S Space 1 Space 1 

All others Space 1 Space 1 

TABLE 8-2. SUMMARY OF INTERACTIVE CARRIAGE 
CONTROL SYMBOLS 

INTERCOM 2780/3780 Terminals 
Control 
Character Before After 

1 Skip to Top Space 1 
of Page 

* Skip to TOp Space 1 
of Page 

+ 2780-Space 1 
3780-No Space 

0 Space 1 

- Space 2 Space 1 

Blank Space 1 

Compression/Expansion 

Compressed data from the terminal is expanded to the standard SCOPE file 
format before the record is written to disc. Conversely, data read from an 
output file is compressed before transmission to the terminal. Both 
compression and expansion are performed by the TIP. The methods differ for 
the two terminal types: 

• 2780: Trailing blanks for input nontransparent card data are 
suppressed. The end-of-card is indicated using the standard SCOPE 
file format. Trailing blanks are not transmitted to the printer or 
punch except in the transparent mode. 

8-4 60471160 A 



• 3780: Nontrailing blanks are expanded for input nontransparent card 
data. Trailing blanks are suppressed and the end-of-card is 
indicated the standard SCOPE file format. Output nontransparent data 
has all blanks compressed whenever possible. 

TERMINAL FEATURES 

The following features of the 2780/3780 devices are supported: 

Feature 

Character set 

Horizontal format control 

EBCDIC transparent mode 

Multiple record feature 

Space compression/expansion 

Print line width 

Punch/component selection 

Line speeds 

Printer character set 

Multi-point 

Terminal ID 

Conversational mode 

Processor interrupt 

Multiple cards in 
transparent mode 

OPERATIONAL CHARACTERISTICS 

2780 

EBCDIC 

No 

Yes 

Yes 

N/A 

80-105 

Yes 

2000-9600 bps 

EBCDIC 63 

No 

Accepted but 
not checked 

Not used 

Not used 

Yes 

3780 

EBCDIC 

No 

Yes 

N/A 

Yes 

80-105 

Yes 

2000-9600 bps 

EBCDIC 63 

No 

Accepted but 
not checked 

Not used 

Not used 

Yes 

Each terminal can be operated in the nontransparent mode. If the terminal 
supports the feature, the terminal can also operate in the transparent 
mode. The operational characteristics of each terminal for transparent and 
for nontransparent modes are described below. 

2780 Input Nontransparent Terminal Mode 

Commands are entered one per card. Commands can be stacked in the card 
reader only if an ETX is punched as the last column of each command. 
Commands can be input without an ETX punched in the last column only if a 
single command is placed in the reader and if the EOF toggle switch on the 
terminal is ON. 

60471160 A 8-5 



The last command entered before an input file or job deck must be either a 
READ or a READ, FILE NAME. The job deck or input file can be stacked 
directly behind the READ or READ, FILE NAME command if the ETX is punched in 
the last column. If the ETX is not included, the command must be entered 
separately from the input file or job. 

The first card of batch input is assumed to be a job card. It is 
interpr~ted by the TIP. Batch input can be terminated in one of three ways: 

• A /*EOI in columns 1 through 7 

• An ETX in the last column of the last input card (can be first column 
of a separate card) 

• Input of the last card with the EOF toggle switch ON. 

Note that if ETX is used to terminate a job, another job cannot be stacked 
directly as the TIP treats the next input after an ETX/EOT as interactive 
input. 

The TIP does not distinguish between batch input initiated by a READ or 
batch input initiated by a READ, FILE NAME. However, the following rules 
apply for INTERCOM even though no special checks are made in the TIP. If 
the data transfer was initiated by a READ command, multiple jobs can be 
stacked in the reader with each job terminated by /*EOI. Multiple /*EOI 
cards between jobs are discarded by the TIP. The first non/*EOI card is 
assumed to be the job card for the subsequent job. If the data transfer was 
initiated by a READ, FILE NAME command, only one file can be stacked in the 
reader. Subsequent input must be initiated by a new READ or READ, FILE NAME 
command. 

2780 Input Transparent Terminal Mode 

If the 2780 terminal has the transparent option~ data can be input with the 
transparent switch ON. 

Each command must be entered separately with the EOF toggle switch ON, as 
ETX is not recognized in this mode. 

Each card input causes a full 80 characters to be transferred to the NPU and 
each card is transferred upline to the host as a separate transmission 
block. Operation in this mode is less efficient than in the nontransparent 
mode. 

All other characteristics are the same as in the nontransparent terminal 
mode. 

8-6 

NOTE 

This mode should not be confused with the transparent data 
feature initiated by a TR optional parameter in the READ, 
FILE NAME command or by placement of a TR in columns 79 and 
80 of the EOR card of a card deck. These modes are described 
below under the input transparent data mode heading. 

60471160 A 



3780 Input Nontransparent Terminal Mode 

The operational characteristics of the 3780 terminal with respect to card 
input are the same as those described for the 2780 except: 

• EXT can not be punched in a command card or as the last card of an 
input job or file to terminate input. 

• Each command card (interactive input) must be input separately with 
the EOF toggle switch ON. 

• Multiple jobs can be stacked in the reader separated by /*EOI cards, 
but the last card must be input with the EOF toggle switch ON. 

3780 Input Transparent Terminal Mode 

If the 3780 terminal has the transparent mode option, data can be input with 
the transparent switch ON. 

The operational characteristics in this mode are identical to the 
nontransparent terminal mode. However, there are differences in line 
efficiency and number of blocks transmitted. Each card input causes all 80 
characters to be transmitted across the communication line; that is, 
trailing blanks at the end-of-card are not suppressed, and embedded strings 
of blanks and zeros are not compressed, as in the nontransparent mode. 

Input Transparent Data Mode, 2780 and 3780 

The TIP provides another mode of inputting the batch data for both 2780 and 
3780 terminals, if the data is being sent to the host without translation. 
This mode of input is specified only when the terminal is operating in the 
transparent mode. Three methods are provided to enter the transparent data 
mode: 

• For local input files, an optional parameter TR is included as part 
of the READ, FILE NAME command. 

• TR is included in columns 79 and 80 of the INTERCOM job card for 
normal input jobs. 

• TR is included in columns 79 and 80 of the INTERCOM EOR card. 

When TR is specified, none of the following data is translated. The data is 
stored as 8-bit characters. Since no EOR (7-8-9 punch) is recognized in 
this mode, a file must be terminated using the EOF toggle switch. 

Transparent 8-bit characters are stored in the physical record unit block 
(PRUB) without marking the record boundary; such as the 80-column card 
boundary. A BSC transparent transmission block can contain single records 
that are terminated by DLE ETB or multiple records with each record 
separated by an OLE ITB (OLE ITB and OLE ETB are not stored in the PRUB). 
The 3780 also has an optional feature to input four fixed length 
80-character records in each transmission block. This feature is not 
specifically supported by the TIP. If the feature is used, 320 characters 
are stored in the PRUB for each transmission block received. 

60471160 A 8-7 



If any case, characters are stored as received in the PRUB blocks without 
regard to record or transmission block boundaries. Transmission blocks are 
split across PRUB boundaries and input continues to be stored until ETX is 
received. 

In any case, characters are stored as received in the PRUB blocks without 
regard to record or transmission block boundaries. Transmission blocks are 
split across PRUB boundaries and input continues to be stored until ETX is 
received. 

2780 Output Nontransparent Transmission Mode 

Output streams can be directed to either the line printer or the terminal 
card punch, where applicable. The host software determines which device is 
to receive the output. The output to each device is controlled by separate 
connections. 

The TIP accepts PRUB blocks from the host and converts the data from display 
code to external EBCDIC code and formats print lines into BSC transmission 
blocks for output. Each transmission block is made up of multiple print 
lines (records) where the number of lines is either two or seven, depending 
on the terminal option defined to the system. In any case, the transmission 
blocks cannot exceed 400 characters. Print lines are never split across 
transmission block boundaries. 

The first character of each print line in the PRUB block is an INTERCOM 
carriage control character1 it is translated to BSC printer carriage control 
as defined in table 8-1. The algorithm used for the conversion is shown in 
table 8-3. 

Most carriage control operations performed by the TIP can be suppressed by 
use of the INTERCOM SUP (suppress) command. If this option is used, the 
host sets the suppress field in the TCB. The first character of each print 
line is discarded (no specific carriage control characters are transmitted 
to the terminal7 a space 1 after print occurs automatically). 

A P carriage control character followed by an M character activates the 
standard INTERCOM feature for embedding an operator message (print message) 
within the print file. For the 2780, the print line following the PM is 
printed on the line printer, preceded by and followed by a skip to top of 
page carriage control. Output to the printer then stops and the host is 
notified of the condition by an upline break CMD block. The TIP then allows 
interactive input from the card reader. printing will not resume until 
commanded by the host. 

The printer line width can be defined for a terminal as any value from 50 to 
150 characters by use of the INTERCOM DEFINE command after login. The host 
changes the TIP's terminal line width by sending a reconfigure TCB SM with 
the appropriate FN/FV pair. (See section 3 and table E-7, BSPGWIDTH.) The 
default line width is set to 144 characters. Characters in a PRUB block 
print line, in excess of the PRUB block print line length, are printed on 
the next line. Trailing blanks for short print lines are not transmitted to 
the terminal. 

8-8 60471160 A 



TABLE 8-3. 2780 BATCH CARRIAGE CONTROL ACTION 

Interactive 
DBC 
Codet 

o or 1, 8, 9 

2, 10 

3, 11 

4, 12 

5, 13 

All Others 

Control 
Character 

1 

+ 

o 

All Others 

tSee section 6, DBC. 

INTERCOM 
Batch 
Carriage 
Action 

New Page 

Space 1 

No space 

Space 2 

Space 3 

Space 1 

TIP Action 

Transmits null line with skip to 
channell, then transmits the 
output line with the automatic 
space after print. 

No special action - a space 1 
after print occurs automatically. 

No special action - a space 1 
after print occurs automatically 
and cannot be suppressed. 

Transmits null line which causes 
an automatic space, then 
transmits the output line with 
an automatic space 1 after print. 

Transmits null line with space 2 
carriage control character, then 
transmits the output line which 
automatically spaces 1 after 
print. 

No special action - a space 1 
after print occurs automatically. 

Transfer of an output data file to a printer or a punch normally continues 
either until completion or a failure occurs. A method of interrupting an 
output stream allows for receiving interactive input commands that might 
change the disposition of the output stream. The method, called 
"intervene", may differ operationally for type 2780 and 3780 terminals and 
emulators of these terminals. 

In general, making the printer not ready causes a timeout for approximately 
30 seconds. Then input from the card reader is allowed. Making the printer 
ready before the timeout has expired causes continuation of the output 
file. In some cases, several print lines will be duplicated. The timeout 
period is a function of the terminal itself. The period is usually 
extendable by pressing the PRINTER STOP key again. 

In any case, an EOT received from the terminal as a response to an output 
block causes that output stream to be stopped, allowing input from the card 
reader. 

60471160 A 8-9 



Card punch output data is processed by the TIP in a manner similar to print 
output data, except that the first character of each card (BSC record) is 
treated as data instead of carriage control, and each record must be 80 
characters or less in length. Characters within the PRUB record in excess 
of 80 characters or less in length. Characters within the PRUB record in 
excess of 80 are punched on the next card. An option is provided to punch 
an EM character as the last character in each card that contains fewer than 
80 characters of data. This option can be specified by an INTERCOM DEFINE 
command; which causes a reconfigure TCB SM to be sent to the TIP. The 
default value is set for no EM character (BSEM = 0). 

2780 Output Transparent Transmission Mode 

Output to a terminal is normally transmitted as nontransparent transmission 
blocks. If the terminal contains the transparent mode optional feature, 
data is output in the transparent transmission mode only if the data file 
being output is specified as transparent. Transparent data files are 
designated to INTERCOM by parameters within INTERCOM ROUTE command. 
INTERCOM marks the data file as transparent in the DBC field of each PRUB 
block of the file. 

In transparent mode, the TIP processes transparent output blocks differently 
than nontransparent blocks. PRUB block characters are output as 
transmission blocks without code conversion and carriage control 
transforms. Characters are taken from the PRUB to make up transmission 
blocks without regard to record markers (FF16 character) or to the PRUB 
boundary. Characters are transferred from the PRUB to the transmission 
block until the transmission block is full or until the last character of an 
EOR or EOI PRUB has been transferred. An EOI PRUB terminates the file. An 
EOR PRUB terminates only the transmission blockJ the following transmission 
to the terminal continues with the next PRUB block from the host and a new 
transmission block. 

3780 Output Nontransparent Transmission Mode 

Output to the 3780 terminal functionally provides the same capabilities as 
with 2780 terminals. The internal processing differences are as follows: 

• The number of print line records or card records is not limited to 2 
or 7. The number of records included in a transmission block is 
limited only by the transmission block size. This is normally 512 
characters, but can be configured to any size. Records cannot be 
split across transmission block boundaries. 

• Output to the 3780 follows the rules for data compression for that 
terminalJ that is, multiple blanks are compressed. 

• Short records (print lines or cards) are terminated by the EBCDIC IRS 
character. Trailing blanks are transmitted if contained in the PRUB 
record. 

• Carriage control for 3780 printer output is designed to be directly 
compatible with Mode 4 terminal carriage control. The algorithm used 
by the TIP for conversions from INTERCOM carriage control characters 
to 3780 carriage control is shown in table 8-4. 

8-10 60471160 A 

r 
\ 



TABLE 8-4. 3780 BATCH CARRIAGE CONTROL ACTION 

Interactive 
DBC 
Code 

0, 9 

4, 12 

All Others 

Control 
Character 

1 

+ 

o 

All Others 

INTERCOM 
Batch 
Carriage 
Action 

New Page 

Space 1 

No space 

Space 2 

Space 3 

Space 

DIRECT CALLS TO THE BSC TIP 
The BSC TIP can be called by: 

TIP Action 

Transmits null line with skip to 
channell, then transmits the 
line with suppress space after 
print carriage control. 

Transmits a blank line with 
space 1 after print carriage 
control followed by the text 
line with suppress space 
carriage control. 

Transmits the line with suppress 
space after print carriage 
control. 

Transmits a blank line with 
space 2 after print carriage 
control followed by the text 
line with suppress space 
carriage control. 

Transmits a blank line with 
space 3 after print carriage 
control followed by the text 
line with suppress space 
carriage control. 

Transmits null line with skip to 
channell, then transmits the 
line with suppress space after 
print carriage control. 

• Any other program using a 3-word standard TIP worklist. Worklists 
are queued to PTIP780. The monitor passes control to the TIP with a 
single worklist attached. PTIP780 is the principal switch for the 
TIP. (See BSC TIPTREES, appendix G.) The switching procedure is 
based on the workcode in the worklist (lower half of word 0 of the 
worklist). The principal users of this call are as follows: 

60471160 A 

Internal processing, to process downline data blocks and commands. 

The service module, to set up line and terminal changes, and so 
forth. 

8-11 



The TIP's own input state programs, to process special conditions in 
input blocks, and to continue input processing on the OPS-level. 

The multiplex subsystem, to have the TIP process special conditions 
such as terminal failure or CLA status. 

• Internal processing, by switching to the page and address of the BSC 
text processor (PTTP780). Text processing is done at the same time 
as the output message is converted from PRUB format to BSC terminal 
format. Control then returns to internal processing which 
subsequently calls the TIP with a worklist so that the TIP can 
prepare the text processed block for output transmission to the 
terminal/device specified. 

• SVM, to build the TCB. This is the direct call to PTTCB780 to finish 
building the TCB and to chain the TCB to the other TCBs in this 
line's TCB chain (priority: card reader, then printer, then punch -
if any). 

Note that there is no multiplex level 2 call to this TIP. The input state 
programs are written to call the OPS-level TIP, if any major error 
processing is to be performed by the TIP. 

DIRECT CALLS FROM THE BSC TIP 
The BSC TIP uses the following routines: 

• Buffer handlers: PBRELZRO, PBRELCHN, PBRELlBF, and PBGETlBF to 
release or to assign buffers. PBCLR is used to clear space in 
assigned buffers. 

• PTREGL is called to determine whether input is to be accepted, or 
whether data from the terminal is to be rejected. All four 
regulation checks are used. See section 6, PTREGL. 

• PTTPINF is used to called the firmware text processing programs. 
Control returns directly to the TIP after text processing is 
completed. 

• PBPROPOI is called to set up output block parameters where the TIP is 
searching for the next block to process. 

• PBPOPOI is called to acknowledge the block that has been sent to the 
terminal. 

• PBPIPOI is called to prepare the upline block for the host. This 
relieves the TIP of the conversion to PRUB formatting task. 

• 

• 

8-12 

PBCOIN is called to cause the command driver to prepare a BSC line 
for input/output for transmitting a message or for shutting down a 
line. The BSC protocol requires sending acknowledgment messages to 
the terminal. 

PTCOMMAND is called to generate and send dat.a stream control CMD 
blocks to the host. See CMD block formats in section 6. 

60471160 A 

( 



• BLTIMTBL is called to set up timed functions and to clear timeout 
counters when the expected event occurs within the allowable period. 

• PBLSPUT is called to prepare worklist calls to the service module 
(for instance, to report that a TCB has been deleted), or to call 
itself after marking a line down. 

ERROR PROCESSING 
Lower level error processing takes place on 
problem can be corrected on that level, the 
notification that a problem error existed. 
worklist entry is made. The SVM also sends 
processing worklists are: 

the firmware level. If a 
OPS-level TIP does not receive 
If this cannot be done, a 
error type entries. The error 

• Disable or disconnect line (from the SVM) or hardware error (from the 
multiplex subsystem). BRINGLINEDOWN notifies the command driver to 
deactivate the line, and the service module that the line has been 
deactivated. Any transmission in progress is aborted. 

• Timeouts. BRINGLINEDOWN deactivates the line and the TIP checks for 
any task that can be started on another line. 

• Received bad or error data blocks during input. The host is notified 
that the input has been stopped and the terminal is sent an 
end-of-transmission (EOT) message. 

• Received NAK or WACK blocks indicated an error condition. A variety 
of actions are taken depending on the situation. An EOT may be sent 
to the terminal to abort the transmission. 

AUTORECOGNITION 
The BSC protocol uses autorecognition as a means of showing that the 
terminal is operational. A worklist entry is made to SVM indicating this. 
This routine also handles the preliminary autorecognition for the HASP TIP. 
A worklist entry is made for the HASP TIP. 

60471160 A 8-13 



( 



ASVNCHRONOUS(TT~TIP 

The Term~nal Interface Package (TIP) for Mode 3 terminals provides a set of 
procedures for the interchange of interactive data between the host 
processor and Mode 3 terminals. The Mode 3 terminals can be Teletype (TTY) 
or teletypewriter compatible terminals. These terminals customarily use 
ASCII code. 

The TTY TIP supports single terminals switched or dedicated asynchronous 
lines at speeds of 110, 150, 300, 600, 1200, 2400, 4800, and 9600 baud. The 
lines are considered to be half duplex; that is, the TIP can be transmitting 
or receiving on a given line, but not doing both simultaneously. The TIP 
can be considered to be in transparent mode at all times. No code 
translation or parity check is performed on data characters that are input 
from the terminal. Data characters that are output to the terminal are 
output as received from the host, with the exception of the character parity 
bit which is complemented, when necessary, so that all output characters 
have even parity. 

All characters (both input and output) are passed between the host and 
terminal in full 8-bit form, without code translation or parity generation 
and checking. An input message is sent in one or more blocks. The maximum 
size of an input BLK or MSG block is controlled by a program build parameter 
(up to 2047 characters). If the message length exceeds the maximum block 
size parameter, all but the last block are BLK blocks. The last block is a 
MSG block. Where message length is less than maximum block size, the single 
block sent is a MSG block. 

OPERATING MODES 
The TIP operates in either interactive (keyboard) mode, or tape mode (paper 
tape reader/punch or magnetic tape cassette). 

INTERACTIVE MODE 

In interactive mode, the TIP interfaces the network to a Teletype/TTY 
compatible device for either input or output. The interactive mode 
processes input from a TTY keyboard or processes block mode characters from 
a TTY compatible device where the characters are received at line speed. 

In interactive mode, the TIP operates in half-duplex fashion with three 
basic states: idle, input, and output. Table 9-1 shows the events that 
cause a change of state. Note that input messages are one logical line in 
length; that is, a carriage return places the TIP in idle state. Output 
messages can be any length that is acceptable to the terminal. For this 
reason, stream control commands are not needed for interactive mode messages. 

9 

60471160 A 9-1 



Current 
State 

IDLE 

IDLE 

INPUT 

INPUT 

INPUT 

IDLE 

OUTPUT 

OUTPUT 

TAPE MODE 

TABLE 9-1. TIP STATE TRANSITIONS, INTERACTIVE MODE 

Stimulus 

Input of any 
character except 
CR, LF, or pad 
(FF or 7F16) 

Input of CR, LF, 
or pad 

End of message, 
CR 

LF + 100 ms 
without another 
input 

Any character 
but regulation 
conditions exist 

Output message 
queued to TCB 

No more messages 
queued to any 
TIP TCB 

Input of any 
character 

New 
State 

INPUT 

IDLE 

IDLE 

IDLE 

OUTPUT, 
THEN 
IDLE 

OUTPUT 

IDLE 

INPUT 

Other Actions 

TIP (using output state programs) 
accepts the message unless 
conditions for regulation exist. 

Character is discarded (LF is 
echoed for a single CR) • 

TIP sends LF to terminal if no 
other character is input within 
100 ms. 

TIP outputs a CR. 

TIP breaks input message, 
discards characters, notifies 
the multiplex subsystem. 

1. Character is discarded. 

2. Current output message is 
terminated. Message block is 
requeued at top of TCB's 
output queue. 

In tape mode, the TIP interfaces the network to a tape reader (paper tape or 
tape cassette). Table 9-2 shows the events that cause the TIP to change 
between input, idle, and output state in tape mode. Note that the tape mode 
requires two stages. The first stage places the TIP in tape mode so that 
the TIP can send the X-ON messages to start tape motion on the reader/punch 
or magnetic tape. The second stage reads the messages. An X-OFF character 
always stops tape mode. This also places the TIP in idle state. When a 
block size of 256 is reached, the next CR causes a BLK to be sent to the 
host. This prevents flooding the NPU with input data. 

9-2 60471160 A 



Current 
State 

IDLE 

TABLE 9-2. TIP STATE TRANSITIONS, TAPE MODE 

New 
Stimulus State Other Actions 

Start input CMD INPUT l. TIP sends X-ON (1116) to 
on tape (tape tape reader. 
connection mode) 2. CR delimits message blocks. 

INPUT 
(tape 
mode) 

X-OFF IDLE TIP now ready for keyboard data. 

INPUT 
(tape 
mode) 

IDLE 

OUTPUT 

Any character 
but regulation 
conditions exist 

Output message 
queued to a 
punch TCB 

OUTPUT 
then 
IDLE 

OUTPUT 

IDLE 

Message is rejected. Multiplex 
subsystem is notified of 
regulation. 

TIP delivers message. 

TIP checks for more queued X-OFF in 
output block data. Another tape or inter­

action message queued for output 
can immediately place TIP in 
mode again. 

Two block stream control messages are used in tape mode (section 6, CMD 
blocks): 

• Start input. This downline message from the host has the format: 

DN SN 

DN - NPU ID 
SN - Host ID 

CN BT = 4 

CN - Connection for this TCB 
BT - 4 (CMD) 

PFC = 01 SFC 

PFC 01 - Start input, send X-ON to terminal to start tape motion 
SFC - Not used 

• Input stopped. This upline message results from an X-OFF byte in the 
incoming message. Format is: 

DN SN 

DN - Host ID 
SN - NPU ID 

CN BT 4 

CN - Connection for this TCB 
BT - 4 (CMD) 
PFC - 03 - stopped input 

PFC 03 

SFC - 00 - normal reason: X-OFF detected. 

60471160 A 

SFC = 00 

9-3 



CARRIAGE CONTROL FOR OUTPUT MESSAGES 
The carriage control for interactive TTY terminals is defined by the data 
block clarifier (DBC) character received from the host. The DBC is the 
fifth byte of a data block. (See section 6.) Only the least significant 
four bits of the DBC are used by the TIP to determine the carriage control 
character sequence. The carriage control character sequence is sent to the 
terminal. prior to the first character in the output message block. 

The carriage control commands are shown in table 9-3. 

The number of line feed characters in the character sequences is decremented 
by one (described in table 9-3) if the following occurs: 

• The line feed count in the sequence is nonzero. 

• A line feed was the last character sent to the terminal in response 
to a carriage return received from the terminal. 

• The system parameter GOLFSTRIP is a 1. 

DIRECT CALLS TO TTY TIP 
The TTY TIP can be called by the following: 

• Any other program, using a 3-word, standard TIP worklist. Worklists 
are queued to PTTYTIP. The monitor passes control to the TIP wi.th a 
single worklist attached. PTTYTIP is the principal switch for the 
TTY TIP. (See TTY TIP trees, appendix G.) The switching procedure 
is based on the workcode in the worklist (lower half to word 0). The 
principal users of this call are: 

Internal processing to process downline data blocks and commands. 

The service module to set line and terminal changes. 

The TIP's own input state programs to process special conditions 
in input messages, or to continue processing the input block at 
OPS-level. These include special calls to process CR, LF, 
autorecognition, and X-OFF messages. 

The multiplex subsystem to have the TIP process special error 
conditions. 

The timing system for events that have timed out (processing 
resumes at the saved address), or for periodic calls to check for 
input from terminals. 

The multiplex subsystem at mux level 2. PTTTYMUX2 converts this 
mux level 2 worklist to an OPS-level worklist. 

• SVM, to build the TCB. PTTYTCB sets interactive mode. 

• Timing related calls handled by PTMSQUE (100 ms timer), PTMSCAN (100 
ms timer) for the active TTY LCBs, and PTDELMS to delete periodic 
timing entries. 

9-4 60471160 A 

\ 

\ 



TABLE 9-3. CARRIAGE CONTROL FOR TTY OUTPUT MESSAGES 

DBC Character Sequence at Terminal 

0 CR, LF 
1 CR, 3LF 
2 CR, LF 
3 CR, LF 
4 CR 
S (Nothing) 
6 CR, LF 
7 CR, LF 
8 CR, LF, 4 nulls 
9 CR, 3LF, 4 nulls 

10 CR, LF, 4 nulls 

11 CR, LF, 4 nulls 
12 CR 4 nulls 
13 4 nulls 
14t CR, LF, 4 nulls 
1St CR, LF, 4 nulls 

tCE error message generated by TIP for invalid DBC received from host. 

DIRECT CALLS FROM THE TTY TIP 
The TTY TIP uses the following routines: 

• Buffer handlers: PBGETlBF, PBRELlBF, PBRELCHN, and PBRELZRO to 
assign and release buffers. 

• PTREGL is called to determine whether input is to be accepted from 
the terminals. Only three of the four possible input checks are 
used: the available block limit check is not made. (See section 6, 
PTREGL.) If regulation is in effect, the message is rejected. A 
break message is sent to the terminal. Later, the terminal is forced 
into output mode, and still later to idle mode. After two seconds in 
idle mode, the TIP gains control to end regulation. If a new message 
is waiting to be input, regulation can be reset immediately if the 
conditions for regulation have not disappeared. 

• PBPROPOI is called to set up output block pointers when the TIP is 
searching for the next output block to unqueue and process. 

• PBPIPOI is called to send the upline block to the host. 

60471160 A 9-S 



• PBCOIN is called to cause the command driver to prepare a TTY line 
for transmission, to shut down a line, or to transmit a message to a 
TTY terminal. 

• PTSVILCB is called to suspend processing until an event occurs. 

• BLTIMTBL is used to set up timed functions or to clear timeout 
counters when the expected event occurs within the allowable period. 

• PBLSPUT is called to generate worklist calls to the TTY TIP itself or 
to the service module (notify host of line failure, report 
autorecognition parameters, etc). 

• PTCOMMAND is called to generate the data stream control CMD block 
(X-OFF) that is sent upline for tape mode. 

• PNCEFILE is called to generate a CE error message for the host's 
engineering file. 

• PBRETOPS returns control to the monitor. 

ERROR PROCESSING 
Lower level error processing takes place on the input state program level. 
If the error is resolved, the OPS-Ievel TIP does not receive any 
notification of the problem. Otherwise, an OPS-Ievel worklist comes to the 
TIP from the following sources: 

• Disable line/delete TCB (from SVM) or hardware errors (from the 
multiplex subsystem). Both types of these cause PTTYHANGUP to abort 
the current transfer (if any), and cause the line to be marked down. 

• Framing errors from the multiplex subsystem cause the TIP to send a 
delimiter back to the multiplex subsystem. 

AUTORECOGNITION 
The TIP automatically performs baud rate recognition for lines that have 
been configured as switched auto-baud by the host. Baud rates are 
recognized up to 1200 baud (except 600). After the terminal has been dialed 
in, the operator must enter a carriage return character as the first 
character to enable the TIP to determine the baud rate. 

9-6 60471160 A 



MODE 4 TIP 

The Mode 4 terminal interface package (TIP) provides procedures to convert 
data from synchronous terminals using Mode 4 protocol to data that is 
compatible with the host's initialize or batch formats. There are three 
versions of the protocol: 

• Mode 4A supports a group of devices such as console, printer, and 
card reader. 

• Mode 4B supports a console. 

• Mode 4C supports several consoles. 

The TIP also handles the necessary interface control tasks. 

HARDWARE CONSIDERATIONS 
Some of the hardware considerations for Mode 4 are the following: 

10 

• Terminal types: a typical Mode 4A terminal is the 200 User Terminal 
consisting of a keyboard, a display (CRT), a card reader, and a 
printer. This terminal has both interactive and batch devices, and 
uses a single line. 

• Cluster capabilities: the Mode 4 terminal can be a cluster of 
several devices of the same types, such as a group of consoles or a 
group of printers. The TIP services multiple terminals in sequential 
order, without priority. However, the individual batch devices (card 
reader and printer) in a Mode 4A cluster terminal are subordinated to 
the interactive device. A batch transfer using such a device is 
preempted by an interactive device transfer. 

• Line speed: the TIP supports line speeds up to 19200 baud. 

• Line type: Lines are of two types: dedicated without a transceiver, 
or dial-up with a modem. Lines are considered to be half duplex. 
The TIP either transmits data over the line or receives data, but 
does not do both simultaneously. 

• Terminal codes: The TIP supports terminals that use either ASCII or 
external BCD code. 

TIP FUNCTIONS 
The TIP performs the following major functions: 

• It interfaces terminal protocol (some variation of Mode 4 protocol) 
to host protocol (usually display code/PRUB format for batch devices, 
ASCII code for interactive devices). 

60471160 A 10-1 



• 

• 

The TIP simultaneously controls several transfers to terminals on 
different lines. Each Mode 4 line can have several messages waiting 
for transfer. Information for controlling a transfer is contained in 
a worklist entry (WLE). The WLE is attached to the terminal control 
block (TCB) for the appropriate terminal on that line. The TIP must 
have an active TCB for each potentially active terminal device on the 
line (each terminal in a cluster must have at least one TCB). If a 
terminal device has a task in progress, additional tasks are queued 
to its TCB in the form of more worklist entries. One terminal cannot 
interrupt the active transfer on another terminal, but an interactive 
device on one terminal can interrupt the batch device on the same 
terminal. 

At the multiplex interface, most of the terminal transfer functions 
(such as finding the next character on output, placing it in an 
output frame, and passing the frame to the output control loop) are 
performed by the multiplex subsystem. The TIP specifies the data 
location on output; on input the mux-1eve1 (input state programs) TIP 
demu1tip1exes data under the control of the input data processor 
(part of the multiplex subsystem). The OPS-level TIP must specify 
the first of the series of state programs to be used to input the 
data to the command driver. For many output transfers, processing 
the entire block of data is handled within the firmware level text 
processing state programs. For both input and output operations, the 
TIP again gains control to terminate the data transfer or to process 
an unrecoverable transfer failure. 

It provides a transparent mode of passing terminal data to and from 
the host. In transparent mode, the host application program that 
receives or originates the data is responsible for handling all data 
interpretation, including control characters. 

• It converts external BCD code to and from display code (or ASCII) 
where necessary. 

• It polls terminals to solicit upline data or to ensure that the 
terminal is ready to accept downline data. The host requests the 
polling; the TIP controls actual timing of the polling. 

• It resolves all contention between devices and controllers on a line 
and reports to the host any condition that has stopped an active 
connection except those caused by host command. 

• It processes autorecognition to gather terminal configuration data 
for the host. Autorecognition cannot be performed on lines that have 
multicluster terminals. 

• It toggles between read and write modes for interactive terminals. 

• It processes unrecoverable errors in data transfers and reports the 
failure to the host. The TIP also processes terminal and line 
recovery in conjunction with the service module. 

10-2 

NOTE 

Considerable differences in terminology exist in Mode 4 
documents. Table 10-1 defines the terms used in this manual 
and in other Mode 4A and 4C documents. 

60471160 A 

( 
I 
1 
\ 



TABLE 10-1. MODE 4 NOMENCLATURE 

Nomenclature Mode 4 Mode 4C 
Used in This Nomenclature Nomenclature 
Manual 

NPU Data source Control station 
Cluster address Site address Terminal address 
Cluster controller Equipment controller Station 
Terminal address Station address Device address 

TERMINAL INTERFACE 
A summary of the Mode 4 block format is shown in figure 10-1. The TIP must 
perform transformations between the Mode 4 formats and the block protocol 
format used in host/NPU transfers. (See section 6.) The Mode 4 transform 
used depends on the type of terminal (Mode 4A or Mode 4C). Terminal type is 
determined by the configuration messages used to set up the TCBs for the 
terminal/device. Terminal type can also be automatically determined by the 
TIP and reported to the host by using an upline line status service message 
(autorecognition). 

TERMINAL ADDRESSING 

Terminals can have both terminal (TA) and cluster (CA) addresses. The 
permissible address ranges are given in table 10-2. 

MESSAGE TYPE INDICATORS 

The message type indicator (MTI) in a Mode 4 transmission block prepares the 
TIP to accept certain types of blocks in reply. The type of MTI code 
affixed to output data is a function of the format effector in character 
mode only. For transparent mode, MTI is always write. The MTI codes shown 
in figure 10-2 are in hexadecimal notation, exclusive of parity. 

E CODES 

For downline transforms, device selection is performed by E codes. The E 
code follows the text in the output block and must be appended to the output 
by the TIP. For upline transforms, E codes coming from the terminal 
indicate the responding device and also report status. Received E codes are 
stripped from the input data by the TIP. Table 10-3 shows the E codes, 
exclusive of parity. 

CODE CONVERSION 
The TIP uses block protocol to transfer data to and from the host. (See 
section 6.) 

Code conversions between Mode 4 blocks and host blocks are as follows: 

60471160 A 10-3 



DATA BLOCK FORMAT ,(odd parity): 

TRANSMISSIJ(N HEADER TRANSMISS;PN TRAILER 
"' 

p P 
Sync SOH CA TA MTI TEXT ESC E Code ETX LPC A A 

I 
Transmit and 
receive at 
least 2 syncs 

o 1 

DN SN 

2 

CN 

I 
Mode 

I 
I 
I 
I 
I 

3 I , 
BSN I BT 

4 Transmission Block 

4 5 6 7 

DBC LV PAD PAD 

Block Format (NPU and Host) 

NON-DATA BLOCK FORMAT: 

Sync SOH I CA TA MTI ETX LPC 

Mode 4 Transmission Block 

Sync - Sync Byte = 16 

SOH - Start of header = 01 
ESC - Escape code~ external BCD = 3E16 , ASCII = IB16 
ETX - End of text = 03 

MTI 
E-Code 

CA 
TA 

- Message text indicator 
- Equipment code (table 10-3) 

- Cluster address (appendix C) 
- Terminal address (appendix C) 

D 
I 
I 

Text 

LPC - Longitudinal parity check - collects parity on bit·s 0-6 of all 

DN, SN, 

CN 

BSN/BT 

characters except sync bytes 

- Block header address 

- Block serial number/block type. BT for a data block must be 2 
or 3 

DBC - Data block clarifier 
PAD - Byte of alII's to ensure transmission of LPC by modem 

LV - Level - not used 

Figure 10-1. MODE 4 Protocol Message Formats 

D 

10-4 60471160 A 

( 
\. 

/ 



TABLE 10-2. MODE 4 TERMINAL/CLUSTER ADDRESSES 

Address Values 
Address Type 

200UT 711 714 

CA cluster address 70-7F 20-7F 20-7F 

TA terminal address t 6l-6F 

Cluster controller 60 60 

CRT/keyboard 61 

Printer 64 

t Bit 4 of the terminal address is the toggle bit. It is shown here as 
zero, but it can be a one. When the NPU transmits to the cluster, 
this bit changes with each succeeding output. If the output was 
correctly received by the cluster controller, the input response to 
the output carries the same value in the same bit position. 
Otherwise, the opposite value is carried in that position. 

MTI in Received Block 

MTI in 
Transmitted 
Block REJECT ACK ERROR READ 
(hexadecimal) 18 16 06 16 1516 1316 

05 Poll X X X X 
12 Clear write X X X 
OC Reset write X X X 
11 Write X X X 
07 Alert X X 
31 Configuration X X X 

POLL, ALERT, REJECT, ACK, and ERROR transmission blocks are non-data 
blocks, and have the following format: 

I SYNC I SOH I CA I TA I MTI I ETX I LPC I 

Figure 10-2. MTI Codes for Mode 4 

60471160 A 10-5 



TABLE 10-3. E-CODES 

TRANSMISSION MODE 
E Hexa-
Code decimal Write (Output) Read (Input) 

equivalent 

El 42 To CRT (text) • From CRT (text). 

E2 20 To printer (text) • From printer (no text) 1 
indicates possible error in 
printing last block. 

From card reader (text) 1 
indicates that card reading 
has stopped. 

E3 21 To card reader (no From printer (no text) 1 
text) 1 enables trans- indicates that last block 
fer of card buffer to is correctly printed. 
CRT buffer. 

From card reader (text) 1 
normal card data. 

E4 22 To CRT (text) 1 Not used. 
position to start 
index. 

• All data in interactive data blocks to and from the host uses ASCII 
code. The TIP does character conversion for BCD terminals. The 
ASCII to external BCD translation includes folding the lowercase 
letters into uppercase and substituting blanks for any control code 
(control codes are described later). Those BCD terminals having 
switch selection for internal or external BCD must have the switch 
set to external. No translation is performed by the TIP on 
interactive data to or from ASCII terminals. 

• All batch data blocks to and from the host use display code (internal 
BCD). The TIP does character-for-character conversion between the 
terminal code (external BCD or ASCII) and display code. For upline 
traffic from an ASCII terminal that has a 96-code character set, all 
lowercase characters are folded into uppercase display code 
characters. 

• 

• 

10-6 

Each byte, including the 
parity in bit 7. LPC is 
characters except SYNC. 
between the MTI and TEXT 
or reset write. 

longitudinal parity check (LPC) , has odd 
odd parity on bits 0 through 6 of all 
The TIP inserts 7 through 14 SYNC characters 
on all output where the MTI is clear write 

The TIP is not responsible for conversion to or from PRUB format for 
batch devices. This is done downline by PBIOPOI and upline by 
PBPIPOI. 

60471160 A 

/ 
i 
\. 



HOST INTERFACE 
The NPU transfers data to or from the host using block format. Three major 
types of transfer are defined, as follows: 

• Interactive interface (console keyboard and display) is usually 
conversational in nature and uses ASCII code. 

• Card reader (batch input) interface uses PRUB format upline and 
display code. 

• Printer (batch output) interface uses PRUB format downline and 
display code. 

INTERACTIVE INTERFACE 
The interactive interface supports display keyboards attached to Mode 4 
synchronous lines. The configuration can be multicluster1 each cluster can 
be multiterminal. The 200UT display is also supported by this interface. 
Additional logic resolves contention for the common buffer used by batch 
devices and the display/keyboard. 

The display is activated by delivery of the first output to the device. 
Polling begins following delivery of data to the terminal and continues 
until the terminal is deleted or fails. Polling is suspended to deliver 
output to the display, and during Mode 4A batch I/O operations. Polling 
resumes after completion of these conditions. 

Output has priority over input. If there is data in the output queue, the 
TIP builds a transmission block from multiple BLK blocks received from the 
host. The transmission block is transmitted to the terminal when either a 
MSG block is received or the transmission buffer is filled with BLK blocks 
from the host. If the last block delivered is a MSG block, polling is 
resumed. If the last block delivered is a BLK block, the TIP waits for more 
output1 it does not resume polling. The TIP inserts a new line character 
after each BLK block within the transmission block and inserts the 
appropriate number of blanks at the end of the last BLK or MSG to position 
the cursor at the beginning of the next line. 

Input received while in the interactive mode is sent to the host as a MSG 
block. 

CURSOR POSITIONING 

During receipt of input, the TIP calculates the horizontal position of the 
cursor on the CRT screen. This calculation includes positioning for the 
following: 

• Escape, carriage-return from any Mode 4 CRT. 

• New line code from any Mode 4C CRT. 

In either case the cursor is forced to the leftmost position on the next 
line. 

60471160 A 10-7 



!' 
I 

\ 

/ 

After input the TIP generates a write El block containing sufficient blanks \ 
to force the cursor to wrap around to the first position of the next line. 
To do this, the TIP needs the screen width. When the TCB is built, the 
screen width is initialized to the INTERCOM default value. The screen width 
parameter can be reset to any value by the downline reconfigure terminal 
service message. (See appendix C.) 

CARRIAGE CONTROL 

Interactive carriage control for each output line is based on the data block 
clarifier (DBC) in each data block. Valid codes for the Mode 4 terminals 
are shown in table 10-4. 

TABLE 10-4. DBC CODES FOR CARRIAGE CONTROL 

DBC Mode 4 

0 Clear write 
16 (1016) Clear write 
All other Write 

NOTE 

The TIP will automatically insert a Clear Write on the first 
output to a Mode 4A display after a batch input or output 
operation. 

UPLINE BREAKS 

The reason for break field appears in the upline input stopped CMD block 
when input is terminated by the TIP. Interactive input is terminated by the 
TIP for abnormal conditions only. The secondary function break codes that 
can be generated by the interactive interface are shown in table 10-5. 

Whenever an input stopped CMD block is generated on an interactive 
connection, any output queued for that connection is discarded. 

TABLE 10-5. BREAK CODES 

(PFC=3: Input Stopped) 
Secondary Function 
Codes (SFC) Meaning 

4 No response from 
terminal 

5 Bad response from 
terminal, unable to 
select 

6 Error response from 
terminal, unable to 
deliver 

10-8 60471160 A 



CONTENTION RESOLUTION 

For the 200UT, using the display causes the card reader and printer 
connections to send input stopped CMD blocks to the host. These inter­
~hannel interactions are intended to signal the use of the 200UT 
transmission buffer which is shared by the display, card reader, and printer. 

CARD READER INTERFACE 
The card reader is activated by sending a start input CMD block on the card 
reader connection. The TIP transforms card reader data into PRUB record 
format. Trailing blanks on each card are suppressed. Each block of data is 
sent to the host as a BLK block until an EOR (7/8/9 punch in column 1) or an 
EOI (6/7/8/9 punch in column 1) card is detected. A block containing EOR or 
EOI is sent to the host as a MSG block with appropriate flags set in the DBC 
header field. The EOR or EOI card is not included in the MSG block and 
multiple EOI or blank cards received after EOI are discarded. 

The data following the last EOI is considered part of the next message. 
This allows multiple messages to be stacked in the card reader. 

A file level number is taken from columns 2 and 3 of the EOR card, converted 
to a binary value, and placed in the level number field of the upline PRUB 
header. 

Columns 79 and 80 of the EOR and job card are not tested for either the 
026/029 option or TR (transparent), as neither feature applies to the Mode 4 
TIP. Even though the 026/029 option is supported by some Mode 4 terminals, 
the special character conversions are performed by the terminal and are 
transparent to CCI and INTERCOM support of the terminal. 

When card reader empty is detected by the TIP, an input stopped CMD block is 
forwarded to the host following the last PRUB block. The input stopped CMD 
block indicates a normal end (if the last card read was an EOI), or a break 
condition (if the last card was not EOI). Any partial PRUB is saved in CCI 
buffers. The host must inform the TIP of the desired disposition of the 
partial PRUB. A start input (resume) CMD block causes card reading input to 
continue placing data into the same PRUB: a stop input (terminate) CMD block 
causes the partial PRUB to be discarded. The card reader connection is then 
returned to the idle state. 

If the response to the card reader poll message contains an E code = El, the 
TIP sends the host an input stopped CMD block (PFC=3, SFC=2) to indicate a 
batch input interrupt has occurred. Other possible function codes for the 
input stopped CMD block are shown in table 10-5. 

Flow control for the upline PRUB is regulated by the downline BACK block 
from the host. The TIP temporarily suspends polling for card reader data if 
the previous PRUB block has not been acknowledged and one additional 
transmission block has been received from the terminal. Polling continues 
when the BACK is received for the outstanding PRUB. 

60471160 A 10-9 



TABLE 10-6. CARD READER INPUT STOPPED CMD BLOCKS 

(PFC=3: Input Stopped) 
Secondary Function 
Codes (SFC) Meaning 

00 CR empty, EOI received 

01 CR empty, No EOI received 

02 Batch interrupt 
03 Slipped card 

04 No response 

05 Bad response 

06 Error response 

PRINTER INTERFACE 
Output to the printer is activated by the host sending the first downline 
data block on a printer connection. The first block must be a MSG block in 
PRUB format and must be marked as a banner MSG in the DBC field. If the 
terminal is configured for the banner off condition, the MSG is discarded~ 
otherwise, the MSG is converted to the file identification banner page. 

Each subsequent PRUB is converted to output transmission blocks depending on 
the terminal code set and line width. If the print line taken from the PRUB 
is greater than the defined printer line width, the excess characters are 
automatically printed on the next line. 

The first character of each line is normally interpreted as a carriage 
control character according to table 10-7. The carriage control character 
is ignored and replaced by single space when the suppress carriage control 
is activated. This is done by sending a configure/reconfigure TCB service 
message with the suppress carriage control flag FN/FV set. 

The end-of-line character sequence is inserted 
any output transmission block except the last. 
appended to the end of each transmission block 
end-of-line sequence.) 

at the end of each line of 
(The E-code sequence is 

and takes the place of the 

The end-of-line control sequences inserted by the TIP are as follows: 

10-10 

Ter·minal Type 

BCD 
ASCII 

Hexadecimal 

3E50 
9B40 

Code 

ESCj6 
ESCa 

60471160 A 



TABLE 10-7. PRINTER CARRIAGE CONTROL CODES 

Display Code EBCD Code ASCII Code 

Function (hex) (char) (hex) (char) (hex) (char) 

New page lC 1 41 1 41 A 
New line 2D )S 50 )S 20 B 
Space 2 IB 0 4A 0 4A J 

No space 25 + BO + BO 0 

The TIP sends a BACK block for each PRUB received. 
for flow control only; it is sent upline to solicit 
block. Note that all lines of a PRUB block may not 
the terminal at the time the BACK is transmitted to 

The BACK block is used 
the next downline PRUB 
have been delivered to 
the host for that block. 

Output to the printer is always sent as a clear write MTI code. A response 
E-code of El or E2, received when polling for the printer, causes the TIP to 
send an output stopped CMD block to the host. The secondary function code 
of the CMD is 02 if El was received (batch interrupt). The SFC is 01 if E2 
was received (printer not ready). Any undelivered PRUB data will remain in 
CCI buffers until the host issues a restart output CMD block. This causes 
the file output to be resumed. If the host sends a stop output CMD block, 
all data is discarded and the printer returns to the idle state. 

The last PRUB block of an output file must be a MSG block. This does not 
cause an output stopped CMD block to be sent upline. This method is used to 
condition the TIP to expect a banner block as the next block. 

The possible secondary function codes for an output stopped CMD block for 
the printer connection are shown in table 10-8. 

TABLE 10-8. PRINTER INPUT STOPPED CMD BLOCKS 

(PFC=05: Output Stopped) 
Secondary Function 
Codes (SFC) Meaning 

00 

01 Printer not ready 

02 Batch interrupt 

03 PM message 

04 No response 

05 Bad response 

06 Error response 

60471160 A 10-11 



ERROR HANDLING 
The Mode 4 TIP handles three types of errors, as follows: 

• Short term errors in which an error counter is incremented and the 
operation is retired. 

• Long term errors in which the short term errors cannot be corrected 
so an unrecoverable error is declared and the I/O is terminated. 

Regulation due to running out of buffers for I/O transfers is discussed in 
the next subsection. 

SHORT TERM ERROR PROCESSING 

The TIP performs short term recovery for both input and output. The TIP 
retains three error counters, as follows: 

Error 
Counter 

1 

2 

3 

Type of Error 

No response: after transmitting to the terminal, a 
response timeout occurs - SOH is never received. 

Bad response: 

• Cluster address (CA) or terminal address (TA) does not 
correspond to terminal addressed by transmit block. 

• Invalid message type indicator. 

• Invalid or missing E-code. 

• ETX missing (over-length block or data carrier 
detected signal drops prematurely). 

• Character or longitudinal parity error. 

• Text in block which should not have text. 

Error response (indicates an error). 

Whenever any error occurs, the TIP increments the appropriate counter and 
retries the output/input sequence. If any counter reaches threshold value 
(currently set to five) in an attempt to complete a single transaction with 
the terminal, the TIP performs the long term error handling procedures and 
the send break subroutine generates a break message. The message is an 
upline input stopped CMD block or output stopped CMD block depending on the 
stream direction at the time the error occurred. The secondary function 
code in the CMD block indicates one of the following reason codes: 

10-12 

Reason for Break (RB 

04 
05 
06 

Description 

No response 
Bad response 
Error response 

60471160 A 

; 

\ 

\ 

( 
\ 



An error condition caused by terminal malfunction normally is reported 
separately on each active connection. 

If a TIP is unable to acquire sufficient buffers for an input block, any 
partial block is discarded and the terminal is polled again later. If the 
host is down, the terminal is not polled. 

LONG TERM ERROR RECOVERY 

After the TIP detects the abnormal terminal operation and sends the reason 
for break message to the host for all active connections (active indicates 
TIP is delivering data or polling for data), the TIP begins a failure mode 
polling cycle. The TIP polls the interactive device at a reduced rate where 
the rate depends on the number of terminals on a line and the system 
activity. No output is delivered while the TIP is in the failure mode 
polling cycle. If the TIP receives a good response to a poll, normal 
operation is restored. The TIP sends an input started CMD block (PFC=4, 
SFC=O) on the interactive connection. Any output in queue on the 
interactive connection is then delivered. 

HANDLING OF ERRORS FOR CDC 711 TERMINAL 

The toggle bit received from the 711 terminals is always the same as 
appeared in the previous write or poll message. This makes it impossible to 
determine whether data was correctly received by the 711 if the ACK or 
REJECT is garbled by transmission line noise. Therefore, the toggle bit of 
a poll message (which is ignored by all other Mode 4 terminals) is set to 
the value opposite to that which the terminal is expected to receive, 
assuming that the last message was correctly received by the terminal. 
Thus, if the TIP is polling a 711 for toggle state, and receives an 
unexpected toggle state, the TIP repeats the write message. This causes a 
duplicated output on the 711 display. The TIP cannot compensate for the 
loss of status information1 however, no output data is lost. (This 
procedure is also supplied for the Tektronix 4014 terminal which implements 
Mode 4 protocol without complying with the standard.) 

DUPLICATION OF WRITE DATA ON CRT 

Those terminals that do not have separate CRT and transmission buffers (such 
as the 200 UT) write output data directly to the CRT screen as it is being 
received. If the terminal detects an error in the block, it sends an error 
response, causing the TIP to resend the output. Because the cursor is not 
in the same place as it was when the original write was performed, the 
output block appears two (or more) times on the CRT screen. This is not a 
problem with reset write or clear write, which home the cursor before 
displaying the output data, and thus overwrite the bad block. 

INPUT REGULATION 
The Mode 4 TIP calls PTREGL to check if input should be solicited from the 
console or the card reader. All four possible regulation criteria are 
checked. (See section 6.) If none of the regulation causes are present, 
the console is polled or the card reader is set to receive input. 

60471160 A 10-13 



AUTORECOGNITION 
The host can request autorecognition for Mode 4 lines. This activates a 
procedure for determining the address and terminal that exists on the line. 
When the host configures the line, the TIP responds with the line enable 
response. If the line is dedicated, autorecognition begins. If the line is 
switched, the TIP waits until the ring indicator is present. 

Autorecognition begins with a cluster poll to determine the cluster address 
of the caller. The first poll is done at cluster address 7D16 to allow 
the caller to hear the audible tone and to allow the modem time to stabilize 
after the modem data switch is depressed. All cluster addresses are 
attempted at least twice before a failure is declared. The timeout for a 
nonexistent cluster is 1/2 to 1 second. 

Once the cluster address has been determined, the TIP checks for receipt of 
a read message. The terminal operator must press the send key on at least 
one of the displays. The read message contains an escape code which 
determines the code set in use by the terminal. Polling continues until the 
read message is received. For external BCD terminals, this completes 
autorecognition. For ASCII terminals, the configuration poll is sent to 
determine the configuration. If there is an error response or no response, 
the terminal is assumed to be Mode 4A. If a read response is detected, the 
terminal is assumed to be Mode 4C. 

The line status operational service message is sent to the host at the 
normal completion of autorecognition. This service message contains the 
following: 

Field Name 

TT 
CA 
TA 
DT 

Description 

Terminal type (table 
Cluster address 
Terminal addreSS} 
Device type 

C-2) 

for each terminal 
(see appendix E for 

more details) 

For all terminals the appropriate terminal type is reported as one of the 
following: Mode 4A external BCD, Mode 4A ASCII, or Mode 4C. The actual 
cluster address is also reported in the range 70-7F16. 

For the Mode 4A external BCD or Mode 4A ASCII, three terminals are 
reported: These describe the console, the card reader, and the line 
printer. The terminal address for all three terminals is 6016. 

The configuration request terminal feature is used for Mode 4C terminals to 
determine the terminal addresses (TA) and device types (DT). Only the 
consoles are reported, with addresses ranging from 6116 to 6F16. 

The printer device code for a Mode 4C impact printer is 27 the device code 
for a Mode 4C non-impact printer is 4. The TIP sends the host a line status 
operational service message for autorecognition. Format of the message is: 

10-14 60471160 A 

/ 
I 

\ 

I 
I 
\ 

( 
\ 



DN - Destination mode: 00 for host 

SN - Source mode: NPU ID 

CN Connection number = 0 for service message 

BT - Block type: 4 for CMD block 

PFC - Primary function code: 06 for line status 

SFC - Secondary function code: 02 for unsolicited (autorecognition) 
message 

P - Port: line ID 

SP - 00 

RC - Reason code: 00 = line operational 

LT - Line type: 01 -} 02 -
03 -

see appendix C 

CFS - Configuration state: 06 
yet) 

line inoperative (no TCBs are configured 

NT - Number of terminals configured on the line: 00 (since no terminals 
are configured yet) 

TT - Terminal type: 90 
91 = 
92 

Mode 4A EBCD 
Mode 4A ASCII 
Mode 4C 

CA - Cluster address: 7016 CA 

Note that only one CA is reported, as multicluster autorecognition 
is not supported. Multiclusters can, however, be configured on an 
autorecognition type line after the autorecognition is complete and 
the line is reported operational. 

For Mode 4A, this value is 6016' For Mode 4C, value is a 
sequential value 6016 through 6F16' received from the 
configuration poll of the cluster address. 

For Mode 4A, three TA/DT pairs are reported: TA=60l6' 
DT=OA16 (console), TA=60l6' DT=2A16 (card reader), 
TA=60l6, DT=4A16 (line printer). 

For Mode 4C, up to 16 TA/DT pairs are reported. The TA value can 
range from 6016 through 6F16f and DT can be any of the 
following, depending on the cluster configuration. 

60471160 A 

console 
impact printer 
non-impact printer 

10-15 



MODE. 4 PROTOCOL FEATURES NOT SUPPORTED 
The following features of Mode 4 devices are not supported by the TIP. 

• Status request 
• Alert 
• Diagnostic write 
• Receipt of initialization 

DIRECT CALLS TO THE MODE 4 TIP 
The Mode 4 TIP can be called by the following: 

• Any other program, using a 3-word standard TIP worklist. Worklists 
are queued to PTMD4TIP. The monitor passes control to the TIP with a 
single worklist attached. PTMD4TIP is the principal switch for the 
Mode 4 TIP. (See Mode 4 TIP trees, appendix G.) The switching 
procedure is based on the workcode in the worklist (lower half of 
word 0 of the worklist). The principal users of this call are: 

Internal processing to process downline data blocks and commands. 

The service module to set up line and terminal changes, and so 
forth. 

The TIP's own input state programs to process special conditions to 
input blocks, and to continue input processing on the OPS level. 

The mutliplex subsystem to have the TIP process special conditions 
such as terminal failure. 

Note that the Mode 4 TIP has an important secondary switch, 
PT4TASKPROCESSOR, which is called from the primary switch. 

• Internal processing, by switching to the page and address of the Mode 
4 text processor (PTTPMODE4). Text processing is done at the same 
time that the output message is converted from PRUB format to Mode 4 
terminal format. Control then returns to internal processing which 
subsequently calls the TIP with a worklist so that the TIP can 
prepare the text processed block for output transmission to the 
terminal/device specified. 

• SVM, to build the TCB. This is the direct call to PT4TCBINIT to 
finish building the TCB fields with the TIP's special default values. 

• At multiplex 2 level by the multiplex subsystem. The state programs 
have been written to avoid this call. So if it occurs, a serious 
system error is indicated. PBHALT is called to stop the NPU. 

• Directly from internal processing to queue interactive blocks. 

DIRECT CALLS FROM THE MODE 4 TIP 
The Mode 4 TIP uses the following routines: 

• Buffer handlers: PBRELCHN, PBREL1BF, and PBGET1BF to release or to 
assign buffers. 

10-16 60471160 A 

( 
\ 

( 

'\ 

( 
\ 



• PTREGL is called to determine whether input is to be accepted, or 
whether data from the terminal is to be rejected. All four 
regulation checks are used. See section 6, PTREGL. 

• PTTPINF is used to call the firmware text processing programs. 
Control returns directly to the TIP after text processing is 
completed. 

• PBPOPOI is called to acknowledge the block that has been sent to the 
terminal. 

• PBPIPOI is called to prepare the upline block for the host. This 
relieves the TIP of the conversion of PRUB formatting task. 

• PBCOIN is called to cause the command driver to prepare a message or 
command for input or output. The Mode 4 protocol requires 
acknowledgment of most transmitted blocks (toggle bit serves as a 
check for some transmission). 

• PT COMMAND is called to generate and to send data stream control CMD 
blocks to the host. See CMD block formats in section 6. 

• BLTIMTBL is used to set up timed functions and to clear timeout 
counters when the expected event occurs within the allowable period. 

• PBLSPUT is called to prepare worklist calls to the service module 
(for instance to report that a TCB has been deleted). 

• PBUPABRT is called to send an upline abort message when the card 
reader fails. 

• PNSGATH is called to gather statistics after certain message errors. 

• PBGTISEG is used to unqueue messages from the TCB by the secondary 
switch. 

• PBSVILCB is used to suspend tasks until an expected event (such as a 
reply to a poll message) occurs. 

• PTRETOPS is the standard return to the OPS-monitor. 

• PBHALT is called if a mux-2 level worklist occurs or if the secondary 
switch cannot find a valid task. 

60471160 A 10-17 





HASP TIP 

The HASP multileaving TIP supports HASP workstations. The protocol uses 
bidirectional transmission over HASP lines to terminals that have both 
interactive and batch devices. 

11 

The HASP protocol defines two types of blocks for transmission between NPU 
and HASP workstations; they are: data blocks and control blocks. Data 
blocks also contain control information. Positive acknowledgment of the 
receipt of each block is required. These blocks are not to be confused with 
the blocks used in the host or NPU block protocol. (See section 6.) 

The HASP protocol automatically attempts to resend garbled blocks. If the 
block cannot be successfully sent after four attempts, the line is declared 
inoperative. 

Data blocks are composed of data records, which are in turn composed of 
character strings. If several consecutive identical characters occur, this 
character string is sent as a number (the number of identical characters) 
plus the character. This type of data compression can save significant 
transmission time. Another important feature of the HASP protocol is its 
ability to meter the rate of input/output; so that fast processing devices 
have most of the transmission time available, yet slow processing devices 
can have data whenever they are ready to use it. This ability to suspend 
transmission on one device's data stream, while transmitting data from other 
devices in a single block, is called multileaving. 

Data can be transferred upline and downline in two data formats: 
transparent or nontransparent. 

• Nontransparent data is treated as 6-bit characters formatted for 
cards on print line images. 

• Transparent data is treated as 8-bit characters and is blocked and 
deblocked between the terminal without regard for card length, 
carriage control, or print-line width. 

The TIP design is insensitive to line speeds, but has been tested at 
standard synchronous line speeds up to 9600 baud. Lines can be dedicated 
(with or without a modern/transceiver) or switched (dial up) with a modern. 
The transmission facilities are used by the TIP in a half duplex manner; 
that is, the TIP is either transmitting to the line or receiving from the 
line, but not both simultaneously. 

HARDWARE CONSIDERATIONS 
Some typical HASP hardware considerations are as follows: 

60471160 A 11-1 



• A typical HASP workstation consists of a keyboard, a CRT display, up 
to 7 card readers, a processor, and (optionally) an external storage 
magnetic tape or disk. The processor has computer-like functions, 
with upline and downline data processing (such as data compression, 
metering, testing line readiness, constructing data blocks and 
interpreting them, data storage, etc.) 

• The terminal has its own software, which is loaded from the 
designated storage device: magnetic or paper tape, cards, or 
terminal, mass storage. 

• The internal code of the workstation is EBCDIC. 

• Any hardware (computer) that can be made to respond to HASP protocol, 
and which uses EBCDIC internal code, can be used as a HASP 
workstation. 

• Each workstation uses one NPU port (line). Device sharing is the 
responsibility of the HASP TIP on the NPU end and the workstation 
processor on the terminal end. 

• All terminals have interactive devices, and most have batch devices. 

• Transmission over the line is bidirectional. 

• Line speed is determined by the modem clock. 

Other fixed workstation features are given in table 11-1. 

TABLE 11-1. HASP WORKSTATION FEATURES 

Feature Supported 

Multicard Yes 

Character set EBCDIC-64 

EBCDIC transparency (256 characters) 
Character compression/expansion 

Console 

Printer character set 

Card punch line 

Print line width 

Binary cards 

Yes 
All character strings 

Mandatory 

EBCDIC-64 

Yes 

80-150 

No 

Plotter 

Magnetic tape 

Paper tape 

Autorecognition 

} As card/print emulator only 

Yes 

11-2 60471160 A 

( 
i 
\ 

( 



MAJOR TIP FUNCTIONS 
The HASP TIP functions as follows: 

• Interfaces the host codes and block protocol to a HASP workstation, 
which uses EBCDIC as its internal code and the HASP protocol. 

• Handles tasks by queuing them as worklist entries (WLEs) to the 
terminal control block (TCB) for the line. The host application 
programs send data to one HASP device at a time. The HASP TIP sends 
all output data blocks to one device at a time. There is no 
multileaving on downline data transfers other than the ability of the 
terminal to direct the host to stop sending data to a particular 
device. 

• Supports upline and downline data compression for both interactive 
and batch devices. 

• Supports data flow control to various devices by the use of a 
function control sequence (FCS). 

• Initiates line synchronization when the line has been configured1 
uses an enquiry/reply protocol to find if line can currently be used 
for a transfer. 

• Provides soft error processing (retransmitting the garbled data 
block), and hard error processing (declaring a line inoperative when 
soft error processing fails to transmit data correctly). 

• Rejects all data when the host is down or the NPU's supply of 
available buffers has reached the threshold level. Note that there 
can be no regulation distinction between interactive and batch data 
since one HASP block can carry both types of data. 

• Discards the terminal's signon card. A network login is used instead. 

• Processes autorecognition only to the extent that this message is 
used to indicate the workstation is enabled. 

• Interfaces to the multiplex subsystem. Downline, nontransparent data 
is reformatted to the terminal (HASP) protocol by the text processing 
state programs on a call from PBIOPOI (the state programs are reached 
through the HASP TIP text processor's call to PTTPINF). The TIP 
later gains control with a worklist and the converted data, and then 
calls the multiplex subsystem command driver. The address of the 
converted block and other message processing information, are placed 
in a command packet for the command driver (call to PBCOIN). The 
multiplex subsystem is then responsible for sending the data, 
character-by-character, over the line to the HASP workstation. 

Upline, the HASP data is partially processed by the multiplex subsystem 
using the input state programs that are part of the firmware level TIP. 
Prior to starting the input transfer, the TIP sets up the message 
processing by passing the transfer parameters to PBCOIN (including the 
pointer to the first input state program to be used and an input buffer 
address). After the first stage of processing is completed by the TIP's 
input state programs, the multiplex subsystem calls the TIP at OPS-Ievel 
using a worklist entry. The TIP then uses this partially processed data 

60471160 A 11-3 



as a source buffer and calls the HASP TIP input text processing programs 
(via PTTPINF) to demultiplex as well as to convert the upline data to 
host format. Batch data is later converted to PRUB format when the TIP 
passes control to the internal processing by calling PBPIPOI. 

• Transparent data is passed upline and downline without text 
processing. 

HASP PROTOCOL 
The multi leaving protocol consists of the bidirectional transmission of 
information blocks between an NPU and a HASP multileaving terminal. 

The basic line protocol is standard BSC point to point (one terminal per 
line) and either transparent or nontransparent modes of BSC transmission are 
automatically recognized by the TIP on each received data block from the 
terminal. The TIP then uses the detected transmission mode for subsequent 
communication with that terminal. 

Two types of blocks are defined, as follows: 

• Control Blocks - contain binary synchronous communications (BSC) 
characters only (table 11-2 lists commonly used HASP mnemonics) • 

• Data Blocks - contain data records that are composed of character 
strings and their associated character string control bytes. Each 
data record in the data block is associated with a specific 
peripheral device. In order to facilitate identification, a record 
control byte (RCB) is used to assign a stream number and a device 
type of the data record. Each record control byte has an associated 
subrecord control byte (SRCB) to provide additional information about 
the data record. 

A data block can consist of several data records, all of which can be 
from the same device. A function control sequence (FCS) is added to each 
data block to control the flow of data from, or to, any particular device. 

To facilitate error detection, a block control byte (BCB) is added to 
each data block. 

A binary synchronous communications envelope surrounds the data block. 

The host sends multileaved downline data to the HASP terminal in transparent 
mode. In nontransparent mode the host must send to the HASP TIP the 
approximate desirable length of data for each active output stream (device) 
to make a single data block. 

The HASP TIP supports multileaved data from a HASP workstation in both 
transparent and nontransparent modes. In nontransparent mode, the HASP TIP 
parses the input stream, relating each physical record to its associated 
connection (CN) , and sends the data to the host, sorted by device. In 
transparent mode the host must separate the data for the various devices. 

11-4 60471160 A 



TABLE 11-2. HASP PROTOCOL MNEMONIC DEFINITIONS 

Mnemonic 

ACKO 

BCD 

BSC 

CRC 

DLE 

ENQ 

Definition 

Acknowledge block or 
character 

Block control byte 

Binary synchronous communi­
cations control characters 

Cyclic redundancy check 

Data line escape control 
character 

Enquiry control character 
or block 

EOF End-of-file block 

ETB 

FCS 

NAK 

PAD 

RCB 

SCB 

SOH 

SRCB 

STX 

SYN 

End-of-transmission block 
character 

Function control sequence 
block 

Negative acknowledgment 
block 

Padding control character 

Record control byte 

String control byte 

Start of header character 

Subrecord control 
character 

Start of text character 

Sync control character 

WLE Worklist entry 

Use 

positive acknowledgment that trans­
mission was received. 

Use for error detection; includes 
block sequence number. 

Any of several block control charac­
ters, such as DLE, STX, and ETB. 

Data quality checksum. 

BSC control character. 

Inquiry if transmission can be 
started when terminal is newly 
configured. 

BSC control character. 

Controls data transmission rate 
from/to a device. 

Confirms that transmission failed. 

All bits are l's. 

Stream number and device type ID: 
contains status information. 

String length and type, duplicate 
character. 

BSC control character. 

Additional data record information. 

BSC control character. 

Maintains line synchronization. 

60471160 A 11-5 



TERMINAL OPERATIONAL PROCEDURE 

The workstation software is loaded and the communications line is 
initialized. After the signon card is transmitted, the NPU and the terminal 
~ransmit idle blocks until one or the other initiates a function (data or 
command transfer). 

When a function other than a console message or console command is desired, 
the process trying to initiate the function transmits a request to initiate 
function transmission RCB. The receiving process then transmits a 
permission to initiate function transmission TCB, if the data from the 
requesting process can be handled. If the data cannot be handled, or a 
function is currently being processed, the request to initiate a function 
transmission TCB is ignored. 

When a permission to initiate a function transmission TCB is received, the 
requesting process begins transmitting data blocks to the other process. 
Data blocks can be transmitted until an EOF is encountered. In order to 
transmit more data blocks for the same device stream, the request to 
initiate a function transmission TCB sequence must be repeated. If a 
request to initiate a function transmission is not received before data 
blocks are received, the data blocks are ignored. 

Data blocks are transmitted and acknowledged one block at a time. Before a 
second block can be transmitted, the receiving process must transmit a 
positive response which takes one of two forms: if no data is ready to be 
transmitted to the sending process, an acknowledge block is sent~ otherwise, 
the next waiting data block is transmitted to the sending process. 

Console functions (operator messages or commands) do not have to follow the 
request-to-initiate or permission-to-initiate sequence. A console function 
can be initialized any time that the wait-a-bit in the FCS is not set and 
the remote console bit is set. 

MUL TILEAVING BLOCK DESCRIPTIONS 

Control Blocks 

The multileaving protocol uses four types of control blocks: 

• Acknowledge block (ACK) 
• Negative acknowledge block (NAK) 
• Enquiry block (ENQ) 
• Idle block (ACKO) 

Table 11-3 lists significant EBCDIC characters associated with these blocks. 

Acknowledge Block (ACK) 

The acknowledge block (ACK) consists of the following control characters: 
SYN, SYN, SYN, OLE, ACKO, PAD 

SYN 
OLE 
ACKO 
PAD 

11-6 

Synchronization control character 
Data link escape control character 
Affirmative acknowledgment control character 
Pad control character (alII bits) 

60471160 A 

( 



The ACKO back indicates that the previous block was received without error 
and no data is available for transmission. 

TABLE 11-3. HASP SIGNIFICANT EBCDIC CHARACTERS 

Char Hex Definition 

SOH 01 Start of header 

STX 02 Start of text 

DLE 10 Data link escape 

ETB 26 End-of-transmission block 
ENQ 2D Enquiry 

SYN 32 Synchronize 

NAK 3D Negative acknowledge 

ACKO 70 Positive acknowledge 

PAD FF Pad 

Note: ACKO only has significance in the 
sequence DLE ACKO (as the entire 
message) since ACKO is not a 
protocol character. 

Negative Acknowledge Block (NAK) 

The negative acknowledge block (NAK) consists of the following control 
characters: SYN, SYN, SYN, NAK, PAD 

SYN Synchronization control character 
NAK Negative acknowledgment control character 
PAD Pad control character (alII bits) 

The NAK block indicates that the previous block was received in error and a 
retransmission is necessary. If the allotted number of retry attempts have 
been completed, the line is declared inoperative. A NAK block cannot be 
transmitted as a response to a NAK block. 

Enquiry Block (ENO) 

The enquiry block consists of the following control characters: SYN, SYN, 
SYN, SOH, ENG, PAD 

SYN Synchronization control character 
SOH Start of header control character 
ENQ Enquiry control character 
PAD Pad control character (alII bits) 

The enquiry block establishes communications between the HASP terminal and 
the NPU at loading time. It is not used at any other time. 

60471160 A 11-7 



Idle Block (ACKO) 

The idle block is an ACKO block that is used to maintain communications and 
to avoid an unwanted timeout, when neither process has any data to 
transmit. An idle block is transmitted at least once every two seconds. 
This block has the same format as the acknowledge block. 

CONTROL BYTES FOR DATA BLOCKS 

Each data block has at least one sequence of five control bytes that define 
the data immediately following the last control byte. The control bytes 
appear in the following order: 

• Block Control Byte (BCB); used for sequencing block. 

• Function Control Sequence (FCS); defines the transmission flow 
(suspending all data or the data for a device, or restarting data 
transmission for one or all devices). 

• Record Control Byte (RCB); carries status information for the 
following data and stream identification. 

• Subrecord Control Byte (SRCB); carries more status and data control 
information. 

• String Control Byte (SCB); describes the data string (length and 
nature - whether it is compressed or uncompressed data). 

Following the first set of five bytes, additional data subblocks can be 
preceded by only an SCB, or by a sequence of RCB/SRCB/SCB. 

Each control block byte is defined below. Figure 11-1 shows a typical 
transmission block and its associated control bytes. 

NOTE 

The bytes in the following descriptions are described as if 
they appeared on a card input device. That is, the least 
significant bit is on the left, the most significant bit is 
on the right. 

Block Control Byte (BCB) 

The block control byte bit representation is as follows: 

Bit Number 0 7 

11-8 

~ = 
xxx 

I~xxxcccci 

1 - Must always be on 
000 - Normal block 
001 - Ignore sequence count 
010 - Reset expected block sequence count to CCCC 

= 011 - 111, Not used in this implementation 
CCCC Module block sequence count, range 0 to 15 

60471160 A 

\ 



SYN 

SYN - Synchronization characters 

SYN 

DLE - BSC leader (SOH if no transparency feature) 

STX - BSC start-of-text 

BCB - Block control byte 

FCS - Function control sequence (2 bytes) 

RCB - Record control byte for record 1 

SRCB - Subrecord control byte for record 1 

SCB - String control byte for record 1 

D 
A - Character string 

T 
A 

SCB - String control byte for record 1 

D 
A - Character string 

T 
A 

SCB=O - Terminating string control byte for record 1 

RCB - Record control byte for record 2 

SRCB - Subrecord control byte for record 2 

SCB - String control byte for record 2 

D 
A - Character string 

T 
A 

SCB=O - Terminating string control byte for record 2 

RCB=O - Transmission block terminator record control byte 

DLE - BSC trailer (SYN if not in transparent mode) 

ETB - BSC ending sequence 

CRC-16 - Cyclic redundancy checksum (2 bytes) 

PAD - All 1 bits 

The signon blocks are described in the user terminal interface subsection 
(below). BCB error blocks are described in the error conditions 
subsection (below). 

Figure 11-1. Typical HASP Multileaving Data Transmission Block 

60471160 A 11-9 



Function Control Sequence (FCS) 

The function control sequence bit representation is as follows: 

Bit Number 

,0' = 
S 

o 78 F 
I ,0'SRRABCD,0'TRR~\,XYZ I 
1 - Must always be on 
1 - Suspend all stream transmission (wait-a-bit) 
o - Normal state 

NOTE 

For the following bits: a bit 1 - continue (restart) 
function transmission; a bit = 0 - suspend (stop) function 
transmission. 

T - Remote console stream identifier 
R - Not used 

ABCDWXYZ - Various function stream identifiers 

These stream identifiers are bit-defined and have two sets of definitions: 
one for upline use, the other for downline use. For upline use the bits 
identify the card reader that is to send data: 

Card reader number 1 = A 
Card reader number 2 = B 
Card reader number 3 C 
Card reader number 4 D 
Card reader number 5 W 
Card reader number 6 = X 
Card reader number 7 Y 
Card reader number 8 Z 

For downline use, the bits identify the punch or printer which will recieve 
the data: 

Printer number 1 = A - Punch number 8 
Pr inter number 2 B - Punch number 7 
Printer number 3 C - Punch number 6 
Printer number 4 D - Punch number 5 
Printer number 5 W - Punch number 4 
Printer number 6 = X - Punch number 3 
Printer number 7 = Y - Punch number 2 
Printer number 8 Z - Punch number 1 

Record Control Byte (RCB) 

The record control byte bit representation is as follows: 

Bit Number 0 7 
I ,0'IIITTTT I 

11-10 60471160 A 



~ = 0 - End-of-transmission block (IIITTTT = 0) 
1 - All other RCBs 

III - Stream identifier if TTTT t 0 
- Control information if TTTT = 0 (control record) 

= 000 - Not used 
= 001 - Request to initiate a function transmission· 
= 010 - Permission to initiate a function transmisssion 

011 - 101 = Not used 
= 110 - Bad BCD on last block received 
= III - General control recordt 

TTTT - Record type identifier 
= 0000 - Control record 
= 0001 - Operator message display request (downline) 
= 0010 - Operator command (upline) 

0011 - Card input record 
= 0100 - Print record 
= 0101 - Punch record 
= 0110 - 1111 = Not used 

Subrecord Control Byte (SRCB) 

The bit representation of the subrecord control byte is as follows: 

Bit Number 0 7 

~ 
SSSSSSS 

I~sssssssl 

= 1 (must always be on) 
= Additional record information dependent upon record type (see 

TCB above) 

For general control record: 
SSSSSSS = 100000001 - Initial terminal signon 

For request or permission to initiate a function transmission: 
SSSSSSS - Stream identifier and record type identifier as described 

in RCB 

For bad BCD on last block received: 
SSSSSS - Expected block sequence count 

For print record: 
SSSSSSS - MCCCCCC 

M = 0 - Normal carriage control 
= 1 - Not used 

CCCCCC - Carriage control information 
= 1000NN - Space immediately NN spaces 
= IlNNNN - Skip immediately to channel NNNN 
= OOOONN - Skip NN spaces after print 
= OlNNNN - Skip to channel NNNN after print 
= 000000 - Suppress space 

tThe RCB for these functions is contained in the SRCB. 

60471160 A 11-11 



For punch record: 
SSSSSSS = MMBRRSS 

SS - Punch stacker select information 
B 0 - Normal EBCDIC card image 

1 - Not used 
MM = 00 - SCB count units = 1 

01 to 11 - Not used 
RR = Not used 

For input record: 
SSSSSSS = MMBRRRR 

MM = 00 - SCB count unit = 1 
01 to 11- Not used 

B 0 - Normal EBCDIC card image 
= 1 - Not used 

RRR - Not used 

String Control Byte (SCB) 

The bit representation of the string control byte is as follows: 

Bit Number 0 7 
IOKTCCCccl 

0 o - End-of-record (KTCCCCC = 0) 
1 - All other SCBs 

K o - Duplicate character string 
T o - Duplicate character is a blank 

= 1 - Duplicate character is nonblank (character follows 
SCB) 

CCCCC - Duplication count 
K 1 - Nonduplicate character string 

TCCCCC - Character string length 

If KTCCCCC = 0 and 0 = 1, SCB indicates record is continued in the next 
transmission block. This feature is not supported by the HASP TIP and is 
shown for completeness only. 

DATA BLOCK DESCRIPTION 

Data blocks consist of data records, the control bytes described above, and 
the following text control characters: 

SYN - Synchronization control character 
DLE - Data link escape control character 
SOH - Start-of-header control character - used only if nontransparent 

mode 
STX - Start-of-text control character 
ETB - End-of-transmission block control character 

CRC-16 - Cyclic redundancy checking control characters (2 bytes) 
PAD - Pad control character (all 1 bits) 

A typical data transmission block was shown in figure 11-1. 

11-12 60471160 A 



Several types of blocks are specially defined. These blocks appear to be 
data blocks but are actually special purpose blocks containing transmission 
control information. They are as follows: 

• Operator console blocks 
• End-of-file blocks 
• FSC change blocks 
• Signon blocks 
• BCB error blocks 

OPERATOR CONSOLE BLOCKS 

Blocks that contain operator console messages or commands do not contain any 
additional records in the data block following the console record. 

A request to initiate a transmission function is not required to transmit 
console records. However, the wait-a-bit flag must not be set in the FCS, 
but the remote console bit must be set. 

END·Of·fILE BLOCKS (EO f) 

Blocks that contain the end-of-file indicator do not contain any additional 
records from the same device stream in the data block following the EOF. 
Data blocks that are terminated by an EOF contain a final record in the 
format of figure 11-2 (shown for card reader number 1): 

(BSC header) 

BCB 

FCS 

RCB 

SRCB 

SCB 

RCB 

= 10010011 - Card reader stream number 1 

= 10000000 - SCB count units = 1, EBCDIC card images 

= 00000000 - EOF 

= 00000000 - Transmission block terminator (BSC trailer) 

(BSC trailer) 

Figure 11-2. EOF Block 

In order to transmit additional records for a device stream that contains an 
EOF, the request to initiate a function transmission must be transmitted 
again. If another device stream contains data for transmission, and has 
permission to transmit, the last RCB in the above example would be a device 
stream TCB followed by data, instead of a transmission block terminator. 

fCS CHANGE BLOCKS 

The FCS change block is transmitted when the status of one or more of the 
streams has changed, and there is no data ready to transmit. The FCS change 
block format is shown in figure 11-3. 

60471160 A 11-13 



(BSC header) 

BCB 
FCS - Changed FCS 
RCB = 00000000 - Transmission block terminator 

(BSC trailer) 

Figure 11-3. FCS Change Block 

USER INTERFACE 
The user is required to load the software into the HASP workstation 
processor, to execute this initializing software, to signon after the 
communications line is configured (by the HASP TIP and the workstation), and 
to sign off. 

WORKSTATION STARTUP AND TERMINATION 

The workstation startup procedure consists of three steps: 

• Terminal initialization at the HASP workstation 

• Communication line initialization, which involves the workstation, 
the NPU, and the host 

• Signing-on, which involves the workstation and the HASP TIP in the NPU 

WORKSTATION INITIALIZATION 

The HASP workstation operator loads the terminal software and executes it. 
The loading medium can be paper tape, cards, magnetic tape or mass storage, 
depending upon the terminal hardware. The workstation initialization 
processor establishes I/O buffers and other necessary parameters. After 
initialization, a card is read from the card reader. If the card is blank, 
the default signon parameters are used (default signon parameters are 
assembled into the terminal software). If the card is a /*SIGNON card, the 
parameters on the /*SIGNON card are used instead of the default. In either 
case, the/*SIGNON card is discarded by the HASP TIP~ it is not passed to the 
host. 

COMMUNICATION LINE INITIALIZATION 

After the terminal is initialized, the communication line is initialized by 
the HASP TIP, upon receipt of a configure line service message (SM) from the 
host. When communication is established with the line, communications 
between the HASP TIP in the NPU, and the HASP workstation, are established 
by the following procedure: 

• An ENQ block is sent from the workstation to the HASP TIP. 

• The ENQ is ignored by the HASP TIP until configure terminal SM 
arrives from the host for the HASP console stream. The HASP TIP then 
sends an ACKO to the ENQ. 

11-14 60471160 A 



• If the ACK block is received by the workstation, the signon record is 
transmitted to the HASP TIP. 

• If I/O errors occur or the ACKO block is not received, the process 
restarts with another ENQ block. 

• After the signon record is transmitted and a positive acknowledgment 
is received (ACKO), the workstation is ready for normal processing. 

• As each individual batch device stream is configured by the host, the 
INIT block is received and the HASP TIP allows processing of the 
corresponding output streams. For batch input streams, processing 
does not begin until a START INPUT command is received for the input 
device stream. For the console input stream, input is allowed after 
the receipt of a downline data block, or a START INPUT command. 

SIGNON BLOCK 

Column 1 16 25 
/*SIGNON REMOTEnn password 

NOTE 

Record is shown in punched card format; least significant 
character on the left, most significant character on the 
right. 

nn = a 1- or 2-digit number that can be used to correlate this remote 
terminal with information about it in the host computer. 

Password can be blank. 

The signon block format is shown in figure 11-4. 

BCB 

FCS 

RCB 

SRCB 

D 
A 

T 
A 

RCB 

BSC Header 

1010XXXX - Reset count to XXXX 

11110000 - General control record 

Signon record 

0000000 - Transmission block terminator 

BSC Trailer 

Figure 11-4. Signon Block format 

60471160 A 11-15 



The signon record is not sent to the host, since the host requires a 
separate logging on procedure at the operator's console. 

SIGNOFF BLOCK 

The /*SIGNOFF card, when transmitted to the HASP TIP as a record in the data 
block, has the same effect as an EOF. The HASP TIP converts the signoff 
record to a EOI and sends it to the host as a MSG data block. 

HOST INTERFACE 
The host interface is used for connection configuration, and initialization 
of the workstation devices. Once the line becomes operational, the HASP TIP 
allows the signon block to be sent from the the HASP workstation. The 
signon block is acknowledged to the HASP workstation, but is not delivered 
to the host. 

Upon receiving a line operational service message for a HASP workstation, 
the host issues a configure terminal service message to configure the 
workstation's console. A start input CMD, or downline data block, causes 
the HASP TIP to permit input from the workstation console. The console 
connection allows the workstation operator to send and receive messages to 
and from the host. 

After the console is configured, the batch devices are configured. A CMD 
block from the host causes the HASP TIP to allow the input devices to read 
cards. Output device streams are initiated by the HASP TIP as soon as data 
arrives. Devices configured as plotters use card punch output streams. 
Each such terminal has a stream dedicated to its exclusive use. 

Once the necessary initialization and configuration are complete, traffic 
can flow between the terminal and the host. During this traffic handling 
period, the HASP TIP is involved in the following functions: 

• Code conversion 
specified) 

upline and downline (unless transparent mode is 

• Format conversion (if required), HASP to host format upline, host to 
HASP format down line 

• Flow control, upline and downline 

• HASP error recovery procedures 

• Input/output streams, to or from a HASP terminal 

CONFIGURATION AND ADDRESSING 

In addition to the required console, a HASP workstation can have up to seven 
other devices. Each device has a separate stream ID and is specified in the 
configuration service messages from the host in the terminal address (TA) 
field. The cluster address (CA) field is always zero. Stream numbers are 
identified from 1 to 7 for each device type. Table 11-4 lists possible CA, 
TA, and DT values for HASP devices. 

11-16 60471160 A 



TABLE 11-4. HASP DEVICE TYPE 

DT 
CAt TAt (device/class) Stream/Device Number 

00 01 09 Console 1 

00 01 29 Card Reader 1 

~ 
These streams are 

· · · · also used for magnetic 

· · · · tape and paper tape 

· · · · input. 
00 07 29 Card Reader 7 

00 01 49 Printer 1 

· · · · · · · · · · · · 00 07 49 Printer 7 

00 01 69 Punch 1 

} 
These streams are 

· · · · also used for plotter, 

· · · · magnetic tape, and 

· · · · paper tape output. 
00 07 69 Punch 7 

tCA = cluster address; TA = terminal address; DT = device type 

INTERCOM commands or status to or from the terminal operator use the stream 
or device number when referring to a particular device. Example: line 
printer number 1 would be LP 1. 

CONSOLE 

A console type interactive device is required. The TIP accepts MSG and BLK 
blocks from the host and passes them to the terminal (the TIP does not 
distinguish between MSG and BLK blocks). For all blocks, data is converted 
from ASCII to EBCDIC prior to being sent to the terminal, but no other 
transformations take place. DBC carriage control values are ignored by the 
TIP since the HASP workstation does internal carriage control and screen 
formatting to its interactive device. 

Blocks received from the terminal are delivered to the host after conversion 
from EBCDIC to ASCII code. 

The console data stream is always open and does not require any commands to 
start or stop the stream. If the terminal stops the console data stream (by 
resetting the console stream FCS bit) for more than 30 seconds, the terminal 
is assumed to be inoperative. The host is notified by an input stopped CMD 
block (PFC=3, SFC=4). 

NOTE 

The data stream control CMD blocks are summarized 
in section 6. 

I 

60471160 A 11-17 



CARD READER 

Several CMD blocks are used to regulate the card reader data stream. Note 
that this data stream type is also uqed for magnetic tape and paper tape 
input. However, to be used in this way, the HASP workstation must have the 
device emulation controlware installed. A summary of the card reader CMD 
blocks i p given in table 11-5. 

PFC 

1 

1 

1 

2 

2 

3 

TABLE 11-5. CARD READER DATA STREAM CONTROL CMD BLOCKS 

SFC 

o 

1 

2 

o 

1 

o 

Name 

START 
INPUT, 
NON­
TRANSPARENT 

START 
INPUT, 
TRANSPARENT 

RESUME 
INPUT 

STOP 
INPUT, 
TERMINATE 

STOP 
INPUT, 
SUSPEND 

INPUT 
STOPPED 

Definition 

Downline command to start a card input in 
the nontransparent data mode. 

pownline command to start a card read 
input stream in the transparent data mode. 

Downline command to resume card read 
input after a susPended input. This 
command res~ts suspension of all 
workstation streams when issued on any 
stream. 

Downline command to stop a card read 
stream and to discard all data received. 

Downline command to stop a card read 
stream and hold all data received. This 
command suspends all streams on a work­
station whem issued on any stream. 

Upline command signifying a /*EOS has been 
received on a card reader stream. The 
command is also sent upline when a stop 
input, terminate is received to signify 
all data has been terminated on the 
connection. 

A HASP card reader is activated by the start input CMD block on the card 
reader connection. When a card reader connection is activated, it runs in a 
hot card reader mode; that is, toe card reader str~am is always on, unless 
terminated by the follo~ing: 

• Input of a /*EOS (end-of-stream). 

• The HASP workstation or the communications line fails and a recovery 
of the entire line/workstation takes place. 

• A stop input CMD block (PFC=2, SFC=O/l) is received from the host. 

11-18 60471160 A 



The card reader stream must be terminated to change from a READ of non­
transparent data to a READ FILENAME or a READ FILENAME with transparent 
data. The host does not act on a mode change request from the interactive 
console unless the card read stream is currently receiving data. Because of 
this restriction, the data stream is normally terminated by entering a /*EOS 
card when changing modes. 

If the last input received from the card reader terminated the previous 
input file (either /*EOI or ETX), the HASP TIP discards any subsequent /*EOI 
or /*EOS card. A /*EOS card always causes an input stopped CMD block 
(PFC=3, SFC=O) to be sent to the host. Subsequent data received from the 
card reader is discarded until the data stream is started again. 

Normal termination of an input job with a /*EOI card or ETX from the 
terminal causes termination of the PRUB data block with EOI marked in the 
DBC field. No upline command is sent to the host in this case. 

Since the card reader not ready status is not reported by the HASP 
workstation, this condition is not reported to the host. 

A stop input CMD block received from the host terminates the input data 
stream and, in addition, causes the TIP to send an input stopped CMD block 
(PFC=3, SFC=O) to the host as an acknowledgment. Any subsequent data 
received from the card reader on that data stream is discarded by the TIP. 

Upline data is transformed to PRUB format by PBPOPOI in either transparent 
or nontransparent modes. The data stream can be placed in the transparent 
mode by one of three methods: 

• For local input files, an optional parameter TR is included as a 
parameter in the READ FILENAME command. 

• TR is included in columns 79 and 80 of the job card. 

• TR is included in columns 79 and 80 of an EOR card. 

A change to transparent mode requested by the READ FILENAME command causes a 
CMD block to be sent from the host to the TIP specifying the mode change. 
When TR is specified, none of the following data is translated. The data is 
stored as 8-bit characters. No EOR (7/8/9 punch) or /*EOI cards are 
recognized in transparent mode. The file is read until ETX is received from 
the terminal. 

The HASP TIP also examines columns 79 and 80 of all job cards and EOR cards 
to determine if the code translation should be the 026 or 029 character 
set. A 26 in columns 79 and 80 specifies 026 mode and a 29 specifies 029 
mode. The code translation default to INTERCOM default code set after a 
/*EOI card is detected. 

Card Reader Nontransparent Data Mode 

When in the nontransparent data mode, characters received from the card 
reader are expanded from the HASP compressed format, translated to display 
code, and stored in standard PRUB format. Trailing blanks on each card are 
discarded. The end of each card is marked within the PRUB with 2 to 11 zero 
characters. 

60471160 A 11-19 



Card R~ader Transparent Data Mode 

Transparent 8-bit characters are expanded from the HASP compressed format 
and stored in the PRUB without translation or marking of card boundaries. 
Records or transmission blocks are stored contiquously within the PRUB and, 
therefore, can be split across PRUB boundaries. Data is stored until ETX is 
received. When ETX is detected, the DBC of the last PRUB is marked as EOI 
and the card read stream is returned to the nontransparent data mode by 
means of an input stopped CMD block. . 

PRINTER 

Several CMD blocks are used to regulate the printer data stream. Table 11-6 
summarizes these commands. 

PFC SFC 

5 1 

5 3 

7 o 

8 o 

TABLE 11-6. PRINTER DATA STREAM CONTROL CMD BLOCKS 

Name 

OUTPUT 
STOPPED, 
PRINTER NOT 
READY 

OUTPUT 
STOPPED, 
PM MESSAGE 

RESUME 
OUTPUT 

STOP 
OUTPUT, 
ABORT 

Definition 

Upline command to notify the host that 
the print stream has been suspended by 
the terminal for more than 30 seconds. 

Upline command to notify the host that 
the print stream has been stopped due to 
receipt of a PM message from the operator. 

Downline command to cause the TIP to 
restart output after a stop condition. 

Downline command to cause the TIP to 
discard buffers and stop output to the 
printer. 

Output to a printer is started by the host sending the first downline data 
block on the printer's connection. The first block received is normally a 
banner MSG block. If the terminal is configured for the banner off 
condition, the banner block is discarded; otherwise, the MSG block is 
converted to two copies of the file identification banner page. 

Data blocks originate in the host as PRUBs. The DBC of each PRUB is 
examined by the TIP (this is the direct call from PBIOPOI) for data mode, 
transparent or nontransparent, and the data is translated accordingly. Each 
subsequent PRUB is converted to HASP printer protocol in the same way. 

Printer Nontransparent Data Mode 

Data within the PRUB is considered to be print lines. The end of each line 
is detected according to the standard PRUB format: (FFl6)' This can 
optionally be preceded by 0016' 

11-20 60471160 A 



If the print line taken from the PRUB is larger than the configured printer 
line width, excess characters are automatically printed on the next line. 
Print lines are never split across transmission blocks. The first character 
of each line is normally interpreted as a carriage control character, and is 
qonverted to the corresponding HASP workstation subrecord control byte 
(SRCB), according to table 11-7. Optionally, if the data stream is 
configured to suppress carriage control, the first character of each line is 
ignored and replaced by a single space before printed output. 

All characters are converted from display code to EBCDIC code prior to being 
output. 

TABLE 11-7. HASP PRINTER CARRIAGE CONTROL CODES 

INTERCOM Function HASP SRCB 
CODE Before Print Value (Hexadec imal) 

1 New page Bl 
+ No space 80 
0 Space 2 A2 
- Space 3 A3 
.l'S Space 1 Al 

Others Space 1 Al 

Printer Transparent Data Mode 

For PRUs marked as transparent data, no print lines are detected within the 
PRUB. Characters are placed in the transmission block without code 
conversion, carriage control, or end-of-line processing. 

If an EOR or EOI block is received, the transmission block is terminated 
with the last character of that PRUB. Otherwise, transmission blocks are 
filled to the maximum configured size. 

Command Interface for the Printer 

Print files are output to the printer without TIP intervention between 
files. The host is not notified when the last block of a file is output. 
The host is notified by an output stopped (printer not ready) CMD block 
(PFC=5, SFC=l) if the data stream is suspended by the terminal for more than 
30 seconds. The TIP also notifies the host and stops the printer data 
stream when a PM message is detected as the first two characters of a print 
line. The command sent upline for this condition is output stopped, PM 
(PFC=5, SFC=3). The PM print line is then sent to the console device. 

The print stream can be restarted after a stop condition by an INTERCOM 
command to the host which causes the host to send a downline restart output 
CMD block (PFC=7, SFC=O). The print stream is aborted by a downline stop 
output CMD block (PFC=8, SFC=O). This command causes any PRUB queued for 
the stream to be discarded. 

60471160 A 11-21 



PUNCH 

The TIP processes card punch output in a manner similar to printer output. 
The differences are as follows: 

• There is no carriage control function. 

• Punch records are SO characters long. 

• A lace card consisting of 70 characters of *, the 7-character job 
name, and 3 blanks, is punched as the first card of each job file as 
a separator. 

• There is an option to punch an EM ($19) character immediately 
following the last data character on each card that is less than SO 
characters in length. The EM character allows card reading to be 
more efficient for some terminals. 

Note that the punch data stream can be used for plotters, or output magnetic 
or paper tape, if the workstation contains the required emulation 
controlware. Files output to the punch can be specified as transparent data 
in the same manner as print files. In this case, they would be handled 
exactly as described for transparent data for the line printer except that 
the lace card would be punched in place of the printer banner page. 

A summary of the commands applicable to the punch stream are given in the 
table 11-S. 

TABLE ll-S. PUNCH DATA STREAM CONTROL CMD BLOCK 

PFC SFC Name Definition 

5 1 OUTPUT Upline command to notify the host the print 
STOPPED, stream has been suspended by the terminal 
DEVICE NOT for more than 30 seconds. 
READY 

7 0 RESUME Downline command to cause the TIP to 
OUTPUT start output after a stop condition. 
TRANSPARENT 

S 0 STOP Downline command to cause the TIP to 
OUTPUT, discard buffers and stop output to the 
ABORT punch. 

ERROR· CONDITIONS 
The error conditions recognized by the HASP TIP are as follows: 

• CRC-16 error 
• Illegal block make-up 
• Unknown response 
• Timeout 
• BCB error 

11-22 60471160 A 

/ 

r 
\. 



/ 

CRC-16 ERROR (CYCLIC REDUNDANCY CHECKING) 

Cyclic redundancy checking only occurs on data blocks. If a CRC-16 error 
occurs, the receiving process transmits a NAK block to the transmitting 
process. This indicates that a retransmission of the last block is 
required. If the retransmitted block is correct, the processing continues. 

ILLEGAL BLOCK MAKE-UP ERROR 

A data block must end with an ETB control character. If the data block does 
not, an illegal block make-up error occurs. The receiving process transmits 
a NAK block to the transmitting process which informs the transmitting 
process that a retransmission of the last block is required. If the 
re-transmission block is correct, the processing continues. 

UNKNOWN RESPONSE ERROR 

An unknown response error occurs when the response received from the 
transmitting process is not one of the following: 

• A data block beginning with the DLE and STX control characters in 
transparent mode 

• A data block beginning with the SOH and STX control characters in 
nontransparent mode 

• An ACKO block 

• A NAK block 

If an unknown response error occurs, the recelvlng process transmits a NAK 
block to the transmitting process. This informs the transmitting process 
that a retransmission of the last block is required. If the retransmitted 
block is correct, processing continues. 

BLOCK CONTROL BYTE (BCB) ERROR 

Every data block has a block control byte which contains a block sequence 
count. The data blocks are transmitted in sequentially ascending order, 
unless an ignore or reset block control byte is transmitted. If the block 
sequence count in the data block is not equal to the expected block sequence 
count, a block control byte error occurs. 

If a block control byte error occurs and the block sequence count is a 
duplicate of a block sequence count previously received, (expected block 
sequence count minus received block sequence count 2), the data block is 
ignored and processing continues as if a function control sequence change 
block or ACKO block was received. 

If a block control byte error occurs and the block sequence count is not a 
duplicate block count, as described in the previous paragraph, a block 
control byte error block is transmitted from the receiving process to the 
transmitting process. The block control byte error block informs the other 
process that a block sequence count error has occurred, and that the 
transmitting process must transmit a reset block control byte. The format 
of the block control byte error block is shown in figure 11-5. 

60471160 A 11-23 



BCB 

FCS 

RCB 

SRCB 

SCB 

RCB 

- BSC header 

- 1001XXXX; ignore sequence checking where XXXX = received 
block sequence count 

- 11100000; bad BCB on last block 

- 1000YYYY; where YYYY is expected block sequence count 

- All zeros; end-of-record 

- All zeros; transmission block terminator 

- BSC trailer 

Figure 11-5. Format of Block Control Byte (BCB) Error Block 

11-24 60471160 A 



REGULATION AND FLOW CONTROL 
The NPU regulates upline input from the HASP workstation when the NPU runs 
out of buffers, when the host stops, or when data transmission is not 
ready. The workstation regulates downline data output from the host/NPU as 
a function of the busy state of the workstation device, which uses or 
produces the data. 

• Upline Regulation 

In response to the stop input CMD block (section 6), the TIP sends an 
input stopped CMD block to the host. If data continues to arrive 
from the terminal, that data is discarded. No permission to transmit 
is granted by the TIP. 

Upon receipt of an end-of-file block from the terminal, the TIP sends 
an input stopped CMD block to the host following the data. 
Permission to send more data is not granted until a start input CMD 
block is received from the host. 

To check whether any internal NPU condition exists which should cause 
rejection of input messages, the TIP calls PTREGL, (1) at the time an 
acknowledgment is sent, or (2) when an output command is sent to the 
workstation that could result in an input data block being returned. 
Only two regulation conditions are checked, as follows: 

Host has reset accept input flag. 

Logical link regulation priority exceeds input priority. 

• Downline Data Flow Control 

The function control sequence fields control flow on each of the 
streams (terminal devices) by the use of the bits assigned to control 
each stream. The FCS sent by the terminal to the TIP controls the 
TIP's downline delivery of records related to each stream. 

The TIP correlates the FCS bits with the applicable connection numbers. If 
a bit is set to the suspend transmission state, the TIP sends an upline 
input stopped CMD block on the related connection after a timeout occurs. 
In some subsequent upline block from the terminal to the TIP, the function 
control sequence bit for the specified stream is set to change transmission 
from the suspend state to the continue state. This causes the TIP to send 
input resumed CMD blocks upline on the related connection number. 

The data stream to the host then continues. 

If a request to initiate function transmission sent from the HASP TIP is 
denied by the terminal, then an output stopped CMD block is sent upline for 
this device's connection number (CN), after a timeout occurs. If permission 
is granted, a resume output CMD block is sent. 

AUTORECOGNITION 
Lines using BSC modes can be configured for autorecognition. Since some 
program must distinguish between standard TIPs (2780/3780 and HASP 
terminals) using BSC codes for autorecognition, this function has been 
placed in the BSC TIP. As soon as the BSC TIP discovers the auto-

60471160 A 11-25 



recognition message from the terminal is for a HASP workstation, the BSC TIP 
uses PBLSPUT to build an OPS-Ievel worklist for the HASP TIP. The workcode 
is set to line enabled. The HASP TIP processes this OPS-Ievel worklist 
code, by setting up LCB fields (the BSC TIP has previously set up other LCB 
fields for the HASP TIP). 

DIRECT CALLS TO THE HASP TIP 
The HASP TIP can be called by the following: 

• Any other program, using a 3-word standard TIP worklist. Worklists 
are queued to PTHOPSTIP. The monitor passes control to the TIP with 
a single work list attached. PTHOPSTIP is the principal switch for 
the HASP TIP. (See HASP TIP trees, appendix G.) The switching 
procedure is based on the workcode in the worklist (lower half of 
word 0). The principal users of this call are: 

Internal processing to process downline data blocks and commands. 

The service module to set upline and terminal changes. 

The multiplex subsystem to have the TIP process special conditions 
such as unrecoverable hardware errors an~ protocol acknowledgments. 

The TIP's own input state programs to start the TIP into the upline 
text processing cycle. 

The TIP's own text processing state programs for unrecoverable 
error conditions. 

• Internal processing, by switching to the page and address of the HASP 
text processor, PTTPHASP. Downline text processing is done at the 
same time as the output message is converted from PRUB format to 
terminal format. Control then returns to internal processing which 
subsequently calls the TIP with a worklist so that the TIP can 
prepare the text processing block for output transmisssion. 

• SVM so that the TIP can finish processing the TCB at configure time. 
The TIP sets the default values for fields that were not explicitly 
configured by SVM using an FN!FV pair. 

• The multiplex subsystem at mux 2 level. This call is immediately 
converted to an OPS-Ievel call if the work code indicated buffer 
threshold has been reached. Otherwise, no action is taken. 

DIRECT CALLS FROM THE HASP TIP 
The HASP TIP uses the following routines: 

• Buffer handlers: PBGETIBF, PBRELIBF, PBRELCHN and PBRELZRO are used 
to assign and release buffers. PBCLR is used to clear buffer space. 

• PTREGL is used to check if input should be rejected. The conditions 
for regulation were discussed previously. 

11-26 60471160 A 



• PTTPINF is used to call the firmware text processing programs. 
Control returns directly to the TIP after the upline or downline data 
block has been text processed. 

• PBPOPOI is called to send upline acknowledgments (BACK blocks) when 
the data block has been sent to the terminal. 

• PBPIPOI is called to prepare the upline block for the host. This 
relieves the TIP of the task of converting the block to PRUB format. 

• PBUPABRT is called when the host has sent a stop input (terminate) 
CMD block to the TIP. All upline PRUBs are released and the TCB 
fields are set to their no traffic values. 

• PTCOMMAND is called to generate the data stream control CMD blocks 
for the host. 

• PBPTISEG is used for adding entries to the data queue. 

• BLTIMTBL is used to prepare timed functions and to clear timeout 
counters when the expected event occurs within the allowable period. 

• PBLSPUT is called to prepare worklist calls to the service module 
(for instance, to report that a TCB has been deleted), or to call the 

HASP OPS-level TIP itself when converting the mux 2 level entry to an 
OPS level entry, and when queuing input messages for later processing. 

HASP POSTPRINT 
HASP printers vary in the way they perform terminal carriage control 
actions. Some perform carriage control, then print the data1 others print 
the data, then perform carriage return actions. The former are called 
preprint terminals, the latter are called postprint terminals. The preprint 
terminals are designed to receive the data in this format: 

[CARRIAGE CONTROL] 

The terminal action is performed in this order: 

(1) Perform the carriage control action. 
(2) Print the data. 

[DATA] 

Initially, CCI treated all printers as preprint terminals. 

However, postprint terminals cannot perform these actions as one step. 
These terminal use the following sequence of actions: 

(1) Print the data. 
(2) Perform the carriage control actions. 

To handle both preprint and postprint terminals with the same data format, 
CCI divides HASP printer output data into two records: 

[CARRIAGE CONTROL] [DATA] 

[2 BLANKS] [CARRIAGE CONTROL] and [DATA] [no CC] 

where no CC indicates no carriage control character. 

60471160 A 11-27 



Preprint terminals handle this as a carriage control, then a print data 
sequence. Postprint terminals print out two blanks from the first record 
(that is, nothing is printed) and then perform the carriage control action. 
For the second record, the postprint terminal prints the data, but performs 
no carriage control action. 

11-28 60471160 A 



STATE PROGRAMS 12 

This section describes the firmware level state programs that are used by 
the TIPs and the multiplex subsystem to speed programming. One set of state 
programs controls upline transfer (input state programs, sometimes augmented 
by upline text processing programs) and another set controls downline 
transfers (text processing). Each program is composed of a series of state 
processes. Each state process is composed of a series of state instructions. 

Each TIP (in some cases, each type of terminal serviced by a TIP) has upline 
and downline state programs to process control characters, assign buffers, 
perform error processing for garbled characters in the transmission stream, 
and (if necessary) to translate code. (Exception: The TTY TIP does not 
translate code, up or downline; that TIP lacks text processing programs.) 
The entire group of state processes comprising a state program has a state 
pointer program associated with it. To execute a program, the TIP sets an 
index in this pointer table to specify the first state process to be used 
when the next character is to be processed. The pointer table index is then 
moved as appropriate for the next anticipated character. This is usually 
done by the state programs themselves. 

The multiplex subsystem also controls a set of state programs called the 
modem state programs. 

EXECUTION OF STATE PROGRAMS 
All state programs are executed on the firmware level. Message processing 
itself is under the control of the appropriate TIP, which is executed on the 
OPS level. That TIP, before starting processing of the message, sets up a 
multiplex line control block (MLCB) for upline messages or a text processing 
control block (TPCB) for downline messages. Since most of the message 
processing is normal (for instance, the modem is set up in the same way each 
time, buffers are assigned, a sequence of control characters delimit the 
message, and termination is generally the same), this kind of processing can 
be handled entirely within the state programs. 

As the message is processed on the firmware level, the state program index 
is changed on the firmware level by the state programs themselves. The 
state programs process the data without further communication with the 
OPS-Ievel part of the TIP. For upline data, processing consists of moving 
data from the circular input buffer to a dynamically assigned, line-oriented 
input buffer. When the line buffer is ready, the OPS level TIP is called to 
process it. For downline data state processing consists of taking all the 
data from the line-oriented output buffer, translating and reformatting it 
for the terminal, and placing it in an output buffer. Control returns to 
the OPS-level TIP to continue processing the message. Usually the TIP 
notifies the multiplexer that the message is ready for outputting. 

60471160 A 12-1 



The ideal case summarized above makes few provIsIons for special problems 
such as error processing. In such a case, the state programs might inform 
the TIP that message transmission failed, and the TIP would then activate 
one of its OPS-level routines for handling that situation based on the type 
of error encountered. 

State program processing is usually more complicated, than in the ideal 
case. Processing may shift several times between firmware-level processing 
of the state programs and the'OPS-level TIP. Communication between the TIP 
and the multiplex subsystem is needed to set up the input state program. 
This communication uses the command packet. The multiplex subsystem then 
starts the input state programs when the first character of the message is 
placed in the CIB. Whenever the TIP passes control to the multiplex 
subsystem, the new input state index must be set in the MLCB. 

Figure 12-1 shows the pointers that initially are needed to locate the first 
state process in a state program sequence. As a state process is completed 
and requires another, the index in the state pointer table is changed so the 
TIP or multiplex subsystem can find the next state process of the state 
program to be executed. 

CLASSES 
Functionally, there are three classes of state programs: 

• Input state programs for upline processing. An input data processor 
handles the character processing. 

The input data processor is a multiplex subsystem level 1 
microprogram which has the basic task of removing loop cell data from 
the input multiplexer loop, stripping away the multiplex loop control 
fields, and packing the resulting characters into a circular input 
buffer (CIB). Then the input state program is called to store an 
input character into a line-oriented input buffer. The current input 
state process determines whether any special action (code or format 
conversion) is required for the character and processes the character 
as needed. When all the input characters for that block are 
processed, input is terminated and a worklist entry is made to call 
the TIP at OPS level. 

The input data processor is interrupt driven (priority 2) by the 
multiplex loop interface adapter whenever a line frame is stored in 
the CIB. Unless preempted by a priority 1 interrupt, the input data 
processor causes the appropriate state program (input or modem) to 
remove all unprocessed entries from the CIB prior to relinquishing 
control. In this way, the CIB's pick pointer is moved up to the put 
pointer position whenever possible. Running out of space in the CIB 
causes the NPU to stop. 

• Text processing state programs for downline processing. Output text 
processing is required unless the output sent by the host is in 
transparent mode. Normally PBIOPOI calls the text processing 
programs of the OPS-level TIP directly. This program in turn calls 
the text processing state program to convert data to terminal 
format. The TIP makes a direct call to the state programs 
reformatting and converting to terminal code where necessary. Note 
that the format has already been changed from PRUB format. This 

12-2 60471160 A 

( 
\ 



0'1 
o 

"'" -...J ..... ..... 
0'1 
o 

:r:-

..... 
r-..> 
I 
w 

PORT TABLE 
(NAPORT) 

NCLCB ADDR 

INDEXED BY 
PORT (LINE) 
NUMBER 

OR 

(FOR MODEM 

V 

STATE PROGRAM) 

STATE 
t--

INDEX 

MODEM 
STATE 

t--
POINTER 
TABLE 

CONTROL BLOCK 
(MLCB OR TPCB) 

STATE 
~ 

INDEX 

STATE 
POINTER -TABLE 
ADDR 

BUFFER -C-POINTER 

" " 

STATE POINTER TABLE 
(CAN BE INPUT, TEXT 
PROCESSING, OR MODEM) 

STATE PRO CESS 0 

STATE PRO CESS 1 

• 
• 

-----. • 

I STATE PRO CESS N 

~ 
DATA 
BUFFER 1 

"~ DATA 
BUFFER N 

Figure 12-1. Locating a State Process 

STATE PROGRAM 

STATE 
PROCESS 0 
INSTRUCTIONS 

STATE 
PROCESS 1 
INSTRUCTIONS 

• 
• 
• 

STATE 
PROCESS N 
INSTRUCTIONS 

M-392 



operation moves the data from the buffers holding the partially 
transformed output data to buffers holding the data in terminal 
format. This data conversion must be accomplished before calling the 
TIP to initiate output on the line. 

After the text is converted to terminal code and format .by the text 
processing state program, the output data processor (ODP) in the 
multiplex subsystem handles the character output to the line. The 
output data processor is an interrupt-driven (priority 1) level 1 
microprogram that is activated when an output data demand (ODD) is 
generated by the CLA on that line. The output data processor's 
primary function is to obtain a single character from line-oriented 
output buffer, to place this data into line frame format, and to 
transfer the line frame onto the multiplex output loop. This process 
is repeated, driven by the ODD interrupts, until the entire message 
is transmitted. 

Text processing is also performed on some upline data This occurs 
where the input block is composed of data from several devices at the 
same workstation, as in the case of the HASP TIP. In this case, the 
input state programs move the data into a line-oriented input 
buffer. Then the multiplex subsystem calls the OPS-level TIP. The 
OPS-level TIP calls PTTPINF to convert this block of terminal data to 
one or more blocks of device-oriented data in host format. Note that 
conversion to PRUB format is done later by PBPIPOI. Different sets 
of text processing programs are needed for upline and downline 
conversions. 

• Modem state programs. The lOP and ODP described above handle those 
tasks that are protocol dependent. Modem state programs handle those 
tasks that are performed for all line protocols, such as processing 
CLA status. 

COM,PONENTS OF A STATE PROGRAM 
There are three components of a state program. 

• A state program consists of one or more state processes. The number 
and variety of state processes defined for a state program is a 
function of the particular terminal protocol. Each state program is 
assembled as a sequential table of coded state processes. 

• A state process, is composed of one or more state instructions 
(firmware macroinstructions). The set of these macros forms the 
language of state processing. For complete description of the macros 
and their use, refer to the State Programming Reference Manual. (See 
preface. ) 

• The state pointer table contains the address of each state process 
defined for a particular protocol or line type. A state process is 
selected by setting the state index to the process number. 

FUNCTIONS 
The function of the input state, text processing, and modem state programs 
are described in this subsection. 

12-4 60471160 A 



INPUT STATE PROGRAMS 

Input state programs demultiplex characters into line-oriented input buffers. 

This is done in two ways: 

• One-pass processing. These buffers of converted data are passed to 
the host via the TIP, PBPIPOI, and the HIP. 

• Two-pass processing. These buffers of partially demultiplexed data 
become the source buffers for input text processing. The OPS-level 
TIP is called to finish the demultiplexing. Then the TIP passes the 
converted data to the host via PBPIPOI and the HIP. 

An input state program consists of a maximum of 64 state processes. These 
processes handle tasks such as data conversion, CRC generation, character 
compression, and message blocking. Since all state processes are reentrant, 
lines with a similiar protocol can share some state processes. 

The TIP must provide programs for the four reserved input state processes 
(0, 1, 2, and 3). State 0 handles parity errors of data transfer overrun. 
State I is called when the data carrier detect (DCD) signal is dropped. 
This condition can be used as a logical end-of-text for controlled carrier 
lines. Both state 0 and 1 are given control by the modem state program 
(regardless of the current input state) when the stated condition occurs. 
States 2 and 3 are called by the input data processor to process 
buffer-related conditions. State 2 is given control when the number of 
input buffers currently in use exceeds the system limit. State 3 receives 
control when the available buffer minimum threshold is reached. States 4 
through 63 are defined by the TIP. 

The l6-word multiplex line control block (MLCB) stores control information 
for the message. Numerous flags and fields are defined for the transfer, 
including the state process pointer and the state program index. Together, 
these locate the next state process to be executed. The MLCB fields are 
defined in appendix H. 

The input data processor has three interfaces: to firmware, to modem state 
programs, and to text processing state programs. 

• Firmware interface to input data processor 

The firmware input data interrupt causes the multiplex subsystem to 
pass control to the designated input state process for the 
line/terminal. Before executing the first state input state 
instruction, the firmware loads a selected register with the current 
(untranslated) character. The contents of this register can be 
changed by state macroinstructions. 

If parity stripping is specified, the parity bit is stripped when the 
register is initially loaded. If and when the register contents are 
changed, parity stripping is ignored. Exit options allow the TIP to 
store the characters from the register without changing the register 
contents. 

60471160 A 12-5 



• Modern state program interface to input data processor 

When a data character and CLA status occur in the same line frame of 
the CIB, the firmware transfers control to the current modern state 
process. The modern state program is responsible for passing control 
to input state process 0 or 1 upon detecting status conditions for 
which the input state program should get control. 

Flags in the MLCB are used for communication between the modern state 
program and input state program. One flag indicates that a workcode 
has been saved for use when the carrier drops. Another flag is set 
by the line initializer when a controlled carrier line is detected. 

The input state program must set the modern state index to the modern 
state process that handles status while input is in progress. That 
is, upon detecting start-of-input, the input state program must 
change the modern state index to the modern state process that handles 
status when inputting. Then, upon detecting end-of-transmission, the 
input state program must set the modern state index to the modern state 
process for idle. 

For the controlled carrier type of line, an output message cannot be 
transmitted until data carrier detect drops on input. To eliminate 
the possibility of a TIP starting output before data carrier detect 
has dropped during input, the input state program has the ability to 
terminate the input buffer and save the workcode in the MLCB (the 
alternative would be building the worklist at the time of the 
termination). The input state program then sets a user flag 
indicating this saved workcode condition. 

A worklist entry can be built immediately if the line type is not a 
controlled carrier line. 

The modern state program jumps to input state process 1 when the saved 
workcode flag is set, data carrier detect has dropped, and the idle 
modern state exists. The TIP does not get control until data carrier 
detect has dropped, eliminating the possibility of starting output 
before data carrier detect has dropped during input. 

Other input/modern state interfaces can be defined as needed by the 
user. 

• Text processing state program interface to input data processor 

The input state program creates interim (source) buffers to be used 
by the text processing state program only when more than one pass is 
required to process the input from the CIB. 

TEXT PROCESSING STATE PROGRAMS 

These state programs handle all protocol-oriented output processing and some 
input processing (where several devices on the same line have data to 
convert within a single upline block). 

12-6 60471160 A 



When handling characters for output text processing, the buffer received from 
the host (after transformed by PBIOPOI) is referred to as the source buffer. 
A character from this buffer is known as a source character. For input text 
processing, the source character is obtained from the source buffer that was 
created by the input state program at the end of the first pass. The source 
character is placed in the current character register by the firmware. 

A text processing state program consists of a maximum of 64 state 
processes. Since all state processes are reentrant, lines with a similar 
protocol can use the same state processes. 

Text processing state process 0 is reserved for handling the end of a 
source-reached condition, and state process 2 is reserved for handling 
buffer overflow processing. States 1 and 3 through 63 are defined by the 
TIP. 

The selection of the text processing state process to execute is determined 
by combining the value of the state process index with the state pointer 
table address. Both fields are in the text processing state pointer table 
entry points to the associated text processing state process. See appendix 
H for a definition of TPCB fields. 

The state pointer table address and state process index fields are set by 
the OPS-level TIP program. State program macroinstructions allow the 
firmware program to change the state process index while executing text 
processing state programs. 

Before text processing is initiated, a group of 16 firmware registers (file 
1 text processing registers) are initialized from the last 16 words of the 
TPCB by PTTPINF. This action allows the firmware to operate entirely within 
micromemory. 

The 16 file 1 registers are accessed by specifying a displacement to the 
selected file 1 register. A displacement of 0 selects the first file 1 
register and a displacement of 15 selects the last file 1 register. 

Firmware Interface to the Output Data Processor 

The destination buffers generated by the output text processing program can 
be accessed by the output data processor when an output data demand (ODD) is 
received from the communications line adapter. The output data processor 
gets the next character from line-oriented buffers, moves the character into 
multiplex output loop frame, and transfers the frame to the MLIA for 
transmission on the multiplex output loop. 

The TIP support program, PTTPINF, provides the interface between the 
OPS-level TIP and the firmware that performs state-drive text processing. 
PTTPINF performs the following functions: 

• Initializes the file 1 registers for text processing with the lower 
16 words of the text processing control block (TPCB) array. 

• Initiates text processing state processes. 

• Releases unused destination buffers created by the save and restore 
state instructions upon return to macrolevel processing. 

• Restores the text processing TPCB array with the file 1 registers 
upon return to macrolevel processing. 

60471160 A 12-7 



PTTPINF is called with a parameter containing the address of the TPCB. 

After detecting a character but before executing the first text processing 
state instruction, the firmware loads file register 0 and a selected 
register with the current (untranslated) character. The programmer can 
change the contents of file register 0 by using the state program 
macroinstructions. 

If parity stripping is specified, the parity bit is stripped when the 
register is initially loaded. If the contents of the register are changed, 
parity is ignored. Exit options can store this character without changing 
the register contents. 

MODEM STATE PROGRAMS 

The modem state programs process modem status as a function of modem control 
signals. The programs (which are called by the firmware when communications 
line adapter (CLA) status word enters the subsystem) use a worklist entry to 
forward the logical CLA status to the multiplexer level status handler 
(PTCLAS). PTCLAS analyzes the status and uses a worklist entry to report 
line conditions to the OPS-level TIP modem state program. 

A modem state program consists of a maximum of 16 state processes. There 
are modem state processes defined for each line type based on line 
condition. Thus, the modem state program can have one or more processes for 
each condition, or one state process to handle more than one line condition, 
depending on the line type. 

The modem state programs report status conditions to the line initializer 
and to the TIPs. These programs are based on line type. The states defined 
for each line analyze the status as a function of the current state of the 
line (for example, line idle, output in progress, input in progress, and 
initializing line). 

State 0 is the starting state of the modem state programs when a CLA status 
word is detected in the circular input buffer. This state checks for hard 
errors and any other signals that are common to idle, input, and output 
states. Control passes to the current state program if no errors are 
detected or if the current state is discard, initializing line, or enabling 
line. 

State 1 discards all status. This state is selected following any hard 
error work list generation or by a clear line or disable line command to the 
command driver. 

State 3 is the enable line state. It is selected whenever an enable line 
command is issued. The modem signals that indicate that the line is ready 
for data transfer are checked. If these are found, a worklist indicating 
the line is enabled is generated. The modem state program changes to state 
4 (idle) after the worklist is generated. Either of two signals indicate 
the line is enabled: data set ready (DSR) alone, or a combination of DSR 
and data carrier detect (DCD). 

12-8 60471160 A 



NOTE 

States 0, 1, 2, and 3 are similar for all line types. Any 
new modem state programs must perform these same functions. 
New programs should also check the three hard error 
indicators: input line enabled, output line enabled, and DSR. 

State 4 is the idle state. It checks for any error conditions that are not 
checked in state O. 

NOTE 

States 5 and 6 are unique by line type. 

State 5 is the output state. It checks for output-related errors not 
checked in state 0, such as next character not available. 

State 6 is the input state. It checks for input-related errors not checked 
by state 0, such as parity error status. The program also provides a jump 
to the TIP input state that handles the data character that accompanies the 
status indicator for any status condition that requires such a character 
(for example, PES, data transfer overrun, and SDLC character status). 

NOTE 

States 4, 5, and 6 can be separate states if the line does 
not use full-duplex transmission. With full-duplex 
transmission lines, these states can be performing the same 
functions for handling status while input and output are 
simultaneously in progress. 

State 7 is ready for output, reverse channel. It is not used. 

The modem state index in the port table (NAPORT) can be set by the command 
driver, an input state program, or a modem state program. The modem state 
program address field is set by the command driver when a line is 
initialized. The command driver sets the index to the modem state process 
according to the command being issued. The input state programs control the 
setting of the modem state program index for handling status while input is 
in progress. 

The modem state program is initially entered by accessing modem state 
process O. Modem state process 0 sets the modem state index according to 
the status informtion it receives. Subsequent selection of a modem state 
process is determined by the modem state program address and modem state 
index of the port table. This combination of the index and address selects 
the state pointer table entry which points to the associated modem state 
process. 

The modem state programs have three interfaces. 

Firmware Interface to the Modem State Programs 

CLA status is moved into the circular input buffer (CIB) along with the 
input data. When the firmware's input data processor detects CLA status, it 
passes control to modem state process 0 for that line. 

60471160 A 12-9 



Multiplex Level Status Handler (PTCLAS) Interface to the Modem State Programs 

After the modem state program builds a worklist entry containing the logical 
CLA status, the multiplex level worklist processor routes the priority 
worklist entry to the mux level status handler, PTCLAS. Upon receiving 
control, PTCLAS analyzes the status condition indicator and acts 
accordingly. The appropriate action may be to generate a CE error message, 
to start a timer from modem response or CLA status overflow, or to make a 
worklist entry to the associated TIP at OPS-level. 

Input State Program Interface to the Modem State Programs 

This interface was described in the Input State Program subsection. 

MACROINSTRUCTIONS 
There are nine classes of macroinstructions: 

• Status of the two assignable counters 
• Character manipulation (store, replace, etc.) 
• Index manipulation 
• Skips 
• CLA status handling 
• Flag control (set and reset) 
• Worklist handling (build, terminate, use fields) 
• Text processor operations 
• Miscellaneous (addresses, timers, backspace, resync, CRC, buffer 

allocation, block length, move fields) 

The state program macroinstructions are summarized in table 12-1. The 
general format of a state program macroinstruction is: 

MACRO NAME parml,parm2, ••• ,parmn 

The instruction in this call format is closed up and all defined parameters 
must be present. If a parameter is inapplicable to the current call or if 
the default value is to be used, the parameter value can be omitted, but its 
delimiting commas must be present. 

Example: 

MACRO X parml,parm2,parm3,parm4 

could appear as 

MACRO X parml"parm3, 

if parameters 2 and 4 are to have default values. 

12-10 60471160 A 

\ 
\. 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS 

Name Function Parameters 

STATUS OF ASSIGNABLE COUNTERS 

INTCC Ini tialize character counters (CC) • COUNT, ACTION 

INTCCl Ini tialize CCl with packet size. ACTION 

INTCC2 Initialize CC2 with maximum block length. ACTION 

SETCC Set CC to value (CV) • COUNT, CV 

SETCCl Set CCl to CV. CV 

SETCC2 Set CC2 to CV. CV 

CHRCC Mask and set CC. COUNT, IMASK 

CHRCCl Set CCl. IMASK 

CHRCC2 Set CC2. IMASK 

MOICC Set CC with modulus function (Modulus = CV) • COUNT, CV 

ICC Increment CC. COUNT, ACTION 

ICCl Increment CCl. ACTION 

ICC2 Increment CC2. ACTION 

DCC Decrement CC. COUNT, LABEL, 
ACTION 

DCCl Decrement CCl. LABEL, ACTION 

DCC2 Decrement CC2. LABEL, ACTION 

CNTNE Compare CC with value (CV) • COUNT, CV, 
LABEL 

CNTINE Use count l. CV, LABEL 

CNT2NE Use count 2. CV, LABEL 

BLCNE Compare CC to block length. COUNT, LABEL 

BLCINE Use count l. LABEL 

BLC2NE Use count 2. LABEL 

STORC Store CC in destination buffer. COUNT, ACTION 

STORCl Use count l. ACTION 

STORC2 Use count 2. ACTION 

60471160 A 12-11 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name Function 

CHARACTER MANIPULATION 

STORE 

RCHAR 

RPLACE 

ADDC 

RADDC 

CHRPT 

Store current character in destination 
buffer with or without CRC. 

Make specified character the current 
(untranslated) character. 

Make specified character the current 
character, store it (combines RCHAR 
and STORE). 

Insert (add) character to destination 
buffer. 

Add CHAR to destination buffer the 
number of times specified in count 1. 

Add current character to destination 
buffer the number of times specified in 
count 1. 

INDEX MANIPULATION 

MSTATE 

MJUMP 

STATE 

RTRN 

JUMP 

SKIPS 

SKIP 

SKIPB 

CRCEQ 

STATLS 

12-12 

Set modem state index in port table to 
value (STATE). 

MSTATE, then execute indexed program. 

Set input index in MLCB to value (STATE) 
or set TP index in TPCB to value. 

Execute currently indexed input or TP 
state programs. 

Optionally update state index, then 
execute indexed input or TP state 
program. 

Skip forward to LABEL. 

Skip backward to LABEL. 

Skip to LABEL if CRC check is good. 

Skip to LABEL if current input/TPstate 
index < LABEL. 

Parameters 

CRCA 

CHAR, ACTION 

CHAR, CRCA 

CHAR, ACTION 

CHAR 

none 

STATE, ACTION 

STATE 

STATE, ACTION 

none 

STATE, RTN 

LABEL 

LABEL 

SB, LABEL 

STATE, LABEL 

60471160 A 

( 
\ 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name 

MSTLS 

CHARNE 

SPCHEQ 

CHARLS 

Function 

Skip to LABEL if current modern state 
index < LABEL. 

Skip to LABEL if current character 
i CHAR. 

Perform ACTION if current character i 
special character, skip to LABEL 
otherwise (special character in control 
block) • 

Skip to LABEL if current character 
CHAR. 

CLA STATUS HANDLING 

TSTCLA 

CMPCLA 

FLAG CONTROL 

SETRAN 

RSTRAN 

SETINP 

RSTINP 

SETMXF 

RSTMXF 

TSTMXF 

SETFLG 

SETPAR 

RSTPAR 

60471160 A 

Check unmasked CLA status bits, skip to 
LABEL unless bits match. Use AND 
function. 

Same as TSTCLA but use exclusive OR 
function. 

Set translate flag. 

Reset translate flag. 

Set message in process flag. 

Reset message in process flag. 

Set specified flags. 

Reset specified flags. 

Skip to LABEL if any of MFLAGS is set. 

Set flags in destination buffer. 

Set parity flag in control block 
(strips parity from subsequent current 
characters) • 

Reset parity flag. 

Parameters 

STATE, LABEL 

CHAR, LABEL 

LABEL, ACTION 

CHAR, LABEL 

CMASK, LABEL 

CMASK, LABEL 

ACTION 

ACTION 

ACTION 

ACTION 

MFLAGS, ACTION 

MFLAGS, ACTION 

MFLAGS, LABEL 

MFLAGS, BUFFER, 
ACTION 

ACTION 

ACTION 

12-13 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name Function 

WORKLIST HANDLING 

TIBWL 

TIBSWC 

BLDWL 

BLDOI 

Terminate input buffer, build a worklist 
entry (WLE) for TIP. 

Terminate input buffer, save workcode 
(WC) in MLCB. 

Build WLE for OPS or multiplex level. 

Generate CLA status WLE for multiplex 
level 2. 

TEXT PROCESSOR OPERATIONS 

TPADDR 

TPSUBR 

TPCMPR 

TPINCR 

TPDECR 

TPMARK 

TPBKUP 

TPSTLC 

TPSTRC 

TPRSTL 

TPRSTR 

TPEXIT 

12-14 

(SFIR+DFIR) DFIR. FIR is a file 1 
register, S is source, D is destination. 

(DFIR-SF lR) DFIR. 

SFIR 
SFIR 
SFIR 

DFIR, execute P+l instruction 
= DFIR, execute P+2 instruction 

DFIR, execute P+3 instruction 

Increment specified FIR by VALUE. 

Decrement specified FIR by VALUE. 

Mark (save processing parameters) source 
and destination buffers at level (LV). 

Return to the specified buffers at level. 

Store left byte of FIR (SD) into destina­
tion buffer (with or without CRC check). 

Store right byte of FIR. 

Restore untranslated character registers 
from FIR, left byte. 

Restore untranslated character register 
from FIR, right byte. 

Exit from TP state program to OPS level. 

Parameters 

WC, WL, EOT, 
ACTION, EP 

WC, EOT, 
ACTION 

WC, WL, 
ACTION, EP 

SCI, ACTION 

SD, DD 

SD, DD 

SD, DD 

SD, VALUE 

SD, VALUE 

LV 

LV, SRC, DST 

SD, CRCA 

SD, CRCA 

SD 

SD 

none 

60471160 A 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name Function 

MISCELLANEOUS 

STRNTB 

RSTIME 

BKSPAC 

RESYNC 

ICRC 

ALNBUF 

NOPR 

TPMOVE 

TPST 

TPSTR 

TPSTL 

TPLD 

TPLDR 

TPLDL 

SBLC 

60471160 A 

Store translation table address in 
control block. 

Reset line control timer value (TIME): 
is a function of line type. 

Backspace destination buffer pointer one 
word. 

Send resync command to CLA. 

In i ttalize CRC. 

Allocate and initialize a buffer. 

Specify ACTION parameter. 

Move SFIR contents to DFIR. 

Move SFIR to specified CB word. 

Move right byte of SFIR to specified CB 
word. 

Move left byte of SFlR to specified CB 
word. 

Move specified CB word to DFlR. 

Move right byte of specified CB word to 
DFlR. 

Move left byte of specified CB word to 
DFlR. 

Adjust block length count and then store 
new count in CB. 

Parameters 

TA, ACTION 

TIME, ACTION 

none 

ACTION 

ICRC, ACTION 

FCD, ACTION 

ACTION 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

ADJ, ACTION 

12-15 



The number of parameters varies. Macroinstructions are represented in 
either a I-word or a 2-word instruction (parameter list). The usual 
word-oriented format is as follows: 

I-word 

·15 7 3 o 
Flags/Fields I Fl I Code 

Flags - Usually in bits 14 and 15 

Fl 

Code 

A set of frequently used parameters, including ACTION, a 
parameter that specifies the actions to take prior to exiting 
from the instruction sequence 

Field 

The instruction ID (index): 00 CODE IF16 

Any additional control or address field 

Each code can have several variations, defined by use of flags and fields. 

2-word 

15 7 3 o 
Flags/Fields I F1 Code 

FIELD 

NOTE 

Flags, Fields, and FI are all parameters. The order of the 
parameters in the call is not usually the same as the packed 
order in the instruction words. 

For a detailed description of the macroinstructions, refer to the State 
Programming Language Reference Manual. 

12-16 60471160 A 



GLOSSARY 

ADDRESS - A location of data (as in the NPU main or micromemory) or of a 
device (as a peripheral device or terminal). The NPU main memory is 
paged. 

A 

A/Q CHANNEL - The internal data channel of the 255x NPU. Peripheral devices 
located on the A/Q channel ordinarily use the A register for data or 
status transfers and the Q register for command or addressing information. 

ASYNCHRONOUS PROTOCOL - The protocol used by asynchronous, teletypewriter­
compatible devices. The NPU/terminal interface is handled by the 
asynchronous TTY TIP. 

AUTORECOGNITION - A capability offered to selected terminals which allows 
the TIP to discern some device characteristics for the terminal, rather 
than having the terminal or the host specify the information. 

BANDWIDTH - For CCI, bandwidth indicates the transfer rate (in characters per 
second) between the NPU and the terminal. 

BASE SYSTEM SOFTWARE - The set of programs in CCI which supply the monitor, 
timing, interrupt handling, and multiplexing functions for the NPU. Base 
software also includes common areas. 

BATCH DATA FORMAT - The transmission format used by the block protocol of 
CCI. Batch data is usually in 6-bit display code, within 8-bit bytes, 
within PRU-sized blocks. 

BLOCK - A unit of information used by networks. A block consists of four 
or more 8-bit characters and contains sufficient information to identify 
the type of block, its origin, destination, and routing. Different 
protocols apply to the host/NPU and the NPU/terminal interfaces. 

BLOCK PROTOCOL - The protocol governing block transfers of information 
between the host and the NPU. 

BREAK - An element of a protocol indicating an interruption in the data 
stream. 

BROADCAST MESSAGE - A message generated by the system or by an operator 
using the system. The message is sent to one (broadcast one) or all of the 
terminals in the system (broadcast all). 

BUFFER - A collection of data in contiguous words. CCI assigns one size of 
buffer for data and three other sizes of buffers for internal 
processing. A buffer usually has a header of one or more words. Data 
within a data buffer is delimited by pointers to the first and last 
characters (data buffers are character-oriented). If the data cannot all 
fit into one buffer, an additional buffer is assigned and is chained to 
the current buffer. Buffer assignment continues until the entire message 
is contained in the chain of buffers. Buffers are chained together only 
in the forward direction. 

60471160 A A-l 



BUFFERING - The process of collecting data together in buffers. Filled 
buffers include the case where data is terminated before the end of the 
buffer and the remaining space is filled with extraneous matter. 

BUFFER THRESHOLD - The minimum number of buffers available for assignment of 
new tasks. As the buffer level falls below the threshold, new tasks are 
rejected (regulation). 

BYTE - A group of contiguous bits. For data handling within the NPU/host 
interface, a byte is 8 bits, usually in the form of a 7-bit ASCII 
character with the eighth bit reserved for parity. 

CASSETTE - The magnetic tape device in an NPU used for bootstrap loading of 
offline diagnostics. 

CE ERROR MESSAGE - A diagnostic message sent upline to the host from the 
NPU. The message contains information concerning hardware and/or 
software malfunctions. 

CHARACTER - A coded byte of data. In CCI, a character is ordinarily in 
8-bit ASCII format (7 bits plus an eighth bit reserved for parity) or 
6-bit display code. 

CIRCULAR INPUT BUFFER (CIB) - The fixed buffer used by the multiplex 
subsystem to collect all data passing upline from the multiplex. The 
buffer is controlled by a put pointer for the multiplexer and a pick 
pointer used to demultiplex data to individual line-oriented data buffers. 

COMMAND DRIVER - The base system program (PMCDRV) that controls the 
multiplex subsystem. 

COMMON AREA - Area of main memory dedicated to system and global data. 
These are usually below address ID5016. 

COMMUNICATIONS CONTROL INTERCOM (CCI) - A set of modules that perform the 
tasks delegated to the NPU in the network message processing system. 

CONFIGURATION - See System Configuration. 

CONNECTION NUMBER (CN) - A number specifying the path used to connect the 
terminal through the NPU to the host. For each NPU-host pair, there are 
255 available connection numbers. 

CONSOLE - A terminal devoted to network control processing. There are two 
such terminals: the host computer system console and the NPU console. 

CONTENTION - (1) The state that exists in a bidirectional transmission line 
when both ends of the line try to use the line for transmission at the 
same time. Most protocols contain logic to resolve the contention 
situation. (2) The situation that exists when an interruptable program 
and the program that can interrupt it share data elements. 

CONTROL BLOCK - (1) The type of block used to transmit control information 
(as opposed to data). 

A-2 60471160 A 



(2) Data structures assigned for special configuration or status purposes 
in the NPU. The major control blocks are line control blocks (LCB), 
logical link control blocks (Lr,CB), terminal control blocks (TCB), 
worklist control blocks (WLCB), buffer maintenance control blocks (BCB), 
multiplex line control blocks (MLCB), text processor control blocks 
(TPCB), and diagnostics control blocks (DCB). 

COUPLER - The hardware interface between the NPU and the host. 
Transmissions across the coupler use block protocol. 

CROSS - The software support system for CCI. This system supports PASCAL 
coding, and is run on the host computer. One output is a CCI program in 
255x machine code ready for execution in the NPU. 

CYCLIC REDUNDANCY CHECK (CRC) - A check code transmitted with blocks of 
data. This code is used by several protocols, including the HASP mode 4, 
and BSC protocols. 

DATA - Information processsed by the network or some components of the 
network. Data usually has the form of messages, but commands and status 
are frequently transmitted using the same information packets as data 
(for instance, system messages). 

DATA BLOCK CLARIFIER (DBC) - A byte in the header of a data block. The DBC 
contains data control information. 

DATA COMPRESSION - The technique of transmitting a sequence of identical 
characters as a control character and a number representing the length of 
the sequence. HASP and mode 4 protocols support data compression, as do 
other terminal formats. 

DATA SET - A hardware interface that transforms analog data to digital data 
and vice versa. A data set is used to connect remotely located terminals 
to the NPU. 

DESTINATION NODE (DN) - The network node to which a message is directed1 for 
instance, the DN of an upline message can be INTERCOM 5. 

DIAGNOSTICS - Software programs or combinations of programs and tables which 
aid the troubleshooter in isolating problems. 

DIRECT CALL - The method of passing control directly from one program to 
another. This is the usual transfer mode. Some CCI calls are indirect, 
through the monitor. Such OPS-Ievel indirect calls pass information to 
the called program through parameter areas called worklists. See 
Worklist. 

DIRECT MEMORY ACCESS (DMA) - The high-speed input/output channel to the NPU 
main memory. This channel is used by the coupler for host/NPU buffered 
transfers and by the multiplex subsystem (MLIA) for line to/from NPU 
transfers. 

DIRECTORY - A table in CCI that contains information used to route blocks 
to the proper interface and line. There are directories for source and 
destination node and for connection number. A routed message is attached 
to the terminal control block for the line over which the message will 
pass. 

60471160 A A-3 



DOWNLINE - The direction of output information flow, from host to terminal 
or NPU. 

DUMP - The process of transferring the contents of the NPU main memory, 
registers, and file I registers to the host. The dump can be processed 
by the host to produce a listing of the dumped hexadecimal information. 

EXTERNAL BCD - A type of binary coded decimal code used by some TTY and 
mode 4 terminals. 

FILE REGISTERS - The two sets of microregisters (file I and file 2) in the 
NPU. File I registers contain parameter information that is reloaded 
whenever the NPU is initialized. Microprograms using these registers can 
also change values in them. File 2 registers are invariant firmware 
registers that come preproqrammed with the NPU. 

FORMAT EFFECTOR (FE) - A control symbol used by certain protocols (for 
instance, the HASP protocol). 

FULL DUPLEX (FDX) - A transmission mode allowing data transfer in both 
directions at the same time. A full-duplex system requires a dual set of 
data lines, each set dedicated to transmission in one direction only. 

FUNCTION CODE - A code used by the service module to designate the type of 
function (command or status) being transmitted. Two codes are defined: 
primary function code (PFC) secondary function code (SFC). See appendix 
E for definitions of these codes. 

GLOBAL VARIABLES - Variables that are defined for use throughout CCI. 
Contrast global variables with local variables that are identified only 
within a single NPU or host program. 

HALF DUPLEX (HDX) - A transmission mode allowing data transfer in one 
direction at a time. Normally a single set of data lines carries input, 
ouput, and part of the control information. Contention for use is 
possible in half-duplex mode, and must be resolved bi the protocol 
governing line transfers. 

HALT CODE - A code generated by the NPU when it executes a soft-stop. These 
codes (which indicate the cause of the stoppage) are delivered at the NPU 
console in the form of a halt message. 

HASP - Houston Automatic Spooling Process; the protocol used by the HASP 
workstations. The standard code of a HASP workstation is EBCDIC. The 
HASP TIP in the NPU processes the HASP protocol and normally performs 
code conversions since the host uses ASCII and display code for its 
processing. 

HEADER - A word or set of words at the beginning of a block, record, file, 
or buffer which contains control information for that unit of data. 

HOST - The computer that controls the network and contains INTERCOM 5. 

HOST INTERFACE PACKAGE (HIP) - The CCI program that handles block transfers 
across the host/local NPU interface. The HIP normally uses CCI block 
protocol. 

A-4 60471160 A 



10 - The identifier for ports, nodes, lines, links, or terminals. Any 
hardware elements or connection can have an 10, normally a sequentially 
assigned number. 

INITIALIZATION - The process of loading an NPU and optionally dumping the 
NPU contents. After downline loading from the host, the NPU 
network-oriented tables are configured by the host so that all network 
processes have the same IDs for all network terminals, lines, and so 
forth. 

INPUT BUFFER - A 
for the host. 
Contrast with 
interface. 

data buffer reserved by CCI for recelvlng an upline messaqe 
The input buffer is assigned and released dynamically. 

the circular input buffer on the multiplex subsystem 

INTERACTIVE DATA FORMAT - The transmission format used by the block protocol 
of CCI. Interactive data is in 7-bit ASCII, within 8-bit bytes, within 
line-sized blocks. 

INTERACE (NPU) - The set of hardware and software that permits transfers 
between the NPU and an external device. There are four principal 
interfaces: to the host (block protocol in internal terminal format 
handled by a HIP), to the peripheral devices (NPU console protocol 
handled by base system software), and to the terminals via the multiplex 
subsystem (various protocols; standard protocols are handled by the mode 
4, TTY, 2780/3780, and HASP TIPs). 

INTERRUPTS - A set of hardware lines and software programs which allow 
external events to interrupt NPU processing. Interrupting programs are 
allowed preferential processing on a priority basis. The lowest priority 
level is processed by the OPS monitor. 

LINE - A connection between an NPU and a terminal. 

LINE CONTROL BLOCK (LCB) - A table assigned to each active line in the 
system. It contains configuration information as well as current 
processing information. 

LOAD - The process of moving programs downline from the host and storing 
them in the NPU main and micromemory. 

LOCAL NPU - An NPU that is connected to the host via a coupler. A local NPU 
always contains a HIP for processing block protocol transfers across the 
host/local NPU interface. 

LOGICAL CONNECTION - A logical message path established between a network 
terminal and a host program. Until terminated, the logical connection 
allows messages to pass between the two entities. 

LOGICAL LINK CONTROL BLOCK (LLCB) - A table assigned to each logical link in 
the system which is directly connected to this NPU. The table contains 
configuration information as well as current processing informption. 

LOGICAL REQUEST PACKET (LRP) - A parameter or data packet to or from a 
peripheral device. The LRP, attached to a real peripheral control block, 
is transformed to a physical request packet and is delivered to the 
assigned console device. 

60471160 A A-5 



LOOP MULTIPLEXER (LM) - The hardware that interfaces the CLAs, which convert 
data between bit-serial digital and bit-parallel digital (character 
format), and the input and output loops. 

MAIN MEMORY - The macromemory of the NPU. This memory is partly dedicated 
to programs and common areas. The remainder is buffer area used for data 
and overlay programs. Word size is 16 data bits plus three additional 
bits for parity and program protection. Memory is packaged in 16K and 
32K word increments; 48K is the minimum memory size. 

MASK REGISTER - A register used in the interrupt subsystem to 
interrupt is of sufficiently high priority to be processed 
in the mask register (M) corresponds to an interrupt line. 
register operates under program control. 

check if an 
now. Each bit 

The M 

MESSAGE - A logical unit of information, as processed by a program. When 
transmitted over a network, a message can consist of one or more physical 
blocks. 

MICROMEMORY - The micro portion of the NPU memory. This consists of 2048 
words of 64-bit length. 1024 words are read only memory (ROM); the 
remaining 1024 words are random access memory (RAM) and are alterable. 
The ROM contains the emulator microprogram that allows use of assembly 
language. 

MICROPROCESSOR - The portion of the NPU which processes CCI programs. 

MODE 4 - A communication line transmission protocol for synchronous 
terminals. The protocol requires the polling of sources for input to the 
data communications network. CCI supports mode 4A, mode 4B, and mode 4C 
equipment. Mode 4A equipment is polled through a single hardware address 
(usually that of the console device), regardless of how many devices use 
the address as the point of interface to the network. Mode 4C equipment 
is polled through several hardware addresses, depending on the point each 
device uses to interface with the network. The Mode 4 TIP processes the 
interface between the NPU and the mode 4 terminals. 

NOTE 

Considerable differences exist in the terminology associated 
with Mode 4 devices. The equivalent terms are shown in Table 
A-l. 

TABLE A-l. MODE 4 TERMINOLOGY 

Nomenclature Mode 4A Mode 4C 
in This Manual Nomenclature Nomenclature 

NPU Data source Control station 

Cluster address Site address Station address 

Cluster Equipment Station 
controller controller 

Terminal address Station address Device address 

A-6 60471160 A 



MODEM - A hardware device for converting analog levels to digital signals 
and vice versa. Long lines interface to digital equipment via modems. 
Modem is synonymous with data set. 

MODULE - See Program. 

MONITOR - The portion of the NPU base system software responsible for time 
and space allocation within the computer. The principal monitor proqram 
is PBMON which executes OPS level proqrams by scanninq a table of 
programs that have pending tasks (worklist entries). 

MULTILEAVING - The technique of interleaving several similar data streams in 
one transmission stream, while preserving the identity of the data stream 
source or destination. 

MUX-LEVEL - A series of priority levels for time dependent tasks such as 
input or output data processing at the multiplex subsystem interface. 

MULTIPLEX LOOP INTERFACE ADAPTER (MLIA) - The hardware portion of the 
multiplex subsystem which controls the multiplex loops (input and output) 
as well as the interface between the NPU and the multiplex subsystem. 

MULTIPLEX SUBSYSTEM - The portion of the NPU base system software which 
performs multiplexing tasks for upline and downline data, and also 
demultiplexes upline data from the CIB and places the data into 
line-oriented input data buffers. 

NETWORK - A connected set of network elements consisting of a host, one or 
more NPUs, and terminals. 

NETWORK LOGICAL ADDRESS - The address used by block protocol to establish 
routing for the message. The network logical address consists of three 
parts: DN - the destination node, SN - the source node, and CN - the 
connection number. 

NETWORK PROCESSING UNIT (NPU) - The collection of 255x hardware and 
peripherals together with the software Communications Control INTERCOM 
(CCI) modules. These CCI programs buffer and transmit data between 
terminals and the host computer. 

NODE - A network element that creates, absorbs, switches, and/or buffers 
message blocks. Typical system nodes are INTERCOM in the host, and the 
coupler node of an NPU. 

OFFLINE DIAGNOSTICS - Optional diagnostics for the NPU which require the NPU 
to be disconnected from the network. 

ONLINE DIAGNOSTICS - Optional diagnostics for the NPU which can be executed 
while the NPU is connected to and operating as a part of the network. 
Individual lines being tested must, however, be disconnected from the 
network or dialed to an unused CLA address. These diagnostics are 
provided if the user purchases a maintenance contract. 

OPS-LEVEL - The lowest priority level of CCl. All processing that is not 
time critical is performed at this priority level. 

OPS MONITOR - The NPU monitor. See Monitor. 

60471160 A A-7 



OUTPUT BUFFER - Any buffer that is currently used to output information from 
the NPU to a peripheral device, or to a terminal via the multiplex 
subsystem. 

PAGING - A method of executing programs and accessing data in the NPU main 
memory region above 65K. Paging is required to allow addressing where 
the address is larger than 16 bits (NPU word size) in length. 

PARITY - A bit-oriented data assurance method. Parity in the NPU is 
word oriented and is ordinarily not controlled by the operator. A parity 
bit is added when words are stored in main memory, and is discarded after 
checking when the word is read from main memory. A parity error causes 
the highest priority interrupt in the system. Parity bits are also 
associated with ASCII characters (bit 7) and with some synchronous 
protocols (LPC - longitudinal parity character). 

PASCAL - A high-level programming language used for CCI programs. Most CCI 
OPS-level programs are written in PASCAL language. 

PERIPHERAL DEVICE - An I/O device attached to the NPU A/Q channel. The NPU 
console is a peripheral device. 

PERIPHERAL PROCESSING UNIT (PPU) - The part of the host dedicated to 
performing input/output transfers. The coupler connects the PPU to an 
NPU via a data channel. 

PHYSICAL RECORD UNIT (PRU) - Under NOS/BE, the amount of information 
transmitted by a single physical operation of a specified device. The 
size of a PRU depends on the device, as shown in Table A-2. 

TABLE A-2. PRU SIZES 

Device Size in Number 
of 60-Bit Words 

Mass storage 64 

Tape in SI format 
with coded data 128 

Tape in SI format 
with binary data 512 

Tape in I format 512 

Tape in other format Undefined 

A PRU that is not full of user data is called a short PRU; a PRU that has 
a level terminator but no user data is called a zero-length PRU. 

PHYSICAL REQUEST PACKET {PRP} - A packet of data to or from a peripheral 
device. Data in PRP format is ready to be processed by the peripheral 
device handler. A logical request packet must be converted into a PRP 
prior to output to the device. 

POINT OF INTERFACE (POI) PROGRAMS - A special set of base system programs 
that interface directly with TIPs. POls are provided for such standard 
functions as ending an output operation or ending an input operation. 

A-8 60471160 A 



POLLING - (1) The action of checking ports to find if a terminal is ready to 
transmit or receive another word of data. The multiplex subsystem 
performs the polling operation for active lines under the direction of a 
TIP. (2) The action of soliciting input from certain types of 
terminals. A poll message is output to the terminal. The response is 
device status or an indication that no data is to be input. 

PORT (P) - The physical connection in the NPU through which data is 
transferred to or from the NPU. Each port is numbered and supports a 
single line. 

PRIMARY FUNCTION CODE (PFC) - See Function Code. 

PRIORITY LEVEL - CCI uses 16 interrupt processing levels plus the OPS 
processing level. Priority levels are interrupt driven. The OPS monitor 
processes at the lowest priority level; that is, at a level below any 
interrupt-driven level. 

PROGRAM - A series of instructions that are executed by a computer to 
perform a task; usually synonymous to a module. A program can be 
composed of several subprograms. 

PROTECT SYSTEM - A method of prohibiting one set of programs (unprotected) 
from accessing another set of programs (protected) and their associated 
data. The system uses a protect bit in each main memory word. 

PROTOCOL - The complete set of rules used to transmit data between two 
nodes. This includes the format of the data and commands, and the 
sequence of commands needed to prepare the nodes for sending and 
receiving data. CCI was block protocol, coupler protocol, and varies 
terminal protocols. 

QUEUE - A sequence of blocks, buffers, messages, and so forth. Most NPU 
queues are maintained by leaving the queued elements in place and using a 
combination of tables of pointers to the next queued elements and pointer 
words within the queued elements. Most queues operate on a first in, 
first out basis. A series of worklist entries for a specific terminal is 
an example of an NPU queue. 

RECORD - A data unit defined for the host record manager or for HASP 
workstations and HASP transmissions. A record contains space for at 
least one character of data and normally has a header associated with 
it. Records for HASP can be composed of subrecords. 

REGULATION - The process of making an NPU or a host progressively less 
available to accept various classes of input messages. The host has one 
regulation scheme; the multiplex interface has another scheme. Some 
types of terminals (for instance HASP workstations) can also regulate 
messages; message classifications are usually based on batch, 
interactive, and control message criteria. 

RESPONSE MESSAGES - A subclass of service (network control) messages directed 
to the host, normally generated to respond to a service message from the 
host. Response messages normally contain the requested information or 
indicate the requested task has been started or performed. Error 
responses are sent when the NPU cannot deliver the information or start 
the task. A class of unsolicited response messages are generated by the 
NPU to report hardware failures. 

60471160 A A-9 



ROUTING - The process of sending data or commands through the NPU to the 
internal NPU process or to an external device (for instance, a 
terminal). The network logical address (DN, SN, and CN) is the primary 
criterion for routing. The NPU directories are used to accomplish 
routing. 

SECONDARY FUNCTION CODE (SFC) - See Function Code. 

SERVICE CHANNEL - The network logical link used for service message 
transmission. For this channel, CN=O. The channel is always configured, 
even at load time. 

SERVICE MESSAGE (SM) - The network method of transmitting most command and 
status information to or from the NPU. Service messages use CMD blocks 
in the block protocol. 

SERVICE MODULE (SVM) - The set of NPU programs responsible for processing 
most service messages. SVM is a part of the network communications 
software. 

SOURCE NODE (SN) - The network node originating a message or block of 
information. 

STATE PROGRAMS - Programs in the multiplex subsystem with execution that 
depends on the current state of the message being transmitted~ that is, 
one state program is executed at the start of the message header 
processing, another at start of text processing, another at end-of-text 
processing, and so forth. 

STATISTICS SERVICE MESSAGE - A subclass of service messages that contain 
detailed information about the characteristics and history of a network 
element such as a line or a terminal. 

STATUS - Information relating to the current state of a device, line, and so 
forth. Service messages are the principal carriers of status 
information. Statistics are a special subclass of status. 

STRING - A unit of information transmission used by the HASP protocol. One 
or more strings compose a record. A string can be composed of different 
characters or it can be a string of contiguous identical characters. In 
the latter case, the string is normally compressed to a single character 
(the only one type in the the string) and a value indicating the number 
of times the character occurs. 

SUBPROGRAM - A series of instructions that are executed by a computer to 
perform a task or part of a task. A subprogram can be called by several 
programs or can be unique to a single program. Subprograms are normally 
reached by a direct call from a program. 

SWITCHING - The process of routing a message or block to the specified 
internal program or external destination. 

SYSTEM CONFIGURATION - The process of setting tables and variables 
throughout the network to assign lines, terminals, and so forth, so that 
all elements of the network recognize a uniform addressing scheme. After 
configuration, all network elements accept all data commands directed to 
or through themselves and reject all other data and commands. 

A-IO 60471160 A 

( 
\ 



TERMINAL - An element connected to a network by means of a communication 
line. Terminals supply input messages to, and/or accept output messages 
from, INTERCOM 5. A terminal can be a separately addressable device 
comprlslng a physical terminal or station, or the collection of all 
devices with a common address. 

TERMINAL CONTROL BLOCK (TCB) - A control block containing configuration and 
status information for an active terminal. Most TCBs are dynamically 
assigned. 

TERMINAL INTERFACE PACKAGES (TIPs) - NPU programs that provide the interface 
between terminal format and host data format. TIPs are responsible for 
some data conversion and for error case processing. 

TIMEOUT - The process of setting a time for completion of an operation and 
entering an error processing condition if the operation has not finished 
in the allotted time. 

TIMING SERVICES - The subset of base system proqrams that provide timeout 
processing and clock times for messages, status, and so forth. 

UNSOLICITED SERVICE MESSAGES - Service messages sent to the host which do 
not respond to a previous service message from the host. Unsolicited 
service messages report hardware or software failures to the host. 

UPLINE - The direction of message travel from a terminal through an NPU to 
the host. 

WORD - The basic storage and processing element of a computer. The NPU uses 
16-bit words (main memory) and 32-bit words (internal to the 
microprocessor only). All interfaces are 16-bit words (DMA and A/Q) or 
in character format (multiplexer loop interface). Characters are stored 
in main memory two per word. Hosts use 60-bit words internally but a 
12-bit byte at the interface to the NPU. Characters at the host side of 
the NPU/host interface are stored in bits 19 through 12 and 7 through 0 
of a dual 12-bit byte. 

Interfacing terminals such as a HASP workstation can use any word size 
but must communicate to the NPU in character format. Therefore, 
workstation word size is transparent to the NPU. 

WORKLIST PROCESSOR - (1) Any system program that receives and processes 
worklists. (2) The program within the multiplex subsystem that handles 
worklist entries within the multiplex subsystem firmware (PMWOLP). 

WORKLISTS - Packets of information containing the parameters for a task to 
be performed. Programs use worklists to communicate information to 
different operating levels. Worklist entries are queued to the called 
program. Entries are one to six words long and a given program always 
has entries of the same size. Worklists are also used on multiplex 
(priority) level. 

60471160 A A-ll 



( 
\ 



CCI MNEMONICS 

This appendix lists mnemonics used in comment fields within source code 
listings of CCI, or used as symbolic entities within the code itself. The 
mnemonics defined in the following columns also appear in the text of other 
CCI documentation. 

ABL 

ACK 

A/O 
ASCII 

ASYNC 

BACK 

BCB 

BFC 

BFR 

BLK 

BSC 

BSN 

BT 

CA 

CB 

CCI 

CE 

CFS 

CIB 

CLA 

CMD 

CN 

CND 

CR 

CRC 

DBC 

DCB 

DEL 

60471160 A 

Allowable block limit 

Acknowledge block (HASP mode 4 and BSC protocols) 

The A/O internal I/O channel of the NPU 

American Standard Code for Information Interchange 

Asynchronous 

Acknowledgment block 

Block control byte 

Block flow control 

Buffer 

Message block 

Binary synchronous communications (protocol) 

Block serial number (for blocks/SVM) 

Block type 

Cluster address 

Control block 

Communications control INTERCOM in NPU 

Customer engineer 

Configuration state (for SVM) 

Circular input buffer 

Communication line adapter 

Command (element of block protocol) 

Connection number 

Connection number directory 

Carriage return 

Cyclic redundancy checksum 

Data block clarifier (for blocks/SVM) 

Data carrier detect 

Delete character 

B 

B-1 



DMA 

ON 

DND 

DSR 

DT 

DTR 

EB 

EBCDIC 

EC 

E-CODE 

ENQ 

EOF 

EOI 

EOM 

EOR 

ETB 

ETX 

FCD 

FCS 

FD 

FDX 

FE 

FF 

FN 

FS 

FV 

HASP 

HCP 

HOLC 

HDX 

HIP 

HL 

B-2 

Direct memory access (in NPU) 

Destination node number 

Destination node directory 

Data set ready 

Device type 

Data terminal ready 

Error bit in response service message 

F.xt~nded Binary Coded Decimal Interchange Code 

Error code 

Device codes (mode 4 protocol) 

Enquiry block (HASP/BSC protocols) 

End of file 

End of information (6/7/8/9 punch or /*EOI for HASP and 2780/3780 
terminals) 

End of medium 

End of record 

End of block (HASP/BSC protocols) 
End of text 

First character displacement (in buffer) 

Function control sequence (HASP protocol) 

Forward data (block protocol) 

Full duplex 

Front end 

Form feed 

Field number (for SVM) 

Forward supervision (block protocol) 

Field values (for SVM protocol) 

Houston Automatic Spooling Process (protocol) 

Host Communications Processor (alternate name for NPU) 

High level data link control 

Half duplex 

Host Interface Package 

Higher level 

60471160 A 



ID 

IDC 

I/O 

ISO 

LeB 

Lcn 
LD 

LF 

LL 

LLCB 

LLREG 

I.M 

LRP 

LT 

M 

MLCB 

MLIA 

MPLINK 

MSG 

MTI 

M4 

MD4 

NAK 

NBT. 

NL 

NPTINTAB 

NPU 

NT 

ODD 

OPS 

OPSMON 

P 

60471160 A 

Identifier (number or code) 

Internal data channel (in NPU) 

Input/Output 

International Standards Organization 

Line control block in NPU 

Last chnractpr ilisplacement (in hllffer) 

Load/dump 
[,inp fE-PO 

Logical link 

Logical link control block in NPU 

Logical link regulation 

Loop multiplexer 

Logical request packet (I/O) 

Line type 

Mask register 

Multiplex line control block 

Multiplex loop interface adapter 

The CYBER Cross System linking editor 

Message (element of block protocol) 

Message type indicators (Mode 4 protocol) 

Mode 4 

Mode 4 

Negative acknowledgment block (HASP, mode 4, and BSC protocol) 

Network hlock limit 

Number of lines 

CCP data structure containing initialization status. 

Network processing unit 

Number of t~rminals 

Output data demand (multiplex subsystem) 

Operations (OPS-level = monitor level programs) 

Moni tor 

1. Pr ior i ty 
2. Port 

B-3 



PAD 

PFC 

PM 

POI 

PPU 

PRP 

RAM 

RB 

RC 

RCB 

RCV 

RL 

RM 

RS 

RT 

RTS 

SCB 

SCF 

SFC 

SM 

SN 

SND 

SOH 

SP 

SRCB 

SPRM 

STX 

SVM 

SYNC 

TA 

TC 

TCB 

TDP 

TIP 

TO 

B-4 

Pading element (synchronous protocols) 

Primary function code (for SVM) 

Print message 

Point of interface 

Peripheral processing unit (in host) 

Physical request packet 

Random access memory 

Response bit in response service message 

1. Remote concentrator 
2. Reason code 

Record control byte (HASP protocol) 

Receive state 

Regulation level 

Response message (SM) 

Reverse supervision (block protocol) 

Record type 

Request to send 

String control byte (HASP protocol) 

System configure file 

Secondary function code (for SVM) 

Service message 

Source node (for blocks/SVM) 

Source node directory 

Start of header 

Subport 

Subrecord control byte (HASP protocol) 

System Programmer's Reference Manual 

Start of text 

Service module for processing service messages 

Synchronizing character (synchronous protocols) 

Terminal address 

Terminal class 

Terminal control block in NPU 

Time dependent program 

Terminal Interface Package 

Timeout 

60471160 A 



TOT 

TPCB 

TT 

TTY 

TUP 

VAR 

WACK 

WLCB 

t'iLE 

WLP 

X-OFF 
X-ON 

60471160 A 

Total number of status service messages 

Text processing control block 

Terminal type 

Teletypewriter (asynchronous device) 

Test utility package 

PASCAL keyword for variable statements 

Wait acknowledgment block (synchronization protocol) 

Worklict 

Worklist control block 

Worklict entry 

Worklist processor 

Stop tape character } 
Start tape character 

(asynchronous 
protocol) 

B-5 



/ 

\ 



" , 

SERVICE AND COMMAND MESSAGE SUMMARY C 

This appendix is divided into five parts: 

• The general format of all service or command messages (SMS) 
• The network SM primary and subfunction summary table 
• A summary of each network SM and its normal or error response sequence 
• A table of SM mnemonics 
• A set of tables defining SM parameter values 

SERVICE AND COMMAND MESSAGE GENERAL FORMAT 
All service messages described within this appendix are prefixed by the 
header information shown below. (This ir.formation is omitted in the 
individual descriptions to conserve space.) Each of the maior subdivisions 
in the header format diaqram is one 8~bit byte in length. -

Block Header 
I 

Byte o 1 2 3 

Connection 
Destination Source Number (CN) BSN BT=4 

Node (ON) Node (SN) = 00 (SM) 
= 00 (others) 

Bits 7 430 

BSN - Block serial number 
BT - Block type = 04 for service messages/commands. This is a CMD block. 

The general format of the service and co~mand message body is shown below. 
Each of the major subdivisions in the body is also one 8-bit byte in length. 

Byte 

PFC - Primary function code 
EB - 1 = Error response service message 
RB - 1 = Normal response service message 
SFC - Secondary function code 

00 - 3F16 = Reserved for network use 
40 - 9F16 = Reserved for intrahost use 
AD - BF16 - Reserved for expansion 
CO - E016 - Reserved for network use 
El - EF16 Reserved for installations 

60471160 A C-l 



INDIVIDUAL SERVICE MESSAGES 

NPU INITIALIZED 

PFC=Ol 

Response 

NONE 

CONFIGURE LINE 

LT - See table C-3 
TT - See table C-2 

C-2 

SFC=02 CCI CCI CCI 
Version Cycle Level 

~~----------~~ Describes the current software 
runninq in the NPU. 

(See table C-S) 

60471160 A 



TABLE C-l. SERVICE MESSAGE/COMMAND SUMMARY (Sheet 1 of 2) 

SERVICE MESSAGES 

Service Message Name PFC NPU SFC NPU 
(hex) Mnemonic (hex) Mnemonic 

NPU initialized 01 D8LOAD 1 D9FRC 

02 

Configure line 0 D9LNCNF 
Delete li nE' 1 D9LNNDLT 
Configure terminal 03 D8CONFIG 2 D9TMLCNF 
Reconfigure terminal 3 D9TMLRCNF 
Delete terminal 4 D9TMLDLT 

04 

05 

Line status request 06 D8STATUS 2 D9LNSTAT 
Terminal status request 3 D9TMLSTAT 
Line count request 5 

NPU statistics 0 D9LNSTAT 
Line statistics 07 D8COUNTS 1 D9CNTLN 
Terminal statistics 2 D9CNTML 

Enable line 0 D9ENABLE 
Disable line 08 D8LINE 1 D9DISABLE 
Disconnect line 2 D9DISCONNECT 

09 

CE error OA n8EVF.NT 0 D9CE 

Host hroadcast one DC D8USER D D9BRDl 
Host broadcast all 1 D9BRDCST 
Operator message ? D9()PMSG 
'rermjnaJ 3 D9TMCL 

60471160 f>. C-3 



TABLE C-l. SERVICE MESSAGE/COMMAND SU~W,ARY (Sheet 2 of 2) 

Command Command 
Message Type PFC Message Name SFC USf> 

Start input 01 Initiate, 0 Start input from batch device 
nontransparent 

Initiate, 1 Start input from batch device 
transparent 

Resume 2 Start input from batch device 

Stop input 02 Terminatf> 0 Discard data and stop polling 
Suspend 1 Stop polling and wait 

Input stopped 03 End 0 Normal end 

Break ] 1 Reason for break defined by 
TIP 

Break 2 2 Reason for break cefined by 
TIP 

Input started 04 Restart after stop 0 Interactive resume after 
break (status only) 

Output stopped 05 Break 1 0 Reason for break defined by 
TIP 

Break 2 1 Reason for break defined by 
TIP 

Break 3 2 Reason for break defined by 
TIP 

Break 4 3 Reason for hreak defineCl hy 
TIP 

Break 5 4 Heason for break defined by 
TIP 

Break 6 5 Reason for hreak defjned hy 
TIP 

Output started Ofi Restart nfter stop 0 Status only 

Restart output 07 - 0 Resume output stream 

stop output 08 - 0 Discard data and terminate 

BSN error 09 NPU has detected 0 Diagnostic purposes only 
block sequence 
number out of order 

C-4 60471160 A 



Normal Response 

PFC = SFC = 
03 40 16 

P SP LT TT RC = 40 

40 16 = Configure Lsee table C-2) 

'- ee t bl {S a e C-3 

Error Response 

LT TT RC FN FV 

SFC 80 16 80 16 Configure 

LT - See table C-3 

TT - See table C-2 

RC - 01 Invalid FN/FV 
02 Invalid line number 
03 Line control block already configured 
04 = Invalid line type 
05 = Invalid terminal type 

FN/FV - Pair returned if RC = 01 

DELETE LINE 

PFC SFC P SP =03 =01 

Normal Response 

PFC SFC = RC=OO 03 41 16 
P SP 

60471160 A C-5 



Error Response 

PFC = 
03 

SFC = 
8116 

P 

RC -02 = Invalid line number 

SP RC = 

03 = Line control block already deleted 

CONFIGURE/RECONFIGURE TERMINAL 

PFC I SFC 
=03 =02 

02 = Configure 
03 = Reconfigure 

P 

DT See table C-2 

SP CA TA DT I CN FNl I FVlI FN n 

"-= 'V 

See table C-7 

The table below shows the valid CA and TA values for each terminal. 

Mode 

Mode 

TTY 

HASP 

BSe 

(1) 

(2) 

Normal Response 

CA TA 
(hexadecimal) (hexadecimal) 

4A 70-7F 60 

4C 70-7F 61-6F 

00 00 

00 1-7(1) 

00 12-13 (2) 

Equal to the stream of the device. The 
interactive console must be 01, card reader(s) 
01 ••• 07, printer(s) 01 •.• 07, punch(es) 01 ••• 07. 

Punch only, all other devices are zero. 

FV n 

", 

PFC= 
03 

SFC P SP CA TA DT CN RC=O 

C-6 

SFC - 4216 = Terminal configured 
4316 = Terminal reconfigured 

DT - See table C-2 

60471160 A 

\ 



Error Response 

PFC 
=03 SP 

SFC - R216 = Configure 
8316 = Reconfigure 

DT - See table C-2 

CA 

RC - 01 = Invalid FN or FV 

TA RC 

02 = Invalid line number or terminal address 

03 = Terminal already configured (confiqure), or not configured 
(reconfigure) 

04 = No buffer for TCB 

05 Invalid terminal type 

06 Line inoperative or not enabled 
(Confiqured) 

08 = Logical link not established 

09 = CN in use 

010 = Console not configured for a Mode 4 device 

FN/FV - Pair returned if RC 01 or 09 

DELETE TERMINAL 

P SP CA TA 

D~ - See table C-2 

Normal Response 

I ~~~ I SFe: I 
44 16 

P SP CA TA DT CN RC=OO 

DT - See table C-2 

60471160 A C-7 



Error Response 

PFC SFC= 

I P I AP CA =03 84 16 

DT - See table C-2 

RC - 02 
03 

Invalid line number 
Terminal not configured 

LINE STATUS REQUEST 

P 

p/SP - If missing, return 

Normal Response 

PFC= SFC= P 06 42 16 

LT - See table C-3 

CFS - See table C-4 

00 - Line operational 
RC=04 - Line inoperative 

SP 

status 

SP 

TJI. 

on all lines except trunks 

RC LT CFS NT 

05 - No ring indicator or autorecognition in progress 
06 - stop - CLA not responding, (CE intervention required) 

Error Response 

C-8 

PFC= 
06 

SFC= 
82 16 

P SP RC 

RC - 01 
02 
03 

Invalid line number or no lines configured 
= Line status request in progress 
= Illegal state 

60471160 A 



Unsolicited Response 

PFC SFC P SP RC LT CFS NT TT =06 =02 

RC - Same as other line status responses 
LT - See table C-3 
CFS - See table C-4 
TT - See table C-2 

Only for 

,... ....... 
autorecognition 

/--... 

CA TAl DTl -- TAi DT. 
I 

For Autorecognition responses, the TA DT pairs are repeated for each 
terminal that can be detected by the TIP. The Mode 4 TIP can report up to 
15 TA DT pairs with the full range of values as shown in table C-2 for DT. 

For autorecognition between BSC and HASP terminals, the TT field is returned 
as a 03 or 04 if the terminal is configured for TT = 04 with the 
autorecognition bit set. (See table C-2.) The CA field will be zero and no 
TA., DT fields will be returned. 

TERMINAL STATUS REQUEST 

PFC= 
06 

Normal Response 

SFC= 
03 P SP 

I ~~C I ~~~: I F I SF I CA I TA I DT I RC I DN I SN I CN I roT I 
DT - See table C-2 

RC - 00 
04 

Terminal operational 
= Terminal inoperative 

Error Response 

PFC= 
06 

SFC= 
83 16 

P SP RC 

RC - 01 Invalid line number; no terminals configured belonging to 
requestor 

02 No terminals configured 
03 = Terminal not configured 
05 Terminal status request in progress 

60471160 A C-9 



Unsolicited Response 

NOTE 

Normal response can be sent as an unsolicited status messaqe 
with SFC = 03. 

LINE COUNT REQUEST 

PFC= SFC= 
06 05 

Normal Response 

PFC= SFC= NL 06 45 16 

NPU STATISTICS 

1 - Service messages generated 
2 - Service messages processed 
3 - Bad service messages received 
4 - Blocks discarded due to bad address 

2 bytes/word 

Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 

5 - Packets/blocks discarded due to bad format 
6 - Times at regulation level 4 (no regulation) 
7 - Times at regulation level 3 
8 - Times at regulation level 2 
9 - Times at regulation level 1 

10 - Times at regulation level 0 
11 - Network assurance protocol timeout 

Response 

None 

LINE STATISTICS 

Word 1 - Blocks transmitted 
Word 2 - Blocks received 
Word 3 - Characters transmitted (good blocks only) 
Word 4 - Characters received (good blocks only) 

2 bytes 
/word 

C-IO 60471160 A 



Response 

None 

TERMINAL STATISTICS (UPLINE ONLY) 

DT - See table C-2 

Word 1 - Blocks transmitted 
Word 2 - Blocks received 
Word 3 - Blocks in error 

Response 

None 

ENABLE LINE 

PFC= 
08 

SFC= 
00 P 

NORMAL RESPONSE (LINE ENABLED) 

P 

SP 

SP RC LT 

RC - See line status request response codes 
LT - See table C-3 
CFS - See table C-4 

Error Response (Line Not Enabled) 

P SP RC 

RC - See line status request response codes 

60471160 A 

2 bytes/word 

CFS NT=O 

C-11 



DISABLE LINE 

SFC= 
01 

Normal Response (Line Disabled) 

I ~~C= I ~i~: I 
LT - See table C-3 
CFS - See table C-4 

Error Response 

PFC= 
08 

SFC= 
8116 

P SP 

P SP RC=O 

P SP RC 

RC - See line status request responses 

DISCONNECT LINE 

Normal Response 

SFC= 
02 P SP 

LT 

Normal response is line enabled normal response SM. 

Error Response 

PFC= 
08 

SFC= 
82 16* P 

*SFC = 8016 for RC 04 

SP RC 

RC - See line status request response codes 

C-12 

CFS NT 

60471160 A 



CE ERROR 

PFC= SFC= EC 1 27 bytes of data OA 16 00 -

EC - See error codes in appendix B of th~ eel reference manual 

Response 

None 

HOST BROADCAST ONE 

PFC= 
OC 16 

Normal Response 

PFC= 
OC 16 

Error Response 

PFC= 
OC 16 

SFC= 
00 

SFC= 
40 16 

SFC= 
40 16 

P SP 

P SP 

P SP 

RC - 01 Invalid line number 
02 = Invalid device type 
03 Terminal not configured 
04 = Terminal inoperative 

CA 

CA 

CA 

05 Host broadcast in process 

HOST BROADCAST 

PFC= SFC= IDl= I02= OC 16 01 00 00 

2016 - Filler space for DEC 

TA 

TA 

TA 

20 16 

If zero, broadcast to interactive terminals 

60471160 A 

DT Text 

DT RC=O 

DT RC 

... ~ 
L TEXT 

C-13 



Normal Response 

PFC= 
OC 16 

Error Response 

PFC= 
OC 16 

SFC= 
41 16 

SFC= 
8116 

RC= 
00 

RC 

RC - 01 = Not used 
02 = Broadcast already in progress 

SERVICE MESSAGE MNEMONICS 
The following table defines abbreviations used in the individual service 
message descriptions. 

Abbreviation 

ABL 

BSN 

BT 

CA 

CD 

CFS 

CN 

DN 

DT 

EB 

FN 

FV 

C-14 

Meaning 

Available Block Limit - the number of blocks allowed to be 
outstanding for any terminal at anyone time. 

Block Serial Number - part of the block protocol. 

Block Type - SMs are ahlays of type CMD (BT=4). 

Cluster Address - part of a terminal's physical 
identif ication. 

Code Type. 

Configuration State - state of the line as known by the 
service module. (See table C-4 for values.) 

Connection Number - part of the block address. In the 
address of an SM, the eN is always zero. When used as data 
in an SM, the CN can be nonzero. 

Destination Node ID - part of the block address. 

Device Type - part of the terminal type. (See table C-2.) 

Error Bit in SM response. 

Field Number - used in line and terminal configure SMs to 
descr ibe a field in the LCB or TCB. (See table C-5 and C-6 
for values.) 

Field Value - used in line and terminal configure SMs as 
the value to be put in the field. (See tables C-5 and C-6.) 

60471160 A 



Abbreviation 

LS 

LT 

NL 

NT 

P 

PFC 

RB 

RC 

SFC 

SN 

TA 

TOT 

TC 

TT 

60471160 A 

Meaninq 

Line Speed Index 

Line Type - used to describe the transmission capabilities 
of the line. (See table C-3.) 

Number of Lines - the number of confiqured lines belonqinq 
to the host. 

Number of Terminals - the number of terminals confiqured on 
a line. 

Port - the CLA address used for a communications line. 

Pr imary Function Code - used to delineate the class of S~1. 
(See table C-l.) 

Response Bit in SM response. 

Response Code - used in SM responses to indicate the 
requested action has taken place or an error has occurred. 

Secondary Function Code - used to indicate a particular SM 
within a class of SMs. (See table C-l.) 

Source Node - part of the block address. 

Terminal Address - part of the terminal's physical 
identification. 

Total Number of Status SMs to be sent for this request. 
Used by the requestor to verify all responses have arrived. 

Terminal Class - used to describe the common 
characteristics of a set of terminals. (See tables C-2 and 
C-8. ) 

Terminal Type - the combination of DT and TC. 

C-15 



TABLES SPECIFYING SM PARAMETER VALUES 

TABLE C-2. TERMINAL TYPE (TT)/DEVICE TYPE (DT) 

Terminal Type (TT) 

7 6 5 4 321 0 

Auto~ I~--T-I;--_J~I 
Type TIP 

In the Configure Line 8M, the TT (Terminal Type) field is defined as shown 
using the following values: 

Auto 

TIP Type 

Sub TIP 

o 
I 

= 
= 
= 
= 

= 

= 

0 

I 

2 

3 

4 

No autorecognition. 
Autorecoqnition performed when line becomes operational. 

0 1 2 3 4 
N/A TTY Hode 4 HASP BSC 

(2780/3780) 

N/A ASCII - 110 N/A N/A 

r·14A/BCD 

ASCII - 150 M4A/ASCII 

ASCII - 300 Jl.14C 

Note 1 - Sub TIP is used for upline SMs only. 
Note 2 - Use TIP Type 4 for autorecognition on HASP, BSC type lines. 

7 6 5 4 3 2 1 0 

I Device I Class I 

C-l6 60471160 1'. 



TABLE C-2. TERMINAL TYPE (TT)/DEVICE TYPE (DT) (Contd) 

Terminals Supported (By Device) 

Class 0 1 2 3 4 
Console Card Reader Line Printer Card Punch Non-Impact Printer 

1 TTY Camp. 

2 

4 

5 

6 

7 2780 2780 2780 2780 

8 3780 3780 3780 3780 

9 HASP HASP HASP HASP 

10 Mode 4 Mode 4 Mode <1 Mode 4 

*When the DT byte is sent in a downline Sill! to identify a particular TeB, the 
TC field need not match the field in the TCB as the latter can change at 
any time. 

1')0471160 A C-17 



() 
I 

i-' 
0:> 

'" o 

"'" --.J 
f-' ..... 
0\ 
o 

:;r.. 

/'-

TABLE C-3. LINE TYPES (LT) 

Line Type Trans-
Hexadecimal mission CLA Answer Carrier Circuit 

Value Facility Type Modem Type Mode Type Type 

(1) HDX 2560-1 RS232-201A/2081 Switched Controlled 2 Wire Compatible 
-'-

RS232-201B/208A Dedi-
(2) FDXt 2560-1 Compatible cated Controlled 4 Wire 

(3) FOX 2560-1 RS232-201B/208A Dedi- Constant 4 Wire Compatible cate-d 

(4) HOX 2561-1 35.8-1 Oedi- Controlled 2 Wire Transceiver cated 

(5) HOX 2561-1 Switched Controlled 2 Wire 

(6) FOX 2561-1 
RS232-103E/1l3 Switched Constant 2 Wire Compatible 

(7) FOX 2561-1 
RS232-103E Dedi- Constant 2 Wire Compatible cated 

(8) HDX 2561-1 
RS232-202S Switched Controlled 2 Wire Compatible 

(9) FDX 2561-1 
RS232-103E/1l3 tt Constant 2 Wire Compatible Switched 

(OA) RESERVED 

(OB) RESERVED 

tOperating with HOX Protocol 
ttPseudo dial in - does not require ring, only DCD + DSR. 

Turn- Turn-
Around Around Transmission 

Required Delayed Mode 

YES NO Synchronous 

YES NO Synchronous 

NO NO Synchronous 

YES NO Asynchronous 

YES NO Asynchronous 

NO NO Asynchronous 

NO NO Asynchronous 

YES YES Asynchronous 

NO NO Asynchronous 

• .. 



Value 

a 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Field 
Number 

5 

21 

TABLE C-4. CONFIGURAT:::ON STATES 

Siqnificance 

LCB not confiqured. 

LeB configured, not enablec. 

Enable requested to TIP. 

Line operational, no TeBs. 

Line operational, TeBs configured. 

Disable requestec to TIP. 

Line inoperative, no TCBs. 

Line inoperative, TCBs configured. 

Disconnect requested to TIP. 

Line inoperative. Waiting for ring indicator 
autorecognition in process. 

TABLE C-S. LINE CONTROL BLOCK FIELD NUt-mER/FIELD VALUE 
(FN/FV) ASSIGNMENTS 

NPU 
Mnemonic Mode 4 

Name Description TIP ASYNC HASP 

BZOWNER Node ID of Owninq Eost at at at 

BZLNSPD Line speed index - 0-8 tt -

t Required for confiquration. 
tt Required if autorecognition not spec if i ea. 

or 

BSC 

at 

-

60471160 A C-19 



TABLE C-G. LINE SPEED INDEX TABLE 

Index Baud Rate 

0 llO 

1 134.5 

2 150 

J 300 

4 600 
r 1200 :J 

6 2400 

7 4800 

8 9600 

This field only required if Autorecognition is not specified. 

C-20 60471160 A 



TABLE C-7. TCB FIELD NUHBER (FN)/FIELD VALUE (FV) ASSIGNMENTS 

NPU 
Field Mnemonic 
Number Name 

5 BSTCLASS 

12 BSOWNER 

l3 BSCN 

14 

15 

16 

19 

BSNBL 

BSIPRI 

Values 

Mode 4 Async 
Description TIP TIP HASP 

Terminal Class t 10 1 9 

Node ID of Hosttt o 0 0 

Connection Number tt 1-255 1-255 1-255 

Destination Node (NPU)tt 1-32 1-32 1-32 

Source Node (Host}tt o 

Network Block Limit 1 

Input Priority 1-3 

o 

1 

1-3 

o 

1 

1-3 

28 BSPGWIDTH Page Width 0-255 0-255 

30 

31 

32 

33 

34 

35 

BSXBLKLL Transmission Block 0-255 
Length Least Signifi-
cant 

BSBLKLM Transmission Block 0-7 
Length Most Significant 

BS2629 026/029 Code Option 0=29 

BSNUMR 

BSSUPCC 

BSBAN 

Number of Recorcs per 
Block 

Suppress Carriage 
Control 

Banner On/Off 

0=26 

O=N/S 
1=S 

O=ON 
l=OFF 

0-255 

0-7 

0=29 
0=26 

O=N/S 
l=S 

O=ON 
l=OFF 

BSC 

7-8 

o 

1-255 

1-32 

o 

1 

1-3 

50-150 

0-255 

0-7 

0=29 
0=26 

2/7 

O=N/S 
l=S 

O=ON 
l=OFF 

36 BSEM "EM" at end of card for 
short records 

O=No EM O=No EM 
l=EM l=EM 

37 BSCODE TIP Code 

NS = No Suppress~ S = Suppress 

tRequired for reconfigure SM: cannot use for configure. 

ttRequired for configure TCB SM (these fields must be ordered 14, 15, 13, 
12) • 

tttRequired only if not autorecognition on a configure TCB SM, l=Mode 4A 
BCD~ 2=Mode 4A ASCII; 3=Mode 4C. 

60471160 A C-21 





BLOCK PROTOCOL SUMMARY 

BLOCK TYPES 

The unit transmission between the host and the NPU is referred to as a 
block. It is never more than 2047 bytes in length, including block header 
information. The actual length of a block is a function of the type of 
source transmitting the data. 

The block flow control interface between two logically connected processes 
can be envisioned as two simultaneously active communications paths. The 
procedure is fully symmetric. Sequence is maintained on each of the four 
paths but not between the separate paths • 

. The types of traffic which exist on each communications path consist of the 
following: 

• Forward data (FD) - Textual information sent from a transmitter 
directly to a remote receiver. These blocks are either data or 
command blocks. 

• Reverse. supervision (RS) - Answer back blocks sent from the receiver 
in response to receipt of forward data or forward supervision. These 
blocks can be generated and sent even when not solicited under 
cert~in local abnormalities at the receiver. 

Every block has a header consisting of four bytes. The first three bytes 
provide the network address. The last four bits of the last byte indicate 
the block type: the other four bits in this byte are reserved for network 
use as a .modulo 8 block serial number. The contents of the remainder of the 
block, if any, vary with the block type. Because the header portion of all 
blocks has the same format, it is omitted from all block formats shown in 
this appendix. 

The network address consists of a source node number, a destination node 
number, and a connection number. The node numbers identify the originating 
and terminal process locations for the block and identify the path 
direction. These node numbers correspond to the node ID numbers displayed 
on the NPU console at initialization. The connection number identifies the 
set of communication paths between the nodes that comprise the logical 
connection over which the block is transmitted. For data blocks and reverse 
supervision blocks, the connection number is a nonzero value identifying the 
terminal control block (TCB): separate connection numbers are assig~ed to 
each interactive data stream, upline batch data stream, and downline batch 
data stream for a terminal. 

D 

60471160 A D-l 



FD blocks that contain commands are a separate block type from other FD 
blocks, and are called command blocks. A subset of these command blocks are 
called service messages. Service message blocks have a connection number of 
zero in the header, identifying the logical connection called the service 
channel. Unlike logical connections with nonzero connection numbers, which 
can be dynamically created and destroyed, the service channel always 
exists. Blocks traveling via the service channel establish other logical 
connections, and communicate control, status, and error data in support of 
the common equipment and software which service the other logical 
connections. Blocks traveling via the service channel have a block serial 
number of 0 in their block header. 

The relationships of block type values in the block header, traffic type, 
and block function are shown in table D-l. 

TABLE D-l. BLOCK TYPES 

Block Mnemonic Name Traffic General Function Type Type 

1 BLK Block FD This block is a data block 
which is not an end-of-
message block of a multi-
block message. 

2 MSG Message FD This block is a data block 
which is the end-of-message 
block of a multi-block 
message or all of a single 
block message. 

3 BACK Block RS This block is an acknowledg-
acknowledgment ment for a block transmitted 

in the opposite direction. 

4 CMD Command FD This block is a service 
message on connection number 
o or a command on any other 
connecton number. 

BlK BLOCK 

A BLK block is a data block containing a portion, but not the last segment, 
of a data message. All data blocks contain 0 to 2039 bytes of data 
immediately following an a-byte header. The a-byte header consists of the 
standard 4-byte header described previously, plus four additional bytes of 
information describing the subsequent data. The contents of the data field 
are determined by the communicating processes. In CCI, a BLK block does not 
contain an EOR or EO! code. 

D-2 60471160 A 



MSG BLOCK 

A message is a self-contained unit of data communications. In half-duplex. 
two-party communications, the transmitter signals ready-to-receive by - . 
sending an end-of-messaqe indicator. Thus. a messaGe is a data stream 
terminated with an end-of-message indicator. 

If a message is 2039 bytes or less in length, it can be transmitted via a 
single MSG-type block. If a message is longer than 2039 bytes, or if for 
some other reason it is desired to seqment the messaqe, all seqments but the 
last are transmitted via 8LK blocks, and the last segment is transmitted via 
a MSG block. In CCI, each block containing an EOR or EOI code is a MSG block. 

BACK BLOCK 

A BACK block is sent from the receiver to the transmitter to allow the 
transmitter to adiust the rate of issue of data to the deliverv rate of the 
receiver. The transmitter should not issue more than one unacknowledqed 
block for each connection. The BACK block, which acknowledqes a previously 
transmitted block, allows the transmitter to maintain an outstanding block 
count to ensure that the allowable block limit is not exceeded. The BJI.CK 
block contains no information other than the block holder. 

When the NPU software detects a bad block (any block with fields that 
contain unexpected or undefined information), the NPU discards the block. 
If the block is a BLK or MSG, no BACK is sent to the host. For any other 
block type, no action solicited by the block is taken and it is not 
acknowledged. An NPU statistics word for a block discarded due to bad 
address condition is incremented. 

CMD BLOCK 

Command blocks allow connected processes 
stream but synchronous with that stream. 
destination process in the same ordering 
other commands as existed at source. 

to communicate outside of the data 
Command blocks are received by the 

sequence to the data stream or 

The contents of a CMD block are bilaterally defined bv the communicatinq 
processes. A CMD with a connection number of 0 has special significance as 
a service message. 

CMD blocks are also used on nonzero connections to control data streams, 
control terminal nodes, and to report status between the host and the NPU. 
CMD blocks can use either the reverse supervision or forward data channels 
of a connection, depending on the type of command. In either case the CMD 
block flows asynchronously to any data block on the channel and, therefore, 
cannot be used to mark position within the data stream. Commands received 
on a connection are not acknowledqed bv a BACK block in the reverse 
direction. Figures D-2 through D~lO summarize the general format of CMD 
blocks used on nonzero connections within CCI. In this table, the primary 
and secondary function code columns identify the contents of the first and 
second bytes of the block after the block header. 

60471160 A D-3 



BLOCK TYPE 
BI,K 1 4 5 2047 (max) 

Header Data I 
MSG = 2 

1 4 5 2047 (max) 

Header Data I 
BACK = 3 

1 4 

Header I 
CMD = 4 

1 4 5 X 

Header Parameters I 
Defined in appendix C. 

\ 

D-4 60471160 p, 



NPU Host 

User commands to 
initiate input 

MSG (READ, xx) CN(I) -
BACK .. 

.. CN(B,I) CMD (start input) 

BLK CN(B,I) .. 
BACK .. 

MSG (EOR,nn) ... 
BACK .. 

BLK ... 
BACK .. 

BLK ... 
BACK .. 

• • • • • • • • • 
MSG (EOI) ... 

BACK .. 
End of input data 

CMD ( input stopped) ... 
CN(I) MSG (COMMAND) .. 

... 
• • • • • • • • • 

Figure D-l. General Batch Input Flow 

60471160 A D-5 



NPU Host 

MSG (READ,fn,x) CN(I) .. 
... BACK 

CN (B, I) CMD (start, input, ... 
transparent, non-
tr anspar en t) 

BLK CN(B,I) ... 
.. BACK 

• • • • • • • • • 
MSG (EOI) • 

BACK .. 
End of input data 

CMD (input stopped) • 

CN (I) MSG (COMMAND) .. 
BACK • 

• • • • • • • • • 

Figure D-2. INTERCOM READ, Filename, Mode Command 

D-6 60471160 A 



NPU Host 

More than one file on 
READ, fn 

MSG (EOI) eN(B,I) -
BACK .. 

BLK 
~ 

.. CMD (stop input, 
terminate) 

CN(I) MSG (error-too much .. 
data) 

BACK CN (I) 
~ 

• • • • • • Input suspended by host • • • 
MSG (EOI) CN(S,I) ---

CMO (stop input, .. 
suspend) 

Time delay 

BACK (for EOI) .. 
• • • • • • • • • 

CMO (start input, .. 
resume) 

BLK .. 
BACK • 

• • • • • • • • • 

Figure 0-3. Input Error Conditions (Sheet 1 of 2) 

60471160 A 0-7 



NPU Host 

Input device not 
ready 

BLK CN(B,I) .. 
.. BACK 

CMD (Input stopped) .. 
.. CN!BI~ MSG (DEVICE NOT 

READY) 
BACK .. 

Eventual operator • • • action • • • • • • 
a. MSG (E ,CR) or CN!I) 
b. MSG (contin. ) 

... 
BACK .. CMD (stop input f a. 

terminate) 
b. CMD (start input, 

resume) .. CN!B,I) 

• • • • • • • • • 

Figure D-3. Input Error Conditions (Sheet 2 of 2) 

( , 
\ 

D-8 60471160 A 



NPU 

Output device not ready 

... eN/B.O) 

CMD (output stopped) .. 
.. eN(I) 

BACK .. 
• • • • • • 

Eventual operator action • • • 
.. CN(E,O) 

• • • For last output BT,K r if • • • 
CMD is restart output • • • 

BACK .. 
.. 

• • • • • • • • • 
Figure D-4. Output Error Conditions 

Host 

BLK 

MSG (DEVICE NOT 
READY) 

a. CMD (restart 
output) 

b. CMD (stop output) 

BLK 

NPU Host 

Terminal powered off 

CMD (input stopped, 
break in) 

Delayed poll from NPU 

CMD (input started) 

• • • 

• • • 

CN (I) 

• • • 

• • • 

• • • 

• • • 
Figure D-5. General Errors 

.. 

.. 

60471160 A D-9 



NPU Host 

BLK CN(B,I) .. 
.. BACK 

CMD (input stopped) ... 
MSG CN(I) .. 

• BACK 

• • • • • • • • • 
a. MSG (E ,CR) or 
b. MSG (C,CR) .. 

.. BACK 

a. CMD (stop input, 
terminate) 

CN(B,I) b. CMD (start input, • resume) 

• • • • • • • • • 

Figure D-6. Input Intervention 

D-10 60471160 A 



NPU Host 

Intervene 

.. CN(B,O) BLK 

CMD (output 
stopped) 

.. 
a. MSG (GO LP) CN(I) 
b. MSG (END LP) 

.. 
BACK • 

• • • • • • • • • 
CN(E,O) a • CMD (restart .. 

output) 
b. CMD (stop output) 

For last output BLK 

BACK .. 
For CMD (restart output) 

BACK ... 
• BLK 

• • • • • • • • • 

Figure D-7. Output Inte+vention 

60471160 A D-l1 



NPU Host 

Line operational 8M eN (0) ... 
Configure TCB (I) 8M .. 

TCB configured 8M .. 
CN {I) M8G (INTERCOM .. 

banner) 
BACK ... 

Write to terminal and 
start polling 

M8G (LOGIN) .. 
BACK .. 

• • • 
Define batch streams • • • or equivalent • • • 

M8G (DEFINE, xx) .. 
BACK .. 

CN!O~ Configure TCB ... 
(B ,0) 8M 

TCB configured 8M .. 
Define batch data stream 
connection number 

M8G (DEFINE, xx) CN(I) • 
BACK .. 

CN(O) Configure TCB .. 
(B, I) 8M 

TCB configured 8M .. 

Figure D-S. Initialization 

D-12 60471160 A 



NPU Host 

ON or equivalent 
batch command 

MSG (ON,xx) CN(I) • 
BACK ... 

CN(B,O) ~1SG (output file ... 
banner) 

Banner MSG gives 
file name 

BACK • 
BLK (output file ... 
data) 

BACK .. 
... BLK 

BACK .. 
• • • • • • • • • 

MSG (EO!) ... 
BACK .. 

... CN (I) MSG (COMMAND) 

BACK .. 
• • • • • • • • • 

Figure D-9. Batch Output 

60471160 A D-13 



en Binary channel number 
en Binary equipment number of NPU coupler 
~ Display-coded blank fill 
h Display-coded digit of hour, system clock time of dump 

Display-coded period character 
n Display-coded digit of minute, system clock ti~e of dump 
s Display-coded digit of second, system clock time of dump 
m Display-coded of month, system time of dump 
/ Display-coded slash character 
d Display-coded digit of day, system time of dump 
y Displav-coded digit of year, system time of dump 

File registers format 

uhw 
Ihw 

D-14 

upper half of word (character 1) 
lower half of word (character 2) 

60471160 A 



SAMPLE MAIN MEMORY MAP FOR NPU 

Fiqure E-l shows the layout of CCl in the main memory of a 255x network 
processing unit with 65K words of main memory. 

60471160 A 

000016 

010016 

015016 

017016 

105016 

23BC 16 

7F00 16 

800016 

8200 16 

JUMP TO BEGINX 

INTERRUPT TRAP LOCATIONS 

ADDRESS POINTER TABLE 

CONSOLE INTERRUPT ROUTINES 

PASCAL G LOBA LS 

ASSEMBLY LANGUAGE ROUTINES 

STATE PROGRAMS 

PASCAL PROGRAMS 

10 TABLE 

CIRCULAR INPUT BUFFER 

LIN!: PORT TABLE 

LINE CONTROL BLOCKS 

SET UP STACK, GO TO PINIT 

LOAD R 1, R2. R3. R4. GO TO MAINS 

PART I OF INITIALIZATION PROGRAMS 

INITIALIZE SYSTEM 

PART II OF INITIALIZATION PROGRAMS 

INITIALIZE LAST OF BUFFER 

SYSTEM PAGED OVERI..AY SERVICE MODULI; 

PROGRAM NAME 

ZEROX 

PBINTRP 

ADDRESSES 

GLOBUS 

PIDTBL 

\ 

MAIN$ 

BEGINX 

PINIT 

PIBUF2 

SE 
INI 

T UP AT 
TIALIZATION 

ME TI 

BE 
BU 
NE 

COMES 
FFERS WHEN 
EDED 

M-795 

Figure E-l. Sample Main Memory Map 

E 

E-1 





CCI NAMING CONVENTIONS 

The following naming conventions for the CCl PASCAL programs should be 
regaropo as guidelines rather than as strict requirements. 

The general format of a lahpl j!'l: 

PlR'RRRSSS 

where the uRual length is six hytes1 but additional bytes can be used. 

P veo.lues are: GJohi'll ni'lti'l A - 0 

P Procedure or function 

Q - IV Local nati'l 

X - 7, Non-CDC 

r values are: 0 Transparent or not tied down 

1 - g Not a str ucture 

A - Z A structure 

For proceoures and functions: 

P = P, I = 

60471160 A 

Assurance programs 

B Base system programs 

D Diagnostic programs 

M Multiplex subsystem programs (part of the hasp 
system) 

N Network communications programs 

P Packets 

T TIPs, HIP 

F 

F-l 



For types, variables, fields, and so forth: 

AD ..• OPS-level workcodes 

BA ••• Overlay 

BC •.• Physical/logical request packet (PRP/LRP) 

BF .•. Buffer 

BJ ••• TIP-type table 

BL .•• Logical link control block (LLCB) 

BS •.• Terminal control block (TCB) 

BT ••. Timing, monitor controlled 

BW... Intermediate array for worklist 

BY ..• Worklist control block (WLCB) 

BZ ... Line control block (LCB) 

CM •.• Service module 

D... Input/output (I/O) 

J... Logical/physical I/O request packet 

JC •.• TUP table 

LD... Load or dump 

M... Multiplex subsystem 

MM... Event worklists (multiplex subsystem) 

N... Multiplex subsystem 

NA ... Port table 

MB •.. Line types 

MC ••• Multiplex LCB (MLCB) or text processing control block (TPCB) 

NJ... Terminal characteristics 

NK ••• Multiplex command driver inputs (command packet) 

NZ ..• Diagnostics control block (DCB) 

SI .•. System interfaces (SIT) 

( 
\ 

F-2 60471160 A 



STANDARD TIP AND SVM TREES 

This appendix consists of five sections, one for eacr of the standard TIPs: 
Mode 4, TTY, HASP, BSC, and a section for the service module (SVM). 

Within each TIP section there are two parts: a one line description of each 
routine or subroutine, followed by a tree for the PASCAL level routines and 
subroutines making up the TIP. The trees are laid out so that the OPS 
work-level entry is on the first sheets and subroutines follow. Following 
the OPS-Ievel switch, and preceding the subroutines, are the direct call 
routines from SVM and the mux 2 interrupt routines. 

Comparing these trees and TIPs can aid the TIP programmer in finding how 
other TIP programmers have solved simi10Y problems. 

The SVM section follows the TIP sections. 

Conventions used are described as follows: 

External calls are underlines. No effort is made to trace calls from 
external routines. 

MODE 4 TIP ROUTINES 

PTMD4TIP - Main TIP switch 

Enable line 
TCB build 
Output queued 
Disable line 
Delete TCB 
Input status workcodes 
Autorecognition work codes 
Line timeout workcodes 
Hardware errors 

PT4TCBINIT - Call from SVM to finish building TCB (also used to build 
autorecognition TCB). 

PTTPMODE4 - Call from PBIOPOI to process downline PRU blocks. 

PT4QIA - Call from internal processing to queue downline interactive 
blocks. 

PTMD4MUX - Multiplex level-two entry. 

PT4GOTOTASK - Sets next tasks for terminal in TCB. 

PT4CONTROL - Determines TCB to get control, and Mode (4A or 4C). 

PT4RETRYOVF - Counts errors; determines if more retries should be made. 

G 

60471160 "P. G-l 



G-2 

PT4TOGTA - Retransmits write message if toggle bit problem exists. 

PT4WRITE - Builds write EI/E4 message for keyboard or E3 message for CRT. 

PTCHOQ - Checks out~ut queue for tasks. 

PT4CROFF - Handles card reader off action. 

PT4TASKPROCESSOR - Processes next task for current terminal. 

Device 

Console 

Card reader 

Printer 

Autorecognition for terminal 

Task 

Output queues 

ACK after write 

Read after poll 

Reject during poll 

Error retries exhausted 

I/O related tasks (in addition to device or task) 

Output write message 
Output write failure 
Poll for E-code or toggle 
Error responses to E-code or toggle polls 
Good responses to toggle polls 

PT4IO - I/O processor (calls PBCOIN). 

PT4DISABLE - Disables line. 

60471160 A 

/ 



0\ 
o 

"'" ~ 
I-' 
I-' 
0\ 
o 

> 

(j) 
I 

W 

MAIN TIP SWITCH 
I 

PTMD4TIP 
I 

Cases - Workcodes 

(AOSMEN)tBLTIMTBL 

PBGETIBF 

PT4GOTOTASK 

(AOSMTCB PT4TASKPROCESSOR~ 
TCB built) 

(AOQUEOUT ~BLTIMTBL 
output queued) 

PTRTlLCB 

(AOSMDA PT4DISABLE 0 
disable line ~ 
from SVM) 

(AOSMDLTCB ~ 
delete TCB 
from SVM) 

(Input statust PTRTlLCB 
work codes) 

. PBRELCHN (Autorecognit10n, t::'\ 
work codestt) LPT4GOTASK-0 

t(AOWK2 - 6 and 8) 
tt(AOWK9 - 11) 

<r 
Cases - Workcodes 

(AOTIMEOUT None 
line timeout) 

Cases - TIP state 

(line inactive) PTRTlLCB 

(Idle) PT4GOTOTASK-0 

(I/O Active) 

(AOWK7 PBRELCHN 
errors) 

End case for TIP state 
PNSGATH 

PT4GOTOTASK-0 

End Cases PTRETOPS 

Exits 

PT4DISABLE ~ 
PTRETOPS 

PT4TASKPROCESSOR ~ 

Figure G-l. Mode 4 TIP Trees (Sheet 1 of 6) 



G) 
I 
~ 

en 
a 
~ 
-.J 
i-' 
i-' 
en 
a 

:l>' 

Q) 
PT4TCRINIT (Called from SVM to l initialize TCB - also 

called for building auto­
recogni tion TCB) 

None 

PTTPMODE4 (Called from PBIOPOI 
for PRU blocks) 

PTTPINF (Text processor) 

PBRELCHN 

PTRELIBF 

PT4QlA (Called from internal processing to 
queue interactive blocks) 

PBQlBLK 

PBTWLE (Self) 

PTBACK 

PTMD4MUX (Mux level 2 call) 

LPBHALT 

Figure G-l. Mode 4 TIP Trees (Sheet 2 of 6) 



0\ 
o 
~ 

" I-' 
I-' 
0\ 
o 

:l=' 

G') 
I 

U1 

Cf 
PT4GOTOTASK 

PT4TASKPROCESSOR~ 
PT4DISABLE -@ 
BLTIMTBL 

PTISVILCB 

cp 
PT4CONTROL 

L-PT4GOTOTASK ~ 

4 

PTGETISEG 

PTRELIBF 

PNCEFILE 

cp 
PT4TOGTA - None 

~ 
PT4WRITE - None 

cp 
PTCHOQ 

PTRELIBF 

PTGTISEG 

PT4CROFF 

LPTRELIBF 

Figure G-l. Mode 4 TIP Trees (Sheet 3 of 6) 



Gl 
I 

0\ 

0\ 
a 
~ 
-..J 
I--' 
I--' 
0\ 
a 

:J:o 

~ 
PT4TASKPROCESSOR (Device dependent secondary switch) 

I 
(Console) e9A 

9A 

(Queue [PTREGL· 
output) ~ 

PT4GOTOTASK~ 

(ACK after PT4GTISEG 
write) 

PNSGATH 

PBRELCHN 

PBPOPOI 

(Read during PBRELCHN 
poll) 

PTCOMMAND 

PBPIPOI 

PT4WRITE --0 
(REJ dur ing PTGOTOTASK-----f'2\ 
console poll) ~ 
(Error retry PBGTISEG 
overflow) 

PBRELCHN 

PTCOMMAND 

PT4GOTOTASK---0 

9B 

(Card (Queue PBUPABRT 
reader) output) t:\ 

PT4CROFF~ 

PT4GOTOTASK ~ 
PTCOMMAND 

PTREGL 

PT4WRITE-0 

(ACKPNSGATH 

write) ~PT4CONTROL---0 after 

(Data PBRELCHN 
read) 

PTCOMMAND 

PBPIPOI 

PT4CROFF --0 
PT4GOTOTASK~ 

(REJ on PT4GOTOTASK ...... t;\ 
poll) ~ 

(Error o TCOMMAND 
retry ~verflow) ~PT4GOTOTASK---0 

Figure G-I. Mode 4 TIP Trees (Sheet 4 of 6) 

/--~ 



0\ 
a 
~ 
-..J 
I-' 
I-' 
0\ 
a 

> 

{jl 
I 

-..J 

/ 

19B 

(Line 
printer) 

9cl 

(Queued 1PTCHoo-0 (auto- (Poll [PT4DISABLE ~ 
output) --0 recog- with 

PT4GOTOTASK 2 nition response PT4TCBINIT 1 
TCB) of max 

PTCOMMAND polls) 

(ACK PT4CONTROL ----0 (Poll PTGETlBF i 

after until 
write) E-code I--PBRELCHN 

line 
( Inpu t) -,-PBRELCHN opera- ~PBLSPUT (SVM) 

tional) 
PBGTlSEG tPBRELlBF 

PBPOPOI PBRETOPS 

PTCOMMAND 
to I/O write) --0 

PT4GOTOTASK~ related PT4GTA 5 
tests) 

(REJ or--PT4GOTOTASK 2 PT4IO 
status 
poll) ~PTTPINF (Text 

processing) 

(ErrOr~PTCOMMAND 

~(NO 
L-pBRELCHN 

retry 
PT4RETROVF~ overflow) PT4GOTOTASK--0 

response ~PT4GOTOTASK~ or bad 
response 
to write) 

~ 
9D 

Figure G-l. Mode 4 TIP Trees (Sheet 5 of 6) 



Cil 
I 

00 

m 
o 
~ 
-..J 
I-' 
I-' 
m 
o 

> 

9D 

------_ .. , 

(ReSponset=PNSGATH 
after 
wr i te PT4RETRYOVF -0 
retry) ~ 

PT4GOTOTASK . ~ 

PT4CONTROL=$ 

(Poll for----~L-PT4GOTOTASK 2 
E-code) 

PT4IO 

(Error qPT4RETRYOVF-0 
following ~ 
E-code poll) PT4GOTOTASK ~ 

PT4CONTROL -0 
(Poll for PT4IO 
toggle) 

(Errors c=PT4RETRY OVF~ 
following 
toggle PT4GOTOTASK 2 
poll) 

(Read, rej'~PT4GOTOTASK~ 
error, 
following PNSGATH 
toggle poll)__!:\ 

PT4CONTROL~ 

PBHALT 

cy> 
PT4IO 

~ 

PBCOIN 

BLTIMTBL 

PTSVILCB 

PBRELCHN 

PT4GOTOTASK~ 
PT4CONTROL --0 

PTYDISABLE 

PBCOIN 

PBRELIBF 

PBLSPUT (SVM) 

BLTIMTBL 

PTRETOPS 

Figure G-l. Mode 4 TIP Trees (Sheet 6 of 6) 



HASPTIP 

PTSMUXTIP - Mux WC. Converts mux 2 level worklist to OPS level HASP TIP 
worklist 

PTHSOPSTIP - OPS-level entry. Processes worklists from OPS-level (main HASP 
process). 

Workcodes recognized are as follows: 

(AOSMEN) - Enables line (sets LCB fields). 

(AOSMDA) - Disables line. 

(AOSMTCB) - Checks for an ENQ block; processes transmission. 

(AOSMDLTCB) - Terminates and releases TCB, passes terminate command to 
command driver, notifies host. 

(MSGCONT) - Sets up RCB/SRCB. 

/RQP/ - Requests permission to send. 

/PG/ - Permission granted to send. 

/BCBERR/ - Bad BCB, brings line down. 

/CONT/ - Sends control record. 

/0, 3, 4, 5/ - Purges record. 

(AOTIMEOUT) - Timeout handler. 

(AOQUEOUT) - Output handler. 

(MSGCMPLT) - Message completed, returns to caller. 

(ERROR) - Releases buffer; returns to caller. 

(ENQACK/NAK) - Sets completion value, returns to caller. 

(NMINDEND) - Ends input, returns to caller. 

(AOHARDER) - Hardware error, set inop code and return to caller. 

(BUFTHR) - No buffers (threshold reached), drops message. 

NAKTEST - If NAKs received after I/O, marks line down. 

FINDTCB - Finds TCB for stream (upline TCB). 

STROPN - Checks if workstation device will accept data (wait-a-bit-check). 
Notifies host if it will. 

DELINK - Unlinks entry from data-list queue (DLQ). 

HASPGET - Removes entry from DLQ; i.e., gets buffer of data that is ready 
to transmit. 

HASPPUT - Queues entries into DLQ (2 wds/entry). 

HASPIO - Calls command driver (PBCOIN). 

PUTBCBFCS - Sets up BCB and FCS. 

GETBCBFCS - Sets up BCB and FCS for output. 

PTTHASP - Text processing; calls PTTPINF. 

GENDATA - Sets up buffer prior to PTTPINF call. 

HSPREL - Releases data buffers. 

WRAPUP - Cleans up data transfers to HASP workstation. 

60471160 A G-9 



BRINGLINEDOWN - Terminates a HASP workstation due to errors~ sends terminal 
command to mux, notifies host. 

ERRCHK - Checks for errors in I/O transfer~ marks line down if necessary. 

CHKCMD - Parses CMD blocks from host for a HASP TCB. 

PREOUTPUT - Gets next entry in TCB queue and starts processing (downline 
switch) • 

POSTOUTPUT - Cleans up output transmission (PBPOPOI). 

HSPTCBUILD - Initializes TIP dependent TCB fields~ directs call from the 
SVM during configuration of terminal. 

POSTINPUT - Prepares to send block to host via PBPIPOI. 

HSPTPINP - Prepares for input text processing. 

DSTCHAIN - Forms queue chain. 

CORBUILD - Prepares EOR block. 
EOIBUILD - Prepares EOI block. 
PRBLOCKTYPE - Determines block type: EOI, EOR, mag, banner. 

TPIBUILD - Prepares a text processing buffer for interactive messages. 
TP2NDPASS - Upline text processing for card printer. 

TPISTPASS - Downline text processing for punch or printer. 

TPINTERACTlVE - Upline/downline text processing for console. 

G-IO 60471160 A 



en 
o ..... 
-..l 
I-' 
I-' 
en 
o 

!l>' 

G'l 
I 

I-' 
I-' 

HASP -1-
PTHOPSTIP (OPS entry; switch on work code 

in WLE) I 
Cases --

A 

(AOSMEN) - none 
enable line) 

(AOSMDA BRINGLINEDOWN --"i'3' 
disable line) ~ 

(AOSMTCB ~HASPIO 
build TCB) 

ERRCHK 

(AOSMDLTCB HSPREL 
delete/ 
terminate 
TCB) 

HASPIO 

DELINK - None 

PBLSPUT (SVM) 

C? 
Cases 

(MSGCONT:-CFINDTCB - None 
input 
processing) POST INPUT~ 
(Cases: RCB) 

B 

PBLSPUT (HASP) 

(RQP) I FINDTCB 

LHASPPUT 

(CONT) - None 

(0, 3, 4, 5) - None 

(AOTIMEOUT L BLTIMTBL 
timeout ~ 
control) HSPREL~ 

(AOQUEOUT liREOUTPUT ~ 
queue 
control) BLTIMTBL 

B 

(MSGCMPLT LGSPREL ~ 
msg com- ~ 
pleted) B 

(ERROR) L:{5REL----@ 

Figure G-2. HASP TIP Main Switches (Sheet I of 6) 



Gl 
I 

I-' 
N 

0'1 
o 
01>0 
-..J 
I-' 
I-' 
0'1 
o 

:x=o 

;->" 

cp 
Cases 

(ENQ -----'i' 
ACK~ 
NAK 
HASP block reply) 

(NMINEND~ 
end input) 

(AOHARDERR ~ 
hardware error) 

(BUFTHR - HSPREL----@ 
buffer 
threshold) 

End 
cases, start 
Main I/O Path 

10 

HASPIO-0 

·ERRCHK @ 

105. 

End 

NAKTEST-0 

POSTOUTPUT~ 
HASPGET-B 

PBLSPUT (SVM) 

HSPREL-@ 

BRINGLINEOOWN -@ 

PTHSMUXTIP (Mux 2 interrupt entry) 

LPBRELZRO 

LPBLSPUT (HASP) 

HASPTCBUILD (Direct call from SVM) 

L None 

PTTPHASP--@ (Internal call for upline 
text processing. Also called 
externally from PBPIOPOI for 
downline text processing.) 

Figure G-2. HASP TIP Main Switches (Sheet 2 of 6) 



C\ 
o 
.t::;. 
--.I ..... ..... 
C\ 
o 

~ 

(j) 
I ..... 
w 

<f 
NAKTEST 

LBRINGLINEOOWN~ 

cp 
FINDTCB - None 

cp 
DEL INK - None 

cp 
HASPGET (Text process 

LDELINK----0 

LGENDATA~ 

cp 
HASPPUT - None 

output) 

cp 
HASPIO (Mux interface) 
I 
Case 

PTREGL 
(ACKCMD)t .. -9 

GENDATA~ 

PBCOIN 

(NAKCMD) PBCOIN 

(OUTCMD)PTREGL 

~PBCOIN (Set up for output 
processing) 

(INPCMD) PBCOIN (Set up for input 
processing) 

(TERMIO) PBCOIN 

(NOCMD) - None 

CC. GETBCBFCS - None 

Figure G-2. HASP TIP Main Switches (Sheet 3 of 6) 



(j) 
I ..... 
~ 

cp 
STROPN 

[PTCOMMAND 
DELINK-0 

cp 
PUTBCBFCS 

LGETBCBFCS --0 

~ 
GENDATA 

PTUBCBFCS --=-<V 
STROPN-0 

PBGETIBF 

PTTPHASP---:@ 

nELINK-0 

PBPTISEG 

PREOUTPUT~ 
0\ 
0 
~ 
~ ..... ..... 
0\ 
0 

)0 

~-., 

~ 
HSPREL 

LpBRELZRO 

~ 
WRAPUP 

LHSPREL ~ 
LHASPIO--0 

~ 
BRING LINEDOWN 

Figure G-2. HASP TIP Main Switches (Sheet 4 of 6) 

DELINK-0 

HSPREL --=-@ 
PBLSPUT (SVM) 

PBCOIN 

'WRAPUP--@ 



0\ 
o 
~ 
-.I 
..... 
..... 
0\ 
o 

;J>I 

G') 
I ..... 

(JI 

<if 
ERRCHK 

tBRINGLINEOOWN ---@ 
HASPIO~ 
HASPREL ---@ 

~ 
CHKCMD (Processes commands) 

HSPREL--@ 

,PBRELZRO 

PBRELIBF 

PBUPABRT 

PTCOMMAND 

~ 
PRE OUTPUT 

lCHKCMD--@ 

LHASPUT~ 

~ 
POSTOUTPUT 

HSPREL--@ 

PBPOPOI 

HASPUT--0 

PREOUTPUT~ 

~ 
POSTINPUT lHSPTPINP--@ 

PBPIPOI 

PTCOMMAND 

~ 
HSPTPINP 

PBCLR 

PTTPINF - Upline text 
processing 

PBRELIBF 

PBRELCHN 

Figure G-2. HASP TIP Main Switches (Sheet 5 of 6) 



Gl 
I ..... 

en 

en 
o 
~ 
..... ..... 
..... 
en 
o 

:J>o 

(ij) 
DSTCHAIN - None 

~ 
EORBUILD 

LLPBGETIBF 

~ 
PREBLOCK TYPE 

LEORBUILD --@ 
~EOIBUILD ~ 

CiJ> 
TPIBUILD tPBCLR ---

PBGETIBF 

PRBLOCKTYPE ---@ 

(ij) 
TP2NDPASS 

PBGETIBF 

PTTPINF 

PBRELIBF 

PBCLR --

~ 
EOFBUILD 

LPBGETIBF 

GP 
TPlSTPASS 

I 

~ 

PRBLOCKTYPE --@ 
PBRELIBF 

PTTPINF 

DSTCHAIN-@ 

TPINTERACTIVE 

~ 

PTTPINF 

PBRELCHN 

PBRELIBF 

TPIBUILD --@ 

PTTPHASP 

~TP2NDPASS--@ 
TPlSTPASS ~ 
TPINTERACTIVE --=-@ 

Figure G-2. HASP TIP Main Switches (Sheet 6 of 6) 



TTY TIP ROUTINES 

PTMSQUE - Adds entries to the 100 ms timeout queue.-J" 

PTMSCAN - Scans LCB timeout queue for expired entries (100 ms)."1-

PTDELMS - Deletes entry from 100 ms timeout queue.-J" 

PTTMUX2 - Mux level 2 entry; converts to OPS-level entry. 

PTTYTIP - Main switch. 

Worklists: 

Enable line 

TCB built 

Output queued task 

Disable li ne 

Delete TCB 

Autorecognition 

Start block 

Framing error 

LF message 

CR message 

Delayed routine returns 

Paper tape message 

Paper tape turned off message 

Overflowed block size 

Mux buffer threshold reached 

Hardware error 

Output block transmitted 

PTTYTCB - Calls from SVM to finish building TCB. 

PTYCKQ - Checks output queue for tasks to perform. 

PTYTERM - Sends terminate I/O command to multiplex subsystem. 

PTYPASS - Passes data block to host. 

PTYHANGUP - Stops activity on a line. 

tThese can be used by other TIPs also. 

60471160 A G-17 



G) 
I 

I-' 
co 

0'\ 
o 
~ 
....,J 

I-' 
I-' 
0'\ 
o 

~ 

PTTYTIP (Main Switch) 
I 

(Wor kcodes) 

(AOSMEN PBCOIN 
enable 
line) 

(AOSMTCB c=PBCOIN 
TCB built) ~ 

~ 
(AOQUEOUT @ 
output Q 
task) 

(AOSMDA PTYHANGUP~ 
disable 
line) 

(AOSMDLTCB PTYHANGUP~ 
delete TCB) 

(AOWKI, 3PBGETIBF 
and 4 -
autorec) ~PBLSPUT (SVM) 

A 

Al 

(AOWK9,PTDELMS 
MMBREAK 
start of tP'l'YTERM-0 
block) 

PTRELZRO 

(MMFES PBCOIN 
framming error) 

(AOWK7 C=PTMSQUE 
LF msg) 

PTSVILCB 

(AOWK6 t=PTYPASS~ 
CR msg) 

PTMSQUE 

PTSVILCB 

(MMCHOUT PBCOIN 
delay return) 

(AOWKlO PTYPASS--~ 
paper tape ~ 
input) 

Figure G-3. TTY TIP Trees (Sheet I of 3) 



0\ 
o 
"'" -..J 
I-' 
I-' 
0'1 
o 

:l::' 

GJ 
I 

I-' 
1.0 

Al 

(AOWK5 PTYPASS t;\ 
XOFF from ~ 
paper tape) 

(AOWK8 PTYPASS t;\ 
block size ~ 
overflow) 

BLTIMTBL (AOWKll _1:\ 
regulation) PTYTERM~ 

PTSVILCB 

PBCOIN 

PTRETOPS 

(AOTIMEOUT PTRTILCB 
timeout) 

(AOHARDERR PTY HANGUP-0 
hardware error) 

(MMOBUX ~PBPOPOI 
output 
block sent) PTSVILCB 

PTRETOPS 

tAlso used by other TIPs. 

PTYCHQ ----0 
PBCOIN 

PTSVILCB 

PTREGL 

PTYTERM ---0 
BLTIMTBL 

PTRETOPS 

PTTYTCB - Call from SVM to build TCB 

LNone 

tPTMSQUE - Call from 100 ms timer 

LpBCOIN 

tpTMSCAN - Call from active (timed) LCB chain 

LpBLSPUT (self) 

tpTDELMS - Delete timing entry 

LpBCOIN 

PTTTYMUX2 - Call from mux 2 level 

LpBLSPUT (self) 

Figure G-3. TTY TIP Trees (Sheet 2 of 3) 



G') 
I 

N 
a 

0\ 
a 
~ ..... .... .... 
0\ 
a 

:l:' 

...-~ -.......... 

cp 
PTYCKQ 

TPRELIBF 

PBPROPOI 

PNCEFILE 

PBGETIBF 

q) 
PTYTERM 

. LpBCOIN 

~ 
PTYPASS 

\-PBRELCHN 

LPBPIPOI 

Figure G-3. TTY TIP Trees (Sheet 3 of 3) 

cp 
PTYHANGUP 

PTYTERM-G) 

PBRELZRO 

BLTIMTBL 

PBCOIN 

PBLSPUT (SVM) 

PBRETOPS 



BSC TIP ROUTINES 

PTIP780 - Entry/switch~ main proqram. 

RSTIMER - Set periodic timing. 

ISSUECMDPKT - Call CMD driver with command packet. 

SENDACK - Sends acknowledgment message. 

SENDCMD - Sends command block to host. 

SENDSVM - Sends service message to host. 

TCBDELETE - Deletes specified TCB. 

TERMINATE - Terminates input or output as requested. 

ANYOUTPUT - Searches for output to process. 

CMDQPROCESS - Processes all queued commands. 

GOODACK - Processes good acknowledgment block. 

INEOTSENT - Sends EOT to terminal. 

INIDLE - Sets input state to idle. 

INLINBID - Checks to see if line bids for input. 

INTTDSENT - TTD sent. 

NTMAXNAKS - Checks for maximum number of NAKs. 

NTMAXTIM - Checks for maximum number of timeouts. 

NTMAXWACKS - Checks for maximum number of WACKS. 

OKTOINPUT - Sets up for input on next available TCB. 

POSTINPUT - Post input processor (calls PBPIPOI). 

POSTOUTPUT - Post output processor (calls PBPOPOI). 

PRLNBID - Prepares line for next type of transfer. 

PRNXTBLOCK - Prepares next block to be sent. 

RCVABORT - Input message aborted~ notify terminal. 

RESPAUTOREC - Responds to autorecognition information from terminal. 

RESPTOBLOCK - Responds to data or ENQBLOCK from host. 

PRBLOCKTYPE - Determines block type. 

EOIBUILD - Builds an EOI. 

EORBUILD - Builds an EOR. 

PTTP780 - Test processor. 

PTTCB780 - Finishes building TCB for SVM. 

60471160 A G-21 



G) 
I 

N 
N 

0\ 
-0 ..,. 
...,J 

I-' 
I-' 
0\ 
o 

> 

MAIN BSC SWITCH 

I 
PTIP780 

A 

(Line r=BLTIMTBL 
enabled) ~ 

INIDLE~ 

ISSUECMDPKT~ 
(Disable BRINGLINEOOWN-B 
line) 

(Clear SENDSVM--0 
worklist) 

(Delete TCB)tTERMINATE~ 
INEOTSENT~ 
TCBDELETE~ 

(Block/ ------r-~--CMDQPROCESS 10 
conunand f:\ 
inqueue) ANYOUTPUT~ 

INLINBID --G 
PRNXTBLOCK --B 

(Hard error) BRINGLINEOOWN-B 

(ENQ received) PRLINBID~ 
RESPAUTOREC ~ 
RCVABORT-@ 

RESPTOBLOCK~ 

A 

(SOHINQPBCOIN -
received) 

PBLSPUT (HASP) t=RESPAUTOREC~ 
(Timeout) BLTIMTBL 

NTMAXTIM-@ 

ISSUECMDPKT~ 
BRINGLINEDOWN -:-B 
ANYOUTPUT -0 
INLINBID --§ 

INIDLE ----@ 
PRNXTBLOCK~ 

(DLEEOT) BRINGLINEDOWN~ 
(EOT received) SENDCMD~ 

ANYOUTPUT-B 

INLINBID--§ 

INIDLE ----@ 
(Received c-PBRELZRO 
good data ~ 
block) RCVABORT~ 

POSTINPUT~ 
PTCOMMAND 

RESPTOBLOCK~ 
Figure G-4. BSC TIP Trees (Sheet 1 of 4) 



0'1 
a 
.t:>­
-..J 
i-' 
i-' 
0'1 
a 

:t>' 

G'l 
I 

IV 
LV 

MAIN SWITCH (Contd) 

B 

C 

(Received bad PBRELZRO 
data block) _~ 

RECABORT~ 

NTMAXNAKS~ 
ISSUECMDPKT--Q 

SENDCMD-0 

INEOTSENT ---=@ 
(Received error1PBRELCHN 
data block) -0 

SENDCMD 4 

INEOTSENT~ 
(ACK received) i ISSUECMDPKT~ 

GOODACK-B 

NTMAXNAKS ----B 
SENDCMD-0 

INEOTSENT~ 
RSTIMER-0 

PRNXTBLOCK~ 
(WACK reCeiVed)---r-RESPAUTOREC~ 

INEOTSENT ----@ 
POSTOUTPUT~ 
RSTIMER-0 

NTMAXWACKS~ 

C 

(Buffer ISSUECMDPKT 0 
threshold) ~ 

(NAK received)----~~ 

Direct call from SVM 

INEOTSENT 

NTMAXNAKS 

PRNXTBLOCK 

SENDCMD-0 

NTMAXTM--@ 

ISSUECMDPKT~ 
RSTIMER-0 

PTTCB780 - None 

Direct call from Internal Processing for 
text processing of PRUB data: 

PTTP780 ~ 

Mux level 2 call - None 

Input state programs are written to call the 
OPS-level TIP with a worklist. 

Figure G-4. BSC TIP Trees (Sheet 2 of 4) 



Ii( 
'" 0100 

'" o 
0100 
~ 
I-' 
I-' 

'" o 

:J>o 

Support Routines 

0-RSTIMER BLTIMTBL'· 

~ISSUECMDPKT~RSTIMER~ 
LpBCOIN 

SENDACK I SSUECMDPKT--0 

SENDCMD PTCOMMAND 

SENDSVM PBLSPUT (SVM) 

TCBDELETE PBLSPUT (SVM) 

TERMINATE PBCOIN 

ANYOUTPUT - None 

BRINGLINEDOWN PBCOIN 

PBLSPUT~(Sel:) 
SENDSVM 

RSTIMER 1 

PBRELCHN ~CMDQPROCESS1· f:\ 
&- TERMINATE~ 

RSTIMER~ 

~GOODACKtPOSTOUTPUT~ 
PTCOMMAND 

PRNXTBLOCK ~ 
~INEOTSENT ISSUECMDPKT~ 
@-INIDLE LPBRELZRo 

ISSUECMDPKT 

~INLINBID ISSUECMDPKT 

~INTTDSENT ISSUECMDPKT 

NTMAXNAKS--------

NTMAXTIM---------

NTMAXWAKS--------

OKTOINPUT - None 

POSTINPUT PBPIPOI 

POSTOUTPUT ~PTCOMMAND 

PBPOPOI 

Figure G-4. BSC TIP Trees (Sheet 3 of 4) 



0\ 
o 
01'­
-..J 
I-' 
I-' 
0\ 
o 

> 

(j) 
I 

'" U1 

./ 

Support Routines (Contd) 

@---PRLINBIDtOKTOINPUT -----:-@ 
SENDACK ---{V 

ISSUECMDPKT --=----@ 
@--PRNXTBLOCK I INEOTSENT--@ 

INTTDSENT~ 
PBPROPOI 

PTTP780--@ 

ISSUECMDPKT~ 
RCVABORT INEOTSENT--@ 

RESPAUTOREC --PBLSPUT (SVM) 

RESPTOBLOCK SENDACK---{V 

NTMAXNAKS~ 
I SSUECMDPKT --0 
PTREGL 

@-PTTP780 PBRELIBF 

PBCLR 

PRBLOCKTYPE ----@ 
PTTPINF 

@--PRBLOCKTYPE--y-EOIBUILD~ 
LEORBUILD --@ 

~EOIBUILD PBGETIBF 

~EORBUILD PBGETIBF 

Figure G-4. BSC TIP Trees (Sheet 4 of 4) 



SERVICE MODULE TREES 

The section shows the service module trees. There are two parts: a short 
description of each SVM routine, and the trees relating the routines. 

Note the routines that are service module related, but not a part of the SVM: 

PNSGATH gathers statistics (stores them in TCB or LCB as appropriate). 

PTLINIT - initializes the line by setting up the LCB. 

PNCEFILE - generates the CE error and alarm service messages. The text of 
the message identifies the line (or other device such as 
coupler, MLIA, etc.) that failed. 

See appendix C for format of individual SMs. 

SVM Routines: 

PNAWAIT - gives up control for external event. 

PNRTN - used to regain control after PNAWAIT is used. 

PNSMBAD - validates PFC/SFC of SM. 

PNLNBAD - validates line number (used when enabling and deletin9 lines). 

PNRVRSE - reverses SN and DN to return an SM reply to the host. 

PNTOCONS - delivers an SM to the NPU console. 

PNQREL - releases buffers in a queue. 

PNGTCB - gets a TCB address. 

PNRCWAIT - terminates a reconfiguration in progress. 

PNTCBSRCH - uses line number, cluster address, terminal address, and 
device type to find a TCB. 

PNDLTCB - deletes a TCB and its queue. 

PNDISCARD - discards SMs with invalid PFC or SFC. 

PNSMTO - handles the SVM timeout worklist entries. 

PNSMTR - removes a WLE in the SVM timer worklist. 

PNSMWL - WL entry switch for SVM. 

COSMIN/COSMOUT - sends/receives SM. This work code is the subswitch 
for the SVM handler table. (See table E-l.) 

G-26 

C02MDISP - calls PNSDISP to send an SM. 

COLINOP/COLININOP - calls PNLINE to enable or disable a line. 

COLNDA - handles replies from TIP for line disable requests by the 
SVM. 

60471160 A 



CODLTCB - handles replies from TIP for delete TCB requests from SVM. 

COOVLDATA - handles the overlay data SM. 

COBFR } CODISABLE 
COENABLE 
COTMLDLT 

call PNRTN to continue processing TIP reply following 
PNAWAIT release of control. 

The following routines are called either from the first level (work code) of 
the main switch (above), or are called from the PFC/SFC decoding of the 
subcode. 

PNSMDISP - sends an SM to the host or remote NPU. 

PNCONFIGURE - common subroutine to process LCB or TCB configuration. 

PNLNCNF - configures a trunk or line. 

PNTMLCNF - configures or reconfigures a TCB. 

PNDELETE - deletes a line. 

PNENABLE - enables a line. 

PNDISABLE - disables a line. 

PNLINE - handles line operational or line inoperative work codes. 

PNTMLDLT - deletes a TCB. 

PNILLSTAT - formats a status SM. 

PNCNTLN - counts trunks or lines. 

PNLCR - handles the count line request SM. 

PNSTATE - generates response code for a line status SM. 

PNILNSTAT - formats the line status SM. 

PN2LNSTAT - formats the line status SM for a single line. 

PNLNSTAT - handles line status SM. 

PNITMLSTAT - formats the terminal status SM. 

PNTMLSTAT - handles the terminal status SM. 

PNBRDCST - handles broadcast SM (message to all terminals). 

PNIBRDCST - handles the broadcast 1 SM (message to one terminal). 

The following programs are called externally as SVM common programs for 
TIPs, the multiplex subsystem, and so forth. 

PNPSTAT - generates the periodic statistics SM (one statistics block -
next in the list). 

PNDSTAT - generates the dump statistics SM (the specified statistics 
block). 

PNSMGEN - generates an SM. 

60471160 A G-27 



G') 
I 

'" 00 

PNSMWL (WLE to SVM) 
I 
PBBEXIT 
I 

Cases 

~ __________ ~PNSMBAD - None 
(COSl."Ul'Il 
COSMOUT) 

Subcase 

PNDISCARD --- --~ 
PBRELCHN 

PBRELCHN 

(J4DISCARD) PNTOCONS ----- 0 
(J4PRINT) PBBFAVAIL 

(J4DISPATCH 
J4BOTH) 

PTCTCHR 

PNTOCONS -- 0 
PBCOPYBERS 

PNlGTPTR - None 

PBSWLE 

PNLNBAD - None 

A 

(COLINOP) PNLINE ------ 0 
(COLNINOP) 3 

(COLNDA) 

(CODLTCB 

(CORCTCB) 

(COOVLOATA) 

(COBFR 
COOISABLE 
CO ENABLE 
COTMLRCNF 
COTMLDLT) 

~PNLNBAD - None 

PBHALT 

None 

None 

PBCALL 

PNRTN - PBAEXIT 

tpBCALL - in this case the internal 
switch based on PFC = 08 '" 

PNBMPSTAT - PNDSTAT-==-0 
and SFC = 09 

(See appendix C.) 

(COSMDISP) 

PBCALL 

PNSMDISP --0 
tSee sheets 2 -5 

0\ 
o 
~ 
-...J 
I-' (A 
.1-' 
0\ 
o 

:roo Figure G-S. SVM Trees (Sheet 1 of 8) 

~---, 



0'\ 
o 
ol':> 
-.J 
I-' 
I-' 
0'\ 
o 

:t:' 

G') 
I 

N 
\.0 

Switch through PBCALL and PFC/SEC 

CD PNDISCARDPNBMPSTAT~ 
(Load request, LPNTOCONS -=====--<D 
NPU initialized, 
all statistics, 
CE error, ns 
to/from operator, 
time character-
istics; these 
are usually 
called directly 
from non-SVM 
programs) 

PNLNCNF PBRELIBF 
(Configure 
line) PNRVRSE - None 

PNSMDISP -----~ 
PBDLTXT 

PNCONFIGURE ----- (2) 
PBRELCHN 

PBLSPUT (INIT) 

PNDELETE~PNRVRSE - None 
(Disable/ 
configure PNSMDISP ---- - ~ 
line) 

PBRELCHN 

PBLLRMOV 

PNDSTAT ~ 
PNSMTR - --- ~ 
PBPUTYP - For TIP 

PNAWAIT - ~ 
PNDLTCB - ~ 
PNILNSTAT - --- None 

PNRVRSE - None 

PNRCWAIT - None 

Figure G-S. SVM Trees (Sheet 2 of 8) 



G) 
I 

w 
o 

0'1 
o 

"'" -.J 
I-' 
I-' 
0'1 
o 
):01 

Switch through PBCALL using PFCjSET 

PNTMLCNE PBREL1BF 

PNRVRSE - None 

PNSMDISP -----~ 
PNSMTR -----~ 
PNTCBSRCH ~ 
PGGURAVAIL 

PBCLR 

PBDLTXT 

PNCONFIGURE ----- G 
PBPUTYP (to TIP) 

PBGET1BF 

PNAWAIT--@ 

PBDNABRT 

PTINIT 

PBRELCHN 

PNTMLDLT PNRVRSE - None 
(delete TCB) ~ 

PNSMDISD - S 

PNTCBSRCH ------ ~ 
PBRELCHN 

PBPUTYP (to TIP) 

PNAWAIT ------ ~ 
PNDLTCB ----- @ 

PBREL1BF PBCALL -
PNOVLDATAdrta) . RVRSE _ None 
(overlay PN---0 

PNSMDISP 

Figure G-S. SVM Trees (Sheet 3 of 8) 



0'1 
o 
oJ>, 
-...J 
I-' 
I-' 
0'1 
o 

::t:' 

G') 
I 
w 
I-' 

Switch through PBCALL using PFC/SFC 

PNLNSTAT PNRVRSE - None 
(Line status) ~ 

PNSMDISP ----- S 

PNCNTLN - None 

PNSTATE - None 

PBBUFAVAIL 

PNAWAIT ----- @ 
PNILNSTAT - None 

PBRELCHN 

PN2LNSTAT--@ 

PNTMLSTATPNRVRSE - None 
(Terminal 
statistics) ~PNSMDISP ----~ 

PNSMTR 

PBBUFAVAIL 

PNAWAIT ----- @ 
PNITMLSTAT - None 

PBRELCHN 

PNLCR ~PNCNTLN - None 

PNRVRSE - None 

PNSMDISP -----~ 
PNENABLE PNRVRSE - None 
(enable line) f:\ 

PNSMDISP~ 

PBRELCHN 

PBLSPUT (for LIP) 

PBLLENTR 

PBLSPUT (INIT) 

Figure G-S. SVM Trees (Sheet 4 of 8) 



? 
w 

'" 

O'! 
o 
.e:. 
-..J 
I-' 
I-' 
O'! 
o 

:J:o 

/~-'" 

Switch through PBCALL using PFCjSFC 

PNDISABLEPNRVRSE - None 
(Disable or 
disconnect) ~PNSMDISP - ---~ 

PNRCWAIT - None 
PBRELCHN 

PNlLNSTAT - None 

PNENABLE ----- @ 
PNSMTR -- --~ 
PBPUTYP (To TIP) 

PNAWAIT ----- @ 
PBLLRMOV 

PNDSTAT ----~ 
PBLSPUT (INIT) 

PBLLENTR 

PNDLTCB ----- @ 

PNlBRDCST PBRELlBF 
(Msg to one 
terminal) PNRVRSE - None 

PNSMDISP ----- 0 
PNTCBSRCH ----- @ 
PBCOPYBFICS 

PBIOPOI 

PNBRDCST PNROUTE 
(Msg to all 
terminals) PBRELlBF 

PNRVRSE - None 

PNSMDISP ----- 0 
PTCTCHR 

PBCOPYBFRS 

PBBFAVAIL 

PNAWAIT @ 
PBIOPOI 

PBRELCHN 

Figure G-S. SVM Trees (Sheet S of 8) 



0'1 
o 
.I::> 
-.I 
f-' 
f-' 
0'1 
o 
;x:. 

G) 
I 

w 
w 

SVM routines provide as service routines exclusively for direct external calls 

PNPSTAT PNDSTAT ----- 0 
(Periodic 
statistics) 

PNSMGEN PBBUFAVAIL 
(Generates 
8M to host) PBGETIBF 

PNILLSTAT - none 

PBCOPYBFR8 

PBLSDUT (self) 

PNITMLSTAT - none 

PBLSPUT (self/timing) 

PBLOAD 

PBRELIBF 

PNSMTO PBL8GET 
(Call from 
timing) PNLNBAD - None 

PBRELCHN 

PTCTCHR 

PBCOPYBFRS 

PBLSPUT (self) 

PBLSPUT (self-timeout) 

PNGTCB c=PN2GTID 

PN2SRCH 

Figure G-S. SVM Trees (Sheet 6 of 8) 



? 
w 
~ 

0\ 
o 
~ 
....:J 
I-' 
I-' 
0\ 
o 

:J>O 

/-" 

<2:t-PNDISCARD (See second sheet) 

~PNTOCONS - (Displaying msg at NPU console) 

LPBCOPYBFRS 

LPBQlBLK 

~PNLINE - (line OP/INOP) 
I 

PNLNBAD - None 

PBHALT 

PBGETlBF 

PNlLNSTAT - None 

PBRELCHN 

PNSMDISP - - ~ 
PBLSPUT (TIM) 

~PNDSTAT (Dump statistics) 
I 

PBBFAVAIL 

PBGETlBF 

PBRELIBF 

PBLSPUT (SVM) 

~PNSMDISP (Send SM) 
I 

PTCTCHR 

PNSMBAD - None 
PNDISCARD 
PNRELCHN 

PBBFAVAIL 

PNTOCONS - --- 0 
PBCOPYBFRS 

PNIGTPTR - None 

PBLSPUT (SVM) 

PNBMPSTAT - None 

PBSWLE 

Figure G-S. SVM Trees (Sheet 7 of 8) 



'" o 
~ 
-..J 
f-' 
f-' 
0'1 
o 

!J::" 

G:l 
I 

W 
lJ1 

0- PNQREL PBRELCHN 

~PNCONFIGURE PNSTORE 
(Config a CB) 

PNROUTE 

PBHALT 

PNDIRDLT 

PNDIRADD 

PNQREL - (0 
PBDNABRT 

PBUPABRT 

PTINIT 

PBXFER (TIP) 

~PNSMTRtPBLSGET (Timing) 

PBRELCHN 

PBLSPUT (SVM timing) 

@--PNAWAIT tPBBEXIT 

PBLSPUT (Self) 

PBAEXIT 

~PNDLTCB PNDIRDLT 

PBDNABRT 

PBUPABRT 

PNDSTAT ----- (0 
PBREL1BF 

~PBTCBSRCH-----PNLNBAD - None 

@-PN2LNSTAT PNSMDISP - - ~ 
PBRELCHN 

PNSTATE - None 

PN1LNSTAT - None 

PNRTN PBAEXIT 

Figure G-S. SVM Trees (Sheet 8 of 8) 



( 
\ 
'. 



PRINCIPAL DATA STRUCTURES H 

This appendix lists and describes the principal data structures in CCI. It 
is intended for use with a link edit or cross-reference listing. 

Because PASCAL definitions can occur in three stages (types of structure, 
variables using these types, and values of constants assigned to type/ 
variable fields), the tables discussed in this section are defined with the 
type definition. Mnemonics for variables assigned to the same fields vary 
somewhat. The listing should be consulted for the correct variable name. 
Wherever the variable name is frequently used, this name is also given in 
this appendix. 

In some cases (such as the structure for service messages) the data 
structures are already described elsewhere. In these cases, the reader is 
referred to another location in this manual or in the CCl reference manual. 

60471160 A H-l 



CONTENTS 

Bits, Words, and Pointers 
Bit Definition 
Word Strudtures 

Characters (2/word) 
Integers (l/word) 
Four Hexadecimal Numbers/Words 
Flag Word (16 flags/word) 
Line Timing 

Masks 
Character Masks 
Bit Masks 

Pointer Definitions (BOINTPTR) 
Variable Word Definitions 

Multiword ASCII Set 
Hardware Related Tables 

Register Designation 
Register Save Area 
Coupler Related Constants 

Q and A Register Load Area, NGAQLT 
Hardware Lines and Associated Software Priorities 

NPU Console 
Logical/Physical I/O Request Packet, JCPACKET 

Device Controller Table, JACONTROLLERTABLE 
I/O Response Codes, JOIORESP 
Director (Controller) Function Codes for the 1713 TTY 
Special TTY (Console Keyboard) Characters 
Halt Codes 

Block Protocol 
Block Protocol Constants 
Block Type 
Block Byte Sequence 
Field Bit Start position in Byte 
Block Type (BT) Byte 
Data Bytes 
Data Block Clarifier, DBDBC 

Character 
Down Ii ne DBC 
UpIine DBC 

Directories/Internal Processor/Common TIP Routines 
Type 1 and Type 4 Tables 

Type l/Type 4 Table Entries, BRDIRCTRY 
Type 4 Table List Search Control Block, LSRCHCB 

POI Interface Values 
Common TIP Routine Structures 
TIP Type Table, TIPTYPE 

Base System Software 

H-2 

Buffers 
Buffer Maintenance Control Block, BECTRL 
System Buffer, BOBUFFER 
Buffer Constants 
Buffer Stamping Area, BY STAMP 
Copy Buffer Parameters, JTCOPYB 
Buffer Threshold Levels, BOBUFLEVELS 

Worklists 
Intermediate Array Format, BWWORKLIST 

H-4 
H-4 
H-4 
H-4 
H-5 
H-5 
H-5 
H-5 
H-6 
H-6 
H-6 
H-6 
H-6 

H-ll 
H-ll 
H-ll 
H-ll 
H-ll 
H-l2 
H-13 
H-14 
H-14 
H-16 
H-18 
H-18 
H-18 
H-19 
H-19 
H-19 
H-19 
H-20 
H-20 
H-20 
H-2l 
H-21 
H-22 
H-22 
H-22 
H-23 
H-23 
H-23 
H-23 
H-23 
H-24 
H-25 
H-26 
H-26 
H-26 
H-27 
H-34 
H-35 
H-35 
H-35 
H-36 
H-36 

60471160 A 



Multiplex Event Worklist Queue Types, MMEVENT 
Service Module Type Worklist Entry Formats, CMSMWLE 
Worklist Control Block, BYLISTCB 
OPS-Level Worklist, BOWKLSTS 
OPS-Level Work Codes, CMWKCODE 
Multiplex Event Work Codes 

Monitor Tables 
PGMSKIP 
BYPGMS 
SMONT 
CBSYTMT 

Miscellaneous 
System Interfaces 
System Interface Table, SITTBL 
Firmware Entry Points 
Low-Core Pointers 

Timing Tables 
RTC/Autodata Transfer Table, CICLKADT 
One-Second Clock, CASECNTR 
Line Timing Control Table, BLTIMTBL 
Periodically Executed Programs, CBTIMTBL 
Time of Day Tables, CAD ATE 
Loop Forever Instruction 

Regulation 
Input Regulation Option for PTREGL, REGLTYPES 

Control Blocks 
Static Logical Link Control Block (LLCB), BOSLLCB 
Line Control Block (LCB) , BZLCB 
Terminal Control Block (TCB) , BSTCBLK 

Multiplex Subsystem 
Multiplex Command Driver Packet, NKINCOM 
Multiplex Line Control Block (MLCB), NCLCB, Text 

Processing Control Block (TPCB) 
Port Table (NAPORT) 
Line Tables 

Multiplex Line Type Table, NBLTYT 
Line Types, NOLTYP 
Asynchronous Line Speeds 
Line Number Field, BOLINO 
Multiplex Character Transmit Characteristics Table, NICTCT 

CLA/Modem Tables 
Modem/CLA Relationships 
CLA Types 
CLA Commands and Status 
Control Command Sequence Word, NDSEQE 
Multiplex CLA Command Status Table Entries, NFCCSE 
CLA Status Condition Indicators, MOSCTYP 
Modem Control States 
Modem State Programs 

Terminal Tables 
Terminal Characteristics Table, NJTECT 
Terminal Classes 
Terminal and Device Types (TT/DT) 

Service Messages 
FN/FV Data Structures 

Field Description Table, DDFDTRECORD 
Action Table Entries, DFATENTRY 

Halt Codes 

60471160 A 

H-37 
H-39 
H-40 
H-40 
H-41 
H-43 
H-44 
H-44 
H-44 
H-44 
H-44 
H-44 
H-44 
H-44 
H-46 
H-46 
H-47 
H-47 
H-47 
H-47 
H-48 
H-49 
H-49 
H-49 
H-SO 
H-SO 
H-SO 
H-SI 
H-SS 
H-61 
H-62 

H-64 
H-69 
H-70 
H-70 
H-71 
H-72 
H-72 
H-72 
H-73 
H-73 
H-74 
H-74 
H-74 
H-74 
H-78 
H-78 
H-78 
H-78 
H-78 
H-SO 
H-80 
H-82 
H-82 
H-S2 
H-82 
H-S3 

H-3 



BITS, WORDS AND POINTERS 

BIT DEFINITION 

The following labels define the bit structure for NPU words. 

Bit 15 

Word 

Mnemonic Bits Decimal Range 

BOIBIT 0 0-1 
B02BITS 0-1 0-3 
B03BITS 0-2 0-7 
B04BITS 0-3 0-15 
B05BITS 0-4 0-31 
B06BITS 0-5 0-63 
B07BITS 0-6 0-127 
B08BITS 0-7 0-255 
B09BITS 0-8 0-511 
BOIOBITS 0-9 0-1023 
B011BITS 0-10 0-2047 
B012BITS O-ll 0-4095 
B013BITS 0-12 0-8191 
B014BITS 0-13 0-16383 
B015BITS 0-14 0-32767 

The bit elements that make up the 16-bit NPU word are as follows: 

ELEMENTS = (BIT 0, BIT 1, BIT 2, BIT 3, BIT 4, BIT 5, BIT 6, 
BIT 7, BIT 8, BIT 9, BIT 10, BIT 11, BIT 12, 
BIT 13, BIT 14, BIT 15) 

Bit 0 is least significant bit; bit 15 is most significant bit. 

WORD STRUCTURES 

Mask Word 

SETWORD = SET OF ELEMENTS 

Bit set allows corresponding btt to be inspected (logical AND) 

Characters (2/Word) 

15 7 o 
CHAR CHAR 

Array of up to 131K characters 

BOCHRARAY = PACKED ARRAY (B015BITS) OF CHAR; 

0 

I 

H-4 60471160 A 



Integers (1/Word) 

Word array of 65K words 

BOINTARAY = ARRAY (B015BITS) OF INTEGER: 

Four Hexadecimal Numbers/Word 

BOHEX = PACKED RECORD 

BOHl, BOH2, BOH3, BOH4: B04BITS 

END: 

15 11 7 3 o 
BOHI I BOH2 BOH3 BOH4 I 

Flag Word 

Sixteen flags are packed in one word. 

BOFKAGS = PACKED RECORD 

BOB15, BOB14, BOB13, BOB12, BOBll, 
BOBIO, BOB9 BOB8, BOB7, BOB6, 
BOB5, BOB4, BOB3, BOB2, BOBl, BOBO: BOOLEAN 

15 0 

Il' , lilli' " "'3' BOIS BOBO 

Sixteen flags with mnemonic corresponding to bit position of flag in word. 

Line Timing 

BZLTIME has three values, packed as shown. The count increments are in half 
seconds. 

MASKS 

BLTRESET 

Output buffer terminated 
reset value 

BLTCONT - firmware contention flag 

o 
BLTIME 

Timeout field count 

The principal masks are for single characters and single bits. 

60471160 A H-5 



Character Masks 

Left byte, BY OMSK 

15 7 o 
AlII's All 0' s 

Right byte, BYIMSK 

15 7 o 
All O's AlII's 

POINTER DEFINITIONS (BOINTPTR) 

Pointers are all one word (INTEGER) type. 

Pointer 
Control Block 

or Buffer 

Integer pointer 

Meaning 

BOINTPR 
BOQPTR 
BOBUFPTR 
BOHEXPTR 
BOREGPTR 
NOLCBP 
BZLCBP 
BODCBP 

INTEGER 
BOCBENT 
BOBUFFER 
BOHEX 
BOREGSAVE 
NCLCB 
BZLCB 
NZDCB 

Queue control block pointer (QCB) 
Buffer pointer for general buffer 
Hex pointer 

VARIABLE WORD DEFINITIONS 

Register save area pointer 
Multiplex LCB (MLCB) pointer 
LCB pointer 
Diagnostic control blk PTR. 

The universal word overlay has many variations. Each variation is of the 
most frequently used type. Thus, by overlaying the universal overlay over a 
variable, the variable can be accessed in a variety of formats. 

15 7 o 
o BACHARS CHAR 1 BACHARS CHAR 2 

type: CHAR: length 1 to ALFALENG 

15 0 

o BABOOL 

type: BOFLAGS - up to 16 flags 

H-6 60471160 A 



15 0 

0 I BASET I 
type: SETWORD - mask 

15 0 

0 I BASETN 

type: SET of 0 through F16 

15 0 

0 BABUFBTR 

type: BOBUFPTR, buffer pointer 

15 0 

0 I BAINT 

type: INTEGER, full word integer 

15 0 

0 BAWLCODE I 
type: BOWLCODES, worklist code 

VARIANT: 

15 7 0 

0 BALCHAR I BARCHAR I 
type: CHAR, left and right characters 

VARIANT: 

15 0 

0 I BACORE I 
type: BOHEXPTR, hexadecimal pointer 

VARIANT: 

15 11 7 3 0 

0 I BAHEX I I I 
type: BOHEX, 4 hexadecimal digits 

60471160 A H-7 



VARIANT: 
15 0 

0 BAINTPTR I 
type: BOOINTPTR, integer pointer 

VARIANT: 

15 0 
0 I BAREGPTR I 

type: BOREGPTR, register pointer 

VARIANT: 

15 7 0 

0 BALBYT I BARBYT I 
type: B08BITS, integers in left and right bytes 

VARIANT: 

15 0 

0 BA1BOL I 
type: BOOLEAN, uses only bit 0 

VARIANT: 

15 0 

0 BAQPTR I 
type: BOQPTR, queue pointer 

VARIANT: 

15 0 

0 BABUFSIZE I 
type: BOBUFSIZES. Index to size of buffer (1, 2, 3, 4) 

for the network. Nominal sizes: 8, 16, 32, 64 
correspond to values 1, 2, 3, and 4. 

VARIANT: 

15 0 

0 BAWKLST I 
type: BOWKLSTS. Worklist index. Entries in the monitor 

table as shown in section 5. Uses only bits 0 
through 4. 

H-8 60471160 A 



:VARIANT: 

o 

VARIANT: 

0 

VARIANT: 

0 

VARIANT: 

0 

VARIANT: 

0 

15 o 
BALTYP 

type: NOLTYP. Line type. See table C-3. Uses only bits 
o through 3. 

15 o 
BALINO 

type: NOLINO. Line number. Used to index LCBs. 

15 .0 

BALCBP 

type: BZLCBP. LCB pointer. 

15 o 
BATTYP 

type: NOTTYP. Terminal type. See appendix C. 

15 o 
BAICHAR 

type: CHAR. Right character. Uses full word with 
character r ight-j ustif ied. 

I 

VARIANT: BACHROVLY 

o 
15 6 3 0 

BAPAD I BAINDEX I BABITPOS I 
type: Three fields together make a pointer to an ASCII 

character in the ASCII/binary conversion table. See 
appendix A. Used in firmware code conversion tables, 
as shown in assembly listings. 

60471160 A H-9 



VARIANT: 

15 11 S o 
o I BA15T012 BACPOC BACPLN 

VARIANT: 

type: Two fields (leftmost field is spare). BACPOC is 
the coupler orderword cOde and BACPLN is block 
length, used by the HIP for threshold checks and for 
computing the number of buffers nE;!eded for an input 
block. 

15 6 0 

o ~1 ___________ B_A_S_P_9 ______________ ~I ___________ BA __ 7B __ IT_S __________ ~1 

VARIANT: 

o 

VARIANT: 

o 

VARIANT: 

o 

VARIANT: 

o 

H-IO 

type: fields: variants 24 and 25 are used together as an 
IS-bit address. BA7BITS is upper 7 bits, BA~lBITS 
is lower 11 bits of address. 

15 10 

BAPAGE BA11BITS 

BAPAGE is the page number: range 0 through 31. 

l5 

BAPGM 

type: BOPGM. Used by TUP to index into the OPS monitor 
table. Uses only bits 0 through 4. 

15 

BALIO 

type: JOLIO. Console logical I/O index. Uses only bits 
o through 3. 

15 

BABLKTYPE 

o 

I 

o 

o 

o 

type: BLKTYPE. Block type (BT) field in the block header. 
Uses lower 4 bits. 

60471160 A ( 



VARIANT: 

15 o 
o BACTCT 

type: NICTCT. Entry in character transmission table (NICTCY). 

MUL TIWORD ASCII SET 
JSASCIISET = ARRAY (303BITS) OF SET OF B04BI~S: 

This is an 8-column, 16-row array of 8-bit characters. The 8 by 16 array 
completely defines the full l28-characterset (as well as the 96-character 
subsets) for ASCII. See appendix A of the CCI reference manual. 

HARDWARE RELATED TABLES 
This subsection describes hardware registers and lines which are not handled 
by the multiplex subsystem. 

REGISTER DESIGNATION 

This sequence defines the principal 255X hardware registers: Rl-R4, Q, A, 
I, M, overflow. Extra is a dummy register. 

BOREGISTERS = (BOEXTRA, BORl, BOR2, BOR3, BOR4, BOQ, BOA, 
BOI, BOM, BOOFLOW) 

REGISTER SAVE AREA 

BOREGSAVE = ARRAY (BOREGISTERS) OF INTEGER 

15 
Register Saved 

o 
Word 0 BOREGSAVE -

Rl · · · 
BOREGSAVE (ARRAY) R4 

Q 
A 
I 
M 

9 BOREGSAVE ELEMENT 10 Overflow 

COUPLER RELATED CONSTANTS 

The coupler codes used by the various coupler registers are described in 
section 7. 

60471160 A a-II 



Mnemonic Value 

Coupler Functions 

(hexadecimal) 

ACPICS 
ACPIOW 
ACPONS 
ACPOBL 
ACPCLR 
ACPOMA 
ACPRMA 

50 
60 
48 
58 
OC 
6C 
10 

(end hexadecimal) 

Data Transfer Status Commands 

AIDLE 
AAOUTPT 
AAREADY 
AANREADY 
AINPSB 
AINPLB 
AINPPU 

1 
3 
4 
7 

13 
14 
12 

Coupler Condition States 

AOPTO 
AOPTI 
AOPT2 
AOPT3 
AOPT4 
AOPT5 
AOPT6 

Coupler Timeout Values 

AIDLETO 
ADEADTO 

o 
1 
2 
3 
4 
5 
6 

3 
60 

Q and A Register Load Area, NGAQL T 

Meaning 

INPUT COUPLER STATUS 
INPUT OROERWORD 
OUTPUT NPU STATUS 
OUTPUT BUFFER LENGTH 
CLEAR COUPLER 
OUTPUT MEMORY ADDRESS 
READ MEMORY ADDRESS REGISTER 

IDLE STATUS 
OUTPUT DATA AVAILABLE 
READY TO ACCEPT OUTPUT DATA 
NOT READY TO ACCEPT OUTPUT DATA 
INPUT AVAILABLE - SMALL BLK OR MSG 
INPUT AVAILABLE. - LARGE BLK OR MSG 
INPUT AVAILABLE - PRU BLOCK 

IDLE STATE 
IDLE INQUIRY SENT 
INITIATEO INPUT 
INITIATE OUTPUT 
OUTPUT IN PROGRESS 
READY FOR OUTPUT DELAY 
NOT ROY FOR OUTPUT DELAY 

IDLE TIMEOUT = 1 TO 1 1/2 SECONDS 
DEADMAN TIMEOUT = 30 SECONDS 

One word is provided for commands (Q register) and two variants are provided 
for data/subcommands (A register). The NPU console uses the A/Q channel for 
I/O. These are used only for the command driver. 

Command (Q) 

15 7 o 
o NGPORT - Port Number NGCMD - I/O device commana 

H-12 60471160 A 

I 

\ 



Subcommand (A) 

15 7 0 
o NGLTYP - Line Type NGCNT - Count of characters being sent 

universal Overlay 

15 o 
o I NGINT - Integer 

Hardware Lines and Associated Software Priorities 

Hardware Software 
Line No. priority Descri;etion of Interru;et 

0 PI Internal (parity and protect, power) 

1 P6 Teletype (NPU console) 

2 P2 Multiplex loop error 

3 P3 Multiplex Level 2 

4 P16 1742-30 line printer (for console - not 
used) 

5 P5 Spare 

6 P7 Coupler 

7 P8 Spare 

8 P9 Real-time clock 

9 PIO 1742 line printer (for console - not used) 

10 P11 Spare 

11 P12 Spare 

12 P13 MLIA ODD (parallel for all NPU ports) 

13 P14 MLIA input line frame (parallel for all NPU 
ports) 

14 PIS Spare 

15 Hardware breakpoint 

P17 OPS level programs 

JKMASK defines the array of 17 priority level masks (BOPRlLEVEL) associated 
with these interrupts. priority 1 is highest; priority 17 is not associated 
with any interrupt driver. 

60471160 A H-13 



NPU CONSOLE 
The NPU console has two levels of data structures. 

• The request packet from the user (logical request packet, LRP) 
establishes the message transfer parameters. The LRP is converted to 
a physical request packet (PRP) by the console driver so that the 
user does not need to concern himself with terminal physical 
characteristics. 

• The device controller table provides parameter storage for the A/Q 
transfer between NPU and console device. One such controller table 
is provided for each device associated with the NPU console. 

In addition, the console driver for the device must: 

• Recognize the A/Q line responses. 

• Provide the controller functions in the form recognized by the 
controller (bits set). 

• Recognize special characters that are used by the console for mode or 
message control. 

LOGICAL/PHYSICAL I/O REQUEST PACKET, JCPACKET 

These two packets share the same format. The packets are used to pass 
requests to the NPU console and are the logical equivalent of the LCB/TCB 
for remote terminals. 

H-14 

o 

1 

2 

3 

4 

5 

6 

7 

a 

15 14 11 l' 11 10 Q 7 
~ - - - II - ~ ~ ~ ... n 

v 

JCCOMMAND - I/O command JCCOMPL - I/O completion code 

Fl I F21 F31 F4 FS I F6 I F7 I Fa F9 I FlO Fll F121 Fl31 F14\FJ,sIF16 

JCLIO-logical JCPD - Physical device code (bits 7-0 only) I/O function 

JCUSERWD - User word 

JCPOINTER - Pointer to tag or first buffer 

JCBUFSZE - Pointer to buffer control block 

JCENTRYCODE- JCUSRCODE - JCRESULT -

Worklist code User program code F17 I/O result: code 
(bits 3-0 only) 

JCRETRYCNT - JCRECDSZE - JCBLKSZE - block size 
Retry count Record size (bi ts 3-0 only) 

JCSTATUS - Physical device status 

60471160 A 



FI - JCRELBUFLG, release output buffers 

F2 - JCRELPRFFLG, release physical request packet (PRP) 
F3 - JCNOBUFLG, I/O not in buffer 

F4 - JCSPI, not used 
FS - JCPRIFLG, priority output 
F6 - JCTRANSPFLG, transparent data 

F7 - JCGETBUFLG, get buffers for input 

F8 - JCRESETFLG, reset wait I/O bit 
F9 - JCCHAINFLG, chain messages 

FlO - JCSTACKFLG, stack this completion request 

FII - JCENDSTACKFL, end of completion stack 

Fl2 - JCBATCHFLG, batch this request 
Fl3 - JCENDBATCHFLS, last request in batch 

Fl4 - JCSP2, not used 
FIS - JCIMMEOFLG, perform immediate output 

Fl6 - JCCOMFLG, call PBDRCOMPL, the console cornmon driver 
completion routine 

F17 - JCOPCODE, worklist OPS code 

The following constant values are assigned to the LRP/PRP fields indicated. 

Mnenomic Value Meaning ~ 

J3READ 0 Console read } I/O 
J3WRITE I Console write commands 

J3NOCOMPL 0 Failed to complete } Completion 
codes J3 0 Not used (JCCOMPL) 

J3ACCEPTED 0 LRP accepted 

} 
J3R&JECTED I LRP rejected Result codes J3ERRI 2 All retries attempted (JCRESULT) J3ERR2 3 More retries can be attempted 
J3COMPLETE 4 LRP completed 

JIPRIWL I priority worklist } two console } Driver 
worklist JIREGWL 0 No priority worklist queues priorities 

60471160 A H-lS 



Functions (JCLIO field) are: 

Mnemonic Value Console Mode ---
JOLIO = (J2SJPIN, 1 SUPERVISORY INPUT 

J2SUPOUT, 2 SUPERVISORY OUTPUT 
J2ALM, 3 ALARMS 
J2REP, 4 REPORTS 
J20RD, 5 ORDERWIRE 
J2DIAG, 6 DIAGNOSTICS 
J2TUPINPUT, 7 TUP INPUT 
J2TUPOUTPUT, 8 TUP OUTPUT 
J2TUPDUMP, 9 TUP DUMP 
J2SNP1, 10 SNAPSHOT 1 
J2SNP2, 11 DUMP REGISTERS 
J2SNP3, 12 PRINT BREAKPOINT ADDRESS 
J2SPARE, 13 SPARE 
J2QUICK, 14 QUICK I/O 
J2WSl, 15 WRAP-SNAP 1 
J2LAST) 1 DUMMY 

Device Controller Table, JACONTROLLERTABLE 

The device controller table is used by the modules comprising the NPU 
drivers. One controller table is used for each console device (i.e., TTY). 

H-16 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 o 
JASTATUS - Physical device status 

JACRUREQ - Pointer to current I/O request 

JAIOBUF - Pointer to I/O buffer 

JAINPROGFLG - I/O in progress flag 

JABUFXZE - Pointer to I/O buffer control block 

JACHRCNT - I/O character count 

JATIMER - I/O timer - half seconds 

JATIMOUT - Timeout count - half seconds - 5 minute overflow 

JAREJECT - Rejected transfer count 

JABADINT - Bad interrupts count 

JARETRY - Retry I/O count 

JAQVALUE - Q register contents for last I/O transfer 

JAAVALUE - A register contents for last I/O count (data) 

JAREADFLG - Last I/O type flag1 1 = read, 0 = write 

JAMASK - Mask out device for PBSTARTIO 

60471160 A 



15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

JAIOWL - Driver worklists, used for PBLSGET and PBLSPUT 

JAIOWL (ARRAY) II/O worklist 
JAIOWL ELEMENT 2 

JAAUTOFLG - Automatic output flag 

JAFRSTFLG - First character of message plan 

JAINTFLG - Message interrupted flag 

JAMODEFLG - Mode change flag 

JACHFLG - Console input message flag 

JACURIBP - Current input buffer pointer 

JAOLDIBP - First input buffer pointer 

JAQCHOSEN - Queue chosen 

JADROPQ - Interactive queue 

JAERRCNT - Error count 

Words 17 through 26 are used only for the display/keyboard. 

JAINPROGFLG - Only bit 0 is valid 
JAAVALUE - Only bits 7 through 0 are valid 
JAREADFLG - Only bit 0 is valid 
JAIOWL - Only bits 4 through 0 are valid 
JAAUTOFLG - Only bit 0 is valid 
JAFRSTFLG - Only bit 0 is valid 
JAINTFLG - Only bit 0 is valid 
JAMODEFLG - Only bit 0 is valid 
JACHFLG - Only bit 0 is valid 

60471160 A 

o : 

H-17 



I/O Response Codes, JOIORESP 

These are hardware responses checked by.the console I/O drivers when reading ( 
or writing a character. \ 

JOXREJECT 
JOIREJECT 
JOREPLY) 

1 
2 
3 

EXTERNAL REJECT 
INTERNAL REJECT 
REPLY 

Director (Controller) Function Codes for 1713 TTY 

BIT 15, 14 - BAUD RATE SELECTOR 1 0 = 110, 
BIT 13 - DISCONNECT PRINTER 
BIT 12 - 8-BIT WORD 
BIT 11 - DE-SELECT PARITY 
BIT 10 - CONNECT PRINTER 
BIT 9 - SELECT READ MODE 
BIT 8 - SELECT WRITE MODE 
BIT 7 - NOT USED 
BIT 6 - AnT MODE 
BIT 5 - NOT USED 
BIT 4 - INTERRUPT ON ALARM 
BIT 3 - INTERRUPT ON END-OF-OPERATION 
BIT 2 - INTERRUPT ON DATA 
BIT 1 -' CLEAR' INTERRUPT 
BIT 0 - CLEAR CONTROLLER 

1 = 300, 2 = 1200, 3 

Multiple functions are accepted by the controller1 they are defined as 
follows: 

- TTY clear interrupt, clear controller 

= 9600 

TTYCLR, 
TTYREAD~ 

TTYRITE, 
TTYWRITE, 
TTYEOP: CHAR: 

- TTY select read mode: a] arm intprrllpt: data int~l"rupt 
- TTY select write mode, no interrupt 
- TTY select write mode, alarm interrupt, data interrupt 
- Clear interrupt select EOP interrupt 

Special TTY (Console Keyboard) Characters 

H-18 

Character 
Definition 

(CHAR) 

JlCR, 
JlLF, 
JlCTLH, 
JlBCKSPCE, 
JITUPEOM, 
JITUPCAN, 
JlENTERTUP, 
JILVETUP, 
J2ENTERMP, 
J2LVEMP, 
JlICR, 
JlILF, 
J lID I SCARD , 
JISYSEOM 

Keyboard Character/Use 

CARRIAGE RETURN 
LINE FEED 
CONTROL H - TREATED AS BACKSPACE 
BACKSPACE 
/TUP MESSAGE EOM 
QUESTION MARK TUP CANCEL INPUT 
CONTROL A ENTER TUP MODE 
CONTROL D LEAVE TUP MODE 
ESCAPE ENTER MAINT PANEL MODE 
LEAVE MAINT PANEL MODE 
REPLACE WITH CR CONTROL SHIFT N, 
REPLACE WITH LF CONTROL SHIFT M, 
DISCARD CONSOLE INPUT 
CONTROL D SYSTEM EOM 

60471160 A 



Halt Codes 

The NPU halt message is sent to the NPU console. The halt codes are 
described in The CCI reference manual. 

BLOCK PROTOCOL 

The block protocol defines the byte structure used to transmit blocks 
between the host and the terminal mode of the NPU. Blocks are composed of 
buffers with one or more chained buffers. Each buffer in the chain requires 
a buffer header and (except for the last or only buffer case) a buffer 
pointer for chaining. All other bytes can be used for the message. 

See section 6 for block protocol discussion. 

BLOCK PROTOCOL CONSTANTS 

The block header occurs at the start of the buffer, following the bytes 
reserved for the buffer header (four bytes). An additional four bytes are 
reserved for data block headers, starting with DBC. 

SN CN 

Block header 

BSN/ 
BT DBC DATA 

BT - block type; BT uses bits 3-0 only. 
DBC - data block clarifier; if present, it is the first data byte. 

BLOCK TYPE 

Mnemonic Value Block Type Meaning 

BT - bits 3 through 0 of P/BSN/BT byte 

HTBLK 
HTMSG 

HTBACK 

I 
2 

3 

Block } data transfer blocks 
Message 

Back - acknowledgment 

HTCMD 4 Command - used for service messages and datal 
stream control 

60471160 A H-19 



BLOCK BYTE SEQUENCE 

Byte position assumes buffer header and link header. Bytes are numbered 
starting at 1 in the upper byte of word 0 of the buffer. 

Byte 
Mnemonic position 

DN 6 
SN 7 
CN 8 
BTPT 9 
PI 10 
P2 11 
P3 12 
P4 13 
P5 14 
P6 15 
P7 16 
P8 17 
P9 18 
P10 19 
P11 20 
P12 21 
P13 22 
P14 23 
P16 25 
P18 27 
P20 28 
P24 33 
'C'DVm'CI D~~ 4·U ...... ~ 

BLOCK DN 

FIELD BIT START POSITION IN BYTE 

Binary 
Mnemonic Value 

FSO 1 
FS1 2 
FS2 4 
FS3 8 
FS4 10 
FS5 20 
FS6 40 
FS7 80 

BLOCK TYPE (BT) TYPE 

.. 

Byte Use 

Destination node 
Source node 
Connection number 
Block type/packet type 
Parameter 1 (DBC if data 
Parameter 2 

instead of parameter) 

Parameter 3 
Parameter 4 
Parameter 5 
Parameter 6 
Parameter 7 
Parameter 8 
Parameter 9 
Parameter 10 
Parameter 11 
Parameter 12 
Parameter 13 
Parameter 14 
Parameter 16 
Parameter 18 
Parameter 20 
Parameter 24 

Data can start at any 
parameter position1 it 
must start at the byte 
following the last 
parameter used. 

FeD fer first byte of data 
FCD of first byte of block header 

Starting Bit 

bit 0 
bit 1 
bit 2 
bit 3 
bit 4 
bit 5 
bit 6 
bit 7 

The fourth byte of the block header can have two forms: 

60471160 A 

( 

\ 



Byte 

Byte 

DATA BYTES 

Mnemonic 

DBC 

TIME 

STMP 

LVLN 

DATA 

DWORD1 

DWORD2 

DWORD3 

DWORD4 

DWORD5 

DWORD6 

6 3 o 
BTBSN BTYPE """ BLKTYPE I 

Block type, range 0 - 14 

Block serial number 

BTPRID - Priority designator 

7 o 
CHAR BLKTYPE 2 

Character 

position of Byte in 
Data Part of Message 

PI = I 

P2 2 

P3 = 3 

P4 = 4 

P5 5 

6 

7 

8 

9 

10 

11 

Meaning 

Data block clarifier (control 
flags for the data that 
follows) 

.Stamp 

Level numbers 

Data bytes (can begin at 
positions 1 through 5) 

DATA BLOCK CLARIFIER, DBDBC 

The DBC is often used as the first byte of the data header in a message. In 
the definition, it is right-justified in a computer word. Six DBC variants 
are provided. 

60471160 A H-21 



Character 

15 7 

o DBDMI - Not used I DBCHAR - Character 

Downline DBC 

15 7 6 5 4 3 2 

o DBDLFILL Fl F2 F3 F4 F5 F6 

Fl - DBDLSl, spares 
F2 - DBDLS2, spares 
F3 - DBDLS3, spares 
F4 - DBDLS4, spares 
F5 - DBDLFE, format effectors used 
F6 - DBDLXPT, transparent data 
F7 - DBDLS5, spare 
F8 - DBDLAUTO, autoinput block 

Upline DBC 

15 

o I DBULFILL 

F9 - DBULSl, spare 
FlO - DBULS2, spare 
Fll - DBULS3, spare 
F12 - DBULS4, 8pdLe 
F13 - DBULS5, spare 

7 6 

I F9 I FlO 

F14 - DNULXPT, transparent data 
F15 - DBULCAn, cancel data 
F16 - DBULPERR, parity error 

15 

5 

Fll 

o DBSPI - not used 

DBCCF - Code conversion 
F17 - DBBSF, backspace present 

4 3 2 

F12 F13 F14 

5 

I DBCCF 

DBDBT - Data clarifier, see section 6, block description 

Batch data 

15 

o PDPMl - not used 

F18 - PDPRUB, physical record unit block 
Fl9 - PDBANB, banner block 
F20 - PDEOl, message contains an EOl 
F21 - PDXPAR, transparent data 

H-22 

5 

PDSPI - not used 

1 

F7 

1 

F15 

3 

F17 

o 

o 

o 
FI6 

2 0 

DBDBT I 

60471160 A 

( 

\ 



Batch data 

15 

o DBFl - not used 

F22 - DBPRUB, physical record unit block 
F23 - DBBANNER, banner message 
F24 - DBSP2, not used 
F25 - DBSP3, not used 
F26 - DBSP4, not used 
F27 - DBSP5, not used 
F28 - DBEOI, block contains EOI, 0: block contains an EaR 
F29 - DBCXPT, transparent data 

DIRECTORIES/INTERNAL PROCESSOR/COMMON TIP ROUTINES 
The internal processor includes the pals and various switching routines. 
The routing routines use the LCBs as directories; the routines also use 
directories built in type 1 and type 4 tables. See section 6 for routing 
and POI descriptions. 

TYPE 1 AND TYPE 4 TABLES 

Type 1/Type 4 Table Entries, BRDIRCTRY 

These are indexed tables with a pointer associated with each index. Two 
words/entry: word 1 has the index right-justified; word 2 has the 
associated pointer. The routing directories use the following type of 
table: 

15 7 o 
BRLFTBYTE I BRID - index 

BRPTR - pointer 

- Left byte is optional 

- Searching routine returns this 
pointer to the table user 

Type 4 Table List Search Control Block, lSRCHCB 

15 

LSCOUNT 

LSBUFPTR 

POI INTERFACE VALUES 

BITCB: BOBUFPTR 
BIBUFF: BOBUFPTR 

60471160 A 

o 
- Entry count for this buffer 

- Pointer to current buffer 

POINTER TO A TCB 
DATA BUFFER POINTER 

H-23 



COMMON TIP ROUTINE STRUCTURES 

TIP CONSTANTS 

Mnemonic Value Meaning ---. 
Mode 4 TIP 

C9M4LCA 
C9M4UCA 

C9M4LTA 
C9M4TUA 

TTY TIP 

GOKEYBRD 
GOAUTO 
GOTAPE 
GOOUTPUT 
GOIOUT 

20 16 
7F16 

60 16 
6F16 

4 
8 
9 
13 
3 

} 
} 

Cluster address (CA) 

Terminal address (CA) 

INPUT STATE - KEYBOARD 
INPUT STATE - AUTO REC 
INPUT STATE - PAPERTAPE 
OUTPUT BREAK DETECTION 
INITIAL OUTPUT 

INPUT STATES POINTER TABLE SIZE: 0 ••• 80. 

{ 
{ 

Lower limit 
Upper limit 

Lower limit 
Upper limit 

One such table exists for each TIP. ACTION TABLES and TIP TYPE!SUBTIP TYPE 
are discussed under service messages. 

H-24 60471160 A 



TIP TYPE TABLE, TIPTYPE 

This table contains one entry of each interface package in a system (TIP, or 
HIP). The local console, MLIA, line initializer, and on-line diagnostics 
are also included. The table fields are unique to each TIP. 

Pointer to the table is BJTIPTYPT. 

15 14 13 12 8 6 4 o 
BJLISTIX Worklist o Fl F2 F3 BJIVTSIZE BJTCBSIZ BJQTYPE Monitor Table Index 

1 
BJDFTC - Default terminal class when enabling line (see appendix C) 
bits o - 4 only 

2 BJPTIMRTN - TIP TIMAL routine page address 

3 BJETIMRTN - TIP TIMAL routine entry address 

4 BJJFDT - TCB field descriptor table address 

5 BJFDT - LCB field descriptor table address 

6 BJJAT - TCB action table address 

7 BJAT - LCB action table address 

8 BJTPMUX2 - TIP level 2 (multiplex interrupt entry) page address 

9 BJTEMUX2 - TIP level 2 entry address 

10 BJTCBPINIT - TCB in itialization routine page address 

11 BJTCBEINIT - TCB initialization routine entry address 

12 BJTXTPAGE - Text processing page address 

13 BJTXTENT - Text processing routine entry address 

Flags 

Fl - BJOBT, generates output buffer terminated (OBT) flag 

F2 - BJBZL, resets timer flag when OBT occurs 

F3 - BJSP1, not used 

BJQTYPE - TCB buffer size (0 = 8, 1 = 16, 2 = 32, 8 = 64 in nominal 
system) 

60471160 A 

.. 

H ..... 25 



BASE SYSTEM SOFTWARE 
The.base system data structures support the following functions: 

• Buffer assignment, release, and copying 

• Worklist assignment and control 

• Monitor table use 

• Finding system interface locations 

. • Low-core pointers 

• Timing 

• Masking 

• Input regulation 

• Control block support (setting up control blocks is a service 
module/TIP responsibility) 

• Multiplex· subsystem operators 

BUFFERS 

The principal buffer structures are as follows: 

_ A conLrol block for each pool of free buffers 

• Definitions of each type of buffer assigned 

• The optional stamping area which contains two words for tracing 
buffer use 

• A copy buffer input parameter list used by the copy buffers routine f 
PBCOPYBFRS 

There are four buffer sizes. In the normal systems, the buffers are 
assigned as shown: 

BOSO -
BOSI -
BOS2 -
BOS3 -

8 words 
16 words 
32 words 
64 words 

Buffer Maintenance Control Block, BECTRL 

This control block contains all the necessary information for allocating and 
releasing system buffers. There is a control block for each of the four 
free buffer pools. Each control block is initialized by PIBUFI. Firmware 
subroutines allocate and release the buffers. 

60471160 A 
, , 
I, 



15 14 7 o 
o 

1 

2 

Fl I BEBAC - Number of buffer currently available for assignment 

BENFB - Next free buffer location 

BELFB - Last free buffer location 

3 BEMSK - Mask and length - 1 

BELCD - LCD of newly BEFCD - FCD of newly 
assigned buffer assigned buffer 4 

BETRSI - Pool's buffer threshold 5 

6 BECHAIN - Pointer to buffer control block for next largest size 
buffer 

7 BEDUM2 - Not used 

Fl - Not used 
BECTPTR is pointer to BECTRL 

System Buffer, BOBUFFER 

System buffers exist in four sizes as defined by BOBUFSIZES. Buffers are 
used for a variety of purposes as described by the following overlay 
definitions: 

15 14 13 12 11 10 9 8 7 6 5 3 2 1 

o BFLCD - Last character BFFCD - First character 
displacement displacement 

o 

1 

2 

Fl I F2 I F3 I F4 I F5 I F6 I F7 I F8 F9 I FlO I BFQCNT 1 Flli F121 Fl31 F14 

BFDATAC CHAR 1 \ BFDATAC CHAR 2 

BFDATAC 116 data characters 

62 BFDATAC CHAR 115 BFDATAC CHAR 116 

BFQCNT - queue count 

Last word usually reserved for chain to next buffer (see chain variant, 
below) 

Flags: 

Fl - BFEOTFLG, end of transmission buffer 
F2 - BFSOTT, start of transparent text 
F3 - BFSONT, start of nontransparent text 
F4 - BFSUPCHAIN, suppress buffer chaining 

. F5 - BFEOBFLG, end of block buffer 
F6 - BFINTBLK, internal block; do not se.nd BACK block 
F7 - BFPRTK, buffer protect 
F8 - BFPERM, permanent buffer 
F9 - BFLNKQ, buffer is part of link queue or frame 

60471160 A H-27 



FlO - BFSPS, not used 
Fll - BFSP7, used by console I/O 
F12 - BFSP8, used by console output Reserved for TIP user 
F13 - BFSP9, not used 
F14 - BFDBSIZE, data buffer size, not used (always 64 words in nominal 

system 

Overlays for TIP flaqs (word one) 

IS 

o BFFILI 

1 BFFIL2 - fill (bits 11 - 0 only for flags) 

Mode 4 TIP flags 

IS 14 13 

1 I FlS! F16! BFM4C3 - Fill 

FIS - BFPREPARED, text prepared by text processor 
F16 - BFTOGGLE, toggle bit contained in block 

BSC TIP 

IS 14 13 12 

1 I F20 ! F2l ! F221 BF32D3 - Fill 

F20 - BFBCCOK, BCC in and OK (3270) 
F2l - BFNOTABRTPRT, input state program terminated 
F22 - BFVRCBAD, VRC error in packet 

Console TIP 

IS 14 13 

1 IF23 I F24 BFCNSLFIL - Fill 

F23 - BFFORMAT, message in console (l=true O=false) 
F24 - BFTEXT, console text to be delivered (l=true O=false) 

Any batch TIP 

IS 14 13 12 

F19 BF78Fl 

F17 - BFJOB, job card expected next 
F18 - BFCXLTA, 026 code translation (0=029, 1=026) by control card type 
F19 - BFTR, transparent input 

o 

o 

o 

o 

o 

H-28 60471160 A 

J 

( 



General Purpose Integer Buffer (64 words) 

15 o 
o BIINT \ 

BIINT (ARRAY) t 64 words of integers 

63 BIINT ELEMENT 64 

General Purpose Chaining Buffer (64 words) 

15 o 
o BCCHAINS ) 

BCCHAINS (ARRAY) 
( 64 words of pointers for chaining 
( (or other) purposes 

53 BCCHAINS ELEMENT 64 J 

TCB buffer (32 word buffer) 

15 o 
o \ 

BSTCB t See TCB field definitions (above)~ 32 word maximum 

31 

Physical/Logical Request Packet (PRP/LRP) buffer (16 word buffer) 

15 o 
o ) 

BCPRP : 
See PRD/LRP field definitions (above): 
only first 9 words of buffer are assigned 

8 ) 

60471160 A H-29 



Active TTY LCB List buffer (16 words) 

15 

o NELED - Index to last entry 

1 one entry NELINO - Line number 

2 requires 2 words NELCBP - Pointer to MLCB 

NEENTRY (ARRAY) > Up to 7 entries 

13 
14 NEE TRY ELEMENT 7 

per buffer 

15 NECHAIN - Pointers to next active TTY 

Entries for a Type 1 Table 

o 

1 

15 

BRTYPI Two words per entry - see 

Buffer for type 4 table (16 word buffer) 

o 

1 

15 

CECOUNT - Index 

directories, section 6 

to last entry 

2 Up to 7 directory CEENTRY ) 2-word directory entry -

13 
14 

entries per buffer 

~ 

\ 

see directories 

CEENTRY (ARRAY) 

CEENTRY ELEMENT 7 

Logical Link Control Block (LLCB) buffer (8 words) 

15 

o 'I 

BLLLCB { See LLCB field definition 
• 

6 J 

section 6 

o 

o 

o 

o 

H-30 60471160 A 



Timeout buffers (8 words) 

Two variants are provided. 

15 14 10 7 o 
o F251 BFTUSR - user bits I BFTWKCOD - Work code 

1 BFTLlNO - Line number 

BFTWLlNDX BFTSPI - Not used Worklist index 2 

3 BFTOVAL - Timeout count - base = 100 ms 

4 BFTCHAlN - Pointer to next timeout buffer or chain 

Variant for word 1 of timeout buffer 

15 11 7 o 
o BFTOMI - Not used BFTSCl - Status indication BFTDM2 - Not used 

Ftags: 

F25 - Buffer release flag 

Multiplex LCB (MLCB) buffer (32 words). Also used for TPCB. 

15 0 

o ) 

BGMLCB 
( See MCLB for field definitions. , See also multiplex subsystem, section 5 

31 J 

NPU statistics buffer (16 words) 

See appendix B of CCl reference manual for fiel~ definitions. 

15 o 
o CPFILO \ 

CPFILO (ARRAY) ~ Six words of file for NPU , statistics message block header 

5 CPClLO ELEMENT 6 } 

6 \ 

CPNPU 
, 

11 words of NPU statistics 
I 

15 

16 J 

60471160 A H-31 



Line statistics buffer (16 words) 

See appendix B of the CCI reference manual for field definitions. 

15 o 
o CPFILI '\ 

CPFILI (ARRAY) 
( 8 words of fill message block 
t header and SVM bytes 

7 CPFILI ELEMENT 8 , 

8 \ 

CPLINE 
, 

4 words of line statistics , 
11 , 

Terminal statistics buffer (16 words) 

See appendix B of the CCI reference manual for field definitions. 

15 o 
o CPFIL2 ) 

CPFIL2 (ARRAY) 
( 19 words of fill for message , block header and SVM bytes 

8 CPFIL2 ELEMENT 9 ) 

9 \ 

CPTML 
{ 

3 words of terminal statistics , 
11 

Mode 4 buffer (8 words) 

15 5 4 o 
0 BFM4D4 - Integer - (bits 0 - 1 only) 

1 BFM4D5 - Fill I F30 I BFM4D6 - Fill 

F30 - BFMD4EOJ - extra EOI flag 

! 
I 

H-32 60471160 A 



HASP TIP buffer (8 words) 

15 11 

o BFHSl - Fill 

BFHSTYP - Canned BFHS2 - Not used message type 1 

Flags: 

F3l - BFHSTXT, text processed data 
F32 - BFHSCMODE, transparent data 
F33 - BFHSNEW, new record flag 
F34 - BFHS3, not used 

BSC TIP buffer (8 words) 

15 

o BF78D - Integer 

4 3 

1 BF78Dl - Not used I F35 I F36 I 
Flags 

F35 - BFETXRCVD, ETX received 
F36 - BFTPROCESSED, text processed data 

TTY TIP buffer (8 words) 

15 4 3 

o BFTYFl - Not used 

1 BFTYF2 - Not used I F371 

Flags 

3 2 1 

F3l F32 F33 

2 

BF78D2 - Not used 

BFTYF3 - Not used 

F37 - PFTYPREPARED, Data block clarifier prepared by TTY TIP 

60471160 A 

o 

F34 

o 

o 

H-33 



Buffer Constants 

Mnemonic 

JIFRSTCHAR 

JlDATAFRST 

JlLST8 

JlLST16 

JILST32 

JlLST64 

J2LST128 

JILSTCHAR 

JlLCDFCD 

J2LCDFCD 

J3LCDFCD 

J4LCDFCD 

J5LCDFCD 

J6LCDFCD 

JlBLMAX 

DBUFLENGTH 

BYSTSZE 

BICIBSIZ 

QCHN 

JQT2SZE 

JQT4SZE 

DODNMAX 

H-34 

Value 

4 

4 

13 

29 

61 

125 

253 

JILST64 

0404 

090A 

lF06 

1706 

1906 

1B06 

64 

64 

100 

512 

3 

16 

16 

10 

Meaning 

FCD FOR BUFFER ALLOCATE WHEN NOT IN A 
NETWORK 

FIRST CHAR POSITION OF ARRAY BFDATAC IN A 
BUFFER 

LAST CHAR OF 8-WORD BUFFER 

LAST CHAR OF l6-WORD BUFFER 

LAST CHAR OF 32-WORD BUFFER 

LAST CHAR OF 64-WORD BUFFER 

LAST CHAR OF l28-WORD BUFFER 

Maximum LCD in a data buffer 

Hexadecimal displacements to character 
positions for LCD, FCD 

Maximum butfer length in system with 8-, 
16-, 32-, and 64-word buffers 

Data buffer length (largest buffer) 

Length of circular stamp buffer, one word 
per buffer 

Size of circular input buffer (CI~) 

Word 3 of buffer assigned as a block is 
the chain word 

Length of type 2 table 

Length of a type 4 table 1 
Buffer 
assigned 
as table 

Length of a local directory (DN) table 

60471160 A 



Buffer Stamping Area, BYST AMP 

The buffer stamping area provides a circular table of 50 entries to record 
the usage of the most recently assigned or released buffers in the NPU. As 
a buffer is assigned or released, the address of the program requesting this 
action is recorded together with the buffer address. The LSB of the entry 
indicates whether the buffer is currently free or assigned. The file 1 
microregisters contain information about the buffer stamping: 

File 1 displacement 

0095 - Stamping status: 0 = not used; f 0 indicates stamping 
0069 - Base address of stamping area 
006A - Pointer to next entry to be used in the stamping area 
006B - Address of last entry in stamping area 

15 

o BYSCALLER Caller's address - 1 

BYSBUFFER Buffer address 

Array of 2-word stamp entries 

98/99 Last stamp entry 

F - flag giving the status of the buffer: 0 = put, 1 = get 

Copy Buffer Parameters, JTCOPYB 

o 

I F 

This is the parameter list used when calling PBCOPYBFRS, the buffer copying 
routine. 

o 

1 

2 

15 14 13 

JTNUM - Number of buffers to copy 

JTSSIZE - Source buffer size 

Fl I F2 I JTRLS - Release source buffers flag 

Fl JTDSIZE, destination buffer size flag 
F2 - JTSMIXED, mixed data buffer source chain - not used 

JTNUM - Only bits 7 through 0 are valid 
JTRLS - Only bit 0 is valid 

Buffer Threshold Levels, BOBUFLEVELS 

o 

The following are the buffer threshold levels checked by the various 
regulation routines when determining whether to assign buffers from the 
appropriate free buffer pool, or to reject input or to move to a lower level 
of input regulation. In the hierarchy of regulation checks, 9 is the most 
important, 0 is the least important. 

60471160 A H-35 



Mnemonic 

BOTI 
BOT2 
BOTHDLY 
BOTHCT 
BOTH3LV 
BOTH2LV 
BOTHILV 
BOTHDIS 
BOTHTIM 
BOTHMUX 

WORKLISTS 

Value 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Meaning ~ 

CONSOLE SNAPSHOT 
CONSOLE SNAPSHOT 
COPY TO CONSOLE 
TCB ALLOCATION 
LOWEST PRIORITY DATA 
HIGHEST PRIORITY DATA 
SERVICE MESSAGE DOWNLINE 
SERVICE MESSAGES UPLINE 
CLA STATUS HANDLER 
MULTIPLEX SUBSYSTEM BUFFER THRESHOLD 

Worklists Gan be used on any level, but are principally used on the 
OPS-level (a variant type of worklist - event worklists - is used in the 
multiplex subsystem). A workliat is a processing request (task). It is 
attached to a program. If more than one task is waiting to be executed by 
an ·OPS-level program, the worklists for the tasks are queued to the program 
on a first in, first out basis. 

Worklists use work codes to describe the task to be done. The called 
program often uses the work code as a switching index to subprogram entry 
points. 

Each worklist has. a control block to point to the locations of the queued 
worklists. 

An intermediate area (BWWORKLIST) is provided which PBLSPUT uses for 
constructing worklists and PBLSGET uses for handling worklists when a 
program is called for execution with the next worklist. Severijl routines 
define local worklist areas using the BWWORKLIST format. 

Intermediate Array Format, BWWORKLIST 

BWWORKLIST depicts the different format overlays which the intermediate 
array can assume. It also depicts the formats of the entries of the 
different worklists of the system. All fields are word length. The array 
of entries allows a maximum sized entry for each priority l~vel in th~ 
system. The array is located at BWWLENTRY. 

BWPKTPTY : BOBUFPTR 

CATMLEY INTEGER 

BOEWLQ MMEVENT 

H-36 

This overlay is for the console 
drivers worklists (BOTTYP, BOTTYN), 
and all worklists whose entries are a 
single pointer word of type BOBUFPTR. 

This overlay is for the timing 
services worklist (BOBTIWL) and all 
worklists with single word integer 
entries. 

This overlay is for the multiplex 
event worklist queue (MMEWLQ) and all 
worklists whose entries are 5 words 
long of type MMEVENT. Format is 
defined below. 

60471160 A 



BWTCB, BWBLKPTR BOBUFPTR 

BWIMED ARRAY (l .• JIWLMAX) 

CMSMLEY CMSMWLE 

ACPEVENT B07BITS 
ACPBLINO BOLINO 
ACPBOBUF BOBUFPTR 

BWORDl, 
BWORD2, 
BWORD3, 
BWORD4, 
BWORDS, 
BWORD6 : INTEGER 

This overlay is for the internal 
processor worklist and all worklists 
with 2 consecutive pointer words. 

This overlay is the general format 
used by list services for the bulk 
transfer of entries to and from any 
worklist. 

This is the service module worklist 
overlay. 

Event code I 
Line number 
Buffer pointer 

Coupler overlay 

This overlay is for TIP debug and it 
provides easy access to each word 
of the intermediate array. 

The largest number of words allowed in any worklist (JIWLMAX) is six. 

Multiplex Event Worklist Queue Types, MMEVENT 

The event worklist for the multiplex subsystem is five words long. Several 
types are provided. The worklists can be prepared by users or by multiplex 
subsystem firmware. 

VARIANT: Input processing - data 

15 7 5 

MMWTCOUNT wait count MMSPI MMWKCOD multiplex 

o 

o in half seconds (Not used) work code (given later 
in this subsection) 

1 MMLINO - Line number 

2 

3 
3 

4 

MMDM2 - Not 

MMDM3 - Not 

MMIBP -

used 

used 

VARIANT: Output processing - data 

o 

1 
2 

60471160 A 

15 

MMDELAYCNT - Delay count 

MMPORT _ Physical port 
number 

Input buffer pointer 

7 6 o 
I Fl I MMSP4 - not used 

MMLOPOR 

H-37 



15 7 6 

2 MMOBP - output buffer pointer 

3 MMDM5 - Not used 

4 MMDM6 - Not used 

Fl is a delay completed flag, MMDECMPLT 

VARIANT: Universal overlay - user defined word format 

15 

o MMWDO 

1 MMWDI 

2 MMWD2 

3 MMWD3 

4 MMWD4 

VARIANT: Error condition 

15 11 7 

o MMINOP non- MMSCI indicator MMDMB - Spare operational code states condition 

1 MMDM9 - Spare 

MMCSTS - CLA Status Word - See appendix B of 
the CCI reference manual 2 

VARIANT: Defines CLA status flags 

15 14 13 12 11 10 9 B 7 6 5 4 3 

o MMDMIO - Not used 

1 MMDM11 - Not used 

2 F21 F31 F41 F51 F6 J F7 I FB J F9 I FlO I F11 I F12 I F131 

F2 - MMLCTS 
F3 - MMLDSR 
F4 - MMLDCD 
F5 - MMLRI 
F6 - MMLQM 
F7 - MMLSQD 
FB - MMLILE 

F9 - MMLILE 1 FlO ... MMLPES 
F11 - MMLDTO 
F12 - MMLFES 
F13 - MMLNCNA 

CLA STATUS BYTE 1 I 
CLA STATUS BYTE 2 

See appendix B in 
the CCI reference manual 

MMDM12 

o 

o 

o 

o 

H-3B 60471160 A 



VARIANT: MLIA status 

o 

I 

2 

MMDM13 - Not used 

NNDMl4 - Not used 

MMLIAST - MLIA status 

Service Module Type Worklist Entry Formats, CMSMWLE 

bits 3 - 0 

Two principal types of worklists qre provided: a class of entries with a 
work code and one type of entry for timing calls. 

Work code class: 

• Related to TCB 

15 7 o 
o 

1 

2 

CMDATA (optional data), I CMWKCODE 

CMLINO 

CMPTR 

• SM pointer 

• 

0 

1 

Save 

o 

I 

2 

3 

15 

CMDATA 

CMPOINT 

and return 

15 

CMDATA 

CMRI 

CMR2 

CMRTN 

• Service message timer 

o 

60471160 A 

15 

CMTIMER - Timeout 
in half seconds 

Line number 

Points to SM orTCB 

7 0 I CMWKCODE 

7 0 

I CMWKCODE 

7 o 
CMTIPWC - TIP generated 
work code for SVM 

I 

Code range: 
21-3F16. See 
OPS-level work­
codes for SVM. 

Pointer to SM 

Save location 
for Rl and R2 
return address 

H-39 



Worklist Control Block, BYLlSTCB 

This control block holds information for each worklist. See worklist 
services portion of section 4C. 

Variant for multiplex-level worklists 

o 

1 

2 

15 14 

Fli 

BYPUT -

BYGET -

Put 

Get 

BYCNT - Number of 

pointer for next entry 

pointer for next entry 

7 

entries in work1ist 
o 

BYFEINC - Index to first entry BYINC - Size of entry (words) in WL buffer 3 

Normal,variant for OPS-level worklists 

15 14 10 8 

o Fl BYCNT 

1 BYPUTMASK - Put mask 

2 BYGETMASK - Get mask 

3 BYSPARE - Not used 

BYWLINDEX - Worklist index BYSP2 - not used~ can use 
only bits 7-0 4 

5 BYSP3 - Not used 

F2 BYMAXCNT - Number of work- BYPAGE - Program page 
list to get on this call address 6 

7 BYPRADDR - Program address 

Fl - Not used 

F2 - BYWLREQ, worklist required flag. Used by PBPAGE to set up 
intermediate WL array entry if the call was made without aWL. 

BYWLTY is the array (BOWKLSTS) of BYLISTCB. 

OP5-Level Worklist, BOWKLSTS 

o 

The following ranked worklists determine the indexing of the OPS-monitor 
table. Values 1 through 7 are not serviced by the OPS-monitor. They are in 
the index to generate the worklist array. New entries should be added in 
front of these entries. 

H-40 60471160 A 



The remalnlng worklists (8 through end) are serviced by the OPS-monitor 
program. They are also part of the worklist array. New en~ries must be 
added at the end, but in front of BODUMMY. The last entry must be BODUMMY 
which is equal to the last TIP worklist value and causes the monitor scan 
pointer to return to value 8. 

Mnemonic 

BOFSWL 
MMEWLQ 
BOHIPDLQ 
BOSMTO 
BOT200 
BOTTYP 
BOTTYN 
aOLPWL 
BOCfIWL 
BOINWL 
BOMLWL 
BOSMWL 
BOTIWL 
BOTYWD 
BOLIWL 
BODGWL 
BOOOWL 
BOHDLC 
BOM4WL 
BOTTYWL 
BOHASP 
B027WL 
BOHHWL 
BODUMMY 

Value 

1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Meaning 

FIRST WORKLIST = MMEWLQ 
MUX EVENT WORKLIST QUEUE 
HIP DATA LIST QUEUE 
SERVICE MODULE TIMEOUT LIST 
CRITICAL 200 MS TIMEOUT 
TTY CONSOLE DRIVER - PRIORITY 
TTY CONSOLE DRIVER - NON PRIORITY 
LINE PRINTER DRIVER 
CONSOLE PROGRAM 
INTERNAL PROCESSOR (IP) 
MLIA INTERRUPT HANDLER 
SERVICE MOOULE (SVM) 
TIMING SERVICES 
TIP DEBUG (PTTIPDBG) - OPTIONAL 
LINE INITIALIZER (LINIT) 
ONLINE DIAGNOSTICS - OPTIONAL 
HOST INTERFACE PACKAGE (HIP) 
NOT USE 
MODE 4 TIP 
MODE 3 TIP - TTY 
HASP TIP 
2780/3780 TIP 
HASP/360 HIP 
DUMMY FOR CONSOLE 

The subtable scanned by the OPS monitor is called BOPGMS. It extends from 
BOCHWL to BODUMMY. The value assigned in the array is BOWLCODES. 

OPS-Level Work Codes, CMWKCODE 

The work codes are used in the worklist entry to indicate the type of task a 
called module is to perform. These are also called TIP workcodes. 

Mnemonic 

System work 

AOHARDERR 

AOTIMEOUT 

AOQUEOUT 

AOSMEN 

AOSMDA 

AOSMTCB 

AOSMDLTCB 
AOBREAK 

60471160 A 

Valu~ 
(hex) . 

codes for 

OF 

10 

11 
12 

13 

14 

15 
16 

Meaning 

HIP, or TIPs 

Hardware error From multiplex subsystem 

Line timer expired From LCB scan timing 

Output in queue From internal processor 

Enable line From line initializer 

Disable line 

1 TCB built From SVM 

Delete TCB 
Downline break 

H-4l 



Mnemonic 

Miscellaneous 

AODBUX 

AOSMLN 

AOSMNPUINIT 

AOSMMPCCINIT 

AOSMFAIL 

COLINOP 

COLNINOP 

COLNDA 

CODLTCB 

COSMIN 

COSMOUT 

COSMDISP 

COOVLDATA 

COBFR 

COENABLE 

CODISABLE 

COTMLDLT 

Value 
(hex) . 

17 

18 

19 

lA 

IB 

20 

21 

22 

23 
24 

25 

26 

27 

28 

29 

2A 

2B 

Meaning 

Output buffer XMIT 

Line status protect 

NPU init protect 

MPCC Init protect 

Force load MPCC 

LINE OPERATIONAL 

LINE INOPERATIVE 

LINE DISABLED 

TCB DELETED 

SM IN 

SM OUT 

DISPATCH SM 

OVERLAY DATA 
(not used) 
MISCL. BFR EVENT 

ENABLE LINE EVENT 

DISABLE LINE EVENT 
DELETE TERM. EVENT 

} 

Origin 

From TIP to itself 

From SVM 

From SVM 

From SVM,}not used 

From TIP, or 

line initializer 

(LINIT) 

From TIP 

From SVM to itself 

Generated by input state programs to OPS-level TIP (note that multiplex 
macros must equate this AOWKI to its own AOWKI with the same value). 

H-42 

Mnemonic 

AOWKI 
AOWK2 
AOWK3 
AOWK4 
AOWK5 
AOWK6 
AOWK7 
AOWK8 
AOWK9 
AOWKIO 
AOWK11 
AOWK12 
AOWK13 
AOWK14 
AOWK15 
AOWK16 
AOWK17 
AOWK18 
AOWK19 
AOWK20 
AOWK21 

Value 

21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 

User 

TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 
TIP 

Work Code ID 

WORK CODE 1 
WORK CODE 2 
WORK CODE 3 
WORK CODE 4 
WORK CODE 5 
WORK CODE 6 
WORK CODE 7 
WORK CODE 8 
WORK CODE 9 
WORK CODE 10 
WORK CODE 11 
WORK CODE 12 
WORK CODE 13 
WORK CODE 14 
WORK CODE 15 
WORK CODE 16 
WORK CODE 17 
WORK CODE 18 
WORK CODE 19 
WORK CODE 20 
WORK CODE 21 

60471160 A 



Mnemonic Value User Work Code ID ---
AOWK22 36 TIP WORK CODE 22 
AOWK23 37 TIP WORK CODE 23 
AOWK24 38 TIP WORK CODE 24 
AOWK25 39 TIP WORK CODE 25 
AOWK26 3A TIP WORK CODE 26 
AOWK27 3B TIP WORK CODE 27 
AOWK28 3C TIP WORK CODE 28 
AOWK29 3D TIP WORK CODE 29 
AOWK30 3E TIP WORK CODE 30 
AOWK31 3F TIP WORK CODE 31 
AOSTOP AOWKl stop transmission code 

Multiplex Event Work Code 

These work codes appear in the work code field of the event packet returned 
to the multiplex event worklist queue. The codes specify the nature of the 
information contained in the packet. Code values of 01 through 01E16 are 
reserved for multiplexer use. 

Mnemonic 

MMCLAS 

MMOBUX 

MMBUTCH 

MMUNSOD 

MMCAOR 

MMIFFO 

MMUNSIN 

MMFES 

MMCHOUT 

MMTIMOD 

MMTIMRE 

MMINEND 

MMOTEND 

MMBREAK 

MMHARDERR 

60471160 A 

Value 
(hex) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

Meaning 

CLA status received 

Output buffer transmitted 

Buffer threshold changed 

Unsolicited ODD 

CLA address out of range 

Illegal frame format (multiplex) 

Unsolicited input 

Framing error status (multiplex subsystem 
frames) 

Character timeout 

ODD timeout 

Modem response timeout 

Input terminated 

Output terminated 

TTY terminal break detected 

Hardware error 

H-43 



MONITOR TABLES 

The main monitor tables is the OPS-level worklist array d~scribed above. 
That table's use is described in section 4. Other monitor tables are 
defined below. 

PGMSKIP = (RUN, SKIP) 

Run skip flag. 

BYPGMS 

Three cases: 

• BYIPGM - BOPGMS type 
• BYWKLS - Worklists type 
• BYINT - Integer type 

SMONT 

Used by timing services for timed programs (half-second time base) 

15 o 
BTTIMER - Timer count 

BTCURSP - } non-used pointers BTCURPD -

BTMRIX - Loop end check index 

CBSYTMT 

Used for OPS-level, time-dependent programs. 

MISCELLANEOUS 

System Interfaces 

A system interface table (SIT) is defined in the form of a pointer array. 
Pointers define the locations of individual entries in this group of tables 
which are frequently used. In addition to the formally defined tables at 
the top of the SIT, the last group of entries are pointers to frequently 
used base programs. 

System Interface Table, SITTBL 

Mnemonic 

SIENTY 
SITMTB 
SILCBS 
SIWLCB 

H-44 

Definition 

POINTER TO BWWLENTRY 
POINTER TO CBTIMTBL 
POINTER TO CGLCBS 
POINTER TO BYWLCB 

Common Name 

OPS monitor 
Timing (PBTIMAL) 
LCB 
Worklist CB 

60471160 A 



Mnemonic Definition 

SIDBSIZE POINTER TO BEDBSIZE 
SINJTEC POINTER TO NJTECT 
SITIMTBL POINTER TO BLTIMTBL 
SITIPTYP POINTER TO BJTIPTYPT 
SIOVLBLK POINTER TO SYOVLCB 
SILCBP POINTER TO HALCBP 
SILLRMOV ADpRESS OF PBLLRMOV 
SILLENTB ADDRESS OF PBLLENTB 
SICOIN ADDRESS OF PBCOIN 
SIGTIBF ADDRESS OF PBGETIBF 
SIRLIBF ADDRESS OF PBRELIBF 
SIBFAVL ADDRESS OF PBBFAVAIL 
SIRTILCB ADDRESS OF PTRTILCB 
SISVILCB ADDRESS OF PTSVILCB 
SILSPUT ADDRESS OF PBLSPUT 
SIRELCHN ADDRESS OF PBRELCHN 
SIRELZRO ADDRESS OF SIRELZRO 
SILOAD ADDRESS OF PBLOAD 
SIlBADD ADDRESS OF PBl8ADD 
SIl8COMP ADDRESS OF PBl8COMP 
SITOAH ADDRESS OF PBTOAH 

Extent of the entries that point to other 

Name 

SYLCBP 

SYLINO 

SYENTY 

SYLTYT 

SYPRTT 

SYCTCT 

SYTMTB 

SYTECT 

SYTIMTBL 

SYTIPTYPT 

SYOVLCB 

60471160 A 

Description 

LCBs 

Line number 

Interrupt worklist 

Line type 

Port 

Multiplex charac­
ter transmit 
characteristics 

OPS - level 
periodic programs 

Terminal 
characteristics 

Line timing 

TIP type 

Overlay control 
block 

Common Name 

Data buffer sizes 
Terminal characteristics 
Line timing 
TIP type 
Overlay control (not used) 
Sub TIP 
LLCB remove 
LLCB enter 
Command driver 
Get buffer 
Release buffer 
Buffer availability check 
Return to TIP entry after event 
Save TIP entry until event occurs 
Make a worklist 
Release buffers 
Release and zero buffers 
Load NPU 
18-bit address final 
18-bi t address computer 
Convert hex in ASCII format 

tables are: 

Number of 
Pointer Entries 

BZLCBP HLRANGE 

BOLINO HLRANGE 

BWWORKLIST BOPRILEVEL 

NBLTYE NOLTYP, 
1 ••• NKCONTROL 

NAPORY NOPORTS 

NICTCY NOLNSPDS 

CBSYTMT COTDPGMS 

NJTECY NOTCLASS 

BZLTIME 0 ••• C4LCBS 

TIPTYPE NOTIPTY 

SYOVLCB Not used 

H-45 



Firmware Entry Points 

The following words 
firmware routines. 

Mnemonic 

PFLSGET 

PFLSPUT 

PFBURLS 

PFBUGET 

PFBUEXT 

NIFIRMAD 

N2P3INTAD 

N3P3INTAD· 

PFLINTO 

PFSR2SM 

Low-Core Pointer 

(integer 

Address 
(hex) 

607 

608 

606 

605 

609 

600 

601 

602 

60A 

60E 

type) are the entry points for frequently used 

Function Performed by Firmware 

Gets a worklist entry. 

Builds a worklist entry and queues if 
necessary. 

Releases a buffer. 

Assigns a buffer of the size requested. 

Extracts a buffer. 

Outputs to CLA sequence. 

Generates a multiplex - level 2 interrupt. 

Resets multiplex - level 2 interrupt. 

Decrements line timeout count. 

Sets/resets status bits. Used to load/dpmp 
/start the multiplex side of a 2552 program 
execution timing (requires external 
hardware measuring device). 

The low-core pointer (also called the address table) is a sequence of 
addresses extending from location 015016 to location 016A16. It is 
shown in appendix B of the CCI reference manual. 

H-46 60471160 A 



TIMING TABLES 

The principal timing tables are: 

• RTC (real-time clock) table used to count 3.3 ms increments that are 
used to generate the 100 ms RTC interrupt 

• One-second clock counter 

• Line timing table for timing out I/O events 

• Array of programs that are run periodically 

• Time of day tables 

RTC/Autodata Transfer Table, CICLKADT 

CICOUNT is incremented by firmware every 3.3 ms. When CICOUNT = CILIMIT = 
30 (100 ms), the timer is reset and PBTIMER generates the 100-ms interrupt. 

15 o 
CIWORDI - Constant = 8OF016 

CICOUNT - Counter; incremented every 3.3 ms 

CILIMIT - Interrupt count = 30; compared to CICOUNT 

CISPARE - Not used 

One-Second Clock, CASECN'fR 

This clock is used by PBTIMEOFDAY for time of day calculations. The count 
is used modulo 60 by the minute counter, modulo 60 x 60 by the hour counter, 
modulo 60 x 60 x 24 by the day counter, and modulo 60 x 60 x 24 x month 
(days) by the month counter. 

15 0 

I CASECNTR - One-second clock I 
line Timing Control Table, BL TIMTBL 

This table is used for timing out the output buffer (OBT) for each line. 
Entries are accessed by line number. Entries use a half-second time base. 

60471160 A H-47 



BLTIMTBL uses SYTIMTBL type table and BZLTIME entry (one word). 

15 14 7 o 
o Fl I BLTRESET I BLTIME - timeout counter BZLTIME 

32 OBT timeout o~ this line 

Fl - Not used 
BLTRESET - OBT timeout value for the line 
BLTIME - Set by line user; decremented each half-second by PBTIMER 

Periodically Executed Programs, CBTIMTBL 

This array of timing entries (type CBSYTMT) is used to time out the period 
between program executions. The table is scanned every half second by 
PBTIMAL and each program's count is decremented. 

If count = 0, the associated periodic program is called, and the timing 
counter returns to the full period value. 

o 

1 

2 

3 

4 
5 
6 
7 
8 

32 

15 

CBTIMER - Time remaining 

CBINTVAL - Period - in half seconds - used to reset periodic 
program calls 

CBPADDR - Page address of program to be called 

CBADDR - Address of program to be called 

CBTIMTBL ELEMENT 1 

>Array of CBSYTMT 
four word entries 

o 

-::~ '.:~ 

CBTIMBL ELEMENT 13 
/ i~ l~ ________________________________________________________ ~J 

H-48 60471160 A 



The period is set for each program at build time. The programs in the 
normal system and their place in the table are shown below: 

Mnemonic Element Meaning/Program 

COLCETMSON 
COADJUST 
COTUP 
COTIMEOFDAY 
COTISEC 
COPSTAT 
CO IOTMR 
COCECNT 
CO SPARE 

Time of Day Tables, CADATE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

ACTIME LCB LIST SCAN, PBLCBTMSCAN 
BUFFER ADJUSTMENT, PBADJUST 
TEST UTILITY PROGRAM (TUP), PBTUP 
TIME OF DAY AND DATE/PBTIMEOFDAY 
MUX TTY TIMER, PMTISEC 
PERIODIC STATISTICS DUMP, PNDSTAT 
I/O TIMAL APPENDAGE, PBTOSRCH 
RESET CE ERROR COUNT, 
SPARE - FOR DEBUG PURPOSE 

The table is checked every second and incremented. An overflow in one word 
causes that word to be zeroed and the next word to be incremented. 

o 

1 

2 

15 

CASEC - Seconds 

CAM IN - Minutes 

CAHOUR - Hours 

(0-59) 

(0-59) 

(0- 23) 

3 CADAY - Days (0-31) 

4 CAMONTH - Months 

Overlay for conversion 

15 

o 

4 

Loop Forev\u Instruction 

(1-12) 

CATIMV 

CATIMV (ARRAY) 

CATIMV ELEMENT 5 

LOOPFOREVER has a value of 18FF16. Executing this instruction places the 
NPU in a closed, continuous loop. 

REGULATION 

o 

o 

60471160 A H-49 



INPUT REGULATION OPTION FOR PTREGL, REGL TYPES 

These options define the four types for regulation conditions which PTREGL 
can check. 

RELOGLNK 1 LOGICAL LINK REGULATION level higher than input 
priority 

RELOCAL, 2 LOCAL BUFFER LEVELS sufficient for input 

REABL, 3 ALLO~ABLE BLOCK LIMIT greater than outstandin9 
block count 

REACPINP 4 ACCEPT INPUT flag set 

The set of REGLTYPES = REGSET 

CONTROL BLOCKS 
The system structures provide these principal control blocks for network 
.elements: 

• • • 
LLCBs for. logical links } State assignment 
LLCBs for each line 
TCBs for each terminal - Dynamic assignment at eQable time 

STATIC LOGICAL LINK CONTROL BLOCK (LLCB), BOSLLCB 

A static LLCB is required for each logical link connected through this NPU 
(,that is, this NPU has at least one of the nodes forming this logical 
link). The number of LLCBs is a build time parameter and LLCBs are 
initialized at load time. Two variants are provided for word 6. These are 
a maximum of 5 (JOMAXLLCB) LLCB in the system. 

o 

1 

2 

15 14 13 10 

Fli F2 I BLREG I 
BLCONDIR - Connection directory 

BLDN - Destination node 

BLCHAIN - Chain to next LLCB 

7 

Not used 

or coupler TCB 

I BLSN - Source node 

o 

3 

4 

5 

BLHO - Host ordinal (not used) I BLSTATE - Configuration state 

6A 

6B 

Fl 
F2 
F3 

BLREG 

H-50 

BLTE - LL.state expiration time (not used) 

BLSTE - LL state 

- BLCDS, connection directory flag 
- BLINIT, initial LL status SM sent to host 
- LL operational 

- Regulation level at this end of link (range 0-7) { ~ : down 
up 

I F3 

60471160 A 

( 

\. 



When used as a directory, 
BLDN or BLSN as an index. 
this link (looking toward 
(looking toward host). 

the chain of blocks can be searched using either 
BLCONDIR points to the connection directory for 

multiplex subsystem lines) or to the coupler TCB 

LINE CONTROL BLOCK (LCB), BZLCB 

One line control block is provided for each line (port) connected to the 
NPU. The LCB contains the line dependent information used primarily by OPS 
level interface packages to: 

• Define and control line protocol. 

• Define and interface with external line managers (such as the service 
module) • 

Words 0 through 14 are common to all LCBs. A series of overlays is provided 
for various TIP and subport types, starting at word IS. The line control 
block array is composed of successive 24 word LCBs. A maximum of 33 array 
elements are permitted for a total of 792 words. 

COLCBD = ARRAY (0 .. C4LCBS) of BZLCB 

o 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

11 

12 

60471160 A 

IS 14 13 12 11 7 o 
BZLINO - Line number 

BZTMRCHN - Active LCB timer chain 

BZWTCOUNT - Wait count; BZOWNER - Node ID of CS 
half-second base which owns line 

Save locations for BZRETIADDR - Input routine return address 

Suspended TIP BZRET2ADDR - Output routine return address processing 

Fl F2 F3 F4 Line type BZLTYPi BZHO - Host ordinal 
see appendix C (not used) 

BZCNFST - BZLNSPD - Line BZTCBONT - Number of TCBs Current speed; see currently attached to configuration 
state appendix C this line 

F5 F6 F7 Fa BZSTATE - Line BZWKCODE - Last work 
state (note 1) code received 

BZTIPTYPE - TIP BZSUBTIP - sub BZSVTIPTYPE - Save area for 
type; see TIP type; see TIP type during ini tializa-
appendix C appendix C tion (uses only bits 3 - 0) • 

BZSTIC - Line - statistics block: a 4-integer record. 

H-Sl 



15 14 13 12 11 7 

13 BZTCBPTR - Pointer to first TCB attached to this line 

14 BZLBTOMUX - Pointer to last buffer given to multiplex subsystem 

Flags: 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

F8 ..., 

F9 

NOTE 1: 

BZTAPEX, TIMAL appendage exists for this line; that is, PBTIMAL 
scans this block for an I/O timeout (active LCB) 

BZCHECKQS, checks when output queued 

BZSMRESP, SM response received 

BZSMTO, SM is being timed out 

BZTOUTPUT, terminate output 

BZTINPUT, terminate input 

BZDIS, line disabled (used by SVM only) 

BZDIAG, online diagnostic test in progress 

BZAUTO, autorecognition required ontqis line 

These states are local constants in the line initializer 
program: PTLINIT. See that routine for values assigned to 
line states. 

VARIATIONS: Words 15 and higher. 

Subline control block 

15 7 

15 BZSUB1PTR - Pointer to first attached subport 

16 BZSP5 - Not used I BZNUMSUBS - Number of subports 

Mode 4 TIP 

15 13 12 7 6 5 

BZCURTCB - TCB currently being serviced by TIP 

BZKARTASK - BZMAXRETRY - Maxi-
16 FA FlO Last autore- F11 F12 mum number of re-

o : 

o 

o 

cognition task tries for this line 

FA - BZDISABLED, line disabled 
BZENABLED, line enable 
BZAUTOREC, autorecognition on line 

FlO - BZMLTCLS, multiple clusters on line 

} initialization 
flags 
BZINITSEQ 

Fll - BZDELAYLINE, delay service on this line 
F12 - BZTBDISABLED, disable line requested 

H-S2 60471160 A 

( 
\ 



HASP TIP 

Two variations are provided as follows: 

15 

16 

17 

18 

19 

20 

21 

15 14 13 12 11 7 6 5 

BZHSWFCS - Workstation function control sequence (FCS) 

BZHSTFCS - TIP function control sequence 

BZHSHEAD - Pointer to head of data list queue 

BZHSTAIL - Pointer to tail of data list queue 

BZHSCONSOLE - Pointer to address of console TeB 

BZHSOTCB - Pointer to current TCB address 

BZHSCCB - Pointer to current continue buffer 

BZHSOBCB - BZHSETO -

o 

BZHSIBCB - Input 
BCB count Output BCB Fl3 Fl4 Retry count F15 22 

count - errors 

23 Fl6 F17 F18 Fl9 BZHSNAK BZHSRRBITS - Read 
Retry count request 
- NAKS 

Flags: 

Fl3 - BZHSGNON, Sign on card seen 
Fl4 - BZHSENQSEEN, Enquiry block seen 
Fl5 - BZHSWOQ, Waiting for output 
F16 - BZHSICREG, Suspend card reader command 
Fl7 - BZHSIPREG, Suspend input - buffer regulation 
Fl8 - BZHSXPT, Transparent mode 
F19 - BZHSRSBCB, Reset BCB needs to be sent flag 
F20 - BZHSLINERR, Line error occurred 

HASP TIP Records 

15 

15 BZHSC 

8-word array 
~~BZHSC (ARRAY) for clean up 

purposes 

22 BZHSC ELEMENT 8 

bits 

23 BZHSRQP - Input stream request flags~ 16 bits, one per 
(0 = must request permission, I = permission 

BZHSPNED - Output stream request flags; one per device 

60471160 A 

F20 

o 

device 
granted) 

H-53 

~~ 



2780/3780 TIP 

Two variations are provided: 

IS 14 13 12 11 10 9 8 7 6 S 4 3 2 1 o 
IS BZCURTCB - Pointer to current TCB 

BZWAKCOUNT BZTIMCOUNT BZNAKCOUNT 
16 Consecutive Consecutive Consecutive 

WACKs counter timeouts counter NAKs counter 

17 

18 

F21lF221F231F241F2S F261F271F281F291F30lF31 F321F331F341F3SIF36 

BZTIMER - Timeout for interactive device 

F21 - BZETXRCVD, ETX block received 
F22 - BZACKSENSE, toggle bit to indicate if ACK received on last block 
F23 - BZBADBLOCK, last received block was bad 
F24 - BZETXSENT, ETX block sent 
F2S - BZ2629, code translation (026=1, 029=0) 
F26 ~ BZRTIMER, timer running 
F27 - BZNOTIFIED, host notified of timeout 
F28 - BZ78F2, not used 
F29 - BZUOPl, not used 
F30 - BZUJOB, not used 
F31 - BZUOP3, not used 
F32 - BZUOP4, not used 
F33 - BZUXLTA, current code translation (026=1, 029=0) 
F34 - ~Z2780, 2780 terminal (0=3780 terminal) 
F3S - BZUOP7, not used 
F36 - ~ZUTR, transparent mode 

2nd 2780/3780 TIP 

IS 

IS 

16 

17 

BZ78F6 -

BZCOUNTS 

BZ78F6 -

Not used 

- Counter 

Not used 

TTY TIP - timed entry 

IS 11 

7 

I BZUOPS - User option 

IS BZMSCHN - Pointer to timing chain entry 

16 BAMSCNT BZMSCART - Character timeout flag 
100 ms base 
time counter 

BZMSCART - Uses bit zero only 

o 

o 

H-S4 60471160 A 

( 
\ 



TERMINAL CONTROL BLOCK (TCB), BSTCBLK 

The terminal control block defines terminal-dependent information. One TCB 
is provided for each terminal in the system. Some terminal devices also 
have indepeneent TCBs. The first 20 words of the TCB contain common 
terminal information. The remaining words are used for TIP dependent 
variations. 

Most TCBs are dynamically allocated. However, there is an array of five 
fixed TCBs (For the MLIA, coupler, etc.). This array of static TCBs 
(CGTCBs) occupies 160 words. 

Allocatable TCBs are released by a line disable condition or by a delete TCB 
command. 

15 14 13 11 10 8 7 6 4 3 2 1 o 
o BSCHAIN - Pointer to next TCB for this line 

1 BSLCBP - Pointer to LCB for this line 

2 BSCA - Cluster Address BSTA - Terminal address 

Code set BSDEVTYPE - BSTCLASS -
Fl for BSCODE BSHO - Host . Device Terminal class: terminal ordinal type: see see appendix C (1) (not used) appendix C 

3 

4 BSQPTR - Pointer to downline BLK or MSG block queue 

BSOWNER - Node ID of CS BSCN - Connection number (CN) owning the TCB 5 

6 BSLLCB - Pointer to LLCB for this line 

BSABL- BSOBL - BSLBTPROC - BSIPRI-

F2 Available F3 Outstand- Type of F4 F5 Input 
count ing block last block prior-7 

block (lA) count ( IB) processed (2 ) ity(3) 

BSQTYPE BSBSNLAST BSBSNCRNT BSPARIT BSCHLEN Queue BSN of BSN of F6 F7 F8 F9 8 
Type last back CRNT out- (5) (6) 

block (4) put block 

9 '\ 
BSSTIC \ Terminal statistics block. See appendix B of CCI , reference manual 

10 

11 ) 

12 BSFPPRU - Pointer to the first PRUB that is in the process of 
being converted to PRUB format 

60471160 A H-55 



IS 14 13 12 11 7 4 3 2 1 o 
13 BSCCPRRU - Character count in FlO F11 F12 F13 F14 partial PRUB 

14 

IS 

BSPRUF - Pointer to upline PRUB queue (ready for sending to HIP) 

16 

17 

BSCCPRUS 

BSCPTR -

BSOTPP -

BSPGWIDTH 

- Character count in a PRUB queue 

Pointer to down line CMD block queue 

Pointer to text processing parameters 

- Page width I BSPGLENTH 

FIS BSBCKLTR 
(7) 

- Page length 18 

19 F16 FI7 BSNUMR BSXBLKLENTH - Transmission block length 
(8) 

Notes: 

1. SBCODE, see subTIP type table in appendix C. 

2. BSABL is the largest number of interactive blocks that can be sent 
upline without a BACK block acknowledging them. In the standard 
system BSABL = 1. 

3. BSOBL is the number of blocks that have currently been sent upline 
without being acknowledged with a BACK block. 

4. BSIPRI - Input priority 

S. BSBSNLAST, 
See block protocol in section 6, 0 ~ BSN ~ 7 

BSBSNCRNT 
See block protocol in section 6, 0 ~ BSN ~ 7 

6. BSPARITY - Parity type: 

0 = zero 
1 = odd 
2 = even 
3 = none 

7. BSCHLEN - Character length: 

0 = S bits 
1 = 6 bits 
2 = 7 bits 
3 = 8 bits 

8. BSBCKLTR, must send a BACK block for this batch PRUB (the PRUB has 
already been text processed. Flag is set by PBIOPOI. It is reset by 
PBDNABRT when discarding a block, or by PBBLKCHK when a BACK block is 
sent. 

9. BSNUMR - Number of records in a block 

H-S6 60471160 A 

( 
\ 



Flags: 

Fl - BSSTOP, data stream to this terminal stopped 
F2 - BSINOP, terminal inoperative 
F3 - BSRESl, not used 
F4 - BSACPINP, terminal accepts input for host 
F5 - BSACPOUT, terminal accepts output from host 
F6 - BSTBTERM, TCB is to be deleted 
F7 - BSPGWAIT, in page wait mode 
F8 - BSXPARENT, input data in transparent mode 
F9 - BSHOTOGL, host ordinal toggle bit (not used) 
FlO - BSBTCH, batch (PRU) terminal 
Fll - BS2629, 026/029 code; 1=026, 0=029 
F12 - BSEM, EM punch required for a short record 
F13 - BSDROPEDI, discard repeated EOI block 
F14 - BSXPTOEOI, transparent to EOI 
F15 - BSBCKDUE, awaiting downline BACK block 
F16 - BSSUPCC, suppress carriage control 
F17 - BSBAN, banner off (PRU records) 

The following queues are controlled by the TCB: 

UPLINE: 

• The PRUB queue, located through pointer BSPRUF. Blocks in this queue 
are ready to be routed by PBRTEPRU. Associated field for this queue 
is BSCCPRUS (total character count for all blocks in the queue). 
Note that both batch and interactive blocks use the queue. The TCB 
itself can be for either a batch or an interactive device. 

• A partial PRUB queue, used during PBPIPOI's conversion of a block to 
PRUB format. When the conversion is complete, the block is moved 
into the PRUB queue. Pointer to this queue is BSFPPRU. Field 
associated with this queue is BSCCPRRU (character count of all blocks 
in the partial PRUB queue). 

DOWNLINE: 

• Output command queue: 

For both batch and interactive devices, CMD blocks (which 
regulate the data stream) are queued to a special command queue 
located through pointer BSCPTR. When the TIP processes this 
queue, all entries are processed during a single TIP pass. 

For interactive devices, BACK blocks are handled entirely by 
PBIOPOI. These blocks are not queued to the TCB; therefore, the 
blocks cannot be processed by the TIP. 

For batch devices, some BACK blocks are partially processed by 
PBIOPOI. All BACK blocks are queued to the output command queue. 

• Output data (MSG and BLK) block queue (located through pointer BSQPTR) 

Interactive Mode 4 blocks are queued here by PT4QIA (which is 
called through PBIOPOI) if they are BLK blocks. The TIP is not 
notified that there is data to be processed. The TIP is notified 
when all the blocks of the message are queued; that is, when the 
MSG block marking the end of the message is ready to be processed. 

60471160 A H-57 



Interactive blocks for all other TIPs is queued here. PBQIBLK 
queues the block on call from PBIOPOI; then PBQIBLK notifies the 
TIP that the block is available for processing unless other 
blocks are already in queue waiting to be processed. 

Batch blocks: PBIOPOI calls PRUTOBLKS to text process the 
blocks, then PBQIBLK queues the block. The TIP is notified that 
output is available, unless other blocks are already in the queue 
waiting to be processed. 

Associated field: BSBLKLTR (the send-a-BACK-block-later flag) must 
be set in all cases. 

MLIA Handler (static TCB) 

15 14 o 
20 F18 BSWRKCO - Process state work code (bits 0 and 1 only) 

O=SBTIMOUT l=SBRD STATUS 
2=SBHALT 3= ---

21 BSCONB - Condition B counter (input drop errors) 

22 BSCONC - Condition C counter (last data errors) 

BSCOND - Condition D counter (Input error ODD first in, 
first out error) 23 

Flag 

F18 = BSCEMI - CE Error SM issued 

MODE 4 TIP 

There are two overlays for the Mode 4 TIP. 

15 14 13 12 11 10 9 8 7 6 5 o 
BSERRODE -

20 F19 F20 Number of BSTASK, task BSERRICOUNT - Number of 
bad (error) index (1) no response errors 
responses 

21 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 BSERR2COUNT - Number of 

22 

23 

30 

31 

F31 F32 

BSM4POLL 

BSM4POLL 

BSM4POLL 

BSCLSPTR 

F33 F34 F35 

(ARRAY) 

ELEMENT 8 

- Pointer 

bad responses received 

F36 F37 F38 F39 F40 BSM4COUNT - General 
purpose counter 

\ 

~ Poll Message 
t 
J 

to cluster TCB 

(1) BSTASK task index 0-31. These tasks are defined in the local data 
area for the Mode 4 TIP (PTMD4TIP) flags 

H-58 60471160 A 

( 
I 

" 



Flags: 

F19 - BSM4CRPS, configuration poll message sent 

F20 - BSHOG, hog control flag 

F21 - BSCRON, card reader on 

F22 - BSPRON, printer on 

F23 - BSBATCH, batch interrupt 

F24 - BSLASTDEV, last device used for I/O (l=batch, O=interactive) 

F25 - BSTOGKNOWN, toggle is known 

F26 - BSTOGSTATEXP, expected toggle state 

F27 - BSCLSDOWN, cluster is down 

F28 - BSHOLD, TCB control in hog mode 

F29 - BSEOICRO, skip blanks during EOI card reading 

F30 - BSM4S2, not used 

F31 - BSM4FAIL, terminal in failure mode 

F32 - BSM4WRQ, mode 4 queue flag (write request message, blank fill 
message, or print message (PM) is queued) 

F33 - BSPFECODE, escape to poll for E-code 

F34 - BSACKOUT, acknowledge last write request is still outstanding 

F35 - BSLIO, last I/O state (O=write, l=poll) 

F36 - BSWAIT, wait for resume 

F37 - BSCLRCNT, clear error counters 

F38 - BSINPUT, input accepted (AI) 

F39 - BSTOGRECEIVED, toggle state last received 

F40 - BSTOGCORRECT, toggle state is correct } Toggle for read/write 
made at console 

Second Mode 4 TIP overlay 

Four to six records as shown in first word 

15 6 5 o 
20 BSM4FLAGS - Flags for cluster TCB I F41\BSERCOUNT - Error Counter 

\ 

BSM4 (ARRAY) f Additional 3 to 5 records 

( 

22 BSM4 ELEMENT 3 

F41 - BSM4D2, not used 

60471160 A H-59 



Coupler TCB (static TCB) 

This is the TCB used by the HIP for transfers to/from the host. 

15 14 7 

20 BSCPAVPTR - Pointer to first available output buffer 

21 BSCPLAST - Pointer to last available output buffer 

22 BSCPINPUT - Input buffer address 

23 BSBUFOTT - Memory address loaded address 

24 BSCPSTATUS - Coupler status 

25 BSCPDATA - Orderword storage 

26 BSCPCMD - Last NPU status word sent to host 

BSCPBUFAV - Number of available BSCOBZSTA - Previous buffers 27 

28 BSCPAMASK - Coupler interrupt mask 

29 F421 BSCPIDLT - Idle timeout counter 

30 BSCPCONN - Coupler connection number 

Flag: 

F42 - BSCPHST, host status 

HASP TIP 

20 

21 

22 

23 

24 

25 

1 = host available 
o host down 

15 14 13 12 11 10 9 8 7 

BSHSOBUFF - Pointer to current output buffer 

BSHSHEAD - Pointer to head of data list queue 

BSHSTAIL - Pointer to head of data list queue 

BSHSQBF - Pointer to buffer for data list queue 

BSHSSTMR - Suspend transfer timer 

BSHSFCSM - Stream mask for function control sequence (FCS) 

o 

state 

o 

26 BSHSIMDI F431F441F451F461F471F481 BSHSIOK - Start input received 

BSHSIMD, Card reader mode 

3 = transparent 
2 nontransparent 
1 EBCDIC - 026 card 
o EBCDIC - 029 card 

H-60 60471160 A 



Flags: 

F43 - BSHSEOISNT, EOI BVT record sent 
F44 - BSHSRSNT, request permission to transmit sent 
F45 - BSHSPNED, request permission is needed to start transfer 
F46 - RSHSOIP, output in progress 
F47 - BSHSSUSP, data stream output stopped message sent to host 
F48 - BSHSSF, countdown for output stopped condition 

TTY TIP 

15 14 13 12 11 10 9 

20 F49 F50 F51 F52 F53 F54 F55 

F49 - BSTYLF, echo line feed 
F50 - BSTYCR, echo carriage return 
F5l - BSTYTAPE, paper tape mode 
F52 - BSTYRGL, regulation in effect 

8 

F56 

F53 - BSTRXON, send an X-ON to paper tape 
F54 - BSTYHOUT, hold output 
F55 - BSTYBLK, block mode 
F56 - BSTYKEY, keyboard mode 

2780/3780 TIP 

13 

7 

BSTYIST - Input state 
(bits 0-5) 

index 

20 BSOPRI - Output priority (bits 0 - 2 only) 

Flags: 

F57 - BSSUSPIO, suspend I/O 
F58 - BSINPOK, OK to input 

MULTIPLEX SUBSYSTEM 
The multiplex subsystem data structures are of two types: those that 
interface the multiplex subsystem to the other NPU software (such as TIPs) 
and those that concern the physical characteristics of lines, terminals, 
CLAs, modems, and hardware controllers for the lines. 

The data structures in the system interface category are: 

• MLCB - The format for this table is also used for the TPCB. In 
either case it contains information used for state programs. 

o 

o 

• The multiplex command driver packet (command packet) that sets up the 
data transfer parameters. 

The data structures in the hardware characteristics category are: 

• Multiplex port table (NAPORT) which has an entry for each line 
• Line type tables 
• CLA related tables 
• Modem related tables 
• Terminal related tables 
• Device related tables 

60471160 A H-6l 



MULTIPLEX COMMAND DRIVER PACKET, NKINCOM 

The command packet provides the communication from either the TIPs or 
service module to the command driver, PBCOIN. This parameter list provides 
the necessary information for the multiplex subsystem to prepare the line 
for a transmission. Six standard formats are provided. 

Set up commands - see section 5, multiplex command driver. 

o 

1 

2 

5 

15 

Function commands 

15 

NKCMD - Command 

NKPORT - I/O port 

NKCARY CHAR 1 

NKCARY > 

NKCARY CHAR 7 
/ 

14 

7 

NKLTYP - Line 

NKLOPOR - Not 

NKCARY CHAR 2 

An 8-character array holding 
command parameters 

NKCARY CHAR 8 

7 6 

type 

used 

the 

o 

o 

o NKDMI - Not used NKTCLS - Default terminal 

1 NKLINO - Line number 

2 Fl NKFUNI F2 

3 F3 NKFUN3 F4 

4 F5 NKFUN5 

NKFUNl-5 are function bytes 

Fl - NKSRFI I F2 - NKSRF2 
F3 - NKSRF3 Function selected flags 
F4 - NKSRF4 
F5 - NKSRF5 

Variation: Input operation 

H-62 

a 

1 

2 

3 

4 

15 

F6 

F14 

14 13 12 11 

NKDM2 - Not used 

NKDM3 - Not used 

NKIBP - Input buffer 

F7 F8 F9 FlO 

F15 NKDM9 

10 9 

address 

F11 Fl2 

NKBLKL -

class 

NKFUN2 

NKFUN4 

NKZERO - End of function 

8 7 o 

F13 NKIFCD- Optional FCD 
of I/O buffer 

Block length (words) 

60471160 A 



Flags: 
F6 - NKUOPI Multiplex 
F7 - NKUOP2 
F8 - NKUOP3 User option flags 1-8; F9 - NKUOP4 can also be used as a FlO - NKUOP5 single field, NKUOPS Fll - NKUOP6 
F12 - NKUOP7 
F13 - NKUOP8 Multiplex 
F14 - NKNOXL, Translate code flag; 1 = translate 
F15 - NKSCENBL, Move special character to be changed 

NKDM9 - not used 

Set up for input processing (call from TIP) 

o 
1 

2 

15 

NKWDO - Word 0 

NKWDI - Word 0 

NKOBP - Pointer 

7 

and 1 of universal 

and 1 of universal 

to output buffer 

6 5 

overlay 

overlay 

bit 

bit 

3 NKUOPS - User bits F16 F17 NKISTAI 

4 NKDM6 - Not used 

5 NKISPTA - Pointer to input state table 

NKSCHR - Special NKCNTI -
character 6 

7 NKCXLTA - Translate table address 

F16 - NKMVB, Move user bits to LCB 
F17 - NKRPRT, Strip parity flag 

Universal input 

15 

o 

1 

NKDM7 - Not used 

2 

3 

4 

5 

6 

7 

60471160 A 

NKDM8 

NKWD2 

NKWD3 

NKWD4 

NKWD5 

NKWD6 

NKWD7 

- Not used 

>Universal overlay words 

Character 
for input 

15 

in the MLCB, 
field NCUOPS 

8 

o 

- Program index 
to input state 

counter 1 value 
state programs 

o 

-

H-63 



Terminate I/O command 

15 7 6 5 

o NKDMIO - Not used I F18 F19 I NKWLINDX - Worklist index 

1 NKDMll - Not used 

NKJSRDY - User parameter NKWKCOD - User work code if 
for worklist worklist requested 2 

Fla - NKRELBFS, release input buffer flag 
F19 - NKWKFLG, make worklist for caller flag 

NKWLINDX: Only bits 4 through 0 are valid 

Values for NKCMD (first variant) are shown below. See section 5 for 
description of parameters list for each command. 

Mnemonic 

NKTURN 
NKINIL 
NKENBL 
NKINPT 
NKDOUT 
NKOBT 
NKINOUT 
NKENDIN 
NKENDOUT 
NKDISL 
NKCLRL 
NKCONTROL 
NKSPECIAL 

Value 
(hex) 

3 
4 
5 
6 
7 
a 
9 
A 
B 
C 
D 
E 

10 

Meaning 

TURN LINE AROUND 
INITIALIZE LINE 
ENABLE LINE 
INPUT 
DIRECT OUTPUT 
OUTPUT BUFFER TRANSMITTED 
INPUT AFTER OUTPUT 
TERMINATE INPUT 
TERMINATE OUTPUT 
DISABLE LINE 
CLEAR LINE 
CONTROL 
UPDATE MUX TABLE 

MULTIPLEX .LINE CONTROL BLOCK (MLCB), NCLCB TEXT PROCESSING 
CONTROL BLOCK (TPCB) 

o 

The MLCB is a dynamically allocated buffer obtained and released as a result 
of requests issued by the TIPs. The MLCB defines the processing functions 
to be provided by the multiplex subsystem. For a given communications line, 
there is one MLCB for each enabled line. 

Seven variants of the MLCB are provided. 

Usual TIP I/O data transfer request 

15 14 13 12 11 10 9 8 7 6 5 4 o 
o Fl F2 F3 F4 I F5 I F6 I F7 I Fa NCOCHR - Next output character 

F9 FlO Fll NCTIME - Mux NCOBLCD - LCD of output buffer timer 1 

2 NCOBP - Pointer to output buffer 

H-64 60471160 A 

i 



15 14 13 12 11 10 9 8 7 6 5 4 o : 

3 F12 F13 F14 F15 F16 F17 F18 F19 F20 F2l NCISTAI - Input state 
program index 

4 NCCNTL - Character count limit NCCNTI - Character counter 1 

5 NCISPTA - Pointer to input state program pointer table 

6 NCIBP - Pointer to input buffer 

NCCRCP - CRC 
7 F22 F23 F24 F25 F26 F27 F28 F29 F30 F3l F32 polynomial 

NCUOPS:J' 

15 12 7 

8 NCSCHR - Special character NCIBFCK - FCD of input 

9 NCCRCS - CRC accumulation 

10 

11 

NCZERI - Zero NCCNT2 - Character counter 2 

NCZER2 - Zero NCBLKL - Block length 

12 NCCXLTA - Pointer to code translate table 

13 NCSCBA - Pointer to first buffer in block 

NCBLCNT - Number of buffers NCSVWL -allocated 14 

Flags: 

Fl - NCEOBL, end of block 
F2 - NCNXOCA, next output character available 
F3 - NCLCT, last character transmitted (CDCCP) 
F4 - NCBCREQ, buffer chaining required 
F5 - NCOMPRO, output message in progress 
F6 - NCSPl, spare 
F7 - NCODDIN, ODD received 
F8 - NCSPl, spare 
F9 - NCSUPCHAIN, suppress buffer chaining 
FlO - NCOBT, generate output buffer terminated (OBT) 
Fll - NCBZL, reset timer 
F12 - NCRINCH, input character in right byte 
F13 - NCCAREC, character received 
F14 - NCRIGHTC, left/right source flag (1 = right) 
F15 - NCINPRO, input message in progress 
F16 - NCNOXL, code translation active 
F17 - NCRPRT, strips parity bit 
F18 - NCSCF, suppress chain flag 
F19 - NCLASTCH, LCD of source buffer reached 
F20 - NCEOSR, end of source buffer reached 
F2l - NCSP3, not used 

60471160 A 

(records) 

Saved worklist 

o 
buffer 

H-65 



F22 - NCUOPl 
F23 - NCUOP2 
F24 - NCUOP3 
F25 - NCUOP4 
F26 - NCUOP5 
F27 - NCUOP6 
F28 - NCUOP7 
F29 - NCUOP8 

Optional user flags: can also be 
addressed as a single field NCUOPS 

F30 - NCETX, delay ETX worklist generation 
F3l - NCMRTO, modern response timed out 
F32 - NCCARR, line carrier type 

1 = controlled 
o = constant) 

sixteen integer words 

15 

o NCCARRY 

NCCARRY (ARRAY) 

15 NCCARRY ELEMENT 

Integer 

16 

Eight user option words includes half a word of flags 

o 

1 

2 

3 

4 

5 

6 

15 

NCWDO 

NCWDI 

NCWD2 

NCWD3 

NCWD4 

NCWD5 

NCWD6 

7 

\ 

User option words 

/ 

o 

o 

7 NCUOPS - User option flags I NCDMOM2 - Not used 

H-66 60471160 A 



TPCB 

o 

1 

2 

3 

4 

5 

6 

7 

15 14 7 5 

NCLCDFCD Integers 

NCDUM2 -

NCSBP - Source buffer pointers 

NCFFLGS - Text processing firmware NCSTAI - Index F33 (see F13 - F21 of MLCB) source state programs flags mask 

NCDUM4 - Not used 

NCSPTA - Pointer to state programs table 

NCDBP - Pointer to destination buffer 

NCDUM5 - Not used 

8 NCDUM6 - Not used I NCBFCD - FCD of buffer 

9 

10 

11 

12 

NCDUM7 - Not 

NCDUM8 - Not 

NCDUM9 - Not 

NCDUMA - Not 

used 

used 

used 

used 

13 NCFDBA - Pointer to first destination buffer 

14 

15 

16 

17 

18 

Flag: 

~CDUMB -

NCDUMC -

NCDUMD -

NCDUME -

NCFSBA -

Not used 

Not used 

Not used 

Not used 

First source buffer 

F33 - NCDCRB, character in right byte 

Integer/File Register 1 TPCB 

address 

to 

This MLCB has 16 words of INTEGER and 16 words for saving the first 16 file 
1 registers (firmware level). 

o 

60471160 A H-67 



15 

o NCTPML 

NCTPML (ARRAY) 16 integers 

15 NCTPML ELEMENT 16 

16 NCTPFI 

NCTPFI (ARRAY) Spare for 16 file 1 registers 

31 NCTPFI ELEMENT 16 

Batch TIPs - variant for data compression on batch device (TPCB) 

o 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

15 

NPADI \ 

NCPAD1 (ARRAY) ~ 19 integers t 
NCPAD1 ELEMENT 19 

NCDBLC - Destination block count 

NCCOUNT - counter 

NCCLIMIT - Count limi t 

NCBINIT - Blank initial count 

NCBLIMIT - Blank limit 

NCDINIT - Duplicate initial count 

NCDLIMIT - Duplicate limi t 

NCUINIT - Unlike initial count 

NCULIMIT - Unlike limit 

NCSVCH - Save character for compression 

NCRCB, - Record control byte 

NCPAD2 - Not used 

NCPAD3 - Not used 

2780/3780 TIP TPCB 

15 

o I NC78D - Integer 

H-68 

o 

o 

o 

60471160 A 



PORT TABLE (NAPORT) 

A multiplex subsystem port table entry (NAPORT) defines information relating 
to each line. Entries are ordered by line number and an entry is provided 
for each port in the system. The multiplex port table is the starting point 
of line orientation to the multiplex subsystem. The multiplex subsystem 
accessed the multiplex port table to obtain modem and circuit related 
parameters necessary to establish the proper communic~tion interface between 
the multiplex subsystem and a user communication line. The port table entry 
points to the MLCB which in turn points to the input state programs which 
process data for the multiplex subsystem. The port table points to the 
modem state program pointers directly. Four variants are provided. 

Normal Port Table 

15 14 13 12 11 10 7 6 5 4 3 

o 
NALTYP - Line NASPILL -Fl F2 F3 F4 F5 type~ see F6 
appendix E 

1 NALCBP - Pointer to MLCB 

NAOBTCMD - CLA turn around 
command 2 

3 NAMSPTA - Pointer to modem state 

4 NAFCCST - CLA command status 

5 

6 NASTAT - Not used 

7 NASPARE - Not used 

Fl - NAION, input on 
F2 - NAOON, output on 
F3 - NAISON, input supervision 
F4 - NALCBUP, LCB assigned 
F5 - NAISR, CLA status pending 
F6 NAHAROER, hard error in progress 

F7 F8 F9 FlO 

pointer table 

F7 - NANOCO, data carrier detected signal (OCO) dropped 
F8 NAMTO, modem timeout in progress 
F9 - NAWAIT, timeout flag for first overflow 
FlO - NAOVFE, first status overflow worklist received 

Clearing Port Table Variant 

NAMSI 
state 
table 

o 

CLA status 
count 

- Index to 
pointer 

This table of 8 integer entries can be used to clear all of the port table. 

15 o 
o NAARY 

I NAARY (ARRAY) 
• 

7 NAARY ELEMENT 8 J 

60471160 A H-69 



Pointer/Flags Variant 

This table allows the MLCB and the word 2 flags to be overlaid. 

15 6 3 o 
o NADM3 - Not used 

1 NABFPTR - Buffer pointer 

2 NADM4 - Not used I NAFLAGS I NADr.15 - Not used 

NAFLAFS - Overlay for flags FB, F9, and FlO 

Overlay Array 

15 

BOOVERLAY , 
NAOVERAY - 8 words , 

BOOVERLAY 

LINE TABLES 

Multiplex Line Type Table, NBL TYT 

The line type table is an array of entries of type NBLTYE. 
corresponds to a line type in the system. See appendix C. 
table entry defines the physical characteristics of a given 
circuit. Four variants are provided. 

Normal Entry 

15 13 12 11 10 9 B 4 

Each entry 
The line type 
pqrt, modem 

NBMODCLS - Modem NBOTYP - CLA type; 
o NBSPI Fl F2 F3 F4 F5 class; 

1 NBAND - Mask 

NBSPI - Not used 

Flags: 

Fl - NBTURN, line turnaround required 
F2 - NBDELAY, delay the line.' turnaround 

see below see CLA constants 
above 

F3 - NBANSMOD, answer mode: 0 = autorecognition, 1 = dedicated 
F4 NBCARR, carrier type: 0 constant, 1 controlled 
F5 - NBCIRTYP, circuit type: 0 = 2 wire, 1 = 4 wire 

o 

o 

H-70 60471160 A 



Integer Entry 

15 

o I NBINTI 

NBINT2 
l ~ Two integers 

1 

universal Overlay Entry 

o 

Two overlay words ---------------------------------°-il 1 

Overlay for Input Status Flag Word 0 Overlay 

15 6 5 o 
o I NBDMI - Not Used \ F6\ NBDM2 - Not used 

F6 - NBISR, Input status request 

Line Types, NOL TYP 

This is the line type entry for the LCB. The sequence of line types is 
included in the SIT. SW indicates a switched (dial up) line; DE indicates a 
dedicated line. See appendix C. 

Value 
Mnemonic (hex) Meaning 

NOLDIAG 0 RESERVED FOR ON-LINE DIAGNOSTICS 

NOLI 1 2560-1 201A SW HDX CONTR 2WIRE 

NOL2 2 2560-1 201B DE FDX CONTR 4WIRE (HDX MODE) 

NOL3 3 2560-1 201B DE FDX CONST 4WIRE 

NOL4 4 2560-1 208A DE FDX CONST 4WIRE 

NOL5 5 2560-1 208A SW HDX CONTR 2WIRE 

NOL6 6 2561-1 103E SW FDX CONST 2WIRE 

NOL7 7 2561-1 103E DE FDX CONST 2WIRE 

I 
i 

NOL8 8 2561-1 202S RS 232 103E/113 SW HDX CONTR 2 WIRE 

NOL9 9 SPARE (UNDEFINED) 

NOLA A 2563-1 201B DE FDX CONST 4WIRE (SDLC) 

NOLS B SPAR~ (UNDEFINED) 

NOLAST B LAST LINE TYPE 

60471160 A H-71 



Asynchronous Line Speeds 

Mnemonic 
(Index) Value Baud Rate 

NOBOO 0 800 

NOll0 1 110 

N0134 2 134, 5 

N0150 3 150 

N0300 4 300 

N0600 5 600 

N01200 6 1200 

N02400 7 2400 

N04800 8 4800 

N09600 9 9600 

NODIAG 10 DIAGNOSTICS CLASS 

Line Number Field, BOLINO 

This 
used 
SIT. 
type 

is the usual field used by the system to reference line number. It is 
in the LCB, and line number fields compose the line array part of the 
Several routines define their own line number variable using BOLINO 

as a basis. 

15 o 
I BOLINO 

Multiplex Character Transmit Characteristics Table, NICTCT 

The character transmission characteristics table is an 
entries (type NICTCY) indexed by the line speed index. 
the speed range, speed, and number of output stop bits 
receiving to/from asynchronous terminals. An array of 
part of the SIT. 

array of l-word 
Each entry specifies 

for transmitting and 
these entries is a 

15 14 13 10 9 8 7 4 3 o 

H-72 

NICTCY 

Array of 
NICTCY 
indexed 
by line 
speed 

o 

9 

I NIRSPED I I NITSPED I NISTOP entry 

L stop bit 
length (bit 
o only) 

.... Transmit speed 

---NITSP - Transmit 
speed range 

"'--Receive speed 

'-NIRSR - Receive speed range 

60471160 A 



NIRSP o = llO 1 = 134.5 

NIRSPED - See appendix C 

NITSP o = llO 1 = 134.5 

NITSPED - See appendix C 

NISTOP - 0 
- 1 

CLA/MODEM TABLES 

1 stop bit 
2 stop bits 

Modem/CLA Relationships 

Maximum 
CLA Modern 
Type Speed 

All Not 
Applicable 

2560-1 Not 
2560-2 Applicable 
2560-3 
2563-1 

2561-1 100 
Async 

110 

120 

134.5 

150 

300 

600 

800 

1050 

1200 

1600 

2400 

4800 

9600 

60471160 A 

} 

2 150 3 300 baud 

2 150 3 = 300 baud 

for character delimiting 

Modern Class 
(hexadec imal) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

D 

F 

10 

12 

Moderns 

(The moderns listed 
are only a sampling 
of moderns available) 

None 

201B, 201A, 201C, 201D 
208A, 208B 
358-2 

103 series, 113A, 113B, 
VA3405 A thru G 

VA3405 A thru G 

358-1 

H-73 



ClA Types 

Mnemonic Value Meaning 

NOSYNC o Synchronous CLA 2560-1 

NOASYNC 1 Asynchronous CLA 2561-1 

NONORS232 2 High-speed synchronous CLA 2560-3, 2560-4 

NOSDLC 3 Trunk data line control tor LIP protocol -
CLA 2563-1 

ClA Commands and Status 

A control command sequence word (NDSEQE) is used by the multiplex level 
command driver, PMCDRV, to send commands to the CLAs. These commands are 
indexed as shown below. Four CLA status words (8-byte) make up the two 
NPU/CLA status words (NRCCSE) and use a bit set method of checking the 
commands currently in effect for a given CLA/modem. 

Control Command Sequence Word, NDSEQE 

Used for multiplex commands to modem or circuit hardware. Three variants 
are provided. 

Normal Entry 

15 7 6 

o NDDMI - Not used Fl NDCASE - Index to mOdem/circuit 
command case 

Fl - Set function flag (0 = reset) 

NDCASE is defined in the table below. 

Character Overlay 

15 7 0 

0 I NDDM2 - Not used NDCHAR - Character I 
Universal Overlay 

15 o 
o ( NDWORD - Universal word 

Multiplex ClA Command Status Table Entries, NFCCSE 

The CLA command status table reflects the current command status of each 
CLA. It contains the cumulative history of all physical commands sent to 
each CLA. Five variants are provided: 

o 

H-74 60471160 A 



BIT ASSIGNMENT ENTRY 

This variant provides four CLA 8-bit words with a name assigned to each 
bit. It is used to set and clear bits in the CLAs. 

CLA d 1 b't 7 a eLA d 2 b't 7 a I wor , 1 S -
7 I wor , 1 S -

IS 

a 

1 

L -CLA word 3, bIts 7 0 L -CLA word 4, bIts 7 0 

The individual bits are named as shown: 

NFiHB7 

~ 
NFW3B7 l CLA word 1, bits eLA word 3, bits 

~ 7 through 0 j 7 through 0 
NFWIBO NFW3BO 

NFW2B7 

~ 
NFW4B7 

~ CLA word 2, bits eLA word 4, bits 

~ 7 through 0 j 7 through 0 
NFv12BO NFW4BO 

See table that follows for flag usage. 

SDLC CLA ENTRY 

Defines SDLe CLA bit assignment. 

IS 2 

o I NFDMO NFXCNT 

WHOLE WORD VARIATION 

15 

a 

a 

o 

o I NFINTI Integers --------------------------------------------~ 
1 NFINT2 

ASYNC CLA ENTRY 

IS 13 11 10 9 8 7 3 1 o 
o NFDMI - Not used NFARSR I NFATSR 

1 NFAPARY I NFACHLE I F33 I F34 I F3S I F36 I NFARSPED NFATSPED 

NFARSR - Receive speed range (baud) 

60471160 A 

o = 110 
1 :; 134.S 
2 = ISO 
3 300 

H-7S 



NFATSR - Transmit speed range (baud) 

NFAPARY - Parity: 
o zero 
1 odd 
2 even 
3 none 

NFACHLE - Character length (bits) 
o 5 
1 6 
2 7 
3 8 

F33 - NFSTOP, stop bit 

F34 - NFDM2, not used 

F35 - NFECHO, echoplex mode 

o 
1 
2 
3 

110 
134.5 
150 
300 

F36 - NFLBT, currently in one-line diagnostic loopback test 

NFARSPED - Receive speed (baud) 
o 110 
1 134.5 
2 150 
3 = 300 

NFATSPED - Transmit speed (baud) 
o 110 
1 134.5 
2 = 150 
3 = 500 

Synchronous CLA Entry 

15 

o NFDM3 - Not used 

7 3 1 0 

I NFSPARY I NFSCHLE 

1 NFSYCAR - Synchronous character I NFDM4 - Not used 

NFSPARY - parity 
o zero 
1 odd 
2 even 
3 none 

NFSCHLE - character length (bits) 
0=5 
1 = 6 
2 7 
3 = 8 

H-76 60471160 A 



The following table (not a data structure) correlates command index to 
command status. 

Value Sync/ 
Mnemonic NDCASE NFCCEE Async 

for NDCASE (hex) (Word/bi t) Meaning or General 

NORTS I (WIB7) (RTS) Request to send 

NOSRTS 2 (WIB6) (SRTS) Secondary request to send A 

NORSYN 2 (WIB6) (RSYN) Resync 

NOOM 3 (WIB5) (OM) Originate mode/auxiliary 'A 

NOLM 4 (WIB4) (LM) Local mode/auxiliary A 
NONSYN 4 (WIB4) (NXYN) New sync S 

NOLT 4 (WIB4) (LT) Local test (2560-3) 

NODTR 5 (WIB3) (DTR) Data terminal ready 

NOTB 6 (WIB2) (TB) Terminal busy A 

NO ION 7 (WIBl) (ION) Input on 

NOOON 8 (WlBO) (OCN) Output on 

NOBREAK 9 (W2B7) (BREAK) Break mode A 

NOISR A (W2B6) (ISR) Input status request 

NOISON B (W2B5) (ISON) Input supervision 01'1 

NODLM C (W2B4) (DLY) Data line monitor A 

NOECHO D (W3Bl) (ECHO) Echoplex mode A 

NOLBT E (W3BO) (LIT) Loopback test A 

NOLBT E (W2B4) (LIT) Loopback test S 

NOLBT E (W,2B4) (LIT) Loopback test t 
NOLBT E (W2B4) (LIT) Loopback test SDLC 

NOPON F (W3B6) (PON) Parity on A 

NOPON F (W2B2) (PON) Parity on S 

NOPON F (W2B2) (PON) Parity on t 
NOPSET 10 (W3B7) (PSET) parity set, 1 .. even A 

NOPSET 10 (W2B3) (PSET) Parity set, o = odd S 

NOPSET 10 (W2B3) (PSET) Character length - LSB t 
NOCLLS 11 (W3B4) (CLLS) Character length - LSB A 

NOCLLS 11 (W2BO) (CLLS) Character length - LSB S 

NOCLLS 11 (W2BO) (CLLS) Character length - LSB t 
COCLMS 12 (W3B5) (CLMS) Character length - MSB A 

NOCLMS 12 (W2Bl) (CLMS) Character length - MSB S 

NOCLMS 12 (W2Bl) (CLMS) Character length - MSB t 

t Not RS-232 

60471160 A, H-77 



CLA Status Condition Indicators, MOSCTYP 

The status indicators are used in the worklist entry. 

MOCLAON, 0 CLA ON DETECTED 
MORING, 1 RING INDICATOR DETECTED 
MOENBL, 2 LINE ENABLED 
MOHERR, 3 HARD ERRORS DETECTED 
MOSOER, 4 SOFT OUTPUT ERRORS DETECTED 

MOSIER, 5 SOFT INPUT ERRORS DETECTED (unsolicited input) 
MOSTRT, 6 START MODEM TIMEOUT 
MOSTOP, 7 'STOP MODEM TIMEOUT 

MOOVRF, 8 CLA STATUS OVERFLOW (unsolicited output) 
MOOVTO, 9 CLA STATUS OVERFLOW TIMEOUT 
MOMRTO, A MODEM RESPONSE TIMEOUT 
MOBREAK~ B BREAK FROM FRAMING ERROR STATUS 

Modem Control States 

These states are used in the command packet to PBCOIN to set up the modem's 
state of operation. 

Mnemonic 

MSTCHK 
MSTERR 
MSTLNI 
MSTENB 
MSTIDL 
MSTOUT 
MSTINP 

Modem State Prorams 

Value ---,' 
0 STATE 
1 STATE 
2 STATE 
3 STATE 
4 STATE 
5 STATE 
6 STATE 

Meaning 

0 
1 LINE CLEARED 
2 LINE INITIALIZED 
3 LINE ENABLED 
4 LINE IDLED 
5 OUTPUT ON 
6 INPUT ON 

NOMSPT has range 0 •• 40~ this is the size of modem states pointer table. One 
table exists for multiplex modem state pointers subsystem. 

TERMINAL TABLES 

Terminal Characteristics Table, NJTECT 

The terminal characteristics table entry (NITECY) contains parameters that 
define the special processing characteristics of a given terminal type. It 
is used to set up the MLCB and to configure the system (SVM use). The 
variant is accessed when the interactive terminal parameters are used. 

H-78 60471160 A 

r 
\ 



o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

15 14 12 8 o 7 11 a 13 3 .-

NJISPTA - Address of input state programs pointer table 

NJCXLTA - Address of code translate table 

NJCNTI - Input character count 1 NJSYNC - Sync 
character 

NJCRCP - CRC NJIBFCD - FCD of first buffer polynomial (bits 7-0 only) index 

NJTIPTY -

NJBLKL - Block size (words) TIP type; 
see appen-
dix C 

NJCHLEN- N.JPARTY-NJPARIT Char- ASYNC TIP Fl F2 NJSPI - Not used -Par ity acter parity length 

NJPSWIDTH - Page width (bits a -7) 

NJPGLENGTH - Page length (bits o - 7) 

NJCANCHAR - Character for cancel input line (bits a - 7) 

NJCNTRLCHAR - Control character (bits a - 7) 

NJUSFI - Character for user break 1 (bits a - 7) 

NJUSR2 - Character for user break 2 

F3 F4 F5 F6 NJXCNT - Counter for transparent character 

NJOUTDE- NJAPL- NJXCHAR - Character 
F7 F8 F9 FlO output APL that delimits 

device mode transparent text 

NJABTLINE -
NJBSCHAR - Backspace character Character to abort 

output line 

NJCRIDLES - Count of idles NJFIDLES - Count 

following a CR of idles following 
an LF 

IVT parameters are in words 6 through 11 IVT variant. 

IVT variant 

15 a 
a NJARRY 

NJARRY (ARRAY) Overlay for interactive terminal parameters 

14 NJARRY ELEMENT 15 

60471160 A H-79 



Values 

NJPARIT 0 = zero I = odd 2 = even 3 = none 

NJCHLEN 0 = 5 bits I = 6 bits 2 = 7 bits 3 = 8 bits 

NJPARTY 0 = zero 1 = odd 2 = even 3 = none 

NJOUTDE 0 = printer 1 = display 2 = paper tape 3 = not 

NJAPL 0 = no I = yes 2 = special APL mode 3 = not 

Flags: 

Fl - NJPGWAIT, page wait mode 
F2 - NJXPARENT, input transparent mode 
F3 -' NJXTO, expected delimiter is a timeout 
F4 - NJXCCON, expected delimiter is reaching transparent character count 
FS NJXCHRON, delimiter is transparent character 
F6 - NJOMI, not used 
F7 - NJCRCALC, calculate CR idle count 
F8 - NJLFCALC, calculate LF idle count 
F9 - NJECHOPLX, echoplex mode 
FlO - NJINDEV, input device (0 = keyboard, I = paper tape) 

Terminal Classes 

This is the BZTIPTYPE field of the LCB. Further information on terminal 
class is found in appendix C. 

Mnemonic Value Meaning ---
NOTMLIA 0 MLIA (Multiplex interface adapter) 

used 

used 

NOM33 
N02780 

I 
7 

Async - M33,M3S, M37, M38 (TTY terminals) 
2780 

N03780 8 3780 
NOHASP 9 HASP 

N0200UT 10 Mode 
NOCOUPLER 11 Coupler 

NOTCONSOLE 12 Console 

NOTDIAG 13 Diagnostics 

Terminal and Device Types (TT lOT) 

These data structures are used to find TCBs, check devices for 
deliverability of messages, and so forth. See appendix C. 

TERMINAL TYPE, NPTT 

Three cases are possible: 

H-80 60471160 A 



Bit 15 7 " o 
NPSPR3 
(spare byte) 

LNPSUB 
TJP s 

TIP, range 0 - 7, sub­
lze (see appendix E) 

NPAUTO '-NPTI PTYPE, rang e 0 - 15, TIP type 
autorecognition (see appendix E) 
flag 

Bi t 15 7 0 
~~----------------~------------------~~ 

NPSPR 4 
(spare byte) CHAR 

I~~--Character overlay 

DEVICE TYPE, NPDT 

Two cases are possible: 

Bit 15 7 4 o 
NPSPRI 
(spare byte) 

LNPTCLA SS, range 1 - 31, 
termin al class (see appendix E) 

"-- -NPDEV, range 1 7, device type 
(see appendix E) 

Bit 15 7 0 
~1~N~p~S-P-R--2----------~1~-------C-H-A-R--------~ 

(spare byte~ 
= NPDT(2) 

~----Character overlay 

DEVICE TYPES 

These mnemonics are used by programs to determine if device type is proper 
for delivery of message, generating status, and so forth. 

Mnemonic 

NICON 
NICR 
NILP 
NICP 
NIPLOT 
NlINTDEV 

60471160 A 

Value 

o 
1 
2 
3 
4 
7 

Meaning 

Console 
Card reader 
Lin~ printer 
Card punch 
plotter 
Internal device 

H-Sl 



SERVICE MESSAGES 
Appendix C defines most of the service message data structures. Table C-l 
defines the function and subfunction coces used to switch processing within 
the SVM to the indicated SVM routines. 

Other service message information is at the following location. 

Defini tion Fields r~ocation , table 

TIP/Sub-TIP NO ••• Appendix C, C2 

Line type Appendix C, C3 

Configuration states C7 ••• Appendix C, C4 

CE error messages CN ••• Appendix C, C2 

Statistics messages 
CCl 

(NPW) 
(tr/ln) 
(term) 

CP •.• 
BZ ••• 
BS ••• 

Appendix B, B4 { reference 
Appendix B, B4 

j 
manual 

Appendix B, B4 

FN/FV DATA STRUCTURES 

These data structures are used when taking FN/FV parameters from the 
configure service messages and entering them in the appropriate place 
(usually in the TCB). 

Field Description Table, DDFDTRECORD 

The field descriptor table size is given by DDFTDRECORD in the first word. 
A series of I-word entries (DDFDTENTRY) follow. 

15 11 7 

DDFTDRECORD - Number of table entries 

DDFSTRT - DDFLNTH - DDFDlSP - Displacement 
Field start Field length to start of field in 
bit position (bits) - 1 record (words) 

Pointer to table is DDFTDPTR. 

Action Table Entries, DFATENTRY 

o 

The action table is used for configuring lines and terminals. There can be 
an entry in the table associated with the field number (FN) of each possible 
FN/FV pair in the configure/reconfigure service message. Normal values for 
the entries can be found in the Link Edit listing normal table entry. 

15 7 o 
DFERRCDE - Error code DFFN - Field number (table index) 

DFRKEY - Reconfigure action key DFCKEY - Configure action key 

DFPARAM - Optional action parameter 

H-82 60471160 A 



Table end 

15 

I DFEND - End of table 

Pointer to the table is DFATPTR. 

Configure Action Codes_-.Each TIP has associated with it an action table 
which is set up in a link edit operation. After storing the field value 
(FV) in the TCB, PNCONFIGURE checks the TlPs action table using the action 
code as an index, and takes the action specified by the PNCONFIGURE routine. 

DFCKEY or DFRKEY 

D2NA 
D2VUL 
D2VU 
D2VL 
D2ACN 
D2LLCB 
D2TCPCHN 
D2INK 
D2QCB 
D2PARITY 
D2INIT 
D2TCBINIT 

o 
1 
2 
3 
4 
5 
6 
7 
9 

10 
15 
16 

NO ACTION 
VERIFY UPPER AND LOWER VALUE 
VERIFY UPPER VALUE 
VERIFY LOWER VALUE 
PROCESS CONNECTION NUMBER 
TRANSFORM ON, SN IN LLCB ADDRESS 
CHAIN TCB (not used) 
GET INDEX INTO LINK TABLE FROM LRN 
GET A QUEUE CONTROL AND SEND INIT (not used) 
PROCESS PARITY 
EMPTY OUTPUT QUEUE AND SEND INIT (not used) 
SET UP VARIANT TCB 

Configure action error codes - If the action specified by the action table 
cannot be completed, a PNCONFIGURE subroutine sets an error code (DEFERRCDE) 
in the action table entry which commanded the action. Other SVM routines 
use this code to generate the configure/reconfigure SM reply (normal or 
error) to the host. 

DFERRCDE 

D3AC 
D3FNFVERR 
D3INVCB 
D3CNFERR 

D3NOBFR 
D3INVLT 
D3INVTT 
D3INVDT 
D3NOTENABLED 
D3NOL 
D3CNINU8E 

HALT CODES 

0 
1 
2 
3 

4 
4 
5 
5 
6 
8 
9 

Action complete 
Field number of field value out-of-range 
Invalid control block ID 
Control block already configured (configure 8M) 
Control block not configured (reconfigure SM) 
No buffer for TeB 
Invalid line type 
Invalid terminal type 
Invalid device type 
Line not enabled 
Logical link not established 
Connection number already in use 

The halt codes delivered to the NPU console are shown in appendix B, of the 
CCI reference manual. 

60471160 A H-83 

J 





ON-LINE DEBUGGING AIDS 

The on-line debugging aids for CCI include the Test utility Package (TUP) 
and other aids. These debugging aids off~r a variety of interactive 
commands useful to the programmer who is altering CCI code or adding a new 
TIP to the system. Several breakpoint commands are available. 

NOTE 

These on-line debugging aids are not a supported product. 
The descriptions are given here because of their usefulness. 
However, the user should be cautious about any analysis based 
on the use of these debugging aids. 

CONSOLE COMMANDS 
Commands for on-line debugging are entered through the NPU console. A 
special character (control A) places the console in debug mode. In this 
mode, the console is an interactive device. In addition to the standard 
machine language debugging features, there are aids based on the internal 
structure of the software (such as dumping a line control block (LCB) or 
making a worklist entry). Various machine language level breakpoints are 
also available. These debugging aids allow one or more breakpoints per 
machine instruction. 

INSTALLING DEBUGGING AIDS 

The on-line debugging aids are an optional feature. They are made available 
by using the Update command: 

* DEFINE DBUGALL 

during the build process. During the MPEDIT phase, the global to console 
must be set to true. 

GENERAL COMMAND FORMAT 

Once the debugging system is activated, it accepts any of the commands 
listed in table I-I. Rules for entering the commands are as follows: 

• Control A allows the user to enter debug mode. The control A must be 
recognized as the first character of the input mess9ge. 

• Control D allows the user to leave the debug mode. 

• Each command can include up to eight parameters. Each parameter 
field includes one to five hexadecimal characters (IS-bit addressing 
is s uppor ted) • 

60471160 A I-I 



1-2 

• Commas or blanks delimit the parameters. These symbols are 
interchangeable. 

• A slash (I) delimits the end of a command or the end of a command 
line. 

• Control C or question mark (?) cancels a partially entered debugging 
command. 

• 
• 

Shift a or control H are used for backspacing. 

An error message (*ERR) is printed in response to an invalid input. 
The usual invalid inputs are a bad command mnemonic, the wrong number 
of parameters, or a parameter containing nonhexadecimal characters. 

60471160 A 



TABLE I-I. DEBUGGING AID COMMANDS 

Command Syntax 

OPS Halt 

OPS Restart 

Dump Memory 

Load Memory 

Display Register 

Enter Register 

Display File 1 

Enter File 1 

Get a Worklist 

Release a Buffer 

Get a Worklist 

Put a Worklist 

Device Assignment 

Dump OPS Program 

Load OPS Program 

Read Page Register 

Dump LCB 

Dump LLCB, TCB 

Search for TCB 

Enter Breakpoint 

Remove Breakpoint 

Enable Software BP 

Disable Software BP 

Breakpoint Restart 

60471160 A 

OH/ 

OR/ 

DP{i},start, stop, basel 

LHX, start, base/C, word 1, ..• ~ord 8/ 

DR/ 

E R / where R is 1, 2, 3, 4, Q, A, I, or 

DR, file 1 register (0 .. X'FF)/ 

EF, file 1 register 0 .. X'FF)/ 

BG, buffer size (0 .. 3) / 

BR, buffer address, buffer size (0 .. 3) / 

LG, worklist number/ 

LP, worklist number, word 1, ... word 6/ 

DA, LIP, PDf 

DM{~}, start, end, OPS worklist number/ 

LDX, start, OPS worklist number/C, 
word 1, ••. word S. 

RP, page number + X' 8000*bank/ 

LC{~},line number/ 

TC{~},DN, SN, CN/ 

TS{~}'line number, CA, TA, DT/ 

EB, inst. start, inst. stop, BP code, 
optional parameters/ 

RB, inst. start, inst. stop, BP code/ 

BL, software priority level (0 .• X'll)/ 

DL, software priority level (0 •. X'll)/ 

RS/ 

M 

I-J 



COMMAND FORMATS 

Each command is described individually in this subsection. The normal 
response to the command is also given. Two types of responses occur: 

• Debug asks for more parameters (such as where a Load Hexadecimal 
command is used). These additional parameters always use a C command 
in the form: 

C, word 1, ••• , word 8/ 

Word is a hexadecimal value (00000-FFFFF16) (5-character 
hexadecimal should be used only for addresses above (FFFFF16) 

, or is the delimiter 
/ ends the input. 

• Debug returns results or a comment. The return always begins with *. 

In the following, the syntax of the input is given on the first line and the 
format of the normal response is giveri on subsequent lines. 

OPS Halt 

The OPS halt command stops OPS-level processing in the system. All other 
debug commands can be entered while the system is in this mode. 

OH/ 
* * OPS HLT 

The error response *ERR SYS HLT is returned if the OPS level is already 
hal ted. 

OPS Restart 

This command returns control to the OPS level after an OPS halt. 

OR/ 
* 

The error response *ERRR SYS HLT prints if the OPS level is not halted. 

Dump Memory 

DPC 
DPL , start address, stop address, base address/ 

* dump address word 1 
* dump address +8 word 9 

etc. 

word 8 
word 16 

The DPC command displays the memory contents within the specified range on 
the local console. The DPL command dumps memory to the assigned dump device. 

1-4 60471160 A 



The base address is optional and is used for ~elative addressing. If only 
the start address is entered, one word of memory is dumped. 

An error response is returned if the user attempts to dump outside the 
memory range. 

A DR/command can be repeated without reentering the command by pressing the 
manual interrupt (control G) key. 

Load Memory 

LHX start address, base address/ 

* 
C, new word 1, •.. new word 8/ 
* load address old word 1 ... old word 8 

The LHX command sets up the load address. The C command loads from one to 
eight words into memory. The load address is incremented for each word 
loaded. Thus, mulitple C commands load contiguous memory. Other debug 
commands (except an LHX command) can be executed between C commands without 
disturbing the load address. The previous contents of the loaded memory 
locations are displayed in response to a C command. If the user tries to 
load an out-of-range location, dashes print following the contents of the 
last in-range location. 

Display Registers 

The contents of macro registers Rl, R2, R3, R4, Q, A, I, and Mare 
displayed. The command gives valid information only if the system is in the 
OPS halt, breakpoint halt or system halt mode. 

DR/ 
*1 = contents of Rl .•. M contents of M 

Enter Register 

The specified register is loaded. This command is accepted only in the OPS 
halt or breakpoint halt modes. 

E{R~, value/ where R is 1, 2, 3, 4, Q, A, I, or M 
* previous register contents 

Display File 1 

The contents of the specified micro file 1 register are displayed. A series 
of file 1 registers can be displayed quickly by using the manual interrupt 
(control G) key. After the initial display file 1 command, the next file 1 
register is displayed by pressing manual interrupt. 

OF, file 1 register (O-FF16)/ 
* register contents 

An error response is displayed if the file 1 register number is too large. 

60471160 A I-5 



Enter File 1 Register 

A specified file 1 register is loaded with a given value. 

EF, file 1 register (0 •• FF16), value/ 
* previous file 1 register contents 

An error response is displayed if the file 1 register number is too large. 

Get A Buffer 

A buffer of a given size is obtained. 

BG, buffer size (0 .• 3)/ 
* buffer address 

An error response is displayed if the buffer size is too large. 

Release A Buffer 

A given buffer is returned to the free buffer pool. 

NOTE 

No error checking is performed by the Release a Buffer 
command. Incorrect use of this command can cause a system 
halt. 

BR, buffer address, buffer size (0 •• 3)/ 
* 

An error response is displayed if the buffer size is too large. 

GET A WORKLIST ENTRY 

The next entry from the specified worklist is removed and printed. If the 
worklist is currently empty, *LIST EMPTY is printed. 

LG, worklist number/ 
* worklist entry word 1 ••• worklist entry word 6/ 

An error response is displayed if the worklist number is too large. 

Put A Worklist Entry 

The given worklist entry (zero to six words) is placed into the specified 
worklist. OPS-level programs can be exercised with the command. First, 
halt OPS level scheduling via the OPS halt command. Next, place the desired 
worklist entry or entries into the desired OPS-level worklist(s). Finally, 
return control to OPS scheduling using the OPS restart command. The queued 
worklist entries are worked off and results can be verified. 

LP, worklist number, word 1, ••. word 6/ 
* 

An error response is displayed if the worklist number is too large. 

1-6 60471160 A 

( 
\ 

( 
I 

\ 



/ 
/ 

Device Assignment 

This command allows the user to dynamically assign logical input/output 
functions (LIO) to physical devices (PO). The available PO codes are as 
follows: 

o Null dev ice 
1 Local console 
2 Line printer 

The currently defined LIO codes are as follows: 

8 Dump device 
9 Memory snapshot 
XA16 Register snapshot 
XB16 Breakpoint return address snapshot 
XC16 Spare breakpoint 
X016 Quick output 

The default for all LIO codes except the dump device is the local console. 
The dump device is the local line printer if the line printer software is 
built into the system. 

DA, LID, PO/ 
* 

An error response is displayed if either parameter is too large. 

Dump OPS Program Locations 

This command is similar to the OP command, which uses the base address 
feature. Instead of a base address, however, the user enters the desired 
OPS program worklist number. The correct OPS program base address is 
obtained from a prebuilt table. 

OMP 
OML , start address, end 
* dump address word 1 
* dump address +8 word 9 

etc. 

address, OPS wI number/ 
word 8 

• •• word 16. 

The OMP command dumps to the local console. The OML command dumps to the 
assigned dump device. All three parameters are mandatory. An error 
response is printed if the OPS worklist number is too large. 

NOTE 

When the OPS programs are paged above 64K (FFF16)' the 
necessary paging is automatically performed. 

60471160 A I-7 



Load OPS Program Location 

This command is similar to the LHX command, which uses the base address 
feature. Instead of a base address, however, the user enters the desired 
OPS program worklist number. The correct OPS program base address is 
obtained from a prebuilt table. 

LOX, start address, OPS wl number/ 

* 
C, new word 1, 
* load address 

••• new word 8/ 
old word 1 old word 8/ 

NOTE 

When the OPS programs are paged above 64K, the necessary 
paging is automatically performed. 

Read Page Register 

In NPUs with the paging feature, page registers in either bank can be 
displayed. Writing a page register while the system is on-line is quite 
hazardous and is not allowed. The leftmost bit of the page number parameter 
determines which bank to read: 0 •• lF16 for bank 0 and 8000 •• 801F16 for 
bank 1. 

RP, page number/ 
* page contents. 

An error response is displayed if the page number is out of range. 

Dump Line Control Block 

Given a line number, the corresponding line control block (LCB) is dumped. 
The line number is a 16-bit quantity containing the port (left 8 bits) and 
subport (right bits), subport = 00. 

{ LCB} 
LCL , line number/ 

*LCB start address word 1 
*LCB start address +8 word 9 

etc. 

word 8 
word 16 

LCB dumps to the local console. LCL dumps to the assigned dump device. An 
error response is displayed if either the port or subport is too large for 
the configured system. 

I-8 60471160 A 



Dump Terminal Control Block or Logical Link Control Block By DN, SN, AND eN 

If the CN is zero, the logical link control block (LLCB) is dumped. 
Otherwise, the terminal control block (TCB) is dumped. The DN and SN (and 
CN) form the logical network address and a search through the routing 
directory is performed to find the proper control block. 

{TCB} 
TCL , DN, SN, CN/ 

* control block start address word 1 
* control block start address +8 word 9 

etc. 

word 8 
word 16 

TCB dumps to the local console. TCL dumps to the assigned dump device. An 
error response is displayed if the control block is not found in the routing 
directory. 

Dump Terminal Control Block By Line Number, CA AND TA 

The line number, cluster address, and terminal address form the physical 
network address of the terminal control block (TeB) and a search through the 
active line control blocks is performed to find the TeE. 

{ TSB} 
TSL , line number, eA, TA, DT/ 

* TeB start address word 1 word 8 
* TeB start address +8 word 9 ... word 16 

etc. 

TSB dumps to the local console. TSL dumps to the assigned device. An error 
response is displayed if the TeB is not found. 

Enter Breakpoint 

This command places an entry into the software breakpoint table 
(JEBPTABLE). The entry consists of the starting and ending addresses of the 
instruction to breakpoint, the breakpoint code specifying which breakpoint 
to execute, and any optional parameters required by the breakpoint. A 
maximum of five optional parameters are allowed. 

EB, instruction start, instruction stop, breakpoint code, parameter 
1, ..• parameter 5/ 
* 

The following conditions cause an error response to be displayed: 

• Breakpoint table full 
• Start address, end address, and/or breakpoint code missing 
• Start or end address out-of-range 

Breakpoint codes are discussed below. 

60471160 A I-9 



Remove Breakpoint 

This command removes a specified entry from the breakpoint table. Only 
matches with the instruction start and end addresses and the breakpoint code 
are searched for in the breakpoint table. An error response is displayed if 
the wrong number of parameters are entered or if the entry is not found. 

RB, instruction start, instruction end, breakpoint code/ 
* 

Enable Software Breakpoint By Priority Level 

This command allows software breakpoints to occur at a specific software 
priority level. This allows reentrant code which is executed at different 
priority levels to be breakpointed at a specific priority level or levels. 

BL, priority level (0 •• 1116)/ 
* 

An error response is displayed if the priority level is too large. 

Disable Software Breakpoint By Priority Level 

This command disables software breakpoints on a specific priority level. 

DL, priority level (0 •• 1116)/ 

An error response is displayed if the priority level is too large. 

SOFTWARE BREAKPOINTS 
Software breakpoints on the NPU are generated through the hardware program 
protect system. When the system is initialized, all of memory except the 
dynamic buffer area is protected. That is, the program protect bits are set 
on each nonbuffer memory location. When a breakpoint is set on an 
instruction, the program protect bits are reset for that instruction. When 
the protected instruction following the unprotected (breakpoint) instruction 
is executed, a program protect interrupt (line 0) is generated, provided the 
program protect system is activated. The instruction generating the 
interrupt executes as a I-word NOP. The line 0 interrupt handler passes 
control to the breakpoint handler. The breakpoint interrupt handler 
searches the breakpoint table using the interrupt return address for line 
O. If an entry in the breakpoint table is not found, a true program protect 
fault has occurred and the system is halted. Otherwise, control is passed 
to the proper breakpoint handler for each entry found in the breakpoint 
table, provided software breakpoints are enabled for the interrupting 
priority level. Note that more than one breakpoint entry per instruction is 
allowed. 

A basic knowledge of the macro assembly language is necessary when using 
software breakpoints. 

Certain restrictions must be observed when using software breakpoints. 

I-IO 60471160 A 

( 



Instructions that write into nonbuffer memory, jump, return jump or skip, or 
are priviledged (disable and enable interrupts, set and clear protect bit, 
and interregister instructions with the interrupt m~sk register as the 
destination register) cannot have breakpoints. The enter breakpoint command 
is: 

EB, start global area, end global area, 0/ 

This clears the protect bits on all global variables, allowing the user to 
breakpoint instructions that write into the global area. 

Two consecutive instructions cannot have breakpoints. Noninterruptable code 
cannot have breakpoints. 

Note that both the proper software priority and the program protect system 
must be active before a breakpoint interrupt can occur. The program protect 
system is activated by entering J28: on the NPU maintenance panel. 
Entering J20: deactivates the program protect system. 

The global constant JIBREAKMAX specifies the number of entries in the 
breakpoint table JEBPTABLE. Currently, JIBREAKMAX is 10. 

BREAKPOINT HANDLERS 

Currently, there are seven breakpoints handlers available: 

• Enter debug mode 
• Memory snapshot 
• Register snapshot 
• Instruction address snapshot 
• Quick output 
• Wraparound snapshot 
• User-defined snapshot 

The enter debug mode breakpoint enters a loop after the breakpoint 
instruction executes. In this loop, all priority levels at and below the 
breakpoint priority level are suspended until the loop is exited using the 
breakpoint restart debug command. All debug commands can be entered while 
in the breakpoint loop. 

The memory snapshot formats a specified memory range into system buffers and 
queues them to a specified local peripheral. 

The register snapshot formats the contents of macro registers Rl, R2, R3, 
R4, Q, A, I, and M into a system buffer and queues it to a specified local 
peripheral. 

The instruction address snapshot places the address of the breakpoint 
instruction into a system buffer and queues it to the memory snapshot local 
peripheral. 

Quick output writes the contents of one buffer of ASCII characters to a 
specified local peripheral. 

The wraparound snapshot places the contents of a specified memory range into 
a user-supplied circular save area. 

60471160 A I-II 



The user-defined snapshot consists of 20 NOPs available to contain 
user-written breakpoint code. 

The local peripheral for the above snapshots is specified by the device 
assignment debug command. 

Combinations of the above snapshots can be entered for a single breakpointed 
instruction. Table 1-2 defines the optional parameters for the Enter 
Breakpoint debugging command. The execution count is the maximum number of 
times the snapshot is to be executed. 

OPS SCHEDULED DEBUG AID 
A special OPS scheduled program (PBT1PDBG) is available to execute 
user-supplied debug code. PBTIPDBG is entered by making a worklist entry 
from source code or through the List Put debugging command (LP, parameters, 
see table I-I). The first word of the worklist entry is a code defining 
which user code to execute. The next four words are optional and are used 
to pass parameters to the user code. Code 0 is reserved and contains 20 
NOPs available for on-line patching. 

1-12 60471160 A 



TABLE I-2. BREAKPOINT PARAMETERS 

Breakpoint Parameter Number 
Code (Hex) Breakpoint and Description 

7 Enter debug mode No parameters 

9 Memory snapshot 1 - Snapshot start address 

2 - Snapshot end address 

3 - Execution count 

A Register snapshot 1 - Execution count 

B Instruction address 1 - Execution count snapshot 

snapshot 

C User-defined snapshot 1 - Execution count 

D Quick output 1. - Address of buffer to output 

2 - Execution count 

E Wraparound snapshot 1 - Start address of snap area 

2 - End address of snap area 

3 - Start address of save area 

4 - End address of save area 

5 - Execution count 

60471160 A I-13 





Abort 
Downline 6-35 
Upline 6-35 

Accept 
Input Flag, PTINIT 6-35 
Output Flag, PTINIT 6-35 

ACK 11-6 
ACKO 11-8 
Acknowledgment Block, HASP 11-6, 

11-7 
Address 4-23, 6-2 

Functions 4-24 
HASP 11-16 
Mode 4 10-5 
Mode 4 Terminal 10-3 
Register Code 7-14 
18-Bit 4-24 

Alternating Directories 6-16 
Analyzer, CLA Status 5-22 
ASCII 

Decimal Conversions 4-20, 4-21 
Hexadecimal Conversions 4-20, 

4-22 
Set Membership 4-20 

Assignments, Interrupt 4-16 
Asynchronous (TTY) TIP 9-1 
Autorecognition 

BSC 8-13 
HASP 11-25 
Mode 4 10-14 
TTY 9-6 

Availability, Buffer 4-7 

BACK Block 6-7 
Base System Software 4-1 
Basic Interrupt Processing 4-13 
Batch Carriage Control 

Action, 2780 8-9 
Action, 3780 8-11 
Symbols 8-4 

Batch Format Data 6-10 
BCB 11-8 

Error 11-23 
Error Block 11-24 

Binarv 4-20 
Binary Codes, BSC 8-2 
Binary Synchronous Communications 

TIP 8-1 
Binary Conversions 

to ASCII Decimal 4-21 
to ASCII Hexadecimal 4-22 

60471160 A 

INDEX 

Bit Assignment, Coupler Status 
Register 7-11 

BLK (Block) Block 6-7 
Block 6-35 

ACK 11-6 
Acknowledgment 6-7 
BACK 6-7 
BLK 6-7 
BSN Type 6-6 
CMD 6-7, 6-35, 10-10 
Card Reader CMD 11-18 
Command 6-9 
Control Byte (BCB) Error 11-24 
Control Byte Error, HASP 11-23 
Control Byte, HASP 11-8 
Data 6-4 
Discard Non-routable 6-35 
FCS Change 11-13 
Flow Control 6-3 
Format, Data 7-25 
Format, HASP Signon 11-15 
Functions 4-24 
HASP 

Control 11-6 
Data 11-8, 11-12 
EOF 11-13 
End-of-File 11-13 
Enquiry 11-7 
FCS Change 11-14 
Idle 11-8 
Multileaving 11-6 
Operator Console 11-13 
Signoff 11-16 
Signon 11-15 

Length, Compare 4-24 
Make-up Error 11-23 
Main Memory, Clear 4-24 
Printer CMD 10-11 
Printer Data CMD 11-20 
Protocol 1-9, 6-1 
Protocol Summary D-l 
Punch Data CMD 11-22 
Routing 1-13 
Ser ia1 Number (BSN) 6-6 
Transfer 7-16 
Types 6-6, 6-7 

Break Codes 10-8 
Breaks, Upline 10-8 
BSC 026/029 Codes 8-2 
BSC Autorecognition 8-13 
BSC BinarY Codes 8-2 

Index-l 



BSC Carriage Control 8-3 
BSC Error Processing 8-13 
BSC Interactive Carriage Control 

8-3 
BSC Operational Characteristics 

8-5 
BSC Operational Features 8-2 
BSC TIP 8-1 
BSC TIP, Direct Calls from 8-12 
BSC TIP, Direct Calls to 8-11 
BSC Terminal Features 8-5 
BSC Transparent Data 8-3 
BSN 6-6 
BSN/Block Type 6-6 
Buffer 

Availability 4-7 
Copying 4-7 
Formats 4-5, 7-25 
Handling 4-2, 4-7 
Stamping 4-5 
Releasing 4-7 
Releasing Several 7-7 
Single 4-6, 4-7 

Call 
BSC TIP 8-11 
Di rect 4-9 
Direct and Worklist 1-13 
Firmware Interface 1-15 
Firmware Level 1-15 
Illegal 4-26 
Macroassembly Programs from 

PASCAL 4-17 
Multiplex Subsystem 1-15 
PASCAL 4-19 

Card Reader 
HASP 11-18 
Input Stopped CMD Blocks 10-10 
Interface, Mode 4 10-9 
Nontransparent Data, HASP 11-19 
Stream Control CMD Blocks 11-18 
Transparent HASP Data, HASP 

11-20 
Carriage Control 

Action, 2780 Batch 8-9 
Action, 3780 Batch 8-11 
BSC 8-3 
BSC Interactive 8-3 
Codes, HASP Printer 11-21 
Codes, Printer 10-11 
DBC Codes for 10-8 
Mode 4 10-8 
Symbols, Batch 8-4 
Symbols, Interactive 8-4 
TTY Output Messages 9-5 

CCI 
Design 
Features 
Mnemonics 

Index-2 

1-3 
1-8 

B-1 

Modular Structure 1-9 
Modules 1-10 
Modules Relationships With 

PTLINIT 5-27 
Naming Conventions F-l 
Overview 1-1 
Priority and Nonpriority Tasks 

1-4 
Programming Languages 1-18 
Programming Methods 1-9 

CDC 711 Terminal Error 
Processing 10-13 

CE Error Messages 3-3, 3-4, 6-21 
Change Block, HASP FCS 11-14 
Channel, Service 6-8 
Characteristics, BSC 8-5 
Characters, EBCDIC 11-7 
Check if Block is to be Sent, 
PBBCHCHK 6-35 
CLA 5-3 

Status 
Status 

Classes 
Clear 

Analyzer 5-22 
Overflow Handling 

12-2 

Block of Main Memory 4-24 
Line Command 5-11 
Protect Bits 4-25 

5-24 

Cluster Addresses, Mode 4 
CMD Block 6-7 

10-5 

Card Reader Input Stopped 
Card Reader Stream Control 

11-18 
Printer Data Stream Control 

11-20 

10-10 

Printer Input Stopped 10-11 
Punch Data Stream Control 11-22 
to Host 6-35 

Code Conversion, Mode 4 
Codes, Halt 3-2 
Command 

Clear Line 5-11 

5-20 
5-12 

7-10 
5-11 

Control 5-11 
Disable Line 
Enable Line 
Host Function 
Ini tiali ze Line 
Input 5-15 

10-3 

Input After Output 
NPU Console Control 
NPU Function 7-12, 
Output 5-15 

5-18 
4-29 

7-16 

PPU Function 7-15 
Terminate Input 5-19 
Terminate Output 5-19 

Command Block 6-7 
Used on Nonzero Connections 6-9 

Command Driver 
Interface 5-9 
Worklist Entries 5-8 

60471160 A 



Command Format 
Enable Line 5-13 
Input 5-16 
Input After Output 5-lS 
Terminate Input 5-20 
Terminate Output 5-21 

Command Interface for Printer, 
HASP 11-21 

Command Message Summary C-l 
Command Packet Format 5-10 
Common 

Multiplex Subroutines for TIPs 
5-21 

Return Control Routine, 
PTRETOPS 6-34 

TIP Regulation, PTREGL 6-34 
TIP Subroutines 6-21, 6-23 

Communication Line Adapters 
(CLA) 5-3 

Comm un i ca ti on 
Line Initialization, HASP 
Network 6-1 

11-14 

Paths for Block Flow Control 
6-3 

Using PASCAL Globals 
Worklist 5-5 

Compare 
Equal Length Blocks 
Two IS-Bit Addresses 

Components 
Hardware 5-3 
State Program 

Compression S-4 
Configurati on 

Control Blocks 
HASP 11-16 
Line 2-5 

12-4 

6-lS 

Line Deletion 2-10 
Lins Service Message 
Line/Terminal 2-7 
NPU 2-1, 2-4, 2-5 
Sequence, NPU 2-4 

1-16 

4-24 
4-24 

2-6 

Terminal (TCB) 2-10 
Terminal Service Message 

Connection 
Directory 
Nonzero 
Number 

Console 

6-13 
6-9 

6-6 

Blocks, HASP 11-13 
Control Commands 4-29 
Control Messages 4-29 
HASP 11-17 
Support 4-27 
Support Services 4-2S 
Worklist Entry 4-29 

2-11 

Contention, Coupler 7-5, 7-17 
Contention Resolution, Mode 4 

10-9 

60471160 A 

Control 
Blocks 

Configuring 6-lS 
Deleting 6-lS 
Disabling 6-lS 
Enabli ng 6-lS 
HASP 11-6 

HASP ll-S 
Byte 

Data 
HASP 
HASP 
HASP 
HASP 

Blocks, 
Block 
Record 
String 
Subrecord 

l1-S 
11-10 
11-12 

11-11 
Codes 

HASP Printer Carriage 11-21 
Printer Carriage 10-11 

Command 5-11 
Format 5-12 
NPU Console 4-29 
BSC Carriage S-3 
BSC Interactive Carriage 
Carriage for TTY Output 

Messages 9-5 
DBC Codes 
Data Stream 
Flow +1-25 

10-S 
6-S 

S-3 

Mode 4 Carriage 10~S 
Routine, PTRETOPS 6-34 
Sequence, HASP Function 
Single Word Transfers 
Symbo+s, Batch ~qrriage 
Symbols, Interactive 

11-10 
7-12 

8-4 

Carr iage S-4 
TTY Carriage 

Convert ASCII 
9-4 

Decimal to Binary 4-20 
Hexadecimal to Binary 4-20 

Convert Binary 
to ASCII Decimal 4-21 
to ASCII Hexadecimal 4-22 

Copying Buffer 4-7 
Count, Line 6-20 
Coupler 

Contention 7-17 
Function Codes, Programming 

7-10 
I/O Transaction Contention 7-5 
I/O Transactions 7-3 
Interface Hardware Programming 

7,..S 
Interface Protocol Sequences 

7-20 
Registers 7-S, 7-9 
Regulation 7-lS 
Status Register Bit Assignment 

7-11 
CRC-16 Error (Cyclic Redundancy 

Check) 11-23 

Index-3 



CRT, Duplicating of write Data 
10-13 

Cursor Positioning, Mode 4 10-7 
Cyclic Redundancy Check 11-23 

Data 
Batch Format 6-10 
Block 

Format Used by the HIP 7-25 
Header Formats 6-4 
HASP 11-8, 11-12 

Formats 6-8 
Interactive Format 6-10 
Nontransparent 6-11 
Mode 

Nontransparent 11-19, 11-20 
Transparent 11-20, 11-21 

Processing, Output 12-7 
Stream Control 6-8 
Structures 1-17, H-l 
Transfer, Multiple Character 

(Block) 7-16 
Transmission, HASP 11-9 
Transparent 6-12, 8-3 

DBC Codes for Carr iage Control 
10-8 

Debugging Aids, On-line 
Deletion 

Configure Line 
Control Blocks 
TCB 2-12 

2-10 
6-18 

I-l 

Design, CCI 1-3 
Destination Node Directory 
Device Type, ·HASP 11-17 
Diagnostics 3-1 

6-13 

Aids, In-line 3-3 
Service Messages 3-5 

Direct Calls 1-13, 4-9 
from the BSC TIP 8-12 
from the Mode 4 TIP 10-16 
from the TTY TIP 9-5 
on Firmware Level 1-15 
to TTY TIP 9-4 
to the BSC TIP 
to the HASP TIP 
to the Mode 4 TIP 

8-11 
11-26 

10-16 
Directives, HIP 7-2 
Directories 6-13 

Alternating 6-16 
Connection 6-13 
Destination Node 
Rou ting 6-14 
Source Node 6-13 

6-13 

Disable Line Command - NKDISL 
5-20 

Disabling Control Blocks 6-18 
Discard Non-routable Blocks, 
PBLOST 6-35 
Dispatching Service Messages 

Index-4 

6-18 

Display File 1 4-25 
Downline 

Abort, PBDNABRT 6-35 
Message Processing 1-5, 1-6 

Dump 
Interpretation 3-2 
NPU 2-4, 7-14 

Duplicating of Write Data on CRT, 
Mode 4 10-13 

Dynamic Page Register 4-23 

E-Codes 10-3, 10-6 
EBCDIC Characters, HASP 11-7 
Elements of Multiplex Subsystem 

5-2 
Enable Line Command 

Format 5-13 
NKLENBL 5-12 

Enabling Control Blocks 6-18 
End-of-File Blocks, HASP 11-13 
ENQ 11-7 
Enquiry Block, HASP 11-7 
Entries, Worklist 5-8 
Entry 

Console Worklist 4-29 
Worklist 4-12, 4-13 

EOF 11-13 
Block, HASP 11-13 

EOI 8-2 
EOR 8-2 
Error 

Block, BCB 11-24 
CRC-16 11-23 
Checking, HIP 7-19 
Conditions, HASP 11-22 
HASP Block Control Byte 11-23 
HASP Unknown Response 11-23 
Handling, Mode 4 10-12 
Illegal Block Make-up 11-23 
Messages 6-21 
Processing 

BSC 8-13 
CDC 711 Terminal 10-13 
HIP 7-7 
Short Term ~0-12 
TTY 9-6 

Execution Timers 4-27 
Execution of State Programs 12-1 
Expansion 8-4 
Extracting a Worklist Entry 4-13 

Failure 3-1 
Host 3-1, 7-18 
Line 3-2 
NPU 3-1 
Terminal 3-3 

FCS 11-10 
Change Block 11-13, 11-14 

60471160 A 



Features 
BSC S-2 
BSC Terminal 
CCI l-S 

S-5 

HASP Workstation 
File 1, Load/Display 
Files, Punch S-3 

11-2 
4-25 

Finding Number of Characters to be 
Processed 6-33 

Firmware 
Interface 1-15 
Interface to Modem State 

Programs 12-9 
Interface to Output Data 

Processing 12-7 
Level, Direct Calls 1-15 
Multiplex Levell 5-4 
Text Processing 6-33 
Worklist Entries 5-S 

Flags, Set Accept Input/Accept 
Output 6-35 

Flow Control 6-3 
HASP 11-25 

Format 
Batch Data 6-10 
Buffer 4-5, 7-25 
CE Error and Statistics 

Messages 3-3 
Command Packet 5-10 
Control Command 5-12 
Data 6-S 
Data Block 7-25 
Data Block Header 6-4 
Enable Line Command 5-13 
HASP Signon Block 11-15 
Host/NPU Word 7-7 
Input After Output Command 5-1S 
Input Command 5-16 
Interactive Data 6-10 
Terminate Input Command 5-20 
Terminate Output Command 5-21 

Function 12-4 
Block 4-24 
Codes, Coupler 7-10 
Commands, NPU 7-16 
Commands, PPU 7-15 
Control Sequence, HASP 
HASP TIP 11-3 
HIP 7-12 
Host 7-10 
Mode 4 TIP 10-1 
Modem/Circuit 5-14 
NPU 7-12 
Transfer 7-1 
lS-Bit Address 4-24 

11-10 

General Peripheral Processing 
4-27 

60471160 A 

Generate 
Banner Records, PTBANLACE 6~35 
Lace Records, PTBANLACE 6-35 
Service Messages 6~lS 
Statistics Service Messages 

6-20 
Statqs Service Messages 6-19 

Globals, PASCAL 1-16, 4-17 
Glossary A-l 

Halt Codes 
Handling 

3-2 

Buffer 4-2, 4-7 
5-24 CLA Status Overflow 

Line Interface 1-16 
Modem Response Timeout 
Routines 4-19 

5-25 

Hardware 
Components 5-3 
Considerations, Mod~ 4 
Considerations, HASP 
Programming, Coupler 

10-1 
11-1 

Interfa~~ 
7-S 

HASP 
Acknowledgment Block (ACK) 
Addressing 11-16 
Autorecognition ~1-25 
Block Control Byte (BCB) 

11-23 
Card Reader 11-1S 

11-6 

ll-S, 

Card Reader N6ntr~nsparent Data 
Mode 11-19 

Card Reader Transparent Data 
Mode 11-20 

Command Interface for Printer 
11-21 

Communication Line 
Initialization 11-14 

Configuration 11-16 
Console 11-17 
Control Blocks 11-6 
Control Bytes for Data Blocks 

11-S 
Data Block Description 11-12 
Devige Type 11-17 
EOF Block 11-13 
End-of-File Blocks (EOF) 11-13 
Enquiry Block (ENQ) 11-7 
Error Conditions 11-22 
FCS Change Block 11-13, 11-14 
Flow Control . 11-25 
Function Control Sequence 

(FCS) 11-10 . 
Hardware Considerations 11-1 
Host Inte~face 11-16 
Idle Block (ACKO) 11-S 
Illegal alock Make-up Error 

11-23 

Index-5 



Multileaving Block Description 
11-6, 11-9 

Negative Acknowledgment Block 
(NAK) 11-7 

Operator Console Blocks 11-13 
Postprint 11-27 
Printer 11-20 

Carriage Control Codes 11-21 
Nontransparent Data Mode 

11-20 
Transparent Data Mode 11-21 

Protocol 11-4, 11-5 
Punch 11-22 
Record Control Byte (RCB) 11-10 
Regulation 11-25 
Significant EBCDIC Characters 

11-7 
Signoff Block 11-16 
Signon Block 11-15 
Signon Block Format 11-15 
String Control Byte (SCB) 11-12 
Subrecord Control Byte (SRCB) 

11-11 
TIP 11-1 
TIP Functions 11-3 
TIP, Direct Calls to 11-26 
Terminal Operational Procedure 

11-6 
Unknown Response Error 
User Interface 11-14 
Workstation 

Features 11-2 
Initialization 11-14 
Startup 11-14 
Termination 11-14 

11-23 

Header Formats, Data Block 6-4 
HIP 7-1 

Data Block Format 7-25 
Directives 7-2 
Error Processing 7-7, 7-19 
Functions 7-12 
OPS and Interrupt Levels 7-6 
States 7-25, 7-27 
Timeouts 7-19 
Transfer Initiation 7-2 
Transfer Timing 7-7 
Transitions 7-27 

Host 
Failure 3-1, 7-18 
Function Commands 7-10 
Interface Package (HIP) 7-1 
Interface Protocol Sequence 

NPU Side 7-21 
Host Side 7-23 

Interface 
HASP 11-16 
Mode 4 10-7 

NPU Word Formats 7-7 
Recovery 7-18 
Send CMD Block to 6-35 

Index-6 

I/O Transactions 
Contention at the Coupler 7-5 
Coupler 7-3 

Idle Block, HASP 11-8 
Illegal Block Make-up Error, 

HASP 11-23 
Illegal Calls 4-26 
In-line Diagnostic Aids 3-3 
Indicators, Mode 4 Message Type 

10-3 
Ini tialization 

HASP Communication Line 
HASP Workstation 11-14 
Line 5-26 
NPU 2-1 
phase I 2-1 
Phase II 2-2 

Initialize Line Command 
lnitiating HIP Transfer 
Inline Diagnostic Service 

Messages 3-5 

11-14 

5-11 
7-2 

Input After Output Command -
NKINOUT 5-18 

Input Command - NKINPT 5-15, 5-16 
Input Nontransparent Terminal Mode 

2780 8-5 
3780 8-7 

Input Regulation, Mode 4 10-13 
Input State Programs 12-5 
Input State/Modem Stat~ Programs 

Interface 12-10 
Input Stopped, Cqrd Reader 
Input Transparent 

Data Mode, 2780 and 
Terminal Mode, 2780 
Terminal Mode, 3780 

3780 
8-6 
8-7 

Input, Accept 6-35 
Interactive Carriage Control 

BSC 8-3 
Symbols 

Interactive 
8-4 

Format Data 6-10 
Interface, Mode 4 10-7 
Mode TIP State Transitions 
Mode, TTY 9-1 

Interface 
Command Driver 5-9 
Coupler 7-8, 7-20 
Firmware 12-7, 12-9 
HASP Command for Printer 
HASP User 11-14 
HASP/Host 11-16 
Input State/Modem State 

Programs 12-10 
Line 1-16 
Mode 4 

Card Reader 10-9 
Pr inter 10-9 
Terminal 10-3 

10-10 

8-7 

9-2 

11-21 

60471160 A 

(' 
\ 



PTCLAS/Modem State Programs 
12-10 

Package, Host 7-1 
Priority Processing 1-3 
Protocol Sequence 

Host/NPU 7-21 
NPU/Host 7-23 

Special Call to Firmware 1~15 
System and User 5-4 
Text Processing Firmware 6-33 
User 4-15, 5-9 

Internal Output POI 6-22 
Internal Service Message 

Processing 6-17 
Interpretation, Dump 3-2 
Interrupt 

Assignments 4-16 
Levels for the HIP 7-6 
Mask 

AND 4-14 
OR 4-14 
Set 4-14 

Prior ity 4-14 
Processing 4-13 
State Definitions (PBINTRAPS) 

4-15 

Languages, CCI Programming 
LCBs, Saving and Restoring 
Levell, Multiplex 5-4 

1-18 
6-33 

Level 2 
Multiplex 
Worklists 

5-7 
5-6 

Levels, OPS and Interrupt 7-6 
Line 

5-11 Clear Command 
Configuration 

2-10 
2- 5, 2-6, 2- 7 , 

Count Request Service Message 
6-20 

5-12, 5-13 Enable Command 
Failure 3-2 
Initialization, HASP 
Initialize Command 
Initializer 5-26 
Interface Handling 
Recovery 3-2 

11-14 
5-11 

1-16 

Status Request Service Message 
6-19 

\ 

Link, Logical 6-34 
LIP/TIP OPS level Worklists 
Load 

5-7 

File 1 4-25 
NPU 2-4, 7-14 
User-Defined Message 

Locating a State Process 
Logical Link Regulation 
Long Term Recovery, Mode 
Loop Multiplexers 5-3 

60471160 A 

4-26 
12-3 

6-34 
4 10-13 

Macroassembly Programs 4-17 
Macroinstructions 12-10 

State Program 12-11 
Macrointerrupts 4-13 
Main Memory 

Clear 4-24 
Map for NPU E-l 

Maintaining Paging Registers 
Making a Worklist Entry 4-12 
Mask 

AND Interrupt 4-14 
OR Interrupt 4-14 
Set Interrupt 4-14 

Maximum, Two Numbers 
Memory Map for NPU 

4-20 
E-l 

Message 
Block, MSG 6-7 
CE Error 3-4, 6-21 
Command C-l 
Console Control 4-29 
Down1ine Processing 1-5 
Formats 

CE Error and Statistics 
Mode 4 Protocol 10-4 

Output 9-4 
Processing 

Downline 1-6 
Up1ine 1-5, 1-7 

Segment 6-32 
Service 6-16, C-1 
Statistics 3-5 

4-22 

3-3 

Type Indicators, Mode 4 
User-Defined 4-26 

10-3 

Methods, CCI Programming 
Microinterrupts 4-16 
Minimum, Two Numbers 4-21 
Miscellaneous Subroutines 
MLIA 5-3 
Mnemonics 

CCI B-1 
HASP Protocol 11-5 

Mode 4 
Autorecognition 10-14 

1-9 

4-25 

Card Reader Interface 10-9 
Carriage Control 10-8 
Code Conversion 10-3 
Contention Resolution 10-9 
Cursor Positioning 10-7 
Duplicating of write Data on 

CRT 10-13 
Error Handling 10-12 
fIardware Considerations 10-1 
Host Interface 10-7 
Input Regulation 10-13 
Interactive Interface 10-7 
Long Term Recovery 10-13 
MTI Codes 10-5 
Message Type Indicators 10-3 
Nomenclature 10-3 

Index-7 



Printer Interface 10-9 
Protocol Features Not 

Supported 10-16 
Protocol Message Formats 10-4 
Short Term Error Processing 

10-12 
TIP 10-1 
TIP,Direct Calls 10-16 
Terminal Addressing 10-3 
Terminal Interface 10-3 
Terminal/Cluster Addresses 10-5 
Upline Breaks 10-8 

Modem Response Timeout Handling 
5-25 

Modem State Programs 12-8 
Firmware Interface 12-9 
PTCLAS Interface 12-10 

Modem State/Input State Programs 
Interface 12-10 

Modem/Circuit Functions 5-14 
Modular Structure, CCI 1-9 
Modules, CCI 1-10 
Monitor Table 4-3, 4-4 
Monitor, System 4-1 
MSG (Message) Block 6-7 
MTI Codes for Mode 4 10-5 
Multileaving Transmission Block, 

HASP 11-6, 11-9 
Multiple Character Data Transfer 

7-16 
Multiplex Subsystem 5-1, 5-2 

Firmware Worklist Entries 5-8 
Level 1 - Firmware 5-4 
Level 2 - PMWOLP 5-7 
Level 2 Worklists 5-6 
Level Status Handler Interface 

12-10 
Loop Interface Adapter 5-3 
Special Call 1-15 
Subroutines for TIPs, Common 

5-21 
Worklist Communications 5-5 
Worklist Processor 5-21 

Multiplexers, Loop 5-3 

NAK 11-7 
Naming Conventions, CCI F-l 
Negative Acknowledgment Block, 

HASP 11-7 
Network 1-2 

Communication Software 6-1 
NKDISL 5-20 
NKDOUT 5-15 
NKENDIN 5-19 
NKENDOUT 5-19 
NKINOUT 5-18 
NKINPT 5-15 
NKLENBL 5-12 

Inaex-8 

Node 6-2 
Destination 6-13 
Source 6-13 

Nomenclature, Mode 4 10-3 
Non-routable Blocks 6-35 
Nonpriority Tasks in CCI 1-4 
Nontransparent Data Mode 6-11 

HASP Card Reader 11-19 
HASP Printer 11-20 

Nontransparent Terminal Mode 
2780 8-5' 
3780 8-7 

Nontransparent Transmission Mode 
2780 Output 8-8 
3780 Output 8-10 

Nonzero Connectipn Command 
Blocks 6-9 

NPU 
Configuring 2-4 2-5 
Console Control Commands 4-29 
Failure 3-1 
Function Commands 7-12, 7-16 
Host Word Formats 7-7 
in a Network 1-2 
Initializing and Configuring 

2-1 
Load and Dump 2-4, 7-14 
Memory Map E-l 
Recovery 3-2 
Side, Host Interface Protocol 

Sequence 7-21 
Status Word Codes 7-13 
Stop 4-26 

Number of Characters to be 
Processed 6-33 

Numbers 4-20, 4-21 

Obtaining a Single Buffer 4-6 
ODD Handler 5-29 
On-line Debugging Aids I-I 
Operating Modes, TTY 9-1 
Operational Characteristics, BSC 

8-5 
Operational Procedure, HASP 

Terminal 11-6 
Operator Console Blocks, HASP 

11-13 
OPS Level 5-8 

HIP 7-6 
Processing 1-4 
Worklists, TIP/LIP 5-7 

OPS Monitor Table 4-3, 4-4 
Optional Modem/Circuit 'Functions 

5-14 
OR Interrupt Mask 4-14 
Orderword Register Codes 7-13 
Organization, Worklist 4-11 
Output 

60471160 A 

[' 



Accept 6-35 
Command - NKDOUT 5-]5 
Data Demand Timing Handler 5-29 
Data Processing, Firmware 

Interface 12-7 
Messages, TTY Carriage Control 

9-4, 9-5 
Nontransparent Transmission Mode 

2780 8-8 
3780 8-10 

Queuing (PBQlBLK and PBQBLKS) 
6-30 

Transparent Transmission Mode, 
2780 8-10 

Overflow Handling, CLA Status 
5-24 

Overview, CCI 1-1 

Page Mode 4-22 
Page Register 4-22, 4-23 
Page Switching 4-22 
PASCAL 

Globals 1-16, 4-17 
Procedure Calls, Type-Checking 

4-19 
Programs 4-17 

Paths, Communications 6-3 
PB18ADD - 18-Bit Addresses 4-23 
PB18BITS - 18-Bit Address 

Functions 4-24 
PB18COMP - Compares Two 18-Bit 

Addresses 4-24 
PBAEXIT, Restore Rl and R2 6-33 
PBAMASK - AND Interrupt Mask 4-14 
PBBCHCHK 6- 35 
PBBEXIT, Save Rl and R2 6-32 
PBCLR - Clears a Block of Main 

Memory 4-24 
PBCLRPOT - Clear Protect Bit 4-25 
PBCOMP - Compares Equal Length 

Blocks 4-24 
PBDNABRT 6-35 
PBFILEI - Load/Display File 1 

4-25 
PBFMAD - Converts ASCII Decimal to 

Binary 4-20 
PBFMAH - Converts ASCII Hex to 

Binary 4-20 
PBGETPAGE - Reads Specified Page 

Register 4-23 
PBGTISET 6-32 
PBHALT - Stops the NPU 4-26 
PBILL - Illegal Calls 4-26 
PBINTRAPS 4-15 
PBIOPOI - Internal Output POI 

6-22 
PBLMASK 4-14 
PBLOAD - Load a User-Defined 

Message 4-26 

60471160 A 

PBLOST 6-35 
PBMAX - Finds the Maximum of Two 

Numbers 4-20 
PBMEMBER - Test ASCII Set 

Membership 4-20 
PBMIN - Finds the Minimum of Two 

Numbers 4-21 
PBOMASK - OR Interrupt Mask 4-14 
PBPlPOI - Post Input POI 6-22 
PBPOPOI - Post Output POI 6-30 
PBPROPOI - Preoutput POI 6-30 
PBPSWITCH - Performs Page 

Switching 4-22 
PBPUTPAGE - write Specified Page 

Register 4-23 
PBQIBLK 6-30 
pBQBLKS 6-30 
PBRDPGE - Reads Dynamic Page 

Register 4-23 
PBRTEIA 6-35 
PBRTEPRU 6-35 
PBSETPROT - Set Protect Bit 
PBSMASK - Set Interrupt Mask 
PBSTPMODE - Sets Paging Mode 
PBSWITCH 6-15 

4-25 
4-14 
4-22 

PBTOAD - Converts Bin.ary to ASCII 
Decimal 4-21 

PBTOAH - Converts Binary to ASCII 
Hex 4-22 

PBUPABRT 6-35 
Perform Page Switching 
Peripheral Processing 
Phase I Initialization 
Phase II Initialization 
PIAPPS 2-3 
PIBUFI 2-2 
PIBUF2 2-3 
PIINIT 2-3 
PILININIT 2-3 
PIMLIA 2-3 
PINIT 2-2 
PI PROTECT 2-2 
PIWLINIT 2-3 

4-n 
4-27 

2:...1 
2-2 

PLINIT - Line Initializer 5-26 
PMTlSEC - Output Data Demand 

Timing Handler 5-29 
PMWOLP 5-7 
PMWOLP - Multiplex Worklist 

Processor 5-21 
POI Programs 1-13, 6-21 

Internal Output 6-22 
Post Input 6-22 
Post Output 6-30 
Preoutput 6-30 

Point of Interface Programs 
1-13, 6-21 

Positioning Cursor 10-7 
Post Input POI 6-22 
Post Output POI 6-30 

Index~9 



Postprint, HASP 11-27 
PPU Function Commands 7-15 
Preoutput POI 6-30 
Principal Data Structures 1-17, 

H-l 
Pr inter 

Carriage Control Codes 
HASP 11-21 

10-11 

Data Stream Control CMD Blocks 
11-20 . 

HASP 11-20 
HASP Command Interface 11-21 
Input Stopped CMD Blocks 10-11 
Interface, Mode 4 10-9 
Nontransparent Data Mode, HASP 

11-20 
Transparent Data Mode, HASP 

11-21 
Prior ity 

In terr upt 4-14 
Processing at the Interfaces 

1-3 
Tasks in CCI 1-4 

Procedure Calls, PASCAL 
Procedure, HASP Terminal 
Processing 

4-13 

4-19 
11-6 

BSC Error 8-13 
Basic Interrupt 
CDC 711 Terminal 
Downline Message 
General Peripheral 
HIP Error 7-7 

Error 10-13 
1-5, 1-6 

4-27 

Mode 4 Short Term Error 10-12 
Number of Characters 6-33 
OPS-Level 1-4 
Routing 6-13 
Prior ity 1-3 
Service Message 
TTY Error 9-6 

6-17 

Upline Message 1-5, 1-7 
Program Execution Timers 4-27 
Programming Coupler 

By Use of Function Codes 
Interface Hardware 7-8 

Programming Languages, CCI 
Programming Methods 1-9 
Programs 

4-17 Macroassembly 
PASCAL 4-17 
Point of Interface 
State 12-1 
Support 1-11 

Protect Bit 
Clear 4-25 
Set 4-25 

Protocol 

1-13 

7-10 

1-18 

Block 1-9, 6-1, 11-4, D-l 
Features Not Supported, Mode 4 

10-16 

Index-l0 

Mnemonic Definitions, HASP 11-5 
Mode 4 10-4 
Sequence, Host Interface 7-21, 

7-23 
Sequence, Coupler Interface 

7-20 
Transaction 7-1 

PRU Block Routing, PBRTEIA 6-35 
PTBANLACE 6-35 
PTCLAS - CLA Status Analyzer 5-22 

Interface to Modem State 
Programs 12-10 

Worklist 5-24 
PTCOMMAND 6-35 
PTCTCHR 6-33 
PTINIT 6-35 

Relationships With CCI Modules 
5-27 

State Transition Table 5-28 
PTREGL 6-34 
PTRETOPS 6-34 
PTRTxLCB 6-33 
PTSVxLCB 6-33 
PTTPINF 6-33 
Punch Data Stream Control CMD 

Block 11-22 
Punch Files 8-3 
Punch, HASP 11-22 

Queuing 
Output 6-30 
Removing a Message Segment 

from 6-32 
TCB 6-31 

RBF 8-2 
RCB 11-10 
Read 

Dynamic Page Register 4-23 
Specified Page Register 4-23 

Reconfiguration, TCB 2-12 
Record Control Byte, HASP 11-10 
Records, Banner and Lace 6-35 
Recovery 3-1 

Host 7-18 
Line 3-2 
Mode 4 10-13 
NPU 3-2 
Terminal 3-3 

Register 
Address 7-14 
Coupler 7-9 
Orderword 7-13 
Paging 4-22, 4-23 
Saving and Restoring 6-32 
Use, Coupler 7-8 

Regulation 
Coupler Use 7-18 
HASP 11-25 

60471160 A 



Logical Link 6-34 
Mode 4 Input 10-13 
TIP 6-34 

Relationships, PTLINIT/CCI 
Modules 5-27 

Releasing 
Buffer 4-7, 4-7 
Several Buffers 7-7 

Remote Batch Facilities (RBF) 
Removing a Message Segment from 

Queue 6-32 
Restoring 

LCBs 6-33 
Registers 6-32 
Rl and R2 6-33 

Return Control Routine, PTRETOPS 
6-34 

Routines 4-8, 4-19 
Point of Interface 6-21 

Routing 6-12 
Block 1-13 
Directories 6-14 
Flow Chart, PBSWITCH 6-]5 
PRU Block 6-35 
Process 6-13 
Upline PRU Block 6-35 

Saving 
LCBs 6-33 
Registers 6-32 
Rl and R2 6-32 

SCB 11-12 
Sending 

CMD Block to Host, PTCOMMAND 
6-35 

Statistics Service Messages 
6-20 

Status Service Messages 6-19 
Service Channel 6-8 
Service Message 6-16 

Configure Line 2-6 
Configure Terminal 2-11 
Dispatching 6-18 
Generating 6-18 
Inline Diagnostic 3-5 
Internal Processing 6-17 
Line Count Request 6-20 
Line Status Request 6-19 
Statistics 6-20 
Status 6-19 
Summary C-l 
Terminal Status Request 6-20 
Timing Out 6-17 
Validating 6-17 

Services 
Console Support 4-28 
Timing 4-8 
Worklist 4-10 

60471160 A 

8-2 

Set 
Interrupt Mask 4-14 
Logical Link Regulation, 

LNLLREG 6-34 
Membership 4-20 
Paging Mode 4-22 
Protect Bits 4-25 

Short Term Error Processing, Mode 
4 10-12 

Signoff Block, HASP 11-16 
Signon Block, HASP 11-15 
Single Word Transfers Control 

7-12 
Software, Base System 4-1 
Source Node Directory 6-13 
Spec ial Call 

to Firmware Interface 1-15 
to Multiplex Subsystem 1-15 

SRCB 11-11 
Stamping, Buffer 4-5 
Standard 

Subroutines 4-17, 4-18 
TIP Subroutines 6-30 
TIP Trees G-l 

Startup, HASP Workstation 11-14 
State Process 12-3 
State Program 12-1 

Components 12-4 
Execution 12-1 
Input 12-5 
Interface 12-l~ 
Macroinstructions 12-11 
Modem 12-8, 12-9 
Text Processing 12-6 

State Transitions 
Table, PTLINIT 5-28 
TIP Interactive Mode 9-2 
TIP Tape Mode 9-3 

States, HIP 7-25, 7-21 
Statistics Messages 3-3, 3-5, 

6-20 
Status 

Analyzer, CLA 5-22 
Handler, Multiplex Level 

Interface 12-10 
Line 6-19 
Overflow Handling, CLA 5-24 
Register, Coupler 7-11 
Service Messages 6-19 
Terminal 6-20 
Word, NPU 7-13 

Stop NPU 4-26 
Stream Control CMD Block 

Card Reader 11-18 
Printer Data 11-20 
Punch Data 11-22 

String Control Byte, HASP 11-12 
Structures, Data 1-17 

Inde)l:-11 



Subrecord Control Byte, HASP 
ll-ll 

Subroutines 
Common TIP 6-21 
for TIPs, Common Multiplex 5-21 
Miscellaneous 4-25 
Standard 4-17, 4-18 
Standard TIP 6-30 

Subsystem, Multiplex 5-1 
Support Programs for TIPs 1-11 
Support Services, Console 4-27, 

4-28 
SVM Trees G-l 
Switching, Page 4-22 
Svstem Interfaces 5-4 
System Monitor 4-1 

Table 
OPS Monitor 4-3, 4-4 
PTLINIT State Transition 5-28 

Tape Mode 
TIP State Transitions 9-3 
TTY 9-2 

Tasks, Priority and Nonpriority 
1-4 

TCB 
Configuration 2-10 
Deletion 2-12 
Queue 6-31 
Reconfiguration 2-12 

Terminal 
Addressing, Mode 4 10-3, 10-5 
Configuration 2-7, 2-10, 2-11 
Error Processing, CDC 711 10-13 
Failure 3-3 
Features, BSC 8-5 
Interface, Mode 4 10-3 
Mode, 2780 8-5, 8-6 
Mode, 3780 8-7 
Operational Procedure, HASP 

11-6 
Recovery 3-3 
Status Request Service Message 

6-20 
Terminate Input Command -

NKENDIN 5-19, 5-20 
Terminate Output Command -

NKENDOUT 5-19, 5-21 
Termination, HASP Workstation 

11-14 
Test 

ASCII Set Membership 4-20 
Buffer Availability 4-7 

Text Processing 
Firmware Interface 6-33 
State Programs 12-6 

Timeout 
Handling, Modem Response 5-25 
HIP 7-19 

Index-12 

Output Data Demand 5-29 
Service Messages 6-17 

Timers, Program Execution 4-27 
Timing Services 4-8 
Timing, HIP Transfer 7-7 
TIP 

BSC 8-1 
Common Multiplex Subroutines 

5-21 
HASP 11-1, 11-3 
LIP OPS level Worklists 5-7 
Mode 4 10-1 
Regulation, PTREGL 6-34 
State Transitions 

Interactive Mode 9-2 
Tape Mode 9-3 

Subroutines 6-21, 6-23, 6-30 
Support Programs 1-11 
TTY 9-1, 9-4, 9-5 
Worklist Communications 5-5 

Transaction 
Contention at the Coupler 7-5 
Protocol 7-1 

Transactions, Coupler I/O 7-3 
Transfer 

Block 7-16 
Functions 7-1 
Initiation, HIP 7-2 
Single Word 7-12 
Timing, HIP 7-7 

Transitions, HIP 7-27 
Transmission Mode 

2780 Output Nontransparent 8-8 
2780 Output Transparent 8-10 
3780 Output Nontransparent 8-10 

Transparent Data Mode 6-12 
BSC 8-3 
HASP Card Reader 11-20 
HASP Printer 11-21 
2780 and 3780 8-7 

Transparent Terminal Mode 
2780 8-6 
3780 8-7 

Transparent Transmission Mode, 
2780 Output 8-10 

TTY 
Autorecognition 9-6 
Carriage Control for Output 

Messages 9-4 
Error Processing 9-6 
Interactive Mode 9-1 
Operating Modes 9-1 
Output Messages Carriage 

Control 9-5 
TIP 9-1 
TIP Direct Calls 9-4, 9-5 
Tape Mode 9-2 

Type, BSN/Block 6-6 

60471160 A 



Type Checking in PASCAL Procedure 
Calls 4-19 

Types, Block 6-6, 6-7 

Unknown Response Error, HASP 
11-23 

Upline 
Abort, PBUPABRT 6-35 
Breaks, Mode 4 10-8 
Message Processing 1-5, 1-7 
PRU Block Routing, PBRTEPRU 

6-35 
User Interface 4-15, 5-4, 5-9 

HASP 11-14 
User Defined Message 4-26 

Valioating Service Messages 6-17 

Word Formats, Host/NPU 7-7 
Word Transfers Control 7-12 
Worklist 

Calls 1-13 
Communications, TIP and Mux 

Subsystem 5-5 
Entries 

Command Driver 5-8 
Console 4-29 
Extracting a 4-13 
Making 4-12 
Multiplex Subsystem Firmware 

5-8 
Multiplex Level 2 5-6 
Organization 4-11 
PTCLAS 5-24 
Processor, Multiplex 5-21 

60471160 A 

Services 4-10 
TIP/LIP OPS level 5-7 

Workstation, HASP ;1.l-2, 11-14 
Initialization 11-14 

write Data, Duplicating on CRT 
10-13 

Write Specified Page Register 
4-23 

026/029 Codes, BSC 8-2 
18-Bit Address Functions 4-24 
18-Bit Addresses 4-23 
18-Bit Addresses, Compare 4-24 
2780 Batch Carriage Control 

Action 8-9 
2780 Input Nontransparent Terminal 

Mode 8-5 
2780 I~put Transparent Data Mode 

8-7, 
2780 ~nput Transparent Terminal 

Mode 8-6 
2780 Output Nontransparent 

Transmission Mode 8~8 
2780 Output Transparent 

Transmission Mode 8-10 
3780 Batch Carriage Control 

Action 8-11 
3780 Input Nontransparent Terminal 

Mode 8-7 
3780 Input Transparent Data Mode 

8-7 
3780 Input Transparent Terminal 

Mode 8-7 
3780 Output Nontransparent 

Transmission Mode 8-10 

Index-13 



/ 

\ 



'-d 
I 

; 

COMMENT SHEET 

MANUAL TITLE __ ~C;C~I~,~VE~R~S~I~O~N~3~S~Y~S~T~E~M~P~R~O~G~R~AMM~=E=R=S~R=E=F~E=R~E=N~C=E~M=A=N~U~A=L~ ________ ___ 

PUBLICATION NO. __ ~6~O~4~7~1;1~6~O ________ _ REVISION ____ ~A ____ _ 

FROM: NAME:.~~------------~----~------------------------------~---------­
BUSINESS 
ADDRESS: ________________________ --__________________________________ ___ 

COMMENTS: 
This form is not intended to be used as an order blank. Your evaluation of 
this manual will be welcomed by Control Data Corporation. Any errors, 
suggested additions or deletions, or general comments may be made below. 
Please include page number references and fill in publication reVlSlon level 
as shown by the last entry on the Revision Record page at the front of the 
manual. Customer engineers are urged to use the TAR. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

Fold on Dotted Lines and Tape 



T 

I 
I 
I 

I 
~~:~-------------------------------------------------------------------------------------------~::~~~~~---j 

I " III U:~~~~r,:S I 
I 
I , 

BUSINESS REPLY MAIL I 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. ! ~ 

I:::; 
" ,~ POST AGE WILL BE PAID BY I Z 

CONTROL DATA CORPORATION 1 ~ 
Publications and Graphics Division 
P. O. Box 438O-P 
Anaheim, California 92803 

I 
I 
I , , 
I 

---------------------------------------------------------------------~-----------------------------------------, rom ~m I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
1 

I 
I 
I 
! 


