DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

Extended Assembler

TAPES

Absolute Bipnary: 091.--000017

ABSTRACT.

The extended assembler, like the basic assembler, converts symbolic assembly
statements into machine language code. In additien to basic assembler features
the extended assembler provides relocation, interprogram communication, condi-
tional assembly and more powerful number definition facilities.

Copyright (C) Data General Corp., 1969 093-000040-00
Printed in U.S.A.

EXTENDED ASSEMBLER

The extended assembler differs from the basic assembler in four respects:
1) Relocatability - vrograms cen be assembled so that they may be loaded by the
relocatable loader; 2) Interprogram communication - programs can be assembled
which reference data, instructions, and addresses defined in other programs or
vice-versa (argument swapping or sharing); 3) WNumber definition - simpler
methods for specifying double precisicn, decimal and floating point constants
as well as bit boundéry alignment of constants are provided; U) Conditional
assembly - whole programs or portions of programs can be assembled or by-passed
on the basis of an absolute expression evalusting tc zero.

Except for these added features the extended assembler is identical to and

[0}

compatible with the basic assembler, end a knowledge of the basic assembler

(see write-up 093-00C017) is a prereguisite in the following discussion. The
;extended assecmbler is also compatible with the basic to the extent that programs
not using the relocatable or interprogrsm cormunication facilities (Ze with no
occurrence of one of the pseudo-ops: .ZEEL, .NREL, .TITL, .ENT, .EXTN, or .EXTD)
will be assembled as absolute and the binary tape will be punched in the same
format as the output of the basic assembler for loading by the absclute binary
icader.

interpregram communication facilities requires

[ol)

Use of the relocation an
deferment of final address assignment until lcad time thus leaving this task
to the relocatable loader. It is not surprising then that the relocatable
loader (see write-up 093-000039) is a more sophisticated program than the absolute
binary loader and that thé data passed to it by the extended assembler differs
from the output of the basic assembler passed to the absolute binary loader.

Together the extended assembler and relocatable loader provide a package

that enables the programmer to work separately on subpregrams in the coding,

-o-

debugging and testing phases without worrying about the sbsolute location of
a given program or the absolute locations of dats and addresses shared by-

programs at run-time,
RELOCATION

In addition to the assembly of absolute code the user may use the extended
assembler to produce two types of relocatable code. These types will be referred
to as zero relocatable and normal relocatable.

Storage words that mey be relocated but must reside in page zero should be
assembled as zero relocatable using the zero relocatable mode. The user informs
the assembler that a body of code is to be zero relocatable by preceding it with
the pseudo-op .ZREL. Likewise, storage words that may be relocated anywhere
except page zero must be assembled as normal relocatable in normel relocatable
mode. The user indicates this by preceding his normally relocatable code with
the pseudo-op .NREL.

The extended assembler initially assumes assembly mode to be absolute and
continues to assemble in this mode until it encounters an occurrence of either
.ZREL or .NREL in the user's code. The user may enter zero relocatable or
normal relocateble mode at any point in his program simply by issuing a .ZREL
or .NREL pseudo-op and the assembler will pick up the assembly at the next
unused zero relocateble or normal relocatable address. Also, having once entered
one of the relocatable modes with a .ZREL or .NREL pseudo-op and having defined
symbols in that mode, the .LOC pseudo-op with an expression containing a
previously defined symbol or syrbols may be used to reenter that mode. The type
of the expression determines the mode entered. Thus, when the cxpression used
in the pseudo-op evaluates to a zero relocatable value the zero relocatable
mode is entered and the zero relocatable relative loecation counter is set to

the next unused zero relocatable address or to the value of the expression if

“3=

it is higher. Likewise, when the expression evaluates as either norwmsl velocn-
table or absolute, the normal relocatable relative iocation counter or the
absolute location counter is set. At no time, however, may the .LOC pseudo-op

be used to move either of the two relative location counters or the absolute
location counter backwards, since this would creste the possibility of overwriting
portions of the preceding code which is not permitted by the relocatable loader.
The . used in an expression associated with the ,LOC pseudo-op has the meanings:
"current absolute address", "current normal relative address”, and "current page
zero relative address" when used within absolutce, normal relocatable, and page
zero relocatable code respectively. The following statements provide examples

of the use of these pseudo~ops.

- -

. 00000 000060 @

03511 030377

03512 010400

'000006°*
00006°052027

LDA 2,ARG2
«LOC 3%00

182 SUBRT#2

o LOC MAIN4G

. STA 2,%A

+END

() 3ABSOLUTE
0Oeo1 000000 B _
L oocoeT «LOC 27 3ADJUST ABS LOC COUNTER
00027 000170 At 22 TABL S
00030 000113 B: TABL+17 S
000074 2LOC +243 3ADJUST ABS LOC COUNTER
000020 TABL1? «BLK 20 - S
+ZREL, 3ZERDO RELOCATABLE
00000-003510 PNTR: SUBRT
G000 ~000000* PNTRYIt MAIN : : ,
000007~ dLOC o¢5 3ADJUST ZREL LOC COUNTER
C0007-000000 ARGl: . O : : '
. 000377 - «LOC ARGI-PNTR+3TO0 3ABSOLUTE
00377 GO00OC ARG2: o] : ‘
. L . eNREL SMORMAL RELCCATABLE
00000°022027 MAINe . LDE 0,24 ’
- 00901'C24030 LbPA 1.B
000010~ "o LOC ARZ1AY 3ZERO RELOCATABLE
00C10-010074 - 1SZ TAaBL _ . ‘
. JLOC PNTRI®#Z2 JLOC COUNTER CAN'T GO BACK
00011-020006 LDA CsARTI~-PNTR! ’ : '
003510 +LOC 3310 $ABSOLUTE AGAIN
03510 024007-. SUBRTt LDA 1:2KEGH

 JLOC COUNTER CAN'T GO BACK

" JNORMAL RELOCATABLE

-G

The assembler will begin assembly in absolute mode and will create two

data words containing zeros for locations 00000 and 00001, then the .LOC

pseudo-op with the absolute expression 27 will change the location counter to
278 and the next two data statements will creste two data words which at run
time will contain respectively a byte pointer to the table called TABL, and

the address of the end of the table. The next two statements increment the
location counter h38 times and reserve 208 locations to store the table. The
.ZREL pseudo-op causes the asscmbler to shift from ~bsolute to zero-relocatable
mode, and the next two statements, which will be assigned zero relocatable
relative addresses 00000 and 00001, reserve words which are loaded with the
relative addresses of routines SUBRT and MAIN. ARGl is assigned zero reloca-
table relative address 00007 since the .+5 expression used in the .LOC pseudo-op
increments the zero relocatable location counter by five. ARG2 is assigned
absolute address 3778 since the expression ARGL-PNTR + 370 from the preceding
.LOC pseudo-op eveluates to an absolute valuc thus shifting the assembler into
absolute mode. The .NREL then shifts thc assembler into normal relocatable mode
and proceeds to assemble the routine MAIN starting at the normal relocatable
relative address 00000. But, becausc when evaluated the expression ARGlL+1 in
the next .LOC pseudo-op is zero relocatable, the assembler then returns to zero
relocateble mode. Note that the instruction ISZ TABL which follows this .LOC

is assigned page zero rclocateble address 10g which is both the value of the
expression ARG1+l and the next available unused page zero relocatable address.
Hence, exactly the same result could have been obtained by replacing the

.LOC ARG1+l statement with a simpler .ZREL statement. In practice this would
be the most usual way of assigning the subsequent statement the next available
relocatable address. The expression. PHTR1+2 in the next .LOC pseudo-op is zero
relocatable hence the assembly mode remains unchanged, but because the expression

evaluates to page zero relocatable address 00003 which has already been used the

6

pseudo-op receives an L flag and the subsequent statement is assigned page zero
relocetable address 00011 which is the next available page zero relative loca-
tion. The .LOC 3510 shifts the assembler back to absolute mode, but the .LOC 3500
although keeping the assembler in absolute mode is given an L flag since in order
to complete the command the assembler would have to turn back the absolute loca-

tion counter.

Expression Evaluation
The extended asserbler allows expressions‘using relocatable symbols, but
certain restrictions should be kept in mind when constructing them:
1) Expressions using both page zero and normal relocatable symbols must be
such that either the page zero or the normal symbols cancel out. Thus for
example, expressions of the form Zl + Nl - Z2 + Hg - N3 are legal, where the Zs
represent page zero relocatable symbols and the Ns normally relocatable symbols.
2) Expressions that evaluste to twice s relocatable symbol or the sum of two
like relocatable symbols are permitted in date statements but those that will
evaluate to higher multiples or non-integer multiples of relocatable symbols
are illegal., 3) Externally defined symbols (relocatable or absolute), op codes,
double precision, and floating point numbers are all unuseable iIn expressions.
The last point is straightforward, but the first two require consideration
of the loading process to be understood. During loading the loader must add a

constant K; to each N; and a constant K, to each Z; in the program it is loading

-

to determine the sbsolute addresses of the symbols in the loaded program. It
also must modify the contents of each storage word appropriately which it does
by adding one and only one of five possible constants to the word (O,Kl,KZ,QKl,
or 2K2), From this one can see that expressions that mix page zero and normal
relocatable symbols without one or the other cancelling will not be allowed.
Also one can sec that loader modification of address contents Dby more than twice

a relocatable base is not permitted. At this point it is important to see why

-T--

expressions evaluating to twice a2 relocatable symbol are permitted. Probably
the most comman use for expressions of this kind is in the creation of byte
pointers in data statements for use by input/output routines that process 8 bit
bytes. This is discussed on page 2-21 of How to Use the Nova, but breifly, a

-

byte pointer is a storage word in which bits 0-14 contains an address and bit 15

Epecifies which half of the word addressed is to be worked on. Clearly, a byte

g

pointer of this kind can be formed by‘g%mp}yzgggbling an ad@{§§§, and Cén be
retrievedMégéwféé;néfat;aAb&vébsimple shifting operation. It should be
remembered that this is o convenient software convention and is not a hardware
function. We shall use the terms byte pointer type relocatable or byte
relocatable to describe expressions of this kind.

It is also important to stress here that these byte pointer type relocatable
expressions are only permissable in detn statements and are not acceptable as
addresses in memory refercnce instructions. Expressions used in the address
porticn of memory reference instructions must evaluate to be absolute, page zero
relocatable or ncrmal relocatable.

Specifically, expressions of the following forms or which can be reduced

to these forms are acceptable to the extended asserbler and produce values having

the properties stated.

Expression Attribute of FEvaluated Result
AxA Absolute
R-R Absolute
RzA Relocatable
R+R Byte Relocatable
2*%R Byte Relocatable

Expressions that cannot be evaluated to be absolute, relocatable, or byte
pointer type relocateble, as well as those that illegally mix page zero and

normal relocatable symbols will receive R error flags.

-8-

As part of the assembly listing the extended assembler prints the address

essigned (absolute or relative) and the contents (before load time) of each

storage word generated by the assembler from the programmcr's source code. In

the listings it flags each address to indicate in what way that storage word may

or may not be relocated, and flags the contents of the address to indicate how

they will be affected in relocation. These flags will be printed adjacent to

and to the right of these octal Tields on the listing. The flags are:

Address Flags

blank

Content's Flags

blank

Meaning
Address of word is zbsolute.
Address of word is page zero relocatable.

£ddress of word is normally relocatable.

Meaning
Contents of word are absolute.
Contents of word arc page zero relocatable.
Contents of word are page zero byte relocatable.
Contents of wecrd are normally relocatable.
Contents of word are normally byte relocatable.

Storage word referencces a displacement external.

These flags can be seen in the previous example and in the following.

c0o010
00010 000006
¢201! 000000

080001 -
00001 -0004020
00002-0000601~
0CGC2-000004=
02004-000005~
G0005-034002-.
G0006-031525
CC007-0424000
00010-000001*
COC11-000002"
G3012-0200013%

CGOD0 000010

- 00001000000

> UYWL

ONNNN

0G002°000000"
00G03°00CAa0}
00004°034775
c0C05%03152%

0G006° 044003~

0000 7°000000
00010°000000
30011 °000C00

- 000612000000

00013°0006G00°
Go014°C00000
00015°020000
000416°
00416°0204a02
00417000002~
00420 °000004=

00421 *'040001s

000013~
¢cC13-010000
00014-010006~

00015-000006~

000427°

00427'014000
00430°014575

Az

Bt
Cs
Ds

Ws
Xs

Es
Fa

G

H?
is

Js

Ye
A]

00431°001452%"

00432034000
00433°010000
0C434°'0G50000

00435°000000 = -
JMP3

..9_

«EXTD Digp

. sLOC 10

6
0

»ZRTL

o LOC o4} , B S

200 e 3CONTENTS £BSCLUTE

B SCONTENTS PZ RELOCATABLE
C+C . 3CONTENTS #Z BYTE REL.

SMP s ed '

LDPA 3,C

LDA 2:125,3. '

STA 1,6 3ADDRESS OUTSIDE, PAGE ZERO
F ‘ 3ICONTEMNTS NCHM nzLocaranrs
FeF . : JCONTENTS NORY BYTE REL..
LDA 0:DISP. 3ADDR 1S stancsnsvr EXTERNAL

. «HREL) -
A . $CONTENTS ABSCLUTS

E . 3CONTENTS KORM RELOCATABLE
E<E '3CONTENTS NCRM BYTE REL.

NP ew}

LDA 3-F.

LDA 2,1835,3

574 1.0 L -
E¢E<¢E JERPAE SJAON NOT ABS,» REL’ CR BYTE pro
S#F IDITTO . P : :
S*F/2 3ﬂiTTG

&eF/3 D17 »

2%F/3 IDiTTO

C+F JUNCANCELLED MIX OF PZ & W REL SYMBOLS

LDA 0,82Y+G-E-Z 3ERROR = e ~200>ADDRESS>. ¢177 .
) ¥ .
ngce,aiggc “E~Z 30eHs = +~200<ADDRESS<e+177
c SCONTENTS PZ RELOCATABLE
C+C . 3CONTEMTS PZ BYTE REL.
STA Os»DISP 3ADDR IS DISPLACEHENT zwrsauaun
+LOC We3 " $ZERO RELOCATABLE ,
*W4D/2 SERROR ~ ANDR 1S PZ BYTE REL. -

:gi g::onza' 30.K. - ADDR IS PZ BELOCA*ASLE
3sWeD/g . B :conrz&rs PZ BYTE REL..
«LOC Z47 3NORMAL PELOCATABLE
DSZ asY-F=-Z4C-D 3ERROR - ADPR IS NORM BYTE REL.
'D5Z 4eY~F~Z+C-D/2 30.K» = ADDR IS NORM azzn
4¥Y=F=24C=D "SCANCELLED MIX OF PZ & N REL SYM
LDA 3,DISP+8 SEXTCRNAL USED IN EXPRESSION

| ISZ JMPea SOP CODE USED IN EXNPRESSICN
STA 2,6D+3 3DPOUB PREC ¢ USED I¥ EXPR.
2.09Z . 3FLTG PNT # USED IN EXPRo

0 ‘ e 30P CODE US 5ED AS SYMBOL

-EQU S

-10-

The example above alsc shows three types of error flags: the 'R', the 'A’',
and the 'Z'. The 'R; flag, es has becen nmentioned before, is used to flag
expressions fhat cannot be evalueted to be absolute, relocatable or byte pointer
type relocatazble, or which mix page zero and normazl relocatable symbols in & non-
cancelling fashion. |

The 'A' fleg pleys much the same role as it does in the absolute assembler
indicating address errors. That is, when memory.reférence instructions (JMP,
JSR, ISZ, DSZ, LDA, & STA) that are to be ﬁage zero relocatable reference
addresses outside vage zero, or when those that are to be normally relocatable
reference addresses outside the range of lccation counter relative addressing
é.-200 < address < .+177), or when én expression used to specify an address does
not evaluate to an acceptezble absolute, page zero relocatable, or normal relqca—
table ad@ress, the statements will be flagged with an 'A' end an absolute ﬁddress
of 00000 will te subétituted by the assembler. Expréssions used in data state-
ments are not restricted in the nddresses they reference and hence when assembled
mey contain byte relocatable as wel; as abéolute or ordinary relocatéble data.

The '2' flag is generated whenever a étatement-contains an expression that
useé symbols not evaluable byvthe assembler., These expreséions containiﬁg
externals, op codes, double precision numbers, and floating point numbers will

receive 'Z' flags.
INTERPROGRAM COMMUNICATION

It is possible using the extendcd.assembler to.referehce data, addresses
end constants in a program which are not defined within-that program bqt rather
in others, and it is also possible to mcke symbols defined within that pfogram
évailable to other programs by precedin: the'program code with pseudo-cps'
declering the asppropriate symbols as cither externals or cntries. DNote thét

although a symbol'may be used in meny programs to reference some datum, address

-11-

or constant, it can only be defined in one program without being multiply-defined.

Hence, within a eulte of programs a symbol may be declared as an cxteran Dby

several programs but should ‘be declared as an entry in only one program.

Two types of externals may be specified using the extended assembler.
They will be referred to as normal externals and displacement externals (or

external displacements). Displaccment externals may be used in eny memory

reference instruction or data statement, but when evaluated by the assembler

must resolve to a value representeble in eight birary digits. That is, when

used in a data statement or in a memory reference instruction with index = 00
(referring to page zero) the displacement must resolve to a value in the range
0 <D < 377; when used in a memory reference instruction with index # CO
(addressing relative to the locaticn counter or relative to a base address con-
tained in AC2 or'ACB) the displacement must fall in the range of permissable

displacements -200 < D < 177. Normal externals are permisseble only in data

.

statements, 7¢, an entire storage word must be reserved for a normal external.
Two pscudo-ops are used to declare symbols that will be used as normal

externals or displacement externals. The pseudo-op used to declare normal

R

externals has the form
croals nas tae 1c

EATN S1, g2 ...

Where_?l, Sg_zggyﬁ ent the symbolic namgs of the normal externals. These

symbols must conform with the rules for symbol definition applicable to all
other symbols. At least cne symbol must be specified, but any number may appear

if separated by spaces or commas. he pbeudo—op for dec aring displacement

externals has the same form

LEXTD 81, 82

where S1, S2 represent the neames of the displacement externals Ewery external

—_— e oo

must be declared in some other program as an entry by means o; thc entry pseudo—

e e e

op which has the form

IS

LENT 81, 52 ...

10

where S1, S2 represent symbols,%éfined within the current program. Programs
which use externals or define éﬁtr'@s must declare the relevant symbols in the
.ENT, .EXTN, OR .IXTD pseudc-ops before any other statements. The order, how-
ever, in which these three pseudo-ops appear is immaterial. Any errors that
occur in the declaration of internal or external symbols are indicated by
flagging the statement with a G flag.

Since titles are key identifying clements required by the symbolic debugger
and library file editor used in conjunction with the extended assembler, a
pseudo-op for naming programs is provided. This statement takes the form

LTITL title

where tifie represeﬁts a legitimate symbol which becomes the program name. This
symbol may confliét with ahy other symbol without causing an error, since this
symbol is imbliéitly different frﬁm all others. However, if the title violates
the rules for syrbol definitiqn,‘the stetement will receive a G flag. If no
TITL statement is included in\ﬁ progran, the assembler assumes the title ,MAIN,
and this will be the symbol punched in the title block (see Appendix A). The
.TITL statement nmust appear before any statement that generates object data.
If a second .TITL appears before a data statement, the first title is replaced
by the second.

The example that fcllows illustrates use of the external, entry, and title

facilities.

- -

00000001764
00001-001776"
030001
00003=-177777 -
00004~005015

00000006003~
o0G01L 020001 -
0002040002~
00003030002~
_00004°014002~
CO005°024000~
00006132433
on007°000002%
00010151220
00011'021000
00012°'024001%
60013101002
00014*101300
00015% 123400
00016177777
00017000764
00020'0C601 11
00021 °000757

000772

00772°04044D
00773047528
00774°020116
- 00775%'0425282
00776°052520
00777°020123
01000°000600

000020°*

CSTH:
CSTR1:
PNTHS
s CHRLF?
CCRLF:

BGN1y

LOOPs

INIT:

STRING?:
Vo

N

RE

PU

S

*

«TITL REPUS

+ENT . BGNsCCRLF,<CRLF
JEXTN CRLF,TYPET
+EXTD . C377,DONE
«ZREL _
STRING+STRING
STRING+STRIKG+12
eBLK 1

CHLF

S01%

 eNREL

"JSR @«CRLF

LA 0,057}

STA O,PNTR

LA Z,PMNTH

USZ PNTH

LbA 1.CSTR

SUBZ# 1,2, SNC
JEP DORE '
MOVZR 252
LDA 02022
Lba 11,8377

TMOV 0:,0652C

MOUS 0.0
ARND 150
TYPET B
JMP LODP
NIOS TTO

JMP BGN

«LOC ++750
+TXT % A

«END INIT

“1h~

‘00011°061111

. 00012°001400

+TITL AVON
«EXTD COCRLFs«CALF
SEXTN BIM
¢ENT C377sDONE, TYPET,CRLF
S + ZAEL
- 00000~000377 . C377¢ 377
00001 -000007* .TTT0: T7T70
00002-177777 <BGHs BN
CON03-006002% DONE: JSR 9.CRLF -
- 0O0D4-063077 BaLT
00005-002002~ . JHP ©.BGN
006001~ TYPET= JSR 8.TTT0
00000°0544)6 CRLF: STA 3»RCRLF
000010200013 LDA 0,CCRLF
00002°006001 - TYPET .
080032°101300 . ~ MOUS 0,0
00064006001 - CTYPET L
00005°002401 o JeP ERIRL
- 000001 RCRLF@ «BLK 1
~00007°0638611 TTTO: . SHPDY ¥T0
00010000777 : LR B

 DUAS UsTTO
L JHP 0.3
e EXD

15w
NUMEER DEFINITION

The number defining capability of the extended assembler has been expanded
considerably over that of the basic assembler. The improvements help the user
interface more easily with Data General's math library and floating point

interpreter.

Decimal

To input decimal numbers using the basic assembler, it was first nécessary
to declare

.RDX 10

In addition to the .RDX pscudec-np the extended assembler allows the user
to specify a decimal number at any point in his program by terminating a numeral
string with a decimel point. EHowever, no numeral may follow the decimal point
without the number being interpreted as floating point. For example, in any
radix, 10. will be interpreted as decimal 10 and be converted to octal 12
whereas 10.0 will be interpreted as a decimal floating point number. The decimal
defining feature allows the programmer to combine decimal numbers in expressions

with numbers of other radices. The following illustrates this.

Assembled Storage Word Program Code
RDX 2
000152 - 101 + 101.
.RDX 8
000246 101 + 101.
.RDX 10
000312 101 + 101.

Floating Point

If a numeral string is followed by an 'E' or if the numeral string contains
a decimel point followed by at least one morc numeral or the letter 'E' the
extended assembler will interpret the string as a floating point number. It

will convert the string to a two word, floating point constant using the binary

w16

fraction representation discussed in Appendix C of How to Use the Nova. This

format is the one used by Data General's floating peint interpreter (see write-
up 093-000019). If numbers too large or too small to be represented are specified
the assembler will regard them as errors and flag them with an N flag.

The following examples illustrate the definition of floating point

constants.

Assembled Storage Words Progran Code
0hoL20 1.0
0003800
0kol26 3.1415926
04176
1kokzo ~1E0
0000200
ch0200 +5,0E=1

jdo
w
t
Ia

e
[}
-
v
0
Id
i3

The number following the ‘E! 1al power of ten used to evaluate

the number. The last example tharefore implies

+(5.0)#(10)"F = +0.5

Note: Although floating point constants may be used in data statements they

are not permitted in expressions.

Double Precision

The math library provides for extensive manipulation of double precision
numbers. These numbers are represented using two contiguous memory words (or
two hardware accumulators) concatenated into a 32-bit string where the first word
comprises bits 0 to 15 of the number and the second word bits 16 to 31 of the

number.

0 15 16 - 31
| wora 1l | word 2 |

17~

Bit O contains the sign and bits 1 to 31 contain the magnitude in two's
complenent notation. Double precision constants can be defined using the
extended assembler by terninating a numeral string with a D. The numeral string,
which may be signed, is then evaluated in the current radix, but as with single
precision number definition no check is made for arithmetic overflow. The

following strings convert as shown (assuming radix 8).

Assembled Storage Words Program Code
000000 1D
000001
17T -1D
T
00G00L 200000D
000000

Note: Double precision numbers cannot be combined in expressions.

It is also possible to specify double precision decimal numbers at any
point in a program by using the decimal point followed by a 'D', but as with

all double precision numbers they may not be combined in expressions. For

example,
Assembled Words Program Code
00000k 262147.D
000003
000001 100000.D
103240

Bit Boundary Alignment
A facility for right justification of a single precision integer on a bit
boundary is provided in the extended assembler. The specification of an integer
in the current radix fellowed by
B decimal number

will cause the binary equivalent of the integer to be aligned at the tit boundary

R I S T

designed by the decimal number. Thus the decimal number is limited to the
range O to 15. The statement takes the form

nBd
where n ig a number in the current radix (usually octal) and d is a decimal
number specifying the bit boundary. The number is given the value

eln (15-a)
(n)r' (’”)10

where r represents the current radix. The following strings are converted

as shown (radix 8).

Assembled Word (Binary) Program Code
1 000 0OCC 0CO 090 000 1BO

0. 000 000 00O Q0O 010 1B1L

0 000 010 10C 000 000 12B3

CONDITIONAL ASSEMBLY

The extended assembler provides a conditional assembly feature which allows
portions of a program to be assembled or to be by-passed by the assembler on the
basis of the evaluation of absolute expressions. Three pseudo-ops are used to
control the conditional assembly feature. They have the form

.IFE Expression (or .IFN Expression)

LENDC
The expression in the .IFE (or .IFN) pseudo~op rust be evaluable in pass 1 of
the assembly process. Otherwise it will be regarded as an error and flagged
with a K flag. That is, all symbols used in the expression must be absclute and
defined previous to the occurrence of the .IFE. If, when evaluated, the
expression equals zero, the statements following the .IFE will be assembled,
but when the evaluated expression does not equal zero all statements subsequent

to the .IFE pseudo-op up to the occurrence of an end conditicnal pseudo-op (.ENDC)

. ~10-

will be ignored. It is possible to specify the opposite situastion by using the
.IFN pseudo-op with an expression. When using the .IFN pseudo-op subsequent
statements will be assembled only if the evaluated expression does not equal
zero, and will be by-passed when the expression equals ;ero.

Two further points should be kept in mind when using the conditional
assembly feature: 1) Conditionals may not be nested, ie, if a second .IF
pseudo-op is encountered before an .ENDC pseudo-op is found, the second JIF
will be ignored and will receive a K flag. 2) The pseudo-ops .END and LEOT
will not be ignored when imbedded in a section of conditionally assembled
code, Ze, in the following example the .END will not be bypassed but will cause
the assembler to cease the assembly process.

.IFE 1

LEND
LENDC

APPENDIX A

Operating Procedure

The procedure used in assembling source code with the extended assembler
is identical to that used with the basic assembler. However, two additional
options for specifying the punched binary output are provided. These options
cause the table of local symbols generated during assembly to be included in
the punched output. This table of local symbols should be output only when
the programmer intends to debug his program using the symbolic debugger since
the binary tapes without local symbols are considerably shorter.

Thus, when the assembler asks what form the binary output is to tsake, by
typing,

BIN:
there zre four pcssible responses whose effects are shown below.

RECPONSE EFFECT
Output binary on the teletype without local symbols.

Cutput binary on the high speed punch without local symbols.

1

2

3 OQutput binary on the teletype with local symbols.

L Output binary on the high speed punch with local symbols.

o

Like the basic assembler, the extended assembler punches its output in

blocks separated by null characters. There are seven different types of

blocks punched by the extended sssembler which are distinguished by the code
contained in the first word of each block. There is a specific order in which
these varicus types are punched with all blocks of one type being punched together.
For each program assembled the extended assembler will punch a Title Block, a
Start Block, and at least one other block, but aside from the Title and Start
Blocks no other itype of block must necessarily eppear in every program. The

seven types of blocks in the order in which they would be punched if all were

required are shown on the next page. The exact formats of each of these blocks

can be found in Appendix C of the Relocatable Loader write-up (093-000039).

Order of Blocks Punched in Paper Tape

TITLE BLOCK
AN SN NNN
ENTRY BLOCKS(S)

[L L L

DISPLACEMENT EXTERNAL
BLOCK(S)

VAV NN NN

RELOCATABLE DATA
BLOCK(S)

NN NEN

HORMAL EXTERNAL
BLOCK(S)

[L7777 L7

LOCAL SYMEOL
BLOCK(S)

NN

START BLOCK

/)

FLAG

G

N

APPENDIX B

Errcr Mnemonics

MELNING

Address error - Expression evaluates to something other than an
absclute, normal relocatable, or page zero relocatable address.
Page zero relocatable instruction references zddress outside page
zero. Normally relocatable instruction references address outside
the range of location counter relative addressing.

Error in declaration of an internal or external symbol.

Conditional assembly error -~ Exprcssion used in .IFE or .IFN
pseudo-ops is not evaluable in pass 1, or the IFE or .IFHN
pseudo-op is nested within a previous conditional assembly
statement.

Number specified is too large or too smell to be represented as
a floating point number.

Expression error - Expression does not evaluate to be absolute,
relocatable, or byte pointer type relocatable, or expression
mixes page zero and normal relocatable symbols incorrectly.

Expression contains illegal symbol, (eg, an external, an op code,
double precision number, or floating point number).

	000
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	A1
	A2
	B1

