
CIJ (• 1 i Debugger
User's Guide

• •
UNISYS

• UNISYS CTOS®
Debugger
User's Guide

Copyright © 1990, 1991, 1992 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation

CTOS 1111.0
CTOS 113.4
CTOS 13.4
CTOS/XE3.4
Development Utilities 12.2

Priced Item

August 1992

Printed in USA
4359 4977-000

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such License
or Agreement. Unisys cannot accept any financial or other responsibility that may be the result of your use
of the information or software material, including direct, indirect, special or consequential damages.

You should be careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is ·used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of
such changes and/or additions.

RESTRICTED RIGHTS LEGEND. Use, reproduction, or disclosure is subject to the restrictions set forth in
DFARS 252.227-7013 and FAR 52.227-14 for commercial computer software.

Convergent, Convergent Technologies, CTOS, NGEN, and SuperGen are registered trademarks of
Convergent Technologies, Inc.

Art Designer, AutoBoot, Chart Designer, ClusterCard, ClusterShare, Context Manager, Context
ManagerNM, CTAM, CT-DBMS, CT-MAIL, CT-Net, CTOSNM, Document Designer, Generic Print System,
Image Designer, Network PC, PC Emulator, Phone Memo Manager, Print Manager, Series 186, Series 286,
Series 386, Series 286i, Series 386i, shared resource processor, Solution Designer, SRP, TeleCluster, The
Operator, Voice/Data Services, Voice Processor, X-Bus, and X-Bus+ are trademarks of Convergent
Technologies, Inc.

OFIS is a registered trademark of Unisys Corporation.

BTOS is a trademark of Unisys Corporation.

Apple, LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc. AT, IBM, IBM PC,
and OS/2 are registered trademarks of International Business Machines Corporation. IBM PC-AT, IBM
PC-XT, and IBM PS/2 are trademarks of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Lotus is a registered trademarks of Lotus Development Corporation.
GW-BASIC, MS-DOS, Microsoft, and XENIX are registered trademarks of Microsoft Corporation. CodeView
and Windows are trademarks of Microsoft Corporation. UNIX is a registered trademark of AT&T.

Page Status

Page Issue

v through ix Original
x Blank
xi Original
xii Blank
xiii Original
xiv Blank
xv through xxiii Original
xx iv Blank
1-1 through 1-4 Original
2-1 through 2-8 Original
3-1 through 3-31 Original
3-32 Blank
4-1 through 4-16 Original
5-1through5-12 Original
6-1 through 6-7 Original
6-8 Blank
7-1 through 7-20 Original
8-1 through 8-12 Original
9-1 through 9-4 Original
10-1 Original
10-2 Blank
11-1through11-18 Original
A-1 through A-3 Original
A-4 Blank
B-1 through B--6 Original
C-1 through C-8 Original
D-1 through 0-51 Original
0-52 Blank
E-1 Original
E-2 Blank
F-1 through F-8 Original
G-1 through G-11 Original
G-12 Blank

iii

iv

Page

H-1 through H-2
1-1 through 1-22
J-1
J-2
Glossary-1 through 7
Glossary-8
lndex-1 through 8

Issue

Original
Original
Original
Blank
Original
Blank
Original

Contents

About This Gulde . xv

Section 1. Overview

What Is a Debugger? . 1-1
CTOS I, CTOS/XE, CTOS II, and CTOS Ill Debuggers 1-2

Configuration. 1-3
Features ... ·. 1-3

Section 2. Concepts

Commands . 2-1
Command Format............................. 2-1
Command Parameters . 2-2

Constants (Numbers, Ports, and Text) 2-3
Numbers . 2-3
Ports . 2--4
Text.. 2--4

Symbols . 2--4
Symbol Files . 2-6

Address Expressions . 2-6
Symbolic Instructions . 2-7
Current Value . 2-7
Current Location . 2-7
Debugger Modes . 2-8
Processor Modes . 2-8

Section 3. Debugging Session

What to Expect From This Debugging Session 3-2
The Program . 3-2

Main Program . 3-2
The Process and TypeSub Procedures 3-2

v

Contents

Required Flies . 3-5
Starting the Debugging Session . 3-6
Exiting the Debugger• : 3-7
Address Differences • . 3-7

Section 4. General Purpose Functions and Features

What are the Debugger General Purpose Functions? • . . 4-2
Details of General Purpose Functions. 4-2

Entering the Debugger . 4-2
Accessing Other Shared Resource
Processor Boards: CODE-M . 4-4
Debugger Prompts . 4-4
Symbol Files • 4-6

Special Cases of Opening Symbol Files 4-7
Opening and Closing a Symbol File: CODE-F. . . 4-7
Using Symbols as Resources 4-8

Exiting From the Debugger . 4-9
Using the Debugger as a Calculator 4-1 O
Changing the Base of a Number System: CODE-R. . . 4-10
Deactivating the Debugger: CODE-K. 4-12

Details of the Debugger Features. 4-12
Using Online Help............................. 4-13
Programmable Function Keys.................... 4-14

Reissuing a Command: CODE-H 4-14
Using Wild Cards in Public Symbols............... 4-15

Unique Symbols.......................... . 4-15
Symbols That Are Not Unique............... 4-16

Invoking Context Manager Operations 4-16

Section 5. Examining and Changing Memory Contents

Ways to Look at Memory. 5-1
Looking at Memory . 5-1

Using Pointers to Display Memory Contents 5-3
Displaying Several Locations at Once 5-4

Opening and Closing Memory Locations 5-4
Understanding the Debugger Prompts 5-5
Displaying the Contents of Memory: CODE·D 5-5

CODE-D with Two Parameters . • • . . . 5-5
CODE-D with Three Parameters. . . • • 5-6

Changing the Contents of a Mem~ry Location 5-7
Changing Instructions' • 5-8

vi

Contents

Searching for a Byte Pattern In Memory: CODE-0 5-9
Dlsplaylng Physical Addresses: CODE·=............. 5-10
Reading and Writing to Ports . 5-1 O
Assigning Names to Addresses: CODE·[............. 5-11

Section 6. Working With Registers

The Process Register . 6-1
Meaning of PR . 6-2
Examining and Modifying PR . 6-4

Processor Registers . 6-4

Section 7. Display Commands

What are the Display Commands?................... 7-1
Displaying User Information: CODE-U 7-1
Printing the Debugger Screen: CODE·L.............. 7-2
Displaying Other Contexts . 7-3
Displaying a Stack Trace: CODE·T.................. 7-4

Starting the Trace at a Specified Address.. 7-5
Displaying the Trace in Short or Long Call Format. . . . 7-6

Displaying Linked-List Data Structures: CODE-N...... 7-6
Displaying Process and Exchange Status: CODE-S.... 7-8

Processes Display............................. 7-9
Exchanges Display . 7-12
Tasks Display . 7-13
Displaying Descriptor Tables: CODE-V 7-14
Displaying Flag Mnemonics: fl CODE-V 7-17
Displaying Request Definitions: CODE-W.......... 7-17

Displaying Request Blocks: CODE-a................ 7-1.9
Displaying Semaphore Status: CODE-V.............. 7-19
Displaying DLL Status: CODE·Z . 7-20

Section 8. Using Breakpoints

What Is a Breakpoint? . 8-1
Setting a Breakpoint at an Instruction 8-1
Setting and Querying Breakpoints: CODE-B 8-2
Clearing Breakpoints: CODE-C . 8-3
Proceeding From a Breakpoint: CODE-P 8-3

vii

Contents

Setting Conditional Breakpoints: CODE-A. 8-4
Using the Patch Area to Define a ·
Relational Condition . 8-4
Setting Multiple Conditional Breakpoints. 8-6
Changing Unconditional to Conditional Breakpoints . . . 8-6

Setting Data Breakpoints: CODE·B, CODE-A Variant . . . 8-7
Starting a Process at a Specified Address: CODE-G . . . 8-8
Executing Instructions lndlvldually: CODE-X 8-8
Breaking After the Current Instruction: CODE·E 8-9
Setting Breakpoints In Interrupt Handlers: CODE-I..... 8-10
Assembly Language Calls: The INT 3 Instruction...... 8-12

Section 9. Debugger Modes

What are the Debugger Modes? . 9-1
Simple Mode . 9-1
Multiprocess Mode . 9-2

Proceeding and Exiting: CODE-P, CODE-G,
and GO..................................... 9-3
Keyboard and Video Control . 9-3

Interrupt Mode . 9-4

Section 10. Overlays

Examining Code In an Overlay...................... 10-1

Section 11. The Executive Command: Debug Fiie

Uses of the Debug Fiie Command 11-1
Invoking the Debug File Command 11-2
Debugger Commands You Can Use 11-3
Exiting.. 11-3
Patching a Run File . 11-3
Examining a Crash Dump . 11-5
Where to Start When Your System Crashes........... 11-6
Using the Debug Fiie Command. 11-7

Displaying All Processes........................ 11-7
Setting PR . 11-9
Loading the Symbol File . 11-9

Calculating the Load Offset 11-1 o
Verifying the Operating System Symbol File 11-11

viii

Contents

Using the Task Register and System ErrorBuffer 11-12
Task Register · 11-12
System Error Buffer . 11-12

Determining Which Run File Crashed.............. 11-13
With the User Number. 11-14
With the User Structure . 11-15

Determining the Run File Version Number 11-16
Source of Crash . 11-16

System Service or Application 11-16
Interrupt Handler or Operating System 11-16

Interrupt Handler . 11-16
Idle Process............................. 11-16
Termination Process...................... 11-18
Error Code 22, 26, or 28 11-18

Appendix A. Status Messages............................. A-1

Appendix B. Shared Resource Processor Debugging B-1

Appendix C. Stack Format . c-1

Appendix D. Debugger Tips. D-1

Appendix E. Debugger Swapping . E-1

Appendix F. Configuration Options for the Debugger F-1

Appendix G. Extended Crash Dump Process. G-1

Appendix H. Debugger Features Matrix . H-1

Appendix I. Debugger Application Programming Interface 1-1

Appendix J. Debugging on a Second Monitor................ J-1

Glossary .. .

Index

ix

Figures

ATG-1. User's Guide Organization . xviii

1-1. Debugging Relative to Other Program Development Steps 1-4

3-1. DisplayFile.pas Source Program . 3-3
3-1. DisplayFile.pas Source Program (cont.) . 3-4
3-2. Stack After Call to OpenByteStream . 3-31

7-1. Using CODE-N for Linked-List Data Structures 7-7
7-2. Real Mode Operating System Processes Display 7-9
7-3. Processes Display for Protected Mode. 7-10
7-4. Example of Process Status Word . 7-11
7-5. Exchanges Display....................................... 7-12
7-6. Tasks Display . 7-13
7-7. GDT Display.. 7-16

11-1. CODE-S Processes Display (Protected Mode)
11-2. CODE-S Processes Display (Protected Mode)
11-3. CODE-S Processes Display (Protected Mode)

11-8
11-14
11-17

xi

Tables

5-1. Examples of Byte Patterns . 5-9

6-1. Processor Registers . 6-6
6-2. Debugger Registers . 6-7

xiii

About This Guide

About This Guide
This guide explains how you can use the Debugger as a tool to assist you
in identifying and solving software problems. By using the Debugger
commands described in this guide, you can

• Examine and change data stored in memory or in registers

• Set and clear unconditional and conditional breakpoints

• Produce displays of memory contents

• Search memory for a pattern of bytes

• Execute program instructions one at a time (single step)

• Disassemble the contents of memory into assembly language source
instructions

• Use an application programming interlace that allows applications
to request debugger services

• Use a second monitor as your debugging screen

For your convenience, the Debugger commands are summarized in the
quick reference accompanying this guide.

Purpose and Scope
This guide describes the debuggers for the following operating systems:

• CTOS I, Version 3.4

• CTOS/XE, Version 3.4

• CTOS II, Version 3.4

• CTOS III, Version 1.0

xv

About This Gulde

The operating systems are called CTOS in this guide. However, when a ·
feature unique to a particular operating system is being described, the
specific name of the operating system is provided.

These debuggers are referred to generally as the Debugger. (To help you
determine which features are supported by your version of the operating
system, see Appendix H, "Debugger Features Matrix.")

Who Should Use This Guide
It is assumed that the readers of this guide have some experience with
systems or applications programming. Since the instructions displayed
by the Debugger are based on the Intel 80X86 family of microprocessors,
you should be familiar with these instruction sets although you are not
required to understand them in detail. In this guide, you will be
introduced to some of the more common instruction sequences that you
will encounter again and again in programs you debug.

Furthermore, you can complete the exercises in this guide without
knowing standard stack conventions. However, familiarity with the
stack and the language compiler you are using is recommended before
you can really apply the Debugger commands you will learn in a
meaningful way.

A diskette that contains the files you need to work through the exercises
in Section 3 and Appendix D is packaged with this guide. For the
systems programmer, this guide also provides approaches to debugging
crash dump files. These are described in Section 11, ''The. Executive
Command: Debug File."

What is New in This Guide

xvi

This edition of.the CTOS® Debugger User's Guide describes the new
Debugger features introduced with CTOS III 1.0. This edition
supersedes the CTOS II 3.3 version of the CTOS Debugger Manual. To
determine which features are supported by your version of the operating
system, see Appendix H, "Debugger Features Matrix."

About This Gulde

In summary, the new features are

• CODE-F has a new optional argument. It allows you to load
symbols for a dynamic link library (DLL). See Section 4, "General
Purpose Functions and Features."

• The Resource Librarian, a new development utilities tool, adds a
resource to a run file. See Section 4, "General Purpose Functions
and Features," for information about Debugger run files that include
more than one resource.

• CODE-H allows you to reissue a previously executed command by
history number. See Section 4, "General Purpose Functions and
Features."

• CODE-Y displays semaphore status. See Section 7, "Display
Commands."

• CODE-Z displays DLL status. See Section 7, "Display Commands."

• There is now a single application programming interface (API) that
allows an application to request debugger services and/or receive
notification of debugger events. See Appendix I, "Debugger API."

• With the addition of a VGA graphics controller card, you can attach
a second monitor to your computer and use it as your debugging
screen. See Appendix J, "Debugging on a Second Monitor."

How This Guide is Organized
As shown in Figure ATG-1, the sections in this guide are arranged in
groups that reflect generalized to specialized debugging activities.

Sections 1 through 4 introduce the Debugger to the first-time user.
Included in these sections are a debugging overview, a description of the
Debugger concepts such as Debugger command syntax and format, a
tutorial which provides hands-on experience with the most commonly
used Debugger commands, and a description of the general putpose
commands such as those for entering and exiting the Debugger and using
the Debugger as a calculator.

xvii

About This Gulde

xviii

Sections 5 through 8 describe the more commonly used debugging
commands for examining and moving around in memory. These sections
also present different command variations for viewing and changing
memory contents. In addition, the sections explain various techniques
for setting breakpoints to execute code up to a preset location in your
program. Display commands provide you with additional tools you can
use for the purposes described.

Sections 9 through 11 are dedicated to specialized debugging commands,
such as those for debugging multiprocess programs, overlays, and
system crashes.

Examining and
Changing
Memory
Contents

Debugger
Modes

Figure ATG-1. User's Gulde Organization

INTRODUCING THE DEBUGGER

Concepts Debugging
Session

MOVING AROUND IN MEMORY

Working With
Registers

Display
Commands

SPECIALIZED FUNCTIONS

Overlays The Executive
Command:
Debug File

3

General Purpose
Functions and
features

Using
Breakpoints

558.ATG-1

About This Gulde

The appendixes augment the sections in this guide by describing

• Status (error) messages

• Shared Resource Processor debugging

• Stack format

• Debugger tips

• Debugger swapping

• Configuration options for using the Debugger

• Extended crash dump process

• Debugger features supported by each operating system version

• Debugger application programming interface

• Debugging on a second monitor

How to Use This Guide
If you are new to debugging, it is recommended that you read the
introductory sections. The tutorial in Section 3, "Debugging Session,"
gives you hands-on experience in using the most common Debugger
commands. This should help you understand the command descriptions
presented in later sections.

Appendix D, "Debugger Tips," provides additional hands-on exercises
using the same tutorial program introduced in Section 3. You are
encouraged to try these exercises at any time since they do not assume
you have read beyond Section 3.

If you are familiar with general debugging procedures, you can use
Sections 4 through 11 of this guide for reference. Although the sections
are not totally independent of one another, you are provided with enough
cross references to understand any single concept. The quick reference
accompanying this guide provides an alphabetized command summary.
As a further convenience, the quick reference gives the section numbers
where each command is described in detail.

xix

About This Gulde

Where to Go For More Information

xx

The Debugger User's Guide is one in a group of related manuals
describing the operating system and programming subjects. These
manuals are described below.

The CTOS System Administration Guide describes the administrative
aspects of the CTOS II operating system. It includes setting up various
operating system types, installing system services, adding application
software, and installing peripheral devices. It also describes SRP
workstation configuration, system protection, nationalization, and
operating system customization.

The CTOS I Open Programming Practices and Standards is a how-to
guide that describes the commonly-used, hardware independent aspects
of programming under CTOS. It covers basic 1/0, error handling,
parameter management, guidelines for protected mode programming,
writing nationalizable programs, writing system services, stack format
and calling conventions, mixed-language programming, writing
multiprocess programs, overlays, customized SAM, and communications
programming. It includes programming examples.

The CTOS Programming Guide, Volumes I and II describe techniques for
effective programming in the CTOS environment. It concentrates on
CTOS specific hardware and system software programming. Volume I
covers general topics and Volume II covers extended system services and
libraries.

The CTOS Operating System Concepts Manual describes the CTOS/X.E
3.0/3.3, CTOS I 3.3, CTOS II 3.3, and CTOS III 1.0 operating systems. It
provides an explanation of how the operating system works and gives
some orientation to the basic concepts the CTOS programmer needs to
understand.

The CTOS Executive User's Guide describes the most commonly used
Executive utilities and features. It provides step-by-step procedures for
performing many tasks such as copying files, backing up disks, and
creating macros. This guide also includes detailed information about
using the file system.

About This Gulde

The CTOS Executive Reference Manual is organized alphabetically by
command name. It includes detailed information about the Standard
Software commands and special features of the Executive.

The CTOS Editor User's Guide describes how to use the Editor to create
or modify an ASCII text file.

The CTOS Status Codes Reference Manual contains complete listings of
all status codes, bootstrap ROM error codes, and CTOS initialization
codes. The codes are listed numerically with any message and an
explanation.

The CTOS Programming Utilities Reference Manual: Building
Applications describes using the Linker, Librarian, and Assembler.

The CTOS Procedural Interface Reference Manual covers each of the
programming operations for CTOS/XE 3.0/3.3, CTOS I 3.3, CTOS II 3.3,
and CTOS III 1.0. It includes the data structures that are available to
system services and application programs.

The following Intel manuals introduce the microprocessor instructions
for the 80286 and 80386 microprocessors:

• iAPX 286 Programmer's Reference Manual

• 80386 Programmer's Reference Manual

• i486 Microprocessor Programmer's Reference Manual

For a tutorial introduction to the basic 8086 instruction set, it is
recommended that you examine the 8086/8088 Primer by Stephen P.
Morse. You can purchase this manual at your local computer bookstore.

Most Debugger commands work the same in real and protected mode.
However, because of addressing differences and the expanded cap­
abilities of protected mode operation, this guide introduces a few
commands specifically designed for debugging in protected mode.
Additionally, certain existing commands are enhanced.

This guide identifies the features that are unique for protected mode
operation in the appropriate sections where they occur. Furthermore, if
a particular protected mode concept or structure is introduced, you are
directed to an appropriate source for more information.

xxi

About This Gulde

The following sources provide additional information on protected mode:

• iAPX 286 Programmer's Reference Manual

• 80386 Programmer's Reference Manual

• i486 Microprocessor Programmer's Reference Manual

• CTOS I Open Programming Practices and Standards

• CTOS Operating System Concepts Manual

Conventions Used in This Guide

xx ii

The following conventions are used throughout this guide.

• In the text, commands that use CODE in combination with another
key are shown as

CODE·[the name of the key]

• For readability in CODE-key combinations, the name of the key is
always shown in uppercase, but use the lowercase letter unless
SIDFT is specifically indicated. For example:

CODE·R

is different from

CODE·SmFT·R

• In the Debugger scripts in this guide, the CODE commands are
shown as

"[name of the key]

• Commands that use the arrow keys are shown in the tutorial as

i

J.

About This Gulde

In the rest of the guide, the arrow keys are spelled out (i.e., DOWN
ARROW).

• Memory addresses are indicated as

addr

Memory addresses can be segmented addresses (logical or symbolic)
or they can be linear addresses. The exceptions are addr used with
the CODE-G and the CODE-T commands. In these commands,
addr can only be a segmented address.

• In the text, MARK is spelled out. In the Debugger scripts in the
printed version of this guide, MARK is also spelled out. For
illustrative purposes, there are a few instances in this guide where
you will see a solid right triangle. It displays when you press the
MARK key.

xxiii

Section 1
Overview

What is a Debugger?
A debugger is a software tool you can use for identifying and correcting
run-time errors in your programs. Basically, a debugger eliminates your
having to add extra output checking statements to examine the results of
execution. With most debuggers, you can set breakpoints to execute
portions of your program up to the break you set. Then, you can examine
the parameters, for example, that you passed to a procedure, or the
results returned after a procedure is executed.

With any debugger, your main concern is to check the code you have
written, not the code in system procedures. System procedures have
already been tested to work properly for you. Usually, you find errors in
the parameters passed to these procedures.

Another common source of error results from incorrect loop logic. You
can use a debugger to check the results of looping at various stages of
execution.

There are two types of processor modes in which the Debugger operates:
real mode and protected mode.

The main reason you would use the Debugger is to check the stack and
error codes. You check the parameters passed by examining what gets
pushed onto the stack before a call is made. By executing a system call
that returns an error code, you can check the error code upon the return.
Typically, a zero value indicates successful execution. In this way, you
can focus your debugging activity on those procedures that return
nonzero values.

1-1

Overview

It is not within the scope of this guide to provide all approaches you can
use to debugging. However, the exercise in Section 3, "Debugging
Session," as well as those in Appendix D, "Debugging Tips," should help
you with basic approaches to the most common problems you should
encounter. In addition, these exercises provide hands-on experience with
the most commonly used Debugger commands. The more familiar you
are with the commands, the more tools you will have to work with.

CTOS I, CTOS/XE, CTOS II, and CTOS Ill
Debuggers

1-2

This guide describes the debuggers for all the following operating
systems:

• CTOS I (real mode operating system)

• CTOS/X.E (protected mode)

• CTOS II (protected mode)

• CTOS III (protected mode)

Although each of the debuggers is different from the others, with a few
noted exceptions, the commands function in the same way whether you
use a real mode or protected mode Debugger. For this reason, these
debuggers are referred to generally as the Debugger in the text of this
guide. (To help you determine which features are supported by your
version of the operating system, see Appendix H, "Debugger Features
Matrix.")

The Debugger runs concurrently with other user and system processes.
It responds to commands as you type them. The parameters of Debugger
commands can include numeric literals, fundamental 80X86 processor
family symbols, and also symbols defined in the program being debugged.

You can use the Pebugger with programs written in assembly language,
compiled BASIC, FORTRAN, FORTRAN-86, Pascal, PUM, C, and C++.

Overview

Configuration
To use the Debugger, you must configure it in your version of the
operating system. (For details, see the CTOS System Administration
Guide.) The procedure for configuring the Debugger is different if you
are using a shared resource processor™ <XE-520 or XE-530) system. (For
details, see Appendix B, "Shared Resource Processor Debugging.")

There are, in addition, other Debugger configuration options in the
system configuration as well as in the Context Manager™ configuration
file. (For details, see Appendix F, "Configuration Options for the
Debugger.")

If you attempt to start the Debugger when the Debugger run file is not
present, the system beeps. In this guide, it is assumed that your system
has a Debugger installed.

Features
The Debugger has several important features:

• It is a symbolic debugger.

• It is a system debugger.

• It supports common debugging techniques.

The Debugger is a symbolic debugger. This means that if you have
declared an address public in your program and you linked your program
such that a symbol file will be generated (as described in the CTOS
Programming Utilities Reference Manual: Building Applications), you
only need to know the symbolic names of the addresses to examine
memory, set breakpoints, or perform various functions. To use symbolic
names, you load the symbol file for your program. This feature simplifies
the debugging process and is described in Sections 3 and 4.

The Debugger is a system debugger as well as an applications debugger.
The Debugger is applications-independent, so it does not require that
your program be bound to an application. At any time while you are in
the Debugger, you can set the Debugger internal process register (PR) to
the process you want to debug, whether it be a system or an application
process. Then, you can debug that process. Details on how to set PR are
contained in Section 6 and later sections in this guide.

1-3

Overview

1-4

The Debugger supports common debugging techniques such as setting
and querying breakpoints and executing instructions one at a time
(single stepping) through sections of code. Using breakpoints is
described in detail in Section 8.

Figure 1-1 illustrates debugging in relation to other steps to developing a
program.

Figure 1-1. Debugging Relative to Other Program Development Steps

Edit

Program

Compile

Object Module

Symbol file I· Link • CTOS Library

I
I
I Run File
I
I
I
I Execute .,.__.Executive/ Context Manager I
I i I
L ___ __.

Debug 5511.1-1

Section 2
Concepts

This section describes the concepts and terminology that are
fundamental to understanding the Debugger functions.

Commands
The Debugger commands invoke various Debugger functions described in
detail in this guide. The paragraphs that follow generally describe the
command format and command parameters.

Command Format

All Debugger commands have the same format: from 0 to 3 typed-in
parameters separated by commas, followed by one command keystroke.

The majority of Debugger commands are entered by holding down the
CODE key and pressing another key at the same time. Following are
examples:

RIGHT ARROW

CODE-R

38DD
(press CODE-B)

20, DS:lO
(press CODE·D)

112A,2F20, " 'ABC' "
(press CODE-0)

A command. with no parameters

A command with no parameters

A command with one parameter

A command with three parameters

A command with three parameters

2-1

Concepts

In the preceding examples, CODE-X indicates a Debugger command that
is given by holding down the CODE key while a second key is pressed.
Some commands are given by holding down CODE and SHIFT plus
another key. Note that the Debugger is not case sensitive.

Command Parameters

2-2

The Debugger accepts parameters·similar to the parameters permitted in
assembly language. Multiple parameters are separated by commas. The
acceptable Debugger parameters are indicated below:

• Constants (numbers, ports, and text).

• Symbolic characters, such as parentheses () or brackets [].

• Composite parameters formed using parentheses and separated by
commas.

• The minus sign(-).

• The PTR (pointer) operator, which indicates the type of operand you
are using, as shown below:

MOV BYTE PTR (14],2

MOV WORD PTR [14),2

In these displays, BYTE PTR points to a byte, and WORD PTR points to a
word. If the type of the operand is not implied, you must use the PTR operator.
Never use PTR alone, but always with BYTE or WORD.

• The following arithmetic operators:

+ (addition)

- (subtraction)

* (multiplication)

I (division)

Concepts

• Address expressions, such as those shown below:

[BX]

[BP][Dl+3] (indexed)

• Symbolic instructions, such as those shown below:

PUSH BP

MOVBP,SP

SUB SP,4

Constants (Numbers, Ports, and Text)
The Debugger recognizes number, port, and text constants. Each of
these constant types is described in the paragraphs that follow.

Numbers
The Debugger accepts decimal and hexadecimal numbers. Acceptable
numbers are 0 through 9 and A through F. Decimal numbers are
indicated by a decimal point (.).

Note: The Debugger interprets a number that ends with an h, or that
does not include either a decimal point or the h, as a
hexadecimal number.

You must include a leading zero (0) preceding the character for a number
that begins with the characters A through F. Examples of numbers
appear below:

123h Hexadecimal number

123 Hexadecimal number

123. Decimal number

OAF Hexadecimal number

AF Not a valid number

2-3

Concepts

Ports

Text

A port constant is a number followed by the character i or o. An i
indicates that the port is a processor input port. An o indicates that the
port is an output port. Examples of port constants appear below;

• 12i Input port that has port address 12

• OA2o Output port that has port address OA2

The Debugger c~ both read and write an input port constant. However,
the Debugger never reads an output port constant. The LEFr ARROW
(+-)and RIGHT ARROW(~) commands open output ports for
modification without reading them.

A text constant is a sequence of characters enclosed within single
quotation marks. To include a single quotation mark in a text constant,
you should type another single quotation mark in front of the mark to be
enclosed, for example

'abed' The four-character text constant 'abed'

''a' The two-character text constant 'a (consisting of a single
quotation mark and the letter a)

Text constants consisting of one or two characters can be used wherever
a number (a numeric constant) can be used. However, text constants
consisting of more than two characters can be used only with the
CODE-F, CODE-0, and HELP commands.

Symbols

2-4

A symbol is a sequence of one or more alphanumeric and special
characters. A symbol must begin with an alphabetic character; it cannot
begin with a numeral.

Concepts

The special characters are

• underscore U
• period(.)

• dollar sign ($)

• percent sign(%)

• pound sign(#)

• exclamation mark(!)

The Debugger recognizes five types of symbols:

• User-defined public symbols, such as those in a symbol file produced
by the Linker from a source program, for example, INIT and
CHECKERC. (See the CTOS Programming Utilities Reference
Manual: Building Applications for details on the Linker.)

• Standard processor register mnemonics, such as AX, BL, and SI.
(See "Processor Registers" in Section 6, "Working With Registers.")

• Nam es of Debugger state variables, such as the process register PR.

• The period (.), which indicates the value of the segment and offset
for the most recently opened location. (See "Current Location.")

• The word PatchArea. PatchArea indicates the 50-byte space used
for creating conditional breakpoints. (See "Setting Conditional
Breakpoints: CODE-A" in Section 8, "Using Breakpoints.")

For examples of symbols, see "Address Expressions."

2-5

Concepts

Symbol Files

A symbol file is used during debugging. The file identifies the locations
of public symbols defined in a program so that the Debugger can locate
them when you instruct it to do so. The symbol file is created by the
Linker and is named

RunFileName.sym

For further details, see Section 4, "General Purpose Functions and
Features." Alternatively, symbol information can be added to the run file
as a resource. See Section 4, "General Purpose Functions and Features."

Address Expressions

2-6

Address expressions in the Debugger have the same structure and
semantics as address expressions in assembly language. Examples of
address expressions appear below:

sbVerrun Represents the simplest address expression (a
symbol).

RgParam+(l00/2) Is a more complex address expression involving a
composite parameter.

[BX+5] Is an indexed address expression. BX is an index
register, and the brackets ([])usually mean the
contents are indexed.

ES:[BX+5][SI] Is a doubly indexed address expression having a
segment override prefix. ES is the segment override
prefix.

Concepts

Symbolic Instructions
Symbolic instructions in the Debugger have basically the same structure
and semantics as they do in assembly language. If the instruction con­
tains an offset, the Debugger will look up the symbol for it. Examples of
symbolic instructions appear below:

MOV AX, WORD Pl'R [BX+5]

LOCK INC [BX]

Current Value
The Debugger stores a special value that is either the value most
recently displayed by the Debugger, or the value that you typed most
recently. This value is called the current value.

To display the current value again, type an equals sign (=). You can also
display the current value in a different number system. (For details, see
"Changing the Base of a Number System: CODE-R" in Section 4,
"General Purpose Functions and Features.")

Current Location
The Debugger stores the logical address, that is, the address in the form

SA:RA

of the most recently opened location. This location is called the current
location.

Instead of typing out the current location (or its public symbol) as a
Debugger command parameter, you can instead refer to it simply by
typing a period (.). (For practical examples of how you can use this
feature, see Section 3, "Debugging Session." Also see Section 8, "Using
Breakpoints.")

2-7

~

Concepts

Debugger Modes
The Debugger operates in one of three different modes depending on how
you've activated it. The modes are simple, multiprocess, and interrupt.
Which mode you use depends upon the mode your program is designed to
use. The modes and their associated usages are as follows:

Simple mode Used for programs that perform a single process
user task.

Multiprocess mode

Interrupt mode

Used for programs that depend on continuous
execution of all processes except processes that
are explicitly stopped at breakpoints.

Automatically invoked when breakpoints are
encountered when interrupts are disabled.

The way the Debugger functions in each of these modes is described in
detail in Section 9, "Debugger Modes."

Processor Modes

2-8

The Debugger also operates in two different processor modes (that is,
real mode and protected mode). The mode in which the Debugger is
operating is reflected by the Debugger prompt displayed. (For details,
see "Debugger Prompts" in Section 4, "General Purpose Functions and
Features.")

Section 3
Debugging Session

What to Expect From This Debugging Session
In this section you will use the Debugger to debug a short Pascal
program. The program opens a file (byte stream), reads and tests it byte
by byte, and writes it to the screen.

This debugging session is intended to acquaint you with some of the more
commonly used Debugger commands. Although you are not required to
understand assembly language, you will be introduced to some assembly
language instruction sequences that you will recognize as patterns again
and again in almost every program you debug. In addition, comments
accompanying this session describe what is happening on the stack as
parameters are pushed onto it and stack space is allocated for local
variables. You can complete this exercise without knowing standard
stack format, but familiarity with stack conventions is recommended
before you do any serious debugging.

Note: Stack conventions concerning local variables and parameter
passing are language specific. This guide shows the stack as it
would appear when using either a Pascal or PL IM compiler.
For details, see your language manual.

For your reference, stack conventions are described in detail in
Appendix C, "Stack Format." Other useful debugging guidelines,
including more practice with this program, are included in Appendix D,
"Debugging Tips."

3-1

Debugging Session

The Program
You will be debugging a Pascal program called DisplayFile. (See
Figure 3-1 below.) Pascal is a relatively easy high-level language to read
even if you have never coded in it. Following is a brief summary of the
main program and procedures.

Note: In Figure 3-1, the first line displayed (that is, {$Debug-}) is a
Pascal compiler metacommand. It is not related in any way to
the Debugger commands.

Main Program
The main program opens a text file (byte stream) in text mode (mt) by
calling the OpenByteStream operation. Opening a file in text mode
results in the file being read from the beginning up to the formatting
information, which is ignored. (Text mode is described in the CTOS
Procedural Interface Reference Manual in the description of
OpenByteStream.)

After called procedures process each byte, the main program closes the
file, and the program terminates.

The Process and TypeSub Procedures

3-2

To process each byte in the file, the main program calls the Process
procedure. Process, in turn, calls TypeSub, which actually performs the
processing. TypeSub reads and tests each byte to determine if the byte is
text, which should be written to the screen, or ifthe byte is the end of file
(EOF).

When TypeSub detects the EOF, it returns to the Process procedure.
Process then writes the string 'Finished' after the last text byte written
to the screen.

Debugging Session

Figure 3-1. DlsplayFlle.pas Source Program

($Debug-}
PROGRAM DisplayFile;

CONST

TYPE

ercOK = O;
ercEOF = 1;
rnt = #6d74;

Pointer
Ere Type

ADS of Byte;
Word;

VAR [EXTERN]
bsVid: Array (1 .. 130] of Byte;

VAR [PUBLIC]
BSWA
done
ere
junk
buffer
count

PROCEDURE Exit; EXTERN;

FUNCTION OpenByteStream
pBSWA
pbFileSpec
cbFileSpec
pbPassWord
cbPassWord
mode
pBufferArea
sBufferArea

FUNCTION CloseByteStream
pBSWA

FUNCTION WriteByte
pbs

FUNCTION ReadByte
pbs
pbRet

:Array [1 .. 130] of Byte;
:String (8);
:Erctype;
:Word;
:String (1024);
:Integer;

:Pointer;
:Pointer;
:Word;
:Pointer;
:Word;
:Word;
:Pointer;
:Word) : ErcType; EXTERN;

:Pointer) : ErcType; EXTERN;

:Pointer; b: Byte): ErcType; EXTERN;

:Pointer;
:Pointer) : ErcType; EXTERN;

3-3

Debugging Session

3-4

Figure 3-1. Dlsplayflle.pas Source Program (cont.)

FUNCTION WriteBsRecord
pBS :Pointer;

:Pointer;
:Word;

pbmsg
cbs
pcbret :Pointer) : ErcType; EXTERN;

PROCEDURE CheckErc (ercCode: Word); EXTERN;

PROCEDURE FatalError (ercCode:Word); EXTERN;

FUNCTION WriteAByte (pbsOut: Pointer;
b: Byte): ErcType [PUBLIC];

VAR ere : Word;

BEGIN
WriteAByte := WriteByte (pbsOut, b);

END;

PROCEDURE TypeSub (pbsin,
pbsOut: Pointer) [PUBLIC];

VAR b: Byte;
ere : Word;

BEGIN

END;

WHILE TRUE DO
BEGIN

ere:= ReadByte (pbsin, ADS b);
If ere = ercEOF then

RETURN;
If ere <> ercOK then
FataiError (ere);
count := count + l;
CheckErc (WriteAByte (pbsOut, b));

END;

PROCEDURE Process [PUBLIC];
BEGIN

END;

count := 0;
done := 'Finished';
TypeSub (ADS BSWA, ADS bsVid);
CheckErc (WriteBsRecord (ADS bsVid, ADS done, 9,

ADS junk));

BEGIN
.CheckErc (OpenByteStream (ADS BSWA,

ADS 'DisplayFile.pas', 14, ADS NULL, 0, mt,
ADS buffer, 1024));

Process;
Checkerc (CloseByteStream (ADS BSWA));

END.

Debugging Session

Required Files
The files you need to work through this debugging exercise are on the
diskette packaged with this guide. These files are listed and described
below:

The source code for DisplayFile.

The run file for Display File.

Display File.pas

DisplayFile.run

DisplayFile.sym The file to which the Linker wrote a symbol table of
the run file when DisplayFile was linked. The
symbol table notes the location of all of the public
symbols within the program.

You will find these files in the <Program> directory on the diskette.
Copy these files to your working directory.

3-5

Debugging Session

Starting the Debugging Session

3-6

In the Executive, invoke the Run command. Type Run on the command
line, and complete the command form as shown below:

Run
Run file
[Case]
[Parameter l]
[Parameter 2]
[Parameter 3]

[Parameter 16]

DisplayFile.run

Do not press GO. Instead, press the key combination CODE-GO. By
doing so, the operating system will load the program and enter the
Debugger before executing the first instruction.

Note: It is assumed in this guide that you have the Debugger installed
on your workstation. For details, see your operating system
release documentation.

Read the comments accompanying the Debugger script that follows.
Note that these comments are numbered to correspond with the script
line numbers. You will be asked to type certain characters that appear
in boldface in the script. These characters will be introduced in the
comments.

Debugging Session.

Exiting the Debugger
You can exit the Debugger at any time during this session; just press
GO. However, this program has a bug. If you exit before fixing the bug,
the program will terminate with the following message:

Application error: No such file (Error 203)

Address Differences
Do not be too concerned if the addresses in the script do not exactly
match the results you see on your screen. The values of segment
addresses (SAs) are relative to the memory configuration of the
workstation upon which this script was created.

3-7

Debugging Session

Script

3-8

Line
number

1

2

Script

*'DisplayFile.sym'Af

*DisplayFileAb GO

*

Comments

Line
number

1

2

Debugging Session

Comment

To load the symbol table file, type the name of the symbol file
within single quotation marks, as shown below:

'DisplayFile.sym'

Then press CODE and F at the same time. (In the text of
this guide, pressing a key combination for a Debugger CODE
command appears as CODE-KEY.)

In the Debugger, pressing CODE-F is displayed as "f. The
script shows these characters in boldface. The comments
desciibe what keys to press to display the boldface
characters. In CODE-KEY combinations, uppercase is used
in this guide for readability. Unless SHIFr is specified, use
lowercase.

To set a breakpoint at the beginning of the program code,

type DisplayFile (press CODE-B)

Display File is the starting address of the. program code. In
Pascal, DisplayFile is equivalent to the procedure ENTGQQ.

To execute the program up to DisplayFile (ENTGQQ), you
must then press GO, but before pressing GO, look again at
line 2 in the script:

This line means you are to type the symbol DisplayFile, press
CODE-B, then press GO. The Debugger is case insensitive,
so you can type uppercase or lowercase letters.

Press GO

3-9

Debugging Session

Script

3-10

Line
number

3

4

5

6

Script

Exiting Debugger

Break at ENTGQQ in process OD

*cs: ip MARK PUSH BP .!,

*ENTGQQ+l MOV BP,SP .!,

Comments

Line
number

3

4

5

6

Debugging Session

Comment

The Debugger exits and prints the message

Exiting Debugger

When the program has completed execution up to ENTGQQ,
control passes back to the Debugger, which displays a
description of the break. The description consists of the
breakpoint address (ENTGQQ) together with the number of
the suspended process (OD). Then the Debugger displays the
Debugger prompt (*) and waits for further command input.

To display the next instruction to be executed,

type CS:IP (press MARK)

CS is the code segment, and IP is the instruction pointer.

A triangle appears on the screen .when you press MARK.
Then the Debugger displays (but does not execute) PUSH BP,
the next instruction to be e~ecuted.

PUSH BP saves the value of the base pointer (BP) on the
program's stack.

Press DOWN ARROW (J,)

DOWN ARROW lets you view (but does not execute) the
instruction following PUSH BP.

MOV BP,SP sets BP equal to the stack pointer (SP).

Press DOWN ARROW

3-11

Debugging Session

Script

3-12

Line
number

7

8

9

10

Script

*ENTGQQ+3 MARK SUB SP,4 ~

*ENTGQQ+7 MARK MOV AX, OFOF8 RETURN

*BSWA = 0DBF2:0FOF8

*MARK MOV AX, OFOF8

Comments

Line
number

7

8

9

Debugging Session

Comment

SUB SP, 4 subtracts 4 bytes for local or temporary variables.
In this case, the main program is allocating 4 bytes for
temporary storage. Collectively, this instruction and the
instructions on lines 5 and 6 are the stack prologue. This
instruction sequence (or a similar sequence, depending upon
the program language you are using) occurs atthe beginning
of the program and at the beginning of every procedure.

Press DOWN ARROW

Line 8 moves the offset of the variable BSWA (first
parameter) into AX.

Press RETURN

To show the actual segment address and offset (SA:RA) of the
variable BSW A,

typeBSWA=

The Debugger displays the address ODBF2:0FOF8.

10 To redisplay the instruction shown on line 8,

press MARK

The instruction on line 8 is redisplayed because, when you _
pressed RETURN following that instruction, RETURN just ·
closed the location but it did not open a new one. Had you
pressed DOWN ARROW, on the other hand, the next
location would have been opened (and a new instruction
displayed).

3-13

Debugging Session

Script

Line
number Script

11 *ENTGQQ+OA MARK PUSH DS

12 *ENTGQQ+OB MARK PUSH AX .!,

13 *ENTGQQ+OC MARK MOV AX, OFD2D .!,

14 *ENTGQQ+OF MARK PUSH DS .!,

15 *ENTGQQ+lO MARK PUSH AX .!,

16 *ENTGQQ+ll MARK MOV AX,OE MOV AX,OF .!,

3-14

Comments

Line
number

11- 15

Debugging Session

Comment

To view the instructions on lines 11 through 15,

press DOWN ARROW

The MOV and PUSH instructions on these lines (as well as
the MOV instruction on line 8) indicate that a procedure call
is about to be made. In this case, the parameters to the next
call, OpenByteStream, are being pushed onto the stack.
These instructions are described below.

On lines 11 and 12, the data segment (DS) and offset of
BSWA (first parameter) are being pushed onto the stack.

Line 13 moves the offset of the string literal 'Display File.pas'
(second parameter) into AX.

On lines 14 and 15, the DS and offset are pushed.

Press DOWN ARROW

16 MOV AX,OE moves the third parameter into AX. The
hexadecimal value OE shown in this instruction is the byte
count of the 'DisplayFile.pas' string. If your workstation
displays 14. (note the decimal point following 14) instead of
OE, you will need to change the radix (number system base)
displayed from decimal to hexadecimal. To do so, just press
CODE-R. ·

If you count the characters in the 'DisplayFile.pas' string, you
will note that there are 15 (OFh), not 14 (OEh). If you were to
execute this instruction, the program would terminate with
error code 203 (No such file). To correct the error,

type MOV AX,OF

to the right of the erroneous instruction, as shown in the
script, then press DOWN ARROW.

3-15

Debugging Session

Script

Line
number Script

17 *ENTGQQ+l4 MARK PUSH AX i

18 *ENTGQQ+ll MARK MOV AX,OF J,

19 *ENTGQQ+l4 MARK PUSH AX J,

20 *ENTGQQ+lS MARK MOV AX, 0FD3C J,

21 *ENTGQQ+l8 MARK PUSH DS J,

22 *ENTGQQ+l9 MARK PUSH AX J,

23 *ENTGQQ+lA MARK XOR AX,AX J,

24 *ENTGQQ+lC MARK PUSH AX J,

25 *ENTGQQ+lD MARK MOV AX, 6D74 J,

26 *ENTGQQ+20 MARK PUSH AX J,

27 *ENTGQQ+21 MARK MOV AX, OF136 J,

28 *ENTGQQ+24 MARK PUSH DS J,

29 *ENTGQQ+25 MARK PUSH AX J,

30 *ENTGQQ+26 MARK MOV AX,400 J,

31 *ENTGQQ+29 MARK PUSH AX J,

3-16

Comments

Line
number

17

Debugging Session

Comment

Line 17 shows the next instruction. To redisplay the previous
instruction (the one you corrected),

press UP ARROW

18 The instruction displayed is correct now on line 18.

19 To move on to the next instruction shown on line 19 again,

20- 31

press DOWN ARROW

To view the MOV and PUSH instructions on lines 20 through
31,

press DOWN ARROW

These instructions get the remainder of the parameters to
OpenByteStream onto the stack. A few of these are
commented on below.

On line 23, XOR AX,AX sets the value of AX to 0.

On line 24, the fifth parameter (password byte count of O) is
pushed onto the stack.

On line 25, the characters 60 and 74 are the ASCII codes for
m and t, respectively. Mode text (mt) is the mode in which
the file is opened.

Line 30 moves the last parameter 400h (1024 decimal) into
AX.

3-17

Debugging Session

Script

3-18

Line
number

32

Script

*ENTGQQ+2A MARK CALL OPENBYTESTREAM .J,

33 *ENTGQQ+2F MARK PUSH AX . "b GO

34 Exiting Debugger

35 Break at ENTGQQ+2F in process OD

36 *a:x: ~ 0000 RETUIW

Comments

Line
number

32

Debugging Session

Comment

This instruction calls OpenByteStream. Figure 3-2 (at the
end of this section) shows the stack at this point.

Press DOWN ARROW

33 PUSH AX is the first instruction to be executed following a
return from the OpenByteStream call. The error code from a
CTOS call is returned in the AX register.

To set a breakpoint at this instruction,

type a period (.) (press CODE-B)

The period (.) means "at the current location." In this case,
the location is the address of the instruction PUSH AX.

Press GO

34 Exiting Debugger

35 Break at ENTGQQ+2F in process OD

36 To look at the contents of AX,

type ax (press RIGHT ARROW)

The Debugger displays 0000. An error code of 0 means that
the call to OpenByteStream was successful.

Press RETURN

3-19

Debugging Session

Script

Line
number Script

37 *TypeSub MARK PUSH BP J.

38 TYPE SUB+ 1 MARK MOV BP, SP J.

39 TYPESUB+3 MARK SUB SP,4 J,

40 TYPESUB+7 MARK PUSH WORD PTR [BP+OC] J,

41 TYPESUB+OA MARK PUSH WORD PTR [BP+OA] J,

42 TYPESUB+OD MARK LEA AX, WORD PTR [BP-2) J.

43 TYPESUB+lO MARK PUSH DS J.

44 TYPESUB+ll MARK PUSH AX J,

45 TYPESUB+l2 MARK CALL READBYTE J,

Comments

Line
number

37

38

39-44

Debugging Session

Comment

To move on to the TypeSub procedure,

type TypeSub (press MARK)

PUSH BP starts the stack prologue for the TypeSub
procedure.

Press DOWN ARROW

MOV BP, SP continues the stack prologue.

To view the instruction sequence on lines 39 through 44,

press DOWN ARROW

The sequence shows parameters being pushed onto the stack
for the call to ReadByte. A few of the lines are described
below.

Line 39 subtracts 4 bytes from SP to allocate space for local
variables. TypeSub has 3 bytes of local variables, but only
words (2 bytes each) can be pushed onto .the stack.

Lines 40 through 44 push the parameters to ReadByte onto
the stack. These parameters (pbsln and ads b) are not public
variables but a parameter and an address of a local variable,
so their locations are displayed. Square brackets ([]) indicate
the contents at this location. Line 40 shows the location
BP+OC, for example.

45 This instruction calls ReadByte.

Press DOWN ARROW

3-21

Debugging Session

Script

3-22

Line
number

46

47

48

49

50

Script

TYPESUB+l7MARK MOV WORD PTR [BP-4],AX .Ab GO

Exiting Debugger

Break at TYPESUB+17 in process OD

*a:x: ~ 0000 RETURN

TYPESUB+17
ENTGQQ+2F count remaining 1
ENTGQQ count remaining 1

51

52

53 WriteAByte GO

54 Exiting Debugger

Comments

Line
number

Debugging Session

Comment

46 Set a breakpoint at the return of the call to ReadByte as
shown in the script. Then press GO.

47

48

49

Exiting Debugger

Break at TYPESUB+l 7 in process OD

To examine the value in the AX register,

type ax (press RIGHT ARROW)

If there was an error in executing ReadByte, the error code
would show up in this register.

Press RETURN

50 To show all break.points set so far,

press CODE-B

51 To clear all break.points,

press CODE-C

Then press RETURN

52 Check that the breakpoints are cleared.

Press CODE-B

53 Set a break.point at the procedure WriteAByte as shown in
the script. (You do not need to use the period(.) unless you
also pressed MARK to show the instruction at this location.)

54 Exiting Debugger

3-23

Debugging Session

Script

3-24

Line
number

55

56

Script

Break at WRITEABYTE in process OD

100. ""p

57 Exiting Debugger

58 Break at WRITEABYTE in process OD

59 *count ~ 0065 RETURN

60 *""r=lOl.

61 *""r=0065

62 *""u

Comments

Line
number

55

56

Debugging Session

Comment·

Break at WRITEABYTE in process OD

WRITEABYTE is called repeatedly in a While loop. With
each iteration, one charater from the file DisplayFile.pas is
written to the screen. To check the loop after 100 iterations,

type 100. (press CODE-P)

See line 53. Since the Debugger already has breakpointed at
WriteAByte once, it will stop executing at the lOlst iteration.

57 Exiting Debugger

58 Break at WRITEABYTE in process OD

59 Examine the value of the Count variable as shown in the
script. The Debugger displays 0065, the count in
hexadecimal.

Press RETURN

60 To change this value to 101. (decimal),

press CODE-R

Note the decimal point(.) following the decimal number.

61 Change this value back to hexadecimal by pressing CODE-R
again.

62 To display the user screen,

press CODE-U

The display shows the output of your program so far, that is,
the first 100 characters in the file DisplayFile.pas. If you try
to count the characters, however, you may run into some
difficulty: the count includes all tabs, returns, and spaces.

3-25

. Debugging Session

Script

Line
number

63

64

Script

*"'c

*"'t
0 F06E
1 F07C
2 F08A
3 F094
4 F09A

WRITEABYTE (1320,0,0DBF2,0F688,1320)
TYPESUB+42 (0DBF2,0FOF8,0DBF2,0F688)
PROCESS+29 (282, 0EBF6)
ENTGQQ+3A
BEGXQQ+98

65 *PROCESS+29 "'b GO

3-26

Comments

Line
number

63

64

Debugging Session

Comment

To return to the Debugger screen, press any key except
CODE-U. (Once in the Debugger, you can backspace over the
character displayed by the key you pressed.) Then, to clear
all breakpoints, press CODE-C.

To display a trace of the stack,

press CODE-T

The Debugger displays the instructions returned to from
called procedures. In the script, for example, when
WRITEABYTE finishes, it returns to the instruction in the
TYPESUB procedure located at TYPESUB+42. Similarly,
when TYPESUB finishes, it returns to the instruction at
PROCESS+29 in the PROCESS procedure, and so forth.

A stack trace displays only the current call sequence. If you
were to use CODE-T to examine the display again after
WRITEABYTE returned to TYPESUB, you would no longer
see WRITEABYTE displayed on the first line. Instead, you
would see TYPESUB+42. CODE-T is useful for quick
troubleshooting, because it displays key locations at which
you can set breakpoints and check the contents of AX. (For
further information, see "Stack Format" in Appendix C,
"Stack Format.") ·

65 To set a breakpoint at the return of the call to TypeSub,

type PROCESS+29 (press CODE-B)

(You do not need to use the period(.) unless you also pressed
MARK to show the instruction at this location.)

Press GO

3-27

Debugging Session

Script

Line
number

66

Script

Exiting Debugger

67 Break at PROCESS+29 in process OD

68 *cs: ip MARK MOV AX, OF688 t

69 PROCESS+24 MARK CALL TYPESUB

71 Exiting Debugger

3-28

Comments

Line
number

66

67

68

Debugging Session

Comment

Exiting Debugger

Break at PROCESS+29 in process OD

To display the instruction to be executed at this location,

type cs:ip (press MARK)

To verify the call sequence in the stack trace (line 64), there
should be a call to TypeSub just before the instruction shown
on line 68.

To view the previous instruction,

press UP ARROW

69 This instruction, indeed, is the call to TypeSub.

70 At the end of your debugging session, it is good practice to
clear all breakpoints you have set. To do so,

press CODE-C

71 To exit the Debugger,

press GO

As the program executes to completion, the remainder of the
characters in the file DisplayFile.pas are output to the screen.
Note that the string 'Finished' is displayed following the last
byte in the file. ·

3-29

Debugging Session

3-30

Figure 3-2 shows the stack right after the call to OpenByteStream.
Addresses are relative to the workstation's specific memory
configuration. See Appendix D, "Debugger Tips," for additional exercises
in examining and interpreting what is on the stack.

In the figure, note that the CS and IP are also on the stack, yet there is
no visible evidence in the Debugger script (lines 5 through 31) of how
they got there. This is because the CS and IP are actually pushed onto
the stack by the call to OpenByteStream.

Debugging Session

Figure 3-2. Stack After Call to OpenByteStream

Parameters Stack Contents

BP 28E6

28E4

28E2

SP,BP BP 28E6 28EO

2 BYTES OF LOCALS 28DE

2 BYTES OF LOCALS 28DC

pBSWA SP ·S 0DBF2 28DA

AX OFOFB 28D8

pbFileSpec DS 0DBF2 28D6

AX 0FD2D 28D4

cbFileSpec AX F 28D2

pbPassword DS 0DBF2 28DO

AX 0FD3C 28CE

cbPassword AX 0 28CC

mode AX 6D74 28CA

pBufferArea DS 0DBF2 28C8

AX OF136 28C6

sBuf f erArea AX 400 28C4

cs 8E67 28C2

SP IP 2 28CO

3-31

Section 4
General Purpose Functions and Features

What are the Debugger General Purpose
Functions?

This section introduces basic Debugger functions. They are either basic
Debugger commands you use every time you use the Debugger, or they
are practical tools that you can use to help you with other Debugging
activities. At the most basic level, you certainly need to know how to
enter and exit the Debugger. You may need to know why there are
several Debugger prompts that can be displayed. Convenient tools help
you make calculations or convert a decimal number to its hexadecimal
equivalent. Commands specific to debugging programs are described in
detail in the remaining sections and appendixes of this guide.

In summary the general purpose functions are:

• Entering the Debugger

• Accessing other shared resource processor boards

• Debugger prompts

• Loading a symbol file

• Exiting the Debugger

• Using the Debugger as a calculator

• · Changing the base of a number system

• Deactivating the Debugger

4-1

General Purpose Functions and Features

The following general purpose Debugger features are supported on
protected mode and real mode CTOSIXE versions of the operating
system. These are

• Using the on line help file

• Programming the function keys

• Using wild card characters for public symbols

• Invoking Context ManagerNM operations

To determine which of these features is supported by your system, see
Appendix H, "Debugger Features Matrix."

Details of General Purpose Functions
General purpose Debugger functions are described in detail in the
paragraphs that follow.

Entering the Debugger

4-2

You can enter the Debugger in any of the following ways:

• On a workstation, when you press ACTION and hold it down while
you press the A key (a procedure indicated throughout this guide as
ACTION-A). Executing the Debugger using ACTION-A places you
in simple mode. In this mode, the Debugger suspends all user
processes. On a shared resource. processor, you press HELP-A
instead of ACTION-A.

• When you press CODE-A in Basic ATE when using the :DebugPort:
option. See Appendix G, "Extended Crash Dump Process," for more
information.

• When you press CODE-GO after typing an Executive command or
selecting an application from the Context Manager menu on a
workstation.

This method of invoking the Debugger was used in the tutorial in
Section 3, "Debugging Session." It loads the program but does not
begin execution until you press GO. CODE-GO is typically used
when you encounter run-time errors in programs you tried to
execute. It allows you to examine and correct code before
attempting to execute your program.

General Purpose Functions and Features

• When a process reaches a previously placed breakpoint.

This is an automatic invocation of the Debugger. The mode in which
the program was running determines which Debugger mode you will
be in when this invocation occurs. (Modes are discussed in
"Debugger Prompts.")

• When you press ACTION·B on a workstation.

ACTION-B is the same as ACTION-A except that user processes
are not suspended. This mode may be useful for debugging
real-time multi-process applications. On a shared resource
processor, you press BELP·B instead of ACTION-B.

The Executive is an example of a multiprocess program. It has two
processes: one accepts user input, and the other updates the time.
If you were to enter the Debugger using ACTION-B (on a
character-mapped workstation), you would note that the time
display continues to be updated because the Executive clock process
is not suspended.

This method of invoking the Debugger is not commonly used because
very few programs are written as multiprocess programs.

• When a process executes an INT 3 instruction.

This is also an automatic Debugger invocation. In this case your
program has executed a Debugger interrupt instruction.

• When a protected mode process executes an instruction that causes
a fault. To enter the Debugger automatically on a fault in protected
mode, you must specify an option in the operating system
configuration file. (For details on all the system configuration file
options for the protected mode Debugger, see Appendix F, ·
"Configuration Options for the Debugger.")

The Debugger interprets keystrokes in a way that minimizes accidental
invocations of the Debugger or termination of the process being executed.
For example, pressing ACTION has no effect unless you press one of
three other keys (A, B, or FINISH) simultaneously.

General Purpose Functions and Features

Accessing Other Shared Resource Processor Boards: CODE-M
For shared resource processor debugging, there are times when you may
want to look at and change the memory contents on a remote board. The
remote board may not have a Debugger installed on it, or perhaps the
board did not boot and you want to find out why.

To access the memory on a remote board, use the CODE-M command
from the Debugger prompt. This displays the memory contents of the
remote board. Once you have accessed the remote board, you can
examine and change the memory contents as well as use all display
commands normally. You cannot set breakpoints, however.

To return to the local board, press CODE-M again.

CODE-Mis supported when you are debugging from real mode to real
mode. If you execute the CODE-M command in protected mode, you will
not be allowed access to a remote board, and an error message is
displayed.

Debugger Prompts

Whenever you use the Debugger, the screen shows your most recent
dialogue and also shows a Debugger prompt. The type of prompt
displayed depends upon three factors: the processor mode, the Debugger
mode, or a special condition.

There are three Debugger modes for each processor mode: simple,
multiprocess, and interrupt. The two processor modes are· real mode and
protected mode. The mode in which your program is running determines
which Debugger prompt is displayed when the Debugger is invoked.

Two special conditions are indicated by unique Debugger prompts. These
conditions are debugging using the Executive command Debug File and
an abnormal system termination.

For real mode debugging, the Debugger prompts are an asterisk (*), a
pound sign (#), a space, a percent sign(%), a greater-than sign (>), or an
exclamation point (!).

General Purpose Functions and Features

These prompts are described in detail in subsequent sections in this
guide. However, they are briefly described below:

*

The Debugger has suspended the current process.

The Debugger has not suspended the current process.

(space) The Debugger is at an open location.

% The Executive command Debug File is in control.

> The system has terminated abnormally.

The Debugger is at an interrupt level.

You should recognize the asterisk(*) from debugging the Display File
program in Section 3, "Debugging Session." The asterisk(*) indicates
that the Debugger has suspended execution of Display File, which is a
real mode program.

For protected mode, the Debugger prompts are the same as those for real
mode but are preceded by either a solid square symbol, indicating
protected mode operation (but not virtual 8086 mode), or an empty
square, indicating virtual 8086 mode. When the solid square appears
preceding the asterisk (*), for example, this means that the Debugger has
suspended execution of the current process in protected mode. (Virtual
8086 mode is a variant of protected mode incorporating a different
addressing style. For details, see the 80386 Programmer's Reference
Manual.)

4-5

General Purpose Functions and Features

Symbol Files

4-6

The Linker produces symbol files containing the addresses of symbols
that you declare public in your program. (For details on the Linker, see
the CTOS Programming Utilities Reference Manual: Building
Applications.) Usually there is only one symbol file produced for each
program.

. A symbol file is used during debugging. The file identifies the locations
of public symbols defined in a program so that the Debugger can locate
them when you instruct it to do so. The symbol file is created by the
Linker and is named

RunFileN ame.sym

Symbol files provide a convenience for you when you are debugging.
Using a symbol file allows you to enter the public symbol for an address
rather than the actual memory address in a Debugger command. If, for
example, you defined the Process procedure as a public procedure in your
program, the symbol file for your program would allow you to enter the
symbol

Process

rather than the logical address of the procedure, such as

ODBFO:OF148

Likewise, the Debugger displays the symbolic names for all addresses in
a symbol file. As an example, when usip.g a symbol file, an instruction
such as

CALL OFFEF:336

might appear as

CALL ErrorExit

To take advantage of your program symbol file when debugging, you
must open the symbol file first. Otherwise, the Debugger cannot refer to
the file.

General Purpose Functions and Features

Special Cases of Opening Symbol Flies

Note that under certain circumstances you may need to perform other
tasks before you can open a symbol file. If, for example, you are
debugging a multiprocess program, you must set the Debugger internal
process register (PR) to the process you want to debug first before
opening the symbol file. Doing so enables the Debugger to calculate the
correct offset at which to load symbols. (For details on setting PR, see
Section 6, "Working With Registers.") In cases where you are doing
advanced debugging, you may need to calculate the load offset yourself.
This may be required, for example, if you are debugging system crash
dump files using the Executive command Debug File. (For details on
calculating the load offset, see Section 11, ''The Executive Command:
Debug File.")

Note: Symbols will work for a Global Descriptor Table (GDT) based
program as long as the program has been loaded contiguously in
the GDT. However, operating systems prior to CTOS III do not
guarantee contiguous loading, it is recommended that symbolic
debugging of GDT-based programs be performed soon after
booting, before the GDT can become fragmented.

Opening and Closing a Symbol File: CODE-F

Unless you are opening a symbol file under the special circumstances just
described, you can open your symbol file simply by typing

'SymbolFileSpec' (press CODE-F)

where SymbolFileSpec is the specification for the symbol file. The
symbol file name must be enclosed within single quotation marks and
must include any appropriate path information.

If, for example, the run file name is Graph.Run in the directory <Dir>,
you can type

'<Dir>Graph.Sym' (press CODE·F)

To close the symbol file of the process currently identified by the Process
Register, type

' '(press CODE·F)

4-7

General Purpose Functions and Features

To load symbols for a dynamic link library (DLL), use the DLL handle
with which to associate the symbol file. Type

n, SymbolFileSpec (press CODE-F)

where n is the DLL handle and SymbolFileSpec is the name of the
symbol file. For more information on DLL handles, see "Displaying DLL
Status: CODE-Z" in Section 7, "Display Commands."

A maximum of 20 symbol files may be open at one time. If you try to
open additional symbol files, the Debugger displays the message:

Too many open symbol files

In this case, you must close a symbol file before you open a new one.

Note: The Debugger uses the path of the current process (PR) when
opening the symbol file.

It is a good practice to open the symbol file when you begin a debugging
session; thereafter, you can use its symbols freely until you end the
debugging session.

CODE-F acts as a toggle that enables or suppresses symbolic output. To
suppress symbolic output, press CODE-F. As a result, the following
message appears:

Symbols OFF

To enable symbolic output again, you press CODE-F. When you do so,
the following message appears:

Symbols ON

The CODE-F command only suppresses symbolic output: you can use
symbols as input to the Debugger any time you are using a symbol file.

Using Symbols as Resources

4-8

Instead of separate files, symbols can be part of the run file. In this case,
the symbol is called a "resource." When you add a symbol file as a
resource, the debugger uses it automatically as you develop your
program. This method eliminates the need to load symbol files.

General Purpose Functions and Features

To make a symbol a resource, use the Resource Librarian command.
Type Resource Librarian on the command line, and complete the
command form as shown below:

Resource Librarian
Run or Resource File
[Resources to add]
[Resources to delete]
[Resources to extract]
[Resources conf ig file]
[Resources list file]
[Suppress confirmation]

App.Run
Debugger.SymbolFile/App.Sym

In the [Resources to add] field, you can supply just the type and the id for
the symbol resource. The type is 20,000 and the id is 1. The field would
look like this:

[Resources to add] 20000.1/App.Sym

For detailed information about how to use the Resource Librarian, see
the discussion on Resource Librarian in the CTOS Programming Utilities
Reference Manual: Building Applications.

Exiting From the Debugger

To exit from the Debugger,

press GO

The Debugger responds by restoring the screen that was present before
you entered the Debugger.

After you press GO to leave the Debugger, the operating system directs
all keyboard input toward a user process.

You can also press ACTION-FINISH to terminate the current program
and invoke the exit run file, provided that the current program has not
called the CTOS procedure DisableActionFinish (TRUE).

4-:-9

General Purpose Functions and Features

Using the Debugger as a Calculator
You can use the Debugger as a calculator at any time. To do so, you press
ACTION-A (HELP-A on a shared resource processor), enter an
expression to be evaluated, and then type an equals sign (=). For
example, if you type

3*7=

the Debugger returns 15 (hexadecimal).

You can also use the calculator mode to change the number base in which
the Debugger expresses values. For example, if you type

800=

the Debugger returns 800, which simply indicates that the hexadecimal
value 800 is equal to itself. To obtain a display of this value in decimal
notation,

type 10. (press CODE-R)

The Debugger returns

=2048.

the equivalent of 800h in decimal notation.

For more information about CODE-R, see "Changing the Base of a
Number System: CODE-R."

Changing the Base of a Number System: CODE-A

4-10

The CODE-R command changes the output radix. The output radix is
the base of a number system in which information is expressed. Decimal,
hexadecimal, octal, or any other base from 2 to 16 can be used.

All memory data is displayed using the radix that is in effect at that
time. Unless you change it, this radix is hexadecimal.

General Purpose Functions and Features

To set the output radix to another base,

type k (press CODE-R)

where k is a decimal number from 2 to 16.

To change the output radix back to hexadecimal from any other base,

type 16. (press CODE-R)

or else simply press CODE-R.

If however, the output radix is already hexadecimal, and you type
CODE-R alone with no parameters, the output radix changes to decimal.

You can also use the CODE-R command to display the current value
(described in Section 2). To do so, type an equals sign (=) after you
specify the base in which you want the values displayed. (In this case,
the equal sign specifies the most recent value.)

For example, if you want the hexadecimal value 100 displayed in decimal
notation, you would type

10. (press CODE-R)

Then you would type

100=

The Debugger responds by displaying the decimal value 256.

Note: The output radix applies only to numbers that the Debugger
displays. Numeric constants that you enter are interpreted or
evaluated independently of the output radix. (For details, see
"Numbers" in Section 2, "Concepts.")

4-11

General Purpose Functions ~nd Features

Deactivating the Debugger: CODE·K

You use the CODE-K command to deactivate the Debugger on CTOS I.
(See Appendix H, "Debugger Features Matrix.")

As used in this guide, the term deactivate means to remove a feature
from the group of features available to the user. Thus, the CODE·K
command prevents you from using the Debugger at all until you reboot.

On systems where CODE-K is not supported, however, the command is
inoperative. If you try to use it, the Debugger displays the message:

Deactivation is not necessary in this version of
Debugger

When you press CODE-K on a real mode system, the Debugger displays
a message asking whether you really want to deactivate it. If so, press
CODE-K again.

Note: You must deactivate the Debugger using CODE-K before you
can install a different version of the Debugger on CTOS I.

Details of the Debugger Features
The details of using the following Debugger features are described in the
paragraphs that follow: ·

• Using online help

• Using programmable function keys

• Using wild cards in public symbols

• Invoking Context Manager operations

4-12

General Purpose Functions and Features

Using Online Help

The Debugger help file (see your release documentation for the specific
help file name) lists all the Debugger commands in alphabetical order
and provides the parameters for each. (Note that these commands are
also listed and summarized in the quick reference accompanying this
guide.) To view the default help file while in the Debugger, press HELP.

You can also open any file you have created that you want to use as a
help file. To do so,

type 'FileSpec' (press HELP)

where FileSpec is the specification (enclosed within single quotation
marks) of the file you want to display. You can, for example, open your
source file as a help file to view your source code while debugging.

To move through a help file,

press NEXT-PAGE or SCROLL-UP

If you know that the information you would like to view is at a certain
location within a help file, you can skip over to that approximate location
by entering one parameter before pressing HELP to open the file. To do
so,

type n (press HELP)

where n is a number from 0 to 9 (representing 0% to 90%) that indicates
approximately how far into the file you will be viewing its contents.

If, for example, you choose to view a command description beginning at
approximately the middle of (50% into) the file,

type 5 (press HELP)

To reset the help file back to the default,

type " (press HELP)

Resetting to the default file closes any help file you may have opened.

4-13

General Purpose Functions and Features

Programmable Function Keys

In addition to the online help file, you can program the function keys (F2
to FlO) to record macros. (Note that the function key Fl is the REDO
key and cannot be used for this purpose.)

To record a macro in the Debugger, select a function key and press it.
Then, enter the keystrokes you want recorded. After you have completed
entering keystrokes, press the function key and the code key at the same
time. Thereafter, pressing that function key will replay the keystrokes
for you.

Reissuing a Command: CODE-H

4-14

The CODE-H command allows you to reissue a command that you
previously typed. When you activate CODE-H, it remembers each
command you execute by giving it a history number. Then, instead of
having to retype a command, just type the history number, and that
command is executed again.

To activate, just type CODE-H. From that point, all commands you type
are given a history number, starting at 1. Then, when you want to
reissue one of those commands, type

historynumber (press CODE-H)

To toggle the command off, type CODE-H.

General Purpose Functions and Features

Using Wild Cards in Public Symbols

As another convenience in debugging, you can use the asterisk (*) and
the question mark (?) as wild cards for characters in a public symbol.
Wild cards work the same way as they do for characters in a file
specification. (For details on wild cards, see the CTOS Executive
Reference Manual.)

Public symbols are typically used as parameters to Debugger commands.
You can use a symbol with wild cards anywhere that you would normally
use the symbol. (For details on the format of commands with
parameters, see "Commands" in Section 2, "Concepts.") In the Debugger,
you type the symbol with wild cards followed by the Debugger command.
If the string you type is unique, the Debugger expands the symbol and
responds to the command. Typing a symbol that is not unique results in
the Debugger displaying the expanded strings for all matching strings.

Unique Symbols

Type a unique symbol such as *ypes* for a public procedure in your
program. Following the symbol, enter the Debugger command you want
to use (for example, the RIGHT ARROW (~) command) as shown below:

type *ypes* (press RIGHT ARROW)

The Debugger responds by displaying the message

Expanding wildcard ...

followed by the expanded symbolic address, such as TYPESUB. In
response to the Debugger RIGHT ARROW command, the Debugger
displays a single word. A typical Debugger response for this example
appears below:

TYPESUB 8B55

4-15

General Purpose Functions and Features

Symbols That Are Not Unique

If the wild card symbol is not unique, the Debugger displays the
expanded symbols for all symbols containing the matching string. As an
example,

type readb* (press RIGHT ARROW)

The Debugger responds by displaying all symbols containing the string
'readb' as shown below:

Expanding wildcard ...

READBYTESTREAMPARAMETERLPT READBYTES READBYTESNOTMMD
READBYTE READBSRECORD ReadByteNotMMD

Expected parameter(s) not found

Invoking Context Manager Operations

4-16

If you are using Context Manager on a workstation running a protected
mode version of the operating system (CTOS II and CTOS III), the
Debugger allows you to invoke Context Manager operations. While
debugging in the Context Manager, you can use the Context Manager
ACTION key combinations, such as ACTION-GO and ACTION-NEXT.
You can also switch to a context that is in the Debugger.

This feature provides the convenience of viewing your source code with
an editor in one context while debugging your program in another. To
switch from the Debugger to your source code, just press
ACTION-NEXT until you reach the editor context. To get back into the
Debugger, press ACTION-NEXT until you reach the context being
debugged. (See your Context Manager manual for details on the use of
ACTION keys.)

Note: You cannot use the ACTION keys in this way if you are using
CODE-I breakpoints, nor can you display the Debugger screen as
a windowed context under the Context Manager.

Section 5
Examining and Changing Memory
Contents

Ways to Look at Memory
There are a variety of ways you can examine memory contents when
debugging. With the Debugger, you can use pointers to display one or
several memory location contents simultaneously. You can also change
the contents of a memory location, open a new memory location, or
search for specific patterns in memory.

You would typically use memory displays when you have localized the
source of an error in your program. If, for example, you suspect there is
something wrong with a particular variable, you can use the Debugger
and an indirect address to examine the memory location of that
instruction. If the contents are correct, you can proceed to the next
potential error location. If the contents are not correct or not what you
expected, you can either modify the contents or change the instruction.

This section describes the commands you can use to examine and change
memory contents. Some examples are provided. For other examples, see
the tutorial in Section 3, "Debugging Session," as well as the exercises in
Appendix D, "Debugging Tips."

Looking at Memory
You can examine the contents of memory by typing a parameter that
designates a machine address, a register, or an internal Debugger
register, followed by a command (LEFT ARROW, RIGHT ARROW,
BOUND, or MARK). The Debugger displays the contents of the
designated address or register and opens that address or register so that
you can change its contents. The commands are as follows:

5-1

Examining and Changing Memory Contents

5-2

• To display a single byte,

type addr (press LEFT ARROW)

• To display a single word,

type addr (press RIGHT ARROW)

• · To display a double word value,

type addr (press BOUND)

• To display a symbolic instruction,

type addr (press MARK)

For example, to display 1 byte at address OAl, you type

OAl (press LEFT ARROW)

The Debugger will return 1 byte of data, such as

lF

To display one word starting at location DS:lOO, you type

DS:lOO (press RIGHT ARROW)

The Debugger returns one word of data, such as

1F20

To display the instruction at CreateISAM+lO, you type

CreateISAM+ 10 (press MARK)

The Debugger returns the instruction at the symbolic address
CreateISAM+lQ. For example, the MARK command might return the
instruction

MOV AX, WORD PTR [BX]

Notice that when you press MARK, a small right triangle appears on the
screen to the right of what you typed. The triangle looks like this:

Examining and Changing Memory Contents

Using Pointers to Display Memory Contents

You can also use indirect addresses to examine bytes, words, and
instructions. You do so by specifying the address of a long pointer that
addresses the byte, word, double word, or instruction that you want to
examine.

To display a single byte that is addressed by a long pointer,

type addr of byte pointer (press CODE-LEFT ARROW)

To display a single word that is addressed by a long pointer,

type addr of word pointer (press CODE-RIGHT ARROW)

To display a symbolic instruction that is addressed by a long pointer,

type addr of instruction pointer (press CODE-MARK)

After you enter the CODE-LEFT ARROW, CODE-RIGHT ARROW,
BOUND, or CODE-MARK command, the open location is the location
addressed by the pointer.

For example, suppose you want to display the byte addressed by a
pointer at location 244. You could first fetch the pointer and then fetch
the byte, as shown by the following sequence:

Type 244 (press RIGHT ARROW) 04AE

Type 246 (press RIGHT ARROW) 2199

Type 2199:04AE (pr(lss LEFT ARROW) 00

or you could simply use the CODE-LEFT ARROW command as shown
below:

Type 244 (press CODE-LEFT ARROW) 00

5-3

Examining and Changing Memory Contents

Displaying Several Locations at Once

You can also use the memory examination commands to display the
memory contents of several locations at once. For example,. you might
want to look at a vector table, parameter list, or symbol table.

To do so, precede the parameter you type with a number indicating how
many locations you want displayed. In response, the Debugger displays
the specified number of parameters and keeps the last parameter open.

For example, to display three words starting with the word that begins at
location DS:lOO, you type

3, DS:lOO (press RIGH'f ARROW)

A typical Debugger response appears below:

3, DS:lOO ~ 1F20

OAF:102 ~ 2F30

OAF: 104 ~ 30FA

Opening and Closing Memory Locations

5-4

The memory location that is open changes with each command that
modifies the contents of memory. There are three such commands:

RETURN.

UPARROW

DOWN ARROW

Pressing RETURN closes the previously open location and does not open
any new locations.

Pressing UP ARROW opens the previous location.

Pressing DOWN ARROW opens the next location.

Examining and Changing Memory Contents

The Debugger interprets the words next and previous according to the
type of location that is open. Next can refer to the next byte, the next
word, or the next instruction. If, for example, a word is displayed at the
open location, pressing DOWN ARROW opens the next location and
displays a word at that location also.

Understanding the Debugger Prompts
The Debugger always prompts you when it is ready for more input. The
type of prompt depends on whether the location is open, as explained
below:

• Ifno location is open (which happens ifthe Debugger was just
entered, or if RETURN was pressed, closing all open locations), the
Debugger issues the appropriate prompt. (For details on the types of
prompt, see "Debugger Prompts" in Section 4, "General Purpose
Functions and Features.")

• If a location is open, the Debugger prompts you with an empty
space. This prompt appears on the same line as the value of the
open location.

Displaying the Contents of Memory: CODE-D
The CODE-D command displays the contents of memory both
numerically and in ASCII or, optionally, in EBCDIC. CODE-D can
accept two or three parameters and can display a number of bytes of
memory, along with ASCII equivalents of those bytes, limited only by the
amount of memory present in the machine. The Debugger displays the
memory contents in columns.

CODE-D with Two Parameters

Most of the time, you will use the two-parameter form ofCODE·D. In
this form, the command is

k, addr (press CODE-D)

where k is the number of bytes, and addr is the memory location. This
form causes the Debugger to display a specific number of bytes of
memory starting at a specific memory location.

5-5

Examining and Changing Memory Contents

This command is particularly useful in verifying the results of moving
data from one location to another. In Appendix D, "Debugger Tips,"
there is an exercise on moving bytes in a string. A portion of that string
move that makes use of the CODE-D command is discussed next .. (For
details, see "String Moves" in Appendix D, "Debugger Tips.")

In the exercise, you move two bytes of the string 'Finished' to the
destination, which starts at the symbolic address done. After you
execute one MOVSW (move word) instruction, you use CODE-D to
display the results. To use CODE·D, you type

8, done (press CODE-D)

As a result, the Debugger displays 8 bytes of memory starting at the
logical address of done, as shown below:

ODBF2:0F12A 46 69 00 00 00 00 00 00 00 Fi

Note that the first two characters in the string 'Finished' are displayed in
ASCII to the right of the memory contents.

If you wanted to display the same 8 bytes of memory in EBCDIC, you
would use CODE-SIDFT·D instead of CODE-D.

CODE-D with Three Parameters

5-6

A variation of the CODE-D command permits you to specify the length of
each line you want to display.

When three parameters are specified, the form of the command is

k, l, addr (press CODE-D)

where k is the number oflines, l is the line length with a default value of
16, and addr is the address. If addr is set to 0, the current address is
used.

For example, to display five lines of memory, 4 bytes long, beginning at
the current address, you type

5, 4, 0 (press CODE·D) (or press CODE-SliIFT-D for EBCDIC)

Examining and Changing Memory Contents

A typical Debugger response is shown below:

0:0 Fl 03 80 00 [ASCII version]
0:4 10 00 7F 00
0:8 20 00 7E 00
O:OC 30 00 7D 00
0:10 40 00 7C 00

The Debugger automatically turns off the symbolic display of addresses
while memory contents are being displayed using CODE-D.

Changing the Contents of a Memory Location
During a debugging session, you can change the contents of a memory
location. For example, suppose you want to change the contents of
DS:lOl from 2F30 to 2F37. Location DS:lOl is open, and the Debugger
prompts you with a space.

Press RIGHT ARROW (~) as shown below:

DS:lOl ~ 2F30

Then type

2F87

followed by a RETURN to close the location, or by either UP ARROW or
DOWN ARROW to close the location and open a new location.

The contents oflocation DS:lOl are corrected to contain 2F37.

If you corrected the bug introduced in the debugging session in Section 3,
you have already tried this feature. The comments describe a bug you
encounter when you try to open the file DisplayFile.pas. The erroneous
instruction located at ENTGQQ+ll in that program is shown again
below:

MOV AX,OE

5-7

Examining and Changing Memory Contents

You realize that you should have moved 15 (OFh) bytes instead of 14
(OEh). To correct the contents at this location, you entered the correct
instruction in its entirety, that is, you typed

MOVAX,OF

at the open location. (If you have not already done so, you may want to
examine this correction in the context of the tutorial in Section 3.)

Note that in the preceding example, the instruction itself did not actually
change to a different one: just the value of the parameter changed. The
subject of changing instructions of varying lengths requires special
attentfon and is described next in this section.

Changing Instructions

5-8

Assembly language instructions can vary in length from one to several
bytes. Therefore, it is important that you adjust for variances when you
change instructions in the Debugger.

If, for example, you use a Debugger command to overwrite an instruction
with one that is shorter in length, the excess bytes of the original
instruction are left as garbage in memory following the new instruction
unless they are accounted for in some way. In such a case, you need to
replace each extra byte of the original instruction with a No Operation
(NOP) instruction. The NOP instruction is a 1-byte instruction that acts
as a place-holder.

For instance, suppose you want to overwrite a 3-byte comparison
instruction with a 2-byte jump instruction. To do so, you must insert a
NOP instruction after the jump instruction, as shown in the example
below:

24D:120

24D:122

CMP AX, WORD PTR[BP+4] JMP +2

ADDAL.75 NOP

The NOP instruction ensures that the last byte of the comparison
instruction is not left dangling in memory.

Examining and Changing Memory Contents

Searching for a Byte Pattern in Memory:
CODE-0

The CODE-0 command searches for a byte pattern in memory. A byte
pattern is a user-defined group of byte specifiers separated by commas
and enclosed in double quotation marks. A byte specifier is either a
sequence of 2-digit hexadecimal numbers, or a string of characters
enclosed in single quotation marks. Examples of byte patterns appear in
Table 5-1. Nonliteral byte patterns are enclosed in double quotation
marks. Literal byte patterns are enclosed in single quotation marks
within the double quotation marks, as illustrated in the table.

The CODE-0 command can be used, for example, to search for a
matching element in an array or to find the next comma in a character
string.

To search for a given byte pattern,

type lower addr, upper addr, "byte pattern" (press CODE-0)

Table 5-1. Examples of Byte Patterns

Byte Pattern

"31,32,33"

"'ABC•"

"41,42,43"

"31,32,33, •ABC• ,34,35,36"

Pattern Specified

123

ABC

ABC

123ABC456

For example, to search for the byte pattern 31,32 within the range of
addresses from 5FE6:0C to 5FE6:100, type

5FE6:0C, 5FE6:100, "31,32" (press CODE-0)

5-9

Examining and Changing Memory Contents

The Debugger searches for a byte pattern within the range of addresses
starting at lower addr and ending at upper addr. If the pattern is found,
the Debugger displays the pattern at the address at which it was found
and changes lower addr to the address of the first byte following the
pattern.

To make the Debugger continue the search beginning at the new lower
addr, press CODE·O with no parameters.

If the Debugger does not find a byte pattern, the Debugger ends the
search when it reaches upper addr. ·

Displaying Physical Addresses: CODE-=
On protected mode systems that employ paging, you can use the
CODE·= command to display the physical address of a logical or linear
address. (For details on paging, see "Introduction to Protected Mode" in
the CTOS Programming Guide, Volume I.) To display the physical
address of addr,

type addr (press CODE·=)

For example, if you typed a logical address, such as OEF33:6A, and
pressed CODE·= as shown below

OEF33:6A (press CODE·=)

the Debugger responds with the corresponding physical address, such as

OOOEF9A

Reading and Writing to Ports

5-10

To read and write to ports, use LEFT ARROW and RIGHT ARROW
commands together with constants. For example, to read from the
byte-input port 17i, type

l 7i (press LEFT ARROW)

To read from the word-input port 31i, you type

3li (press RIGHT ARROW)

Examining and Changing Memory Contents

In either of these cases, after you type the constant, the port becomes an
open location. You can then specify a new parameter to be written to the
port. Unlike reading from memory, reading from a port can change the
state of the system. For example, reading a character from the keyboard
removes that character from the keyboard.

Assigning Names to Addresses: CODE-[
You can use the CODE·[command to assign a name .to the current open
address. To do this, type

'AddressName' CODE·[

where AddressName is the assigned name. This name must be enclosed
within single quotation marks. In subsequent commands, you can ref er
to the address by supplying an ampersand followed by the assigned
address name. For example, to display the instruction at an address
with the name pcbRet, you can type

&pcbRet (press MARK)

You can also use the CODE-[command to assign a name to the value at
the current open address. To do so, type

n, 'ContentsName' CODE-[

where n is the size (in bytes) of the value at the current address, and
ContentsName is the name assigned to that value. The value n may be 1,
2, or4.

To display the number represented by a name, type

&Name=

where Name is the name assigned to either an address or the value at an
address. For example, if Name represents the address 23B4, the
Debugger responds by displaying the following value:

23B4

5.:...11

Examining and Changing Memory Contents

5-12

The CODE-[command is used by script files to access memory locations
and their contents. When a script file is active, the Debugger reads
commands from this file rather than the keyboard. Commands in a
script file are predefined, but the memory addresses of data items may
vary with each debugging session. However, the CODE-[command
allows a script file to operate regardless of the location of data items.

As an example, suppose the script file must access a particular field in a
data structure. Initially, the script file examines the contents of a
memory address to obtain a pointer to this field. However, the pointer to
the field may be different for each debugging session. Since commands in
the script file are predefined, they cannot directly refer to the address
where the field is currently located.

In this case, the CODE-[command could be used to assign a name to the
memory address of the field. Subsequent script file commands would
always work because they would always use the assigned name.

Section 6
Working With Registers

This section describes the Debugger's internal process register and
explains how to examine and modify registers.

The Process Register
The process register (PR) is a Debugger internal register as opposed to
being a processor register (such as AX or DS). PR always identifies and
keeps track of the current process. The current process is either the
process that most recently reached a breakpoint or the process that owns
the keyboard when you enter the Debugger.

PR is automatically set to the identifier of the process that most recently
reached a breakpoint. Similarly, in protected mode PR is automatically
reset to the appropriate process number at the occurrence of a fault or an
exception.

When you invoke the Debugger from the Executive or from the Context
Manager (using CODE-GO) just before the execution of an application
program begins, PR is set to the identifier of the first process in the
program.

All Debugger commands interpret the process with which they are
associated as the current process. For example, whenever processor
registers are read or written to, the registers of the current process are
used.

Because PR is an internal register, you can set PR to the process
identifier number [or the protected mode Task State Segment (TSS)
selector] for any system or application process you need to debug without
affecting the results of program execution. You will be introduced to the
procedures for setting PR later in this section. First, however, the
meaning of PR is discussed.

6-1

Working With Registers

Meaning of PR

6-2

Based on the process identifier number (pid) to which PR is set, PR
makes available the following information associated with that process:

• It implies a load offset to be used when loading symbols.

• It indicates which set of saved registers is to be displayed or
modified by the Debugger.

• It indicates which process should have instructions executed
individually (single stepped). (Single stepping is accomplished by
the CODE·X command, which is described in Section 8, "Using
Breakpoints.")

• It determines how addresses are to be interpreted. (For details on
the differences between real mode and protected mode addressing
schemes, see CTOS/Open Programming Practices and Standards.)
Which type of address interpretation is currently in effect is
reflected by the apprQpriate real mode or protected mode prompt.
(For details on the different types of prompts, see " Debugger
Prompts" in Section 4, "General Purpose Functions and Features.")

To view all the processes and their associated identifiers in the system,
you can use the CODE·S command described in Section 7, "Display Com­
mands."

In protected mode, PR has additional functionality. PR can also be set to
a Task State Segment (TSS) selector. A TSS selector corresponds to the
descriptor that contains the address of the TSS. There is a TSS for
every protected mode task (that is, every process as well as every
interrupt handler) in the system. The CODE-S command for protected
mode (described in Section 7, "Display Commands.") allows you to view
all these TSS's as well as all process identifiers.

Working With Registers

The TSS provides you with additional information that you may find
useful particularly if you are doing system debugging. As an example,
the TSS's make available to you a complete set of saved registers for each
interrupt handler in the system. In real mode, you are not provided this
same convenience because there is no comparable structure that contains
this information.

If you are debugging a real mode program executing on a protected mode
operating system, you may encounter a situation in which it is useful to
examine the TSS. As an example, if your program calls a protected
mode system-common procedure such as PutFrameChars, it is possible
that your program can generate a protected mode general protection (GP)
fault.

If you set PR to the process identifier, your examination would be limited
to real mode process execution up to the point at which the
system-common procedure is called. The actual code for the
system-common procedure, however, executes in protected mode, because
it resides in the operating system itself. Your program, therefore,
executes as a protected mode process for the duration of the routine.
(This is accomplished by a technique called aliasing, which is described
and illustrated in CTOS I Open Programming Practices and Standards.)

In this situation, you should approach debugging by first examining the
parameters you passed to the system-common procedure. Examples of
how to examine the parameters to a CTOS operation are provided in the
tutorial in Section 3, "Debugging Session," as well as in Appendix D,
"Debugging Tips." If, however, you are unsuccessful at detecting any
problems with the parameters passed, you can set PR to the TSS. By
doing so, you are able to examine the protected mode portion of the
process.

6-3

Working With Registers

Examining and Modifying PR

To debug a single-process program, you normally do not need to be
concerned about the PR at all However, if you intend to debug a
multiprocess program, you must set PR to the process you want to debug.

As mentioned earlier, you can obtain the pids for all processes currently
active in the system by using the CODE-S command described in
Section 7, "Display Commands." From the CODE-S display, select the
pid (or TSS) for the process you want to set PR to.

You set PR in the same way you would change any other word location:
by opening the location and then entering a new parameter. If, for
example, the current process is number 4, but you want to debug process
number 7, you type

PR (press RIGHT ARROW)

The Debugger responds by displaying

PR~ 4

Type 7 to the right of 4 as shown below:

PR~ 4 7

Press RETURN. As a result, you change the current process number to
process 7.

By setting PR to the appropriate pid or TSS, you then can use the
CODE-F command to load the symbol file for that process. Information
on setting PR and loading symbols for debugging crash dump files is
included in Section 11, "The Executive Command: Debug File."

Processor Registers
Unlike the PR, which is located in memory, the processor registers are
located in the central processing unit. The purpose of registers is to
contain addresses and data obtained from memory.

Working With Registers

By looking at register contents, you can verify whether they contain the
addresses or data you would expect at a certain point in your program's
execution. (For details on the processor register functions, see the Intel
manuals listed in "Where to Go For More Information" in "About This
Guide.") You can find practical examples of how some of the registers are
used in Section 3, "Debugging Session," as well as in Appendix D,
"Debugging Tips."

Registers are indicated in the Debugger by mnemonic symbols, such as

Mnemonic

cs
OS
ES
SS

Register

Code Segment
Data Segment
Extra Segment
Stack Segment

These registers, as well as the ones described below, are common to all
processors:

• Registers with the mnemonics AX, BX, CX, and DX are all general
registers.

• BP, BX, DI, and SI are general registers and index registers.

• FL contains flags.

• IP contains the instruction pointer.

For protected mode processors, there are additional registers. Table 6-1
lists all the processor registers and indicates which processors apply to
each. Table 6-2 lists the internal Debugger registers.

You can read or write to any of the different types of processor registers.
To do so, you indicate the mnemonic symbol of the register as a left-side
value in a command you use to examine or to change the register
contents. For example, you would type

AX (press RIGHT ARROW)

to display the value of a word in the AX register.

To see the contents of all registers, simply press CODE-SHIFT-R.

When debugging a multiprocess program, the processor register
mnemonics indicate the machine registers associated with the current
process.

6-5

Working With Registers

Register
Name

AL
AH
AX
EAX

BL
BH
BX
EBX
CL
CH
ex
ECX

DL
DH
DX
EDX

SS
cs
OS
ES
FS
GS

SI
ESI
DI
EDI
BP
EBP
SP
ESP
IP
EIP

Table 6-1. Processor Registers

Debugger
Mnemonic
(if different)

8088
8086
80186

Processor

80286 80386

continued

Working With Registers

Table 6-1. Processor Registers (cont.)

Processor
Debugger 8088

Register Mnemonic 8086
Name (if different) 80186 80286 80386

FL
EFL

TR
MSW MS
CRO RO
CR1 R1
CR2 R2
CR3 R3
LO
sso so
SS1 S1
SS2 S2
SPO PO
SP1 P1
SP2 P2
LKB LK

Table 6-2. Debugger Registers

Processor
Debugger 8088

Register Mnemonic 8086
Name (if different) 80186 80286 80386

PR
CB
DB

6-7

Section 7
Display Commands

What are the Display Commands?
This section explains how to use Debugger commands to display

• (And print) the user screen and the Debugger screen

• Other contexts (under Context ManagerNM)

• A stack trace

• Linked-list data structures

• Process and exchange status

• Descriptor tables

• Request code definitions

• Flag bit mnemonics

• Request blocks

• Semaphore status

Displaying User Information: CODE-U
When the Debugger is running, it displays only the Debugger screen.
The Debugger does not display the screen generated by the user process.
To view the user screen without exiting from the Debugger, press
CODE-U.

Once the user screen appears, press any key (except CODE·U again) to
restore the Debugger screen.

7-1

Dlsplay Commands

You can display the status of a particular user by typing

userNum (press CODE-U)

where userNum is the user number. The displayis an abbreviated form
of CODE-S, with information about one user extracted. If the user
number specified is for an application, the name of the run file displays
also.·

Below is an example of a display for a user whose user number is 4. The
user number appears in the "user" column, which is second from the
right. Notice that this example shows the name of the run file,
"Signon.Run."

Processes

id oPcb cs ip st pr tss ldt ss sp ds excb sgU user partition
OE 7BB6 0560:01C7 80 14 OCBO 2CAO 0284:31E4 0284 104C 2648 1004 Primary
OF 7BC8 0560:01BO 81 7F OCCO 2CAO 0284:3FB8 0284 1040 2648 1004 Primary

Status for Run File: [Sys)<Sys>Signon.Run

Run Queue IOOIOFl551

Exchanges

013 excbRqTracker Messages
12CB8:3FCA(l004,8800) 12648:744(1000,8A00) 12CB8:31FC(l004,8800) I
04C Primary Processes IOEI
040 Primary Empty

For information about the contents of each column, see "Displaying
Process and Exchange Status: CODE-S."

Printing the Debugger Screen: CODE·L

7-2

You can use the CODE-L command to print the dialogue that appears on
the Debugger screen to a parallel printer. To activate this direct print
feature, press CODE-L.

Note: CODE-L requires that you have a parallel printer attached to
your workstation. (For details on connecting the printer and
setting it up, see the CTOS Generic Print System
Administration Guide.) If the Generic Printing System (GPS) or
the pre-GPS Spooler is installed, deinstall it before using
CODE-L. Otherwise, CODE-L will not work.

Dlsplay Commands

If the parallel printer is properly connected and is online, the following
message appears on the screen:

Lpt echo ON

If the parallel printer is not properly connected, or if it is not online, the
following message appears on the screen:

Lpt echo OFF

The CODE-L command toggles the echo of the Debugger output. If you
press CODE-L again and again, the print feature alternates between its
ON and OFF states.

You cannot use CODE-L if the parallel printer is also being used by the
operating system or by the program that is being debugged.

With the Executive command Debug File, CODE-L takes the optional
file name parameter

'filename' (press CODE-L)

where 'filename' is the name of the byte stream file that the screen
output duplicate is to be copied to.

Displaying Other Contexts
If you are using the Debugger under Context ManagerNM, you can
switch to another context. This feature is useful for viewing your source
code with an editor in one context while debugging your program in
another. (For details, see "Invoking Context ManagerNM Operations" in
Section 4, "General Purpose Functions and Features.")

7-3

Display Commands

Displaying a Stack Trace: CODE-T

7-4

You can use the CODE-T command to display the current sequence of
procedure calls in your program. CODE-T causes the Debugger to trace
the contents of your program's stack. For a complete stack trace to work
properly, however, the stack must follow the rules for standard stack
format. See Appendix C, "Stac:k Format," for details. If the stack is
damaged, a stack trace usually contains invalid information. This can
occur, for example, if a program erroneously overwrites a portion of the
stack or uses the BP register for a value other than the stack pointer
(SP). To circumvent this problem, you can use a variant of the CODE-T
command to view only the valid portions of the stack. This variant is
described later in this section.

Note: BP must be used according to one of the two CTOS calling
conventions. For details, see CTOS/Open Programming
Practices and Standards. If you find that only a portion of the
procedural call sequence is displayed (usually consisting of the
current stack frame and one or two of the previous frames), it is
possible that your compiler is not following BP conventions. See
your language manual for details.

Appendix C, "Stack Format," describes the most common usage of BP.
Some languages must use mediators to conform to this format. For
details on mediators, see the CTOS Programming Guide.

To display the procedure-invocation stack for the current process,

press CODE-T

The Debugger responds by displaying the entire stack. Note, however,
that if any part of the stack is damaged, CODE-T displays only the valid
portion beginning at the lowest stack address up to the point where the
damage begins.

Display Commands

Starting the Trace at a Specified Address

As described earlier, CODE-T (with no parameters) displays the stack
beginning at the lowest address (most current frame) and only displays
the trace up to the point where BPs are no longer chained. To view a
stack trace beginning at a different address,

type addr (press CODE-T)

where addr is the address of a valid BP. You can use this command, for
example, to view valid portions of a damaged stack by specifying the next
valid BP.

To display the stack for the k most recent active procedure invocations,

type k, addr (press CODE-T)

For example, to display the stack for the six most recent invocations, you
type

6, SS:BP (press CODE-T)

A typical Debugger response is shown below:

0 3108
1 3116
2 3130
3 313E
4 3160
5 318E

12D2:14A
581F:95
SEC8:0C4
571C:255
5920:6E
SFA9:70

(3, 3, 4F1F I 3113)
(173C,l,4FlF,312A,4FlF,312E)
(4FlF,173C,4FlF,314D)
(26F0,47,4FlF,314D,4FlF,3158)
(4FlF,2700,4FlF,3178,4FlF,31CD)
(2700,4ElF,0,600,4FlF,31CD)

The first line is the current frame. The second line is the previous frame,
and so on. Each line displays the following information:

• The first column contains the level number for the stack frame
described by that line.

• The second column contains the frame pointer (BP) for that frame.

• The third column contains the return address (CS:IP) that will be
effective when control returns to that level

7-5

Display Commands

The remainder of each line contains the parameters that were passed to
the procedure corresponding to the stack frame. The current value of a
parameter is shown if the parameter was passed by value. If, however,
the parameter was passed by reference, the address of the value is
shown.

Because the Debugger estimates the number of parameter words
displayed (maximum 6), this number may not correspond to the number
of parameters actually passed to the procedure. For more details on
interpreting a stack trace, see Appendix C, "Stack Fonnat."

Displaying the Trace in Short or Long Call Format

To display a stack trace in either short or long format,

type assumeFar, k, addr (press CODE-T)

where assumeFar is either 0 or 1. Zero implies a short call; one implies a
long call. k is the number of most recent invocations. Here is an
example of a request to display a stack trace in long call format:

1,2, SS:BP (press CODE-T)

A typical Debugger response is shown below:

0 987E
1 987E

0AC39:1C3
989A:2E98

(842,2E98,9890,510,0B95,293)

Displaying Linked-List Data Structures:
CODE-N

7-6

The CODE-N command displays linked-list data structures. To use
CODE-N, the data structures must be linked with 16-bit pointers.

Note: If the data structures are not linked with 16-bit pointers, use CODE-D to
display the data structures manually.

Display commands

You should use CODE-N with the internal Debugger registers CB and
DB. The following paragraphs explain how to do so.

To display a block of memory that is k bytes long that has a link word at
the jth byte, first set CB equal to k, and then set DB equal to j, as shown:

CB ~OOOOk

DB~ OOOOj

To display the first block,

type addr (press CODE-N)

To display each subsequent block, press CODE-N again.

Figure 7-1 illustrates this process.

Figure 7-1. Using CODE-N for Linked-List Data Structures

1st Code-N .3rd Code-N

LINK 0 LINK 0

2
2nd Code-N

2
4th Code-N

LINK 0 LINK 0

7 7

2 2

7 7

~.7-1

7-7

Display Commands

Or, to display n blocks at the same time,

type n, addr (press CODE-N)

where n is a decimal number.

For example,

3., 1217:3084 (press CODE-N)

specifies that three blocks are to be displayed at once. A typical
Debugger response appears below:

1217:3084 02 31 Cl 01 7C 3E AF 17
1217:3102 DA 31 83 80 68 26 76 SD
1217:31DA 00 00 Cl FF 04 4C 17 12

Displaying Process and Exchange Status:
CODE-S

7-8

The CODE·S command displays the status of all processes and
exchanges in the system. For protected mode, CODE·S also displays the
status of interrupt handlers.

To obtain this information,

typeCODE-S

The Debugger responds with the display of either two or three items.
The first item is a list of all processes and pertinent data about them,
and the second is a list of exchanges. The third item lists all interrupt
handlers as well as all processes in the system.

To obtain only the third item,

type 0 (press CODE-S)

The CODE-S command is particularly useful for analyzing crash dumps.
(Section 11, "The Executive Command: Debug File," provides examples
of ways you can use CODE-S in crash dump analysis.)

Display Commands

Processes Display
The first item displayed by the CODE-S command is the Processes
display. Figure 7-2 is an example of what this display looks like when
using a real mode Debugger. An example of this display for protected
mode is shown in Figure 7-3.

Each line in the displays shown in Figures 7-2 and 7-3 corresponds to a
process that is currently active in the system. The number at the
beginning of each line is the process identifier. To debug a process, you
can set the Debugger internal process register (PR) to the identifier for
that process. (For details on PR, see Section 6, "Working With
Registers.")

Flgure7-2. Real Mode Operating System Processes Display

Processes

id oPcb 08 ip st pr as ap ds ex ch sqU user partition
00 6BBA 0298:08B2 co 02 04C0:99BE 04CO 0007 0000 0000
01 6BCC 0298:08B2 co 01 04C0:9A70 04CO 0000 0000 0000
02 6BOE 0298:08B2 co 04 04C0:9B6C 04CO OOOE 0000 0000
03 6BFO 0298:08B2 co 05 04C0:9062 04CO 0010 0000 0000
04 6C02 0298:08B2 co 06 04C0:9E5C 04CO 0012 0000 0000
05 6Cl4 0298:08B2 co 08 04C0:9F5C 04CO 0013 0000 0000
06 6C26 0298:08B2 co 07 04CO:AOF2 04CO 0014 0000 0000
07 6C38 0298:08B2 co 04 0078:03BE 0078 OOlB 0000 0000
08 6C4A 0298:08B2 co 03 0078:7022 0078 0000 0000 0000
09 6C5C 0298:08B2 co 06 12CO:FFFA 12CO OOlC 0000 0002 Vdm Ch 2.0
DA 6C6E 0298:08B2 80 14 01A4: 96F2 01A4 OOlE 1190 0003 Primary
OB 6C80 0298:08B2 80 80 045C:FEB4 045C 0022 1598 0005 CMOl
DC 6C92 0298:08B2 80 13 01A4:887A 01A4 0023 1190 0003 Primary
0.0 6CA4 0298:08B2 80 DC 01A4:8A96 01A4 0025 1190 0003 Primary
OE 6CB6 0298:08B2 80 7F 045C:BB05 045C 0027 1598 0005 CMOl
OF 6CC8 F168:0010 80 78 F58B:OBAC F58B 002B 1650 0006 CM02
47 70B8 0318:0018 Cl FF 04C0:970C 04CO 0000 0000 0000

Run Queue 1471

7-9

Display Commands

7-10

Figure 7-3. Processes Display for Protected Mode

Processes

id oPob ca ip st pr taa ldt as sp da exoh sqU user pazUtion
00 6BBA 0298:08B2 co 02 0880 0000 04C0:99BE 04CO 0007 0000 0000
01 6BCC 0298:08B2 co 01 0890 0000 04C0:9A70 04CO 0000 0000 0000
02 6BOE 0298:08B2 co 04 08AO 0000 04C0:9B6C 04CO OOOE 0000 0000
03 6BF0 0298:08B2 co 05 08BO 0000 04C0:9062 04CO 0010 0000 0000
04 6C02 0298:08B2 co 06 OSCO 0000 04C0:9E5C 04CO 0012 0000 0000
05 6Cl4 0298:08B2 co OB 0800 0000 04C0:9F5C 04CO 0013 0000 0000
06 6C26 0298:08B2 co 07 08EO 0000 04CO:AOF2 04CO 0014 0000 0000
07 6C38 0298:08B2 co 04 OBFO OOQO 0078:03BE 0078 OOlB 0000 0000
08 6C4A 0298:08B2 co 03 0900 0000 0078:7022 0078 0000 0000 0000
09 6C5C 0298:0BB2 co 06 0910 0000 12CO:FFFA 12CO OOlC 0000 0002 Vdm_Ch 2.0

DA 6C6E 0298:08B2 80 14 0920 1498 01A4: 96F2 01A4 OOlE 1190 0003 Primary
OB 6C80 0298:08B2 80 80 0930 15BO 045C:FEB4 045C 0022 1598 0005 CMOl
oc 6C92 0298:08B2 80 13 0940 1498 01A4:887A 01A4 0023 1190 0003 Primary
OD 6CA4 0298:08B2 80 oc 0950 1498 01A4:8A96 01A4 0025 1190 0003 Primary
OE 6CB6 0298:08B2 80 7F 0960 15BO 045C:BB05 045C 0027 1598 0005 CMOl
OF 6CC8 Fl68:001D 80 78 0970 0001 F58B:OBAC F58B 002B 1650 0006 CM02
47 70B8 0318:0018 Cl FF OCEO 0000 04C0:970C 04CO 0000 0000 0000

Run Queue 1471

The Run Queue shown at the bottom of each display lists the processes
that are in the ready state (that is, ready to run) in priority order. (For
details on the states of a process, see your operating system manual.)
The process scheduled next for execution is identified by the leftmost
process identifier number in the queue.

The column headings in Figures 7-2 and 7-3 are defined below.

i.d The process identifier number.

oPcb The address of the Process Control Block for that process.
The address is relative to the operating system's data
segment.

cs ip The address of the next instruction to be executed by the
process.

st

pr

A byte containing status flags. For details, see Figure 7-4.

The priority of the process.

tss

ldt

SS Sp

ex ch

sgU

user

partition

Display commands

(Protected mode only.) The Task State Segment (TSS)
selector of the process.

(Protected mode only.) The Local Descriptor Table (LDT) of
the process. A value of zero means the process is based in
the Global Descriptor table. A value of 1 means the process
is a real mode process executing on a protected mode
operating system.

The address of the top of the stack for the process.

The base~oc~
The data segment of the process.

The default response exchange for the process.

The selector of the User (U) Structure. A U structure
contains information about a context (user number), such as
the Extended Partition Descriptor and the User Control
Block.

The user number for the process.

The name of the partition in which the application or system
service is loaded.

Figure 7-4 describes the meanings of the bits in the process status word.

Bit

0

1,2,3,4,5

6

7

Figure 7-4. Example of Process Status Word ·

Meaning When Set

Process is on the run queue

Process is suspended

Process is a system service

PCB for process is valid

7-11

Dlsplay Commands

Exchanges Display

7-12

The next item displayed by the CODE·S command is the Exchanges
display. An example of an Exchanges display is shown in Figure 7-5.

Figure 7-5. Exchanges Display

Exchanges

003 Sysin Processes 1091
004 FilterPros Processes 1071
005 Termination Processes 1061
006 Sched Processes 1051
OOA LclFileSys Processes 1081
DOC Agent Processes 1041
010 exchPeriodic Processes IOAI
011 MstrAgentRcv Processes 1031
013 exchRqTracker Messages
12CB8:3FCA(1004,8800) 12648:744(1000,8AOO) 12CB8:31FC(l004;8800) I
016 exchPit Processes 1011
019 SyncClockPro Processes 1021
024 RemoteCache Processes IDBI
02A Vdm_Ch 3.1 Processes 1541
02C Vdm Ch 3.1 Processes I oc I
02E RKVS Processes IODI
04C Primary Processes IOEI

Each line in the Exchanges display describes the state of an exchange.
From left to right on each line, the following information is displayed:

• An exchange identifier

• The exchange name

• An indicator of whether processes or messages are queued at the
exchange

• Either a list of the queued processes or a list of pointers to queued
messages

For a display of processes or of the pointers to messages waiting on
exchange k,

type k (press CODE-S)

Display Commands

For example, to obtain a display of the processes or of the pointers to .
messages waiting on exchange 7, you would type

7 (press CODE-S)

Typical Debugger responses are shown below. The first is for processes,
and the second is for messages.

07 - Processes 1031

07 - Messages IADB2:12171

Results are the same whether you use CODE-S or CODE-SIDFT-S.

Tasks Display

For protected mode, a third item is displayed by the CODE-S command.
This item shows all interrupt handlers and processes (collectively called
tasks) in the system. An example (portion) of this display is shown in
Figure 7-6.

Figure 7-6. Tasks Display

sgTss/pid link cs:ip

0960 0430:0059 FinishCrash
0978 0430:0395 DoubleTaskFault
0990 0430:03A6 StackTaskFault
09A8 0430:03AF PageTaskFault
09CO busy OBDO 0430:0495 GPTaskFault
0908 0630:0060 TraceRawlnt
09FO 0430:03BF NmiTaskFault

OB28 0528:0000 Lplnterrupt
0B40 0410:0006 RawCommNubCD
OB58 0410:000B RawCommNubEF
0B88 0448:033E SoftwareDmalnterrupt

7-13

Display Commands

The column headings in Figure 7-6 are defined below. From left to right,
these are

sgTss

pid

link

(busy)

cs:ip

The Task State Segment (TSS) of the process. A TSS
contains the complete register context of a process in
protected mode. For details, see the Intel manuals listed in
"Where to Go For More Information" in "About This Guide."

The process identifier number of a process.

The contents of the TSS "back link" field. For details, see the
80386 Programmer's Reference Manual.

This column indicates whether or not the process is busy.
For details, see the 80386 Programmer's Reference Manual.

The address of the next instruction to be executed by the
process.

(symbol) The symbolic address (optional) of a system task. Before
using CODE-S to display this column, you must set the
Debugger internal process register (PR) to the process
identifier number of a system process (such as 1), then load
the operating system symbol file, [Sys]<Sys>Syslmage.sym.

Displaying Descriptor Tables: CODE-V

7-14

For protected mode, you can use the CODE-V command to display the
contents of the Local Descriptor Table (LDT), Global Descriptor Table
(GDT), or Interrupt Descriptor Table (IDT). You can also use the
CODE-V command for a very different purpose when you use it with the
single parameter fl. This special use is described in "Displaying Flag
Mnemonics: FL CODE-V."

Dlsplay Commands

Using CODE-V to display descriptor tables is particularly useful when
you need to find out why your protected mode program generated a
general protection (GP) fault. If your program faulted, you can use
CODE-V to examine the selector in question, to see if the selector is
valid and examine the descriptor limit, to determine whether the
segment limit has been exceeded. Another less common use ofCODE-V
is to look at the IDT to determine which Task State Segment (TSS)
handles an interrupt. You would only use CODE-V to look at the IDT if
you are debugging interrupt handlers.

You can use the CODE-V command with no parameters or with any of
several optional parameters. To display a descriptor table,

type table, no. Sns, startSn (press CODE-V)

where

table Is one of the following values:

no. Sns

startSn

O=GDT

l=LDT

2=1DT

Is the number of selectors

Is the starting selector

If only one parameter is given (and it is not the special value fl, which is
described later in this section), the parameter is interpreted as the
starting and only selector (Sn). In this case, the entry is displayed,
whether or not it is valid, and the user number that owns the selector is
also displayed.

If two parameters are given, they are interpreted respectively as the
number of selectors to examine and the starting selector. If three
parameters are given, they are interpreted as the type of descriptor table,
number of selectors, and starting selector, in that order. In both these
cases, CODE-V shows only the valid descriptor table entries. Therefore,
the number of entries shown may be smaller than the number of entries
that you specified.

7-15

Display Commands

GOT

iSN
0094
00 95
0096
0097
OOC2
OOC3

7-16

For example, to display descriptors of the GDT, you could type

0, 30, 4a0 (press CODE-V)

The Debugger would return a display such as the one shown in
Figure 7-7.

Figure 7-7. GDT Display

Sn base limit ar p
04AO 011CF280 00100 9B 0 286 code, non-conforming, readable
04A8 0101DB50 OOOlF 92 0
04BO 0101DB70 OOOlF 92 0
04B8 OlOOSABO OD7CB 93 0

286 data, expand up, writable, not accessed
286 data, expand up, writable, not accessed
286 data, expand up, writable

0610 17A0:80360006 00 84 286 call gate
0618 0298:000EOE98 00 84 286 call gate

The column headings in Figure 7-7 are defined below. From left to right
these are

iSn The nth selector (Sn divided by 8)

Sn The selector

base The base address

limit The limit of the descriptor

ar The access rights

p The protection level; range is 0 through 3

The remaining material to the far right is an English version of the
access rights.

If the selector you are examining is a gate, the display differs as follows:

iSN
0072

Sn
0394

Sn:ra we
02E8:0C48 02

ar
E4

p
3 call gate

where all definitions are as above, except wc is the count of words copied
from the caller's stack to the called procedures stack.

Dlsplay Commands

Displaying Flag Mnemonics: fl CODE-V

You can also use the CODE-V command with the single parameter fl to
display the flags register mnemonics. To do so,

type fl (press CODE-V)

The Debugger displays the mnemonics for each flag bit set in the flags
register. A typical Debugger response is

if tf pf iopl=O

For details on the flags register, see the iAPX 286 Programmer's
Reference Manual, the 80386 Programmer's Reference Manual, and the
i486 Microprocessor Programmer's Reference Manual.

Displaying Request Definitions: CODE-W

To display information about how a request is defined, you can use the
CODE-W command. This command is typically used by the systems
programmer who is debugging a request-based system service program.
For details on requests and request-based system services, see the CTOS
Operating System Concepts Manual and the CTOS Programming Guide.

Using CODE-W with no parameter (the default), you can display
information for all request codes.

Press CODE-W

You can display information about a single request:

type r (press CODE-W)

where r is the request code number. For example, to display request
information defining request code OA, you type

OA (press CODE-W)

The request code number does not have to be in hexadecimal. The
following request code is the equivalent of OA and will produce the same
result:

10. (press CODE-W)

7-17

Dlsplay Commands

7-18

A typical workstation Debugger response is shown below:

RC
OOOA

Exch
OOOA

LSC
OOOB

NetRouting
OE

From left to right, the meanings of the fields displayed are as follows:

RC The request code

Exch The identifier of the system service exchange for the
system service serving this request code

LSC The local service code

NetRouting The network (for example, B-Net II or CT-Net™) routing
code for this request

For shared resource processors, the display would look like this:

Rq Code
0023(
0024(

35.)
36.)

Ex ch
0808
0808

LSC
0000
0001

ICC
23
23

Net
88
88

Read
Write

where the fields are the same as in the previous display, with the
following new information:

Rq Code

ICC

Net

The request code and its decimal equivalent in
parentheses.

The Inter-CPU-communication routing information for
the XE-530. For details on ICC, see the CTOS Operating
System Concepts Manual.

The routing request information. For details, see the
CTOS Operating System Concepts Manual.

You can also use CODE-W with two parameters to display several lines,
each of which contains information about a different request. To display
several lines starting with request information for request code r,

type n, r (press CODE-W)

where n is the number of lines to be displayed. For example, to display
six lines starting with request code OA, you type

6, OA (press CODE-W)

Dlsplay Commands

Displaying Request Blocks: CODE-Q
The CODE·Q command displays the contents of a request block.

Type addr (press CODE-Q)

where addr is the SA:RA of the request block.

Displaying Semaphore Status: CODE-Y
The CODE·Y command displays the status of currently active
semaphores.

TypeCODE-Y

Below is an example of the output ofCODE-Y.

•em
hancile state

owne:r
uae:r/p:r type

th:reads
waiting

23600003 locked 0000/0000 03 "Semaphore Lock"
2360006C clear 0002/00SE 03
2360009C clear 0000/00lF 04
2360012C clear OOOF/0026 00
236009fc locked OOOE/OOlF 00 0024 "SystemDLL"

The semaphore status information is described below.

sem handle The semaphore handle.

state Shows if the handle is locked or clear.

owner user/pr Shows the user number and process id of the owner.

type Shows the value describing the semaphore. For more
information about semaphore types, see the
SemOpen request in the CTOS Procedural Interface
Reference Manual.

threads waiting Shows the threads that are waiting and, optionally,
their names (in the last column).

7-19

Display Commands

Displaying DLL Status: CODE-Z

7-20

The CODE-Z command displays the currently active dynamic link
libraries and their handles.

TypeCODE-Z

Here is an example of the output of the CODE-Z command.

id name files

4980 SysMono.font [klm]<pmdll>SysMono.fon
4950 Time.font [klm]<pmdll>Times.fon
4900 Helv.font [klm]<pmdll>helv.fon
4700 PrnMle [klm]<pmdll>PrnMle.dll
3F98 HelpMgr [klm]<pmdll>HelpMgr.dll
3AA8 PmGre [klm]<pmdll>PmGre.dll
3888 PmWin [klm]<pmdll>PmWin.dll
3CDO Display [klm]<pmdll>lowRes>display.dll
3948 System [klm]<pmdll>System.dll
3E28 SesMgr [klm]<pmdll>SesMgr.dll

The DLL status information is described below.

id

name

files

The DLL identification.

The name of the DLL.

The name of the DLL handle.

Section 8
Using Breakpoints

What is a Breakpoint?
A breakpoint is a user-defined location in code. When a process reaches
a breakpoint, the process is suspended, and the Debugger is entered.

If the Debugger is operating in simple mode, all user processes are
suspended whenever any breakpoint is taken. If the Debugger is in
multiprocess mode, however, only the process that has taken the
breakpoint is suspended. (See Section 9, "Debugger Modes," for a
description of the Debugger operating modes.)

Setting a Breakpoint at an Instruction
Although the examples in this section show you how to set a breakpoint
at an address, you can also set a breakpoint at the instruction located at
the address. In fact, setting a breakpoint at an instruction is more
commonly done.

As an example, to set a breakpoint at the instruction located at
TYPESUB+2B, you first display the instruction by pressing MARK.
MARK appears as the right triangle in the Debugger display as shown
below:

TYPESUB+28 ~

As a result of pressing MARK, the Debugger displays the instruction at
that location, for example

CALL OPENBYTESTREAM

S-1

Using Breakpoints

Then, you enter a period (.) followed by one of the breakpoint commands
described in this section. If, for example, you set a breakpoint using the
CODE-B command (described next), the Debugger display would appear
as

TYPESUB+2B MARK CALL OPENBYTESTREAM ."b

The period (.) means "at the address of the instruction, CALL
OPENBYTESTREAM."

You will often set breakpoints in this manner because you typically view
instructions using the DOWN ARROW until you find the one where you
want to set the break. For examples of how this is done in the context of
a debugging session, see the tutorial in Section 3, "Debugging Session."

Setting and Querying Breakpoints: CODE-B

8-2

You can use the CODE-B command to set an unconditional breakpoint.
An unconditional breakpoint does not depend on the evaluatiQn of a
relational condition for the process to be suspended at the break. Later
in this section, you will be introduced to conditional breakpoints.

To set an unconditional breakpoint, press CODE-B preceded by one
parameter. For example, to set a breakpoint at the address addr, you
can type

addr (press CODE-B)

(It. is more common, however, to press MARK to designate a location,
then type a period (.) and press CODE-B.)

You can use CODE-B to set a breakpoint in an overlay, even ifthe
overlay is not present in memory. (See Section 10, "Overlays," for details
on debugging overlays.) ·

A breakpoint stays in effect until you remove it explicitly (by using the
CODE-C command) or until the process terminates.

When a program in a memory partition calls the Chain or Exit operation,
or is otherwise terminated, only the breakpoints in that partition are
removed.

Using Breakpoints

You can also use the CODE-B command to query breakpoints you have
already set during a debugging session. To display a list of all of the
breakpoints that are set at any given time,

press CODE-B

Clearing Breakpoints: CODE-C
As you are debugging your program, you will want to clear unnecessary
breakpoints. It is a good idea to clear all breakpoints, for example, before
you exit the Debugger.

To clear a breakpoint at a given address, type the address of the
breakpoint to be cleared, then press CODE-C. For example, to clear the
breakpoint at address addr,

type addr (press CODE-C)

To clear all breakpoints,

press CODE-C

Proceeding From a Breakpoint: CODE-P
When you have checked the code at a breakpoint, you can move on to the
next breakpoint. To proceed from the most recently found breakpoint in
the current process without clearing the most recent breakpoint,

press CODE-P

The breakpoint remains in effect, and the process continues. If the
process was not broken by the breakpoint, the Debugger ignores the
CODE-P command. (In this case, because the process is still running,
you cannot logically command it to resume running.)

To remove the breakpoint before proceeding,

type 0 (press CODE-P)

8-3

Using Breakpoints

To proceed, and to break the kth time the breakpoint is reached (instead
of the next time it is reached),

type k (press CODE-P)

where k is a decimal number. CODE-P with no parameters is
equivalent to CODE·P with a parameter of 1.

If you entered the Debugger by pressing ACTION-A, you can press
CODE-P or GO to exit. If, however, you entered by pressing
ACTION-B, you must press GO to exit. (For details, see Section 9,
"Debugger Modes.")

Setting Conditional Breakpoints: CODE-A
You can use the CODE-A command to set a conditional breakpoint. A
conditional breakpoint is a breakpoint that is associated with a relational
condition. When a process reaches the breakpoint, the process is
suspended only if the relational condition evaluates to TRUE (OFFh).

To set a conditional breakpoint, type an address, then press CODE-A
For example,

type addr (press CODE-A)

Using the Patch Area to Define a Relational Condition

8-4

You define the relational condition in the Debugger's patch area. The
patch area is a 50-byte space reserved for defining conditional
breakpoints and addressed by the symbol, PatchArea. To use the patch
area,

type PatchArea (press MARK)

The Debugger displays the first instruction in the patch area. For
example, a typical Debugger response is

PatchArea MARK NOP

Using Breakpoints

At the end of this line, the Debugger displays the space prompt. At the
prompt, you can begin defining the relational condition by typing your
first instruction. For example, in response to the line displayed above by
the Debugger, you could type

MOV AX, WORD PTR [0]

To display and modify the next instruction in the patch area, press
DOWN ARROW. The Debugger displays

PatchArea+3 MARK NOP

Then type your instruction at the prompt.

Repeat the procedure of pressing DOWN ARROW and typing an
instruction until you have completely defined the relational condition in
the patch area.

Say, for example, you want the Debugger to take the breakpoint ifthe
value of memory location DS:O is 200h. After entering all instructions,
the patch area display would appear as follows:

PatchArea MARK NOP MOV AX, WORD PTR [OJ

PatchArea+3 MARK NOP CMP AX, 200

PatchArea+6 MARK NOP JE .+5

PatchArea+8 MARK NOP MOV AL, 0

PatchArea+OA MARK NOP DEBUG

PatchArea+OB MARK NOP MOV AL, OFF

PatchArea+OD MARK NOP DEBUG

Instructions that you add to the patch area must set the register AL to
TRUE (OFFh) if the breakpoint is to be taken. Otherwise, your
instructions must set AL to FALSE (Oh).

The preceding patch area example illustrates the setting of AL. In the
display, the first instruction places the value at DS:O into AX. Then, the
second instruction compares the value in AX with 200. If the value
equals 200, the third instruction jumps (5 bytes) to the sixth instruction,
which sets the register AL to OFFh. If, however, the value in AL does not
equal 0, the fourth instruction sets AL to Oh.

s-5

Using Breakpoints

So that control will return to the Debugger,the last instruction in the
relational condition must be an INT 3 instruction.

After the condition is evaluated, only the original value of the AX register
is restored. Any of the registers should be saved (pushed) before use and
restored (popped) before the INT 3 instruction is executed.

Setting Multiple Conditional Breakpoints
You can set more than one conditional breakpoint by specifying an
additional parameter for the CODE-A command. This parameter
specifies the PatchArea offset at which the relational condition begins.

For example, to set a conditional breakpoint at the symbolic address
Initialize, whose relational condition begins at PatchArea+20, you type

20, 0, INITIALIZE·(press CODE-A)

The optional 0 parameter indicates that it is an instruction breakpoint.
If 20 is specified, 0 must also be specified. (The reason for specifying 0 is
explained in "Setting Data Breakpoints: CODE-B, CODE-A Variant.")

Changing Unconditional to Conditional Breakpoints
You can change an unconditional (CODE-B) breakpoint into a
conditional breakpoint at any time, by typing

8-6

addr (press CODE-A)

where addr is the address of the unconditional breakpoint.

After entering this command, you must also add the conditional code in
the PatchArea.

Using Breakpoints

Setting Data Breakpoints: CODE-8, CODE-A
Variant

A variant of the CODE-B command is used to set data breakpoints on
80386-based operating systems. This variation is used to execute a
breakpoint when the data at a specific location changes because an
instruction was executed that read or wrote to this location.

To set a data breakpoint in a program running on an 80386-based
system,

type k, n, addr (press CODE-B)

where k is 0 or 1. A value of 0 indicates break on a read or write to the
location; 1 means break only on a write to the location. This parameter
is optional, with 1 as the default. n specifies the length of the data item
being changed, and addr is the address. Acceptable values of n are

• l=byte

• · 2 =word

• 4 = double word

For example, the command

2, DS:O (press CODE-B)

instructs the Debugger to break when the word at location DS:O is
written.

Note that conditional data breakpoints can be set using the same syntax
and the CODE-A command.

8-7

Using Breakpoints

Starting a Process at a Specified Address:
CODE-G

The foregoing commands always cause a process to start executing from
the last breakpoint address. To begin process execution at a different
address,

type addr (press CODE·G)

where addr is a segmented address. The address can be either a
user-defined public symbol or a logical address of the form

x:y

where x is an appropriate CS parameter, and y is an appropriate IP
parameter.

Executing Instructions Individually: CODE-X
You can use the CODE·X command to execute instructions individually.
This technique is called single stepping. You typically single step
through small sections of a program. You can, for example, set an
unconditional breakpoint using CODE·B to execute code up to the
location where you want to start single stepping using CODE·X.

To execute the next instruction in the current process,

press CODE·X

After this instruction is executed, the next instruction is opened and
displayed. Thus, you can press CODE·X repeatedly to see a series of
instructions displayed and executed one by one.

To resume continuous execution of instructions after using CODE-X, you
can press either

CODE-PorGO

Whenever you use the CODE·X command to execute an instruction that
loads a segment register, two instructions are actually executed.

Using Breakpoints

For example, in the portion of code that follows, if you use CODE-X to
execute the instruction LES BX, [bp + 6], the instruction PUSH ES is
also executed, and the PUSH BX instruction is displayed at the open
location, as indicated:

LES BX, [bp + 6]

PUSH ES

PUSH BX

If you are using the real mode Debugger to debug an application under
the Context Manager, you can enhance performance when using
CODE-X by editing the Context Manager configuration file. For details,
see Appendix F, "Configuration Options for the Debugger."

Note: With interrupts disabled, you cannot use CODE-X to single step
instructions because the interrupt for single stepping is ignored.

Under certain circumstances, executing instructions individually is not
recommended. For example, you should not single step through
operating system routines. Instead, set a breakpoint following the return
from the routine. One convenient way to do this is to use the CODE-E
command, which is described below.

Breaking After the Current Instruction:
CODE-E

CODE-E lets you step over an instruction and break after it. To break
after the current instruction,

press CODE-E

Executing the CODE-E command is equivalent to executing the
following command series:

Press DOWN ARROW (J,.)

Type a period (.)

Press CODE-B ("b)

Press GO.

8-9

Using Breakpoints

The following portion of a Debugger script demonstrates how to use
CODE-E:

TEST1+2A MARK CALL OPENBYI'ESTREAM ."e

TEST1+2F MARK PUSH AX

Exiting Debugger

Break at TEST1+2F in process OD

By using CODE-E as shown, the Debugger executes the entire
OpenByteStream procedure and breaks at the instruction, PUSH AX,
following the return. At this point, you could conveniently check AX to
see the error code returned by OpenByteStream.

In contrast, the CODE-X command steps through, not over, an
instruction.

With certain Debugger versions (noted in Appendix H), CODE-E clears
the breakpoint after breaking at the instruction.

Note: You cannot use CODE-E to break after an instruction that loads a
segment register.

Setting Breakpoints in Interrupt Handlers:
CODE-I

8-10

The breakpoint commands described thus far in this section let you place
breakpoints in normal user code and in normal operating system code.
However, these commands alone cannot place a breakpoint in the
operating system Kernel or in an interrupt handler. Since there may be
times when you want to set a breakpoint in an interrupt handler or in
the same code where interrupts are disabled, the Debugger provides the
CODE-I commarid.

Using Breakpoints

To set a breakpoint at address addr in an interrupt handler or in the
operating system Kernel,

type addr (press CODE-I)

The standard keyboard and video facilities of the operating system
support your interaction with the Debugger, except when the operating
system Kernel or an interrupt handler is broken. At these breakpoints,
all processes (including operating system processes) are suspended, and
the Debugger then works by direct access to the physical keyboard and
the screen.

When using CODE-I with the real mode Debugger under the Context
Manager, you need to reserve enough memory for the Debugger to always
be memory resident. Otherwise, if Debugger swapping is allowed, you
may get an error message indicating that there is not enough memory to
swap in the Debugger. (For details on how to configure the Context
Manager, see Appendix F, "Configuration Options for the Debugger.")

CODE-I breakpoints are prohibited if the Debugger has swapped out a
part of the user program. The Debugger does this automatically when
the user program and the Debugger together are too large to fit in the
partition. (For details, See Appendix E, "Debugger Swapping.")

Before exiting from interrupt mode, you should explicitly remove any
CODE-I breakpoints by using the CODE~C command.

The Debugger uses hardware interrupts 1 and 3. Therefore, user
programs should not service hardware interrupts 1 or 3. Other parts of
the operating system use other hardware interrupts. (For a description
of all the interrupt types, see CTOS I Open Programming Practices and
Standards.)

8-11

Using Breakpoints

Assembly Language Calls: The INT 3
Instruction

8-12

The Debugger is automatically entered when an INT 3 instruction is
executed.

If, for example, you coded the INT 3 instruction at location 9904:6A in
your program, upon execution of that instruction, the system would enter
the Debugger and display the message

Debugger call at 9904:6B in Process 8

Note that the address displayed in this message (9904:6B) is located 1
byte after the INT 3 instruction (9904:6A).

In the Debugger, if you typed the address of the INT 3 instruction and
pressed MARK, the Debugger would disassemble the instruction by
displaying the DEBUG mnemonic, as shown below:

9904:6A MARK DEBUG

Execution of INT 3 causes an interrupt to occur. The effect of using this
instruction is identical to setting a breakpoint. INT 3 is particularly
useful for suspending a program at a predetermined point in its
execution for debugging purposes. The instruction requires only 1 byte
and can be substituted for any instruction opcode. The saved value of
CS:IP points to the next instruction to be executed. (For details on how
you can use the Debug File command to set an INT 3 instruction in your
program, see "Patching a Run File" in Section 11, "The Executive
Command: Debug File.")

Section 9
Debugger Modes

What are the Debugger Modes?
The Debugger operates in three modes: simple mode, multiprocess mode,
and interrupt mode. Throughout this guide, these modes are referred to
as Debugger modes to distinguish them from the processor modes (that
is, real mode and protected mode) in which the Debugger also operates.

Simple mode is used to debug most programs. All user processes are
suspended in this mode.

Multiprocess mode is used to debug a program whose operation depends
on the continuous execution of all processes except those explicitly
stopped at breakpoints.

Interrupt mode is used to debug interrupt handlers or for debugging that
requires breakpoints be set when interrupts are disabled.

This section describes how these three modes are related to the different
ways of entering the Debugger. In protected mode, the Debugger
prompt for each of the Debugger modes is preceded by the appropriate
protected mode symbol. (See "Debugger Prompts" in Section 4, "General
Purpose Functions and Features," for details.)

Simple Mode
You can invoke simple mode by pressing ACTION-A Simple mode also
is invoked automatically when a CODE-B breakpoint is executed after
ACTION-A invokes the Debugger.

You also can enter the Debugger in simple mode by pressing CODE-GO
or using the Chain or LoadTask operations. (For details on these
operations, see your operating system manual.)

9-1

Debugger Modes

In simple mode, all user processes are suspended when the Debugger is
entered. This mode does not affect operating system services or interrupt
handlers.

The nonreside.nt portion of the real mode Debugger can swap in and out
of memory. (See Appendix E, "Debugger Swapping.") Swapping,
however, is transparent to the user. For details on the Debugger memory
requirements, see your operating system release documentation.

In simple mode, the Debugger prompt is an asterisk (*).

Multiprocess Mode

9-2

You can invoke multiprocess mode by pressing ACTION-B.
Multiprocess mode is invoked automatically when a CODE·B
breakpoint is executed after ACTION-B invokes the Debugger.

In multiprocess mode, all user processes continue execution after you
enter the Debugger. The Debugger suspends only those user processes
that have reached a breakpoint.

Like simple mode, multiprocess mode does not affect operating system
services or interrupt handlers. Multiprocess mode is most useful for
debugging certain realtime programs, such as the timer process in the
Executive.

If you invoke the Debugger by pressing ACTION-B, you can still press
ACTION-A to invoke the Debugger in simple mode and suspend all user
processes. However, once you invoke the Debugger in simple mode, you
cannot change directly to the multiprocess mode.

The Debugger alone requires about llOK bytes of memory. (Check your
operating system release documentation for the exact memory
requirement.) The entire Debugger (including its nonresident portion),
together with the program being debugged, must fit into memory. If
memory is insufficient, a status message is displayed, and the Debugger
switches to simple mode.

Debugger Modes

Provided enough memory is available, you can set a CODE-I breakpoint
in multiprocess mode at any time. The Debugger goes into interrupt
mode when a CODE-I breakpoint is taken. (See "Setting Breakpoints in
Interrupt Handlers" in Section 8, "Using Breakpoints," for details on
CODE-I breakpoints.)

If the current process as defined by the process register (PR) is not
suspended, the Debugger prompt is the pound sign(#), indicating that
the Debugger is in multiprocess mode.

If, however, the current process has been suspended, the Debugger
prompt is an asterisk (*), indicating that the Debugger is in simple mode.

Proceeding and Exiting: CODE-P, CODE-G, and GO

In multiprocess mode, ifthe current process has been.suspended, the
CODE-P command causes that process to resume. The CODE-P
command, however, does not exit from the Debugger. To exit, you must
press GO.

Similarly, you press CODE-G to begin process execution at a different
address from the one at which the process stopped. (Pressing CODE-G
does not exit from the Debugger.) To use this feature,

type addr (press CODE-G)

where addr is the logical or symbolic address at which you want to begin
process execution following a breakpoint.

As with CODE-P, you press GO to exit from the Debugger.

Keyboard and Video Control

Pressing GO does not have the same effect in multiprocess mode that it
has in simple mode. In simple mode, pressing GO swaps control of the
keyboard and screen between processes; whereas, in multiprocess mode,
pressing GO exits the Debugger and returns screen and the keyboard
control to the user process.

9-3

Debugger Modes

Interrupt Mode
Interrupt mode occurs when a user process reaches a CODE-I
breakpoint. In interrupt mode, the Debugger takes control and runs with
interrupts disabled.

As in multiprocess mode, the entire Debugger must fit into the available
memory. If you set a CODE-I breakpoint and enough memory is not
available, a status/error message appears.

In interrupt mode, the Debugger prompt is an exclamation mark (!).

Section 10
Overlays

The Virtual Code Management facility permits you to configure a
program into overlays. Only code can be overlaid, not data segments.
This section describes how to debug an overlay.

Examining Code in an Overlay
An overlay is a part of a program that remains on a disk until it is called.
The Debugger can display instructions that are contained in an overlay,
whether or not the overlay is present in memory. (For details on overlays
and the Virtual Code Management facility, see your operating system
manual.)

To display instructions contained in an overlay,

type symbolic addr (press MARK)

The Debugger displays the symbolic address you typed plus the
instruction at that address, for example

init+43 MARK ADD BYTE PTR [BP] [DI-46], CL

To continue displaying instructions beyond the first one, press DOWN
ARROW. Each successive instruction is displayed, for example

{INIT+44} MARK
{INIT+45} MARK

DEC BX DOWN ARROW
MOV DX, 9A50 DOWN ARROW

Note the braces enclosing the symbolic locations. Whenever you use the
DOWN ARROW command to display the next instruction, the De­
bugger encloses the symbolic address of that instruction with braces if
the instruction is contained in a nonresident overlay.

You cannot modify instructions contained in a nonresident overlay
(although you can set breakpoints in such overlays). Patches that you
make to an overlay in memory remain in effect only while that overlay is
resident in memory.

10-1

Section 11
The Executive Command: Debug File

Uses of the Debug File Command
The Executive command Debug File lets you examine and modify the
data in files.

This command is particularly useful for analyzing a crash dump file. A
crash dump file contains a copy of the system memory image as it
appeared just before a crash.

You can, however, use this command to examine and/or patch any run
file. Although you would eventually need to correct your source file, at
least you are saved from having to make the same corrections each time
you run your program. When you patch a run file in the Debugger, on
the other hand, you are only correcting a memory copy of the file.
Therefore, it is necessary to make the same corrections each time your
program is run.

As an example of patching a run file, you can use the Debug File
command to set an INT 3 instruction at the beginning of your program to
suspend execution at that point. Details on how to do this are described
in "Patching a Run File."

Another use for the Debug File command is patching data files.

11-1

The Executive command: Debug Fiie

Invoking the Debug File Command

11-2

To invoke the Debug File command from the Executive, enter the com­
mand name on the Executive command line, and press RETURN. The
following command form then appears:

Debug File
File Name
[Write?]
[Image Mode?]
[Symbol File]
[Script File]
[Output File]

where

File Name

Is the name of the file or device that you want to examine or modify.

!Write?]

Asks you if you want to modify any data in the file (default is no). If
you enter yes, you can modify the data.

[Image mode?]

Asks you if you want the Debug File command to interpret the data
in the run file (default is no). If you enter yes, the Debug File
command interprets the data exactly as it appears in the run file.
Otherwise, the command interprets the data the way it appears
when loaded into memory.

[Symbol File]

Is the name of the symbol file. If examining a crash dump, this
value can only be the name of the operating system symbol file. If
examining a run file, this value can only be the name of the symbol
file produced by the Linker.

[Script File]

Is the name of the script file. If you enter a name, the Debugger
reads commands from this file rather than the keyboard.

The Executive Command: Debug Fiie

{Output File]

Is the name of the output file. If you enter a name, the Debugger
writes output to this file rather than the video display.

When invoked, the Debug File command prompts you with a percent sign
(%).

Debugger Commands You Can Use
To examine and modify the data in a file, you can use all the Debugger
commands except those involving run time execution. As an example,
you cannot use CODE-B (to set and execute to breakpoints) or CODE-P
(to proceed from breakpoints).

You can use CODE-S (to display process and exchange status) and
CODE-T (to display a stack trace) only if the file being debugged is a
crash dump file.

Exiting
To exit from the Debug File command, press either FINISH or GO. Any
modifications you made to the data in the file are properly recorded on
the disk only if you press FINISH to exit. If you want to exit without
saving your changes, press ACTION-FINISH.

When you modify a run file, the Debug File command automatically
corrects the run file checksum word.

Patching a Run File
You can use the Debug File command to patch a run. file such that the
Debugger is automatically entered at the program entry point. This
patch is useful, for example, in a situation where you have a series of
chained run files, and you need to suspend execution at the entry point of
one of the chained files for debugging purposes.

11-3

The Executive Command: Debug Fiie

11-4

Say, for example, a program consists of an installation file,
InstallProgram.run, which sets up the program environment and chains
to Program.run, the run file you need to debug. To execute code up to the
entry point of Program.run and then enter the Debugger, you can set an
INT 3 (Debug) instruction in Program.run by performing the following
steps:

1. In the Executive, invoke the Debug File command, and complete the
form as follows:

Debug File
File Name
[Write'?]
[Image Mode'?]
[Symbol File]
[Script File]
[Output File]

Program.run

2. Press GO to execute Debug File.

3. At the prompt, type CS:IP (press MARK).

The program entry point is displayed by the instruction

MOVSP,BP

4. Press DOWN ARROW to view the next instruction,

Debug File displays

STI

This is the Start Interrupts instruction.

5. Type Debug to the right of this instruction.

6. Press RETURN

As a result, the STI instruction is replaced with the Debug
instruction.

7. Press FINISH to record the patch you made to the file.

When the program is run, it executes up to the beginning of
Program.run. Then, the Debugger is entered.

The Executive Command: Debug Fiie

Examining a Crash Dump
As mentioned earlier in this section, you can also use the Debug File
command to analyze a system crash dump. A crash dump is a
byte-for-byte snapshot of what system memory looks like if you were able
to enter the Debugger at the instant a system crash occurs. However, to
examine a crash dump using the Debug File command, the system
memory must be copied to a disk file.

Details on crash dump files are contained in the CTOS System
Administratwn Guide and the CTOS Executive Reference Manual.
Additional details for protected mode operating systems are contained in
Appendix G, "Extended Crash Dump Process," in this guide. Details on
the extended crash dump process, crash dump file size requirements, as
well as ways you can conserve disk space are contained in Appendix G.

Usually there is an immediate reason for a system to crash. A process
may have called the Crash operation or a (protected mode) general
protection (GP) fault may have occurred, for example. In other cases,
however, the source of the crash may have occurred at some point prior
to the actual crash. In these situations, it may be necessary to try to
reconstruct the conditions that led to the crash in the first place.

Certain program errors (for example, an invalid pointer) that cause a
system crash under real mode CTOS will cause a protection fault under
protected mode CTOSNM 2.0 and later versions. Unlike system crashes,
protection faults are not always fatal. If the faulting program is serving
a request or is the operating system itself, the fault is fatal and the
operating system executes a system crash.

The remainder of this section introduces techniques you can use to
approach your analysis of a crash. Although the discussion merely
touches on the subject of crash dump analysis, it should help you
determine which product crashed and with what error condition. At the
very least, you should be able to formulate a more precise description of
the crash conditions, such as

I'm getting an error 26 from my version 4.1 Mail System Service

11-5

The Executive Command: Debug Fiie

rather than

My system is crashing

This information is extremely useful in the event that you need further
assistance from Technical Support.

Where to Start When Your System Crashes

11-6

Your system provides valuable clues you can use to determine the cause
of a crash. When your system crashes and reboots, 8 bytes of crash
information are displayed on the screen (workstations only) and they are
logged in Log.sys.

Upon a crash, the system displays a message of the following form:

CRASH STATUS (ERC X.) xx xx xx xx xx xx xx xx

where

X. Is the status code the system crashed with in decimal
notation.

xx Is a crash status word. The leftmost status word is the crash
status code in hexadecimal notation. The next word
normally is the identification number of the process that was
scheduled to run. (The meanings of the crash status words
are described in greater detail in "The System Error Buffer,"
later in this section.)

For your convenience, this crash information is displayed again several
times during the reboot process.

You can note down the eight crash status words at this time, or you can
use the Executive PLog command to obtain this same information. If you
use PLog, the eight crash status words contained in the most recent PLog
entry are the words you need to note. (You can also examine the system
error buffer. For details, see "System Error Buffer.")

The Executive Command: Debug Fiie

To analyze the crash status on a shared resource processor, the shared
resource processor boards have to be configured so that they will reboot.
Once the system has rebooted, you can examine the crash status words
by using the ClusterView utility. If a shared resource processor crashes
but is not configured to reboot, the LEDs on the back panel display the
error code. For details on how to interpret the LED display, see the
CTOS Status Codes Reference Manual. For information on configuring
your shared resource processor, see Appendix Fin this guide as well as
the CTOS System Administration Guide.

Using the Debug File Command
If the system memory image was dumped to a disk file, you can use the
Debug File command to examine the file. In the Executive, type Debug
File to display the command form. Fill out the form by entering the
name of your crash dump file:

Debug File
File Name CrashDumpFileName
[Write'?]
[Image Mode'?]
[Symbol File]
[Script File]
[Output File]

Then press GO. When the Debug File prompt is displayed, you can
start examining your crash dump file. Following are suggestions for
starting your investigation.

Displaying All Processes
To display all the application and system processes in the system when
the crash occurred, you can use the CODE-S command. (For details on
CODE-S, see "Displaying Process and Exchange Status: CODE-S" in
Section 7, "Display Commands.") If several pages of information are
displayed for the Processes display (first item shown by CODE-S), it is
very likely that the system did not dump to your crash dump file. This
can occur, for example, if your file is not large enough to contain the
entire dump. (Guidelines for sizing a crash dump file are included in
Appendix G, "Extended Crash Dump Process.")

11-7

The Executive Command: Debug File

11-8

Normally when you use the CODE-S command, eight to thirty entries
are shown. An example of the Processes display for protected mode is
shown in Figure 11-1. (An example of this display for a real mode
system is shown in "Displaying Process and Exchange Status: CODE-S"
in Section 7, "Display Commands.")

Figure 11-1. CODE·S Processes Display (Protected Mode)

Processes

id oPob- cs ip st pr tss ldt SS sp ds exoh sqU user pu:titiDll

00 6BBA 0298:08B2 co 02 0880 0000 04C0:99BE 04CO 0007 0000 0000
01 6BCC 0298:0BB2 co 01 0890 0000 04C0:9A70 04CO OOOD 0000 0000
02 6BDE 0298:0BB2 co 04 08AO 0000 04C0:9B6C 04CO OOOE 0000 0000
03 6BFO 0298:08B2 co 05 OBBO 0000 04C0:9D62 04CO 0010 0000 0000
04 6C02 0298:08B2 co 06 OSCO 0000 04C0:9E5C 04CO 0012 0000 0000
05 6Cl4 0298:0BB2 CO 08 OBDO 0000 04C0:9F5C 04CO 0013 0000 0000
06 6C26 0298:08B2 CO 07 OBED 0000 04CO:AOF2 04CO 0014 0000 0000
07 6C38 0298:0BB2 CO 04 OBFO 0000 0D78:03BE OD78 OOlB 0000 0000
08 6C4A 0298:08B2 CO 03 0900 0000 OD78:7D22 OD78 0000 0000 0000
09 6C5C 0298:0BB2 co 06 0910 0000 12CO:FFFA 12CO OOlc 0000 0002 Vc:tm_Ch 2.0

DA 6C6E 0298:0BB2 80 14 0920 1498 01A4:96F2 01A4 OOlE 1190 0003 Primary
OB 6CBO 0298:0BB2 BO BO 0930 15BO 045C:FEB4 045C 0022 1598 0005 CMOl
oc 6C92 029B:OBB2 BO 13 0940 1498 01A4 :887A 01A4 0023 1190 0003 Primary
OD 6CA4 0298:08B2 BO oc 0950 1498 01A4:8A96 01A4 0025 1190 0003 Primary
OE 6CB6 0298:08B2 BO 7F 0960 15BO 045C:BBD5 045C 0027 1598 0005 CMOl
OF 6CC8 F168:001D BO 78 0970 0001 F58B:OBAC F58B 002B 1650 0006 CM02
47 70B8 0318:0018 q FF OCEO 0000 04C0:97DC 04CO 0000 0000 0000

Run Queue 1471

The process identification numbers for all processes are contained in the
leftmost column of the Processes display.

Normally, the identification number of the process that caused the crash
is the second crash status word. (See "Where to Start When Your System
Crashes.") However, the faulting process also can be associated with one
of the processes in the Run Queue immediately following the Processes
display. When examining processes in the Run Queue, you should start
with the leftmost process number in the queue, then proceed to the right.
To examine a process, first set PR to that process, as described next.

The Executive Command: Debug Fiie

Setting PR

To examine the process you suspect is in question, set the Debugger's
internal register PR to that process.

Type PR (press RIGHT ARROW)

The process number of the current process is displayed. To the right of
this number, type the process number [or the protected mode Task State
Segment (TSS) selector] of the process you want to examine. Then press
RETURN. (Setting PR is also discussed in Section 6, "Working With
Registers.")

Loading the Symbol File

After setting PR, you can load the symbol file for the process. Loading
symbols allows you to specify public symbols rather than logical
addresses for given locations.

For Local Descriptor Table (LDT) based programs and protected mode
operating system tasks, the Debugger can locate the load offset for you.
Just type the symbol file name within single quotation marks and press
CODE-F, as shown below:

'SymbolFileName' (press CODE-1:4')

If loading symbols is successful, the Debug File prompt appears.

For the following programs, you ip.ust calculate the load offset:

• Global Descriptor Table (GOT) based programs (such as
system-common procedures) running on operating systems prior to
CTOS III.

• RMOS programs (real mode programs running on protected mode
operating systems)

Instead of using CODE-F to load symbol files, you can have the symbol
files loaded automatically. See the discussion on the Resource Librarian
command in Section 4, "General Purpose Functions and Features."

11-9

The Executive Command: Debug Fiie

C&lculatlng the Load Offset

11-10

To arrive at the correct offset, follow the procedures below:

1. Enter 0 as the selector (or real mode segment) value preceding the
symbol file name as follows:

Type 0, 'SymbolFileName' (press CODE-F)

2. Type a symbol from the data segment (DS) followed by the equals
sign(=). For example, you could type

sbVerrun=

sbVerrun is the symbolic address of the operating system version
string, which occurs in most programs.

Debug File responds by displaying an address of the form SA:RA,
for example

28:0FB40

With this response, if the program were loaded at offset 0, DS would
be the twenty-eighth selector.

3. To obtain the real DS value,

type DS (press RIGHT ARROW)

4. The Debugger displays the DS, such as

1638

5. Then, load the symbol file at the offset based on the difference
between the values of the real DS obtained in steps 3 and 4 and the
DS obtained in step 2. For this example, you would type

(1638-28), 'SymbolFileName'
(press CODE-F)

6. If the symbol file is loaded successfully, the Debug File prompt is
displayed.

The Executive Command: Debug File

Verifying the Operating System Symbol Fiie

If you loaded the operating system symbol file, you can verify that it is
the correct file by checking the operating system version string. This
string is typically displayed on the top line of the screen by applications
such as the Executive.

If, for example, Version 9.9 of a real mode operating system is installed
on your standalone workstation configuration, the version string is

tlClstrUsMp 9.9

To verify the version string, you can use the CODE-D command. You
would type

10.,sbVerrun (press CODE-D)

If you loaded the correct symbol file, Debug File should display 10 bytes
followed by the ASCII characters in the string, as shown below:

1AD2:1DDC 09 6E 53 74 6E 64 2D 31 2E 30 nStnd-1.0

Note that because the version string is an sh-type string, the string
length (9) is contained in the first byte.

If, instead of the version number, garbage is shown for the ASCII
characters, the symbol file is not the one created when the operating
system was linked. Although it is possible that a different symbol file
can successfully dump the version string, this test is accurate in most
cases.

11-11

The Executive Command: Debug Fiie

Using the Task Register and System Error Buffer

With the operating system symbol file loaded, you can obtain information
about the crash by examining the Task Register (protected mode only)
and the system error buffer.

Task Register

If you know that a protected mode program called the Crash operation,
you can identify the program's Task State Segment (TSS) by typing the
symbolic address of the Task Register (TR) as follows:

Type CrashTr (press RIGHT ARROW)

Debug File displays the TSS of the program that called Crash.

Once you have identified the TSS, you can find the user number and,
thereby, identify the run file that crashed. (For details, see "Determining
Which Run File Crashed.")

System Error Buffer

11-12

If you did not write down the 8 hexadecimal crash status words
(described in "Where to Start When Your System Crashes"), you can
obtain this information by examining the system error buffer,
SysErrorBuf. This buffer is an array of the eight words of crash
information that are logged to the system Log file as part of the crash
message.

To examine this buffer,

type SysErrorBuf (press RIGHT ARROW)

The first word of SysErrorBuf is displayed. This word is the error code in
hexadecimal that the system crashed with. (To display its decimal
equivalent, you can press CODE-R. Decimal output is followed with a
decimal point.) If the error code is not the one you last crashed with, the
system did not dump its memory contents to this file. This can occur if
there are file protection problems. To correct this situation, you can use
the Executive Set Protection command, then crash the system again.
(For details on Set Protection, see the CTOS Executive Reference
Manool.) This can also occur if the system is not configured properly.

The Executive Command: Debug Fiie

To display the second word of SysErrorBuf,

press DOWN ARROW

This word is the number of the process that was scheduled to run (but
may not have been running as explained next) when the crash occurred.

The operating system executes code segments either in processes or
interrupt handlers, but it does not assign process numbers to the
interrupt handlers. If, by chance, a process is executing and an interrupt
occurs whose handler crashes the system on a real mode operating
system, the process number is stored as the second word of SysErrorBuf.
In the same situation on protected mode systems, the TSS of the
interrupt handler is stored in this word.

On real mode operating systems only, with an operating symbol file
loaded, you can check for this by typing

fProcess (Press LEFT ARROW)

If the value displayed is 0, an interrupt handler was active. Otherwise, a
1 is displayed, indicating that the process really was running. If a
symbol file is not loaded, you can only assume that the process was
running until future crashes show a pattern that indicates otherwise.

The seventh and eighth words of SysErrorBuf contain the address of the
instruction following the one that caused the crash. (The values of the
third through sixth word of SysErrorBuf depend on the error code. For
details, see the CTOS Status Codes Reference Manual.)

Determining Which Run File Crashed

There are two methods you can use to determine which run file crashed.
These are described next. Note, however, that ifthe source of the crash
is an interrupt handler, you can skip this discussion because the
partition information you would use does not apply to interrupt handlers.

11-13

The Executive Command: Debug Fiie

With the User Number

11-14

By determining the user number of the process that crashed, you can find
out which program was running in the partition.

You can look up the user number if you know the TSS or the process
identification number. (Methods of obtaining the TSS and the process
number are described in"Using the Task Register and System Error
Buffer.")

To look up the user number, use CODE-S. Examine the Processes
display. (See the example in Figure 11-2.) In the display, there is a
column for the process identification number, the Task State Segment
selector (protected mode), and the user number. These are represented
by the column headings id, tss, and user, respectively, in Figure 11-2.
You can look up either the TSS or the id in question. Then locate the cor­
responding user number on the same line as the TSS or the id.

Figure 11-2; CODE·S Processes Display (Protected Mode)

Processes

id oPob OS ip st pr tss ldt as sp da exoh sqU user putition
00 6BBA 0298:0882 co 02 0880 0000 04C0:99BE 04CO 0007 0000 0000
01 6BCC 0298:0882 co 01 0890 0000 04C0:9A70 04CO OOOD 0000 0000
02 6BDE 0298:0882 co 04 OBAO 0000 04C0:9B6C 04CO OOOE 0000 0000
03 6BF0 0298:0882 co 05 08BO 0000 04C0:9D62 04CO 0010 0000 0000
04 6C02 0298:0882 co 06 OSCO 0000 04C0:9E5C 04CO 0012 0000 ODDO
05 6Cl4 0298: 08B2 co 08 0800 0000 04C0:9F5C 04CO 0013 DODD 0000
06 6C26 0298:0882 co 07 OBED 0000 04CO:AOF2 04CO 0014 ODDO ODDO
07 6C38 0298:0882 co 04 08FO 0000 DD78:03BE 0078 OOlB 0000 ODDO
08 6C4A 0298:0882 co 03 0900 0000 DD78:7D22 0078 ODDO 0000 DODO
09 6C5C 0298:0882 co 06 0910 0000 12CO:FFFA 12CO OOlC ODDO 0002 Vdm_Ch 2.0

DA 6C6E 0298:0882 80 14 0920 1498 01A4: 96F2 01A4 OOlE 1190 0003 Primary
OB 6C80 0298:0882 80 80 0930 15BD 045C:FEB4 045C 0022 1598 0005 CMOl
De 6C92 0298:0882 80 13 0940 1498 01A4 :887A 01A4 0023 1190 0003 Primary
DD 6CA4 0298:0882 80 DC 0950 1498 01A4:8A96 01A4 0025 1190 0003 Primary
OE 6CB6 0298:0882 80 7F 0960 15BD 045C:BBD5 045C 0027 1598 0005 CMOl
OF 6CC8 Fl68:001D 80 78 0970 0001 F58B:DBAC F58B 002B 1650 0006 CM02
47 70B8 0318:0018 Cl FF OCEO DODO 04C0:97DC 04CO 0000 ODDO DODO

Run Queue 1471

The Executive Command: Debug Fiie

Once you have obtained the user number, you can identify the partition
handle. On a workstation, the partition handle is the same as the user
number. On a shared resource processor, however, the partition handle
is represented by the lower 10 bits of the user number. (A user number
assigned by a workstation operating system is 16 bits, but only the lower
10 bits are significant; the upper 6 bits are always zeros. A user number
assigned by a shared resource processor utilizes all 16 bits; the upper 6
bits identify the position of the processor board within the shared
resource processor where the user number was assigned.) If, for
example, the user number is 0802, the partition handle is 2 and the slot
is 72. A parition handle of 0 always indicates an operating system
process.

With the partition handle, you can use the Executive Partition Status
command to determine the name of the crashed file. (For details on
Partition Status, see the CTOS Executive Reference Manual.)

With the User Structure

For protected mode, there is an alternate method of obtaining the run file
name. This method also requires using the CODE-S command. In the
Processes display there is a column (sgU) for the User (U) Structure.
(See the example in Figure 11-2.) The U Structure identifies the system
structures, such as the Partition Configuration Block and the Extended
Partition Descriptor, for the user number shown on the same line in the
Processes display.

If the run file in question is not that of a system process (that is, if sgU is
not the value 0), the current run file name is contained within the first
79 bytes of the U structure.

You can use CODE-D to display some of the bytes starting at the first
byte oftheU structure. (For details on CODE-D, see "Displaying the
Contents of Memory: CODE-D" in Section 5, "Examining and Changing
Memory Contents.")

For example, to examine the first 20 bytes of Sgu for process OD, you
would first set PR to OD. Then, you would type

20, 1190:0(press CODE-D)

where 1190 is the value of the U structure.

11-15

The Executive Command: Debug Fiie

A typical response is

1190:0 08 00 00 00 00 01 00 12 SB S3 79 73 SD 3C 73 +-- t -+ [Sys]<s
1190:10 79 73 3E 4S 78 6S 63 2E S2 7S 6E S2 7S 6E 2E 72 ys>Exec.RunRun.r

In this example, the run file is Exec.Run.

Determining the Run File Version Number
To obtain the version of the run file that crashed, use the Version com­
mand, specifying the name of the run file that crashed. (For details on
the Version command, see the CTOS Executive Reference Manual.)

Source of Crash
Your action will be different depending on the source of a crash. The
paragraphs that follow describe what you should do in the cases where
the crash source is a system service, an application, an interrupt handler,
or the operating system.

System Service or Application
If the source of the crash is a system service or an application, you can
report the problem to the party responsible for supporting that software
product.

Interrupt Handler or Operating System

Interrupt Handler

If an interrupt handler crashed, contact Unisys Data Systems Division,
San Jose Product Support.

Idle Process

11-16

The operating system idle process can crash as a result of malfunctioning
hardware or a bad checksum. This process is shown on the last line in a
CODE-S Processes display. (See Figure 11-3.) It can also be identified
by having the lowest (numerically highest) priority (FF).

The Executive Command: Debug Fiie

Figure 11-3. CODE·S Processes Display (Protected Mode)

Proceaaes

id oPcb ca ip st pr tas ldt •• ap da exch ago uaer partitiOD

00 6BBA 0298:0882 co 02 0880 0000 04C0:99BE 04CO 0007 0000 0000
01 6BCC 0298:0882 co 01 0890 0000 04C0:9A70 04CO OOOD 0000 0000
02 6BDE 0298:0882 co 04 OBAO DODD 04C0:9B6C 04CD DODE DODD DODD
03 6BFD 029B:OBB2 co 05 08BD 0000 04CO: 9062 04CD 0010 0000 DODO
04 6C02 0298:0882 co 06 OSCO 0000 04C0:9E5C 04CO 0012 0000 0000
05 6C14 0298:0882 co OB OBDO 0000 04CO: 9F5C 04CO 0013 0000 0000
06 6C26 0298:0882 co 07 OBED 0000 04CO:AOF2 04CO 0014 0000 0000
07 6C38 0298:0882 co 04 OBFO 0000 0D78:03BE 0078 DOlB 0000 0000
08 6C4A 029B:OBB2 co 03 0900 0000 0078:7022 0078 0000 0000 0000
09 6C5C 0298:0882 co 06 0910 0000 12CO:FFFA 12CO OOlC 0000 0002 Vdrn_Ch 2, 0

OA 6C6E 0298:0BB2 80 14 0920 1498 01A4: 96F2 01A4 OOlE 1190 0003 Primary
OB 6C80 0298:0882 80 80 0930 15BO 045C:FEB4 045C 0022 1598 0005 CMOl
oc 6C92 0298:0882 80 13 0940 1498 01A4:887A 01A4 0023 1190 0003 Primary
OD 6CA4 0298:0882 80 DC 0950 1498 01A4: 8A96 01A4 0025 1190 0003 Primary
OE 6CB6 0298:0882 80 7F 0960 15BO 045C:BBD5 045C 0027 1598 0005 CMOl
OF 6CC8 Fl68:001D 80 78 0970 0001 F58B:OBAC F58B 002B 1650 0006 CM02
47 70B8 0318:0018 Ci FF OCEO 0000 04C0:97DC 04CO 0000 0000 0000

Run Queue 1471

The most common reason for the idle process to crash is that malfunc-
tioning hardware has generated stray interrupts or other problems that
the operating system is unable to handle. Fixing the hardware resolves
this problem.

On CTOS I systems, the idle process checksums the operating system
code. If the process calculates a bad checksum, some other process or
interrupt handler overwrote part of the operating system code. As a
result, the idle process calls the Crash operation with error code 91
("Operating system checksum error"). Because this error is difficult to
analyze, you should contact Technical Support.

11-17

The Executive Command: Debug Fiie

Termination Process

Occasionally the operating system is unable to recover from an error
when loading a program into a partition. For example, a crash can occur
when a nonexistent exit run file is specified and the application then
exits. When the operating system finds it cannot run anything in the
primary partition, the termination process calls the Crash operation with
an appropriate error code. On a shared resource processor, a message is
logged in Log.sys and the partition is removed. The system does not
crash. You can examine the message by using the Plog command
described earlier.

You can determine which user number is at fault by looking for gaps in
the numbering sequence for the user numbers displayed by CODE-S.
On multipartition (real mode 9.10) systems user number 1 may be
missing, whereas any number (except 0 or 1) may be missing on
protected mode or CTOS/XE systems. Usually the missing user number
is the one at fault.

Error Code 22, 26, or 28

11-18

An operating system crash with error code 22, 26, or 28 can occur for a
number of reasons.

Because system code on CTOS II and CTOS III is not checksummed by
the idle process, if the code is overwritten by a system service or
application, the system may crash with error code 22, 26, or 28 rather
than with error code 91 ("Bad checksum").

Other reasons for the occurrence of these error codes are corrupted
pointers as the result of overwritten data areas and hardware-related
problems. If you detect any of these error codes, you should contact
Unisys Data Systems Division, San Jose Product Support.

Appendix A
Status Messages

Status Messages
The error messages that the Debugger displays are shown below in bold­
face type. The explanation of each message appears in regular type.

Address must not be in an overlay

You cannot modify code in an overlay.

Breakpoint already set

A previous CODE-B command already set a breakpoint at the
specified address.

Cannot proceed

You cannot invoke CODE-P to resume a process that is already
running.

Expected numeric parameter not found

You must use a numeric parameter with this command.

Expected parameter not found

You must use a string parameter with this command.

Expected parameter(s) not found

The parameters of the specified command are not of the correct type
or number.

Nonexistent memory

No physical memo:ry exists at the specified address.

A-1

Status Messages

A-2

No such breakpoint

No break.point has been set at the address given in the CODE-C
command.

No such command

That command does not exist. (For a list of all the Debugger
commands, refer to the command summary in the quick reference
accompanying this guide or to the online help file available with
protected mode Debuggers only.)

Not a symbol file

The file name parameter in the CODE-F command is not the name
of a symbol file. Check the spelling.

Not allowed when interrupts are disabled

The command in question is not available after a CODE-I break.point
has been taken, or when interrupts are disabled.

Not enough parameters

You must enter the command again with the correct number of
parameters.

Not implemented

The specified command is not implemented in the Debugger.

PatchArea offset too large

The offset in PatchArea must not exceed 49 bytes.

Pattern not found

The specified pattern was not found in the range of addresses given
as parameters of the CODE-0 command.

Radix must be between 2 and 16

The parameter of the CODE-R command must be in the range from
2 to 16 (decimal), inclusive.

Status Messages

Segmented address parameter not found

You must use an address parameter with this command.

System error while opening a symbol file

A file system error occurred when the Debugger tried to open the
symbol file. You should verify that the file name is spelled correctly.

Too many breakpoints

The Debugger permits only 16 breakpoints at one time.

Too many open symbol files

You cannot open another symbol file because the limit on the
number of open symbol files has been reached. You should close a
symbol file.

Too many parameters

. You must enter the command again with the correct number of
parameters.

A-3

Appendix B
Shared Resource Processor Debugging

Shared Resource Processor Debugging
Using the Debugger on a shared resource processor is somewhat different
from using it on a workstation.

A workstation comes equipped with a keyboard and video screen, both of
which are essential for using the Debugger. A shared resource processor
does not. To use a keyboard and screen with a shared resource processor,
you need a workstation or terminal as well as additional utilities.

Furthermore, there are differences in the way you configure the
Debugger for a shared resource processor. Unlike a workstation, a
shared resource processor has multiple processor boards, each with its
own memory. Therefore, you need to configure the Debugger for each
board you want to debug.

When debugging through the Debugger port, there are differences in the
way you access individual shared resource processor boards. Because
TP, CP, and GP boards have RS-232-C ports, these boards may be
accessed directly. All other types of shared resource processor boards,
such as FPs, must be accessed indirectly through either a TP, CP, or a
GP board.

All of these issues, as well as specific information about shared resource
processor debugging, are discussed in this appendix.

The preferred method of debugging on the shared resource processor is to
use Administrator ClusterView. This facility allows you to execute
commands on shared resource processor boards whereas typically you
execute them from your workstation. In certain cases, however,
debugging operations are video-dependent and Administrator
ClusterView does not provide the proper emulation for this activity. You
may want to use Basic ATE or a terminal instead.

8-1

Shared Resource Processor Debugging

Note: If you are using Basic ATE for debugging on a shared resource
processor, you may be able to use certain workstation Debugger
command keystrokes directly. See the Basic ATE User's Guide
for details.

Configuring the Debugger on Your SAP

B-2

To use the Debugger at all on your shared resource processor, you first
need to configure the shared resource processor so that the Debugger is
loaded into the memory of the appropriate boards.

For the shared resource processor Debugger to be loaded, it is essential
that the current copy of the Debugger be contained in the Debugger
system file. The specific name of this file varies depending on whether a
board is real mode or protected mode. At system boot time, a copy of this
file is loaded dynamically into the memory of the specified shared
resource processor boards. For the name of the system file, see your
release documentation.

You specify which boards are to contain a copy of the Debugger by editing
the shared resource processor system configuration files. For each
keyswitch position on a shared resource processor, there is a
configuration file with a name of the form.

SrpConfig.k. sys

where k is the keyswitch position as follows: M (manual), R (remote), or
N (normal).

Additional information on shared resource processor configuration can be
found in your operating system release documentation as well as in the
CTOS System Administration Guide.

For each processor board on which you want the Debugger loaded, you
need to include the following line. Enter the line in the processor section
of the configuration file for that keyswitch position:

:LoadDebugger: Yes

To debug with Administrator Cluster View, this is all that is needed.
Then, you can activate the Debugger by pressing HELP-A (or HELP-B)
on a shared resource processor.

Shared Resource Processor Debugging

To debug with Basic ATE or a terminal connected to a TP, CP, or GP, you
must, in addition, include other information in the configuration file, as
described in "Using a Debugger Port on any Shared Resource Processor
Board," next in this appendix.

Using a Debugger Port on any SRP Board
Because the shared resource processor boards have RS-232-C connectors,
you can also access the Debugger on any shared resource processor board
directly by using an asynchronous terminal or a workstation that is
running Basic ATE. To connect the terminal to a shared resource
processor board, you need to construct a null modem cable. The
configuration for the null modem cable is shown in Figure B-1.

Figure B-1. Null Modem Cable Configuration

25 Pin RS-232-C 25 Pin RS-232-C
Male Connector Male Connector

Pin 2 -------------- Pin 3
Pin 3 -------------- Pin 2
Pin 7 -------------- Pin 7
Pin 6

___ ,
Pin 8

___ , __________
Pin 20

Pin 20
___________ , __

Pin 6
1-- Pin 8

In addition, you need to add an entry to the processor section of the
configuration file to define the RS-232-C line to be used by the Debugger.
This entry has the form:

:DebugPort: Yes

In this case, the Debugger defaults to those parameters used by Basic
ATE. For a list of the default values, see your release documentation.
The actual port defaulted to is different for each type of processor.

8-3

Shared Resource Processor Debugging

B-4

There is another way to use the entry in the configuration file that allows
specifying different communication defaults. It also provides access to
the Debugger on an FP, DP, or SP board by using an RS-232-C port on a
CP, TP, or GP board. This entry has the form:

:DebugPort: (Speed = baud rate,
Parity = parity value,
Stopbits =number,
Charbits = number,
Modem= Yes or No,
Port :::: alphanumeric,
Processor= xPnn)

Using this form allows specifying different communication defaults. It
also allows access to the Debugger on an FP, DP, or SP board by using an
RS-232-C port on a CP, TP, or GP board.

The parameters and their values are as follows:

Speed

Acceptable baud rates include 50, 75, 110, 134, 150, 200, 300, 600,
1200, 2400, 4800, 9600, 19200. Basic ATE defaults to 9600.

Parity

Acceptable parity values include none, even, odd, 0, or 1. Basic ATE
defaults to 0. Since 0 or 1 forces the high order bit to be 0 or 1, you
cannot specify a parity of 0 or 1 if you specify 8 character bits in the
"Charbits" parameter, described below.

Stopbits

Configurable as 1 or 2.

Charbits

You can specify 5, 6, 7, or 8. You need to configure this depending on
the terminal you are using. The default is 7 bits.

Shared Resource Processor Debugging

Modem

Port

You can specify Yes or No. This option is supported in the following
cases only:

On a TP: when Debugger Port is set to channel 4, 5, 6, 7, 8, or 9
On a CP: when Debugger Port is set to channel 2

Set this parameter as follows:

For a GP: 0 or 1
For GP+CI: 0, 1, 2, 3, 4, 5, 6, or 7
For a CP: 0, 1, or 2
For a TP: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

You can use letters (A through J) instead of numbers. Use this if
you want to use a port other than the default, which may be in use.
This parameter is required for FP, DP, and SP boards.

Processor

This parameter is required for FP and DP boards, and is not
supported on GP boards.

For boards that do not have their own RS-232-C ports, you can
borrow a port from another processor. For example, you can debug
an FP board by connecting Basic ATE to a port on a CP board. You
can borrow from a CP or TP board only. An example of an
acceptable value would be CPOO.

You can enter the above parameters in any order, separated by white
space or commas. Here is an example of what an entry may look like:

:DebugPort: (Speed = 9600, Parity = 0, Stopbits = 1, Processor =
CPOl)

For more information about how to enter values in a configuration file,
see the CTOS System Administration Guide.

8-5

Shared Resource Processor Debugging

You must connect the terminal or workstation (running Basic ATE) to
the shared resource processor board using the null modem cable
configuration as shown in Figure B-1. If you do not specify the port
number in :DebugPort:, the default is CHANNEL 3 (Port= 2) for a CP,
CHANNEL 10 (Port= 9) for a TP, and CHANNEL B (Port= 1) for a GP.

Note: You must use the debug port for debugging with interrupts
disabled (see CODE-I). Should you use CODE-I breakpoints on
a processor with a cluster, all cluster workstations will time out
and not have access to the server.

Once you have made the necessary connections, you should be commu­
nicating with the processor board to which you are connected. To verify
that you are, press CODE-A once. A Debugger prompt should appear.

Caution

If you are using Basic ATE to access a shared resource processor Debugger,
pressing FINISH terminates Basic ATE but does not resume the Debugger.
Consequently, your process may be halted in the Debugger. To exit the
Debugger from Debug Port, first be sure the F10 function key is toggled to
'workstation keyboard for shared resource processor debugging mode' from
regular Basic ATE mode. Then, press GO. The message "Exiting Debugger"
should appear.

Appendix C
Stack Format

What is a Stack?
A stack is a region of memory used by a program to save the environment
when a procedural call is made and to handle parameter passing. A
stack is also used by interrupt and trap handlers to save the context of a
process when an interrupt occurs.

This appendix describes stack format and discusses how to use the stack
as an aid in debugging your programs.

Format of the Stack
The format of the stack is illustrated in Figure C-1. The initial value of
the stack pointer (SP) register is at the highest address of the stack. The
stack grows downward toward lower addresses as new words are pushed
onto it. Each location on the stack is a word. Associated with the stack
are stack pointers and stack frames.

A stack pointer is an indicator to the top of the stack. Access to the stack
is always via a stack pointer. Stack pointers have the format SS:SP.
Since the stack grows downward, the value of SP, which points to the top
of the stack, decreases as the stack grows.

A stack frame is a region of the stack corresponding to the dynamic
invocation of a procedure. Stack frames consist of procedural
parameters, a return address, a saved-frame pointer, and local variables.

C-1

Stack Format

C-2

Figure C-1. Format of the Stack

High +
A

i
B (x, y, z) A's Locals

i x
y

C (one, two) z
CS inA
IP in A

'----I A's BP f+--r
B's Locals

ond Temporaries

One

B's From e -< Two

CS in B
IPinB

.... B's BP I---

I~
C's Locals

and Temporaries
BP

Low

558.C-1

Each stack frame has an associated base pointer (BP). The BP is a point
of reference used by the called procedure to find the values of passed or
local parameters.

The Debugger accesses the stack through a stack trace. A stack trace is a
display of the program's stack arranged by stack frames. The Debugger
command CODE-Tis used to display the stack.

Stack Format

Interpreting a Stack
The stack format shown in Figure C-2 illustrates two nested procedure
calls. Procedure A has called procedure B which, in turn, has called pro­
cedure C. For each call there is a stack frame.

Figure C-2. Format of the Stack

High •
A

i
B (x, y, z) A's Locals

i x
y

C (one, two) z
CS inA
IP in A

....__
A's BP ~ r

B's Locals
and Temporaries

One
B's Fram e -< Two

CS in B
IP in B

'-
B's BP I---

BP --+ C's Locals
and Temporaries

Low

558.C-1

Note: Stack conventions concerning local variables and parameter
passing are language specific. This appendix shows the stack as
it would appear when using either a Pascal or PL IM compiler.
For details, see your language manual.

C-3

Stack Format

C-4

The process that created the example stack is as follows:

1. When procedure A calls procedure B, the values of Ns local
variables are on the stack.

2. The passed parameters X, Y, and Z are pushed in the same order in
which they appear in the procedure call.

3. The values of the CS and IP registers are pushed. These values
indicate the point at which execution in A will continue after the
return.

4. Finally, the value of the BP register is pushed.

While procedure A was executing, before it called procedure B, the BP
register pointed to the location immediately above Ns local variables.

When A calls B, that value of the BP register must be saved for the
return. It is the last item pushed onto the stack. In Figure C-2, it is
denoted as Ns BP.

After several calls, a chain of BP values has been created that marks the
various frames. It is possible to trace back through the stack by
following this chain from one BP to the previous one, and so on.

The Virtual Code Management facility does such a stack trace when an
overlay is discarded. Virtual Code Management follows the chain of BP
values and, by reference from them, corrects the return CS:IP values of
any discarded procedures to point to the Overlay Manager.

The Debugger also does a stack trace when you give a CODE-T
command.

Stack Format

Using the Debugger with the Stack
You can use the Debugger to look at the instructions generated by a
compiler to immediately precede and follow a procedure call. The
prologue is the first instruction of the procedure that saves BP and sets
SP. The epilogue is the last instruction of the procedure that restores BP
and SP. Figure C-3 illustrates a prologue and epilogue.

In the prologue shown in Figure C-3, the following process is illustrated:

• The value of BP is pushed onto the stack.

• Then BP is set equal to SP, thereby setting up a pointer to the
current frame.

• The SUB SP,n instruction subtracts the number of bytes (n) of stack
space for local variables from the value of SP.

The result of this process is that the correct top-of-stack position is
maintained after the called procedure's local and temporary variables
have been placed on the stack.

In the epilogue shown in Figure C-3, the following process is illustrated:

• The stack pointer is set equal to the base pointer, thereby
eliminating the local and temporary variables from the stack.

• The value of the previous BP (the next location) is popped so that BP
points to its previous location in the BP chain.

• The RET m instruction pops and uses the saved CS and IP values to
set CS:IP back to the proper location in the calling code segment. It
also pops m bytes of the passed variables by setting SP to SP-m
(return to CS:IP). This process leaves SP at the low end of the
previous procedure's local and temporary variables.

C-5

Stack Format

Figure C-3. Procedure Prologue and Epilogue

PUSH BP
MOVBP,SP
SUB SP,n

MOV SP,BP
POP BP
RET m

Prologue

Epilogue

Debugging Using the Stack Trace

C-6

The CODE-T command displays a stack trace. Details of this command
and its usage are given in Section 7, "Display Commands." Shown below
are the first few lines of that stack trace.

0 3108
1 3116
2 3130

12D2:14A
581F:95
SEC8:0C4

(3, 3, 4F1F, 3113)
(173C,l,4FlF,312A,4FlF,312E)
(4FlF,173C,4FlF,314D)

The first column is the level number of the stack frame described by that
line. (See Figure C-4.) You can see by comparing the trace to
Figure C-4 that the Debugger reads toward the beginning of the frame
(from lower to higher addresses) and displays what it finds in each
category of items pushed.

Stack Format

Figure C-4. Format of the Stack

High • A

i
B (x, y, z) A's Locals

i x
y

C (one, two) z
CS in A
IP inA

'-- A's BP ~
r

B's Locals
and Temporaries

One
B's From e -< Two

CS in B
IP in B
B's BP I--

\..

BP ~
C's Locals

and Temporaries

Low

558.C-1

The second column contains the value of BP for the frame, and the
second column collectively is the BP chain. For example, the value in
location 3108 in this example would be 3116, and the value in location
3116 would be 3130.

The third column contains the value of CS:IP at which execution will
continue when control is returned to this procedure.

The last column lists the values of the parameters passed from this
procedure to the next. The Debugger estimates the number of passed
parameters to a maximum of six. It assumes word values so a
double-word or pointer takes two entries in this list.

C-7

Stack Format

Normally, the Debugger lists the parameters in the order in which they
were pushed. If, however, the Debugger overestimated the number of
parameters, it reaches up into the local area of the calling procedure's
stack and presents nonsignificant values at the left end of the list.

When you are debugging, if you know the number of parameters that
should have been passed, you can examine the last column, taking double
words and pointers into account, starting at an intermediate point and
proceeding to the right end of the parameter list.

Estimating Stack Size
To estimate the needed stack size and avoid problems, you can run the
program under the Debugger and set a breakpoint at the end of execution
or at another convenient point after the stack has just reached its largest
requirement.

Since the stack is initialized to zeroes, you can now check to see how
much of the low part of the stack is still zeroes in order to find the maxi­
mum requirement. Allow another 64 bytes for interrupt handlers plus
448 bytes for making requests (512 bytes total), and reduce the stack size
accordingly.

Correcting Stack Overflow
If your program's stack requirements exceed the stack size, the stack can
overwrite whatever precedes it in the link map. You can detect this by
abnormal program behavior.

If this happens, increase the stack to the maximum allowed within the
limits of your data segment. Then relink the program and see ifit runs.
If it runs, you can then begin reducing stack size according to the
process for estimating given above.

Interrupts and the Stack
If interrupts are enabled, the interrupt handlers use the stack as defined
by SS:SP. Therefore, you should be careful to never put data such as
temporary variables in the stack segment at a memory address lower
than SS:SP.

Appendix D
Debugger Tips

Debugger Tips Introduction
This appendix contains other practical examples of ways to use the
Debugger. It is assumed that you are at least familiar with the
DisplayFile program described in Section 3, "Debugging Session."
Portions of that program are used as examples in this appendix to
illustrate other debugging techniques not covered in Section 3.

If you debugged programs without ever using a debugging tool, you
probably added extra output statements to modules to see if the modules
worked in the way you expected. The Debugger eliminates the need to
add these extra statements, because you can check the parameters
passed to procedures and the error codes returned. These particular
error checking functions are the most common reasons for using the
Debugger.

If a procedure calls a CTOS operation that returns an error code, the
procedure should be written as a function. By doing so, you can check
the error returned in' the AX register. In this way, you can focus on those
procedures that return nonzero error codes. ·

As you develop skill in examining the stack, you will be able to use the
Debugger to troubleshoot faulty procedures in greater detail. Two
exercises in this appendix provide you with hands-on experience and a
logical approach to looking at what is on the stack.

Remember that corrections you make to your program while in the
Debugger are only temporary patches. This is because you are only
correcting a copy of the run file in memory, not the run file itself that is
stored on disk. To make permanent corrections to the file copy of your
run file, you can use the Debug File utility. However, you will not be
able to set and execute breakpoints. (For details on Debug File, see
Section 11, "The Executive Command: Debug File.") Eventually, you
will need to edit your source file and relink.

D-1

Debugger Tips

Viewing Code
In the Debugger, you can view the code in your program and in any
libraries linked with it. Unless you are explicitly debugging the
operating system itself, however, you should not try to view the code in
operating system calls (that is, requests, Kernel primitives, and
system-common procedures).

Setting Breakpoints

D-2

You can set breakpoints anywhere in your program except at the level of
CTOS operations. CTOS operations include the operating system calls as
well as the operating system library routines. All of the CTOS operations
are listed in the CTOS Procedural Interface Reference Manual.

As an example, the Display File program described in Section 3,
"Debugging Session," contains a call to the operating system library
procedure, OpenByteStream. You can set a breakpoint at the call to
OpenByteStream; for example,

•ENTGQQ+ 2A... CALL OPENBYTESTREAM b

By breaking at this point, all instructions are executed up through the
instruction that pushes the last parameter to OpenByteStream onto the
stack. The actual call to OpenByteStream is not executed.

If, however, you were to set a breakpoint as s'1own

OpenByteStream Ab

you would be setting the break at the first instruction within the
OpenByteStream code. It should not be necessary to examine the code in
this library procedure because the code is designed to work correctly for
you. You do need to be concerned, however, with the information your
program passes to this procedure.

Debugger Tips

caution
Setting breakpoints at any instruction in a request, Kernel primitive, or
system-common procedure can cause unpredictable results in your program
or other programs in the system.

If you need to locate a CTOS operation and you cannot determine how to
arrive at its address, you can write a PUBLIC function in your program
that just calls that operation. For example,

FUNCTION WriteAByte (pbsOut: Pointer; b: Byte): ErcType
[PUBLIC];

VAR ere : Word;
BEGIN

WriteAByte := WriteByte (pbsOut, b);
END;

Then, you can set a breakpoint in the Debugger at the symbolic address
of the module you wrote, for example

WriteAByte Ab GO ·

To be able to use symbols, you will need to load your symbol file first.
For details on symbol files, see "Symbol Files" in Section 4, "Basic
Debugger Functions and Features."

Note: In protected mode, symbols will not work using certain memory
models, such as the small and compact models available with
High C. To use symbols, select a memory model that does not
group code segments together. For details, see your language
manual.

Looking at the Stack
The following paragraphs describe two approaches to looking at the
stack. Each approach is accompanied by script and supporting
comments.

0-3

Debugger Tips

Exercise 1
Program errors are often the result of errors in passing parameters.
Because all parameters are pushed onto the stack before a call, you can
look at the stack just before a procedure call is executed. The approach
to looking at the stack demonstrated by exercise 1 is summarized below.

To view the stack in the Debugger starting at the last parameter pushed, ·
you set a breakpoint at the call, as shown in the following example:

*ENTGQQ+2A MARK CALL OPENBYTESTREAM .Ab GO

Then, you examine the contents of the stack, starting at the address of
the stack pointer, as shown below:

ss:sp (press RIGHT ARROW)

The Debugger displays the last word pushed onto the stack before the
call. The word in this case would be the buffer size (last parameter to
OpenByteStream).

Then, you can press DOWN ARROW to view the other words on the
stack.

On the following pages the Display File program you debugged in Section
3 is used again to provide you with hands-on experience in viewing the
stack for relevant information. Although there are compiler differences
in the way parameters and local variables may appear on a stack, you
can generally apply the approach used in this exercise to examine the
stack at any time while you are debugging. (For language-specific
differences, see your language manual.)

To complete the exercise on the next few pages (as well as other exercises
in this appendix), you need the following files for the DisplayFile
program:

• DisplayFile.pas

• DisplayFile.sym

• DisplayFile.run

Debugger Tips

These files are contained in the <Program> directory on the diskette
packaged with this guide. Copy the files into your working directory.
For a description of these files and the Display File program, see Section
3, "Debugging Session."

If you recall, there is a bug in the DisplayFile program. In the Debugger,
you need to correct this bug before you can execute the program.
Otherwise, the program will terminate with an error. As stated earlier
in this appendix, Debugger patches are temporary because you are
correcting only the copy of the run file in memory, not the run file on
disk. For this reason, you need to correct the Display File run-time error
once again. The first 14 Debugger lines of this exercise guide you to the
erroneous MOV instruction. You need to correct the instruction before
proceeding any further.

Run the DisplayFile program, and enter the Debugger by pressing
CODE-GO. Then, follow the script and commentary on the next few
pages.

D-5

Debugger Tips

Script

Line
number

1

2

3

4

5

6

7

8

9

10

11

12

13

Script

*'DisplayFile.sym'Af

*
Exiting Debugger

Break at ENTGQQ in process OD

*cs: ip MARK PUSH BP

*ENTGQQ+l MARK MOV BP,SP J,

*ENTGQQ+ 3 MARK SUB SP,4 J,

*ENTGQQ+7 MARK MOV AX, OFOF8 J,

*ENTGQQ+OA MARK PUSH DS J,

*ENTGQQ+OB MARK PUSH AX J,

*ENTGQQ+OC MARK MOV AX, OFD2D J,

*ENTGQQ+OF MARK PUSH DS J,

*ENTGQQ+lO MARK PUSH AX J,

14 *ENTGQQ+ll MARK MOV AX, OE MOV AX, OF .J,

D-6

Comments

Line
number

1

2

3

4

5

6 - 13

Debugger Tips

Comment

First load the symbol file.

type 'DisplayFile.sym' (press CODE-F)

Then, set a breakpoint at the beginning of the program.

type DisplayFile (press CODE-B)

Execute up to the breakpoint by pressing GO.

Exiting Debugger

Break at ENTGQQ in process OD

To display the next instruction to be executed,

type CS:IP (press MARK)

To advance through the MOV and PUSH instructions on
lines 6 through 13 leading up to the erroneous MOV
instruction on line 14,

press DOWN ARROW

For an explanation of these instructions, see the tutorial in
Section 3, "Debugging Session."

14 .Correct the MOV instruction on line 14 as shown in the
script. This correction will cause the program to run without
generating an error. Then

press DOWN ARROW

D-7

Debugger Tips

Script

Line
number Script

15 *ENTGQQ+14 MARK PUSH AX t

16 *ENTGQQ+ 11 MARK MOV AX,OF j,

17 *ENTGQQ+14 MARK PUSH AX j,

18 *ENTGQQ+lS MARK MOV AX, 0FD3C J,

19 *ENTGQQ+18 MARK PUSH DS j,

20 *ENTGQQ+19 MARK PUSH AX J,

21 *ENTGQQ+ lA MARK XOR AX,AX j,

22 *ENTGQQ+lC MARK PUSH AX j,

23 *ENTGQQ+lD MARK MOV AX, 6074 j,

24 *ENTGQQ+2 0 MARK PUSH AX j,

25 *ENTGQQ+21 MARK MOV AX, OF136 J,

26 *ENTGQQ+2 4 MARK PUSH DS j,

27 *ENTGQQ+25 MARK PUSH AX j,

28 *ENTGQQ+26 MARK MOV AX,400 J,

29 *ENTGQQ+29 MARK PUSH AX j,

Comments

Line
number

15

16

17 - 29

Debugger Tips

Comment

To view the previous instruction again,

press UP ARROW

The instruction is now correct on line 16.

To view the series of MOV and PUSH instructions on lines
17 through 29 leading up to the call to OpenByteStream,

continue pressing DOWN ARROW

For an explanation of these instructions, see the tutorial in
Section 3, "Debugging Session."

D-9

Debugger Tips

Script

D-10

Line
number

30

31

32

33

34

Script

*ENTGQQ+2A MARK·

Exiting Debugger

Break at ENTGQQ

*ss:sp ~ 0400

0DBF2:0F06A ~
0DBF2:0F06C ~
0DBF2:0F06E ~

0DBF2:0F070 ~

0DBF2:0F072 ~

ODBF2:0F074 ~
0DBF2:0F076 ~
0DBF2:0F078 ~

0DBF2:0F07A ~
0DBF2:0F07C ~
0DBF2:0F07E ~

CALL OPENBYTESTREAM ."'b GO

+2A in process OD

J,

Fl36 J,
DBF2 J..
6074 J..
0000 J,
FD3C J,
DBF2 J,
OOOF J,
FD2D J,
DBF2 J..
FOAB J,
DBF2 J..

Comments

Line
number

30

31

32

33

Debugger Tips

Comment

At the call to OpenByteStream, set a breakpoint as shown,
and press GO.

Exiting Debugger

Break at ENTGQQ+2A in process OD

To display the word at the stack pointer,

type ss:sp (press RIGHT ARROW)

The Debugger displays 0400, the size of the buffer to
OpenByteStream.

press DOWN ARROW

34 Until you see all the parameters shown in the script,

continue pressing DOWN ARROW

(Do not exit the Debugger if you plan to continue with the
next example in this appendix.) The meaning of each word
on the stack in this example is as follows:

Stack Address Word Meaning

ss:sp ~ 0400 J, sBufferArea
ODBF2: OFO 6A ~ F136

"'
BufferArea RA

0DBF2:0F06C ~ DBF2

"'
Buf ferArea SA

ODBF2:0F06E ~ 6D74

"'
mode

0DBF2:0F070 ~ 0000

"'
cbPassword

0DBF2:0F072 ~ FD3C

"'
bPassword RA

0DBF2:0F074 ~ DBF2

"'
bPassword SA

0DBF2:0F076 ~ OOOF

"'
cbFileSpec

ODBF2:0F078 ~ FD2D
"'

bFileSpec RA
0DBF2:0F07A ~ DBF2

"'
bFileSpec SA

ODBF2:0F07C ~ FOF8

"'
BSWA RA

0DBF2:0F07E ~ DBF2

"'
BSWA SA

D-11

Debugger Tips

D-12

If you look at the parameters to OpenByteStream (shown below), you will
note that the Debugger stack display is in the reverse order:

FUNCTION OpenByteStream (
pBSWA
pbFileSpec
cbFileSpec
pbPassWord
cbPassWord
mode
pBufferArea
sBufferArea
EXTERN;

: Pointer,
: Pointer;
:Word;
: Pointer;
:Word;
:Word;
: Pointer,
: Word): Ere Type;

To help you identify the parameters to a call, note down the PUSH and
MOV instructions leading up to the call as you view these instructions in
the Debugger using the DOWN ARROW. If you have a parallel printer,
you can attach it to your workstation and use the CODE-L command to
print your Debugger output. (For details on CODE-L, see "Printing the
Debugger Screen: CODE-L" in Section 7, "Display Commands.")

Then, construct a picture of the stack by associating each parameter with
a word displayed on the stack. Figure D-1 is an example of the stack
before the call to OpenByteStream.

Note: Stack conventions concerning local variables and parameter
passing are language specific. This guide shows the stack as it
would appear when using either a Pascal or PL IM compiler.
For details, see your language manual.

Although the order and size of parameters passed may differ depending
on your language compiler, there are still some general clues you can use
to identify what is on the stack.

Debugger Tips

In interpreting the stack, you should be able to recognize the parameters
passed by value, such as byte counts and buffer sizes. If one of the
parameters is a file specification, for example, you should be able to find
the count of bytes in the specification as well as the count of bytes in the
password. Every pb/cb pair consists of three PUSH instructions. One
instruction pushes the word containing the count of bytes. The other
two instructions push the segment address (SA) and the offset (RA) of the
pointer to the specification.

Figure D-1. Stack Before CBll to OpenByteStream

Parameters Stack
Contents

pBSWA SP DS 0DBF2

AX OFOFB

pbFileSpec DS 0DBF2

AX OFD2D

cbFileSpec AX F

pbPassword DS ODBF2

AX OFD3C

cbPassword AX 0

mode AX 06074

pBufferArea DS ODBF2

AX OF136

sBuf ferArea AX 00400

D-13

Debugger Tips

If you do not exit the Debugger at this point, you can continue with the
next example. Otherwise, to clear the breakpoint you set

press CODE·C

To exit the Debugger,

press GO

Exercise 2

D-14

The following is another exercise in examining the stack. If you just did
the last exercise (and are still in the Debugger), you can continue with
the next exercise at the point where you left off. Just press RETURN
and follow the script and commentary on the next few pages.

If, however, you exited the Debugger or did not try exercise 1, you will
need to correct the error in the DisplayFile program. To do so, follow the
first 14 numbered comments in the previous exercise. For details on the
files you need and how to enter the Debugger, see the introductory
comments at the beginning of that exercise.

Exercise 2 assumes your familiarity with the DisplayFile program, which
is described in detail in Section 3, "Debugging Session." Basically, the
program reads the program listing file DisplayFile.pas shown in
Figure 3-1 and writes this file to the screen. The TypeSub procedure is
called to do the reads and writes. To write each byte, TypeSub calls the
WriteAByte function. The code to TypeSub and WriteAByte is shown in
Figure D-2.

In this exercise, you will execute the Display File program up to the call
to WriteAByte. At this point in the program's execution, you will
examine the last word pushed onto the stack. The lower byte of this
word is the first character to be written to the screen. Follow the script
and comments on the next few pages.

Debugger Tips

Figure D-2. TypeSub and WrlteAByte

FUNC.TION WriteAByte (pbsOut: Pointer; b: Byte) : ErcType
[PUBLIC];
VAR ere : Word;
BEGIN

WriteAByte := WriteByte (pbsOut, b);
END;

PROCEDURE TypeSub (pbsin, pbsOut: Pointer) [PUBLIC];
VAR b: Byte;
ere : Word;

BEGIN
WHILE TRUE DO

BEGIN

ere:= ReadByte (pbsin, ADS b);
If ere = ercEOF then
RETURN;
If ere <> ercOK then

FatalError (ere);
count := count + 1;
CheckErc (WriteAByte (pbsOut, b));

END;

END;

D-15

Debugger Tips

Script

D-16

Line
number

15

Script

*TYPESUB MARK PUSH BP

16 *TYPESUB+l MARK MOV BP, SP .!.

1 7 *TYPESUB+3 MARK SUB BP, 4 .!.

18 *TYPESUB+7MARK PUSH WORD PTR [BP+OC]

19 *TYPESUB+oA MARK PUSH WORD PTR [BP+OA] .!.

20 *TYPESUB+ODMARK LEA, AX, WORD PTR [BP-2) .!.

21 *TYPESUB+lO MARK PUSH DS .!.

22 *TYPESUB+ll MARK PUSH AX .!.

Comments

Line
number

1- 14

15

16

17

18- 22

Debugger Tips

Comment

Follow the first 14 numbered comments in the previous
exercise. Then press RETURN, and continue with line 15
below.

Locate the first instruction in the TypeSub procedure.

Type TypeSub (press MARK)

PUSH BP saves the value of the base pointer (BP).
Collectively, this instruction and the instructions on lines 16
and 17 are the stack prologue. (For details on the format of
the stack, see Appendix C, "Stack Format.")

To view lines 16 and 17,

press DOWN ARROW

MOVBP, SP

SUB BP, 4 subtracts 4 bytes from the stack pointer to
allocate space for local or temporary variables.

To view the instructions on lines 18 through 22,

continue pressing DOWN ARROW

These instructions push the parameters onto the stack for
the call to ReadByte. Note that the parameters are not
public variables, so their locations are displayed, for
example, [BP-2]. In this case, the variables are a parameter
and an address of a local variable. You can identify the local
variable [BP-2], because local variables are located at higher
stack addresses than BP. Since the stack grows downwards,
these locations are expressed negatively relative to BP. The
locations of nonlocal parameters, on the other hand, are
expressed positively because they are positioned below BP.

Press DOWN ARROW

D-17

Debugger Tips

Script

Line
number Script

23 *TYPESUB+12 MARK CALL READBYTE .J,

24 *TYPESUB+l 7 MARK MOV WORD PTR [BP-4], AX .J,

25 *TYPE SUB+ lA MARK CMP WORD PTR [BP-4], 1 .J,

26 *TYPESUB+lE MARK JNE .+4 (TYPESUB+22) .J,

27 *TYPESUB+20 MARK JMP .+2A (TYPESUB+4A) .J,

28 *TYPESUB+22 MARK CMP WORD PTR [BP-4),0 .J,

29 *TYPESUB+26 MARK ME .+OA (TYPESUB+30) .J,

30 *TYPESUB+28 MARK PUSH WORD PTR [BP-4] .J,

31 *TYPESUB+2B MARK CALL FATALERROR .J,

32 *TYPESUB+30 MARK INC WORD PTR [COUNT] .J,

D-18

Comments

Line
number

23

24-32

Debugger Tips

Comment

This is the call to ReadByte.

To view the instructions on lines 24 through 32,

continue pressing DOWN ARROW

On these lines the error code returned in AX (from ReadByte)
is examined. Following are brief descriptions of these lines:

On line 24 the error code is moved to the location [BP-4].

On line 25 the value of the error code is compared to 1 (EOF).

Line 26 jumps 5 bytes to TYPESUB+22 if the error code value
is not the EOF. Otherwise, a jump is made to the end of the
TYPESUB procedure on line 27.

On line 28 the error code is compared to 0 (ercOK).

If the error code is 0, line 29 jumps 10 bytes to TYPESUB+30
(shown on line 32). Line 32 then increments the count
variable by 1. Otherwise (if the error code is not 0), line 30
pushes the error code onto the stack. Then, on line 31
FatalError is called.

D-19

Debugger Tips

Script

Line
number Script

33 *TYPESUB+34 MARK PUSH WORD PTR [BP+8] J,

34 *TYPESUB+37 MARK PUSH WORD PTR [BP+6] J,

35 *TYPESUB+3A MARK PUSH WORD PTR [BP-2] J,

36 *TYPESUB+3D MARK CALL WRITEABYTE . "b GO

37 Exiting Debugger

38 Break at TYPE SUB +3D in process OD

39 *ss:sp 0378 RETURN

40 *2, ss:sp "d

ODBFl: OF072 78 03 {¢

D-20

Comments

Line
number

33- 35

Debugger Tips

Comment

To view the instructions on lines 33 through 35,

press DOWN ARROW

On these lines, the parameters and a local variable are
pushed onto the stack for the call to WriteAByte.

Lines 33 and 34 push the segment address and offset of the
variable pbsOut.

On line 35 the byte to be written to the screen is pushed.

36 Set a breakpoint at the call to WriteAByte as shown. Then
press GO.

37 Exiting Debugger

38 Break at TYPESUB+3D in process OD

39 To check the word at the stack pointer,

type ss:sp (press RIGHT ARROW)

The Debugger displays 037B. Your concern is with the lower
byte (7B) of this word. This byte is the first byte to be written
to the screen by WriteAByte.

Press RETURN

40 To display the ASCII characters represented by the word,

type 2, ss:sp (press CODE-D)

The Debugger displays the ASCII codes and the characters
they represent for 2 bytes starting at ss:sp. The lower byte
(7B) is the ASCII character, Left bracket({). Compare this
character to the first character in the Display File program
listing. (See the program listing shown in Figure 3-1 in
Section 3, "Debugging Session.")

D-21

Debugger Tips

Script

Line
number Script

41 *"c GO

D-22

Comments

Line
number

41

Comment

To clear the breakpoint you set,

press CODE-C

To exit the Debugger,

press GO

Debugger Tips

The DisplayFile program executes to completion, displaying
the DisplayFile.pas file to the screen. The string 'Finished'
appears following the last file character.

D-23

Debugger Tips

String Moves

D-24

In the exercise that follows, you will be introduced to assembly language
instructions used to move strings of bytes from one location to another.

To work through this exercise, you will need to run the DisplayFile
program used and described in Section 3 and in the earlier exercises in
this appendix. (For details on the files you need, see exercise 1.)

This time, you will execute the DisplayFile program up to the point at
which the string variable 'Finished' is assigned to the public variable
done in the Process procedure. (The Process procedure is shown in
Figure D-3.) At this point in the Debugger, you will execute MOVSW, a
word move instruction, which moves a word of the string to the address
done. Then you will examine the ES and DS registers to see what was
actually moved.

Figure 0-3. Process Procedure

PROCEDURE Process [PUBLIC];
BEGIN

END;

count := O;
done := 'Finished';
TypeSub (ADS BSWA, ADS bsVid);
CheckErc (WriteBsRecord (ADS bsVid, ADS done, 9,
ADS junk));

To enter the Debugger,

press CODE-GO

As stated earlier in this appendix, there is a bug in the program you need
to correct before proceeding with this exercise. Otherwise, the program
will terminate with an error. To correct the bug, follow the first 14
numbered comments in "Exercise l," earlier in this appendix. Then
proceed with the script and comments on the next few pages.

Debugger Tips

This page intentionally left blank

D-25

Debugger Tips

Script

D-26

Line
number Script

15 *Process MARK PUSH BP J,

16 PROCESS+l MARK MOV BP, SP J,

17 PROCESS+l MARK SUB BP, 0 J,

18 PROCESS+? MARK MOV WORD PTR [COUNT], 0

Comments

Line
number

1- 14

15

Debugger Tips

Comment

Follow the first 14 numbered comments in "Exercise 1,"
earlier in this appendix. Then press RETURN and proceed
with line 15 below.

To move on to the Process procedure,

type Process (press MARK)

PUSH BP saves the value of the base pointer (BP).
Collectively, this instruction and the instructions on lines 16
and 17 are the stack prologue. (For details on the format of
the stack, see Appendix C, "Stack Format.")

Press DOWN ARROW

16 MOVBP, SP

Press DOWN ARROW

17 SUB BP,O

Line 17 subtracts 0 bytes from the stack pointer for local
variables. Since Process has no local variables, no space
needs to be allocated.

Press DOWN ARROW

18 Line 18 initializes the count variable.

D-27

Debugger Tips

Script

Line
number Script

19 PROCESS+OD MARK MOV DI, OF12A .J,

20 PROCESS+lO MARK MOV SI, OFD23 .J,

21 PROCESS+13 MARK PUSH DS .J,

22 PROCESS+14 MARK POP ES .J,

23 PROCESS+l5 MARK CLD .J,

24 PROCESS+l6MARK MOVSW .J,

25 PROCESS+l 7 MARK MOVSW .J,

26 PROCESS+l8 MARK MOVSW J,

27 PROCESS+19 MARK MOVSW RETURN

28 *Process+lS MARK CLD . "'b GO

D-28

Comments

Line
number

19 - 27

Debugger Tips

Comment

To advance through the Process procedure instructions on
lines 19 through 27,

press DOWN ARROW

This common instruction sequence indicates a string move:
the string 'Finished' is being assigned to the string variable
Done. (See the program listing shown in Figure 3-1 in
Section 3, "Debugging Session.") The assignment statement

done := 'Finished'

moves the string 'Finished' one word at a time from the
source located at DS:SI (source index) to the destination at
ES:DI (destination index), as shown below.

Destination

ES:DI

Done ·­.-

Source

DS:SI

'Finished'

28 To execute the code up to the point that the MOVSW
instructions begin

type process+ 15 (press MARK)

The Debugger displays the CLD instruction previously shown
on line 23.

To set a breakpoint at this location,

type a period(.); then press CODE-B

To execute up to the breakpoint,

press GO

D-29

Debugger Tips

Script

0-30

Line
number

29

30

31

Script

Exiting Debugger

Break at PROCESS+lS in process OD

8, DS:SJ: "'d

32 0DBF2:0FD23 46 69 6E 69 73 68 65 64 Finished

33 8, ES:DJ: "'d

34 0DBF2:0F12A 00 00 00 00 00 00 00 00

35 cs: ip MARK CLD "'x

36 PROCESS+l6 MARK MOVSW "'x

Debugger Tips

Comments

Line
number

29

30

31

Comment

Exiting Debugger

Break at PROCESS+15 in process OD

To look at 8 bytes of memory at the source location,

type 8, DS:SI (press CODE-D)

32 The Debugger displays

ODBF2:0FD23 46 69 6E 69 73 68 65 64 Finished

33 To look at 8 bytes of memory at the destination,

type 8, ES:DI (press CODE-D)

34 The Debugger displays

0DBF2:0F12A 00 00 00 00 00 00 00 00

This display shows that no bytes have been moved here yet.

35 To see the next instruction to be executed,

type cs:ip (press MARK)

The Debugger displays the CLD instruction.

To execute this single instruction,

press CODE-X

36 Execute the first MOVSW (move word) instruction.

Press CODE-X

D-31

Debugger Tips

Script

0-32

Line
number Script

*
37 PROCESS+l 7 MARK MOVSW RETURN

38 DI ~ Fl2C RETURN

39 8, es:Ofl2a Ad

ODBF2:0Fl2A 46 69 00 00 00 00 00 00 Fi

40 8, done Ad

0DBF2:0Fl2A 46 69 00 00 00 00 00 00 Fi

Comments

Line
number

37

38

Debugger Tips

Comment

Press RETURN after the second MOVSW (move word)
instruction is displayed.

To look at the contents of the DI register,

type DI (press RIGHT ARROW)

The Debugger displays F12C. (Note that DI now is 2 greater
than DI on line 34, indicating that the index pointer has
advanced 2 bytes.)

Press RETURN

39 To look at 8 bytes of memory starting at the original
destination (the value of DI on line 34),

type 8, es:Of12a (press CODE·D)

The Debugger displays

0DBF1:0F12A 46 69 00 00 00 00 00 00 Fi

The first two characters in the string 'Finished' were moved
to the destination as a result of your executing the MOVSW
instruction.

40 Because the destination is the address of the public variable
done, you could look at the same 8 bytes by typing

8, done (press CODE-D)

Try this.

The Debugger display is the same as shown on line 39.

D-33

Debugger Tips

Script

Line
number Script

41 "'c GO

0-34

Comments

Line
number

41

Debugger Tips

Comment

Before exiting the Debugger, clear the breakpoint you set.

Press CODE-C

To exit,

press GO

The DisplayFile program executes to completion, displaying
the DisplayFile.pas file to the screen. The string 'Finished'
appears following the last file character.

D-35

Debugger Tips

Using the fDevelopement Flag

D-36

By setting the fDevelopement flag, you can conveniently detect the error
source in any of your program procedures that do not require customized
error exit routines. ffievelopement is a public symbol in the CheckErc
routine of CTOS.lib. (Note thee in the spelling offfievelopement.) Use
of this flag is limited to the CTOS operations that pass the returned error
code to the CheckErc procedure.

To use the fDevelopement flag, declare CheckErc as an external
procedure in your program, as shown below:

PROCEDURE CheckErc (ercCode: Word); EXTERN;

Declare the CTOS operations that return error codes as external
functions, for example

FUNCTION OpenByteStream (
pBSWA Pointer;
pbFileSpec Pointer;
cbFileSpec Word;
pbPassWord Pointer;
cbPassWord Word;
mode
pBuf ferArea
sBufferArea

Word;
Pointer;
Word) : ErcType; EXTERN;

Then, write the statements calling CTOS operations such that the error
code is passed to CheckErc, for example

CheckErc (OpenByteStream (ADS BSWA, ADS
'DisplayFile.pas', 14, ADS NULL, 0, mt, ADS buffer,
1024));

Debugger Tips

Under normal circumstances when a nonzero error code is returned,
CheckErc calls the FatalError operation. FatalError, iil turn, calls
Error Exit, which terminates the program and passes the error code to
the exit run file (typically the Executive). (For details on CheckErc,
FatalError, and Error Exit, see the CTOS Procedural Interface Reference
Manual.)

You can, however, have your program enter the Debugger automatically
if you set the fDevelopement flag.

You can set this flag in either of two ways: dynamically, in the memory
copy of your program in the Debugger; or statically, by using the Debug
File command. (For details on Debug File, see Section 11, "The
Executive Command: Debug File.")

The following exercise uses the DisplayFile program described earlier in
this appendix and in Section 3, "Debugging Session," to demonstrate how
to set this flag dynamically. (For details on the files you need, see
exercise 1 earlier in this appendix.) With the exception of ReadByte,
which has its own error checking routine, all the CTOS operations in the
DisplayFile program pass error codes to CheckErc.

The DisplayFile program contains an error. The error may be obvious to
you by now, as you were informed of where it is and how to patch it in
earlier examples in this appendix. This time, however, you will locate
the error yourself by using the fDevelopement flag.

Run the DisplayFile program, and enter the Debugger by pressing
CODE-GO. Then, follow the script and comments on the next few pages.

0-37

Debugger Tips

Script

D-38

Line
number

1

2

3

4

5

6

7

8

Script

'DisplayFile.sym' "'f

*DisplayFile "'b GO

*

Exiting Debugger

Break at ENTGQQ in process OD

*fDevelopement ~ 00 Off

fDevelopement+l GO

Exiting Debugger

Debugger called at FATALERROR+OE in process OD

Comments

Line
number

1

2

3

4

5

6

7

8

Debugger Tips

Comment

Load the symbol file.

Type 'DisplayFile.sym' (press CODE-F)

Then, set a breakpoint at the beginning of the program.

Type Display File (press CODE-B)

Execute up to the breakpoint by pressing GO.

Exiting Debugger

Break at ENTGQQ in process OD

To display the value of IDevelopement,

type IDevelopement (press LEFT ARROW)

The Debugger displays 00, (FALSE) the default setting,
which causes a program to terminate and the exit run file to
be loaded. ·

To set the flag to TRUE,

type Off

Then to close the location,

press DOWN ARROW (or RETURN)

Press GO to execute the program.

Exiting Debugger

The Debugger exits and is automatically entered again at the
location FATALERROR+OE in the FatalError procedure.

D-39

Debugger Tips

Script

D-40

Line
number

9

Script

0 FOSS FATALERROR+OE (2S6, 0EBF6, OCB)
1 F094 ENTGQQ+35
2 F09A BEGXQQ+9S

10 OCB=OCB

11 *Ar=203.

12 *Ar=OCB

13 EN'l'GQQ+35 MARK CALL PROCESS f

Comments

Line
number

9

Debugger Tips

Comment

To trace the stack,

press CODE-T

The Debugger displays

0 F088 FATALERROR+OE (286, 0EBF6, OCB)
1 F094 ENTGQQ+35
2 F09A BEGXQQ+98

The rightmost value on the top line of this display (OCB) is
the error code passed to FatalError. (For details on stack
format, see Appendix C, "Stack Format." There is also a brief
discussion of the stack supported by an example in the
tutorial in Section 3, "Debugging Session.")

10 To change the radix of the error code from hexadecimal
(current radix) to decimal, first

typeOCB=

The Debugger redisplays OCB.

11 Then to change the radix to decimal,

press CODE·R

The Debugger displays the error code in decimal notation.
Error code 203 means "No such file."

12 Change the radix back to hexadecimal as shown.

13 The error occurred in the first CTOS operation that returned
an error code prior to the call to FatalError. To view the
instruction preceding the one at FATALERROR+OE,

type ENTGQQ+35 (press MARK)

The Debugger displays Call PROCESS.

To view the previous instruction,

press UP ARROW

D-41

Debugger Tips

Script

Line
number Script

14 ENTGQQ+30 MARK CALL CHECKERC i

15 ENTGQQ+2F MARK PUSH AX i

16 ENTGQQ+2A MARK CALL OPENBYTESTREAM i

17 ENTGQQ+29MARK PUSH AX i

18 ENTGQQ+26MARK MOV AX,400 i

19 ENTGQQ+25 MARK PUSH AX i

20 ENTGQQ+24 MARK PUSH DS i

21 ENTGQQ+21MARK MOV AX,OF136 i

22 ENTGQQ+2 0 MARK PUSH AX i

23 ENTGQQ+lD MARK MOV AX, 607 4 i

24 ENTGQQ+lC MARK PUSH AX i

25 ENTGQQ+lA MARK XOR AX, AX i

26 ENTGQQ+l 9 MARK PUSH AX i

27 ENTGQQ+ 18 MARK PUSH DS i

28 ENTGQQ+15 MARK MOV AX, 0FD3C i

29 ENTGQQ+l 4 MARK PUSH AX i

30 ENTGQQ+ll MARK MOV AX, OE i

31 ENTGQQ+lO MARK PUSH AX i

32 ENTGQQ+OF MARK PUSH DS i

33 ENTGQQ+OC MARK MOV AX, OFD2D i

34 ENTGQQ+OB MARK PUSH AX i

D-42

Comments

Line
number

14

15

16

17 - 39

Debugger Tips

Comment

The Debugger displays Call CHECKERC. The call to
CheckErc indicates that an earlier instruction passed an
error code to CheckErc.

To view the previous location,

press UP ARROW

The Debugger displays PUSH AX. To view the location
preceding PUSH AX,

press UP ARROW

The Debugger displays CALL OPENBYTESTREAM.
OpenByteStream is the CTOS operation in question.

To view lines 17 through 39,

continue pressing UP ARROW

You should recognize these instructions from the tutorial in
Section 3, "Debugging Session." These instructions push the
parameters to OpenByteStream onto the stack.

Lines 37 through 39 show the stack prologue, signaling the
beginning of the stack frame. (For help in interpreting these
instructions, see the tutorial in Section 3. Also see "Looking
at the Stack.")

There is an error related to a file specification somewhere in
the parameters pushed onto the stack. If you examine the
parameters to OpenByteStream, you will note that the second
and third parameter are the address and count of bytes (pb/cb
pair) of a file specification. On line 33, the offset of the file
specification (OFD2D) is moved into AX. To view the file
specification, you need to examine the first 14 bytes starting
at this offset in the data segment.

D-43

Debugger Tips

Script

Line
number Script

35 ENTGQQ+OA MARK PUSH DS i

. 36 ENTGQQ+O 7 MARK MOV AX, OF OAS i

37 ENTGQQ+O 3 MARK SUB SP,4 i

38 ENTGQQ+O 1 MARK MOV BP,SP i

39 ENTGQQ MARK PUSH BP RETURN

40 OE, DS:Ofd2d ""'d
ODBF2:0FD2D 44 69 73 70 6C 61 79 46 69 6C 65 2E 70 61 DisplayFile.pa

41 Exiting Debugger

0--44

Comments

Line
number

39

40

Debugger Tips

Comment

Press RETURN after displaying the instruction on line 39.

To look at the 14 bytes of the file specification,

type OE, DS:Ofd2d (press CODE-D)

The Debugger displays

ODBF2:0FD2D 44 69 73 70 6C 61 79 46 69 6C 65 2E 70 61 DisplayFile.pa

The complete specification, however, is DisplayFile.pas (not
DisplayFile.pa). The source of the error is the instruction
MOV AX, OE. The instruction only moves 14 words instead of
15. This error cannot be corrected at this point in the
Debugger, because the correct file specification is required for
successful program execution. It would be easier to make
such a correction to your source code; then recompile and
relink the program.

41 To exit the Debugger,

press ACTION-FINISH

ACTION-FINISH terminates the program and loads the exit
run file.

D-45

Debugger Tips

When You Get a Nonfatal GP Fault

D-46

On a protected mode operating system, your protected mode program is
prevented from accessing memory outside of the segments defined by the
descriptor tables. If, for example, your program attempts to use an
invalid selector or to exceed a segment limit, a nonfatal general
protection (GP) fault is generated and the system passes control to the
Debugger in simple mode. For your convenience in debugging, you can
configure your system so that the Debugger is entered automatically
when a GP fault occurs. See Appendix F, "Configuration Options for the
Debugger," for details.

When a fault is generated with your system configured this way, you
enter the Debugger automatically. A three-line message of the following
form is displayed (the first two lines):

Debugger XX (simple mode)
GP fault at addr in process X

The first line of the message indicates your Debugger version (XX) and
the Debugger mode (for example, simple mode). The second line shows
the cs:ip (addr) and the process identification number (X) of the process
that caused the fault. The third line is a message that may help you
understand why the GP fault may have occurred, as shown in the
examples of messages below:

Invalid selector: 0004
Null selector or limit violation

To make debugging easier, load the symbol file for your program.

Type 'FileName.sym' (press CODE-F)

For details on symbol files, see "Symbol Files" in Section 4, "General .
Purpose Debugger Functions and Features."

Once you have loaded symbols, you can approach isolating the GP fault
in your program. Following are suggestions to help you with this
process.

Debugger Tips

Invalid Selector

If the Debugger displayed a message, such as

Invalid selector: 0004

the invalid selector is identified for you. What you need to find out is
which address contains this selector and where the faulty address is used
in your program.

First, however, if you have never used the CODE-V command (described
in Section 7, "Display Commands"), this is an opportunity to try out the
command to see what a descriptor looks like for an invalid selector. Type
the selector number indicated in the Debugger message and press
CODE-V, for example

0400 (press CODE-V)

The Debugger displays the segment descriptor, such as

iSn sn base limit ar p

0060 0400 OFClFO 02F2 9B 0 invalid type

The segment description is 'invalid type,' which indicates that there is
something wrong with the selector. ·

If, on the other hand, you used CODE-V with a valid selector, the
Debugger would display a description, such as

iSn sn base limit ar p

0060 0400 OFClFO 02F2 9B 0 code, non-conforming, readable

For details on all the fields displayed by CODE-V command, see the
description ofCODE-V in Section 7, "Display Commands."

Determining Which Address Caused the Fault

To locate the faulty address, display the instruction at cs:ip,

type cs:ip (press MARK)

D-47

Debugger Tips

The Debugger displays the instruction in which the fault occurred.
Typically this instruction is

LES BX, WORD PTR [addr]

where [addr] is the location of the faulty address. This instruction loads
the ES and BX registers with the segment address and offset,
respectively, of (what is assumed to be) an address located at [addr].

Examples of possible faulty addresses are:

pMessage Is a global variable you declared public in the static data
segment (at the beginning of your program). A public
variable immediately tells you which address contains the
invalid selector.

BP-OA

41F5

Is the location on the stack of a local variable. "Exercise
2," earlier in this appendix, describes how you can
identify stack variables by their relative locations to the
base pointer (BP). For details, see the comments
accompanying steps 18 through 22 in exercise 2.

Is a global variable that you did not declare public in the
static data segment.

Locating the Fault In Your Program

D-48

There are several ways you can approach locating where the faulty
address was used in your program. Following are some suggestions.

Once you have displayed the instruction as cs:ip, as described earlier, you
can use the UP ARROW or DOWN ARROW keys to hone in on the
instructions leading up to or immediately foliowing the instruction.
These instructions should provide you with some clue as to where the
address variable is being used in your program.

Debugger Tips

If the fault occurred in a public procedure, the locations of the
instructions you view as you use the UP ARROW or DOWN ARROW
keys can provide you with the approximate location of where the fault
occurred. If, for example, you pressed DOWN ARROW and the
Debugger displayed the location

ProcessN ame+3

you would know that the fault occurred at the beginning of the public
procedure ProcessName. If, on the other hand, the location displayed
was

ProcessN ame+29

you would know that the fault occurred somewhere within the
ProcessName procedure but not at the beginning.

A public variable immediately tells you the symbolic name of the faulty
address. If the variable is on the stack, you can look at the stack. For
details on interpreting the stack, see "Looking at the Stack." What you
need to find is some clue on the stack (such as a word value passed) to
determine where the local variable is being used in your program.

Faults caused by variables that are not declared public are :more difficult
to detect. If absolutely necessary, you can declare these variables
publicly for easier identification.

In all cases, examine your source code to check the variable within the
context of how it is used.

Null Selector or Limit Violation
If on a GP fault, the Debugger displays the message

Null selector or limit violation

you need to determine which of these is the reason the fault occurred.

D-49

Debugger Tips

Using a Null 5elector

0-50

A null selector is a selector with the value 0. Your program can load a
null selector into a segment register without generating a fault.
However, when your program attempts to use the address created with
the selector, it GP faults because the selector is invalid.

Suppose, for example, you declare a pointer type of variable at the
beginning of your Pascal program in the static data, such as

VAR

pCount: Pointer;

Then, if you use the variable, such as in a function call to
WriteBSRecord, as shown below

ere:= WriteBSRecord(pBSWA, ADS data, 16, pCount);

your program would GP fault in WriteBSRecord, because pCount was
passed with either a null selector or an uninitialized pointer.

To correct this fault, you can declare a variable in your program's static
data, such as

VAR

junk: WORD;

Then, assign pCount to this address before you use pCount in
WriteBSRecord, for example

pCount:= ADS junk;

ere:= WriteBSRecord(pBSWA, ADS data, 16, pCount);

Debugger Tips

Otherwise, you can use a procedure such as AllocAreaSL to allocate and
initialize a segment for pCount, for example

AllocAreaSL(16, ADS pCount);

To determine if your program faulted because of a null selector, examine
the contents of the ES and DS registers.

Type ES (press RIGHT ARROW)

Type DS (press RIGHT ARROW)

On 386 processors, it is a good idea to examine the contents of the FS and
GS registers.

If the Debugger displays the null value 0 for either of these registers, you
can suspect that the register was loaded with an uninitialized pointer.

Exceeding a Segment Limit

Limit violations typically occur when your program attempts to move
data to or from a location that is outside of the intended segment.

To start your investigation of a segment limit violation, display the
instruction at cs:ip.

Type cs:ip (press MARK)

Typically, the Debugger displays a type of string move instruction. For
example, if your source program is written in Pascal, you may see an
instruction, such as

PROCESS+16 MARK MOVSW

In your investigation, you need to be concerned with the contents of
following registers:

ES
DS
SI
DI
ex

0-51

Debugger Tips

D-52

DS:SI and ES:DI contain the addresses of the source and destination,
respectively, of a type of string move instruction. If you have not already
done so, you should try the hands-on example in "String Moves," earlier
in this appendix. The example demonstrates how the index register
pointers SI and DI advance as you execute MOVSW (move byte)
instructions in the Debugger to move a word at a time from the source to
the destination.

The ex register contains the count of bytes to be moved. To examine the
contents of ex,

type CX (press RIGHT ARROW)

If the value displayed appears unusual (for example, if it is a value such
as FFFF), you can suspect a problem with exceeding the segment limit.

Use RIGHT ARROW to display the contents of ES and DS.

Type ES (press RIGHT A.Rn.OW)

Type DS (press RIGHT ARROW)

You can use the value of ES or DS (such as, 039B) with the CODE-V
command to examine the segment limit, for example

type 039C (press CODE-V)

The Debugger displays the descriptor for 039e, such as

iSn sn base limit ar p
0060 039C OFClFO 02F2 9B 0 code,non-conforming,readable

Then, you can compare the limit value with that contained in SI or DI.

Say, for example that you used the AllocMemorySL operation to allocate
a segment of memory for an array. Then, as your program executed
instructions to move the elements into the array, it GP faulted. This
fault might occur if your program attempted to move more elements into
the array than there was space allocated. If you then compared the value
of the destination index DI to the segment limit displayed by CODE-V,
you would find that DI contained a value that exceeded the limit.

This fault also might occur if more bytes were moved from the source
than were actually there. In this case, SI would contain a value greater
than the limit displayed by CODE-V.

Appendix E
Debugger Swapping

Debugger Swapping
The Debugger requires approximately SOK bytes of memory (check the
Release Notice for your system to ascertain the correct number).
However, under some circumstances (for example, if you are debugging
the Word Processor), you can debug a program that occupies all of
memory, theoretically leaving no room for the Debugger.

The Debugger manages memory according to these procedures:

• If enough memory is available, the Debugger uses memory that is
not used by the other processes.

• If enough memory is not available, the Debugger swaps out part of
the user's program, provided swapping out is possible.

When the Debugger swaps out part of the user's program, program
execution is not affected.

Swapping can occur only when the Debugger is in simple mode. In
simple mode, all user processes are suspended when they reach a
breakpoint. (See also Section 9, "Debugger Modes.")

Note: The Debugger swapping mechanism described in this appendix
is supported on real mode CTOS operating systems only. This
swapping is not related or connected in any way to the Virtual
Code Management facility, which is sometimes called the
Swapper in other documentation.

E-1

Appendix F
Configuration Options for the Debugger

What are the Debugger Configuration Options?
There are several optional ways you can configure your software for
using the Debugger. All of the configuration options described in this
appendix are contained in the protected mode system configuration file
(the default for workstations is [Sys]<Sys>Config.sys; the default for
shared resource processors is [Sys]<Sys>SrpConfig.sys). For additional
information on the system configuration file options, see the CTOS
System Administration Guide. See Appendix B, "Shared Resource
Processor Debugging," in this guide for more information on the shared
resource processor files.

One option allows you to configure the real mode Debugger for use under
the Context Manager.

Using an Extended Crash Dump File
An extended crash dump is a dump of the extended memory on a
protected mode operating system. The way that the extended crash
dump process works is described in Appendix G, "Extended Crash Dump
Process." It is recommended you read that appendix first so that you
understand what an extended crash dump is, why you would need an
extended crash dump file, as well as how you would go about sizing the
file correctly. Setting up crash dumps is also described in the CTOS
System Administration Guide.

F-1

Configuration Options for the Debugger

In addition, you should read Section 11, "The Executive Command:
Debug File." That section describes how you can approach debugging a
crash dump file using the Debug File command. However, to use
Debug File, you need to have created a crash dump file first, so you can
obtain a byte-for-byte disk file copy of the System Image at the time of a
crash. Alternately, you have an opportunity to create this file at reboot
after a system crash. (For details on extended crash dump files, see the
description of the Extended Crash Dump command in the CTOS
Executive Reference Manual.)

Workstation Crash Dump File Options

F-2

On protected mode workstations, you can capture crash dumps to a file
using the following configuration options in the system configuration file.
You can use the options to conserve disk space and still have an extended
crash dump file. These options are

:SuppressAutoDump:
:ExtCrashDumpFile:
:CrashDumpFile:
:ExtCrash VDMFile:

Ways you can use each of these options in a disk saving way are
described below. See the CTOS System Administration Guide for a
description of all the Config.sys options.

:SuppressAutoDump: Directs the operating system to suppress the
dumping of extended memory.

Use. To use this option (default is No), edit Config.sys as follows:

:SuppressAutoDump: Yes

Recommendation. This option is useful when you require an extended
crash dump file but, because you are conserving disk space, the file does
not exist.

You can create an extended crash dump file using the Create File
command. Then execute an extended dump using the Extended Crash
Dump command. Following the extended dump, rebootstrap your
system to regain the use of extended memory. When you are done using
the extended crash dump file, you then can delete it.

Note: Do not use this option unless you are using :ExtCrash VDMFile:.

Configuration Options for the Debugger

:ExtCrashDumpFile: Allows Extended Crash Dump to find the
extended crash dump file when it is not
created in the default directory [Sys]<Sys>.

Use. As an example of using this option, you could edit Config.sys as
follows: ·

:ExtCrashDumpFile: [d2]<dumps>ExtCrashDump.sys

This entry directs Extended Crash Dump to use [d2]<dumps>­
ExtCrashDump.sys rather than [Sys]<Sys>ExtCrashDump.sys.

Recommendation. This option is useful for saving disk space on the
system volume by locating the extended crash dump file on another
volume.

:CrashDumpFile: Allows Extended Crash Dump to find the
crash dump file when it is not in the default
directory [Sys]<Sys>.

Use. As an example of using this option, you could edit Config.sys as
follows:

:CrashDumpFile: [dO]<Sys>CrashDump.Sys

This entry directs Extended Crash Dump to use the file
[dO]<Sys>CrashDump.sys rather than the file
[Sys]<Sys>CrashDump.sys.

Recommendation. This option is useful if you require a crash dump
file to be located in a different disk. As examples, you can use this option
in either of the following situations: if the system volume is [dl] but a
nonzero length CrashDump.sys file exists on [dO], or ifthe system volume
is at the server but a valid CrashDump.sys file exists on a local hard
disk.

:ExtCrash VDMFile: Specifies the video display manager to run
while doing an extended crash dump.

Use. To use this option, edit Config.sys as follows:

:ExtCrash VDMFile: [Sys]<Sys> Vdm_Ch.run

Recommendation. By default, the operating system installs a dummy
video display manager before doing an extended crash dump. Use this
option in conjunction with the :SuppressAutoDump: option.

F-3

Configuration Options for the Debugger

Shared Resource Processor Crash Dump File Options

F-4

On shared resource processors, the SrpConfig.sys file includes two
options:

:Boot:
:CrashDumpPath:

:Boot: Determines whether or not a crash dump is
generated. ·

Use. This option has three parameters, shown below, and is discussed in
detail in the CTOS System Administration-Guide. The Dump parameter
determines whether or not a crash dump is generated and is described
here.

:Boot: (Processor= XPnn, OS= Filespec, Dump= Yes, No, or
Lowmem)

where the values in the Dump parameter are as follows:

No This means that no crash dump is generated
for that board. This is the default.

Yes

LowMem

This means the system should automatically
dump all of the memory for the board to the
corresponding crash dump file.

This is the same as specifying Yes, except in
the case of a board that has more that 4M
bytes of memory. For example, if a GP board
has 64M bytes of memory, the crash dump
may not fit on the disk where the crash
dumps are being created. By using LowMem,
you can run the Extended Crash Dump
utility and specify a path for the crash dump
file where there is enough free disk space.
You can also use LowMem if Yes fails to
create the crash dump file.

Configuration Options for the Debugger

:CrashDumpPath: Allows you to determine where the crash
dump will be created. The volume specified
must be a device that is attached to the
server processor. By default, all crash dumps
are created in [Sys]<Sys>.

Use. To use this option, edit SrpConfig.sys as follows:

:CrashDumpPath: [volume]<directory>

Using the Debugger on a Shared Resource
Processor

Because a shared resource processor has multiple processor boards, the
way you configure the Debugger for a shared resource processor is
different from the way you configure it for a workstation.

If you want to debug using Basic ATE on a shared resource processor,
first specify to load the Debugger with the :LoadDebugger: option (see
"Suppressing the Debugger"). Then add the following option to the
processor section of the configuration file:

:DebugPort:

This entry defines the RS-232-C line to be used by the Debugger
:DebugPort: option. See Appendix B, "Shared Resource Processor
Debugging" for more information.

Suppressing the Debugger
The Debugger consists of a resident and a nonresident portion. The
resident portion is located in the operating system unless your system is
configured to exclude it. (See your release documentation for details.)
The nonresident portion of the real mode Debugger is swapped into
memory as needed. With the protected mode Debugger, however, the
nonresident portion is always loaded into memory unless you specify that
loading be suppressed with the configuration file option
:SuppressDebugger: (default is No).

F-5

Configuration Options for the Debugger

:SuppressDebugger: Suppresses loading of the Debugger.

Use. To use this option, edit Config.sys as follows:

:SuppressDebugger: Yes

This option applies to workstations only.

On shared resource processors, the Debugger is automatically suppressed
unless you specify to load it into memory with the configuration file
option :LoadDebugger: (default is No):

:LoadDebugger: Specifies whether or not to load the
Debugger.

Use. To use this option, use the default of No as follows to suppress
loading the Debugger:

:LoadDebugger: No

See Appendix B, "Shared Resource Processor Debugging" for more
information.

Entering the Debugger on a GP Fault

F-6

On a protected mode operating system, your protected mode program is
prevented from overwriting the memory of other programs. If, for
example, your program attempts to use an invalid selector or to exceed a
segment limit, your program GP faults. As a convenience to you while
you are debugging, you can configure your system so that the Debugger
is entered automatically on a GP fault with the system configuration file
.option :EnterDebuggerOnFault: (default is No).

:EnterDebuggerOnFault: Provides automatic entry into the
Debugger when your program generates
a GP fault.

Use. To use this option, edit the system configuration file as follows:

:EnterDebuggerOnFault: Yes

Note: Because there is no video on a shared resource processor unless
Administrator ClusterView is running, this should be used only
when debugging a known GP fault.

Configuration Options for the Debugger

Recommendation. This option is recommended if you are
programming on a protected mode system. For details on how to locate
the cause of the fault, see "When You Get a Nonfatal GP Fault," in
Appendix D, "Debugger Tips." If you are not using Administrator
ClusterView, you have no way of knowing about the fault.

On a shared resource processor, if this option is disabled and there is a
fatal GP fault, the system continues in a manner which depends on three
conditions: which board crashes, the front panel keyswitch position, and
the WatchDogState. If the server processor crashes and the keyswitch is
in the Normal or Remote position, the system reboots. If the keyswitch is
in the Manual position, the crash error code is displayed on the LEDs,
and 50 is displayed on the front panel.

If a nonserver processor board crashes, it displays the crash error code on
its LEDs. In addition, the Watch Dog feature of the server processor is
invoked and one of three things will happen:

• If the value ofWatchDogState is None, the server processor allows
the system to continue as best it can.

• If the value ofWatchDogState is SetFlag, the server processor
displays 40 on the front panel to indicate that a board has crashed;
it allows the system to continue.

• If the value ofWatchDogState is Crash, the server processor crashes
with error code 107. The system reboots if the keys witch is in the
Normal or Remote position.

For more information about the WatchDogState feature of the server
processor, see the CTOS System Administration Guide.

F-7

configuration Options for the Debugger

Using the Debugger Under the Context
Manager

Note: This subsection applies only to workstations running CTOS I.

As stated earlier, the nonresident portion of the real mode Debugger is
swapped into memory as needed. Swapping occurs under the Context
Manager by default unless you configure the :DebuggerSize: option
(default is O) in your Context Manager configuration file CMConfi.g.sys,
so that enough memory is reserved for the Debugger to remain in
memory at all times. This option applies to workstations only.

:DebuggerSize: Allows you to specify the amount of memory
(in K bytes) for using the Debugger under the
Context Manager,

Use. To ensure that there will always be enough memory for the
Debugger (so swapping does not occur), configure the :Debuggersize:
entry in CMConfi.g.sys as follows:

:DebuggerSize: 75

Recommendation. Using CODE-I breakpoints under the Context
Manager will not work if the real mode Debugger is allowed to swap.
Therefore, you must specify 75K bytes for the Debugger size. It is
further recommended that you specify this size if you want to use
CODE-X to single step instructions efficiently. Otherwise, the Debugger
may swap out of memory each time ~ou execute an instruction.

Using a Second Screen for Debugging

F-8

You can connect a second monitor to your system and use it for
debugging. · ·

Use. Configure the :VGACharMapDebugger: entry in the Config.sys file
as follows:

:VGACharMapDebugger: yes

See Appendix J, "Debugging on a Second Monitor," for more information.

Appendix G
Extended Crash Dump Process

What is the Extended Crash Dump Process?
If your system crashes, you can obtain a crash dump, or snapshot, of
what memory looked like before the crash. Once you have obtained the
crash dump as a disk file, you can analyze the source of the crash by
using the Debug File command described in Section 11, "Executive
Command: Debug File.".

This appendix describes the extended crash dump process, sizing of crash
dump files, and reasons you may need to create a crash dump file. For
details on ways to conserve disk space, see Appendix F, "Configuration
Options For the Debugger." Crash dumps for real mode operating
systems are described in the CTOS System Administration Guide.

Different hardware platforms have different dumping capabilities. Some
platforms are capable of dumping only the first megabyte of RAM. Other
platforms are capable of dumping all existing RAM. Still others have no
crash dump capabilities. In the last case, the operating system performs
the dump.

G-1

Extended Crash Dump Process

Table G-1. Hardware Capabllltles Table

Hardware Platform
Dum~s
1Mb AM

Dumgs
all R M

Dumps
no RAM

SG-5000 x x
$~2000 x x
GP (SRP) x x
839 x
B38Exp x
EISA/ISA x
All Others x

Systems Capable of Dumping the First Megabyte

G-2

On systems that dump only the first megabyte, the operating system
reboots after the dump but restricts itself to the first megabyte of
memory, ensuring that the (as yet) undumped memory remains
unchanged. In this mode, the operating system shrinks its memory
usage (for example, the debugger is not loaded, and certain data
structures are reduced), and it loads only the Video and the Extended
Crash Dump program. The Extended Crash Dump program combines
the crash dump file created by the bootstrap ROM (the first megabyte of
RAM) and the memory above one megabyte and creates a new file. This
new file is the extended crash dump file, which is an entire memory
image. The bootstrap ROM always dumps to the first disk (from the left)
which contains a nonzero CrashDump.sys file. The Extended Crash
Dump program determines where the original crash dump file is and
which file is to be the extended crash dump file by reading the system
configuration file. The entries are

:ExtCrashDumpFile: [dl]<Sys>ExtCrashDump.sys

· :CrashDumpFile: [dO]<Sys>ExtCrashDump.sys

Extended Crash Dump Process

Systems Capable of Dumping all Memory

On systems capable of dumping all of memory, the system can be
configured one of two ways:

• So that the bootstrap ROM performs the entire crash dump

• So that the extended crash dump process described above takes
place

To do this, set the size of the CrashDump.sys file. If the size of the
CrashDump.sys file is equal to or greater than the size of existing RAM,
the bootstrap ROM creates a complete crash dump and no extended
crash dump process is necessary. If the CrashDump.sys file is smaller
than existing RAM, the bootstrap ROM dumps RAM equal to the size of
the crash dump file, and the operating system dumps the rest. The
minimum useful size for the crash dump file is one megabyte.

Systems Not Capable of Performing Crash Dumps

On systems that are not capable of dumping at all (EISNISA), the
operating system assumes the task. At crash time, the operating system
copies the first megabyte to the crash dump file, reboots, and the
extended crash dump process begins.

Sizing Crash Dump Files
For an extended crash dump to succeed on a workstation or shared
resource processor, the crash dump file must be large enough to hold the
memory that the bootstrap ROM dumps. There should be 2048 sectors in
your crash dump file for each megabyte of your memory configuration.
On workstations, CrashDump.sys must be at least 2048 sectors so that
the bootstrap ROM can dump the first lM bytes of memory.

On shared resource processors, the crash dump file must be at least 1536
sectors on a real mode board and 8192 sectors on a protected mode
shared resource processor board.

In addition, for workstations, if CrashDump.sys is not large enough to
hold the entire memory image, ExtCrashDump.sys must exist and be
large enough to hold the entire memory image.

G-3

Extended Crash Dump Process

When You May Require an Extended Crash
Dump File

An extended crash dump file is provided to assist you in the following
situations:

• You may not be able to create a crash dump file larger than 4096
sectors. This situation can happen, for example, if during initial­
ization the number of bad spots detected results in an insufficient
m,imber of contiguous sectors .. If more that 2M bytes of memory are
present, the use of the extended crash dump file is recommended.

• Because the crash dump file is a dedicated file created by the
Executive Format Disk command at initiaiization, it cannot be
deleted or resized without reinitializing the entire disk. To conserve
disk space, therefore, you may find that you need to configure the
crash dump file to be of reasonable size. In those cases where you
need more space than the crash dump file allows, you may create a
larger extended crash dump file, use it, and then delete it.

How the Extended Crash Dump Process Works
In the paragraphs that follow, the extended crash dump process is
described for workstations and for shared resource processors.

Workstations

G-4

An extended crash dump is a dump of the memory beyond 992Kbytes on
a protected mode system.

. In the discussion that follows, the default directory for the crash dump
files is [Sys]<Sys>.

In addition, if a local hard disk is not available and the workstation is
attached to a cluster, the crash dump files have the prefix ws>.

Following a system crash, the bootstrap ROM dumps the first 992K bytes
of memory to the file CrashDump.sys, which must be created when the
disk is formatted with the Format Disk command. (For details on
Format Disk, see the CTOS Executive Reference Manual).

Extended Crash Dump Process

After the dump, the bootstrap ROM reloads the operating system. The
system initializes using only memory within the first 992K bytes.
Following installation of a dummy Video Display Manager, the operating
system invokes the Extended Crash Dump utility (hereafter called
Extended Crash Dump), to dump memory beyond 992K bytes. At
completion of the extended dump, Extended Crash Dump reenters the
bootstrap ROM. The bootstrap ROM then reloads the operating system,
which initializes using all available memory.

A dummy video display manager is a version that does not display
characters on the screen. This is necessary because of the restricted
amount of memory available to programs during the extended crash
dump process. If you have a system that supports character-mapped
video, you may be able to use a character-mapped version ofVDM during
extended crash dumping. To do so, use the :ExtCrash VDMFile: option in
Config.sys.

For an extended crash dump to succeed, your extended crash dump file
must be large enough for your memory configuration. (See the
description of the Extended Crash Dump command in the CTOS
Executive Reference Manual for details on creating an extended crash
dump file. Sizing of crash dump files is discussed in "Sizing Crash Dump
Files.")

If Extended Crash Dump fails to locate a crash dump file of the required
size, the failure is logged and no extended dump occurs.

Extended Crash Dump first attempts to use the file CrashDump.sys as
the extended crash dump file. If CrashDump.sys is of the required size,
Extended Crash Dump simply copies extended memory to
CrashDump.sys.

If, however, CrashDump.sys is too small, Extended Crash Dump
attempts to use the file ExtCrashDump.sys. If ExtCrashDump.sys is of
the required size, Extended Crash Dump first copies the contents of
CrashDump.sys to ExtCrashDump.sys and then copies extended memory
to ExtCrashDump.sys. Otherwise, the extended crash dump fails.

G-5

Extended Crash Dump Process

Shared Resource Processors

Following a system crash (crash of an individual processor board) or a
fatal general protection (GP) fault, the bootstrap ROM dumps the first
4M bytes of memory to the file CrashDump.sys, which must be created
when the disk is formatted with the Format Disk command. (For
details on Format Disk, see the CTOS Executive Reference Manual.)

After the dump, the bootstrap ROM reloads the operating system. The
system initializes using only memory within the first 4M bytes.
Following installation of the Video Display Manager, the operating
system invokes Extended Crash Dump to dump memory beyond 4M
bytes. At completion of the extended dump, Extended Crash Dump
reenters the bootstrap ROM. The bootstrap ROM then reloads the
operating system, which initializes using all available memory.

Extended Crash Dump first attempts to use the CrashDump.sys as the
extended crash dump file. If the crash dump file is of the required size,
Extended Crash Dump simply copies extended memory to it.

If, however, CrashDump.sys is too small, Extended Crash Dump
attempts to use the file ExtCrashDump.sys. If ExtCrashDump.sys is of
the required size, Extended Crash Dump first copies the contents of the
crash dump file to the extended file and then copies extended memory to
it. If the file is not large enough or does not exist, Extended Crash Dump
attempts to create it.

Extended Crash Dump logs the name of the extended crash dump file in
the system Log file.

Crash Dump Fiie Naming and Allocation

Names of crash dump files are different for the server processor than
they are for the other boards of a shared resource processor. In this
section, the other board is called a nonserver processor.

• For a server processor, the name of the crash dump file is
CrashDump.sys.

Like the workstation crash dump file, this file is used by the
bootstrap ROM and has to be allocated when the disk is formatted.

Extended Crash Dump Process

• For a server processor extended crash dump file (386 only), the file
name is ExtCrashDump.sys.

The server processor extended file is created or expanded as needed.

• For a nonserver processor, the crash dump file name is:
[volume]<directory>XPnn.crash

where:

x
nn

[volume]<directory>

is one of: C, D, F, G, S, or T.

is the processor ordinal position within the
shared resource processor.

is defined by the :CrashDumpPath: option in
the shared resource processor system
configuration file. (See Appendix F,
"Configuration Options for the Debugger," for
details.)

For example, [Sys]<Sys>GPOO.crash. The nonserver processor files are
created or expanded as needed.

Crash Detection by the Bootstrap ROM

In order for any dumping to occur, the bootstrap ROM must detect upon
reset that the board crashed previously. It does this by checking memory
for a valid system time and a nonzero system error buffer. If these
conditions are met, the bootstrap ROM proceeds in one of two ways. On
the server processor, the bootstrap ROM dumps low memory to
CrashDump.sys and sets a flag indicating that a dump occurred. On
nonserver processor boards, the bootstrap ROM sets the field
bBootCommand in the local CPU descriptor table (CDT) so the server
processor will know that it can dump the board.

Note: If the conditions for dumping are not met, the bootstrap ROM will not
preserve the state of memory and there will be no dump of that board.

G-7

Extended Crash Dump Process

G-8

Crash Dumps, Nonserver Processor. If Dump is set to No, or if there
is no Dump parameter, no dumping occurs. (See the description of the
Dump parameter values to the :Boot: option in Appendix F,
"Configuration Options for the Debugger.") The distinction between Yes
and LowMem depends on whether the board is real mode or protected
mode.

For a real mode (186) nonserver processor, the Dump values Yes and
LowMem have the same meaning; that is, the server processor dumps
the memory of the board into the crash dump file.

For example, assume FPOl is being.booted, that Dump=Yes, and that the
default crash dump path is [Sys]<Sys>. (Note that the path can be
changed using the :CrashDumpPath: option.) If FPOl crashes, its
memory is dumped to [Sys]<Sys>FP01.crash. Because all real mode
boards have 768K bytes of memory, the file will be 1536 sectors.

The setting of the Dump parameter for a real mode board has no affect
on automatic rebooting.

Dumping of protected mode (386) nonserver processor boards occurs in
two stages. The server processor dumps the low 4M bytes to the crash
dump file. The board is booted using only its low memory, and it
proceeds according to the Dump value specified. This two-stage dumping
sometimes requires automatic rebooting~

· Note: Because a board must be booted to access the memory above 4M bytes, a
full dump of a board of more than 4M bytes is possible only when that
board is booted.

If Dump is set to Yes, the server processor dumps the first 4M bytes and
the board boots in the first 4M bytes. If a board has only 4M bytes of
memory, there is no need to do any extended dumping.

If the board has more than 4M bytes of memory, it dumps its extended
memory and indicates to the server processor that it needs to be rebooted
to regain the use of memory above 4M bytes.

The extended dumping is done into the same file that the server
processor used (XPnn.crash), with the size being increased as needed. If
the file cannot be made large enough, extended dumping does not occur
and the error is logged. The board indicates to the server processor that
it still needs to be rebooted.

Extended Crash Dump Process

For example, assume GP02 has 16M bytes of memory and that it crashes.
Also assume that Dump= Yes and CrashDumpPath is set to
[Sys]<Crash>. When the system is rebooted, the server processor creates
[Sys]<Crash>GP02.crash with a size of8192 sectors. It then dumps the
first 4M bytes of GP02 into this file. When GP02 boots, it changes the
size of the file to 32768 sectors and dumps extended memory from 4M
bytes to 16M bytes into the file.

If Dump is set to LowMem, the server processor dumps the first 4M bytes
of the board's memory to the crash dump file.· When the board boots, the
operating system comes up using only the first 4M bytes. If there is more
than 4M bytes, the rest of memory is left in the state it was in preceding
the crash. You then have the option of running the Extended Crash
Dump utility. The system must be rebooted manually to allow the board
to regain the use of the memory above 4M bytes.

Crash Dumps, Server Processor. The server processor may also have
a boot line in the shared resource processor configuration file. The
interpretation is different because the bootstrap ROM is responsible for
the initial dumping if a crash is detected. The configuration file can
control only extended dumping. As in the case of nonserver processor
boards, the action taken depends on the type of board.

For a real mode (186) server processor, the bootstrap ROM dumps all of
memory (768K) to CrashDump.sys. The Dump parameter in the boot line
is ignored. If CrashDump.sys does not exist or is too small, no dumping
occurs.

For a protected mode (386) server processor, if Dump is set to Yes, the
bootstrap ROM dumps the first 4M bytes to CrashDump.sys, and the
board boots in 4M bytes (above 4M bytes preserved). If CrashDump.sys
does not exist or is too small, no dumping occurs. When the board boots,
if there is only 4M bytes of memory, no extended dumping is necessary.

G-9

Extended Crash Dump Process

If there is more than 4M bytes and the bootstrap ROM was successful in
dumping the first 4M bytes, the operating system proceeds as follows:

• If CrashDump.sys is large enough to hold the entire crash dump (for
example, 32768 sectors for a 16M byte board), the dump of extended
memory is appended to this file.

• In some cases, CrashDump.sys may not be large enough,
ExtCrashDump.sys is created or expanded as needed.
CrashDump.sys is copied into it and a dump of extended memory is
appended to this new file.

After dumping of its memory has been completed, the server processor
continues with inititalization, including dumping and booting other
boards in the system, and it initiates an automatic reboot when all of the
boards are ready.

If Dump is set to LowMem, the bootstrap ROM dumps the first 4M bytes
to CrashDump.sys. The board comes up in 4M bytes, and you can run
the Extended Crash Dump utility. This is similar to the LowMem case of
a nonserver processor in protected mode described earlier.

Analyzing Crash Dumps

G-10

Analyzing a crash dump is like debugging a "live" system, except that the
dynamic tools (setting breakpoints, for example) are not available to you.
Inspecting a crash dump is forensic; all the clues of the failure must come
from inspecting the frozen state of a dead system.

To start, use the Debug File command on the crash dump file. The
appropriate prompt (a filled-in square in protected mode, an empty
square in real mode) is displayed. If the prompt is not consistent with
the system that crashed (for example, if the empty square displays when
the system that crashed was running a protected mode operating
system), it is likely that the extended crash dump process failed for some
reason. See the rest of this section for troubleshooting information.

Extended Crash Dump Process

The first thing to inspect is SysErrorBuf, the operating system's record of
the crash. SysErrorBuf is an eight-word descriptor of the crash. For
more information, see the Status Codes Manual. To look at SysErrorBuf,
type

20:48 (press CODE RIGHT ARROW)

The first word is the error code of the crash. Press DOWN ARROW.
The next word is the process or TSS that caused the crash. Next, set the
PR register of this process or TSS. Now you are in the context of the
process that caused the crash. You can look at its registers, its current
instruction (by typing cs:ip MARK), its stack, and so on, just as you
would during live debugging.

Once you know the process that caused the crash, you can associate the
process with a program by using the CODE-S command. If the program
is something you are familiar with, you can load its symbol file and look
at the process state symbolically. Sometimes the program that crashed
did so as an indirect result of the action of another program. The
CODE-S command is useful for inspecting the mix of running programs.

Caveats
To do the extended crash dump process, the operating system, the video,
and the Extended Crash Dump program must be coresident in one
megabyte. Depending on the operating system and video being used, this
may not be possible at all times. If this occurs, you can direct the
operating system to load a very small version of video (Vdm_dmy.run).
When this version of video is installed, the video hardware is not
updated, so you will not see the Extended Crash Dump program run.
However, it will now fit in memory and the process will complete (you
will see the disk activity light stay on while the dump is being made).

It is also possible to take crash dumps on systems that have no disks. In
this case, the server file system is used. The crash dump file becomes
[!sys]<sys>ws>CrashDump.sys instead of <sys>CrashDump.sys on the
first local disk.

G-11

Appendix H
Debugger Features Matrix

Debugger Features
Some of the Debugger features described in this guide were introduced
with different versions of the operating system. Table H-1 is provided to
help you determine which features and commands are supported by the
Debugger on your system.

H-1

Debugger Features Matrix

Table H-1. Debugger Features Matrix

H-2

CTOSI CT OS/XE
Feature/Command 3.4 3.4

Code-B x x
Code-V x
Code-S x
Context Ma~gerNM
Action keys x
Wild card
symbols x
Programmable
function keys x
Online help
file x
Code-W x
Virtual ~086
support x
Code-:1 x
Code-E x
Code-Q x
Code-U
cuserNum> x
Code-[

Code-Y

Code-Z

Resource Symbols

DeBugOp

180386 microprocessor-based operating systems only.

2Context Manager/VM, Version 2.0 or higher.

CTOS II
3.4

x
x
x

x

x

x

x
x

x
x
x
x

x
x

CTOS Ill
1.0

x
x
x

x

x

x

x
x

x
x
x
x

x

x
x
x
x

Appendix I
Debugger Application Programming
Interface

Introduction
This appendix describes the application programming interface for the
Debugger. It supports various application debuggers, including those
you want to create for or port to CTOS. It allows your program to do
common debugging operations such as reading and writing memory and
registers, setting breakpoints, converting between symbolic and binary
program addresses, and doing instruction assembly and disassembly.

1-1

Debug Op

Debug Op
DebugOp (pbCmd, cbCmd, pbReqBuf, cbReqBuf, pbRespBuf, cbRespBufJ:
ercType

Description
A single interface allows an application to request debugger services
and/or receive notification of debugger events. It contains multiple
command options that request activities such as reading and writing
memory contents, setting breakpoints, stepping through memory,
translating logical addresses to physical addresses, a~ong others.

Procedural Interface

1-2

DebugOp (pbCmd, cbCmd, pbReqBuf, cbReqBuf, pbRespBuf, cbRespBufJ:
ere Type

where

pbCmd

is the address of a command descriptor. The format of the command
. descriptor is:

Offset Field Size Description

0 usemum 2 The user number of the user being debugged. The
contents are command specific. See •command Types,•
below.

2 pid 2 The process id of the user being debugged. The
contents are command specific. See "Command Types,·
below.

4 ty 2 The type of command, which is a number from O to 25.
See "Command Types,• below ..

6 value 2 A command specific word value.

8 ra 4 A oommand specific quad value, usually the offset of a
segmented address when used with sn.

12 sn 2 A command specific word value, usually the selector of a
segmented address.

Debug Op

cbCmd

specifies the size of the command descriptor.

pbReqBuf

is the address of information provided to the debugger service (use
depends on cmd.ty).

cbReqBuf

specifies the size of ReqBuf.

pbRespBuf

is the address of information provided to the debugger service (use
depends on cmd.ty).

cbRespBuf

specifies the size of RespBuf.

1-3

Debug Op

Command Types

1-4

The Debug()p command supports the portation of Microsoft; Code View.
For this, command types 0 through 20 correspond approximately to the
DOSPTRACE commands that have always been available under OS/2.
These functions are equivalent to the ptrace functions that have always
been available under Microsoft; Xenix.

Below is a list of commands that can be issued using DebugOp. Each
command type is invoked by changing one or more of the command
descriptor fields.

Case Command Type

0 OpenSession

Description

This command validates cmd.pid and
cmd.userNum. It marks cmd.userNum
as debuggee and allows further
commands on it. This command also
controls the level of event notification.
The caller can choose to be notified of all
events for the debuggee or only those
events caused by a DebugOp command.
The level of notification is set by
cmd.value:

Bits Description

0 Set if notify for all events.

1 Set if notify for only those events
explicitly caused by the issuing
of a DebugOp command; e.g.,
SetBreakpoint. (This allows the
use of the interactive CTOS
debugger on the debuggee as
well as an application debugger.)

Case Command Type

1 ReadMem

2 ReadMemD

Debug Op

Description

The contents of the command buffer are:

cmd.userNum

cmd.pUJ.
cmd.ty
cmd.value

cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
NIA
0
The notification level,
which is described
above.
NIA
NIA
NIA
NIA
NIA
NIA

This command reads cbRespBuf bytes
from cmd.sn:cmd.ra to RespBuf

The contents of the command buffer are:

cmd.userNum

cmd.pUJ.

cmd.ty
cmd.value
cmd.ra

cmd.sn

rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
1
NIA
The offset of memory
to be read.
The selector of
memory to be read.
NIA
NIA
The address of the
buff er that memory is
written to.
The size of the buff er
that memory is
written to.

This command is identical to command
type 1 (ReadMem).

1-5

Debug Op

Case Command Type

3 ReadReg

4 WriteMem

Description

This command reads the registers of
cmd.pid into pbRespBuf. The format of
Resp Bu{ is a 386 TSS.

·The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
3
NIA
NIA
NIA
NIA
NIA
The address of the
buffer that the
registers are written
to.
The size of the buffer
that the registers are
written to.

This command writes cbReqBuf bytes
from pbReqBuf to the address in
cmd.sn:cmd.ra.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra

cmd.sn

The user number of
the debuggee.
The process id of the
debuggee.
4
NIA
The offset of memory
to be read.
The selector of
memory to be read.

Case Command Type

5 WriteMemD

6 WriteReg

Description

rq.pReqBuf

rq.cbReqBuf

rq.pRespBuf
rq.cbRespBuf

Debug Op

The address of the
buffer from which
memory is written.
The size of the buffer
from which memory is
written.
NIA
NIA

This command is identical to command
type 4 (WriteMem).

This command writes the registers of
cmd.pid from pbReqBuf. The format of
ReqBuf is a 386 TSS.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf

rq.cbReqBuf

rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
6
NIA
NIA
NIA
The address of the
buffer the registers
are written from.
The size of the buffer
the registers are
written from.
NIA
NIA

1-7

Debug Op

Case Command Type

7 GO/WaitForEvent

8 Terminate

1-8

Description

This command resumes all nonfrozen
pids of cmd.userNum. It returns control
to the user when the next debugger
event for cmd.userNum occurs.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
7
NIA
NIA
NIA
NIA
NIA
NIA
NIA

This command terminates cmd.userNum
with the status code specified in
cmd.value.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty ,
cmd.value
cmd.ra
cmd.sn .
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
8
The error code.
NIA
NIA
NIA
NIA
NIA
NIA

Case Command Type

9 SingleStep

10 Stop

Debug Op

Description

This command single steps cmd.pid.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
9
NIA
NIA
NIA
NIA
NIA
NIA
NIA

This command stops all process ids of
cmd.userNum.

The contents of the command buffer are:

cmd.userNum

cmd.pid
cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
NIA
10
NIA
NIA
NIA
NIA
NIA
NIA
NIA

1-9

Debug Op

Case Command Type

11 Freeze

12 Resume

1-10

Description

This command suspends cmd.pid. If
cmd.pid is equal to 0, all pids of
cmd.userNum are suspended (equivalent
to Stop).

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf ·
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
11
NIA
NIA
NIA
NIA
NIA
NIA
NIA

This command resumes cmd.pid. If
cmd.pid is equal to 0, all pids of
cmd.userNum are resumed.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
12
NIA
NIA
NIA
NIA
NIA
NIA
NIA

DebugOp

Case Command Type Description

13 NumToSel This command converts link-time
segment number, cmd.ualue, to run-time
selector (placed in pbRespBuf).

The contents of the command buffer are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 13
cmd.ualue The value of link-time

selector.
cmd.ra NIA
cmd.sn NIA
rq.pReqBuf NIA
rq.cbReqBuf NIA
rq.pRespBuf The address of the

word that the
run-time selector is
written to.

rq.cbRespBuf The size of the word
that the run-time
selector is written to
(2).

14 GetFpRegs Not implemented.

15 SetFpRegs Not implemented.

16 GetLibName For the DLL handle in cmd.value, this
command returns sbLibSpec in
pbRespBuf.

The contents of the command buffer are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 16

1-11

Debug Op

Case Command Type

17 PidStatus

1-12

Description
cmd.value

cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

The value of Lib
Handle.
NIA
NIA
NIA
NIA
The address of the
buffer that lib name
is written to.
The size of buffer that
lib name is written to.

For cmd.pid, this command returns the
TStat structure in pbRespBuf. If
cmd.pid is equal to 0, the first pid of
userNum is returned.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
17
NIA
NIA
NIA
NIA
NIA
The address of the
buffer that pidStatus
is written to.
The size of the buffer
that pidStatus is
written to.

The TStat format is as follows:

Offset Field Size

0 dbgState

tStat

2 priority 2

4 pidNext 2

6 pid 2

Case Command Type

18 MapRoAlias

Debug Op

Description

Debugger state of the process as follows:

Bit 0 Set if debuggee is suspended.
Bits 1-7 Reserved.

Execution state of the process as follows:

O Ready to run
1 Suspended
2 Blocked
3 Blocked on critical section semaphore

Process priority.

Process id of the next process of the same user.

Process id of this process.

Description

This command modifies the selector in
cmd.value to alias the selector cmd.sn.
If cmd.value is equal to 0, it creates a
new selector. Selector is returned in
pbRespBuf.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value

cmd.ra
cmd.sn

rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
18
If zero, a new alias is
created and placed
here. If nonzero,
cmd.value is an alias
to be remade.
N/A
The selector to be
aliased.
N/A
N/A
N/A
N/A

1-13

Debug Op

Case Command Type Description

19 MapRwAlias This command is identical to command
type 18 (MapRoAlias), except the alias is
created with writeable access.

The contents of the command buft'er are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 19
cmd.value If zero, a new alias is

created and placed
here. If nonzero,
cmd.value is an alias
to be remade.

cmd.ra NIA
cmd.sn The selector to be

aliased.
rq.pReqBuf NIA
rq.cbReqBuf NIA
rq.pRespBuf NIA
rq.cbRespBuf NIA

. 20 UnMapAlias This command frees the alias in
cmd.value.

The contents of the command buffer are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 20
cmd.value The alias to be

unmapped.
cmd.ra NIA
cmd.sn NIA
rq.pReqBuf NIA
rq.cbReqBuf NIA
rq.pRespBuf NIA
rq.cbRespBuf NIA

1-14

Case Command Type

21 SetBreakpoint

Debug Op

Description

This command sets a breakpoint in
cmd.pid at the address specified by
cmd.sn:cmd.ra. Cmd.value controls the
type of breakpoint and the action taken
when the breakpoint occurs. A handle is
returned in pbRespBuf.

The contents of the command buffer are:

cmd.userNum

cmd.pid

cmd.ty
cmd.value
cmd.ra

cmd.sn

rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
21
Flags word.
The offset of the
segmented breakpoint
address, or the low
word of the linear
breakpoint address,
depending on the
flags word in
cmd.value.
The selector of the
segmented breakpoint
address, or the high
word of the linear
breakpoint address,
depending on flags
word in cmd.value.
NIA
NIA
The address of the
word where the
breakpoint handle is
stored.
The size of the word
where the breakpoint
handle is stored (i.e.,
2).

1-15

Debug Op

Case Command Type

22 Clear Breakpoint

1-16

Description

The cmd.value bits are as follows:

Bits Description

0-2 The size of the breakpoint. Valid
values are 0, 1, 2, 4. 0 denotes
code breakpoint; 1, 2, or 4
denotes data breakpoint.

3 Set if write breakpoint; reset if
read or write. Applies only to
data breakpoints.

4 Set if cmd (sn:)dra should be
interpreted as a linear address.
Reset if logical address.

5 Set if notification of breakpoint
is suppressed (this is used with
command QueryBreakpoint).

6-15 Reserved.

This command removes the breakpoint
in cmd.pid specified by the handle in
cmd.value.

The contents of the command buffer are:

cmd. userNum

cmd.pid

cmd.ty
cmd.value

cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The user number of
the debuggee.
The process id of the
debuggee.
22
The breakpoint
handle.
NIA
NIA
NIA
NIA
NIA
NIA

Debug Op

Case Command Type Description

23 Query Breakpoint For the breakpoint handle in cmd.value,
this command returns the breakpoint
status in pbRespBuf:

Offset Field Length

0 cbStatus word
2 cBreaks word
4 ra dword
8 sn word
10 pid word
12 userNum word

The contents of the command buffer are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 23
cmd.value The break.point

handle.
cmd.ra NIA
cmd.sn NIA
rq.pReqBuf NIA
rq.cbReqBuf NIA
rq.pRespBuf The address of the

buffer where the
breakpoint status is
stored.

rq.cbRespBuf The size of the buffer
where the breakpoint
status is stored.

24 ResetBreakpoint For the breakpoint handle in cmd.value,
this command clears the watchpoint
count.

The contents of the command buffer are:

cmd.userNum The user number of
the debuggee.

cmd.pid The process id of the
debuggee.

cmd.ty 24

1-17

Debug Op

1-18

Case Command Type Description

cmd.value

25 SelToNum

cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf
rq.cbRespBuf

The breakpoint
handle.
NIA
NIA
NIA
NIA
NIA
NIA

For the run-time selector in cmd.sn, this
command returns the link-time segment
number in pbRespBuf.

The contents of the command buff er are:

cmd.userNum

cmd.pUJ,

cmd.ty
cmd.value

cmd.ra
cmd.sn
rq.pReqBuf
rq.cbReqBuf
rq.pRespBuf

rq.cbRespBuf

Caution

The user number of
the debuggee.
The process id of the
debuggee.
25
The selector to be
mapped.
NIA
NIA
NIA
NIA
The address of the
buffer where the
mapped selector is
stored.
The size of the buffer
where the mapped
selector is stored.

Breakpoints that are set via DebugOp and are executed with interrupts
disabled are proceeded automatically by the Debugger since the Debugger
cannot propagate the disabled state back to the caller. If interrupts-disabled
breakpointing is required, you must use the Debugger.

Debug Op

Event Notification.
When GO is pressed, the request is responded to when a debugger event
occurs for the user specified in cmd.userNum. Upon return from the GO
command, the contents of RespBuf are an Event Descriptor:

Offset Fie Id

0 userNum
2 pid
4 tyEvent
6 value
8 ra
10 sn

The event types are as follows:

Event Type

0 Break

1

2

Death

Fault

Length

word
word
word
word
dword
word

Description

A breakpoint occurred. Event.value
contains the breakpoint handle.
Event.pid, event.userNum, event.ra,
event.sn are updated. The breakpoint
handle is placed in event.value. The
breakpoint userNum is frozen.

Event.userNum is about to die.

A fault has occurred. Event. value
contains the type offault.
Event.userNum, event.pid, event.ra, and
event.sn are updated.

1-19

Debug Op

Request Block

Size
Offset Fleld (Bytes) Contents

0 sCntlinfo 6

rtCode 0

2 nReqPbCb 2

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 465

12 reserved 6

18 pCmd 4

22 cbCmd 2

24 pReqBuf 4

28 cbReqBuf 2

30 pRespBuf 4

32 cbRespBuf 2

1-20

Error Codes
1000-1003

1004

1005

1006-1016

1017

1018

1019-1020

1021

1022-1035

1036

Error Codes

Reserved for future use.

Debugger: Breakpoint already exists.

The breakpoint specified in the DebugOp SetBreakpoint
command already exists.

Debugger: Internal consistency.

An internal error has occurred. To report the error,
contact Techical Support.

Reserved for future use.

Debugger: Memory not existent.

The memory specified by a DebugOp command does not
exist.

Debugger: Too many breakpoints.

The maximum number of code breakpoints is 16; the
maximum number of data breakpoints is 4.

Reserved for future use.

Debugger: No such breakpoint.

The breakpoint specified in the ClearBreakpoint,
QueryBreakpoint, or ResetBreakpoint DebugOp
command does not exist.

Reserved for future use.

Debugger: Invalid TS~.

The debugger encountered a TSS which is invalid. This
usually represents an internal error in the Debugger.
To report the error, contact Tech Support.

1-21

Error Codes

1-22

1037

1038

1039

1040

1041-1046

1047

1048

1049

1050

1051

Reserved for future use.

Debugger: Invalid selector.

The selector specifed in a DebugOp command is invalid.

Reserved for future use.

Debugger: Invalid process.

The process specifed in a DebugOp command is invalid.

Reserved for future use.

Debugger: Invalid command type.

The command type specifed in a DebugOp command is.
invalid.

Debugger: Buffer size too small.

The buffer size specified in a DebugOp request is too
small to hold the requested data.

Debugger: Too many DebugOp requests.

There are too many DebugOp requests outstanding.

Debugger: No such session.

A DebugOp session has not been opened for the
specified client.

Debugger: Session already open.

A DebugOp session is already open for the specified
client. ·

Appendix J
Debugging on a Second Monitor

What is Debugging on a Second Monitor?
By adding a particular processor, graphics module, and monitor to your
current system, you can use the second monitor as your debugging
screen. The application is displayed on the main monitor, while you
enter and exit the debugger on the second screen.

To use a second monitor, you must have a processor with extended video
support and a graphics controller module.

The supported processors are 80286 and 80386 processors with extended
video capability: B28-EV, B28-EXP, B38-EV, B38-EXP, B38-GXP,
B38-GXC, B28-CPU, and B38-CPU.

The supported graphics modules are: B25-VG2, B25VG4 (GC-004); The
graphics module must be in the configuration as the first module after
the CPU. The main monitor attaches to this module.

The supported monitors are: B25-Pl (VM-001) and B25-P2 (VM-002).
Either monitor can be attached to the CPU monitor plug. This is the
screen that is used for debugging.

To activate second screen debugging, edit the Config.sys file to include
the :VGACharMapDebugger: option.

For more information about this and other configuration options, see
Appendix F, "Configuration Options for the Debugger."

J-1

Glossary

A
Address expression.

An address expression is a description of a location in memory. The
description consists of one or more symbols, or an indexed or nonindexed
parameter.

Application process.

An application process in one that is terminated when the user calls Exit.

B
Breakpoint.

A breakpoint is a user-defined point in the code for a process. Execution
stops when a process reaches a breakpoint.

Byte pattern.

A byte pattern is a user-defined group of byte specifiers: The specifiers
are separated by commas and enclosed in double quotation marks.

Byte specifier.

c

A byte specifier is a sequence of two-digit hexadecimal numbers, or a
string of characters enclosed in single quotation marks.

Clear.

This means to remove a breakpoint from a particular location in memory.

Code listing.

A code listing is an english-language display of code generated by a
compiler or translator.

Glossary-1

Glossary

Crash dump.

A crash dump is the output (memory dump) caused by a system failure.

Current process.

This is the process identified in the Debugger by the Debugger internal
register (PR). Any registers that are read or written by the Debugger are
for the current process.

Current value.

E

The current value is the value most recently typed by the user, or the
value most recently displayed by the Debugger.

Echo.

This is the repetition on a parallel printer or a screen of instructions
entered by the user and/or material displayed by the Debugger.

Exchange.

This is the path on which a process waits for or receives messages or
communications from another process or processes.

Indexed address.

An indexed address is the address expression that uses index registers.

Interrupt mode.

This is a debugger operating mode used to debug interrupt handlers or to
set breakpoints in the operating system Kernel.

Glossary-2

Glossary

L
Link word.

A link word is a 16-bit address pointing to the next block of data.

Linked-list data structure.

This is a data structure containing elements that are linked by 16-bit
addresses (link words) or by 32-bit addresses (link pointers). The
CODE-N command uses link words.

Linker.

M

This is a software system that loads and connects together the object
programs output separately by a compiler or assembler and, from them,
produces a run file.

Multiprocess mode.

0

This is a debugger operating mode used in debugging an application that
involves more than one process and that depends on continuous
execution of all processes except the ones stopped at breakpoints ..

Offset.

An offset is the number of bytes by which a memory location is distant
from the beginning of a segment.

Output radix.

The output radix is a base of the notation in which Debugger output is
expressed (binary, decimal, hexadecimal, or any other base from 2 to 16,
inclusive).

Glossary-3

Glossary

p

Parameter.

A parameter is a constant (number, port, or text), a symbol, or one or
more unary or binary operators, address expressions, or symbolic
instructions.

Physical address.

This is an address that does not specify a segment base, and is relative to
memory location 0.

Pointer.

See Segmented address.

Port constant.

This is a number followed by an i or an o (indicating an input port or an
output port, respectively).

Processor Ordinal Number.

A processor ordinal number is the processor's position (starting with O)
within the shared resource processor. (For an illustration of processor
ordinal numbering, see the CTOS System Administration Guide.)

Public procedure.

This is a procedure whose address can be referenced by a module other
than the module in which the procedure is defined.

Public symbol.

A public symbol is an ASCII character string associated with a public
variable, a public value, or a public procedure.

Public value.

This is a value whose address can be referenced by a module other than
the module in which the procedure is defined.

Public variable.

This is a variable whose address can be referenced by a module other
than the module in which the variable is defined.

Glossary-4

Glossary

R
Register mnemonic.

A register mnemonic is a two-letter symbolic name for a register in the
processor (for example, AX, BL, SI).

Release Documentation.

Release Documentation includes Software Release Announcements and
the CTOS System Software Installation Planning Guide.

Run file.

This is a file created by the Linker. The run file contains the initial
image of code and data for a program.

Run file checksum word.

s

A run file checksum word is a number produced by the summation of
words in a run file. Used to check the validity of the run file.

Segment.

A segment is a discrete portion of memory, of a procedure, or of a
program.

Segment address.

A segment address is an address of a segment base. For a real mode
Intel microprocessor, a segment address refers to a paragraph number
(16 bytes). For a protected mode microprocessor, a segment address is an
index to a descriptor table containing the segment base address.

Segmented address (pointer).

A segmented address is an address that specifies both a segment base
and an offset. Segmented addresses are of the form SA:RA, where SA is
the segment address, and RA is the offset.

Glossary-5

Glossary

Segment override.

Set.

This is an operating code that causes the microprocessor to use the
segment register specified by the prefix when executing an instruction,
instead of the segment register that it would normally use.

A set is a place a breakpoint at a particular location in memory or assign
a process identification number to the Debugger internal register (PR).

Simple mode.

This is a debugger operating mode used in debugging a single-process
application, for example, a compiled BASIC program.

Stack.

The stack is a region of memory accessible from one end by means of a
stack pointer.

Stack frame.

The stack frame is a region of a stack corresponding to the dynamic
invocation of a procedure. Consists of procedural parameters, a return
address, a saved-frame pointer, and local or temporary variables.

Stack pointer.

The stack pointer is the indicator to the top of a stack. The stack pointer
is stored in the registers SS:SP.

Stack trace.

The stack strace is a debugger display of a stack, organized by stack
frame.

State variable.

A state variable is a symbolic name of a register that contains data
indicating the state of the Debugger (for example, PR, IP, or FL).

Symbol.

This is a sequence of alphanumeric and other characters (underscore,
period, dollar sign, pound sign, or exclamation mark).

Glossary-6

Glossary

Symbolic instructions.

Symbolic instructions contain symbols, that is, mnemonic characters
corresponding to the assembly language instructions. (These
instructions cannot contain user-defined public symbols.)

System process.

This is any process that is not terminated when the user calls Exit.

T
Text constant.

A text constant is a sequence of characters enclosed by quotation marks.

u
User process.

See Application process.

Glossary-?

Index

A
Address expressions, 2-3, 2-6
, example, 2-6
Addresses

assigning names to, 5-11
Administrator ClusterView

debugging with, B-1, B-2
Aliasing, 6-3
Application programming interface,

1-1
Arithmetic operators, 2-2
Assembly language calls, 8-12
Assembly. language instructions,

D-24
MOV, 3-11
PUSH, 3-11
SUB, 3-13

Assembly languages, 1-2
AX, 6-5

B
Base pointer (BP)

defined, C-2
Basic ATE

debugging with, B-3
Bootstrap ROM

detecting crash dumps, G-7
BP, 6-5
Breakpoint display, 3-10

Breakpoints
clearing, 3-23, 8-3
conditional, 8-4
defined, 8-1 ·
moving to next, 8-3
querying, 1-4, 8-2
setting in interrupt handlers, 8-10
setting multiple, 8-6
setting, 1-4, 3-9, 8-1, 8-2, 8-4, 8-7,

D-2
setting on 80386 systems, 8-7
showing, 3-23
unconditional, 8-2

BX, 6-5
Byte patterns

defined, 5-9
examples, 5-9
searching for, 5-9, 5-10

Byte specifier, 5-9

c
CalculatQr

using Debugger as, 4-10
CheckErc, D-37
Closing a symbol file, 4-7
Code

viewing, D-2
Code commands, (See Debugger

commands)
Code segment (CS), 3-11

lndex-1

Index

Command parameters
address expressions, 2-3
arithmetic operators, 2-2
composite parameters, 2-2
constants, 2-2
minus sign, 2-2
pointer operator, 2-2
symbolic characters, 2-2
symbolic instructions, 2-3

Commands, 2-1
format, 2-1
parameters, 2-2

Conditional breakpoint
defined, 8-4
setting, 8-4
changing from unconditional, 8-6

Configuration
null modem cable, B-3
SRP, B-2, F-5

Configuration file options
second monitor debugging, J-1

Configuration files
defaults, F-1
extended crash dump, G-2
options, F-2
SRP, B-2, F-4
workstations, F-2

Configuration options, F-1
second screen debugging, F-8

Constants
numbers, 2-3
ports, 2-4
text, 2-4

Context Manager
using debugger under, F-8

Context manager operations
invoking, 4-16

Contexts
displaying other, 7-3

lndex-2

Crash dump
analyzing, G-10
defined, 11-5
displaying processes, 11-7
examining, 11-5 .
file options, F-2
nonserver processor, G-8
server processor, G-9
SRP file options, F-4
status message, 11-6
workstation file options, F-2

Crash dump file
defined, 11-1
naming and allocation, G-6
sizing, G-3

cs, 6-5
CS:IP, 3-11
Current instruction

breaking after, 8-9
Current location, 2-7
Current process, 6-10
Current value

defined, 2-7
displaying, 2-7

ex, 6-5

D
Data breakpoints, 8-7
Data segment (DS), 3-15
Debug File command

command form, 11-2, 11-7
defined, 11-1
exiting from, 11-3
invoking, 11-2
patching a run file, 11-3
prompt, 11-3
using, 11-1, 11-7, D-1

Debugger
accessing, B-3
application programming interface,

1-1
command format, 2-1
commands, 2-1
configuring, 1-3
deactivating, 4-12
entering the, 4-2
exiting from, 3-7, 4-9
features, 1-3, 4-2, H-1
functions, 4-1
loading, F-6
main uses, 1-1
operating systems covered, 1-2
procedural interface, 1-2
suppressing, F-5
viewing code, D-2

Debugger commands
ACTION, 4-2
ACTION-A, 4-2, 9-1
ACTION-B, 4-3, 9-2
ACTION-FINISH, 4-9, 11-3, D-45
ACTION-GO, 4-16
ACTION-NEXT, 4-16
BOUND, 5-1
CODE-=, 5-10
CODE-A, 4-2, 8-4
CODE-B, 3-23, 8-2, 8-7
CODE-C, 3-23, 8-3
CODE-D, 5-5, 11-11
CODE-E, 8-9
CODE-F, 3-9, 4-7, 11-9
CODE-G, 8-8, 9-3
CODE-GO, 4-2
CODE-H, 4-14
CODE-I, 8-10
CODE-K, 4-12
CODE-L, 7-2 ·

CODE-LEFT ARROW, 5-3
CODE-M, 4-4
CODE-MARK, 5-3
CODE-N, 7-6
CODE-0, 5-9
CODE-P, 3-25, 8-3, 9-3
CODE-Q, 7-19
CODE-R, 3-15, 4-10
CODE-S, 11-7, 6-2, 7-8
CODE-T, 3-27, 7-4
CODE-U, 3-25, 7-1
CODE-V, 7-14, 7-17
CODE-W, 7-17
CODE-X, 6-2, 8-8
CODE-Y, 7-19
CODE-Z, 7-20
CODE-[, 5-11
display, 7-1
DOWN ARROW, 3-11, 3-15
FINISH, 4-3, 11-3
GO, 9-3
HELP, 4-13
HELP-A, 4-2, B-2
HELP-B, 4-3, B-2
LEFT ARROW, 2-4, 5-1
MARK, 3-11, 5-1
reissuing, 4-14
RETURN, 5-4
RIGHT ARROW, 2-4, 5-1
UP ARROW, 3-17

D
Debugger features matrix, H-2
Debugger modes

interrupt, 2-8, 9-1
multiprocess, 2-8, 9-1
simple, 2-8, 9-1

Debugger port, B-3

Index

lndex-3

Index

Debugger prompts, 4-4
protected mode, 4-5
real mode,4-4
understanding, 5-5

Debugger screen
displaying, 7-2

Debugger swapping, E-1
Debugger, 1-1

defined, 1-1
Debugging

relative to development steps, 1-4
second screen, F-8
tips, D-1

Debugging session
address differences, 3-7
location of files, 3-5
starting, 3-6

Debugging session, 3-10
DebugOp, 1-2

command types, 1-4
error codes, 1-21
request block, 1-20

Descriptor tables
displaying, 7-14, 7-15
GDT, 7-16

DI, 6-5
Display commands, 7-1
Display File

main program, 3-2
procedures, 3-2
required files, 3-5
source program, 3-3

DisplayFile program
required files, D-3

Displays
contexts, 7-3
current location, 3-13
debugger screen, 7-2
descriptor tables, 7-14, 7-15

lndex-4.

DLL status, 7-20
flag mnemonics, 7-17
GDT, 7-16
help file, 4-13
linked-list data structures, 7-6 ·
memory contents, 5-3, 5-5
next instruction, 3-11
physical address, 5-10
previous instruction, 3-17
process and exchange status, 7-8
request blocks, 7-19
request definitions, 7-17
semaphore status,7-19
stack trace, 3-27, 7-4, 7-6
user information, 7-2
user screen, 3-25

DLL status
displaying, 7-20

DS, 6-5
dynamic link library

loading symbols for, 4-8

E
Entering the Debugger, 4-2
ENTGQQ, 3-9
ES, 6-5
Event notification, 1-19
Event types, 1-19
Exchanges display

example, 7-12
Exiting from the Debugger, 4-9
Extended crash dump

defined, F-1
file, F-1

Extended Crash Dump command,
F-2

Extended crash dump process
caveats, G-11

Extended crash dump process G-1
configuration files, G-2
hardware capabilities, G-1
SRPs, G-6
workstations, G-4

F
Faulty address

determining, D-4 7
examples, D-48
locating, D-48

fDevelopement flag
defined, D-36
setting, D-36

Features matrix, H-2
File bytestream, 3-2
Flag mnemonics

displaying, 7-17
Format Disk command, G-4
Function keys

programming, 4-14
recording macros, 4-14

G
General protection fault (GP), 6-3,

D-46
entering debugger on, F-6

Global descriptor table (GDT)
displaying, 7-14

H
Help file

moving through, 4-13
resetting to default, 4-13
viewing, 4-13

IDT, 7-14
Instruction pointer (IP), 3-11
Instructions

Index

executing individually, 8-8
INT 3 instruction, 8-12
Interrupt descriptor table (IDT)

displa)ring, 7-14
Interrupt handlers

setting breakpoints in, 8-10
Interrupt mode

debugger prompt, 9-4
Interrupts, C-8
Invalid selector, D-47
IP, 6-5

L
LDT, 7-14
Limit violation, D-49
Linked-list data structures, 7-7

displaying, 7-6
Linker, 4-6
Load offset

calculating, 11-10
Local descriptor table (LDT)

displaying, 7-14

M
Memory contents

changing instructions, 5-8
changing, 5-7
displaying several locations, 5-4
displaying, 5-5
examining, 5-1

lndex-5

Index

Memory locations
closing, 5-4; D-39
opening, 5-4

Microsoft Code View, 1-4
Mnemonics

symbols for registers, 6-5
MOV, 3-11, 3-15
Multiprocess mode, 9-1

debugger prompt, 9-3
exiting from, 9-3
invoking, 9-2
resuming, 9-3
proceeding at a different address,

9-3

N
NOP instruction, 5-8
Null selector, D-49
Number system base

changing, 4-10
Number system base, 3-15 (See also

Radix)

0
Online help, 4-13
Output radix, 4-10
Overlays

debugging, 10-1
defined, 10-1
examining code in, 10-1

p

Partition Status command, 11-15
Pascal program, 3-2
Patch area, 8-4
PatchArea, 8-5

lndex-6

Physical addresses
displaying, 5-10

PidStatus
TStat format, 1-12

Plog command, 11-6
Ports

reading, 5-10
writing to, 5-10

PR, 6-1
defined, 6-1
modifying, 6-4
setting, 6-2, 6-3, 6-4, 11-9

Printing
debugger screen, 7-2

Process
starting from specific address, 8-8

Process and exchange status
displaying, 7-8

Process procedure, 3-2
Process registers, 6-4, 6-6, 6-7

mnemonic symbols, 6-5
Processes display, 11-8, 11-14

protected mode example, 7-10
real mode example, 7-9

Processor modes, 1-1
protected, 2-8
real, 2-8

Protected mode, 1-1
PTR operator, 2-2
PUSH, 3-15

R
Radix number

changing, 3-15
Radix, 3-15
Real mode, 1-1
Registers

examining, 3-19
mnemonic symbols,6-5

Remote boards
accessing, 4-4

Request blocks
displaying, 7-19

Request definitions
displaying, 7-17

Resource librarian command
command form, 4-9
example, 4-9
parameters, 4-9

Resources
using symbols as, 4-8

RS-232 port, B-4
Run command, 3-6
Run file

determining which crashed, 11-13
patching, 11-3

Run file version number
determining, 11-16

s
sbVerrun, 11-10
Second monitor debugging

activating, J-1
configuration file options, F-8, J-1
supported graphics modules, J-1
supported monitors, J-1
supported processors, J-1

Segment address (SA), 3-13
Segment limit
Semaphore status

displaying, 7-19
Set Protection command, 11-12
Shared resource processor (SRP)

debugging, B-1
Shared resource processor board

accessing other, 4-4

Simple mode
invoking, 9-1

Single stepping, 8-8
Special characters

dollar sign, 2-5
exclamation mark, 2-5
percent sign, 2-5
period, 2-5
pound sign, 2-5
underscore, 2-5

SRP

Index

configuration options, F-4
configuring the Debugger on, B-2
debugger port, B-3
debugging, B-1
keyswitch position, B-2

SRP debugging
activating, B-2
using a debugger port, B-3

SS, 6-5
Stack

aft.er procedure call, 3-31
defined, C-1
examining, D-14
format, C-1, C-3, C-5
interpreting, C-3, D-11
using debugger with, C-5
viewing, D-3

Stack frame
defined, C-1

Stack overflow
correcting, C-8

Stack pointer
defined, C-1

Stack size
estimating, C-8

lndex-7

Index

Stack trace
debugging with,
defined, C-2
display format, 7-6
displaying, 3-27, 7-4
starting at a specific address, 7-5

Status messages, A-1
Strings

moving, D-24
SUB, 3-13swapping, 8-11
Swapping, 9-2
Symbol

defined, 2-4
special characters, 2-5
types, 2-5

Symbol file, 1-3
closing, 4-7
defined, 2-6
loading, 3-9, 11-9
names, 4-6
opening, 4-7
verifying, 11-11

Symbol, (See also Symbolic
instruction and Symbolic
output)

Symbolic instruction
examples, 2-7

Symbolic output
suppressing, 4-8

Symbols
as resources, 4-8
loading, 6-2

System crash
sources, 11-16

System error buffer
examining, 11-12

lndex-8

T
Task register (TR)

examining, 11-12
Task state segment (TSS)

defined, 6-2
Tasks display

example, 7-13
TR, 11-12
TSS, 6-2, 7-14

identifying, 11-12
TypeSub procedure, 3-2, 3-21

u
Unconditional breakpoint

defined, 8-2
setting, 8-2
changing to conditional, 8-6

Unique symbols, 4-15
User information

displaying, 7-1
User number

determining, 11-14
User structure

determining, 11-15

v
Version command, 11-16
Version string, 11-11
Virtual code management, 10-1

w
Wild cards
· using in public symbols, 4-15

• UNISYS Help Us To Help You
Publication Trtle

Form Number

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We will use
them to improve the quality of your Product Information. Please check type of suggestion:

D Addition D Deletion D Revision D Error

Comments:

Name Telephone· number

Trtle Company

Address

City State Zip code

X aU!I pa~op ~01e :IJ1::>

r-----------------------~---
ade1 a1dels lON oa asea1d ade1

aJaH PIO:! r---------------------------
'" 11 I ~c~

BUSINESS REPLY.MAIL
FIRST CLASS MAIL PERMIT NO. 817 DETROIT, Ml

POSTAGE WILL BE PAID BY ADDRESSEE

UNISYS CORPORATION
PRODUCT INFORMATION
MS 18-007
2700 NORTH FIRST STREET
SAN JOSE, CA 95134-2028

11.1 ••• 1.1 11 •• 11 •• 1 •• 1 •• 1.111 1.11 .. 1 •• 11 .. 1

IF MAILED
IN THE

UNITED STATES

43594977-000

• UNISYS Product Information
Announcement
• New Release O Revision O Update 0 New Mail Code

Title
CTOS® Debugger User's Gulde

This Product Information Announcement announces the release and availability of the CTOS
Debugger User's Guide, dated August 1992. Information in this document is relative to CTOS I
3.4, CTOS II 3.4, CTOS/XE 3.4, and CTOS 1111.0.

This guide describes how to use the CTOS Debugger to debug programs on real and
protected mode operating systems. The guide provides hands-on exercises in using the
commands as well as debugging tips. The guide is available separately or with binder,
slipcase, and training diskette. The diskette is not available separately.

Please address all technical communications relative to this document to
UNISYS, Multimedia Publishing M/S 18-007, 2700 North First Street,
San Jose, CA 95134-2028.

To order additional copies of this document

• United States customers call Unisys Direct at 1-800-448-1424.

• All other customers, contact your Unisys Sales Office.

• Unisys personnel use the Electronic Literature Ordering (ELO} system

Contact your Unisys representative for pricing information.

4359 4977-000 Document only
4357 9523-100 Document with binder and slipcase

CTOS is a registered trademark of Convergent Technologies, Inc.

Announcement only: Announcement and attachments:

SA, SN, SU, SW, PR5
System: CTOS
Release
CTOS 1111.0
CTOS 113.4
CTOS 13.4
CTOS/XE3.4
Development Utilities 12.2

Part Number: 4359 4977-000

• UNISYS

The attached pages amend the following:

CTOS Debugger User's Gulde
4359 4977-000

New Feature Notes

This errata documents new features added to the CTOS Debugger for CTOS Ill 1.1. You can
add this section to the binder you already use for the current version of the CTOS Debugger
User's Guide.

Distribution lists: System: CTOS
SA, SN, SU, PAS Release CTOS Ill 1.1

Part Number: 4359 4977-001

Section 1
New Debugger Features

This section describes the features available with the newest CTOS
Debugger. With these new features you can

• See the contents of data structures displayed in a format you define
CODE-]

• List currently open files
CODE-K

• Display exchanges only
-lCODE-S

• Display exchanges that contain messages only
-2 CODE-S

• Translate a linear or logical address to a physical address and see
the lock counts and user number associated with it
CODE-\

• Substitute the !, @, #, $, or% characters for the the wildcard
characters * and ?
CODE-F

The Debugger also disassembles all 386 instructions including 32-bit
instructions and provides support for case-sensitive symbol files.

On CTOS III 1.1 you also can

• Debug on multiprocessor EISA systems
CODE-M

• Query the state of the floating point unit
CODE-.11.

• Set breakpoints in 32-bit code segments

1-1

New Debugger Features

Displaying the Contents of Data Structures
You can use the CODE-] command to display the contents of a data
structure. You provide a definition of the format for the structure in the
file [Sys]<Sys>DebuggerStruct.txt; the Debugger uses this specification to
find the information you need and display it for you in the format you
defined. You can define formats for single structures and linked
structures. Nested structures are not supported.

The default copy of [Sys]<Sys>DebuggerStruct.txt distributed with the
operating system defines formats for some operating system data
structures. If you want to add formats to this file you can use the Editor
at any time to make changes to the file. As soon as you close the file
again and save you can use the new formats.

Defining a Format

1-2

Figure 1-1 shows a sample format descriptor for the ExParDesc data
structure as it appears in the file [Sys]<Sys>DebuggerStruct.txt.
(ExParDesc is an operating system data structure that is defined in the
CTOS Procedural Interface Reference Manual.)

Figure 1-1. Sample Format Description from DebuggerStruct.txt

ExParDesc

epd (' currRunFile ' 0/s '
exitRunFile
pCharMap
sCharMap
pVcb
prgpVidLine
pKbdBuf
fReadOrPeek
pPntDevOata

4f/s '
000/p ,

OEl/w '
OE3/p '
OEB/p '
OAC/p '
185./b ,
OEF/p '

fActionFinishOisabled ' OBA/b

The exact format for a format description is defined in Table 1-1, later in
this subsection.

New Debugger Features

The general format for the format description of a single data structure is

FormatName (String or FieldDescriptor, NextString or
FieldDescriptor)

You can include format descriptions for as many data structures as you
want in DebuggerStruct.txt. There is no additional delimiter required
between format descriptions.

All text on each line that begins with a semi-colon (;) is treated as
comment text. Notice that in Figure 1-1, the the full name of the
structure is included as a comment before the format description, and
that the actual description abbreviates the structure name.

Strings are enclosed in single quotes. Note that in the example shown in
Figure 1-1, the input has been set up so that the quotes that surround
the string that describes the field name include a line-feed character
(SHIFI'-RETURN). This causes each new field and the associated data to
be displayed on a new line.

Field descriptors include an offset and one of several field type
descriptors. The field types are: byte, word, double word, sbString,
zbString, integer, pointer, selector, and userNum. Fields can also be
marked as links, so that a linked list of structures can be displayed.

1-3

New Debugger Features

1-4

Table 1·1. Format Description Fields for DebuggerStruct.txt

Field

Format Name

String

FieldOescriptor

Description

ASCII text (usually an abbreviation for the structure name)

ASCII text within single quotes (') used for the name of each field in the
structure. For example, 'ExitAunFile'

OffseUFieldType
For example, 000/p

Offset Hexadecimal or decimal 16-bit number or blank. If blank, the
offset is implied by the offset + length of the prior field. The
number is hexadecimal unless suffixed by a period (.)which, as
with all debugger input denotes a decimal number.

FieldType Integer [FieldTypeDefinition)

FieldType definitions:

s sbString (first byte is length of string)
z zbstring (zero-terminated string)
a ASCII byte
b binary byte (unsigned 8 bit)
w word (unsigned 16 bit)

integer (signed 16-bit)
q quad (unsigned 32 bit)
e selector
p pointer (sn:ra, ra is 16 bits)
u usernum (displays partition and run file name)
x pointer (displayed symbolically)
I length of structure (used to compute address next structure

for packed arrays)
wl near (16-bit ra) link to next structure
qi near long (32-bit ra) link to next structure
el selector link to next structure
pl pointer (sn:ra, 16-bit ra) link to next structure

New Debugger Features

Using the CODE-] command

You can use the CODE-] command to

• Display all structure format names that match a wildcard string

• Display the memory at a specified logical or linear address in the
specified format

• Display the contents of memory in the specified format at the 'next'
address (linked data structure or previous structure)

• Display the contents of memory at the specified address in the
specified format for a specific number of times

Figure 1-2 shows sample output from CODE-] for the format specified as
epd in the example Figure 1-1 (described earlier).

Figure 1-2. Sample Output from CODE-]

*2558:4a,'epd' Al
currRunFile [sys]<sys>exec.run
exitRunfile [sys]<sys>exec.run
pCharMap 0070:0000
sCharMap 1220
pVcb 2558:05E2
prgpVidLine 2558:02B2
pKbdBuf 2558:06A2
fReadOrPeek FF
pPntDevData 2558:07F2
fActionFinishDisabled 00

1-5

New Debugger Features

1-6

To display all format names which match the wild card string, tjpe

'wildcardString' CODE·]

Example:

''"]

Ascb asiblO asibll cpd ced ccb cdt deb Dct doi epd exUcb fab
fcb fcb2 fib frib icb iccSeg iccBuffer iccRcb iccStack
iccRcbSeg iob Lcb lucb NetServerData nmb parCnf g parDesc pdh
pub puba QuietRq runHdrV6 runHdrVB scsi!ob scat swa scb tcb
trb tss vhb ucb upb Vf vStats XBlock XeiccSeg XeRcb XeRcbSeg

To display the memory at the specified address with the format specified,
type

addr, formatName CODE·]

addr can be logical or linear.

Example:

*OdfO:O, 'tss'"]
rIOMap=Ol34 rRbg87=00D6 tyDev=OOOO iintLevel=OOOO
wDSint=OOOO wFlint=OOOO wipint=OOOO wCsint=OOOO
oPcb=4946 wErrorCode= 0000 laFault=FEF45011 pSem=OOOO:OOOO
w0s2Tid=OOOO glaTss=00797500 pHeap=OOOO:OOOO
wDsintFltr=OOOO wFlintFltr=OOOO wipintFltr=OOOO
wCsintFltr=OOOO
cCritSect=OOOO cPendingSusp=OOOO pKernelStack=22E8:00CO
pUserStack= 0084:FE82

New Debugger Features

To display the contents of a specified data structure starting at a
specified address and showing the contents of the structure at a specified
number of subsequent occurences (cFormats), type

cFormats, address, formatName CODE-]

Note that this is sensible only when links or structure length sizes are
used in the format definition.

To simply display the memory at the next address with whatever format
was specified previously, just type

CODE-]

The next address is computed from either the link field or the previous
structure or, in the case of packed arrays, the size and address of the
previous structure. See Table 1-1 for the description of the link field
(field type 'l').

1-7

New Debugger Features

Debugging on a Multiprocessor System

1-8

CTOS III 1.1 runs on multiprocessor EISA-bus workstations. With the
new Debugger, you can switch back and forth between the master
processor (the host} and any of the 1/0 processors (10Ps). The debugger
shows you which processor you are running on. You use all available
debugger commands on the IOPs in the same way as on the main
processor.

There is actually a separate copy of the Debugger running on each
processor. The Debugger on the master processor communicates with the
Debuggers on the IOPs over a separate EISA-bus channel, sending

·keystrokes (commands) to them, capturing their output, and then
displaying it on the video display. When you want to examine memory
on another board for example, the Debugger on the master processor
sends the keystrokes you enter (for example, 10, 84:0 CODE-D) to the
Debugger executing on the IOP. That Debugger treats this data as
command input and executes its memory fetching and displaying
operations. The output of the command is directed to the EISA bus,
where it is received by the host Debugger and displayed on the video
display. Note that this architecture is different than that used on
CTOS/XE and provides a more complete Debugger function. Breakpoints
and single-stepping, as well as interrupt-disabled debugging, are
supported on the IOP.

To debug on a multiprocessor system you need to understand
interprocess communications and processor board naming. See the
CTOS Operating System Concepts Manual and the CTOS System
Administration Guide for background information.

New Debugger Features

Using the CODE·M Command

You use the CODE-M command to switch back and forth between the
Debugger on the main processor and the Debugger on a specified IOP
card. Once you make the switch, other Debugger commands operate just
as you expect. You can always tell if the Debugger you are using is
executing on an IOP because the Processor or IOP name is displayed next
to the Debugger prompt.

To display a list of available IOP Cards when you are using the debugger
on the main processor, type

CODE-M

The Debugger displays the processor name in front of the Debugger
prompt on the screen as shown below:

#"m
name id
EPOl 04
EP02 05

To start a debugger on an IOP or to switch to a debugger that is already
running on an IOP type

'processorlD' or 'processorName' CODE-M

To switch back to the main debugger, type

CODE-M

Note that this does not stop the Debugger on the IOP. You can use GO or
CODE-Pon the IOP just as you would on the main processor to resume
processing.

Note that you cannot switch from one IOP directly to another. You must
return to the Debugger on the main processor first.

1-9

New Debugger Features

1-10

The example below shows switching to the debugger on EPOl, then back
to the main processor:

#4"m
EPOl\Debugger x3.5.38_6/5-16:43 (Simple Mode)
EPOl\Stopped at 8C:2D in process 13
EPOl\ *"m

f'epOl'"m
EPOl\ *
EPOl\ t"m

t

Note: If you use the Cluster View utility to access an IOPon the
server it is a good idea to access the master processor on the
server first, then switch to the IOP. If you access the IOP on the
server directly from the client workstation you will not be able to
switch to the master processor without stopping your debugging
session on the IOP.

New Debugger Features

Extensions to CODE-S
The CODE-S command is described in detail in Section 7, "Display
Commands," in the CTOS Debugger User's Guide.

There are two new extensions to the CODE·S command. They allow you
to display exchange information only and to display only exchanges
which contain messages.

'·1, CODE-S 'displays exchange information only, without process
information.

Example:

*-l"s
003 Sys In Processes 1031
006 Sched Processes 1071
007 exchQuiet Processes I 061
008 Mass Io Processes I 091
OOA LclFileSys Processes 1081
OOB FileSys Processes 1021
OOC Agent Processes IOAI
OlOexchRqTracker Messages
12558:912(0,BAOO) 132BO:FE9A(5,8800) I
011 MstrAgentRcv Processes IOBI
014 exchPit Processes 1011
OlB Hwid Processes 1051
028 OS Processes IOCI
02B OS Messages I 01 :F31
020 PS v Processes 15EI
035 Vdrn_Vga 4.2 Processes IOFI
037 Vdrn_Vga 4.2 Processes 1111
039 IkServer Processes 1121
03A Primary Processes 113*1

1-11

New Debugger Features

1-12

'·2, CODE-S 'displays only exchanges which contain messages.

Example:

*-2"s
010 exchRqTracker Messages
02B OS Message-s

12558: 912 (0, 8AOO) 13280: FE9A (5 I 8801
10l:F31

These new features are available on any version of CTOS.

For CTOS III 1.1 only, the Debugger also now shows messages which are
termination requests with an asterisk ('*') on the CODE·S display. This
is helpful for debugging hangs resulting from improper handling of
termination requests.

Example:

010 exchRqTracker Messages 1*2588:20(0,BAOO) I

This feature is available only when running on CTOS III 1.1.

New Debugger Features

Querying the Floating Point Unit State
With the CTOS III Debugger you can now query the state of the Floating
Point Unit (FPU). To do so you use the command CODE-I\.

The command CODE-I\ displays the FPU state of the current process
register (PR). The debugger displays both raw and formatted FPU
control, status, and tag words, as well as the used portion of the FPU
stack.

Example:

control=l370 (UM PM 64bit RoundNear)
status=0800 (TOP=Ol)
tag=0003 cs:ip=009C:0024 p0p=0284:0060 stack:
O:+ 2E0008 * ACD6C90000000000 (OOOOOOOOOOC9D6AC0740)
l:+ 2EOOOO * 9000000000000000 (0000000000000090FF3F)
2:+ 2E0003 * COOOOOOOOOOOOOOO (00000000000000C00240)
3:- 2E0004 * 8000000000000000 (000000000000008003CO)
4:+ 2E0004 * 8000000000000000 (00000000000000800340)
5:+ 2E0001 * 8000000000000000 (00000000000000800040)
6:+ 2EOOOO * 8000000000000000 (0000000000000080FF3F)

Note that the DebugOp API now supports case 14 (GetFpRegs) and 15
(SetFpRegs). In both cases, the 32-bit format of the FPU is used (see the
i486 MicroProcessor Reference Manual).

Listing Open Files
You can use the new command CODE-K to display a list of files which
are currently open. It displays the status, handle, user number, and
name of each open file.

You can use CODE-K with no parameters to display the open files on the
[Sys] volume or you can type a device specification or volume name
followed by CODE-K.

1-13

New Debugger Features

Querying Page Frame Statistics
A new option,the CODE-\ command allows you to query page frame
statistics. A linear or logical address may be argued to CODE-\ to
display the physical address, lock counts, and user number of the
memory. The command is useful for troubleshooting DMA programming.

Example:

*8c:8"\
pa = 00102000

cRqLocks=0003 cWaitFaultLocks=OOOO cPageLocks=OOOO
cDmaLocks=OOOO
userNum=OOOS

Changing Symbol WildCard Characters

1-14

If you need to, you can change the characters used as wildcard characters
used in symbol name matching from the question mark (?) and the
asterisk (*) to alternate characters. This supports compilers such as
Microsoft C 7.0 which produce symbolic addresses with embedded
question mark and/or askerisk characters.

The alternate characters used must be one of the following set:

?*!@#$%

·1,'b' <CODE>·F
This sets the question mark wildcard character to 'b'.

-2,'b' <CODE>·F
This sets the asterisk wildcard character to 'b'.

. I llllll lllll lllll lllll 11
43694977-001

