

Technical Manual COMPONENTS GUIDE

015-000028-02

Technical Manual COMPONENTS GUIDE

015-000028-02

DATA GENERAL! TECHNICAL MANUAL

COMPONENTS GUIDE

Ordering No. 015-000028-02
© Data General Corporation 1974
All Rights Reserved.
Printed in the United States of America
Rev. 02, June 1974

•	DGC NO. SERIES
INTEGRATED CIRCUITS	100'S
SEMICONDUCTORS	101'S <u></u>
RESISTORS	102'S
CAPACITORS	103'S
TRANSFORMERS AND COILS	104'S —
SWITCHES AND RELAYS	110'S
CONNECTORS	111'S
FUSES AND CIRCUIT BREAKERS	113'S
INDICATORS AND BULBS	114'S
MOTORS, BLOWERS AND FANS	115'S
CIRCUIT MODULES	116'S
CRYSTALS	121'S

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS MANUAL FOR INFORMATION PURPOSES ONLY. DGC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE IN THE SPECIFICATIONS AND MATERIALS CONTAINED HEREIN AND SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES CAUSED BY RELIANCE ON THE MATERIALS PRESENTED, INCLUDING BUT NOT LIMITED TO TYPOGRAPHICAL OR ARITHMETIC ERRORS, COMPANY POLICY AND PRICING INFORMATION.

The purpose of this manual is to provide part number identification of components used in Data General equipment. Pin connections, logic diagrams, truth tables and functional descriptions are included in the Integrated Circuits section. In the Circuit Modules section, pin connections and block diagrams are furnished.

It is not the purpose of this manual to provide manufacturers' specifications or circuit parameters.

TABLE OF CONTENTS

Page INTEGRATED CIRCUITS..... 100-1 100-1 Numerical Index..... Functional Index..... 100-8 SEMICONDUCTORS - TRANSISTORS/DIODES/RECTIFIERS..... 101-1 RESISTORS.... 102-1 103-1 CAPACITORS..... TRANSFORMERS AND COILS..... 104-1 SWITCHES AND RELAYS..... 110-1 111-1 CONNECTORS FUSES AND CIRCUIT BREAKERS..... 113-1 INDICATORS AND BULBS..... 114-1 115-1 MOTORS, BLOWERS AND FANS..... 116-1 CIRCUIT MODULES Numerical Index 116-1 CRYSTALS 121-1

NUMERICAL INDEX

INTEGRATED CIRCUITS

DGC Part Number	Functional Description	Page Number
10000001	PNP Quad Core Driver	100-16
100000002	16 Diode Array	100-17
100000003	Quad 2-Input NAND Gate	100-18
100000004	Triple 3-Input NAND Gate	100-19
100000005	Dual 4-Input NAND Gate	100-20
100000006	Dual Extendable AND-OR-INVERT Gates	100-21
100000007	8-Input NAND Gate	100-22
100000008	Single Extendable AND-OR-INVERT Gates	100-23
100000009	Dual 4-Input NAND Gate	100-24
100000011	Dual J-K Flip-Flop	100-25
100000012	4-Bit Shift Register	100-26
10000013	One-of-Ten Decoder	100-27
10000015	Retriggerable Monostable Multivibrator	100-28
10000016	16-Bit Coincident Select Read-Write Memory	100-29
100000017	Dual D-Type Edge-Triggered Flip-Flop	100-30
100000019	Quad 2-Input NAND Interface Gate	100-31
100000020	Hex Inverter	100-32
100000021	4-Bit Binary Full Adder (Look Ahead Carry)	100-33
100000023	Dual Pulse Shaper-Delay AND Gate	100-34
100000024	Dual Differential Amplifier	100-35
100000026	Precision Voltage Regulator	100-36
100000028	4-Bit Binary Counter/Storage Element	100-37
100000036	Quad 2-Input NAND Gate	100-38
100000038	BCD Decade Counter/Storage Element	100-39
100000039	Dual Extender AND-OR-INVERT Gates	. 100-40
100000040	Dual 4-Input NAND Gate	100-41
100000041	NPN Quad Core Driver	100-42
100000042	4-Bit Shift Register	100-43
100000043	Arithmetic Logic Element	100-44
100000044	3-Input, 4-Bit Digital Multiplexer	100-45
100000045	Quad 2-Input NOR Gate	100-46
100000046	Quad 2-Input NAND Gate	100-47
100000047	4-Bit Binary Counter	100-48, 100-49
100000048	Dual Four-Input Multiplexer	100-50

DGC Part Number	Functional Description	Page Number
100000049	Expandable 4-Input AND-OR-INVERT Gate	100-51
100000050	4-Bit Bistable Latches	100-52
100000052	Dual Sense Amplifier	100-53
100000053	Dual J-K Flip-Flop	100-54
100000057	2-Input, 4-Bit Digital Multiplexer	100-55
100000059	High Speed Differential Comparator	100-56
100000060	Dual Comparator	100-57
100000061	Quad 2-Input NOR Gate	100-58
100000062	Differential Video Amplifier	100-59
100000063	Quad 2-Input OR Gate	100-60
100000066	Dual 4-Input Positive-NAND Schmitt Trigger	100-61
100000067	8-Bit Odd/Even Parity Generator/Checker	100-62
100000068	Quadruple 2-Input Exclusive-OR Gate	100-63
100000069	Single 7-Input NOR Gate	100-64
100000070	Dual 4-Input NOR Gate	100-65
100000071	Hex Inverter	100-66
100000072	Quad 2-Input OR Gate	100-67
100000073	Triple 3-Input NAND Gate	100-68
100000074	64-Bit Random Access Memory	100-69, 100-70
100000075	8-Input Multiplexer	100-71, 100-72
100000076	Hex Inverter	100-73
100000077	BCD-To-Decimal Decoder-Driver	100-74
100000078	Quadruple 2-Input Positive-NAND Buffer with Open-Collector Outputs	100-75
100000079	Memory Driver with Decode Inputs	100-76
100000080	Presettable High Speed Binary Counter	100-77
100000081	Quadruple 2-Input Positive-NAND Buffer	100-78
100000082	Quad D Type Flip-Flop	100-79
100000083	2-Input, 4-Bit Digital Multiplexer	100-80
100000084	Arithmetic Logic Unit/Function Generator	100-81, 100-82, 100-83
100000085	4-By-4 Register File	100-84
100000086	Quad 2-Input Multiplexer	100-85
100000089	Quad 2-Input AND Gate	100-86
100000090	6-Input Hex Inverter	100-87
100000091	Hex Buffer/Driver with Open Collector High Voltage Outputs	100-88
100000092	Dual One-of-Four Decoder	100-89
100000093	Monolithic Dual Operational Amplifiers	100-90

DGC Part Number	Functional Description	Page Number
100000094	Precision Voltage Regulator	100-91
100000095	256-Bit Bipolar Read Only Memory	100-92
100000096	256-Bit Bipolar Read Only Memory	100-92
100000098	Quad Hex Inverter	100-93
100000100	Look-Ahead Carry Generator	100-94
100000101	8-Bit Shift Register	100-95
100000102	256-Bit Read/Write Memory	100-96, 100-97
100000103	Decoder/Driver	100-96, 100-97
100000104 .	Dual D-Type Positive-Edge-Triggered Flip-Flops with Preset and Clear	100-98
100000105	Quad Line Receivers	100-99
100000106	Dual Retriggerable Resettable Monostable Multivibrator	100-100
100000107	Quad NOR Gate	100-101
100000108	2-Input, 4-Bit Digital Multiplexer	100-102
100000109	Buffer Register	100-103
100000111	Buffer Register	100-103
100000112	Dual 8-Bit Shift Register	100-104, 100-105
100000114	Dual Voltage Controlled Multivibrator	100-106
100000115	Dual J-K Flip-Flop	100-107
100000116	Quadruple 2-Input Positive-NAND Buffer	100-108
100000117	Dual Peripheral Driver	100-109
100000118	Dual Sense Amplifier	100-110
100000119	Dual 4-Input Positive-AND Gate	100-111
100000120	Phase Locked Loop	100-112
100000121	CMOS Hex Inverter	100-113
100000122	Dual Line Receiver ·	100-114
100000123	Triple 3-Input NOR Gate	100-115
100000124	Quadruple Line Receiver	100-116
100000125	Buffer Register	100-117
100000126	Triple 3-Input AND Gate	100-118
100000127	Zero Voltage Switch	100-119
100000128	Up/Down 4-Bit Binary Counter	100-120, 100-121
100000129	3-Input, 4-Bit Digital Multiplexer	100-122
100000130	Asynchronous Receiver/Transmitter	100-123, 100-124, 100-125 100-126, 100-127
100000131	General Purpose Transistor Array	100-128
100000132	Dual Stereo Preamplifier	100-129
100000133	Hex Inverter	100-130
100000134	4-Bit Data Selector/Storage Register	100-131

DGC Part Number	Functional Description	Page Number
100000135	4-Bit Bidirectional Universal Shift Register	100-132, 100-133
100000136	8-Input Priority Encoder	100-134
100000137	8-Bit Position Scaler	100-135
100000140	256-Bit Bipolar Read Only Memory	100-136
100000141	256-Bit Bipolar Read Only Memory	100-136
100000142	256-Bit Bipolar Read Only Memory	100-136
100000143	BCD-To-Decimal Decoder/Driver	100-137
100000144	5-Bit Comparator	100-138
100000145	8-Bit Addressable Latch	100-139, 100-140
100000146	Dual Line Driver	100-141
100000147	Dual 2-Line-To-4-Line Decoder/Demultiplexer	100-142, 100-143
100000148	256-Bit Bipolar Read Only Memory	100-144
100000149	256-Bit Bipolar Read Only Memory	100-144
100000150	High Speed 64x7x5 Character Generator	100-145
100000151	Hex 40-Bit Static Shift Register	100-146
100000152	1024-Bit Recirculating Dynamic Shift Register	100-147
100000153	BCD Decade Counter	100-148, 100-149
100000154	Dual Peripheral Driver	100-150
100000156	High Performance Operational Amplifier	100-151
100000157	High Speed Differential Comparator	100-152
100000158	Quadruple 2-Input Positive-NAND Gate	100-153
100000159	Hex Inverter	100-154
100000160	Dual J-K Edge-Triggered Flip-Flops	100-155
100000161	Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)	100-156, 100-157
100000162	Dual J-K Master/Slave Flip-Flop with Separate Clears and Clocks	100-158
100000164	256-Bit Bipolar Random Access Memory	100-159
100000165	Data Selector/Multiplexer with 3-State Outputs	100-160
100000166	Dual 4-Line-To-1-Line Data Selector/Multiplexer	100-161
100000167	Quadruple 2-Line-To-1-Line Data Selector/ Multiplexer	100-162
100000168	Dual 4-Line-To-1-Line Multiplexer	100-163
100000169	Arithmetic Logic Unit/Function Generator	100-164, 100-165, 100-166
100000170	Look-Ahead Carry Generator	100-167
100000171	16-Bit Multiple-Port Register File with 3-State Outputs	100-168, 100-169
100000172	Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear	100-170
100000173	Dual 4-Input Positive-NAND 50 Ohm Line Driver	100-171

DGC Part Number	Functional Description	Page Number
100000174	Positive-NAND Gate with Open-Collector Outputs	100-172
100000175	Quadruple 2-Input Positive-NAND Gate with Open-Collector Outputs	100-173
100000178	BCD-To-Decimal Decoder	100-174
100000180	High Speed 4-Bit Shift Register with Enable	100-175, 100-176
100000181	Expandable 4-Wide AND-OR Gates	100-177
100000182	4-2-3-2-Input AND-OR-INVERT Gates	100-178
100000185	Decoder/Demultiplexer	100-179, 100-180
100000186	8-Line-To-1-Line Data Selector/Multiplexer	100-181
100000187	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-182
100000188	Hex Inverter with Open-Collector Outputs	100-183
100000189	One-Of-Ten Decoder with Open Collector Output	100-184
100000190	High Speed Fully Decoded 256-Bit Random Access Memory	100-185
100000191	High Speed Fully Decoded 1024-Bit Read Only Memory	100-186
100000192	High Speed Electrically Programmable 1024-Bit Read Only Memory	100-187
100000193	Timer	100-188
100000194	Quad MOS Clock Driver	100-189
100000195	8-Input Positive-NAND Gate	100-190
100000196	Quadruple 2-Input Positive-NOR Buffers with Open-Collector Outputs	100-191
100000197	Monostable Multivibrator	100-192, 100-193
100000198	Synchronous 4-Bit Counter	100-194
100000199	Hex D-Type Flip-Flops with Clear	100-195
100000200	Quadruple D-Type Flip-Flops with Clear	100-195
100000201	Quadruple 2-Input Multiplexer with Storage	100-196
100000203	13-Input Positive-NAND Gate	100-197
100000204	Hex D-Type Flip-Flops with Clear	100-198
100000205	Quadruple D-Type Flip-Flops with Clear	100-198
100000206	4-Bit Quad Exclusive-NOR Gates	100-199
100000207	9-Bit Parity Generator and Checker	100-200
100000208	256-Bit Bipolar Programmable ROM (32x8 PROM)	100-201
100000211	16-Bit Associative-Content Addressable Memory	100-202
100000214	2048-Bit MOS LSI Random Access Memory	100-203, 100-204
100000215	. 256-Bit Bipolar Read Only Memory	100-205
100000216	256-Bit Bipolar Read Only Memory	100-205
100000217	256-Bit Bipolar Read Only Memory	100-205
100000218	256-Bit Bipolar Read Only Memory	100-205

DGC Part Number	Functional Description	Page Number
100000219	256-Bit Bipolar Read Only Memory	100-205
100000221	Expandable Dual 2-Wide 2-Input AND-OR Invert Gate	100-206
100000222	Dual Retriggerable Monostable Multivibrator with Clear	100-207
100000223	Decoder/Demultiplexer	100-208, 100-209
100000224	16-Channel Analog Multiplexer Complementary MOS (CMOS)	100-210
100000225	8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)	100-211
100000226	High Speed Fully Decoded 64-Bit Memory	100-212
100000227	Presettable High Speed Binary Counter	100-213
100000228	Dual Peripheral Driver	100-214
100000229	Dual Sense Amplifier	100-215
100000231	Dual Peripheral Driver	100-216
100000232	1024-Bit Field Programmable Bipolar PROM	100-217
100000233	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-218
100000234	4-Bit Bidirectional Universal Shift Register	100-219, 100-220
100000235	Triple 3-Input Positive-NAND Gate	100-221
100000236	2-Input, 4-Bit Digital Multiplexer	100-222
100000237	Triple 3-Input Positive-AND Gate	100-223
100000238	Dual Peripheral Driver	100-224
100000240	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-225
100000241	256-Bit Read-Write Memory with 3-State Outputs	100-226, 100-227
100000242	Four-Channel Programmable Amplifier	100-228
100000243	Wide Band, High Impedance Operational Amplifier	100-229
100000244	High Slew Rate F. E. T. Input Operational Amplifier	100-230
100000245	1024-Bit Bipolar Programmable ROM (256x4 PROM, Open Collector)	100-231
100000247	Dual Peripheral Driver	100-232
100000248	Sense Amplifier	100-233
100000249	Positive-NAND Gate	100-234
100000250	Quad Exclusive OR Gate	100-235
100000252	Up/Down BCD Decade Counter	100-236, 100-237
100000255	256-Bit Bipolar Random Access Memory	100-238
100000256	1024-Bit Programmable Bipolar Read Only Memory	100-239
100000257	Dual D-Type Edge-Triggered Flip-Flop	100-240
100000258	256-Bit Bipolar (32x8) Electrically Programmable Read Only Memory	100-241
100000259	Triple 3-Input Positive-AND Gate with Open-Collector Outputs	100-242
100000260	Triple 3-Input Positive-NOR Gate	100-243

DGC Part Number	Functional Description	Page Number
100000261	Phase Locked Loop	100-244
100000262	Quadruple 2-Input Positive-NOR Gate	100-245
100000263	BCD-To-Seven-Segment Decoder/Driver	100-246, 100-247
100000264	Dual 4-Input Positive-NAND Buffer	100-248
100000265	Hex Schmitt-Trigger Inverter	100-249
100000266	64-Bit Random Access Read/Write Memory	100-250
100000267	Operational Amplifier	100-251
100000268	Dual Operational Amplifier	100-252
100000269	256-Bit Bipolar Read Only Memory	100-253
100000270	256-Bit Bipolar Read Only Memory	100-253
100000271	256-Bit Bipolar Read Only Memory	100-253
100000272	256-Bit Bipolar Read Only Memory	100-253
100000273	256-Bit Bipolar Read Only Memory	100-253
100000274	256-Bit Bipolar Read Only Memory	100-253
100000275	256-Bit Bipolar Read Only Memory	100-253
100000276	256-Bit Bipolar Read Only Memory	100-253
100000277	256-Bit Bipolar Read Only Memory	100-253
100000278	256-Bit Bipolar Read Only Memory	100-253
100000279	256-Bit Bipolar Read Only Memory	100-253
100000280	256-Bit Bipolar Read Only Memory	100-253
100000281	Quadruple 2-Input Positive-NAND Schmitt Trigger	100-254
100000282	2-Input, 4-Bit Digital Multiplexer	100-255
100000283	Low Power Dual Retriggerable Resettable Monostable Multivibrator	100-256
100000284	Hex Inverter with Open-Collector Outputs	100-257
100000287	9-Bit Odd/Even Parity Generator/Checker	100-258
100000290	Three-Terminal Negative Regulator	100-259
100000292	Voltage Comparator/Buffer	100-260
100000293	Operational Amplifier	100-261
100000294	Operational Amplifier	100-262
100000295	Dual Line Receiver	100-263
100000296	4-Bit Magnitude Comparator	100-264
100000297	Data Selector/Multiplexer	100-265
100000298	Dual Sense Amplifier	100-266
100000299	Dual Sense Amplifier	.100-266
100000306	Arithmetic Logic Unit	100-267, 100-268 100- 269

FUNCTIONAL INDEX

INTEGRATED CIRCUITS

DGC Part Number	Function	Page Number	
	ARITHMETIC ELEMENTS		1
100000021	4-Bit Binary Full Adder (Look Ahead Carry)	100-33	l
100000296	4-Bit Magnitude Comparator	100-264	
100000144	5-Bit Comparator	100-138	
100000068	Quadruple 2-Input Exclusive-OR Gate	100-63	
100000250	Quad Exclusive-OR Gate	100-235	
100000206	4-Bit Quad Exclusive NOR Gate	100-199	
100000067	8-Bit Odd/Even Parity Generator/Checker	100-62	
100000207	9-Bit Parity Generator and Checker	100-200	
100000287	9-Bit Odd/Even Parity Generator/Checker	100-258	
100000100) 100000170)	Look Ahead Carry Generators	100-94 100-167	
100000043	Arithmetic Logic Element	100-44	
100000084) 100000169) 100000306)	Arithmetic Logic Units/Function Generators	100-81, 100-82, 100-83 100-164, 100-165, 100-166 100-267, 100-268, 100-269	
	CHARACTER GENERATOR		
100000150	High Speed 64x7x5 Character Generator	100-145	
	COMMUNICATIONS CIRCUITS	1	
100000024	Dual Differential Amplifier	100-35	
100000132	Dual Stereo Preamplifier	100-129	
100000062	Differential Video Amplifier	100-59	
	COMPARATORS AND SENSE AMPLIFIERS		
100000060	Dual Comparator	100-57	
100000059) 100000157)	High-Speed Differential Comparator	100-56 100-152	
100000292	Voltage Comparator/Buffer	100-260	
100000248	Sense Amplifier	100-233	
100000052	Dual Sense Amplifier	100-53	
00000118) 00000229) 00000298) 00000299)	Dual Sense Amplifiers	100-110 100-215 100-266 100-266	

DGC Part Number	Function	Page Number
	COUNTERS	
100000161	Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)	100-156, 100-157
100000080) 100000227)	Presettable High Speed Binary Counter	100-77 100-213
100000153	BCD Decade Counter	100-148, 100-149
100000047	· 4-Bit Binary Counter	100-48, 100-49
100000038	BCD Decade Counter/Storage Element	100-39
100000028	4-Bit Binary Counter/Storage Element	100-37
100000198	Synchronous 4-Bit Counter	100-194
100000252	Up/Down BCD Decade Counter	100-236, 100-237
100000128	Up/Down 4-Bit Binary Counter	100-120, 100-121
	DECODERS/DEMULTIPLEXERS	
100000092	Dual One-Of-Four Decoder	100-89
100000013	One-Of-Ten Decoder	100-27
100000189	One-Of-Ten Decoder With Open Collector Output	100-184
100000178	BCD-To-Decimal Decoder	100-174
100000185) 100000223)	Decoders/Demultiplexers	100-179, 100-180 100-208, 100-209
100000147	Dual 2-Line-To-4-Line Decoder/Demultiplexer	100-142, 100-143
100000077	BCD-To-Decimal Decoder-Driver	.100-74
100000143	BCD-To-Decimal Decoder/Driver	100-137
100000263	BCD-To-Seven-Segment Decoder-Driver	100-246, 100-247
100000079	Memory Driver With Decode Inputs	100-76
	FLIP-FLOPS/LATCHES	
100000011	Dual J-K Flip-Flop	100-25
10000053	Dual J-K Flip-Flop	100-54
100000115	Dual J-K Flip-Flop	100-107
100000160	Dual J-K Edge-Triggered Flip-Flops	100-155
100000162	Dual J-K Master/Slave Flip-Flop With Separate Clears and Clocks	100-158
100000172	Dual J-K Negative-Edge-Triggered Flip-Flops With Preset and Clear	100-170
100000017) 100000257)	Dual D-Type Edge-Triggered Flip-Flop	100-30 100-2 4 0

DGC Part Number	Function	Page Number
100000104	Dual D-Type Positive-Edge-Triggered Flip-Flops With Preset and Clear	100-98
100000082	Quad D Type Flip-Flop	100-79
100000199	Hex D-Type Flip-Flop With Clear	100-195
100000200	Quadruple D-Type Flip-Flop With Clear	100-195
100000204	Hex D-Type Flip-Flop With Clear	100-198
100000205	Quadruple D-Type Flip-Flop With Clear	100-198
100000050	4-Bit Bistable Latches	100-52
100000145	8-Bit Addressable Latch	100-139, 100-140
	GATES/BUFFERS	
100000089	Quad 2-Input AND Gate	100-86
100000126	Triple 3-Input AND Gate	100-118
100000237	Triple 3-Input Positive-AND Gate	100-223
100000259	Triple 3-Input Positive-AND Gate With Open-Collector Outputs	100-242
100000119	Dual 4-Input Positive-AND Gate	100-111
100000023	Dual Pulse Shaper-Delay AND Gate	100-34
100000158	Quadruple 2-Input Positive-NAND Gate	100-153
100000036	Quad 2-Input NAND Gate	100-38
100000046	Quad 2-Input NAND Gate	100-47
100000003	Quad 2-Input NAND Gate	100-18
100000073	Triple 3-Input NAND Gate	100-68
100000004	Triple 3-Input NAND Gate	100-19
100000235	Triple 3-Input Positive-NAND Gate	100-221
100000249	Positive-NAND Gate	100-234
100000005) 100000009) 100000040)	Dual 4-Input NAND Gate	100-20 100-24 100-41
100000007	8-Input NAND Gate	100-22
100000195	8-Input Positive-NAND Gate	100-190
100000203	13-Input Positive-NAND Gate	100-197
100000175	Quadruple 2-Input Positive-NAND Gate With Open-Collector Outputs	100-173
100000174	Positive-NAND Gate With Open-Collector Outputs	100-172
100000019	Quad 2-Input NAND Interface Gate	100-31
100000173	Dual 4-Input Positive-NAND 50 Ohm Line Driver	100-171

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

DGC Part Number	Function	Page Number
100000281	Quadruple 2-Input Positive-NAND Schmitt Trigger	100-254
100000066	Dual 4-Input Positive-NAND Schmitt Trigger	100-61
100000116	Quadruple 2-Input Positive-NAND Buffer	100-108
100000081	Quadruple 2-Input Positive-NAND Buffer	100-78
100000264	Dual 4-Input Positive-NAND Buffer	100-248
100000078	Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs	100-75
100000063	Quad 2-Input OR Gate	100-60
100000072	Quad 2-Input OR Gate	100-67
100000045	Quad 2-Input NOR Gate	100-46
100000061	Quad 2-Input NOR Gate	100-58
100000262	Quadruple 2-Input Positive-NOR Gate	100-245
100000070	Dual 4-Input NOR Gate	100-65
100000107	Quad NOR Gate	100-101
100000123	Triple 3-Input NOR Gate	100-115
100000260	Triple 3-Input Positive-NOR Gate	100-243
100000069	Single 7-Input NOR Gate	100-64
100000196	Quadruple 2-Input Positive-NOR Buffer With Open-Collector Outputs	100-191
100000181	Expandable 4-Wide AND-OR Gate	100-177
100000182	4-2-3-2-Input AND-OR-INVERT Gate	100-178
100000008	Single Extendable AND-OR-INVERT Gate	100-23
100000221	Expandable Dual 2-Wide 2-Input AND-OR-INVERT Gate	100-206
100000006	Dual Extendable AND-OR-INVERT Gate	100-21
100000049	Expandable 4-Input AND-OR-INVERT Gate	100-51
100000039	Dual Extender AND-OR-INVERT Gate	100-40
100000020) 100000071)	Hex Inverter	100-32 100-66
100000076	Hex Inverter	100-73
100000090	6-Input Hex Inverter	100-87
100000159	Hex Inverter	100-154
100000098	Quad Hex Inverter	· 100-93
100000121	CMOS Hex Inverter	100-113
100000133	Hex Inverter	100-130
100000188) 100000284)	Hex Inverter With Open-Collector Outputs	100-183 100 <i>-</i> 257
100000265	Hex Schmitt-Trigger Inverter	100-249

DGC Part Number	Function	Page Number
	INTERFACE ELEMENTS	
100000146	Dual Line Driver	100-141
100000117) 100000154) 100000238) 100000247)	Dual Peripheral Drivers	100-109 100-150 100-224 100-232
100000228	Dual Peripheral Driver	100-214
100000231	Dual Peripheral Driver	100-216
100000194	Quad MOS Clock Driver	100-189
100000091	Hex Buffer/Driver With Open-Collector High Voltage Outputs	100-88
100000122	Dual Line Receiver	100-114
100000295	Dual Line Receiver	100-263
100000105	Quad Line Receivers	100-99
100000124	Quadruple Line Receiver	100-116
100000197	Monostable Multivibrator	100-192, 100-193
100000015	Retriggerable Monostable Multivibrator	100-28
100000222	Dual Retriggerable Monostable Multivibrator With Clear	100-207
100000106	Dual Retriggerable Resettable Monostable Multivibrator	100-100
100000283	Low Power Dual Retriggerable Resettable Monostable Multivibrator	100-256
100000114	Dual Voltage Controlled Multivibrator	100-106
100000130	Asynchronous Receiver/Transmitter	100-123, 100-124, 100-125 100-126, 100-127
	MEMORIES	
100000266	64-Bit Random Access Read/Write Memory	100-250
100000074	64-Bit Random Access Memory	100-69, 100-70
100000226	High Speed Fully Decoded 64-Bit Memory	100-212
100000164	256-Bit Bipolar Random Access Memory	100-159
100000190	High Speed Fully Decoded 256-Bit Random Access Memory	100-185
100000255	256-Bit Bipolar Random Access Memory	100-238
100000241	256-Bit Read-Write Memory With 3-State Outputs	100-226, 100-227
100000016	16-Bit Coincident Select Read-Write Memory	100-29
100000102) 100000103)	256-Bit Read/Write Memory and Decoder/Driver	100-96, 100-97 100-96, 100-97

DGC Part Number	Function	Page Number
100000214	2048-Bit MOS LSI Random Access Memory	100-203, 100-204
100000211	16-Bit Associative-Content Addressable Memory	100-202
100000211 100000140) 100000141) 100000142) 100000148) 100000215) 100000216) 100000217) 100000219) 100000270) 100000271) 100000271) 100000273) 100000274) 100000275) 100000276) 100000276)	16-Bit Associative-Content Addressable Memory 256-Bit Bipolar Read Only Memory	100-202 100-136 100-136 100-136 100-144 100-144 100-205 100-205 100-205 100-253 100-253 100-253 100-253 100-253 100-253 100-253 100-253 100-253 100-253
100000278) 100000279) 100000280) 100000095)	256-Bit Bipolar Read Only Memory	100-253 100-253 100-253 100-92
100000096)	230-Bit Bipotar Read Only Memory	100-92
100000191	High Speed Fully Decoded 1024-Bit Read Only Memory	100-186
100000208	256-Bit Bipolar Programmable ROM (32x8 PROM)	100-201
100000258	256-Bit Bipolar (32x8) Electrically Programmable Read Only Memory	100-241
100000256	1024-Bit Programmable Bipolar Read Only Memory	100-239
100000232	1024-Bit Field Programmable Bipolar PROM	100-217
100000245	1024-Bit Bipolar Programmable ROM (256x4 PROM, Open Collector)	100-231
100000192	High Speed Electrically Programmable 1024-Bit Read Only Memory	100-187
100000001	PNP Quad Core Driver	100-16
100000041	NPN Quad Core Driver	100-42
<u></u>	MULTIPLEXERS	
100000167) 100000187)	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-162 100-182
100000233) 100000240)	Quadruple 2-Line-To-1-Line Data Selector/Multiplexer	100-218 100-225
100000166	Dual 4-Line-To-1-Line Data Selector/Multiplexer	100-161
100000165	Data Selector/Multiplexer with 3-State Outputs	100-160
100000186	8-Line-To-1-Line Data Selector/Multiplexer	100-181
100000297	Data Selector/Multiplexer	100-265
100000057) 100000108)	2-Input, 4-Bit Digital Multiplexer	100-55 100-102

100-13 REV. 02

whole or in part	, or used in whole or in part as the basis for manuacture or sale of items, without written per inteston.		
DGC Part Number	Function	Page Number	
100000083	2-Input, 4-Bit Digital Multiplexer	100-80	
100000236	2-Input, 4-Bit Digital Multiplexer	100-222	
100000282	2-Input, 4-Bit Digital Multiplexer	100-255	
100000129) 100000044)	3-Input, 4-Bit Digital Multiplexer	100-122 100-45	
100000086	Quad Two-Input Multiplexer	100-85	
100000201	Quadruple 2-Input Multiplexer With Storage	100-196	
100000048	Dual Four-Input Multiplexer	100-50	
100000075	Eight-Input Multiplexer	100-71, 100-72	
100000168	Dual 4-Line-To-1-Line Multiplexer	100-163	
100000225	8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)	100-211	
100000224	16-Channel Analog Multiplexer Complementary MOS (CMOS)	100-210	
	OPERATIONAL AMPLIFIERS		
100000293	Operational Amplifier	100-261	
100000294	Operational Amplifier	100-262	
100000267	Operational Amplifier	100-251	
100000156	High Performance Operational Amplifier	100-151	
100000268	Dual Operational Amplifier	100-252	
100000093	Monolithic Dual Operational Amplifier	100-90	
100000242	Four Channel Programmable Amplifier	100-228	
100000243	Wide Band, High Impedance Operational Amplifier	100-229	
100000244	High Slew Rate F. E. T. Input Operational Amplifier	100-230	
	PHASE LOCKED LOOP		
100000261	Phase Locked Loop	100-244	
100000120	Phase Locked Loop	100-112	
	REGISTERS		
100000042	4-Bit Shift Register	100-43	
100000012	4-Bit Shift Register	100-26	
100000134	4-Bit Data Selector/Storage Register 100-131		
100000137	8-Bit Position Scaler 100-135		
100000085	4-By-4 Register File 100-84		
100000135) 100000234)	4-Bit Bidirectional Universal Shift Registers	100-132,100-133 100-219,100-220	
100000101	8-Bit Shift Register	100-95	
100000111) 100000109) 100000125)	Buffer Registers	100-103 100-103 100-117	

DGC PROPRIETARY - This manual contains proprietary information of Data General Corporation (DGC) revealed for the limited purpose only to service DGC equipment on the express condition that the information herein shall not be disclosed to others, and shall not be reproduced in whole or in part, or used in whole or in part as the basis for manufacture or sale of items, without written permission.

DGC Part Number	Function	Page Number		
100000112	Dual 8-Bit Shift Register	100-104, 100-105		
100000151	Hex 40-Bit Static Shift Register	100-146		
100000152	1024-Bit Recirculating Dynamic Shift Register	100-147		
100000171	16-Bit Multiple-Port Register File With 3-State Outputs	100-168,100-169		
100000180	High Speed 4-Bit Shift Register With Enable	100-175, 100-176		
	SPECIAL FUNCTIONS			
100000136	Eight-Input Priority Encoder	100-134		
100000002	16 Diode Array	100-17		
100000131	General Purpose Transistor Array	100-128		
100000193	Timer 100-188			
100000127	Zero Voltage Switch	100-119		
	VOLTAGE REGULATORS			
10000026) 10000094)	Precision Voltage Regulator 100-30 100-9			
100000290	Three-Terminal Negative Regulator 100-25			

100000002 . 16 Diode Array Logic Diagram

Pin Configuration

Quad 2-Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

All Inputs High = Low Out
Any Input Low = High Out

Pin Configuration

Triple 3-Input NAND Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

$$Gnd = Pin 7$$

Truth Table

All Inputs High = Low Out

Any Input Low = High Out

100000005 100000009 100000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

All Inputs High = Low Out
Any Input Low = High Out

The 100000009 device has higher input-output loading parameters than 100000005.

Logic Diagram

Dual Extendable AND-OR-INVERT Gates

Logic Diagram/Pin Designations

Truth Table

$$(2 \cdot 3) \cdot (4 \cdot 5) = \overline{6}$$

$$(\overline{2} + \overline{3}) + (\overline{4} + \overline{5}) = 6$$

Four extenders may be tied to these terminals.

Logic Diagram

8 - Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

All Inputs High = Low Out
Any Input Low = High Out

Pin Configuration

Single Extendable AND-OR-INVERT Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Truth Table

$$(1 \cdot 13) \cdot (2 \cdot 3) \cdot (9 \cdot 10) \cdot (4 \cdot 5 \cdot 6) = \overline{8}$$

 $(1 + 13) + (2 + 3) + (9 + 10) + (4 + 5 + 6) = 8$

Four extenders (100000039) may be tied to these terminals.

10000005 100000009 100000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

All Inputs High = Low Out
Any Input Low = High Out

The 100000009 device has higher input-output loading parameters than 100000005.

Functional Block Diagram

Dual J-K Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Truth Tables

Synchronous Operation

1 -	Before Clock Outputs Inputs			1	Clock puts
One	Zero	J	K	One	Zero
L	H	L*	x	L	Н
L	H	Н*	X	н	L
н	L	x	L*	H	L
н	L	x	H*	L	H

Asynchronous Operation

Inp	ruts	Out	puts
$s_{ m D}$	c_{D}	One	Zero
L	L	H	H
L	H	н	L
н	L	L	H
Н	н	Synchr puts C	onous In- Control

Synchronous Operation: The truth table defines the next state of the flip-flop after a Low to High transition of the clock pulse. The next state is a function of the present state and the J and K inputs as shown in the table.

The L* symbol means that input does not go High at any time while the clock is Low. The H* symbol means that the input is High at some time while the clock is Low. The X symbol indicates that the condition of that input has no effect on the next state of the flip-flop. The H and L symbols refer to steady state High and Low voltage levels, respectively.

2 — J PE PO PI P2 P3 CP K MR Q0 Q1 Q2 Q3 Q3 D—11

4-Bit Shift Register

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Nomenclature

PE	Parallel Enable (Active Low) Input
P ₀ , P ₁ , P ₂ , P ₃	Parallel Inputs
J	First Stage J (Active High) Input
K	First Stage K (Active Low) Input
Ср	Clock Active High Going Edge Input
MR	Master Reset (Active Low) Input
Q_0, Q_1, Q_2, Q_3	Parallel Outputs
$\overline{Q_3}$	Complementary Last Stage Output

Truth Table For Serial Entry

J	K	Q_0 at $t_{(n+1)}$
L	L	L
L	H	Q at t (no change)
н	L	\overline{Q}_{o} at t_{n} (toggles)
н	H	н

 \overline{PE} = High, \overline{MR} = High, (n+1) indicates state after next clock.

Data entry is synchronous with the registers changing state after each low to high transition of the clock. With the parallel enable low, the parallel inputs determine the next condition of the shift register. When the parallel enable input is high the shift register performs a one-bit shift to the right, with data entering the first stage flip-flop through \overline{JK} inputs. By tying the two inputs together D type entry is obtained.

The asynchronous active low master reset when activated overrides all other input conditions and clears the register.

Logic Symbol

Pin Configuration

Logic Diagram

O - PIN NUMBER

One-Of-Ten Decoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

 A_0 , A_1 , A_2 , A_3 = Addressed Inputs $\overline{0}$ to $\overline{9}$ = Outputs, Active LOW

Truth Table

A ₀ A ₁ A ₂ A ₃	<u>0</u>	1	<u>2</u>	3	4	5	<u>6</u>	7	8	9
LLLL	L	Н	H	Н	Н	н	H	Н	Н	Н
HLLL	н	L	H	H	H	H	H	H	H	H
LHLL	Н	H	L	н	H	H	H	H	H	H
HHLL	н	Н	H	L	Н	H	H	H	н	H
LLHL	H	H	H	H	L	H	H	H	H	H
HLHL	H	H	H	H	H	L	н	н	H	H
LHHL	H	H	H	H	H	H	L	H	H	H
нннь	H	H	H	н	H	H	H	L	H	H
LLLH	H	H	н	H	H	H	H	H	L	H
HLLH	H	н	H	H	H	·H	H	H	н	L
LHLH	H	H	H	H	H	H	H	H	H	H
нньн	H	H	H	H	H	H	H	H	H	H
LLHH	H	H	H	H	H	H	H	H	H	H
HLHH	H	H	H	H	H	H	H	H	H	H
гннн	H	H	H	H	H	H	H	H	H	H
нннн	H	H	H	Н	Н	H	H	Н	H	H

The 100000013 is a multipurpose decoder designed to accept four active HIGH BCD inputs and to provide ten mutually exclusive active LOW outputs, as shown by the logic symbol.

The logic design ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

The most significant A₃ input produces a useful inhibit function when the device is used as a one-of-eight decoder.

Pin Configuration

Logic Diagram

Retriggerable Monostable Multivibrator

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Triggering Truth Table

	Pin Nu			
1	2	3	4	Operation
H→L	Н	Н	Н	Trigger
Н	H→L	H	H	Trigger
L	X	L→H	H	Trigger
x	L	L→H	H	Trigger
L/	X	H	L→H	Trigger
x	L	H	L→H	Trigger

T (trigger) =
$$(\overline{1} + \overline{2}) \cdot 3 \cdot 4$$

Change of T from FALSE to TRUE causes trigger.

 $H = HIGH \text{ voltage level } > V_{IH}$

 $L = LOW \text{ voltage } \leqslant V_{IL}$

L→H = transition from LOW to HIGH voltage level

H→L = transition from HIGH to LOW voltage level

X = Don't care (either HIGH or LOW voltage level)

This retriggerable monostable multivibrator provides an output pulse whose duration and accuracy is a function of external timing components.

This device has four inputs, two active HIGH and two active LOW. This allows a choice of leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the device and result in a continuous true output. Retriggering may be inhibited by tying the negation (Q) output to an active LOW input. Active pullups are provided on the outputs for good drive capability into capacitive loads.

Pin Configuration

Logic Diagram

X,Y - Address

Write InputSense Output

one bit of storage.

16-Bit Coincident Select Read-Write Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 4$ Gnd = Pin 10

This device is comprised of 16-bit, bit-oriented, non-destructive readout memory cells. These memory cells, organized as 16 words by one bit, are designed for high speed scratch-pad memory applications.

The memory cell consists of 16 RS flip-flops arranged in an addressable four-by-four matrix. The desired bit location is selected by raising the coincident X-Y address lines to a logic "H" level (>2.1 volts) and holding the non-selected address lines at logic "L" level (<0.7 volts). As many as four locations may be addressed simultaneously without destroying stored information. The stored data and its complement at the addressed bit location may be read at the output terminals. If the addressed bit location contains a "1", the $\overline{S_1}$ output will be LOW and the $\overline{S_0}$ output will be HIGH. If the addressed bit location contains a "0", the $\overline{S_1}$ output will be HIGH and the $\overline{S_0}$ output will be LOW.

Writing is accomplished by activating one of the write amplifiers. To write a "1", the desired bit location is addressed and the input of the "write one" (W_1) amplifier is raised to a HIGH level. To write a "0", the input of the "write zero" (W_0) amplifier is raised to a HIGH level.

The outputs are open-collector, which may be wired OR for word expansion. (The output transistors are off when none of the bits are selected.) An external resistor should be returned to V_{CC} to pull-up the wired OR outputs.

Pin Connections

Alternate Pin Connections

Dual D-Type Edge-Triggered Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Function Table

	Inputs				
Preset	Clear	Clock	D	Q	\overline{Q}
L	Н	X	X	H	L
H	L	x	X	L	H
L	L	x	X	Н*	Н*
н	H	t	H	H	L
Н	H	t	L	L	H
н	H	L	X	Q_0	\overline{Q}_0

H = high level (steady state)

L = low level (steady state)

X = irrelevant

† = transition from low to high level

Q₀= the level of Q before the indicated input conditions were established.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Pin Configuration

Quad 2-Input NAND Interface Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
Gnd = Pin 7

Truth Table

v_{in}	$\mathbf{v_{in}}$	v_{OUT}
L	L	H
L	Ħ	н
н	L	H
H	H	L

Pin Configuration

Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Pin Configuration

Logic Diagrams

4-Bit Binary Full Adder (Look Ahead Carry)

Logic Diagram/Pin Designations

 $V_{CC} = Pin 5$

Gnd = Pin 12

Truth Table

INPUT			OUTPUT						
				WHE	N	/	WHE	N	
				Co = 0 WHEN		C ₀ =1/			
					c ₂ -	0		C2 =	HEN 1
A ₁ /	B ₁ /	A2/	$B_2/$	Σ_1	Σ_2	$C_2/$	Σ_1	Σ_2	C ₂ /
A ₃	B ₃	A ₄	/B ₄	\sum_{3}	Σ4	c_4	\mathbb{Z}_3	Σ_4	C ₄
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
1	1	0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1	1	0
1	0	1	0	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	0	1
0	1 1	0	1	1 ·	1	0	0	0	1
1	1	0	1	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
1	0	1	1	1	0	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1

Note:

Input conditions at A_1 , A_2 , B_1 , B_2 , and C_0 are used to determine outputs Σ_1 and Σ_2 , and the value of the internal carry C_2 . The values at C_2 , A_3 , B_3 , A_4 and B_4 are then used to determine outputs Σ_3 , Σ_4 and C_4 .

The 100000021 is a 4-Bit Binary Full Adder for adding two four bit binary numbers. A Carry Look Ahead circuit is included to provide minimum carry propagation delays.

Logic Diagram

(V_{CC}) 4 (INPUT PULL-) (UP RESISTORS)

Schematic.

Dual Pulse Shaper-Delay AND Gate

Pin Configuration

Basic Circuit Schematic

Dual Differential Amplifier

Pin Designations

1. Output B 8. Source 2 9. Bias Output A 10. Input D 3. Input A 4. Input B 11. Input C 12. Output C 5. Reference Source 1 13. Output D 14. V+ Ground

The 100000024 is a dual high-frequency differential amplifier with associated constant current sources and biasing elements contained within a silicon monolithic epitaxial substrate. This device is intended for RF-IF amplifier service to beyond 100mHz. Circuit layout provides for connection as either a high-gain, common-emitter, common-base, cascade amplifier or a common-collector, common-base, differential amplifier. Automatic gain control may be applied to either circuit.

100000026 Pin Configurations **CURRENT LIMIT CURRENT FREQUENCY SENSE** COMPENSATION INVERTING INPUT NON-INVERTING INPUT Note: pin 5 is connected to case! 100000026 NC CURRENT LIMIT | 2 13 **CURRENT SENSE** Vout INVERTING INPUT 4 ٧c NON-INVERTING INPUT 10 **FREQUENCY** V_{REF} COMPENSATION NC 100000094 Equivalent Circuit , FREQUENCY TEMPERATURE COMPENSATED ZENER COMPENSATION INVERTING ۰۷c INPUT **V**REF SERIES PASS TRANSISTOR NON-INVERTING **⊸** Vout VOLTAGE REFERENCE CURRENT & AMPLIFIER SENSE

100000094

Precision Voltage Regulator

The 100000026(Can) and 100000094(DIP) are monolithic voltage regulators, consisting of a temperature compensated reference amplifier, error amplifier, power series pass transistor and current limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150mA are required. Provisions are made for adjustable current limiting and remote shutdown.

BCD Decade Counter/Storage Element

4-Bit Binary Counter/Storage Element

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

The 100000038 Decade Counter and the 100000028 16-State Binary Counter are four-bit subsystems.

The Decade Counter can be connected in the BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode.

The Binary Counter may be connected as a divideby-two, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level.

Both units are provided with a reset input which is common to all four bits. A "0" on the reset line produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse; however, there is no restriction on the transition time since the individual binaries are levelsensitive.

BCD Decade Counter/Storage Element 4-Bit Binary Counter/Storage Element

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

The 100000038 Decade Counter and the 100000028 16-State Binary Counter are four-bit subsystems.

The Decade Counter can be connected in the BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode.

The Binary Counter may be connected as a divideby-two, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level.

Both units are provided with a reset input which is common to all four bits. A "0" on the reset line produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse; however, there is no restriction on the transition time since the individual binaries are levelsensitive.

Logic Diagram

Dual Extender AND-OR-INVERT Gates

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Truth Table

$$4 \cdot 5 \cdot 6 \cdot 8 = \overline{9}$$

$$\overline{4} + \overline{5} + \overline{6} + \overline{8} = 9$$

Extender for use with 100000006 and 100000008.

10000005 10000009 10000040

Pin Configuration

Dual 4-Input NAND Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7

Truth Table

The 100000009 device has higher input-output loading parameters than 100000005.

100000041 **NPN Quad Core Driver** Pin Configuration E B C

Pin Configuration

Logic Diagram

4-Bit Shift Register

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

Control State	Load	Shift
Hold	0	0
Parallel Entry	1	0
Shift Right	0	1
Shift Right	1	1

This 4-bit shift register has both a serial and a parallel data entry capability.

The data input lines are single-ended true input data lines which condition their specific register bit location after an enabled clocking transition. Since data transfer is synchronous with clock, data may be transferred in any serial/parallel input/output relationship.

This device provides a direct reset (RD) and a $\overline{D_{out}}$ line.

The internal design uses level sensitive binaries which respond to the negative-going clock transition. A buffer clock driver is included to minimize input clock loading.

Mode control logic is available to determine three possible control states. These register states are serial shift right mode, parallel enter mode, and no change or hold mode. These states accomplish logical decoding for system control. The control modes are shown in the truth table.

For applications not requiring the hold mode, the load input may be tied high and the shift input used as the mode control.

Pin Configuration

Logic Diagram

Functional Block Diagram

Arithmetic Logic Element

Logic Diagram/Pin Designations

$$V_{CC} = Pin 24$$
Gnd = Pin 12

Truth Table

This arithmetic logic element is a monolithic gate array incorporating four full-adders structured in a look-ahead mode. The device may be used as four mutually independent exclusive NOR or AND gates by proper addressing of the inhibit lines.

As a four-bit adder, this device permits high speed parallel addition of four sets of data and has both simultaneous addition on a character to character and on a bit to bit basis.

When true input variables are used, the true sum is formed at the f output. Inverted input variables produce the complement of the sum of the true variables.

The carry-outs available are: Internally Generated (C_G) , Propagated (C_p) and Ripple (C_R) .

Logic Diagrams

100000129 (Active Pull-up)

100000044 (Open Collector)

3-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Table

	Data inpu		Channel Select		Data	Output Enable	Data
An	B_n	Cn	s_0	s ₁	Complement	'044	Outputs
An	x	x	1	1	0	1	An
x	$\mathbf{B}_{\mathbf{n}}$	x	0	1	0	1	B_n
x	x	C_n	1	0	0	1	Cn
x	x	x	0	0	0	1	0
An	x	x	1	1	1	1	$\overline{\mathtt{A}}_{\mathtt{n}}$
x	$\mathbf{B}_{\mathbf{n}}$	x	0	1	1	1	$\overline{\mathtt{B}}_{\mathtt{n}}$
x	x	Cn	1	0	1	1	\overline{A}_n \overline{B}_n \overline{C}_n
х	x	x	0	0	1	1	1
х	x	x	x	х	x	0	1

X = Either state.

The 3-input, 4-bit multiplexer is a gating array whose function is analogous to that of a 4-pole, 3-position switch. Four bits of digital data are selected from one of three inputs. A 2-bit channel-selection code determines which input is to be active.

The data complement input controls the conditional complement circuit at the multiplexer output to effect either inverting or non-inverting data flow.

The 100000129 employs active output structures to effect minimum delays; the 100000044 utilizes bare collector outputs for expansion of input terms.

The 100000044 may be expanded by connecting its outputs to the outputs of another 100000044. Provision is made for use of a 3-bit code to determine which multiplexer is selected; thus, eight multiplexers may be commoned to effect a 4-pole, 24-position switch.

Pin Configuration

Quad 2-Input NOR Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Truth Table

v_{in}	v_{in}	V _{OUT}
H	H	L
H	L	L
L	H	L
L	L	н

100000046 Quad 2-Input NAND Gate Pin Configuration Logic Diagram/Pin Designations $V_{CC} = Pin 14$ Gnd = Pin 7GND

Pin Configuration

Logic Diagrams

BCD Decade Counter-4 Bit Binary Counter

Logic Diagram/Pin Designations

VCC = Pin 16

Gnd = Pin 8

Pin Names

PE..... Parallel Enable (Active LOW)
Input

P₀, P₁, P₂, P₃.. Parallel Inputs

CEP Count Enable Parallel Input

CET Count Enable Trickle Input

CP..... Clock (Active HIGH Going Edge) Input

MR Master Reset (Active LOW)
Input

Q₀, Q₁, Q₂, Q₃.. Parallel Outputs

TC..... Terminal Count Outputs

Mode Selection

	Mode Defection						
PE	CEP	CET	Mode				
L	L	L	Preset				
L	L	H	Preset				
L	H	L	Preset				
L	H	н	Preset				
H	L	L	No Change				
H	L	н	No Change				
H	H	L	No Change				
H	H	H	Count				

 $\overline{MR} = HIGH$

Terminal Count Generation

-	Terminal Count Generation				
		100000153	100000047		
	CET	$(Q_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot Q_3)$	$(Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3)$	TC	
	L	L	L	L	
1	L	H	H	L	
	H	L	L	L	
	H	H	H	H	

 $TC = CET \cdot Q_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot Q_3 \ (100000153)$

 $TC = CET \cdot Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3$ (100000047)

Positive Logic:

H = HIGH Voltage Level

L = LOW Voltage Level

The 100000153 is a high speed BCD decade counter, and the 100000047 is a high speed binary counter. Both counters are fully synchronous with the clock pulse driving four master/slave flip-flops in parallel through a clock buffer. During the

Continued ...

Continued

Logic Equations

Count Enable = CEP · CET · PE

TC for 100000153 = CET · $Q_0 \cdot \overline{Q_1} \cdot \overline{Q_2} \cdot Q_3$ TC for 100000047 = CET · $Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3$ Preset = $\overline{PE} \cdot CP$ + (rising clock edge)

Reset = \overline{MR}

Note: The 100000153 can be preset to any state but will not count beyond 9. If preset to state 10, 11, 12, 13, 14 or 15, it will return to its normal sequence within two clock pulses.

LOW to HIGH transition of the clock, the master is inhibited from further change. After the masters are locked out, data is transferred from the master to the slaves and reflected at the outputs. When the clock is HIGH, the masters are inhibited and the master/slave data path remains established. During the HIGH to LOW transition of the clock, the slave is inhibited from further change, followed by the enabling of the masters for the acceptance of data from the counting logic or the parallel entry logic.

The three control inputs, Parallel Enable (PE), Count Enable Parallel (CEP), and Count Enable Trickle (CET), select the mode of operation. When the conditions for counting are satisfied, the rising edge of a clock pulse will change the counters to the next state of the count sequence shown in the State Diagram. The Count Mode is enabled when CEP and CET inputs and PE are HIGH.

These devices can be synchronously preset from the four Parallel inputs (P_{0-3}) when \overline{PE} is LOW. When the Parallel Enable and Clock are LOW, each master of the flip-flops is connected to the appropriate parallel input (P_{0-3}) and the slaves (outputs) are steady in their previous state. When the clock goes HIGH, the masters are inhibited and this information is transferred to the slaves and reflected at the outputs. The parallel enable input overrides both count enable inputs, presetting the counter when LOW.

Terminal count is HIGH when the counter is at terminal count (state 9 for 100000153 and state 15 for 100000047), and Count Enable Trickle is HIGH, as shown in the logic equations.

When LOW, the asynchronous master reset overrides all other inputs resetting the four outputs LOW.

Conventional operation, as shown in the Mode Selection table, requires that the mode control inputs (PE, CEP, CET) are stable while the clock is LOW.

Logic Symbol

Pin Configuration

Logic Diagram

Dual Four-Input Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

S₀, S₁ Common Select Inputs

Multiplexer A

plexer Output

Multiplexer B

Truth Table

	Select Inputs Inputs				Out	puts	
s ₀	s ₁	I _{0a}	I _{1a}	I_{2a}	I _{3a}	Za	$\overline{\mathbf{Z}}_{\mathbf{a}}$
L	L	L	x	x	x	L	H
L	L	H	\mathbf{x}	X	X	H	L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	H	L
L	H	X	X	L	X	L	H
L	H	X	X	H	X	H	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	H	L
s_0	s ₁	I _{0b}	I _{1b}	I _{2b}	I3b	Zb	Zb
L	L	L	X	X	X	L	H
L	L	H	X	X	X	Н	L
H	L	X	L	X	X	L	H
H	L	X	H	X	\mathbf{x}	Н	L
L	H	X	X	L	X	L	H
L	H	х	\mathbf{x}	H	X	H,	ינ
H	H	x	\mathbf{x}	X	L	L	H
H	H	х	X	X	H	н	L

L = LOW Voltage Level

H = HIGH Voltage Level X = Either HIGH or LOW

Logic Level

The 100000048 is a monolithic, high speed, Dual Four-Input Multiplexer circuit, consisting of two multiplexing circuits with common input select logic. Each circuit contains four inputs and fully buffered complementary outputs. This device can generate any two functions of three variables. It may be cascaded to multiple levels so that any number of lines can be multiplexed on to a single output bus.

Pin Configuration

Expandable 4-Input AND-OR-INVERT Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Both expander inputs are used simultaneously for expanding. If expander is not used, leave X and \overline{X} pins open.

Positive logic: Y = (ABCD) + (EFGH) + (X)

Pin Configuration .

4-Bit Bistable Latches

Logic Diagram/Pin Designations

 $V_{CC} = Pin 5$

Gnd = Pin 12

Function Table (Each Latch)

Inp	uts	Oup	ıts
D	G	Q	_
L	Н	L	H
н	H	H	L
X	L	Q_0	$\overline{\mathtt{Q}}_{\mathtt{0}}$

H = high level; L = low level; X = irrelevant.
 Q₀ = the level of Q before the high-to-low transition of G.

These latches are suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high, and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

Pin Configuration

Dual Sense Amplifier

Logic Diagram/Pin Designations

 $V_{CC1} = Pin 16$

 $V_{CC2} = Pin 8$

Gnd 1 = Pin 9

Gnd 2 = Pin 13

Truth Table

 $IN_A \cdot STROBE A = OUT A$

 $\overline{\text{IN}}_{A} \cdot \text{STROBE A} = \overline{\text{OUT A}}$

 IN_B • STROBE B = OUT B

 $\overline{IN}_{B} \cdot \text{STROBE B} = \overline{OUT B}$

Logic Diagram

*Loading Max. Shown in Parenthesis

Dual J-K Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Truth Table

J	K	Q_N	Q _{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1.	1	1	0

Logic Diagram

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Truth Table

Select	Lines	Outputs
s ₀	S ₁	f _n (0, 1, 2, 3)
0	0	B _n
0	1	B_n
1	0	$\overline{\mathtt{A}}_{\mathtt{n}}$
1	1	1

The 2-Input, 4-Bit Digital Multiplexer is a monolithic array utilizing TTL circuit structures. The 100000108 features a bare-collector output to allow expansion with other devices.

The multiplexer is able to choose from two different input sources, each containing 4 bits: $A = (A_0, A_1, A_2, A_3)$; $B = (B_0, B_1, B_2, B_3)$. The selection is controlled by the input S_0 , while the second control input, S_1 , is held at zero.

For conditional complementing, the two inputs (A_n, B_n) are tied together to form the function TRUE/COMPLEMENT, which is needed in conjunction with added elements to perform Addition/Subtraction. Further, the inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

Pin Configurations

100000059

NON INVERTING 2 6 N.C.

Note: Pin 4 connected to case.

100000157

High-Speed Differential Comparator

The 100000059 (Can) and 100000157 (DIP) are differential voltage comparators intended for applications requiring high accuracy and fast response times. Constructed on a single silicon chip, the devices are useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high-noise immunity line receiver.

Pin Configuration

Dual Comparator

The 100000060 is a dual, differential voltage comparator intended primarily for core-memory sense amplifier applications. The device features high accuracy, fast response times, large input voltage range, low power consumption and compatibility with practically all integrated logic forms.

When used as a sense amplifier, the threshold voltage can be adjusted over a wide range, almost independent of the integrated circuit characteristics. Independent strobing of each comparator channel is provided.

100000061 . Quad 2-Input NOR Gate Pin Configuration Logic Diagram/Pin Designations $V_{CC} = Pin 8$ 8 Gnd = Pin 13

Differential Video Amplifier

Pin Configuration
Top View

The 100000062 is a monolithic two-stage differential input, differential output video amplifier. Emitter follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high power supply and common mode rejection ratios. This device provides fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option.

Pin Configuration

Quad 2-Input OR Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

$$3 = 1 + 2$$

100000066 Dual 4-Input Positive-NAND Schmitt Trigger Pin Configuration

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

NC = No internal connection

Positive logic: $Y = \overline{ABCD}$

Pin Configuration

Logic Diagram

8-Bit Odd/Even Parity Generator/Checker

Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

Inp	Inputs				
Σof 1's at 0 thru 7	Even	Odd	Σ Even	Odd	
Even	1	0	1	0	
Odd	1	0	0	1	
Even	0	1	0	1	
Odd	0	1	1	0	
x	1	1 1	0	0	
Х	0	0	1	1	

X = irrelevant.

Pin Configuration

Quadruple 2-Input Exclusive-OR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: Y = A • B

Pin Configuration

Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

100000073 Triple 3-Input NAND Gate

Pin Configuration

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7

Pin Configuration

NOTE: PIN 1 is marked for orientation.

64-Bit Random Access Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

	Inputs		Outputs	Mode	
CS	W	$\mathtt{D_i}$	\overline{o}_{i}		
H H L L	L H L L	L H X L H	H L H L D _i (t _{n-x})	No Selection) No Selection) No Selection Write "0" Write "1" Read	Note

H = HIGH Voltage LevelL = LOW Voltage Level

Note: When the chip select \overline{CS} input is HIGH and the Write Enable \overline{W} is LOW data is not written into the memory. However, the data outputs do follow the data inputs inverted.

The 100000074 is a 64-bit RAM, using Schottky diode clamped transistors. The memory is organized as a fully decoded 16-word memory of 4 bits per word. Memory expansion is provided by an active LOW Chip Select (CS) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders.

An active LOW Write line (\overline{W}) controls the writing/reading operation of the memory. When the Chip Select and Write lines are LOW the information on the four Data Inputs, D_1 to D_4 , is written into the addressed memory word.

Reading is performed with the Chip Select line LOW and the Write line HIGH. The information stored in the addressed word is read out on the four inverting inputs, $\overline{0}_1$ to $\overline{0}_4$.

Whenever the write enable is LOW the four outputs of the memory follow the four data input lines inverted.

Any time the chip select is HIGH and the write enable is HIGH, all four outputs go HIGH.

Continued ...

Continued

Logic Diagram

100000075 Logic Symbol 2 3 4 5 6 7 9 11 12 13 15 Pin Configuration Logic Diagram 0 ٠,٥ O = Pin Numbers

Eight-Input Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

 $\underline{\underline{s}}_0$, s_1 , s_2 ... Select Inputs

.... Enable (Active LOW) Input

I₀ to I₇ Multiplexer Inputs Z..... Multiplexer Output

Z..... Complementary Multiplexer

Output

Truth Table

Ē	S2	S ₁	S ₀	I0	I ₁	12	Iз	I 4	I5	16	17	\overline{z}	\mathbf{z}
H	X	X	X	X	X	x	X	x	x	x	X	Н	L
L	L	L	L	L	X	X	X	x	x	x	X	н	L
L	L	L	L	H	x	x	x	x	x	×	x	L	H
L	L	L	H	X	L	x	X	X	X	X	x	н	L
L	L	L	H	x	H	X	X	x	x	x	X	L	H
L	L	H	L	x	X	L	x	x	x	x	x	н	L
L	L	H	L	X	x	H	x	X	X	X	x	L	H
L	L	H	H	X	x	X	L	x	x	X	x	н	L
L	L	H	H	X	x	x	H	x	x	x	X	L	H
L	H	L	L	x	X	x	X	L	x	x	x	н	L
L	Н	L	L	x	X	x	X	H	x	x	X	L	H
L	Н	L	H	X	x	X	x	x	L	X	x	н	L
L	H	L	H	X	x	X	X	x	H	x	X	L	H
L	H	H	L	x	x	x	x	x	x	L	x	н	L
L	H	H	L	X	x	X	X	x	X	H	x	L	H
L	H	H	H	x	x	X	X	x	x	x	L	н	L
L	H	H	H	x	x	x	x	x	x	x	H	L	H

H = HIGH voltage level

L = LOW voltage level

X = Level does not affect output.

The 100000075 is a monolithic, high speed, eightinput digital multiplexer circuit. It can be used as a universal function generator to generate any logic function of four variables. It is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select Inputs, S_0 , S_1 and S_2 . Both assertion and negation outputs are provided. The Enable Input (\overline{E}) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs.

Continued

Continued

The logic function provided at the output is:

$$Z = E \cdot (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0.$$

$$\overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2).$$

This device provides the ability, in one package, to select from eight sources of data or control information. Proper manipulation of the inputs can provide any logic function of four variables and its negation.

100000076 Hex Inverter Pin Configurations Logic Diagram/Pin Designations $V_{CC} = Pin 14$ Gnd = Pin 7 Truth Table Any Input Low = High Out Any Input High = Low Out

Pin Configuration

Positive Logic: See Function Table

Functional Schematic

BCD-To-Decimal Decoder-Driver

Pin Designations

 $V_{CC} = Pin 5$

Gnd = Pin 12

Function Table					
	Inp	Output			
D	С	В	Α	On*	
L	L	L	L	0	
L	${f L}$	L	H	1	
L	L	H	L	2	
L	${f L}$	H	H	3	
L	H	L	L	4	
L	H	L	H	5	
L	H	H	L	6	
L	H	H	H	7	
H	L	L	L	8	
H	L	L	H	9	
H	${f L}$	H	L	None	
H	L	H	H	None	
H	H	L	L	None	
H	H	L	H	None	
H	H	H	L	None	
H	_H_	H	H	None	

H = high level; L = low level.

* All other outputs are off.

The 100000077 is a second-generation BCD-to-decimal decoder designed specifically to drive cold-cathode indicator tubes.

Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore, this device, combined with a minimum of external circuitry, can use these invalid codes in blanking leading- and/or trailing edge zeroes in a display. The ten high-performance, n-p-n output transistors have a maximum reverse current of 50 microamperes at 55 volts.

Pin Configuration

Quadruple 2-Input Positive-NAND Buffer With Open-Collector Outputs

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

Pin Configuration

Memory Driver with Decode Inputs

Logic Diagram/Pin Designations

 $V_{CC} = Pin 13$

Gnd = Pin 8

Truth Table

Inputs .					Outp	outs				
A	\dd:	res	s	Ti	mi	ng	Sink	Sou	rces	Sink
A	В	C	D	E	F	G	w	X	Y	Z
0	0	1	1	1	1	1	On	Off	Off	Off
0	1	0	1	1	1	1	Off	On	Off	Off
1	1	0	0	1	1	1	Off	Off	On	Off
1	0	1	0	1	1	1	Off	Off	Off	On
x	X	X	X	0	X	X	Off	Off	Off	Off
x	X	X	x	x	0	X	Off	Off	Off	Off
x	X	X	x	x	X	0	Off	Off	Off	Off

Notes:

X = Logical 1 or logical 0.

Not more than one output is allowed to be On at one time: When all timing inputs are at a logical 1, two of the address inputs must be at a logical 0.

This monolithic memory driver with decode inputs is designed for use with magnetic memories. The device contains two 400 milliampere (source/sink) switch pairs, with decoding capability from four address lines. Two address inputs (B and C) are used for mode selection; i.e., source or sink. The other two address inputs (A and D) are used for switch-pair selection; i.e., output switch-pair Y/Z or W/X, respectively.

Presettable High Speed Binary Counter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Truth Table

Input	A ₀	В ₀	C ₀	D ₀
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

The 100000080 Presettable High Speed Binary Counter may be connected as a divide-by-two, four, eight or sixteen counter.

This device has strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level. This unit is provided with a reset input which is common to all four bits. A "0" on the reset lines produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse.

Note: The 100000227 is a Shottky device.

Pin Configuration

Schematic (Each Buffer)

Quadruple 2-Input Positive-NAND Buffer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Positive logic: $Y = \overline{AB}$

The 100000081 is a NAND Gate with an open-collector output for "WIRE-AND" applications.

Logic Diagram

Quad D Type Flip-Flop

Pin Designations

$$V_{CC} = Pin 16$$

Gnd = Pin 8

Truth Table

Q	Q_{n-1}	Q_n
.0	0	0
0	1	0
1	0	1
1	1	1 1

 Q_{n-1} = Time period prior to clock pulse Q_n = Time period following clock pulse

Logic Diagram

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$

$$Gnd = Pin 8$$

Truth Table

s_0	s ₁	fn
0	0	B
1	0	Ā
0	1	B
1	1	1

This multiplexer has inverting data paths. It has open collector outputs which permit direct wiring to other open collector outputs (collector logic) to yield "free" four-bit words. As many as one hundred four-bit words can be multiplexed by using fifty of these devices in the WIRED-AND mode.

The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

10000084 100000169 100000306

Pin Configuration

Arithmetic Logic Units/Function Generators

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4, 5, 6	Function-Select Inputs
C _n	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A=B	14	Comparator Output
P	15	Carry Propa- gate Output
C _{n+4}	16	Inv. Carry Output
G	17	Carry Gen- erate Output
v _{cc}	24	Supply Voltage
Gnd	12	Ground

These arithmetic logic units (ALU)/function generators have a complexity of 75 equivalent gates on a monolithic chip, and perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with 100000100 or 100000170, full carry look-ahead circuits, highspeed arithmetic operations can be performed. If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay is minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These devices will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Continued....

100000084 100000169 100000306

Continued

Table 1

Selection	M = H Logic	Active-High Data M = L: Arithmetic Operations			
S3 S2 S1 S0		Cn = H (no carry)	Cn = L (with carry)		
LLLL	F = A	F = A	F = A Plus 1		
LLLH	F = A + B	F = A + B	F = (A + B) Plus 1		
LLHL	F = AB	F = A + B	F = (A + B) Plus 1		
LLHH	F = 0	F = Mimus 1 (2's Compl)	F = Zero		
LHLL	F = AB	F = A Plus AB	F = A Plus AB Plus 1		
LHLH	F = B	$F = (A + B) \text{ Plus } A\overline{B}$	F = (A + B) Plus AB Plus 1		
LHHL	F = A⊕B	F = A Minus B Minus 1	F = A Minus B		
L н н н	$F = A\overline{B}$	F = AB Minus 1	F = AB		
HLLL	$F = \overline{A} + B$	F = A Plus AB	F = A Plus AB Plus 1		
HLLH	F ≃ A⊙B	F = A Plus B	F = A Plus B Plus 1		
HLHL	F = B	F = (A + B) Plus AB	F = (A + B) Plus AB Plus 1		
HLHH	F = AB	F = AB Minus 1	F = AB		
HHLL	F = 1	F = A Plus A*	F = A Plus A Plus 1		
HHLH	F = A + B	F = (A + B) Plus A	F = (A + B) Plus A Plus 1		
HHHL	F = A + B	$F = (A + \overline{B}) \text{ Plus } A$	F = (A + B) Plus A Plus 1		
нннн	F = A	F = A Minus 1	F = A		

^{*} Each bit is shifted to the next more significant position.

Table 2

Selection	M = H Lozic	Active-Low I M = L: Arith	Data metic Operations
S3 S2 S1 S0	Functions	C _n ≈ L (no carry)	Cn = H (with carry)
LLLL	F = A	F = A Minus 1	F = A
LLLH	F = AB	F = AB Minus 1	F = AB
LLHL	F = A + B	F = AB Minus 1	F = AB
LLHH	F = 1	F = Minus 1 (2's Comp)	F = Zero
LHLL	F = A + B	F = A Plus (A + B)	F = A Plus (A + B) Plus 1
LHLH	F = B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1
LHHL	F = A⊙B	F = A Minus B Minus 1	F = A Minus B
LHHH	F = A + B	F = A + B	F = (A + B) Plus 1
HLLL	F = AB	F = A Plus (A + B)	F = A Plus (A + B) Plus 1
HLLH	F = A⊙B	F = A Plus B	F = A Plus B Plus 1
HLHL	F = B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1
HLHH	F = A + B	F = A + B	F = (A + B) Plus 1
HHLL	F = 0	F = A Plus A*	F = A Plus A Plus 1
HHLH	F = AB	F = AB Plus A	F = AB Plus A Plus 1
HHHL	F = AB	F = AB Plus A	F = AB Plus A Plus 1
нннн	F = A	F = A	F = A Plus 1

^{*} Each bit is shifted to the next more significant position.

Pin No.	Active-high data Table 1	Active-low data Table 2
2	A ₀	$\overline{\mathtt{A}}_{\mathtt{0}}$
1	В0	$\overline{\mathtt{B}}_{0}$
23	A ₁	$\overline{\mathtt{A}}_{\mathtt{1}}$
22	В ₁	$\overline{\mathtt{B}}_{1}$
21	A ₂	$\overline{\mathtt{A}}_{2}$
20	В2	$\overline{\mathtt{B}}_{2}$
19	· A ₃	$\overline{\mathtt{A}}_{3}$
18	В3	$\overline{\mathtt{B}}_3$
9	F ₀	$\overline{\mathtt{F}}_0$
10	F ₁	₹ ₁
11	$\mathbf{F_2}$	$\overline{\mathbf{F}}_{2}$ ·
13	F ₃	$\overline{\mathtt{F}}_3$
7	\overline{C}_n	C _n
16	\overline{C}_{n+4}	C _{n+4}
15	x	P
17	Y	<u>G</u>

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

These devices can also be utilized as comparators. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with $C_n = H$ when performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

Input C _n	Output C _{n+4}	(Figure 1) Active-high Data	(Figure 2) Active-low Data
H	H	A ≤ B	A ≥ B
H	L	A > B	A < B
L	H	A < B	A > B
L	L	A ≥ B	A ≤ B

Continued....

10000084 100000169 100000306

Continued

These circuits have been designed to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR and OR functions.

ALU Signal Designations

These devices can be used with the signal designations of either Figure 1 or Figure 2. The logic functions and arithmetic operations obtained with the signal designations of Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

Note: The 100000169 is a Shottky device.

Pin Configuration

Logic Diagram

4-By-4 Register File

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

The 100000085 16-bit TTL register file is organized as 4 words of 4 bits each. Separate onchip decoding is provided for addressing the four word locations to either write-in or retrievedata; this permits simultaneous writing into one location and reading from another word location. The register file has a nondestructive readout in that data is not lost when addressed.

Four data inputs are available which are used to supply 4-bit words to be stored. Location of the word is determined by the write address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form; that is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write enable input, Gw, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read enable input, GR, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of registers may be paralleled to provide n-bit word length.

Logic Symbol

Logic Diagram

Logic Diagram

Quad Two-Input Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

 I_{0a} , I_{1a} , I_{0b} , I_{1b}) I_{0c} , I_{1c} , I_{0d} , I_{1d}) Z_a , Z_b , Z_c , Z_d

Multiplexer Output

Truth Table

Enable	Select Input	Inputs	Output
Ē	S	IOX IIX	z_{X}
H L L L	X H H L L	X X X L X H L X H X	L L H L H

H = HIGH Voltage Level

L = LOW Voltage Level

X = Either HIGH or LOW Logic Level

The 100000086 Quad Two-Input Multiplexer consists of four multiplexing circuits with common select and enable logic; each circuit contains two inputs and one output. The Enable input (\overline{E}) is active LOW. When not activated, all outputs (Z) are LOW regardless of other inputs.

The multiplexer is the logical implementation of a four-pole, two-position switch, with the position of the switch being set by the logic levels supplied to the one select input. The logic equations for the outputs follow:

$$Z_a = E \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S})$$

$$Z_b = E \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S})$$

$$Z_c = E \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S})$$

$$z_d = E \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S})$$

Pin Configuration

Quad 2-Input AND Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Schematic (Each Buffer/Driver)

Hex Buffer/Driver with Open Collector High Voltage Outputs

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Positive logic: Y = A

The 100000091 has standard TTL inputs with non-inverted high voltage, high current open collector outputs for interface with MOS, lamps or relays.

Pin Configuration

Logic Diagram

Note: Only one Decoder shown.

Dual One-of-Four Decoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

Decoder 1 and 2 \overline{E} Enable (Active LOW) Input A_0, A_1 Address Inputs $\overline{0}, \overline{1}, \overline{2}, \overline{3}$ (Active LOW) Outputs

Truth Table Decoder 1 & 2

Ē	A ₀	A ₁	ō	ī	2	3
L	L	L	L	H	H	Н
L	H	L	H	L	H	H
L	${f L}$	H	H	H	L	H
L	H	H	н	H	H	L
H	X	X	H	H	H	H

H = HIGH Voltage Level

L = LOW Voltage Level

X = Level Does Not Affect Output

The 100000092 consists of two independent multipurpose decoders, each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.

The active LOW outputs facilitate memory addressing for units such as the 100000211 associative memory.

0000026 100000094 **Precision Voltage Regulator** Pin Configurations **CURRENT LIMIT** The 100000026(Can) and 100000094(DIP) are **FREQUENCY** CURRENT monolithic voltage regulators, consisting of a SENSE COMPENSATION temperature compensated reference amplifier, error amplifier, power series pass transistor INVERTING and current limit circuitry. Additional NPN **INPUT** or PNP pass elements may be used when out-NON-INVERTING put currents exceeding 150mA are required. INPUT Provisions are made for adjustable current limiting and remote shutdown. VREF Note: pin 5 is connected to case 100000026 NC NC 14 **CURRENT LIMIT** 13 v_z **CURRENT SENSE** 12 Vout INVERTING INPUT 11 ٧c NON-INVERTING INPUT 10 **FREQUENCY** 9 **VREF** COMPENSATION NC 8 100000094 **Equivalent Circuit** FREQUENCY TEMPERATURE COMPENSATION COMPENSATED ZENER 左 INVERTING INPUT SERIES PASS TRANSISTOR NON-INVERTING VOUT VOLTAGE REFERENCE AMPLIFIER CURRENT CURRENT LIMIT SENSE

256-Bit Bipolar ROM

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$

Gnd = Pin 8

These TTL 256-bit read only memories are organized as 32 words with 8 bits per word. The words are selected by five binary address lines with full word decoding incorporated on the chip. A Chip Enable input is provided for additional decoding flexibility, which will cause all eight outputs to go to the high state when the Chip Enable input is taken high.

The 100000095 and 100000096 are fully TTL or DTL compatible. The outputs are uncommitted collectors, which allows wired-AND operation with the outputs of other TTL or DTL devices.

Pin Configuration

Quad Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Truth Table

Any Input Low = High Out Any Input High = Low Out

Pin Configuration

Logic Diagram

Look-Ahead Carry Generators

Pin Designations

Designation	Pin Nos.	Function
G0, G1, G2, G3	3, 1, 14, 5	Active-Low Carry Generate Inputs
P0, P1, P2, P3	4, 2, 15, 6	Active-Low Carry Propagate Inputs
C _n	13	Carry Input
$C_{n+x}, C_{n+y},$ C_{n+z}	12, 11, 9	Carry Outputs
G	10	Active-Low Carry Generate Output
P	7	Active-Low Carry Propagate Output
v_{CC}	16	Supply Voltage
Gnd	8	Ground

Positive Logic:

$$\begin{array}{lll} C_{n+x} &=& \overline{G}_0 + \overline{P}_0 \ C_n \\ C_{n+y} &=& \overline{G}_1 + \overline{P}_1 \overline{G}_0 + \overline{P}_1 \overline{P}_0 C_n \\ C_{n+z} &=& \overline{G}_2 + \overline{P}_2 \overline{G}_1 + \overline{P}_2 \overline{P}_1 \overline{G}_0 + \overline{P}_2 \overline{P}_1 \overline{P}_0 C_n \\ \overline{G} &=& \overline{G}_3 (\overline{P}_3 + \overline{G}_2) (\overline{P}_3 + \overline{P}_2 + \overline{G}_1) (\overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{G}_0) \\ \overline{P} &=& \overline{P}_3 \overline{P}_2 \overline{P}_1 \overline{P}_0 \end{array}$$

These devices are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with arithmetic logic units, 100000084 or 100000169, these generators provide high-speed carry look-ahead capability for any word length.

Carry input and output of the 100000084 or 100000169 are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU.

Note: The 100000170 is a Shottky device.

Pin Configuration

Logic Diagram

8-Bit Shift Register

Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

Truth Table

Ope	Operation of Mode Control					
Inp	uts					
s ₁	S ₀	Mode				
L	L	Inhibit Clock				
H	L H	Shift Left Shift Right				
H	H	Parallel Load				

This 8-bit shift register contains 87 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs and a direct over-riding clear line. The register has four distinct modes of operation, namely:

Parallel (Broadside) Load

Shift Right (in the direction Q_A toward Q_H)

Shift Left (in the direction Q_H toward Q_A)

Inhibit Clock (do nothing)

Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when s_0 is high and s_1 is low. Serial data for this mode is entered at the shift-right data input. When s_0 is low and s_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

Logic Symbols

Connection Diagrams

100000102 100000103

Logic Diagram

O = PIN NUMBERS

256-Bit Read/Write Memory & Decoder/Driver

Pin Designations

V_{CC} = Pin 16 Gnd = Pin 8

Truth Table

_				~						
	Binary Input To 100000103			3 of 6 Code Output of 100000103 Input to 100000102 (L = O or X or Y)			100000102 Internal X or Y Address			
Аз	A2	A ₁	A ₀	Lo	L ₁	L2	L3_	L4	L5	Row or Column
L	L	L	L	H	Н	L	L	L	Н	0
L	L	L	H	н	L	H	L	L	н	1
L	L	H	L	н	L	L	H	L	H	2
L	L	н	H	н	L	L	L	H	H	3
L	H	L	L	н	H	H	L	L	L	4
L	Ħ	L	H	н	L	н	L	н	L	5
L	H	H	L	н	н	L	н	L	L	6
L	H	H	H	н	L	L	H	н	L	7
н	L	L	L	L	H	L	н	L	н	8
н	L	L	H	L	н	н	L	L	н	9
н	L	H	L	L	L	L	н	н	н	10
н	L	H	H	L	L	н	L	н	н	11
н	H	L	L	L	H	н	H	L	L	12
н	H	L	H	L	н	н	L	н	L	13
н	H	H	L	L	н	L	н	н	L	14
н	H	н	н	L	L	н	н	H	L	15

Note: Enables on 100000103 must be LLHH.

Any other state on the enable inputs
causes the Decoder/Driver outputs to
go LOW, and addresses no internal
row or column in the 100000102 memory
matrix.

The 100000102 256-Bit Read/Write Memory and the 100000103 Decoder/Driver are components for use in high speed memory systems.

The 100000102 contains 256 bipolar storage cells arranged in a 16 by 16 format. Any one of the 256 cells may be accessed by supplying an address code on the X address inputs and the Y address inputs. Internal decoders decode the X and Y addresses into one of 16 rows and one of 16 columns in the matrix of storage cells. Data may be written into or read out from the cell lying at the intersection of the selected row and column.

The X and Y addresses supplied to the memory are partially decoded in a "3 of 6" code. Of the six X address lines and the six Y address lines there are always three lines HIGH and three

Continued

Continued

lines LOW. There are 20 such combinations, 16 are decoded by the internal row and column decoders. The four unused combinations of 3 of 6 will not select any row or column. If there are more than three lines HIGH in either the X or Y address, then multiple row or column selection will occur. The sixteen 3 of 6 codes used by the 100000102 memory are generated by the 100000103 decoder/driver.

Data enters and leaves the memory on a single input/output (I/O) line (pin 7). The I/O line is an open collector output, so many 100000102 I/O lines can be connected together in a wired-OR configuration. Input data must be applied to the I/O lines through an open collector gate. Each I/O line requires a pull-up resistor to V_{CC} . The magnitude of the pull-up resistor is determined by the number of memory I/O lines tied together. The I/O of the memory which is not addressed will be HIGH.

Read/Write selection is determined by the state of pin 9, the active HIGH write enable. When WE is HIGH, the data on the I/O line will be written into the selected address in the 100000102. When the Write Enable line is LOW, data will be read out of the addressed location.

The 100000103 is a partial decoder and driver for the 100000102. It accepts a 4-bit binary code on the address inputs (A_0-A_3) and produces a 3 of 6 code on the six output pins (O_0-O_5) . The decoder also features four separate enables, two active HIGH and two active LOW. All four enables must be active before the decoder will produce a 3 of 6 code. Since two of the enables are HIGH and two are LOW, it is possible to route two binary coded lines to four different 100000103's to get two additional bits of decoding with no extra packages.

Ordinarily in memory systems, 100000102 memory devices will be arranged in a matrix of rows and columns. Each column will store a particular bit and each row of 100000102's will be 256 words. A 100000103 driver will be used for each row and each column in the matrix. One 100000103 can drive up to 32 100000102 X or Y address lines. The usual driving scheme is to connect the four LSB's of address to each of the column decoders. The next four bits of address are connected to each of the row decoders. Additional address bits are decoded to the chip selects on the row decoders. Each column decoder drives the Y address lines on up to 32 100000102's in a column. Each row decoder drives the address lines on up to 32 100000102's in a row.

The Three of Six Code

The "3 of 6" code used in the 100000102 and produced by the 100000103 is a trade-off between chip complexity and pin count. The simplest 256-bit memory chip would be a 16 by 16 matrix of storage cells, with all 16 rows and 16 column select lines brought off chip. The lowest pin count for a 256-bit memory chip would be achieved by fully decoded X and Y select lines, reducing the 32 lines of the simple scheme to only 8 lines. However, full binary decoding of the X and Y lines on chip significantly increases the complexity of the memory chip. The 100000102 and 100000103 are designed to gain the good features of both alternatives. The 16 X and Y lines are decoded into 6 lines each, allowing the memory to fit into a 16-lead package and still keeping the memory chip fairly simple, since the 3 of 6 code does not require a complex decoder. The truth table shows the conversion of 4-bit binary to 3 of 6 code by the 100000103, and also the internal column or row selected by the 3 of 6 to 1 of 16 decoder inside the memory.

Code Conversion Equations

$$O_{0} = \overline{A_{3}}$$

$$O_{1} = (\overline{A_{1} + A_{0}}) (\overline{A_{3}} + A_{1}) (\overline{A_{2}} + A_{0})$$

$$O_{2} = (\overline{A_{1} + \overline{A_{0}}}) (\overline{A_{3}} + \overline{A_{0}}) (A_{2} + \overline{A_{1}})$$

$$O_{3} = (\overline{A_{1}} + A_{0}) (\overline{A_{3}} + A_{0}) (\overline{A_{2}} + \overline{A_{1}})$$

$$O_{4} = (\overline{A_{1}} + \overline{A_{0}}) (\overline{A_{3}} + \overline{A_{1}}) (\overline{A_{2}} + \overline{A_{0}})$$

$$O_{5} = \overline{A_{2}}$$

Pin Configuration

Dual D-Type Positive-Edge-Triggered Flip-Flops With Preset and Clear

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Function Table

	Outr	uts			
Preset	Clear	Clock	D	Q	Q
L	Н	X	X	Н	L
H	L	x	X	L	H
L	L	x	X	Н*	H*
H	H	t	H	н	L
H	H	t	L	L	H
Н	H	L	X	Q_0	ହି ₀

H = high level (steady state)

L = low level (steady state)

X = irrelevant

t = transition from low to high level

Q₀=the level of Q before the indicated input conditions were established.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

100000105 **Quad Line Receivers** Logic Diagram

Pin Configuration

Logic Diagram

Dual Retriggerable Resettable Monostable Multivibrator

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$
Gnd = Pin 8

Triggering Truth Table

P	in Numl		
5(11)	4(12)	3(13)	Operation
H→L	L	н	Trigger
Н	L→H	H	Trigger
x	x	L	Reset

 $H = HIGH Voltage Level \geqslant V_{IH}$

X = Don't Care

H→L = HIGH to LOW Voltage Level transition

L→H = LOW to HIGH Voltage Level transition

The Dual Retriggerable, Resettable Monostable Multivibrator provides an output pulse whose duration and accuracy is a function of external timing components.

This device has two inputs per function, one active LOW and one active HIGH. This allows leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the device and result in a continuous true output. The output pulse may be terminated at any time by connecting the reset pin to a logic level LOW. Retriggering may be inhibited by tying $\overline{\mathbf{Q}}$ output to an active level LOW input or the \mathbf{Q} output to the active level HIGH input.

Pin Configuration

Quad NOR Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$
 $Gnd = Pin 8$

The 100000107 consists of three 2-input and one 4-input NOR gates. The NOR gate produces a Low output if any of the inputs are High.

Logic Diagram

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7

Truth Table

Select	Lines	Outputs	
s ₀	s ₁	f _n (0, 1, 2, 3)	
0	0	B_n	
0	1	B_n	
1	0	$\overline{\mathbb{A}}_{\mathbf{n}}$	
1	1	1	

The 2-Input, 4-Bit Digital Multiplexer is a monolithic array utilizing TTL circuit structures. The 100000108 features a bare-collector output to allow expansion with other devices.

The multiplexer is able to choose from two different input sources, each containing 4 bits: $A = (A_0, A_1, A_2, A_3)$; $B = (B_0, B_1, B_2, B_3)$. The selection is controlled by the input S_0 , while the second control input, S_1 , is held at zero.

For conditional complementing, the two inputs (A_n, B_n) are tied together to form the function TRUE/COMPLEMENT, which is needed in conjunction with added elements to perform Addition/Subtraction. Further, the inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

100000111 100000109 100000125

Logic Diagrams

100000111

100000109

100000125

Buffer Registers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Tables

Dual 5-Bit Buffer Register No. 100000111

D_n	Q_{n+1}
1	1
0	0

10-Bit Buffer Register No. 100000109

D_n	RESET	Q_{n+1}
1	1	1
0	1	0

10-Bit Buffer Register-Inverted Inputs No. 100000125

D _n	RESET	Q_{n+1}
0	1	1
1	1	0

Notes:

 $\overline{RESET} = 0 \Rightarrow Q = 0$ (overrides clock). n is time prior to clock. n+1 is time following clock.

These buffer registers are arrays of ten clocked "D" flip-flops. The flip-flops are arranged as a dual 5 array (100000111) and single 10 arrays with reset (100000109 and 100000125).

The 100000111 and 100000109 have true "D" inputs. The logic state presented at these "D" inputs will appear at the Q outputs after a negative transition of the clock. The 100000125 has complementing "D" inputs (" \overline{D} "). The logic state presented at these " \overline{D} " inputs will invert and appear at the Q outputs after a negative-going transition of the clock. The complementing input (" \overline{D} ") permits the use of standard AND-OR-INVERT gates to achieve the AND-OR function without additional gate delays.

Pin Configuration

Dual 8-Bit Shift Register

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names

Dg..... Data Select Input

Do, D1.... Data Inputs

CP......Clock (Active HIGH) Going Edge Input

Common (Pin 9)

Separate (Pins 7 and 10)

MR......Master Reset (Active LOW) Input Q7.....Last Stage Output

Q7 Complementary Output

Truth Table Shift Selection

D_{S}	D ₀	D ₁	Q7 (t _n +8)
L	<u>L</u>	X	L
L	H	X	H
H	X	L	L
H	X	H	H

n+8 = Indicates state after eight clock pulse.

L = LOW voltage level

H = HIGH voltage level

X = Either HIGH or LOW voltage level

This device is a high speed serial storage element providing 16 bits of storage in the form of two 8-bit registers that will shift at greater than 20 MHz rates. The multi-functional capability of this device is provided by several features: 1) Additional gating is provided at the input to both shift registers so that the input is easily multiplexed between two sources. 2) The clock of each register may be provided separately or together. 3) Both the true and complementary outputs are provided from each 8-bit register, and both registers may be master cleared from a common input.

The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flipflops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW to HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later

Continued...

Continued

change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH to LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock

inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a two input multiplexer in front of the serial data input. The two data inputs, D0 and D1, are controlled by the data select input (DS) following the Boolean expression:

Serial data in: $SD = \overline{D}SD0 + DSD1$

An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all sixteen stages independently of any other input signal.

Logic Diagram

Functional Block Diagram

Dual Voltage Controlled Multivibrator

Pin Designations

V_{cc}: VCM = 1, 3 Output Buffer = 14

Gnd: VCM = 5, 9

Output Buffer = 7

External capacitor for frequency range determin-

Logic Diagram

Dual J-K Flip-Flop

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Gnd = Pin 7

Truth Table

J	K	Q _n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Pin Configuration

Quadruple 2-Input Positive-NAND Buffer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

Positive logic: $Y = \overline{AB}$

100000247 100000238 100000154 100000117

Pin Configurations

100000247/100000238

100000154

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$

Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

A	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*"0" Output \leq 0.7V "1" Output \leq 100 μ A

100000154

Positive logic: AB=X

A	В	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*"0" Output \leq 0.7V "1" Output \leq 100 μ A

100000117

Positive logic: A + B = X

A	В	Output X*
0	0	0
1	0	1
0	1	1
1	1	1

*''0'' Output ≤ 0.7V
''1'' Output ≤ 100μA

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{\rm CC}$ = 0V) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

100000118 100000229 100000298

Pin Configuration

Dual Sense Amplifiers

Logic Diagram/Pin Designations

 $V_{CC+} = Pin 16$

 $V_{CC} = Pin 8$

Gnd 1 = Pin 9

Gnd 2 = Pin 13

NC = No internal connection

Positive logic: $W = \overline{AS}$

Truth Table

Inputs		Output	
Α	S	W	
H	H	L	
L	X	Н	
X	L	Н	

Definition of logic levels:

Input	Н	H L	
A*	$v_{ID} \geqslant v_{Tmax}$	$v_{ID} \leqslant v_{Tmin}$	Irrelevant
S	$V_{I} \geqslant V_{IHmin}$	$v_{I} \leqslant v_{ILmax}$	Irrelevant

* A is a differential voltage (V_{ID}) between A1 and A2. For these circuits, V_{ID} is considered positive regardless of which terminal is positive with respect to the other.

Dual 4-Input Positive-AND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = ABCD

Pin Configuration

Block Diagram

Phase Locked Loop

Pin Designations

- 1. Bias Reference Voltage
- 9. Demodulated FM Output (Open Emitter)
- 2. Phase Comparator Input #1
- 10. De-emphasis (Auto Bandshaping)
- 3. VCO Output #1
- 11. RF Input #1
- 4. VCO Output #2
- 12. RF Input #2
- 5. VCO Timing Capacitor
- 13. Low Pass Loop Filter
- 6. VCO Timing Capacitor
- 14. Low Pass Loop Filter
- 7. Range Control
- 15. Phase Comparator Input #2
- 8. Negative Power Supply (Ground)
- 16. Positive Power Supply

The 100000120 Phase Locked Loop is a monolithic signal conditioner and demodulator system, comprising a VCO, phase comparator, amplifier and low pass filter.

The center frequency of the Phase Locked Loop is determined by the free running frequency of the VCO. This VCO frequency is set by an external capacitor. The low pass filter, which determines the capture characteristics of the loop, is formed by two capacitors and two resistors at the phase comparator output. This Phase Locked Loop has two sets of differential inputs, one for the FM/RF input and one for the phase comparator local oscillator input. Both sets of inputs can be used in either a differential or single-ended mode. The FM/RF inputs to the comparator are selfbiased. An internally regulated voltage source is provided to bias the phase comparator local oscillator inputs. The VCO output, at high level and in differential form, is available for driving logic circuits.

Pin Configuration

CMOS Hex Inverter

Logic Diagram/Pin Designations

$$V_{CC} = Pin 1$$

$$V_{DD} = Pin 16$$

$$Gnd = Pin 8$$

Dual Line Receiver

Logic Diagram/Pin Designations

 $V_{CC+} = Pin 14$

V_{CC}- = Pin 13 Gnd = Pin 7

NC = No internal connection

Truth Table

Differential Inputs	Strobes		Output
A-B	G	S	Y
$V_{\mathrm{ID}} \geqslant 25 \mathrm{mV}$	LorH	LorH	H
	LorH	L	H
$-25 \text{mV} < \text{V}_{\text{ID}} < 25 \text{mV}$	L	LorH	H
	Н	Н	Indeter- minate
	LorH	L	Н
$V_{\mathrm{ID}} \leqslant -25 \mathrm{mV}$	L	LorH	H
	H	H	L

Pin Configuration

Triple 3-Input NOR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

100000124 · Quadruple Line Receiver Pin Configuration ALT NORM CONT VCC2 VCC1 4T 1 Logic Diagram/Pin Designations OUTPUTS $V_{CC1} = Pin 15$ **4Y** R1 $V_{CC2} = Pin 16$ 12 16 15 Gnd = Pin 8Logic: $Y = \overline{A}$ **3T** GND THRESHOLD CONTROLS INPUTS

100000111 100000109 100000125

Logic Diagrams

100000111

100000109

100000125

Buffer Registers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

Truth Tables

Dual 5-Bit Buffer Register No. 100000111

D _n	Q_{n+1}
1	1
0	0

10-Bit Buffer Register No. 100000109

D _n	RESET	Q_{n+1}
1	1	1
0	1	0

10-Bit Buffer Register-Inverted Inputs No. 100000125

D _n	RESET	Q_{n+1}
0	1	1
1	1	0

Notes:

RESET = $0 \Rightarrow Q = 0$ (overrides clock). n is time prior to clock. n+1 is time following clock.

These buffer registers are arrays of ten clocked "'D" flip-flops. The flip-flops are arranged as a dual 5 array (100000111) and single 10 arrays with reset (100000109 and 100000125).

The 100000111 and 100000109 have true "D" inputs. The logic state presented at these "D" inputs will appear at the Q outputs after a negative transition of the clock. The 100000125 has complementing "D" inputs ("\overline{D}"). The logic state presented at these "\overline{D}" inputs will invert and appear at the Q outputs after a negative-going transition of the clock. The complementing input ("\overline{D}") permits the use of standard AND-OR-INVERT gates to achieve the AND-OR function without additional gate delays.

Pin Configuration

Triple 3-Input AND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = ABC

Pin Configuration

Functional Block Diagram

Zero Voltage Switch

The 100000127 zero voltage switch is a monolithic integrated circuit designed to control a thyristor in a variety of AC power switching applications for AC input voltages of 24V, 120V, 208/230V and 277V at 50/60 and 400Hz. This switch incorporates four functional blocks:

- 1. Limiter-Power Supply -- permits operation directly from an AC line.
- Differential On/Off Sensing Amplifier -tests the condition of external sensors or command signals.
- 3. Zero-Crossing Detector -- synchronizes the output pulses of the circuit at the time when the AC cycle is at zero voltage point.
- 4. Triac Gating Circuit -- Provides highcurrent pulses to the gate of the power controlling thyristor.

Logic Symbol

Pin Configuration

Logic Diagrams

100000252

100000128

Up/Down Decade and Binary Counters

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Mode Selection (Both Counters)

	MR	PL	CPTT	CP_D	Mode
	Н	Х	X	X,	Preset (Asyn.)
	L	L	x	x	Preset (Asyn.)
	L	н	н	н	No Change
١	L	н	CP	н	Count Up
	L	Н	н	CP	Count Down

Notes:

H = High voltage level

L = Low voltage level

= Don't care condition

CP = Clock pulse.

The 100000252 is a synchronous Up/Down BCD Decade Counter and the 100000128 is a synchronous Up/Down 4-Bit Binary Counter. Both counters have separate up/down clocks, parallel load facility, terminal count outputs for multidecade operation and an asynchronous overriding master reset.

These counters can be reset, preset and count up or down. The operating modes are tabulated in the Mode Selection table. The operating modes of both devices are identical; the only difference between the devices is the count sequences.

Counting is synchronous, with the outputs changing state after the Low to High transition of either the Count-Up Clock (CPU) or Count-Down Clock (CPD). The direction of counting is determined by which clock input is pulsed while the other clock input is High. (Incorrect counting will occur if both the count-up clock and count-down clock inputs are Low simultaneously.) Both counters will respond to a clock pulse on either input by changing to the next appropriate state of the count sequence. The state diagram for the 100000252 shows the regular sequence and in addition shows the sequence of states if a code greater than nine is present in the counter.

Continued

Continued

Logic Equations for Terminal Count

100000252

$$TC_{U} = Q_{0} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3} \cdot \overline{CP_{U}}$$

$$TC_{D} = \overline{Q_{0}} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{CP_{D}}$$

100000128

$$TC_{U} = Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot \overline{CP_{U}}$$

$$TC_{D} = \overline{Q_{0}} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{CP_{D}}$$

State Diagrams

100000252

100000128

Both counters have a parallel load (asynchronous) facility which permits the device to be preset. Whenever the parallel load (\$\overline{PL}\$) input is Low, and Master Reset is Low, the information present on the Parallel Data inputs (\$P_A\$, \$P_B\$, \$P_C\$, \$P_D\$) will be loaded into the counters and appear on the outputs independent of the conditions of the clock inputs. When the Parallel Load Input goes High, this information is stored in the counters and when the counters are clocked they change to the next appropriate state in the count sequence. The Parallel Data inputs are inhibited when the Parallel Load is High and have no effect on the counters.

The Terminal Count-Up (\overline{TC}_U) and Terminal Count-Down (\overline{TC}_D) outputs (carry and borrow, respectively) allow multidecade counter operations without additional logic. The counters are cascaded by feeding the terminal count-up output to the count-up clock input and terminal count-down clock input of the following counter.

The terminal count-up outputs are Low when their count-up clock inputs are Low and the counters are in state nine (100000252) and state fifteen (100000128). Similarly, the terminal count-down outputs are Low when their count-down clock inputs are Low and both counters are in state zero. Thus, when the 100000252 counter is in state nine and the 100000128 counter is in state fifteen and both are counting up, or both counters are in state zero and counting down, a clock pulse will change the counter's state on the rising edge and simultaneously clock the following counter through the appriate active Low terminal count output. There are two gate delays per state when these counters are cascaded.

The asynchronous Master Reset input (MR), when High, overrides all input and clears the counters. Master reset overrides parallel load so that when both are activated the counters will be reset. (Obviously, both parallel load and master reset must not be deactivated simultaneously for predictable operation.)

Logic Diagrams

100000129 (Active Pull-up)

100000044 (Open Collector)

3-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$ Gnd = Pin 12

Truth Table

	Data Input		Char Sel		Data	Output Enable	Data	
A		B _n		s_0		Complement		Outputs
I	A _n	x	x	1	1	0	1	An
	x	$\mathbf{B}_{\mathbf{n}}$	x	0	1	0	1	B_n
	x	x	c_n	1	0	0	1	Cn
	x	x	x	0	0	0	1	0
1	An	x	x	1	1	1	1	\overline{A}_n
1	x	\mathbf{B}_{n}	x	0	1	1	1	$\overline{\mathtt{B}}_{\mathtt{n}}$
١	x	x	$\mathbf{c}_{\mathbf{n}}$	1	0	1	1	\overline{C}_n
١	x	x	x	0	0	1	1	1
	x	х	х	х	x	x	0	1

X = Either state.

The 3-input, 4-bit multiplexer is a gating array whose function is analogous to that of a 4-pole, 3-position switch. Four bits of digital data are selected from one of three inputs. A 2-bit channel-selection code determines which input is to be active.

The data complement input controls the conditional complement circuit at the multiplexer output to effect either inverting or non-inverting data flow.

The 100000129 employs active output structures to effect minimum delays; the 100000044 utilizes bare collector outputs for expansion of input terms.

The 100000044 may be expanded by connecting its outputs to the outputs of another 100000044. Provision is made for use of a 3-bit code to determine which multiplexer is selected; thus, eight multiplexers may be commoned to effect a 4-pole, 24-position switch.

Pin Configuration

Block Diagram

Asynchronous Receiver/Transmitter

The Asynchronous Receiver/Transmitter is an LSI subsystem which accepts binary characters from either a terminal device or a computer and receives/transmits this character with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, one or two stop bits and either odd/even parity or no parity. The baud rate (bits per word), parity mode and the number of stop bits are externally selectable.

Description of Pin Functions

Pin No.	Name	Symbol	Function
1	V _{cc} Power Supply	Vcc	+5V Supply
2	Vgg Power Supply	Ver	-12V Supply
3	Ground	Vgr	Ground
4	Received Data Enable	RDE	A logic "O" on the receiver enable line places the received data onto the output lines.
5-12	Received Data Bits	RD8-RD1	These are the 8 data output lines. Received characters are right justified, the LSB always appears on RDI. These lines have tri-state outputs; i. e., they have the normal TTL output characteristics when RDE is "0" and a high impedance state when RDE is "1". Thus, the data output lines can be bus structure oriented.
13	Receive Parity Error	PE	This line goes to a logic "1" if the re- ceived character parity does not agree with the selected POE.
14	Framing Error	FE	This line goes to a logic "I" if the re- ceived character has no valid stop bit.
15	Over-Run	OR	This line goes to a logic "1" if the pre- viously received character is not read (DA line not reset) before the present character is transferred to the receiver holding register.
16	Status Word Enable	SWE	A logic "O" on this line places the status word bits (PE, FE, OR, DA, TBMT) onto the output lines. These are tri-state also.
17	Receiver Clock	RCP	This line will contain a clock whose frequency is 16 times (16X) the desired receiver band rate.
18	Reset Data Available	RDA	A logic "0" will reset the DA line.
19	Receive Data Available	DA	This line goes to a logic "1" when an entire character has been received and transferred to the receiver holding register.
20	Serial Input	នា	This line accepts the serial bit input stream. A Marking (logic "1") to spacing (logic "0") transition is required for initiation of data reception.
21	External Reset	XR	Resets all registers. Sets SO, EOC, and TBMT to a logic "1".
22	Transmitter Buffer Empty	TBMT	The transmitter buffer empty flag goes to a logic "1" when the data bits holding register may be loaded with another character.
23	Data Strobe	DS	A strobe on this line will enter the data bits into the data bits holding register. Initial data transmission is initiated by the rising edge of DS.
24	End of Character	80C	This line goes to a logic "I" each time a full character is transmitted. It remains at this level until the start of transmission of the next character.
25	Serial Output	90	This line will serially, by bit, provide the entire transmitted character. It will remain at a logic "1" when no data is being transmitted.

Continued

Continued

Transmitter Block Diagram

Description of Pin Functions (Continued)

Pin No.	Name	Symbol	Function
26-33	Data Bit Inputs	DB1-DB8	There are up to 8 data bit input lines available.
34	Control Strobe	CS	A logic "1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the control bits holding register. This line can be strobed or hard wired to a logic "1" level.
35	No Parity	NP	A logic "1" on this lead will eliminate the parity bit from the transmitted and received character (no PE indication). The stop bit(s) will immediately follow the last data bit. If not used, this lead must be tied to a logic "0".
36	Number of Stop Bits	TSB	This lead will select the number of stop bits. 1 or 2, to be appended immediately after the parity bit. A logic "0" will insert 1 stop bit and a logic "1" will insert 2 stop bits.
37-38	Number of Bits/ Character	NB2, NB1	These two leads will be internally de- coded to select either 5, 6, 7 or 8 data bits character.
	ł	l .	NB1 NB2 Bits Character
			0 0 5 1 0 6 0 1 7 1 1 8
39	Odd/Even Parity	EPS	The logic level on this pin selects the type of parity which will be appended immediately after the data bits. It also determines the parity that will be checked by the receiver. A logic "O" will insert odd parity and a logic "I" will insert even parity.
40	Transmitter Clock Line	ТСР	This line will contain a clock whose frequency is 16 times (16X) the desired transmitter band rate.

Continued....

Receiver Block Diagram

Continued

Receiver Operation

Initializing

Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data available (DA) to a logic "0".

After initializing is completed, user should note that one set of control bits will be used for both receiver and transmitter making individual control bit setting unnecessary. Data reception starts when serial input signal changes from Marking (logic "1") to spacing (logic "0") which initiates start bit. The start bit is valid if, after transition from logic "1" to logic "0", the SI line continues to be at logic "O", when center sampled, 8 clock pulses later. If, however, line is at a logic "1" when center sampling occurs the start bit verification process will be reset. If the Serial Input line transitions from a logic "1" to a logic "0" (marking to spacing) when the 16X clock is in a logic "1" state, the bit time for center sampling will begin when the clock line transitions from a logic "1" to a logic "0" state. After verification of a genuine start bit, data bit reception, parity bit reception and stop bit(s), reception proceeds in an orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control data bits (parity and number of stop bits) previously set and indicate an error by changing the parity error flip-flop and/or the framing error flip-flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditioning set to a logic "0".

Once a full character is received, internal logic looks at the data available (DA) signal to determine if data has been read out. If the DA signal is at a logic "1" the receiver will assume data has not been read out and the overrun flip-flop of the status word holding register will be set to a logic "1". If the DA signal is at a logic "0" the receiver will assume that data has been read out. After DA goes to a logic "1", the receiver shift register is now ready to accept the next character and has one full character time to remove the received character.

Continued....

Continued

Receiver Propagation Delay Timing Diagram

Receiver Timing Diagram

- NOTES:

 I. THIS IS THE TIME WHEN THE ERROR CONDITIONS ARE DETECTED, IF ERROR OCCURS.

 2. DATA AVAILABLE IS SET ONLY WHEN THE RECEIVED DATA, PE, FE, OR HAS BEEN TRANSFERRED TO THE HOLDING REGISTERS. (SEE RECEIVER BLOCK DIAGRAM).
 - ALL INFORMATION IS GOOD IN HOLDING REGISTER UNTIL DATA AVAILABLE TRIES TO SET FOR NEXT CHARACTER.
- 4. ABOVE SHOWN FOR & LEVEL CODE PARITY AND TWO STOP, FOR NO PARITY, STOP BITS FOLLOW DATA.
- 5. FOR ALL LEVEL CODE THE DATA IN THE HOLDING REGISTER IS *RIGH JUSTIFIED*; THAT IS, LSB ALWAYS APPEARS IN RD I (PIN 12).

Transmitter Timing Diagram

General Purpose Transistor Array

100000132 **Dual Stereo Preamplifier** Pin Configuration OUTPUT LAGI INPUT LAG I 10 11 12 -13 OUTPUT I INPUT I <u>V+</u>14 -I OUTPUT 2 INPUT 2 OUTPUT LAG 2 OUTPUT LAG 2

Pin Configuration

DIP (TOP VIEW)

*Open collector

Hex Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{A}$

Pin Configuration

Logic Diagram

4-Bit Data Selector/Storage Register

Pin Designations

V_{CC} = Pin 16

Gnd = Pin 8

Positive logic: word select low for word 1, word select high for word 2.

This monolithic data selector/storage register is composed of four S-R master-slave flip-flops, four AND-OR-INVERT gates, one buffer and six inverter/drivers.

When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is shifted to the output terminals on the negative-going edge of the clock pulse.

Pin Configuration

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

4-Bit Bidirectional Universal Shift Registers

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table

	INPUTS											OUTPUTS				
CLEAR	МС	DE	CLOCK	SEI	RIAL	P	ARA	LLE	L		-		_			
CLEAR	S ₁ S ₀		CLOCK	LEFT	RIGHT	A	В	C	D	QA.	OB	OC.	OD			
L	×	×	×	×	×	×	X	X	X	L	L	L	Ļ			
н	×	×	L	×	×	×	X	X	X	OAO	Q80	QCO	QDO			
н	н	н	+	×	×		ь	c	đ	•	ь	c	d			
н	L	н	1	×	н	×	×	X	X	н	QAn	Qan	Q _C ,			
н	L	н	1	×	L	X	×	X	X	L	QAn	QBn	Q _C			
н	н	L	+	н	×	X	×	×	×	Q _{Bn}	OCn	Q_{Dn}	Н			
н	H	L	1	L	×	×	X	X	X	Qen	QCn	Q _{Dn}	L			
н	١L	L	×	Ι×	×	x	×	×	×	QAO	Q _{BO}	QC0	QDO			

H = high level (steady state).

L = low level (steady state).

X = irrelevant (any input, including transitions).

† = transition from low to high level.

a, b, c, d = the level of steady-state input at inputs A, B, C or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the indicated steady-state input conditions were established.

 $Q_{An'}$, $Q_{Bn'}$, Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most recent | transition of the clock.

Note: The 100000234 is a Shottky device.

The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation:

Parallel (Broadside) Load Shift Right (in the direction Q_A toward Q_D) Shift Left (in the direction Q_D toward Q_A) Inhibit Clock (Do nothing)

Continued....

Continued

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S₀ is high

and \mathbf{S}_1 is low. Serial data for this mode is entered at the shift-right data input. When \mathbf{S}_0 is low and \mathbf{S}_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control units are low. The mode controls of the 100000135 should be changed only while the clock input is high.

Logic Diagrams

100000135

100000234

d dynamic input activated by a transition from a high level to a lew level

Pin Configuration

Logic Diagram

Eight-Input Priority Encoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

ō	Priority (Active LOW) Input
	Priority (Active LOW) Inputs
	Enable (Active LOW) Input
	Enable (Active LOW) Output
<u>GS</u>	Group Select (Active LOW) Output
$\overline{A_0}$, $\overline{A_1}$, $\overline{A_2}$.	Address (Active LOW) Outputs

Truth Table

EI	ō	1	2	3	4	5	<u>6</u>	7	GS	$\overline{A_0}$	$\overline{A_1}$	$\overline{A_2}$	EO
H L L L	H X X X X	HXXXXX	H X X X	H X X X X	H X X X L	X H X X L H H	H X L H H	H L H H	H H L L L	H H L H L	H H L L H H	H H L L L	H L H H H
L			_			H			L	H	L	H H	H H
L L		_				H H			L L	L H	H H	H	Н

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

The 100000136 is a multipurpose 8-input priority encoder designed to accept data from eight active LOW inputs and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority.

A HIGH on the Input Enable (EI) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs.

A Group Signal output (\overline{GS}) and an Enable Output (\overline{EO}) are provided with the three data outputs. The \overline{GS} is active level LOW when any input is LOW; this indicates when any input is active. The \overline{EO} is active level LOW when all inputs are HIGH. Using the output enable along with the input enable allows priority encoding of N input signals. Both \overline{EO} and \overline{GS} are inactive HIGH when the input enable is HIGH.

Logic Diagram

NOTE: All inputs have diode clamps.

8-Bit Position Scaler

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

Truth Table

INHIBIT	ENABLE 182	\$0	8,	82	0	0,	o ₂	وم	04	O _S	06	وه
•	1	0	0	•	F.	1,	ī,	ī	T ₄	īs	Ĭg	ī,
0	1	1		0	ا ارا	ī ₂	15	Ī4	īs	Ĩ	T ₇	1
0		0	,	٥	Т,	5	T ₄	Ts	T _e	Τ,	1	١,
0	1	1	١,	•	I 5	T ₄	T _s	T _a	5	3	1	1
0	1	0	0	1	T ₄	T _S	T ₆	5	1	1	1	1
0	1	1	۰	1	T _s	T ₆	5	1	1	1	1	1
0		0	1	,	T _e	۲,	l i	• 1	1	1	1	1
0	١,	ı	,	1	Τ,	1	1	1	1	1	1	1
1	×	x	×	x	1	1	1	1	1	1	1	1
×		x	X	×	1 1	1	1	1 1	1	1	1	1

Note:

X indicates either logic "1" or logic "0" may be present.

The 8-bit position scaler is an MSI array of approximately 70 gate complexity. The primary function of this device is to scale (or shift) data bit positions by a selection of a 3-bit binary selector code.

The most significant bit input (I_7) may be shifted 8 positions to the least significant bit output (O_0) . At zero shift, or scale select, all eight input data bits are transferred and inverted to their respective outputs, $(I_0 \text{ to } O_0, \ I_1 \text{ to } O_1, \ I_2 \text{ to } O_2,$ etc.) At a shift, or scale select, of one, each input bit (I_n) will shift to the next lower output bit (O_{n-1}) . See truth table for other shift codes.

100000140 100000141 100000142 100000148 100000149 100000215 100000216 100000217 100000218 100000219

Functional Block Diagram O_B O· O₆ O₅ O₄ O₁ O₇ O₇ OUTPUT BUFFER 256 BITS 132 x 81 MEMORY CELLS 1 OF 32 DECODER ADDRESS BUFFER Vc (116) GND·(8)

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

Pin Configuration

Logic Diagram

BCD-To-Decimal Decoder-Driver

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

· Function Table

		Inp	uts							Out	puts			
No.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	Н	Н	Н	Н	Н	Н	Н	н
1 1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	Н	H	H	H	L	H	H	H	Н	H
5	L	Н	L	Н	Н	H	Н	H	Н	L	H	Н	Н	Н
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	Н	H	Н	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
	H	L	Н	L	Н	Н	H	H	H	H	Н	Н	Н	Н
ا ہ	Н	L	H	H	Н	H	H	H	H	H	H	H	H	H
Invalid	Н	H	L	L	H	H	H	H	H	H	H	H	H	H
1 2	Н	H	L	H	Η	H	H	H	H	H	H	H	H	H
=	н	H	H	L	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	H	H	H	H	H	H	H	H	H	H

H = high level (off); L = low level (on).

This monolithic BCD-to-decimal decoder/driver consists of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions.

Pin Configuration

Logic Diagram

5-Bit Comparator

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$

Gnd = Pin 8

Pin Names

Enable (Active LOW)

 $A_0, A_1, A_2, A_3, A_4...$ Word A Parallel Inputs

 $B_0, B_1, B_2, B_3, B_4...$ Word B Parallel Inputs A < B A Less Than B Output

A > B A Greater Than B Output

A = B A Equal to B Output

Truth Table

Ē	Ay	Ву	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
H L L	X Word A = Word A > Word B >	Word B		L L H L	L H L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Either HIGH or LOW Voltage Level

The 100000144 is a high speed expandable comparator which provides comparison between two 5-bit words and gives three outputs, "less than", "greater than" and "equal to". A HIGH level on the active LOW enable input forces all three outputs LOW.

This 5-bit comparator uses combinational circuitry to directly generate "A greater than B" and "A less than B" outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals B" output is generated in one additional gate delay by decoding the "A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable input (E).

Tying the A > B output from one device into an A input on another device and the A < B output into the corresponding B input permits easy expansion.

The A_4 and B_4 inputs are the most significant inputs, and A_0 and B_0 are the least significant. Thus, if A_4 is HIGH and B_4 is LOW, the A>B output will be HIGH regardless of all other inputs except \overline{E} .

Pin Configuration

8-Bit Addressable Latch

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

A0, A1, A2..... Address Inputs
D...... Data Input
Example (Assistance of Control of Cont

E..... Enable (Active LOW) Input
C..... Clear (Active LOW) Input
Q0 to Q7..... Parallel Latch Outputs

Truth Table

Present Output States

	_		_	_										
č	Ē	D	A0	Aı	A2	Qo	Q ₁	Q2	Q ₃	Q4	Q5	Q6	Q٦	Mode
L	н	X	x	x	X	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	L	L	L	L	L	Demultiplex
L	L	Ħ	L	L	L	н	L	L	L	L	L	L	L	1
L	L	L	н	L	L	L	L	L	L	L	L	L	L	ļ
L	L	Ħ	H	L	L	L	H	L	L	L	L	L	L	1
	_			_		_			_					
Ι:	:	:		:								•		
Ι:	:	:		:										Ì
L	L	H	H	Ħ	Ħ	L	L	L	L	L	L	L	H	1
н	H	х	х	X	X	QN-1							-	Memory
н	L	L	L	L	L	L	Q _{N-1}	Q _{N-1}	QN-1				—	Addressable
н	L	R	L	L	L	Ħ	QN-1	QN-1					-	Latch
н	L	L	H	L	L	QN-1	L	QN-1					-	ł
н	L	H	H	L	L	QN-I	H	QN-1						ļ
		_												Ì
i:	:	:		:										1
														1
н	L	L	H	H	Ħ	QN-1						► QN-1	L	1
н	L	H	H	н	H	QN-1						► QN-1	H	1

X = Don't Care Condition

L = LOW Voltage Level

H = HIGH Voltage Level

 Q_{N-1} = Previous Output State

Mode Selection

E	C	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH Eight-Channel
		Demultiplexer
H	L	Clear

The 100000145 is a high speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level HIGH outputs. The device also incorporates an active level LOW common clear for resetting all latches as well as an active level LOW enable.

This latch has four modes of operation, which are shown in the mode selection table. In the addressable latch mode, data on the data line (D)

Continued ...

10000145 Continued

is written into the addressed latch. The addressed latch will follow the data input with all nonaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs.

When operating this device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

Logic Diagram

Pin Configuration

Schematic (Each Line Driver)

Dual Line Driver

Pin Designations

 $V_{CC+} = Pin 13$

 $V_{CC-} = Pin 10$

Gnd = Pin 5

NC = No Internal

Connection

Positive logic: $Y = \overline{AS}$

This device is a monolithic dual line driver which satisfies the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C.

A rate of 20,000 bits per second can be transmitted with a full 2500pF load.

Pin Configuration

Logic Diagram

Dual 2-Line-To-4-Line Decoder/Demultiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Tables
2-Line-To-4-Line Decoder
or 1-Line-To-4-Line Demultiplexer

	Inputs				Outputs		
Sel	Select Strobe			_			
В	A	1G	1C	1Y0	1Y1	1Y2	1Y3
х	ж	H	х	H	H	H	H
L	L	L	H	L	H	H	H
L	H	L	H	н	L	H	H
H	L	L	H	н	H	L	H
H	H	L	H	H	H	H	L
X	X	Х	L	н	H	H	H

	Inputs				Out	puts	
Sel	ect	Strobe	Data	•			
В	A	2G	2C	2Y0	2Y1	2Y2	2Y3
х	x	н	x	H	H	H	H
L	L	L L	L	L	H	H	H
L	H	L	L	H	L	H	H
н	L	L	Г	H	H	L	H
н	H	L	L	H	H	H	L
X	X	х	H	H	H	H	H

Function Table
3-Line-To-8-Line Decoder
or 1-Line-To-8-Line Demultiplexer

Inpu					Out	outs			
	Strobe or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C*BA	G**	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
ххх	н	н	H	H	H	H	H	H	H
LLL	L	L	H	H	H	H	H	H	H
LLH	L	H	L	H	H	H	H	H	H
LHL	L	H	H	L	H	H	H	H	H
LHH	L	H	H	H	L	H	H	H	H
HLL	L	H	H	H	H	L	H	H	H
HLH	L	H	H	H	H	H	L	H	H
HHL	L	H	H	H	H	H	H	L	H
ннн	L	H	H	H	H	H	H	H	L

Notes: *C = inputs 1C and 2C connected together.

**G = inputs 1G and 2G connected together.

H = high level, L = low level,

X = irrelevant.

The 100000147 monolithic TTL circuit features dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections

Continued

Continued

are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided to minimize transmission-line effects and simplify system design.

100000140 100000141 100000142 100000148 100000149 100000215 100000216 100000217 100000218 100000219 100000269 100000270 100000271 100000272 100000273 100000274 100000275 100000276 100000277 100000278 100000279 100000280

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

Pin Configuration

Block Diagram

	CE	OUTPUT
	0	DATA
ļ	1	OPEN

High Speed 64 X 7 X 5 Character Generator

Pin Designations

1.	v_{GG}	24.	VCC
	NČ		NČ
3.	NC	22.	Address 9
4.	Out 1	21.	Address 8
5.	Out 2	20.	Address 7
6.	Out 3	19.	Address 6
7.	Out 4	18.	Address 5
8.	Out 5	17.	Address 4
9.	NC	16.	Address 3
10.	Ground	15.	Address 2
	Chip Enable	14.	Address 1
12.	v_{DD}	13.	NC

Character Format

Row Address

Аз	A ₂	A ₁
0	0	0
0	0	1 1
0	1	0
0	1	1
1 1	0	0
1	1 1 0 0	1 0 1 0 1
0 0 0 1 1	1	0
1	1	1

Character Address

	A4	A5	A ₆	A7	Ag	Ag
ASCII Character	1	1	0	0	1	0

The 100000150 is a high speed 2560-bit static ROM. The 64x7x5 character organization is formed on a 64x8x5 field.

The product uses +5V, -5V and -12V power supplies, 5V TTL level input signals and tristate outputs.

Functional Block Diagram

Hex 40-Bit Static Shift Register

Pin Designations

1.	IN4	16.	VCC
2.	IN ₅	15.	IN3
3.	IN6	14.	IN_2
4.	Recirculate	13.	IN_1
5.	v_{GG}	12.	OUT ₁
	Clock	11.	OUT ₂
7.	OUT6	10.	OUT3
8.	OUT ₅	9.	OUT4

Truth Table

Recirculate	Input	Function
1	0	Recirculate
1	1	Recirculate
0	0	"0" is Written
0	1	"1" is Written

The Hex 40-bit recirculating static shift register consists of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip. Internal recirculation logic plus TTL/DTL level clock signals are provided for interfacing capability.

Package

Block Diagram

N = 1024 '0' = OV, '1' = +5V

1024-Bit Recirculating Dynamic Shift Register

Pin Designations

1. 02 Input clock 8. VCC

2. Output 3. Read

7. 01 Output clock6. Input

4. V_{DD}

5. Write

Truth Table

Write	Read	Function
0 0 1 1	0 1 0 1	Recirculate, Output is "0" Recirculate, Output is Data Write Mode, Output is "0" Read Mode, Output is Data

The 1024 bit recirculating dynamic shift register consists of enhancement mode P-channel MOS devices integrated on a single monolithic chip. Internal recirculation logic plus write and read controls are included on the chip.

Logic Diagrams .

BCD Decade Counter-4 Bit Binary Counter

Logic Diagram/Pin Designations

VCC = Pin 16

Gnd = Pin 8

Pin Names

PE..... Parallel Enable (Active LOW)
Input

P₀, P₁, P₂, P₃.. Parallel Inputs

CEP Count Enable Parallel Input

CET Count Enable Trickle Input

CP..... Clock (Active HIGH Going Edge) Input

MR Master Reset (Active LOW)
Input

Q₀, Q₁, Q₂, Q₃.. Parallel Outputs

TC..... Terminal Count Outputs

Mode Selection

PE	CEP	CET	Mode
L	L	L	Preset
L	L_	H	Preset
L	H	L	Preset
L	H	H	Preset
H H	L L	L H	No Change No Change
H	H	Ľ	No Change
H	H	H	Count

 $\overline{MR} = HIGH$

Terminal Count Generation

	100000153	100000047	
CET	$(Q_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot Q_3)$	$(Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3)$	TC
L	L	L	L
L	H	H	L
H	L	L	L
H	H	H	H

 $TC = CET \cdot Q_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot Q_3 (100000153)$

 $TC = CET \cdot Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3$ (100000047)

Positive Logic:

H = HIGH Voltage Level

L = LOW Voltage Level

The 100000153 is a high speed BCD decade counter, and the 100000047 is a high speed binary counter. Both counters are fully synchronous with the clock pulse driving four master/slave flip-flops in parallel through a clock buffer. During the

Continued ...

Continued

Logic Equations

 $\begin{array}{l} \text{Count Enable} = \text{CEP} \cdot \text{CET} \cdot \text{PE} \\ \text{TC for } 100000153 = \text{CET} \cdot \text{Q}_0 \cdot \overline{\text{Q}}_1 \cdot \overline{\text{Q}}_2 \cdot \text{Q}_3 \\ \text{TC for } 100000047 = \text{CET} \cdot \text{Q}_0 \cdot \text{Q}_1 \cdot \text{Q}_2 \cdot \text{Q}_3 \\ \text{Preset} = \overline{\text{PE}} \cdot \text{CP} + (\text{rising clock edge}) \\ \text{Reset} = \overline{\text{MR}} \end{array}$

Note: The 100000153 can be preset to any state but will not count beyond 9. If preset to state 10, 11, 12, 13, 14 or 15, it will return to its normal sequence within two clock pulses.

LOW to HIGH transition of the clock, the master is inhibited from further change. After the masters are locked out, data is transferred from the master to the slaves and reflected at the outputs. When the clock is HIGH, the masters are inhibited and the master/slave data path remains established. During the HIGH to LOW transition of the clock, the slave is inhibited from further change, followed by the enabling of the masters for the acceptance of data from the counting logic or the parallel entry logic.

The three control inputs, Parallel Enable (\overline{PE}) , Count Enable Parallel (CEP), and Count Enable Trickle (CET), select the mode of operation. When the conditions for counting are satisfied, the rising edge of a clock pulse will change the counters to the next state of the count sequence shown in the State Diagram. The Count Mode is enabled when CEP and CET inputs and \overline{PE} are HIGH.

These devices can be synchronously preset from the four Parallel inputs (P_{0-3}) when \overline{PE} is LOW. When the Parallel Enable and Clock are LOW, each master of the flip-flops is connected to the appropriate parallel input (P_{0-3}) and the slaves (outputs) are steady in their previous state. When the clock goes HIGH, the masters are inhibited and this information is transferred to the slaves and reflected at the outputs. The parallel enable input overrides both count enable inputs, presetting the counter when LOW.

Terminal count is HIGH when the counter is at terminal count (state 9 for 100000153 and state 15 for 100000047), and Count Enable Trickle is HIGH, as shown in the logic equations.

When LOW, the asynchronous master reset overrides all other inputs resetting the four outputs LOW.

Conventional operation, as shown in the Mode Selection table, requires that the mode control inputs (PE, CEP, CET) are stable while the clock is LOW.

100000247 100000238 100000154 100000117

Pin Configurations

100000247/100000238

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$

Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

A	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*"0" Output \leq 0.7V "1" Output \leq 100 μ A

100000154

Positive logic: AB=X

Α	В	Output X*
0	0	1
1 1	0	1
0	1	1
1	1	0

*''0'' Output $\leq 0.7V$

"1" Output $\leq 100 \mu A$

100000117

Positive logic: A + B = X

A	В	Output X*
0	0	0
1	0	1
0	1	1
1	1	1

*''0'' Output $\leq 0.7V$

"1" Output $\leq 100 \mu A$

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

Pin Configuration

High Performance Operational Amplifier

Pin Designations

1. Offset Null 5. Offset Null 2. Inv. Input 6. Output 3. Non-Inv. Input 7. V+ 4. V-

8. NC

The 100000156 is a high performance operational amplifier with high open loop gain, internal compensation, high common mode range and temperature stability.

The device is short-circuit protected and allows for nulling of offset voltage.

Pin Configurations

NON INVERTING 1 N.C. INVERTING 3 4 5 N.C.

Note: Pin 4 connected to case.

High-Speed Differential Comparator

The 100000059 (Can) and 100000157 (DIP) are differential voltage comparators intended for applications requiring high accuracy and fast response times. Constructed on a single silicon chip, the devices are useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high-noise immunity line receiver.

Pin Configuration

Quadruple 2-Input Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

Note: The 100000158 is a Schottky device.

Pin Configuration

Hex Inverter

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Positive logic: $Y = \overline{A}$

Note: The 100000159 is a Schottky device.

Pin Configuration

Logic Diagram (Each Flip-Flop)

Dual J-K Edge-Triggered Flip-Flops

Logic Diagram/Pin Designations

Truth Table

1	t _n	t_{n+1}
J	K	Q
L	L	Q_n
L	H	L
н	L	н
н	H	$\overline{Q}_{\mathtt{n}}$

Notes:

t_n = bit time before clock pulse.

 t_{n+1} = bit time after clock pulse.

These monolithic dual flip-flops are designed so that when the clock goes high, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the truth table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

Note: The 100000160 is a Shottky device.

Logic Symbol

Connection Diagram Dip (Top View)

NC = No internal connection

Logic Diagram

Divide-By-Twelve Counter (Divide-By-Two and Divide-By-Six)

Logic Diagram/Pin Designations

 $V_{CC} = Pin 5$

Gnd = Pin 10

N.C. = Pins 2, 3, 4, 13

Pin Names

CPBC..... Clock Input

 Q_A , Q_B , Q_C , Q_D Count Outputs

Truth Table

C		Output				
Count	Q_{D}	Q_{C}	$Q_{\mathbf{B}}$	$Q_{\mathbf{A}}$		
0	L	L	L	L		
1	L	L	L	H		
2	L	L	H	${f L}$		
3	L	L	H	H		
4 5	L	H	L	L		
	L	H	L	H		
6	H	${f L}$	${f L}$	L		
7	H	${f L}$	L	H		
8	H	L	H	L		
9	H	L	H	H		
10	H	H	L	L		
11	H	H	L	H		

Notes:

- 1. Output Q_A connected to input \overline{CP}_{BC} .
- 2. To reset all outputs to Low level both $R_{0(1)}$ and $R_{0(2)}$ inputs must be at High level state.
- 3. Either (or both) reset inputs $R_{0(1)}$ and $R_{0(2)}$ must be at a Low level to count.

The 100000161 is a 4-Bit Binary Counter consisting of four master slave flip-flops which are internally interconnected to provide a divide-bytwo counter and a divide-by-six counter. A grated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flop outputs to a Low level. As the output from flip-flop A is not internally connected to the succeeding flip-flops, the counter may be operated in two independent modes:

Continued

(Continued)

- A. When used as a divide-by-twelve counter, output QA must be externally connected to input $\overline{\text{CP}}_{BC}$. The input count pulses are applied to input $\overline{\text{CP}}_{A}$. Simultaneous divisions of 2, 6 and 12 are performed at the QA, QC and QD outputs as shown in the truth table.
- B. When used as a divide-by-six counter, the input count pulses are applied to input $\overline{\text{CP}}_{BC}$. Simultaneously, frequency divisions of 3 and 6 are available at the QC and QD outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the divide-by-six counter.

These circuits are completely compatible with TTL and DTL logic families.

Pin Configuration

Logic Diagram (Each Flip-Flop)

Clock Waveform

Dual JK Master/Slave Flip-Flop With Separate Clears and Clocks

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic:

LOW input to clear sets Q to LOW level. Clear is independent of clock.

Truth Table

t	n	t _{n+1}
J	K	Q
L	L	Q_n
L	H	L
н	L	H
Н	H	\overline{Q}_{n}

Notes:

t_n = Bit time before clock pulse.

 t_{n+1} = Bit time after clock pulse.

These Dual JK Master/Slave flip-flops have a separate clear and a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) Isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; and 4) transfer information from master to slave.

Pin Configuration

256-Bit Bipolar Random Access Memory

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Memory Function Table

Chip Selects	Write Enable	Operation	Output
A11 ''0''	"0"	Write	Logical "1" State
A11 ''0"	"1"	Read	Complement of data written in memory
One or More "1"	X	Hold	Logical "1" State

The 100000164 integrated circuit is a high speed, fully decoded, static bipolar 256-bit random access memory in a 256x1 organization. This device provides uncommitted collector output and three chip selects.

Operation

Read

The memory is addressed through the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by placing all chip selects (CS) to logic "0". If any or all CS inputs are logic "1", then the device will be disabled. If the write enable (WE) is at logic "1" the stored bit is read out of DO.

Write

The memory is addressed through the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by placing all the CS inputs to logic "0". If the WE input is at logic "0", the data on terminal DI is written into the addressed word.

When WE returns to logic "1", the information that was written in is now read out; however, each word read out is the complement of what was written in.

Pin Configuration

Logic Diagram

Data Selector/Multiplexer With 3-State Outputs

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table

	I	nput	Outr	outs	
S	Selec	t	Strobe		
С	В	Α	S	Y	W
X	X	X	H	Z	Z
L	L	L	L	D0	$\overline{\mathrm{D0}}$
L	L	H	L	D1	D1
L	H	L	L	D2	$\overline{ ext{D2}}$
L	H	H	L	D3	$\overline{\mathrm{D3}}$
н	L	L	L	D4	D4
Н	L	H	L	D5	$\overline{ ext{D5}}$
Н	H	L	L	D6	$\overline{D6}$
H	Н	H	L	D7	D7

H = high logic level, L = low logic level
X = irrelevant, Z = high impedance (off).
D0, D1.... D7 = the level of the respective D input.

This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and a strobe-controlled three-state output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

Note: The 100000165 is a Schottky device.

Pin Configuration

Positive Logic: See Function Table

Logic Diagram

Dual 4-Line-To-1-Line Data Selector - Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table

- 1								
		ect uts		Data I	nputs	Strobe	Output	
	В	A	C0	C1	C2	C3	G	Y
	X	х	Х	x	X	X	н	L
	L	L	L	X	X	X	L	L
	L	L	н	X	X	X	L	H
	L	H	х	L	X	X	L	L
	L	H	х	H	X	X	L	H
	H	L	х	X	L	X	L	L
	H	L	Х	X	H	X	L	H
	H	H	х	X	X	L	L	L
	H	H	X	X	X	H	L	H

Select Inputs A and B are common to both sections.

H = high level; L = low level; X = irrelevant.

This monolithic, data selector-multiplexer contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates.

Separate strobe inputs are provided for each of the two four-line sections.

Note: The 100000166 is a Shottky device.

Pin Configuration

100000167/100000187

Logic Diagram 100000167/100000187

Quadruple 2-Line-To-1-Line Data Selectors/Multiplexers

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

	Outp	ut Y		
Output Control	Select	АВ	'167	'187
H	x	хх	Z	Z
L	L	LΧ	L	H
L	L	нх	н	L
L	H	хL	L	н
L ·	H	хн	н	L

H = high level, L = low level, X = irrelevant, Z = high impedance (off).

These Schottky-clamped multiplexers have threestate outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

This three-state output means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Pin Configuration

Logic Diagram

Dual 4-Line-To-1-Line Multiplexer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

Address Inputs		D	Data Inputs			Strobe	Output
В	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	x	1	Hi-Z
0	0	0	X	X	X	0	0
0	0	1	X	X	X	0	1
0	1	X	0	X	X	0	0
0	1	X	1	X	X	0	1
1	0	X	X	0	X	0	0
1	0	X	X	1	x	0	1
1	1	X	X	X	0	0	0
1	1	X	X	X	1	0	1

X = Don't care.

This device acts as a double-pole four-throw switch. One data line is selected from each of two four-line inputs. Two select lines determine which of the four inputs is chosen; however, the same input of both four-line selections will be selected. The logic allows outputs of the device to be tied to outputs of similar devices and connected to a common bus-line. Nominal TTL outputs cannot be connected due to the lowimpedance logical "1" output current which one device would have to sink from the other. If, however, on all but one of the connected devices both the upper and lower output transistors are turned off, then the one remaining device in the normal low-impedance state will have to supply to or sink from the other devices only a small amount of leakage current. The strobe input is used to place the output in the high-impedance

100000084 100000169 100000306

Pin Configuration

Arithmetic Logic Units/Function Generators

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4, 5, 6	Function-Select Inputs
C _n	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A=B	14	Comparator Output
P	15	Carry Propa- gate Output
C _{n+4}	16	Inv. Carry Output
G	17	Carry Gen- erate Output
v _{cc}	24	Supply Voltage
Gnd	12	Ground

These arithmetic logic units (ALU)/function generators have a complexity of 75 equivalent gates on a monolithic chip, and perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with 100000100 or 100000170, full carry look-ahead circuits, highspeed arithmetic operations can be performed. If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay is minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These devices will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Continued....

10000084 100000169 100000306

Continued

Table 1

Selection	M = H Logic	Active-High Data M = L: Arithmetic Operations						
S3 S2 S1 S0		C _n = H (no carry)	Cn = L (with carry)					
LLLL	F = A	F = A	F = A Plus 1					
LLLH	F = A + B	F = A + B	F = (A + D) Plus 1					
LLHL	F = AB	F = A + B	F = (A + B) Plus 1					
LLHH	F = 0	F = Minus 1 (2's Compl)	F = Zero					
LHLL	F = AB	F = A Plus AB	F = A Plus AB Plus 1					
LHLH	$F = \overline{B}$	$F = (A + B) Plus A\overline{B}$	F = (A + B) Plus AB Plus 1					
LHHL	F = A⊕B	F = A Minus B Minus 1	F = A Minus B					
LHHH	F = AB	F ≈ AB Minus 1	$F = A\overline{B}$					
HLLL	F = A + B	F = A Plus AB	F = A Plus AB Plus 1					
HLLH	F = A⊕B	F = A Plus B	F = A Plus B Plus 1					
HLHL	F = B	F = (A + B) Plus AB	F = (A + B) Plus AB Plus 1					
HLHH	F = AB	F = AB Minus 1	F = AB					
HHLL	F = 1	F = A Plus A*	F = A Plus A Plus 1					
HHLH	F = A + B	F = (A + B) Plus A	F = (A + B) Plus A Plus 1					
HHHL	F = A + B	F = (A + B) Plus A	F = (A + B) Plus A Plus 1					
нннн	F = A	F = A Minus 1	F = A					

^{*} Each bit is shifted to the next more significant position.

Table 2

Selection	M = H Logic	Active-Low Data M = L; Arithmetic Operations							
S3 S2 S1 S0	Functions	Cn = L (no carry)	Cn = H (with carry)						
LLLL	F = A	F = A Minus 1	F = A						
LLLH	F = AB	F = AB Minus 1	F = AB						
LLHL	F = A + B	F = AB Minus 1	F = AB						
LLHH	F = 1	F = Minus 1 (2's Comp)	F = Zero						
LHLL	$F = \overline{A + B}$	F . A Plus (A + B)	F = A Plus (A + B) Plus 1						
LHLH	F = B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1						
LHHL	F = A⊕B	F = A Minus B Minus 1	F = A Minus B						
LHHH	F = A + B	F = A + B	F = (A + B) Plus 1						
HLLL	F = AB	F = A Plus (A + B)	F = A Plus (A + B) Plus 1						
HLLH	F = A⊕B	F = A Plus B	F = A Plus B Plus 1						
HLHL	F = B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1						
ньнн	F = A + B	F = A + B	F = (A + B) Plus 1						
HHLL	F = 0	F = A Plus A*	F = A Plus A Plus 1						
HHLH	F = AB	F = AB Plus A	F = AB Plus A Plus 1						
HHHL	F = AB	F = AB Plus A	F = AB Plus A Plus 1						
нннн	F = A	F = A	F = A Plus 1						

[•] Each bit is shifted to the next more significant position.

Pin No.	Active-high data Table 1	Active-low data Table 2			
2	A ₀	\overline{A}_0			
1	В0	$\overline{\mathtt{B}}_{0}$			
23	A ₁	$\overline{\mathtt{A}}_{\mathtt{1}}$			
22	В ₁	$\overline{\mathtt{B}}_{\mathtt{1}}$			
21	A ₂	$\overline{\mathtt{A}}_{2}$			
20	В2	$\overline{\mathtt{B}}_{2}$			
19	· A3	$\overline{\mathtt{A}}_3$			
18	В3	$\overline{\mathtt{B}}_3$			
9	F ₀	$\overline{\mathtt{F}}_{0}$			
10	F ₁	$\overline{\mathbf{F}}_{1}$			
11	${f F_2}$	$\overline{\mathtt{F}}_{2}$.			
13	F ₃	$\overline{\mathtt{F}}_3$			
7	$\overline{\mathrm{C}}_{\mathrm{n}}$	Cn			
16	\overline{C}_{n+4}	C _{n+4}			
15	х	P			
17	Y	G			

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

These devices can also be utilized as comparators. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with $C_n = H$ when performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

Input C _n	Output C _{n+4}	(Figure 1) Active-high Data	(Figure 2) Active-low Data
H	H	A < B	A > B
H	L	A > B	A < B
L	H	A < B	A > B
L	L	A > B	A \leftarrow B

Continued....

100000084 100000169 100000306

Continued

These circuits have been designed to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR and OR functions.

ALU Signal Designations

These devices can be used with the signal designations of either Figure 1 or Figure 2. The logic functions and arithmetic operations obtained with the signal designations of Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

Note: The 100000169 is a Shottky device.

Pin Configuration

Logic Diagram

Look-Ahead Carry Generators

Pin Designations

Designation	Pin Nos.	Function						
G0, G1, G2, G3	3, 1, 14, 5	Active-Low Carry Generate Inputs						
P0, P1, P2, P3	4, 2, 15, 6	Active-Low Carry Propagate Inputs						
C _n	13	Carry Input						
$C_{n+x}, C_{n+y},$ C_{n+z}	12, 11, 9	Carry Outputs						
G	10	Active-Low Carry Generate Output						
P	7	Active-Low Carry Propagate Output						
v _{CC}	16	Supply Voltage						
Gnd	8	Ground						

Positive Logic:

 $C_{n+x} = \overline{G}_0 + \overline{P}_0 C_n$

 $C_{n+y} = \overline{G}_1 + \overline{P}_1 \overline{G}_0 + \overline{P}_1 \overline{P}_0 C_n$

 $C_{n+z} = \overline{G}_2 + \overline{P}_2\overline{G}_1 + \overline{P}_2\overline{P}_1\overline{G}_0 + \overline{P}_2\overline{P}_1\overline{P}_0C_n$

 $\overline{G} = \overline{G}_3(\overline{P}_3 + \overline{G}_2)(\overline{P}_3 + \overline{P}_2 + \overline{G}_1)(\overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{G}_0)$

 $\overline{P} = \overline{P}_3 \overline{P}_2 \overline{P}_1 \overline{P}_0$

These devices are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with arithmetic logic units, 100000084 or 100000169, these generators provide high-speed carry look-ahead capability for any word length.

Carry input and output of the 100000084 or 100000169 are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU.

Note: The 100000170 is a Shottky device.

Pin Configuration

Figure A

16-Bit Multiple-Port Register File With 3-State Outputs

Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

The 100000171 is a high-performance 16-bit register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distinct sections (see Figure A).

Section 1 permits the writing of data into any twobit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

- 1) Writing new data into two bits.
- 2) Reading from two bits.
- 3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.

The three-state outputs of this register file permit connection of up to 129 compatible outputs to a common system bus. The outputs are controlled by the read-enable circuitry so that they operate as standard TTL totem-pole outputs when the appropriate read-enable input is low or they are placed in a high-impedance state when the associated read-enable input is at a high logic level.

Functions of the inputs and outputs are as shown in the following table:

Continued

Continued

Function	Section 1	Section 2	Description
Write Address	1W0, 1W1, 1W2	2W/R0, 2W/R1, 2W/R2	Binary write address selects one of eight two-bit word locations.
Write Enable	1GW	2GW	When low, permits the writing of new data into the selected word location on a positive transition of the clock input.
Data Inputs	1DA, 1DB	2DA, 2DB	Data at these inputs is entered on a positive transition of the clock input into the location selected by the write address inputs if the write enable input is low. Since the two sections are independent, it is possible for both write functions to be activated with both write addresses selecting the same word location. If this occurs and the information at the data inputs is not the same for both sections (i.e., $1DA \neq 2DA$ and/or $1DB \neq 2DB$) the low-level data will predominate in each bit and be stored.
Read Address	1R0, 1R1, 1R2	Common with write address	Binary write address selects one of eight two-bit word locations.
Read Enable	1GR	2GR	When read enable is low, the outputs assume the levels of the data stored in the location selected by read address inputs. When read enable is
Data Outputs	1Q _A , 1Q _B	2Q _A , 2Q _B	high, the associated outputs remain in the high-impedance state and neither significantly load nor drive the lines to which they are connected.
Clock		CK	The positive-going transition of the clock input will enter new data into the addressed location if the write enable input is low. The clock is common to both sections.

Pin Configuration

Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$
Gnd = Pin 8

Function Table

	Outp	outs						
Preset	Preset Clear Clock J K							
L H L H H	H L L H H	X X X +	X X X L H L	X X L L	H L H* Q0 H L	ь н <u>н</u> * Q ₀ ь		
H H	H H	Ħ	H X	H X	TOO Q ₀	$\overline{\overline{Q}_0}$		

Notes:

H = high level (steady state).

L = low level (steady state).

X = irrelevant.

= transition from high to low level.

Q₀ = the level of Q before the indicated input conditions were established.

TOGGLE = Each output changes to the complement of its previous level on each active transition of the clock.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Note: The 100000172 is a Shottky device.

Pin Configuration

Dual 4-Input Positive-NAND 50 Ohm Line Driver

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

NC = No internal connection

Positive logic: $Y = \overline{ABCD}$

Note: The 100000173 is a Shottky device.

Positive-NAND Gate With Open-Collector Outputs

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
Gnd = Pin 7

Note: The 100000174 is a Shottky device.

Pin Configuration

Quadruple 2-Input Positive-NAND Gate With Open-Collector Outputs

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
 $Gnd = Pin 7$

Positive logic: $Y = \overline{AB}$

Note: The 100000175 is a Schottky device.

Logic Diagram

BCD-To-Decimal Decoder

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

In	put	Sta	ate			Oı	ıtr	out	S	tat	es		
A	В	C	D	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	0	1	0	1	1	1	1	1	1	1	1
0	1	0	0	1	1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
1	1	1	0	1	1	1	1	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
0	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

The 100000178 is a gate array for decoding and logic conversion.

This device converts a 4-line input code (with 1-2-4-8 weighting) to a one-of-ten output, as shown in the Truth Table.

Note: The 100000178 is a Shottky device.

Pin Configuration

Logic Diagram

High Speed 4-Bit Shift Register With Enable

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

<u>E</u>	Active LOW Enable Input
PE	Active LOW Parallel Enable
	Input
P ₀ , P ₁ , P ₂ , P ₃	Parallel Data Inputs
<u>CP</u>	Clock Input
	Active LOW Master ResetInput
<u>Q</u> 0 to Q3	Parallel Outputs
\overline{Q}_3	Last Stage Complementary
	Output
D	Serial Data Input

The 100000180 High Speed 4-Bit Shift Register is a multifunctional sequential logic block which is useful in a wide variety of register applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial and parallel-parallel data transfers.

This device has three synchronous modes of operation: shift, parallel load and hold (do nothing). The hold capability permits information storage in the register independent of the clock.

The register is fully synchronous with any output change occurring after the rising clock edge. It features edge triggered type characteristics on all inputs (except $\overline{\text{MR}}$), which means there are no restrictions on the activity of these inputs ($\overline{\text{PE}}$, $\overline{\text{E}}$, P_0 , P_1 , P_2 , P_3 , D) for logic operation except for the set up requirements prior to the LOW to HIGH clock transition.

The mode of operation is determined by the two inputs, parallel enable (\overline{PE}) and enable (\overline{E}) , as shown in Table 1. The active LOW enable when HIGH places the register in the hold mode with the register flip-flops retaining their information. When the enable is activated (LOW) the parallel enable (\overline{PE}) determines whether the register operates in a shift or parallel data entry mode.

When the enable is LOW and the parallel enable input is LOW, the parallel inputs are selected and will determine the next condition of the register synchronously with the clock as shown in Table 2. In this mode the element appears as four common clocked D flip-flops. With \overline{E} LOW and the \overline{PE}

Continued....

Continued

input HIGH the device acts as a 4-bit shift register with serial data entry through the D input shown in Table 3. In both cases the next state of the flip-flops occurs after the LOW to HIGH transition of the clock input.

The asynchronous active LOW master reset overrides all inputs and clears the register forcing outputs Q_{0-3} LOW and \overline{Q}_3 HIGH.

To provide for left shift operation, P3 is used as the serial data input and Q_0 is the serial data output. The other outputs are tied back to the previous parallel inputs, with Q_3 tied to P_2 , Q_2 tied to P_1 and Q_1 tied to P_0 .

Table 1
Mode Selection

Mode			Ē	PE	Po	P ₁	P2	Р3	D
	Parallel Load	н	L	L	Pa	ralle	l Da	ta Entry	х
	Serial Shift	н	L	н	x	×	х	х	Serial Data Entry
Synchronous	Hold	Н	н	L	х	х	x	x	x
	Hold	Н	н	н	х	х	х	x	х
Asynchronous	Reset	L	x	x	Al	Out	puts	set LOW	

Table 2
Parallel Data Entry

	Faranei Data I	and y	56
1	P ₀ , P ₁ , P ₂ or P ₃ Input at t _n	Q at tn+1	
	L H	L H	

Serial Data Entry

D Input at tn Q0 at tn-1

Table 3

L = LOW Voltage Level H = HIGH Voltage Level

X = Don't Care

 $t_n = Present State$

 t_n+1 = State after Next Clock

Pin Configuration

Expandable 4-Wide AND-OR Gates

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: Y = AB+CDE+FG+HI+X

Pin Configuration

4-2-3-2-input AND-OR-INVERT Gates

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{ABCD+EF+GHI+JK}$

Note: The 100000182 is a Shottky device.

Pin Configurations

100000185

100000223

Decoders-Demultiplexers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table - 100000223

	Inputs							Out	puts			
En	able	S	elec	t					putt			
G1	G2*	С	В	A	Y0	Y 1	Y2	Y3	Y4	Y 5	Y 6	Y 7
X	H	x	х	x	н	H	H	H	H	Н	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	${f L}$	H	Н	L	H	H	H	H	H	H
H	L	\mathbf{L}	H	L	H	H	${f L}$	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

*G2 = G2A + G2B

H = high level; L = low level; X = irrelevant

Function Table - 100000185 (Each Decoder/Demultiplexer)

Inp	Inputs			Outputs			
Enable	Sel	ect	Outputs				
G	В	A	Y0	Y 1	Y2	Y3	
Н	X	X	H	H	H	Н	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

H = high level; L = low level; X = irrelevant

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

Continued....

Continued

100000185

100000223

The 100000223 decodes one-of-eight lines, depending on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The 100000185 is comprised of two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

Pin Configuration

Logic Symbol

8-Line-to-1-Line Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Truth Table

						In	puts	3					Out	puts
	C	В	A	Strobe	D_0	D_1	D_2	D_3	D_4	D_5	D_6	$\overline{D_7}$	Y	W
ſ	X	X	X	1	X	X	X	X	X	X	X	х	0	1
	0	0	0	0	0	X	X	X	X	X	X	X	0	1
	0	0	0	0	1	X	X	X	X	X	X	X	1	0
	0	0	1	0	X	0	X	X	X	X	X	X	0	1
١	0	0	1	0	X	1	X	X	X	X	X	X	1	0
1	0	1	0	0	X	X	0	X	X	X	X	X	0	1
	0	1	0	0	X	X	1	X	X	X	X	X	1	0
l	0	1	1	0	X	X	X	0	X	X	X	X	0	1
	0	1	1	0	X	X	X	1	X	X	X	X	1	0
١	1	0	0	0	X	X	X	X	0	X	X	X	0	1
	1	0	0	0	X	X	X	X	1	X	X	X	1	0
ı	1	0	1	0	X	X	X	X	X	0	X	X	0	1
l	1	0	1	0	X	X	X	X	X	1	X	X	1	0
١	1	1	0	0	X	X	X	X	X	X	0	X	0	1
	1	1	0	0	X	X	X	X	X	X	1	X	1	0
l	1	1	1	0	X	X	X	X	X	X	X	0	0	1
L	1	1	1	0	X	X	X	X	X	X	X	1	1	0

Note: When used to indicate an input, X = irrelevant.

The 100000186 is a one-of-eight data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N-lines to one-line.

Pin Configuration

100000167/100000187

Logic Diagram

100000167/100000187

Quadruple 2-Line-To-1-Line Data Selectors/Multiplexers

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

	Inputs	Output Y		
Output Control	Select	АВ	'167	'187
H	X	хх	Z	Z
L	L	LX	L	н
L	L	нх	н	L
L	н	ХL	L	н
L	H	хн	H	L

H = high level, L = low level, X = irrelevant,

Z = high impedance (off).

These Schottky-clamped multiplexers have threestate outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

This three-state output means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Pin Configuration

Hex Inverter With Open-Collector Outputs

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{A}$

Note: The 100000188 is a Shottky device.

Logic Symbol

Pin Configuration

Logic Diagram

One-Of-Ten Decoder With Open Collector Output

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Pin Names

 A_0 , A_1 , A_2 , A_3 = Address Inputs $\overline{0}$ to $\overline{9}$ = Outputs, Active LOW*

* An external pull-up resistor is needed to provide HIGH level drive capability.

Truth Table

	Trum rabic												
A ₀	A1	A2	Аз	O	1	2	3	4	5	<u>6</u>	7	8	9
L	L	L	L	L	H	H	Н	Н	H	H	H	H	H
H	L	L	L	H	L	H	Н	Н	H	H	H	H	H
L	H	L	L	Н	Н	L	Н	н	Н	Н	H	H	H
H	H	L	L	н	H	н	L	H	H	H	Н	H	H
L	L	H	L	H	H	H	H	L	H	Н	H	H	H
H	L	H	L	H	H	H	H	Н	L	H	H	H	H
L	H	H	L	H	H	H	H	H	н	L	Н	H	H
H	H	H	L	H	H	H	H	H	H	H	L	H	H
L	L	L	н	H	H	H	H	H	H	H	H	L	H
H	L	L	н	H	H	H	H	H	H	H	Н	H	L
L	H	L	H	H	H	H	н	н	Н	H	Н	H	H
H	H	L	н	H	H	H	H	H	H	H	H	H	H
L	L	H	н	H	H	H	H	H	H	H	H	H	H
Н	L	H	н	H	H	H	H	H	H	H	H	H	H
L	H	H	н	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	н	H	H	H

H = HIGH Voltage Level L = LOW Voltage Level

The 100000189 is a multipurpose decoder which accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs. The open collector outputs provide summing of input terms. This device provides the capability in one package to generate and sum any or all of the minterms of three variables, or the first 10-of-16 minterms of four variables.

The logic design ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.

Pin Configuration

Logic Symbol

Functional Block Diagram

High Speed Fully Decoded 256-Bit RAM

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Pin Names:

D_{IN}	Data Input		
A ₀ -A ₇	Address Inputs		
WE	Write Enable Input		
$\overline{\text{CS}}_1$ - $\overline{\text{CS}}_3$	Chip Select		
DOUT	Data Output		

Truth Table

Chip Select	Write Enable	Operation	Output
All Low	Low	Write	Complement of data input
All Low	High	Read	Complement of written data
One or more High	Don't Care	Hold	High Impedance State

The 100000190 is a high speed, fully decoded, 256 bit read/write random access memory. The device features three chip-select inputs and a three-state output.

100000191 High Speed Fully Decoded 1024-Bit Read Only Memory Logic Symbol Pin Designations CS₁ $V_{CC} = Pin 16$ Gnd = Pin 8 CS2 01 Ao A₁ The 100000191 is a fully decoded 1024-bit read only memory organized as 256 words by 4 bits. Pin Configuration ADDRESS INPUT As ADDRESS INPUT A5 A7 ADDRESS INPUT ADDRESS INPUT A4 CS 2 CHIP SELECT 2 ADDRESS INPUT A3 CS, CHIP SELECT 1 ADDRESS INPUT AO [O1 DATA OUTPUT ADDRESS INPUT A1 O2 DATA OUTPUT ADDRESS INPUT A2 03 DATA OUTPUT GND [O₄ DATA OUTPUT (MSB)

Pin Configuration

Functional Block Diagram

Timer

Pin Designations

Ground
 Control Voltage
 Trigger
 Threshold
 Discharge

Reset 8. V_{CC}

The 100000193 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting, if desired.

In the time delay mode of operation, the time is precisely controlled by one external resistor and one capacitor. For a stable operation as an oscillator, the free-running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor.

The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA or drive TTL circuits.

Pin Configuration

Schematic Diagram

Quad MOS Clock Driver

Logic Diagram/Pin Designations

$$V_{SS} = Pin 14$$

 $V_{GG} = Pin 7$

The 100000194 is a monolithic quad driver designed primarily for use as a 1 MOS clock driver. It can be driven by high current TTL buffers or drivers, either directly or through input coupling capacitors, if level shifting is required.

Pin Configuration

8-Input Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

NC = No internal connection

Positive logic: $Y = \overline{ABCDEFGH}$

Quadruple 2-Input Positive-NOR Buffers With Open-Collector Outputs

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$
Gnd = Pin 7

Positive logic: $Y = \overline{A+B}$

Pin Configuration

Monostable Multivibrator

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Truth Table

tn	t _n Input			1 Inp	ut	Output
A ₁	A_2	В	A ₁	A ₂	В	Output
H	H	L	H	H	H	Inhibit
L	X	H	L	X	L	Inhibit
X	L	H	X	L	L	Inhibit
L	X	L	L	X	H	One Shot
X	L	L	X	L	H	One Shot
H	H	H	X	L	H	One Shot
H	H	H	L	X	H	One Shot
X	L	L	X	H	L	Inhibit
L	X	L	H	X	L	Inhibit
X	L	H	H	H	H	Inhibit
L	X	H	H	H	H	Inhibit
H	H	L	X	${f L}$	L	Inhibit
H	H	L	L	X	L	Inhibit

$$\begin{array}{l} \texttt{H} = \texttt{V}_{\texttt{IH}} \geq 2 \texttt{V} \\ \texttt{L} = \texttt{V}_{\texttt{IL}} \leq \texttt{0.8V} \end{array}$$

Notes:

- $t_n = time before input transition.$
- 2. $t_{n+1} = time$ after input transition.
- 3. X indicates that either a High or Low may be present.
- 4. NC = No internal connection.
- 5. A₁ and A₂ are negative edge triggered-logic inputs and will trigger the one shot when either or both go to Low level with B at High level.
- B is a positive Schmitt-trigger input for slow edges or level detection and will trigger the one shot when B goes to High level with either A₁ or A₂ at Low level. (See Truth Table.)
- 7. External timing capacitor may be connected between pin 10 (positive) and pin 11. With no external capacitance, an output pulse width of typically 30ns is obtained.
- 8. To use the internal timing resistor ($2k\Omega$ nominal), connect pin 9 to pin 14.
- 9. To obtain variable pulse width, connect external variable resistance between pin 9 and pin 14. No external current limiting is needed.
- 10. For accurate repeatable pulse widths, connect an external resistor between pin 11 and pin 14 with pin 9 open-circuit.

Continued....

Continued

The 100000197 is a TTL Monostable Multivibrator with dc triggering from positive or gated negative going inputs and with inhibit facility. Both positive and negative going output pulses are provided with full fan out to 10 normalized loads.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the B input allows jitter-free triggering from inputs with transition times as slow as 1.0 V/s, providing the circuit with noise immunity of typically 1.2V. A high immunity to V_{CC} noise of typically 1.5V is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions on the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse lengths may be varied from 40ns to 40s by choosing appropriate timing components. With no external timing components (i. e., pin 9 connected to pin 14, pins 10, 11 open) an output pulse of typically 30ns is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Jitter-free operation is maintained over the full temperature and V_{CC} range for more than six decades of timing capacitance (10pF to $10\mu F$) and more than one decade of timing resistance (2k Ω to 40k Ω). Throughout these ranges, pulse width is defined by the relationship $t_{p(out)} = C_T$, $R_T \log_e 2$. Duty cycles as high as 90% are achieved when using $R_T = 40k\Omega$. Higher duty cycles are achievable if a certain amount of pulse-width jitter is allowed.

Pin Configuration

Logic Diagram

Synchronous 4-Bit Counter

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

This synchronous, presettable 4-bit binary counter features an internal carry look-ahead for application in high-speed counting schemes.

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four J-K master-slave flip-flops on the rising (positive-going) edge of the clock input waveform.

This counter is fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input should be avoided when the clock is low if the enable inputs are high at or before the transition. The clear function is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000(LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the carry output. The carry output thus enabled will produce a positive output pulse with a duration approximately equal to the positive portion of the QA output. This positive overflow carry pulse can be used to enable successive cascaded stages. High-to-low transitions at the enable P or T inputs should occur only when the clock input is high.

100000199 100000200 100000204 100000205

Pin Configurations

100000199/100000204

100000200/100000205

Functional Block Diagrams

Hex-Quadruple D-Type Flip-Flops with Clear

Note: 100000199 and 100000204 - Hex 100000200 and 100000205 - Quadruple

Pin Designations

100000199 and 100000204

 $V_{CC} = Pin 16$ Gnd = Pin 8

100000200 and 100000205

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table (Each Flip-Flop)

I	Outputs			
Clear	Clock	D	Q	⊽*
L H H H	X † † L	X H L X	L H L Q ₀	н <u>н</u> Q 0

Notes:

H = high level (steady state)

L = low level (steady state)

X = irrelevant

= transition from low to high level

Q₀ = the level of Q before the indicated steady state input conditions were established.

* = Type 100000200 and 100000205 only.

These monolithic, positive-edge-triggered flipflops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the Quadruple devices feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Note: The 100000204 and 100000205 are Shottky devices.

Pin Configuration

Logic Diagram

Quadruple 2-Input Multiplexer With Storage

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

Inpu	ıts		Out	outs	
Word Select	Clock	$Q_{\mathbf{A}}$	$Q_{\mathbf{B}}$	Q_C	Q_{D}
L	‡	a1	b1	c1	d1
H	1	a2	b2	c2	d2
х	H	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}

Notes:

H = high level (steady state).

L = low level (steady state).

X = irrelevant (any input, including transitions).

= transition from high to low level.

a1, a2, etc. = the level of steady-state input at A1, A2, etc.

 Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc., entered on the most recent \downarrow transition of the clock input.

This monolithic quadruple two-input multiplexer with storage provides essentially the equivalent functional capabilities of two separate MSI functions (100000240 and 100000200) in a single 16-pin package.

When the word-select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

Pin Configuration

13-Input Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Positive logic: $Y = \overline{ABCDEFGHIJKLM}$

Note: The 100000203 is a Shottky device.

Pin Configurations

100000199/100000204

100000200/100000205

Functional Block Diagrams

100000199/100000204

Hex-Quadruple D-Type Flip-Flops with Clear

Note: 100000199 and 100000204 - Hex 100000200 and 100000205 - Quadruple

Pin Designations

100000199 and 100000204

 $V_{CC} = Pin 16$ Gnd = Pin 8

100000200 and 100000205

 $V_{CC} = Pin 16$ Gnd = Pin 8

Function Table (Each Flip-Flop)

I	Outputs			
Clear	Clock	D	Q	⊽*
L	×	х	L	H
H H	. †	H L	H L	L H
н	Ĺ	x	\overline{Q}_0	\overline{Q}_0

Notes:

= high level (steady state) = low level (steady state)

X = irrelevant

= transition from low to high level

 Q_0 = the level of Q before the indicated steady state input conditions were established.

= Type 100000200 and 100000205 only.

These monolithic, positive-edge-triggered flipflops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the Quadruple devices feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Note: The 100000204 and 100000205 are Shottky devices.

Logic Diagram

4-Bit Quad Exclusive-NOR

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Truth Table

Α	В	f
0	0	1
1	0	0
0	1	0
1	1	1

The 100000206 contains four independent Exclusive-NOR gates which may be used to implement digital comparison functions. The device outputs are open collector to facilitate implementation of multiple-bit comparisons; a 4-bit comparison is made by connecting the outputs of the four independent gates together.

Note: The 100000206 is a Shottky device.

100000207 9-Bit Parity Generator and Checker Pin Configuration Gnd = Pin 7Logic Equations: ODD INHIBIT

Logic Diagram

256-Bit Bipolar Programmable ROM (32 × 8 PROM)

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000208 is a Bipolar 256-Bit Read Only Memory organized as 32 words by 8 bits per word. A chip enable line is provided, and the outputs are Tristate to allow for memory expansion capability.

Note: The 100000208 is a Shottky device.

Logic Symbol

Pin Configuration

Logic Diagram

16-Bit Associative-Content Addressable Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

The 100000211 is a high speed 16-bit associative random access memory. It is a linear select 4-word by 4-bit array which performs the equality search on all bits in parallel.

With the bit enable lines $(\overline{E}_0 - \overline{E}_3)$ LOW, the outputs $(M_0 - M_3)$ go HIGH if associated stored data matches the descriptor bits $(\overline{D}_0 - \overline{D}_3)$. If a bit enable line is held HIGH, a match is forced on the corresponding bit in all the words regardless of the state of the descriptor bit $(\overline{D}_0 - \overline{D}_3)$. An inverter is connected to the match output M_0 to give its negation \overline{M}_0 .

A word is addressed by having an active LOW on the appropriate address line $(\overline{A}_0 - \overline{A}_3)$. Any number of words may be addressed simultaneously.

Data can be written into the memory through the data inputs $(\overline{D}_0 - \overline{D}_3)$ under control of the address inputs and the appropriate bit enable $(\overline{E}_0 - \overline{E}_3)$ when the write enable $(\overline{W}E)$ is LOW.

Reading can occur either during an equality search or a write operation. If a single word is addressed that word will appear at the data outputs $(\overline{O}_0 - \overline{O}_3)$. If multiple addressing is used, the word appearing at the data output is the AND (positive logic) or the OR (negative logic) of the addressed words.

All outputs are uncommitted collectors allowing maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of many of these devices can be tied together. In other applications the wired-OR is not used. In either case, an external pull up resistor must be used to attain a HIGH at an output.

2048-Bit MOS LSI Random Access Memory

The 100000214 is a dynamic MOS random access memory device which utilizes the gate capacitance of a MOS device as a storage medium. The storage cell consists of the storage device T_1 , the read select device T_2 and the write select device T_3 .

The cycle begins with the negative transition of clock 1. During this time precharge is taking place. In addition, the address inputs, which must be stable during the last 65ns of clock 1 are inverted and amplified. At the end of clock 1 the internal address lines become stable. One of 64 row decoders and one of 32 column decoders are activated during t_{12} , the clock 1 to clock 2 delay time.

Clock 2, the read clock, is channeled by the decoders to the addressed column where T_2 , the read select device, is turned on. The condition of the storage device T_1 , (on or off) can now be sensed by the bit sense line. The addressed bit sense line is multiplexed to the I/O control circuit which then generates the Data Out. Data In, which must be valid 50ns before clock 3, is conditioned and amplified in the I/O control circuit. During clock 3, the write driver transmits the input data through the multiplexer to the addressed bit sense line.

Clock 3, the write clock, is channeled by the decoders to the addressed column where T_3 , the write select device, is turned on. Any information on the bit sense line is, therefore, transferred to the C_S , the gate capacitance of the storage device.

The refresh cycle consists of clock 1, clock 2 and clock 3. Clock 1 precharges the bit sense line. Clock 2 senses the status of the storage device T_1 , which is operating in the inverter mode, and places the inverted state of the storage device on the bit sense line. Clock 3, by turning on T_3 , transfers the information from the bit sense line to the storage device. Note, each refresh cycle will result in the inversion of the stored data. To refresh all 2048 cells, each of the 32 columns must be selected for a refresh cycle by exercising all 32 combinations of the low order addresses $(A_0 - A_4)$.

The read cycle may consist only of clock 1 and clock 2. Since each refresh cycle inverts the data in the storage cells in an accessed column, a control circuit, the Data Control Register, is used. The Data Control Register, which is basically another set of memory cells, is slaved

Continued

Continued

to the memory array. The state of the Data Control Register will provide information as to whether a column of storage cells is in a noninverting or inverting state.

Clock 1 of the read cycle precharges the device. Clock 2 is transmitted by the column decoders to the addressed column. At this time, data from both the storage cell and the Data Control Register is sensed. The row multiplexer transfers the data from the addressed row to the I/O Control circuit. In the I/O Control circuit, an exclusive-OR function of the data from the memory array and the Data Control Register is performed. The output of the exclusive-OR is then amplified and presented to the Data Out pin. The output data is held in a register until the initiation of the next memory cycle. A new memory cycle may begin 20ns after clock 2 has returned to a positive state. The 100000214 is a non-inverting device; i.e., TTL "high" Data-In will result in an output high current.

The write cycle consists of clock 1, clock 2 and clock 3. During clock 1 the precharge operation takes place. During clock 2 the Data Control Register is read to determine whether the accessed column is in a true or inverted state. At the beginning of clock 3 the exclusive-OR function of Data-In and the content of the Data Control Register is performed in the I/O Control circuit. The output of the input exclusive-OR is then amplified and transmitted to the addressed cell by the write-driver. A new memory cycle may begin 20ns after clock 3 has returned to the positive state.

100000140 100000141 100000142 100000148 100000149 100000215 100000216 100000217 100000218 100000219 100000269 100000270 100000271 100000272 100000273 100000274 100000275 100000276 100000277 100000278 100000279 100000280

Functional Block Diagram

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations

V_{CC} = Pin 16 Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

Logic Diagram

Circuit Schematic

1/2 OF CIRCUIT SHOWNT

†Other half of circuit omits expander inputs.

. "

Expandable Dual 2-Wide 2-Input AND-OR-Invert Gate

Logic Diagram

Positive Logic:

 $8 = (9 \cdot 10) + (13 \cdot 1) + (Expanders)$

Negative Logic:

 $8 = (9 + 10) \cdot (13 + 1) \cdot (Expanders)$

One side of this dual device consists of two 2-input AND gates ORed together and driving an output inverter. The other side consists of two 2-input gates ORed together, driving an output inverter, and the ORing nodes are available for expansion.

Pin Configuration

Dual Retriggerable Monostable Multivibrator with Clear

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Truth Table

Inp	Out	puts		
Clear	Clear A		Q	\overline{Q}
L	X	X	L	н
x	H	X	L	н
х	X	L	L	H
н	L	t	工	ъ
н	Į	H	7	T
t	L	H	Ή	ᢧ

Notes:

H = high level (steady state).

L = low level (steady state).

† = transition from low to high level.

↓ = transition from high to low level.

___ one high-level pulse.

U= one low-level pulse.

X = irrelevant (any input, including transitions).

An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive).

Pin Configurations

100000185

100000223

Decoders-Demultiplexers

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table - 100000223

	Inp	uts			Outputs							
En	able	S	elec	t								
G1	G2*	С	В	A	Y0	Y1	Y2	Y3	Y4	Y 5	Y 6	Y7
X	H	x	X	X	Н	H	H	Н	H	H	H	Н
L	X	X	X	X	н	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	Н	L	H	H	H	H	H	H
H	L	L	H	L	Н	H	L	H	H	H	H	H
H	L	L	H	H	Н	H	H	L	H	H	H	H
H	L	H	L	L	Н	H	H	H	L	H	H	H
H	L	H	L	H	Н	H	H	H	H	L	H	H
H	L	H	H	L	Н	H	H	H	H	H	L	H
H	\mathbf{L}	H	H	H	Н	H	H	H	H	H_	H	L

*G2 = G2A + G2B

H = high level; L = low level; X = irrelevant

Function Table - 100000185 (Each Decoder/Demultiplexer)

Inputs				Out	outs	
Enable	Select					
G	В	Α	Y0	Y 1	Y2	Y3
Н	Х	Х	н	Н	Н	H
L	L	L	L	H	H	H
L	L	H	Н	L	H	H
L	H	L	н	H	L	H
L	H	H	H	H	${\tt H}_{__}$	L

H = high level; L = low level; X = irrelevant

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

Continued....

Continued

Logic Diagrams

100000223

The 100000223 decodes one-of-eight lines, depending on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The 100000185 is comprised of two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

Pin Configuration

Functional Diagram

16-Channel Analog Multiplexer Complementary MOS (CMOS)

Decode Truth Table

Аз	A ₂	A ₁	A ₀	En	On Switch
х	х	x	x	0	None
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15 .
1	1	1	1	1	16

Logic "1" =
$$V_{AH} > 2.4V$$

Logic "0" = $V_{AL} < 0.8V$

The 100000224 is a single-pole 16-position (plus OFF) electronic switch array which employs 16

OFF) electronic switch array which employs 16 pairs of complementary MOS (CMOS) field-effect transistors designed to function as analog switches. In the ON condition each switch will conduct current in either direction; in the OFF condition each switch will block voltages up to 30V peak-to-peak. The ON-OFF state of each switch is controlled by drivers, which are in turn controlled by a 4-bit binary word input plus an Enable-Inhibit input. The truth table shows the binary word required to select any one of the 16 switch positions, provided a positive logic "1" is present at the Enable input. With logic "0" at the Enable input all switches will be OFF. The logic decoder and the Enable inputs will recognize voltages between -0.3 and 0.8V as logic "0" voltages, and voltages between 2 and 15V as logic "1" voltages. The input can thus be directly interfaced with TTL, DTL, RTL, CMOS and certain special P-MOS circuits. Switch action is break-before-make.

8-Channel Differential Analog Multiplexer Complementary MOS (CMOS)

Decode Truth Table

	20000 22441 244-0							
A ₂	A1	A ₀	En	On Switch Pair				
X	Х	х	0	None				
0	0	0	1	1				
0	0	1	1	2				
0	1	0	1	3				
0	1	1	1	4				
1	0	0	1	5				
1	0	1	1	6				
1	1	0	1	7				
1	1	1	1	8				

Logic "1" =
$$V_{AH} > 2.4V$$

Logic "0" = $V_{AL} < 0.8V$

The 100000225 is a double-pole 8-position (plus OFF) electronic switch array which employs 16 pairs of complementary MOS (CMOS) field-effect transistors designed to function as analog switches In the ON condition each switch will conduct current in either direction; in the OFF condition each switch will block voltages up to 30V peak-to-peak. The ON-OFF state of each switch is controlled by drivers, which are in turn controlled by a 3-bit binary word input plus an Enable-Inhibit input. The truth table shows the binary word required to select any one of the eight switch positions, provided a positive logic "1" is present at the Enable input. With logic "0" at the Enable input all switches will be OFF. The logic decoder and the Enable inputs will recognize voltages between -0.3 and 0.8V as logic "0" voltages, and voltages between 2 and 15V as logic "1" voltages. The input can thus be directly interfaced with TTL, DTL, RTL, CMOS and certain special P-MOS circuits. Switch action is break-before-make.

Pin Configuration

Logic Symbol

Block Diagram

High Speed Fully Decoded 64-Bit Memory

Pin Designations

$$V_{CC} = Pin 16$$
 $Gnd = Pin 8$

Pin Names

D_1-D_4	Data Inputs
A ₀ -A ₃	Address Inputs
<u>WE</u>	Write Enable
<u>CS</u>	Chip Select Input
$\overline{O_1}$ - $\overline{O_4}$	Data Outputs
v _{CC}	Power (+5V)

The 100000226 is a high speed, fully decoded 64-bit random access memory, using Schottky barrier diode clamped transistors. Organization is 16 words by 4 bits.

An unselected chip will not generate noise at its output during writing of a selected chip. The output is held high on an unselected chip regardless of the state of the read/write signal.

The storage cells are addressed through an onchip 1 of 16 binary decoder using four input address leads.

A separate Chip Select lead allows selection of an individual package when outputs are OR-tied. In addition to the address leads and the Chip Select lead, there is a write input which allows data presented at the data leads to be entered at the addressed storage cells.

Logic Diagram

Presettable High Speed Binary Counter

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Truth Table

Inp	ut /	40	B ₀	c_0	D ₀	
) 0		0	0	0	
1	1	- 1	0	0	0	
2	0		1	0	0	
3	1		1	0	0	
4	0		0	1	0	
5	1		0	1	0	
6	0	:	1	1	0	
7	1	:	ι	1	0	
8	0)	0	1	
9	1)	0	1	
10	0	1		0	1	
11	1	1	.	0	1	
12	0	0		1	1	
13	1	0		1	1	
14	0	1		1	1	
15	1	1		1	1	

The 100000080 Presettable High Speed Binary Counter may be connected as a divide-by-two, four, eight or sixteen counter.

This device has strobed parallel-entry capability so that the counter may be set to any desired output state. A "1" or "0" at a data input will be transferred to the associated output when the strobe input is put at the "0" level. This unit is provided with a reset input which is common to all four bits. A "0" on the reset lines produces "0" at all four outputs.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse.

Note: The 100000227 is a Shottky device.

Pin Configuration

Dual Peripheral Driver

Pin Designations

 $V_{CC} = Pin 8$

Gnd = Pin 4

Truth Table

A	В	X
0	0	1
0	1	0
1	0	0
1	1	0

The 100000228 is a dual NOR peripheral line driver with output transistors rated up to 300mA continuous current. Both output transistors can sink this current time at the same time, bringing maximum chip power dissipation to 820mW. Switching speeds are compatible with standard TTL and logic levels interface directly with TTL, DTL and LPTTL logic families.

100000118 100000229 100000298 100000299

Pin Configuration

Dual Sense Amplifiers

Logic Diagram/Pin Designations

 $V_{CC+} = Pin 16$

 $V_{CC} = Pin 8$

Gnd 1 = Pin 9

Gnd 2 = Pin 13

NC = No internal connection

Positive logic: $W = \overline{AS}$

Truth Table

I	Inputs		Output
	A S		w
I	I F	I	L
I	. 3	C	Н
3	I		н

Definition of logic levels:

Input	H	L	х
A*	$V_{ID} \geqslant V_{Tmax}$	$v_{ID} \leqslant v_{Tmin}$	Irrelevant
S	$V_{I} \geqslant V_{IHmin}$	$v_{I} \leqslant v_{ILmax}$	Irrelevant

* A is a differential voltage (V_{ID}) between A1 and A2. For these circuits, V_{ID} is considered positive regardless of which terminal is positive with respect to the other.

Pin Configuration

Logic Diagram

Quadruple 2-Line-To-1-Line Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Positive logic:

Low logic level at S selects A inputs. High logic level at S selects B inputs.

Function Table

	Inputs			Output
Strobe	Select	A	В	Y
H	x	x	x	L
L	L	L	X	L
L	L	H	X	н
L	H	X	L	L
L	H	X	H	H

Notes:

H = high level; L = low level; X = irrelevant.

These monolithic data selectors/multiplexors contain inverters and drivers to supply full onchip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. These devices present true data.

Note: The 100000233 is a Shottky device.

Pin Configuration

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

4-Bit Bidirectional Universal Shift Registers

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

			11	IPUTS							OUT	PUTS	
	MC	DE	01 00V	SE	RIAL	•	ARA	LLI	EL	۵.	~	Oc.	<u> </u>
CLEAR	S1	So	CLOCK	LEFT	RIGHT	4		C	D	Q _A	4	٩c	Q _D
L	×	X	X	×	×	×	X	X	X	L	L	L	L
н	×	x	L	X	×	X	X	X	X	CAO	090	QΩ	000
н	н	н	1	x	x		ь	e	đ		b	c	đ
н	L	н	1	×	н	x	X	X	×	н	Q_{An}	Ogn	QCn
н	L	н	t	×	L	×	X	X	X	L	QAn	$Q_{\beta n}$	O _{Cn}
н	н	L	1	н	x	×	X	X	X	Ogn			н
н	н	L	l t	L	x	x	X	X	X	OBn	OCA	$Q_{D\alpha}$	L
H	L	L	x	×	×	x	X	X	X	QAO	080	ОÇO	000

H = high level (steady state).

L = low level (steady state).

X = irrelevant (any input, including transitions).

t = transition from low to high level.

a, b, c, d = the level of steady-state input at inputs A, B, C or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the indicated steady-state input conditions were established.

 \mathbf{Q}_{An} , \mathbf{Q}_{Bn} , \mathbf{Q}_{Cn} , \mathbf{Q}_{Dn} = the level of \mathbf{Q}_{A} , \mathbf{Q}_{B} , \mathbf{Q}_{C} or \mathbf{Q}_{D} , respectively, before the most recent | transition of the clock.

Note: The 100000234 is a Shottky device.

The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation:

Parallel (Broadside) Load Shift Right (in the direction Q_A toward Q_D)

Shift Left (in the direction Q_D toward Q_A)

Inhibit Clock (Do nothing)

Continued....

Continued

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when \mathbf{S}_0 is high

and S_1 is low. Serial data for this mode is entered at the shift-right data input. When S_0 is low and S_1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control units are low. The mode controls of the 100000135 should be changed only while the clock input is high.

Logic Diagrams

100000135

100000234

🖒 dynamic input activated by a transition from a high level to a low level

Triple 3-Input Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{ABC}$

Note: 100000235 is a Shottky device.

Logic Diagram

2-Input, 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$
Gnd = Pin 8

Truth Table

s ₀	s ₁	fn
0	0	B
1	0	Ā
0	1	B
1	1	1

This 2-Input, 4-Bit Digital Multiplexer features inverting data paths.

The 100000236 has open collector outputs which permit direct wiring to other open collector outputs (collector logic) to yield "free" four-bit words. As many as forty four-bit words can be multiplexed by using twenty of these devices in the WIRED-AND mode.

The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

Note: The 100000236 is a Shottky device.

Triple 3-Input Positive-AND Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Positive logic: Y = ABC

Note: The 100000237 is a Shottky device.

100000247 100000238 100000154 100000117

Pin Configurations

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$

Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

A	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*''0'' Output ≤ 0.7V
''1'' Output < 100µA

100000154

Positive logic: AB=X

A	В	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*''0'' Output \leq 0.7V ''1'' Output \leq 100 μ A

100000117

Positive logic: A + B = X

A	В	Output X*
0	0	0
1	0	1
0	1	1
1	1	1

*''0'' Output \leq 0.7V · ''1'' Output \leq 100 μ A

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{\rm CC}$ = 0V) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

Pin Configuration

Logic Diagram

Quadruple 2-Line-To-1-Line Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Positive logic:

Low logic level at S selects A inputs. High logic level at S selects B inputs.

Function Table

	Inputs			Output
Strobe	Select	A	В	Y
H	х	X	X	L
L	L	L	X	L
L	${f L}$	H	X	H
L	H	X	L	L
L	H	X	H	H

Notes:

H = high level; L = low level; X = irrelevant.

These monolithic data selectors/multiplexors contain inverters and drivers to supply full onchip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. These devices present true data.

Note: The 100000233 is a Shottky device.

Pin Configuration

Functional Block Diagram

256-Bit Read-Write Memory With 3-State Outputs

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Positive logic:

Data out is complement of data which was applied at data input.

Function Table

	Inpu		
1	Memory		
Function	Enable*	Enable	Output
Write (Store complement of data)	L	L	High Impedance
Read	L	H	Stored Data
Inhibit	H	x	High Impedance

H = high level

L = low level

X = irrelevant

* For memory enable:

L = all ME inputs low

H = one or more ME inputs high.

This 256-bit active-element memory is a monolithic TTL array organized as 256 words of one bit each. It is fully decoded and has three gated memory-enable inputs to simplify decoding required to achieve the desired system organization. The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

Write Cycle

The complement of the information at the data input is written into the selected location when all memory-enable inputs and write-enable input are low. While the write enable input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

Read Cycle

The stored information (complement of information applied at the data input during the write Continued

Continued

cycle) is available at the output when the writeenable input is high and the three memory-enable inputs are low. When any one of the memory enable inputs is high, the output will be in the highimpedance state.

The high capacitive drive capability of the three-state bus-connectable output permits expansion up to 66, 304 words of N-bits without additional output buffering. The functional capability of the output being at a high impedance during writing and the data input being inhibited during reading means that both data inputs and outputs can be connected to the data lines of a bus-organized system without the need for interface circuits.

Word Capacity Vs. Loads

Loads	Maximum Number of Common Outputs	Maximum Number of Words					
1	259	66, 304					
2	220	56, 320					
3	180	46, 080					
4	140	35, 840					
5	100	25, 600					
6	60	15, 360					
7	20	5, 120					

Note: The 100000241 is a Shottky device.

Pin Configuration

Four Channel Programmable Amplifier

Truth Table

D ₁	D_0	EN	Selected Channel
L	L	Н	1
L	H	H	2
н	L	H	3
н	H	H	4
x	x	L	None

This operational amplifier has four identical input stages, any one (or none) of which may be electronically connected to the single output stage. The "ON" channel is selected through DTL/TTL compatible address inputs. The unselected amplifier inputs are effectively "floating".

This device can be used as an analog signal selector, sampler or multiplexer with built in buffering or signal conditioning. By connecting different feedback networks from the output to each input pair, it can be used as a single or multiple channel amplifier with programmable feedback characteristics.

Pin Configuration

Schematic

Wide Band, High Impedance Operational Amplifier

This operational amplifier has very low input bias current and is intended for use as a high impedance comparator and a wide band amplifier. The device provides very high gain, very high slew rate and output short circuit protection.

Pin Configuration

High Slew Rate F.E.T. Input Operational Amplifier

This operational amplifier combines very high slew rate and wide bandwidth with ultra-low input current and high input resistance.

The device may be operated inverting or non-inverting. External compensation is required only when operated at closed loop gains less than three. An internal feedback capacitor is provided to cancel phase shift in the feedback loop due to input capacitance.

Functional Block Diagram

1024-Bit Bipolar Programmable ROM (256 × 4 PROM, Open Collector)

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000245 is a Bipolar 1024 Bit Read Only Memory organized as 256 words by 4 bits per word, with open collector outputs. This device is field-programmable.

Two chip enable lines are provided and the outputs are bussable to allow for memory expansion capability.

Note: The 100000245 is a Shottky device.

100000247 100000238 100000154 100000117

Pin Configurations

100000247/100000238

Dual Peripheral Drivers

Pin Designations

 $V_{CC} = Pin 8$

Gnd = Pin 4

Truth Tables

100000247 and 100000238

Positive logic: AB=X

Α	В	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

*"0" Output $\leq 0.7V$

"1" Output $\leq 100 \mu A$

100000154

Positive logic: $\overline{AB}=X$

Α	В	Output X*
0	0	1
1	0	1
0	1	1
1	1	0

*"0" Output \leq 0.7V "1" Output \leq 100 μ A

100000117

Positive logic: A + B = X

A	В	Output X*
0	0	0
1	0	1
0	1	1
1	1	1

*"0" Output $\leq 0.7V$

"1" Output $\leq 100 \mu A$

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300mA loads to ground. In the off state (or with $V_{CC} = 0V$) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible.

Pin Configuration

Sense Amplifier

Pin Designations

V+ = Pin 16 V- = Pin 8 Gnd 1 = Pin 9 Gnd 2 = Pin 13

These dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTL/TTL compatible.

1C

10

1Y

GND

18

NC

Positive-NAND Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Note: The 100000249 is a Shottky device.

Pin Configuration

Quad Exclusive-OR Gate

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$

$$Gnd = Pin 8$$

Truth Table

Γ	A	В	\mathbf{z}	$\overline{\mathbf{z}}$
Γ	L	L	L	H
	L	H	H	L
	H	L	H	L
	H	H	L	H

H = High Voltage Level

L = Low Voltage Level

The exclusive OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: $Z = A\overline{B} + \overline{AB}$; $\overline{Z} = AB + \overline{AB}$.

Logic Symbol

Pin Configuration

Logic Diagrams

100000128

100000252

Up/Down Decade and Binary Counters

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Mode Selection (Both Counters)

ſ	MR	PL	СРU	CP_D	Mode
ĺ	Н	X	х	Х	Preset (Asyn.)
	L	L	x	х	Preset (Asyn.)
	L	н	н	H	No Change
	L	H	CP	H	Count Up
	L	H	Н	CP	Count Down

Notes:

H = High voltage level

= Low voltage level

X = Don't care condition

CP = Clock pulse.

The 100000252 is a synchronous Up/Down BCD Decade Counter and the 100000128 is a synchronous Up/Down 4-Bit Binary Counter. Both counters have separate up/down clocks, parallel load facility, terminal count outputs for multidecade operation and an asynchronous overriding master reset.

These counters can be reset, preset and count up or down. The operating modes are tabulated in the Mode Selection table. The operating modes of both devices are identical; the only difference between the devices is the count sequences.

Counting is synchronous, with the outputs changing state after the Low to High transition of either the Count-Up Clock (CP_U) or Count-Down Clock (CP_D). The direction of counting is determined by which clock input is pulsed while the other clock input is High. (Incorrect counting will occur if both the count-up clock and count-down clock inputs are Low simultaneously.) Both counters will respond to a clock pulse on either input by changing to the next appropriate state of the count sequence. The state diagram for the 100000252 shows the regular sequence and in addition shows the sequence of states if a code greater than nine is present in the counter.

Continued

Continued

Logic Equations for Terminal Count

100000252

$$\begin{array}{lll} \mathsf{TC}_{\mathsf{U}} & = & \mathsf{Q}_0 \cdot \overline{\mathsf{Q}_1} \cdot \overline{\mathsf{Q}_2} \cdot \mathsf{Q}_3 \cdot \overline{\mathsf{CP}_{\mathsf{U}}} \\ \mathsf{TC}_{\mathsf{D}} & = & \overline{\mathsf{Q}_0} \cdot \overline{\mathsf{Q}_1} \cdot \overline{\mathsf{Q}_2} \cdot \overline{\mathsf{Q}_3} \cdot \overline{\mathsf{CP}_{\mathsf{D}}} \end{array}$$

100000128

$$\begin{array}{ll} \mathsf{TC}_{\mathsf{U}} &= \ \mathsf{Q}_0 \cdot \mathsf{Q}_1 \cdot \mathsf{Q}_2 \cdot \mathsf{Q}_3 \cdot \overline{\mathsf{CP}_{\mathsf{U}}} \\ \mathsf{TC}_{\mathsf{D}} &= \ \overline{\mathsf{Q}_0} \cdot \overline{\mathsf{Q}_1} \cdot \overline{\mathsf{Q}_2} \cdot \overline{\mathsf{Q}_3} \cdot \overline{\mathsf{CP}_{\mathsf{D}}} \\ \end{array}$$

State Diagrams

100000252

100000128

Both counters have a parallel load (asynchronous) facility which permits the device to be preset. Whenever the parallel load (PL) input is Low, and Master Reset is Low, the information present on the Parallel Data inputs (PA, PB, PC, PD) will be loaded into the counters and appear on the outputs independent of the conditions of the clock inputs. When the Parallel Load Input goes High, this information is stored in the counters and when the counters are clocked they change to the next appropriate state in the count sequence. The Parallel Data inputs are inhibited when the Parallel Load is High and have no effect on the counters.

The Terminal Count-Up (\overline{TC}_U) and Terminal Count-Down (\overline{TC}_D) outputs (carry and borrow, respectively) allow multidecade counter operations without additional logic. The counters are cascaded by feeding the terminal count-up output to the count-up clock input and terminal count-down clock input of the following counter.

The terminal count-up outputs are Low when their count-up clock inputs are Low and the counters are in state nine (100000252) and state fifteen (100000128). Similarly, the terminal count-down outputs are Low when their count-down clock inputs are Low and both counters are in state zero. Thus, when the 100000252 counter is in state nine and the 100000128 counter is in state fifteen and both are counting up, or both counters are in state zero and counting down, a clock pulse will change the counter's state on the rising edge and simultaneously clock the following counter through the appriate active Low terminal count output. There are two gate delays per state when these counters are cascaded.

The asynchronous Master Reset input (MR), when High, overrides all input and clears the counters. Master reset overrides parallel load so that when both are activated the counters will be reset. (Obviously, both parallel load and master reset must not be deactivated simultaneously for predictable operation.)

Pin Configuration

Logic Diagram

256 Bit Bipolar Random Access Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

Chip Select	Write Enable	Operation	Output
All Low	Low	Write	Complement of data input
All Low	High	Read	Complement of written data
One or More High	Don't Care	Hold	High

The 100000255 is a fully decoded static bipolar random access memory organized 256 words by 1 bit, with open-collector outputs. The open-collector parts have 3 chip enables for easy expansion to larger size memories.

Memory Operation

Read

The memory is addressed with the A_0 - A_7 inputs which select one of the 256 words. The chip is enabled by making all chip enables low. If any or all chip enables are high the chip is disabled. If the write enable is high and the chip is enabled the stored data is read out on the data out pin. The data read out is the complement of the data written in during the write cycle.

Write

The memory is addressed with the A₀-A₇ inputs which select one of the 256 words. The chip is enabled as in the read cycle. If the write enable is low the data on the data input pin is written into the addressed word. The data out of the memory during the write cycle is the complement of the data written in. This allows checking of the stored data during the write cycle.

Memory Expansion Rules

- 1. To expand the number of bits in the word: tie corresponding address pins together, tie write enable pins together, and bring data in and data out independently.
- To expand the number of words: tie corresponding address pins together, tie write enable pins and corresponding data in and data out pins together, and use the higher order system addresses in conjunction with the chip enables to pick one row of packages.

1024-Bit Programmable Bipolar Read Only Memory

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000256 integrated circuit is a high speed, electrically programmable, fully decoded TTL bipolar 1024-bit read only memory, organized as 256 words by 4 bits. On chip address decoding, two chip enable inputs and uncommitted collector outputs are provided.

The same address inputs are used for both programming and reading.

13

10

9

Pin Connections

Alternate Pin Connections

Dual D-Type Edge-Triggered Flip-Flop

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Function Table

	Inputs										
Preset	Clear	Clock	D	Q	\overline{Q}						
L	Н	Х	X	Н	L						
H	L	X	X	L	H						
L	L	x	X	Н*	H*						
H	H	†	H	H	L						
Н	Н	†	L	L	H						
н	н	L	X	Q_0	\overline{Q}_0						

H = high level (steady state)

L = low level (steady state)

X = irrelevant

t = transition from low to high level

Q₀= the level of Q before the indicated input conditions were established.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Pin Configuration !

256 Bit Bipolar (32x8) Electrically Programmable Read Only Memory

Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

The 100000258 is a field programmable, 256-bit, DTL and TTL compatible, bipolar read only memory.

The three-state output of this device provides a low impedance driver Q_2 for driving capacitance on the memory output; no pullup resistor is required. When the chip enable is low, D_1 and D_2 are off and either Q_1 or Q_2 is on, depending upon the data in the memory array. When the chip enable is high, D_1 and D_2 are on and Q_1 and Q_2 are off, permitting wire ORing of memory outputs. In a system environment, up to 21 memory outputs of the 100000258 can be connected to a common bus. All of the devices, except one, are placed in the high impedance state. The selected device is enabled and has the characteristics of a TTL totem pole output.

Memory Operation

The memory is addressed with inputs A_0 through A_4 which select one of 32 words. To enable the outputs for a readout, enable \overline{E}_1 must be low. If the enable is high, the outputs are held off permitting wire "OR"ing of the three-state outputs of several packages. The use of the enable permits expansion to greater than 32 words.

Pin Configuration

Triple 3-Input Positive-AND Gate With Open-Collector Outputs

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: Y = ABC

Note: The 100000259 is a Shottky device.

Triple 3-Input Positive-NOR Gate

Logic Diagram/Pin Designations

$$v_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Positive logic: $Y = \overline{A+B+C}$

Pin Configuration

Functional Block Diagram

Phase Locked Loop

Pin Designations

- 1. V
- 2. Input
- 3. Input
- 4. VĈO Output
- 5. Phase Comparator VCO Input
- 6. Reference Output
- 7. Demodulated Output
- 8. External R for VCO
- 9. External C for VCO 10. V+

This Phase Locked Loop is a self-contained, adaptable filter and demodulator for the frequency range 0.001Hz to 500kHz. The circuit comprises a voltage-controlled oscillator, a phase comparator, an amplifier and a low-pass filter.

The center frequency of the device is determined by the free-running frequency of the VCO; this frequency can be adjusted externally with a resistor or a capacitor. The low-pass filter, which determines the capture characteristics of the loop, is formed by an internal resistor and an external capacitor.

Pin Configuration

Quadruple 2-Input Positive-NOR Gate

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{A+B}$

Pin Configuration

Positive Logic: See Function Table

Logic Diagram

BCD-To-Seven-Segment Decoder - Driver

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

Decimal	Inputs		BI/RBO*			Ot	itput	s			Note				
Function	LT	RBI	ם	C	В	A	DI, KDO	а	Ъ	C	d	е	f	g	11010
0	Н	Н	L	L	L	L	H	On	On	On	On	On	On	Ott	1
1	H	x	L	L	L	H	н	Ott	On	On	Off	Off	Ott	Off	1
2	н	х	L	L	H	L	н	On	On	Off	On	On	Ott	On	
3	н	х	L	L	H	H	H	On	On	On	On	Ott	Off	On	
4	н	х	L	H	L	L	н	Off	On	On	Ott	Off	On	On	
5	Н	x	L	H	L	H	н	On	Ott	On	On	Ott	On	On	
6	H	x	L	H	H	L	н	110	Ott	On	On	On	On	On	
7	Н	х	L	H	H	H	H	On	On	On	Off	011	Off	Off	
8	H	х	Н	L	L	L	н	On	On	On	On	On	On	On	
9	н	x	н	L	L	H	н	On	On	On	Off	Ott	On	On	
10	н	х	н	L	H	L	н	Off	Off	Ott	On	On	Ott	On	
11	H	x	H	L	H	H	н	Off	Ou	On	On	Ott	Off	On	
12	н	х	Н	H	L	L	H	Ott	On	Ott	ou	Ott	On	On	
13	н	х	н	H	L	H	н	On	Off	011	On	Off	On	On	
14	H	х	H	H	H	L	н	Ott	Off	Ott	On	On	On	On	
15	H	х	н	H	H	Ħ	н	Off	Off	Ott	Off	Off	Ott	Off	
BI	х	х	x	X	X	X	L	Ott	Off	Ott	Ott	Ott	Ott	Ott	2
RBI	н	L	L	L	L	L	L	Off	Off	Ott	Ott	Ott	Ott	Ott	3
LT	L	x	x	X	x	x	н	On	On	On	On	On	On	On	4

H = High level; L = Low level; X = irrelevant.

Notes:

- 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other input.
- 3. When ripple-blanking input (RBI) and inputs A, B, C and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
- 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.
- * BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

Continued....

Continued

This circuit has full ripple-blanking input/output controls and a lamp test input. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

Automatic leading and/or trailing-edge zeroblanking control (RBI and RBO) is incorporated in this device. A lamp test (LT) may be performed at any time when the BI/RBO is at a high level. An overriding blanking input (BI) can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are compatible for use with TTL or DTL logic outputs.

Numerical Designations and Resultant Displays

Segment Identification

Pin Configuration '

Dual 4-Input Positive-NAND Buffer

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{ABCD}$

Note: The 100000264 is a Shottky device.

Pin Configuration

Hex Schmitt-Trigger Inverter

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

Positive logic: $Y = \overline{A}$

Pin Configuration

Functional Block Diagram

64-Bit Random Access Read/Write Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Truth Table

Memory Enable	Write Enable	Operation	Outputs
0	0	Write	Hi-Z State
0	1	Read	Complement of Data Stored in Memory
1	x	Hold	Hi-Z State

The 100000266 is a fully decoded 64-bit RAM organized as 16 4-bit words. The memory is addressed by applying a binary number to the four Address inputs. After addressing, information may be either written into or read from the memory. To write, both the Memory Enable and the Write Enable inputs must be in the logical "0" state. Information applied to the four Write inputs will then be written into the addressed location. To read information from the memory the Memory Enable input must be in the logical "O" state and the Write Enable input in the logical "1" state. Information will be read as the complement of what was written into the memory. When the Memory Enable input is in the logical "1" state, the outputs will go to the high-impedance state. This allows up to 128 memories to be connected to a common bus-line without the use of pull-up resistors. All memories except one are gated into the high-impedance while the one selected memory exhibits the normally totem-pole low impedance output characteristics of TTL.

Operational Amplifier

Pin Designations

V+ = Pin 7

V-= Pin 4

The 100000267 is a general purpose operational amplifier. This amplifier offers overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30pF capacitor.

In addition, the circuit can be used as a comparator with differential inputs up to ±30V, and the output can be clamped at any desired level to make it compatible with logic circuits.

Pin Configuration

Dual Operational Amplifier

The 100000268 consists of two identical high gain operational amplifiers. These three-stage amplifiers use class A PNP transistor output stages with uncommitted collectors. The outputs may be ORed for use as a dual comparator or they may function as diodes in low threshold rectifying circuits.

100000140 100000141 100000142 100000148 100000149 100000215 100000216 100000217 100000218 100000219 100000269 100000270 100000271 100000272 100000273 100000274 100000275 100000276 100000277 100000278 100000279 100000280

Functional Block Diagram

O₈ O₇ O₆ O₅ O₄ O₃ O₇ O₁

OUTPUT
BUFFER

256 BITS
(32 x 8)
MEMORY
CELLS

1 OF 32
DECODER

ADDRESS
BUFFER

ADDRESS
BUFFER

ADDRESS
BUFFER

256-Bit Bipolar Read Only Memory

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

These high speed, electrically programmable, fully decoded TTL bipolar 256-bit read only memories are organized as 32 words by 8 bits.

Memory expansion is simple; three-state outputs are provided on the 100000215; uncommitted collector outputs are provided on all other devices. Each device has on-chip address decoding and chip enable. The memory is fabricated with all logic level zeroes(low); logic level ones (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

Pin Configuration

Quadruple 2-Input Positive-NAND Schmitt Trigger

Logic Diagram/Pin Designations

 $V_{CC} = Pin 14$ Gnd = Pin 7

Positive logic: $Y = \overline{AB}$

Note: The 100000281 is a Shottky device.

Logic Diagram

2-Input 4-Bit Digital Multiplexer

Logic Diagram/Pin Designations

$$V_{CC} = Pin 16$$

Gnd = Pin 8

$$Gnd = Pin 8$$

Truth Table

s_0	s ₁	$\mathbf{f}_{\mathbf{n}}$
0	0	В
1	0	A
0	1	В
1	1	0

This 2-input, 4-bit digital multiplexer features non-inverting data paths.

The inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.

Pin Configuration

Functional Schematic

Low Power Dual Retriggerable Resettable Monostable Multivibrator

Logic Diagram/Pin Designations

 $V_{CC} = Pin 16$ Gnd = Pin 8

Triggering Truth Table

Pi			
5(11)	4(12)	3(13)	Operation
H→L	L	н	Trigger
H	L→H	н	Trigger
x	x	L	Reset

Notes:

H = High Voltage Level $\geqslant V_{IH}$

 $L = Low Voltage Level \leqslant V_{IL}$

X = Don't Care (either H or L)

H→L = High to Low Voltage Level transition

L→H = Low to High Voltage Level transition

This dual resettable, retriggerable monostable multivibrator has two inputs per function, one active Low and one active High. This allows leading edge of trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger this device and result in a continuous true output.

The output pulse may be terminated at any time by connecting the reset pin to a logic level Low. Active pullups are provided on the outputs for good drive capability into capacitive loads.

Retriggering may be inhibited by tying the \overline{Q} output to the active level Low input or the Q output to the active level High input.

Pin Configuration

Hex Inverter With Open-Collector Outputs

Logic Diagram/Pin Designations

$$V_{CC} = Pin 14$$

$$Gnd = Pin 7$$

Positive logic: $Y = \overline{A}$

Note: The 100000188 is a Shottky device.

Pin Configuration

Logic Diagram

9-Bit Odd/Even Parity Generator/Checker

Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

NC = No internal connection

Function Table

Number of Inputs A Thru I That Are High	Outp Σ Even	
0, 2, 4, 6, 8	Н	L
1, 3, 5, 7, 9	L	н

H = high level

L = low level

This universal, monolithic, nine-bit parity generator/checker utilizes Schottky-clamped TTL circuitry and features odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is expanded by cascading.

Pin Configuration 3-Lead Metal Box

Schematic

Three-Terminal Negative Regulator

The 100000290 is a three-terminal negative regulator with a fixed output voltage of -12V. This device needs only one external component -- a compensation capacitor at the output.

REV. 02

Pin Configuration

Voltage Comparator/Buffer

Pin Designations

V+ = Pin 8

V- = Pin 4

Gnd = Pin 1

This voltage comparator is designed to operate over a wide range of supply voltages. Its output is compatible with RTL, DTL and TTL as well as MOS circuits.

Both the input and output can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'd.

Pin Configuration

Operational Amplifier

Pin Designations

V+ = Pin 7

V-= Pin 4

The 100000293 is a monolithic operational amplifier internally connected as a unity-gain non-inverting amplifier. The device has internal frequency compensation and provision for offset balancing.

Operational Amplifier

Pin Designations

V+ = Pin 11

V- = Pin 6

This precision high-speed operational amplifier has internal unity gain frequency compensation, which simplifies its application since no external components are necessary for operation. However, external frequency compensation may be added for optimum performance.

For inverting applications, feed-forward compensation will boost the slew rate to over $150 \text{V}/\mu\text{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. A single capacitor can be added to reduce the 0.1% settling time to under $1\mu\text{s}$.

Pin Configuration INPUT TERMINATION INPUT 12 TERMINATION STROBE 4 11 INPUT 10 STROBE 9 RESPONSE TIME GROUND 7 B OUTPUT

Dual Line Receiver

Pin Designations

 $V_{CC} = Pin 14$

Gnd = Pin 7

The 100000295 is a digital line receiver. The response time can be controlled with an external capacitor to eliminate noise spikes. The output is directly compatible with RTL, DTL or TTL integrated circuits.

Schematic

REV. 02

Pin Configuration

Logic Diagram

4-Bit Magnitude Comparator

Pin Designations

 $V_{CC} = Pin 16$

Gnd = Pin 8

Function Table

Comparing Inputs				scadi: inputs	ng		Output	s	
A3, B3	A2, B2	A1, B1	A0, B0	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A3>B3	x	x	x	х	х	х	н	L	L
A3 <b3< td=""><td>x</td><td>x</td><td>x</td><td>х</td><td>x</td><td>x</td><td>L</td><td>H</td><td>L</td></b3<>	x	x	x	х	x	x	L	H	L
A3= B3	A2>B2	x	х	х	x	x	н	L	L
A3= B3	A2 <b2< td=""><td>x</td><td>x</td><td>х</td><td>x</td><td>x</td><td>L</td><td>H</td><td>L</td></b2<>	x	x	х	x	x	L	H	L
A3= B2	A2= B2	A1>B1	х	х	x	x	н	L	L
A3= B3	A2= B2	A1 <b1< td=""><td>х</td><td>х</td><td>x</td><td>x</td><td>L</td><td>H</td><td>L</td></b1<>	х	х	x	x	L	H	L
A3= B3	A2= B2	A1= B1	A0>B0	х	x	x	н	L	L
A3= B3	A2= B2	A1= B1	A0 <b0< td=""><td>х</td><td>x</td><td>x</td><td>L</td><td>H</td><td>L</td></b0<>	х	x	x	L	H	L
A3= B3	A2= B2	A1= B1	A0= B0	H	L	L	н	L	L
A3= B3	A2= B2	A1= B1	A0= B0	L	H	L	L	H	L
A3= B3	A2= B2	A1= B1	A0= B0	L	L	H.	L	L	H
A3= B3	A2= B2	A1= B1	A0= B0	x	x	H	L	L	Н
A3= B3	A2= B2	A1= B1	A0= B0	н	H	L	L	L	L
A3= B3	A2= B2	A1= B1	A0= B0	L	L	L	н	H	L

H = high level

L = low level

X = irrelevant

This four-bit magnitude comparator performs comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions for two 4-bit words (A, B) are made and are externally available at three outputs. This device is fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A>B, A<B, and A=B outputs of a stage handling less-significant bits are connected to the corresponding A>B, A<B, and A=B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A=B input.

Note: The 100000296 is a Shottky device.

Pin Configuration

Logic Diagram

Data Selector/Multiplexer

Pin Designations

 $V_{CC} = Pin 24$

Gnd = Pin 12

Function Table

Inputs		
Select	Strobe	Output
D C B A	S	W
xxxx	H	H
LLLL	L	Ē0
LLLH	L	E1
LLHL	L	E2
LLHH	L	E3
LHLL	L	E4
LHLH	L	E5
LHHL	L	E 6
ГННН	L	E7
HLLL	L	E8
нггн	L	E9
HLHL	L	E10
ньнн	L	E11
HHLL	L	E12
ннгн	L	E13
нннг	L	E14
нннн	L	E15

H = high level, L = low level, X = irrelevant. $\overline{E0}$, $\overline{E1}$ $\overline{E15}$ = the complement of the level of the respective E input.

This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-sixteen data sources. The strobe input must be at a low logic level to enable this device. A high level at the strobe forces the W output high and the Y output low. The 100000297 has an inverted (W) output only.

100000118 100000229 100000298 100000299

Pin Configuration

Dual Sense Amplifiers

Logic Diagram/Pin Designations

 $V_{CC+} = Pin 16$

 $V_{CC} = Pin 8$

Gnd 1 = Pin 9

Gnd 2 = Pin 13

NC = No internal connection

Positive logic: $W = \overline{AS}$

Truth Table

Inputs		Output
A	S	W
H	H	L
L	X	H
X	L	н

Definition of logic levels:

Input	Н	L	х
A*	$v_{\text{ID}} \geqslant v_{\text{Tmax}}$	$v_{\text{ID}} \leqslant v_{\text{Tmin}}$	Irrelevant
S	$V_{I} \geqslant V_{IHmin}$	$V_{I} \leqslant V_{ILmax}$	Irrelevant

* A is a differential voltage ($V_{\rm ID}$) between A1 and A2. For these circuits, $V_{\rm ID}$ is considered positive regardless of which terminal is positive with respect to the other.

100000084 100000169 100000306

Pin Configuration

Arithmetic Logic Units/Function Generators

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	19, 21, 23, 2	Word A Inputs
B3, B2, B1, B0	18, 20, 22, 1	Word B Inputs
S3, S2, S1, S0	3, 4, 5, 6	Function-Select Inputs
C _n	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	13, 11, 10, 9	Function Outputs
A=B	14	Comparator Output
P	15	Carry Propa- gate Output
C _{n+4}	16	Inv. Carry Output
G	17	Carry Gen- erate Output
v _{CC}	24	Supply Voltage
Gnd	12	Ground

These arithmetic logic units (ALU)/function generators have a complexity of 75 equivalent gates on a monolithic chip, and perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with 100000100 or 100000170, full carry look-ahead circuits, highspeed arithmetic operations can be performed. If high speed is not of importance, a ripple-carry input (C_n) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay is minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These devices will accommodate active-high or active-low data if the pin designations are interpreted as follows:

Continued....

100000084 100000169 100000306

Continued

Table 1

Selection	tion M = H Active-High Data M = L; Arithmetic Ope		
S3 S2 S1 S0	Functions	C _n = H (no carry)	Cn = L (with carry)
LLLL	F=Ā	F = A	F = A Plus 1
LLLH	F = A + B	F = A + B	F = (A + B) Plus 1
LLHL	F = AB	F = A + B	$F = (A + \overline{B}) \text{ Plus 1}$
LLHH	F=0	F = Minus 1 (2's Compl)	F = Zero
LHLL	F = AB	F = A Plus AB	F = A Plus AB Plus 1
LHLH	F = B	F = (A + B) Plus AB	$F = (A + B) Plus A \overline{B} Plus 1$
LHHL	F = A⊕B	F = A Minus B Minus 1	F = A Minus B
LHHH	F = AB	F = AB Minus 1	F = AB
HLLL	F = A + B	F = A Plus AB	F = A Plus AB Plus 1
HLLH	F = A⊕B	F = A Plus B	F = A Plus B Plus 1
HLHL	F = B	F = (A + B) Plus AB	F = (A + B) Plus AB Plus 1
HLHH	F = AB	F = AB Minus 1	F=AB
HHLL	F = 1	F = A Plus A*	F = A Plus A Plus 1
HHLH	F = A + B	F = (A + B) Plus A	F = (A + B) Plus A Plus 1
HHHL	F = A + B	F = (A + B) Plus A	F = (A + B) Plus A Plus 1
нннн	F = A	F = A Minus I	F = A

^{*} Each bit is shifted to the next more significant position.

Table 2

Selection	M = H	Active-Low Data M = L: Arithmetic Operations		
S3 S2 S1 S0	Logic Functions	C _n = L (no carry)	C _n = H (with carry)	
LLLL	F = Ā	F = A Minus 1	F = A	
LLLH	F = AB	F = AB Minus 1	F = AB	
LLHL	F = A + B	F = AB Minus 1	F = AB	
LLHH	F = 1	F = Minus 1 (2's Comp)	F = Zero	
LHLL	$F = \overline{A + B}$	F = A Plus (A + B)	F = A Plus (A + B) Plus 1	
LHLH	F = B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1	
LHHL	F = A 🔾 B	F = A Minus B Minus 1	F = A Minus B	
LHHH	F = A + B	F = A + B	F = (A + B) Plus 1	
HLLL	F = AB	F = A Plus (A + B)	F = A Plus (A + B) Plus 1	
HLLH	F = A⊕B	F = A Plus B	F = A Plus B Plus 1	
HLHL	F=B	F = AB Plus (A + B)	F = AB Plus (A + B) Plus 1	
HLHH	P = A + B	F = A + B	F = (A + B) Plus 1	
HHLL	P = 0	F = A Plus A*	F = A Plus A Plus 1	
HHLH	F = AB	F = AB Plus A	F = AB Plus A Plus 1	
HHHL	F = AB	F = AB Plus A	F = AB Plus A Plus 1	
нннн	F = A	F = A	F = A Plus 1	

^{*} Each bit is shifted to the next more significant position.

		,
Pin No.	Active-high data Table 1	Active-low data Table 2
2	A ₀	\overline{A}_0
1	В0	$\overline{\mathbf{B}}_{0}$
23	A ₁	$\overline{\mathtt{A}}_{\mathtt{1}}$
22	В ₁	$\overline{\mathtt{B}}_{1}$
21	. A ₂	$\overline{\mathtt{A}}_{2}$
20	\mathtt{B}_{2}	$\overline{\mathtt{B}}_{2}$
19	· A ₃	$\overline{\mathtt{A}}_3$
18	В3	$\overline{\mathtt{B}}_3$
9	F ₀	$\overline{\mathbf{F}}_{0}$
10	$\mathbf{F_1}$	$\overline{\mathbf{F}}_{1}$
11	${f F_2}$	$\overline{\mathbf{F}}_{2}$ ·
13	$\mathbf{F_3}$	$\overline{\mathtt{F}}_3$
7	\overline{C}_n	C _n
16	\overline{C}_{n+4}	C _{n+4}
15	x	P
17	Y	G

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

These devices can also be utilized as comparators. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with C_n = H when performing this comparison. The A = B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

Input Cn	Output C _{n+4}	(Figure 1) Active-high Data	(Figure 2) Active-low Data
H	H	A ≼ B	A > B
H	L	A > B	A < B
L	H	A < B	A > B
L	L	A ≽ B	A \leftrightarrow B

Continued....

Continued

These circuits have been designed to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four functionselect inputs (S0, S1, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR and OR functions.

ALU Signal Designations

These devices can be used with the signal designations of either Figure 1 or Figure 2. The logic functions and arithmetic operations obtained with the signal designations of Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.

Note: The 100000169 is a Shottky device.

(11)

						_	
,	PART NUMBER	REV	DESCRIPTION		PART	DELL	DESCRIPTION
	01000002	00	DIODE CD81148/FDH600		NUMBER 101000136	REV 00	DESCRIPTION DIODE 1N5236B
1	01000003	00	XISTOR 2N4125		101000137	00	XISTOR TIP 141
	01000004 01000006	00 00	XISTOR 2N4441 XISTOR 2N4922		101000138 101000139	00 00	XISTOR TIP 146 DIODE 1N4735
1	01000015	00 00	XISTOR 2N3725	İ	101000140	00	XISTOR 2N4393
. 1	01000016 01000017	00	XISTOR 2N4123 DIODE 1N5231		101000141 101000142	00 00	DIODE ZENER 1N5239B DIODE RECTIFIER 1N4933 MOTOROLA
	01000019 01000021	00 00	XISTOR 2N5302 XISTOR 2N3715		101000143 101000144	00 00	DIODE ZENER 1N5347B 10V 5W +5-5% DIODE ZENER 1N5238B 8. 7V 5%
1	01000022	00	DIODE 1N4997	1	101000145	00	DIODE 1N5259
	01000023 01000024	00 00	DIODE BRIDGE MDA 962-1 DIODE MDA 950-1	}	101000146 101000147	00 00	DIODE 1N4947 DIODE 1N5438B
	01000026 01000027	00 00	DIODE 1N3879R DIODE 1N5231 20%	1	101000148 101000149	00 00	DIODE 1N4934 DIODE ZENER IN4754
1	01000028	00	DIODE 1N5240	1	101000150	00	DIODE ZENER IN52298
	01000031 01000032	00 00	DIODE ZENER 1N5248B 18V 5% DIODE 1N5228B]	101000151 101000152	00 00	DIODE MLED500 XISTOR SC45D TRIAC
1	01000038	00	XISTOR 40526/40691 TRIAC	l	101000153	00 00	XISTOR TIP 35A
	01000039 01000045	00 00	XISTOR SC45B TRIAC XISTOR MPS 3646/2N3646	<u> </u>	101000154 101000155	00	XISTOR KE4393 TYPE FET XISTOR 2N4059
	01000046 01000049	00 00	XISTOR TZ8065 DIODE 1N52438		101000156 101000157	00 00	DIODE LED RT ANGLE (HP#5082-4415) XISTOR TIP 48
1:	0100005 0	00	DIODE CD332864/. 5N5/. 1ZS1 1%	ſ	101000158	00	XISTOR MPS A-42
	01000051 01000052	00 00	XISTOR MPS3640 XISTOR 2N4403		101000159 101000160	00 00	XISTOR MPS A-92 XISTOR 2N4888
1	01000058	00	DIODE 1N5250B 20V 1%	1	101000161 101000162	00 00	DIODE IN4007 1000V DIODE IN5223
	01000059 01000061	00 00	XISTOR 2N3789 XISTOR 2N4919	Į	101000163	00	DIODE ZENER 1N5342B
1:	01000062 01000063	01 00	XISTOR DG5022 XISTOR 2N4399 PNP PWR	1	101000164 101000165	00 00	XISTOR MJE 1100 TRIAC 40663 (30A STUDMTG)
10	01000064	00	XISTOR D43C5 PNP		101000166	00	XISTOR PWR PUP
	01000065 01000066	00 00	DIODE 1N3899R 20AMP DIODE MDA 970-1FW BRIDGE	l	101000167 101000168	00 00	XISTOR PWR NPN XISTOR D45H4 PNP
1	01000067	00	DIODE ZENER 1N5234B 6. 2V	1	101000169 101000170	00 00	XISTOR TA8327 PNP XISTOR NJE 2955 PNP
	01000068 01000069	00 00	DIODE MDA 962A-1 DIODE 1N52358/1N754A GLASS		101000171	00	XISTOR RCA TIP 31 NPN
1	01000070	00 00	XISTOR 2N4400 DIODE ZENER 1N5251B 22V 5%		101000172 101000173	00 00	XISTOR D44C5 NPN XISTOR 2N6122 NPN
1	01000071 01000072	00	DIODE 1N52528/. 5M24ZSE 2%	1	101000174	00	XISTOR 2N6125 NPN
	01000073 01000074	00 00	XISTOR TIP 34 XISTOR TIP 36 PNP	1	101000175 101000176	00 00	XISTOR D45H7 PNP XISTOR 2N6133 PNP
1	01000075	00	DIODE 1N4001	1	101000177 101000178	00 00	DIODE IN53438 ZENER XISTOR 2N6126 PNP
	01000076 0100007 7	00 00	DIODE L209 (LED) LIGHT ADMITTING XISTOR TIP 31 NPN	1	101000179	00	XISTOR D44H7 NPN
	01000079 01000081	00 00	XISTOR 40668 DIODE 1N53488		101000180 101000181	00 0 0	XISTOR 2N5883 PNP XISTOR 2N3772 PNP
10	01000082	00	XISTOR GED 45C5		101000182	00 00	XISTOR EP1285 NPN XISTOR 2N6129 NPN
	01000083 01000084	00 00	XISTOR 2N4398 DIODE 1N3909R		101000183 101000184	00	XISTOR 2N5987 PNP
1	01000085 01000086	00 00	DIODE 1N3469 DIODE ZENER 1N5248 18V 10%		101000185 101000186	00 00	DIODE ZENER IN5221B DIODE ZENER IN5222B
1	01000087	00	DIODE ZENER 1N5348 11V	1	101000187	00	DIODE ZENER 1N5223B DIODE ZENER 1N5224B
	01000088 01000089	00 00	XISTOR 2N2646 DIODE 1N5241B	1	101000188 101000189	00	DIODE ZENER 1N5226B
1	01000090	00 00	DIODE IN5225B RECT BRDG MOTOROLA MDA 990-1		101000190 101000191	00 00	DIODE ZENER 1N5227B DIODE ZENER 1N5230B
10	01000091 01000092	00	DIODE 1N4003		101000192	00	DIODE ZENER 1N5232B DIODE ZENER 1N5233B
	01000093 01000094	00 00	DIODE 5245 XISTOR MPS A13		101000193 101000194	00 00	DIODE ZENER 1N5237B
10	01000097	00	XISTOR CN3566	1	101000195 101000196	00 00	DIODE ZENER IN5240B DIODE ZENER IN5242B
	01000098 01000099.	00 00	XISTOR 2N6005 XISTOR 2N6010		101000197	00	DIODE ZENER 1N5244B
	01000100 01000101	00 00	DIODE 1N5349 MDA 980-1 BRIDGE RECTIFIER	1	101000198 101000199	00 00	DIODE ZENER 1N5245B XISTOR TIP 41B NPN PWR
10	01000102	00	DIODE 1N3889R		101000200 101000201	00 00	XISTOR RCA 41B NPN POWER XISTOR 2N6131 UPN POWER
	01000103 010001 04	00 00	DIODE 1N5231B ZENER XISTOR TIP 30	1	101000202	00 00	XISTOR RCA 42A PNP POWER XISTOR BF 338
	01000105 01000106	00 00	XISTOR TIP 29 XISTOR TIP 35	1	101000204 101000205	00	XISTOR BDY 95
10	01000107	00	DIODE 40108		101000206 101000207	00 00	XISTOR PHOTO OP 640 DIODE ZENER 9 . IV 5W +5% IN5346B
10	01000108 010001 09	00 00	DIODE 1N4448 XISTOR TIP 36B		101000208	00	DIODE TIL 209A (LED) LT ADMTG
10	0100011 0 01000111	00	DIODE 1N5242 XISTOR TIP 42A W/INSUL H/W		101000209 101000210	00 00	XISTOR 2N3906 XISTOR 2N3904
10	01000112	00	DIODE 1N5341		101000211 101000212	00 00	DIODE 1N5246 XISTOR 2N4442
	01000114 01000115	00 00	DIODE CD4148 XISTOR TEXAS INST TIP33		101000213	00	XISTOR TO 101 NPN DUAL
1	01000116 01000120	00	DIODE MOTOROLA MR1210SL DIODE 1N4004		101000214 101000215	00 00	XISTOR 2N2219 NPN XISTOR 2N3053 PNP
1	01000121	00	MR 1200 50A SILICON RECTIFIER	1	101000216 101000217	00 00	XISTOR 2N3055 NPN • XISTOR 2N4037 PNP
	01000122 01000123	00 00	XISTOR 2N6164 XISTOR TIP 29A		101000218	00	XISTOR MPS U51 NPN
1	01000124 01000125	00 00	XISTOR TIP 31A DIODE 1N5347		101000219 101000220	00 00	XISTOR 2N3771 NPN DIODE IN 914 ITT-600DPD
1	01000126	00	DIODE 1N5355		101000221 101000222	00 00	DIODE IN 752 DIODE IN 4736A
	01000127 01000128	01 00	XISTOR PHOTO NPN PLANAR SILICON XISTOR TIP 36A	1	101000223 101000224	00 00	DIODE 1N3208 DIODE 1N5221
1	01000129 01000130	00 00	XISTOR 40669 XISTOR 40527/40692/L4001,5	1	101000225	00	DIODE SCR RCA 40654
1	01000131	00	DIODE 1N3880		101000226 101000227	00 00	DIODE RECT BRAKE ASSY XIS FOR MJE 2955
	01000132 01000133	01 00	DIODE NETWORK 4-CD8(148) RECT MR 1210SL 80A SILICON RECT		101000228 101000229	00	XISTOR MJE 3055 DIODE SZ 3V1 2 W1N52
1	01000134 01000135	00	DIODE ZENER 7.5V 1% .5M7.5ZS1 DIODE MR831 MOTOROLA	-	101000229	00	XISTOR 2N 3643
· '		30					
				1			
				1			

PART NUMBER DESCRIPTION

XISTOR 2N5189
XISTOR 2N 4916
XISTOR 2N 4916
XISTOR 2N 3644
DIODE A14F
XISTOR MPS U01
XISTOR MPS U01
XISTOR MPS U51 SELECTED
DIODE RECT UCC ASR 33
XISTOR TTY UCC ASR 33
XISTOR TTY
XISTOR 2N5022 FOR NOVA 2
XISTOR MDA 980-2 BRIDGE
DIODE HOT CARRIER HEWLETT-PACKARD
TRIAC 2N6165
XISTOR 2310
XISTOR THYRISTOR 2310
XISTOR THYRISTOR 2310
DIODE 2310
XISTOR 2N4249
XISTOR 2N3565
DIODE 3A200
DIODE 1N5231B
DIODE 1N5269A
DIODE 1N7269A
DIODE 1N7269A
DIODE 1N7269A REV DESCRIPTION 101000232 101000233 101000234 101000235 101000236 101000237 101000238 00 00 00 00 101000239 101000240 101000241 101000242 101000243 101000245 101000246 101000247 101000248 101000250 101000251 101000252 101000253 101000254 101000255 101000256 101000256 101000259 101000261 101000262 101000264 101000265 00 00 00 101000267

PART NUMBER REV DESCRIPTION		PART NUMBER	DEV	DESC RIPTION	. 1
	%		00 RES	16.00K OHM 1/4W	5%
102000001 00 RES 2.70 OHM 1/4W 5 102000002 00 RES 3.00 OHM 1/4W 5	% %	102000091 102000092	00 RES	18.00K OHM 1/4W	5%
102000003 00 RES 3.30 OHM 1/4W 5 102000004 00 RES 3.60 OHM 1/4W 5	%	102000093 102000094	00 RES 00 RES	20.00K OHM 1/4W 22.00K OHM 1/4W	5% 5%
102000005 00 RES 3.90 OHM 1/4W 5 102000006 00 RES 4.30 OHM 1/4W 5	% %	102000095 102000096	00 RES 00 RES	24.00K OHM 1/4W 27.00K OHM 1/4W	5ର 5ର
102000007 00 RES 4.70 OHM 1/4W 5	% I	102000097	00 RES 00 RES	30.00K OHM 1/4W 33.00K OHM 1/4W	5% 5%
102000000 00 PES 5.60 OHM 1/4W 5	% %	102000098 102000099	00 RES	36.00K OHM 1/4W	5%
102000011 00 RES 6.80 OHM 1/4W 5	% %	102000100 102000101	00 RES 00 RES	39.00K OHM 1/4W 43.00K OHM 1/4W	5 ัช 5 ัช
102000012 00 RES 7.50 OHM 1/4W 5	%	102000102 102000103	00 RES 00 RES	47.00K OHM 1/4W 51.00K OHM 1/4W	5% 5%
102000013 00 RES 8.20 OHM 1/4W 5 102000014 00 RES 9.10 OHM 1/4W 5	% %	102000104 102000105	00 RES	56.00K OHM 1/4W 62.00K OHM 1/4W	5% 5%
102000016 00 RES 11.00 OHM 1/4W 5	.%	102000106	00 RES	68.00K OHM 1/4W	5%
102000018 00 RES 13.00 OHM 1/4W 5	%	102000107 102000108	00 RES 00 RES	75.00K OHM 1/4W 82.00K OHM 1/4W	5% 5%
102000019 00 RES 15.00 OHM 1/4W 5 102000020 00 RES 16.00 OHM 1/4W 5	% %	102000109 102000110	00 RES	91.00K OHM 1/4W 100.00K OHM 1/4W	5ິລ 5%
102000021 00 RES 18.00 OHM 1/4W 5	% %	102000111 102000112	00 RES 00 RES	110.00K OHM 1/4W 120.00K OHM 1/4W	5% 5%
102000023 00 RES 22.00 OHM 1/4W 5	% I	102000113	00 RES	130.00K OHM 1/4W	5% 5%
102000024 00 RES 24.00 OHM 1/4W 5 102000025 00 RES 27.00 OHM 1/4W 5	80	102000114 102000115	00 RES	116.00K OHM 1/4W	5°5
102000027 00 PEG 33 00 OHM 1/4W 5	% 1	102000116 102000117	00 RES 00 RES	118.00K OHM 1/4W 200.00K OHM 1/4W	5% 5%
102000028 00 RFS 36 00 OHM 1/4W 5	% I	102000118 102000119	00 RES	220.00K OHM 1/4W 240.00K OHM 1/4W	5.0 5.0
102000030 00 PES 43 00 OHM 1/4W 5	õ,	102000120 102000121	00 RES	270.00K OHM 1/4W 300.00K OHM 1/4W	5℃ 5℃
102000031 00 RES 47.00 OHM 1/4W 5 102000032 00 RES 51.00 OHM 1/4W 5	go.	102000122	00 RES	330.00K OHM 1/4W	5ିତ 5ର
102000033 00 RES 56,00 OHM 1/4W 5	% %	102000123 102000124	00 RES	390.00K OHM 1/4W	5.0 5.0 5.0
102000035 00 RES 68.00 OHM 1/4W 5 102000036 00 RES 75.00 OHM 1/4W 5	%	102000125 102000126	00 RES 00 RES	430.00K OHM 1/4W 470.00K OHM 1/4W	5 ℃
102000037 00 RES 82.00 OHM 1/4W 5	%	102000127 102000128	00 RES 00 RES	510.00K OHM 1/4W 560.00K OHM 1/4W	5 3 5 a
102000039 00 RES 100.00 OHM 1/4W 5	%	102000129 102000130	00 RES	620.00K OHM 1/4W 680.00K OHM 1/4W	5 ° 2 5 ° 3
102000040 00 RES 110.00 OHM 1/4W 5 102000041 00 RES 120.00 OHM 1/4W 5	% I	102000131	00 RES	750.00K OHM 1/4W 820.00K OHM 1/4W	5 o 5 o
102000042 00 RES 130.00 OHM 1/4W 5 102000043 00 RES 150.00 OHM 1/4W 5	%	102000132 102000133	00 RES	910.00K OHM 1/4W	5 °c 5 °c
102000044 00 RES 160.00 OHM 1/4W 5	% I	102000134 102000135	00 RES	1.10M OHM 1/4W	53
102000046 00 RES 200.00 OHM 1/4W 5	% %	102000136 102000137	00 RES	1.20M OHM 1/4W 1.30M OHM 1/4W	5 c 5 c
102000048 00 RES 240.00 OHM 1/4W 5	%	102000138 102000139	00 RES 00 RES	1.50M OHM 1/4W 1.60M OHM 1/4W	5 c 5 c
102000050 00 RES 300.00 OHM 1/4W 5	% I	102000140 102000141	00 RES 00 RES	1.80M OHM 1/4W 2.00M OHM 1/4W	5°c 5°c
102000051 00 RES 330.00 OHM 1/4W 5 102000052 00 RES 360.00 OHM 1/4W 5	%	102000142	00 RES	2. 20M OHM 1/4W 2. 40M OHM 1/4W	5 0 5 0
102000053 00 RES 390.00 OHM 1/4W 5 102000054 00 RES 430.00 OHM 1/4W 5 102000055 00 RES 470.00 OHM 1/4W 5	%	102000143 102000144	00 RES	2.70M OHM 1/4W	5 g 5 v
102000055 00 RES 470.00 OHM 1/4W 5 102000056 00 RES 510.00 OHM 1/4W 5	% S	102000145 102000146	00 RES 00 RES	3.30M OHM 1 4W 3.30M OHM 1 4W	5 :
102000057 00 RES 560.00 OHM 1/4W 5 102000058 00 RES 620.00 OHM 1/4W 5	87878	102000147 102000148	00 RES	3.60M OHM 1 4W 3.90M OHM 1 4W	5 8 5 8
102000059 00 RES 680.00 OHM 1/4W 5	٠. ا	102000149 102000150	00 RES 00 RES	4.30M OHM 1.4W 4.70M OHM 1.4W	5 2 5 3
102000060 00 RES 750.00 OHM 1/4W 5 102000061 00 RES 820.00 OHM 1/4W 5	એ શ્વર મેં એ એ એ એ	102000151 102000152	00 RES 00 RES	5. 10M OHM 1 4W 5. 60M OHM 1 4W	5 c 5 c
102000062 00 RES 910.00 OHM 1/4W 5 102000063 00 RES 1.00K OHM 1/4W 5	50	102000153	00 RES	6.20M OHM 1'4W	5 ° 5 ° 2
102000064 00 RES 1.10K OHM 1/4W 5 102000065 00 RES 1.20K OHM 1/4W 5	80	102000154 102000155	00 RES	7.50M OHM 1/4W	5 3
102000066 00 RES 1.30K OHM 1/4W 5 102000067 00 RES 1.50K OHM 1/4W 5	ું કુલ	102000156 102000157	00 RES	8. 20M OHM 1 4W 9. 10M OHM 1 4W	5 : 5 :
	ા કર્યા	102000158 102000159	00 RES 00 RES	10.00M OHM 1 4W 11.00M OHM 1 4W	5 c 5 .
102000069 00 RES 1.80K OHM 1/4W 5 102000070 00 RES 2.00K OHM 1/4W 5	57.87.8	102000160 102000161	00 RES 00 RES	12.00M OHM 1 4W 13.00M OHM 1 4W	5 è 5 è
102000071 00 RES 2.20K OHM 1/4W 5 102000072 00 RES 2.40K OHM 1/4W 5	, S. C. S. C	102000162	00 RES 00 RES	15.00M OHM 1 4W 16.00M OHM 1 4W	5 c 5 c
102000072 00 RES 2.40K OHM 1/4W 5 102000073 00 RES 2.70K OHM 1/4W 5 102000074 00 RES 3.00K OHM 1/4W 5	83	102000163 102000164	00 RES	18.00M OHM 1 4W	5' 3
102000075 00 RES 3.30K OHM 1/4W 5 102000076 00 RES 3.60K OHM 1/4W 5	2929	102000165 102000166	00 RES	20.00M OHM 1 4W 22.00M OHM 1 4W	5 2 5 5
102000077 00 RES 4.30K OHM 1/4W 5 102000078 00 RES 4.70K OHM 1/4W 5	So 1	102000167 102000168	00 RES	24.00M OHM 1 4W 27.00M OHM 1 4W	5.
102000079 00 RES 5.10K OHM 1/4W 5	63 63	102000169 102000170	00 RES	30.00M OHM 1 4W 33.00M OHM 1 4W	5 à 5′.
102000081 00 RES 6.20K OHM 1/4W 5	0,00	102000171 102000172	00 RES 00 RES	36, 00M OHM 1 4W 39, 00M OHM 1 4W	5 ± 5∵
102000083 00 RES 7.50K OHM 1/4W 5	%	102000173 102000174	00 RES 00 RES	43.00M OHM 1 4W 47.00M OHM 1 4W	5 .
102000084 00 RES 8.20K OHM 1/4W 5' 102000085 00 RES 9.10K OHM 1/4W 5'	6	102000175	00 RES 00 RES	51.00M OHM 1 4W 56.00M OHM 1 4W	5°::
102000086 00 RES 10.00K OHM 1/4W 5' 102000087 00 RES 11.00K OHM 1/4W 5'	8	102000176 102000177	00 RES	62.00M OHM 1 4W	5 e 5 :
	(%)	102000178 102000179	00 RES	75.00M OHM 1 4W	5 c 5 2
102000090 00 RES 15.00K OHM 1/4W 5		102000180	00 RES	82.00M OHM 1 4W	5 €
					1
					Į
					1

							the basis for manufacti	ire or sale of Rems	, with	out Writ	ten permission				0200038
PART NUMBER	REV			DE	SCRIPTION	N		PART	DEV				DECORING		
102000181	00	RES	91.00M		1/4W	5%		NUMBER 102000291					DESCRIPT		
102000182	00	RES	100.00M	OHM	1/4W	5%		102000292	00 00	RES RES	0. 50 82. 00	OH M	10W 1/2W	5% & & & & & & & & & & & & & & & & & & &	
102000183 102000185	00 00	RES RES	5.00 150.00	OHM OHM	1/4W 1/10W	5% 1%	•	102000293 102000294	00 00	POT	500.00 1.00K	OH M OH M	w	50	
102000186 102000188	00 00	RES RES	17.50 .10	OHM	3W 2W	1%		102000295	00	POT	10.00K	OHM		5%	
102000189	00	RES	1.00	ОНМ ОНМ	3W	1% 5%		102000296 102000297	00 00	RES RES	50. 00 150. 00	OH M OH M	50W 1/8W	5% 5% 1%	
102000192 102000193	00 00	RES RES	180. 00 330. 00	онм онм	3W 3W	5% 5%		102000298	00	RES	6.80K	OHM	1/8W	1%	
102000194	00	RES	470.00	OHM	3W	5%		102000300 102000301	00 00	RES RES	6. 80 150. 00	OH M OH M	1/2W 2W	5% 5%	
102000195 102000200	00 00	RES RES	600.00 .00	онм онм	3W W	5% %	тнмс	102000302 102000303	00 00	RES POT	12.00 500.00	OHM OHM	'5W	5%	
102000201 102000205	00 00	RES RES	3.90K 14.00		1/4W W	5% 1%		102000304	00	RES	1.00K	OHM	1W 1/8W	10% 5%	
102000206	00	RES	680.00	OHM	2W			102000305 102000306	00 00	POT POT	10. 00K 20. 00K	OH M OH M	3/4W 3/4W		
102000209 102000210	00 00	RES RES	470.00 1.50K	OHM	1W 1/8W	5% 1%		102000307 102000308	00 00	POT	100.00K RES NTWK300	ОНМ	3/4W		
102000211 102000212	00 00	RES RES	1.65K 1.82K	OHM	1/8W	1%		102000309	00	POT	1. 00K	OHM	1/2W	20%	
102000213	00	RES	2.00K	OHM	1/8W 1/8W	1% 1% 1%		102000310 102000311	00 00	RES RES	20. 00K 51. 00	OH M OH M	2W 1/2W	5% 5%	PIHER
102000214 102000215		RES RES	2.21K 15.00K		1/8W 1/8W	1% 1%		102000312 102000313	00	RES	7. 32K	OHM	1/8W	1%	Indi
102000216 102000217		RES RES	1.30K 200.00	OHM	1/8W	1% 1% 5%		102000314	00	RES RES	100. 00 125. 00	OHM OHM	3W 3W	5% 5%	
102000218	00	RES	240.00	OHM OHM	1/8W 1/8W	5% 5%		102000315 102000316	00 00	RES RES	330. 00 6. 8K	OHM OHM	1/2W 1/2W	200 500 500	
102000219 102000220	00	RES RES	33 ბ. 00 390. 00	OHM OHM	1/8W 1/8W	5% 5%		102000317	00	RES	110.00	OHM	3W	5%	
102000221 102000222	00	POT	2. 00K	OHM	1W	10%		102000318 102000320	00 00	RES RES	14.70 68.00	OH M OH M	1/8W .1/2W	1% 5% 1%	
102000224	00	I/C	20.00K SDG50622	2/506BI	1W R/HI506A-5	10% 5/50618	ı	102000321 102000322	00 00	RES RES	3.01K 511.00	OHM OHM	1/8W 1/8W	1% 1%	
102000225 102000226	00 00	I/C RES	SDG50707 95.30	7/50706 OHM	/507BR/HI 1/2W	507A-5 1%	i	102000323	00	RES	1. 47K	OHM	1/8W	1%	
102000227 102000228	00	RES	25.00	OHM	3W	5%		102000324 102000325	00 00	RES RFS	1.96K 3.24K	OHM OHM	1/4W 1/4W	1% 1%	METFILM METFILM
102000229	00	RES RES	8. 00 30. 00	ОНМ ОНМ	4W 3W	3% 1%		102000326 102000327	00 00	RES RES	4. 42K 4. 99K	OHM OHM	1/4W 1/4W	1% 1%	METFILM
102000230 102000232		RES RES	. 20 4. 00	OHM	10W 5W	5% 5%		102000328	00	RES	2222.00	OHM	1/10W	. 02%	METFILM
102000233	00	RES	390.00	OHM	1/2W	5%		102000329 102000330	00 00	RES RES	1778. 00 2667. 00	OH M	1/10W 1/10W	. 02% . 02%	
102000234 102000235		RES POT	10. 00 100. 00	OHM	1/2W 1/2W	5% 10%		102000331 102000332	00 00	RES RES	3333.00 10.00K	ОН М ОН М	1/10W	. 02%	
102000236 102000237		RES RES	390.00 180.00	ОНМ ОНМ	3W 1W	5% 5%		102000333	00	VRIS	HV SURGE SU	IPPR	1/10W	. 02%	
102000238	00	RES	11.00	OHM	4W	3%		102000334 102000335	00 00	RES RES	30. 00 30. 00	OH M OH M	3W 1W	5% 5% 5%	
102000239 102000240	00	RES RES	14. 00 53. 60	OHM	3W 3W	1% 1%		102000336 102000337	00 00	RES RES	1.00 8.00	OH M OH M	25W 4W	5% 1%	
102000241 102000242		RES RES	10.00K 3.32K	OHM	1/8W 1/8W	1% 1%		102000338	00	RES	30.00	OHM	10W	5% 1%	
102000243 102000244	00	RES	12. 10K	OHM	1/8W	1%		102000339 102000340	00 00	RES RES	. 14. 00 . 10	OH M OH M	10W 5W	1% 5%	
102000245	00	RES THM	5.62K 5.00K	OHM	1/8W W	1% %	тнмс	102000341 102000342	00 00	RES RES	5. 00K 510. 00	ОНМ ОНМ	5W 2W	5106668888888888888888888888888888888888	
102000246 102000247		RES RES	17. 50 75. 00	OHM	3W 3W	1%		102000343	00	RES	1. 05K	OHM	1/8W	1%	
102000248	00	RES	100.00	OHM	3W	1% 1% 1%		102000344 102000345	00 00	RES RES	1. 21K 4. 02K	OH M OH M	1/8W 1/8W	1% 1%	
102000249 102000250	00	RES RES	10.00 6.81K	OHM OHM	1/8W 1/8W	1%		102000346 102000347	00 00	RES RES	2. 05K 5. 11K	OHM	1/8W	1%	
102000251 102000252		RES	1.50 270.00	OHM OHM	3W 1W	5% 5%	W.W. CARBON	102000348	00	RES	1.00	мно мно		5%	
102000253	00	RES	91.00	OHM	1/4W	5%	PIH/COR	102000349 102000350	00 00	RES RES	10. 00 50. 00	онм Онм	30W 5W	5% 5%	
102900254 102009255	00	RES RES	30. 00 91. 00	ОНМ ОНМ	1/4W 1/2W	5% 5%		102000351 102000352	00	RES RES	14. 00 8. 00	ОНМ ОНМ	10W		
102000256 102000257		RES RES	7. 87K 38. 00	OHM OHM	1/8W 3W	1% 1%	A-P WOU	102000353	00	RES	33. 00	OHM	5W 10W	1% 5%	
102000258 102000259	00	RES	47.00	OHM	1/2W	5%		102000355 102000356	00 00	RES RES	330. 00 140. 00	OHM OHM	1/8W 1/8W	1% 1%	
102000260	00	RES RES	3. 60 50. 00	OHM OHM	1W 5W	5% 5%	CARBON	102000357 102000358	00 00	RES POT	10. 00 20. 00K	OHM OHM	5W 1/2W	1% 5% 20%	
102000261 102000262		RES RES	130.00 3.00	OHM OHM	1/4W 1W	5% 5%	PIHER CARBON	102000359	01	NET	4-105+-2%		1/10W		
102000263 102000265	00	RES	33. 00 27. 00	OHM OHM	1/4W 1/2W	5% 5%	PIHER	102000360 102000361	00 00	RES RES	20. 00K 10. 00K	OHM OHM	5W 5W	5% 5%	
102000266	00	RES RES	150.00	OHM	3W	1%	(1/2WR) A-P WOU	102000362 102000363	00 00	RES POT	11. 100 500. 00	OHM '	4W 1/4W	5% 10%	
102000267 102000268	00 00	RES RES	220. 00 30. 00	OHM OHM	1/2W 1/2W	5% 5%	CARBON	102000364	00	RES	12.00	OHM	4W	5%	NON-IND
102000269	00	RES	510.00	OHM	1/2W	50	CARBON	102000365 102000367	00 00	RES RES	15. 00 180. 00	OHM OHM	3W 1/2W	5% 5% 5%	
102090271 102000272	00 00	RES RES	34.00 .05	OH M	1/4W 5W	2.6 5.6 5.6	w/w	102000368 102000369	00 00	RES RES	110. 00 2. 37K	OHM OHM	5W 1/8W	5% 1%	
102000273 102000274	00 00	RES RES	470.00 1.50	OH M OH M	1/2W 1/2W	5% 5%	CARBON	102000370 102000371	00	THM	230.00	OHM	.006W	5% 1%	KB22L2
102000275	00	RES	1.50	ОНМ	20W 12W	•		102000372	00	RES	196. 00 464. 00	OHM OHM	1/8W 1/8W	1%	
102000276 102000277	00 00	RES RES	15.00 50.00	OH M	20W			102000373 102000374	00 00	RES RES	300. 00 51. 10K	OHM OHM	1W 1/4W	5% 1%	
102000278 102000279	00 0 0	DUM RES	120.00	ОНМ	1/2W	5%	DUMMY PIHER	102000375 102000376	00	POT	200. 00 150. 00	OHM OHM	1W 1W	10% 5%	
102000280	00	RES	140. 00 5. 10K	OHM	1/2W 2W	200 50		102000377	00	RES	3.00	OHM	2. 5W	5%	ELZH
102000281 102000282	00 00	RES RES	10.00K	MHO	2W	5 ∕o	CARBON CARBON	102000378 102000379	00 00	POT RES	100. 00 1210. 00	OHM OHM	3/4W 1/4W	10% 1%	CERMET
192999283 192999284	00 00	RES POT	1.00K 5.00K		1/2W	5%		102000380 102000381	00	RES RES	931.00 475.00	ОНМ	1/4W 1/4W	1% 1%	
102090285	00	POT	500.00K	OH M	TDP	ec:	D1 /C D1 20	102000382	00	RES	442.00	OHM	1/4W	1%	
102000286 102000287	00 00	RES RES	36.00 39.00	OH M OH M	TPR 1/4W	5% 5%	P1/C RL20 PIHER	102000383 102000384	00 00	RES RES	316.00 150.00	OHM OHM	1/4W 1/4W	1%	
192000288 102990289	00 00	POT RES	50. 00 . 10	OH M OH M	1W 10W	م 10° م5°5		102000385 102000386	00 00	RES RES	118.00 100.00	OH M	1/4W 1/2W	1% 5%	
102000290	00	RES	75.00	ОНМ	1W	5%		102000387	00	RES	1. 00	ОНМ	10W	5%	
I								1							
I								1							
L								L							

102000422 102000388 PART NUMBER DESCRIPTION REV 102000388 102000389 · 1W 1/2W 5% 5% 1% 5% 5% 10% 5% 1.00K ОНМ 1W 5'
1/2W 5'
2 1/2W 3'
SW 19
1W 59
1W 59
1W 59
1/2W 5%
225W 5%
225W 1/2W 5%
225W 45%
3W 10%
1/4W 1%
100069-502
100069-203
100163-501 RES RES RES 330. 00 . 10 82. 00 ОНМ 102000390 102000391 OHM OHM RES RES RES POT RES RES 102000392 102000393 102000394 OHM OHM COMP 680.00 . 20 100. 00 CERMET 100. 00 110. 00 5. 00 33. 00K 30. 00 510. 00 5. 00 2. 00 4. 00 13. 50K 5. 00K 102000395 102000396 ОНМ OHMITE ADJ. 102000397 102000398 102000399 RES RES OHM OHM WR WND RES RES RES 102000400 102000401 OHM OHM OHM OHM OHM OHM 102000402 102000403 102000404 POT RES POT POT POT POT POT POT POT 5.00K 20.00K 500.00 1.00K 5.00K 102000405 102000406 100069-203 100163-501 100063-102 100163-502 100163-103 100163-203 102000407 102000408 102000409 OHM OHM 20.00K OHM 50.00 OHM 4.00 OHM .20 OHM 2.2K OHM HANMER DRIVER 102000410 102000411 102000412 100069-500 10W RES RES 2W 1/2W 2310 1/4W 100W 25W 102000412 102000413 102000414 102000415 0% W/W 800210-001 RES 102000416 102000417 34. 00 50. 000 ОНМ +5% TR-AN500D RES RES TRAI150D 102000418 102000419 RES RES RES 15.00 1.10 22.00 OHM OHM 1/2W 1/2W 1/2W 10W 7W +5% +5% +5% +5%. 102000420 w/w 102000421 102000422 RES 10.00 RES RWR .30 OHM OHM

								na na			
PART NUMBER	REV		1	DESCRIPTION	ON			PART NUMBER	REV	<i>r</i>	DESCRIPTION
103000001	00	CAP	.0100MF	+80-20%	50V	CER		103000116	00	CAP	.0500MF +50-20% 25V DISC
103000002	00	CAP	6.8000MF	+10-10%	35V	TANT		103000117	00	CAP CAP	.1000MF 250V 60HZ .4000MF 660V
103000003 103000004	00 00	CAP CAP	. 2200MF 470. 0000PF	+10-10% +5- 5%	20V 500V	TANT . MICA		103000118 103000119	00	CAP	AC LINE FILTER, RFI PWRLINE #20K6
103000005	00	CAP	820.0000PF	+5- 5% +5- 5%	300V 500V	MICA MICA		103000120 103000121	00 00	CAP CAP	160.0000PF +5- 5% 500V MICA 12.5000MF +6- 6% 370V
103000006 103000007	00 00	CAP	220.0000PF 50.0000MF	+5- 5%	50V	TANT	i	103000122	00	CAP	.0470MF +10-100 100V MYLAR
103000012	00	CAP	.1000MF	+5- 5%	250V	FIL		103000123 103000124	00	CAP CAP	.0033MF +10-10% 100V MYLAR 1.000MF +10-10% 50V MYLAR
103000013 103000015	00 00	CAP CAP	.5000 .0022MF	+5- 5%	1000V			103000125	00	CAP	2.2000MF +50-20% 35V T/T
103000016	00	CAP	1,0000MF	+10-10% +10-10%	35 V 6 V	TANT TANT		103000126 103000127	00	CAP CAP	.1500FD +75-10% 5V ELEC .0220MF +10-10% 100V MYLAR
103000018 103000026	00 00	CAP	6.8000MF 21000.0000MF	+20-20%	40V	ELEC		103000128	00	CAP	.3300MF +10-10 50V MYLAR
103000027	00	CAP	6000.0000MF 100.0000PF	+20-20% +5- 5%	10V 500V	ELEC MICA		103000129 103000130	00 00	CAP CAP	98000.0000MF +75-10% 20V ELEC 6.0000MF 660V OIL FILLER
103000031 103000032	00 00	CAP	IOO. OUOUPF	.0- 0.0	5554	ca	I	103000131	00	CAP	.01 MF 400V 500MF 25V
103000033 103000035	00 00	CAP	1200.0000PF	+5- 5%	500V	MICA		103000132 103000133	00 00	CAP CAP	10MF 560V
103000036	00	CAP	8.0000MF	+20-20%	50V	TANT		103000134 103000135	00	CAP CAP	150.000MF 6V 1600.0000PF +5-5% 500V MICA
103000037 103000038	00 00	CAP CAP	47. 0000MF	+20-20%	20V	TANT	j	103000136	00	CAP	1.0000MF 400V
103000039	00	CAP	.0500MF	+20-20%	12V	CER	ŀ	103000139 103000140	00 00	CAP CAP	1000 UF 25WV CRAMER WHB1000-25 15MFD 200-365 VACGE45F165
103000040 103000041	00 00	CAP CAP	33.0000PF 560.0000PF	+5- 5% +5- 5%	500V 300V	MICA MICA	Į	103000141	00	CAP	5MFD 366-410VAC GE 45F273
103000042	00	CAP	300.0000PF	_				103000142 103000143	00 00	CAP CAP	1.0000PF + 5-5% 500V MICA 2.0000PF + 5-5% 500V MICA
103000043 103000044	00 00	CAP CAP	21000.0000MF 12.0000PF	+20-20% +5- 5%	25V 500V	ELEC MICA		103000144	00	CAP	3.0000PF + 5-5% 500V MICA
103000045	00	CAP	2. 2000MF	+20-20%	20V	TANT		103000145 103000146	00 00	CAP CAP	4.0000PF + 5-5% 500V MICA 7.0000PF + 5-5% 500V MICA
103000046 103000047	00 00	CAP	330.0000PF .0068MF	+5- 5% +10-10%	100V 100V	MICA RCAP	ı	103000147	00	CAP	8.0000PF + 5-5 5 500V MICA
103000048	00	CAP ·	24000.0000MF	+20-20%	40V 20V	ELEC ELEC	- 1	103000148 103000149	00 00	CAP CAP	20.0000PF + 5-5 5 500V MICA
103000049 103000051	00 00	CAP CAP	38000.0000MF 20000.0000MF	+20-20% +20-20%	10V	ELEC	1	103000150	00	CAP	22.0000PF + 5-5 5 500V MICA 24.0000PF + 5-5 5 500V MICA
103000052	00	CAP	47. 0000MF	+20-20% +5- 5%	6V 500V	TANT MICA	1	103000151 103000152	00 00	CAP CAP	30.0000PF + 5-5 5 500V MICA
103000053	00 00	CAP CAP	68.0000PF .0100MF	+10-10%	50V	RCAP		103000153	00	CAP	36.0000PF + 5-5 5 500V MICA 39.0000PF + 5-5 5 500V MICA
103000055	00	CAP	100.0000PF 82.0000PF	+5- 5% +5- 5%	100V 500V	RCAP MICA		103000154 103000155	00	CAP	43.0000PF + 5-5 5 500V MICA
103000056 103000057	00 00	CAP CAP	6.8000MF	+50-20%	6.3V	T/T		103000156 103000157	00 00	CAP CAP	47,0000PF + 5-5 5 500V MICA 62,0000PF + 5-5 5 500V MICA
103000059	00	CAP	110.0000MF 31000.0000MF	+20-20%	40V 40V	ELEC	- 1	103000157	00	CAP	75.0000PF + 5-5 5 500V MICA
103000060 103000061	00 00	CAP	20000.0000MF	+20-20%	20V	ELEC	- [103000159 103000160	00 00	CAP CAP	91.0000PF + 5-5% 500V MICA 110.0000PF + 5-5% 500V MICA
103000062 103000063	00 00	CAP CAP	6.8000MF 161-193MF	+50-20%	35V 110V	T/T 60HZ		103000161	00	CAP	120.0000PF + 5-5 5 500V MICA
103000064	00	CAP		%	V			103000162 103000163	00	CAP CAP	180,0000PF + 5-5% 500V MICA
103000065 103000066	00 00	CAP CAP	1.0000MF 6300,0000	+10-10% &	35V 20V	T/T ELEC	- 1	103000164	00	CAP	200.0000PF + 5-5 5 500V MICA 240.0000PF + 5-5 5 500V MICA
103000067	00	CAP	33000.0000	%	50V 6.3V	ELEC T/T		103000165 103000166	00 00	CAP CAP	300.0000PF + 5-5 500V MICA
103000068 103000069	00 00	CAP CAP	47.0000MF 1.5000MF	+50-20% +20-20%	35 V	ELEC	H	103000167	00 00	CAP CAP	360.0000PF + 5-5 5 500V MICA 390.0000PF + 5-5 500V MICA
103000070	00	CAP	.0220MF	+10-10% +5- 5%	100V 500V	RCAP MICA		103000168 103000169	00	CAP	430.0000PF + 5-5 500V MICA
103000071 103000072	00 00	CAP CAP	27.0000PF 150.0000PF	+5- 5%	500V	MICA		103000170	00 00	CAP CAP	510.0000PF + 5-5% 500V MICA 620.0000PF + 5-5% 500V MICA
103000073	00	CAP	.1000MF 100.0000MF	+5 - 5% %	50V 15V	MYLAR TANT	ı	103000172	00	CAP	680.0000PF + 5-5 500V MICA
103000074 103000075	00 00	CAP CAP	4.7000MF	+50-20%	50V	TAG				CAP CAP	750,0000PF + 5-5 5 500V MICA 910,0000PF + 5-5 500V MICA
103000076 103000077	00 00	CAP:	7000.0000MF .1000MF	چ 10-10%	20V 200V	ELEC . TANT	- 1	103000175	00	CAP	1000.0000PF + 5-5 = 500V MICA
103000078	00	CAP	130-156MF		110V	60HZ .		200000		CAP CAP	1300.0000PF + 5-5 5 500V MICA
103000079 103000080	00 00	CAP CAP	5600.0000PF 47-56MF	+10-10%	200V 200V	60HZ		103000178	00	CAP	1500.0000PF + 5-5 5 500V MICA 1800.0000PF + 5-5 5 500V MICA
103000081	00	CAP	1200.0000MF		40V 20V	ELEC ELEC			00	CAP CAP	2000,0000PF + 5-5'c 500V MICA
103000082 103000083	00 00	CAP CAP	1200. 0000MF 20000. 0000MF	<i>1</i> 0	10V	ELEC		103000181	00	CAP CAP	2200.0000PF + 5-5 5 500V MICA 2400.0000PF + 5-5 5 500V MICA
103000084	00	CAP	22. 0000MF . 2200MF		10V 100V	TAG MYLAR		103000183	00	CAP	2700,0000PF + 5-5 500V MICA
103000085 103000086	00 00	CAP CAP	.1000MF		50 V					CAP CAP	3000.0000PF + 5-5 c 500V MICA 3300.0000PF + 5-5 c 500V MICA
103000087 103000088	00 00	CAP CAP	.4700MF 3600.0000MF		50V 50V		1	103000186	00	CAP	3600.0000PF + 5-5 0 500V MICA
103000089	00	CAP	800.0000MF	. TE 100	50V	ELEC				CAP CAP	3900.0000PF + 5-5 6 500V MICA 4300.0000PF + 5-5 500V MICA
103000090 103000091	00 00	CAP CAP	. 2000FD 98000. 0000MF	+75-10% +75-10°5	10V 20V			103000189	00	CAP	4700.0000PF + 5-5 2 500V MICA
103000092	00	CAP	66000.0000MF	+75-10%	20 V					CAP CAP	5600,0000PF + 5-5 c 500V MICA
103000093 103000094	00 00	CAP CAP	NOT ASSIGNED . 0010MF	+10-10%	1000V			103000192	00	CAP	6200,0000PF + 5-5 5 500V MICA 6800,0000PF + 5-5 5 500V MICA
103000095 103000096	00	CAP	.1000MF 12000.0000MF	+10-10% +75-10%	400 V 20 V	MYLAR SANG				CAP CAP	7500.0000PF + 5-5 5 500V MICA
103000097	00 00	CAP CAP	12000.0000MF	+75-10%	40 V	SANG	- 1	103000195	00	CAP	8200.0000PF + 5-5 > 500V MICA .0010MF +10-10 > 100V MYLAR
103000098 103000099	00	CAP CAP	5.0000PF 6.0000PF	+5- 5% +5- 5%	500V 500V	MICA MICA				CAP CAP	.0012MF +10-10 100V MYLAR
103000100	00	CAP	10.0000PF	+5- 5%	500V	MICA	. •	103000198	00	CAP CAP	.0015MF +10-10 100V MYLAR .0018MF +10-10 100V MYLAR
103000101 103000102	00 00	CAP CAP	51.0000PF 270.0000PF	+5- 5% +5- 5%	500V 500V	MICA MICA		103000200	00	CAP	.0022MF +10-10 100V MYLAR
103000103	00	CAP	.0150MF	+10-100	100V		- 1	103000201		CAP CAP	.0027MF +10-10 100V MYLAR .0039MF +10-10 100V MYLAR
103000104 103000105	00 00	CAP	77000.0000MF 71000MF/63000MF	+75-10%	20 V	ELEC	- 1	103000203	00	CAP	.0047MF +10-10 100V MYLAR
103000107	00	CAP	13000. 0000MF 22. 0000MF		40V	T10	J	103000204		CAP CAP	.0050MF +10-10 \ 100V MYLAR .0056MF +10-10 \ 100V MYLAR
103000108 103000110	00 00	CAP CAP	77000.0000MF	+75-100	16V 20V	TAG ELEC	- 1	103000206	00	CAP	.0068MF +10-10 : 100V MYLAR
103000111	00	CAP CAP	.2300FD .6300FD	+75−10°0 +75−10°0	20 V	ELEC				CAP CAP	.0032MF +10-10 > 100V MYLAR .0100MF +10-10 > 100V MYLAR
103000112 103000113	00	CAP	15.0000PF	+5- 5°c	6V 500V	ELEC MICA	- 1	103000209	00 (CAP	.0120MF +10-10': 100V MYLAR
103000114 103000115	00 00	CAP CAP	1.0000MF 4.0000MF	+20-20° +50-20°	50V 660V	TANT 60HZ				CAP CAP	.0150MF +10-10 100V MYLAR .0180MF +10-10 100V MYLAR
100000113	00	~***			2304	00112	- [-	
							_				

PART	•			
NUMBER REV		DESCRIPTION		
103000212 00	ĊAP	.0270MF +10-10% 100V	MYLAR	•
103000212 00	CAP	.0330MF +10-10% 100V	MYLAR	
103000214 00	CAP	.0390MF +10-10% 100V	MYLAR	
103000215 00	CAP	.0500MF +10-10% 100V	MYLAR	
103000216 00	CAP	.0560MF +10-10% 100V .0820MF +10-10% 100V	MYLAR	
103000217 00 103000218 00	CAP CAP	.0820MF +10-10% 100V .1000PF +10-10% 100V	MYLAR MYLAR	
103000219 00	CAP	.1200MF +10-10% 100V	MYLAR	•
103000220 00	CAP	.1500MF +10-10% 100V	MYLAR	
103000221 00	CAP	.1800MF +10-10% 100V	MYLAR	
103000222 00 103000223 00	CAP CAP	.2700MF +10-10% 100V .3300MF +10-10% 100V	MYLAR MYLAR	
103000224 00	CAP	.4700MF +10-10% 100V	MYLAR	
103000225 00	CAP	.5000MF +10-10% 100V	MYLAR	
103000226 00	CAP	.5600MF +10-10% 100V	MYLAR	
103000227 00 103000228 00	CAP CAP	.6800MF +10-10% 100V .8200MF +10-10% 100V	MYLAR MYLAR	
103000229 00	CAP	1.0000MF +10-10% 100V	MYLAR	
103000230 00	CAP	1. 2500MF +10-10% 100V	MYLAR	
103000231 00	CAP	1.5000MF +10-10% 100V 2.0000MF +10-10% 100V	MYLAR	
103000232 00 103000233 00	CAP CAP	2.0000MF +10-10% 100V 3.0000MF +10-10% 100V	MYLAR MYLAR	
103000234 00	CAP	4.0000MF +10-10% 100V	MYLAR	
·103000235 00	CAP	.0680MF +10-10% 100V	MYLAR	
103000236 00	CAP	.3900MF +10-10% 100V 50.0000PF + 5-5% 500V	MYLAR	
103000237 00 103000238 00	CAP CAP	50.0000PF + 5-5 % 500V 2500.0000PF + 5-5 % 500V	MICA MICA	·
103000238 00	CAP	500.0000PF + 5-5 % 500V	MICA	
103000240 01	CAP	LINE FILTER EMI-F-0441		
103000241 00 103000242 00	CAP CAP	27.0000PF ;5% 300V .1000MF +20-20% 200V	MICA	
103000242 00	CAP	. 1000MF +20-20% 200V LINE FILTER RFI EMI-F-0458	FILM	
103000244 00	CAP	.1 MF 16V	21104001	
103000245 00	CAP	MOTOR START 101/A	525064001	
103000246 00 103000247 00	CAP CAP	88-108 UF UP ASR 33 4600.0000MF M600L	181384 00000200	
103000248 00	CAP	10.0000MF M600L	00000200	
103000249 00	CAP	17.5000MF M600L	00000202	
103000250 00	CAP	3.0000MF M600L	00000205	
103000251 00 103000252 00	CAP	4.0000MF M600L	00000204	
103000252 00	CAP CAP	.1000MF -20% 6.8000MF ;10%	50V CER 6V T/T	
103000254 00	CAP	3.0000MF +10%	370V	
103000255 00		· 9000.0000UF 40WVDC	AT382	
103000256 00 103000257 00		160.0000UF 25WVDC	TC-WE167	1
103000257 00		50.0000UF 100WVDC 250.0000UF 16WVDC	TC-HH506E TCWA257V	
			1 (17712017	
				· · ·
1				
I				
I				į i
i				· .
1				
I				1
i .				
i				
I				
Ŧ.				
1				
		•		·
I				
l				
Ē.				
l				
I				
I				
I				
i				
				•

PART NUMBER REV	DESCRIPTION	PART NUMBER	REV	DESCRIPTION
NUMBER REV 110000002 00 110000005 00 110000006 00 110000011 00 110000013 00 110000015 00 110000016 01 110000017 01 11000002 00 110000022 00 110000022 00 110000023 00 110000024 00 110000025 00 110000025 01 110000026 01 110000027 01 110000030 01 110000041 00 110000041 00 110000041 00 110000044 00 110000044 00 110000044 00 110000045 01 110000046 01 110000050 01 1100000	RELAY, BRSRI-901 SWITCH, MIC RO 19321DB SWITCH, MIC RO 19321DB SWITCH, MIC RO 19321DB SWITCH, MIC RO 07320B ACTUATOR KIT, MIC RO JV-91 ACTUATOR, AH H 83503 CONTACT BLOCK, 83500-90 LENS, AH H 83500-90 SWITCH, AH H 82603 SWITCH, AH H 82603 SWITCH, C & K 7105CSP SWITCH, C & K 7201A SWITCH, EECO 17760B SWITCH, C & C 7201A SWITCH, C & T05SYPZ SWITCH, C T05SYPZ SWITCH, C K 7301SYPZ SWITCH, TOGGLE C K 7301CSPX-EQUIV SWITCH, C K 7301SYPZ SWITCH, C K 7301SYPZ SWITCH, TOGGLE C K 7301CSPX-EQUIV SWITCH, C K 7305CSPX SATIN OR EQUIV SWITCH, C K 7305CSPX SATIN OR EQUIV SWITCH, MIC RO HONEYWELL ISM1 RELAY, POTTER BRUMFIELD SWA DPST PR RELAY, MIC ROHONEYWELL ISM1 RELAY, POTTER BRUMFIELD SWA DPST PR RELAY, AB97-990 RELUCTANCE PICK-UP 6815013 SWITCH, THUMBWHEEL #189220 1 POLE DEC. SWITCH, 7103SY PWGEAV-2-X RELAY, BM9 1252-103 RELAY, 50HZ 230V SWITCH, 35166-1 SWITCH DP, 4 POSITION AMP SWITCH CK 73034ZQEJ2 AMP DISTRIBUTOR 4325168-3 SWITCH, 5 POS, AMP RELAY, DRY REED W101MPCX-3 RELAY, MRR WETTED W131MPCX-4 RELAY, DRY REED W101MPCX-3 RELAY, MRR WETTED W131MPCX-4 SWITCH, 5 POS, AMP SWITCH, 5 POS, SMP SWITCH,	NUMBER 11000080 110000081 110000082 110000085 110000086 110000087 110000089 110000091 110000091 110000091 110000091 110000091 110000091 110000091 110000091 110000091 110000101 110000101 110000101 110000101 110000108 110000109 110000108 110000108 110000109 110000110 110000118	00 00 00 00 00 00 00 00 00 00 00 00 00	RELAY TP DR 1435-IC-12D GUARDIAN SWITCH ON/OFF 101/A SWITCH COPYORM 101/A SWITCH COPYORM 101/A SWITCH COPYORM 101/A SWITCH LINIT (REED) SWITCH & INDICATOR FORWARD SWITCH & INDICATOR ON LINE SWITCH & INDICATOR ON LINE SWITCH REWIND SWITCH RESET SWITCH RESET SWITCH ALORICATOR POWER SWITCH LOAD RUN SWITCH LOAD RUN SWITCH TOGGLE UCC ASR 33 RELAY UCC ASR 33 RELAY AC 25A 120V M600L SWITCH PB SPDT RESET SWITCH PB SPDT RESET SWITCH PB SPDT STOP RELAY TIME DELAY CDS 114 RELAY GEN PURP CDS 114 SWITCH MICRO CDS 114 SWITCH MICRO 2310 SWITCH MERCURY 2310 SWITCH CHORD CDS 114 SWITCH MICRO 2310 SWITCH BOMENTRY 2310 SWITCH RIBBON REVERSE WITCH PAPER OUT LOWER WITCH CHOOLOGY WITCH REWIND REVERSE WITCH PAPER OUT LOWER WITCH PAPER OUT LOWER WITCH PAPER OUT LOWER WITCH CHOOLOGY WITCH COULD WITCH CO

PART		PESCHIPTION	PART NUMBER	REV	DESCRIPTION
NUMBER 111000000	REV 00	DESCRIPTION . DEVICE CONN CARD READER	111000111	00	TERM R TNG *10STUD 12-10 AMP 2-35109-1
111000001	00	CONN 9 CONTACT PLUG DEC 9P	111000112	00 00	CONN PCB 28 DUAL POSITION CONN CABLE 20 POSN AMP 86402-1
111000002	00	CONN 9 CONTACT SOCKET DEC 9S SZ 20	111000113 111000114	00	CONN 12 POSITION AMP 86402-4
111000003 111000004	00 00	CONN 25 CONTACT PLUG DBC 25P SZ 20 CONN 25 CONTACT SOCKET DBC 25S SZ 20	111000115	00	CONN CONTACT TWIN LEAF AMP 583616
111000005	00	CONN 50 CONTACT PLUG DDC 50P SZ 20	111000116	00 00	CONN KEY AMP 583274 CONN PC EDGE 50 DUAL POS AMP1-583717-9
111000008	00	CONN 50 CONTACT SOCKET DDC 50S SZ 20	111000117 111000118	00	CONN CINCH 252-15-30-160
111000007 111000008	00 00	CONN 19 CONTACT PLUG 2DE19P CONN 19 CONTACT SOCKET 2DE19S	111000119	00	CONN PC EDGE 10 DUAL POS AMP 583717-1
111000009	00	CONN 52 CONTACT PLUG 2DB52P	111000120	00 00	CONN FERRULE COAX 328664 CONN RETENTION SPRING COAX 243332-1
111000010	00	CONN 52 CONTACT SOCKET 2DB5ES CONN 100 CONTACT PLUG 2DD100P	111000121 111000122	00	CONN ALIGN BSHG RED AMP 329051
111000011 111000012	00 00	CONN 100 CONTACT PLOG 2DD1005	111000123	00	CONN SPR RTNG AMP 583691-3
111000019	00	CONN JUNCTION SHELL DE 24657	111000124 111000125	00 00	CONN RECEPTACLE MOLEX 1292-R2 CONN PIN FEMALE MOLEX 02091133
111000020	00	CONN JUNCTION SHELL DB24659 CONN JUNCTION SHELL DD24661	111000125	00	CONN PLUG MALE MOLEX 1292-PI
111000021 111000022	00 00	CONN SCREW LOCK ASSY FEMALE D204018-2	111000127	00 00	TERM MALE . 093 18 TC 22 GA MOLEX 1380 CONN RIVET FLAT HD AK41H
111000023	00	CONN SCREW LOCK MALE D20419-16	111000128 111000129	00	CONN RECEPTACLE MOLEX 1261R-2
111000024 111000025	00 00	CONN SCREW LOCK MALE 20419-21 CONN SCREW LOCK MALE 20420-15	111000131	00	CONN PIN MOLEX 02092132
111000025	00	CONN A /C OUTLET PS 1369	111000132 111000133	00 00	CONN RF PNL RECEPTOR 83-798-1050 CONN JACKSCREW FEMALE 200875
111000027	00	CONN CABLE 20 DUAL POS AMP 86148-1 CONN CONTACT COMP LD 4-330808-9	111000133	00	CONN 9 PIN W/MOUNTING TABS
111000029 111000030	00 00	CONN DIP SOCKET 16 PIN 041-001 112N	111000135	00	TERM FEM . 093 18 TO 22 GA MOLEX 1381
111000031	00	TERM POST 0255Q . 287 AMP 86144-4	111000136 111000137	00 00	CONN PLUG 2 PIN CONN RECEPTACLE 2 PIN
111000032	00	CONN FASTON RECEPTACLE SERIES 250 TERM RCPT 250 22-18 AWG AMP 42628-2	111000138	00	CONN 22 DIN
111000033 111000034	00 00	TEDM DCDT 250 16-14 AWG AMP 42332-4	111000139	00 00	TERM SLTD TNG FLG #6 16-14A-2-320861-1 TERM R TNG -6STUD 16-14 AMP 2-32442-1
111000035	00	TERM D TNG #10STIID 16-14 AMP 2-31903-2	111000140 111000141	00	TERM R TNG *8STUD 22-16 AMP 2-31836-2
111000036	00 00	TERM R TNG #10STUD 22-16 AMP 2-31889-3 TERM R TNG #6STUD 22-16 AMP 2-32403-1	111000142	00	CONN MALE A/C PLUG 15AMP 125V
111000037 111000038	00	TERM RCPT 187 22-18 AWG AMP 60972-3 . 1	111000143 111000144	00 00	CONN DAISY CHAIN . 025 SQ POST 5"SP TERM R TNG #2STUD 22-16 AMP 2-320440-1
111000039	00	CONN WINCHESTER ELEC 109-8340	111000144	00	CONN FEMALE SOCKET CONTACT
111000040 111000041	00 00	CONN CABLE 22 DUAL POS AMP 86148-2 CONN RCPT 50 DUAL POSN AMP 86018-2	111000146	00	CONN MALE PIN CONTACT CONN 13 POS SINGLE ROW MOD IV
111000041	00	TERM TAB 250 . 097STUD 90 AMP 41204	111000147 111000148	00 00	CONN IS POS SINGLE NOW MOD IT
111000043	00	CONN 36 CONT FOR DISK TERM TAB 250 . 130STUD 90 AMP 42117-2	111000149	00	CONN HOUSING, TWIN LEAF . 100CTRS
111000044 111000045	00 00	TERM TAB 250 . 130STUD DFS AMP 42506-2	111000150 111000151	00 00	CONN AMP 225-21031-101 OR EQUIV CONN CINCH 251-18-30-160
111000046	00	CONN T&B 18RA-6F	111000151	00	CONN AMP 57-30360
111000047 111000050	00 00	CONN WIRE SPLICE T&B ZRBR CONN HI-CLAMP PPC-11	111000153	EE	CONN FLAG FASTON TERM CONN OUTPUT ELCO 00-8016-038-000-707
111000051	00	CONN FASTENER CB4-2 1/8 DIA BUTTON	111000154 111000155	EE	CONN BERG -75307-002
111000052	00	CONN 6 PIN AM CONN DISK FROM 111-000-043 LG	111000156	00	CONN JACK SCREW AMP "202490-2
111000053 111000054	00 00	CONN DISK FROM 111-000-043 SM	111000157 111000158	00 00	CONN FLANGED INLET AH 5278 NEMA 5-15P CONN WIRE MOLD ASSY 10P AMCO PM60-10
111000055	00	CONN T&B RBB-25	111000158	00	CONN RUBBER BOOTH AH 7511
111000056 111000057	00 00	CONN T&B RCC TERM TAB 250 130STUD 1PR AMP 41480	111000160		CONN 3VH30-1JN3 DEVICE 1055B CONN WIRE MOLD ASSY 6 POS
111000058	00	CONN AMP 85969-2 CRP 24-20 AWG	111000161 111000162	00	CONN DIN CONTACT 14 AWG AMP 61118-5
111000059	00	CONN AMP 1-480435-0 CONN SOLDER SLEEVE D142-51	111000163	00	CONN PIN CONTACT 26 AWG AMP 60910-5
111000062 111000063	00 00	CONN HAYCO DC-201 BLACK	111000164 111000165	00	CONN SOCKET AC ARROW HART 5278 CONN SOCKET AMP 61117-5
111000064	00	CONN HAVOO DC-201 AMBER ORANGE		00	CONN CONT SKT 30-22 AWG AMP 60909-
111000065 111000069	00 00	CONN HAYCO T-1018 TIN PLATE TAB CONN STYLE A 5353867		00	CONN 6 SKT MATE-N-LOK AMP 1-480273-0 CONN 12 SKT MATE-N-LOK AMP 1-480275-0
111000070	00	CONN STVI.F R 5353868	111000168 111000169	00	CONN 12 PIN MATE-N-LOK AMP 1-480275-0
111000071	00 00	CONN TERMINAL CONTACT 66341-2 CONN 6 CIRCUIT FASTON P/18 480003-5	111000170	00	CONN PLUG MOLEX 12CKT 1360P
111000072 111000073	00	CONN CONTACT PC 125CF 50	111000171	00 00	CONN RCPT MOLEX 12CKT 1360R-1 CONN VIKING 3VH30 1JN3
111000074	00	CONN CONTACT TERMINAL 80413-1 TERM POST 025SQ . 210 AMP 86144-8		00	CONN MOLEX 5 PIN WAFERCON
111000075 111000076	00 00	CONN TERMINAL BUSH GREEN DC-87-3-2		00	CONN MOLEX 5 PIN CONN BASELESS CRTG LAMP AMP 61528-1
111000077	00	CONN TERMINAL BUSH CRG DC-87-3-2	111000176 111000177	00 00	TERM TAB 250 . 130STD 2PR AMP 41481
111000078 111000079	00 00	CONN TERMINAL TAB BRASS T-202-55 CONN 26 POSITION 583679-1	111000178	00	CONN USM POP RIVET AD42S
111000080	00	CONN MOLEX 1490 RECEPTACLE		00 00	CONN PC EDGE 25 DUAL POS AMPI-583717-1 CONN WIRE MOLD ASSY
111000081 111000082	00 00	TERM FEM . 093 14 TO 20 GA MOLEX 1189 CONN MOLEX 1490 PLUG		00	CONN WIRE MOLD ASSY MODIFIER
111000082	00	TERM MALE . 093 14 TO 20 GA MOLEX 1190		00 00	CONN TEST PROBE FEM +53061 CONN TEST PROBE MALE +20357
111000084	00	CONN AMPHENOL MIN RAC 17 17-300-01 CONN AMPHENOL RT ANGLE PIN 17-1208-02		00	CONN 50 DUAL POS
111000085 111000086	00 00	CONN AMPHENOL RT ANGLE PIN 17-1209-02	111000186	00	CONN AMP FSTON 187 SERIES TAB 61947-1
111000087	00	CONN COMPONENT LEAD SOCKET 380635-1		00	CONN AMP FSTON 187 SERIES TAB 61951-1 CONN AMP FSTON "187" RECP AMP 61697-1
111000088	00 00	CONN EPO GROUND TAB 5271288 CONN PWR RECEPT. MS3102 A24-25		00	CONN HOUSING MALE 9 PIN
111000091 111000093	00	CONN BLOCK SKT 75 CONT AMP 201311-1			CONN HOUSING FEMALE 9 PIN CONN FASTON CLIP-FLAG TYPE
111000094	00	CONN BLOCK 29 POSN AMP 202477-4		00 (CONN BARRIER STRIP & TERMINAL
111000095 111000096	00 00	CONN CONT SKT 18-16 AWG AMP 66101-1 CONN CONT SKT 10-8 AWG AMP 66257-2	111000193	00 (CONN SPADE LUG •10-12
111000097	00	CONN SKT RG/U CA AMP 329013			CONN WAFER 9 PIN MOLEX 0918-5094 CONN AMP FSTON 110 TAB 42971-1
111000098、 111000099	01 00	CONN POLORIZING KEY (USED/079) CONN MINI BRASS RIVIT . 116x3/16	111000196	00 (CONN AMP FSTON 187 TAB 51761-1
111000100	00	CONN 24 PIN (PART # 111000040)			CONN 40 PIN W STRAIN RELIFF *3417-3000 CONN 40 PIN PCB HEADER *3432-1002
111000101	00 00	CONN CABLE 40 DUAL POSN AMP 1-86148-1 CONN PLUG RECP P&S TURNLOCK		00 (CONN POLARIZING KEY
111000102 111000103	00	CONN ASSY DIGITRONICS PTR 2540	111000200	00 (CONN VIKING 3VH35 CND-12
111000104	00	CONN CRIMP LUG T&B RC1157			FFRM R TNG -48 FUD 22-16 AMP 31878 FFRM R TNG -108 FUD 6AWG AMP 52265-2
111000107 111000108	00 00	CONN MOLEX STD NYLON P/N 126-P-1 CONN MOLEX STD NYLON P/N 1261-R	111000203	00 '	TERM RCPT 250 14-10AWG AMP 41450
111000109	00	CONN MRAC 42PJ			CONN HSG 250 TERM RCPT AMP 1-489416-0 TERM RCPT 187 22-18AWG MAP 60372-2
111000110	00	CONN PIN CONTACT 8114	************		
		l l			

PART NUMBER R	æv	DESCRIPTION	PAR' NUMB		REV	DESCRIPTION
111000207 111000208 111000209 111000210 111000211 111000212 111000213 111000214 111000215 111000216 111000217 111000218 111000219 111000220 111000221 111000221 111000222 111000223 111000225 111000225 111000228 111000228 111000228 111000228 111000228 111000229 111000229 111000220 111000220	00000000000000000000000000000000000000	TERM RCPT 110 22-18AWG AMP 61048-2 TERM TAB 187 130STUD ANLR AMP 61761-2 TERM TAB 187 130STUD ANLR AMP 61761-2 TERM TAB 110 136STUD STR AMP 60858-1 TERM POST 0255Q . 165 AMP 87022-9 SPLICE COAX TO AWG AMP #330592 CONN BRASS RIVET TIN PLATED CONN BROWN BROW	1110002 1110002 1110003 1110003 1110003 1110003 1110003 1110003 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000 1110000	97 98 99 900 001 002 1005 1006 1005 1008 1009 1311 1313 1314 1313 1314 1313 1314 1313 1314 1313 1314 1313 1316 1317 1318 131	00 00 00 00 00 00 00 00 00 00 00 00 00	CONN 20-14 GOLD PIN TP DR AMP CONN M-N-L 8 PIN HDR GLD AMP#350212-2 CONN M-S 50 DUAL POS, AMP #1-583717-7 CONN 50 POS. 4 SURF DISS 3428-0000 3M CONN 34 POS. 4 SURF DISS 3M P/N 3402 CONN 34 POS. 4 SURF DISS 3M 9/N 3402 TERM .250 INLINE FEM N2/4-2/10 TERM INSUL-CONNECT 18-20 GA WIRE CONN AMP FASTON 46 2505ER SGL42822-2 CONN CONT TYUNLEAF AMP CONN 22PIN W/FRAME, VIKING40VH22/IJNS CONN 62 CONT SINGLE ROW CONN 18 CONT DUAL POS CONN 18 CONT DUAL POS CONN 18 CONT DUAL POS CONN CONT FEM SKT PIN 22-26AWG CONN CONT FEM SKT PIN 22-26AWG CONN CONT FEM SKT PIN 22-26AWG CONN 250 FASTON 10-20AWG TERM CONN 7FRM CINCH 251-22-30-160 CONN W/FRM CINCH 251-22-30-160 CONN W/FRM CINCH 251-22-30-160 CONN W/FRM CINCH 251-22-30-160 CONN DOTACT 15 AMP 1332 CONN PWR POLE MDL 15AMP 6000 1315 CONN MAFERCON 3 PINS MOLEX CONN TWIST LOCK 20A 125V HUBBELL 2315 CONN MAFERCON 3 PINS MOLEX CONN TWIST LOCK 20A 125V HUBBELL 2315 CONN MAFERCON 3 PINS MOLEX CONN TWIST LOCK 20A 125V HUBBELL 2315 CONN MAFERCON 3 PINS MOLEX CONN TWIST LOCK 20A 125V HUBBELL 2315 CONN ASSY DIGITRONICS BC7611-2 22 PINS

		_			7
I	PART NUMBER	REV	DESCRIPTION		
	113000002 113000003 113000004	00 00 00	FUSE 10A 250V LITTELFUSE 3AB #314010 FB 2-POLE, 3AG MTG, LITTELFUSE #357002 FUSE 1/2A 250V LITTELFUSE 8AG #361.500		
I	113000005 113000008	00 00	FUSE 3/4A 250V LITTELFUSE 8AG #361.750 FUSE CLIP EARLESS, BUSS #5680-05	,	
ı	113000009 113000010	00	FUSE 2A 250V LITTELFUSE 8AG #361002 FUSE 3A 125V LITTELFUSE 3AG #313003		i
1	113000011 113000012	00 00	FUSE 2A 125V LITTELFUSE 3AG #313002 FUSE 1/2A 125V LITTELFUSE 3AG #313.500		1
ı	113000012 113000014	00	FUSE 3/8A 250V BUSS MDL FUSETRON FUSE 1A 250V BUSS AGX FAST ACTING		
I	113000015	00	FUSE 4A 250V LITTELFUSE 3AG #312004 CB 15A 50V 1-POLE TI #51MC2-29-15		l
ı	113000016 113000017	00	FUSE 15A 32V LITTELFUSE 1AG #301015 FUSEHOLDER PNL MTD, R-A TERM, LF #342004		į
ı	113000018 113000019	00 00	FUSE 15A 250V LITTELFUSE 3AB #314015		ł
ı	113000020 113000021	00 00	FUSE 30A 600V BUSS KTK LIMITRON FUSE BLOCK 3-POLE 250V BUSS #2809		l
ı	113000022 113000023	00 00	FUSE 5A 32V LITTELFUSE 1AG #301005 FUSE 10A 32V LITTELFUSE 1AG #301010		
ı	113000025 113000026	00 00	FUSEHOLDER PNL MTD, STR TERM, LF #342012 FUSE 30A 125V LITTELFUSE 3AB #31430		l
ı	113000027 113000028	00 00	FUSEHOLDER PNL MTD, H-V KNOB, LF #34027 PICOFUSE AX LEAD 3/4A 125V LF #275. 750		1
i	113000029 113000030	00 00	FUSE 2 1/2A 32V BUSS AGW GLASS TUBE FUSE 1/4A 250V BUSS AGX FAST ACTING		
ı	113000032 113000033	00 00	FUSE 15A 32V BUSS MDL FUSETRON FUSE 5A 250V LITTELFUSE 3AB #314005		İ
ı	113000034 113000035	00 00	FUSE 1A 32V BUSS AGA GLASS TUBE FUSE 3A 32V BUSS AGA GLASS TUBE	·	
1	113000036 113000037	00 00	FUSE 6A 32V BUSS AGA GLASS TUBE FUSE 8A 250V LITTELFUSE 3AB #314008 FUSEHOLDER PNL MTD, STR TERM, LF #342038		
ı	113000038 113000040	00 00	FUSE 15A 32V BUSS AGC FAST ACTING FUSE 2A 250V LITTELFUSE 3AG #312002		
ì	113000041 113000042	00 00 00	PICOFUSE AX LD, 1 1/2A 125V, LF #28501.5 FUSE 5A 32V BUSS MDL FUSETRON		
1	113000043 113000044	00 00	FUSE 3A 32V LITTELFUSE 1AG #301003 FUSE 4A 32V BUSS AGW FAST ACTING	•	
I	113000045 113000046	00 00	CB 20A 65V 2P, AIRPAX #UPG-11-1-6-1-203 FUSE 5A 125V LITTELFUSE 3AG #313005		
1	113000047 113000048 113000049	00	FUSEHOLDER IN LINE FOR 3AG FUSEHOLDER, MODIFIED, INLINE FOR 3AG	į daras ir d	
1	113000050 113000051	00 00	FUSE 1/4A 250V LITTELFUSE 3AG 4313. 250 FUSE . 125A BUSS MDL SLD BLD		1
1	113000052 113000053	00 00	FUSE 4A 32V LITTLEFUSE 3AG#311004 FUSE 5A 32V LITTLEFUSE 3AG#311005	1	
1	113000054 113000055	00	FUSE 10A 32V LITTLEFUSE 3AG#311010 CB 8A 50/60HZ 250V AIRPAX		
ı	113000058 113000057	00 00	FUSE 1A SLO BLO 3AG FUSE 1A 250V LITTLEFUSE 3AG#312001	i	
ı	113000058 113000059	00 00	FUSE 1/8A 3AG 2310 FUSE 8A 3AG 2310		
ŧ	113000060 113000061	00 00	FUSE 15A 3AG 2310 FUSE 1/2A 250V 3AG LITTLEFUSE		İ
ı				·	
ł				1	
ł				k	
Ì				1	
				i	
ı				· j	
ł					
į					
j					
ı			j		
				l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	å
				1	M
				l	
				į	
			1	İ	
ł				1	
				i	
L					

114000001

Whole	e or in part, or used in whole or in part as the basis for n	nanufacture or sale of items, without written permission.	114000022 1
PART NUMBER RE	EV DESCRIPTION		
	0 HUDSON 28V BULBS 21870		
	0 HUDSON BULB 2176 0 INDICATOR CARTRIDGE CML		
114000005 00 114000006 00	0 INDICATOR CARTRIDGE CML 64 0272		
114000007 00 114000008 00	INDICATOR CARTRIDGE 115V CML 240321 RE		
114000009 00 114000011 00	BULB-PLT LAMP CML 84-0421		1
114000012 00 114000013 00	LAMP INCANDESCENT RED 14V	1	
114000014 00 114000015 00	INDICATOR ROOUT DIG SP-332 2DIG. 33 IN		
114000016 00 114000017 00	INDICATOR ROOUT DIG SP-353 3DIG. 55 IN		
114000018 00 114000019 00	LAMP GE 379	1	1:
114000020 00	BULB LIGHT BULB	•	11
114000021 00	LAMP INCAND GV . 20A LAMP GE 1638		1'
•	•		
1		1	
			I
	•		
1			
		1	
			i
			i
			ı
		·	
			i i
		1	
		·	
i			
1		·	
		•	
		1	į
			1
			١.
			1 '
			1

____/

TABLE SET	_				1	1
TAN ANTAL-FAMBUTUR BOW TAN ANTAL-FAMBUTUR BOW TAN ANTAL-FOTE-BAMBUTUR BOW TAN ANTAL-FAMBUTUR BOW TAN ANTAL-FAMB			EEV	ISCRPTON		
LENGORS 00 FAN ARAL-ROTPENDITTFUNGE LENGORS 00 FAN ELVE FANNO 2-161-28 HE SEN THE HE SEN THE S	•			Tin tart, "Diffusion with		i
Company Comp	į.	Lanning	M	FAN ATTAL-ROTPLMATIFITYMEE		l
IRRORATE C. MOTOR PEAT SEE IRRORATE C. FAN, SIFFER IRRORATE C. MOTOR DEATE SEE IRRORATE C. MOTOR DEATE SEE IRRORATE C. MOTOR CASTAN COTTOR DWG IRRORATE C. MOTOR DAMOLIFIED SME BY GRANEER IRRORATE C. MOTOR DAMOLIFIED SME BY GRANEER IRRORATE C. MOTOR SEEDER OUTLET SEE MOTOR SEEDER OUTLET SEE MOTOR SEEDER OUTLET SEE SEEDER IRRORATE C. MOTOR ARE DUCT SEE SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER OUTLET SEEDER IRRORATE C. E. GOVER SEEDER IRRORATE C. E. GOVER SEEDER IRRORATE C. E. GOVER SEEDER IRRORATE C. E. GOVER SEEDER IRRORATE C. E. GOVER SEEDER IRRORATE C. GOVER SEED	l					
Lindoulf Or Motor Dervi 63E List 6906 Lindoulf Of Motor Carta State 1806 Lindoulf Of Motor Carta Cotton 1906 Lindoulf Of Motor Carta Cotton 1906 Lindoulf Of Motor Dale Officer 1918 List 1806 Lindoulf Of Motor Dale 1918 List 1818 Lindoulf Of Motor Dale 1918 List 1818 Lindoulf Of Motor State Fact Firm List Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Motor Release 1918 Lindoulf Of Fan Skiffer Roton 48214 Lindoulf Of Fan Skiffer Roton 48214 Lindoulf Of Fan Skiffer Roton 48214 Lindoulf Of Fan Skiffer Roton 48214 Lindoulf Of Fan Skiffer Roton 48214 Lindoulf Of Fan Skiffer State 1918 Lindoulf Of Fan Lindoulf Officer 1918 Lindoulf Of Blower Land 41871-0 Lindoulf Of Blower Ackellary with 85 Gatel Lindoulf Officer Officer 1918 Lindoulf Officer 1918	l		Œ	MOTOR ELAD LOAD		l
Lincoli	•				i	İ
Lincoli	l	Linnoll	œ	MOTOR DRIVE SIED DISC SUM	•	ĺ
Lincoll	ı					ĺ
LISCOCIS OC MOTOR FILTER (ISC CTM. LISCOCIS OC MOTOR SCREEN OUTLET (ISC CTM. LISCOCIS OC MOTOR ACR DUCT (ISC CTM. LISCOCIS OC MOTOR ACR DUCT (ISC CTM. LISCOCIS OC MOTOR ACR DUCT (ISC CTM. LISCOCIS OC MOTOR ACR DUCT (ISC CTM. LISCOCIS OC FAN SNIPER ROTON (KKLA-I LISCOCIS OC FAN SNIPER ROTON (KKLA-I LISCOCIS OC FAN SNIPER ROTON (KKLA-I LISCOCIS OC FAN LISC CTM EDWARD (IS-SC-ARL) LISCOCIS OC FAN LISC CTM EDWARD (IS-SC-ARL) LISCOCIS OC BLOWER ALMB (IS-TIL-O LISCOCIS OC MOTOR I S EP GE (ISC CTM) FOR AUXILLARY WITE SS GETLL LISCOCIS OC BLOWER AUXILLARY WITE SS GETLL LISCOCIS OC MOTOR INSTERES SYNCE SPEC LISCOCIS OC FAN, VENTURI (ISV, 50 6CEZ ROTRON CTIAZ LISCOCIS OC GUARD, FINGER ROTRON 2012-2 LISCOCIS OC MOTOR MAIN (IO/A LISCOCIS OC MOTOR MAIN (IO/A LISCOCIS OC MOTOR MAIN (IO/A LISCOCIS OC MOTOR MAIN (IO/A LISCOCIS OC MOTOR MAIN (IO/A LISCOCIS OC BLOWER WIND JAMMER LISCOCIS OC BLOWER WIND JAMMER LISCOCIS OC BLOWER WIND JAMMER LISCOCIS OC BLOWER WIND JAMMER LISCOCIS OC MOTOR ASSY SP-8 M600L LISCOCIS OC MOTOR ASSY SP-8 M600L LISCOCIS OC MOTOR REBED DRIV CDS 114 LISCOCIS OC MOTOR REBED DRIV CDS 114 LISCOCIS OC MOTOR REBED DRIV CDS 114 LISCOCIS OC MOTOR REBED DRIV CDS 114 LISCOCIS OC MOTOR DRIVE SOORPM 115 VACCT381-2 LISCOCIS OC MOTOR DRIVE SOORPM 115 VACCT381-2 LISCOCIS OC MOTOR DRIVE SOORPM 115 VACCT381-1 LISCOCIS OC MOTOR DRIVE SOORPM 115 VACCT381-2 LISCOCIS OC MOTOR ASSY CO'S-6 DIGIT RONICS	l					
HISTORY CC	1	113000013	CC.	BLOWER ADPT BEST		!
LISCOCIS CO MOTOR ALTH GUTT (350 CFM). LISCOCIS CO MOTOR ALTH GELL LISCOCIS CO FAN SETFFER ROTON (SELA-I LISCOCIS CO FAN SETFFER ROTON (SELA-I LISCOCIS CO FAN ADAPTER ALT DUCT LISCOCIS CO FAN LIS CFM HOWARD (3-96-801)-LISV LISCOCIS CO BLOWER LAMB (115721-C) LISCOCIS CO BLOWER LAMB (115721-C) LISCOCIS CO BLOWER AUXILLARY WITE SCRILL LISCOCIS CO BLOWER AUXILLARY WITE SCRILL LISCOCIS EM MOTOR HYSTERESIS SYNCH SPEC LISCOCIS CO FAN, VENTURI 115V, 50-6CEZ ROTRON CTJAZ LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR MAIN 101/A LISCOCIS CO MOTOR SY BLOWER MEGOL LISCOCIS CO MOTOR ASSY BLOWER MEGOL LISCOCIS CO MOTOR RSSY BLOWER MEGOL LISCOCIS CO MOTOR RSSY BLOWER MEGOL LISCOCIS CO MOTOR RSSY BLOWER MEGOL LISCOCIS CO MOTOR RSSY BLOWER MEGOL LISCOCIS CO MOTOR BRUSH DRIV CDS 114 LISCOCIS CO MOTOR BRUSH DRIV CDS 114 LISCOCIS CO MOTOR CRIP BON 2310 LISCOCIS CO MOTOR CRIP BON 2310 LISCOCIS CO MOTOR CRIP BON 2310 LISCOCIS CO MOTOR CRIP BON 2310 LISCOCIS CO MOTOR CRIP BON 2310 LISCOCIS CO MOTOR CRIP SPEC CAB 230V 50HZ LISCOCIS CO MOTOR ASSY PLOCATION CSSY BLOWER MEGOL LISCOCIS CO MOTOR CRIP SPEC CAB 230V 50HZ LISCOCIS CO MOTOR CRIP SPEC CAB 230V 50HZ LISCOCIS CO MOTOR ASSY PLOCATION CSSY BLOWER MEGOL LISCOCIS CO MOTOR CRIP SPEC CAB 230V 50HZ LISCOCIS CO MOTOR ASSY PLOCATION CSSY CCTORS - DIGITRONICS	ł				1	
HISCOCCIE CC	1	115000013	CC	MOTOR AIR DUCT (350 CFM)		
LISCOCCII CO FAN SEPPER ROTON #SELA-I LISCOCCII CO FAN ADAPTER AIR DUCT LISCOCCII CO FAN ADAPTER AIR DUCT LISCOCCII CO FAN 1.5 CFM HOWARD #3-90-80LJ-LISV LISCOCCIS CO MOTOR L 3 HP GE #5KCP19PG2SST LISCOCCIS CO MOTOR L 3 HP GE #5KCP19PG2SST LISCOCCIS CO BLOWER AUXILLARY WITE SS GEILL LISCOCCIS CO BLOWER AUXILLARY WITE SS GEILL LISCOCCIS CO MOTOR HYSTERSINS SYNCH SPEC LISCOCCIS CO FAN, VENTURI 115V, 50 6CEZ ROTRON CTJAZ LISCOCCIS CO GUARD, FINGER ROTRON 20132-2 LISCOCCIS CO MOTOR MAIN 101/A LISCOCCIS CO MOTOR MAIN 101/A LISCOCCIS CO MOTOR DRIVE 101/A LISCOCCIS CO MOTOR DRIVE 101/A LISCOCCIS CO BLOWER WIND JAMMER LISCOCCIS CO FAN COOLING 11TV 60HZ LISCOCCIS CO FAN COOLING 11TV 60HZ LISCOCCIS CO MOTOR ASSY BLOWER M600L LISCOCCIS CO MOTOR BRUSH DRIV CDS 114 LISCOCCIS CO MOTOR BRUSH DRIV CDS 114 LISCOCCIS CO MOTOR RUBBON 2310 LISCOCCIS CO MOTOR RUBBON 2310 LISCOCCIS CO MOTOR RUBBON 1310 LISCOCCIS CO MOTOR RUBBON 115V 60/50HZ LISCOCCIS CO MOTOR RUPE 900RPM 115 VACCT381-2 LISCOCCIS CO MOTOR ROSY CC7073-6 DIGITRONICS	1					
115:00023	1	115000021	CC	fan skipper roton (skla- l		
113CCC25	1	115000023	CO		į į	
115000025					į	
11500023 EF MOTOR HYSTERENS SYNCH SPEC 11500029 OF FAN, VENTURI 115V, 50 60EZ ROTRON CT3A2 11500030 OF GUARD, FINGER ROTRON 20132-2 11500031 EF BLOWER SPECIFICATION CABINET 11500032 OMOTOR MAIN 101/A 11500033 OMOTOR DRIVE 101/A 11500034 OMOTOR 1.6A 60HZ UP ASR 33 11500035 OMOTOR WIND JAMMER 11500036 OF FAN COOLING 11TV 60HZ 11500037 OMOTOR ASSY BLOWER M600L 11500038 OMOTOR ASSY BLOWER M600L 11500039 OMOTOR BRUSH DRIV CDS 114 11500040 OMOTOR RUSH DRIV CDS 114 11500041 OMOTOR RIBBON 2310 115000042 OF FAN 2310 115000043 OMOTOR 15V 60/50HZ 115000044 OMOTOR 15V 60/50HZ 115000045 OMOTOR DRIVE 900RPM 115 VACCT381-2 115000046 OMOTOR ASSY CC7073-6 DIGITRONICS	1	115000026	CC	BLOWER AUXILLARY WITE SS GRILL		
11500029	1					
11500031 EE BLOWER SPECIFICATION CABINET 11500032 00 MOTOR MAIN 101/A 11500033 00 MOTOR DRIVE 101/A 11500035 00 MOTOR I. 6A 60HZ UP ASR 33 11500035 00 BLOWER WIND JAMMER 11500036 00 FAN COOLING 117V 60HZ 11500037 00 MOTOR ASSY BLOWER M600L 11500038 00 MOTOR ASSY BLOWER M600L 11500039 00 MOTOR BRUSH DRIV CDS 114 115000040 00 MOTOR DRUM 2310 115000041 00 MOTOR RIBBON 2310 115000042 00 FAN 2310 115000043 00 MOTOR 115V 60/50HZ 115000044 00 MOTOR 230V 60/50HZ 115000045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 115000046 00 BLOWER G/P SPEC CAB 230V 50HZ 115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS		115000019	CO	FAN, VENTURI 115V, 50 6CEZ ROTRON CT3A2	i	
11500032 00 MOTOR MAIN 101/A 11500033 00 MOTOR DRIVE 101/A 11500035 00 BLOWER WIND JAMMER 11500037 00 MOTOR ASSY BLOWER M600L 11500037 00 MOTOR ASSY BLOWER M600L 11500039 00 MOTOR BRUSH DRIV CDS 114 11500040 00 MOTOR RIBBON 2310 11500041 00 MOTOR RIBBON 2310 11500042 00 FAN 2310 11500043 00 MOTOR 07 RIBBON 2310 11500044 00 MOTOR 15V 60/50HZ 115000044 00 MOTOR 230V 60/50HZ 115000045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 115000046 00 BLOWER G/P SPEC CAB 230V 50HZ 115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS		115000031			1	
115CCCG34 00 MOTOR 1. 6A 60HZ UP ASR 33 115CCCG35 00 BLOWER WIND JAMMER 115CCCG36 00 FAN COOLING 117V 60HZ 115CCCG37 00 MOTOR ASSY BLOWER M600L 115CCCGG38 00 MOTOR ASSY SP-8 M600L 115CCCGG39 00 MOTOR BRUSH DRIV CDS 114 115CCCGG0 00 MOTOR RIBH DRIV CDS 114 115CCCGG0 00 MOTOR RIBH DRIV CDS 114 115CCCGG0 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR RIBH DRIV CDS 114 115CCCGG 00 MOTOR 115V 60/50HZ 115CCCGG 00 MOTOR 115V 60/50HZ 115CCCGG 00 MOTOR DRIVE 900RPM 115 VACCT381-2 115CCCGG 00 BLOWER G/P SPEC CAB 230V 50HZ 115CCCGG 00 MOTOR ASSY CCT073-6 DIGITRONICS	1	115000032	CO	MOTOR MAIN 101/A	ì	
115000037 00 MOTOR ASSY BLOWER M600L 11500038 00 MOTOR ASSY SP-8 M600L 11500039 00 MOTOR BRUSH DRIV CDS 114 11500040 00 MOTOR RIBBON 2310 11500041 00 MOTOR RIBBON 2310 11500042 00 FAN 2310 11500043 00 MOTOR 115V 60/50HZ 115000044 00 MOTOR 230V 60/50HZ 115000045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 115000046 00 BLOWER G/P SPEC CAB 230V 50HZ 115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS		115000034	00	MOTOR 1. 6A 60HZ UP ASR 33	i	
11500038 00 MOTOR ASSY SP-8 M600L 11500039 00 MOTOR BRUSH DRIV CDS 114 11500040 00 MOTOR DRUM 2310 11500041 00 MOTOR RIBBON 2310 11500042 00 FAN 2310 11500043 00 MOTOR 115V 60/50HZ 11500044 00 MOTOR 230V 60/50HZ 11500045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 11500046 00 BLOWER G/P SPEC CAB 230V 50HZ 11500047 00 MOTOR ASSY CC7073-6 DIGITRONICS	•				i	
115000040 00 MOTOR BRUSH DRIV CDS 114 115000041 00 MOTOR RIBBON 2310 115000042 00 FAN 2310 115000043 00 MOTOR 115V 60/50HZ 115000044 00 MOTOR 230V 60/50HZ 115000045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 115000046 00 BLOWER G/P SPEC CAB 230V 50HZ 115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1					
11500041 00 MOTOR RIBBON 2310 11500042 00 FAN 2310 11500043 00 MOTOR 115V 60/50HZ 11500044 00 MOTOR 230V 60/50HZ 11500045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 11500046 00 BLOWER G/P SPEC CAB 230V 50HZ 11500047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1	115000039	00	MOTOR BRUSH DRIV CDS 114		1
11500042 00 FAN 2310 11500043 00 MOTOR 115V 60/50HZ 11500044 00 MOTOR 230V 60/50HZ 11500045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 11500046 00 BLOWER G/P SPEC CAB 230V 50HZ 11500047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1					
11500044 00 MOTOR 230V 60/50HZ 115000045 00 MOTOR DRIVE 900RPM 115 VACCT381-2 11500046 00 BLOWER G/P SPEC CAB 230V 50HZ 11500047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1			FAN 2310		
115000046 00 BLOWER G/P SPEC CAB 230V 50HZ 115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1	115000044	00	MOTOR 230V 60/50HZ		
115000047 00 MOTOR ASSY CC7073-6 DIGITRONICS	1					
TOWNS W MOTOR SPINDLE ASSI MADIO 1333-32	1			MOTOR ASSY CC7073-6 DIGITRONICS		ı
	1	211000010	•	MOTOR SPINDLE ASST DIABLO 1999-42		•
	1					
	1					
· ·						
	1					
	1					
- C						
	ı					
	1					
	1					
· ·	j					
	1					
	1			ì		
				İ		
				ļ	<u>L</u> _	-
				1	<u> </u>	L
				j		
				Ì		
				İ		
				İ		i
	1			1	1	ŗ
				İ		
				İ		
	1					
				i		
REV.02					REV.02	

NUMERICAL INDEX CIRCUIT MODULES

DGC Part Number	Functional Description	Page Number
116000001	12-Bit A/D Converter	116-2
116000002	12-Bit D/A Converter	116-3
116000003	Power Supply DC/DC	116-4
116000004	Sample and Hold	116-5
116000006	10-Bit D/A Converter	116-6
116000007	10-Bit A/D Converter	116-7

Block Diagram

Timing Diagram

A/D Converter

Pin Designations

Pin No.		Pin No.	
1	Gain Adj.	72	Bit 1 (MSB)
2	Analog In	71	Bit 2
3	Analog In Com	70	Bit 1 (MSB)
4	Buffer Out	69	No pin
5	Bipolar, R2	68	No pin
6	Unipolar, R1	67	Bit 3
7	No pin	66	No pin
8	No pin	65	Bit 4
9	No pin	64	No pin
10	No pin	63	Bit 5
11	No pin	62	No pin
12	No pin	61	Bit 6
13	No pin	60	No pin
14	No pin	59	No pin
15	No pin	58	Bit 7
16	No pin	57	No pin
17	No pin	56	Bit 8
18	No pin	55	No pin
19	Bipolar Offset	54	Bit 9
20	Comp In	53	No pin
21	No pin	52	Bit 10
22	Ref Out	51	No pin
23	Analog Com	50	Bit 11
24	No pin	49	No pin
25	-15V	48	Bit 12 (LSB)
26	No pin	47	No pin
27	+15V	46	No pin
28	No pin	45	No pin
29	+5V	44	No pin
30	Digital Com	43	STATUS
31	No pin	42	No pin
32	Comp Out	41	No pin
33	Status	40	No pin
34	Conv Comm	39	No pin
35	Clock In	38	No pin
36	Clock Out	37	Clock Inhibit

The 116000001 circuit module is a 12-bit binary analog-to-digital converter.

Pin Configuration Top View

Block Diagram

D/A Converter

Pin Designations

Pin No.	
K	Key
1	-15 V
2	+15 V
3	+5 V
4	No pin
5	Pwr Com
6	No pin
7	Bit 1 (MSB)
8	Bit 2
9	Bit 3
10	Bit 4
11	Bit 5
12	Bit 6
13	Bit 7
14	Bit 8
15	Bit 9
16	Bit 10
17	Bit 11
18	Bit 12
19	No pin
20	No pin
21	Bipolar Offset
22	Gain Adj
23	20 V
24	10 V
25	Ref
26	Output
27	Sum JCT
28	Zero Adj

The 116000002 circuit module is a 12-bit binary digital-to-analog converter with an externally programmable output amplifier.

Pin Configuration Bottom View

Block Diagram

Sample and Hold

Pin Designations

Pin No.	
K	Key
1	Control In
2	No pin
3	No pin
4	Digital Ground
5	No pin
6	Analog Ground
7	No pin
8	No pin
9	No pin
10	-15VDC
11	No pin
12	Power Ground
13	No pin
14	+15VDC
15	Analog Ground
16	No pin
17	Analog Output
18	No pin
19	No pin
20	No pin
21	No pin
22	No pin
23	No pin
24	Offset (Grd)
25	No pin
26	Analog Ground
27	No pin

The 116000004 circuit module is a fast sample-and-hold device with low droop rate and overall accuracy compatible with 12-bit A/D conversion systems operating to 1/2LSB accuracy. This module accepts ±10 volt data, a TTL/DTL and C/MOS compatible control signal, and requires ±15Vdc power.

Analog Input

28

Pin Configuration & Block Diagram
Top View

D/A Converter

Pin Designations

Pin No.	
1	-15V
2	+15V
3	No pin
4	+Ref Out
5	Grd
6	No pin
7	- .
، 8	Bit 1 (MSB)
9	No pin
•	Bit 2
10	No pin
11	Bit 3
12	No pin
13	Bit 4
14	Bit 5
15	Bit 6
16	Bit 7
17	No pin
18	Bit 8
19	No pin
20	No pin
21	Bit 9
22	No pin
23	Bit 10
24	Offset
25	-Ref Out
26	Out
27	Sum JCT
28	No pin

The 116000006 circuit module is a 10-bit binary, unipolar digital-to-analog converter with a built-in I.C. output amplifier.

121000001 PART NUMBER REV CRYSTAL 14.08 KC
CRYSTAL 16.00 KC
CRYSTAL 16.00 KC
CRYSTAL 10 MC
CRYSTAL 20 MC
CRYSTAL 19.20 KC
CRYSTAL 19.20 KC
CRYSTAL 8.8 KC
CRYSTAL 53.6 KC
CRYSTAL 65.536 KC
CRYSTAL 65.536 KC
CRYSTAL 30.7.2 KC
CRYSTAL 76.8 KC
CRYSTAL 76.8 KC
CRYSTAL 19.2.0 KC
CRYSTAL 19.2.0 KC
CRYSTAL 19.2.0 KC
CRYSTAL 19.2.0 KC
CRYSTAL 19.2.0 KC
CRYSTAL 13.33 MC
CRYSTAL 10.6 KC
CRYSTAL 13.33 MC
CRYSTAL 10.752 KC
CRYSTAL 10.752 KC
CRYSTAL 11.5 MHC
CRYSTAL 11.5 MHC
CRYSTAL 11.5 MHC
CRYSTAL 11.5 MHC
CRYSTAL 11.5 MHC
CRYSTAL 11.00 KC
CRYSTAL 11.5 MHC
CRYSTAL 11.00 MHZ
CRYSTAL 15.36 MHZ
CRYSTAL 15.36 MHZ
CRYSTAL 15.36 MHZ
CRYSTAL 160.000 KHZ
CRYSTAL 8.33 MHZ
CRYSTAL 8.33 MHZ
CRYSTAL 6.912 MHZ DESCRIPTION 121000001 121000002 121000003 121000005 121000008 121000008 121000009 121000010 121000011 121000012 121000013 121000013 121000014 121000015 121000018 121000018 121000019 121000020 121000021 121000022 121000023 121000024 121000025 121000025 121000027 121000027 121000027 121000027 121000029 121000030

121000030

		6	