
[)\TA GENERAL
CORPORATION

Southboro,
Massachusetts 01772

(617) 485-9100

PROGRAM

Extended Assembler

TJtPES

AbsoJ.utc Birie.ry: 091···000017

ABf3TRAC'I'

The extended assembler, like the basic assembler, converts symbolic assembly
statements into machine language code. In additi~n to basic assembler features
the extended assew:oler provides relocation, interprogra:m communication, condi­
tional assembly and more powerful number definition facilities.

Copyright (C) Data General Corp., 1969
Printed in U. S .A.

093-000040-00

EXTENDED ASSEMBLER

The extended assembler differs from the bP,sic asser1.bler in four respects:

1) ReZocatabiZity - programs can be n.ssemblecl so that they may be loaded by the

relocatable loader; 2) .Tnter;pr•ograrri commum:cation - programs can be assembled

which reference data, instructions 9 and addresses defined in other programs or

vice-versa (argument swapping or sharing): 3) Number def1:nition - simpler

methods for specifying double precision, decimal and floating point constants

as well as bit boundary alignment of consta::tts ere provided; 4) Conditional

assembly - whole programs or portions of progr2ms can be essembled or by-passed

on the basis of an absolute expression evaluating to zero.

Except for these added features the extended assemblE:.r is identical to and

com:patibl.e with the basic assembler, e.nd a knowlulge of the be:,,sic assembler

(see write-up 093-000017) is n prerequL>itc in the following discussion. The

··extended assembler is also compatible with the basic to the extent that programs

not using the relocatable or interprogrnm co:r.ur.unication facilities (ie with no

occurrence of one of the pseudo-ops: • ZREL, . HREL, • TITL, .EN'T, .EXTN, or .EXTD)

wj_lJ.. be assembled as absolute and the binary tape will be punched in the same

format as the output of the bF1sic asscr.i.bler for loading by the absolute binary

loader.

Use of the relocation o.nd interprogra..11 coI!"JJ:mnication fncili ties requires

deferment of final addresr. assic:nment until load tine thus leavin8 this task

to the relocatable loFtder. It is not surprising then that the relocate,ble

loader (see write-up 093-000039) is a more sophistica.ted proc:ram than the absolute

binary loader and that the data passed to it by the extended assembler differs

from the output of the basic assenbler passed to the absolute binary loader.

'11ogether the extended assembler and reloce.table loader provide a package

that enables the progra1mner to work separately on subprograms in the coding,

-2-

debugging and testing phases without worrying about the absolute location of

a given program or the absolute locations of data and addresses shE1.red by­

programs at run-time.

RELOCATION

In addition to the assembly of absolute code the user may use the extended

assembler to produce two types of relocatable code. These types will be ref'erred.

to as zero relocatable and normal relocatable.

Storage words that me...y be relocated but :must reside in page zero should be

assembled as zero relocatable using the:? zero relocatable mode. 'I'he user inforL"'1S

the assembler that a body of code is to be zero relocatable by preceding it with

the pseudo-op .ZREL. Likewise, storage words that may be relocated anywhere

except page zero must be assembled as normal relocatable in normal relocatable

mode. The user indicates this by preceding his normally relocatable code with

the pseudo-op .NREL.

The extended assembler initially assu.~es assembly mode to be absolute and

continues to assemble in this mode until it encounters an occurrence of either

.ZRFL or .NREL in the user's code. The user may enter zero relocatable or

normal relocatable mode at any point in his program simply by issuing a . ZREI,

or .NREL pseudo-op and the assembler will pick up the assembly at the next

unused zero relocatable or normal relocatable address. Also, having once entered

one of the relocatable modes with n. .ZREL or .NREL pseudo-op and having defined

symbols in that mode, the .LOC pseudo-op with an expression containing a

previously defined symbol or symbols may be used to reenter that mode. The type

of the expression determines the mode entered. Thus, when the G~J>ression used

in the pseudo-op evaluates to a zero relocatable value the zero relocatable

mode is entered and the zero relocatable relative location counter is set to

the next unused zero relocatable address or to the value of the expression if

-3-.

it is higher. Likewise, when the expression evaluates as either no.i::1w·J.l reJ o•!n.-·­

table or absolute, the normal relocatable relative location counter or the

absolute location counter is set. At no time, however, may the .LOC pseudo-op

be used to move either of the two relati v-0 location counters or the absolute

location counter backwards, since this would create the possibility of overwriting

portions of the preceding code which is not permitted by the relocatable loader.

The . used in an expression associated with the .LOC pseudo-op has the meanings:

11 current absolute address", 11 current nor.nal relative addressn, and 11 current page

zero relative address 11 when used within absolute, nonnal relocatable, and page

zero relocatable code respectively. The following statements provide examples

of the use of these pseudo-ops. . .·:

L.

,.

00000· 000000
00001 000000

000021
00027 000170
00030 000113

000074
000020

Al
Ba

TABLr

0
0

4,,

•t.OC 27
2•'!'ABL
.TABL+l 7
·LOC .+43
·BLM eo

•ZREL
00000-003510 PNTRt SUBRT
00001•000000• PWTR!t fiL.~EN

000007- ~Lot .+5
00007-000000 ARGll 0

JABSOLUTI:

Jl\OJfJST ABS LOC CQUNTER ..

JADJUST l1BS LOC :«;OUNTER

JZERO RELOCATABLE

JAP~UST ZREL·Loc COUNTER

000377 . ·LOC ARGl•PNTR+310 JAB$0LUTE
00377 000000 ARG2: 0

•NBtt..·
00000'02202~1 MAlNt · LDA 01:t1'
.00001'02~030 ~DA l1D

JNOfil'lAL RELOCATABL!

000010-
00010-01001.11

•LOC AR~t+1 JZir.RO RELOCATADLE

00011-020006

003510
03510 024007• SUBRTt
03511 030377

03512 010400

·000006'
00006'052027

· £ SZ T?;BL
• LOC PNTH l +2 J LOC COU:'.JTER CA~J • T GO B:\CK
LVA Q,ARGt-PNTRl

•LOC 3~l0
LDA 1 u'\NGl
LDA 2sAHG2
·LOC 3500
l SZ ·suBRT+:e

.t..oc MIHN+6
STA. 211fA

JABSOLUT~,AGAIN

J LOC cournEn CA.N f T GO BACK

. JNQ"MAL RELO'C:ATABLE

-5-·

The assembler will begin assembly in absolute mode and will c:rce.tc tw~

data words containing zeros for loce.tions 00000 J}.IlQ._j)_Q.QQl, then the .LOC

pseudo-op with the absolute expression 27 will change the location counter to

278 and the next two data statements will create two data words which at run

time will contain respectively a byte pointer to the table called TABL, and

the address of the end of the table. The next two statements increment the

location counter 438 times and reserve 208 locations to store the table. The

. ZREL pseudo-op causes the assembler to shift from ~ibsolute to zero-relocatA.blc

mode, and the next two statements, which will be assigned zero relocatable

relative addresses 00000 Gnd 00001, reserve words which are loaded with the

relative addresses of routines SUBRT and M.AIH. A.RGl is assigned zero reloca­

table relative address 00007 since the ,+5 expression used in the .LOC pseudo-op

i.ncrements the zero relocatable location counter by five. ARG2 is assigned

absolute address 3778 since the expression AHGl-PNTR + 370 from the preceding

.LOC pseudo-op eve.luates to an absolute value thus shifting the assembler into

absolute mode. The .NREL then shifts the assembler into normal relocatable mode

and proceeds to assemble the routine MAIN starting at the normal relocatable

relative address 00000. But, because when 0valuated the expression fu.~Gl+l in

the next .LOC pseudo-op is zero relocatable 3 the assembler then returns to zero

relocatable mode. Note that the instruction ISZ TABL which follows this .LOC

is assigned page zero relocatable address 108 which is both the value of the

expression ARGl+l and the next available unused page zero relocatable address.

Hence, exactly the same result could have been obtained by replacing the

.LOC ARGl+l statement with a simpler .ZREL statement. In practice this would

be the most usual wey of ro,ssigning the subsequent statement the next available

relocatable address. The expression.PNTR1+2 in the next .LOC pseudo-op is zero

relocatable hence the assembly mode remains unchanged, but because the expression

evaluates to page zero relocatable address 00003 which has already been used the

-6--

pseudo-op receives an L flag and the subsequ0nt statement is assigned page zero

relocatable address 00011 which i.s the next n.vailable page zero relative loca-

tion. The . LOC 3510 shifts the assembler b::i.ck to absolute mode, but the .LOC 3500

although keeping the assembler in absolute mode is given an L flag since in order

to complete the command the assembler would have to turn back the absolute loca-

tion counter.

Expression Evaluation

The extended assenbler allows expressions using relocatnble symbols, but

certain restrictions should be kept in nintJ when constructing them:

1) Expressions using both page zero and normal relocatable symbols must be

such that either the page zero or the normal symbols cancel out. Thus for

example, expressions of the form z1 + N1 - z2 + n2 - N3 are legal, where the Zs

represent page zero relocatc.ble symbols e,nd the Ns normally relocatable symbols.

2) Expressions that evaluate to twice e, relocatable symbol or the sum of two

like relocatable symbols arc pcrmi tted in date. statements but those thet will

evaluate to higher multiples or non--integer multiples of relocatable symbols

are illegal. 3) Externally defined symbols (relocatable or absolute), op codes,

double precision~ and floating point munbers arc all unuseable :::.n expressions.

'Jihe last point is straightforward, but the first two require consideration

of the loading process to be understood. During loading the loader must edd a

constant K1 to each Ni fl.nd a constant K2 to each Zi in the program it is loading

to determine the absolute addresses of the sy~bols in the loaded program. It

o.lso must modify the contents of each storage word appropriately which it does

by adding one and only one of five possible constants to the word (O,K1 ,K0 ,2K,,
~ c.. .,1.

or 2K2). From this one can see that expressions that mix page zero and normal

relocatable symbols without one or the other cancelling will not be allowed.

Also one can see that loader modification of address contents by more than twice

a relocatable base is not permi ttcd. At this point it is important to see why

-7-

expressions evaluating to twice a relocatable symbol are permi"Ltr-,a. Fn)bnbly

the most conunan use for expressions of this kind is in the creation of byte

pointers in data statements for use by input/output routines that process 8 bit

bytes. This is discussed on page 2-21 of How to Use the Nova, but breifly, a

byte pointer is a storage wora. in which bi ts 0-14 contains an address and bit 15

specifies which half of the word addressed is to be worked on. Clearly, a byte
·-------------·-··· ... ----------

pointer of this kind can be formed by simply doubling an address, and can be

retrieved and regenerated by a simple shifting operation. It should be

remembered that this is a convenient software convention and is not a hardware

function. We shall use the terms byte pointer type reZoeatc.hle or byte

relocatable to describe expressions of this kind.

It is also important to stress here that these byte pointer type relocatable

expressions are only permissable in de.te, statements and are not e.cceptable as

addresses in memory reference instructions. Expressions used in the address

portion of memory reference instructions must evaluate to be absolute, page zero

relocatable or normal relocatable.

Specifically, expressions of the following forms or which can be reduced

to these forms are acceptable to the extended assenbler and produce values having

the properties stated.

Expression Attribute of Evaluated Result

A±A Absolute

R-R Absolute

R±A Relocatable

R+R Byte Relocatable

2*R Byte Relocatable

Expressions that cannot be evaluated to be absolute, relocat~ble, or byte

pointer type relocatable, as well as those that illegally mix page zero and

normal relocatable symbols will receive R error flags.

-8-

As part of the assembly listing the extended assembler prints the address

assigned (absolute or relative) and the contents (before loi:i.d time) of each

storage word generated by the assembler from the programmer 1 s source code. In

the listings it flags each address to indicate in what way that storage word may

or may not be relocated, and flags the contents of the address to indicate how

they will be affected in relocation. These flags will be printed adjacent to

and to the right of these octal fields on the listing. Thf) flags are:

Address Flags

blank

Content 's Flags_

blank

::

II

$

Address of word is absolute.

Address of word is page zero relocatable.

Address of word is normally relocatable.

~1eanin~.

Contents of word are absolute.

Contents of word o..rc: pace zero relocat8;bl<~.

Contents of word fi .. re page zero byte relocatable.

Contents of wcrd e.re normally relocatable.

Contents of word are normally byte relocatable.

Storage word references a displacement external.

·rhese flags can be seen in the :previous example e.nd in the following.

000010
00010 000006 Al
00011 000000

000001-
00001-000.400 Bt
00002•000001- Ct
oooo~~-000004. na
OOOO'l""000005• ...
00005"!'034002-
00006-031525 .

A C0007•04~000
·00010-000001 • ~·
00011·000002 .. XI
00012-020001s

00000'000010 El
· OOOOl'OOOOOO• Ft

00002'000000" GI
00003Q000.:JOl
00004•034775
00005'03\525
oooo6•ol§4003-

. R 0000 '1~000000 HI
R 00010'000000 It
fl 000!1'000000
R ·. 00012 '000000
R 00013'000000.
R 00014•000000 Jt
.A 00015 '020000

000416'
004 ~ 6. 020!l02
00-417'000002- Yt
00420•000004• ZI
00421'040001S

000013-
A 00013-010000

00014•010006-
00015-000006-

000421'.
A 00~27•0t4000 •

00430'0145143
001131'001452"

z 00432 .• 034000 .. ·
z 00433'010000
z 00434 1 050000
z 00435'000000' ..
c JMPI.

-9-

•EXTD D1SP

•ZRZL
•LOC •+1
400
B
C+C
.JM? ,; +t
LDA 31C
LDA ~ .. 12~il 3.
STA l 1G . ,.
F.+F
LDA O.rOlS?.

J~iP • <1> f
LDA.3,,f'.
LD~ 2112513
STA l1l>

!CONTENTS ltBSOLUTE
JCONTEt:JTS PZ. 11.El.OCATABLE
JCONTENTS PZ BYTE REL•

JADDRESS OUT~HDE. PAGE ZERO -·
itONTENTS NCHM !lELOCATA'Rt.E'
J CONTENTS NORM BYTE REL• ..
I ADDR l S Pl S'.PLACEM.ENT EXTERNAL

ZCONTENTS ABSOLUT:!:
.JCONTENTS ~ORM RELOCATABLE
JCONTENT~ NORM BYTE REL•

E+E+E H::XPi:~SSH>rJ NO'f' ABS• f?EL" ·oR BYTE REL•
S+F H>ITTO
S•F ;-2 JIH TTO .
.t&•FIJ H>J?TO
2*1''13 J Dl TTO.
C+F JUNCANCELLED MIX OP.' PZ &·ti REL SYMBOLS
.LDA o,g,.y+G•E•Z JERROR • e•200>APPRESS>•+l77
•LOC •+'~00
LDA o,,2•Y+G•E•Z
c
C+C
STA 0.1DISP

•LOC \1+3
1 SZ 3•W+D/2.
I SZ 3•W+!U'lil
3•W+D/4 -

;o.x. - ··200<APPRt!.:SS<e+177
JCONT~NTS PZ RELOCATABLE
JCOHTENTS PZ BYTE RgL•
J AODR I S DJ SPLACEHEI'IT ··· E~fERNAL

IZ£RO nELOCATASL£ .
JER~OR - ADOR !S Pt BYTE REL•
JO•K• ... ADDR 15 PZ RELOCATABLE
JCONTENTS P'% aYTE REL• .

•LOC %+1 JNOwtAL RELOCATABLE
DSZ 4•Y-F-Z~C·D JERROFt • ADPR IS NORM BYTE RSL•'.

·Dsz. 1'•Y•F .. z+C•D.12 JO•f<• • ADPR IS NORM REL
l&•Y•F•Z+C•D ·1cANCELLED PUX OF Pl. & N REL SYN
L.DA 31D!SP+6 JC<'.iCRNAL USED IN EXPRESSICH>J
lSZ JMP+4 JOP C')D!t trSE{) iN ~Pt'lESS!.ON
STA 2,,6J>+3 JOOUB PREC I USED lN E::CPft. ·
2·0•Z JFLTG P~T I USEP IN EXPR•
0 Z OP COPE USED AS SYMBOL

eEND

-10-

The example above also shows three types of error flags: the 'R', the 'A',

and the 'Z'. The 'R' flag, es hns been mentioned before, is used to flag

expressions that ce.nnot be evaluated to be absolute, relocatable or byte pointer

type reloca.t~ble, or which mix pa.e;e zero and normal relocate.ble SY=J.bols in 2. non-

cancelling fashion.

The 'A' flag plays much the sar.:ic role as it does in the absolute assembler

indicating address errors. That is, when memory reference instructions (Ji1P,

JSR, ISZ, DSZ, LDA, & STA) that are to be page zero relocatable reference

addresses outside page zero, or when those that are to be normally relocatable

reference addres~cs outside t'he range of location counter relntive addressing

(.-200 ~ address ~ .+177), or when ~n expression used to specify an address does

not evaluate to an acceptable absolute, page zero relcca.tablc, or normal reloca-

table address , the statements will be flat;!;ed with an 'A' and an absolute address

of 00000 will be substituted by the assembler. Expressions used in data state-

ments arc not restricted in the o.ddresses they reference and hence when assembled

mey contain byte relocatable as well as absolute or ordino.ry relocatable data.

The 'Z' flag is generated whenever a st~te~ent contains an expression that

uses symbols not evaluable by the assenbler~ These expressions containing

externals, op cod,es, double: precision numbers, and flea.ting point numbers will

receive 'Z' flags.

INTERPROGP.A/.f COM!-!UNICATION

It is possible using the extended assembler to reference data, addresses

and constants in a program which are not defined vithin that program but rather ..
in ot~ers, a..~d it is also possible to oa.ke symbols defined within that program

available to other programs by precedin~ the pro~BJ:l code with pseudo-cps

declaring the <3.ppropriate symbols as either externals o~ entries. Note that

e.lthough a sYI:ibol may be used in De.ny programs to reference some datum, address

-11-

or constant, it can only be defined in one program without being mulj:;~:ply--definedw

Hence, within a suite of programs a symbol may be declared as an external .. by
~~-~~----~·---~-----·--------·---- --- -·-- -·-· --

several programs but should be declared as an entry in only one program.

Two types of externals may be specified using the extended assembler.

They will be referred to as normal externals and displacement externals (or

external d1'.spZacements). _Displa~?.r.'.1-~..J:l!_~~!.E.:E~n.:..3:~~- may be used in any memory

reference instruction or data statement, but when evaluated by the assembler

must resolve to a value representable in eight binary digits. That is, when
_ ~---~.........,.~·wv .. -, >X ~- .- ,-• - • • • , - • ,.,,,..__,,,.-, '~" ~·-

used in a data statement or in a memory reference instruction with index = 00

(referring to page zero) the displacement must resolve to a value in the range

0 .:_ D .:_ 377; when used in a memory reference instruction with index :f 00

(addressing relative to the location counter or relative to a base address con-

tained in AC2 or AC3) the displacer.Jent must fall in the range of permissable

displacements --200 :5_ D :5_ 1 77. Normal externals are pcrmissable only in data
--------~--·-·--~ ,,.~--~. ----"-~ -..,,,.__, ... _ -'~~ --

statements_. ie, an entire stora.ge word must be reserved for a nor!!lal external-

Two pseudo-ops are used to declare symbols that will be used as normal

externals or displacement externals. The pseudo-op used to declare normal

externals has the form -------·--·
.Z:XTN Sl ~1 S2 •..

where Sl, 82 represent the symbolic names of the normal externals. These ----------------- ---------- -~~------~-- --

symbols must conform with the rules for symbol definition applicable to all

other symbols. At least one symbol must be specified, but any number may appear

if separated by spaces or commas. The pseudo-op for declaring displacement

externals has the same form

. EXTD 81, 82 ...

where Sl, 82 represent the n2.tlles of the displacement externals. E;-ery external

must be de!.<;;.lared in some other program as an entry by means of the entry pseudo-
.. ··--.···~--~---------·----------··~~·--- ------~---~-------·----- ---· -------

op which has the form

.ENT Sl, S2 ...

-12·-

where 81, 82 represent symbols
\I
defined within the current program. Programs

which use externals or define entries r.mst declare the relevant symbols in the

.ENT, .EX'rN, OR .EXTD pseudo-ops before any otber statements. The order, how-

ever, in which these three pseuclo-ops appear is immaterial. Any errors that

occur in the declaration of internal or external symbols are indicated by

flagging the statement with a G flag.

Since titles are key identifying elements required by the symbolic debugger

and library file editor used in con.junction with the extended assembler 0 a

pseudo·-op for ncming programs is provided. This statement takes the form

.TI'l.'L title
--·

where title represents a legitimate symbol which becomes the program name. This

symbol may confli{t with any other symbol without causing an error> since this

symbol is implicitly differcmt from e.11 others. However, if the title violates

the rules for symbol definition,. the state1:'1ent will recci ve a G flag. If no

. '
. TITL statement is included in i-1. progrer1, the assembler ass-umes the title .I'fuHN,

and this will be the symbal :punched in the title block (see Appendix A). The

.TITL statement must appear before any statement that generates object data.

If a second .TITL appears before a data statement, the first title is replaced

by the second.

The exa."llple that follows illustrates use of the external> entry, and title

facilities.

.00000"'001764" CSTRI
00001-001776" CSTHlt

O~JOIJO 1 PNTR t
00003-117777. •CRLFs
00004-005015 CCRLFs

00000'006003~ BGNt
00001 •02000 l •
00002. Q.!10002-
00003 '030002- LOOP1
00004'014002-
00005 '024000- ..
00006'132433
00007'000002$
000 1 l) I l 51 220
00011•021000
00012'024001$
00013'101002
000 14. 10 l 300
000 ! 5. l 23l~OO
00016. ! 7777'1
00017'000764
00020'0601t1
00021 '000757

000712'
00772 'Q,40440
00773'047526
00774'020116
00775•042522
0011t:.•os2s20
00111•020123
01000'000000

000020'

IN I Ts

STRINGI
VO
N
RE
PU
s
•

-13··

~TI lL RI-:.PUS

•ENI HGN•CCRLf,•CRLF
·EXTN CRLf1TYPET
•EXTD . CJ171DONE

•ZREL
STRING+STRING
STHING+STRING+l2
eBLK l
CHLF
5015

•NREL
.. ,JSR @ .. CRLF'
LOA o-c.srRl
S1'f1 01PN!R
t..IJA 2, P>"lTH
DSZ PNlH
LVA i ,~ CSTR
SUHZI 1 .. 2.,sN<;
JMP DCE~E
MOVl.R 2,2
LDA 0»0Jt2

. L DA I "C 3 71
· MOV 0P0d5ZC

MOVS o,.o
AND ~ ;d)
TYPET
JMP .LOOP
NIOS TTO
JMP BGN
•LOC .+750
•TXT * A

·END HUT

· Q0000•000377 . C371t
. 0000 I •000001 • • TTTO I

00002•177777 •BG~t
00003•006002$ DONEt
00004-063077
Qooos-00200~- ..

. 006001' TYPET•

' ' .
00000 '05·4496 CRJ...FI
OOOOl '02000LS
00002'Q06001-
00003' 101300 ' ' ..
0000'4•OO~QO1 •
00.005'002401

000001 R'CRLf1
00001 •06361 l TTTor:
00010'000777

. 000 11 • 0 61 111
000 l 2 •.001400

-:14-·

•TiTL
•Ll<TD
·EXT~
~ENT

AVON .
. CCRLF, ~CRLF
BG~J
C377,~DON£1TYPET1CRLF·

.zaf!:L
311
TTTO
BGN
JSR f·CRLF· ··
Hflt.T
Jt·:P C. • SGN. . · .
JSR ·••TTTO

·.

•NREL .. ·, ..
STA :,'hRCRL.F
t..DA o.ccpL.F:

.TYPEt
·MOVS 010

-· ::tfPET. · ·.
.;1::;r:1 ~BCRLF
eBLK l ..

.SKP!m :!10 ·
.:JMP. ···1 ..
·oot\s o.11'tro

, Jk\1P o, 3
':· ~ .• £t;iD

-15-

NUl'dBER DEFINITION

The number defining capability of the extended assembler has been expanded

considerably over that of the basic assembler. 'l'he improvements help the user

interface more easily with Data General's math library and floating point

interpreter.

Decimal

To input decimal numbers using the basic assembler, it was first necessary

to declare

.rmx 10

In addition to the . RDX ps0udo·-op the: extended assembler allows the user

to specify a decimal number at o,ny point in his program by terminating a numeral

string with a decimal point. However, no numeral may follow the decimal point

without the number being interpreted as floating point. For example, in any

radix, 10. will be interpreted as decimal 10 and be converted to octal 12

whereas 10.0 will be interpreted as a decimal floating point number. The decimal

defining feature allows the programmer to combine decimal numbers in expressions

with numbers of other radices. The following illustrates this.

Assembled Storage Word

000152

000246

000312

Floating Point

Program Code

.RDX 2
101 + 101.
.TIDX 8
101 + 101 •
. RPX 10
101 + 101.

If a numeral string is followed by an 'E' or if the numeral string contains

a decimal point followed by at least one more numeral or the letter 'E' the

extended assembler will interpret the string as a. floe.ting point number. It

will convert the string to a two word, floating point constant using the binary

fraction represr:mte,tion discussed in Appendix C of How to Use the Nova. This

format is the one used by De.ta General's floatin;3 point inte::.·preter (see write-

up 093-000019). If nUt-nl:iers too large~ or too small to be represented a.re specified

the assembler will regard them as errors and flag them with an N flag.

The followin3 examples illustrate the definition of floating point

constants.

Assembled Storage Words

otfoif:20
000000

0401+26
041766

000000

0J10~~00
000000

1.0

3.1415926

-lEO

+5.0E-1

The number following the 'E' is the decimal power of ten used to evaluate

the number. The last exa.mpJ.e therefore ir1plies

+(5.0)*(10)-l = +0.5

Note: Although floating point constants ma:y be used in data statements they

a.re not permitted in expressions.

Double Preoision

The math library provides for extensive manipulation of double precision

numbers. 'l'hese nu7nbers are represented using two contiguous memory words (or

two hardware accumulators) concatenated into a 32-·bi t string where the first word

comprises bits 0 to 15 of the number and the second word bits 16 to 31 of the

number.

0 15 16 31
l word 1 I word 2

-17-

Bit 0 contains the sign and bits 1 to 31 contain the magnitude in two's

complement notation. Double precision constants can be defined using the

extended assembler by terminating a numeral string with a D. The numeral string,

which may be signed, is then evaluated in the current radix, but as with single

precision nunber definition no check is made for arithmetic overflow. The

following strings convert as shown (assuming radix 8).

:'\ssembled Storage Words

000000
000001
177777
777777
000001
000000

Progr:'1Il1 Code

lD

-lD

200000D

Note: Double precision m.L"'!lbers cannot be combined in expressions.

It is also possible to specify double precision dec..,"imaZ. numbers at any

point in a program by using the decirrtal point followed by a 'D', but as with

all double precision nUYtbers they nay not be combined in expressions. For

example,

Bit Boundary AZ.i9nment

Assembled 1-Tc>rds

000004
000003
000001
103240

Proe:ram Code

262147.D

100000.D

A facility for right justificatfon of a single precision integer on a bit

boundary is provided in the extended assembler. The specification of an integer

in the current radix followed by

B decimal number

will cause the binary equivalent of the integer to be aligned at the ~it boundary

--18-

designed by the decimal number. Thus the decimal number is limited to the

rar.ge 0 to 15. The statement takes the form

n B d

where n is a number in the current radix (usually octal) and d is a decimal

r.. number specifying the bit boundary. The nu.'!lber is given the value

(n) *(2) (15-d)
r 10

where r represents the current radix. The following strings are converted

as shovm (radix 8).

Assembled. Word (Binary)

1 000 000 000 000 000
o.ooo 000 000 000 010
0 000 010 100 000 000

CONDITIONAL ASSEMBLY

!:.rogrrun Code

lBO
1Bl4
12B8

The extended assembler provides a conditional assembly feature which allows

portions of a program to be assembled or to be by-passed by the assembler on the

basis of the evaluation of absolute expressions. 'I'hree pseudo-ops are used to

control the conditional assembly feature. They have the form

. IFE Express1:on (or . IF1~ Expression)

.ENDC

The expression in the .IFE (or .IFN) pseudo-op must be evaluable in pass 1 of

the assembly process. Otherwise it will be regarded as an error and flagged

with a K flag. That is, all symbols used in the expression must be absolute and

defined previous to the occurrence of the .IFE. If, when evaluated, the

expression equals zero, the statements following the .IFE will be assembled,

but when the evaluated expression does not equal zero all statements subsequent

to the .IFE pseudo-op up to the occurrence of an end conditional psetido-op (.ENDC)

ti·.

-tf ...

-19-

will be ignored. It is possible to specify the opposite situation by using the

.IFN pseudo-op with an expression. Vhen using the .IFN pseudo-op subsequent

statements will be assembled only if the evaluated expression does not equal

zero, and will be by-passed when the expression equals z~o.

Two further points should ·be kept in mind when using the conditional

assembly feature: 1) Conditionals may not be nested, ie, if a second .IF

pseud.o-op is encountered before an .ENDC pseudo-op is found, the second .IF

will be ignored and will receive o, K flag. 2} The pseudo-ops .END and .EOT

will not be ignored when imbedded in a section of conditionally assembled

code, ie, in the following example the .END will not.be bypas.sed but wil.L. cause

the assembler to cease the assembly process •

. IFE 1

.!'~ND

.E.llJDC

.APPENDIX A

Operating Procedure

The procedure used in assembling source code with the extended assembler

is identical to that used with the basic assembler. However, two additional

options for specifying the punched binary output are provided. These options

cause the table of local symbols generated during assembly to be included in

the punched output. This table of local symbols should be output only when

the programmer intends to debug his program using the symbolic debugger since

the binary tapes without local symbols are considerably shorter.

Thus~ when the assembler asks what form the binary output is to take, by

typing,

BIN:

there are four possible responses whose effects are shown below.

RESPONSE --·--
1
2
3
4

EFFECT
Output binary on the teletype without local symbols.
Output binary on the hieh speed punch without local symbols.
Output binary on the teletype with local symbols.
Output bin~ry on the high speed punch with local symbols.

Like the basic assembler, the extended assembler punches its output in

blocks separated by null characters. There are seven different types of

blocks punched by the extended assembler which are distinguished by the code

contained in the first wora. of each block. There is a specific order in which

these various types are punched with all blocks of one type being punched together.

For each progran1 assembled the extended assembler will punch a Title Block, a

Start Block, and at least one other block, but aside from the Title and Start

Blocks no other type of block must necessarily appear in every program. The

seven types of blocks in the order in which they would be punched if all were

required are shown on the next page. The exact formats of each of these blocks

can be found in Appendix C of the Relocatable Loader write-up (093-000039).

Order of Blocks Punched in Paper Tape

l_Lf_

·-;--
I

I ! I

I I I

'l'ITLE BLOCK

I I I
L 1----r I f _,_ z I f. !.. /

I

I~IJTTIY BLOCKS(S)

I i I
;

/ / / I. {

DISPLACEMENT EXTERNAL
BLOCK(S)

,. I . / I
.' / /_/_.!. /

RE~LOCATABLE DATA
BT or•'•(Q))..:..J K,

I I
I _j__l

NOf'.MfJ, EXTERNAL
BLOCK(S)

J
I

I

I ' I / /

:_/ /

LOCJ'.I .. SYMBOL
l\LOCK(S)

/ I I j' I

STAR'I' BLOCK

/I /.I I
I

I

/ / L I
I

I

FLAG

A

G

K

N

R

z

.APPENDIX B

Error Mnemonics

MEANING

Address error - Expression evaluates to something other than an
absolute, normal relocatable, or page zero relocRtable address.
Page zero relocatable instruction references address outside page
zero. Normally relocatable instruction references address outside
the range of location counter relative addressing.

Error in declaration of an intern?.l or external symbol.

Conditional assembly error - Expression used in .IFE or .IFN
pseudo-ops is not evaluable in pass l, or the .IFE or . IFN
pseudo-op is nested within a previous conditional assembly
statement.

Number specified is too large or too smeil to be represented as
a floating point number.

Expresslon error - Expression does not evaluate to be absolute,
relocatable, or byte pointer type relocatable, or expression
mixes page zero and normal relocatable symbols incorrectly.

Expression contains illegal symbol, (eg, an external, an op code,
double precision number, or floating point number).

	000
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	A1
	A2
	B1

