
CYBIL

Us er' s Gui de

This document Is proprietary to
Control Data. It is a restricted
document for internal use only, and
information contained herein Is not
to be disseminated outside the
company.

DISCLAIMER:

This document Is an internal working
paper only. It is unapproved and
subject to change, and does not
necessarily represent any official
Intent on the Part of CDC.

60456320-01 (preliminary) COMPANY PRIVATE

CONTENTS

e.ui~

1.0 INTRODUCTION. -· • • • • • • • • • • • • • • • • 1-1

2.0 LANGUAGE STRUCTURE. • • • • • • • • • • • • • • 2-1
z.1 ALPHABET. -· • • • • • • • • • • • • • • • Z-1
z.z CONSTANTS • • • • • • • • • • • • • • • • 2-1
2.3 IDENTIFIERS -· • • • • • • • • • • • • • • 2-1
z.4 USE OF BLANKS • • • • • • , . • • • • • • • 2-Z
z.5 COMMENTS. • • • • • -· • • • • -· • • • • • 2-2
2.0 STATEMENT SEPARATOR <SEMICOLON> • • • • • 2-3
z.1 MODULE STRUCTURE. • • • • • • • • • • • • 2-3
z.e COMPILATION UNITS • • • • • • • • • • • • 2-4
z.9 BLOCK STRUCTURE • • • • • • • • • • • • • Z-5
z.10 SCOPE OF IDENTIFIERS. • • • • • • • • • • Z-b
2.11 REDEFINED IDENTIFIERS • ·• • • • • • • • • 2-8

3.0 VARIABLES ANO CONSTANTS • • • -· • • • • • • • • 3-1
3.1 VARIABLE DECLARATION FORMAT • • • • • • • 3-1
3.z TYPE. • • • • • • • • • • • • • • • • • • 3-1
3.3 SCALAR TYPES. • • • • • • • • • • • • • • 3-1

3.3.1 INTEGER TYPE • • • • • • • • • • • 3-2
3.3.2 CHARACTER TYPE • • • • • • • • • • 3-3
3.3.3 BOOLEAN TYPE • • • • -· • • • • • • 3-3
3.3.4 ORDINAL TYPE • • • • • • • • • • • 3-4
3.3.5 SUBRANGE Of SCALAR TYPES • • • • • 3-5

3.4 INITIALIZING VARIABLES. • • • • • • • • • 3-o
3.5 ATTRIBUTES. • • • • • • • • • • • • • • • 3-7

3.5.1 ACCESS ATTRIBUTE CREAOl. • ,. • • • 3-7
3.5.Z STORAGE ATTRIBUTES CST.ATIC ANO

SECTION) • • • • • • • • • • • • • 3-8
3.5.3 SCOPE ATTRIBUTES tXOCL ANO XREF> • 3-8

3.6 CONSTANT DECLARATION FORMAT. • • • • • • • 3-9

4.0 TYPE DECLARATION. • • • • • ·• • • -· • • • • • • 4-1

5.0 EXPRESSIONS AND THE ASSIGNMENT STATEMENT. • • • 5-1
5.1 OPERATORS • • • • • • • • • • • • • • • • 5-1
5.Z SCALAR FUNCTIONS. • • • • • • • • • • • • 5-3

5.2.1 PREDECESSOR ANO SUCCESSOR FUNCTIONS 5-3
5.Z.2 INTEGER CONVERSION FUNCTION CORO). 5-4
5.2.3 CHAR AC TE R CONVERSION FUNCTION <CHR) 5-5
5.2.4 UPPERVALUE AND lOWERVAlUE FUNCTIONS 5-b

5.3 EXPRESSIONS • • • • • • • • • • • .. • • • 5-b
5.4 ASSIGNMENT STATEMENT. • • • • • • • • • • 5-7

6.0 ELEMENTARY COMPOUND STATEMENTS. • • • • • • • • 0-1
0.1 IF STATEMENT. • • • • • • • • • • • • • • 6-1
6.2 CASE STATEMENT. • • • • • • • • • • • • • 6-5
&.3 BEGIN STATEMENT • • • • • • • • • • • • • 6-7

EXIT STATEMENT. • • • • • • • • • • • • • 6-10

604563ZO-Ol (preliminaryJ COMPANY PRIVATE ii

CONTENTS

7.0 REPETITIVE STATEMENTS • •• • • • • • • • • • • 7-1
7.1 WHILE STATEMENT ••••• • • • • • • • • 7-1
1.z REPEAT STATEMENT. • • • • • • • • • • • • 7-3
7.3 FOR STATEMENT • • • • • • • • • • • • • • 7-4

CYCLE STATEMENT • • • • • • • • • • • • • 7-8

a.o STRUCTURED TYPES. • • • • • • • • • • • • • • • 8-1
8.1 ARRAY TYPE. • • • • • • • • • • • •• • • 8-1

a.1.1 ARRAY INITIALIZATION • • • • • • • 8-3

s.z

8.3

8.4

8.1.2 MULTI-DIMENSIONAL ARRAYS • • • • • 8-4
8.1.3 INITIALIZING MULTI-DIMENSIONAL

8.1.5
a.1.&

STRING
a.z.1
a.z.z
a.2.3
a.z.4
a.z.5
RECORD
8.3.l
a.·3.2
8.3.3
SETS.
8.4.l
8.4.Z

8.4.3

•

ARRAYS • • • • • • • • • • • • • •
REFERENCING MULTI-DIMENSIONAL
ARRAYS • • • • • • • • • • • • • •
PACKING ATTRIBUTE FOR ARRAYS •••
ARRAY DATA STRUCTURE EXAMPLES •••
e.1.6.1 Micro-processor Memory. •
a.1.6.2 Character Translation • •
8.1.6.3 Table Manipulations • • •
TYPE • • • • • • • • • • • • • • •
STRING REFERENCES. • • • • • • • •
STRING ASSIGNMENTS • • • • • • • •
ARRAYS OF STRINGS. • • • • • • • •
STRING COMPARISON. • • • • • • ·• •
STRING ·INITIALIZATION. • • • • • •
TYPE • • • • • • • • • • • • • • •
RECORD REFERENCES. • • • • • • • •
PACKING ANO ALIGNMENT. • • • • • •
VARIANT RECORDS. • • • • • • • • •

• • • • • • • • • • • • • • • • •
SET DECLARATION. • • • • • • • • •
SET REFERENCES • • • • • • • • • • a.4.z.1 Set Value Constructors. • a.1t.z.z Set Initialization. • • •
SET OPERATIONS • • • • • • • • • •

8-6

8-6
8-7
8-8
8-8
8-9
a-10
8-11
a-11
8-12
8-13
8-14
8-14
8-14
8-15
8-16
8-17
a-1q
8-19
8-19
8-20
8-20
8-21

9.0 PROCEDURES •• • • • • • • • • ••• • • • • • • 9-1
9.1 DECLARATION ANO USE • • • • • • • • • • • 9-1
9.2 NESTED PROCEDURES • • • •••••••• • 9-4
9.3 PARAMETERS •• • • •••• • • • • • • • • 9-4

9.3.l fORMAl ANO ACTUAL PARAMETERS • • • 9-5
9.3.2 TWO-WAY (VAR) PARAMETERS • • • • • 9-6
9.3.3 KEYWORD SPECIFICATION OF ACTUAL

PARAMETERS • • • • • • • •
9.3.4 DEFAULT PARAMETER VALUES •
XOCL ANO XREF ATTRIBUTES •••• •
INITIATING PROGRAM EXECUTION. • •
RETURN STATEMENT. • • •••• • •

• • • •
• • • •
• • • •
• • • •
• • • •

60456320-01 fpretiminary) COMPANY PRIVATE

9-7
9-6
9-9
9-10
9-11

i I I

CONTENTS

10.0 ADAPTABLE TYPES • • • • • • • • • • • •
10.1 ADAPTABLE TYPE DECLARATION •• • •
10.2 ADAPTABLE FORMAL PARAMETERS • • •
10.3 SIZE DETERMINING FUNCTIONS •• • •

10.3.1 LOWERBOUNO and UPPERBOUNO
10.3.z STRLENGTH • • •• • • • •

10.4 EXAMPLES. • • • • • • • • • • • •

11.0 POINTERS
11.1 POINTER DECLARATION
11.2 POINTER REFERENCE
11.3 POINTERS TO PROCEDURES

12.0 STORAGE MANAGEMENT
12.1 DESCRIPTION
12.2 SEQUENCE TYPE
12.3 RESET AND NEXT STATEMENTS
12.4 HEAP TYPE
12.5 ALLOCATE ANO FREE STATEMENTS
12.6 AllOCATIMG VARIANT RECORDS
12.7 SYSTEM STACK
12.8 PUSH STATEMENT
12.9 EXAMPLES

13.0 PROGRAM STRUCTURE
13.l COMPILATION UNITS
13.2 MOOULE CHARACTERISTICS
13.3 PROCEDURE CHARACTERISTICS
13.4 SCOPE OF IDENTIFIERS

14.0 COMPILATION CONTROLS
14.l PRAGMATS
l't.2 TOGGLES
lt.3 TOGGLE OPERATIONS
14.4 LAYOUT CONTROL
14.5 MAINTENANCE CONTROL

APPENDIXES

A. CHARACTER SET

8. REPRESENTATION DEPENDENT FEATURES
8.1 CEll DATA TYPE
8.2 BASE/OFFSET ALIGNMENT
8.3 ALIAS NAMING
8.4 PROGRA~ PROCEDURE PARAMETERS
8.5 HAPDWARE LIMITATIONS

C. SECTION DECLARATION AND ATTRIBUTES

O. RESERVED WORD LIST

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

60456320-01 (preliminary) COMPANY PRIVATE

e.a.su1

10-l
10-1
10-2
10-3
10-3
10-3
10-4

t v

1?.lEEAtE

This document explains the Control Data CYBIL programming
language in a tutorial manner. The approach is to introduce
simple concepts first, and then build upon these simple
concepts and Introduce more complex concepts in tater sections.
Each section introduces new material and it is assumed that the
reader understands the material presented in the preceding
sections.

An assu•ption Is made that the reader Is familiar with
programming in general, and 'as some programming experience with
at least one high-level language fe.g., FORTRAN, COBOL, ALGOL,
etc.> •. It Is not assumed that the reader is familiar with CYBIL
or has attended a CYBIL programming course.

This document does not ta~e the place of a reference manual nor
does It describe features of the language that depend wholly on
a particular implementation, except to mention their existence
and treat them separately in an appendix. To make practical use
of CYBIL the reader must have available additional r•ference
material, Including the CYBIL reference manual for the operating
system to be used, and a description of the operating system's
lnput/~utput capabilities and how they are accessed from CYBIL
programs. Specffically, for NOS/VE and CYBER 180 develQpment,
the reader should have available tat minimum) the following
documents. available through the Document Control System <DCS>.

language Spectf lcatlon for CDC CYBIL

CYBIL Implementation Dependent Handbook

External Reference Specification for CYBIL I/O

Externa1 Reference Specification for Simulated
NOS/VE I/O

CONVENTIONS

ARHZ298

ARH3078

ARHZ739

ARH3125

To distinguish CYBIL language elements and identifiers used in
the exampfes from the English language text of this gulde1
several conventions have been adopted. Specificatty,

o Examples are presented as figures wherever possible,
spatially distinct from surrounding text.

o Within text, reserved words and identifiers are printed
In full uppercase or enclosed in quotation marks.

60456320-01 (preliminary) COMPANY PRIVATE v

i.o lttI&QQUCllOti

To be supplied.

60456320-01 (preliminary) COMPANY PRIVATE 1-1

2.0 LAt!iUAif_SlBUtIUBf

2.1 Al..!liAli.EI

The complete CYBIL alphabet consists of characters with graphic
representations taken from the ASCII character set (see appendix
A for the complete tist). CYBIL uses a subset or the alphabet
for specif le purposes, such as defining an ldentff ier.

z.2 C.Q~S.IlliIS

Many types of constants are predefined to the compiler and
Indicate the appropriate value. For example, integer constants
are known to the compiler. To represent the constant
twenty-five, the programmer writes 25. Negative integer
constants may also be used (for example, -33). Some constants
are programmer defined (for example, string constants and
ordinal constants; see section 3).

Boolean constants <TRUE and FALSEJ may be used and have a
predefined meaning to the compiler (refer to section 3, Boolean
Type).

Character constants are defined in terms of the ASCII character
set. A character constant Is indicated by placing the character
within apostrophes (for example, 'B' refers to the character
constant uppercase 8). Refer to section 3, Character Type.

A string constant consists of one or more adjacent characters
enclosed in apostrophes (for example, 'ABCD1234' is a string
constant consisting of eight characters). String constants are
always programmer defined. Refer to section 8 for examples
i11ustrating the use of string constants.

The pointer constant NIL Indicates an unassigned pointer. NIL
can be assigned to a pointer variable of any type. Refer to
section 11 for a discussion of pointers.

Ordinal constants are Identifiers defined by the programmer.
Refer to section 3, Ordinal Type.

Z.3 ltlftiilf1£&.S

CYBIL uses reserved words (described in appendix 01, special
marks (for exampfe, + - /), digraphs or pairs or special marks
(for example, :• <= <>l1 and programMer def lned identifiers.
Reserved words. special marks, and digraphs are predefined to
the CYBIL c~mpiter and are not considered to be Identifiers.

The programmer may define identifiers as needed for module
names, procedure names• type names, variable names, constant

60456320-01 (preliminary) COMPANY PRIVATE 2-1

names, and labe1 names tall of which are defined in later
sections of this guide). The programmer-defined identifier may
not be the same as a reserved word. A quick glance at appendix
D wilt familiarize the reader with the reserved words. Many
simple programming errors involve conflicts with reserved words.

Programmer defined identifiers are llmlted In length to 31
characters. Uppercase and lowercase characters tfor example, A
and a) are treated as the same character when used in an
identifier. For example, CYBIL treats NEWPROGRAMTEXT and
NeWpRoGrAmTeXt as the same identif ler.

The first character of an Identifier must be alphabettc tthat
is, A thru Z or a thru z). Valid subsequent characters include
A thru z, a thru z, the digits 0 thru 9, and four additional
characters: underline 1_1, number sign (#t, dollar sign($), and
commerclal at OU.

Exaeples of identifiers are shown in figure Z-1.

wheat_production
A~lO
Syntax_ Table
zt_sa
ABC
PETE __ _

TEST_deck3#215
NAME POINTER
Ftetd_A

3rd_ Test
ONE+ONE
OlSIGN
LARRY
Field_3.7
1/0

Figure 2-1. Identifiers

The valid Identifiers In figure 2-1 need no explanation. The
Invalid Identifiers ar~ inco~rect for the following reasons:
3rd_Test, first character not al,habetic; ONE+ONE, contains an
If legal character (+J; aSIGN, first char•cter not alphabetic;
LARRY, first character not alphabetic; Field_3.7, contains an
illegal character t.J; I/O, contains an illegal character(/).

Identifiers, reserved words, and digraphs cannot contain
embedded blanks. Etsewhere, blanks may be used freely, except
In string constants where a blank represents a character.

2. 5 k.Dt1t1£riIS.

A comment may be used anywhere that blanks may be used (except
In string constants). A comment Is printed in the source
listing but does not alter the meaning of the source program
(that Is, comments are ignored by the compiler).

60456320-01 (prelimlnaryt COMPANY PRIVATE 2-2

A coeaent is bounded by left and right braces: { and }. A
comment may contain any character except a right brace (}).
Comments that cross tine boundaries must be restarted at each
line as shown in figure z-2.

{THIS COMMENT
{CROSSES LINE
{BOUNDARIES.}

Figure 2-2. Comment Example

If you forget to terminate a comment with a right brace (}),
CYBIL terminates the comment when it encounters the end of the
11 ne.

2. 6 S.I!IfJ!EJil_S~eA&Aitl &_.ls Ettl C.DLOt:il

The semicolon t;l Is used to separate one statement from
another. Extra semicolons may be used and indicate one or more
empty statements. Since CYBIL ignores empty statements, extra
semicolons have no effect on program execution tand do not
cause compitation errors).

z.1 !!JJQULf-il&UC.IU&E

Every CYBIL program eust be bounded by the reserved words
MODULE and MODEND. The module's name Can identifier) must be
specified after MODULE and can be repeated after MODEND.

MODULE sampte;
•
•

{CYBIL source
{text

•
•

HOOE ND sample

Figure 2-3. Mo du t e Declaration

The acceptable structure illustrated in tigure 2-3 shows a
CYBil module declaration which consists of a CYBIL source
program enclosed by "OOULE and HODEND. The structure in figure
a-3 also shows the use of an identifier CSAHPLEt to provide a
name for the modute. It is good practice to provide meaningful
names for modules to enhance the readability of the source text.

Additional implications of the MODULE and MOOEND statements with
respect to program structure and scope of identifiers are
described In section 13.

60~56320-01 (preliminary) COMPANY PRIVATE 2-3

2.s t.ilttelLllliltLUtilIS

The compilation ~nit consists of a module declaration and
optional compile-time statements and comments. Kodule dectara
tion Is described more fully In section 13. Compile-time decla
rations and statements are discussed In section 14. A pictorial
representation of a compilation unit Is given in figure 2-4.

----+ • • • • • • • • • • • • • ..
• {Compile-time statements • • I • • • {and comments • • • ' • • • • • • ' • • • • • • • • • MODULE samp I e_prog; :--+ • • • +--: {Additional compile-time • • >Compilation I ,,

• • {statements and • • • Unit • I • • I

Source • • {comments • • • • • • • •
Program< I {CYBIL source text} • >Module • • • • • • I • I • I • I

• • • • I • I • • +--: • • • • • • •
·• MODE NO sampte_prog :--+ • ,, •

Figure Z-4. Compi1ation Unit

A number of compltatlon units may exist, one after another, in
the source Input flle. The compiler reads the source Input file
and produces one or more object modules on the object file. The
number of object modules produced will be equal to the number of
compilation units if there are no errors during the compilation
~rocess. Certain errors (within one compilation unit> may
suppress the corresponding object module. In general, one
object module Is produced for each compilation unit. It should
be clear that a compilation unit and a module are not identical.
Each compilation unit contains one module declaration.

The compilation process, then, transforms compilation units on
the source input file into object modules on the object file
(see figure Z-5).

60456320-01 (preliminary) COMPANY PRIVATE 2-4

Sour~e Input Fite Object File

• +-~ -.---.-..-..._.+ • • +·---·---+ • • • • • • :compilation: • I :Object: • • • • • • • Unit • • +·--·.-i·----·----+ • :Module: • t • • I I I

• +~-----.-..-..-_ + • • • • ·+ ._ --~------+ • • I • • .. • • • • CYBIL I • • • • t I I • • • • :------->:complier:-------->: • • ·• • • • t • • • • I • • • • +~--._.._ .. ._.._.__~.-.+ I
+ ___ _____ ._ __ + • +---·-·--+ • • • • I

• :compilation: • • tObJect: • • • • I

• • Unit • • • :Modute: • • ' • • 1 • • +----~--.-.... ~.-... ~--+ • t ·+---------+ • • • • t +·-----------..... ----.-----_.--+ +---------... ----------·+
Flgur• 2-5. Compilation Process

In CYBIL, the programmer can create and identify unique blocks
(groups) of source statements. The purpose of blocks Is
primarily to provide a structure to a sequence of statements.
For example, a given program performs input, computes a result,
and prints the result. An obvious organization for this program
consists of three blocks. To change the computational method
used in this sample program~ the programmer concentrates his
efforts on the computational block. If the program were not
block structured, the programmer must first find the source
lines dealing with the computation. This may not be easy, since
the computational instructions might not be grouped together.

In addition to slmpte grouping, CYBIL provides for the
declaration of variables inside blocks. These variabtes are
considered to be local to the block In which they are defined.
The programmer can use this block structure to manage storage
requirements. When execution of a program enters a block,
memory (storage space) is set aside for the variables declared
In the block. When the program finishes a btock, the storage
space reserved for the local variables Is released.

One advantage of this approach is that storage space for
variables exists only when tt is needed. A disadvantage is that
extra storage management code must be generated and later
executed to accomptlsh this management function, thereby slowing
both compifation and execution, as well as increasing storage
requirements for the program itself.

A CYBIL program may be written with lots of block structure or
tf ttfe block structure. The choice is up to the programmer.
Liberal use of block structure makes a source program easier to
maintain or change, and for this reason, use of block structure
Is recommended wherever possible.

Block· structure is introduced by the use of procedure decla
rations, described in section 9.

60456320-01 (preliminary) COMPANY PRIVATE 2-5

2.10 S.C.D!E-1lf_lQElil1ElE&S

The scope of an identifier is the domain of a CYBIL program
over which alt references to an Identifier are associated with
the same definition of that identifier. The scope of
identifiers Is affected by the use of blocks (procedure
declarations). An identifier may be r~ferenced only in the
block In which it Is declared and blocks contained within the
defining block. There are a few methods for avoiding this rule
(known as scope attrlbutesJJ they ar~ discussed In section 3.

Flow of Program Execution

• •
Block l

:Identifier A
• • • • • • • •
' ' • • • • • • • • • • • ' ' • • •
I • • • • • • '

v Block 2 +_._.._.._._ __ .._........., ___ .-_ +

:Identlf ier 8 • 1

• • • • • • • • +------+--·-·---+
t

' • • • •
v Block 3

+_ --..--------~._-+
:Identifier c • • • • • • • • • •
+--~.- ---+------------+

• ' v Block 4

• • • • • • • •
I •
t •
• • • ' • t

• •
I •
I • • • • • • • • •

.... 41!19_.._ _____ ..__._.__._ _________ . _________ ...,_+

:Identifier D
• •

• •
v

figure 2-6. Scope of Identifiers

t
t

Four blocks appear in figure 2-6. Each block contains an
identifier (A, 81 c, and 0). These identifiers could be names
of types, variables, constants. or procedures. The particular
kind of identifier is not important to this discussion.

60456320-01 (preliminary) COMPANY PRIVATE 2-6

Identifiers can be local or global, depending upon their
position in the module and the point of reference. The
following discussion describes where a reference to a given
identifier is valid.

The identifier A is def lned in, or local to, block 1.
Identifier A is global to btocks 2 and 3, which are contained
Mithin block l (the defining block). Source prograe statements
may refer to <make valid references to) alt variables local to
their block and also to variables global to their block. So,
for example, statements in block l can refer to identifier A,
and so can statements in blocks 2 and 3. However, statements
In block 4 cannot refer to identifier A.

Identifier C is local to block 3. Statements In block 3 can
refer to identifier C because it is tocat to block 3, and to
Identifier A because It is global to block 3. However,
statements in block 3 may not refer to Identifiers B or 0
because these Identifiers (8 and OJ are neither local nor global
to block 3.

Table 2-l indicates the scope of the identifiers Illustrated in
figure 2-6.

TABLE 2-1. SCOPE OF IDENTIFIERS

: Defined in :
Identifier : and local to :

A • Block 1 • I • • • • •
B I Block 2 • • • • • I t

c • Block 3 • • •
t • • I

D I Block 4 • t I

• • • •

Global to

Blocks 2 and 3

none

none

none

: Can be referenced
: by statements in

• Blocks 11 z, and • • • • Btock 2 onf y • • • • Block 3 only ' • • • Block 4 only • • •

3

figure 2-b shows that block 1 is entered first. If A denoted a
variable, CYBIL would find space for variable A. Next, block 2
is entered. If 8 denoted a variable• CYBIL would find storage
space for variable B. Next. an exit from block Z occurs. Upon
exit from block z. the space reserved for variable B is
released. Note that the space for variable A is not released.

Upon entry to block 3, space Is reserved for variable C
(assuming C is a variable). Upon eKit from block 3, the space
reserved for variable C is released. Upon exit from block 11
space reserved for var I able A is released. The process
continues for variable 0 as block 4 is entered and exited.

Notice that each of the variables (A, 81 C1 and 0) has a
specific lifetime. Each comes into existence upon block entry
and disappears upon the appropriate block exit.

60456320-01 (preliminary) COMPANY PRIVATE 2-7

For this reason, variables declared within blocks are called
automatic variables. That is~ CYBIL automatically establishes
storage space for these variables upon block entry and releases
it upon block exit.

2.11 &EJlEElfiEIL.lllEt!IlElEBS.

When an identifier name is defined in more than one block,
CYBIL uses well formed rules to determine Mhich definition of
the Identifier applies to a particular reference. The following
paragraphs describe what happens when a reference is made to an
identifier- for which both local and global def lnitlons exist, as
illustrated in figure z-1.

Flow of Program Execution
' ' I • • I Block 11

:Identifier X • • • • • • • ' • • • • • •
I • • ' • • • I

• I

• • • • • I

• •
I • • •

v Block 12

tidentifier X • f

• I

• •
• I
t • +----------+ -....... -... +

• •
I • • •
v Block 13

:Identifier Y ..
'

• •
• •
' •
• •

• •

v Block 14

:Identifier X

• ' I
t

• ' I • • • • • •
' • • • ' • • • I

• t

• t

• •
I • • I

• •

• ' • •
' •

+.-.-.-.--.----..... ._ . ._, ___ +·------·--.-----------·---+
• •
v

figure 2-7. Identifier Conflicts

In figure 2-7 identifier X is declared in three different blocks
(111 12, and 14). Assume that all identifiers (X's and Y) are

60456320-01 (preliminary) COt1PANY PRIVATE 2-8

variables. Tracing the ffov or pr~gram execution shows that
block 11 ts entered first where storage space is obtained for
the variable Identifier X In block 11. Next, block 12 is
entered and space ts obtained for the variable X declared in
block 12.

At this point. there are two variables identified X In
existence. Statements within block 12 can refer only to the
variable Identifier X local to block 12. When an exit occurs
from block 121 the block lZ local variable X is released, but
the block 11 varlab1e X remains. Statements in block 13 can
reference variable X from block 11.

Finally, when the floM of program execution exits block 11,
space for the local variable X In block 11 is released. Then,
block 14 is entered and a new variabte identifier X for block 14
Is established.

While all this may seem a little confusing at first, there are
some benefits derived from block structure. Because of the way
CYBIL treats local variables and Identifiers, blocks can share
variables and identifiers when they are global to the blocks.
Identifiers can be as global as necessary to provide the amount
of sharing needed (for example, identifier A in btock 1, figure
2-6). Conversely, by declaring a variable or Identifier within
an inner block (for example, identifier Y in block 131 figure
2-7) or within a separate block (for example1 Identifier X in
block l'' figure 2-7)1 the programmer shields the space reserved
for the variable identifier from being referenced from any other
block. This protection can Improve program reliability and ease
the burden of making program corrections. When an identifier is
shielded from other blocks, a programmer can make changes to the
local (shielded> variable with full confidence that he is not
destroying an essential variable referenced elsewhere in the
program.

60456320-01 (preliminary> COMPANY PRIVATE 2-9

3 • 1 ~A&llflLE-JlEtLAB.AllCtLEO&t!AI

All variable declarations follow the general format shown In
f lgure 3-1.

VAR identifier : Cattrtbutesl type := initializatjon

figure 3-1. Varlable Declaration format

When the attributes and initialization (refer to figure 3-1)
are onitted, the variable declaration format takes the simple
form shown In figure 3-2.

VAR identifier : type

figure 3-2. Simplified Variable Declaration

The reserved word VAR introduces the variable declaration. The
programmer declared Identifier tor namel used to refer to the
variable is given next, followed by the type of the variable.

3.2 Ile.E

In the variable declaration each variable Identifier is
associated with a type. The type of the variable determines the
operations allowed with the variable. With this Information the
compiler performs many compile time checks, resutting in more
comprehensive error checking. For example, the assignment of an
integer constant to a variable is valid only if the variable is
declared to be type Integer tor a subrange of the Integers>.
Any other assignment is illegal. This may seem trivial in the
case of type integer; however, checking types at compite time
can be extremely valuable when dealing with pointers or
structured types.

A scalar type is one In which the values can be ordered
(scaled). The scalar types are integer, character. boolean,
ordinal, and subrange. Scalars have the property that given any
specific value one can, in general, find the next value
(successor) or the preceding value (predecessor) of the scalar.
For example, given the integer eight, the predecessor is seven
and the successor is nine. A scalar variable Is a variable
declared to have a scalar type.

60456320-01 (preliminary) COMPANY PRIVATE 3-1

3.3.l INTEGER TYPE

The integer type <INTEGER> consists of positive and negative
Integers In the range af towed by the computer hardware.
Appendix B discusses these limitations. The folowing statement
declares a variable COUNT to be type INTEGER.

VAR count : integer;

figure 3-3. Integer Variable Declaration

Notice (in figure 3-3) the use of the reserved word VAR to
introduce the declaration. The identifier CCOUNTJ appears next,
separated from the type tINTEGER) by a colon. The semicolon
separates this declaration from subsequent declarations or
statements.

To dect•re three variables (COUNT, ROOT, and XSQUARE> to be
lnteger one could write three VAR statements with one
declaration In each statement or one VAR statement with three
declaration parts.

VAR count : integer;
VAR root : integer;
VAR xsquare : Integer;

Qn ~-llJUi.l.ar.atio.n

VAR
count : integer,
root : integer,
xsquare : Integer;

Figure 3-4. Multiple Variable Declarations

In figure 3-4, the three-declaration approach requires three VAR
reserved words and each VAR declaration is separated from the
next declaration by a semicolon.

With the one-dectaration approach, only one VAR statement
appears. It occupies four lines but it is one declaration
<starting with VAR and ending at the semicolon). The
declarations for COUNT, ROOT~ and XSQUARE are separated by the
comma. This form of the variable dectaration eliminates the
need to write the reserved word VAR over and over again.

CYBIL allows an additionat form of the variable declaration.
When many var1able identifiers are the same type, the
identifiers may be written on the left of the colon separated
from each other by commas (see figure 3-5).

VAR
count. root, xsquare: integer;

Figure 3-5. Multiple Variable Declarations

60456320-01 (preliminary} COMPANY PRIVATE 3-Z

When declared lri a block, and in the absence of any attributes
(see figur• 3-lt, the variable declarations in figur~s 3-3, 3-4,
and 3-5 are automatic variables. The system allocates space for
these variables when the block in which the variables are
declared Is entered at execution time. The storage space for
these automatic variables disappears when an exit from the
containing block occurs. These rules define the lifetime of the
variables. The scope of the variable Identifiers Is the block
containing the declarations.

3.3.2 CHARACTER TYPE

The character type (abbreviated CHAR) consists of a character
set of Z56 distinct characters; the first 128 are ASCII, the
remainder are unassigned. Some characters have graphic
representations (for example, the letters A through z, a
through z, the numbers 1 through 9); many do not. The ASCII
character set ind associated values are Illustrated in appendix
A.

When a variable Is declared to be type CHAR it may assume (be
assigned) any character value. A character value is represented
by the character graphic enclosed in apostrophes {for example,
1 A1 to represent the character value At, or by the value of a
conversion function described in section 5 <CHR). A value of
type other than character may not be assigned to a character
variable. This kind of error is detected during program
compilation.

The statement in ffgure 3-6 declares a variable <~IDOLEINITIAL>
to be type character.

VAR
middlelnitlal : char;

Figure 3-6. Character Variable Declaration

The rules governing variable lifetime and Identifier scope are
the same as described for the integer variable.

3.3.3 BOOLEAN TYPE

The boolean type <BOOLEAN) provides a mechanism for
representing logical values. The two boolean values are TRUE
and FALSE. TRUE and FALSE are reserved Identifiers and
represent the values associated with the boolean type. A
variabte declared to be type boo1ean may be assigned one of two
vatues <TRUE or FALSE>. Any other assignment <such as the
assignment of an integer valuet to a boolean variable is an
error detected during compilation. Variable identifiers
INHIBIT_READ and NOT_BUSY could be declared to be boolean
variables with the statement shown in figure 3-7.

60456320-01 (preliminary) COMPANY PRIVATE 3-3

VAR
inhibit_read1 not_busy : boolean;

Figure 3-7. Boolean Variable Declarations

Operations that Produce boolean results are discussed further in
other sections.

3.3.4 ORDINAL TYPE

An ordinal Is an ordered (scalar) sequence of user-defined
Identifiers. These ordinal identifiers are then values which
may be assigned to the ordinal variabte.

The ordinal type is a convenient way of Introducing meaning into
a program. For example, assume that, in writing a program to
drive a line printer, a variable (STATUS> is needed to contain
the current status of the printer. For this particular printer
there are four possible statuses: reedy, not ready, parity
ertor, and lost data. In a conventional programming language
one might declare a variable STATUS to be type integer and
assign a value (1 to 41 to represent the actual status.

Now consider program maintenance (sometime in the future). When
a statement says assign the value 3 to the variable STATUS, the
meaning •aY not be clear. Either program comments or auxiliary
documentation are needed to specify that the value 3 represents
the parity error status. CYBIL offers a better solution, shown
In figure 3-8.

VAR
status : <ready, not_ready, parity_error, tost_datal;

Figure 3-8. Ordinal Variable Declaration

Figure 3-8 Illustrates how an ordinal is declared. An ordinal
is an ordered list of (user-defined) identifiers enclosed in
parentheses. In this example, the variable STATUS is declared
to be of ordinal type. The specific possible ordinal values
Cuser defined constants) are written in parentheses. The term
ordinal refers to the ordered list of user-defined identifiers;
the term ordinal identifier (or ordinal constant) refers to a
particular identifier used to define an ordinal.

Ordinal identifiers are declared in ascending order. Once
declared, they cannot be used in any way other than to denote an
element or the ordinal (within the scope of the ordinal
declaration). Given an ordinal identifier, say PARITY_ERROR1 it
Is Possible to find the predecessor (NOT_REAOY) and the
successor (LOST_DATA> Just like any other scalar type. The
major difference between ordinals and other scalar types is that
the programmer def Ines the values constituting an ordinal by the
order in which they are specified.

60456320-01 (preliminary) COMPANY PRIVATE 3-4

The first ordinal identifier ffor example, READY in figure 3-8)
may be thought of as having the value zero, the second
identifier CNOT_READY in figure 3-8) has the value ~ne, and so
on. Section 5, Scalar functions, discusses explicit methods of
translating between an ordinal constant and its equivalent
value.

3.3.5 SUBRANGE OF SCALAR TYPES

When declaring a variable, one does not always want the variable
to be able to take on alt possible vatues normally associated
with the type. Sometimes it is desirable to define a subrange
or a given (scalar) type.

For example, assume the task is to write a payroll proqram. All
the employees have been assigned employee numbers and the
payroll department guarantees that employee numbers are always
integers that never exceed 5 digits. A variable identifier
<EMPLOYEE_NO) declared to be type integer could be mistakenly
assigned an illegal employee number (any integer value greater
than 99999). A better declaration for the employee number is
shown In f lgure 3-9.

VAR
emptoyee_no : l •• 99999;

figure 3-9. Subrange of Integer

Instead of a type <INTEGER, in this case), the declaration in
figure 3-9 specifies 1 •• 99999. This means that the variable
EMPLOYEE_~o is limited in range to the values between 1 and
99999 inclusive. The compiler will generate object code to
chedk that all assignments to variable EMPLOYEE_NO fall in this
range. If an assignment is found <at execution time) to be
outside this range~ an execution time error wilt occur and the
program Mill terminate. The execution time error checking may
be optionally disabled (refer to section 14). If CYBIL detects
an invalid assignment during compi1ation, it issues an
appropriate diagnostic message.

The symbol •• , In figure 3-9, defines a subrange. A scalar
value (not necessarity an integer) must appear on the left and
right of the •• symbol. The left value must be less than or
equal to the right value. The type of the subrange is assumed
froM the type of the left or right argument. Either left or
right may be used since they must both be the same type. for
example, in figure 3-9, EMPLOYEE_NO is said to be a subrange of
the type integer.

Subranges of other types are also possible. Suppose that a
variab1e Mere needed that could be assigned any uppercase letter
(not any character). This could be accomplished as shown in
figure 3-10.

60456320-01 (pretiminary) COMPANY PRIVATE 3-5

VAR
alphabetic : 'A' •• 1 z•;

figure 3-10. Subrange of Character

The•• Cln figure 3-10) indicates that the type is to be a
subrange. The 1 A1 and •z• Indicate the lower and upper bounds
of the subrange. This subrange is a subrange of characters.
Note that the character A is specified by enclosing the
character in apostrophes f'A'>•

A subrange of type boolean is possible but not too meaningful as
shown in figure 3-11.

VAR
data_flag : FALSE •• TRUE;

Figure 3-11. Subrange of Boolean

Since there are only two values associated with type boolean
CFALSE and TRUE) the type of OATA_FLAG in figure 3-11 is reatly
boolean. In the scalar ordering, FALSE is defined (by the
CYBIL specification) to pr~cede TRUE.

CYBIL also permits subranges of ordinals.

VAR
hardware : <tacks~ nails, spikes, bolts, nuts},
hammer_stuff : tacks •• spikes;

Figure 3-12. Subrange of Ordinal

In figure 3-121 an ordinal variable, HARDWARE, is declared to
contain TACKS- NAILS, SPIKES, BOLTS, or NUTS. The stuff that
can be hit with a hammer (HAMMER_STUFF> is declared to be a
subrange of the preceding ordinal (TACKS •• SPIKES).

In all subrange declarations the values included in the subrange
can be determined (by the compiler or programmer> by finding
the successor of each value starting with the first (JACKS In
figure 3-12) and ending ~ith the last (SPIKES).

Many programming situations require a variable to have a
particular value when program execution begins. This is done by
specifying an Initial value for the var1able when it Is declared
<refer to figure 3-1 for the general variable declaration
format>.

60456320-01 (preliminary) COMPANY PRIVATE 3-6

VAR
voltage: (tow, medium, high) :=medium,
next_char : char := 'B'•
initial_value : integer t• -3721946,
year : 1900 •• 2000 :: 1978,
first_pass : boolean :2 TRUE;

figure 3-13. Initialization of Variables

After the variable Identifier and type tin figure 3-13)1 an
initial value Is specified after the t• symbot. The initial
value must be the proper type for the variable declared, and
must be in the proper range.

VOLTAGE is a variable (in figure 3-13J declared to be an
ordinal. The initial value is the ordinal value MEDIUM. The
other variables In figure 3-13 need no explanation.

3. 5 !Il&lfU.lIES.

Attributes are used to control the method of access, method of
storage, and scope of programmer defined variables. Refer to
figure 3-1 to review how attributes are specif led.

3.5.1 ACCESS ATTRIBUTE (READ)

The access attribute <READ> is used to indicate read-only
access for a variable. Assignments to read-only variables are
not allowed. A read-only variable must be initialized as this
is the only way to provide a value.

VAR
loop_limit : £READl integer :~ 251
end_char : CREAOl char := •••;

figure 3-14. Access Attribute

In the example above (figure 3-14), the variable LOOP_LIHIT is
defined to be a read-only variable of type integer with the
value 25. Subsequent program statements (within the scope of
this variable identifier) may access (refer to> the Identifier
LOOP_LIMIT whose value Is 25. No statement may make an
assignment to tor alter) the value of this variable.

<Read-only variables are usually structured variables, described
In section 8. Constant declarations, described later in this
section, are usually more suitable than read-onty scalar
var i 18 b I e s •)

60456320-01 (preliminary) COMPANY PRIVATE 3-7

3.5.2 STORAGE ATTRIBUTES CSTATIC ANO SECTION)

When a variable is given the statJc attribute, normal stor~ge

allocation and returning Cassociated with automatic variables>
is not performed. In effect, this makes a variable
nonautomatlc. The storage for a static variable is obtained no
later than the entry to the block containing the declaration.

Unlike automatic varlables1 the storage space for a static
variable is not returned upon block exit. The storage space is
statlc. The static attribute can be used to extend the lifetime
of a variable. An example might be a counter whose value
indicates how many times that the block in which it is declared
Is entered.

Only a static variable declaration may contain an
lnitlatization. If so, the initialization occurs only once,
when the storage space Is first made avalfable.

The scope of the static variable, however, does follow normal
scope rules. That Is, the identifier may be accessed only in
the block containing the declaration (and nested blocks). An
example of the static attribute is shown in figure 3-15.

VAR
blockl3_count : CSTATICJ Integer :• o,
master_flag : CSTATICJ boolean;

Figure 3-15. Static Attribute

3.5.3 SCOPE ATTRIBUTES <XDCL ANO XREFJ

Scope attrlbutes extend the scope of an identifier defined in a
variable declaration statement. Any variable given a scope
attribute automatically has the storage attribute STATIC. The
programmer need not specify the static attribute.

Normally, the scope of a variable Is the block in which the
identifier is declared. If the 1dentifler is to be used In many
blocks, It is made global enough to accomplish this objective.
But the scope of the most global Identifier (without a scope
attribute) is stilt the module in which it is declared.

Scope attributes allow an Identifier to be known (or shared)
between modules. When the loader loads the modules, it links
together the variabtes with scope attributes.

The XDCL attribute tndicates that an identifier is declared in a
module and may be referenced from any other module. Variables
with the XDCL attribute may be initialized and assignments are
al1owed.

60456320-01 (preliminary) COMPANY PRIVATE 3-8

The XREF attribute Indicates that an identifier is declared in
some other module and is referenced from this module. Variables
with t~e XREF attrlbute may not be initialized, but assignments
are allowed.

When the loader loads modules, it resolves XOCl and XREF
variables. XDCL variables are allocated space (as static
variablest and XREF v~riabtes in other modules with the same
Identifier share the same storage space as the equivalent XOCL
variable.

The· loader Issues an error message if an XREF var·iabte has no
XDCL counterpart.

MODULE first; MODULE I as t;
• •
• •
VAR VAR

count : CXOCLl Integer := o; count : CX~Ef l integer;
• •
• •

HODEND first; MODENO last;

Figure 3-16. Scope Attributes <XDCL and XREFJ

In figure 3-16, two modules are compiled producing tMo separate
object modules. The loader then loads both modules prior to
program execution. The variable COUNT In module FIRST is type
Integer, XDCL, Initialized to the value zero, and static by
default.

When the loader encounters variab1e COUNT in module LAST, It
assigns the same storage space as that used for COUNT In module
FIRST. In this way, references to variable COUNT from either
module wit I refer to the same storage location(s).

Variable identifiers used with XDCl and XREF attributes must
conform to the loader requirements for identifiers.

3 • 6 . tlltlS.Ilt!l-JtEC.LA&AI11Jb1-fDiU:1Al

A11 constant declarations follow the general format sho~n in
figure l-17.

CONST identifier • constant expression;

figure 3-17. Constant Declaration Format

The constant declaration is introduced with the reserved word
CONST. Note the use of the equal sign between the identifier
and the constant expression.

60456320-01 (pretiminary) COMPANY PRIVATE 3-9

The constant Identifier follows the same scope rules that apply
to other identifiers. The constant expression is evaluated at
compile time and Is associated with the constant identifier.
The constant identifier may then be used (subject to scope
rules) instead of the constant expression.

A constant cannot be atter•d by subsequent assignment In the
prograM. It is, in effect, a read only constant.

In a program there may be many references to Yatues known at
compile time. Examples include the lengths of arrays and
strings, the number of iterations to perform, and so on.

A good programming practice is to declare constants where
appropriate, and then use the constant identifier throughout the
program (instead of the constant value). This approach makes
changing the constants in the program easy. Aft one needs to do
Is change one constant declaration at one place in the source
text.

Some sample constant declarations are illustrated in figure
3-18.

CONST
one • 1,
unity • i,
number_of_ele•ents • 37211
array_size • Cnumber_of_elements + 9) I 10
f irst_tetter = 'A',
f lag_up • TRUE;

figure ~-18. Constant Declarations

The type of the constant Identifier Is the same as the type of
the constant expression. For example• constants DNE and UNITY
are type integer, constant FIRST_LETTER is type character, and
constant FLAG_UP Is type boolean.

60456320~01 (preliminary) COMPANY PRIVATE 3-10

4.0 IIe.£_12fCLA&Allllti

Section 3 discussed vartable identifiers and the syntax for
establishing a type for the variable identifiers. A scalar
variable was defined to be one whose corresponding type was a
scalar type (that is, integer, character~ boolean, ordinal, or
subrange).·

CYBIL provides a mechanism to separate the definition of a type
from the deel•ration of variables. In addition to the CYBIL
predefined scalar types (Integer, character, and boolean), the
programmer can define a type and establish a type identifier.
When variables are declared, their tyoe must always be
specified. But now, the variable may be a CYBIL predefined
scalar type (for example, INTEGER, BOOLEAN, CHAR) or a
prograMmer declared type. The general format of a type
declaration is shown in figure 4-1.

TYPE Identifier • type specification

figure 4-1. Type Declaration Format

The r~served word TYPE introduces the type declaration
statement. The identifier must conform to the rules governing
length and valid characters for identifiers. The type specifi
cation is a programmer dectared (valid CYBIL> type.

The type declaratton Is a compile time declaration. It does not
occupy storage space during program execution. The type
declaration does follow the rules of scope of identifiers. A
type Identifier may be referenced (at compile time) only In the
block in which it is declared and blocks contained in the
defining block.

Figure 4-2 Illustrates a simple use of the type declaration.

TYPE
tape_posltlon = (beginning, middle, last);

•
•

VAR
scratch_tape : tape_position == beginning,
out_tape : tape_positlon :• last;

•
•

figure 4-2• Type Declaration Example

In the example in figure 4-2, a type identifier (TAPE_POSITION)
is declared to denote an ordinal whose values are BEGINNING,
MIDDLE, and LAST. The type identifier <TAPE_POSITION> means (or

6045&320-0l (preliminary) COMPANY PRIVATE 4-1

stands for) the ordinal wherever it is used within the block in
Mhich it ls declared. The variable SCRATCH_TAPE has been
declared to be type TAPE_POSITION and witt be initialized to the
ordinal value BEGINNING. The variable OUT_TAPE is also declared
to be type TAPE_POSITION and is initialized to the ordinal value
LAST.

In the variable dectaratlon one could write the ordinal itself
Cthe parenthesized list of user-defined identifiers) instead of
a reference to the def lned ordinal type fTAPE_POSITIONl. This
appr~ach would require that the ordinal be written twice, as
shown In f lgure 4-3.

VAR
scratch_tape: Cbeginning, middle, last) :a beginning,
out_tape: (beginning, middle, last> :• last;

•
•
•

figure 4-3. Incorrect Ordinal Variable Type Declaration

In f lgur~ 4-3 the ordinal t8EGINNING1 HIDOLE1 LAST) is defined
twice, once for each variable identifier. Using the type
declaration (as in figure 4~Z>• one avoids writing a user
declared type over and over.

Type declarations are even more useful with more complicated
types. Type declarations facif itate the creation of non-scalar
types such as cells (appendix B) and pointers (section 9), the
structured types such as sets, strings, arrays, and records
(section 8)1 and the storage types such as sequences and heaps
(section 12). Type declarations also help in the declaration of
adaptable types and format types for pr~cedures. These
additionat uses of the type dectaratlon wilt be covered in later
sections. This section is intended to be an introduction to the
use of types.

In summary, type declarations follow all the rules pertaining to
scope of identifiers. A type declaration does not occupy
storage at execution time1 but is used to declare an identifier
that stands for a programmer defined type. The type•s
identifier Is typically used In a variable declaration or
procedure declaration to refer to the ~rogrammer defined type.

60456320-01 (preliminary) COMPANY PRIVATE 4-2

5.1 llf.E&AIDRS

CYBIL provides five classes for levels) of operators. Each
operator performs an operation on a value or pair of values to
produce a result• The following list shows the operator classes
in descending order of evaluation precedence.

NOT operator
Multiplicative operators
Sign operators
Additive operators
Relational operators

When an expression Involves severat operators, CYBIL determines
the order of evaluation from the order of precedence. For
example, If a statement contains multiplicative and additive
operators (and no parentheses) the multiplicative operations are
performed before the additive operations. Parentheses can be
used when necessary to change the normal order of evaluation.

The NOT operator negates a boolean operand; that Is, NOT TRUE
equals FALSE, and NOT FALSE equals TRUE. NOT can be used only
with a boolean operand.

Operators in the other classes perform various operations on
other scalar types as well as on types that have not yet been
discussed Cnonscalar types). The following tables summarize the
operators, their meanings, and their operand and result types.
Operations on nonscalar types are described in the sections that
introduce the types. This section presents detailed
descriptions (where necessary) of operations on scalar types
only.

The muftlplicati~e operators include multiplication <•>,
division <DIV), remainder <MOO), and logical and tANO), and are
summarized in table 5-1. The fogical and operator tAND)
results in TRUE if and only If both of its operands are TRUE.

TABLE 5-1. MULTIPLICATIVE OPERATORS

: Op er a tor : Meaning : Operandsi Result

• •
• •

* DIV
HOD

: Multlpllcation : : :
: Integer quotient : Integer : Integer :
: Remainder :

: -------------..--+--~---------------.-_.-----~-+---.----- ---.. +---------------:
ANO : logic a I and : Boolean : Boolean :

6045&320-0l (preliminary) COMPANY PRIVATE 5-1

The sign operators include Integer identity (+) and integer sign
inversion (-), and are summarized in table 5-2.

TABLE 5-2. SIGN OPERATORS

: Operator : Meaning : Operand : Result

• • • •
+ : Identity

: t'ilegation
1
I •

' : Integer : Integer

• •
• • • •

The additive operators include addition (+), subtraction (-),
logical difference (-), inclusive logical or (QR), and
exclusive logical or (XOR), and are summarized in table 5-3.

TABLE 5-3. ADDITIVE OPERATORS

: Operator : Meaning : Operands: Result • •
• • • •

+ : Addition • 1 t • • •
: Subtraction : Integer : Integer : : .-.~_ _____ .__+-·-·------......... .._.. ____ ..,...__._. ____ ...,._+-----.-.-......... -._+·-~----.-..---:

• '

• •

OR
XOR

: Logical or (inclusive>: : :
: logical or (exclusive>: Boolean : Boolean :
: logical difference :

The boolean operators in table 5-3 are defined as follows:

o Inclusive or tORJ - TRUE if either or both operands
are TRUE; FALSE otherwise

o Exclusive or (XOR) - TRUE tf operands are unequal;
FALSE otherwise

o logical difference (-) - TRUE if left operand is TRUE
and right operand Is FALSE; FALSE otherwise

The relationat operators include less than <<>, less than or
equal to <<•>• greater than t>), greater than or equal to ()•),
equal to (•)* and not equal to <<>>, and are summarized in
table 5-lt.

60456320-01 (preliminary) COMPANY PRIVATE 5-2

TABLE 5-4. RELATIONAL OPERATORS

: Op er a tor: Condition • Operands • Result .. '
: ----~._.._,_._,+......-.. ---.---. .-. ~-----·-.. +--... ------·--.... ·-·.--._..... _+--·----·--·-.... --.... .-:
• (:Less than • • • • • • • • • • • • • • • • (:ia :tess than • • • t • • I

• • or equal to • • • • t • • • • • I Both must I I • • I • •
: > :Greater than I be same t • • • • • scalar • Boolean • • • • • >• : Greater· than type t I • I ' • • or equal to • • • • • t

• • • • • • ' ' • • :equal to I • • • • t t

• I • • • • • ' • •
<> :Not equal to I • • • • •_.~.---._---~---... -----..-.-....... -.-.-----...--------- .---~--- ._-. ._. . .__ ----- -------..-,~-----

5.2.1 PREDECESSOR AND SUCCESSOR FUNCTIONS tPRED ANO SUCC>

The predecessor function determines the predecessor of the
scatar argument x. If the predecessor of X does not exist, the
program is in error. For exa•ple• PREDt7) is the value 6,
PRED(Ol is the value -1, PRE0('8 1) Is the character •A•,
PREDCTRUE) is FALSE, and so on.

This function is often used to deterMine the predecessor of an
ordinal Identifier.

VAR
x : (In, out, hotd, action);

•
•
•

x :• hold;
x :• PREDh:l;

figure 5-1. Predecessor Function (PRED>

In figure 5-1, the ordinal variable X is assigned the ordina1
constant HOLD. The statement "x := PRED<x>;" determines the
predecessor of HOLD (which is OUT) and assigns the value OUT to
the variable x.

The successor function tSUCC> returns a result that Is the
successor of the scalar argument x. It is analogous to the
predecessor function described above.

,..nt.11\&t.tV DOT\IATC

5.2.2 INTEGER CONVERSION FUNCTION tORDl

This function returns the integer representation of its
argument. The argument must be of type character, boolean, or
ordinal•

This function is often used to convert a character argument into
the ASCII col1atlng sequence ordinal number of the character.

VAR
I t O • • 255,
c : char;

•
•
•

c :• •z•;
i ta OJ~O{c);

Figure 5-2. Integer Conversion function (ORD)

In figure 5-z, the character variable C contains the character
•z•. The statement "i :• ORO(cJ;" converts the character •z•
Into Its Integer representation <that is~ the value 90 In the
ASCII collating sequence) and assigns the value 90 to the
variable I. A complete list of the correspondence between ASCII
characters and their collating sequence ordinal numbers is given
In appendix A.

The integer conwersion function also converts an ordinal
identifier into Its integer equivalent.

VAR
airport : (bos, msp, sfo, dca, dfw),
value : O •• 4;

•
•
•

airport t= bos;
value :a ORO(airportt;

Figure 5-3. Integer Conversion function (ORD)

In f lgure 5-3• AIRPORT is a variable of type ordinal with five
ordinal Identifiers declared. later, the variable AIRPORT is
assigned the value BOS. The statement "value := ORO(airport>;"
converts the current ordinal value of the variable AIRPORT into
its integer representation tzero in figure 5-3, because ordinal
Identifiers are numbered from zero) and assigns the value zero
to the variable VALUE. Since ordinal identifiers are numbered
from zero. OROtHSPJ has the value one, and ORO{OfW) has the
value four.

60456320-01 (preliminary) COMPANY PRIVATE 5-4

The Integer conversion function atso finds the integer
equival~nt of a boolean tTRUE or FALSE) argument. This is
rarely needed, but for completeness It must be added that
ORDlFALSE> has the value zero and ORD(TRUE> has the value one.

5.2.3 CHARACTER CONVERSION FUNCTION (CHRJ

The character conversion function converts an argument (whose
value is in the range O ~ X S 255) into a character whose
ordinal number in the ASCII collating sequence is x. Refer to
appendix A for a complete list of the ASCII collating sequence.

This function is often used to create ASCII characters that have
no graphic r~presentation. For example, CHR<7> creates the
ASCII code associated with activating an audible signal at a
terminal. Seven is the ordinal v~lue of the BEL control
function In the ASCII collating sequence.

The CHR function can also be used in constant declarations and
variable initialization, as shown in the following examples.

CONST • CONST •
BUI = C HR (0), • nut • o,
soh • CHR (1 h soh .: 1,
stx a CHR (ZJ, stx = 2,
etx • CHR(3), et x • 3,
eot • CHR t 4J, eot a 4,
enq • C HR (5) • enq = 5,
ack • CHR(6)• t ack : 6,
bet = C HR (7J; • bet = 7; • • ' TYPE • TYPE •
ctl_char = nut bet; • ct I _char • CHRtnul) CHR(bel)J •• • •• • •

\I AR ·• VAR •
c .. ctl_char :• nut; • c . ct t_char . - CHR(nult; • • • . -

• • I • • • • • • • • •
c :a bet; • c t• CHR(bel); • • • • • • • I • • • • •

figure 5-4. Character Conversion Function Examples

The examples in figure 5-4 consist of valid CYBIL statements;
both examples produce the same results. In the example on the
left, NUL1 SQH, and so on, are def lned as character constants in
the CONST state•ent. These constants are subsequently used to
define a type (subrange of CHAR1 NUL •• BEL), initialize a
variable IC initially equals NUL), and to assign a new value to
C CC ts BElt. The TYPE, VAR, and assignment statements in the

60456320-01 (preliminary) COMPANY PRIVATE 5-5

example on the right In figure 5-4 perform the same functions as
their counterparts on the left, but in a slightly different way.
Because the identJf lers NUL, SOH, STX, and so on, represent
integer· constants, the CHR function must be used wherever a
character value ts needed. The method employed in the example
on the left is preferred because it enhances readability in a
larger portion of the program.

5.2.4 UPPERVALUE AND LOWERVALUE FUNCTIONS

To be supplied.

5. 3 .Elt?&ES.S.lJUlS

Operators and operands form expressions. The operands must have
types suitable for the operator applied to them. For exampfe,
the division ope~ator <OIVJ must have integer for Integer
subrange) left and right operands. It is invatid (a compilation
error) to use the dtvtsion operator to try to divide variables
of type integer and boolean.

The order of precedence can sometimes cause unexpected results.

VAR
i, J : 0 •• 1001 ., b J boolean;
•
•

i :• 3 .. 5 * 4 + l; {i t= 24}
J :-. (3 + 5) * (4 + l)j {j :: 40}

•
•

a ta i < 9; {a ta FALSE}
b 1: I < 9 AND J < 4; {Error}

Figure 5-5. Order of Precedence Examples

The sample expressions shown in f lgure ~-5 provide some insights
into the meaning of the order of precedence. The statement "i
:= 3 + 5 * 4 + l" results in the value 24 being assigned to I
(equivalent to the statement "i :: 24°). Since the operators
are not the same precedence, the multiplication (5 * 4> is done
first. resulting in a value of 20. Then 3 and 1 are added (to
20) glvlng 24. The value 24 is then assigned to the variable
1.

In the statement "j :• (3 + 5) * (4 + l)" parentheses are used
to alter the normal order of evaluation. In this statement the
left (3 + 5) and right (4 + ll operands are evaluated before
performing the multlptfcation. The result of the muttl?tication
(40) is assigned to the variable J.

60456320-01 (preliminary) COMPANY PRIVATE

The statement "a := i < 9" invotves a relational operator t<l
and assigns the value TRUE to boolean variable A if I is less
than nine. If I is equal to or greater than nine. the statement
assigns FALSE to the boolean variable A.

The statement "b :• i < 9 ANO J > 4" praduces a compilation
error. The operator ANO Is a multiplicative operator (with a
higher precedence than < or)) and is evaluated first. However.
the left and right operands of the ANO operator are 9 and J.
The AND operator requires operands of type boolean. To produce
results that reflect the intuitive meaning of this statement,
it must be r•wr1tten "b :a ti < 9) AND CJ > 4)"• Parentheses
force ev~luation of II < 9) fol towed by evaluation of CJ > 4)
resulting In two boolean values. Finally, the AND operator Is
applied· to the boolean values. In this example, the parentheses
are needed to express the statement correctly and avoid
compitation errors.

When the value of certain boolean operations can be determined
after evaluation of only the left operand, CYBIL does not
evaluate the right operand. Consider the example in figure 5-6.

V.AR
k : 0 •• 1000,
valid: boolean,
max_ctur : char;
•
•

k l•382;
11ax_char :a • _ •;
val Id t• (k <• 255) AND tCHR(k) <= max_chart;

figure 5-6. Boolean Operation Evaluation

Since K is greater than z55, the ANO operator's left operand is
FALSE. There is no need tin this case) to evaluate the right
operand: the value assigned to VALID must be FALSE, regardless
of the right operand's value. If CYBIL were to evaluate both
operands, however~ t~e program would be In error because CHR
requires an argument from O through Z55. CHR(382) would
produce an error If Its evaluation were attempted.

The colon-equal symbol (:=> Indicates assignment. Colon-equal
is created from the two symbols colon (:J and equals (=)
adjacent to one another. Blanks or comments cannot appear
between the colon and the equals sign.

One use or the assignment operator was presented In section 3:
the initial assignment (inltlalizatton) of a va1ue to a variable
In a VAR statement. The assignment operator is also used in an
assignment statement to assign a value to a variable. The type
of the value (or expression) on the right of the assignment
oper~tor must be assignable to the type of variable on the left
of the assignment operator.

60456320-01 (preliminary> COMPANY PRIVATE 5-7

VAR
monthty_salary : O •• 4000,
pay_status : (exempt, non_exempt),
sex s (male, female);

•
•

monthty_salarY :: 2163;
pay_status t• exempt;
sex :• female;

Figure 5-7. Assignment Examples

The example in figure 5-7 illustrates some assignment
statements. The VAR statement (first 4 lines> declares three
variable Identifiers and their respective types. HONTHLY_SALARY
is type subrange of integer Cthe specif le subrange being 0 ••
4000). PAY_STATUS Is type ordinal with the programmer declared
ordinal constants EXEMPT and NON_EXEMPT. SEX also is an
ordinal.

The assignment statement "monthly_salary t= 2163;" assigns the
value 2163 ltype integer) to the variable HONTHLY_SALARY (type
subrange or integer). The assignment Is valid because type
conformability is maintained.

If type conformance Is not maintained, the statement is in
error. The incorrect asslgn•ent may be caught during
compilation if constants are invalid. If the error cannot be
caught during comptlatlon, It Is diagnosed during program
execution and causes the program to terminate. The execution
time checking can be disabled, but this Is not recommended
during program development.

VAR
monthty_salary : o •• 4000•
current_ralse : o •• zoo;

•
•

monthty_salary := 8000;
current_raise := 150;
monthty_satary :• monthly_salary + current_raise;

Figure 5-8. Incorrect Assignments

In figure 5-8, the assignment statement "monthly_salary :a 8000"
is incorrect because the value on the right of the assignment
operator (8000) is outside the declared type <subrange of
Integer O •• 4000) of the variable on the left of the
assignment operator fHONTHLY_SALARYl. CYBIL diagnoses this
error during program compilation. Declaring a type for each
variable enables the compiler to provide this kind of error
checking.

60456320-01 (preliminary) COMPANY PRIVATE 5-8

If this erro~ is corrected the program will compile property,
but another error may occur during program execution. An
execution-time error occurs If the vatue of "•onthty_salary +
current_raise• exceeds 4000. This kind of error cannot be
caught during program compilation, but will be diagnosed during
progra• execution.

60456320-01 (preliminary) COMPANY PRIVATE 5-9

CYBIL provides a varlety of statements to control the execution
of a program. Among them are the compound statements If, CASE,
BEGIN, WHILE, REPEAT, and FOR. Each of these consists in Part
of one or more sequences of statements, called statement fists;
hence the term compound statements. The precise way In which
each compound statement controls execution of its component
statement llst(st Is the subject of this section and the next.

This section describes the operation of the IF, CASE, and BEGIN
statements. These statements each cause (at most) a single
execution of a statement list. <WHILE, REPEAT, and FOR provide
mechanisms for repeated execution of a statement fist and are
described In section 1, Repetitive Statements.> The description
of the BEGIN statement atso introduces the subjects of statement
labels and the EXIT statement, both of which are described
further in section 1.

6.1 lf_SlllfttfHI

The IF statement causes Cor prevents) execution of a statement
llst depending upon whether a specified condition is true or
false. IF statement processing is diagrammed in figure 6-1.

IF
• • • • +------.... +-.----...... -+

THEN

Condition : TRUE : Statement :
• t

• •
Test

?
+----------------------->: l i st

• t 1
• • • • +-----+------+ +·--~.--._-+,_._.._ +

FALSE
• • • • • I

• 1

• • • •

ELSE
+---~-----~---...--+
: Statement :

• • • •

+-------------------->: list • •
: 2

• • +-------->:

Figure 6-1. IF Statement

• •
v

I FEND

The IF statement begins with the reser~ed word IF followed by a
condition (a boo1ean expression>. The boolean value of the

60456320-01 (pref iminary) COMPANY PRIVATE 6-1

expression (at the time the If statement is executed)
determines which of two statement lists Is executed. If the
condition is TRUE, the THEN portion of the IF statement
(statement list l> is executed and the IF statement is
terminated Cat IFENDJ. If the condition is FALSE, the ELSE
portion of the IF statement is executed (statement list Z>.
(An alternate form of the IF statement, without the ELSE
portion, is described shortly.)

Note that either statement list 1 or statement list 2 Is
executed as a result of the condition test.

figure b-Z illustrates the syntax of the IF statement.

VAR
XI y • integer; .
•
•
•

If x < 0 THEN
y ta x * x;
x :: x - l;

ELSE
y ;a x DIV 2;
x :• x - z;

IF END;
•
•

Figure 6-2. If Statement Syntax

The IF statement In figure 6-2 consists of seven tines (from IF
to IFEND) but it is one statement, even though lt Includes other
statements. In this example, the condition test answers the
question, "Is the value of X less than zero?". If the result Is
TRUE the THEN portion of the IF statement C"y := x * x; x := x -
1;•t is executed and the IF statement terminates. The next
statement executed is the one following IFENO.

If the result of the condition is FALSE1 the ELSE portion of the
IF statement Is executed ("y :• x DIV 2; x := x - 2;") and the
IF statement terminates. The next statement executed Is the one
following IFEND.

An alternate form of the IF statement allows the ELSE to be
omitted. This form is diagrammed in figure 6-3.

60456320-01 (preliminary) COMPANY PRIVATE 6-2

IF
t • • • THEN

: Condition : TRUE Statement :
• • • •

Test +·-------·----------->:
1 • I • •

List • • • ' +-:--------+--.... - + +·~-------+---------+
FALSE • • : <·-----------.---...-. -..-.-.-..-..--. .-,---.-----·---+

I •
y

I FEND

Figure 6-3. If Statement Without ELSE

The short form of the IF statement has only one statement tfst.
If the co-ndition is TRUE, the statement list is executed. If
the condition Is FALSE, no statements (within the IF-IFEND> are
executed.

The short IF statement has many uses. One example is to control
the Mrittng (by the program> of debug information, as shown In
figure 6-lt.

CONST
debug = TRUE;
•
•

If debug THEN
{Wrlte debug information}

IFEND;
•
•

Figure 6-'· Short IF Statement Example

In figure 6-4 OE8UG is a boolean constant with the value TRUE.
The If statement tests the value of DEBUG. If it is TRUE, the
statements after THEN are executed <represented by the comment
{Write debug information}). To disable debug information. the
programmer must change the value of DEBUG to FALSE. Then the
IF statement would not execute the instructions that write debug
Information.

The IF statement controlling the production or debug information
could be reproduced as often as required in the source program.
DEBUG must be as global as necessary to be accessible by alt
appropriate IF statements.

Sometimes a program requires many nested tests to properly
determine which statement list to execute. The THEN or ELSE
portion of an IF statement can contain additional (nested) IF
statements. as illustrated in figure 6-5.

60456320-01 (pretlmlnary) COMPANY PRIVATE

If
• • +---+---+

THEN

FALSE t :TRUE :statement:
: .-... .-.-.----...-.--.... .-.--._._.-._ ... ·: l i s t :

• • :

ELSE

• • t I

• • • •
:IF
• •

+---·----·+

THEN
+---+--·-+ +---------+

FALSE : : TRUE :statement:
• 'f +---: y•l :--------------: list :
• • : : : 3 :
• •
I I • •

ELSE:
: +----+----+
• • • •

I Statement:
: list :
: 4 :

: +-·---+----+
I • ,,
• • • • •

v IFEND

• f

+·----+----+
• I

• t

• t

• t

• •
• t

• •

: l :
+----+----+

" •
:
• ,,
• • • t

• • • • • • • • • • • • • t

• t

• • ,,
I

• • • • • •

• •
I • • • • • • • • •
• • • • • • • • • • • •
' t • • • •
• • • • • • • • • • : (----------- ----.---........ -._._ ,.,,._....-...... _..~....._.

y

If END

figure b-5. Nested IF Statements

In figure b-5, statement list 1 is executed when X equals 1.
Statement list 3 is executed when X is not 1 and Y Is 1.
Statement list 4 Is executed when neither X nor Y is 1. The
apparent omission of "statement list Z" is not an oversight.
This was done to point out that the second (nested) IF
statement!~ the statement list which constitutes the ELSE
portion of the first (outer> IF statement. Translating the
example in f lgure 6-5 Into CYBIL statements produces figure
6-6.

IF x a 1 THEN
{Statement list 1}

ELSE
IF y = 1 THEN

{Statement list 3}
ELSE

{Statement list 4}
I FENO;

If END;

Figure 6-6. Nested IF Statements

60456320-01 (preliminary) COMPANY PRIVATE 6-4

The CASE statement selects one and only one of several statement
lists depending upon the value of a scalar expression. One or
more IF statements can always replace a CASE statement. In many
instances though, the CASE statement formulation represents the
Intent of the programmer more clearly and may improve program
c I ar i ty.

figure 6-8 Illustrates the flow of control in a CASE statement.

CASE

·------·+------+
:case selector:

OF: +·----·-·------+
S• Case spec 1 = :statement :
: --------------->: l i st l : ---) : ' +---._ __ ._...__. __ .._._+

' • • • I • • •
+ ._ ___________ - .-- .__.._ + • ' • • := Case spec Z = :statement

+--------------->: List 2

• • • I

:• Case spec 3 a istatement
+--------------->: list 3 • • •

•

:--->:

t • • • :--->:
• • • t

' • • : +.-..---------------~-.... + :
:• Case spec n • :statement : :
+--------------->: list n :--->: : +--..--._,_..._. _________ + :

: t
: +~~-----~~~--~+ :
:ELSE :statement : :
+--------------->: list

v
CASHIO

Figure 6-8. CASE Statement

:--->:
• • • •

The syntax of the CASE statement is shown in f lgure 6-9.

60456320-01 (preliminary) COMPANY PRIVATE b-5

CASE {Case selector} Of
= {Case specification l} =

{State•ent list 1}
a !Case specification 21 a

{State•ent list 2}
•
•
•

• {Case specification n} =
(Statement list n}

ELSE
{Statement list}

CASEND

Figure b-9. CASE Statement Syntax

The case selector (between the reserved words CASE and Of)
determines which of the CASE statement•s statement lists is
executed; the selector must be a scalar variable or expression.
The statement list that is executed is the one that fottows the
case specification containing the case selector's value at
execution time.

A case specification describes what value or values the case
selector can have to cause execution of a statement list. A
case specification has the following general form:

= value~spec, value_spec •••• a

Each "value_spec" Is either a scalar constant, a scalar
expression containing constants only, or a range of constants.
For example, the statement list following

* 3, 5+11 -2 •• 0, 11 •• 9 a

would be executed if the value of the case selector Nere -z, -1,
o, 3, 6, 9, 10, or 11.

If the value of the case selector does not equal a value
specified in any case specification, the statement list
folloMing the ELSE ts executed. The ELSE clause ts, however,
optional. If it is omitted and the case selector value does not
match a value in a case specification, the program is in error.

60456320-01 (pr•timinary) COMPANY PRIVATE 6-6

The example In figure 6-10 illustrates the CASE statement.

VAR
code : char,
column : 1 •• 100,
line_t • 1 60, • ••
margin • l 80 :a 10; . • •
•
•
•

CASE code OF
• •p•, tpt :

column :• margin + 4;
line_#:• line_#+ l;

= •o•• •o• =
column :• column 1;

• ' • =
{ Another statement list }
•
•

ELSE
{ Default statement list }

CASE MO

Figure 6-10. CASE Statement Example

The CASE statement in f lgure 6-10 executes one of several
statement lists according to the value of CODE (as determined
during program execution). If CODE equals uppercase or
lowercase p, the first statement list is executed; if CODE
equals uppercase or lowercase o, the second statement list (a
single statement in the example) is executed; if CODE equals a
space, the third statement list is executed. If code does not
match any of the values in the three case specifications, the
statement list fottowing ELSE is executed.

The following features of the CASE statement in figure 6-10
should be noted.

o The scalar type of the case values matches the type of
the case selector. In this example, they are type CHAR.

o The case selector Is a variable (or an expression
containing variables>; the individual cases t•p•, •p•,
•o•, and so on) are constants tor expressions containing
only constants>.

o Only one statement list is executed. No constant
appears more than once among all the cases.

The BEGIN statement provides a mechanism for the togicat
grouping of statements. The BEGIN statement is introduced with

60456320-01 (preliminary) COMPANY PRIVATE 6-7

the reserved word BEGIN and terminated with the reserved word
ENO. Source program statements which, taken as a group, perform
some Identifiable function are typically placed within a BEGIN
statement. The BEGIN statement flowchart is shown in figure
6-11.

BEGIN
• •
y

t I • •
: Statement list :
• I

v
END

figure 6-11. BEGIN State•ent Flowchart

The flowchart in figure 6-11 shows that the flow of control In a
BEGIN statement is from BEGIN to END. No repetitions occur.
The flow of control would be the same (for the statement ttst)
even if the BEGIN statement <BEGIN and END reserved words) were
omitted. Declarations (such as variable declarations, type
declarations, constant declarations, and so on) are not allowed
in a BEGIN statement.

The syntax of the BEGIN statement is shown in figure 6-lz.

I label I
BEGIN

{Statement 1ist }
•
•
•

END I label I

figure 6-12. BEGIN Statement Syntax

The label that (optionally) precedes and follows the BEGIN
statement is a unfque i.dentifler whose construction follows the
rules giwen In section z. The label following ENO is optional;
If used, it must match the label preceding BEGIN. Labels can
add much to the understandability of a program when used wisely.
As such. their use is strongly recommended, especially when the
labeled statement Is many lines long.

labels cannot, however. be used with all CYBIL statements.
They precede tthat Is, tabel) only the BEGIN statement and the
repetitive statements described In section 1. Reference to
labeled statements Is made by specifying the label as part of an

60456320-01 (preliminary) COMPANY PRIVATE 6-8

EXIT or CYCLE statement only. <The EXIT statement is described
at the end of this section; the CYCLE statement is descrlbed at
the end of section 7.l

An example of a labeled BEGIN statement is shown In figure 6-13.

TYPE
sizes• <small, medium, large),
formats= (line, coordinates>;

COM ST
defautt_size = medium,
default_format = coordinates;

VAR

•
•
•

size : sizes := default_size,
format : formats := defau1t_format;

/reset_defaults/
BEGIN

size :a default_size;
format := defautt_format;

END /reset_defaults/~

Figure 6-13. BEGIN Statement Example

The description of the BEGIN statement thus far depicts a rather
useless statement. The Judicious use of blank lines,
indentation, and comments serves to group statements and to
document their function, perhaps better than the BEGIN
statement. The BEGIH statement's utility will increase,
however, as additional topics are presented. Specificalfy,

o The cross-reference listing (an inventory of
Identifiers together with other useful information
about a CYBIL program> includes label identifiers
and their location, easing the search for a small
portion of a large progra•• The cross-reference
listing ts discussed in detail in a later section
of this guide.

o Execution of a BEGIN statement can be prematurely
terminated by an EXIT statement executed within the
BEGIN statement.

60456320-01 (preliminary) COMPANY PRIVATE 6-9

Elll-S.tatAllJHlt

The EXIT statement terminates execution of a BEGIN (or
r~petltiveJ* statement. It has no meaning outside such a
statement; CYBIL diagnoses such use as a compilation error.

The syntax of the EXIT statement is shown in figure 6-14.

EXIT /label/

Figure 6-14. EXIT Statement

Execution of an EXIT statement terminates execution of the BEGIN
statement with the matching.label. The use of labels allows
exiting a BEGIN statement from within several levels of nesting.
Execution resumes with the statement that follows the exited
statement.

The example In figure 6-15 i11ustrates the BEGIN and EXIT
statements.

VAR

•
•

•ore_args : boolean,
no_of_args : Integer;

{ Determine no_of _args and }
{ actual argument values }

/process_arguments/
BEGIN

more_args t= no_of_args > o;
IF NOT more_args THEN

EXIT /process_arguments/;
I FEND;

{ Process first argument }

•ore_args =• no_of _args > l;
IF NOT more_args THEN

EXIT /process_arguments/;
I FEND;

{ Process second argument }

•
•

END /process_arguments/

Figure 6-15. BEGIN and EXIT Statements Example

* The remainder of this section describes the use of the EXIT
statement Mlthln a BEGIN statement. Its use within repetitive
statements is analogous to this and Is discussed further In
section 7.

60456320-01 (preliminary} COMPANY PRIVATE 6-10

The example in figure 6-15 is a much-simplified r~presentation
of the preliminary processing and validation of items In some
hypothetical order-dependent argument list. Statements that
perform the actual processing of each argument are not shown,
but it is assumed that each argument requires some unique
processing•not required by the others.

The details of the example are (hopefully) self-explanatory. In
brief, the BEGIN statement processes arguments untf t one of the
following conditions exists:

o There are no arguments left to process CMDRE_ARGS is
FALSE>

o The BEGIN statement processes the last argument
that it must process (the BEGIN statement ends
normallyt

60456320-01 (prettmlnary) COMPANY PRIVATE 6-11

1.0 &fe£Illl!f_SIAifBfttIS

Each of the three repetitive statements WHILE- REPEAT• and FOR
causes a statement list to be repeated; the different ways in
which they perform this task is the main topic of this section.

like BEGI~, a label can precede a repetitive statement, and an
EXIT statement can prematurely terminate execution of a
repetitive statement. Additionally, a CYCLE statement can
affect a repetitive statement's function in a manner suggested
by its name: the repetitive statement Is "cycled1" thereby
r~peating its statement list. This brief mention of labels and
the EXIT and CYCLE statements Is made for two reasons: to
introduce topics that are covered in detail later in the
section9 and to illuminate somewhat the flowcharts that
accompany the descriptions of the repetitive statements. Each
flowchart, in addition to ittustrating the operation of a
particular statement~ indicates where control Is transfered upon
execution of an EXIT or CYCLE statement.

The WHILE statement evaluates a condition (boolean expression)
prior to executing its statement list. If the condition is
false. the statement list Is not executed, the WHILE statement
ends, and processing continues with the statement ~fter the
WHILE statement. <The statement list Is not executed even once
if the boolean condition is initially FALSE.) If the condition
Is true, the statement list Is executed and the WHILE statement
is repeated, beginning with the re-evaluation of the condition
fottowing WHILE. The flowchart in figure 7-1 illustrates the
operation of the WHILE statement.

60456320-01 (preliminary> COMPANY PRIVATE 7-1

WHILE

• •
y

FALSE : Boolean :
+----: Condition :
: : ? :
• • • • • • • • • • • •
I
t

• • • • • •

00
: TRUE
• t ~----+ ... ----..-.-+

: Statement :
: List :

CYCLE->:

• •
y

WHILENO
EXIT-->:

I •

• • • • • • ,,
t

• t

• •
• I

• • • • • •
• •

Figure 7-1. WHILE Statement

The reserwed word WHILENO terminates the WHILE statement. If an
EXIT statement Is executed within the WHILE statement, execution
continues with whatever follows the WHILE statement (that is,
whatever fottows WHILENDJ. If a label precedes the WHILE
statement, it can be repeated after WHILENO.

An example of the WHILE statement is shown in figure 7-2.

VAR
n : o •• 84 :• 5,
factorial : integer :• l;

{Compute factorial of n}
/compute_factorial/

WHILE N > 0 DO
factorial t• factorial * n;
n :• n - l;

WHILENO /compute_factorial/

Figure 7-2. WHILE Statement Example

In f lg~re 1-z, N is declared to be a subrange of the integers
0 •• 8~, ~ith an initial vatue of 5; FACTORIAL is an Integer
variable with an Initial value of 1. N was not declared to be a
constant because the program alters the value of N1 and
constants cannot be altered.

60456320-01 (preliminary) COMPANY PRIVATE 7-2

The first operation in the WHILE statement is to determine if N
Is greater than zero. If N is not greater than zero, the
statement list of the WHILE statement is not executed and
FACTORIAL remains one (recall that zer~ factor1at equals one).
If N is greater than zero, the WHILE statement performs the
necessary iterations to compute the proper value of FACTORIAL.

7. 2 &.E!EAI-SIAIEJJf tU

A unique feature of the REPEAT statement is that the statement
list ts always executed once upon entering the REPEAT statement.
Thereafter, the boolean condition determines if additional
repetitions witl be performed.

The flowchart In ftgur• 7-3 illustrates the flow of control in a
REPEAT statement.

REPEAT

• y • • +--..-.----.- t ·-------... + f
t • Statement ' t ' • • • list • • • • • +----.-----: ·---._.-+ • • CYCLE->: • • • t t

• UNTIL • ' I

+---·--+----+
: FALSE : • • +-------: Boolean • •

: Condition :

EXIT-->:
y

TRUE

Figure 7-3. REPEAT Statement Flowchart

In the flowchart in figure 7-3, note that the statement list is
executed once upon entry into the REPEAT statement. After the
statement list is executed once, the boolean condition is
evaluated. If the condition is true, the REPEAT statement
terminates and execution proceeds with the statement after the
REPEAT statement (that ls1 after the UNTIL clause>; this is also
where execution transfers if an EXIT statement is executed
within the REPEAT statement. If the condition is false, the
statement llst repeats.

The statement list may contain any executable statement
Including nested REPEAT statements. The REPEAT statement can be
read "Repeat the statement list until the boolean condition is

60456320-01 tprellmlnaryt COMPANY PRIVATE

true". Unlike the other statements that can be preceded by a
label, a label cannot follow a REPEAT statement (that is1 cannot
follow the UNTIL clause that terminates a REPEAT statement). An
example of the REPEAT statement is shown in figure 7-4.

CONST
limit • 55; {Maximum odd Integer}

VAR
sum : integer,
curr~nt: 1 •• limit+ z;

{Find sum or odd Integers 1 to limit}

sum :2 o;
current :• l;

/sum_odd_lntegers/
REPEAT

sum :• sum + current;
current :• current + Z;

UNTIL current> limit;

figure 7-4. REPEAT Statement Example

The pr~or•m in f lgure 7-4 finds the sum of the odd integers 1 to
LIMIT. Notice that LIMIT Is a constant and the variable items
in the program are expressed in terms of this constant. To find
the sum of odd Integer~ up to a value other than 55, onty the
constant declaration need be changed.

The FOR statement uses a control varlable and programmer
specified Initial and final values to control the number of
Iterations of Its statement list. A simple FOR statement is
shown in figure 7-5.

VAR
index i 1 •• 100;
•
•

/for_statement_example/
FOR index :a 1 TO 100 DO

•
•
{StateMent list}
•
•

FOREND /for_statement_example/

Figure 7-5. FOR Statement Syntax

60456320-01 (preliminaryJ COMPANY PRIVATE 7-4

The FOR statement Is introduced with the reserved word FOR. The
variable INDEX (from "FOR index := 1 TO 100 DO">• is called the
control :variable because Its value is used to control the number
of Iterations of the FOR statement. The values l and 100 are
the initial and final values, respectively. In this exampfe the
Initial and final values are constants. In general9 however,
they can be expressions involving scalar variables and constants
that are evaluated at execution time~ The FOR statement in
figure 7-5 would cause its statement tist to be executed 100
times.

The end of the FOR statement Is designated by the reserved word
FORENO. Atl statements between FOR and FOREND constitute the
statement list of the FOR statement. CYBIL places no
restriction on the statements comprising the statement list
except that no statement can assign a value to the control
variable. CYBIL diagnoses such use as an error. The FOR
statement can be preceded and fo11owed by a labet.

The example in figur~ 7-5 does not explain all features of the
FOR statement. The flowchart in figure 7-6 further explains the
operation of a FOR statement.

60456320-01 (preliminary) COMPANY PRIVATE 7-5

• • • • • •

FOR
• •
y

:compute initial value:
: and assign to temp :

v

:compute final value: +-........... _.-_..., __ ._.+._. ... ___________ +

+-------.-.-+-........ .._.._ _ +
: : FALSE

• •
I

: temp <• final :--------+
• • •

? : :

+-------+-------+ : • • • • • • • I

• t

• ' • •
I • • • • • • • • •

TRUE

DO

:control variable := temp:

• •
+-----------..-.--~-----+
tStatement list:

CYCLE->:
: y
: +_ ~----..-.~..-.-.- -+
: :Find successor or:
+-------: temp and assign :

: to temp :
+-----------------+

v
FOR ENO

EXIT-->:

Figure 7-6. FOR Statement

• •
I
t

• • • t

• •
• I

• ,,

As shown In figure 7-b, the FOR statement involves many steps.
The Initial value is evaluated first and assigned to a temporary
variable ITEMP in figure 7-6) that the programmer cannot access
tit Is assigned by the CYBIL co•pf ler). The final value is
then determined. Next, a test is made to determine if the
value of TE~P (the initial value> Is less than or equal to the
final value. If the result Is false (that is, the value or
TEMP is greater than the final value) the FOR statement is
terminated. Note that In this case, no assignment is made to the
control variable.

60456320-01 (preliminary) COMPANY PRIVATE 7-6

If the v•tue of TE"P (the initial value) is less than or equal
to the f inat value, the FOR statement continues and the value of
TEMP Is assigned to the control variable. The statement list is
then executed. The statement list may contain any valid
executable statement Including additional FOR statements.

Finally, the successor of the vatue In TEMP is determined and
assigned to TEMP. The FOR statement continues by testing to see
if the value in TEMP has exceeded the final value. The FOR
statement terminates when the value in TEMP exceeds the final
value.

When the FOR statement terminates normally, the control variable
equals the final value. If an EXIT statement terminates a FOR
statement, execution proceeds with Mhatever follows FOREND and
the control variable retains the value it had when the EXIT
statement was executed.

The control variable• initial value. and final value need not be
type Integer as shown in figure 7-5. They may be any scalar
type. but they must all be the same type or subranges of the
same type. <Note that the successor function determines the
next value of TEMP; see the last box of the flowchart in figure
7-6.)

The use of the successor function is mor~ apparent in the
example in f lgure 7-7.

VAR
hardware : ltacks1 nails. spikes, bolts, nuts>;
•
•

FOR hardware := nails TO bolts 00
•
•
{Statement list}
•
•

FORE NO;

Figure 7-7. FOR Statement With Ordinal

In figure 1-1, HARDWARE is an ordinal variable. The permissible
ordinal constants for HARDWARE ar~ declared in parentheses. The
FOR statement Iterates three times. Initially, the variable
HARDWARE has the value NAILS. The second iteration is made with
the contrbl variable (HARDWARE) set to SPIKES. The third and
final iter~tion is made with the contr~I variable set to BOLTS.

After the FOR statement is completed (after three Iterations),
the variable HARDWARE wlll have the value BOLTS.

Another example illustrating the FOR statement is shown In
figure 7-8.

60456320-01 (pretiminary) COMPANY PRIVATE 1-1

TYPE
range = 0 •• 9;
•
•

VAR
index : range_,
lnit : range := a,
final : range := 3;
•
•

FOR Index :a lnit TO final DO
•
•
{Statement list}
•
•

FOREND.;

Figure 7•8. FOR Statement CNo Iterations)

In the FOR statement in figure 7-8 the initial value (INITJ is
greater than the f lnal value IFINALt. The flowchart in figure
7-6 shows that the statement list is not executed. The value of
the control variable is undefined (never initialized) in this
case. This is Just one way that undefined variables can be
created In a Program.

Descending FOR statements are Indicated by the use of the
reserved word DOWNTO instead of the reserved word TO. In a
descending FOR statement, the initial value is normally greater
than the final value. The predecessor function Is used instead
of the successor function to determine the values of the control
variable. An example of a descending FOR statement is shown in
figure 7-9.

VAR
counter : 831 •• 925;
•
•

FOR counter S• 900 DOWNTO 850 00
•
•
{Statement list}
•
•

FORENO;

Figure 7-9. Descending FOR Statement

C.It.Lf_ ~titJUIJUl.t

The CYCLE statement iterates a repetitive statement In which it
Is contained. It has no meaning outside such a statement;
CYBIL diagnoses such use as a compilation error.

60456320-01 (preliminary) COMPANY PRIVATE 7-8

The syntax of the CYCLE statement is shown in figure 7-10.

CYCLE /label/

Figure 7-10. CYCLE Statement

The CYCLE statement causes the remaining statements In a
repetitive statement to be skipped. After skipping, execution
continues with whatever function normally fotl-0ws execution of
the statement tist. The diagrams in figures 1-1, 7-3. and 7-6
indicate this function for the WHILE, REPEAT, and FOR
statements. respectively.

The example In figure 7-11 illustrates the CYCLE statement.
CThe WHILE statement Is used in this example; any repetitive
stat~ment can encompass a CYCLE statement, hoMever.>

/example/
WHILE x < y DO

•
•

• • • •
IF c THEN :

CYCLE /example/ :
I FEND;
•
•

WHILEKO /example/

• • • I

• •
• •
• I

/example/
WHILE x < y DO
/bgn/

BEGIN
•
•
If c THEN

EXIT /bgn/
I FENO;
•
•

END /bgn/
WHILENO /example/

figure 1-11. CYCLE Statement Example

In figure 1-11, X and Y are scalar varlabtes, C is a boolean
varlabte. The statement list of the WHILE statement on the teft
consists of several statements; the statement list of the WHILE
statement on the right consists of a single BEGIN statement.
Assuming that the statements Inside the WHILE stateMent on the
left are the same as the statements inside the BEGIN statement
on the right -- except for the IF statements shown -- the two
WHILE statements perform Identically. <The structure on the
right should never be used in practice; it is shown here only to
illustrate the operation of the CYCLE statement.)

The following potnts summarize the use of labels and the CYCLE
and EXIT statements.

o Labels can precede (label) only the BEGIN statement and
the repetitive statements.

60456320-01 (preliminary> COMPANY PRIVATE 7-9

o The reserved word that terminates a BEGIN, WHILE,
or FOR statement CEND1 WHILEND, FOREND) can (and
should) be followed by the label of the statement
that it ter•inates. This practice improves program
readability especially when many levels of nesting
and/or lengthy statements are used.

o A label should be used to identify the function of
the statement that it labels Mhenever possible.
This not on1y makes the program easier to
understand• but aids In locating a particular
portion of a program via the cross-reference
Ii sting.

o The labels on an EXIT or CYCLE statement can specify
which of several nested statements is to be cycled or
exited.

o The EXIT statement terminates execution of an
enclosing BEGIN or repetitive statement; the CYCLE
statement causes the remaining statements Inside a
repetitive statement to be ski9ped, thereby cycling
(iterating) the repetitive statement.

60456320-01 (preliminary) 7-10

a.o ll&UC.IU&fi2-1IeES

This section examines data types that consist of collections of
components. Unlike scalar types (discussed in sections 3 and
4), the successor and predecessor of a given structured type
cannot tin general) be found.

The structured types Include array, record, set, and string.
Each of these types provides a unique capability for organizing
and r~ferenclng data.

a.1 A&B.Al-.lif..E

The array type provides random access to its elements, all of
which are of the same type. An array is defined in terms of an
index and a component type. The general form of an array type
definition is shown in figure 8-1.

TYPE
identifier a packing ARRAY Clndexl OF component type

Figure 8-1. ARRAY Type Definition

The type identifier is declared by the programmer. The equal
stgn indicates an equivalence between the Identifier (on the
left> and the type declaration (on the right). The packing
specification is optional and is used to Indicate programmer
declared trade-offs between the storage space required to
contain the array and the access time needed to reference an
array component. The packing specif lcatlon tPACKEOJ is
explained tater in this section. An array type declaration
begins with the reserved word ARRAY, Includes a specification
for the index enclosed in brackets, and uses the reserved word
OF to introduce the component type. The programmer must supply
an identifier, index, and component type to complete the array
type declaration.

The Index Is restrlcted to scalar types other than integer
(boolean, character, and ordinal) and subranges of scalar types.
The component type •ay be a scalar type {discussed in section
3), a structured type. or a pointer type (discussed in section
9). The component type is the type of atl elements comprising
the array.

Perhaps the simplest array structure Is one that Is one
dimensional, has integer indexes, and contains integer
components. This type of array is illustrated In figure 8-2.

60456320-01 (preliminary) COMPANY PRIVATE 8-1

1 : Integer value :

2 : Integer value :
• __,_._ ____ ·~------...... --.-.+

3 : Integer value :
+ ,,_,-.... -.--.-.-.-· ... ·-----+

4 : Integer v~lue :

•
•
•

98 : Integer value ~

99 : Integer value :

+---------------· 100 : Integer value :

figure 8-2. Array Represent~tion (Simple)

In this example, the Indexes are the values 1 to 100. The
components are the Integer vatues. This array, in CYBIL
syntax, is shown in figure 6-3.

TYPE
simplearray = ARRAY Cl •• 1001 OF Integer;

VAR
data_arrayl, data_array2 : slmplearray;

figure 8-3. Array Syntax (Simple)

In figure 8-3, the type declaration tSIMPLEARRAY) identifies
the structure of the data <it takes no storage space at execute
time). The variables OATA_ARRAYl and DATA_ARRAYZ are each
arrays of type Sl"PLEARRAY. Recall (from sections 3 and 4)
that var1ables occupy storage space during program execution.
When the variables are automatic, the storage space required to
contain the variable exists during execution of the block In
which the variable is declared. Type declarations are used only
to associate an identifier with a type declaration. Type
identifiers never occupy any storage.

The entire array can be referenced by using the array name (for
example, OATA_ARRAYl). The only operation permitted on an
entire array is assignment tto an array of identical type).
Individual components of an array may be accessed by specifying
the array name followed by the index of the component enclosed
In brackets (for example, OATA_ARRAYZC100l). Examples of both
array references and component references are itlustrated in
figure 8-4.

60456320-01 (preliminary) COMPANY PRIVATE 8-2

CONST
I imlt = 10;

TYPE
oddtype a ARRAY[l •• li•itl OF 1 •• (limit* 2 - lJ;

VAR
odd_table : oddtype,
index : 1 •• limit•
extra_table : oddtype;

FOR Index := 1 TO limit DO
odd_ tab t er i n de x l : = I n de x * Z - 1 ;

FOREND;
•
•
•

extra_table := odd_table;

figure 8-4. Artay References

In figure 8-4, the FOR statement initializes each element of the
array ODO_TABLE to an odd Integer (via the statement
"odd_tableClndexJ :• index * 2 - l;">• A few lines later, the
statement "extra_table :• odd_table;• performs an array
assignment of the array ODD_TABLE to EXTRA_TABLE. Execution
time error checking of arr•y indexes is optional and may be
selected or deselected using the compile time facilities
described in section 14.

8.1.1 ARRAY INITIALIZATION

Array variables are initialized in a fashion similar to the
lnltlalizatfon of scalar variables (discussed in section 3).
Since an array variab1e consists of many components, the
lnltiatlzatlon expression contains many values. The
initialization expression for an array variable Is enclosed In
brackets.

CONST
limit • 3;

TYPE
oddtype •ARRAY Cl•• limit] OF l •• (limit* Z - lJ;

VAR
base_table : oddtype t= c1, 3, 5];
•
•

Figure 8-5. Array In1tializatlon

60456320-01 (pretlminary) COMPANY PRIVATE 8-3

In figure 6-5, BASE_TABLE Is defined to be type ODDTYPE and is
initialized to the values Cl1 3, 51. The initialization is
equivalent to BASE_TABtECll :• 11 BASE_TABLECZl :• 3, and
BASE_TABLEC3l :z 5.

In the lnltiallzation expression, an asterisk may be used to
indicate unlnltiatized components. In figure 8-5, changing the
initialization expression to c1, *' 51 would initialize the
first and third elements of the array BASE_TABLE to l and 5,
respectively. The second element of BASE_TABLE is not
tnitlallzed.

When initialization values are to be r•peated, a repetition
specification can be used.

VAR
zero_and_one_array : ARRAYCl •• 1001 OF Integer

t• CREP 50 OF O, REP 50 OF 11;

Figure 8-6. Array Inltlallzatlon tREPl

In figure 8-6~ the inltlallzation value "REP 50 Of O" means
fifty repetitions of the vatue zero. These fifty values of zero
are followed by fifty repetitions of the value one. The result
of the tnitlallzation expression Is to initialize the array of
100 elements so that the first fifty elements have the value
zero and the second fifty elements have the value one.

In an initiatization expression' the repetition specification
CREPJ, the asterisk, and values may be used in any order to
represent the initlattzation for the array.

8.1.2 MULTI-DIMENSIONAL ARRAYS

Mutti-dimensionat arrays are allowed in CYBIL. There is no
arbitrary limit on the number of dimensions. An array with two
dimensions is illustrated here because of its simplicity.

A two-dimensional array is thought of as an array whose
components are single dimensional arrays. For example, consider
the two-dimensional array shown in figure 8-7.

Column
1 2 3 4 5

+---+---+---+---+---+
1 : 5 : -l 0: 2 : 6 : 3 :

·---+---+---+---·---+
2 : 4 : 11: 19: -3: 6 :

Row •---+---+---+---+---+
3 : 2 : 1 : -5: 7 t 8 :

·---+---·---·---+---+
+---+---·---+---·---+

Figure 8-7. Two-Dimensional Array Structure <Conventional)

60456320-01 (pretiminaryl COMPANY PRIVATE 8-4

In f lgure 8-7• the array structure consists of four rows and
five columns. In CYBIL, this structur~ is thought of as an
array of four components where each component is itself an array
of five components. This conceptual1zatton is shown In figure
8-8.

• +---·---·---+---+---+ • • t

l • • 5 :-10: 2 • 6 • 3 I • • • • • • +---+---+---+---·---+ • • •

: +---+---+---+---·---+ :
2 : : 4 : 11: 19: -3: 6 : :

: +---+---+---·---·---+ ;
: +---+---+---·---·---+ :

3 : : 2 : 1 : -5: 7 : 8 : :
: +---+---+---+---+---+ :
+-----------------------+ • • +---+---·---·---·---+ :

4 : : 3 : -9: l 7: 4 : 15: • • : +---+----+---+---·---+ : • •

Figure 8-8. Two-Dimensional Array Structure <CYBIL>

When translated into CYBIL syntax the structure shown In figure
8-8 Is expressed as shown in figure 8-9.

TYPE
twodim = ARRAY [l •• 41 OF ARRAY Cl •• 51 OF integer;

VAR
datatab f e : two di 11;

Figure 8-9. Two-Dimensional CYBIL Syntax

Figure 8-9 illustrates one way of defining an array whose
component type is type array. Another method of defining this
two-dimensional array is shown in figure B-10.

TYPE
lnnerarray = ARRAY Cl •• 51 OF Integer,
twodim = ARRAY Cl •• 41 OF innerarray;

VAR
datatable : twodim1
alternatetable : ARRAY Cl •• 41 OF innerarray;

figure 8-10. Two-Dimensional CYBIL Syntax

60456320-01 (preliminary) COMPANY PRIVATE 8-5

In figure s-10, the array type TWOOIH is declared as a four
element array whose components are type INNERARRAY. INNERARRAY
is declared to be an array type consisting of five elements of
component type Integer. The type TWOOIM in figure a-10 is
equivalent to the type TWOOIM in figure 8-9. SlmllarlY• the
variable DATATABLE in figure 8-10 is equivalent to the variable
DATATABLE In figure 8-9. The variable ALTERNATETABLE in figure
8-10 is equivalent to the variable DATATABlE In figures 8-9 and
e-10.

8.1.3 INITIALIZING MULTI-DIMENSIONAL ARRAYS

Multi-dimensional array variables can also be Initialized. The
in1tiatization expression contains left and right brackets
enclosing the Initial vatues for each array.

TYPE
twodim a ARRAY Cl •• 41 OF

ARRAY Cl •• 51 OF integer;

VAR
datatable : twodim

: = c [5, -10' z, 6, 3],
(4, 11, 19. -3, 6],
c2, i, -5, 1, s1,
[3, -9, 11, 4, 1511;

Figure 8-11. Array Initialization <Two-Dimensional)

In figure a-11, the variable declaration for DATATABLE Is the
CYBIL syntax representation of the structure shown in figure
8-8. Note that each array inltlallzatlon is enclosed in
brackets C and J.

8.1.4 REFERENCING MULTI-DIMENSIONAL ARRAYS

Multi-dlmensfonal array references can be constructed to access
any required array element or the entire array ltsetr. For
exa•ple1 the identifier DATATABLE (in figure 8-11) refers to
the entire two-dimensional array (all 20 integers>. The
reference DATATABLEClJ refers to the first element of the array
DATATABLE which Is an array of five Integers. The reference
DATATABLEC3l C41 refers to the fourth element in the array which
Is the third element of the variable DATATABLE (initiatized to
7 In figure 8-11>.

Note that the type of DATATABLEC31 [41 is Integer (the value 7
In figure 8-11). OATATABLEC3l is type array of integer ([2, 11
-5, 7, 81 in figure 8-11>. DATATABLE Is type array of array
of integer (that is, a two-dimensional array of integers>. The
programmer may use any of these references in a program as long
as the use of the type is correct.

60456320-01 (preliminary) COMPANY PRIVATE 8-b

CONST
ltmlt • 4;

TYPE
twodlm • ARRAYCl •• timitl OF

ARRAYCl •• limit] OF 1 •• limit+ limit;

VAR
datatable : twodlm,
row, column : 1 •• limit;

FOR row :a 1 TO limit 00
FOR column :a 1 TO limit DO

datatableCrowl (column) :a row + column;
FORE ND;

FOR END;
datatableC4l := datatabte£11;

Figure 8-12. Two-Dimensional Array Manipulations

In figure a-1z, DATATABLE is a two-dimensional array. The FOR
statements reference each element in the two-dimensional array.
The statement "datatableCrowl Ccolumnl := row + column" assigns
an integer value (roM + column) to an element of the two-
di •ens ional array. At the end of the example the statement
"datatabl~C4l :• datatableCll" assigns the array DATATABLECll to
the array OATATA8LEC4l. This has the effect of making row four
in the data structure identical to r~w one.

8.1.5 PACKING ATTRIBUTE FOR ARRAYS

The packing attribute CPACKEOl specifies that storage space for
array components Is to be conserved at the expense of access
time. An unpacked array is mapped onto memory so as to conserve
access time at the expense of memory space. When the packing
attribute is not specified, the array is unpacked. An Inner
array does not inherit the packing of the structured variable in
which it is contained unless packing of the Inner structure is
explicitly specified.

TYPE
chardata • ARRAYCl •• 100] OF 'A' •• •z•,
booldata = PACKED ARRAYCl •• 501 OF boof ean;

~AR
slowchartable : PACKED chardata,
slowbooltabte : booldata,
fastchartable : chardata;

Figure 8-13. Array Packing Attributes

60456320-01 (preliminary) COMPANY PRIVATE 8-7

The type and variable declarations in figure 8-13 Illustrate
methods of using the packing attribute. Note that the attribute
can be used In the type declaration or the variable declaration.

In the example in figure a-13, the progra•mer specifies that the
array SLOWCHARTABLE Is packed. This choice minimizes the amount
of memory space required for the array SlOWCHARTABLE at the
expense of additional access time to reference each element of
the arr~y. The array FASTCHARTABLE 1s not packed, so access
time is minimized at the expense of storage space.

8.1.6 ARRAY DATA STRUCTURE EXAMPLES

Arrays are used to represent various kinds of data. The
examples that follow examine some interesting arr•y structures
and illustrate how these arrays might be Implemented in CYBIL.

Occasionally it Is necessary to represent the memory of some
computer in a program. In this exampfe, the memory of a
micro-processor (256 words1 8 bits per word) is represented in
CYBIL.

CONST
memslze a 256, {number of words}
maxword = OFFt16J; {Word size (largest storable value)}

TYPE
mlcromem a ARRAY CO •• memsize - 11

OF O •• maxword;

VAR
memory : PACKED micromem;

Figure 8-14. Array Structure (Microprocessor Memory)

In the example in figure a-14, the wariab1e MEMORY is a packed
array ttype MICROMEMJ. The type MICROMEH Is declared in terms
of the two constants MEMSIZE and MAXWORO. Using the
dectaratlons In figure a-14, the example in figure 8-15
it lustrates one •ethod of filling the simulated microprocessor
memory with ones (turning on all bits in the simulated memory).

60456320-01 (preliminary> COMPANY PRIVATE 8-8

CONST
ones = t1axword;

VAR
word : 0 •• memsize - l;
•
•

FOR word :• 0 TO memsize - l 00
memorytwordl == ones;

FOR END;

Figure 8-15. Initializing an Array (Hlcroprocessor Memory>

When converting from one character set to another, table lookup
Is often used. A table of characters is created containing the
final tnew) characters. The (old) characters to be
translated comprise the indexes of the array.

This example converts lowercase characters into uppercase
char act er s.

TYPE
chartbt • ARRAY C•a• •• tzt] OF 'A' •• 1z1

VAR
uppercase: chartbl ta C1 A•, 1 8 1 , 'C'• •o•, •e•,

•f•, •G•, •H•, 1 1•, IJf, 1 K1 1 'L'' '"''
•N•, •o•, •p•, 1 0•, 'R'' •s•, •r•, •u•,
•v•, •w•, •x•, •v•, •z•1,

testchar : char;
•
•
•

IF ttestchar >= •a•) AND <testchar <= •z•) THEN
testehar :: uppercaseCtestcharl;

I FEND;
•
•
•

Figure 8-16. Character Translation

In the example in floure a-16, the type CHARTBL denotes an array
with indexes of the subrange •a• •• •z• and components of the
subrange •A• •• •z•. The variable UPPERCASE has the array type
CHARTBL and is Initialized as shown. TESTCHAR Is the character
to be translated if necessary. The IF statement determines If
the value of TESTCHAR is In the subrange •a• •• •z•. If so, the
value of TESTCHAR is used as an lnde• Into the array UPPERCASE
and the contents of the array element is assigned to the
variable TESTCHAR1 thereby converting a to~ercase letter into an
uppercase letter.

~0456320-01 (preliminary) COMPANY PRIVATE 8-9

--··- -=--.---.-._,._flll.,'1$,0AHJU.; ... k, ;qµ;zg; ¢$11 __ ijJ 4!i

CONST
ones : maxword;

VAR
word : 0 •• memsize - l;
•
•

FOR word :• 0 TO memsize - 1 DO
memorytwordl := ones;

FOR END;

Figure 8-15. Initializing an Array (Microprocessor Memory>

When converting from one character set to another• tabte lookup
Is often used. A table of characters is created containing the
final (new) characters. The (old) characters to be
translated comprise the indexes of the array.

This example converts lowercase char•cters into uppercase
characters.

TYPE
ehartbt • ARRAY C'a' •• tzt] OF 'A' •• •z•

VAR
uppercase : chartbl ta C1 A•, '8 1 1 •c•, •o•, •e•,

•f•, 1 G•, 'H'' 1 11 , 1 J 1 t 1 K1 1 1 L•, '"''
•N•, •o•, •p•, 10•, •R•, •s•, •1•, •u•,
•v•, •w•, •x•, •v•, •z•1,

testchar : char;
•
•
•

IF (testchar >= •a•t ANO Ctestchar <= •z•) THEN
testchar := uppercaseCtestcharl;

I FEND;
•
•
•

Figure 8-16. Character Translation

In the example in figure a-16, the type CHARTBL denotes an array
with Indexes of the subrange •a• •• •z• and components of the
subrange •A• •• •z•. The variable UPPERCASE has the array type
CHARTBL and is Initialized as shown. TESTCHAR is the character
to be translated if necessary. The IF statement determines If
the value of TESTCHAR is in the subrange •a• •• •z•. If so, the
vatue of TESTCHAR is used as an Jndex Into the array UPPERCASE
and the contents of the array element is assigned to the
variable TESTCHAR- thereby converting a to~ercase letter into an
uppercase letter.

60456320-01 (preliminary) COMPANY PRIVATE 8-9

When representing data in the form of an array, the indexes of
the array can help clarify the program. This is accomplished
using ordinal indexes.

The array in this example contains values that represent the
farm production Cin thousands of dollars> for various grains by
state. The tJble structure is shown in figure 8-17.

Iowa • •

Corn Wheat

• • • •

Oats Barley

• •
Kansas : • I • • • •
Idaho

Maine

Texas

• • • •
+-----·-~ +-----..... -+..-..-....--....... ._ +--------+

• t

:

• •
• I

I •
I
t

+------·------+------+------+
Figure 8-17. Array Structure (farm Productiont

For program clarity, the array should be def lned in terms or the
states and crops shown in f i_gure 8-17.

TYPE
value_in_thousands = 0 •• 10000
grain_type a (corn, wheat, oats, barley),
farm_states • f iowa, kansas1 Idaho, maine, texas),
state_produce_value • ARRAYCfarm_statesl OF

ARRAYCgraln_typel Of value_in_thousands;

VAR
state : farm_states,
grain : grain_type,
value_table : state_produce_value,
value : value_ln_thousands;
•
•
•
value :a o;
FOR state :a iowa TO texas DO

FOR grain ta corn TO barley DO
value :a value + vatue_tabteCstatel Cgralnl;

FOREND;
FORENDJ
•
•
•

Figure 8-18. Using Ordinals With Arrays

60456320-01 (prellminaryl COMPANY PRIVATE 8-10

With the declarations shown in figure 8-181 the produce value
of OATS in MAINE could be determined by accessing
VALUE_TASLECMAINEJ COATSJ.

The string data type prbvides a way of defining and manipulating
strings of characters. The use of a string usuatJy implies that
the string be treated as a unit (one string). Strings are
unique in that they allow the programmer to access any substring
(group of characters) of the referenced string. An example of a
string declaration is shown in figure 8-19.

VAR
inputt ine : ·string {80);

Figure 8-19. String Variable Declaration

In the example in figure 8-19, the var1able is INPUTLINE, and
the type is STRING (80). The length of the string is 80
char•cters. STRING is a reserved word. Packing attributes are
not allowed in a string type definition.

8.2.l STRING REFERENCES

When the name (ldentJfierl of the string variable is used, It
refers to the entire string. For example, INPUTLINE in figure
8-19 refers to the entire string of 80 characters.

Any individual character may be referenced by giving the
position of the character in the string in parentheses. For
exa11ple1 INPUTLINE (1) is a reference to the first character of
the string INPUTLINE. INPUTLINE (80) Is a reference to the last
character ln the string INPUTLINE.

References can also be made to a portion of a string variable,
called substring references. The format of a substring
reference Is as follows:

string identifier <starting position. length)

For example, INPUTLINE (1,10) refers to the substring starting
at position one and having a length of ten characters. The
f ength parameter of the substring reference can be an asterisk
indicating that th* substring extends to the end of the string.
For example, INPUTLINE (75,•> is a substring consisting of the
last six characters in the st~ing INPUTLINE. Reference to an
entire string can be made in a number of ways. For example,
INPUTLINE1 INPUTLINE (1,80), and INPUTLINE (11*) alt refer to
the entire 80 character string INPUTLINE declared in figure
8-19.

60456320-01 (preliminary) COMPANY PRIVATE a-11

String constants are denoted by enclosing the characters
comprising the string in apostrophes. For example, 1 To be' Is a
strjng constant whose l~ngth is five. CYBIL does not, however,
allow substring references of string constants. The example in
figur~ 8-20 illustrates this.

{l}
CZ}
{3}
{4}

CONST
strcon • 1 1nv1olate•;

VAR
strvar : string (9),
shortstr : str1ng t5l;

shortstr :a strcon (3, 5);
strvar := strcon;
shortstr := strvar (3, 5};
shortstr :• •viola•;

{Invalid substrlng reference}
CVatid }
C string }
{ assignments }

Figure 8-20. String Constants, Invalid Substring

The pr~sumed object of the program segment ln f lgure 8-20 is to
assign the string 'viola' to the string variable SHORTSTR. The
first assignment statement contains an invalid substring
reference, because STRCON is a string constant. To reference
the third through seventh characters of STRCON an intermediate
string variable must be used. The second and third assignment
statements illustrate this process. Of course, the apostrophe
dellmited string constant may also be assigned to a string
variable, as shown in the fourth assignment statement. String
assignment is described further in the following paragraphs.

a.z.z STRING ASSIGNMENTS

Assignments to string variables operate under rules that relax
the requirement for strict type equivalence of destination
variable and value. Brlefly, a character, string, or substring
value can be assigned to a substring, string variable, or
character variable. If the lengths of the value and the
destination variable are different, the length of the value Is
adjusted (tr~ncated or extended) to match the length of the
destination variable. CYBIL truncates a string by removing
characters from the right. CYBIL extends a string (or
character) by appending blanks on the right. The examples in
figure 8-21 iltustrate these string assignment concepts.

60456320-01 (preliminary) COMPANY PRIVATE 8-lZ

VAR
ch : char,
s8 t string(8),
s9 : string(9);

s9 :: •fourscore•;
s8 t• s9(5,•t; { •score ' }
ch ta s8; { •s• }

s8(71 ., :a 1 345 1 ; { •score 34• }
s8(6, Z) :: ch; { •scores 4' }

Figure 8-21. String Assignments

The comments In figure 8-21 Indicate the value of the
destination variable after each assignment statement.

When substrings of the same string variable are involved on both
sides of the assignment operator, the substrings must not
overlap; the results of such an assignment are undefined. For
example, using the variables In figure a-21, the statement

is in error; CYBIL issues a diagnostic message during
compilation. If, however, the substrings involved are defined
in terms of variabtes, the legality of the assignment cannot be
determined until the statement Is executed. For example, the
statement

s9(1~ 3) :a s9(start1 3)

(where START ts an
value 1ess than 4.
unpredictable.

Integer variable) is In error if START has a
In such a case the results are

8.2.3 ARRAYS OF STRINGS

An array of strings is commonly used to construct a table of
names. Each component of the array is defined to be a string of
the necessary length.

CONST
tablelength a 291 {Max names in table}
stringlength a 13; {Max chars per name}

VAR
nametbl : ARRAY Cl •• tabletengthl OF

STRING (strlnglenoth);

figure 8-22. Array of Strings

60456320-01 (preliminary) COMPANY PRIVATE 8-13

In figure a-zz, the array NAMETBL consists of zq strings or 13
characters each. The identifier NAHETBL refers to the entire
array of strings. An indlYidual string of characters is
referenced as NAMETBLCIJ, where I is a value In the subrange
1 •• 29. It Is also possible to reference any substring in the
array. For example, NAMETBLC29l ll3J ;a •z•, assigns the letter
• Z • to th e I a s..,t ch ar a c t er i n the t as t s tr i n g o f the ar r a y of
strings.

8.2.4 STRING COMPARISON

To be supp Ii ed

8.2.5 STRING INITIALIZATION

A string wartable is initialized by specifying a string constant
after the string variable declaration.

CONST
strl = 'ABCDE';

VAR
strvar : STRING (b) :• strl,
strs I STRING (3) :• •xvz•,
neatstr : STRING (7) :• ~trl CAT 1 QRS 1 ;

Figure 8-24. String Initialization

Figure e~z4 illustrates various methods of declaring and
initializing strings. The constant declaration declar~s the
identifier STRl to be a string of five characters t•ABCDE'>•
When the lengths of the string variable and the constant are
unequal, the initialization behaves like string assignment: the
string constant is truncated or extended on the right to fit the
length of the string variable. In figure a-24, STRVAR Is
initialized to 'ABCDE •; CYBIL adds a btank to the value of the
STRl to form a six-character string. NEATSTR is initialized to
1 ABCDEQR•; CYBIL deletes the S to form a seven-character
string.

The data structures discussed so far have consisted of
hom~geneous components. That is, all the elements have been the
same type. The record type altows for the creation of a data
structure (called a record) that contains nonhomogeneous
components. These components are called fields.

60456320-01 {preliminary) COMPANY PRIVATE 8-14

El~l.d

surname
age
married
sex
fingers

:string Clll
:o •• 115 :
:boolean t
:<male* female):
:o •• 11 t •

Figure 8-25. Record Concepts

As shown in figure 8-25 above, a record consists of many fields.
Each field Is associated with a type and has a unique field
Identifier <SURNAME, AGE• and so on>. The f iefd identifiers
must be unique within the record. The reserved words RECORD and
RECEND define the beginning and end of the record definition.

TYPE
personal = RECORD

VAR

surname : string tll),
age : 0 •• 115,
married : boolean,
sex : (male, female),
f lngers : 0 •• 11,

REC ENO;

recvar t personal,
recarray : array Cl •• 1001 OF personal;

Figure 8-26. Record Syntax

The type PERSONAL In figure 8-26 Is a record with five fields.
Each field has a field identifier followed by a colon and a
field type. The record itself is bounded by the reserved words
RECORD and RECENO.

The variable RECVAR is defined to be type PERSO~AL. CYBIL
allocates to this variable sufficient storage space to contain
alt the declared fietds. An array of records can be created to
allow access to many occurrences of the record. An array of
records Is illustrated with the variable RECARRAY Jn figure
8-26.

8.3.l RECORD REFERENCES

In f lgure 8-26, RECVAR Identifies a record of type PERSONAL.
Whenever the identifier RECVAR is used, it refers to the entire
record• A record can be assigned to another record of the same
type &Ad two records of the same type can be compared for
equality or inequality. No other operations are permitted on
entire records.

60456320•01 (preliminary> COMPANY PRIVATE 8-15

A field of a record Is referenced by using the record identifier
followed by a period and the field name. For example,
RECVAR.SURNAME refers to the field SURNAME (STRING Ill)) in the
record v•rlable RECVAR (refer to figure 8-26). The first five
characters of the field SURNAME in the variable RECVAR are
referenced RECVAR.SURNAME Cl,5).

Consider the array of records RECARRAY In figure 8-Z6. The
reference RECARRAYC5ll refers to the 5lst record in the array.
RECARRAYC5ll.SURNAME r~fers to the f letd SURNAME in the 5lst
record In the array RECARRAY. Similarly,
RECARRAYC51J.SURNAHE (6,*t refers to the last six-character
substring in the field SURNAME In the 5lst record of the array
RECARRAY.

8.3.2 PACKING AND ALIGNMENT

Packing and alignment attrlbutes are used to specify storage
space versus access time trade offs for fields of records.
Fields of packed records are mapped onto storage so as to
conserve storage space at the expense of execution (access)
time. Regardless of packing, aligned fields are mapped with
storage so as to be directly addressable. When a field is made
directly addressable, the field begins on an addressabte
boundary to facilitate rapid access to the fietd. Records
the•selves (the collection of fields) are always aligned
unless they are unaligned fields of a packed structure.

Record packing Is specified with the reserved word PACKED.
Alignment of fields is specified with the reserved word ALIGNED.

TYPE
data a PACKED RECORD

VAR

name : string <11>,
addr : ALIGNED CO MOD 81 string <31),
age : 0 •• 1151
grades i array Cl •• 101 OF 'A' •• 'f'

RECENO;

class_data : array Cl •• 301 OF data;

figure 8-27. Packing and Alignment (Record)

In figure s-21, DATA Is defined to be a packed record type.
This means that the fields of this record will be structured to
reduce storage space at the expense of access time. The field
ADOR is aligned, however. AODR will begin on an addressable
boundary to facilitate rapid access to this field at the
expense of storage space. The mater1at following the ALIGNED
keyword -- CO MOD 81 -- specifies how the field is to be
aligned. Refer to appendix a, Representation Dependent
Features, for further information.

60456320-01 (preliminary} COMPANY PRIVATE 8-16

B.3.3 VARIANT RECORDS

Tables for system software often require a record with fixed
information (or fields> followed by variable (variant) fields.
Figure 8-28 shows this pictoriaJty.

+- +-__. ____ ._._~+ +· ... ~·_._......_._..._ ... + -·-+
t I I integer • A • • • • • •

Fixed <: • name • +--.-.-> .: .-.------~----: :> Short • •
Part • • ' • boolean I B Form ' • • • •

+-
: __,.._._...,_._, ________ : • + 4llljllll---------.-....... + --+ • • type • • • • •

+- : ..._.__.._.--~-. ... -....... • • ' •
t • : __ ,_, __ ._. .. ~+ • •

Variant <: t attributes :---------...... + + .-.-..--._._ __ + --+ t

Part • • • • ordinal • c • • • • •
+- +.-.._._-~--~-- ---+ • : .-.-.---~-._.,._,..: • • •

Record +->: bootean • 0 :> Long • : _,.... __ ._._._ _____ : Form
• Integer • E • •
+-~-.-.-----.... - ~+ --+

Figure 6-28. Variant Record Concept

Figure 8-28 shows a record consisting of two major parts: a
name and a set of attributes. Depending upon the type of the
record, the attributes portion of the record can be one of two
forms (the short form or the tong forml.

In any one occurrence of the record, only one of the two forms
wltl exist. However, some occurrences of the record may be the
short form and others may be the long form.

This kind of structure is declared in CYBIL as shown in figure
8-29.

TYPE
form = (short, long),
color s (red, green, blue),
rectype = record

name : string Clll

CASE t
=short=

=long=

CASEND
REC END;

:
a
b
c
d
e

form OF
• integer' •
: boolean,
• color •
: boolean,
• Integer, •

VAR onerec, tworec : rectype;

Figure 8-29. CYBIL Variant Record Syntax

60456320-01 (preliminary) COMPANY PRIVATE 8-17

The record structure declared by the example in figure 8-29 will
be one of the two illustrated in figure 8-30.

name

t

a

b

: string tll) :

: short

: integer • • :_._......,._.._.__._. :
: boolean

Short variant

I •

name

t

c

d

e

: string Clll :

: I ong

: color

• •
• • : ~_-._. ______ _._ ... :

: boolean : ._.._.__...., ____ ._._.._.- :
: integer

long variant

• •

Figure 8-30. Variant Record layout

As Illustrated in figure 8-30~ there are two forms (or variants>
for the record CLONG or SHORT). The ldentif ier T (the tag
fleldl is included in the record itself.

Information Is stored Into the record variable one field at a
time. To declare which variant Is being used, a value (LONG or
SHORT) is assigned to the tag fie1d T. This is illustrated for
each record type (variant) in figure 8-31, which assumes the
type declarations made in figure 8-29.

VAR onerec, tworec : rectype;
•
•
•

{Initialize onerec as short record}
onerec.name t• •IOENTIFIER1 1 ;

onerec.t := short;
onerec.a := 6;
onerec.b :a TRUE;

{lnltlallze tworec as long record}
tworee.name := 1 1DENTIFIER2 1 ;

tworec.t := tong;
tworec.c :a blue;
tworec.d :• FALSE;
tworec.e := 5;
•
•
•

Figure 8-31. Variant Record Initialization

Since the tag field of the reriord is stored in the record, one
can determine at execution time which variant Is contained in
the record.

60456320-01 (preliminary) COMPANY PRIVATE 8-18

8.4 1fIS.

The CYBIL notion of a set follows closely the mathematical
concept or a set; that is, a set is an accumulation of elements
(members). In CYBIL, the elements can be ordinal values
(identifiers), characters, integers, or boolean values. The set
members have no order; one cannot say that some member is the
first member In the set. However, it is possible to place
members In a set, del~te me•bers from a set, and determine
whether a given member exists in a set. One can create both
empty and full sets.

Figure 8-32 Illustrates the kinds of sets allowed and the syntax
for declaring sets.

TYPE
a : set OF (red, green, blue>
b = set OF 0 •• 17,
c • set OF 'A' •• 'z.;

VAR
or dse t . a, •
lntset : b1
vowel set • c; •

figure 8-32. Declaration of Sets

In figure 8-32 type A denotes a set of the ordinal identifiers
(REO, GREEN1 BLUE). A variable of type A (ORDSET in figure
8-32) is a set variable and, in this example, can contain up to
three members. If OROSET is empty then It contains no members.
If ORDSET is full then the members RED, GREEN• and BLUE are all
present in the set.

A set variable takes on a value In the same manner as variables
of other types: by assignment or by initialization. The two
methods employ slightly different mechanisms for specifying (or
constructing) the set value to be assigned to the set variable;
therefore, each is described separately, beginning with
assignment statements involving set variables.

When assigning a value to a variable of type set, the value
assigned (what appears to the right of the assignment operator)
must have the same type as the variable. The value can be any
expression containing set variables and/or set value
constructors (described shortly), as long as all set variables
and set value constructors are of the same type.

60456320~01 (preliminary) COMPANY PRIVATE 8-19

8.4.2.1 Set Value Constructors

A set value constructor denotes (constructs) a set through an
explicit itemization of the elements to be included in the set.
Its general format Is as follows:

$set type identifier[list of set elements)

The set elements, enclosed in brackets, are separ~ted by commas.
Each must be an expression (containing variables and/or
constants> whose type matches the component type of the set.
The examptes In figure 8-33 illustrate set value constructors.

VAR
11,
12 : 0 •• 17;

•
•

11 := 7;
iZ t= il;

intset t~ Sbtill;
intset :• SbCil, 121;
lntset :• SbCll, 11 + 12, il - 31;
intset := SbCil - iZJ;

{ 7
{ 7
{
(

}
}
}

}
lntset :: SbCJ;
ordset :• SaCblue1 PRED (greenll;
vowelset :a Sct•A•, •e•, •1•, 1 0•, •u•J;

{
{

empty set }
blue, red }

Figure 8-33. Set Value Constructors

Variables Il and 12 are subrange of integer type; all other
identifiers in figure 6-33 retain the meaning associated with
them by the declarations In figure 8-32. Comments appearing to
the rlght of the assignment statements in figure 8-33 indicate
the elements of the set variable after each assignment. Note
that the empty set is denoted by a set value constructor with no
values specified within the brackets. <Methods for creating a
full set are discussed In the paragraphs describing set
operations.)

8.4.Z.2 Set Initialization

Set variable inltlallzation Is similar to array and record
initialization: the elements comprising the initial set value
are listed between brackets and separated from the variable type
declaration by := as shown In figure 8-34.

VAR
set_var : set OF 0 •• 15 :• C31 1, 8-1, 41;

figure 8-34. Set Variable Initialization

60456320-01 (pref iminary) COMPANY PRIVATE 8-20

Set variable Initialization is also similar to the set value
constructor described earlier, with the fottowing differences:

o The list of set elements must be constants or
expr~ssions involving constants only.

o No set type identifier precedes the bracketed list
of set elements because the set type is specif led
as part of the variable declaration.

The variable declaration in figure 8-34 does not employ a type
identifier (defined in a TYPE statement} to denote the type of
SET_VAR. Inste~d, its type is explicitly defined by "set OF
0 •• 15". Defining a set variable in this way is valid but,
without a set type identifier declar~d, it can restrict future
assignments to the variable to expressions without set value
constructors.

CYBIL provides two groups of operators that operate on sets.
Member• of the f lrst group operate on set operands and produce
set results. These operators are summarized in table a-1. The
second group comprises five relational operators that produce
boolean results. These operators are summarized In table 8-2.

TABLE 8-1. SET-VALUED OPERATORS

t Qper-:
: a tor : Name

• • Result
Definition

: Evaluation :
: Precedence :

:::aa:aa••••==••==••=••===~====•===:•==•===•==•••••==•====•=•=: : * : Set Intersection : The set consisting of : 1 :
: : : al I elements common to: (highest) :
: ; : the two operand sets : :
: .._..-.-.-----.-..----------... ------..... .._ ~-- _.._.._. .. ._._._._ ---.- -...--.... --- --- ,..._...____._._._._ :

: Set co•plement : The set of all : Z :
• I : (single operand) : elements of the base : :
• •
I

: : type not in the : :
• : : specified operand set : :

t • + : Set un I on
:

XOR : Symmetric
: difference
• t

I . '

: The set consisting
: of all elements of
i both operand sets

• ..
t •
I
f

: The set consisting of :
: a I I e I e me n t s c on t a i n e d :
: in either set but not :
: in both sets :

3

3

• I

' •
• • • • • ' • I : ~ -----.-~..-._._ ___ .-.-.-._.._...-. ______ _____ ~..,...__._. ________ . _______ ... ___ . __ ..__,.,_ ----- :

: : Set difference : The set consisting of : 3 :
: : (two operands) : at I elements of the : :
: : : left operand that are
: : : not also elements of
: : the right operand

60456320~01 (preliminary) COMPANY PRIVATE a-21

TABLE 8-2. RELATIONAL SET OPERATORS

:aper-:
:ator : Tests for • ·11

Sample
Expression

• • • • Result Definition
I • • • :=••=:••==··==····=···=•••:•========·=·=====··==···=·======·=·:

: • :Identity : setl = set2 :TRUE If all members :
: ·: : : o f s e t 1 a r e I n s e t 2 :
: : : :and all members of :
: : : :set2 are in setl• or :
I : : if setl and set2 are :
: : : :empty; FALSE otherwise:
• • • • • t • • • •

: <> :Inequality : setl <> set2 :FALSE if setl•set2 is :
: : : :TRUE; TRUE otherwise :
• •
: <•
• • :
• •
t
t

• •

• • .. •
: setl <= setZ :containment

:tleft operand
:contained in
:right operand>:
I • • t

• t

• •
:TRUE if all members
:setl are members of
:set2, or if setl is
:empty; FALSE
:otherwise

• •
of:

• • • t

• • • • • •
: >=
I • • •
I

:containment setl >• setZ
:cright operand:

:TRUE If setZ<=setl is :
:true; FALSE otherwise :

• • t

: IN
• •
I •

:contained in
:teft operand) :
• t • I

:set membership: scalar IN setl
• •
I • I

t

• • • • • •
:TRUE If scalar value
:is a member of setl;
:FALSE otherwise

CYBIL performs the operations in table 8-1 according to the
precedence shown (and before relational operations) when an
expression involves operators of different precedence.

• • • •
I
l

• • • •

The operands used with each of the operators in tables 8-1 and
8-Z <except IN, which Is described shortly) must be of the same
type. The result type of the operations in table 8-1 is the
same as that of the operand(s) involved. An operand can be a
set value constructor, a set variable, or a set-vatued
expression.

The IN operator tests whether a value is a member of a set. The
type of the value and the component type of the set must be the
same, or one must be a subrange of the other. Each can also be
a subrange of the same type. If the value is outside the
subrange that def Ines the set•s component type when the IN test
is performed, the boolean result is FALSE. Set operations are
illustrated In figures 8-35 and 8-36.

60456320-01 (preliminary) COMPANY PRIVATE a-zz

TYPE
toe • l •• 5,
toes = set Of toe;

VAR
lft . toes := c2. ,.., 51, •
rft • toes := (1.1 Zt 3, 4]1 •
ft • toes; •

•
•

{ l } ft la lft * rft; { 2 4 }
{ 2 } rt •= - lft; { 1 3 }
{ 3 } ft :: tft + rft; { 1 2 3 4 5 }
{ 4 } tt ta lft XOR rft; { 1 3 5 }
{ 5 } rt == tft - rft; { 5 }

{ 6 } ft 1• StoesCJ; { l 2 3 4 5 }

{ 7 } ft I= ·- lft * rft; { 1 3 5 }
{ 8 } rt : .. - (', t * rftt; { 1 3 ; }
{ 9 } ft := (- I ft) * r ft; { 1 3 }
{ 10 } ft := - lft + r ft; { 1 2 3 4 }
{ 11 } ft I• (- lft) + r ft; { 1 z 3 4 }
{ 12 } ft :s - (If t + rf t l; { Empty set }

Figure 8-35. Set-valued Operations

The folloMlng discussion uses the reference numbers that appear
to the left of the assignment statements in figure 8-35. To the
right of each valid assignment statement is a comment that
indicates the value(s) assigned to the result variable.

Statements 1 through 5 Illustrate the set-valued operators
intersection, complementation, union, symmetric difference, and
set difference, respectively. These operators are defined in
table e-1.
Statement 6 shows a straightforward method of denoting a fult
seti by complementing an empty set. A set vatue constructor
listing alt el~ments of a set's component type also produces a
full set, but diminishes program readability. Denoting a full
set by Itemizing the set contents could also increase the
program maintenance effort: if the component type of a set were
changed (by addition or removal of elements), any reference to a
full set of this type woutd require modif lcation if Its elements
were explicitly listed.

The ne.xt six statements In figure 8-35 Illustrate the way in
which CYBIL evaluates set-valued expressions without
parentheses. The first group (statements 7, a, and 9) involves
set Intersection, the second Involves set union. The first
statement in each group (statements 7 and 10) has no parentheses;
the second statement in each group is equivalent to the first,
but includes parentheses. The third state•ent in each group
illustrates the consequences of Incorrectly applying the
precedence rules for set operators. Because set comple•entation

60456320-01 (preliminary) COMPANY PRIVATE 8-23

is performed after set intersection, but before set union, it Is
good pr~ctice to use parentheses to determine the evaluation
order of a set-valued expression. This practice· not only
improves readability, but helps prevent unintentional
misevaluat1on of an expression.

The statements in figure 8-36 demonstTate some fundamental
properties of sets and contrast the IN operator with the
containment operator. As befoTe, the following discussion uses
the number~ appearing to the left of each statement for
reference.

TYPE
toe • l • • 5.,
toes = set OF toe;

VAR
lft . toes :: [z,, tu 51 .• .
rft . toes :• [i, z, 3, 4], •
ft • toes., .
t3 . toe ·- 3, . . -
to . Integer : :: 61 .
b : boolean;

•
•

{ 21 } b := StoesCJ = lft XOR tft; { TRUE }
{ zz } b t• StoesCl = rft - rft; { TRUE }
{ 23 } b :• Stoesc1, 41 (a rft; { TRUE }
{ 24 } b := lft >= StoesCli { TRUE }

{ 25 } b =· t3 IN rft; { TRUE }
{ 26 } b ta StoesCt3l <• r ft; { TRUE }
{ 27 } b := b IN If t; { FALSE }
{ 28 } b t• tb IN tft; { FALSE }
{ 29 } b t :a StoesCt6l <= I ft; { Error }

Figure 8-36. Relational Set Operations

Statements 22 through 24 illustrate two basic boolean
operations on sets, identity and containment. <Inequality is
omitted as It derives Its definition from set identity; set
membership is ittustrated in statements 25 through 29.)
StateMents 21, 22, and 2' also demonstrate some properties of the
empty set: the symmetric difference or set difference of two
identical sets Is the empty set, and the empty set is a subset
of (contained in) any set.

The re•aining statements in figure 8-36 illustrate the IN
operator. Statements 25 and 26 are functionally equivalent:
the value assigned in each case depends on whether the value of
variable T3 Is a member of RFT. (In this example1 T3's value is
in RFJ, so the result is TRUE.) As will be shown shortly, the

60456320-01 (preliminary) COMPANY PRIVATE 8-24

equivalence of these two statements is due not only to their
construction, but also to the fact that T3 1 s type matches the
component type of RFT's type (both are TOE>. Although the two
statements are equiv~lent. the form used in statement 25 is
recommended, as Its meaning is more Immediately recogntzabte.

Statements 27 and 28 show the result of testing for set
membership (via IN> when the scalar's type differs froM the
set•s component type with respect to subrange (that Is, the
parent type -- integer -- is the same, but the subranges
differ>. If the scalar va1ue Is outside the subrange of the
set's component type, the expression is FALSE; otherwise the
expression's value Is dependent on the scalar's membership in
the set.

Statements Z8 and zq have the same equivalence in construction
as statements 25 and 26, but are not equivalent in meaning.
To•s type is integer and can therefore take on values outside
the subrange comprising LFT•s component type. The set value
constructor In statement zq Is Invalid whenever the value of T6
is not of the same type <subrange) as LFT•s component type;
ther~fore, statement 29 is In error, because T6•s vatue is &.

60,56320-01 (preliminary) COMPANY PRIVATE 8-25

9.0 e&DtEQU&fS

The essence of a procedure Is the association of an identifier
with a statement list such that spectfytng the Identifier causes
the execution of the statement list. The association of the
statement list with the Identifier constitutes the procedure
declaration; specification of the identifier (the procedure
name) as an element of a statement tlst constitutes a procedure
call statement. Procedures (when used properly) subdivide a
large pr~gra• Into manageable tasks, thereby making plain the
pr~gram's overall structure.

The most general for~ of a procedure is shown In figure 9-1.

PROCEDURE £attributes] procedure name (parameter list>;
•
•
{ Procedure body }
•
•

PROCEND procedure name

Figure 9-1. General Structure of a Procedure

In figure q-1. the reserved word PROCEDURE introduces the
procedure, optional attributes specify how the procedure is to
be used, the procedure name identifies the procedure, and the
optional parameter list specifies arguments passed to or
returned by the procedure~ The reserved word PROCENO and
(optlonalty) the procedure name indicate the end of a procedure
declaration. The procedure body contains the statement list
(and otber elements that wltl be discussed shortly) that is
executed when the procedure Is called. Without its optional
parts, the structure illustrated in figure 9-1 has the simple
form shown in figure 9-2.

PROCEDURE procedure name;
•
•
{Statement list}
•
•

PROCEND procedure name

Figure 9-2. Simplified Procedure Format

60456320-01 (preliminary) COMPANY PRIVATE 9-l

(The pr~cedure name fottowing PROCEND• while not required,
lapr~ves a program's readability and is highly recommended. For
this reason It is included in figure 9-2 and in alt other
procedure declarations illustrated in this guide.)

Procedur~s are declar~d (like variables, constants, and so on)
before the stateaent list in which they are used. Figure 9-3
illustrates the relationship between procedure declaration and
use.

PROCEDURE do_it;

---- { Procedure body }

PROCEND do_it;

VAR
condition : boolean;

Execution
Begins here --------> •

•
Cl} do_it;

•
{2} IF condition THEN

do_ It;
IFENO;
•

figure 9-3. Execution Flow

The program segment in figure 9-3 shows a procedure declaration
and a varJable declaration. When the statement list that
follows these declarations is executed. the procedure call
statement at {l} lnltlates execution of procedure OO_IT. When
procedure OO_IT completes, execution resumes with the statement
following the procedure ca11 at {l}. If CONDITION Is TRUE when
the IF statement at {2} is executed, DO_IT is called again. In
this case execution resumes with whatever follows the IF
statement (that is, whatever follows IFEND>.

Procedures also provide the ability of shielding and sharing
variables. Variables can be declared Inside a procedure and are
thus local variables. Their scope is the procedure (block) in
which they are defined. This concept is Illustrated in figure
9-4.

60456320-01 (preliminary) COf1PANY PRIVATE 9-2

PROCEDURE outer;
VAR

i,
out_var : Integer;

PROCEDURE Inner;
VAR . ,

in_var : integer;
•
• { inner statement list}
•

PROCEND inner;
•
• {outer statement list}
•

PROCENO outer;

Figure 9-4. Shielding and Sharing Variables

In figure 9-4 varlable OUT_VAR is local to procedure OUTER.
Since procedure INNER is contained In procedure OUTER, variable
OUT_VAR can atso be referenced in procedure INNER. Variab1e
OUT_VAR is global to procedure INNER. Slmllarty, variable
IN_VAR declared In procedure INNER is focal to procedure INNER
and cannot be referenced In procedure OUTER.

Two distinct variables are denoted by the identifier I. One
variable, I declared In procedure OUTER, is tocal to procedure
OUTER and global to procedure INNER. The other variable I Is
declared in procedure INNER and denotes a local variable that
can be referenced only In procedure INNER. This second (inner)
declaration of I supersedes the declaration of I in procedure
OUTER. Thus the variable I declared in procedure OUTER cannot
be referenced within procedure INNER. Table 9-1 summarizes
these points.

TABLE 9-1. SCOPE OF IDENTIFIERS EXAMPLE

tCan variable :can variable :
:Declared :be referenced:be referenced:Scope of

Variable :in lin procedure :in procedure :the variabte
Identifierlprocedure:oUTER? :INNER? :Identifier

I • OUTER Yes ' No :Procedure OUTER • • • • • • • •
OUT_VAR I OUTER Yes I Yes :Procedures OUTER • • • • :and INNER • ' • • • •

I • INNER No • Yes :Procedure INNER ' I

• • • • I • t t

IN_ VAR • INNER • No • Yes :Procedure INNER • • •

60,56320-01 (preliminary) COMPANY PRIVATE 9-3

9.Z liESIEI2-tiilC.£QURES

When a procedure declaration is nested (that is, a procedure is
declared within another procedure declaration), the nested
procedur~ Is shielded Just as any other declaration within the
outer procedure. The Inner procedure cannot be called from
outside the outer procedure. For example, consider the program
structur~ tn figure 9-5.

MODULE nested_procs;

PROCEDURE compute;
VAR

•
•

PROCEDURE test;

VAR
•
•

C Executable statements }
PROCEND test;

{ Executable statements }
PROCEND compute;

PROCEDURE main;
•
•
compute ;
•
•

PROCEND main;

MODEND nested_procs;

--+
• • • f

t t • • e • • s • • t f

• • • I

--+

--+

: c
: 0

m
: p
: u
: t
: e
• t

• • • •
• I

• • • •
--+
--+

: m
: a
: i
: n
• •

--+

Figure 9-5. Nested Procedures

In figure 9-5 procedures MAIN and COMPUTE are at the outermost
level Cthat Is, their declaration Is not contained within
another procedure declaration>. Procedure TEST Is nested inside
COMPUTE. This structure provides shielding (protection) for
procedure TEST. With this structure, procedure MAIN can call
procedure COMPUTE, but procedure MAIN cannot call procedure
TEST. Only COMPUTE can call TEST. So TEST can rely on COMPUTE
to validate variables and perform other computations which might
be necessary for the correct execution of TEST.

q.3 J?.A&At1EI£B.S

A procedure's effectiveness depends on its ability to affect, or
be affected by, variables that are not local to it. One method
by which a procedure can do this was described earlier: a

60456320-01 (preliminary} COMPANY PRIVATE 9-4

procedure can reference variables global to it, as procedure
INNER could with variable OUT_VAR in figure 9-4. A procedure
can also interact with its environment via parameters.

Parameters are an optional part of a procedure declaration.
They are specified after the procedure ldentif ler, enclosed in
parentheses (see figure 9-1). Parameters in the procedure
declaration (called formal parameters> correspond to actual
parameter values specified on the procedure call statement.
This correspondence Is Illustrated in figure 9-6.

TYPE
d&JS = 0 •• 6,
totat_array 2 array[daysl of integer;

VAR
first_day : days,
date : integer,
totOl : total_array;

PROCEDURE count_days (

VAR
day : days;

first : days,
day_# : integer>;

day :~ (first + day_#} MOD 7;
totOlCdayJ t• totOlCdayl + 1;

PROCENO count_days;

date :• 193;
first_day :• O;

count_days cz, date);
count_days (first_day, date + 3J;
count_days lfirst_day, ll)J

Figure 9-6. Elementary Parameter Passing

The parameter ltst for procedure COUNT_DAYS provides several
pieces of inforeation.

o It specifies the Identifiers that denote the
procedure's formal parameters. These Identifiers are
like read-only variable identifiers whose scope is the
pr~cedure ttself lCOUNT_OAYS In figure 9-6).

o It specifies the type of each parameter. FIRST denotes
a variable of type DAYS (subrange of integer, 0 to 6)J
DAY_# denotes a variable of type integer. Actuat
parameter walues specified on a statement that catts
COUNT_DAYS must conform to these types.

60456320-01 (preliminary) COMPANY PRIVATE

o It establishes the number and order of parameters for
the procedure. Thus, a statement calling COUNT_DAYS (as
shown in figure 9-6) specifies two values as actual
arguments: the first value Is assigned to FIRST, the
second is assigned to DAY_• when COUNT~DAYS Is called.

The formal parameters in figure 9-6 have the same scope as local
variables, but cannot receive assignments; they can appear only
where expressions are permitted <to the right of an assignment
operator, as an array subscript, In a substr1ng reference, and
so on). Each actual parameter specified in the procedure call
statements In figure 9-6 can be any expression as long as its
value is of the same type as the corresponding format parameter.
Thus DATE1 DATE + 3, and 13 are alt suitable as actual
parameters for DAY_#, because DAY_# Is a formal parameter of
type integer.

The method of passing parameters illustrated in figure 9-6
allows only one-way passing of parameters; any results computed
by the procedure must be assigned to global variables if they
are to be referenced outside the procedure. A second type of
formal parameter can be specified that allows two-way parameter
passing. With this type of parameter, assignments to the formal
parameter are assignments to the actual parameter; that Is, the
procedure returns results by assigning values to a formal
parameter. The procedure from figure 9-6 Is modified in figure
9-7 to if lustrate two-way parameters.

TYPE
days • 0 •• 61
total_array • array[daysl of integer;

VAR
first_day : days,
date : integer.
totOl : total_array;

PROCEDURE count_days (first : days,
day_# integer;

VAR total : total_array)J
VAR

day : days;

day :• (first + day_#) MOD 7;
totalCdayl :• totalCday] + l;

PROCEND count_daysJ

date =• 193;
fl rst_day :. O;

count_days (Z, date, totOl);
count_days (flrst_day, date + 31 totOl>;
count_days tflrst_day, 131 totOl>;

figure 9-7. TMo-Way Parameter Passing

LRl •. J::L"'t"21'_l'lr.'I 1--- It-:---··' ,. I"\ Ur. A ... V ft l'\ T iii & T',..

The third parameter in procedure COUNT_DAYS (f lgure 9-7> is a
two-way parameter, as indicated by the reserved word VAR
preceding the parameter identif ler <TOTAL). A semlcoton
separates its declaration from the one-way parameters that
precede It. If addltlonal one-way parameters were added after
the declaration of TOTAL, a semicolon would precede their
declaration, and VAR would be omitted.

During a procedure's execution, an assignment to a two-way
parameter is an assignment to the variable specif led as the
actual par•meter in the procedure call statement. Thus, the
assignment to TOTALCDAYl in procedure COUNT_DAYS is actually an
assignment to TOTOlCOAYl1 because TOTOl is specified in the
procedure call statements in figure 9-7.

The actual parameter specified for a two-way parameter in a
procedure calf statement must be a variable whose type matches
the for~al parameter•s. It cannot be a constant or an
expression. Thus, TOTOl is an acceptable actual parameter for
TOTAL since it is a variable of type TOTAL_ARRAY, the type
required for TOTAL by Its parameter declaration. CYBIL places
an additional requirement on an actual parameter If it fs an
element of a packed record: such an element must be aligned if
It ts to be used as an actual parameter~

Correspondence between the actual parameters specified when a
procedure Is called and the procedure's format parameters can be
achieved in two ways. The first (as described above> is by
specifying the actual parameters in the same order as the forma1
parameters. The second is by assigning the actual parameter to
the format parameter in the procedure call statement as
illustrated in figure 9-8.

TYPE
days a 0 •• 6,
total_array a array(days] of integer;

VAR
f lrst_day : days,
date : integer,
totOl : total_array;

PROCEDURE count_days (f lrst t days,
day_# : integer;

VAR total : total_arrayl;
VAR

day : days;

day i• tf lrst + day_t) MOD 7;
totalCdayl :a totalCday] + l;

60456320-01 (pretiminary) COMPANY PRIVATE 9-7

PROCEND count_days;

date i• 193;
f irst_day := o;

count_days (21 date, totOll;
count_days (first :• first_day, day_# := date + 31 total := totOl);
count_days (total l• totOl, first =~ first_day, day_t := 13J;

Figure 9-8. Keyword Parameter Specification

The three procedure call statements in figure 9-8 perform
identically to those In figure 9-7. The first calf is
unchanged. The actual parameters in the second and third call
statements are specified by keyword* that is, the formal
parameter Identifier and an assignment operator precede each
actual parameter. When specified by keyword, the order of the
parameters in a call statement is Immaterial. Thus1 DAY_# := 13
(in the third catl statement of figure 9-8) effectively
associates 13 with the second formal parameter declared for
procedure COUNT_DAYS1 even though it appears as the third actual
parameter in the call statement.

If any actual parameters are specified by keyword, then no
parameter can be specified posttlonalty. For example,

COUNT_OAYS <FIRST a: z, DATE, TOTOl>

Is not a legal CYBIL statement.

CYBIL provides an alternate mechanism for assigning a value to
a formal one-May CnonVAR) parameter when the procedure is called
whereby no actual parameter value need be specified. Rather, a
default value is specified with the parameter's declaration in
the procedure header; if no corresponding actual parameter is
specified when the procedure is catted, the formal parameter
takes on the default value.

A default va1ue can be specified for only a one-way (nonVARl
parameter, and must be a coAstant (not a constant expression).
It is placed after the formal parameter's type identifier in the
procedur~ header, separated by :~ , as shown in figure 9-9.

60456320-01 (preliminary) COMPANY PRIVATE 9-8

TYPE
days = 0 •• 6,
total~array = array[daysl of integer;

VAR
fir~t_day : days,
date : integer,
totOl : total_array;

PROCEDURE count_days t first : days := o,
day_# : integer;

VAR total : totat_array);
VAR

day : days;

day := (first + day_#J MOD 7;
totalCdayJ := total[dayJ + l;

PROCEND count_days;

date :a 193;

count_days (2, date, totOll;
count_days t , date + 3, totOl);
count_days (total := toto1, day_# := 13);

Flgur~ 9~9. Default Parameter Value

The program segment In figure 9-9 performs identlcalty to the
one shown in figure 9-8. (Note that the assignment statement
FIRST:~ 0 is deleted.) Since a value (2) is explicitly
specified for FIRST in the first procedure call, the default
value is ignored. The parameter is omitted from the second
procedur~ call• as Indicated by the absence of a value preceding
the first comma; FIRST takes on a value of O by default. Since
the parameters in the third procedure call are specified by
keyword• the lack of any value equated to FIRST results in the
default value being used. Had no default value been specified
for FIRST In the procedure header, the second and third
procedure calls in figure 9-9 Mould be in error. An actual
parameter must always be specif led for a two-way (VARJ
parameter.

XDCL and XREF attributes were discussed with respect to
variables in section 3. These attributes have equivalent
functions for procedures. They are needed only when declaring a
procedure in one module that is to be catted from another
module.

Figure 9-10 iflustrates this kind of referencing mechanism.

60456320-01 (preliminary, COMPANY PRIVATE 9-9

MODULE first;

PROCEDURE CXREF1 compute;
PROCEDURE CXOCll main;

•
•

compute;
•
•

PROCENO main;

MO DENO 'f Ir st;

MODULE second;

PROCEDURE CXDCLJ compute;
•
•

PROCEND compute;

MODENO second;

figure 9-10. XDCL and XREF Procedures

In figure 9-10• modules FIRST and SECOND would be complied
separately and then loaded. Procedure COMPUTE Is declared in
module SECOND and tin module SECOND) Is given the attribute
XOCL. This means that the procedure is declared in this module
and can be referenced from another module.

In module FIRST only the line "PROCEDURE CXREFl compute;"
appears to identify COMPUTE. This indicates that COMPUTE
Identifies a procedure. The XREF attribute Indicates that the
pr~cedure is declared in a different module.

If procedure COMPUTE had parameters, the parameter tist would be
specified In each procedure declaration in each module. The
parameter specifications must agree in number, order, and type;
the Identifiers of corresponding parameters can, however, be
different.

Procedures with the XDCL attribute cannot be nested. That is1
they must be declared at the outermost level.

As described so far, a procedure is executed only when it is
called by a CYBIL procedure call statement. If this were
always true, no procedure would ewer be executed, since no
mechanism has been discussed that causes the first procedure to
be called by the operating system. While operating system
commands (control statements and so forth) for loading and
executing a compiled CYBIL program are not presented here, the
mechanism Is described whereby the f lrst procedure to be
executed is identified within a group of modules that are loaded
and executed as a single program.

An alternate form of the procedure header ldentif les a procedure
as the first one to be executed. It begins with the reserved
word PROGRAM in place of PROCEDURE and cannot include attributes
tXREF or XDCL>. Furthermore, Its parameter list (If present) ts
s u bJ e ct to r es tr a i,,n ts i mp o s e d by t he ope r at i n g s y st em co mm and
language tnot described here>. Figure 9-10 contains an example
of this type of procedure declaration.

60456320-01 (preliminary> COMPANY PRIVATE 9-10

PROGRAM main (optional parameter tist);
•
•
{ Procedure body }
•
•

PROCEND main

Figure 9-10. PROGRAM Procedure Oectaratlon

A PROGRAM procedure can still be called via a procedure call
statement like any other procedure. The reserved word PROGRAM
serves only to identify the procedure as the first to be
executed. As such, only one PROGRAM procedure can exist among
any group of compilation units loaded and executed together.

When a procedure completes execution, the execution of the
proced~re from which it was called resumes. This can happen in
two ways: by the execution of the last statement in the
procedure's statement list, or by execution of a RETURN
statement. A RETURN statement, when executed, causes control to
return Immediately to the calling procedure. The statement
consists simply of the reserved word RETURN.

60456320-01 (pretiminaryl COMPANY PRIVATE 9-11

10.0 AllAeIABJ..f_IIf!ES

The types discussd In the preceding sections (scalar types,
array, strlng, record, and set} share a characteristic that,
until now, need not be mentioned: they are !l•~d types. That
Is, the space required to store a varlable of any of these types
is constant and can be determined before program execution
begins. For exampfe, a character variable requires an amount of
space that is fixed by the Implementation; an array whose index
is Cl •• 51 requires space for five variables of its component
type, and so on for other fixed types.

Certain programming situations, however, prevent the use of
f lxed types or make their use awkward and Inefficient. (These
situatlons include procedures that process paramaters of
indeterminete size and procedures that involve dynamic storage
allocation techniques.) Such situations call for a flexible
type definition that can be fixed during program execution:
adaptable types.

The adaptable types described in this section Include adaptable
arrays, adaptable strings, and adaptable records. These
adaptable types may be used In only two ways: as formal
parameters in a procedure, and as components allocated by
storage management statements. In each of these uses, the size
of the adaptable type must be f lxed during program execution.
In the case of formal parameters of procedures, the actual
parameter fixes the size of the adaptable type. The use of
adaptable types in storage management statements requires an
understanding of pointers (covered In section 11) and other
storage management features, and is coyered in section 121
Storage Manage•ent.

lO.l AQAfIAIL.E-lltf_QE.C.LA&AI1Dt:i

Adaptable types are declared by specifying an asterisk in place
of the the type's size. The asterisk replaces the array bounds
or string lenoth in an array or string declaration. Examples
of adaptable arrays and strings are given in figure 10-1.

TYPE
adaptarray • arrayC*l OF integer,
adaptstring a string f*)•
fixedarray = array(7J OF Integer,
adapt2d • arrayt•l OF fixedarray;

figure 10-1. Adaptabte Arrays and Strings

The type AOAPTARRAY in figure 10-1 is an adaptable array or
integers. The asterisk indicates that the index is type
Integer (by conventfonJt but the array•s size (dimension) is
unspecified. The type ADAPTSTRING is an adaptable string of
characters. The length or the string Is adaptable and must be
fixed during program execution. as indicated by the asterisk.

60456320-01 (pretiminary) COMPANY PRIVATE 10-1

The last two tines of figure 10-1 illustrate a two-dimensional
adaptable array. The outermost array dimension of AOAPTZD is
adaptable; the inner dimension Is fixed. This construction
obeys the CYBIL rufe that permits only a single adaptable
dimension for an array, and requires that dimension to be the
first (outermost>. Several invalid type definitions that
violate this rule are illustrated in figure 10-2 (assuming the
types defined in figur~ 10-1 remain in effect>.

TYPE
wrong_2d_array = arrayC7l Of adaptarray,
wrong_string_array = arrayC71 OF adaptstring,
wrong_again = array[*] OF adaptarraY•
stllt_wrong = arrayC*l OF adaptstring;

Figure 10-2. Invalid Adaptable Arrays

An adaptable record is a record containing zero or more fixed
fields followed by one and only one adaptable fietd. The
example in figure 10-3 illustrates the declaration of ada~table
records.

TYPE
model_descriptor • record

number : string (8),
na~e : string (*)1

r ecend1
origin_codes = (do' me~ co, ac),
assembly • record

origin : origin_codes,
date : string (8),
model : model_descr1ptor,

recend;

VAR
part t model_descriptor.
product : assembly;

Figure 10-3. Adaptable Records

10.2 AD.Ae.IA1lJ.E._ftl&ttAL-eARAt1fIEB.~

Adaptable formal parameters or a procedure allow the procedure
to adapt to the size of the actual parameter at execution time.

Consider, for example, a procedure that su•s the squares of all
the elements of an array <which Is passed as an actual
parameter) and returns the sum via a VAR parameter. If this
procedure is to be a general one that operates on an array of
any length, the array must be adaptable and the procedure must

60456320-01 (preliminary) COMPANY PRIVATE 10-2

have available the number of elements in the array. During
execution the formal array parameter adapts to the size of the
actual parameter passed; size determining functions (described
shortlyt provide the values or the array•s bounds.

The procedure header for such a procedure might appear as
follows•

PROCEDURE sum_squares t data : array[*] OF integer;
VAR sum : integer>;

The typical uses of adaptable arrays and strings r.equire an
ability to determine the bounds of the adaptable array and the
length of the' adaptable string during execution.

10.3.l LOWERBOUNO and UPPERBOUNO

The functions LOWERBOUND and UPPERSOUNO determine the bounds of
an adaptable format array parameter. The general form of these
functions Is shown In f lgure 10-4.

LOWERBOUND (array identifier)

UPPERBOUND (array Identifier)

Figure 10-4. lOWERBOUNO and UPPERBOUNO General Form

The array identifier (see figure 10-4) specifies the
formal adaptable array parameter whose upper or lower bound is
desired. Since the bounds of an adaptable array are implicitly
type integer, these functions return a value of type integer
when used upon an adaptable array.

10.3.2 STRLENGTH

The effective use of an adaptable string within a procedure
requires a method of obtaining the actual string length.
The STRLENGTH standard function provides this capability (see
figure 10-5).

STRLENGTH (string variable identif ierJ

Figure 10-5. STRLENGTH Standard Function

The function parameter identifies the string variable (It may
also Identify a string type). The function returns an integer
value Indicating the length of the string.

60456320-01 (preliminary) COMPANY PRIVATE 10-3

10.4 flAf!!!LfS

An implementation of the array squaring procedure is shown
in f lgure 10-6.

TYPE
adaptarray • arrayC*l of Integer;

PROCEDURE squarearray <VAR data : adaptarray);

VAR
index: integer;

FOR index := LOWERBOUNO (data) TO
UPPERBOUND (data) DO

dataCindexl := dataCindexl * dataCindexJ;
FOR END;

PROCEND squarearray;

Figure 10-6. Adaptable Array Example

The procedure SQUAREARRAY (in figure 10-6) has an adaptable
array formal parameter, DATA. The FOR statement uses the
functions LOWERBOUND and UPPERBOUND to determine the bounds of
DATA. The FOR statement then Iterates the proper number of
times (with the proper values of INDEX) to compute the square of
each value in the array passed as an actual parameter.

SQUAREARRAY can be called with any array of integers indexed by
an integer subrange. Some examples of calls to the procedure
SQUAREARRAY are shown in figure 10-7.

VAR
x : arrayC-10 •• 101 of integer,
y : arrayCl •• 1001 of integer;
•
•

squarearray (x);
squarearray (yJ;

Figure 10-7. Actual Array Parameters

In figure 10-7, the procedure SQUAREARRAY from figure 10-6 is
called. The array X is passed In the first call; array Y is
passed in the second call. SQUAREARRAY adapts to the different
sizes of arrays because the format parameter (declared in
procedure SQUAREARRAYl is an adaptable array.

The following example illustrates the use of adaptable strings
as formal parameters. The example depicts a procedure that
counts the number of blanks In the actual parameter (a string
variable). The procedure returns the number of blanks round via
a two-May parameter, NBLANKS.

60456320-01 (preliminary) COMPANY PRIVATE 10-4

TYPE
astring = string <•>;

PROCEDURE blank_count I in_str : astring;
VAR nbtanks : Integer);

VAR
position : Integer;

nbtanks :~ O;
FOR position := 1 TO STRLENGTH (in_strl 00

IF ln_str (position) • • ' THEN
nblanks := nblanks + 1;

I FENO;
FORE ND;

PROCEND btank_count;

Figure 10-8. Adaptable String Example

In f lgure lo-a, the formal parameter IN_STR is an adaptabte
string. NBLANKS is a two-way formal parameter to enable the
retu'n of the number of blanks.

BLANK_COUNT begins by clearing the blanks counter ("NBLANKS :•
O;"l. The FOR statement checks each character In the string,
incrementing NBLANKS with each occurrence of a space. STRLENGTH
determines during execution the length of the actual string and
controls the number of iterations performed by the FOR
statement.

NBLANKS is cleared Mhenever BLANK_COUNT executes. A static
variable initialized to zero would not be acceptable here
because it woutd be set to zero at the procedure's first
execution and would thereafter serve as a running accumulator,
returning the grand total of the number of blanks In alt strlngs
processed by 8LANK_COUNT.

60456320-01 (preliminary> COMPANY PRIVATE 10-5

