
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

CYBIL COMMON INPUT/OUTPUT

REFERENCE MANUAL

1

4/01/86
REV: 4

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

REVISION DEFINITION SHEET

2

4/01/86
REV: 4

--------+----------+---
REV I DATE I DESCRIPTION

--------+----------+---

c 1985

1
2
3
4

. 02/08/85
04/22/85
10/01/85
03/15/85

Preliminary manual released.
Major rewrite of the complete manual.
Complete revision of manual.
Added additional interfaces and enhancements.
Minor text revisions.

by Control Data Corporation

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION .••..
1.1 APPLICABLE DOCUMENTS .

2.0 CYBILIO FILES
2.1 FILE STRUCTURE
2. 2 FILE TYPES • . • • •.•

2.2.1 RECORD FILES •
2.2.2 BINARY FILES •
2.2.3 TEXT FILES •.
2.2.4 DISPLAY FILES

2.3 CYBILIO DATA TYPES
2.3.1 OST$STATUS ..

Table of Contents

2.3.2 CYT$CURRENT_FILE_POSITION
2.3.3 CYT$FILE ••.••••.•
2.3.4 CYT$FILE NAME •.••••
2.3.5 CYT$FILE-SPECIFICATIONS .••.••

2.3.5.1 cyt$close_file_disposition .
2.3.5.2 cyt$file_access
2.3.5.3 cyt$file_existence ••
2.3.5.4 cyt$file_kind ••••
2.3.5.5 cyt$file character set
2.3.5.6 cyt$file=contents -
2.3.5.7 cyt$file_processor ••
2.3.5.8 cyt$new_page_procedure
2.3.5.9 cyt$page_format
2.3.5.10 cyt$open close position •
2.3.5.11 cyt$page-length ••
2.3.5.12 cyt$page=width

2.3.6 CYT$SKIP_DIRECTION •
2.3.7 CYT$SKIP_UNIT
2.3.8 CYT$SYSTEM_TYPE •••.

2.4 USING CYBILIO ••••
2.4.1 NOS/VE •••••.

2. 4 •. 1.1 Source Code Interface to CYBILIO .
2.4.1.2 Object Code Interface to CYBILIO

2. 4. 2 NOS
2.4.2.1 Source Code Interface to CYBILIO •
2.4.2.2 Object Code Interface to CYBILIO

2.4.3 NOS/BE ••••••••• ~ •••••
2.4.3.1 Source Code Interface to CYBILIO .
2.4.3.2 Object Code Interface to CYBILIO •

2.4.4 vsos ...••••.••.•
2.4.4.1 SOURCE CODE INTERFACE TO CYBILIO
2.4.4.2 Object Code Interface to CYBILIO .

2. 4. S EOS • • • .
2.4.5.1 SOURCE CODE INTERFACE TO CYBILIO •
2.4.5.2 Object Code Interface to CYBILIO .

2. 4. 6 APOLLO AEGIS • • • • • • • • • • • •

1

4/01/86
REV: 4

1-1
1-2

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-8

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-19
2-20
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-26
2-26
2-26
2-27
2-27
2-27
2-27
2-27
2-27
2-28

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.4.6.1 Sour~e Code Interface to CYBILIO •
2.4.6.2 Object Code Interface to CYBILIO •

2

4/01/86
REV: 4

2-28
2-28

3.0 I/O PROCEDURES ••.••.•.•••
3.1 GENERAL PROCEDURES AND FUNCTIONS ••

3.1.1 OPENING AND CLOSING FILES
3.1.1.1 cyp$open_file •••••••
3.1.1.2 cyp$close file ••••

. 3-1
3-1
3-1
3-1
3-3
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-9
3-9

3.1.2 POSITIONING FILES ••••
3.1.2.1 cyp$position_file_at_beginning •
3 .1. 2. 2 cyp$pos it ion_f ile_at_ end • • . • . • .

3.1.3 FILE LENGTH INTERROGATION .•.••
3.1.3.1 cyp$length of file •••••••

3.1.4 FILE STRUCTURE-CREATION/DETECTION
3.1.4.1 File Structure Creation
3 .1. 4. 1. 1 CYP$WRITE END OF BLOCK • •
3.1.4.1.2 CYP$WRITE-END-PAflTITION
3.1.4.2 File Struct~re Detection ••
3.1.4.2.1 CYP$CURRENT FILE POSITION

3.1.5 OPERATING SYSTEM TYPE INTERROGATION
3.1.5.1 cyp$operating system •

3.2 RECORD FILE PROCEDURES ••••
3.2.1 READING AND WRITING RECORD FILES ••

3.2.1.1 cyp$put next record ••••
3.2.1.2 cyp$put=partial_record •••
3.2.1.3 cyp$write end of record ••••
3.2.1.4 cyp$get_n;xt_;ec~rd •.••
3.2.1.5 cyp$get partial record •

3.2.2 RECORD FILE-POSITIONING ••••
3.2.2.1 cyp$position record file

3.3 BINARY FILE PROCEDURES •• : •
3.3.1 READING AND WRITING BINARY FILES •

3. 3 .1. 1 cyp$put_next_binary • • • • . • • • .
3.3.1.2 cyp$put_keyed_binary •••••
3.3.1.3 cyp$get next binary ••••••••••••
3.3.1.4 cyp$get-keyed binary ••

3.3.2 BINARY FILE-POSITIONING ••••••••
3.3.2.1 cyp$position binary at key •••••••••

3.3.3 BINARY FILE POSITION INTERROGATION • • ••••
3.3.3.1 cyp$binary file key ••••

3.4 TEXT AND DISPLAY FILES : . • • •••
3.4.1 READING AND WRITING TEXT FILES AND DISPLAY FILES •

3.4.1.1 cyp$put next line • ~ •••••
3.4.1.2 cyp$put-partial line • • ••••••••
3.4.1.3 cyp$write end of line •••.
3. 4 .1. 4 cyp$fl ush-lin; • - •
3.4. 1-.5 cyp$tab file ••••
3.4.1.6 cyp$skip lines •.•
3.4.1.7 cyp$get_~ext_line
3.4.1.8 cyp$get_partial_line

3.4.2 TEXT AND DISPLAY FILE STATUS INTERROGATION •••• • •

3-10
3-10
3-11
3-11
3-12
3-13
3-14
3-15
3-17
3-19
3-19
3-23
3-23
3-25
3-26
3-27
3-29
3-31
~-31
3-32
3-32
3-33
3-33
3-34
3-35
3-37
3-38
3-39
3-40
3-41
3-42
3-43

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.4.2.1 cyp$file_connected_to_terminal •..•.
3.4.2.2 cyp$current column •.
3.4!2.3 cyp$page_width •.••••.•

3.5 DISPLAY FILES •••••..•••••
3.5.1 PAGE OVERFLOW PROCESSING .•••..
3.5.2 DISPLAY FILE PROCEDURES AND FUNCTIONS

3.5.2.1 cyp$start_new_display_page ...••
3.5.2.2 cyp$display standard title •.•••••
3.5.2.3 cyp$positio~ display-page
3.5.2.4 cyp$display page eje~t • • • ••.
3.5.2.5 cyp$current-display line •...••
3.5.2.6 cyp$current=page_nu;ber
3.5.2.7 cyp$display_page_length

4.0 CYBILIO STATUS •.•.•.
4.1 CYBILIO STATUS MESSAGES
4.2 CYBILIO STATUS CONDITIONS

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1 NOS/VE •••••

5.1.1 DECK NAMES •••
5.1.2 FILE NAMES •••
5.1.3 FILE POSITION
5.1.4 FILE DISPOSITION • • • •••
5. 1. 5 FILE ATTRIBUTES • • • . . • • •
5.1.6 FILE STRUCTURE CREATION/DETECTION ••••.
5.1.7 NOS/VE SPECIFIC PROCEDURES •••••••

5.1.7.1 cyp$get_file_identifier
5.1.7.2 cyp$get binary file pointer
5.1.7.3 cyp$ope~ binary file.
5.1.7.4 cyp$open-record-file •
5.1.7.5 cyp$open-text file ..
5.1.7.6 cyp$open-display file

5.2 NOS AND NOS/BE .- -
5.2.1 DECK NAMES •••
5.2.2 FILE NAMES •••
5.2.3 FILE POSITION ••••
5.2.4 FILE DISPOSITION •••••..••
5.2.5 FILE STRUCTURE CREATION/DETECTION

5.3 VSOS AND EOS • • • • • •.•••.
5.3.1 DECK NAMES • • • ••••
5.3.2 FILE NAMES· •••
5.3.3 FILE POSITION
5.3.4 FILE DISPOSITION
5.3.5 FILE STRUCTURE CREATION/DETECTION

5. 4 AEGIS • • • • • • • • •
5.4.1 DECK NAMES • • • • ••••
5.4.2 FILE NAMES •••
5.4.3 FILE POSITION
5.4.4 FILE DISPOSITION
5.4.5 FILE STRUCTURE CREATION/DETECTION ••••••••

3

4/01/86
REV: 4

3-43
3-44
3-45
3-46
3-46.
3-48
3-48
3-49
3-50
3-51
3-52
3-53
3-54

4-:-1
4-1
4-4

5-1
5-1
5-1
5-2
5-2
5-4
5-5
5-7
5-8
5-8
5-9

5-10
5-11
5-12
5-13
5-14-
5-14
5-16
5-17
5-18
5-19
5-20
5-20
5-20
5-20
5-20
5-20
5-21
5-21
5-21
5-21_
5-21

- 5-21

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

APPENDIX A

al.O BINARY FILE EXAMPLES
al.I COPY BINARY FILE
al.2 CREATE TEXT LIBRARY .
al.3 EXTRACT FROM TEXT LIBRARY •

APPENDIX B

bl.O RECORD FILE EXAMPLES .•••
bl.1 EXAMPLE - EXTRACT INFORMATION FROM RECORDS

APPENDIX C

cl.O TEXT FILE EXAMPLES
cl.I EXAMPLE - COPY COLUMN RANGE OF TEXT FILE

APPENDIX D

dl.O DISPLAY FILE EXAMPLES ••
dl.1 EXAMPLE - DISPLAY A TEXT FILE •

. . . .

. . . .

. . . .

. . . .

.

.4

4/01/86
REV: 4

a-1

al-1
al-1
al-4

al-10

b-1

bl-1
bl-1

c-1

cl-1
cl-1

d-1

dl-1
. dl-1

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

1.0 INTRODUCTION

1.0 INTRODUCTION

1-1

4/01/86
REV: 4

The CYBIL Common Input/Output package (CYBILIO) is a collection of
procedures and data types which provide an Input/Output system that
interfaces a CYBIL program to the NOS/VE, NOS, NOS/BE, VSOS, EDS, and
APOLLO Aegis I/O systems.

The objectives of CYBILIO are to:

o Provide an input/output capability that is standardized across
implem'entations of CYBIL.

o Ease transportability of programs by reducing operating system
dependencies within a program to a minimum.

o Provide a simple, easy to use input/output interface.

Display screen interfaces and the more
capabilities of the various operating systems
CYBILIO.

sophisticated input/output
are beyond the scope of

COMPANY PRIVATE

1-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual
4/01/86

REV: 4

1.0 INTRODUCTION
1.1 APPLICABLE DOCUMENTS

1.1 APPLICABLE DOCUMENTS

60455280 CYBIL Reference Manual

60457280 Language Specification for CDC CYBER IMPLEMENTATION LANGUAGE

60460300 CYBIL I/O ERS (Obsolete)

60457250 SES User's Handbook

60459660 NOS Version 2 Reference Manual (Volume 1)

60459670 NOS -Version 2 Reference Manual (Volume 2)

60459680 NOS Version 2 Reference Manual (Volume 3)

60459690 NOS Version 2 Reference Manual .(Volume 4)

60450100 NOS Version 1 Modify Reference Manual

60493800 NOS/BE Version 1 Reference Manual

60494100 NOS/BE Version 1 System Programmer's Reference M~nual

60499900 Update Version 1 Reference Manual

60464114 CYBIL for NOS/VE File Interface Usage Reference Manual

60459410 VSOS Version 2 Reference Manual (Volume 1)

000529 APOLLO Aegis Domain System Programmer's Reference Manual

60460310 CYBIL Miscellaneous Routines Interface Reference Manual

COMPANY PRIVATE

2-1
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

2.0 CYBILIO FILES

2.0 CYBILIO FILES

2.1 FILE STRUCTURE

All CYBILIO files have a beginning of information and an end of
information. Files can be further subdivided into a maximum of three
levels of logical structure. The number of possible levels varies among
different operating systems. Within CYBILIO, the possible levels of
logical file structure are defined as follows:

BOI
I
v

partition A file may be subdivided into partitions. A partition
begins either at the beginning of information (BO!) or
after the end of partition (EOP) of the previous
partition.

block

record

Partitions may be subdivided into blocks. A block
begins at the beginning of information (BOI), after an
end of partition (EOP), or after the end of block
(EOB) of a preceeding block.

The lowest level of subdivision within a file is a
record. A record begins at the beginning of
information (BO!), after an end of partition (EOP) or
end of block (EOB), or after the end of record (EOR)
of a preceeding record.

EOR EOB EOP EOI

I
I
v

+------~-------------------- ------------ ---------------v-------------+
v

$ v $ $: $:
! !$! ! !$!$: !$:

+------+---------++---------+----+------++-----+-------+++-----+----++++
Logical Structure of CYBILIO Files

All or none of the levels of logical file structure may exist within a
cybilio file.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.2 FILE TYPES

2.2 FILE TYPES

CYBILIO defines four distinct types of files:

record files
binary files
text files
display files

2-2

4/01/86
REV: 4

Each file type has certain characteristics and limitations. The
following subsections describe these characteristics and limitations.

2.2.1 RECORD FILES

Record files are files in which data exists as a sequence of logical
records each of which is terminated with an end of record (EOR).

CYBILIO provides facilities to read and write both full and partial
records. That is, a record may be transferred as the result of a single
read or write operation or, a record may be transferred as the result of
several partial read or write operations. Record,file reads and writes
map the data to a CYBIL data structure. For example, a CYBIL ~rray may be
written as a record or partial record. ·The address and size of the data
structure are passed to CYBILIO as a CYBIL sequence pointer. CYBILIO uses
this information to write a record that exactly corresponds byte for byte
with the way the data is stored in the CYBIL data structure.

CYBILIO supports only sequential access of record files. Data appears
on such files in the order in which it was written, and can only be read
in that same order.

Record files may be positioned to the beginning or end of information.
In addition, record files may be positioned forward or backward a
user-specified· number of records, blocks or partitions. Note that
positioning a record file backwards and then writing to the file implies
that any data following that just written to the file is lost. The end of
information always immediately follows the last data written to the file.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.2.2 BINARY FILES

2.2.2 BINARY FILES

2-3

4/01/86
REV: 4

Binary files are files in which the data exists as a "stream" of cells.
Binary files may be subdivided. into partitions and blocks. CYBILIO does
NOT support the subdivision of binary files into records.

CYBILIO imposes no structure on the data in a binary type file. The
task that writes data on a binary type file is responsible for determining
how the data can later be read. It should write data organization
indicators as needed. A program that reads the binary file data must use
the data conventions imposed by the program that wrote the data.

CYBILIO supports both random and sequential access of binary files.
Random access procedure interfaces transfer data to or from "random
addresses" known as file keys. The file keys identify the number of the
cell within the file at which the transfer is to begin. Sequential access
procedure interfaces transfer data to or from the "address" or file key at
which the file is currently positioned. As with record_files, the data
read or written is transferred as a "block of cells" that are mapped to
the CYBIL data structure being read or written.

Binary files may be positioned to the beginning of information, end of
information, or to any file key within the file. Because binary files can
be accessed randomly, positioning a binary file at the beginning of
information and writing to the file does not necessarily imply that
existing data (which follows the data being written) will be lost (c.f.,
record files).

2.2.3 TEXT FILES

Text type files are a variation of record type files. Text files are
assumed to contain character data. Since we generally think of character
data in terms of "lines", CYBILIO will refer to text file records as lines
and the end of record (EOR) for text files as end of line (EOL).

Data is _passed to and from the text file procedures as CYBIL strings
rather than as CYBIL sequence pointers. Like record type files, text
files can only be accessed sequentially.~

The basic entity on a
to/from the file in whole or
to tab. to a specified column
of lines. Text files may be

text file is a line which can be transferred
in part. In addition, there are facilities
in an output line and skip a specified number
positioned to the beginning of information or

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.2.3 TEXT FILES

to the end of information.

2.2.4 DISPLAY FILES

2-4

4/01/86
REV: 4

Display files are a special form of write-only text files. Display
type files should be used when the file is to be printed or routed to any
device which uses format control characters. CYBILIO automatically
prefixes format control characters to each line written to display type
files.

Display type files have additional facilities for (vertical) format
control. It is possible to limit the number of printed lines on a page,
insert a given number of empty lines, overprint lines, position the next
line at a specified line number or at the top of the next display page.
Several functions are provided to interrogate certain items of display
page information for display files.

Display files may only be written. If it is necessary to read a file
which was written as a display file, the file should be accessed as a text
type file.

The user may associate with each display file, a procedure to be called
when a "page overflow condition" occurs for that file. The procedure may
be a user-specified procedure or a special internal CYBILIO procedure that
produces a "standard" title line.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3 CYBILIO DATA TYPES

2.3 CYBILIO DATA TYPES

2-5

4/01/86
REV: 4

This section defines the CYBIL "types" required to interface to
CYBILIO.

2.3.1 OST$5TATUS

TYPE
ost$status = record

case normal: boolean of
FALSE =
condition: ost$status condition code,
text: ost$string, -
TRUE =

casend,
recend;

*copyc ost$status_condition code
*copyc ost$string

*copyc osc$max condition
*copyc ost$status_condition
*copyc osc$status_parameter_delimiter

All CYBILIO procedures include a status parameter of type ost$status.
The status conditions returned by CYBILIO are listed in the STATUS
MESSAGES section of this document.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.2 CYT$CURRENT_FILE_POSITION

2.3.2 CYT$CURRENT_FILE_POSITION

{* ZCYTCFP cyt$current_file_position *}

TYPE
cyt$current_file_position = (cyc$beginning_of_information,

cyc$middle_of_record, cyc$end_of_record, cyc$end_of_block,
cyc$end of partition, cyc$end of information); - - - -

A variable of this type returns the current position of a file.

2.3.3 CYT$FILE

{* ZCYTFIL cyt$f ile *}

TYPE
cyt$file = tSEQ (*);

2-6

4/01/86
REV: 4

Every CYBILIO procedure and function has a parameter of this type.
CYBILIO defines the value of the variable when the file is opened. The
variable remains defined until it is passed to the file close procedure.
The consequences of using an undefined or user-altered cyt$file variable
to call any CYBILIO procedure, except the file open procedure, is
unpredictable.

2.3.4 CYT$FILE_NAME

{* ZCYTFN cyt$file_name *}

TYPE
,cyt$file_name =string (* <= cyc$max_file_name_size);

CONST
cyc$max_file_name_size • 512;

This type is used to identify a file to the file open procedure. File

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.4 CYT$FILE_NAME

2-7

4/01/86
REV: 4

name length
dependent.

and lower-to-upper case conversion are operating
See chapter on operating system dependencies.

system

COMPANY PRIVATE

2-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

2.0 CYBILIO FILES
2.3.5 CYT$FILE_SPECIFICATIONS

2.3.5 CYT$FILE_SPECIFICATIONS

{* ZCYTFS cyt$file_specific~tions *}

TYPE
cyt$file specifications= tarray [l .. *] of cyt$file specification, - -
cyt$file specification selector = (cyc$file kind, cyc$file access,

cyc$file existence, cyc$open position, cyc$close file di;position,
cyc$file-contents, cyc$file processor, cyc$file character set,
cyc$new page procedure, cyc$page length, cyc$page width, -
cyc$pag; for;at, cyc$future specl, cyc$future spec2, cyc$future spec3,
cyc$futu;e spec4, cyc$futur; spec5), - -- -

cyt$file specification = record
case s;lector: cyt$file_specification_selector of

cyc$f ile_kind =
file kind: cyt$file kind,

= cyc$file access = -
file acc;ss: cyt$file access,
cyc$file_existence = -
file_existence: cyt$file_existence,
cyc$open position =
open_posTtion: cyt$open_close_position,

= cyc$close file disposition =
close disposition: cyt$close file disposition,
cyc$f Tle_contents = - -
file_contents: cyt$file_contents,
cyc$f ile processor =
file_processor: cyt$file_processor,
cyc$f ile character set =
file_cha;acter_set7 cyt$file_character_set,
cyc$new page procedure =
new pag; procedure: cyt$new page procedure,
cyc$page-length = - -
page_length: cyt$page_length,
cyc$page_width =
page width: cyt$page width,
cyc$page format • -
page for;at: cyt$page format,

= cyc$future_specl -

' = cyc$future_spec2 =

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5 CYT$FILE_SPECIFICATIONS

cyc$future_spec3

' cyc$future_spec4 =

' = cyc$future_spec5

casend,
recend;

*copyc cyt$close file disposition
*copyc cyt$f ile ;ccesi
*copyc cyt$file-character set
*copyc cyt$file-existence
*copyc cyt$file-kind
*copyc cyt$file-contents
*copyc cyt$file-processor
*copyc cyt$new page procedure
*copyc cyt$ope~ cloie position
*copyc cyt$page-length
*copyc cyt$page-width
*copyc cyt$page=f ormat

2-9

4/01/86
REV: 4

A variable of this type is passed as a parameter on the cyp$open_file
procedure call. CYBILIO uses the file specification records to determine
how the file is to be opened, how the file is to be operated upon, and
what to do with the file after it is closed.

File specifications are defined by specifying a file specification key
to select the desired file specification record. Then, a file
specification value is specified that corresponds to the CYBIL type
permitte~ for the record.

The example programs in the appendices show how file specifications may
be established. Additional information about file specifications may be
found in the following CYBIL type descriptions and in the description of
the cyp$op~n_f ile interface.

The following subsections describe the various CYBIL types referenced ·
by cyt$file_specifications.

COMPANY PRIVATE

. I

2-10
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

2.0 CYBILIO FILES
2.3.5.1 cyt$close~file_disposition

2~3.5.1 cyt$close file disposition

{* ZCYTCFD cyt$close_file_disposition *}

TYPE
cyt$close file disposition = (cyc$delete file, cyc$retain file,

cyc$ret~rn_£Ile, cyc$unload_file, cyc$default_file_disposition);

CONST
cyc$detach_file = cyc$return_file;

This file specification tells CYBILIO what to do with a file after the
file is closed. See the chapter on operating system dependencies for the
meaning of the various ordinal values.

If the close file disposition
file_specificatio~s, - CYBILIO
cyc$default_close_disposition.

record· is not specified in
assumes a default value

the
of

COMPANY PRIVATE

2-11
CYBER IMPLEMENTATION LANGUAGE

·CYBIL I/O Reference Manual
4/01/86

REV: 4
----------------------------------~--
2.0 CYBILIO FILES
2.3.5.2 cyt$file_access

2.3.5.2 cyt$file access

{* ZCYTFA cyt$file_access *}

TYPE
cyt$file_access = (cyc$read, cyc$write, cyc$read_write);

r

This file specification specifies the permitted "direction" of data
transfers. CYBILIO retains the f ile_access spe.cif ied when the file is
opened and validates all read/write requests to the file against the
file access. Attempts to write to a file opened for cyc$read file_access
or to read from a file opened for cyc$write file_access will be blocked
and abnormal status will be returned in the status variable for the
request.

cyc$read: the file is to be opened for read-only access.

cyc$write: the file is to be opened for write-only access.

cyc$read_write: the file is to be opened for read-write access.

If the file access record is not specified in the file_specifications,
CYBILIO assumes-a default value of cyc$read_write.

NOTE: If a file is opened for cyc$read file_access and cyc$new_file
f ile_existence, the open will fail and abnormal status will be returned.
If a file is opened for cyc$read file access and cyc$new_or_old_file
file_existence and the file does not exist, the open will fail and
abnormal status will be returned.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.3 cyt$file_existence

2.3.5.3 cyt$file existence

2-12

4/01/86
REV: 4

{* ZCYTFE cyt$f ile_existence *}

TYPE
cyt$file_existence = (cyc$new_file, cycold_file, cycnew_or_old_file);

This file specification specifies whether the file must exist when it
is opened, must not exist when it is opened, or may or may not exist when
it is opened.

cyc$old_file:

cyc$new_file:

the file must exist or the file open
procedure returns abnormal status

the file must NOT exist, or the file open
procedure returns abnormal status

cyc$new_or_old_file: if the file does not exist it will be
created,

If the file existence
file specifications,- CYBILIO
cyc$~ew_or_old_file.

re-cord is not specified in
assumes a default value

the
of

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.4 cyt$file_kind

2.3.5.4 cyt$file kind

{* ZCYTFK cyt$f ile_kind *}

TYPE

2-13

4/01/86
REV: 4

cyt$file kind = (cyc$binary file, cyc$display_file, cyc$record_file,
cy~$text_file); -

This file specification specifies the kinds of CYBILIO calls that may
be addressed to a file. CYBILIO retains the file kind value and validates
CYBILIO procedure calls against the file_kind value. For example, if a
file is opened as cyc$text file, any attempt to use any record, binary, or
display file procedure calls is prohibited by CYBILIO and the status
variable returned will indicate cye$incorrect_operation.

If the file kind record is not specified in the file_specifications,
CYBILIO assumes a default value of cyc$record_file.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

2.0 CYBILIO FILES
. 2.3.5.5 cyt$file_character_set

2.3.5.5 cyt$file character set

{* ZCYTFCS cyt$file_character_set *}

TYPE

2-14

4/01/86
REV: 4

cyt$file character set (cyc$ascii, cyc$ascii612, cyc$ascii812,
cy~$display_64, cyc$reserved_codel, cyc$reserved_code2);

This file specification specifies the character set for text and
display type files.

cyc$ascii
cyc$ascii612
cyc$ascii812
cyc$display64
cyc$reserved codel
cyc$reserved=code2

8-bit ASCII code
CYBER 170 6/12 ASCII code
CYBER 170 8/12 ASCII code
CYBER 170 64-character display
reserved for future use
reserved for future use

code

If the f ile_character_set record is not specified in the
file_specifications, CYBILIO assumes a default value of cyc$ascii612 for
NOS implementations, a default .value of cyc$ascii812 for NOS/BE
implementations, and a value·of cyc$ascii for all others.

NOTE: The file character set is used only by text and display type
files. If this r;cord is d;fined for binary or record type files, CYBILIO
will ignore the file_character_set specification.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.6_ cyt$file_contents

2.3.5.6 cyt$file contents

{* ZCYTFC cyt$file_contents *}

{}

2-15

4/01/86
REV: 4

{ The following are predefined string constants for file_contents:}
{}
?? FMT (FORMAT := OFF) ??

CONST
cyc$ascii log
cyc$binary
cyc$binary log
cyc$data -
cyc$file_backup
cyc$legible
cyc$legible data
cyc$legible-library
cyc$legible=unknown
cyc$1ist ·
cyc$list unknown
cyc$obje~t
cyc$object data
cyc$object-library
cyc$screen
cyc$screen_form
cyc$unknown contents

?? FMT (FORMAT 7= ON) ??

TYPE

'ASCII LOG
'BINARY
'BINARY LOG
'DATA -
'FILE BACKUP
'LEGIBLE
'LEGIBLE DATA
'LEGIBLE-LIBRARY
'LEGIBLE-UNKNOWN
'LIST
'LIST UNKNOWN

= 'OBJECT
'OBJECT DATA
'OBJECT-LIBRARY
'SCREEN-
' SCREEN FORM
'UNKNOwN ' ' .

'

cyt$file_contents =string (31);

This file specification specifies a description of the contents of a
file. The use of this value is system dependent.

If · the file contents
file specifications, CYBILIO
cyc$unknown_contents.

record is not specified in
assume·s a default value

the
of

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.7 cyt$file_processor

2-16

4/01/86
REV: 4

-------~---

2.3.5.7 cyt$file processor

{* ZCYTFP cyt$file processor *}

{ The following are predefined strings for referring to file processor.}

?? FMT (FORMAT := OFF) ??
CONST

cyc$ada
cyc$apl
cyc$.assembler
cyc$basic
cyc$c
cyc$cobol
cyc$cybil
cyc$debugger
cyc$f ortran
cyc$lisp
cyc$pascal
cyc$pli
cyc$ppu_assembler
cyc$prolog
cyc$scl
cyc$scu
cyc$unknown_ptocessor
cyc$vx

?? FMT (FORMAT := ON) ??

TYPE

= 'ADA
= 'APL

'ASSEMBLER
'BASIC

= 'C
'COBOL

= 'CYBIL
'DEBUGGER
'FORTRAN
'LISP
'PASCAL

= 'PLI
= 'PPU ASSEMBLER

'PROLOG
'SCL
'SCU
'UNKNOWN

= 'VX

, .

' I •

'

cyt$file_processor =string (31);

This file specification specifies a description of the processor of a
file. The use of this value is system dependent.

If the file processor
file specifications,- CYBILIO
cyc$~nknown_processor.

record is not specified in
assumes a default value

the
of

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.8 cyt$new_page_procedure

2.3.5.8 cyt$new page procedure

{* ZCYTNPP cyt$new_page_procedure *}

TYPE
cyt$new_page_procedure = record

case kind: cyt$page procedure kind of
cyc$user specified procedur; =
user pro~edure: cyt$user page procedure,
cyc$standard procedure -- -
title: string (cyc$title size),
cyc$omit_page_procedure -

casend,
recend,

cyt$page procedure kind = (cyc$user specified procedure,
cyc$st;ndard_pro~edure, cyc$omit_page_procedure),

, cyt$user_page_procedure = tprocedure (display_file: cyt$file;
next page number: integer;
VAR status: ost$status);

CONST
cyc$title~size 45;

*copyc ost$status
*copyc cyt$file

2-17

4/01/86
REV: 4

This file specification specifies how CYBILIO will handle "page
overflow" conditions for display.type files.

If the tag field of the new_page_procedure record specifies
cyc$user_specified_procedure, CYBILIO will automatically call the
procedure specified by the USER PROCEDURE field whenever a "page overflow"
condition occurs. -

If the tag field of the new_page_procedure record· specifies
cyc$standard_procedure, CYBILIO will automatically initiate a display page

reject and produce a "standard" title line followed by one blank line
whenever a "page overflow' condition occurs. The title field of the
new_page_procedure record specifies a string of characters that CYBILIO
will include in the "standard" title line. (See the section on display
type files for a description of the "standard" title line.)

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.8 cyt$new_page_procedure

If the tag field
cyc$omit_page_procedure,
eject.

of the
CYB I LIO

If the new_page_procedure
file_specifications, CYBILIO
cyc$omit_page_procedure.

2-18

4/01/86
REV: 4

new_page_procedure record specifies
will simply initiate a display page

record
will

is
assume

not
a

specified
default

in
value

the
of

NOTE: A new_page_procedure is used only by display files. If this
record is defined for any other type of file, CYBILIO will ignore the
new_page_procedure specification.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5~9 cyt$page_format

2.3.5.9 cyt$page format

{* ZCYTPF cyt$page_f ormat *}

TYPE

2-19

4/01/86
REV: 4

cyt$page format = (cyc$continuous form, cyc$bur·stable form,
cy~$non burstable form, cycSuntitled form); -- - -

This file specification specifies the presence and frequency of titling
in a display file whose file contents is cyc$list or cyc$list_unknown. ·

cyc$burstable_form

cyc$non_burstable_form

cyc$continuous_f orm

cyc$untitled_form

specifies that titling and display
page eject should occur at the
frequency defined by the page
length of the file. This is the
rec.ommended value for files that
are to be listed on a forms
printer with a page eject required
for each page.

specifies that titling should be
separated from other data by a
triple space rather than by
forcing a display page eject as in
cyc$burstable_form. A display
page eject and titling also occur
at the frequency defined by the
page length of the file.

specifies that titling should
appear once at the beginning of
the file followed by triple
spacing.

specifies that no titling and no
display page eject should occur
anywhere in the file.

Titling, as used in the preceeding explanations, is the processing of
the new_page_procedure.

NOTE: A page_format specification is used only by display files. If
this record is defined for any other type of file, CYBILIO will ignore the
page_format specification.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.10 cyt$open_close_position

2.3.5.10 cyt$open close position

{* ZCYTOCP cyt$open_close_position *}

TYPE

2-20

4/01/86
REV: 4

cyt$open_close_position = (cyc$beginning, cyc$end, cyc$asis,
cyc$default_open_position);

This type is used when opening a file to designate where the file
should be initially positioned (at its beginning, where ever it happens to
be, at its end, o.r at its default position).

This type' is also used when closing a file to designate whether the
file is to be rewound, positioned at its end, or left as is. See the
chapter on operating system dependencies.

If the open_position record
file specifications, CYBILIO
cyc$default_open_position.

is
assumes

not
a

specified
default

in
value

the
of

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.11 cyt$page_length

2.3.5.11 cyt$page length

{* ZCYTPL cyt$page_length *}

TYPE
cyt$page_length = 1 •• cyc$page_limit;

CONST
cyc$page_limit = 439804651103;

2-21

4/01/86
REV: 4

This file specification specifies the number of lines· on a ·page for
display type files.

If the page_length record is not specified in the file_specifications,
CYBILIO assumes a system dependent default value.

NOTE: A page length is used only by display files. If this record is
defined for a~y other type of file, CYBILIO will ignore the page_length
specification.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.5.12 cyt$page_width

2.3.5.12 cyt$page width

{* ZCYTPW cyt$page_width *}

TYPE
cyt$page_width = 1 •• cyc$max_page_width;

CONST
cyc$wide page width = 132,
cyc$narr;w page width = 80,
cyc$max_page_width = 65535;

2-22

4/01/86
REV: 4

This file specification specifies the maximum length of a text line for
display or text type files.

If the page_width record is not specified in the file_specifications,
CYBILIO assumes a system dependent default value.

NOTE: A page_width is used only by display and text files. If this
record is defined for any other type of file, CYBILIO will ignore the
page_width specification.

2.3.6 CYT$SKIP_DIRECTION

{* ZCYTSD cyt$skip_direction *}

TYPE
cyt$skip_direction = (cyc$forward, cyc$backward);

A value of this type is passed to the cyp$position_record_file
procedure to specify the direction in which the file is to be positioned.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.3.7 CYT$SKIP_UNIT

2.3.7 CYT$SKIP_UNIT

{* ZCYTSU cyt$skip_unit *}

TYPE
cyt$skip_unit = (cyc$record, cyc$block, cyc$partition);

2-23

4/01/86
REV: 4

A value of this type is passed to the cyp$position.record file to
specify the unit of .file structure to be used for file positioning.

2.3.8 CYT$SYSTEM_TYPE

{* ZCYTST cyt$system_type *}

TYPE
cyt$system type (cyc$nosve, cycnos, cycnosbe, cyc$vsos, cyc$eos,

cyc$aegis);

A value of this type is returned by the cyp$operating_system function
call. The ordinal identifies the operating system on which the program is
running.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.4 USING CYBILIO

2.4 USING CYBILIO

2.4.1 NOS/VE

2.4.1.1 Source Code Interface to CYBILIO

2-24

4/01/86
REV: 4

To interface to CYBILIO, a CYBIL program module must include the
relevant type and procedure declarations. These can be *COPYed from an
SCU source library. The name of this source library is
:$SYSTEM.$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. Refer to the operating
system dependent section for a list of CYBILIO deck names.

2.4.1.2 Object Code Interface to CYBILIO

Before a program which uses CYBILIO can be executed, it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library. The name of the CYBIL run-time library is CYF$RUN TIME LIBRARY.
Linking to the object modules is done by including CYF$RUN_TIME_LIBRARY in
the module descriptor. ·

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.4.2 NOS

2.4.2 NOS

2.4.2.1 Source Code Interface to CYBILIO

2-25

4/01/86
REV: 4

To interface to ·CYBILIO, a CYBIL ~rogram module must include the
relevant type and procedure declarations. These can be *CALLed from a
MODIFY/MADIFY source library or *COPYed from an SCU source_library.

The name of the MODIFY/MADIFY source library is CYBCCMN, which is
accessible by including the CYBCCMN parameter in the SES.GENCOMP call.
The SCU source library is accessible via SES.GETCOMN which makes the
library available as local file CYBCCMN. The CYBILIO procedure and type
declarations can then be *COPYed by including CYBCCMN on the BASE
parameter of the SCU.EXPAND_DECK call. Refer to the operating system
dependent section for a list of CYBILIO deck names.

2.4.2.2 Object Code Interface to CYBILIO

Before a program which uses CYBILIO can be executed, it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library. The name of the CYBIL run-time library is CYBCLlB. Linking to
the CYBILIO object modules may be done by including the CYBCLIB parameter
on the SES.LINK170 call or by having CYBCLIB as a local file and including
its name in the loader directives. CYBCLIB can be acquired as a local
file via the SES.GETLIB call.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.4.3 NOS/BE

2.4.3 NOS/BE

2.4.3.1 Source Code Interface to CYBILIO

2-26

4/01/86
REV: 4

To interface to CYBILIO, a CYBIL program module must include the
relevant type and procedure declarations. These can be *CALLed from an
UPDATE source library. The name of this program library is CYBCCMN.
Refer to the operating system dependent section for a list of CYBILIO deck
names.

2.4.3.2 Object Code Interface to CYBILIO

Before a program which uses CYBILIO can be executed~ it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library. The name of the CYBIL run-time library is CYBCLIB. Linking to
the CYBILIO object modules may be done by having CYBCLIB as a local file
and including its name in the loader directives.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

2.0 CYBILIO FILES
2.4.4 vsos

2.4.4 vsos

2.4.4.1 SOURCE CODE .INTERFACE TO CYBILIO

>>>>>> to be supplied <<<<<<

2.4.4.2 Object Code Interface to CYBILIO

2-27

4/01/86
REV: 4

Before a program which uses CYBILIO can be executed, it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library.

>>>>> to be supplied <<<<<<<<

2.4.5 EOS

2.4.5.1 SOURCE CODE INTERFACE TO CYBILIO

>>>>>> to be supplied <<<<<<

2.4.5.2 Object Code Interface to CYBILIO

Before a program which uses CYBILIO can be executed, it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library.

>>>>> to be supplied <<<<<<<<

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manua~

2.0 CYBILIO FILES
2.4.6 APOLLO AEGIS

2.4.6 APOLLO AEGIS

2.4.6.1 Source Code Interface to CYBILIO

2-28

4/01/86
REV: 4

To interface to CYBILIO, a CYBIL program module must include the
relevant type and procedure declarations. These can be INCLUDEd from the
/CYBIL/INS directory. The form that the INCLUDE directive should take is
as follows:

INCLUDE 'I cybil/ ins/ cybilio'

All CYBILIO type and procedure declarations are in the above.

2.4.6.2 Object Code Interface to CYBILIO

Before a program whi·ch uses CYBILIO can be executed, it must be linked
with the CYBILIO object modules which are located on the CYBIL run-time
library.

The name of the CYBIL run-time library is CYBALIB.BIN. Linking to the
CYBILIO object modules may be done by including /CYBIL/BIN/CYBALIB.BIN as
a directive to the BIND command.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES

3.0 I/O PROCEDURES

3.1 GENERAL PROCEDURES AND FUNCTIONS

3-1

4/01/86
REV: 4

The following are general procedures and functions. That is, they may
be used with binary files, record files, text files, or display files.

3.1.1 OPENING AND CLOSING FILES

3.1.1.1 cyp$open file

{* ZCYPOF cyp$open_file *}

PROCEDURE [XREF] cyp$open file ALIAS 'ZCYPOF'
(file name: cyt$file-name;

file-specifications: cyt$file specifications;
VAR file 7 cyt$f i le; · -
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$f ile name
*copyc cyt$file-specifications
*copyc cyt$file-
*copyc cye$exception_conditions
?? POP ??

This procedure opens the file specified by the FILE_NAME parameter.
The length of the FILE_NAME and the characters included in the FILE_NAME
must conform to the operati~g system dependent requirements or the open
will be aborted and abnormal status will be returned in the status
variable.

The FILE SPECIFICATION parameter specifies how the file is to be used.
If a NIL value is specified for this parameter, the, following defaults are
selected:

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.1.1 cyp$open_file

close_file_disposition
file access
file character set - -

file existence
file kind
new_page_procedure
page_format
open_position
page_length
page_width
file contents
f ile_processor

3-2

4/01/86
REV: 4

cyc$default file disposition
cyc$read write -
cyc$asciT612 for NOS
implementations, cyc$ascii812
for NOS/BE implementations,
and cyc$ascii for all other
implementations
cyc$new or old file
cyc$record-fil;
cyc$omit p;ge procedure
cyc$burstable-form
cyc$default_open_position
system dependent
system dependent
cyc$unknown_contents
cyc$unknown_processor

If one or more of the file specifications are not specified, CYBILIO will
use the default value for that specification. See the section on CYBIL
types for additional information about file_specifications, the values
that may be specified, and defaults for unspecified file specifications.

The FILE parameter returns a pointer that must be used on all other
calls to CYBILIO. Attempting to call a CYBILIO procedure with an
undefined or user-altered pointer will have unpredictable results.

COMPANY PRIVATE -

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.1.2 cyp$close_file

3-3

4/01/86
REV: 4

---• I

3.1.1.2 cyp$close file

{* ZCYPCF cyp$close_file *}

PROCEDURE [XREF] cyp$close file ALIAS 'ZCYPCF' (file: cyt$file;
file position: cyt$open close position;

VAR stat~s: ost$status); - -

?? PUSH. (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$file
*copyc cyt$open close position
*copyc cye$exception ~onditions
?? POP ??

This procedure closes the specified FILE.

The FILE POSITION parameter specifies the position of the file at
close.

REMARK:

The close_file_disposition record of the file specifications specified
when the file was opened will determine the disposition of the file. That
is, the file will be retained, returned, unloaded, or deleted.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.2 POSITIONING FILES

3.1.2 POSITIONING FILES

3.1.2.1 cyp$position file at beginning

{* ZCYPPFB cyp$position_file_at_beginning *}

3-4

4/01/86
REV: 4 ~

PROCEDURE [XREF] cyp$position file at beginning ALIAS 'ZCYPPFB'
(file: cyt$file; - - -

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$f ile
*copyc cye$exception_conditions
?? POP ??

This procedure positions the specified FILE at its beginning of
information.

3.1.2.2 cyp$position file at end

{* ZCYPPFE cyp$position_file_at_end *}

PROCEDURE [XREF] cyp$position file at end ALIAS 'ZCYPPFE'
(file: cyt$file; - - -

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$f ile
*copyc cye$exception_conditions
?? POP ??

This procedure positions the specified FILE at its end of information.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.3 FILE LENGTH INTERROGATION

3.1.3 FILE LENGTH INTERROGATION

3.1.3.1 cyp$length 6f file

{* ZCYPLOF cyp$length of file *}

FUNCTION [XREF] cyp$1ength of file ALIAS 'ZCYPLOF'
(file: cyt$file): intege;; -

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
?? POP ??

3-5

4/01/86
REV: 4

This function returns the length of the specified FILE. · The length is
the number of cells in the file.

COMPANY PRIVATE

· CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.4 FILE STRUCTURE CREATION/DETECTION

3.1.4 FILE STRUCTURE CREATION/DETECTION

3-6

4/01/86
REV: 4,

CYBILIO supports the subdivision of files into levels of logical
structure: records, blocks, and partitions. The End-Of-Information can
only be implicitly created (i.e., the End-Of-Information follows the
physically last item written on a file); but it can be explicitly
detected.

3.1.4.1 File Structure Creation

Record subdivisions are created through the cyp$put next record and
cyp$put_next_line procedure calls. In addition, an -end ~f record is
created through the cyp$put_partial_record procedure call when the
last part of record parameter is true and through the cyp$put partial line
procedure- cill when the last_part_of_line parameter is -true. - The
cyp$write end of record and cyp$write end of line procedures also create
an end of-rec~rd-in a file. .- - -

Blocks and partitions are created through special procedure calls.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.4.1.1 CYP$WRITE_END_OF_BLOCK

3.1.4.1.1 CYP$WRITE END OF BLOCK

{* ZCYPWEB cyp$write_end_of_block *}

PROCEDURE (XREF] cyp$write end of block ALIAS 'ZCYPWEB'
(file: cyt$file; - - -

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-7

4/01/86
REV: 4

This procedure writes an End Of Block on the specified FILE.

REMARKS:

If the last write to the specified file was a partial write, that write
is c,ompleted then the end of block is written.

Attempting a cyp$write end of block to a file NOT opened for
file access = cyc$write or -fil; a~cess cyc-$read_wri~ will return
cyc$Tncorrect_output_request in th; status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.4.1.2 CYP$WRITE_END_PARTITION

3-8

4/01/86
REV: 4

--~----------------

3.1.4.1.2 CYP$WRITE END PARTITION

{* ZCYPWEP cyp$write_end_of_partition *}

PROCEDURE [XREF) cyp$write end of partition ALIAS 'ZCYPWEP'
(file: cyt$file; - - -

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure writes an End of Partition on the specified file.

REMARKS:

If the last write to the specified file was a part{al write, that write
is completed then the end of partition is written.

Attempting a cyp$write end of partition to a file NOT opened for
file_access = cyc$write o;. file=access cyc$read_writ~e~will return
cyc$incorrect_output_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3-9

4/01/86
REV: 4

--~----------------
3.0 I/O PROCEDURES
3.1.4.2 File Structure Detection

3.1.4.2 File Structure Detection

3.1.4.2.1 CYP$CURRENT FILE POSITION

{* ZCYPCFP cyp$current_file_position *}

FUNCTION [XREF] cyp$current file position ALIAS 'ZCYPCFP'
(file: cyt$file): cyt$cur~ent_file_position;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc cyt$currertt_file_position
?? POP ??

This function returns the current position of the specified FILE. The
current position reflects the position of the file with respect to the
logical subdivisions of the file. That is, the file is positioned at:
beginning of information, end of information, in the middle of a record,
at the end of a record, at the end of a block, or at the end of a
partition.

Following any type of read or positioning operation, the function
returns the current file position. Following most types of write
operations, this function will return cyc$end of information. If the
previous operation was a write to a binary typ; file, this function
returns cyc$middle of record unless the write extended the length of the
file in which case the-function returns cyc$end_of_information.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.1.5 OPERATING SYSTEM TYPE INTERROGATION

3.1.5 OPERATING SYSTEM TYPE INTERROGATION

3.1.5.1 cyp$operating system

{* ZCYPOS cyp$operating_system *}

3-10

4/01/86
REV: 4

FUNCTION [XREF] cyp$operating_system ALIAS 'ZCYPOS': cyt$system_type;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$system_type
?? POP ??

This function returns a value that identifies the OPERATING SYSTEM on
which a program is running.

This function allows a user to write a program that can run on more
than one operating system by including conditional code that handles
operating system dependencies. See the copy_binary_file example in
Appendix A for an example of how this function might be used.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2 RECORD FILE PROCEDURES

3-11

4/01/86
REV: 4

3.2 RECORD FILE PROCEDURES

3.2.1 READING AND WRITING RECORD FILES

The data transfer procedures for record type files (like any programmer
defined procedures in CYBIL) must have parameters of, a specific CYBIL
type. To transfer data to/from a record type file, the CYBIL type of the
parameter that specifies the data to be read or written must match the
CYBIL type of the program variable that contains the data to be read or
written. The CYBILIO procedures that perform reads and writes on record
type files require that the data be specified as a pointer to a CYBIL
sequence. Programs that wish to use the record type file procedure
interfaces must therefore specify the data as a variable of type pointer
to CYBIL sequence. This pointer is usually defined by using the CYBIL
fl§]Sl function.

For example, given the following CYBIL variable declarations:

VAR
data_item_l: my_data_type,
data_item_2: tmy data type,
data_item_3: tar;ay [l .. 50] of my_data_type;

pointers to CYBIL sequences may be defined as follows:

#SEQ (data item 1)
#SEQ (data-item-2t)
#SEQ (data-item-3t)
#SEQ (data=item=3t [5])

The sample programs in the appendices provide examples of the use of
the #SEQ cybil function to pass data to/from the record type file
read/write procedures.

Data is read from or written to record type files as full or partial
records. These records are NOT to be confused with the CYBIL record type.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.1.1 cyp$put_next~re~ord

3.2.1.1 cyp$put next record

{* ZCYPPNR cyp$put_next_record *}

PROCEDURE [XREF] cyp$put next record ALIAS 'ZCYPPNR'
(record file: cyt$file; -

pointer to source: tSEQ (*);
VAR status:-ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure writes a record on the specified file.

3-12

4/01/86
REV: 4

The POINTER TO SOURCE parameter specifies the data to be written. The
data is written-as a complete record. If the last write to the file was
cyp$put partial record, that record is first completed and then the data
in POINTER_TO_SOURCE is written as a new complete record.

REMARKS:

The end of information on a record type file immediately follows the
·data last written. Thus, writing to a record type file, positioning the
file --rc;- its beginning or performing a backward record skip, and again
writing to the file will result in "lost" data.

Attempting a cyp$put_next_record to a file NOT opened as
cyc$record_file will return cye$incorrect_operation in
variable.

file kind
the status

Attempting a cyp$put next record to a file NOT opened for file access =
cyc$write or file access cyc$r;;d_write will return
cye$incorrect_output_requ;st in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/9 Reference Manual

3.0 I/O PROCEDURES
3.2.1.2 cyp$put_partial_record

3.2.1.2 cyp$put partial record

{* ZCYPPPR cyp$put_partial_record *}

PROCEDURE [XREF] cyp$put partial record ALIAS 'ZCYPPPR'
(record file: cyt$file; -

pointe; to source: tSEQ (*);
last part of record: boolean;

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
,•ccopyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-13

4/01/86
REV: 4

This procedure writes a partial record on the specified file.

The POINTER TO SOURCE parameter·specifies the data to be written.

The LAST_PART_OF_RECORD specifies whether or not more data can be
appended to the current record. If LAST PART OF RECORD is TRUE, the data
specified by POINTER TO SOURCE is written-to the file and the record is
terminated. The next full or partial write to the file will begin a new
record. If LAST_PART_OF_RECORD is FALSE, the data specified by
POINTER TO SOURCE is written to the file but the record is not terminated.
Additio~al-data can be appended to the record if the next write to the
file is a cyp$put_partial_record.

REMARKS:

The end of information on a record type file immediately follows the
data last written. Thus, writing to a record.type file, positioning the
file ~ its beginning or performing a backward record skip, and again
writing to the file will result in "lost" data.

Attempting a cyp$put_partial_record to a file NOT opened as file kind
cyc$record_file will return cye$incorrect_operation in the status
variable.

Attempting a cyp$put partial record to a file NOT opened for
file_access • cyc$write- or file_access cyc$read_write will return
cye$incorrect_output_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.1.3 cyp$write_end_of_record

3.2.1.3 cyp$write end of record

{* ZCYPWER cyp$write_end_of_record *}

PROCEDURE [XREF] cyp$write end of record ALIAS 'ZCYPWER'
(record_file: cyt$fil;; - -
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-14

4/01/86
REV: 4

This procedure writes an end-of-record to the specified FILE. If the
last write to the FILE was partial, that record is completed; otherwise an
empty record results.

REMARKS:

Attempting a cyp$write end of record to a file NOT opened as file kind
cyc$record_file will -ret~rn- cye$incorrect_op;;;tion in the status

variable.

Attempting a cyp$write_end_of_record to a file NOT opened for
file access cyc$write or file access cyc$read write will return
cye$Tncorrect_output_request in the-status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.1.4 cyp$get_next_record

3.2.1.4 cyp$get next record

{* ZCYPGNR cyp$get_next_record *}

PROCEDURE [XREF] cyp$get_next_record ALIAS 'ZCYPGNR'
(record file: cyt$file;

pointe;_to_target: tSEQ (*);
VAR number of cells read: integer;
VAR status: o;t$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file ·
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-15

4/01/86
REV: 4

This procedure reads the next record from a record type file.

The POINTER TO TARGET parameter specifies the data structure into which
data is to be read.

The NUMBER_OF_CELLS_READ parameter returns the number of cells actually
read.

REMARKS:

If the current file position is not at the beginning of a record, the
file is positioned forward to the beginning of the next record, block, or
partition before the read begins.

CYBILIO reads data from the file until it encounters the end of the
record or the end of the data structure specified by POINTER TO TARGET.
NUMBER_OF_CELLS_READ will return the number of data cells actually read
into the data structure specified by POINTER_TO_TARGET

If the read terminates because the end of the record was encountered,
the cyp$current_file_position function will return cyc$end_of_record. If
the read terminates because CYBILIO encountered the end of the
POINTER TO TARGET data structure, the cyp$current_file_position function
will r;tu;n cyc$middle of record. To read the remainder of the record,
the program must is;ue- cyp$get partial record calls until the
cyp$current_file_position function returns a value of cyc$end_of_record.

If CYBILIO encounters the end of a block, no data is read, the

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.1.4 cyp$get_next_record

NUMBER OF CELLS READ returns a value of
cyp$cu;re~t f il; position function will - -cyc$end_of_block.

If CYBILIO encounters the end of a partition,
NUMBER OF CELLS READ returns a value of
cyp$cu;re~t_fil;_position function will
cyc$end_of_partition.

0 (zero),
return a

no data is
0 (zero),

return a

3-16

4/01/86
REV: 4

and the
value of

read, the
and the

value of

If CYBILIO encounters the end of information, no data is read, the
NUMBER OF CELLS READ returns a value of 0 (zero), and the
cyp$cu;re~t fil; position function will return a value of
cyc$end_of_infori;ation.

Attempting a cyp$get next record to a file NOT opened as
cyc$record_f ile will - ret~rn cye$incorrect_operation in
variable.

file kind
the status

Attempting a cyp$get next record to a file opened for file access
cyc$write will return ~ye$i~correct_input_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.1.5. cyp$get_partial_record

3~2.1.5 cyp$get partial record

{* ZCYPGPR cyp$get_partial_record *}

3-17

4/01/86
REV: 4

PROCEDURE [XREF] cyp$get partial record ALIAS 'ZCYPGPR'
(record file: cyt$file; -

pointe;_to_target: tSEQ (*);
VAR number_of _cells_read: integer;
VAR last part of record: boolean;
VAR stat~s: ost$status);

?? PUSH (LISTEXT := ON) ??
,'tcopyc cyt$f i le
*copyc ost$status
*copyc cye$exception_conditions
??· POP ??

This procedure reads a portion of a record from a record type file.

The POINTER TO TARGET parameter specifies the data structure into which
data is to be read.

The NUMBER_OF_CELLS_READ parameter returns the number of cells actually
read.

CYBILIO begins reading at the current position of the file.

REMARKS:

CYBILIO reads data from the file until it encounters the end of the
record or the end of the data structure specified by POINTER TO TARGET.
NUMBER_OF_CELLS_READ will return the number of data, cells actually read
into the data structure specified by POINTER_TO_TARGET

If the read terminates because the end of the record was encountered,
the cyp$current_f ile_position function will return cyc$end_of_record. If
the read terminates because CYBILIO encountered the end of the
POINTER TO TARGET data structure, the cyp$current_file_position function
will r;tu;n cyc$middle of record. To read the remainder of the record,
the program must issue- cyp$get partial record calls until the
cyp$current_file_position function returns a ;alue of cyc$end_of_record.

If CYBILIO encounters the
NUMBER OF CELLS READ returns - -

end of a
a value

block,
of 0

no data is read, the
(zero), and the

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

· 3.0 I/O PROCEDURES
3.2.1.5 cyp$get_partial_record

cyp$current_file_position
cyc$end_of_block.

function will return a

3-18

4/01/86
REV: 4

value of

If CYBILIO encounters the end of a partition, no data is read, the
NUMBER OF CELLS READ returns a value of 0 (zero), and the
cyp$cu;re~t file position function will return a value of
cyc$end of partition.

If CYBILIO encounters the end of information,
NUMBER OF CELLS READ returns a value of
cyp$cu;re~t file position function will
cyc$end_of _Tnf or;ation.

no data is
0 (zero),

return a

read,
and

value

the
the

of

Attempting a cyp$get_partial_record to a file NOT opened as file kind =
cyc$record_file will return cye$incorrect_operation in the status
variable.

Attempting a cyp$get partial record to a file opened for file access =
cyc$write will return cye$incorrect_input_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.2 RECORD.FILE POSITIONING

3.2.2 RECORD FILE POSITIONING

3-19

4/01/86
REV: 4

In addition to the cyp$position_file_at_beginning and
cyp$position_file_at_end procedure interfaces, record type files may be
positioned forward or backward one or more records, blocks or partitions.
Positioning may only be performed on record files that are opened for
file_access of cyc$read or cyc$read_write.

3.2.2.1 cyp$position record file

{* ZCYPPRF cyp$position_record_file *}

PROCEDURE [XREF] cyp$position record file ALIAS 'ZCYPPRF'
(record_file: cyt$file;- -

direction: cyt$skip_direction;
count: integer;
unit: cyt$skip unit;

.VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*copyc cyt$skip direction
*copyc cyt$skip-unit
*copyc cye$exception_conditions
?? POP ??

This procedure allows a record type file to be repositioned.

The DIRECTION parameter specifies forward or backward positioning,
COUNT specifies the number of units the file is to be positioned, and UNIT
specifies positioning by records, blocks, or partitions.

REMARKS:

The position of the file after a positioning operation depends on the
positioning ·unit (records, blocks, or partitions), the initial file
positi.on, the number of units positioned, and the positioning direction.
The following table lists positioning results assuming that no boundary
condition is detected before the positioning count is exhausted.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.2.2.1. cyp$position_record_file

3-20

4/01/86
REV: 4

CYP$POSITION_RECORD_FILE Results

file position before the
positioning operation

Positioning by records:

cyc$beginning of information,
cyc$end_of_re~ord,
cyc$end_of_block·,
cyc$end of partition,
cyc$end=of=information

cyc$middle_of_record

cyc$middle_of_record

End of record N

End of record N

Positioning by blocks:

cyc$beginning of information,
cyc$end~of_bl~ck~
cyc$end_of_partition,
cyc$end_of_information

cyc$middle_of_record,
cyc$end_of_record

cyc$middle_of _record

positioning
" operation

Position forward
or backward zero
records.

Position forward
zero records.

Position backward
zero records.

Position forward
one or more (M)
records.

Position backward
one or more (M).
records.

Position forward
or backward zero
blocks.

Position forward
zero blocks.

Position backward

result

No movement; the file
remains the same as
before the position
ing operation.

The file is positioned
to the end of the
current record.

The file is positioned
to the end of the
preceeding record.

The file is positioned
to the end of record
N + M.

The file is positioned
to the end of record
N - M.

No movement; the file
remains positioned
the same as before
the positioning
operation.

The file is positioned
to the end of the
current block.

The file is positioned

COMPAN-Y PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O PROCEDURES
3.2.2.1 cyp$position_record_file

cyc$end_of_record

End of block N

End of block N

Positioning by partitions:

cyc$beginning_of_information,
cyc$end_of_information

cyc$middle_of_record,
cyc$end of record,
cyc$end=of =block,
cyc$end_of_partition

cyc$middle_of_record,
cyc$end_of_record,
cyc$end of block,
cyc$end-of-partition

cyc$middle of record,
cyc$end_of=record,
cyc$end_of_block,
cyc$end_of_partition

cyc$middle of record,
cyc$end of-record,
cyc$end-of-block,
cyc$end=of=partition

zero blocks.

Position forward
one or more (M)
blocks.

Position backward
one or more (M)
blocks.

Position forward
or backward zero
partitions.

Position forward
zero partitions.

Position backward
zero partitions.

Position forward
one or more (M)
partitions.

Position backward
one or more (M)
partitions.

3-21

4/01/86
REV: 4

to the beginning of
the current block.

The file is positioned
to the end of block
N + M.

The file is positioned
to the end of block
N - M.

No movement; the file
remains positioned
the.same as before
the positioning
operation. ·

The file is positioned
to the beginning of
the next partition.

The file is positioned
to the beginning of
the current partition.

The file is positioned
to the beginning of
partition (current + M
+l) •

The file is positioned
to the beginning of
partition (current - M).

The information in the preceeding table assumes that no boundary
conditions are encountered during the positioning operation. If
cyp$position_record_file encounters a boundary condition before the COUNT
is exhausted, the positioning operation stops at the boundary and

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3-22

4/01/86
REV: 4

3.0 I/O PROCEDURES
3.2.2.1 cyp$position_record_file

cye$premature_end_of_operation will be returned in the status variable.

The following are the boundary conditions:
o A position forward by records encounters an end of block, end

of partition or end of information.
o A position forward by blocks encounters an end of partition or

end of information.
o A position forward by partitions encounters end of information.
o A position backwards by records encounters an end of block, end

of partition or beginning of information.
o A position backwards by blocks encounters an end of partition

or beginning of information.
o A position backwards by partitions encounters beginning of

information.

Attempting a cyp$position record file to a file NOT opened as file kind
cyc$record file will return cye$incorrect operation in the status

variable. - -

Attempting a cyp$position record file to a file opened for
cyc$write will return- cye$i~correct_input_request in

variable.

file access
the status

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O_ PROCEDURES
3.3 BINARY FILE PROCEDURES

3.3 BINARY FILE PROCEDURES

3.3.1 READING AND WRITING BINARY FILES

3-23

4/01/86
REV: 4

The data transfer procedures for binary type files (like any programmer
defined procedures in CYBIL) must have parameters of a specific CYBIL
type. To transfer data to/from a binary type file, the CYBIL type of the

.parameter that specifies the data to be read or written must match the
CYBIL type of the program variable that contains the data to be read or
written. The CYBILIO procedures that perform reads and writes on binary
type files require that the data be specified as a pointer to a CYBIL
sequence. Programs that wish to use the binary type file procedure
interfaces must therefore specify the data as a variable of type pointer
to CYBIL sequence. This pointer is usually defined by using the CYBIL
#SEQ function.

For example, given the following CYBIL variable declarations:

VAR
data_item_l: my_data_type,
data_item_2: tmy data type,
data_item_3: tar;ay [l .. 50] of my_data_type;

pointers to CYBIL sequences may be defined as follows:

#SEQ (data item 1)
#SEQ (data-item-2t)
#SEQ (data-item-3t)
#SEQ (data=item=3t [5])

The sample programs in the appendices provide examples of the use of
the #SEQ cybil function to pass data to/from the binary type file
read/write procedures.

Any structure to be found in a binary type file must be provided for
and interpreted by the user program. CYBILIO simply treats binary files
as a sequence of cells. Calls to the binary type file read and write
procedure interfaces simply result in a mapping of cells between the file
and the CYBIL program variable.

Binary files may be read and written in a random, sequential, or
combination random/sequential manner. Random access of binary files is
possible via the FILE_KEY parameter on the binary file procedure calls.
The FILE_KEY may be viewed as an offset pointer that marks cell addresses
within a binary file. It is important to note that CYBILIO does NOT

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/0 PROCEDURES
3.3·.1 READING AND WRITING BINARY FILES

3-24

4/01/86
REV: 4

maintain a directory of FILE_KEYs for binary files. It is the user's
responsibility to create and maintain any directories that may be
required. Refer to Appendix B for an example of a binary file directory.

When a binary file is opened, the FILE KEY is undefined. If the file
is to be accessed via the random access procedures cyp$put_keyed_binary
and cyp$get keyed binary, the FILE KEY must first be equated to the
current (ope~) position of the file. This may be done by making a call to
the cyp$get_next_binary procedure or the cyp$binary_f ile_key function.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.3.1.1. cyp$put_next_binary

3.3.1.1 cyp$put next binary

{* ZCYPPNB cyp$put_next_binary *}

PROCEDURE [XREF] cyp$put next binary ALIAS 'ZCYPPNB'
(binary_file: cyt$file; -

pointer_to_source: tSEQ (*);
VAR file key: integer;
VAR stat~s: ost$status);

?? PUSH (LISTEXT.:= ON) ??
''ccopyc cyt$file
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-25

4/01/86
REV: 4

This procedure writes data to a file opened as cyc$binary_file. The
data is written to the current position of the file.

The POINTER_TO_SOURCE parameter specifies the data·to be written.

The FILE KEY parameter returns the "file cell address" at which the
write started.

REMARKS:

The end of information for a binary type file follows the last physical
cell written to the file. Thus, writes can be performed to the file, the
file repositioned backwards, and another write performed without affecting
the end of information.

The size of the data block written to a binary file is determined by
the POINTER_TO_SOURCE parameter. CYBILIO does NOT perform any blocking of
data. Thus, writing varying length blocks~f data at "random" file
addresses can cause previously written data blocks to be partially or
fully overwritten.

Attempting a
cyc$binary_f ile
variable.

cyp$put_next_binary to a file NOT opened as file kind =
will return cye$incorrect_operation in the status

Attempting a cyp$put_next_binary to a file NOT opened for file access
cyc$write or file_access cyc$read_write will return
cye$incorrect_output_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Ref erenc~ Manual

3.0 I/0 PROCEDURES
3.3.1.2 cyp$put_keyed_binary

3.3.1.2 cyp$put keyed binary

{* ZCYPPKB cyp$put_keyed_binary *}

PROCEDURE [XREF) cyp$put_keyed_binary ALIAS 'ZCYPPKB'
(binary_file: cyt$file;

pointer_to_source: tSEQ (*);
file key: integer;

VAR stat~s: ost$status);

?? PUSH (LISTEXT := ON) ??
.,.ccopyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure writes data to a binary type file.

3-26

4/01/86
REV: 4

The POINTER TO SOURCE parameter specifies the data to be written.

The FILE_KEY parameter specifies the "file cell address" at which the
write is to begin.

~REMARKS:

The size of the data block written to a binary file is determined by
the POINTER_TO_SOURCE parameter. CYBILIO does NOT perform any blocking of
data. Thus, writing varying length blocks--of data at "random" file
addresses can cause previously written data blocks to be partially or
fully overwritten.

Attempting a
cyc$binary_file
variable.

cyp$put_keyed_binary to a file. NOT opened as file kind =
will return cye$incorrect_operation · in the status

Attempting a cyp$put_keyed_binary to a file NOT opened for file access
cyc$write or file access cyc$read write will return

cye$incorrect_output_request in the status variabl;.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

·CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.3.1.3 cyp$get_next_binary

3.3.1.3 cyp$get next binary

{* ZCYPGNB cyp$get_next_binary *}

PROCEDURE [XREF] cyp$get next binary ALIAS 'ZCYPGNB'
(binary file: cyt$file; -

pointe; to target: tSEQ (*);
VAR f ile_key: integer;
VAR number of cells read: integer;
VAR status: o;t$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

l-27

4/01/86
REV: 4

This procedure reads data from a binary type file. The data is read
from the current position of the file.

The POINTER TO TARGET parameter specifies the data structure into which
data ls to be ;ead.

The FILE KEY parameter returns the "file cell address" from which the
read began.

The NUMBER_OF_CELLS_READ .parameter returns the number of cells actually
read. The value returned is normally the size of the data structure
referenced by POINTER_TO_TARGET. However, if end of block, end of
partition, or end of information is detected during a read,
NUMBER_OF_CELLS_READ returns the only of cells read before the end of
block, end of partition or end of information was detected.

REMARKS:

The cyp$current_file_posi ti on function returns· cyc$middle_of_record
following a read from a binary type file unle~s NUMBER_OF_CELLS_READ
returned a value of 0 (zero). In this case, cyp$current file position
would' return cyc$end of block, cyc$end of partitio~, or
cyc$end of information to indicate which file bou~da;y condition was
encountered.

Attempting a cyp$get_next_binary to a file NOT opened as file kind =
cyc$binary_file will return cye$incorrect_operation in the status

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/0 PROCEDURES
3.3.1.3 cyp$get_next_binary

variable.

3-28

4/01/86
REV: 4

Attempting a cyp$get next binary to a file opened for file access
cyc$write will return cye$i~correct_input_request in the status variable.

COMPANY PRIVATE

3-29
CYBER IMPLEMENTATION LANGUAGE

4/01/86.
CYBIL I/O Reference Manual REV: 4

3.0 I/O PROCEDURES
3.3.1.4 cyp$get_keyed_binary

3.3.1.4 cyp$get keyed binary

{* ZCYPGKB cyp$get_keyed_binary *}

PROCEDURE [XREF] cyp$get_keyed_binary ALIAS 'ZCYPGKB'
(binary file: cyt$file;

pointe;_to_target: tSEQ (*);
f ile_key: integer;

VAR number of cells read: integer;
VAR status: o;t$status);

?? PUSH (LISTEXT := ON) ??
''ccopyc cyt$file
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure reads data from a binary type file.

The POINTER TO TARGET parameter specifies the data structure into which
data is to be read.

The FILE KEY parameter specifies the "file cell address" at which the
read is to begin.

The NUMBER_OF_CELLS_READ parameter returns the number of cells actually
read. The value returned is normally the size of the data structure
referenced by POINTER_TO_TARGET. However, if end of block, end of
partition, or end of information is detected during a read,
NUMBER_OF_CELLS_READ returns the only of cells read before the end of
block, end of partition or end of information was detected.

REMARKS:

The cyp$current file position. function returns cyc$middle of record
following a read fr;m a- binary type file unless NUMBER OF CE~LS READ
returned a value of 0 (zero). In this case, cyp$current-file position
would return cycend_of_block, cycend_of_partTtion~ or
cyc$end_of_information to indicate which file boundary condition was
encountered.

If FILE KEY specifies a cell beyond the ·end of information, no data is
read, cypSget_keyed_binary will return cye$key_past_eoi in the status
variable and the position of the file remains unchanged.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Ref eren~e Manual

3.0 I/O PROCEDURES
3.3.1.4 cyp$get_keyed_binary

Attempting a cyp$get keyed binary to a file NOT opened as
cyc$binary_file will - return cye$incorrect operation in
variable.

3-30

.4/01/86
REV: 4

file kind
the status

Attempting a cyp$get_keyed_binary to a file opened for file access
cyc$write will return cye$incorrect_input_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PR-OCEDURES
3.3.2 BINARY FILE POSITIONING

3.3.2 BINARY .FILE POSITIONING

3-31

4/01/86
REV: 4

In addition to the cyp$position file at beginning and
cyp$position_file_at_end procedure interfaces,- bin;ry-type files may be
positioned to any random "file address" within the bounds of the file.

3.3.2.1 cyp$position binary at key

{* ZCYPPBK cyp$position_binary_at_key *}

PROCEDURE [XREF] cyp$position binary at key ALIAS 'ZCYPPBK'
(binary_f ile: cyt$file; - - - ·

file key: integer;
VAR stat~s: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure positions a binary type file to a specified "file cell
address".

The FILE_KEY parameter specifies the "file cell address" to which the
file is to be positioned.

REMARKS:

If FILE KEY specifies a cell beyond the end of information,
cyp$get_key;d_binary will return cye$key_past_eoi in the status variable
and the position of the file remains unchanged.

Attempting a cyp$position_binary_at_key to a file NOT opened as
file_kind cyc$binary_file will return cye$incorrect_operation in the
status variable. ·

COMPANY PRIVATE

3-32
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4 .

3~0 I/O PROCEDURES
3.3.3 BINARY FILE POSITION INTERROGATION

3.3.3 BINARY FILE POSITION INTERROGATION

3.3.3.1 cyp$binary file key

{* ZCYPBFK cyp$binary_file_key *}

FUNCTION (XREF] cyp$binary file key ALIAS 'ZCYPBFK'
(binary_file:.cyt$file):-integer;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
?? POP ??

This function returns the "file cell address" at which a binary
file is currently positioned. If this call is immediately preceeded
"get" or "put" procedure call, the value returned points to the last
transferred + 1. If this call is immediately preceeded
cyp$position binary at key call, the value returned is the ''file
address" to ;;hich the file was positioned.

REMARKS:

type
by a
cell

by a
cell

Attempting a cyp$binary file key to a file NOT opened as file kind
cyc$binary_file will return i mea;;:ingless result.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Ref erenc~ Manual

3.0 I/O PROCEDURES
3.4 TEXT AND DISPLAY FILES

3.4 TEXT AND DISPLAY FILES

3.4.1 READING AND'WRITING TEXT FILES AND DISPLAY FILES

3-33

4/01/86
REV: 4

Data is transferred to and from text files and display files in terms
of lines or partial lines. Internally these (partial) lines are
represented by CYBIL strings of characters. Externally (on the file)
lines may be represented in 8-bit ASCII, 6-bit display code, NOS 6/12-bit
ASCII, or "8 out of 12 bit" ASCII,. This external representation is
operating system dependent and may be specified through the
file specifications when the file is opened. Thus, data transfers
involving text files or display files may imply a translation between
these character sets (unlike binary and record file transfers in which the
data are not modified).

The maximum length of lines written to text files or display files and
the page· size for display files may be specified via the
f ile_specif ications parameter on the call to cyp$open_file.

The procedures in this section apply to both text files and display
fi 1 es.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3-34

4/01/86
REV: 4

~---~
3.0 I/O PROCEDURES
3.4.1.1 cyp$put_next_line

3.4.1.1 cyp$put next line

{* ZCYPPNL cyp$put_next_line *}

PROCEDURE [XREF] cyp$put nex·t 1 ine ALIAS 'ZCYPPNL'
(file: cyt$file; - -

line: string (* <= cyc$max page width);
VAR status: ost$status); - -

?? PUSH (LISTEXT := ON) ??
*c.opyc cyt$f i 1 e
*copyc ost$status
*copyc cyt$page_width
*copyc cye$exception_conditions
?? POP ??

This procedure writes a string of characters to the specified FILE.

The LINE parameter specifies the string of characters to be written.
The characters in LINE are written as a complete line. If the last write
to the FILE was a partial line, that line is first completed, and then the
characters in LINE are written.

REMARKS:

If the length of the character string exceeds the page width, the line
will be truncated.

In the case of a file opened as kind = cyc$display_file, format control
characters are automatically prefixed to the LINE by CYBILIO. In
addition, if displaying the line causes the display page length to be
exceeded, CYBILIO will invoke the page overflow mechanism.

Attempting a cyp$put next line to a file NOT opened as file kind =
cyc$text_file or fil;_kind cyc$display_file will return
cye$incorrect_operation in the status variable.

Attempting a cyp$put next line to a file NOT opened for file access =
cyc$write or file access- cyc$read_write will return
cye$incorrect_output_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.4.1.2 cyp$put_partial_line

3-35

4/01/86
REV: 4

-------~---

3.4.1.2 cyp$put partial line

{* ZCYPPPL cyp$put_partial_line *}

PROCEDURE [XREF] cyp$put partial line ALIAS 'ZCYPPPL'
(file: cyt$file; - -

partial_line: string (* <= cyc$max_page_width);
last part of line: boolean;

VAR stat~s: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile ·
*copyc ost$status
*copyc cyt$page width
*copyc cye$exception_conditions
?? POP ??

This procedure writes a string of characters to the specified FILE.

The PARTIAL LINE parameter specifies the string of characters to be
written.

The LAST_PART_OF LINE parameter specifies whether or not more
characters can be written to the current line. If LAST PART OF LINE is
TRUE, an end-of-line is appended to the current line after the character
string is written. If LAST PART OF LINE is FALSE, subsequent
cyp$put_partial_line calls may app;nd data-to the current line.

REMARKS:

In the case of a file opened as kind = cyc$display_file, CYBILIO
automatically prefixes format control characters to the beginning of each
new line. In addition, if LAST PART OF LINE is TRUE and displaying the
current line causes the display page le~gth to be exceeded, CYBILIO will
invoke the page overflow mechanism •.

If the length of the current line exceeds the page width, the line will
be truncated.

Attempting a cyp$put_partial_line to a file NOT opened as
cyc$text file or file kind cyc$display file
cye$inco;rect_operation in the status variable. -

Attempting a cyp$put_partial_line to a file NOT opened for

file kind
will return

file access

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURE~
3.4.1.2 cyp$put_partial_line

cyc$write or file access cyc$read_write
cye$incorrect_output_request in the status variable.

will

3-36

4/01/86
REV: 4

return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.4.1.3 cyp$write_end_of_line

3-37

4/01/86
REV: 4

------------------~--

3.4.1.3 cyp$write end of line

{* ZCYPWEL cyp$write_end_of_line *}

PROCEDURE [XREF] cyp$write_end_of_line ALIAS 'ZCYPWEL'
(file: cyt$file;
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure writes an end-of-line to the specified FILE. If the
last write to the FILE was partial, that line is completed; otherwise an
empty line results.

REMARKS:

Attempting a cyp$write end of line to a file NOT opened as file kind
cyc$text_file or file_kind- cyc$display_file will return
cye$incorrect_operation in the status variable.

Attempting a cyp$write end of line to a file NOT opened for file access
cyc$write or file ;cc;ss cyc$read_write will return

cye$incorrect_output_request-in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Ref erenc~ Manual

3.0 I/0 PROCEDURES
3.4.1.4 cyp$flush_line

3-38·

4/01/86
REV: 4

-------·---
3.4.1.4 cyp$flush line

{* ZCYPFL cyp$flush_line *}

PROCEDURE (XREF] cyp$flush line ALIAS 'ZCYPFL'
(file: cyt$file; -

VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
''ccopyc cyt$f i 1 e
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure flushes the line buffer for the specified file. If the
line buffer contains data, the line is terminated and then written to the
specified file. If the line buffer contains no data, this procedure
results in no operation on the file.

REMARKS:

Attempting a cyp$flush_line to a file NOT opened
cyc$text_file or f ile_kind cyc$display_file
cye$incorrect_operation in the status variable.

as file kind =

wi 11 return

Attempting a cyp$flush line to a file NOT opened for file access =
cyc$write or file_acc;ss cyc$read_write will return
cye$incorrect_output_request in the status variable.

CQMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference. Manual

3.0 I/O PROCEDURES
3.4.1.5_cyp$tab_file

3.4.1.5 cyp$tab file

{* ZCYPTF cyp$tab_file *}

PROCEDURE [XREF] cyp$tab file ALIAS 'ZCYPTF'
(file: cyt$file; -

tab column: cyt$page width;
VAR status: ost$status);-

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cyt$page width
*copyc cye$exception_conditions
?? POP ??

3-39

4/01/86
REV: 4

This procedure positions a FILE to a specified column or position
within a line. This procedure performs a WRITE to the FILE.

The TAB COLUMN parameter specifies the column to which the file should
be positioned.

REMARKS:

If TAB COLUMN is less than or equal to the file's current column this
procedure does nothing. Otherwise, sufficient space characters are
written to FILE so that the next partial write to FILE will begin at the
specified TAB_COLUMN.

If TAB_COLUMN is larger than the page width of the device associated
with FILE, line truncation will occur when the line is written.

Attempting a cyp$tab file to a file NOT opened as
cyc$text_file or file_kind cyc$display_file

file kind
will return

cye$incorrect_operation in the status variable.

Attempting a cyp$tab file to a file NOT opened for
cyc$write or file access cyc$read_write
cye$incorrect_output_requ;st in the status variable.

file access
will return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O PROCEDURES
3.4.1.6.cyp$skip_lines

3.4.1.6 cyp$skip lines

{* ZCYPSL cyp$skip_lines *}

PROCEDURE [XREF] cyp$skip lines ALIAS 'ZCYPSL'
(file: cyt$file; -

number of lines: integer;
VAR status: o;t$status);

?? PUSH (LISTEXT := ON) ??
''ccopyc cyt$file .
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

3-40

4/01/86
REV: 4

This procedure writes one or more blank lines to the specified FILE.

The NUMBER_OF_LINES parameter specifies the number of blank lines to be
written. If the last write to FILE was partial, that line is first
completed and then NUMBER_OF_LINES blank lines are written to the file.

REMARKS:

If the specified file was opened as kind cyc$display file and
NUMBER_OF_LINES = -1, the next· line written to the file will ove;write the
current line. In addition, if NUMBER OF LINES + current line number
exceeds the display page size, the page overflow mechanism will be
invoked.

Attempting a cyp$skip lines to a file NOT opened
cyc$text file or file kind cyc$display_file
cye$inco;rect_operation in the status variable.

Attempting a cyp$skip lines to a file NOT opened for
cyc$write or fil; access cyc$read write
cye$incorrect_output_requ;st in the status variabl;.

as file kind
will return

file access
will return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O PROCEDURES
3.4.1.7. c~p$get_next_line

3.4.1.7 cyp$get next line

{* ZCYPGNL cyp$get_next_line *}

PROCEDURE [XREF] cyp$get_next_line ALIAS 'ZCYPGNL'
(file: cyt$file;

VAR line: string (* <= cyc$max_page_width);
VAR number of characters read: integer;
VAR status: oit$status);-

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cyt$page_width
*copyc cye$exception_conditions
?? POP ??

3-41

4/01/86
REV: 4

This procedure reads the next complete line from the specified FILE.
If the previous transfer was partial, a skip to the end of that line is
performed prior to this read.

The LINE parameter specifies the CYBIL string into which the line read.
If the line from FILE is too long to fit into LINE, th~ line is truncated
by skipping to the end of the line after the transfer is complete.

The NUMBER_OF_CHARACTERS_READ parameter
characters transferred into LINE.

REMARKS:

returns the number of

A line containing zero characters (i.e., the carriage return key was
"hit" in the first position of the line or any empty line was written via
a call to cyp$write_end_of_line) is returned to the CYBILIO user as an
empty string.

Attempting a cyp$get_next_line ;o a file NOT opened as file kind
will return cyc$text_file or file_kind cyc$display_file

cye$incorrect_operation in the status variable.

Attempting a cyp$get next line to a file opened for file access
cyc$write will return ~ye$i~correct_input_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3-42

' 4/01/86
REV: 4

3.0 I/O PROCEDURES
3. 4.1. 8 cyp$get_partial_line

3.4.1.8 cyp$get partial line

{* ZCYPGPL cyp$get_partial_line *}

PROCEDURE [XREF] cyp$get partial line ALIAS 'ZCYPGPL'
(file: cyt$file; - -

VAR partial line: string (* <= cyc$max page width);
VAR number_;f_characters_read: integer;- -
VAR last part of line: boolean;
VAR stat~s: o;t$;tatus);

?? PUSH (LISTEXT := ON) ??
,'ccopyc cyt$f i 1 e
*copyc ost$status
*copyc cyt$page_width
*copyc cye$exception_conditions
?? POP ??

This procedure reads the a character string from the specified FILE.

The PARTIAL LINE parameter specifies the CYBIL string into which the
ch~racter string is read.

The NUMBER OF CHARACTERS READ parameter
characters tran;fe;red into PARTIAL LINE.

returns the number of

The LAST_PART_OF_LINE parameter returns a TRUE value if the end of the
line was encountered, and a value of FALSE otherwise.

REMARKS:

A line containing zero characters (i.e., the carriage return key was
"hit" in the first position of the line or any empty line was written via
a call to cyp$write_end_of_line) is returned to the CYBILIO user as an
empty string.

Attempting a cyp$get partial line to a file NOT opened as
cyc$text file or file kind cyc$display file

file kind
will return

cye$inco;rect_operation in the status variable. -

Attempting a cyp$get partial line to a file opened for file access
cyc$write will return cye$inco;rect_input_request in the status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.4.2 TEXT AND DISPLAY FILE STATUS INTERROGATION

3.4.2 TEXT AND DISPLAY "FILE STATUS INTERROGATION

3.4.2.1 cyp$file connected to terminal

{* ZCYPFCT cyp$f ile_connected_to_terminal *}

3-43

4/01/86
REV: 4

FUNCTION [XREF] cyp$file connected to terminal ALIAS 'ZCYPFCT'
(file: cyt$file): bool;an; - -

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
?? POP ??

This function returns a value of TRUE if the file is connected to a
terminal. Otherwise, a· value of FALSE is returned.

This function call may
needs to limit line size or
terminal FILEs.

REMARKS:

be used to determine if the calling program
perform any special data formatting for

Attempting a cyp$file connected to terminal to a file NOT opened as
file kind = cyc$text file ~r file kind- cyc$display file will return
cye$Tncorrect_operatTon in the status variable. -

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.4.2.2 cyp$current_column

3.4.2.2 cyp$current column

{* ZCYPCC cyp$current_column *}

FUNCTION [XREF] cyp$current column ALIAS 'ZCYPCC'
(file: cyt$file): cyt$pag;_width;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc cyt$page_width
?? POP ??

3-44

4/01/86
REV: 4

This function returns the current column within the current line of the
specified FILE; that is, the column at which the next read or write will
begin.

REMARKS:

Attempting a cyp$current column to a file NOT opened as file kind =
cyc$text_file or file_kind cyc$display_file will return an u~defined
result.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O PROCEDURES
3.4.2.3 cyp$page_width

3.4.2.3 cyp$page width

{* ZCYPPW cyp$page_width *}

3-45

4/01/86
REV: 4

FUNCTION (XREF] cyp$page_width ALIAS 'ZCYPPW'
(file: cyt$file): cyt$page_width;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
,.'copyc cyt$page_width
?? POP ??

This function returns the page width associated with FILE.

REMARKS:

Attempting a cyp$page_width
cyc$text_file or file kind
result.

to a file !!QI opened as file kind
eyc$display_file will return an undefined

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5 DISPLAY FILES

3. 5 DISPLAY FILES

3.5.1 PAGE OVERFLOW PROCESSING

3-46

4/01/86
REV: 4

CYBILIO counts the lines written to a display type file. When the
number of lines written exceeds the page length for the file, CYBILIO
resets its line count to zero, invokes the page overflow mechanism, and
again begins to count lines written to the display file. The page
overflow mechanism is simply the sequence of events performed by CYBILIO
whenever display page length is exceeded.

CYBILIO first checks for a user-supplied page overflow procedure. If
one has been established through the file_specif ications when the file was
opened, the user specified procedure is called. In the absence of a
user-specified page overflow procedure, CYBILIO checks to see if the
file_specifications specified use of "standard" page headers. If standard
headers have been selected, CYBILIO will format and display the header.
If the user has neither specified a page overflow procedure nor the use of
the standard header, CYBILIO simply performs a page eject. The sequence
of events may be approximated as follows:

get next display line

IF (line_count + 1) > display page length THEN
line -count := 0
IF user-specified new_page_procedure THEN

call user-specified procedure
ELSEIF standard procedure selected THEN

perform display page eject
format and display standard header
skip 1 line

ELSE
perform display page eject

I FEND
I FEND

display the display line

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

3.0 I/O PROCEDURES
3-. 5 • 1 PAGE OVERFLOW PROCESS ING

3-47

4/01/86
REV: 4

Standard page headers are either narrow format or wide format. The
format is automatically selected by CYBILIO. If the page_width
established when the file is opened is greater than or equal to 132, the
wide format is selected; otherwise, the narrow format is selected. (The
page width is specified via the file specifications parameter on the call
to cyp$open_file. -

The standard page headers are· formatted as follows:

NARROW FORMAT

Line 1
Colµmns

Columns
Columns

Line 2
Columns
Columns

1--46

48-55
62-72

1-22
48-59

WIDE FORMAT

Columns 1-46

Columns 48-69
Columns 91-98
Columns 110-121

Columns 123-132

string contained in the title field
new_page_procedure record of
file_specifications specified when the
opened.
date in mm/dd/yy format
'PAGE I and page number

Operating system version
Time in system default format or, if no
is available, in hh:mm:ss format

string contained in the title field
new_page_procedure record of
f ile_specif ications specified when the
opened.
operating system version
date in mm/dd/yy format
Time in system default format or, if no
is available, in hh:mm:ss format
'PAGE I and page number

of the
the

file was

default

of the
the

file was

default

All fields in the standard headers are displayed left-justified with
blank fill to the right.

Standard title lines can be produced from
page procedures through the use of the
procedure.

within user-specified new
cyp$display_standard_title

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2 DISPLAY FILE PROCEDURES AND FUNCTIONS

3.5.2 DISPLAY FILE PROCEDURES AND FUNCTIONS

3-48

4/01/86
REV: 4

Files which are opened aa file_kind = cyc$display_file may make use of
special procedures for handling page overflow conditions and form layout .

. The procedures and functions in this section apply only to display
files.

3.5.2.1 cyp$start new display page

{* ZCYPSNP cyp$start_new_display_page *}

PROCEDURE [XREF] cyp$start new display page ALIAS 'ZCYPSNP'
(display file: cyt$file; - -

VAR status:-ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*~opyc cye$exception_conditions
?? POP ??

This procedure invokes the CYBILIO page overflow mechanism.

REMARKS:

If the last write to the display file was a partial write, that line is
terminated and then a new display page is started.

)

Attempting a cyp$start_new_display_page .to a file NOT opened as
f·ile_kind cyc$display_file will return ·cye$incorrect_operation in the
status variable.

Attempting a cyp$start_new_display_page to a file opened NOT opened for
file access cyc$write or file access cyc$read_writ~e~will return
cye$Tncorrect_output_request in the-status variable.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES .
3.5.2.2 cyp$display_standard_title

3.5.2.2 cyp$display standard title

{* ZCYPDST cyp$display_standard_title *}

PROCEDURE [XREF] cyp$display standard title ALIAS 'ZCYPDST'·
(file: cyt$file; - -
title: string (* <= cyc$title_size);
lines after title: cyt$page length;

VAR statui: ostSstatus); -

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc ost$status
*copyc cyt$new_page_procedure
*copyc cyt$page_length
*copyc cye$exception_conditions
?? POP ??

3-49

4/01/86
REV: 4

This procedure formats and writes a standard title line to the
specified file.

The TITLE parameter specifies the text that is to appear in columns 1
thru 46 in the standard title.

The SKIP LINES parameter specifies the number of blank lines that are
to appear between the standard title and the next display line.

REMARKS:

If the last write to the display file was a partial write, that display
line is terminated and then standard title is written.

Attempting a cyp$display_standard_title to a file NOT opened as
file_kind cyc$display_file will return cye$incorrect_operation in the
status variable.

Attempting a cyp$display standard title to a file NOT
file_access cyc$write o; file_a~cess cyc$read_write
cye$incorrect_operation in the status variable.

opened for
will return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2.3 cyp$position_display_page

3.5.2.3 cyp$position display page

{* ZCYPPDP cyp$position_display_page *}

PROCEDURE [XREF] cyp$position display page ALIAS 'ZCYPPDP'
(display_file: cyt$file;- -

line number: cyt$page length;
VAR stat~s: ost$status); -

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc cyt$page_length
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure positions a DISPLAY_FILE at a specified line.

3-50

4/01/86
REV: 4

The LINE NUMBER parameter specifies the display line at which the file
is to be poiitioned.

REMARKS:

If LINE_NUMBER is greater than the current line number and less than or
equal to page size, the file is positioned to that line on the current
page. If LINE_NUMBER is less than or equal to the current line number,
the page overflow mechanism is invoked and the file is positioned at
LINE NUMBER on the next page. If LINE_NUMBER is greater than the page
size, the page overflow mechanism is invoked and the file will be
positioned at the top of the next page.

If the last write to the display file wa a partial write, that line is
terminated and then the display page is positioned.

Attempting a cyp$position~display_page to a file NOT opened as
f ile~kind cyc$display_file will return cye$incorrect_operation in the
status variable.

Attempting a cyp$position_display_page to a file NOT
file access cyc$write or file access cyc$read write
cye$Tncorrect_operation in the stat~s variable. -

opened for
will return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2.4 cyp$display_page_eject

3-51

4/01/86
REV: 4

-------~---

3.5.2.4 cyp$display page eject

{* ZCYPDPE cyp$display_page_eject *}

PROCEDURE [XREF] cyp$display_page_eject ALIAS 'ZCYPDPE'
(display file: cyt$file;

VAR status:-ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc ost$status
*copyc cye$exception_conditions
?? POP ??

This procedure positions DISPLAY_FILE at the first line (top) of the
next page. This procedure should only be called from a user-specified
page overflow procedure.

REMARKS:

If the last write to the display file was a partial write, that line is
terminated and then a display page eject is performed.

Attempting a cyp$display page eject to a file NOT opened as file kind =

cyc$display_file will ret~rn cye$incorrect_operation in the status
variable.

Attempting a cyp$display_page_eject to a file NOT
file_access = cyc$write or file_access cyc$read_write
cye$incorrect_operation in the status variable.

opened for
will return

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2.5 cyp$current_display_line

3.5.2.5 cyp$current display line

{* ZCYPCDL cyp$current_display_line *}

FUNCTION [XREF] cyp$current display line ALIAS 'ZCYPCDL'
(display_file: cyt$file):-cyt$pag;_length;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc cyt$page_length
?? POP ??

3-52

4/01/86
REV: 4

This function returns the number of the current line within the current
page of DISPLAY FILE.

REMARKS:

After any vertical spacing command (cyp$skip lines,
cyp$display_page_eject, cyp$position_display_page, etc.), the - value
returned is the next line to be displayed. After a write command
(cypput_next_line, cypput_partial_line, cyp$write_end_of_line, etc.),
the value returned is the line just displayed.

Attempting a cyp$current display line to a file NOT opened as file kind
cyc$display file will ret~rn an u~defined result.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2.6 cyp$current_page_number

3.5.2.6 cyp$current page number

{* ZCYPCPN cyp$current_page_number *}

FUNCTION [XREF] cyp$current page number ALIAS 'ZCYPCPN'
(display_file: cyt$file):-integer;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
?? POP ??

3-53

4/01/86
REV: 4

This function returns the DISPLAY FILE's current page number.

REMARKS:

Attempting a cyp$current page number to a file NOT opened as file kind
cyc$display_file will ret~rn a~ undefined result~.~

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

3.0 I/O PROCEDURES
3.5.2.7 cyp$display_page_length

3.5.2.7 cyp$display page length

{* ZCYPDPL cyp$display_page_length *}

FUNCTION [XREF] cyp$display page length ALIAS 'ZCYPDPL'
(display_file: cyt$file):-cyt$page_length;

?? PUSH (LISTEXT := ON) ??
*copyc cyt$file
*copyc cyt$page_length
?? POP ?? .

3-54

4/01/86
REV: 4

This function returns the page length associated with DISPLAY FILE.

REMARKS:

Attempting a cyp$display_page_length to a file NOT opened as file kind
cyc$display_file will return an undefined result.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

4.0 CYBILIO STATUS

4.0 CYBILIO STATUS

4.1 CYBILIO STATUS MESSAGES

4-1

4/01/86
REV: 4

This section describes the status messages that may be returned either
as a result of improper use of CYBILIO or as .a result of detecting an
error. If one of these conditions arises, the status condition will be
returned in the status variable parameter.

In the message descriptions that follow, filename will be replaced by
the name of the file in question when the message appears in the message
template.

FILE NAME TOO LONG, filename

This message indicates the file name given has more characters than the
target opera~ing system will allow.

FILE NOT OPEN

This message indicates that an undefined variable of type cyt$f ile was
passed to a CYBILIO procedure other than one of the open procedures. The
file name is not known.

INCORRECT FILE NAME, filename

This message means that an attempt was made to open a file with a name
that does not conform to the file naming conventions of the target
operating system.

INCORRECT INPUT REQUEST FOR FILE filename

This message means that an attempt was made to read from a file that
was opened only for output.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

4.0 CYBILIO STATUS
4.1 CYBILIO STATUS MESSAGES

INCORRECT DISPLAY LINE POSITION FOR FILE filename

4-2

4/01/86
REV: 4

This message means that the cyp$position display page procedure was
passed a line number less than 1. - -

INCORRECT TAB COLUMN FOR FILE filename

This message means that the cyp$tab_file procedure was passed a
tab column less than 1.

INCORRECT OPEN REQUEST FOR FILE filename

This message means that an invalid combination of parameters was given
to an open procedure (e.g., "cycnew_file, cycread" is incorrect).

INVALID OPERATION ATTEMPTED ON FILE filename

This message means that an operation was attempted that does not match
the f ile_kind specified for the file on the call to the open file
procedure. For example, a cyp$get next binary attempted on a file opened
with file kind = cyc$text_file. - -

INCORRECT OUTPUT REQUEST FOR FILE filename

This message means that an attempt was made to write to a file that was
opened only for input.

INCORRECT SKIP COUNT filename

This message indicates that the cyp$skip_lines procedure was passed a
skip count less than -1.

KEY BEYOND E-0-I ON FILE filename

This message indicates that an attempt was made to perform a binary

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

4.0 CYBILIO STATUS
4.1 CYBILIO STATUS MESSAGES

4-3

4/01/86
REV: 4

file operation with a key that was outside the bounds of the file (i.e.,
the key did not specify a "random address" that is in the file).

PREMATURE END OF OPERATION ON FILE filename

This message means that a boundary condition was encountered during a
cyp$position_record_file before the count was exhausted.

NO MEMORY TO OPEN FILE filename

This message means that there was insufficient space to allocate the
descriptor and/or buffer for the file.

COULD NOT FIND FILE filename

This message means that an attempt was made to open an old file that
CYBILIO cannot find.

FILE filename ALREADY EXISTS

This message means that an attempt was made to open a new file and a
file with that name already exists.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

4.0 CYBILIO STATUS
4.2 CYBILIO STATUS CONDITIONS

4.2 CYBILIO STATUS CONDITIONS

4-4

4/01/86
REV: 4

The following is a list of the status conditions that may be returned
by CYBILIO. The presence of these conditions may be tested by examining
the condition field of the status variable used in the CYBILIO procedure
call.

{* ZCYECIO cye$exception_conditions *}

?? NEWTITLE := '~~~~~~ cybil i/o errors
?? FMT (FORMAT := OFF) ??

CONST

CY 6200 •• 6299' ??

cyc$min ecc
cyc$max=ecc

(($INTEGER('C')*l00(16))+$INTEGER('Y'))*1000000(16),
cyc$min_ecc + 9999;

CONST

cyc$min_ecc_cybil_input_output cyc$min_ecc + 6200,

cye$file name too long = cyc$min_ecc_cybil_input_output + 10,
{E File ~ame too long, +P.}

cye$file not open cyc$min_ecc_cybil_input_output + 15,
{E File NOT ~pen.}

cye$illegal file name = cyc$min_ecc_cybil_input_output + 20,
{E Incorrect fil; name, +P.}

cye$illegal input request = cyc$min ecc cybil input output + 25,
{E Incorrect input request for +P.} - - - -

cye$illegal line number = cyc$min ecc cybil input output + 30,
{E Incorrect display line position for +p~} - - -

cye$illegal tab column cyc$min_ecc_cybil_input_output + 31,
{E Incorrect tab column for +P.}

cye$illegal open request = cyc$min ecc cybil input output + 35,
{E Incorrect ope~ request for +P.} - - - -

cye$illegal operation = .cyc$min ecc cybil input output + 37,
{E Incorrect command issued to +P.} - - - -

cye$illegal_output_request cyc$min_ecc_cybil_input_output + 40,

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

4.0 CYBILIO STATUS
4.2 CYBILIO STATUS CONDITIONS

4-5

4/01/86
REV: 4

{E Incorrect output request for +P.}

cye$illegal skip count
{E Incorrect skip count +P.}

cyc$min_ecc_cybil_input_output + 45,

cye$key past eoi
{E Key beyond E-0-I on +P.}

cyc$min_ecc_cybil_input_output + 50,

cye$premature end of operation = cyc$min ecc cybil input output + 51,
{E Premature ;nd of operation on file +P.f - - -

cye$no memory to open file
{E No ;emory· to open file +P.}

cye$file not found
{E Could-NOT-find file +P.}

cye$f ile already exists
{E File C+P) alr;ady exists.}

cyc$max~ecc_cybil_input_output

?? FMT (FORMAT := ON) ??
?? OLDTITLE ??

cyc$min_ecc_cybil_input_output + 55,

cyc$min_ecc_cybil_input_output + 56,

cyc$min_ecc_cybil_input_output + 57,

cyc$min_ecc_cybil_input_output + 99;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES

5.0 OPERATING SYSTEM DEPENDENT FEATURES

5.1 NOS/VE

5.1.1 DECK NAMES

5-1

4/01/86
REV: 4

Decks names are the $ame as the procedure or function· declared within
the deck. For example, the declaration for cyp$open_file is contained ;
within deck cyp$open_file. The following table lists deck names which do
not conform to this general guideline.

+---~----------------------~---------+--------------------------------+
DECLARATION DECK NAME I

+------------------------------------+--------------------------------+
CYBILIO types

CYBILIO status conditions

all declarations applicable to
binary files

all declarations applicable to
record files

all declarations applicable to
display files

all declarations applicable to
text files

cyt$cybil_input_output

cye$exception_conditions

cyd$binary_file

cyd$record_file

cyd$display_file

cyd$text_file

+------------------------------------+--------------------------------+

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

~YBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.2 FILE NAMES

5.1.2 FILE NAMES

5-2

4/01/86
REV: 4

File names specified on the open .command are interpreted as file
references. That is, a file path, cycle designator and file position may
be specified in the file name. File names must conform to the naming
conventions for NOS/VE.

5.1.3 FILE POSITION

File position is specified both when a file is opened and when a file
is closed. File position is a parameter on the cyp$open_file and
cyp$close_file procedure calls. In addition, file position may be
included in the file name passed to cyp$open_f ile.

If a file position is specified within the file name, the file position
parameter passed on the call to cyp$open_file should specify cycSdefault.

When a file is opened, CYBILIO establishes the open position as
follows:

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURE~
5.1.3 FILE-POSITION

+-----------------------------+-----------------------------+
J FILE_POSITION jOPEN POSITION
+-----------------------------+-----------------------------+

cyc$beginning

cyc$end

cyc$asis

cyc$default_open_position

beginning of information

end of information

If the file was previously
opened within the job and
was closed with a
file disposition of
cyc$;etain_f ile, the open
position is whatever was
specified as the file
position on the close.
If the file was not
previously opened within
the job or was closed with
a file disposition other
than cyc$retain file, the
open position is beginning
of information.

If a file position was
specified as part of the
file name or, open
position was specified on
an amp$file call or
set file attributes - -command, CYBILIO uses that
position as the open
position.
If a file position was NOT
previously specified, the
open position is beginning
of information.

+-----------------------------+-----------------------------+

5-3

4/01/86
REV: 4

On a call to cyp$close file, the caller can specify file positioning to
be done before the file-is closed. A close file position of cyc$default
is the equivalent of cyc$asis. ·It should be noted that the file position
specified when closing a file is meaningful only if the close_disposition
parameter specifies a value of cyc$retain_file and subsequent opens within
the job specify file_position = cyc$asis.

COMPANY PRIVATE

.CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.4 FILE DISPOSITION

5.1.4 FILE DISPOSITION

5-4

4/01/86
REV: 4

File disposition is specified whenever a file is closed.
following dispositions may be selected:

One of the

cyc$unload file or
cyc$return=f ile or
cyc$detach_file

cyc$retain_file:

cyc$delete_f ile:

An explicit detach 1s performed
when the file is closed. If the
file has no other instances of open
outstanding in the job, the file is
detached.

If the file was explicitly attached
prior to open, the file remains
attached.

This disposition causes the file to
be detached/deleted.

cyc$default_file_disposition: If the file was implicitly attached
by cyp$open_f ile and the file has
no other instances of open
outstanding in the job, the file is
detached when the file is closed.

COMPANY PRIVATE

5-5
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.5 FILE ATTRIBUTES

5.1.5 FILE ATTRIBUTES

Because CYBILIO is intended to provide a set of I/O interfaces that is
standard across a number of different operating systems, no provision is
made within CYBILIO to directly set or interrogate NOS/VE file attributes
except as described in the following paragraphs.

CYBILIO follows a simple set of rules for file attributes. If the file
has never been opened, the file is a !!_!!! file and CYBILIO defines file
attributes as specified in the following table unless the file
specifications provided on the open contain a value from which the
attribute may be set. If the file has been previously opened, CYBILIO
considers the file to be an old file and does NOT modify or define any
file attributes.

FILE ATTRIBUTE DEFINITIONS FOR NEW FILES
+-------------+-----~-------+-------------+-------------+-------------+

I

FILE BINARY RECORD TEXT DISPLAY
ATTRIBUTE FILES FILES FILES FILES

+-------------+-------------+-------------+-------------+-------------+
file cyc$unknown_ cyc$unknown_ cyc$legible cyc$list

contents contents contents

file cyc$unknown_ cyc$unknown_ cyc$unknown_ cyc$unknown_
structure structure structure structure structure

file cyc$unknown_ cyc$unknown_ cyc$unknown_ cyc$unknown_
processor processor processor processor processor

page system system cyc$contin..;. cyc$burst-
format default default uous form able form -

page system system system system
length default default default default

page system system system system
width default default default default

+-------------+----~--------+-------------+-------------+-------------+

The page_ length, page_ width, page_format, file_contents, and
f ile_processor file attributes for new files may be defined by the user on

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.5 FILE ATTRIBUTES

the call to cyp$open_file.
f.i 1 e_specif i cations parameter.

This is accomplished

5-6

4/01/86
REV: 4

through the

File attributes may be defined via system commands or CYBIL procedures
prior to calling cyp$open file. In this case, CYBILIO consider$ the file
to be an old file and does not define or modify any of the permanent
attributes.

•.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.6 FILE STRUCTURE CREATION/DETECTION

5.1.6 FILE STRUCTURE CREATION/DETECTION

5-7

4/01/86
REV: 4

CYBILIO supports the subdivision of files into levels of logical
structure. For NOS/VE, CYBILIO supports subdividing files into records
and partitions. The End-Of-Information can only be implicitly created
(i.e., the End-Of-Information follows the physically last item written on
a file); but it can be explicitly detected.

On NOS/VE, the subdivision of files into partitions should only be done
when there is some very good reason to do so. Partitions in a file
usually do more harm than good.

NOS/VE does not support the subdivision of files into blocks. Calling
the cyp$write_end_of_block procedure interface is essentially a no-op.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7 NOS/VE SPECIFIC PROCEDURES

5.1.7 NOS/VE SPECIFiC PROCEDURES

5-8

4/01/86
REV: 4

The following procedures are available only in NOS/VE implementations
of CYBILIO. These procedures provide access to facilities that are
operating system dependent. Applications that are intended to be portabl'e
between operating systems should minimize use of these interfaces.

5.1.7.1 cyp$get file identifier

{* cyp$get_file_identifier *}

PROCEDURE [XREF) cyp$get file identifier (file: cyt$file;
VAR file identifier: a;t$file identifier;
VAR stat~s: ost$status); - ·

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc cyt$f ile control block
*copyc ost$stat~s -
*copyc cye$exception_conditions
?? POP ??

This procedure returns the file identifier identifying the instance of
open for the specified file. The FILE_IDENTIFIER returned by this
procedure may be used on calls to access method procedures such as
amp$fetch which are specific to an instance of open.

COMPANY PRIVATE

5-9
CYBER IMPL~NTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7.2 cyp$get_binary_file_pointer

5.1.7.2 cyp$get binary file pointer

{* cyp$get_binary_file_pointer *}

PROCEDURE [XREF] cyp$get_binary_file_pointer (file: cyt$file;
VAR binary_file_pointer: tamt$segment_pointer;
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc cyt$f ile
*copyc amt$segment pointer
*copyc ost$status -
?? POP ??

CYBILIO reads and writes binary files using segment access.
procedure returns a pointer to the segment pointer that CYBILIO
CYBILIO gets the segment pointer as a sequence pointer (that is, the
field of the segment pointer record is amc$sequence_pointer).
sequence pointer may be accessed by referencing the sequence_pointer
of the segment pointer. For example:

NEXT variable_pointer IN segment_pointert.sequence_pointer;

REMARKS:

This
uses.
kind

The
field

This procedure provides a means for the user
reading and/ or writing of binary files in those
cyp$put_next_binary and cyp$get_next_binary are
example, pointer information is to be stored as part
written).

to directly manage the
special cases where
not sufficient (for
of the data to be

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7.3 cyp$open_binary_file

5.1.7.3 cyp$open binary file

{* cyp$open_binary_f ile *}

PROCEDURE [XREF] cyp$open binary file (file_name: cyt$file_name;
file access: cyt$file acceis; ·
file-attachment: tfst$attachment options;
default creation attribute: tfstSfile cycle attributes;
mandated creatio~ attribute: tfst$fil; cycl; attributes;
attribut; validation: tfst$file cycle ittributes;
attribute=override: tfst$f'ile_cycle_attributes;

VAR file control: cyt$file;
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$file name
*copyc cyt$file-access
*copyc cyt$file-
*copyc cye$exception conditions
*copyc f st$attachment options
*copyc fst$file_cycle=attributes
?? POP ??

5-10

4/01/86
REV: 4

This procedure provides a means of using the flexibility of the
fsp$open_file file interface with CYBILIO binary files. The
file attachment, default creation_attribute, mandated_creation_attribute,
attribute validation, and attribute_override parameter values are passed
directly to fsp$open_file. CYBILIO does NOT attempt to validate br in any
way evaluate the values passed in these parameters. CYBILIO simply
creates the environment that allows a user program to call the cybilio
procedures and functions associated with binary files.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7.4 cyp$open_record_file

5.1.7.4 cyp$open record file

{* cyp$open_record_file *}

PROCEDURE [XREF] cyp$open_record_file (file_name: cyt$file_name;
file access: cyt$file access;
file-attachment: tfstSattachment options;
defa~lt creation attribute: tfstSfile cycle attributes;
mandated creatio~ attribute: tfst$fil; cycl; attributes;
attribut; validation: tfst$file cycle attrib~tes;
attribute-override: tfst$file cycle attributes;

VAR file cont;ol: cyt$file; - -
VAR stat~s: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$f ile_name
*copyc cyt$f ile_access
*copyc cyt$f ile
*copyc cye$exception conditions
*copyc fst$attachment options
*copyc fst$f ile_cycle=attributes
?? POP ??

5-11

4/01/86
REV: 4

This procedure provides a means of using the flexibility of the
fsp$open_file file interface with CYBILIO record files. The'
file attachment, default creation_attribute, mandated_creation_attribute,
attribute validation, and attribute_override parameter values are passed
directly to fsp$open_f ile. CYBILIO does NOT attempt to validate or in any
way evaluate the values passed in these parameters. CYBILIO simply
creates the environment that allows a user program to call the . cybilio
procedures ,and functions associated with record files.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7.5 cyp$open_text_file

5.1.7.5 cyp$open text file

{* cyp$open_text_file *}

PROCEDURE [XREF] cyp$open_text_file (file~name: ·cyt$file_name;
file access: cyt$file access;
file-attachment: tfstSattachment options;
defa~lt creation attribute: tfstSfile cycle attributes;
mandated_creatio~_attribute: tfst$fil;_cycl;_attributes;
attribute validation: tfst$file cycle attributes;
attribute=override: tfst$file_cycle_attributes;

VAR file control: cyt$file;
VAR stat~s: ost$status);

?? PUSH (LISTEXT :=·ON) ??
*copyc ost$status
*copyc cyt$f ile name
*copyc cyt$file-access
*copyc cyt$file-
*copyc cye$exception conditions
*copyc fst$attachment_options
*copyc fst$file_cycle_attributes
?? POP ??

5-12

4/01/86
REV: 4

This procedure provides a means of using the flexibility of the
fsp$open_file file interface with CYBILIO text files. The
file_attachment, default_creation_attribute, mandated_creation_attribute,
attribute validation, and attribute override parameter values are passed
directly to fsp$open file. CYBILIO d;es NOT attempt to validate or in any
way evaluate the values passed in these· parameters. CYBILIO simply
creates the environment that allows a user program to call the cybilio
procedures and functions associated with text files.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.1.7.6 cyp$open_display_file

5.1.7.6 cyp$open display file

{* cyp$open_display_f ile *}

5-13

4/01/86
REV: 4

PROCEDURE [XREF] cyp$open display file (file_name: cyt$file_name;
file access: cyt$file access;
file-attachment: tfst$attachment options;
default creation attribute: tfstSfile cycle attributes;
mandated creatio~ attribute: tfst$file cycle attributes;
attribute validation: tfst$file cycle ittributes;
attribute-override: tfst$file cycle attributes;

VAR file cont;ol: cyt$file; - -
VAR status: ost$status);

?? PUSH (LISTEXT := ON) ??
*copyc ost$status
*copyc cyt$f ile name
*copyc cyt$file-access
*copyc cyt$file-
*copyc cye$exception conditions
*copyc fst$attachment options
*copyc fst$file_cycle=attributes
?? POP ??

This procedure provides a means of using the flexibility ·of the
fsp$open_file file interface with CYBILIO display files. The
file attachment, default creation attribute, mandated creation attribute,
attrTbute_validation, a~d attribute_override parameter values-are passed
directly to fsp$open file. CYBILIO does NOT attempt to validate or in any
way evaluate the ;alues passed in these parameters. CYBILIO simply
creates the environment that allows a user program to call the cybilio
procedures and functions associated with display files.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5-14

4/01/86
REV: 4

---' '

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5. 2 NOS AND NOS/BE .

5.2 NOS AND NOS/BE

5.2.1 DECK NAMES

+------------------------------------+-----------~+
I DECLARATION DECK NAME I
+------------------------------------+------------+

CYBILIO types ZCYTCIO

CYBILIO status conditions ZCYECIO

cyp$open_file ZCYPOF

cyp$close_f ile ZCYPCF

cyp$position_file_at_beginning ZCYPPFB

cyp$position_file_at_end ZCYPPFE

cyp$length_of_file ZCYPLOF

cyp$write_end_of_block ZCYPWEB

cyp$write_end_of_partition ZCYPWEP

cyp$current_file_position ZCYPCFP

cyp$operating_system ZCYPOS

cyp$put_next_record ZCYPPNR

cyp$put partial record - - ZCYPPPR

cyp$write_end_of_record ZCYPWER

cyp$get_next_record ZCYPGNR

cyp$get_partial_record ZCYPGPR

cyp$position_record_file ZCYPPRF

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.2.1 DECK NAMES

cyp$put_next_binary

cyp$put_keyed_binary

cyp$get_next_binary

cyp$get_keyed_binary

cyp$position_binary_at_key

cyp$binary_file_key

cyp$put_next_line

cyp$put_partial_line

cyp$write_end_of_line

cyp$flush_line

cyp$tab_file

cyp$skip_lines

cyp$get_next_l~ne

cyp$get_partial_line

cyp$f ile_connected_to_terminal

cyp$current_column

cyp$page_width

cyp$start_new_display_page

cyp$display_standard_title

cyp$position_display_page

cyp$display_page_eject

cyp$current_display_line

cyp$current_page_number

ZCYPPNB

ZCYPPKB

ZCYPGNB

ZCYPGKB

ZCYPPBK

ZCYPBFK

ZCYPPNL

ZCYPPPL

ZCYPWEL

ZCYPFL

ZCYPTF

ZCYPSL

ZCYPGNL

ZCYPGPL

ZCYPFCT

ZCYPCC

ZCYPPW

ZCYPSNP

ZCYPDST

ZCYPPDP

ZCYPDPE

ZCYPCDL

ZCYPCPN

5-15

4/01/86
REV: 4 ·

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.2.1 DECK NAMES

cyp$display_page_length

all declarations applicable
to binary files

all declarations applicable
to record -files

all declarations applicable
to display files

all declarations applicable
to text files

ZCYPDPL

ZCYDBF

ZCYDRF

ZCYDDF

. ZCYDTF

+------------------------------------+------------+

5.2.2 FILE NAMES

5-16

4/01/86
REV: 4

File names are limited to a maximum of 7 alphanumeric characters. The
cyp$open_file procedure will convert any lower case letters in the file
name to the corresponding upper case letters.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.2.3 FILE POSITION

5.2.3 FILE POSITION

5-17

4/01/86
REV: 4

File position is a parameter
cyp$close file procedure calls.
cyt$open_close_position.

on
The

both
file

the cyp$open_f ile
position is of

and
type

When a file is opened, CYBILIO establishes the open position as
follows:

+-----------------------------+-----------------------------+
I FILE_POSITION IOPEN POSITION
+-----------------------------+-----------------------------+

cyc$beginning

cyc$end

cyc$asis

cyc$default_open_position

beginning of information

end of information

If the file was previously
opened within the job and
was closed with a
file_disposition of
cyc$retain_file, the open
position whatever was
specified as the file
position on the close.
If the file was not
previously opened within

·the job or was closed with
a file disposition other
than cyc$retain_file, the
open position is beginning
of information.

beginning of information.

+-----------------------------+-----------------------------+
On a call to cyp$close file, the caller can specify file positioning to

be done before the file i; closed. A close file position of cyc$default
is the equivalent of cyc$asis. It should be noted that the file position
specified when closing a file is meaningful only if the close disposition
parameter specifies a value of cyc$retain file and subsequent ;pens within
the job specify file_position = cyc$asis.-

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.2.4 FILE DISPOSITION

5.2.4 FILE DISPOSITION

5-18

4/01/86
REV: 4

File disposition is specified whenever a file is closed.
following dispositions may be selected:

One of the

cyc$return file or
cyc$detach=f ile

cyc$retain_file:

cyc$delete_f ile:

cyc$unload_f ile:

This disposition returns the file
to the operating system and may
release file space.

This disposition keeps the file
attached to the job.

This disposition returns the file
to the operating system and
releases file space.

This disposition releases the file
and may release file space. It
differs from the cyc$return_file
disposition in the handling of
files on removable devices.

cyc$default_file_disposition: This disposition keeps the file
attached to the job.

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.2.5 FILE STRUCTURE CREATION/DETECTION

5.2.5 FILE STRUCTURE CREATION/DETECTION

5-19

4/01/86
REV: 4

CYBILIO supports the subdivision of files into levels of logical
structure. For NOS/VE and NOS/BE CYBILIO supports subdividing files into
records, blocks, partitions. The End-Of-Information can only be
implicitly created (i.e., the End-Of-Information follows the physically
last item written on a file); but it can be explicitly detected.

When reading from a text file assigned to an interactive terminal, any
cyc$end_of_block or cyc$end of partition positions returned by
cyp$current_file_position after -a -read from a ''terminal file'' are
discarded by CYBILIO (cyc$end_of_information is never possible from a
terminal).

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.3 VSOS AND EOS

5.3 VSOS AND EOS

5 • 3 • 1 DECK NAMES

>>>>> to be supplied <<<<<<<<

5.3.2 FILE NAMES

5-20

4/01/86
REV: 4

File names ar~ limited to a maximum of 8 alphanumeric characters.

5.3.3 FILE POSITION

>>>>>> to be supplied <<<<<<

5.3.4 FILE DISPOSITION

>>>>>> to be supplied <<<<<<

5.3.5 FILE STRUCTURE CREATION/DETECTION

CYBil:.IO supports both the c.reation and detection of file structuring
"marks".

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

5.0 OPERATING SYSTEM DEPENDENT FEATURES
5.4 AEGIS

5.4 AEGIS

5.4.1 DECK NAMES

>>>>>> to ·be supplied <<<<<<

5.4.2 FILE NAMES

file names can be up to 32 characters.
additional information >>>>>> to be supplied <<<<<<

5.4.3 FILE POSITION

>>>>>> to be supplied <<<<<<

5.4.4 FILE DISPOSITION

>>>>>> to be supplied <<<<<<

5.4.5 FILE STRUCTURE CREATION/DETECTION

5-21

4/01/86
REV: 4

CYBILIO supports both the creation and detection of file structuring
"marks".

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference-Manual

al.0 BINARY FILE EXAMPLES

al.0 BINARY FILE EXAMPLES

al.1 COPY BINARY FILE

al-1

4/01/86
REV: 4

The following example illustrates the use of the binary file procedures
to make a copy of a file (without knowing beforehand the structure or
length of the file).

MODULE copy_example ALIAS 'zexmcop';

*copy cyd$binary_f ile

PROGRAM copy ALIAS 'zexpcop';

{*}

CONST
in name = 'OLD',
out_name = 'NEW',
buffer_length = 64;

VAR
in file: cyt$file,
out file: cyt$file,
buffer: tarray [1 •. *] of cell,
short buffer: tarray [l .. *] of cell,
seque~ce_ptr: tSEQ (*),
transfer_length: integer,
in file specifications: cyt$file specifications,
out_file_specifications: cyt$file_specifications,
dummy_key: integer,
copy_er.ror: boolean,
status: ost$status;

{ Set up file specifications }
{*}

PUSH in file specifications: [l •• 4];
in file-specificationst [!].selector:= cyc$file access;
in=file=specificationst [l] .file access := cyc$read;
in_file~specificationst [2] .sele~tor := cyc$fHe_kind;

COMPANY PRIVATE

al-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual
4/01/86

REV: 4

al.O BINARY FILE EXAMPLES
al.l COPY BINARY FILE

in_file_specifications+ [2] .file kind := cyc$binary file;
in file specifications+ [3] .selector := cyc$file existence;
in=file=specifications+ [3] .file existence := cyc$old file;
in_file_specifications+ [4] .selector := cyc$open position;
in_file_specifications+ [4] .open_position := cycSbeginning;

PUSH out file specifications: (1 •. 4);
out file-specTfications+ [l] .selector := cyc$file_access;
out-file-specifications+ [l] .file access := cyc$write;
out-file-specifications+ [2] .selector := cyc$file kind;
out-file-specifications+ [2] .file kind := cyc$bin;ry file;
out-file-specifications+ (3) .selector := cyc$file existence;
out-file-specifications+ [3] .file existence := cyc$new or old file;
out=file=specifications+ [4] .selector := cyc$open_positio~; -
out_file_specifications+ [4] .open_position := cyc$beginning;

IF (cyp$operating system () = cyc$nos) OR (cyp$operating_system () =
cyc$nosbe) THEN

PUSH buffer: (1 buffer_length];
ELSE

PUSH buffer: (1 buffer_length * 8);
I FEND;

copy_error := FALSE;

cyp$open_file (in_name, in_file_specifications, in_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;
cyp$open_file (out_name, out_file_specifications, out_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;

/main_ loop/
REPEAT

cyp$get next binary (in file, #SEQ (buffer+), dummy_key, transfer_length,
status); -

IF status.normal THEN
CASE cyp$current file position (in_file) OF

cyc$end of inf;rmation =
; { all-do~e copying }

= cyc$end_of_partition =
cyp$write end of partition (out_file, status);

= cyc$end_of_bl;ck-=
cyp$write_end_of_block (out_file, status);

ELSE

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.O BINARY FILE EXAMPLES
al.1 COPY BINARY FILE

al-3

4/01/86
REV: 4

IF transfer length = #SIZE (buffert) THEN
cyp$put_n;xt_binary (out_file, #SEQ (buffert), dummy_key, status);

ELSE
{*}
{ only part of the buffer was filled }
{*}

sequence_ptr :=#SEQ (buffert);
RESET sequence ptr;
NEXT short_buffer: [l .. transfer_length] IN sequence_ptr;
IF short buff er = NIL THEN

copy_error := TRUE;
ELSE

cyp$put next binary (out_file, #SEQ (short_buffert), dummy_key,
status);

I FEND
!FEND;

CASEND;
copy_error := (status.normal= FALSE);

I FEND;
UNTIL ((cyp$current file position (in_file)

(copy_error)); -
cyc$end_of_information) OR

IF NOT status.normal THEN
RETURN; {----->

!FEND;

cyp$close_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$close_file (out_file, cyc$beginning, status);

PROCEND copy;

MODEND copy_example;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.O BINARY FILE EXAMPLES
al.1 COPY BINARY FILE

al-4

4/01/86
REV: 4

The next two examples illustrate the use of random access with binary
files. The first example creates a "library" of "text modules" from a
text file. The modules on the source (text) file are represented as
blocks whose first line contains the module name (and nothing else). The
second example extracts from the library one of the modules and copies it
to a file whose name is that of the module.

al.2 CREATE TEXT LIBRARY

MODULE create_text_library ALIAS 'zexmcre';

*copyc cyp$open_f ile
*copyc cyp$get next binary
*copyc cyp$get-next-line
*copyc cyp$write end of block
*copyc cyp$write=end=of=partition
*copyc cyp$current_file_position
*copyc cyp$put next binary
*copyc cyp$cloie file
*copyc cyp$positTon file at beginning
*copyc cyp$put_keyed_bin;ry-

TYPE
directory_descriptor

key: integer,
length: integer,

recend,

record

directory entry = record
name: string (7) ,
length: integer,
key: integer,

rec end;

CONST
source name= 'SOURCE',
lib na;e = 'LIBRARY',
dir;ctory_name = 'SCRATCH';

PROGRAM create ALIAS 'zexpcre';

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.0 BINARY FILE EXAMPLES
al.2 CREATE TEXT LIBRARY

VAR

al-5

4/01/86
REV: 4

source file specs: [STATIC] array [1 •• 4] of cyt$file specification
:= [[cyc$file access, cyc$read], [cyc$file kind, cycStext file],
[cyc$file_ex{i"tence, cyc$old_file], [cyc$open_positi'on, -
cyc$beginning]],

directory file specs: [STATIC] array [1 •• 3] of
cyt$fil; spe~ification := [[cyc$file kind, cyc$binary file],
[cyc$ope~_position, cyc$beginning], [cyc$close_file_disposition,
cyc$return file]],

library_file=specs: [STATIC] array [l •• 3] of cyt$file_specification
:= [[cyc$file access, cyc$write], [cyc$file kind, cyc$binary_file],
[cyc$open_posTtion, cyc$beginning]], -

source file: ·cyt$file, ·
library_file: cyt$file,
directory file: cyt$file,
directory: directory_descriptor,
current module: directory entry,
line: string (256), -
line length: integer,
module_index: integer,
first_key: integer,
dummy_key: integer,
cells read: integer,
read status: ost$status,
writ; status: ost$status,
status: ost$status;

PROCEDURE copy_a_module (VAR module status: ost$status);

VAR
copy status: ost$status,
get status: ost$status,
put=status: ost$status;

PROCEDURE copy_the_module_text (VAR iocal status: ost$status);

VAR
get status: ost$status,
put_status: ost$status;

local status.normal := TRUE;

/copy_text_loop/
WHILE TRUE DO

cyp$get_next_line (source_file, line, line_length, get_status);
IF NOT get_status.normal THEN

COMPANY PRIVATE

al-6
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual
4/01/86

REV: 4

al.0 BINARY FILE EXAMPLES
al.2 CREATE TEXT LIBRARY

EXIT /copy_text_loop/;
I FEND;

CASE cyp$current file position (source file) OF
= cyc$end_of_informatTon, cyc$end_of_partition, cyc$end_of_block

ELSE
current module.length := current module.length+ 1; ·
cyp$put-next binary (library fil;, #SEQ (line length),

d~mmy_key, put_status); -
IF put status.normal THEN

cyp$put next binary (library file, #SEQ (line (1,
lTne_l;ngth)), dummy_k;y., put_status);

!FEND;
IF NOT put status.normal THEN

EXIT /copy_text_loop/;
!FEND;

CASEND;
WHILEND /copy_text_loop/;

local_status.normal := get_status.normal AND put_status.normal;

PROCEND copy_the_module_text;

/copy_module_loop/
WHILE TRUE DO

cyp$get_next_line (source_fi!e, line, line_length, get_status);
IF NOT get status.normal THEN

EXIT /copy_module_loop/;
!FEND;

CASE cyp$current file position (source file) OF
= cyc$end of information, cyc$end of partition, cyc$end_of_block

EXIT /copy=module_loop/; - -
ELSE

directory.length := directory.length + 1;
current_module.name :=line (1, line_length);
current module.length := 1;
cyp$put-next binary (library file, #SEQ (current_module.name),

c~rrent_module.key, put~status);
IF NOT put status.normal THEN

EXIT /copy_module_loop/;
I FEND;

copy_the_module_text (copy_status);
IF NOT copy status.normal THEN

EXIT /copy module loop/; - -
COMPANY PRIVATE

c

al-7
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

al.O BINARY FILE EXAMPLES
al.2 CREATE TEXT LIBRARY

!FEND;

cyp$put_next_binary (directory_file, #SEQ (current_module),
dummy_key, put_status);

IF NOT put status.normal THEN
EXIT /copy_module_loop/;

!FEND;
CASEND;

WHILEND /copy_module_loop/;
module_status.normal := copy_status.normal AND put_status.normal AND

get_status.normal;

PROCEND copy_a_module;

PROCEDURE copy_directory_to_library (VAR local_status: ost$status);

VAR
module_index: integer,
read_status: ost$status,
write_status: ost$status;

cyp$get next binary (directory file, /}SEQ (current module),
d~mmy_key, cells_read, r;ad_status); -

IF read status.normal THEN
cyp$p~t next binary (library file, #SEQ (current_module),

directory.key, write status);.
IF write_status.normal THEN

/read_ loop/
FOR module_index := 2 TO directory.length DO

cyp$get next binary (directory file, #SEQ (current module),
d~mmy_key, cells_read, r;ad_status); -

IF NOT read status.normal THEN
EXIT /read loop/;

!FEND;
cyp$put next binary (library file, #SEQ (current_module),

d~mmy_key, write_statu;);
IF NOT write status.normal THEN

EXIT /read=loop/;
!FEND;

FOREND /read_loop/;
IF read status.normal AND write status.normal THEN

cyp$p~t keyed binary (library-file, #SEQ (directory),
first_k;y, write_status);

I FEND;
!FEND;

I FEND;

COMPANY PRIVATE

al-8
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

al.O BINARY FILE EXAMPLES
al.2 CREATE TEXT LIBRARY

{*}

local_status.normal := read_status.normal AND write_status.normal;

PROCEND copy_dir~ctory_to_library;

cyp$open_file (source_name, tsource_file_specs, source_file, status);
IF status.normal THEN

cyp$open file (directory name, tdirectory_file_specs, dir_ectory_file,
s tit us) ; -

IF status.normal THEN
cyp$open. file (lib name, tlibrary_file_specs, library_file,

st'itus); -
!FEND;

!FEND;

IF status.normal THEN

/mai:n~J>rogram/
BEGIN

{ reserve space for a directory
{*}

directory.length := O;
cyp$put next binary (library file, #SEQ (directory), first_key,

w;ite_;tatus); -
IF write status.normal THEN

copy a-module (read status);
cyp$~l;se file (sou;ce file, cyc$end, status);
IF ((read=status.normal) AND (directory.length > 0)) THEN

cyp$position_file_at_beginning (directory_file, status);
IF NOT status.normal THEN

EXIT /main_program/;
!FEND;

copy_directory_to_library (status);

I FEND;
!FEND;

END /main_program/;

!FEND;
cyp$close file (directory file, cyc$asis, status};
cyp$close=file (library_file, cyc$beginning, status);

PROCEND create;

COMPANY PRIVATE

(

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/0 Reference Manual

al-9

4/01/86
REV: 4

---~~--------------------------
al.0 BINARY FILE EXAMPLES
al.2 CREATE TEXT LIBRARY

MODEND create_text_library;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.0 BINARY FILE EXAMPLES
al.3 EXTRACT FROM TEXT LIBRARY

al. 3 EXTRACT FROM TEXT LI.BRAR Y

MODULE extract_from_text_library ALIAS 'zexmefl';

*copyc cyp$open_file
*copyc cyp$close_f ile
*copyc cyp$get next binary
*copyc cyp$get=keyed_binary
*copyc cyp$position binary at key
*copyc cyp$put_keyed_binary -
*copyc cyp$put next line
*copyc cyp$cur;ent_file_position

TYPE
directory_descriptor

key: integer,
length: integer,

recend,

record

directory entry = record
name: string (7),
length: integer,
key: integer,

recend;

CONST
lib name I LIBRARY';

CONST
name of module 'TEXTMOD';

PROGRAM extract ALIAS 'zexpefl';

VAR

al-10

4/01/86
REV: 4

library file specs: [STATIC] array [1 •. 4] of cyt$file specification
:= [[~yc$fTle_kind, cyc$binary_file], [cyc$open_positTon,
cyc$beginning], [cyc$file existence, cyc$old file],
[cyc$file access, cyc$read]], -

output file-specs: [STATIC] array [1 •• 3] of cyt$file specification
:= [[cyc$file access, cyc$write], [cyc$file kind, cy~$text file],
[cyc$open_posTtion, cyc$beginning]], - -

library_file: cyt$file,
out_file: cyt$file,
directory: directory_descriptor,

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.0 BINARY FILE EXAMPLES
al.3 EXTRACT FROM TEXT LIBRARY

current module: directory entry,
line: string (256), -
line_length: integer,
module_found: boolean,
dummy_key: integer,
cells_read: integer,
·status: ost$status;

al-11

4/01/86
REV: 4

PROCEDURE search_for_module (library_directory: directory_descriptor;
VAR module is in directory: boolean;
VAR search=st;tu;: ost$status);

VAR
module index: integer;

module_is_in_directory := FALSE;
search_status.normal := TRUE;

cyp$position binary at key (library file, library_directory.key,
search=status); - -

IF NOT search status.normal THEN
RETURN; {--=-->

I FEND;

/search_ directory/
FOR module index := 1 TO library directory.length DO

cyp$get ~ext binary (library file, #SEQ (current module),
d~mmy_key, cells_read,-search_status); -

IF NOT search status.normal THEN
RETURN; {--=-->

!FEND;
IF current module.name = name of module THEN

module is in directory := TRUE;
EXIT ;;ea;ch=directory/;

!FEND;
FOREND /search_directory/;

PROCEND search_for_module;

PROCEDURE copy_the_module_text (VAR copy_status: ost$status);

/module~loop/
WHILE current module.length > 1 DO

cyp$get next binary (library file, #SEQ (line_length), dummy_key,
c;lls_;ead, copy_statu;);

IF NOT copy_status.normal THEN

COMPANY PRIVATE

al-12
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

al.O BINARY FILE EXAMPLES
al.3 EXTRACT FROM TEXT LIBRARY

EXIT /module_loop/;
I FEND;
cyp$get next binary (library file, #SEQ (line (1, line_length)),

d~mmy_key, cells_read,-copy_status);
IF NOT copy status.normal THEN

EXIT /mod~le_loop/;
I FEND;
cyp$put_next_line (out_file, line (1, line_length), copy_status);
IF NOT copy status.normal THEN

EXIT /mod~le_loop/;
I FEND;
current module.length := current_module.length - 1;

WHILEND /;odule loop/;
PROCEND copy_the_module_text;

cyp$open_file (lib_name, tlibrary_file_specs, library_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;
cyp$get next binary (library file, #SEQ (directory), dummy_key,

c;lls_;ead, status); -
IF NOT status.normal THEN

RETURN; {----->
I FEND;
IF directory.length 0 THEN

RETURN; {----->
I FEND;
search for module (directory, module_found, status);

IF status.normal AND module found THEN
cyp$open_file (name_of_module, toutput_file_specs, out_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;
cyp$get_keyed_binary (library_file, #SEQ (current_module.name),

current_module.key, cells_read, status);
IF NOT status.normal THEN
· RETURN; {---->
I FEND;
cyp$put_next_line (out file, current~module.name, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;

copy_the_module_text (status);
I FEND;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

al.O BINARY FILE EXAMPLES
al.3 EXTRACT FROM TEXT LIBRARY

cyp$close_fil~ (library_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;

cyp$close_file (out_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;

PROCEND extract;

MODEND extract_from_text_library;

al-13

4/01/86
REV: 4

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

bl.O RECORD FILE EXAMPLES

bl.O RECORD FILE EXAMPLES

bl.l EXAMPLE - EXTRACT INFORMATION FROM RECORDS

bl-1

4/01/86
REV: 4

The following example illustrates the use of record file procedures.
The input file is assumed to contain several kinds of logical records. An
id record identifies the following record as an employee record or a
vendor record. A vendor record is followed by one or more product
records. The pro.gram produces a 1 ist of vendor names and the names of the
products supplied by each vendor.

MODULE list_vendor_and_products ALIAS 'zexmvap';

*copyc cyp$open file
*copyc cyp$clos;- file
*copyc cyp$get_n;xt_record
*copyc cyp$put next line
*copyc cyp$put-partial line
*copyc cyp$position re~ord file
*copyc cyp$tab file- -
*copyc cyp$cur;ent_file_position

·PROGRAM list_vendor_and_products ALIAS 'zexpvap';

CONST
in name = 'EMPDB',
out name= 'EMPLIST';

TYPE
full name = record

f i; st : s tr i ng · (10) ,
initial: char,
last: string (15),

rec end,

employee_entry = record
number: 0 •. 999999,
name: full_name,
department_number: 0 .. 9999,

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

bl.O ~ECORD FILE EXAMPLES
bl.1 EXAMPLE - EXTRACT INFORMATION FROM RECORDS

department_name: string (20),
rec end,

vendor_entry record
number: 0 •. 99999999,
name: string (30),
street address: string (30),
city state: string (30),
zip code: 0 ~· 99999,
number of products: integer,

recend,

product entry = record
name:-string (20),
product_number: string (10),

recend,

entry_id (employee_id, vendor_id);

VAR
in file: cyt$file,
out file: cyt$file,
in file specs: cyt$file specifications,
out_fil;_specs: cyt$fil;_specifications,
cells_read: integer,
vendor: vendor_entry,
product: product_entry,
record_id: entry_id,
i: integer,
status: ost$status;

PUSH in file specs: [1 •• 4];
in_file=spec;t [l] .selector := cyc$file kind;
in file specst [l] .file kind := cyc$rec~rd file;
in=file=specst [2] .selector := cyc$file access;
in_file_specst [2] .file access := cyc$r;ad;
in_file_specst [3] .selector := cyc$file existence;
in_file_specst [3] .file existence := cyc$old file;
in_file_specst [4] .selector := cyc$open position;
in_file_specst [4] .open_position := cycSbeginning;

PUSH out file specs: [l •• 3];
out file-spec;t [1] .selector := cyc$file kind;
out-file-specst [1] .file kind := cyc$text file;
out-file-specst [2] .selector :• cyc$file access;
out-file-specst [2] .file access := cyc$w;ite;
out=file=specst [3] .selector := cyc$open_position;

bl-2

4/01/86
REV: 4

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

bl.0 RECORD FILE EXAMPLES
bl.1 EXAMPLE - EXTRACT INFORMATION FROM RECORDS

out_file_specst [3] .open_position := cyc$beginning;

cyp$open_file (in_name, in_file_specs, in_file, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$open_file (out_name, out_f1le_specs, out_file, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;

/main_loop/
WHILE status.normal DO

bl-3

4/01/86
REV: 4

cyp$get_next_record (in_file, #SEQ (record_id), cells_read, status);
IF NOT status.normal THEN

EXIT /main_loop/;
!FEND;
CASE cyp$current file position (in file) OF

cyc$end of partitio~, cyc$end of-block =
CYCLE /;ai~ loop/; - -
cyc$end of Tnf ormation
EXIT /miin-loop/;
cyc$middle-of record =
cyp$put neit line (out file, 'ERROR reading input file', status);
EXIT /miin l;op/; -
cyc$end_of=record =
CASE record id OF

employee id =
cyp$position record file (in file, cyc$forward, 1, cyc$record,

status); - -
IF NOT status.normal THEN

EXIT /main_loop/;
!FEND;
vendor id =
cyp$get_next_record (in_file, #SEQ (vendor), cells_read, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;
IF cyp$current file position (in file) = cyc$end of record THEN

cyp$put_next=line-(out_file, v;ndor.name, stat~s);
IF NOT status.normal THEN

EXIT /main_loop/;
!FEND;

FOR i := 1 TO vendor.number of products DO
cyp$get_next_record (in_file: #SEQ (product), cells_read,

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

bl.O RECORD FILE EXAMPLES
bl.1 EXAMPLE - EXTRACT INFORMATION FROM RECORDS

status);

bl-4

4/01/86
REV: 4

IF cyp$current_file_position (in_file) <> cyc$end_of_record
THEN

cyp$put_next_line (out_file, 'ERROR reading input file',
status);

EXIT /main loop/;
ELSEIF (NOT status.normal) OR (cells_read <> #SIZE -(product))

THEN
EXIT /main_loop/;

I FEND;
cyp$tab_file (out_file, 10, status);
IF NOT status.normal THEN

EXIT /main_loop/;
IFEND;
cyp$put_partial_line (out_file, TRUE, product.name, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;

FOREND; ~

ELSE
cyp$put next line (out_file, 'ERROR reading input file',

status);
EXIT /main_loop/;

!FEND;
CASEND;

CASEND;
WHILEND /main_loop/;

cyp$close_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
IFEND;
cyp$close_file (out_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {-'""'--->
I FEND;

PROCEND list_vendor_and_products;

MODEND list_vendor_and_products;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

cl.0 TEXT FILE EXAMPLES

cl.O TEXT FILE EXAMPLES

cl.l EXAMPLE - COPY COLUMN RANGE OF TEXT FILE

cl-1

4/01/86
REV: 4

The following example illustrates the use of text file procedures" to
copy one text file to another. Only data between selected columns on the
old file is written to the new file, and within those columns, trailing
space characters are deleted.

MODULE truncate ALIAS 'zexmtru';

*copyc
*copyc
,'tcopyc
*copyc
,'tcopyc
,'tcopyc
*copyc
*copyc

cyp$open file
cyp$clos; file
cyp$get next line
cyp$put-partial line
cyp$write end of line
cyp$write=end=of=block
cyp$write end of partition
cyp$curre~t file-position - -

PROGRAM truncate ALIAS 'zexptru';

CONST
in_name = 'OLD',
out_name = 'NEW',
leftmost column # = 11,
rightmost_colu~_# = 72;

VAR
in_file: cyt$file,
out_file: cyt$file,
in_file_specs: cyt$file_specifications,
out file specs: cyt$file specifications,
lin;_ptr7 tstring (* <=-cyc$max_page_width),
line length: integer,
stat~s: ost$status;

PUSH in file specs: (1 .• 4];
in_file=specst [l] .selector :• cyc$file_kind;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

cl.0 TEXT FILE EXAMPLES
cl.1 EXAMPLE - COPY COLUMN RANGE OF TEXT FILE

in_file_specst [l] .file kind := cyc$text file;
in_file_specst [2] .selector := cyc$file access;
in_file_specst [2] .file_access := cyc$r;ad;
in_file_specst [3] .selector := cyc$file existence;
in file specst [3] .file existence := cyc$old file;
in-file-specst [4] .selector := cyc$open position;
in=file=specst [4] .open_position := cycSbeginning;

PUSH out file specs: (1 .• 3];
out file-spec;t [l] .selector := cyc$file kind;
out-file-specst [1] .file kind := cyc$text file;
out-file-specst [2] .selector := cyc$file access;
out-file-specst [2] .file access := cyc$w;ite;
out-file-specst [3] .selector := cyc$open position;
out=file=specst [3] .open_position := cycSbeginning;

ALLOCATE line_ptr: [rightmost_column_#];
~

cyp$open_file (in_name, in_file_specs, in_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;

_cyp$open_file (out_name, out_file_specs, out_file, status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;

/main_loop/
WHILE status.normal DO

cyp$get_next_line (in_file, line_ptrt, line_length, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;
CASE cyp$current file position (in_file) OF

cyc$end_of_partitio~ =

cyp$write_end_of_partition (out_file, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;
cyc$end of block =
cyp$write_;nd_of_block (out file, status);
IF NOT status.normal THEN

EXIT /main loop/;
!FEND;
cyc$end of information =
EXIT /main=loop/;

ELSE

- cl-2

4/01/86
REV: 4

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

cl.O TEXT FILE EXAMPLES
cl.1 EXAMPLE - COPY COLUMN RANGE OF TEXT FILE

cl-3

4/01/86
REV: 4

WHILE (line length > leftmost column #) AND (line_ptrt
(line-length) = ' ') DO- -

line_length := line_length - 1;
WHILEND;
line_length := line_length - leftmost_column_# + 1;
IF line length > 0 THEN

cyp$put_next_line (out_file, line_ptrt (leftmost_column_#,
line_length), status);

ELSE
cyp$write_end_of_line (out_file, status);

IFEND;
IF NOT status.normal THEN

EXIT /main_loop/;
IFEND;

CASEND;
WHILEND /main loqp/;

- t;:

cyp$close_f~le (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$close_file (out_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;

FREE line_ptr;

PROCEND truncate;

MODEND truncate;

COMPANY PlUVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

dl.O DISPLAY FILE EXAMPLES

dl.0 DISPLAY FILE EXAMPLES

dl.l EXAMPLE - DISPLAY A TEXT FILE

dl-1

4/01/86
REV: 4

The following example illustrates the use of display file . procedures
(and text file procedures). Note particularly the page overflow
processing procedure.

MODULE zexmlis ALIAS 'zexmlis';

*copyc cyp$open_file
*copyc cyp$close file
*copyc cyp$curre~t_file_position
*copyc cyp$current display line
*copyc cyp$get_partial_lin;
*copyc cyp$display_page_length
*copyc cyp$tab file
*copyc cyp$skip lines
*copyc cyp$position_display_page
*copyc cyp$put partial line
,.(copyc cyp$write end of line
*copyc cyp$displ;y_p;ge-eject
*copyc cyp$current=page=number

CONST
in name 'TEXFILE I;

VAR
file_numb: integer := 1,
record_numb: integer := 1;

PROGRAM list ALIAS 'zexplis';

CONST
out_page_width = 80,
out_page_length = 50,
footing_line_number • out_page_length - 2,
out_name • 'OUTPUT';

COMPANY PRIVATE

dl-2
CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual
4/01/86

REV: 4

dl.O DISPLAY FILE EXAMPLES
dl.1 EXAMPLE - DISPLAY A TEXT FILE

VAR
in file specs: cyt$file specifications,
out fil; specs: cyt$fil; specifications,
in file:-cyt$file, -
out file: cyt$file,
lin;: string (80),
line_length: integer,
eol: boolean,
status: ost$status;

PROCEDURE my_new_page_proc (print_file: cyt$file;
next page number: integer;

VAR stat~s: ost$status);

VAR
str holder: string (10),
str_length: integer;

cyp$display_page_eject (print_file, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND:
cyp$put_partial_line (print_file, FALSE, 'LISTING OF' status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;
cyp$put_partial_line (print_file, FALSE, in_name, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$tab_file (print_file, 50, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$put_partial_line (print_file, FALSE, 'FILE ' status);
IF NOT status.normal THEN

RETURN; {----->
I FEND;
STRINGREP (str holder, str length, file numb);
cyp$put partial line (print_file, FALSE~ str_holder (1, str_length),

status); -
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$put_partial_line (print_file, FALSE, ', RECORD ' status);
IF NOT status.normal THEN

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

dl.O DISPLAY FILE EXAMPLES
dl.l EXAMPLE - DISPLAY A TEXT FILE

RETURN; {----->
I FEND;

dl-3

4/01/86
REV: 4

STRINGREP (str hol.der, str length, record numb);
cyp$put partial line (print file, TRUE, str holder (1, str_length),

status); - -
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$skip_lines (print_file, 2, status);
IF NOT status.normal THEN

RETURN; {----->
IFEND;

PROCEND my_new_page_proc;

PROCEDURE print page footer (print_file: cyt$file;
VAR status: o;t$stitus);

VAR
str_holder: string (3),
str_length: integer,
page_number: integer;

cyp$put_partial_line (print_file, TRUE, ' ' status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
page number:= cyp$current page number (print_file);
cyp$tab_file (print_file, 70, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$put_partial_line (print_file, FALSE, 'PAGE ' status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
STRINGREP (str holder, str length, page number);
cyp$put partial line (print file, TRUE,-str holder (1, str_length),

status); - -
IF NOT status.normal THEN

RETURN; {----->
!FEND;

PROCEND print_page_footer;

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

·dl. 0 DISPLAY FILE EXAMPLES
dl.1 EXAMPLE - DISPLAY A TEXT FILE

PUSH in file specs: [1 .. 4];
in file-specit [1] .selector := cyc$file kind;
in-file-specst [1] .file kind·:= cyc$text file;
in=file=specst [2] .selector := cyc$file_;ccess;
in file specst [2] .file access := cyc$read;
in-file-specst [3] .selector := cyc$file existence;
in-file-specst [3] .file existence := cyc$old file;
in-file-specst [4] .selector := cyc$open position;
in=file=specst [4] .open_position := cycSbeginning;

PUSH out file specs: [l .. 6];
out file-specit [1] .selector := cyc$file kind;
out-file-spe~st [l] .file kind := cyc$display file;
out-file-specst [2] .selector := cyc$file access;
out-file-specst [2] .file access := cyc$w;ite;
out-file-specst [3] .selector := cyc$file existence;
out-file-specst [3] .file existence := cyc$new or old file;
out-file-specst [4] .selector := cyc$page width; - -
out-file-specst [4] .page width := out page width;
out-file-specst [5] .selector := cyc$p;ge l;ngth;
out-file-specst [5] .page length := out p;ge length;
out-file-specst [6] .selector := cyc$ne; pag; procedure;
out-file-specst [6] .new page procedure.kind 7=

- cyc$user specified procedure;
out_file_specst [6] .new_page_procedure.user_procedure :=

tmy_new_page_proc;

cyp$open_file (in_name, in_file_specs, in_file, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$open_file (out_name, out_file_specs, out_file, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;

/main_loop/
WHILE TRUE DO

dl-4

4/01/86
REV: 4

cyp$get_partial_line (in_file, line, line_length, eol, status);
IF NOT status.normal THEN

EXIT /main_loop/;
!FEND;
CASE cyp$current file position (in_file) OF

cyc$end_of _informatTon =

cyp$position_display_page (out_file, footing_line_number, status);
IF NOT status.normal THEN

COMPANY PRIVATE

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

dl.O DISPLAY FILE EXAMPLES
dl.1 EXAMPLE - DISPLAY A TEXT FILE

EXIT /main_loop/;
IFEND;
print_page_footer' (out_file, status);
IF NOT SLatus.normal THEN

EXIT /main_loop/;
IFEND;
EXIT /main_loop/;

cyc$end_of_partition
file_numb := file_numb + 1;
record_numb := 1;

dl-5

4/01/86
REV: 4

cyp$position_display_page (out_file, footing_line_number, status);
IF NOT status.normal THEN

EXIT /main_loop/;
IFEND;
print_page_footer (out_file, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;

cyc$end_of_block
record numb := record numb + 1;
cyp$po;ition_display_page (out_file, footing_line_number, st~tus);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;
print_page_footer (out_file, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;

ELSE
IF cyp$current display line (out file) = ·footing_line_number THEN
print_page_f~oter (o~t_file, status);
IF NOT status.normal THEN

EXIT /main_loop/;
I FEND;

I FEND;
IF line_length > 0 THEN

cyp$put partial line (out_file, eol, line (1, line_length),
status); -

ELSE
cyp$write_end_of_line (out_file; status);

!FEND;
IF NOT status.normal THEN

EXIT /main_loop/;
!FEND;

COMPANY PRIVATE.

CYBER IMPLEMENTATION LANGUAGE

CYBIL I/O Reference Manual

dl.0 DISPLAY FILE EXAMPLES
dl.1 EXAMPLE - DISPLAY A TEXT FILE

CASEND;
WHILEND /main_loop/;

cyp$close_file (in_file, cyc$beginning, status);
IF NOT status.normal THEN

RETURN; {----->
!FEND;
cyp$close_file (~ut_file, cyc$asis, status)~
IF NOT status.normal THEN

RETURN; {----->
!FEND;

PROCEND list;

MODEND zexmlis;

dl-6

4/01/86
REV: 4

COMPANY PRIVATE

