
O«\TA GENERAL
CORPORATION

Southboro.
Massachusetts 01772

(617) 485-9100

PROGRAM

DISK OPERA TING SYSTEM
USER'S MANUAL

ABSTRACT

Data General's Disk Operating System can be used with
any NOV A- line computer of 12K or larger memory, ·
having any combination of fixed or moving head disks.
DOS provides comprehensive file system capabilities,
allowing the user to edit, compile, assemble, execute,
debug, save, protect~ arid delete files.

Copyright (C) Data General Corporation, 1971
Printed in U. S. A.

093-000048-04

INTRODUCTION

Data General's DOS is a versatile, sophisticated operating system of a design
comparable to those used with the largest current computer configurations. It
can be used with any NOVA-line computer of 12K or larger memory configura­
tion having any combination of fixed or moving head disks.

DOS provides comprehensive file system capabilities, allowing the user to edit,
compile, assemble, execute, debug, save and delete files. Complete file
protection is provided using a number of system defined attributes. File direct­
ories are maintained on a fixed head disk and disk pack basis, where each disk
pack can be removed from the system. All peripheral devices are named and
treated as files, providing complete device independence by symbolic name.
All I/O including file I/O is buffered, interrupt driven.

Two modes of program communication are provided. The first is interactive
teletyp~ communication made possible by an executable system program, the
Command Line Interpreter (CLI). The second mode enables the user to commun­
icate directly with the system using a series of command words recognized by
the assembler and forming an integral part of his executable program. These
command words are interpreted by DOS at run time.

A complete line of system software is available for use under DOS. This includes
a relocatable assembler, relocatable loader, text editor, octal editor, Extended
ALGOL 60, a superset of FORTRAN IV, a library file editor, and a symbolic
debugger. In addition, the use of interpretive system calls enables the user to
write his own special-purpose software while utilizing all the file capabilities
and peripheral device support of DOS.

i

TABLE OF CONTENTS

INTRODUCTION i

CHAPTER 1 - FILES AND DIRECTORIES

Definition of a File . 1-1
File Names 1-1

File Name Extensions •
Special File Names •••
Device Prefixes •

File Directories. • • • • •
Contents of the Directory.
Directory Devices ••••••
Default Directory Device
Master Storage Device •
Bootstrap Device .••••
Removable Media ••
Command Summary .
System Installation . • •
Further System Information

CHAPTER 2 - TELETYPE BREAKS

.

CHAPTER 3 - COMMAND LINE INTERPRETER (CLI)

C LI Definition .
Ready Message.
CLI Activation •
CLI Response to Command Lines. . ..•••
Symbols and Conventions Used in Command Line Syntax
C LI Coml)1ands Available to Users.
Command Lines ••••••••••••••

Basic Command !...ine •.
Stacking Commands on a Command Line ••••••
Long Command Lines •••••.•.••••••••••••
Suppression of Ready Messages ••••••

Switches
Numeric Switches •
Letter Switches .•
Effect of Switches on Command Lines.

Asterisk Convention (*) •••••••
Indirect Convention (@) •••

File Name Searches ••
Messages Concerning I/O
Error Messages ••••••••

iii

1-1
1-2
1-3

• 1-4
• • 1-4
• • 1-5

1-5
1-5
1-6
1-6
1-6
1-6
1-6

2-1

3-1
3-1
3-1
3-l
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-9
3-9
3-11
3-12
3-14
3-15

CHAPTER 3 COMMAND LINE INTERPRETER (CLI) (Continued)

CLI Commands
ALGOL
APPEND
ASM
BLDR
BPUNCH
CHA TR
CLG
CREATE
DEB
DELETE
DIR
DISK
DUMP
EDIT
FORT
INIT
INSTALL
LFE
LIST
LOAD
MKABS
MKSAVE
OEDIT
PRINT
PUNCH
RELEASE
RENAME
RLDR
SAVE
TYPE
XFER

CHAPTER 4 PROGRAM MODE OF SYSTEM COMMUNICATION

System Command Words
Command Word Format
Status on Return from System
List of Command Words •••••••..••...
Directory Device Monitor Commands ••.

,

Initialize a Directory Device (. INIT) ••••••
Changing a Default Directory Reference (. DIR) •••••••••
Release a Device to Prevent Further File Access (.RLSE)
Install a Bootstrap System (.INST)

iv

3-16
3-117
3-19
3-20
3-24
3-25
3-26
3-27
3-29
3-30
3-3.1
3-32
3-33
3-34
3-35
3-36
3-38
3-39
3-40
3-44
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-56
3-57
3-58

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-5
4-5

CHAPTER 4 - PROGRAM MODE OF SYSTEM COMMUNICATION

File Maintenance Commands • • • • • • • • • • • • • • • . • • • • • • • • • 4-6
Create a File (. CREAT) • • . • • • • • • . • • . . • • • • . • • . • • • 4-6
Delete a File (. DELET) •••••••.••••••••••••••••• 4-7
Rename a File (. RENAM) •••••••••••••••••.•.•••• 4-7

File Attribute Commands • • • • • • • . • • • • • • • . • • • • • • • • • • 4- 8
Change File Attributes (. CHATR) • • • • • • • • • . • • • • • • • • 4-8
Get File Attributes (. GTATR). • • • • • • • . • • • • . . • • • • • • 4-9

Input/Output Commands. • • • • • • • . • • • • • . • . . • . • • . • . • • • 4-10
Open a File (.OPEN) ••••••••••.•••.••..•..••••• 4-10
Open a File for Appending (.APPEND) • • . • • . • • • • . • • • • 4-11
Close a File (. CLOSE) • • . • • • • • • • • • • • . . • • . • • • • • • 4-12
Close all Files (.RESET) • . • • . • • . • • • • • • • • . • . . • • . 4-13
Read a Line (. RDL). • • • . • • • • • . • • • • • • • • • • . • . • • • • 4-13
Read Sequential (.RDS) • • . • . • • • • • • • • . . • . . . • • 4-14
Use of Card Reader in • RD L and • RDS Comm ands • • • • • . • 4-14
Hollerith-ASCII Translation Table • • • • . • . • • . • . . • • . • 4-16
Read Random (. RDR) • • • • • • . • • . • • . . . • • . • 4-17
WriteaLine(.WRL) •••.••••.•••••.•.••.•..••. 4-17
Write Sequential(. WRS) • . • • . . • • • . • • • • • . • . • . • . • • 4-18
Write Random(. WRR) ••••••••.••.•.•...•.•....•. 4-19

Teletypewriter Commands . • • • • . • • • • • • • • • • . • • • • • . . • • 4-19
Get a Character (. GCHAR) . • . . . • • • • • . • • • • . . . • . . • 4-19
Put a Character (. PCHAR) • • . • • • . . • . • • • • • . • . • . • • 4-19

Memory Commands . 4-20
Determine Available Memory (. MEM) • . . • • • • • . • . • • • • 4-21
Change NMAX (. MEMI). • • • • • . . • • • • • • • • • • • . • . • . • 4-21

Program Overlay Commands • • • . • . • . • • • • • . • • . • . • • . • • 4-22
Program Overlays . 4-22
Read in a Save File Overlay (.EXEC). • • . • • • . . • • . • . . • 4-23
Return from Over lay (. R TN) • • • • • • • • . • • . • . • • . • • • • 4-24
Return from Overlay with Exceptional Status (. ERTN) • • . • 4-24
Saving Current State of Memory (.BREAK) • • • • • • . . • • • • 4-25

Error Messages. 4-26

CHAPTER 5 - MULTIPLE FILE DEVICES

Devices Providing Multiple File Access • • . • • • • . . • . . . • . • . 5-1
Determining System Device Configuration. • • • • . • • . • . • . . • • 5-1
Directory Devices . 5-1
Mag:n.etic Tape . • • . . • 5-2

7-Track Units.. 5-2
Number of Tape Drives in System • • . • 5-2
Initializing a Tape Drive • • • • . • • • . . • . . • • . • • • 5-3
Releasing a Tape Drive •••.•••..•..••••.. ·• . • • • . • 5-3
Referencing a File on Magnetic Tape. • • • . • . • . • • . • . • • 5-3
Writing Files to Magnetic Tape • • . . • . . . • • • • • . • . • • • 5-4

v

CHAPTER 6 - USER SERVICED INTERRUPTS

CHAPTER 7 - PANICS

APPENDIX A - DOS SYSTEM PROGRAMS

Text Editor .
Relocatable Assembler ••••.•••...•.•.•••.•..........
Relocatable Loader • • . • . • • • • . • . • . • • • • . • . . . •
Debug III
Extended ALGOL•..••••....••••
FORTRAN IV
Library File Editor (LFE) • • . • . . • • • • • • • . . . ••

Analyze (A) Function ••...•.••......••••••.•.••
Delete (D) Function
Insert (I) Function .
Merge (M) Function ..
New (N) Function .
Replace (R) Function ••.•.•••.•.•...•.•••.....•
Titles (T) Function ••...••.......••.••..•.•.•
Extract (X) Function

Octal Editor
Octal and ASCII Modes ••..••.•......•••••••...••
Opening and Examining a Location ••.••••••••..••..•
Modifying a Location ••.•....•..•...••••.••...•
Locations
Typing Errors
Return to CLI Level

I

Sample OEDIT Commands •••••••••.••.••.••••.••
Binary Loader . • -

APPENDIX B - SYSTEM GENERATION

6-1

7-1

A-2
A-6
A-7
A-14
A-15
A-17
A-19
A-22
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-35
A-35
A-35
A-37
A-37
A-37
A-38
A-38
A-39

System Generation Tapes • • • • . . • • • • . • • • • • • . • • • . • • • • B-1
System Generation Procedures • • . . • • • • . • . . • . . . • . • • • • • B-2

APPENDIX C - SYSTEM AND USER PARAMETER TAPES

User Parameter Tape . C-2
System Parameter Tape • • • • • • • . • • . • . . . • • • • • • . • . .• • • • • C-9

APPENDIX D - CLI INTERPRETATION OF USER COMMANDS D-1

APPENDIX E - MAGNETIC TAPE BOOTSTRAPPING OF DOS E-1

vi

APPENDIX F - ADDING DEVICES TO THE SYSTEM

Creating a Device Entry in SITAB •••••.•••• · ••• • • · • • • • F-2
Declaring the DCT Address •••••••••••••. • • • • • • · · • • • F-2
Defining and Supplying DCT Information •••••. • • • • · • • · • • • F-3
Subroutine Lin.kage . · · · • · · · · · · · F-7
Generalized Ring 1/0 Routines •••.•••• • • • • • • • • · • • · • • • F-7

Generalized Open Routine •••••••• · •••• • • • • · • · • • • • F-7
Generalized Close Routine ••.•••••••• • • • • • • • • • · • · F-9
Generalized Read Sequential ••• • •. • • · · • • • • • • • · • · • F-9
Generalized Write Sequential • • • • • • · • • • • • • · · • · · • · · F-9
Generaliz.ed Read Line . • • . • . • • • • • • • • • • • • • • • • • • • F-1 O
Generalized Write Line • • • • • • • • • . • • • • • • • • • • · • • • • F-1 O

Input to Ring Buffer • • • . • F-11
Output from Ring Buffer •••.••.••.•.••••.•••.••••• F-11

Updating the System Library • • . • • • • • • . • • • • • • • • • • • • ••• F-12
Sy stem Generation . F-13

APPENDIX G - SYSTEM TAPES G-1

INDEX

vii

CHAPTER 1

FILES AND DIRECTORIES

DEFINITION OF A FILE

The term fi Ze applies to any collection of information. Typical examples are:

Source program file
Relocatable binary file
Listing file
Core image file (save file)

With the exception of the core image file, these files should be familiar to NOVA
users and most programmers. The source program is input to the assembler,
which produces as output a relocatable binary file. The relocatable binary file
is input to the relocatable loader, which loads and relocates the program at
absolute locations, producing a core image file, also called a save file. It is
called a core image file because it is stored on disk word for word as it will be
loaded in memory. In addition to loading, there are other means by which a user
can produce a core image file, and these will be described in later chapters.

FILE NAMES

All files and devices are accessible by fi Zename • The basic file name is
a string of alphanumeric characters and the character $. A file name can con -
tain any number of characters, but the system considers only the first 10
significant.

File Name· Extensions

An extension can be appended to a file name. An extension is a string of alpha­
numeric characters and the character $. The extension can be any number of
characters but the system considers only the first two significant. A period (.)
separates the extension from the file name. An example of a file name with an
extension is:

FOO. PS

The Command Line Interpreter, described in Chapter 3, often appends extensions
to the name of a file, indicating the type of information it contains and disting­
uishing it from other types of files resulting from the same source file. For
example, if a source file is named A. SR, the names of the different types of files
produced from the source file might be:

1-1

File Name Extensions (Continued)

A.RB
A.SV
A. LS

.E_elocatable £inary file
core image (~ay_e file)
!_i ~ting file

The user must, in some instances, give the extension for his file name in a command.
Usually, however, the particular command uses a search algorithm that will locate
the file with the correct extension. (See Chapter 3, File Name Searches)

There are instances when the user may want to append his own extension to a file
name. This is permissible, but the user should avoid conflicts with system
extensions. For example, a user should not name a source file A. SV because
of the confusion it might cause with save files having the SV extension.

Special File Names

Conditional access devices are given special file names, which begin with $ for
uniqueness. File names of these devices are:

*

$TTI teletype keyboard input*

$TTR teletype reader input

$TTO teletype printer output**

$TTP teletype punch output * *

$PTR paper tape reader input

$PTP paper tape punch output

$CDR card reader input

$LPT line printer output

$PLT incremental plotter output

Input devices other than the teletypewriter keyboard automatically provide end-of­
file when input ceases for a device-specified time. On TTI input, however, the
user indicates an end-of-file by pressing the CTRL and Z keys.

* * $TTP has the characteristic: "requires leader/trailer"; $TTO does not. Other­
wise, there is no difference between the devices.

1-2

Special File N~mes ~ (Continued)

The user can, if he wishes, assign names beginning with $to files other than
devices.

A few examples will indicate how input/output operations are facilitated by the
convention of equating a file and a device. The command:

XFER

is used to transfer the contents of a file from one file to another file. There are
two arguments:

XFER souraefi Ze destinationfi Ze

If the user types

XFER $PTR A J.

the contents of the paper tape mounted in the paper tape reader are transferred to
a file named A. (The symbol J represents a carriage return.) If the user types

XFER P $PTP,l.

the contents of the file named P are punched out on paper tape.

Device Prefixes

File nam~s may be prefixed by a device specifier. The device specifier is a two­
letter mnemonic, followed by a unit number, followed by a colon that separates
the specifier from the file name. For example:

DK0:F00.SV

specifies save file FOO on fixed head disk unit 0, and:

DP2 :TEST. SR

specifies assembler source program TEST. SR on moving head disk pack unit 2.

A device prefix is used to reference a file that is not in the default directory but
is in the directory of a device that is part of the system configuration. File
directories and the devices that maintain directories of files are explained in the
section immediately following, "File Directories".

1-3

FILE DIRECTORIES

Contents of the Directory

Information required about files on a given device is kept in the file directory
of the device. The information includes the file name, the length in bytes of
the file, and the file attributes.

Since all file names on a given storage device are contained in a single directory,
each file name must be unique. An attempt to add a file name to the directory
when the same file name already exists causes an error indication.

A file may have a byte length from 0 up to a maximum of 33, 423, 360 bytes.

File attributes are characteristics of files that can be set and changed by the user.
These are:

P - fermanent file, which cannot be deleted or renamed.

S - ~ave file (core image) ..

W - \Yrite - protected file, which cannot be written.

R - !!-_ead - protected file, which cannot be read.

A - ~ttribute - protected file. The attributes of such a file
cannot be changed. *

The LIST command, described in Chapter 3, allows the user to obtain information
from the file directory about one or more files on the device.

The Disk Operating System contains a number of permanent and attribute-pro­
tected system files, for example, the $TTI. The user should be careful not to
place overly restrictive attributes on his own files unless necessary. Note,
for example, that a file with the attributes AP cannot be deleted by the user in
any way.

* The A attribute can be set by a user only in program mode of system com -
munication. Other attributes can be set either in program or CLI mode.

1-4

Directory Devices

It is possible to configure DOS with up to four similar moving head disk units
and up to eight fixed head disk units. All fixed headdisk units are logically combined
into a single unit for user reference purposes. The device specifier for the
fixed head disk:

DK0 (fixed head disk, control 0)

refers to a single directory and storage area with up to two million 16-bit words.

Moving head units are organized with a separate file directory per unit. DOS
may be configured with up to four such units with device specifiers:

DP0, DP!, DP2, and DP3

Each disk pack unit has a distinct file directory and free storage map. Any file
on such a device is completely contained on that device. Precise configuration

·is determined via the SYSGEN program (see Appendix B).

Default Directory Device

The default directory device is the current device within the system to which
all file name references are directed in the absence of a device specifier, either
DK0 or DP!!., prefixed to the file name.

Master Storage Device

The master. storage device can be designated at SYSGEN time to be any legitimate
device specifier within the system. 'The master storage device is used for two
purposes:

1. It becomes the default directory device at system initial­
ization and after a bootstrap.

2. It is used for temporary storage area for pushing the current
address space when the. EXEC monitor command is
executed either by the CLI or by a user program. Since
the master device is used during this swapping operation,
it should be selected during SYSGEN to be the fastest
access device available.

1-5

Bootstrap Device

It is possible to generate (via SYSGEN) a DOS system which is bootstrappable from
either the fixed head disk (DK0) or from the moving head disk unit zero (DP0).
Thus, once a system is generated it is bootstrappable from only one type of device.
If a user desires a configuration with both types of storage media, it is possible
to generate two systems identical in all respects but for bootstrap device type.

Removable Media

Since individual removable disk units contain only complete files and file directory
information, they may be removed from the system without affecting the file
contents. New packs are introduced to the system with the INIT/F CLI command.
This causes rudimentary directory information to be written to the disk in
anticipation of file creation. The same command, without the /F switch is used
to reintroduce a pack with valuable file contents to the system.

Command Summary

The following is a list of the pertinent CLI commands used to manage multiple
directory devices.

Command

INIT [/F]
RELEASE
DIR

deviae_speaifier
deviae_speaifier
deviae_speaifier

System Installation

:pescription

Prepare device for system use.
Remove device from system.
Change default directory device.

The systei:n saved file (SYS. SV) produced during system generation (see Appendix B) must
be installed via the INSTALL command before bootstrapping can take place. When
this command is invoked, DOS copies the bootstrap program from the system saved
file to logical address zero of the default directory device. When the bootstrap
program begins execution, it locates the remainder of the system file and loads the
entire system into core. If a sy~tem has never been INSTALLed, bootstrapping

is not possible.

Further System Information

This chapter attempts to summarize some of the features of directory devices under DOS
and to define some of the terms applicable to directories and files that are used throughout
the manual. The user should read the entire manual carefully before attempting to
generate, install, bootstrap, and use DOS.

1-6

CHAPTER 2

TELETYPE BREAKS

There are two possible program breaks that can be generated at the teletype­
writer.

Pressing CTRL and A on the teletypewriter causes an immediate interrupt re­
gardless of present program status. This is a trouble break used, for example,
when necessary to interrupt a long $TTO output. The word INT is typed by the
Command Line Interpreter upon recognition of a CTRL A break.

Pressing CTRL and C on the teletypewriter causes an eventual interrupt of a
program and a file to be created and written as an image of core at the time of
interrupt. The word BREAK is typed by the Command Line Interpreter upon
recognition of this interrupt, and the name of the save file will be BREAK. SV.
The termination of execution depends upon the state of the user program. If
the program is not within the system (i.e. , not executing one of the monitor
calls described in Chapter 4) the interrupt will occur immediately. If the program
is executing within the system, the interrupt will not occur until the monitor
has satisfied the user request. Under no circumstances is the CTRL C ever
transmitted to a user program reading from the $TTI. The implications of this
are as follows:

If the user program is in the process of reading from the $TTR,
a break should not be attempted until the reader has stopped.
Depressing CTRL C while the reader is active causes garbled
character transmission.

If the user program is in the process of reading from the $TT!,
the read request must be satisfied before the break will occur.
Specifically, if a character has been requested (see • GCHAR,
Chapter 4) another character in addition to CTRL C must be
input since the CTRL C is transparent to the input request. If
a read line has been requested (see • RDL, Chapter 4) a carriage
return or a form feed must be sent. If a read sequential has been
requested (see • RDS, Chapter 4) the sequential character count
must be satisfied before the break will occur.

If the user program to be interrupted is not issuing reads from
the $TTR or $TTI, the break will occur upon system completion
of the call.

See Appendix A, Relocatable Loader Section, for a discussion of how the
user can service CTRL A and CTRL C teletype breaks.

2-1

CHAPTER 3

COMMAND LINE INTERPRETER (CLI)

CLI DEFINITION

The Command Line Interpreter (CLI) is a system program that accepts command
lines from the teletypewriter and translates the input as commands to the operating
system. The CLI is basically a string handler that acts as an interface between
the user at the teletypewriter and the system. In addition, the CLI performs
certain file housekeeping chores for the user.

The system restores the CLI to core whenever the system is idle - after initialization,
after a bootstrap, after a teletype break, after execution of a program, etc.

READY MESSAGE

The CLI indicates to the user that the system is idle and the CLI is ready to
accept commandsbytypinga ready message on the teletypewriter. The message
consists of R followed by a carriage return.

CLI ACTIVATION

The user activates CLI responses to a command by typing a line and pressing the
RETURN key or the CTRL L (form feed) keys. The CLI will not respond until
RETURN or CTRL Lis pressed. (RETURN and CTRL Lare interchangeable;
use of RETURN in the remainder of the text means either line terminator.)

CLI RESPONSE TO COMMAND LINES

The CLI itself executes certain system commands such as CREATE and RENAME.
More complex commands cause the CLI to build a file containing an edited version
of the command line and load the program named in the command line for execution.
When execution is finished, control is returned to the CLI.

3-1

SYMBOLS AND CONVENTIONS USED IN COMMAND LINE SYNTAX

Symbol

J.

\

-
(space)

I

*

. ~

Usage

Represents pressing RETURN key, causing
termination of the command line input and
activation of the CLI.

Represents pressing CTRL L keys (form feed).
which acts in the same way as the RETURN
key.

Represents pressing SHIFT L keys, which
causes deletion of the entire line. \ J.
are echoed on the teletypewriter.

Represents pressing RUBOUT key, which
causes erasure of the previous character.
- is echoed on the teletypewriter.

Arguments are separated by commas or
spaces. Extra commas and spaces have
the same effect as a single symbol.

Right slash indicates that the character
immediately following is to b~· interpreted
as a switch.

Command delimiter in a command line.
Two or more commands may appear on a
line separated by semicolons, none are
executed until RETURN is pressed.

The next RETURN is ignored as a command
terminator. ~must appear as the character
before the carriage return.

Can match any character in a file name or
its extension or any set of characters in
constituting a file name or its extension,
according to rules described later.

Complements the ready message switch. All
ready messages are suppressed until the next
occurrence of a • ~ command.

3-2

Example

CREATE AB J.

CREATE AJ.

CCRREAGE \

CC•REAG+TE

DELETE AB J
DELETE A, B ~
DELETE A B),
DELETE A, , B J

LIST/A J

CREA TE A; LIST J

RENAME A ALPHA t al.
B BETA ~

DELETE FOO.* J
LIST T* J.
CHA TR FOO *W J

• J.
CREATE AJ
DELETE B J.

SYMBOLS AND CONVENTIONS USED IN COMMAND LINE SYNTAX (Continued)

Symbol Usage Example

@ Change of CLI input command stream. ASM @FOo@ i).

NOTE: Use of these symbols and conventions is described in greater
detail in sections following.

CLI COMMANDS AVAILABLE TO USERS

The library of CLI commands available to users provides for complete file
maintenance and an interface to standard system software. CLI commands are
listed below.

ALGOL

APPEND

ASM

BLDR

BPUNCH

CHA TR

CLG

CREATE

DEB

DELETE

DIR

DISK

DUMP

EDIT

FORT

Compile an ALGOL source file.

Append, one, two or more files to produce a single file

Assemble a program

Load absolute binary tape with binary block loader (stand-alone operation).

Punch a file or files in binary on the high speed punch.

Change the attributes of an existing file.

Compile, load, and execute FORTRAN programs.

Create a file or series of files.

Read in a program and transfer to the symbolic debugger instead of
resuming execution.

Delete a file or series of files.

Change the current default directory device specification.

Obtain a list of the number of blocks used and the number of blocks
still available on the default device.

Dump files. The dump includes directory information for each file,
which enables later reloading.

Bring in the Text Editor to build or edit source files.

Compile and assemble a FOR TRAN source file.

3-3

CLI COMMANDS AVAILABLE TO· USERS (Continued)

!NIT

INSTALL

LFE

LIST

LOAD

MKABS

MKSAVE

OED IT

PRINT

PUNCH

RELEASE

RENAME

RLDR

SAVE

TYPE

XFER

COMMAND LINES

Initialize a directory device or magnetic tape.

Specify system saved file for use in bootstrapping DOS.

Update DOS library files.

List names of files in the default file directory with their length
in bytes and attributes.

Reload dumped files.

Make an absolute binary file from a core image file.

Make a core image file from an absolute binary file.

Bring in octal editor to examine and modify locations in octal.

Print a file or files on the line printer.

Copy a file or files in ASCII mode to the high speed punch.

Prevent further I/O access to a directory device or rewind magnetic tape.

Change the name of a file.

Load a core image from a series of relocatable files.

Save a core image as a file.

Copy a file or files in ASCII mode to the teletypewriter.

Transfer contents of a file to another file.

A command line can consist of one or more commands followed by RETURN. A
basic command line has one command.

3-4

COMMAND LINES (Continued)

Basic Command Line

The basic command line is simply a list of one or more file names. Except for a number
of simple commands that the CLI executes directly, the first file name in the command line
is the name of the program to be loaded into core by the CLI for execution. Thus, some of
the commands listed on the previous page are names of save files. If, for example, the
user types the command line

ASM $PTR)

the CLI builds a file, called COM. CM, containing the edited command line, and loads the
save file that has the file name ASM. SV for execution.

Any additional file names besides the program name are used as arguments. In the
example, $PTR is the file name of the paper tape reader from which a file is to be
assembled.

User action and CLI response are the same when a user wants to execute one of his own
programs. For example, if a user has a save file named A. SV and he types

A)

the CLI builds a file containing the command line and calls the operating system to load
the save file named A. SV for execution.

Stacking Commands on a Command Line

A command line is executed by the CLI when the user presses the RETURN key or the
CTRL L keys on the teletypewriter.

A number of commands may be stacked on a given line for execution. They are
separated by semicolons. For example:

CREATE A; LIST A;DISK;DELETE B).

The four commands are executed when the user presses RETURN. The CLI indicates
execution of each command with the appropriate information, if any. At the completion
of the entire command line, the CLI will prompt the user again with a ready message.
For example, the previous command line might cause the response:

A. 0
LEFT: 56, USED: 200
R

3-5

+ response to LIST A
+ response to DISK
+ command line completed

COMMAND LINES (Continued)

Long Command Lines

There is no limit (other than memory capacity) to any command line. The user can type
a command line that is longer than the ASR33 line length by typing the symbol t in the
command line immediately before pressing the RETURN key. The up arrow causes the
carriage return to be ignored. For example:

CREATE ABC; LIST; DISK; APPEND NEW. SR tJ
GAMMA.SR DELTA.SR)

is executed as if the following had been typed:

CREATE ABC; LIST; DISK; APPEND NEW. SR GAMMA. SR DELTA. SR J

In the previous example, the second line starts a new argument. Note that when a RETURN
is ignored, there is no delimiter between the last character on one line and the first
character on the next line. Therefore, in the example the blank argument delimiter has
been inserted before the up arrow.

The usE·r can, of course, break an argument or command word into two lines:

is equivalent to:

CREATE ABC; LIST; DISK; APPEND NEW. SR, GAM +;>.
MA. SR, DELTA. SR J

CREATE ABC; LIST; DISK; APPEND NEW.SR,GAMMA.SR,DELTA.SR J

Suppression of Ready Messages

The user can suppress typing of ready messages by using the symbol period(.) as a
command. For example:

• ~ +- suppress prompt
CREATE A; LIST A; DISK; DELETE BJ.
A. O +- response. to LIST A
LEFT: 56, USED: 200 +- response to DISK

- no ready message at completion
of command line

To restore typing of ready messages, the user issues a second command:

.)

3-6

COMMAND LINES (Continued)

For example:

SWITCHES

. J
CREA TE A; LIST A; DISK~
A. 0
LEFT: 56, USED: 200
. J
DELETE CJ
R

+- turn prompt off

t- turn prompt on

t- response to DELETE C

Commands and their arguments may be modified by a series of switches pertaining to
the command or argument. A switch is indicated by a right slash (/) followed
immediately by either a letter or a decimal digit.

Numeric Switches

Numeric switches specify the number of times the previous argument is to be repeated
in the command line. For example:

RLDR $PTR/6 J

indicates that six relocatable binary tapes are to be loaded from the paper tape reader.

Numeric switches are cumulative. The follONing commands are equivalent:

RLDR $PTR/1/0/3/2 il.

RLDR $PTR/6 J.

The digit 1 in a numeric switch is the same as no switch. The following commands are
equivalent:

RLDR $PTR J.

RLDR $PTR/1 .}_

The digit O has no effect upon the number of times a file name is repeated if it appears
in a list of numeric options. For example, the following commands are equivalent:

RLDR $PTR/6 J..

RLDR $PTR/1/0/2/3 t
RLDR $PTR/1/2/3/0/0 J

3-7

SWITCHES (Continued)

Numeric Switches (Continued)

However, when used alone, the 0 switch has the same effect as 1. For example, the
following are equivalent commands:

RLDR $PTR/1 J

RLDR $PTR/O)

RLDR $PTR ~

The user should note the effect of applying a numeric switch to a CLI command. For
example, the following are equivalent:

DELETE/2 ~

DELETE DELETE~

The command could be used if the user has a file named DELETE that he wishes to
delete.

Letter Switches

Letter switches have distinct meanings that depend upon the command or argument with
which they are associated. The detailed descriptions of each CLI command indicate the
meanings of each letter switch that can be used in the command.

A letter switch that follows a command word is a global switch and applies to .all arguments
of the command line. A switch that follows an argument is a local switch and applies
only to the particular argument. For example, the assembly command ASM has both a
local and global switch, L (listing file). The command:

ASMA BJ

causes files A and B to be assembled but, by default, no listing is produced. The
command:

ASM/L AB d

causes files A and B to be assembled, and a listing file named A. LS to be produced. The
command:

ASMA B $LPT/L ~

causes files A and B to be assembled and a listingof the assembly to be output to the
line printer.

3-8

SWITCHES (Continued)

Effect of Switches on Command Lines

A switch affects a command line as if the switch were a comma or a space. For example,
the following commands are equivalent:

ASM/L AB J

ASM /LAB J

ASM/LA B l

Thus, the switch delimits the command word ASM from the argument A.

If a character other than a number or letter follows the right slash, the slash acts merely
as a delimiter. For example,

ASM/ L A B J

The slash is ignored because it is followed by a space. The command will cause the
assembly of files L, A, and B. If there is no source file named L, an error message
will result.

ASTERISK(*) CONVENTION

When referencing the default directory, an asterisk can be used to represent any given
character in a file name. For example, the command:

DELETE A **M J.

will cause all four-letter file names without extensions that begin with A and end with M
to be deleted. For example, files that have names like the following would be deleted:

The command:

ATOM
ADAM
A22M
A$RM

LIST B* ;)_

would cause a list to be typed, giving all two-character files beginning with the letter B
and having no extension.

3-9

Asterisk (*) Convention (Continued)

A single asterisk can be used to represent the entire file name or extension and
thus represent a number of characters. For example, the command:

DELETE *. LSJ

would cause deletion of every file on the default directory with the extension LS.
The files might be:

A. LS
OMEGA. LS
TESTPROG. LS
ATOM. LS

The command:

LIST* J

would cause a list of every file in the directory that does not have an extension,
and the command:

LIST *. *J

would cause a list of every file, whether or not it has an extension.

It is possible to delete all files that are not protected with the single command:

DELETE *. *J

Note, however, that it is not possible to delete all single-letter files, only,
since the command:

DELETE *J.

is interpreted to mean 'delete all files without extensions.'

A device specifier cannot be used with the *convention. An attempt to give a
command such as:

LIST DPl: *. *J

causes the default directory to be searched for the name DPl:
never found.

* * . which is

The last part of this chapter contains writeups on each of the CLI commands.
Each writeup indicates whether or not the asterisk convention can be used in
file names.

3-10

INDIRECT (@) CONVENTION

Paired@ signs around a file name are understood to represent the contents of the file
rather than the file name itself.

Suppose a user regularly concludes each teletypewriter session by deleting listing
files, checking the list of non-permanent files, and determining how much space he has
left on disk. The command line for this would be:

DELETE *.LS; LIST; DISKJ

These commands could be written into a file called END in the following way:

Then the command:

XFER /A $TTI ENDJ
DELETE *. LS; LIST; DISKJ
R

@END@J

is equivalent to typing the three commands.

~ Transfer commands in ASCII
from TTI to file END. (User
terminates input with CTRL Z;
CLI types out R.)

As another example, suppose the user has five source programs called PARTl, PART2,
PART3, PART4 and PARTS. He can then use the XFER command as shown above to
build a file called TEST, containing the ASCII line:

PART1PART2PART3PART4PART5

If he issues the command:

ASM@TEST@l

the five files are assembled.

The contents of a file on disk may, in tum, point to another file. As a simple example,
suppose:

Then the command:

file A contains L@B@
file B contains I@C@
file C contains ST

@A@J

3- 11

INDIRECT (@) CONVENTION (Continued)

is equivalent to the command:

LIST J

Only four files (including the teletypewriter) may be open at any one time. In the
example above, the maximum number of files (A, B, C and teletypewriter) are open.
Suppose the contents of the three files were:

file A contains L
file B contains I
file C contains ST

Then the command:

@A@@B@@C@ J

is equivalent to:

LIST J
and only one file plus the teletypewriter is open at a given time.

FILE NAME SEARCHES

The file directory may contain a number of entries having the same file name but
different extensions, for example:

.A.SR
A.RB
A.SV
A. 32
A.XX
A.LS

File names used as arguments to most commands must specify both the appropriate file
name and extension. Certain commands, however, if unable to find a specified input file,
will search for the same file name with an appropriate extension appended to it. If this
file is found, the file will be used as the input. Similarly, certain commands will append
an appropriate extension to a specified output file name. For example,

ASMA)

3-12

FILE NAME SEARCHES (Continued)

causes a search for the file named A. SR. IF A. SR is found, it is used as the source file
for the assembly. Otherwise, a search is made for A.

When A is found, the command

ASMA i

will cause the assembler to produce a relocatable binary output file named A. RB. The
CLI creates this name by adding the extension • RB (for relocatable binary)
to the name of the source file.

If the user types:

RLDR A J.

A search is first made for A. RB and if not found, for A. The CLI creates an output file
for the relocatable loader called A. SV, the extension used to signify a save file.

The commands SAVE and MKSAVE also have a save file as output. In both cases, the
CLI adds the extension SV to the name of the output file. If the user attempts to substitute
his own extension, it will be ignored. For example:

SAVE A. XX J
causes a core image to be stored as a save file on disk. The name of the file will be
A. SV. The extension XX is ignored.

The command MKABS has as input a save file. For example, if the user types:

MKABS A $PTP J

a search is made for A. SV and, if not found, for A.

To execute the file A. SV, the user types

A }.

The CLI calls the operating system to load into memory the file called A. SV and transfer
control to its starting address. In this special case of loading a save file, the only search
made is for the file name with the SV extension.

3-13

FILE NAME SEARCHES (Continued)

Most other commands require appropriate file name extensions to be given explicitly.
If the user types:

DELETE A ~

only the file named A will be deleted. Files such as:

A.SR
A.SV
A.RB
A. 33

would not be deleted.

If the user types the command:

RLDR A FOO/S J_

the /S switch indicates that the user wants the save file output of the loader to be
named FOO. SV.

If a user gives his own extensions to file names, such as A. 33, such files must be referenced
with their file name and extension.

MESSAGES CONCERNING I/O

Some commands require manual operation of an I/O device. If the user issues such a
command, he will receive a message prompting him on the proper action. For example,
if the user issues the command:

XFER/ A $PTR A. SR J.

which requests that a source file be transfered from the paper tape reader to a
disk file named A. SR, the system replies:

LOAD $PTR, STRIKE ANY KEY.

The user can then load the w.per tape reader and strike any key on the teletypewriter.
The key struck to start the device is not echoed on the teletypewriter.

When a series of files are to betransferred,assembled, or loaded from a device
requiring manual intervention for each file, the message will be issued the appropriate
number of times. For example, if the user issues the command:

APPEND NEWFILE $PTR/2 al

which requests that .a file called NEWFILE be created from two files input from the paper

3-14

MESSAGES CONCERNING I/O (Continued)

tape reader, the following responses will occur:

LOAD $PTR, STRIKE ANY KEY.

LOAD $PTR, STRIKE ANY KEY.

The second message is typed out after the first file has been transferred.

ERROR MESSAGES

When the user issues a command that contains an error, an appropriate error
message will be typed out.

When a user gives a command that is legal for some arguments and illegal for
others, an error message is issued for each of the illegal arguments. The
correct portions of the command are executed. For example,

R
· CREA TE A B C D il + create four empty files
R
XFER $PTR A '1. + transfer file from PTR to A
R
CREATE A E J. + illegal argument A;legal argument E
ERROR: FILE ALREADY EXISTS, NAME: A
R
LIST E J
E. + E was created
R

When the CLI cannot respond to a user command, an error message does not
necessarily result. For example, if the user requests list information on a
non-existant file, the CLI responds to the LIST command with a ready inessage
only.

The error messages appropriate to each command are listed in the detailed
descriptions of each command. In general, error messages are quite explicit,
giving the user sufficient information to correct his error easily. A few samples
are shown:

R
CREATE A #A *A .l.
ERROR: ILLEGAL FILE NAME, NAME: #A
ERROR: ILLEGAL FILE NAME, NAME: *A
R

XFER FOO $PTR ~
ERROR: FILE WRITE PROTECTED, FILE: $PTR
R

3-15

ERROR MESSAGES (Continued)

CREATE TEST;CHATR TEST W ~
R
XFER SYS. DR TEST~
ERROR: FILE WRITE PROTECTED, FILE: TEST
R

CHATR $LPT 0 J..
ERROR: UNABLE TO CHANGE MODE, FILE : $LPT
R

MKSAVE $PTR CLI. SV).
LOAD $PTR, STRIKE ANY KEY.
IO ERROR: DISK SPACE EXHAUSTED
R

XFER NONFILE NEWFILE)_
ERROR: FILE DOES NOT EXIST, NAME: NON FILE
R

CLI COMMANDS

Following are definitions and descriptions of each of the CLI commands. The commands
are listed in alphabetical order.

3-16

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Extensions:

Examples:

ALGOL

ALGOL inputfi lename [outputfi lename]

To compile an ALGOL source file. Output may be a relocatable
binary file, an intermediate source file, a listing file, or com­
binations of all three. The command name, ALGOL, must be
used in compiling ALGOL source programs; the name, ALGOL,
cannot be changed.

By default, execution of the command produces an intermediate
source file, inputfi lename.. SR (compiler output), and a
relocatable binary file inputfi lename. RB (assembler output).
However, once assembly has been successfully completed, the
intermediate source file is deleted. No listing is produced
by the default command.

I A - ~ssembly is suppressed.
/B - _!!rief listing (compiler source program input only).
/E - g_rror messages from compiler are suppressed at the $TTO.

(Assembler error messages are not suppressed).
/L - !:_isting produced to -inputfi lename. LS.
/N - ~o relocatable binary file is produced.
/S - §_ave the intermediate source output file.

/B - Relocatable .£inary output directed to given file name.
/L - Listing output directed to given file name.
/S - futermediate ~ource output directed to given file name.

Not permitted.

See NOVA ALGOL Reference Manual, 093-000052.

On input search for input file name. AL. In not found, search
for inputfilename. On output, produce inputfilename.RB
by default and other files with • LS or • SR extensions as determined
by switches.

ALGOL MAIN ~

Produce relocatable binary file, MAIN. RB. No listing is produced.

ALGOL /E/B SUBR $LPT/L .l.

Produce relocatable binary file, SUBR. RB with a brief (ALGOL
source) listing to the line printer. Suppress compiler error messages.

3-17

Name:

Examples:

ALGOL (Continued)

ALGOL/ A $PTP/SJ

Do not invoke an assembly phase. Punch intermediate source
output on high speed punch.

3-18

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Examples:

APPEND

APPEND newfilename oZdfiZename 1 . •• o Zdfi Zename
n

To create a new file, consisting of a concatenation of one or more old
files in the order in which their names are listed as arguments. The old
files are not changed by the command.

Not permitted.

FILE ALREADY EXISTS.
FILE DOES NOT EXIST.
NOT ENOUGH ARGUMENTS.
DISK SPACE EXHAUSTED.
FILE WRITE PROTECTED.

(newfilename)
(oldfilename)

(newfilename)

APPEND COM. SR COMl COM2 COM3 COM4 j},

causes creation of the file COM. SR containing the contents of
files COMl, COM2, COM3, and COM4 in that order.

APPEND DPl :ALL. LB A. LB B. LB DP0: C. LB J,

causes creation of the file ALL. LB on disk pack unit 1
containing the contents of files A. LB and B. LB from the default
directory and C. LB from disk pack unit 0.

3-19

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

ASM

ASM fiZename 1 ... fiZenamen

To assemble one or more source files. Output may be a relocatable
binary file, a listing file, or both. The command name, ASM, must
be used in assembling programs; the name, ASM, cannot be changed.

By default, output of an assembly is a relocatable binary file (no
listing file).

I L - _!isting file is produced.
/N - ~o relocatable binary file is produced.
/U -: ~ser symbols are appended to the relocatable binary output.
/E - ~rror printouts on the TTO are suppressed unless there is no listing

file for the current pass.
/S - ~kip pass 2. A BREAK is signaled after pass 1 permitting the

user to save a version of the assembler that contains his own
permanent symbols.

/T - symbol !_able list is not produced as part of the listing.
(Used when a listing is requested, which produces a symbol table
by default.)

/X - produces cross referencing of symbol table. Symbol table output
will contain page number - line number pairs for the symbol
definition as well as every reference to the symbol within the assembly.

/B - relocatable .e.inary output directed to the given file name.
/ L - 1 isting output directed to the given file name.
/S - _0<:ip this file on pass 2 of assembly. (This switch should be used

only if the file does not assemble any storage words.)
/N - ~o listing of this file. (Used, when a listing is requested, to list

a selected number of files to be assembled.)

Not permitted.

NO SOURCE FILE SPECIFIED.
ILLEGAL FILE NAME.
FILE DOES NOT EXIST. (input file)
FILE ALREADY EXISTS. (output file)
FILE WRITE PROTECTED. (output file)
FILE READ PROTECTED. (input file)
SWITCH ERROR. (listing and binary files cannot be same)

3-20

Name: ASM (Continued)

Extensions: On input, search for fi Zename. SR. If not found, and the fi Zename
did not have an extension, search for fi Zename.

On output, produce fi Zename. RB for relocatable binary and
fi Zename. LS for listing (global L switch), where fi Zename will
be the name portion of the first source file specified without a /S,
/L, or /B local switch given.

Examples: ASM Z J.

causes assembly of source file Z, producing a relocatable binary
file called Z. RB.

ASM/N/L A ~

causes assembly of file A, producing as output a listing file called
A. LS.

ASMA B $PTP/B CD $PTR $TTR DK0:E $LPT/L ~

causes assembly of files A, B, C, and D from the default directory,
a tape mounted in the paper tape reader, a tape mounted in the
teletypewriter tape reader, and E from fixed head disk unit 0. A
binary relocatable file is punched to the paper tape punch. A list­
ing file is printed on the line printer.

ASM /S/N ICODES J
BREAK
R
SAVE ASM J

3-21

+- no output. Automatic BREAK after pass 1,

+ User can save the assembler with the
user's permanent symbols.

Name: ASM (Continued)

Examples: (Continued)

ASM /X EXAMP $LPT/LJ

v' '.j

\ ' :1 .- • .' • 1 • _') · 4 ~ 7 " T A ~ T :
l t - • - ' , ' - , -' r, ~ ,1

1? -•:-···;i1-,:;> .• ·.1:.i-.

1 t, ' ' " '_i, I ,., -' '1? ·-~

1 .1 .., .• ' .,_ "' ' , ' I) 1 d
1 -; '. ., "i i ' .. , ,, ' 1

1"' ·~.7 .:.· .,, ·1 '4\l
1 7 > ,, •• : 7 ' 1 ·; 4 1 7

1 -" ' " 1, • I . ' .'. ;.; 1 I
1 ~
2~ •'1 "'11 1 '''-;~? 1 Lr1'1PI
2 1 ' ~ ' t? I 1 !. 1 :. 1 '1
2? -~ :~ '·l. -~I,: ·'·'.1 ,.,-:;;
2.3 ·;•A,,:ll-')1''1
21 :'l'1fo\1 .,_,..,.,,,

2'.i '.' ·1 ~.I - ;A:..11."

2 "'i ' :, '1. 7 I ""'- 1 4i Ji;
2 7 .• :·. -· '.? ,·'. 4, _, ,•, 1°
2 ~ • :·" , ') 1 I ·'; ·j t i :_11_1 T :
~ .".:/ ~ l: ,, ;> ~ I .·• .1 ~- .:, ,~,?

3 >; " '' -: ., .:\ I ./ ,, <'! tl ·l "

3~
3~
31
3r;

'.,, :• ..,_ ~ 1 C ~ T:
.. 1 '-' • '1 q IT~:

3s ~·~?1•···1 ~'~ ci:
31 • ".,, ~ ' .• -a":' -~a ["''Gr c 1
3~

3 ~ "I• '- j 1 I 1 7 '/ "I 7 1 • S IJ B ~ I

171171 A1•
! 7 7 7 l •, A::>•

• TTTLF f'ICAMPLF.

• f ll TN

• \•~~L

l'.H

STA

Li>A
'HA
I"' C !1

J ~p
!Sl
l ~ 7.
J~1P

.J 4; ~
•'\ ;j v !i
J ~p
L:H

vu
J s i.t
~'T4

STA
-l-~R

.~v~T""
• ~ T '-l
J'1P

-~, C3
•-~, C ~; T
·.4, MAG IC
·;-,,BITS
1,t,•HR
~noP
l".:"--:f
~ITS
r111 T

-.Sllij~
:;1, -~, S l R
111 J T
.il,A~1,2

1,A1,2
it.SUHR
?. 1 A2,~
v1,A11;,2

'• SU~toi

•

3-22

+ assemble EXAMP with cross
referenced symbol table output
listing to line printer.

+ Program listing

Name:

Examples:

A'!

At
A;.2

BITS
c :~
Cl\1T
L."lnP
M4GTC
O'IT
s~~nu
STA_.T
• ·;; 'j ,~ !(

.... , Jt .t ,. ~ ~.

t?7777
17·177.;;
l ',,, ··~ 2 "I I

·11 ·~ ·• ;". ~ 7'
;=: .11_.·.~i I

' • 1 .·1 1 \ I

.~ : .. ·• ,,,. .~ 1 I

·~ " ,, .• 21 '
... ~ ;·, .:.> .-, ·' t ' 'IC

" ;~ '• .. ~ 1 I

~(Continued)

(Continued)

1123
1124
1126
111 ;,
111 1~

1 I 1 1
111~
1/12
111@
113Q
1 I 1 ·~
t 12"-

Cross-reference table.

t/27 11•1 Cross-referencing is

11•~ accomplished by out-
1143 putting symbol table
1111 1134 and symbol referenc-
113~ ing information to temp-
' / 1 I'll 1133 orary disk files during
1/2tl· assembly. A separate
1137
112' t /2F!

save file, XREF. SV, is
called by the assembler
to output the cross ref-

112~ t /214 1139 erence list. Note that
all pages and lines of
the assembler's listing
are numbered for this
purpose.

3-23

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

BLDR

BLDR devicename

To load an absolute binary tape with the binary block loader, using either
the high speed paper tape reader or the teletype reader. This command
implies a- transition from DOS mode to stand-alone mode. The loading
will overwrite part of core containing DOS, so that after completion of
the stand-alone job, DOS must be bootstrapped.

None.

Not permitted.

ILLEGAL DEVICE NAME.

Examples: BLDR $.PTR;)..

BLDR $TTR)

The examples give the only acceptable command lines.

3-24

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

BPUNCH

BPUNCH fi Zename1 [fi Zename 2 • . . fi Zenamen]

To punch a given file or files in binary on the high speed punch.
The command is the equivalent of a series of XFER commands:

XFER fi Zename 1 $PTP; ••• ;XFER fi ten amen $PTP J.

The files may come from any device.

None.

Not permitted.

ILLEGAL FILE NAME.
FILE DOESN'T EXIST.
FILE READ PROTECTED.

(source)
(source)
(source)

BPUNCH FOO. RB ALPHA. RB BETA. RB J.

BPUNCH $PTR .l.

BPUNCH DP2: MYFILE. SR il.

3-25

Name:

Format:

Purpose:

Switches:

Asterisk:

Attributes:

Errors:

Examples:

CHA TR

CHATR filename 1 attributes 1 ... · fi lenamen attr-ibutesn

To change, add, or delete file attributes of a given file. All current
attributes of the file are replaced by those given in the attributes
argument.

None.

Permitted in attributes argument only.

P - Permanent file. Cannot be deleted or renamed.
S - Save file.
W - ~ite - protected file. Cannot be altered. .
R - ~ead-protected file. Cannot be accessed for reading.
121 - No attributes.
* - Represents current file attributes.

When several attributes are specified for a given file name, they must be
given as a single argument. Attributes maybe listed in any order in the
argument.

FILE DOES NOT EXIST.
ILLEGAL FILE NAME.
NOT ENOUGH ARGUMENTS.
UNABLE TO CHANGE MODE.
ILLEGAL ATTRIBUTE.

CHATR A WP ~

(attribute-protected.)
(for example, G)

causes file A to be write-protected and permanent.

CHATR A 121 BR~

deletes all attributes of A and causes B to be read-protected.

CHATR A. SV SW)

causes A. SV to be write-protected save file. If A. SV had had other
previous attributes, these would be deleted.

CHATR A. SV *W J

causes A. SV to be write-protected save file. Any previous
attr~butes would also be retained (*).

3 - 26

Name: CLG

Format:

Purpose:

Switches:

Global:

Local:

CLG filename1 [filename2 ••. filenamen1

To compile, load, and execute one or more FORTRAN source files. Output
includes one or more intermediate source files, one or more relocatable
binary files, and an executable save file. The save file is created by the
relocatable loader, using the relocatable binary files and the system library
SYS.LB (which must contain the FORTRAN libraries).

CLG differs ·from the FORT command (page 3-36), which can produc~ a
relocatable binary file, but cannot produce a save file and execute it.
In addition, CLG can treat source input files individually, where some re-
quire loading, others assembly and loading, and still others compilation as well.

If a listing device is specified by a local switch but no global listing switches
are given, listings of each FORTRAN compilation, each assembly, and the
loader map are output to the specified listing file.

/B - ~rief listing (compiler source program input only).
/M - Loader !Eap is suppressed. All compiler and assembler source pro­

grams are listed.
/E - 9-'ror messages from the compiler are suppressed at the $TTO.

Assembler messages are not suppressed.

/L - l:isting output directed to the given file name.
/A - Assemble t-his file only; do not compile.
/N - Load this file only, do :!:ot compile or assemble.

Asterisk: Not permitted.

Errors: ·See the FORTRAN IV Reference Manual (093-000053), and the ASM and
RLDR commands (pages 3-20 and 3 -56 of this manual).

Extensions: On input, search for file name .FR; if not found, search for fi Zename.
If /A is specified, search for fi Zename. SR. If not found, search for
fi Zena.me. If /N is specified, search for fi Zename. RB; if not found,
search for fi Zen am~.

On output, produce temporary assembler source files, fi Zename i· SR
(i = I ••• n). Produce relocatable loader input files, fi Zenamei. RB
(i = I ..• n). Produce save file fi lename.SV.

3-27

•

Name: CLG (Continued)

Examples: CLG/B MAIN $LPT/L ~

Compile MAIN. FR (or MAIN), producing MAIN.SR, with the listing to
the $LPT. Assemble MAIN.SR, producing MAIN. RB and delete
MAIN. SR. Load MAIN.RB and SYS. LB, producing MAIN. SV. Execute
MAIN. SV.

CLG/M/E PROGl PROG2 PROG3/A PROG4/N MTj;J:l/L d.

Compile PROGl.FR (or PROGl), producing PROGl.SR. Assemble
PROGi.SR, producing PROGl.RB and delete PROGl.SR. Compile
PROG2.FR (or PROG2), producing PROG2.SR. Assemble PROG2.SR,
producing PROG2.RB and delete PROG2.SR. Assemble PROG3.SR
(or PROG3), producing PROG3.RB. Listings from each compilation
and assembly are appended to file 1 on magnetic tape unit j;J. Load
PROGl.RB, PROG2. RB, PROG3. RB, PROG4. RB (or PROG4), and
SYS.LB, producing PROGl.SV with no loader map. Execute PROGI.SV.

CLG A B C)

Compile A.FR (or A), producing A.SR. Assemble A.SR, producing
A.RB and delete A.SR. Compile B.FR (or B) producing B.SR. Assem­
ble B.SR, producing B.RB and delete B.SR. Compile C.FR (or C),
producing C.SR. Assemble C.SR, producing C.RB and delete C.SR.
Load A.RB, B. RB, C. RB, and SYS. LB, producing A. SV. Execute
A.SV.

3-28

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Examples:

CREATE

CREATE fi Zename 1 [fi Zename 2 • . • fi Zename n]

To add an entry to the default file directory. The entry specifies
a file of zero length and no attributes.

None

Not permitted.

ILLEGAL FILE NAME.
FILE ALREADY EXISTS.

CREA TE ALPHA J

Creates a file name, ALPHA, in the default directory.

CREATE TEST TESTl DP0:TEST2 J,

Creates three file names, TEST, and TESTl in the default
directory and TEST2 in the directory of the pack on disk pack
unit 0.

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

DEB

DEB fi Zename

To debug a program about to be executed. The symbolic debugger,
Debug II I, must have been loaded as part of the program save
file, as described under the RLDR command.

When debugging, memory can be examined, break points set, the
program run, etc. After making any necessary changes in the
program, the user can save the current core image of the program
by issuing a break (CTRL C) and saving the core image under some
file name, as de scribed under the SA VE command. The program
can then be resumed in the debugger at a later time.

None.

Not permitted.

ILLEGAL FILE NAME.
ILLEGAL START ADDRESS.
NOT A SAVED FILE.
FILE DOES NOT EXIST.

(Debugger not loaded with the program).

Examples: DEB A J. + Debug A. SV.
1004/ ADD 0 2 ADD 1 2 .)_
BREAK
SAVE A .l.

A).

BREAK
SAVE CORE$A il.
ASM FOO J

DEB CORE$A J.

3-30

+ Change program.
+ CTRL C issued.
+ Changed version (current core

image) saved.
+ New attempt to execute.
+ CTRL C issued.
+ Current core image saved.
+ Assembly command and other

commands.

+ Restore CORE$A in the debugger.

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

DELETE

DELETE file name 1 [file name 2 • . • fi Zenamen]

To delete the files having the names given in the argument list
from the default directory. No filename may be preceded by a
device specifier.

/V - ~erify deletion with a list of names of deleted files.

None.

Permitted.

FILE DOES NOT EXIST.
ILLEGAL FILE NAME.
NO FILES MATCH SPECIFIER. (When using asterisk convention).

Examples: DELETE ALPHA BETA GAMMA ~

deletes the files named ALPHA, BETA, and GAMMA.

DELETE *.LS ~

deletes all files having the extension LS.

DELETE LIMIT.* J.

deletes all files having the name LIMIT and any extension
(including null).

DELETE /V * • LS J.
DELETED A. LS
DELETED COM. LS
DELETED MAP. LS
R

DELETE *. QQ ~
NO FILES MATCH SPECIFIER: *.QQ
R

3-31

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

DIR

DIR deviae _spe aifier

To change the current default directory device. At system
initialization (See Appendix B), a default directory device is
established. The DIR command permits another device to be
substituted as the default directory device.

None.

Not permitted.

DEVICE NOT IN SYSTEM.

DIR DP0J

Change all default file name references to the moving head
disk unit number fl).

3-32

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Examples:

DISK

DISK

To obtain a count of the number of blocks used and the number of blocks
still available on the default directory device.

None.

Not permitted.

None,

DISK J
LEFT: 90, USED: 166
R

The message indicates that 90 out of 256 blocks on the disk are
still available for use.

3-33

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Examples:

DUMP

DUMP outputfi iename [fi Zename 1 ••. fi Zenamen]

To dump a given file or files to a given file or device. The directory
information for each file - - name, length, and attributes - - is written
as a header to each dumped file. If no file names are given, all non­
permanent files are dumped. If file names are given, no name can be
preceded by a device specifier.

I A - ~11 files, permanent as well as non-permanent, are to be dumped.
/V - ~erify dump with a list of names of dumped files.

None.

Permitted.

FILE ALREADY EXISTS.
FILE WRITE PROTECTED.
ILLEGAL FILE NAME.
FILE READ PROTECTED.
FILE DOES NOT EXIST.
DISK DAT A ERROR.
DISK SPACE EXHAUSTED.

DUMP ~P'TP FOO. SV J

(output file)
(output file)
(input file)
(input file)
(input file)
(input file)

causes file FOO. SV to be punched out with a header for later reloading.

DUMP/ A $PTP *. SV),

causes all permanent and non-permanent files with the extension
SV to be punched out.

DUMP/V DUMPFI '~. SV)
EDIT. SV
ASM. SV
RLDR. SV

causes all non-permanent files with the extension SV to be written
to the file DUMP FI and a list of files dumped to be given.

3-34

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

EDIT

EDIT

To invoke the text editor to build a new source file or edit existing
source files. The NOVA Editor is described in DGC Document 093-000018.
Appendix A summarizes the program.

None.

Not permitted.

FILE DOES NOT EXIST.

EDIT ,)

*

H$$ ~
R

3-35

(EDIT. SV)

+ Response of Editor indicating the program
is ready to accept commands.

+ User issues editing commands.

+ User terminates editing by pressing
the H key followed by two ESC
keys. Return is made to the CLI.

Name:

Format:

Purpose:

Switches:

Global:

FORT

FORT inputfilename [outputfilename]

To compile a FORTRAN source file. Output may be a relocatable
binary file, an intermediate source file, a listing file, or combin­
ations of all three. The command name, FORT, must be used in
compiling FORTRAN source programs; the name, FORT, cannot
be changed.

By default, execution of the command produces an intermediate
source file, input file name. SR (output of compilation) and a re­
locatable binary file, input fi Z.ename. RB (output of assembly).
However, once assembly has been successfully completed, the inter­
mediate source file is deleted. No listing is produced by the
default command.

/A - ~ssembly is suppressed.
/B - .§_rief listing (compiler source program input only).
/E - ~rror messages from compiler are suppressed at the $TTO.

(Assembler error messages are not suppressed.)
/ F - FOR TRAN variable names and statement numbers are

equivalenced to symbols acceptable to the assembler.
/ L - !::_isting produced to input file name. LS.
/N - ~o relocatable binary file is produced.
/S - ~ave the intermediate source output file.
/X - Compile statements with ~ in column 1.

Local: /B - Relocatable £inary output directed to given file name.
/L - !::_isting output directed to given file name.
/S - Intermediate ~ource output directed to given file name.

Asterisk: Not permitted.

Errors: See FORTRAN IV Reference Manual, 093-000053.

Extensions: On input, search for filename. FR. If not found, search for fi Z.ename.
On output, produce filename .RB by default and other output
files with . LS or • SR extensions as described under switches and
examples.

3-36

Name:

Examples:

FORT (Continued)

FORT/L MAINJ

produce relocatable binary file MAIN. RB with both a compiler and
an assembler listing to file, MAIN. LS.

FORT /N DPl:TABLE $LPT/L INTAB/SJ

compile the file TABLE from disk pack unit 1 and produce compiler
source and assembly listing on the LPT and intermediate source output
file, INTAB, to the default directory. Do not produce a relocatable
binary file from the assembly.

FORT/A/L/S TABLE-J,

produce and save intermediate source file TABLE. SR and listing
file TABLE. LS containing compiler source input listing. Assembly
is suppressed. (Note that/ A implies /B).

3-37

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

·Example

INIT

INIT device _specifier

To initialize a directory device or magnetic tape unit. Until the device
is released (RELEASE command) all files on the initialized device
are now available to the system software.

By default, when a directory device is initialized, the current directory
of the device is found and read into system core, allowing access to
all files on the device.

/ F foll initialization. Clears all previous files and information
from the specified device and writes a new file directory and
free storage map on the device.

None.

Not permitted.

ILLEGAL COMMAND FOR DEVICE

DEVICE NOT IN SYSTEM

INIT DP3 J_

(attempt to INIT the only disk
device in the system)

Initialize the disk pack on unit number 3.

INIT /F MTl J
Magnetic tape initialization means rewfad the tape. Full (/F
switch) initialization of MTl causes the tape on drive MTl
to be rewound and two EOF's written on the tape.

3-38

Name:

Format:

Purpose:

Switches:

Asterisk:

INSTALL

INSTALL fi Zename

To specify a new system save file for use when bootstrapping
DOS from the current default directory device. fi Zename
becomes the DOS core image that will be bootstrapped from the
default directory device. The system to be installed must have
specified the current default device as its bootstrap device.

None.

Not permitted.

Extensions: Any filename and extension may be used, but common practice
is to give a recognizable system name with the SV extension.

Errors:

Example:

ILLEGAL COMMAND FOR DEVICE (the bootstrap program of
fi Zename does not corres­
pond to the default directory
device.)

INST ALL SYS. SV J.

3-39

Name:

Format:

Purpose:

LFE

LFE A/M inputmaster1 [••• inputmastern]

LFE D inputmas ter outputmas te r/O arg 1 [... argn]

LFEI ~nputmaster outputmaster/O arg 1 [... argnl

LFEM outputmaster/0 inputmaster1 [... inputmastern]

LFE N outputmaster/0 arg 1 [•• • argn]

LFE R inputmaster outputmaster/o arg1 arg2 [•.• argn-l argn]

LFE X inputmaste r arg 1 [. . . argn]

To update and interpret library files, which are sets of relo­
catable binary files having special starting and ending blocks
and which are usually designated by the extension • LB.

In the format, A, D, I, M, N, R, and X and keys designating LFE func­
tions; inputmaster and outputmaster represent library
files; and q,rgs represent logical records on the library files
or relocatable binary files.

Appendix A contains more detailed information on library files,
the LFE, and on the use of and output from each of the functions
than is given here.

Action taken by the LFE depends upon the function given in
the command:

A analyze

D delete

3-40

Analyze global declarations of
inputmaster, or of a series of
1~nputmas te rs, or of logical re-
cords specified from one input master.
Output is a listing with symbols,
symbol type, and flags; no new
output library file is created •

.Qelete logical records, specified
by ~rgs from inputmaster,
producing outputmaster.

Name:

Purpose:

Switches:

Global:

Local:

LFE (Continued)

(Continued)

I

M

N

R

x

/M

/A

insert

merge

new

replace

extract

.!_nsert relocatable binary files,
merging with logical records of
inputmasterin the manner
described under Switches.

~erge library files (inputmasters)
into a single library file named
outputmaster.

Create E_ew library file, o utputmas te r,
from one or more relocatable
binary files given by t.;:rgs.

~eplace logical records in
inputmaster by relocatable binary
files, producing o utputmas te r.
a rg s are paired with the first
being the logical record and the
second the relocatable binary file
that replaces the logical record.

E~tract from library file, inputmaster,
one or more relocatable binary
files given by args. Output is one or
more relocatable binary files named

args.

~ultiple input library files. The switch modifies
the A function (not the filename LFE) and causes
all library file names following, except the listing
file, to be analyzed as one library.

Insert ~fter. The switch modifies a logical record
in an I function command line. Arguments following
the switch are inserted after the logical record whose
name precedes the switch. When neither a I A or
/B switch is given, inserts are made at the beginning
of the new library file.

3-41

Name:

Switches:

Local:

Asterisk:

Errors:

Extensions:

LFE (Continued)

/B Insert £.efore. The switch modifies a logical record
in an I function command line. Arguments following
the switch are inserted before the logical record
whose name precedes the switch. When neither a
/A or /B switch is given, inserts are made at the
beginning of the new library file.

/L _!_isting file. The switch modifies the name of a file
to be used as listing output in the A function command
line. (The TTO is used by default.)

/0 ~utput library file. The switch always modifies
outputmaster in D, I, M, N, and R functions.

Not permitted.

Fatal Errors

NOT ENOUGH ARGUMENTS
UNEXPECTED ARGUMENT AT OR FOLLOWING: string
INVALID SWITCH FOR: string
NOT A LFE COMMAND: key
TOO MANY ARGUMENTS
ILLEGAL HEADER IN INPUT LIBRARY
CHECKSUM ERROR IN UPDATE FILE: filename
CHECKSUM ERROR IN LOGICAL RECORD: recordname
ILLEGAL BLOCK IN UPDATE FILE: filename
ILLEGAL BLOCK IN LOGICAL RECORD: recordname
FILE DOES NOT EXIST, FILE: library filename

Non-Fatal Errors

UPDATE FILE MATCHES INPUTMASTER: filename
FILE DOES NOT EXIST, FILE: updatefi lename
LOGICAL RECORD NOT FOUND - recordname
DEFAULT OUTPUT IN FILE - filename
FILE ALREADY EXISTS - filename

(See the LFE section of Appendix A for additional information on
meanings of error messages.)

If the • LB extension for input mas t e r or the. RB extension
for an update file are not given in the command, LFE searches
for inputmaste1orarg respectively. If not found, LFE
searches for inputmas te r. LB or arg • RB respectively.

3-42

Name:

Examples:

LFE (Continued)

LFE N $PTP/O A. RB C. RB J,

Create a library file, output to the pwich from two disk
disk files, A. RB and C. RB.

LFE R MATH. LB $PTP/O ATAN $PTR TAN/2i/.

Output a new library file to the PTP, replacing AT AN on input
file MA TH. LB by a file on the PTR and replacing TAN on the
input file by disk file TAN or, if not found, TAN. RB.

LFE A/M MATH!. LB $PTR $LPT/L MATH2. LBJ..

Analyze library file MATHl. LB, $PTR, and MATH2. LB as
one library and list results on the line printer.

LFE D $TTR UTIL/O MOVE LDBYT STBYT MULTJ

Delete logical records MOVE, LDBYT, STBYT, and MULT
from $TTR and produce library file UTIL.

3-43

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Examples:

LIST

LIST [fi "le name 1 • • • fi "lenamen]

To list directory information from the default directory about
one or more files, consisting of file name, byte count, and
attributes. If LIST has no arguments, all non-permanent
files are listed. If filenames are given, no filename can be
preceded by a device specifier.

/A ~11 files, permanent as well as non-permanent, are listed.

/B .£ rief list, giving file name but not byte count and attributes.

/ L .!_isting printed to line printer ($LPT).

None.

Permitted.

None.

LIST)_
ACT.SV
COM.SV
COM.
B.
R

LIST/A~
SYS.DR
$TTI.
$TTO.
$TTR.
$PTR.
$PTP.
$LPT.
CLI. SV
ACT.SV
COM.SV
COM.
B.
R

1002 s
2345 s
40
0

512
0
0
0
0
0
0
7354
1002
2345
40
0

APW
APW
RAP
APW
APW
RAP
RAP
SP
s
s

3-44

+ lists all non-permanent files.

+ lists all files

Name:

Examples:

LIST continued

LIST/A *.SV J
CLI. SV 7354
ACT. SV 1002
COM. SV 2345
R

LIST/B J.
ACT. SV
COM.SV
COM.
B.
R

SP
s
s

3-45

+- lists all • SV files

+- lists all non-permanent files without
giving their attributes or byte counts.

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Examples:

LOAD

LOAD inputfi lename [filename 1 • • • fi Zen amen]

To reload onto disk from a given file or device a previously
dumped file or files. If no filenames are given, all non­
permanent files on the input file are reloaded. LOAD can be
used only to load previously dumped files (DUMP command). These
files must be nonexistent prior to the LOAD command. If
filenames are given, no name can be preceded by a device
specifier.

/V - ~erify the load with a list of names of loaded files.
I A - ~11 including permanent files.

None.

Permitted.

FILE DOES NOT EXIST.
FILE READ PROTECTED.
FILE ALREADY EXISTS.
ILLEGAL FILE NAME.
DISK SPACE EXHAUSTED.

LOAD $PTR 12.

(input file)
(input file)
(output file)
(input file)

causes whatever previously dumped non -permanent files are
in the paper tape reader to be reconstructed on disk under
the same names. File name, length, and attributes are
entered in the file directory.

LOAD /V $PTR *. SV J.
LOAD $PTR, STRIKE ANY KEY.
EDIT. SV
ASM.SV

causes loading of all files with the extension . SV
and a list of the files loaded.

3-46

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Extensions:

Examples:

MKABS

MKABS save _filename ab so lute _binary _filename

To make an absolute binary file from core image (save) file.

MKABS gives users the facility of converting files that are exec­
utable under the operating system into absolute binary files
that are executable, for example, on another machine without
DOS.

/Z save file starts at location ~ero. (See RLDR switches.)

/S ~tarting address switch, An octal argument followed
by /S will output an absolute binary start block with
the address specified by the argument.

Not permitted.

NOT ENOUGH ARGUMENTS.
FILE DOES NOT EXIST,
FILE ALREADY EXISTS.
ILLEGAL FILE NAME.
TOO MANY ARGUMENTS.
DISK SPACE EXHAUSTED.

(save file)
(absolute binary file)

Search for save _filename. SV. If not found, search for
save_filename.

MKABS FOO $PTP ,J.

punches an absolute binary file to the paper tape punch from
file FOO. SV or, if not found, from FOO.

MKABS FOO $PTP 1000/SJ

punches an absolute binary file with a start block specifying
1000 as the starting address.

3-47

Name:

Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Extensions:

Example:

MKSAVE

MKSAVE absoZute_]JinaPy_fiZename save_fiZename

To create a core image (save) file from an absolute binary file.

/Z - create save file beginning at location 0 rather than 168•

None.

Not permitted.

PHASE ERROR.

NOT ENOUGH ARGUMENTS.
ILLEGAL FILE NAME.
FILE DOES NOT EXIST.
FILE ALREADY EXISTS.
DISK SPACE EXHAUSTED.

(addresses not all in ascending
order within the binary file)

(absolute binary file)
(save file)

On output, produces save _fi Zename .SV, regardless of the extension
specified by the save file argument.

MKSAVE $PTR DK0:AJ

Causes creation of a core image file on fixed head
disk unit 0 called A. SV, with the S attribute, from the
absolute binary file loaded in the paper tape reader.

3-48

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Extensions:

Example:

OED IT

OEDIT

To invoke the octal editor in order to examine and modify in octal
any location in any type file. See Appendix A for a detailed description
of the octal editor.

None.

Not permitted.

NO FILENAME SPECIFIED.
INPUT FILE DOES NOT EXIST.

The octal editor searches for whatever file name and extension are
given.

OEDIT FOO. svJ

14/ 016762

HOME
R

3-49

+ If OEDIT finds FOO. SV, the
editor gives a carriage return/
line feed.

+ User proceeds with editing as
described in Appendix A.

+ To return to the CLI, user
types H. OEDIT echoes OME,
and user is at command level.

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

PRINT

PRINT filename 1 [file name 2 •.. file name]
n

To print a given file or files on the line printer. The command
is the equivalent of a series of XFER commands:

XFER/A filename $LPT; ••• ; XFER/A filenamen $LPT J
1

The source files may come from any device.

None.

Not permitted.

ILLEGAL FILE NAME.
FILE DOES NOT EXIST.
FILE READ PROTECTED.
LINE LIMIT EXCEEDED.
PARITY ERROR.

(source)
(source)
(source)
(source)

PRINT FOO. SR DP2 :COM. SR EXT. SR $PTR ~

3-50

Name:

Format:

Purpose:

Switches:

Asterisk.:

Errors:

Example:

PUNCH

PUNCH filename 1 [filename 2 • • . file name] n

To copy a given file or files to the high speed punch. The command
is the equivalent of a series of XFER commands.:

XFER/A filename 1 $PTP; ••• ; XFER/A filenamen $PTP J

The source files. may come from any device.

None.

Not permitted.

ILI.EGAL FILE NAME.
FILE DOES NOT EXIST.
FILE READ PROTECTED.
LINE LIMIT EXCEEDED.
PARITY ERROR.

(source)
(source)
(source)
(source)

PUNCH DK0:ALPHA. SR BETA. SR $TTR ~

3-51

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

RELEASE

RELEASE device_specifier

To prevent further 1/0 access to a directory device or to
rewind a magnetic tape unit. The command must be issued
before a disk pack can be physically removed from a removable
disk unit. No further access to the disk device is µ: rmitted
unless an INIT command is executed.

None.

Not permitted.

ILLEGAL COMMAND FOR DEVICE.
DEVICE NOT IN SYSTEM.

RE LEASE DPl J

The command permits the disk pack to be removed from
moving head disk unit 1.

RELEASE MT0)

MT0 will be rewound.

3-52

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

RENAME

RENAME oZ4name 1 newname 1 [•.• oidnamen newnamen]

To change the current name of a file or files.

None.

Not permitted.

PERMANENT FILE (old file)
ILLEGAL FILE NAME.
FILE ALREADY EXISTS (new file)
FILE DOES NOT EXIST.
FILES EXIST ON DIFFERENT DIRECTORIES.

DELETE Q.SVi
R
RENAME QTEST. SV Q. SV J.
R

The commands above replace the old version of Q. SV with a
new version, one previously named QTEST. SV.

RENAME DK0 :Al DK()' :A Bl B t

Rename file Al to A on fixed head oisk unit 0. Rename file
Bl to B on the default directory.

3-53

Name:

:Format:

Purpose:

Switches:

Global:

Local:

RLDR filename 1 [filename 2 ... filenamen]

To create a save file from the loading of relocatable binary files.
The command name, RLDR, must be used in loading relocatable
binary files; the name, RLDR, cannot be changed.

By default, loading produces no core map and leaves the user symbol
table in memory so that the end of the symbol table coincides with the
first address not loaded by the program. The switches are:

I A produce an alphabetical and numerical core map. (The local
switch /L ffiust also be given to define a core map device.)

/D load symbolic ~ebugger from SYS. LB (In effect, this forces
a library search also.)

/ L search the system library (SYS. LB) after loading all user
specified files.

/S ~ymbol table left at the high end of memory.

/Z start save file at location ~ero. (Note that the /Z switch should
be used with caution. A save file produced using the /Z switch
cannot be executed properly under DOS. Its primary purpose
is to enable loading of routines that use page zero locations
0-15. The save file can then be output using MKABS/Z to pro­
duce an absolute binary that can be read in stand-alone, using
the binary loader.)

By default, the first input file name is used with an SV extension to
form the name of the output file. By default, user symbols are not
loaded. The switches are:

/U ~ser symbols are loaded.

/S ~ave file is given the preceding file name with • SV extension.

/N ~MAX, the starting address for loading a file, is
forced to an absolute address given by the octal
number preceding the switch. The specified value

3-54

Name:

Asterisk:

Errors:

Extensions:

Examples:

RLDR (Continued)

/N (Continued)
must be higher than the current value of NMAX when
the argument is encountered.

/ L _!,isting of map of core is produced to the output file
whose name precedes the switch. The core map
listing will be numeric unless the global switch
/A is given.

Not permitted.

ILLEGAL FILE NAME.
FILE ALREADY EXISTS.
FILE DOES NOT EXIST.
NO SOURCE FILE SPECIFIED.

(fi Z.ename1• SVorfi Z.ename/S)
(input file)

A search is made for each input file with the name fi Z.en ame. RB.
If not found, then a search is made for fi Z.ename.

The default output filename will be fi Z.ename1• SV. Otherwise,
the output filename will be the filename preceding the switch
/S with the • SV extension appended.

RLDR A B C DP2:D IL

causes files A, B, and C from the default directory and D
from the disk pack unit 2 to be loaded to produce save file
A. SV on the default directory.

RLDR A/S $PTR/

causes the file in the paper tape reader to be loaded and produce
a save file named A. SV.

RLDR /DAB Ct

causes files A, B, and C to be loaded, together with the symbolic
debugger, to produce save file A. SV.

RLDR $LPT/L A 4400/N Bt

causes A and B to be loaded. Loading of B starts at 44008•
A numeric core Imp is printed on the line printer.

3-55

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Extensions:

Examples:·

SAVE fi Zename

To create a save file from the file named BREAK. SV on the
default directory device. The SA VE is commonly used to
save the core image of a program interrupted by a CTRL C
break. The SA VE command causes the most recent core image
saved under the name BREAK. SV to be given a new name by
deleting fv Zename. SV (if it exists) and renaming the BREAK. SV
to fi Zename • SV. fi Zename cannot be preceded by a device
specifier.

None.

Not permitted.

ILLEGAL FILE NAME.
DISK SPACE EXHAUSTED.
FILE DOES NOT EXIST. (BREAK.SY)

Output always has the SV extension. If the filename argument
already has an extension, the extension will be ignored, e.g.
either

SA VE GAMMAJ or SA VE GAMMA. YY.J

would produce the save file GAMMA. SV.

. ~
DEB ALPHA~
PP/LOA 2,@0LDA 2, @0, 3
BREAK
SA VE ALPHA .)..

3-56

+ enter debugger to correct location PP

+ exit from debugger
+ save core image as ALPHA. SV

Name:

Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

TYPE

TYPE filename [filename
1 2

file name]
n

To copy a given file or files to the teletypewriter.
The command is the eqivalent of a series of XFER
commands.

XFER/l\ fi lename 1 $TTO; ••• ; XFER/A fi lenamen $TTO ~

The source files may come from any device.

None.

Not permitted.

ILLEGAL FILE NAME.
FILE DOESN'T EXIST.
FILE READ PROTECTED.
LINE LIMIT EXCEEDED.
PARITY ERROR.

(source)
(source)
(source)
(source)

TYPE A. SR B. SR $PTR DPl :XX. SR i

3-57

Name:

Format:

Purpose:

Switches

Global:

Local:

Asterisk:

Errors:

Examples:

XFER

XFER sourcefile destinationfile

To transfer a file to another file.

By default, files are transferred sequentially without alteration. There
is one switch:

I A - ~sen transfer. Transfer the file line by line taking appropriate
read/write action, such as inserting line feeds after each carriage
return when transfer is from disk to line printer.

None

Not permitted.

ILLEGAL FILE NAME.
FILE DOESN'T EXIST.
FILE READ PROTECTED.
LINE LIMIT EXCEEDED.
PARITY ERROR.
UNABLE TO WRITE FILE.
FILE WRITE PROTECTED.
NOT ENOUGH ARGUMENTS.
DISK SPACE EXHAUSTED.

XFER $PTR Q ,J.

(source)
(source)
(ASCII source)
(ASCII source)
(destination)
(destination)

causes the file in the paper tape reader to be transferred
to a disk file named Q.

XFER/ A ALPHA. SR $LPTJ

causes ALPHA. SR to be printed on the line printer.

XFER $PTR $PT P J.

causes another tape to be punched, identical to the one read from
the paper tape reader.

XFER DP0:MYFILE DPl:MYFILE J.

transfers MYFILE from disk pack unit 0 to disk pack unit 1.

3-58

CHAPTER 4

PROGRAM MODE OF SYSTEM COMMUNICATION

SYSTEM COMMAND WORDS

The user communicates with the disk operating system (DOS) using system command
words assembled into his program. System command words and the mnemonic . SYSTM
that must precede the command word are recognized as legal mnemonics by the DOS
assembler. Appearance of the mnemonic

• SYSTM

in a program ~~sul!§i~__!he a!?se~liE_K_<:>JJSR_@.J_)nstruction which allows system commun­
ication through the main system entry address stored in page zero. The system command
word must be assembled as the word following the • SYSTM. '

Once sys!~action i_§_Q_QJ:Dp1e.te., J!o:rma,l returnjs made to thesecoruLinstructio!lafter
the system command word. If an exceptional condition is detected, return is_JJH!.de-~to.the
flrsf"Tnstruction following the sys.tern commanci word. .

The general form of a system call in a program is

• SYSTM
command
exceptional return ;STATUS IN AC2
normal return ;AC'S preserved orinformation returned as

specified for the particular command.

COMMAND WORD FORMAT

There are two basic command word formats:

*

where:

command n and command

n is a digit (0-7)\epresenting an I/O channel number. I~
channel number indicates a logical link to an "opened"
f11e-~ -·---------------- ·

-..._,_ __

Any system command requiring a channel number n need not specify this number
in the command itself. By specifying octal 77 as the channel number in the
instruction, the system will use instead the numbe1· passed in AC2. For example,
the following instructions specify a write to channel 3:

LDA 2, C3
• SYSTM
• WRS CPU
lSR EOF

C3: 3

4-1

COMMAND WORD FORMAT (Continued)

When no I/O channel is needed in command execution, the command word appears
alone in the instruction. If the command requires arguments, these are passed
in the accumulators.

STATUS ON RETURN FROM SYSTEM

Status of the accumulators upon return from the system is as follows:

If the system returns no information as a result of the call, the carry and all
accumulators except AC3 will be preserved.

A~used when an exceptional regirn is made to return a numeric err()r_code.
·~' -- . ------------------- ------ - ---------- --------·-- --------·- ---

Error codes are-ffsted by number at the end of this chapter and the applicable
codes are listed for each command.

AC3 is destroyed by • SYSTM (as it is a JSR). On return from the system,
however, AC3 is loaded from the contents of memory location 00016. This location
is defined as a permanent symbol by the DOS assembler and has the name USP
(User Stack Pointer). A convenient method of saving AC3 is to store it in location
00016 before issuing the :sY-s-'fM:--------------------· -------- · - -- ·
. ---~···-----· --- ..

LIST OF COMMAND WORDS

The command word mnemonics are:

.CREAT
• DELET
• RENAM
• CHATR
• GTATR

.OPEN
• APPEND
• CLOSE
• RESET

. RDS
• RDL
.RDR

• WRS
• WRL
• WRR

Create a file
Delete a file •
Rename a file •
Change file attributes •
Get file and device attributes •

Open a file •
Open a file for appending •
Close a file •
Close all open files.

Read sequential characters •
Read sequential line •
Read random •

Write sequential characters •
Write sequential line •
Write random.

4-2

LIST OF COMMAND WORDS (Continued)

.GCHAR
• PCHAR

• MEM
• MEMI

• BREAK
• EXEC
• RTN

.ERTN

• INIT
• DIR
.RLSE

• INST

Read a character from TTI •
Write a character to the TTO •

Determine available memory space •
Allocate an increment of memory •

Save the current state of memory in save file format •
Execute a save file overlay •
Return to the previously overlayed program at the
normal return point.
Return to the previously overlayed program at the
exceptional return point •

Initialize a directory device.
Change the current default directory device •
Release a directory device, preventing further file
access •
Install a new DOS system from the default directory
device.

DIRECTORY DEVICE MONITOR COMMANDS

DOS incorporates the ability to manage multiple directory devices simultaneously.
The precise system configuration is specified via the SYSGEN program.

Directory devices are specified within the system by a three-character code, the
first two characters of which specify device types and the third the unit number.
For example,

DK~

indicates fixed head disk (DK), unit ~, while:

DP3

indicates moving head disk pack (DP), unit 3.

Initialize a Directory Device (. INIT)

A directory device is initialized via the following monitor command:

.SYSTM

.INIT
error return
normal return

4-3

Initialize a Directory Device (. INIT) (Continued)

On entry to the system, AC0 contains a byte pointer* to a directory device
specifier character string terminated by a null byte. If ACl contains 1 77777,
a full initialization of the device results: a virgin file directory and free
storage map are constructed and written on the device. All previous files and
other information are lost.

If ACl does not contain 177777 when • INIT is invoked, a partial iniUalization
of the device results. The current device file directory is located on the device
and read into the system core area thus allowing subsequent file access to the
device. All files on the device are now available to the system software.

The following error conditions might arise during the execution of the • INIT
monitor command. When such a condition is encountered, the error return to
the user program is taken with an error code in AC2.

AC2

2
36

Mnemonic

ERICM
ERDNM

Changing a Default Directory Reference (.DIR)

Meaning

Illegal command for device.
Device not in system.

All file name arguments to monitor commands may contain an optional device specifier.
Those that do not are taken to be files on the current default directory device.
At system initialization time, and after a bootstrap, the default device is set to
be the master device (see SYSGEN, Appendix B). The current default device
can be changed via the following monitor command:

.~YSTM

• DIR
error return
normal return

On entry to the system AC0 contains the byte pointer to a directory device specifier
character string terminated by a null byte. If a normal return to the user program
is taken, the default directory device has been changed as specified. If the error return
is taken, AC2 contains an error code indicating an abnormal condition; the default
directory device has not been altered. The following error codes are possible:

* A byte pointer contains the word address in bits 0-14, which contain or will
receive the byte. Bit 15 specifies which half (0 left, 1 right); note that this is
the reverse of the byte pointer as specified in "How To Use the NOVA Computers."
To use the subroutine shown on Page 2-21 of the NOVA manual, change the
MOV 0, 0, SZC instruction to a MOV 0, 0, SNC.

4-4

Changing Default Directory References (Continued)

AC2 Mnemonic Meaning

36 ERDNM Device not in system •.

Release a Device to Prevent Further File Access (. RLSE)

In order to prevent further I/O activity on a directory device, the following monitor
command is provided •

. SYSTM
.RLSE
error return
normal return

On entry to the system, AC0 contains a byte pointer to a directory device specifier.
If the normal return to the user programistaken, it is guaranteed that 1) all I/O activity
to and from the device has subsided and 2) no further access will be permitted without the
execution of the • INIT monitor command. In the case of a removable media directory
device, • RLSE must be issued before the pack can be physically removed from the
unit. (This is normally accomplished using the RELEASE CLI console command).

If the error return to the user program is taken, AC2 will contain an error code
designating an abnormal condition.

The possible error codes are:

AC2

2
36

Mnemonic

ERICM
ERDNM

Meaning

Illegal command for device.
Device not in system.

Install a Bootstrap System (. INST)

DOS allows a user program to install a new DOS system under program control. When
the installation is complete, the new system designated can be bootstrapped into operation
in place of the current running system.

A file, previously opened on channel n, becomes the DOS core image that will be boot­
strapped from the default directory device. The command to install the system is given
on the following page.

4-5

Install a Bootstrap System (Continued)

.SYSTM
• INST n
error return
normal return

There is one possible error return to AC2 resulting from the command:

AC2 Mnemonic Meaning

3 ERICD Illegal bootstrap program for device.

FILE MAINTENANCE COMMANDS

File maintenance commands are used to enter file names into the file directory and perform
file maintenance. 411 fil~i~~~-~£_f'. __ C:Q.TI!I!!~!!<!i? __ :req1,1J:r:~ Jhe file _names. ta__he .specified
by_means of a byte pointer to th~ __ fil~ 11am_e._ TheJile_name Js __ stQred as a_characte~ -string •
.... -·~--.-~~··-··-------··--- - -.

T~g must consist of charac~~:r.s packed left to right (. TXTM 1) with the high order
bit of eac:hby:te-equal to O. --The string must have a terminating byte containing one___of__the
fg_llowing characters: null (000),_~~ feed (014), carria~ __ !:_etU_lJJ-_1Ql5), or :~~040)._

The extension of a file name (if any) is separated by the character ".". For example, the
word at label "BPTR" contains a byte pointer to a properly specified file name, "MY FILE.SR".

BPTR: 2*NAME ~
~"k o-- b'tTe--it> i.111ttw ·....,. ~'P\R

• TXTM 1
NAME: • TXT *MY FILE. SR*

Create a File (. CREA T)

This command causes an entry for the file name to be made in the system file directory.
AC0 must contain a byte pointer to the file name. The format of the • CREA T command is:

.SYSTM

.CREAT
error return
normal return

4-6

Create a File (Continued)

Possible errors resulting from a. CREAT command are:

AC2

1
11

Mnemonic

ERFNM
ERCRE

Meaning

Illegal file name.
Attempt to create an existent file.

Delete a File (. DELE T)

This command causes a file and its entry in the system file directory to be deleted.
AC0 must contain a byte pointer to the file name. The format of the • DE LET command is:

.SYSTM

.DELET
error return
normal return

Possible errors resulting from a. DE LET command are:

AC2

1
12
13

Mnemonics

ERFNM
ERDLE
ERDEl

Meaning

Illegal file name.
Attempt to delete a non-existent file.
Attempt to delete a permanent file.

Rename a File (.RENAM)

This command ·causes the name of a file to be changed. AC0 must contain a byte pointer
to the current name of the file. ACl must contain a byte pointer to the new name. The
format of the • RENAM command is:

.SYSTM

.RENAM

error return
norm a Z re turn

Upon a normal return, the old name no longer appears in the file directory.

Possible errors resulting from a. RENAM command are:

4-7

Rename a File (Continued)

AC2 Mnemonic Meaning

1
11
12
13
35

ERFNM
ERCRE
ERDLE
ERDEl
ERDIR

Illegal file name.
Attempt to create an existent name. (ACl).
Attempt to rename a non-existent file. (AC{i1).
Attempt to rename a permanent file. (AC{i1).
Files specified on different directories.

FILE ATTRIBUTE COMMANDS

File attribute commands allow the user to determine the current attributes of a file
or device and to change the file attributes if desired. The bit settings of AC{i1 and ACl
determine the file attributes and device attributes respectively.

Change File Attributes (. CHATR)

This command causes the attributes of a file to be changed in accordance with the con­
tents of AC{i1. To change the attributes of a file, a file must be opened (see • OPEN).
The number of the channel is given in the system command. The format of the .CHA TR
command is:

. SYSTM

. CHATR n
error return
normal return

When the • CHATR command is given, AC{i1 must contain an attribute word having the
appropriate bit set for every attribute desired. The bit/attribute correspondence used in
setting the contents of AC{i1 is given below in the table:

Bit

1Bfi1
lBl
1B2
1B14
lBlS

Mnemonic

ATRP
ATCHA
ATSAV
ATPER
ATWP

Meaning

Read-protected file. Cannot be read.
Attribute-protected file. Attributes cannot be changed.
Save file (core image file).
Permanent file. Cannot be deleted or renamed.
Write-protected file. Cannot be written.

Possible errors resulting from a . CHATR command are:

AC2

0
14
15

Mnemonic

ERFNO
ER CHA
ER FOP

Meanin_g

Illegal channel number.
Illegal attempt to change file attributes.
Attempt to change attributes of an unopened file.

4-8

Get File Attributes(. GTATR)

This command obtains the attributes of a file or device characteristics. To
obtain attributes, the file must be opened (see • OPEN). The number of the
channel is given in the system command. The format of the. GTATR command
is:

.SYSTM

.GTATR n
e1'1'01' :r>e tu1'n
noPmai Petur>f';

Upon return, ACJIJ contains the file attributes. TIE bit positions used to specify
the file attributes were given with the • CHA TR command. ACl contains the
device attributes of the file (e.g., $PTR). The bit/attribute correspondence
used in interpreting the bit configuration returned in ACl is shown below:

Bit Mnemonic Meaning

lBO DC DIR Directory device.
!Bl DCC8JIJ Card input (80-column) device.
1B2 DCLTU Device changing lower case ASCII to upper case.
1B3 DCFFO Device requiring form feeds on opening.

1B4 DC FWD Full word device (reads or writes more than a byte).
1B6 DC LAC Output device requiring line feeds after carriage returns.
1B7 DCPCK Input device requiring a parity check; output device

requiring parity to be computed.
1B8 DCRAT Output device requiring a rubout after every tab.
1B9 DCNAF Output device requiring nulls after every form feed.
lBlO OCKEY A keyboard input device.
lBll DCTO A keyboard output device.
1Bl2 DC CNF Output device without form feed hardware.
1Bl3 DC ID I Device requiring OJE rator intervention.
1Bl4 DCCGN Output device without tabbing hardware.
1Bl5 DC CPO Output device requiring leader/trailer.

Possible errors resulting from a .GTATR command are:

AC2

0
15

Mnemonic

ERFNO
ER FOP

Meaning

Illegal channel number
Attempt to get attributes of an unopened file.

4-9

INPUT/OUTPUT COMMANDS

All I/O is handled by system I/O commands. Tuese commands reguire a channel number
(~Z) to~ given in the second field of the command word .. A channel is initially linked
to a particular file or device by means of the . OPEN (or. APPEND) command. Thereafter,
all commands pertaining to that file merely require a channel number. The system pro­
vides three basic modes for reading and writing files.

The first mode is line mode where data read or written is assumed to consist of
ASCII character strings terminated by either carriage returns or form feeds. fu
this mode, the system handles all device dependent editing at t:b.e device driver
level. For example, line feeds are ignored on paper tape input devices and supplied
after carriage returns to all paper tape output devices. Further, reading and writing
never reqi1ire byte counts, since reading continues until a carriage return is read and
writing proceeds until a carriage return is written. The line mode comm.ands are . RDL
and. WRL.

The second mode is unedited sequential mode. In this qiode, data is transmitted
e~ctly as read from the file or device, No assumptio11 is made by the system as to the
nature of this information. Thus, this mode would always be used for processing binary
~ This mode requires the user program to specify specific byte counts necessary
tQ__satisfy uarticular read or write request. The sequential mode commands are . RDS
and. WRS.

The third mode is available for processing files stored on devices capable cf random
access, e.g. any disk file. This mode provides for random access to files by means
of record number. The random access mode commands are • RDR and . WRR.

The association of a file and a channel number can be broken by using the • CLOSE
command. All currently open files can be closed using the • RESET command.

Open a File(. OPEN)

Before other I/O commands can be used, a file must be linked to a channel number. A
byte pointer must be passed in AC{3, pointing to the file nan:1e.

A "characteristic inhibit" mask must be passed in ACl. For every bit set in this word, the
corresponding device characteristic (as defined on the previoils page) is inhibited.
The characteristics will be inhibited for the duration of the • OPEN. For example, if the
user has an ASCII tape without parity to be read from the paper tape reader, he may
inhibit parity checking by the following:

4-10

Open a File (Continued)

READR:

MASK:

LDA
LDA
.SYSTM
.OPEN

.+1 *2

.TXT
DCPCK

O,READR
1,MASK

3

(

*$PTR. *
;PARITY CHARACTERISTIC

In general, the user will wish to leave all characteristics as defined by the
system.

before the

SUB

I. SYSTEMl
l_:OPEN n_j

1,1

The format of the • OPEN command is:

• SYSTEM
.OPEN n
error return
normal return

;OPEN CHANNEL n

If the file opened requires leader, it will be output on the • OPEN. If the file
opened requires intervention, the message:

LOAD filename ,STRIKE ANY KEY.

will be typed. Possible errors resulting from a • OPEN command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.

12 ERDLE File · does not exist. v
21 ERUFT Attempt to use a channel already in use.
31 ERSEL Unit not properly selected.

Open a File for Appending (.APPEND)

An alternate system call for opening a file is implemented that is identical to
• OPEN in every respect except that it enables the writing of a file that already
exists. Specifically, it opens the file for appending. The format of the call is:

4-11

Open a File for Appending (Continued)

.SYSTM

. APPEND n
error return
normal return

As with . OPEN, AC0 must contain a byte pointer to the file name, and ACl must
contain the characteristic disable mask. For peripheral devices, such as the line printer,
the call is in every respect identical to . OPEN. For a directory device, such as the disk
pack, the file is opened and any writes to that file are appended to it and its length extended.
For a device such as magnetic tape, a file is opened and read until end of file is encount­
ered, and writing takes place from that point.

This command provides a convenient feature for subsystems running under DOS to append
to the same output file.

Possible errors resulting from a . APPEND command are:

AC2

0
21

Mnemonic

ERFNO
ERUFT

Close a File (.CLOSE)

Meaning

Illegal channel number.
Attempt to use channel already in use.

After use, files must be closed to insure the updating of directory information. The
channel number is then available for other I/O. The format of the . CLOSE command is:

. SYSTM
• CLOSE n
error return
normal return

;CLOSE CHANNEL n

If the file closed requires trailer, it will be output on the • CLOSE.

Possible errors resulting from a . CLOSE command are:

AC2

0
15

Mnemonic

ERFNO
ER FOP

Meaning

Illegal channel number.
Attempt to reference a channel not in use.

4-12

Close all Files (. RESET)

This command causes all currently open files to be closed. The format of the • RESET.
command is:

.SYSTM

.RESET

error return
normaZ return

The error return from this command is never taken.

Read a Line (.RDL)

This command causes an ASCII line, written with even parity, to be read. ACfi'
must contain a byte pointer to the starting byte address within the user area into which the
line will be read.

Reading will terminate normally after transmitting either a carriage return or a form feed
to the user. Reading will terminate abnormally after transmission of 132 (decimal)
characters without detecting a carriage return or a form feed, upon detection of a
parity error, or upon end of file. lI.!._ all cases. the byte count read will be returned
in AC!. If the read is terminated because of a parity error, the character having incorrect
parity will be stored (high order bit zero) as the last character read. The byte pointer
to the character can always be computed as:

C(ACfi')*+c(ACl) -1

The format of the. RDL command is:

.SYSTM

.RDL n
error return
normal return

;READ FROM CHANNEL n

Possible err~rs resulting from a. RDL command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF End of file.
7 ERRPR Attempt to read a read protected file.
15 ER FOP Attempt to reference a file not opened.
22 ERLLI Line limit (132 characters) exceeded.

24 ERP AR Parity error.
26 ERMEM Attempt to.allocate more memory than is available.

30 ERFIL File read error.

* C(a.) means "contents of (a)"

4-13

Read Sequential GROS)

Sequential mode transmits data exactly as read from the file. AC0 must contain a byt~
ppinter to th~ startin~dress within the _user area into which the data will be
read and ACl must contain the number of bytes to be read. The format of the . RDS
command is:

• SYSTM
.RDS n
error return
normal return

;READ FROM CHANNEL n

Possible errors resulting from a . RDS command are:

AC0 Mnemonic Meaning

0 ERFNO Illegal channel number.
3 ER I CD Illegal command for device.
6 ERE OF End of file. ~
7 ERRPR Attempt to read a read protected file.
15 ER FOP Attempt to reference a file not opened.
26 ERMEM Attemptto allocate more memory than is available.
30 ER FIL File read error.

Upon an end of file, the partial count read will be returned in ACl.

Use of the Card Reader ($CDR) in • RDL and. RDS Commands

When using $CDR (card reader) as an input device, the end of file condition on a . RDL
will occur only if a special end of file code is detected in column 1 of a card. This code
is at 12, 11, 0, 1 multipunch. It can be punched on a 029 keypunch by multipunching "A'~
"0", and"-".

Note also that a Hollerith to ASCII translation only occurs if a . RDL has been requested.
The translation assumes 029 keypunch codes. A table of Hollerith - ASCII translation
is given on page 4-16.

If. RDS is given, the card is read in image binary. In this case, an even
byte count must be specified, since two bytes are required to store each card column.
If an odd number of bytes is requested, status ERICD, Illegal Command for Device,
is returned in AC2. Each two bytes will be used to store a single column. The
packing is shown on the following page.

4-14

Use of Card Reader ($CDR) in. RDL and. RDS Commands (Continued)

Byte 1

Column Number

Bit 0 1 2 3

1~ 0 0 0

-_...,,,>- ... c. ·-- 2

11012345 6789
2 1

4 5 6 7 8 9 1 1 1 1 1 1
0 1 2 3 4 5

d d d did d d d d d d di I

The "d's" will be 1 for every column punched.

4-15

Hollerith ASCII Hollerith ASCII

Char- Char-
12 11 0 1-9 act er Octal 12 11 0 1-9 acter Octal

0 0 0 0 space 040 I 0 0 0 8, 1 form feed 014
0 0 0 1 1 061 0 0 0 8,2 072
0 0 0 2 2 062 0 0 0 8,3 # 043
0 0 0 3 3 063 0 0 0 8,4 @ 100
0 0 0 4 4 064 0 0 0 8, 5 047
0 0 0 5 5 065 0 0 0 8,6 = 075
0 0 0 6 6 066 0 0 0 8,7 " 042
0 0 0 7 7 067
0 0 0 8 8 070 0 0 1 8, 1 tab 011
0 0 0 9 9 071 0 0 1 8,2] 135

0 0 1 8,3 054
0 0 1 8,4 3 045

0 0 1 0 0 060 0 0 1 8,5 + 137
0 0 1 1 I 057 0 0 1 8,6 > 076
0 0 1 2 s 123 0 0 1 8,7 ? 077
0 0 1 . 3 T 124
0 0 1 4 u 125 0 1 0 8,2 I 041
0 0 1 5 v 126 0 1 0 8,3 $ 044
0 0 1 6 w 127 0 1 0 8,4 * 052
0 0 1 7 x 130 0 1 0 8,5) 051
0 0 1 8 y 131 0 1 0 8,6 ; 073
0 0 1 9 z 132 0 1 0 8,7 \ 134

0 1 0 0 055 1 0 0 8,2 [133
0 1 0 1 J 112 1 0 0 8,3 056
0 1 0 2 K 113 1 0 0 8,4 < 074
0 1 0 3 L 114 1 0 0 8,5 (050
0 1 0 4 M 115 1 0 0 8,6 + 053
0 1 0 5 N 116 1 0 0 8,7 t 136
0 1 0 6· 0 117
0 1 0 7 p 120
0 1 0 8 Q 121
0 1 1 9 R 122

1 0 0 0 & 046
1 0 0 1 A 101
1 0 0 2 B 102
l 0 0 3 c 103
1 0 0 4 D 104
1 0 0 5 E 105
1 0 0 6 F 106
1 0 0 7 G 107
1 0 0 8 H 110
1 0 0 9 I 111

Hollerith-ASCII Translation Table

4-ln

Read Random (. RDR)

Random access files are assumed to consist of fixed length, 64-word records. These
-~-*--------~ ----·· > ,,. '··"·-·-~-~-~----~,--

records are numbered sequentially from~. No EOF is ever given on a read or write
random. A read random of a record number never written will result in a 64-word
record of zeroes. The length of a random access file is computed by the system as:

(highest record number written+ 1) * 12810 bytes

The read random command allows random reading of records from a file on disk. AC~
must contain a destination core address within the user area, and ACl must contain the
record number. The format of the • RDR command is:

.SYSTM

.RDR n
el'ror return
normal return

;READ FROM CHANNEL n

Possible errors resulting from the . RDR command are:

AC2 Mnemonic

0 ERFNO
3 ERICD
7 ERRPR
15 ER FOP
26 ERMEM
30 ER FIL

Write a Line (. WRL)

Meaning

Illegal channel number.
Illegal command for device.
Attempt to read a read protected file.
Attempt to reference a file not opened.
Attempt to allocate more memory than is available.
File read error.

This command presumes an ASCII file. Acia must contain a byte pointer to the starting
byte address within the user area from which characters will be read. -----------------.. -----·-·····-···- --

Writing will terminate normally upon writing of a null, a carriage return or a form
feed, and abnormally after transmission of 132 (decimal) characters without detection
of a carriage return, a null, or a form feed. In either case, ACl will contain, upon
termination, the number of bytes read from the user area to complete the request. The
termination of a write line on a null allows for formatting output without forcing a
carriage return.

4-17

Write a Line (Continued)

The format of the. WRL command is:

.SYSTM

.WRL n
error return
normal return

; WRITE TO CHANNEL n

Possible errors resulting from the • WRL command are:

AC2

0
3
5

10
15
22
27

Mnemonic

ERFNO
ERICD
ERWRO

ERWPR
ER FOP
ERLLI
ERSPC

Write Sequential (. WRS)

Meaning

Illegal channel number.
Illegal command for device.
Attempt to write an existent file.
(Detected upon the first attempted write.)
Attempt to write a write protected file.
Attempt to reference a file not opened.
Line limit (132 characters) exceeded.
Out of disk space.

This command transmits data exactly as read from the user area. AC!l} must c~in
a byte pointer to the starting byte address of the data within the user area and AC! must
contain the number of bytes to be written. The format of the • WRS command is: "'

.SYSTM
• WRS n
error return
normal return

;WRITE TO CHANNEL n

Possible errors resulting from a • WRS command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
5 ERWRO Attempt to write an existent file.

(Detected upon the first attempted write).
10 ERWPR Attempt to write a write-protected file.
15 ER FOP Attempt to reference a file not opened.
27 ERSPC Out of disk space.

4-18

Write Random (. WRR) (Continued)

AC0 must contain the source record core address and ACl must contain the number
of the record to be written. Sixty-four words will be written, starting from the
address specified in AC0. The format of the • WRR command is:

.SYSTM

.WRR n
error return
normaZ return

;WRITE TO CHANNEL n

Possible errors resulting from a. WRR command are:

AC2

0
3
10
15
27

Mnemonic

ERFNO
ERICD
ERWPR
ER FOP
ERSPC

TELETYPEWRITER COMMANDS

Meaning

Illegal channel number.
Illegal command for device.
Attempt to write a write protected file.
Attempt to reference a file not opened.
Out of disk space.

Buffered transfer of single characters between the teletypewriter and AC0 is handled
by the commands, • GCHAR and • PCHAR. No channel number is required for these
commands, and the teletype is always available to them without requiring the • OPEN
command.

Get a Character(. GCHAR)

This command returns a character qq>ed from the teletypewriter in AC0. The
character is right-adjusted in AC0 with bits 0-8 cleared. No channel is required;
the TTI is always used as input for this command. The format of the • GCHAR command
is:

.SYSTM

.GCHAR
error return
normaZ return

No error return is possible from this command; if no character is currently in the
TTI input buffer, the system waits.

Put a Character (. PCHAR)

writer. No

4-19

Put a Character ~ontinued)

.SYSTM

.PCHAR
error return
normal return

No error return is possible from this command.

MEMORY COMMANDS

Appendix A shows in detail how memory is allocated using the Disk Operating System.
The following is a simplified diagram.

The Disk Operating System resides in upper memory. User programs are loaded in
lower memory. Memory then looks, essentially, as follows:

Disk Operating
System

Available Memory

User Program

Top of Memory.

~----- · HMA (highest memory address available)

NMAX (first location available above
the loaded program).

-0 location.

The highest memory address available (HMA) is usually the first word below the Disk
Operating System. If a user symbol table has been loaded at the high end of user memory,
the high memory address will be the first word below the user symbol table. The latter
will occur when the user specifically requests that the relocatable loader leave the table
in upper memory. (The loader, by default, moves the symbol table down so that the bottom
of the table coincides with the first location not loaded into by the program).

The . MEM command returns both the current value of NMAX aild HMA. The • MEMI
command allows the user to adjust the value of NMAX.

4-20

Determine Available Memory(. MEM)

This command returns the current value of NMAX in ACl and the value of HMA in AC0.
HMA may represent either the bottom of DOS or the end of the user symbol table. A
SUB 1, 0 instruction determines the limit of memory available to the user program.
The format of the. MEM command is:

• SYSTM
.MEM
error return
normal return

There are no error returns from this command.

Change NMAX(. MEMI)

This command allows the user to increase or decrease the value of NMAX. The increment
or decrement (in two's complement) is passed in AC0. The command causes the value
of NMAX to be updated in the User Status Table*and the new NMAX to be returned in
ACl. The format of the . MEMI command is:

. SYSTM

.MEMI
error return
normal return

.NMAX will not be changed if the new value of NMAX would be higher than the lowest address
of the Disk Operating System. No check is made as to whether or not the user decreases
NMAX below its original value (as determined at relocatable load time) nor, if his symbol
table resides in upper memory, whether he increases NMAX above the bottom of his
symbol table.

Whenever a user program requires memory space above the loaded program, a . MEMI
should be executed first to allocate the number of words needed. The value of NMAX is
used by the operating system to determine the extent of memory to be saved should a
program be suspended. If temporary storage is being used without having updated NMAX,
the program may be suspended with insufficient information for continuation. This is
explained further in the discussion of Program Overlays.

There is one error resulting from a . MEMI command:

AC2 Mnemonic

26 ERMEM

Meaning

Attempt to allocate more memory than available.
(Attempted overlap with DOS).

* See Appendix A, Relocatable Loader Section.

4-21

PROGRAM OVERLAY COMMANDS

Program Overlays

Any program executing under the operating system can suspend its own execution and
invoke another program. Everyprogram requestedfor execution mustexist as a save
file on disk.

The program that is suspended is stored temporarily on disk; its User Status Table
is used to save its AC's, Carry, and the PC (Program Counter) at the time of its sus­
pension. This information enables the program to be resumed upon termination of the
program overlay being requested.

The "calling" program will be referred to as executing at a "higher level" in the system.
The "called" program, or program overlay, will be referred to as running at a "lower
level". These terms are relative, since the called program may in turn invoke another
program overlay for execution, and therefore, become the calling program.

Upon program suspension, the current core image will be saved up to the higher of
NMAX or SST (start of the user symbol table). It is very important for a program
using temporary storage above its original value of NMAX at load time to have the
system allocate memory increments (see • MEMI) before this space is used. If this
is not done and the program invokes another program, the calling program's suspended
memory state will not all be saved in its entirety. Even if the program executing does
not call another program, a teletype BREAK may force suspension. In order to insure
the ability to restart a suspended routine, NMAX must correctly reflect the core in
use at the time.

The Command Line Interpreter is merely one program executable under the operating
system. Its only special property is that it executes at the "'highest" level in the
system. This will be called "level zero".

The operating system provides for up to five levels o:L.£fo_gram overlays. This
implies a program invoked by the CLI (causing the CLI to-b-;;o:Yeriayed)can in turn
invoke a third program (causing the second program to be overlayed) ; the third
program can invoke a fourth, and the fourth can invoke a final program. The sys:
tern will reject all further overlay attempts. Normally, the system programs
supported.by the CLI (e.g., Text Editor, Assembler, Relocatable Loader) execute
at level one.

4-22

Read in a Save File Overlay(. EXEC)

This command requests the system to bring in a program overlay. The format of the • EXEC
command is:

.SYSTM

.EXEC
e1'1'01' 1'etu1'n
no1'maZ 1'etu1'n

ACJil must cont.a.in a byte pointer to the program save file name. ACl must contain an ap­
propriate starting address code. Three possible starting addresses are allowed: the
program starting address (USTSA), the Debug III starting address (USTDA), or the pre­
viously saved program counter (USTPC). * If bit Ji1 of AC! is 1, the current level will not
be saved, and the operating level will remain unchanged. (Note that this feature provides
unlimited program chaining.)

The codes permissible in AC! are:

Code Meaning

0 Starting address
1 Debugger address
2 Program counter ---------· ---·---,,--~.~~..-=-~~-...... ~<-~·

If the code is not one of these three or the address required is not given in the User Status
Table, ERADR status is returned. This can occur if:

A. No starting address was specified for the save file and code p' is given.

B. The debugger was not loaded as part of the save file and code 1 is given.

C. The save file was not the result of a BREAK (CLI) or. BREAK and code 2
is given.

Error returns possible before the overlay has been read into memory are:

AC2 Mnemonic Meaning

1 ERFNM Illegal file name.
4 ERSVI File requires "S"ave attribute.
12 ERDLE File does not exist.
25 ERCM3 Trying to push too many levels.
26 ERMEM Attempt to allocate more memory than is

available.
32 ERADR Illegal starting address.

* See Appendix A, Relocatable Loader section, for descriptions of USTSA, USTDA, and
USTPC.

4-23

Return from Overlay {. R TN)

Upon successful completion of a program invoked by a. EXEC, this command causes
return to the "calling" program at its normal return point. The format of the . RTN
command is:

. SYSTM

.RTN

error return

Note that the usual "normal return" is impossible, since, if execution of the return is
successful, the calling program is restored to memory. The one possible error
return is:

AC2 Mnemonic Meaning

23 ERRTN Attempt to restore a non -existent image.

This error return is only possible if the program at execution level zero issues a
. RTN. Since the CLI executes at level zero, system and user programs should
never obtain this error indicator.

Return to the calling program preserves, as normal, AC0, ACl, AC2, and Carry.
AC3 will contain the contents of the calling program's User Stack Pointer, C(USP).

Return from Overlay with Exceptional Status (. ER TN)

A called program can return exceptional status information to the calling program
with this command. The format of the • ER TN command is:

. SYSTM

.ERTN
error return

This call is identical to . R TN in every respect except that return is made to the
error return of the calling program and AC2, upon return, contains the called program's AC2
instead of the calling program's AC2. A single word of status can, therefore, be returned.
If the program issuing a • ER TN had been executing at level one (and is returning,
therefore, to the CLI), the CLI will output an appropriate message concerning the status
code in AC2. If the code is recognized as a monitor exceptional status code, a text
message is printed. The code ERDLE (12 8) for example, would cause the message:

FILE DOES NOT EXIST

to be typed out. If the code is greater than any system codes, the message:

4-24

Return from Overlay with Exceptional Status (Continued)

UNKNOWN ERROR CODE n

will be typed out, where n is the numeric code in octal. This feature is useful for returning
status unrelated to the operating system but directly related to the user program that
was running.

Saving Current State of Memory(. BREAK)

DOS provides a system call for conveniently saving the state of memory in save file format.
The format of call is

. SYSTM
• BREAK
error return
normal return

This call causes the operating system to save the current state of memory from location
SCSTR (the start of save files) to the higher of NMAX or the start of the symbol table, SST.
The file name used is BREAK. SV; any previous file BREAK. SV is deleted by the
command. The device used is the current default directory device. File BREAK. SV
is in every respect an executable save file. Note that when using the CLI command
SAVE, the CLI merely renames BREAK. SV to be the file name specified by the command.

One error message is possible:

AC2 Mnemonic Meaning

27 ERSPC Out of disk space.

4-25

ERROR MESSAGES

CODE MNEMONIC MEANING APPLICABLE COMMANDS

0 ERFNO ILLEGAL CHANNEL NUMBER .CHATR .OPEN . RDS • WRS
.GTATR . CLOSE . RDL . WRL
.APPEND • RDR • WRR

1 ERFNM ILLEGAL FILE NAME .CREAT .RENAM .EXEC
.DELET .OPEN

2 ERICM ILLEGAL SYSTEM COMMAND • INST • RLSE . INIT

3 ERICD ILLEGAL COMMAND FOR .RDR . RDS . WRS
DEVICE .WRR .RDL .WRL

4 ERSVl FILE REQUIRES THE "SAVE" .EXEC
ATTRIBUTE

5 ERWRO ATTEMPT TO WRITE AN . WRS .WRL
EXISTENT FILE

j 6 ERE OF END OF FILE • RDS .RDL .RDR

7 ERRPR ATTEMPT TO READ A READ • RDS .RDL .RDR
PROTECTED FILE

10 ERWPR ATTEMPT TO WRITE A WRITE • WRS .WRL .WRR
PROTECTED FILE

J 11 ERCRE ATTEMPT TO CREATE AN .CREAT • RENAM • OPEN
EXISTENT FILE

J 12 ERDLE ATTEMPT TO RE FERENCE A .DELET . RENAM • EXEC
NON - EXISTENT FILE .OPEN

13 ERDEl ATTEMPT TO ALTER A
PERMANENT FILE .DELET .RENAM

14 ER CHA ILLEGAL ATTEMPT TO .CHATR
CHANGE FILE ATTRIBUTES

15 ER FOP ATTEMPT TO REFERENCE A FILE. CHATR . RDS .WRL
NOT OPENED. .GTATR .RDL • WRS

i~ l . CLOSE .RDR .WRR
.f

{1 1 4-26

')-0 l

ERROR MESSAGES (Continued)

CODE MNEMONIC MEANING APPLICABLE COMMANDS

21 ERUFT ATTEMPT TO USE A CHANNEL
ALREADY IN USE .OPEN .APPEND

22 ERLLI LINE LIMIT EXCEEDED ON
READ OR WRITE LINE .RDL .WRL

23 ERRTN ATTEMPT TO RESTORE A
NON-EXISTENT IMAGE .RTN .ERTN

24 ERPAR PARITY ERROR ON READ LINE .RDL

25 ERCM3 TRYING TO PUSH TOO MANY
LEVELS .EXEC

26 ERMEM ATTEMPT TO ALLOCATE MORE .RDL .RDS
MEMORY THAN AVAILABLE .MEMI .RDR

27 ERSPC OUT OF DISK SPACE • WRS .WRL
.BREAK .WRR

30 ER FIL FILE READ ERROR .RDS .RDL .RDR

31 ERSEL UNIT NOT PROPERLY .OPEN
SELECTED

,, 32 ERADR ILLEGAL ST AR TING ADDRESS .EXEC

3'-f 35 ERDIR FILES SPECIFIED ON .RENAM
DIFFERENT DEVICES.

36 ERDNM ILLEGAL DEVICE NAME • INIT .RLSE

4 -27

CHAPTER 5

MULTIPLE FILE DEVICES

DEVICES PROVIDING MULTIPLE FILE ACCESS

At present there are three possible types of devices on which system and user files
can be stored that the Disk Operating System can readily access for multiple reading
and writing. These are:

1. Fixed head disk - Usually one per system configuration, having
the mnemonic:

DK0

If there were more than one fixed head disk controller, the second
controller would be designated DK!.

2. Disk pack of the movable head disk - There can be up to four
disk packs per disk and they are designated:

DP0, DP!, DP2, DP3

3. Magnetic tape units - Up to eight magnetic tape drives are per­
mitted per system, and they are designated:

MT0, MT!, • • • MT7

DETERMINING SYSTEM DEVICE CONFIGURATION

As described in Appendix B, once a bootstrap system has been loaded during system
generation, the program SYSGEN queries the user as to the system configuration.
Responses to SYSGEN (in addition to determining storage, I/O devices, etc.) will
determine:

1. Which device will be the master storage device (fixed head
disk or a given disk pack unit.)

2. How many disk pack units, if any, and how many magnetic tape
drives, if any, are in the system.

DIRECTORY DEVICES

Directory devices are those devices that have their own file directory, containing
the names, attributes, and byte counts of all files stored on the device. Only disk

5-1

DIRECTORY DEVICES (Continued)

packs and the fixed head disk can maintain such a file directory. See Chapter 1
for a discussion of disk file directories.

Files are stored on magnetic tape by file number, the number indicating the
order in which they were written onto the tape. DOS accesses files on magnetic
tape by their file number, not by referencing a file name in a direc~ory.

MAGNETIC TAPE

DOS has access to files on magnetic tape and the DOS system will support
up to eight magnetic tape drives in any combination of 7 and 9 track units.
Reading and writing is at high density (800 bpi). If the unit specified is selected
to low density or is not on-line, the message:

UNIT IMPROPERLY SELECTED

will be given.

If the control detects a parity error during reading, the message:

PARITY ERROR: FILE MTn: dd ~ ~n -~7; ~ s;;.dd ~99

will be given and two results are possible:

1. If a dump file was being LOADed, execution will terminate.

2. If a file was being XFERed, execution will continue; however,
the first 12 8 words of the erroneous record will be lost.

7-Track Units

Data recor~ed on 7-track units is necessarily encoded. This is accomplished in the
following manner;

Original
Data Word I o I 1 I 2 I 3 I 4 I s I 6 I 7 I s I 9110l11!12 l13l14I1sl

Encoded . ! x I x I x I x I 0 I Ij 2 I 3 I x I x I x I x I 4 I 5 I 6 I 7 I
Data Words Ix I x I x Ix I s I 9110111 I x Ix I x I x112 l13 l14 l1s1

Every data record is written on a 7-track unit as two encoded data records.

Number of Tape Drives in System

During system generation (Appendix B), the SYSGEN program will query the user as to
how many magnetic tape drives are in the system configuration. That number of drives

Number of Tape Drives in System (Continued)

may then be referenced by device mnemonic. DOS can directly access files
on magnetic tape by file number.

Initializing a Tape Drive

Initializing a tape drive causes the tape on that drive to be rewound. Full
initialization (/F switch) will cause the tape to be rewound, and a dummy record
and two EOF's will then be written.

Releasing a Tape Drive

To rewind a tape drive, the RELEASE command can be given.

Referencing a File on Magnetic Tape

Files are placed on tape in numeric order, beginning with the file ~. Up to 1~~ files may
be put on a given tape; the last ·permissible file is 99.

A given file is referenced in a command by a tape drive specifier followed by file number.
Either a one-digit or two-digit number may be used to reference the first ten file numbers,
e.g.,

MT1:04 and MT1:4 are equivalent.

Both the tape drive specifier and the file number must be given. The file number must
be in the range 0-99, and the tape drive number must be in the range 0-7. Otherwise;
the error message:

ILLE GAL FILE NAME

will be output. If the user referenced a file on tape by name rather than number, e.g.,

MT{J:XX

the system gives the error message:

ILLE GAL FILE NAME

Some examples of references to files on tape are:

DUMP MT{1:{1 J.

DELETE *.* J
LOAD MT{1:{1 JI

Dump all non -permanent files onto tape, providing a
magnetic tape backup system.

Delete all non-permanent files from disk.

Reload the files onto disk from tape.

5-3

Referencing a File on Magnetic Tape (Continued)

ASM A B MTflJ:l/Bil

Assemble files A and Band write the relocatable binary to
tape drive fll, file 1.

RLDR A. SV /S MTl :2 MTl :3 MTl :4 ,J.

Load relocatable binary files 2, 3, and 4 from drive 1,
producing save file A. SV.

XFER MTflJ:2 FOO~
XFER MTflJ:2 MTl :5 J.

Transfer a file from tape to disk or from tape to tape.

XFER FORTEST. FR MTfll:fll.J

Place FOR TRAN source file on tape.

FORT MTfll:fll.J

Compile from tape, producing a relocatable binary file
called 0. RB

Note that when a file on tape is assembled or compiled onto disk or disk pack as in the
example above, the name of the relocatable binary file on disk will become the file
number with the extension RB.

Writing Files to Magnetic Tape

Files must be placed on magnetic tape in numeric order. For example, suppose the
user transfers a file to tape that has just been initialized:

XFER FILEfiJ MTfll:fll,/

FILE0 will be the first file on the tape. The tape on drive 0 will now contain the
following:

1

5-4

First file, containing contents of FILEfll •.

Once a file is written, the file number of
the next file is assigned. File 1 is a null
file.

Writing Files to Magnetic Tape (Continued)

An attempt to place a new file on the tape above with one of the following commands:

XFER FILEX M'f0:2,,t
XFER FILEY MTl3:4M'

will result in an error message:

ILLEGAL FILE NAME

where only file 13 has been written to tape.

It is possible to overwrite a magnetic tape file. For example, assume a tape on drive
13 contains four files:

0 -------

1

2

3

4

• Null file.

The command:

XFER MY FILE MT{3 :1 J

will cau~e the contents of MYFILE to overwrite the tape be~inning a~ the, file 1 r,osition.
When a tape file is written in this manner, all subsequent files uu tape are lus •

In the example, the tape will contain:

1

2

~ Null file

5-5

CHAPTER 6

USER SERVICED INTERRUPTS

A facility has been provided for the user to service his own interrupts using DOS. The
procedure and restrictions are outlined below.

Two parameters are defined~onically by the Disk Operating System parameter
tape 090-000176. The first, IS defines a page zero address where the user must
store the address of his own rupt service routine. The second, UMSK, contains
the address of a DOS subroutine that properly maintains the interrupt mask word
and enables interrupts for the user.

If the user does not change the word at location UIS, a PANIC with code 210 is given
when an interrupt is detected that is not recognized by DOS. However, if the user
initializes the word at UIS to contain an address within his own Rrogram, control is
tranferred to that address vi~J~~J)~g __ an interrupt.J.lQt_r~~og:p.ized_~Y.DQ~Js detected.

When the user receives control, interrupts are OFF and AC0 contains the device
code of the interrupting device. The user may-e-:Xaminetiil"s code or, alternatively,
skip on the appropriate DONE flip flops of the devices from which he expects interrupts.
It is the user's responsibility to save AC3 and to return to this address after completion
of his service routine, but all other accumulators and car!_Y_i!._fe_ saved for him by the -
system. -
If the user can complete his servicing of his device with interrupts disabled and is
not concerned about the other devices running under DOS interrupting, he need not
make use of the subroutine provided for maintaining the current mask word. In
general, ho\\'.'ever, the user should use this subroutine to mask out his device and all
lower priority devices and to tum on interrupts again. To use this routine, the user
must supply in AC!IJ a bit corresponding to the interrupt disable mask bit for every
device, including his own, that he considers of lower priority. Note that as a minimum
the user must set a bit in AC0 corresponding to his own device interrupt disable flip
flop. The calling sequence for this routine is simply

JSR@UMSK

The system will maintain the mask word properly, tum on interrupts, and return
control to the user with AC0 containing the new mask word.

6-1

CHAPTER 7

PANICS

There are a number of hardware malfunctions that may cause the system to "PANIC".
Should a PANIC occur, the contents of the accumulators will be printed on the TTY,
followed by a PANIC code. The output will appear as follows:

00015 177777 000011 037500 000210

AC~ ACl AC2 AC3 PANIC CODE

The PANIC codes are:

210 Unknown interrupt. Offending device code in AC~.

220 System stack overflow.

230 Repeated critical disk write errors.

240 Repeated critical read errors.

250 Repeated critical disk read or write errors.

260 Runaway tape reader. (An NIOC to an input device did not
stop its forward motion).

270 Fatal magnetic tape hardware status. AC~ contains the
magnetic tape controller status.

7-1

APPENDIX A

DOS SYSTEM PROGRAMS

Programs supported under DOS are:

Text Editor

Relocatable Assembler

Relocatable Loader

Debug III

Octal Editor

FORTRAN IV

Extended ALGOL

Library File Editor

CLI

CLG

BLDR (Binary Loader)

Document #093-000018

Documents #093-000002, #093-000040, and
"How to Use the NOVA Computers"

Document #093-000039

Document #093-000044

Document #093-000048 (this manual)

Document #093-000053

Document #093-000052

Document #093-000048 (this manual)

Document #093-000048 (this manual)

Document #093-000048 (this manual)

Document __ #093-000048 (this manual)

Certain minor changes were made to the Text Editor, Assembler, Relocatable
Loader and Debug III for use under DOS. These changes are outlined in this
Appendix. The Library File Editor and the Octal Editor are described in detail
here. In addition, information on loading the FOR TRAN IV and Extended ALGOL
compilers under DOS is included.

A-1

TEXT EDITOR

The Text Editor is supplied as one file of a dumped tape, 088-000001, and' is named EDIT. SV.
To use· the Text Editor, the user must create a save file from the tape by mounting the tape
in an appropriate input device, such as the $PTR, and giving the LOAD command:

LOAD $PTRj

The CLI responds with a ready message (R) when the disk file has been created.

Once a disk file of EDIT. SV exists, tre command

EDITJ

brings the Text Editor into core. The Text Editor gives the prompt:

*

The user should reply to the prompt with DOS Text Editor commands that specify input
and autput file names:

GR inputfi Zename $$

GWoutputfi Zename $$

+get for reading (input) the file of the name given.
inputfi Zename must be the name of an existing file.

+get for writing (output) the file of the name given.
outputfi Zename cannot yet exist.

Upon completion of editing an input file to produce a new output file, the command:

GC$$

can be used to close the output file. A new output file can now be edited by specifying
the GW command. If the user attempts to open an additional file for writing without
closing the current file, the following error message will be given:

OUTPUT FILE ALREADY ACTIVE

The GC command does not force the.writing of the last output page. The user must be
careful to issue a P ~r E) command for the last edited page before issuing the GC command.

The meaning of the Y and P commands is basically unchanged by the change in 1/0:

A-2

TEXT EJJITOR (Continued)

Y$$

P$$

...- read a page from the input file. (As before, a
page is a stream of characters terminated by
a Form Feed.)

~ write a page to the output file.

A CTRL C break will cause a return to the CLI and should not normally be used while
editing.

A CTRL A break can be issued to terminate Editor input/output. The Editor will remain
in core and issue an asterisk (*). If there is file I/O in progress at the time of issuing
a CTRL A, both input and output files will be closed.

The DOS Text Editor commands are given in the following list. The commands unique
to DOS are starred. Note that of the special CTRL commands, only CTRL A should
normally be used.

Code and Format

A

B

c

D

E

F

*GC

*GR

*GW

H

I

t I

A$$

B$$

~D$$

E$$

F$$
~F$$

GC$$

GRinputfilename $$

GWoutputfi lename $$

H$$

I string$
~1$$

(tab) string$$

Meaning

Append a page to the edit buffer.

Back up the character position to the beginning
of the buffer.

Search buffer for string1 and change to string2•

Delete ~ characters starting at character position.

Output buffer and remainder of input file.

Punch a form feed.
Punch n inches of leader.

Close the output file.

Get for reading (input) file of name given and close
any previous input file.

Get for writing (output) file of name given.

Return to C LI.

Insert string at character position.
Mask n to seven bits and insert character at
character position.
t1 (tab) is an implicit insert command, meaning
insert string with tabulation.

A-3

TEXT EDITOR (Continued)

Code and Format

J

K

L

M

N

p

PW

Q

R

s

T

x

XO

XM

y

z

~$$

E_K$$

nL$$

E_M$$

Nstring$

P$$
E_P$$

PW$$
E_PW$$

Qstring$

R$$
!!_R$$

Sstring$

T$$
E_T$$

nX$$

XO$$

XMcommand string$$

Y$$

Z$$

Meaning

Jump character position E. lines from beginning
of buffer.

Delete (kill) E_ lines starting at character position.

Reset character position E_ lines from current
character position.

Move character position E. characters from current
character position.

Search for string. If not found, output, read,
and continue search through input.

Write a page to the output file.
Write E_ lines to the output file starting at line n.

Punch entire edit buffer without form feed.
Punch E. lines starting at character position without
form feed.

Search for string. If not found, read and continue
search through input.

Output entire edit buffer and read in next page.
Perform Rn times.

Search edit buffer for string.

Type out entire edit buffer.
Type out E_ lines from character position.

Execute a macro n times.

Delete a macro definition.

Define a macro command.

Read (yank) a page into the edit buffer.

Reset character position to end of edit buffer.

A-4

TEXT EDITOR (Continued)

Code and Format

= =$$

:$$

• $$

tA CTRLA

RUBOUT

Meaning

Type the number of characte1s to the edit buffer.

Type the number of lines in the edit buffer •

Type the number of the line containing the character
to which the character pointer points.

Terminate input/output.

Erase last character in line.

A-5

RELOCATABLE ASSEMBLER

The relocatable assembler for DOS is supplied to the user as one file of dumped tape,
088-000001, and is named ASM. SV. To use the Relocatable Assembler, the user must
create a save file from the tape by mounting the tape in an appropriate input device,
such as the $PTR, and giving the LOAD command:

LOAD $PTR ,)

The CLI responds with a ready message (R) when the disk file has been created.

Once the disk file of ASM. SV exists, the command ASM with appropriate arguments
brings the Relocatable Assembler into core to assemble source files given in the
command line. The ASM command line is described in Chapter 3.

The ASM command line is used to build a command file (COM. CM as described in
Appendix D). When a command line begins with the file name ASM, the CLI sorts
the command line, and creates COM. CM in the format shown below:

ASM

T T I I

binary I listing I I I global 1 local 1local source 11ocal source 1 local
switches filename 1 switches filename 1 switches filename:i_1 switches ... filenamen 1 switches

(output) I (output) I (input) I (input) ' I I l I
j_ _l_ _j_

A-6

--

RELOCATABLE LOADER

The DOS Relocatable Loader is supplied to the user as one file of dumped tape,
088-000002, and is named RLDR. SV. To use the Relocatable Loader, the user must
create a save file from the tape by mounting the tape in an appropriate input device
and giving a LOAD command, for example:

LOAD $PTR il.

The CLI responds with a ready message (R) when the disk file has been created.

Once a disk file of RLDR. SV exists, the command line RLDR, followed by appropriate
arguments and a carriage return, brings the Relocatable Loader into core to load
the relocatable binary files given in the arguments of the command line.

The RLDR command line is used to build a command file (COM. CM as described in
Appendix D). When a command line begins with the file name RLDR, the CLI sorts
the command line, and creates COM. CM in the format given below:

RLDR

I I l I

map I local I I local
I

global save 1 local reloca- reloca- 11ocal
switches filename I switches filename switches table I switches ... table 1switches

(output) I I binary I binary (output) 1 I
I filenamei_ I filenam<1i_ 1
I I (input) I (input) I I
I

l
I

I .1

If loading is successful, the output of the Relocatable Loader is a save file, and return
is made to the CLI. If loading is not successful, the loader produces an explicit error
message and return is made to the CLI. For example, a load overwrite will result in the
message:

LOAD OVERWRITE
FATAL LOAD ERROR

001700

The loader begins loading page zero relocatable data at location 50* and normal relocatable
data at location 1000. The loader will not load into locations 0-15 nor 400-777. Locations
400-777 (Page 1) are reserved by the loader for necessary DOS status information described
later. Core, during loading, can be represented as follows:

* Locations 16-47 can be used by using the • LOC pseudo-op at assembly time.

A-7

RELOCATABLE LOADER (Continued)

Loading
Direction

Disk
Operating

System

l Symbol
Table

User

Program
(NREL) r

User
Tables

User
Program
(ZREL)

------------------l
Reserved

for
DOS I

'

.,___ top of
memory

_SST

+-EST

4--- NM.AX.

~ 1000

- 400

-- 50

-- 16

..+--- 0

A-8

SST Start of Symbol Table.
First address below
DOS during loading.

EST - End of Symbol Table.
First address available
below the symbol table
during loading.

NMAX - The first available
address for further
loading

The Relocatable Loader permits
loading beginning at location 16.
ZREL code begins at location 50.
NREL code begins at location
1000.

The Disk Operating System
resides in upper memory and
the first 16 locations, 0-15.

RE LOCATABLE LOADER (Continued)

User Adjustment of NMAX

When loading a number of programs, the user can adjust the value of NMAX. The loader
will accept any value of NMAX that is not less than its current value. The value can be
adjusted by a local option as shown below:

2000

1775

RLDR A 2000/N BJ

where: 2000/N is a local option giving an adjusted NMAX (20008) at which
to begin loading the next program, B.

DOS
+- HMA

~ NMAX after loading B

B

+-- NMAX before loading B

- NMAX after loading A

A

+- location Ja

Page One - User Status Table

Page one is reserved for tables needed by the operating system to load and run programs.
The first of these tables is the lJser Status Table (UST), ,The User Status Table starts at
location 400 and is use<:!_for_b~¢_!9;:i.de.:r::-~:oerated information and run-time
information. A template of the UST is shown on the following page. · ,,--,-----

A-9

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

UST= 400

USTPC= 0
USTZM= 1
USTSS = 2
USTES-= 3
USTNM= 4
USTSA = 5
USIDA= 6
USTHU= 7
USTCS=lO
_l.JSTIT= ll
~TBR= 12
USTIN= 13

• • -USTA0 = 23
USTAl= 24
USTA2 = 25
USTA3 = 26
USTCY =27

f..)Ob

~ \ \
~\1-

;USER STATUS TABLE (UST) TEMPLATE

;START OF USER STATUS AREA

;PROGRAM COUNTER (LEAVE AT DISPLACEMENT 0)
;ZMAX
;START OF SYMBOL TABLE
;END OF SYMBOL TABLE
;NMAX
;ST AR TING ADDRESS
;DEBUGGER ADDRESS
;HIGHEST ADDRESS USED BY LOAD MODULE
;FORTRAN COMMON AREA SIZE
;INTERRUPT ADDRESS
;BREAK ADDRESS
;INITIAL START OF NREL CODE
;SPARE WORDS
;SA VE STORAGE FOR AC0
;A Cl
;AC2
;AC3
;CARRY

Location 400, USTPC, is the program counter. The loader initializes this word to -1,
indicating that the program has never run.

Location 401, USTZM, points to the first available location in page zero for page zero
relocatable code.

Location 402 and 403, USTSS and USTES, point to the start and end of the symbol table,
respectively. Under default conditions, the loader moves the symbol table down at the
termination of loading so that the last location in the symbol table coincides with the value
of NMAX after all programs are loaded. USTSS, USTES, and NMAX are updated. If the user
requests that the symbol table remain in upper core (/S switch on a RLDR command) locations 402,
403 and NMAX remain true and are not updated at the end of loading. If the debugger
has not been loaded, locations 402 and 403 are set to zero.

Location 404, USTNM, contains NMAX, the pointer to the first free location for further
loading. At load time, the user can set the value of NMAX for a given program by a /N
local switch. At the termination of the load, NMAX reflects the first free address for
allocation of temporary storage at run time.

A-10

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

Location 40~ USTSA, points to the starting address of the save file. The operating
system must have this value in order to start a program. The user provides this value
by terminating one of his programs at assembly time with:

. END adr

If no starting address has been specified, the loader stores a -1 in location 405 and
issues a warning message, as follows:

NO STARTING ADDRESS SPECIFIED FOR LOAD MODULE.

Location 406, USTDA, points to the starting address of the debugger. If the debugger
is not loaded, the loader stores -1 in USTDA. The debugger is loaded if the RLDR command
has a /D global switch which requests loading of the debugger from the library file
SYS. LB.

The debugger is normally loaded after all other relocatable binary programs in the RLDR
command line are loaded. The user can control when the debugger is loaded by placing
the file name, SYS. LB in the command line at the point that the user wishes the debugger
to be loaded, e.g.,

RLDR /D A SYS. LB B C IL

The debugger is loaded immediately after relocatable binary file A in the example.

A symbol table for a user program is appended as part of the save file only if the debugger
has been loaded.

Location 407, US THU, is initialized by the loader to the value of NMAX at the termination
of loading. This word is never changed by the operating system during program execution.
It is used to reset USTNM whenever a program is started by the system.

Location 410, USTCS, contains the size of the FORTRAN unlabeled COMMON area, used
when the binary relocatable programs being loaded were generated by the FORTRAN

compiler.

Location 411, USTIT, is the interrupt address (CTRL A). ~t the termination of loading,
this address is set to -1. If unch_angeq_ at run Jil!l~~ unco~~i-~i()1:-_a} ___ l:"_e.~r,:g __ !q_Q!~ .. Q.L.I
occurs when a CTRL A interrupt occurs. The user core !mage.ls.not-sav~~l. ___ The \l_§~r
program can_3_etuSTIT _~_!_ exe~!IY_o~_t_~m~~q-~n_ addres~ to ~~!ch cont~~l wiU be tranfe_!red
.ifa--C'TRL A inter!J:!p!~9£_C.l!_!~·· The AC's will be undefined.
-------------~---

A-11

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

Location 412, USTBR, is the break address (CTRL C). At the termination of loading,
the address is set to -L If unchanged at run time, whenever a CTRL C break occurs
the core image will be written to the file BREAK. SV on the default directory device
and return made to the CLI. Alternatively, the user program can set USTBR to an
address to which control will be transferred if a CTRL C br~Jik-9J~_£!!rs-' The AC' s
will be undefined.

Location 413, USTIN, contains the address of the start of normally relocatable code
(NREL), which is 10008 for the Disk Operating System. (NREL starts at 440s in the
Stand-alone Operating System.)

Locations 423-427 are the status storage area for the accumulators and carry, used by
the operating system at run time.

Above the UST are the User File Pointer Table and the User File Tables. There are
eight User File Tables, used to maintain file information for each of the eight 1/0 channels
in the system. The channel number is used by the system to index the User File Pointer
Table and, in tum, locate the User File Table being used for that channel.

Symbol Table Adjustment

A symbol table is appended as part of the loader's save file output only if the debugger
is one of the programs loaded. The debugger is loaded if the RLDR command has a
/D switch which requests loading of the debugger from the library file SYS. LB.

When loading is complete, the symbol table is, by default, appended so that the last location
in the symbol table coincides with the old value of NMAX. NMAX is then adjusted to be
the first location above the symbol table.

The user can request that the symbol table be left in upper core by a /S global switch
after the RLDR command. In this case NMAX remains as the first word available above
the loaded programs.

On the following page are three representations of core at completion of loading. The
first shows programs loaded without a symbol table. The second shows programs loaded
with default symbol table adjustment; the third shows programs loaded with the symbol
table remaining in upper core. In each case, HMA represents the highest available
user memory address.

A-12

RELOCATABLE LOADER (Continued)

Symbol Table Adjustment (Continued)

DOS I
j

l
+ HMA

I
I + NMAX SST+

Loaded i Programs I
I EST+

RLDR ABC J

(No Debugger.
No Symbol Table)

DOS

I
+ HMA SST+

+ NMAX EST+

Symbol "

J Table

Loaded l
j

Programs I
I

RLDR/D A B C ,).

(Debugger loaded.
Symbol Table moved
to default locations.)

A-13

DOS

Symbol
Table

Loaded
Programs

+ HMA

+ NMAX

RLDR/S/D A B C ii

(Debugger loaded
Symbol Table not
moved.)

DEBUG III

The symbolic debugger, Debug I I I, is supported tm.der the operating system. Debug
II I is supplied as a file within a library, SYS. LB. The library is, in tum, supplied
as one file of dumped tape 088-000002. Debug I II is loaded when the global switch
/D is given in the RLDR command. Debug I I I is described in document 093-000044; the
modifications made for rtm.ning tm.der DOS are:

1. The starting address of Debug I I I is stored in the User Status
Table (location 406).

2. The punch commands:

$F
!!_$F

$E
adr$E

adr1 <adr2$P

are not implemented.

3. The interrupt and TTI register commands:

$1
$T

are not implemented.

4. The meaning of $R (with no address argument) is changed to be:

Run from the starting address in the User Status Table (USTSA).

5. The debugger recognizes all system commands (.CREA T, • GCHAR,
• RDL, • WRS, etc.) Since all I/O is handled by the system, the
debugger does not recognize I/O instruction mnemonics (NIOS, DOAS,
etc.)

6. The eight breakpoint locations are declared as zero-relocatable
locations.

A-14

EXTENDED ALGOL

The Extended ALGOL compiler is supplied to the user as two dumped tapes, 088-000006
and 088-000007. Tape 088-000006 contains files ALl. SV, ALGOL. SV, and LIBRARY.
Tape 088-000007 contains AL2. SV. To use the compiler the user must create save
files from the tapes, using the LOAD command.

The ALGOL library is supplied as four library tapes. They must be loaded onto disk
using the XFER command. The tapes are:

ALGOL!. LB
ALGOL2. LB
ALGOL3. LB

ALGOL4. LB

099-000012
099-000013
099-000014

099-000008
099-000011
099-000009

Software multiply/divide option.
Hardware multiply/divide option for NOVA.
Hardware multiply/divide option for NOVA

1200, NOV A 800, or SUPERNOVA.

(The fourth library tape is selected from the above according to the
system configuration as indicated.)

The ALGOL command line is used to build a command file (COM. CM as described
in Appendix D.) When a command line begins with the file name ALGOL, the CLI
sorts the command line and creates COM. CM in the format given below:

ALGOL

.T r I I

global lis~ng file : local assembly 1 local compiler 1local
switches (output) 1 switches source file: switches source file I switches

I (output) 1 (input) :

l I I

When the main program and any subprograms have been compiled, they are loaded
using the relocatable loader command RLDR. The libraries must be loaded with the
programs. A sequence of commands for compilation, loading and executing a main
program with two subroutines might be:

ALGOL MAIN J
ALGOL SUB! ,)
ALGOL SUB2 ~
RLDR MAIN SUB! SUB2 @LIBRARY@~
MAIN~

A-15

EXTENDED ALGOL (Continued)

Either the symbolic debugger or the special Extended ALGOL debugging program TRACE
can be used to debug ALGOL programs. To use the symbolic debugger, load it with the
relocatable binary programs using the global switch /D:

RLDR /D MAIN SUBl SUB2 @LIBRARY@ J,

TRACE is supplied as dumped tape 088-000009. It must be loaded using the LOAD command.
A call to TRACE can be programmed in the "ALGOL source program as described in Appen­
dix D of the NOVA ALGOL Reference Manual, 093-000052, or if a run-time error occurs
and return is made to the operating system, the file can be brought in by the command:

TRACEt.l.

The NOVA ALGOL Reference Manual presents step-by-step debugging procedures for
Ext.ended ALGOL using both Debug II I and TRACE.

A-16

FORTRAN IV

The FOR TRAN IV compiler is supplied to the user as two dumped tapes: 088 -000005 and
088-000014. Before invoking the compiler, the user must create save files from the tapes
using the LOAD command. After the compiler is loaded, the FOR TRAN library tapes
must be transferred to disk using the XFER command. The library tapes are:

FORTI.LB
FORT2.LB
FORT3.LB

FORT4.LB

099-000005
099-000006
099-000007

{
099 -000008
099-000011
099-000009

Software multiply /divide option.
Hardware multiply /divide option for Nova.
Hardware multiply /divide option for

Nova 1200/Nova 800/Supernova.

Once the compiler and library are loaded onto disk, the FOR TRAN IV compiler can be
invoked with a FORT command followed by appropriate arguments, as described for the
command in Chapter 3. The FORT command line is used to build a command file
(COM. CM as described in Appendix D). When a command line begins with the file name
FORT, the CLI sorts the command line and creates COM.CM in the format given below:

FORT

T assembly T compiler ·r
global listing : local source I local source 1 local
switches file name 1 switches file name : switches file name 1 switches

(ol!!e_ut) l (ou~ut) 1 (input) l
Each FORTRAN main program, external subroutine, or external function is separately
compiled. When the main program and its external subroutines and functions have been
successfully compiled (and assembled), the programs are loaded using the RLDR com­
mand. The FOR TRAN libraries must be loaded with the programs. A series of commands
for compiling, loading, and running a FOR TRAN program in this manner is shown below:

FORT MAIN),
FORT XSUBl)
FORT XFUN ~

RLDR/D MAIN XSUBl XFUN FORTI.LB FORT2.LB FORT3.LB FORT4.LB j

MAIN J,

Merging FOR TRAN Libraries

The M (erge) function of the LFE can be used to combine library files into a single library
file. It is convenient to merge the four FOR TRAN library files with the system library
(SYS.LB) eliminating the need to name each library file when loading. For example,

A-17

FORTRAN IV (Continued)

Merging FORTRAN Libraries (Continued)

the following sequence of commands will merge the FORTRAN libraries with SYS.LB.

LFE M NEWSYS.LB/O SYS.LB FORTI.LB FORT2.LB FORT3.LB FORT4.LB j,,

DELETE SYS. LB~

RENAME NEWSYS.LB SYS.LB)

It is then possible to load a FORTRAN program, for example a main program called
MAINl, with the following command:

RLDR/L MAIN 1)

where: / L forces a search of a library named SYS.LB.

Use of the CLG Command

The FORT command compiles and assembles a source program or programs, which must
then be loaded (RLDR command). The saved file produced can then be executed by invok­
ing the saved file by name.

The CLG command (compile, load, and go) permits the user to invoke whatever system
programs are needed to compile, assemble, load, and then execute the saved file pro­
duced. The files that are arguments to the command may be FORTRAN source files (.FR),
assembly source (.SR), or relocatable binary files (.RB). The command will bring in what­
ever systems programs are required to create a save file from the input files and will then
execute the saved file created.

The following constraints apply to use of CLG:

1. CLG is supplied as a file on FOR TH.AN system dumped tape, 088-000014,
which is loaded as part of the FORTRAN compiler.

2. All other systems programs needed must have been loaded onto disk. These in­
clude, besides the FORTRAN compiler, the Assembler (for any needed compila­
tions or assemblies), and the Relocatable Loader.

3. The FORTRAN libraries must have been previously merged into the SYS.LB
file as described in the last section.

Symbolic Debugging

The symbolic debugger can be used for run -time debugging of FOR TRAN programs. The
symbolic debugger can be loaded with the program using the global switch /D with the
RLDR command. (Note that /D implies /L.)

A-18

LIBRARY FILE EDITOR (LFE)

The LFE is supplied as a dumped tape, 088-000008, and has the name LFE. SV. To
use the LFE, the user must create a save file from the tape using the LOAD command,
e.g.,

LOAD $PTR '1.

The LFE command line is used to build a command file (COM. CM as described in
Appendix D.) When a command line begins with the file name LFE, the CLI sorts the
command line and creates COM. CM in the format given below.

LFE
I r I I

global I listing 1 local key I 1ocal arguments I local outputmaster 1 local
file name: switches (input) : switches (input) 1 switches switches (output) I switches

I (output) I I

1 ..1 l

The Library File Editor provides a means of updating and interpreting library files.
A library file is comprised of a set of relocatable binary files (produced by the
Extended Assembler) that is denoted by special beginning and ending blocks. For
example, DOS Dump Tape #088-000012 contains the CLI library:

LIBRARY START BLOCK
cliprog1. RB

cliprogn. RB
LIBRARY END BLOCK

where each cliprogi • RB represents one of a set of relocatable
binary programs.

I
I

l_

Library tapes are supplied with the DOS system and with subsystems such as ALGOL
and FORTRAN.

The LFE allows the user to analyze the contents of a library file, to list titles in a li­
brary file, to merge libraries, to update libraries, and to create his own library files,
selected from the contents of system library files or written by the user. The LFE is
of special importance in ordering and reordering of relocatable programs in a library
file, since the order in which the programs appear determines which programs will be

A-19

LIBRARY FILE EDITOR (LFE) (Continued)

loaded. This is because of the mechanism employed by the relocatable loader when it
operates on library files.

Selection of any program for loading is triggered by the occurrence of a global entry
within the program that resolves an external declaration within a previously loaded
program. This means that if program A on library file 1 has been loaded and contains
a call to program B on library file 1, then B must be located physically after A
on the file in order to be loaded. If there are no unresolved external symbols defined
as entries in the relocatable binary program, and thus no calls to the program, the
program is not loaded. See the Relocatable Loader Manual, #093-000039, "Special
Load Modes" section for an additional description of selective loading of library
routines.

In some cases it may be necessary to provide two or more copies of a given program
on a library file to insure proper referencing. For example:

Program A calls -- B calls ~ C calls;;.. A

(Assume that C follows A in the library file.) If a previously loaded program has
called A, then A, Band C are loaded via the standard mechanism. However, if a
previously loaded program has called B, then only programs Band C would be loaded.
For this case, a second copy of program A should be placed after program C.

The LFE allows the user to list global declarations of the library file (analyze
function) to determine whether the programs on the file are the proper selection and
in the correct order for his purposes. Other functions of the LFE provide for insertion,
deletion, replacement and extraction of programs, merging files or creating a new
library file. .

The LFE is implemented as a DOS save file and is called by a CLI command under DOS.
The command name, LFE is followed by a letter key determining the function to
be performed, that is:

Key Function

A Analyze
D Delete
I Insert
M Merge
N New
R Replace

T Titles
x Extract

A-20

LIBRARY FILE EDITOR (LFE) (Continued)

The key is followed by a series of arguments and local switches. In general, the
LFE operates on an input master library file (inputmastel) and relocatable binary
update files to produce an output master library file (outputmaster).

In the function descriptions following, those relocatable binary programs that are
within a library file are referred to as logical records. This distinguishes them from
relocatable binary update files, which are referenced by file name in the LFE command
line. A logical record is identified by its five-character title, which occurs within
every relocatable binary as a title block.

Function Rules

The following general rules apply to LFE command lines and to the functions involved:

1. Only one function may be performed per command line.

2. An inputmaster library file and an update file cannot reside
on the same device, for example, the $PTR.

3. An inputmaster is searched for in the DOS file directory as
inputmaster.LB; if not found, a search is made for inputmaster.

4. An update file is searched for in the DOS file directory as
filename.RB (or . LB when using A, M, or T function keys); if
not found, a search is made for filename.

5. All references to logical records are satisfied by the first
matching five-character title of a logical record in the library
file. Therefore, it is strongly recommended that each logical
record on a file have a unique title.

6. Extracted (X function key) logical records are named title.RB,
where title is the five-character record title.

A-21

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function

Format:

Purpose:

Switches:

Global:

Local:

LFE A/M inputmaster1 [inputmaster2 • • • inputmastern]
LFE A inputmaster1 [~ • • • arg.iJ

The A function itemizes the global declarations of a library file or of speci­
fic logical records within a library file. The output is a list of global
declarations, giving the symbol, symbol type, flags, and titles where ap­
propriate.

The symbol types are:

T Title
EN - _§ntry ~ormal
ED - _§ntry Qisplacement
N External Normal
D External Qisplacement

Each entry (EN or ED) is followed by titles of records where referenced.
Each external (N or D) is followed by the title of the record in which is it
defined.

The symbol flags are:

M - Multiply defined entries.
U Undefined (external normal or external displacement for which no

entry has been defined).
P Phase error (external normal or external displacement for which

an entry has been defined before the external declaration).

Optional arguments (m.J. • • • argn) following inputmaster are the specific
logical records of the file to be analyzed. If no arguments are given, all
records are analyzed. Two or more inputmasters may appear in a command
line if the ftv1 global switch is used. They will be analyzed as a single file.

/M - Multiple input library files. The switch modifies the function key A and
causes all file names following, with the exception of any listing file,
to be analyzed as one library.

/ L - Listing file. By default, output of analyze is listed on the teletype. The
switch causes the file preceding to be used for listing output.

Examples: LFE A $PTR $LPT/L J.

The inputmaster file is $PTR. The library file in the $PTR is
analyzed, and the results are printed on the line printer.

A-22

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function (Continued)

Examples:

LFE A/M MATHl. LB MATH2. LB $LPT/LJ

The library files MA THI. LB and MA TH2. LB
are analyzed as one library and the results are
printed to the $LPT.

LFE A MA TH. LBe

The input master file is MA TH. LB. All of the logical records
in this library file are analyzed and the results are printed
at the $TTO (default listing device.)

LFE A MATH. LB SIN COS TAN $LPT/L i

The input master file is MATH. LB. The logical records SIN,
COS, and TAN are analyzed and the results are printed to
the line printer, $LPT.

A-23

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function (Continued)

Output: Sample output of analyze is:

T WRCH
ED • \~1 RCH

U D ·LDBT
D .couT GOUT
N FRET FLIN~

N FSAV FLINK
PAGE tERO RELOCATABLE DATA = 000001
NORMAL RELOCATABLE DATA = 000015

T GOUT
ED .cuuT ~RCH

ED ·GIN
N FQRET FLINK
N FSAV FLINK

PAGE iERU RELOCATABLE DATA = 000002
NORMAL RELOCATABLE DATA = 000023

T FLINK
EN ·OFLO
EN FCALL
EN FRCAL
EN FSAV WRCH GOUT
EN FRET \vRCH
EN FQRET GOUT
ED eFCAL
ED ·FRET
ED ·FSAV

u D AFSE
u D .RTE0
u N • I
PAGE tERO RELOCATABLE DATA
NOl'XMAL RELOCATABLE DATA =
TOTAL tREL COUNT: 000010
TOTAL NREL COUNT : 000177

A-24

= 000005
000137

LIBRARY FILE EDITOR (LFE) (Continued)

Delete (D) Function

Format:

Purpose:

Switches:

Example:

LFE D Inputmaster outputmaster/O arg1 •• ·~

The D function produces an output master, deleting specified logical
records (arg1 • • • argn) from the input master.

/0 Output master library file. The switch must always modify
the name of the output library file, which can appear any­
where within the command line.

LFE D $TTR UTIL. LB/O MOVE LDBYT STBYT DIV! t J
MULT COMPJ

The input master file is $TTR.
The output master file is UTIL. LB.
The logical records deleted from the input master are:

MOVE
LDBYT
STBYT
DIV!
MULT
COMP

A-25

LIBRARY FILE EDITOR (LFE) (Continued)

Insert (I) Function

Format:

Purpose:

Switches:

Examples:

LFE I inputmaster outputmaster/O ~ ••• ar~

The I function permits a merger of update files and logical records on
an input master library file to produce an output master library file.

By default, update files in the order listed in the command will be in­
serted before the first logical record in the input master. To insert
an update file or files before or after a given logical record, use the
/A or /B switches as described below. A given logical record may
appear only once in a comman.

No local symbols present in the update files are transferred to the
output master.

/A Insert ~fter. The switch appears after a logical record name
in the argument list of the command line. Arguments following
the switch are inserted after the logical record whose name
precedes the switch.

/B Insert £efore. The switch appears after a logical record
name in the argument list of the command line. Arguments
following the switch are inserted before the logical record
whose name precedes the switch.

/0 Q_utput master library file. The switch must always modify
the name of the output library file.

LFE I $PTR MATH. LB/O A. RB B. RB SINE/ AC. RB D. RtJ
B COS/AX. RB Y. RB Z. RBJ

inputmaster is $PTR. outputmaster is MATH. LB. Files A. RB
and B. RB are inserted at the beginning of the output master. Files
C. RB and D. RB are inserted after the program SINE in the output
master. Files X. RB, Y. RB, and z. RB are inserted after the program
COS in the output master. (Note that SINE need not precede COS on
the input master.)

A-26

LIBRARY FILE EDITORY (LFE) (Continued)

Merge (M) Function

Format:

Purpose:

Switches:

Examples:

LFE M outputmaster/O inputmaster1 [inputmasterz ••• inputmasternl

The M function produces an output master that contains as a single
library file one, two or more library files (inputmasters).

/0 Qutput master library file. The switch always modifies
the outputmaster file name.

LFE M FORT. LB/O FORT!. LB FORT2. LB FORT3. LB FORT4. LBJ

The four FOR TRAN library files are merged into a single FOR TRAN
library file called FORT. LB.

A-27

LIBRARY FILE EDITOR (LFE) (Co.1tinued)

New (N) Function

Format:

Purpose:

Switches:

Example:

LFE N outputmaster/0 argl [arg2 ••• argn]

The N function creates a new library file named outputmaster
from one or more relocatable binary files.

/0 Q.utput master library file. The switch always modifies
the outputmaster file name.

LFE N $PTP/O $PTR/9/9/l A. RB C. RBJ

The outputmaster is a file punched to the $PTP. The update relocatable
binary files that comprise the outputmaster are 19 files taken from the
$PTR followed by files A. RB and c. RB from the default directory
device.

A-28

LIBRARY FILE EDITOR (LFE) (Continued)

Replace (R) Function

Format:

Purpose:

Switches:

Example:

LFE R inputmaster outputmaster/O rn arg2 (••• argn-l ~]

The R function p:... . ---~~ ,.m output master, replacing logical records
in the input master with relocatable binary update files.

All arguments are paired as follows:

argi-1 (1,3,5 ••• n-1) = Logical record (program title)

argi (2, 4, 6 ••• n) = Update file name

No local symbols present in the update files are transferred to the output
master.

/0 Q.utput master library file. The switch always modifies the
outputmaster file name.

LFE R MATH. LB $PTP/O ATAN $PTR TAN TAN. RB HSINEt .J
$PTR ACOS X. RBJ

The input master file is MA TH. LB.
The output master file is $PTP.
Logical record A TAN is replaced by a file mounted in the
paper tape reader, $PTR."
Logical record TAN is replaced by file TAN. RB.
Logical record HSINE is replaced by the file mounted
in the paper tape reader, $PTR.
Logical record ACOS is replaced by file X. RB.

Note that all these replacements will be made regardless of
the order of the specified logical records on the input master.

A-29

LlSRARY FILE EDITOR (LFE) (Continued)

Titles. (T) Function

Format:

Purpose:

Switches:

Example:

LFE T inputmaster [listing-device/L] [argl ••• argn]

The T function outputs to the listing device (teletype by default) the
titles of logical records on inputmaster and on any optional additional
library files given by the arguments, arg1 ••• argn.

/L indicates the _!isting device. The listing device argument may
appear anywhere in the command line after the function key T.

LFE T $LPT/L $PTR Fl.LB $TTRi)_

The inputmaster library file is $PTR. Additional library files
are Fl. LB and $TTR. Titles are listed on the line printer.

A-30

LIBRARY FILE EDITOR (LFE) (Continued)

Extract (X) Function

Format:

Purpose:

Switches:

Example:

LFE X inputmaster arg1 [arg2 ••• argn]

The X function permits one or more logical records on library file
inputmaster to be extracted as separate relocatable binary files.
The relocatable binary files will have the filenames of the logical
records to be extracted.

None.

LFE X MATH. LB SINE COSINE TAN,},

inputmaster MATH. LB is searched and the logical records SINE,
COSINE and TAN are extracted, creating relocatable binary files
SINE. RB, COSIN. RB, and TAN. RB.

A-31

LFE Error Messages

The following messages result from encountering fatal errors in the LFE command
line. A return to the CLI without processing any files will result.

NOT ENOUGH ARGUMENTS

For example, unpaired arguments to the replace (R) function.

UNEXPECTED ARGUMENT AT OR FOLLOWING: string

For example, file name /A followed by fi Zename /A for an insert(I)
function.

When there is no s i-ring following the colon in the error message, the
message indicates the error occurred at the end of the command line.

INVALID SWITCH FOR: string

For example, a switch other than /Min the analyze (A) function will cause the
following message: ILLEGAL SWITCH FOR: A

NOT A LFE COMMAND: key

A function key that is not recognized by the LFE; currently, any letter
key other than A, D, I, M, N, R, or X causes this error.

TOO MANY ARGUMENTS

Th.e argument string is too long for the allocated storage (currently, 500
characters.)

ILLEGAL HEADER IN INPUT LIBRARY.

No header or an incorrect header block in the library file.

The following messages result from fatal errors encountered while processing
files. When these errors occur, the output file will be terminated with a library
end block before returning to the CLI.

CHECKSUM ERROR IN UPDATE FILE: fi Zename

Typically, the message indicates a bad record within file name.

A-32

LFE Error Messages (Continued)

CHECKSUM ERROR IN LOGICAL RECORD: :r>e ao :r>dname

Very likely the message indicates a bad record. If the checksum occurs within
a title block itself, :r>e ao:r>dname will be the name of the previous logical
record. If no previous record exists, :r>e ao :r>dn ame will be the name of the
library itself.

ILLEGAL BLOCK UPDATE FILE: fi Zename

For example, if a source file is specified as input instead of a binary file,
illegal blocks will be encountered.

ILLEGAL BLOCK IN LOGICAL RECORD: :r>eao:r>dname

A bad block within a logical record will produce this message. If the expected
title is missing, the record name will be the name of the previous logical record
within the library.

The following message indicates a fatal error detected by the 'system' rather than
LFE:

FILE DOES NOT EXIST, FILE: fi Zename

fi Zename indicates a library file. The error occurs when no inputmaster
is found for the command. The error can occur on command lines having
functions other than new (N).

Other fatal errors from the 'system' will refer to the LFE. SV file.

The following messages result from non-fatal errors. Processing will continue
as indicated for each error.

FILE DOES NOT EXIST, FILE: fi Zename

An update file cannot be found. Search is made for fi Zename and fi Zename. RB
When not found, the file is omitted in processing.

LOGICAL RECORD NOT FOUND - :r>eao:r>dname

The input master does not contain re aordname. The record (and any
corresponding argument) are passed in processing.

DEFAULT OUTPUT IN FILE - fi Zename

The output master was expected and not found.
instead as the output file.

A-33

fi Zename is used

LFE Error Messages (Continued)

FILE ALREADY EXISTS - fi Zename

On an extract (X) function, there is already a file on the output device with
the same name as the logical record to be extracted. The logical record
is omitted in processing.

UPDATE FILE MATCHES INPUT MASTER: fi Zename

The result is non-fatal as long as there exists at least one valid update file argument,
In this case, the matching update file is ignored.

A-34

OCTAL EDITOR

The Octal Editor under DOS enables the user to examine and modify, either in octal or
in ASCII notation, any location in any type file. The program is supplied as a dumped
tape, 088-000013, and is called OEDIT.SV. Before OEDIT is invoked, a disk file must
be created from the tape using the LOAD command. The program is then invoked using
the command:

OEDIT fi Zename >
where fi Zename is any file that exists under DOS. If no filename is given, the fol­
lowing message will be printed:

ERROR: NO FILENAME SPECIFIED

If the file specified cannot be found in a DOS system directory, the following message is
printed:

ERROR: INPUT FILE DOES NOT EXIST.

If a filename is successfully found, OEDIT will type a carriage return, line feed and is
ready to accept input commands. When first invoked, OEDIT is in octal mode.

Octal and ASCII Modes

OEDIT is by default in octal mode. Contents of locations are printed as six octal digits
and modifications are made in octal. To switch to ASCII mode, the user types the letter

A

When the user types A (whether at the beginning of a line or after examining and perhaps
modifying a register), the octal editor will generate a carriage return, line feed and is
ready to respond to a new request in ASCII. Contents of a location are printedin ASCII
as two characters. Transparent characters (carriage return, line feed, etc.) are printed
in octal enclosed in angle brackets.

To return to octal mode, the user types the letter

0

The octal editor will generate a carriage return, line feed and is ready to respond to
a request in octal.

Opening and Examining a Location

Every word within a file can be examined by using a word address relative to the beginning
of the file. For example, the first two bytes of any file can be examined using the word
address ~, the second two bytes by using the word address I, and so forth.

A-35

OCTAL EDITOR (Continued)

Opening and Examining a Location (Continued)

To examine a location, it is necessary to type the word address, followed immediately
by a slash:

17/

The octal editor will respond in octal mode by printing the contents as six octal digits
or in ASCII mode by printing the contents as two characters.

11 / 045070

or

17/ %8

The location may be modified at this time or may be closed. If the locatibn is to be
closed without modification, the user types one of the delimiters: carriage return ()),
line feed(+), or up arrow (1'). The three delimiters perform the following functions:

Delimiter

JI Carriage Rctirrn

~ Line Feed

' Up Arrow

Meaning

Close the current register

Close current register and open
and print contents of next
register.

Close current register and open
and print contents of prec(-ding
register.

Example

17 I 045070 ~

11 I %8\1
000018 DC

17/ 0450701'
000016 000023

While a given location is open, it is possible to print the contents in the other mode ,
whether ASCII or octal, without changing permanently to the other mode. The conven­
tions are:

= Equals sign

Apostrophe

Retype the contents of the current
location in numeric form. The
register remains open until
closed by one of the delimiters.

11 / %8 =045070

Retype the contents of the current 17 / 045070 • %8
location in ASCII form. The regis-
ter remains open until closed by
one of the delimiters.

A-36

OCTAL EDITOR (Continued)

Modifying a Location

When a location has been opened and its contents examined, it may be modified by
typing the new contents before closing the location. In octal, for example:

17 I 045070 l 77J, - the new contents will be 000177

In ASCII, the new contents must be preceded by a quotation mark ("). If two characters
are given, the beginning quotation mark is sufficient to indicate the word in ASCII. If
a single character is given, it must be followed by a quotation mark and will be left
justified in the word. To enter a quotation mark, the user types two successive quotation
marks.

17 I %8 "39 ~
000018 *D "D" Jl

Expressions using octal numbers and + and - may be used in writing the new contents
for a location:

17/ 000177 20-3_t

Locations

The user can give word addresses relative to the beginning of the file as previously
indicated. He can also use octal expressions containing+ and - to denote the desired
location:

17+5/

Since OEDIT is often used to make simple changes to executable save files, it should
be noted that a save file' s relative word address !iJ is really absolute location 16 under
DOS. For example, to examine absolute location 406 of a save file, the following command
should be given:

406-16/

Typing Errors

If illegal delimiters or illegal characters for the given mode are encountered, OEDIT
will respond with

?

and a carriage return, line feed. If a mistake is made while typing a line, RUBOUT
can be depressed, and a new command can be typed.

A-37

OCTAL EDITOR (Continued)

Return to CLI Level

To return to the CLI from OEDIT, the user types

H

The editor will echo OME on the same line. A R(eady) message is then issued, indicating
the user is at CLI level.

Sample OEDIT Commands

Following is a sample of commands using OEDIT. Note that locations 4, 7,and 11
have been modified by the time return is made to the CLf.

OEDIT MYFILEJi

2/ 177777~
000003 1264401'
000002 177777 J.
0/ 001456l
4/ 136112 136113 t
6/ 000177..f,
000007 000377 177t
000006 000177t
000005 0000301'
000004 136113 .i
12 / 000000 .J
11/ 035612 35617 iL
24/ 044045 'H%;).,
A
20/ TXJ,
000021 T <011>.}
000022 *D-t.
000023 FG-l-
000024 LA =046101 0
17 / 051105J
HOME
R

A-38

BINARY LOADER

A version of the stand-alone loader for loading absolute binary tapes is supplied as a
file of dumped tape 088-000013. The tape must be loaded onto disk using the LOAD
command, for example:

LOAD $PTR ~

The saved file created is BLDR. SV, and the binary loader is invoked with the BLDR
command. The BLDR command must have as an argument either the $TTR or the
$PTR, where the input device is loaded with an absolute binary tape.

BLDR is supplied as a convenience to users who may need to run in .stand-alone mode.
If the DOS configuration is used in stand-alone, the user should note that the binary
loader will overwrite a portion of DOS. After stand -alone operations have been com -
pleted, the user must bootstrap the 'DOS system.

A-39

APPENDIX B

SYSTEM GENERATION

The DOS system generation program (SYSGEN) is used to produce a Disk Operating
System tailored to the user's precise hardware configuration. In order to operate
SYSGEN, the following tapes are provided:

DGC Tape Number

091-000027

091-000053

091-000058

088-000003

088-000002

088-000012

088-000016

088-000010

088-000011

Description

12K bootstrap DOS (fixed head disk)

12K bootstrap DOS (4047 and 4057 moving head disk)

12K bootstrap DOS (4048 moving head disk)

Dump tape SYSGEN.SV

Dump tape RLDR.SV, SYS.LB

Dump tape CU.LB (CLI library)

Dump tape SYS0.LB (first system library)

Dump tape SYSlA.LB (second system library)
or

Dump tape SYSlB.LB (alternate second system library)

(Tape 088-000011 is provided for systems having mag­
netic tape hardware; tape 088-000010 is provided for
all other systems.)

The 12K bootstrap DOS tape assumes a hardware configuration of at least the following:

12K core

128K fixed head disk (091-000027), type 4047 or 4057 moving head disk (091-000053),
or type 4048 moving head disk (091-000058).

A high speed paper tape reader, high speed paper tape punch, and an 80-column line
printer are all optional equipment.

B-1

SYSTEM GENERATION (Continued)

The procedures for system generation are as follows:

1. Load the absolute binary tape (091-000027, 091-000053, or 091-000058) using the
binary loader. After the tape has been com_:pletely read, the binary loader
will halt. Using the CPU switches, examine the contents of location 42.
Enter the contents of location 42 into the data switches; press RESET,
then START. DOS will respond with:

R

signifying that the bootstrap is in operation.

2. Type the following command to the CLI:

LOAD/V $PTR .l.

The system will respond:

LOAD $PTR, STRIKE ANY KEY. l

Load the paper tape reader with tape 088-000003 and strike any console key.
The tape will be read, and the teletype will respond:

SYSGEN.SV

Continue in like manner until all the tapes have been loaded. Verify the
printed file names with the following-list to insure no tape identification

.errors:

SYSGEN.SV
RLDR.SV
SYS. LB
CLI. LB
SYS0.LB

or SYSlA. LB
SYSlB. LB

3. Type the command:

SYSGEN

to invoke the system generation program. SYSGEN then interrogates

B-2

SYSTEM GENERATION (Continued)

the user regarding his particular hardware configuration.

a) ENTER CORE STORAGE (IN THOUSANDS OF WORDS)

The user may respond with any number from 12 (12K) to 32 (32K)
in increments of 2 (2K).

b) RESPOND "1" (YES) OR "W' (NO) REGARDING SYSTEM CONFIGURATION
DSK? (for fixed head disk)

If the user responds "0", SYSGEN will go on to the next question.
A response of "1" will prompt a further inquiry:

ENTER DISK STORAGE (IN THOUSANDS OF WORDS)

The user may respond with any number from 64 (64K) to 2048
(2 million words) in increments of 64 (64K).

c) DKP? (for moving head disk)

A response of "0" (NO) will cause SYSGEN to proceed to the next
device inquiry.

A "1" (YES) causes further interrogation:

(1) ENTER NUMBER OF UNITS

The user may specify 1, 2, 3, or 4 moving head units.

(2) ENTER NUMBER OF SECTORS/TRACK

The user may now specify 6 or 12 sectors per track
depending on his type of unit.

(3) ENTER NUMBER OF HEADS

The user answers with a number from 2 through 20 depending
on his type of unit.

If both DSK and DKP devices are to be included in the
system configuration, the following queries will result:

(4) ENTER MASTER DEVICE

The user must then decide which device, fixed head .

B-3

SYSTEM GENERATION (Continued)

disk (DSK) or disk pack (DKP) is to be used for temporary storage
space. (The fastest access time device should be specified.)

(5) ENTER BOOTSTRAP DEVICE

The user must decide the type of device to be used for the system
bootstrap operation. A response of DKP or DSK is acceptable.

(d) MTA?

The system queries the user about 9-track magnetic tape. A response
of"~" will cause SYSGEN to proceed to the next device inquiry. If the
magnetic tape driver is to be included, a response of "1" causes SYSGEN
to query:

ENTER NUMBER OF UNITS

A number of units from 1 to 8 may be specified.

(e) PTR? (paper tape reader)

User responds "~" (NO) or "l" (YES).

(f) PTP? (paper tape punch)

User responds "c/J" (NO) or "1" (YES).

(g) LPT? (line printer)

A positive response "1" to this query causes a further interrogation
as to line printer column count.

ENTER COLUMN SIZE

80 or 132 are acceptable responses.

(h) CDR? (Card reader)

User responds "</J" (NO) or "1" (YES).

(i) PLT? (incremental plotter)

User responds "~" (NO) or "1" (YES).

B-4

SYSTEM GENERATION (Continued)

4. The user is now ready to load his system using the relocatable loader
by issuing the following command:

RLDR/Z SYSjlflfl CLI.LB @NREL@ SYSjl.LB SYSlA.LB $TTO/Lt

Uf the magnetic tape driver is to be included, the argument SYSlA. LB
should be replaced by SYS lB. LB.)

If a line printer is available, the argument $TTO/L can be replaced
with $LPT/L.

After the loader prints the storage map, the CLI will respond with R
on the teletype.

5. The system file on disk (SYS</J~~. SV) must now be punched on paper
tape (or transferred to magnetic tape; see Appendix E) via the
following:

MKABS/Z SYS000. SV $PTP;),

If no high speed punch is available, $TTP can be used. This will
cause an absolute binary image of the new DOS system to be punched.

6. The new system tape can now be loaded by following the same
procedure of loading the absolute binary as described in step 1 above.
As before, the CLI will respond with

R

7. The new system can now be bootstrapped from disk or disk pack
once the following steps are taken:

a) Insure the default directory device is the device which the user
has specified for his bootstrap device in step 3 (c) (5).

b) Load the system tape in the paper tape (or teletype) reader and
type the command:

MKSAVE/Z $PTR SYS. svJ
The entire tape will be read and the system file SYS. SV will be
on the default directory device.

c) Issue the command:
CHA TR SYS. SV P,J

to protect the system file from accident~! deletion.

B-5

SYSTEM GENERATION (Continued)

d) Issue the command:

INST ALL SYS. SV V.

to prepare the system for the bootstrap operation.

8. The system can now be bootstrapped directly from the default
device (and only from this device.) Perform the bootstrap in the
manner described below, depending upon the machine configuration.

a) Nova/Nova 1200/Nova 800 without Program Load option

1) Enter in location 376:

601nn

where: nn = 20 when bootstrapping from the fixed head disk, and

nn = 33 when bootstrapping from the moving head disk.

2) Enter in location 377:

377

3) Press RESET, then START.

4) The message:

DOS REV nn

will be printed on the teletype, where ~ represents the current
revision level.

5) Press CONTINUE. The system will respond:

R

b) Nova 1200/Nova 800 with Program Load option

1) Set bit 0 of the data switches

2) Enter the proper disk device code (20 or 33 as given in a.1 above)
in the data switches, bits 10 - 15.

B-6

SYSTEM GENERATION (Continued)

3) Press RESET, then PROGRAM LOAD, and repeat the procedure
outlined in a. 4 and a. 5.

c) Supernova

1) Enter the proper disk device code (2~ or 33 as given in a. l)
in the data switches, bits 10 - 15.

2) Press RESET, then CHANNEL START, and repeat the procedure
outlined in a. 4 and a. 5.

B-7

APPENDIX C

SYSTEM AND USER PARAMETER TAPES

Supplied with DOS are two parameter tapes in ASCII, the User Parameter Tape,
090-000090, and the System Parameter Tape, 090-000176. Listings of the User
and System Parameters follow. The System Parameters begin on page C-9.

C-1

• M " J N

, DEFINE THE SYSTEM STACIC OISPl.ACEMENTS

177771 .DUSR SSLGT• •1 , VARIABLE LENGTH OF CALLING'S FRAME
177772 .DUSR SSOSP• •fi , PREVIOUS STACK POINTER
177773 .DUSR SSRTN• •el , RETURN AODRESS OF CAI.LING PROGRAM
l 1717 4 .DUSR SSE AD• •ill , ENTRY ADDRESS OF CALLEO ROUTINE
177775 .ousR SSCRY• •3 , CARRY
17777f; •{)I.JSR SSAC0• •2 ' SAllE STURAGE FOR CALLING'S ACCUMUL.ATOR
177777 .DUSR SSAC1• •1
\/ .. , 1,/11.• ~'i V! .OUSR SSAC2• 0 , (DON'T 1"100 IF. Y TMIS OISPLACEMENT11)

C-2

• MA I~~

, , UFT

'
t~ '.II!'-' "1 Ill Iii .ousR
~·: •;j fl• (JI ~ !5 .ousR
IJ!~~•()l~tj .ousR . .,f., ~ ~1y11 .DUSR
l~'·~ir~M 10 .ousR
:~ 1-' L' ~~ 11 .DUSR
i·''•·\('; •"' 1 ~ .ousR
r1:IH1" 1 13 .DUSR
.~, .. (.. t,l 14 .ousR
vl ~1 VI~ 1 ~ .DUSR
If•'·" ~-; i1 1 ti) .ousR
j/;;.AV!Ol17 .OUSR
t« ;.i, V; ill 2 ~I .ousR
\"'if111Vl21 .ousR
~-; ''iJ;,[,1~2 .ousR
1'\:;111f.f'~3 .OUSR

ri ,.j ~"Ii· 2" .DUSR
i,J •'I~ VI 2 ~ .ousR
•:· ·•(·"'.II 2 fi .ousR

ENTRY

U'Tf"N•~
Ul'TEX•!5
Ul'TAT•6
Ul'T81<•7
Ul'Tl5C•1~
U,TAD•11
Ul'TOL.•12

UFTDC•t3
UFTU•Ot 4
UFTCA•15
UFTCB•16
Ul'TST•17
UFTNA•2lil
UFTLA•21
UFTOFh22
UFTFA•23

UFTfHo24
UfrTBP•2el
Ul"TCM•26

IFlL.E NAME
rEXTEt-1SlON
IFIL.E ATTRIBUTES
JNUMBER OF LAST BLOCK tN FIL.E
rNUM8ER o~ BYTES IN L.AST BLOCK
JOEVICE AOORESS OF FIRST BLOCK (~ UNASSI
IOCT L.INK

IOCT ADDRESS
I UNIT NUMtsER
ICURRENT BLOCK AOORESS
ICURRENT ~LOCK NUMBER
IFIL.E STATUS
INEXT SL.CC~ AOORESS
ILAST 8LOCK AOOHESS
ISYS.OR DCB ADDRESS
IFIRST AOORESS

ICUHRENT FILE 8LOCK NUMBER
ICUMRENT FILE BLOCK BYTE POINTER
JDEVICE CHARACTERISTICS
f(LEAVE "UFTCH" AS LAST WOROl)

~~~~~7 .ous~ UFTEL•UFTCH•UFTFN+1 
I\ -w~q~ .CUSR UFDEL.•IJFTOL•UFTFN+1 

IUFT ENTRY LENGT~ 
ruFo ENTRY LENGTH 

' r SYSTEM FILE ENTRY 
J 

17777~ .DUSR SFKEY••!5 
177774 .DUSR SFLK••4 
177?7~ .ousR SFNX••3 
117776 .DUSR SF8K••2 
11717? .ousR SF8C••1 
~~~~~~ .DUSR SFDCB•~ 

177773 .DUSR UOBAT•UFTAT•UFTOC
177776 .OUSR U~BAO•UFTAD•UfTOC
177774 .DUSR UOR8K•UFT8K•UFTOC
~~~~11 .ousR UOSSN•UFTBN•UFTOC 

JKEY 
'MAP.OR L.INK (•1 IF NOT OSK DVC) 
INEXT ENTRY IN CMAIN 
INUMBfR OF LAST BLOCK IN FILE 
18YTE IN LAST BLOCK 
roes ENT~Y 

JNEGATIVE OISP. TO ATTRIBUTES 
JNEGAVIE OlSP. TO FIRST ADDRESS 
JNEGATIVE OISP. TO LAST BLOCK 
f POSITIVE OISP. TO CURRENT BLOCK 

C-3 



J FIL.E ATTRIBUTES , 
1 ·:·1 C' :,H'. 0 • D lJ SR A TR P • 1 8 0 
~4V~~~ .ousR ATCHA•1B1 
v~v~~0 .DUSR ATSAV•1B2 
t·i • ~ it i~ II' 2 • D US R A T P I! R • 1 b 1 4 
~0~~P1 .ousR ATWP•l~l~ 

;1: 1,;,·:p ['·:;i' 

r; ('1~.'J~LI; 4 

!J~ d ;,1V1[.'"· (Jt 

1 , " ;,, r11 V 0 

I I : ~ ; ~. (~'! L· 1 
./• · : v·· t·' ''· 2 
,_, ... , 111 \fl ~I 

I 1 •••• il ;7 ~ 1,7 

l.· .. j.,,1tA 4it: 
.. , ... ,,.. t ( ~~ 

V: ·A! ?. i_,. 0 

, 
J FILE STATUS 

.ousR STER•181!5 

.ousR STIOP•1B14 

.ousR STFlrlR•1fl13 

.DUSR STINI•tB1 

.DUSR STCMK•1e~ ;SET 

, 
I RUFFF.R STATUS 
r 

.uusR CJTil00•1H15 

.nusR rnE.-..•1A1A 

.OIJSR QTIUP•1.~12 

.ousR <JTLCK•1C:l11 

.DUSR QTCMD• 1f41 lt'.l 

.DUSR QTEMt)• 1 f'.\g 

.ousR l'JT!N0atB8 

, 
1 SYSTEM CO~STANTS. , 

JREAO PROTECTED 
JCHANGE ATTRIBUT! PROTECTED 
JSAVED FIL.E 
r PERrO.NENT F IL.E 
rwRITE PROTECTED 

ltRRO~ OETECTEO 
fl/O IN PtcOGRESS 
rFIRST ~RITE FL.AG 
JNO INIT BIT 

• READ (FIL.IO) 
JCINlT/HEL.EASf SWTCM FOR SVS,OR OCB) 

J~AS bEfN MODIFIED 
JF.RROw DETECTE.O 
rI/lt? lN PROGRt.SS 
JHUFFER L.OCKEP 
rCOMMAND • 1 • REAO, 0 • ~RITE 
JE~RO~ MOOE (MAG TAPE) 
JlNUIRECT ORIVER MODE SW, 

,,.. i· v: 3 7 7 • 0 US~ SC I" P 8 •' 5 5 , I ioi 0 RDS PE fi 8 l. 0 CK 
''·'.''l·4 .DUSR SCl.LG•132. JMA:ic LINE 1.fN£;TM 
0~~~3~ .DUSR SCAMX•'4• J~AX ARGU~E~T LENGTM IN BYTES 
''''.•\·.-:w~ .DUSR S·CFNL•lJrTEX•UFTFN+1 rFILE NAME LENGTH 
""'i·"·f.1:2 .oUSR SCMC:R•1Vl. ·~•x ERROR RETRY COUNT 
·~~~1~ .ousR scs1~-1~ ISAVE FILE STARTING ADDRESS 
t77~n~ .DUSR SCTI~•-~0. JRINGIO 1 MS, LOOP TIME (SN) 
: · · ,. H· 1 • 0 lJ SR SC S V S • 1 I 0 E V I C E A 0 0 RESS F 0 R S V S • 0 R 
'"' v 1.q ? • OU SR SC M A P • 2 I 0 E: V I C E A 0 0 RESS F 0 R MAP • 0 I R 
1 . , ! 1 ~· c,: 3 • 0 US R SC S V A • SC MAP+ 1 I 4 C 0 l'I T I GU 0 U S ~ L 0 C K S F 0 R C 0 R E I M AGES 
·" , ,,., r~ v 4 • DUS R SC St' O • 4 I NU M ~ER 0 F L. EV ELS 
~~0~~~ .ousR SCEXT•UFTEX•UFTFN IEXTENSION OFFSET IN NAME AREA 
'" ·" :• !i l·i • OUSR SC~RL • t5 4. r wOROS PER RAN DOM REC ORO 
1~0~v~ .OUSR 5FINT•1B~ JINTERRUPT FLAG 
~~~~04 .DUSR SFCWD•1~l3 'CRITICAL READ ERROR 
;,, ·~ ~ iA !·'. 2 • 0 US R 5 F PR 0 • 1 B 1 4 I PANIC 0 N RE A 0 ERR 0 R
~~~~01 .DUSR SFBRK•181~ re~fAK FLAG 
0~~M4? .DUS~ CADZ•A0 rCA LOCATION IN BOOTSTRAP 
~~~?~l .DUSR LADZ•C4DZ+1 JLA LOCATION IN BOOTSTRAP 
~ 0 004~ .ous~ SCFUL•LADZ+1
0~~~43 1 DUSR SCPAR•SCFUL+1
0~v04~ .OUSR SC~tY•SCP•R+l

C-4

r OE,INE THE EXCEPTIONAL STATUS CODES

000~e~ .DUSR ERFNO•
P~0~~1 .ousR ERFNM•
~4~~~2 .ousR ERICM•
vHl·H>!"'3 .DUSA E1UCO•
h •.1 ;~ ltH> 4 • DUS A EA S \11 •
~~~~M~ .OUSR ERWR~• 
~~~~~6 .ousA EREOP• 
~0~~~7 .nusR ERAPR•
vi ;11 \1' Ii'! 1 ~ • 0 US R ER WP R •
{.11•0!1' 11 .DUSR ERCRE•
~1·.~V!~ 12 • DUSA EROLE•
;h~t-~11'13 .ousA EROE1•
~~0~14 .ousR ERCHA•
1.1,w 01 ~ • OUSA ER FOP•
~~~~21 .ousR ERUFT• 
~0~~~2 .DUSA EALLI• 
~~~023 .DUSA ER~TN• 
v~v~2• .ousA E~P•R•
~~~~~~ .ousA ERCM3• 
v~~~2e .DUSR ER~EM• 
Vl"!·=0:?7 .DUSA ERSPC• 
~~~030 .ousR E~FIL• 
,. ,; I'· P1 3 1 • 0 US A ER S ! L •
~~f~J' .OUSA ERADR•
~~0033 .ousR EAAD•
0~~~35 .DUSA ER~IR•
t;·~~·036 • OUSA ERDN"'I•

0
1
2
3
A
e
6

' 1"'
1 1
12
13
14
1 !5
21
22
a3
24
25
26
27
3QI
31
32
33
3~
36

I ILLEGAL CHANNEL NUMBER
I ILLEGAL FILE NAM!
I ILLEGAL SVST!M COMMAND
I ILLEGAL COMMAND FOR DEVICE
I NOT A SAVED FILE
I ATTEMPT TO WRITE AN !XISTfNT FILE
I ENO OF FILE
I ATTEMPT TO READ A READ PROTECTED FILE
r WRITE PROT!CTEO FILE
I ATTEMPT TO CREATE AN EXISTENT FILE
' A NON•EXISTENT FILE
I ATTEMPT TO ALTER A PERMANENT FILE
' ATTRIBUTES PROTECTED
' FIL~ NOT OPENED
r ATTEMPT TO USE A UFT ALREAOY IN USE
' LINE LIMIT EXCEEDED 0
I ATTEMPT TO RESTO~E A NON•EXISTENT IMAG
I PARITY ERROR ON READ LINE
1 TRYING TO PUSH TOO MANY L!VELS
r NOT ENUF MEMOHY AVA?LASLE
I OUT OF FILE SPACE
I FILE REAO ERROR
I UNIT NOT PROPERLY SELECTED
1 ILLEGAL STARTING ADDRESS
I ATTEMPT TO READ INTO SY.STEM AREA
I FILES SPECIFIED ON OIFF. DIRECTORIES
I ILLEGAL OEVlCE NAME

C-5

' CLI ~RROR cooes

~~~1~~ .ous~ CNEAR•l~~ 

i(•·~H V' 1 • OUSR C IL AT• 1'1J1 
y; i~ L:• h" ' • Dus R c ND b 0 • 1 t}. 2 
0~~1V3 .ousR CNCT0•1~3 
"'"': '' 1 V' 4 • 0 US R CNS A D • 1 "1 4 
0001~~ .DUSR CCKER•l~~ 
~0~1~6 .ousR CNSFS•106 
~~01~1 .ousR C~AC~•107 
~0V11~ .ousR ClLbK•11A 
0~0111 .DUSR CSP~R•111 
0~~112 .DUSR CPH!R•112 
~~~113 .ousR CTMAR•113 

fNOT ENOUGH ARGUMENTS
rILLEGAL ATTRIBUTE
INO DEBUG AOOAESS
JNO CONTINUATION ADDRESS
JNO STARTING ADDRESS
JCHECKSUM ERROR
fNO SOURCE FILE SPECIFIED
JNOT A COMMAND
1ILLEG4L BLOCK TYPE
JNO FILES MATCl'I SPECIFIER
IPl'IASE ER~OR
JTOO MANY ARGUMENTS

J DEFINE THE P~NICS

1 ·~v'·!~ 1 (} .DUSR P~WP• '1 '1 , NOP MAGIC
t•• .~ ~,, [·I :t L~ .OUSR POFf S• 1tH 1 , OFFSET

1 ;. .~ .:13 L1 .DUSR P~~cut• 21•POFFS+PNOP , UNKNOWN INTERRUPT

' DEVICE CODE IN AC0
i ··"~·4oin .DUSR PNCSO• 22•POFFS+PNOP , SYSTEM STACK OVERFLOW
1:;,f,147~>. .OUSR PNCDW• 23•POFFS+PNOP ' CRITICAL DISK WRITE ERRORS
p.i-i~ 1 v. .DUSR Pf\iCulh 24•POf P'S+PNOP , CIHTICAL DISK READ ERRORS
1 ••;!1·~3~ .ousR PNCOE• 2~•POFFS+PNOP , CRITICAL DISK READ/WRITE ERROR
1 P;t,~~~l'f .DUSR PNCRR• 2b•POFFS+PNOP , RUNAIOY READER
l ~·lf};571i' .ousR PNCl"•T• 27•POFFS+PNOP ' MTA CONTROLER ERROR

C-6

.Ml IN

' DEFINE THE CHARACTERISTICS

\;i ;~ i'.' ~ I' 1 .ousR DCCPO• 11:!1 ~ , DEVICE REQUIRING LEAD!R /TIU IL.ER
\."'~'V'if\~2 .DUSR DCCGN• 1814 , GRAPHICAL OUTPUT DEVICE WITMOUT TABB IN , HARDWARE
u •1Vi ((' ~~ 4 .ousR OCIDI• 1B13 , INPUT DEVICE REQUIRING OPERATOR INTERV
1ti!IPl~10 .ousR DCCNfl'• 1812 , OUTPUT DEVICE ~ITHOUT ,ORM FEED HAROIO
Vif'1 ~V!20 .ousR OCTO• 1B11 , TELETYPE OUTPUT DEVICE
~1ft:11QV140 .OUSR OCKEY• 1B10 ' KEYBOARD DEVICE
v1r11~11 •tei .ousR OCN•F• 11H~ , OUTPUT DEVICE REQUIRING NULLS AFTER FO
1()11'Vl2~v.'l .ousR DCRAT• 1808 , RlJ80UTS AFTER TABS REQUIRED
f,ilrAfi; 411·0 .ousR DCPCK• 1807 ' DEVICE REQUIRING PAR ITV CHECK
V''i'li li-'1~0 .DUSQ DCLACa 11:H1'6 ' REQUIRES LINE FEEDS AFTER CARRIAGE RTN
1(1·~A0ei0 .ousR DCFi><iO• 180.cl , l'UL.L wORO DEVICE (ANYTHING GREATER nu
11• l (ll li'l ll• 0 .ousR DCFFO• 1803 , FORM FEEDS ON OPEN
1112V.~Vtll .ousR DCLTU• 1802 , Cl"IANGE L.OwER CASE ASCII TO UPPER
it.4ill0~'.'1J .ousR DCC80• ltHH rREAO 811! COLUMS
1i~Vl°'Vi7! .ousR fJCDIH• 1600 , OIRECTORV DEVICE

C-7

., I'• 41 i'j

I USER STATUS TABLE CUST) TEMPL•Tf

•".1 Vi!,, r.:- 0 • 0 lJ SR
v.,,~•v'iii• 1 .OUSR
i>,,":rl•i!j~/-2 .ous~

1 ·""'.·1 v·3 .OUSR
.-.1'.·1 1 i~v4 .uusR
:-'I',: t'1 ~· ~ • 0 us R
;.; ;.\ ·~ :11 !""' • 0 lJ s R
,,, · ~ f/; d ,,, 1 • 0 US R
,, v. p 111111 • D lJ SR
"'··,-.r•11 .DUSR
,. ' '\·r·1;> .ousR
•, ! A ', {. 1 3 • Du s R
~.:,c,,;1" .uus~

I'.,·. I "" 1 'S • OUSR
"" .,.,;nll'I .DUSR

": • 1· ~" ;,:. :11 • nus P
. .-:.c:;,;A .ousR
.:··· t' ,:. t' ~ • DUSR
,, "v u'l!6 .DUSR

I ,, f 'j 7 • 0 u s R

·.·v;~11 .DUSR
v ·· · · ,; ; 1 • D LIS f<

UST• -
USTPC• ~
USTZM• 1
USTSS• 2
USTES• 3
USTNM• 4
llSTSA• 5
bJSTDA• 6
USTl-ilJ• '1
USTCS• 10
!JSTIT• 11
USft;R• 12
IJSTlN• 13
l!STIS• 14
USTWAs: 15
US TR Ss: 1 t.5

UST AA• 23
USTAl: 241
UST1t2• 25
uSTA3• 26
USTCY• 27

llSTt.L• 30.
LIS Tf;:C111 1

\ · ' :· l ;,, •DUS R M)(F i'i 0 • 1 ~
/ .,, 11;~'1' .DUSw UFPT•UST+USTEL
• ·.' • , 1 1 v' , 0 US R U F T E C • f", X F N 0
,. ,. ~· 4M" • OUS.R UF T •UFPT+UFTEC

J ST4RT O~ USER STATUS AR!A

J PROGRAM COUNTER (LEAVE AT DISPLACEMENT
' ZMA)(
' START OF SVM80L TABLE
' ENO OF SVMBOL TABLE
J NMAX
J ST ART ING A 0 0 RESS __. £J Ii 1 I it;,~,, <t;-
J .DEBUGGER ADDRESS .J >R & #f'Ub TV C/-ef"7j

r HIGHEST ADDRESS USED
I FORTRAN COMMON AREA SIZE.fl,, lf fh, t-112-­
l INTF.:RRUPT AOORESS ,/u"-vrfW L. C yYlv -;,·
J BREAK ADDRESS C·19!\JtniJL.-· . .
I INITIAL START OF NREL CODE
llNT_ERRUPT SERVICE WORD
r I/0 WAIT RETURN
I I/0 COMPLETION RESTORE
f DEFINE 4 SPARE ~OROS
I SAVE STORAGE FOR 4C0
f AC1
J AC2
1 AC3
r CARRV

J ENT~Y LENGTH
1 ENTRV COUNT

J~AX NUM8E~ OF FILE TAB~ES
JUSER FILE POINTE~ TABLE
JENTRY COUNT
1UFT 1 S

C-8

,
I SYSTEM PA~AM!TERS, ,
I LINl<AG!

~~b003 .OUSR SAVE• JS~I 3
(: '·H~ 11111' 4 , 0 lJ SR FH R N • J SR I 4
,, !:,1'"b9' .DUSR RTLOC•!>1
·0~~~1 .ousR AC~•1
"'" ,; '.,; d 1 , 0 US R AC 1 • 2
11i1 v'lilv•3 .OUSR AC2•3

. 1.· •v:io-1~~4 .ousA Tri'IP•4
'· .~ .-') ;.11 4 • 0 US R M X TM P •TM P + 10
1777~1 ,OUSA SP••1
M~0~1~ ,OUSR SLGT•MXTMP•SP+1
17??~\ .uuSA OSP••SLGT+SP
~~0~1~ ,DUSR NSP•SLGT+SP
1777~3 ,DUSA 0AC~•AC0•SLGT
1777~4 ,OUSR 0AC1•AC1•SLGT
1177~~ ,OUSR OAC?•AC2•SLGT
1777~~ .ousR ORTN•RTLOC•SLGT
~~~~22 .~USR NFRAM•22 

, 
I MISC, 

' 
'" " ,,. (h \."' 6 • 0 l.J SA R L. 0 C • ~ 
0~~~1P .o~SR CSP • tm 
v" 1 v. i~ !1 7 • n US A • P N I C • 1 
~.;,,~P14 ,DUSA UMSK•14 

, 
J BUFFE~ ENTRV 
J 

17i?t,7 .ousR 8QTLA••11 
17777~ ,OUSA 8~0ST••10 
171771 ,OUSR BQDCd••7 
171112 ,OUSR BQERC••b 
177773 ,DUSR BQST•·~ 
177774 ,OUSA BQOCT••4 
11777e ,OUSR BQUN•·~ 
17777e ,DUSR BQCA••2 
177777 ,OUSR BQN~T••1 
0~0~~~ ,OUSA 8QBF•~ 

~A~~77 ,DUSR 8QNXL•~77 
~; ~ ;; 4 v: V: •DUS R B Q )(TA• 4 I'll 0 

JCALL TO SAVE R!GIST!RS 
f CALL TO RESTORE R!GIITERS 
JRETUHN LOCATION 
f AC0 
''Cl 
IAC2 
JFIRST TEP..PORARV 

JCURRENT STACK POINTER 
ISTACK FRAME L!NGTM 
IL.AST FRAME POINTE~ 

JNEXT FRAME POINTER 
IOLO AC0 
IOL.0 AC1 
IOL.O AC2 
IR!TURN LOCATION, 
JNU~SER OF SYSTEM STAC~ FRAMES 

f PAGE ZERO TEfllP, 
JSTACK POINTER 
I PANIC 
JUSER MASKING ROUTI~E 

JTIME L.AST ASSIGNED C 0 • USE ME FIRST) 
IO!VICE STATUS WORD 
roes ADDRESS 
JERROR COUNT 
JSTATlJS ~ORO 
I OCT ADDRESS 
JUNIT NUMBER 
f CURRENT BL.OCK DEVICE ADDRESS 
ILI~K TO NEXT BUPF!R 
JSTART OF DATA 
JL?N~ WORD/FILE NUMBER 
IXTRA WORD 

C-9 



• ~· t. I t-1 

, 
I DEVICE CONTROL B~OC~ , 

r> ·1: ;/ ..... v ;·~ • DUSR DCBuC: •{) 
v"> '" v. ," 1 • D IJ SR DC 8 u ~ • 1 
t >l-1v;(;'~ .ousR DCBCA•2 
\" r 1·"Mi· 3 • Ci U S R 0 C 6 C 8 • 3 
.~ :•v,r,f., 4 • ousR ocas T • 4 
v; ~ ~ ·.:1 V' !'5 • 0 lJ S ~ 0 C 8 NA • ~ 
~~~~~6 .DUSR OCBLA•6 
;.,1··.v·~:,,~.~7 .f-1USR OC8UR•7

· 1 · "·' :•; l '.:, • D U S R D C ~ F A • 1 v•

IDCT ADURESS
JUNIT NUMBER
JCURRENT BLOCK DEVICE ADDRESS
JCURRENT HLOCK NU~8ER
I STATUS
1NEXT AOURESS
JLAST ADD~ESS
ISYS.OR DC8 POINTER
JFIRST ADDRESS

JE~TRY ELNGTH

, DEVICE co~TROL TABLE (OCT) LAYOUT

1 COMMON TO ALL DEVICtS

.,., 1",-: v 1.''i t.-'· flt .ousR ncTCD•
V·~Vl•"l t .ousR DCTl"'S•
,_., ! . ~< v '-' .1)USR DCTCH11
\,.'. i' ". '.~ 3 .ousR OCTLi<•

'.,'I t Ii• f/ ~-· .4 .DUSR OCT IS•
.... J~ r' t/1 ij. ~ • L'USR DCTCi11 •

, DEFINE
··"- '/l i;, V' :· 1 .OU.SR

"!;..-,j.:-t :2 .ousR
t· • ::~ i,.'; r.~. !/; A • f)lJSR

'
,., v' (1 l ;'! .DUSR

~ ··~ ~·- f:·,, ~~ .DIJS~
.'·" ,.., •Jl .41.~~ .ousR
,:; :, ·.': ' ~' i), .uusR
;·•: 11, ~v 11 .ousR
'' v·· t. {\I; • C•USR

L "'··"~H '5 .DUSR OCTDT•

171

1
2
3

A
5

THE
OF•
CF•
RS•
RL•
Rk•
WS•
Wl•
~~ f.'.
OA•

1 D~VICE CODE
1 MASK OF LOWER PRIORITY DEVICES
I DEVICE CHARACTERISTICS
I LIN~ TO NEXT OCT
r C•1 TERMINATES TME CHAIN)
I INTERRUPT SERVICE ROUTINE ADDRESS
r COMMAND ENABLE BIT WORD

COMMAlllO
1015
UH .s
1813
1812
1611
18h•
1e~g

1808
1 t.4~7

f!ITS
I OPEN FILE
1 CLOSE FILE
, ~EAD SEQUENTIAL
I REAO L.INE
I READ RANDOM
I wRITE SE~UENTIAL
I PiRITE LINE
1 WRITE RANDOM
JOPEN FOR APPEND

I COM~ANO DISPATCH TABL.E AOORESS WORD

C-10

r COM~ON TO DEDICATED DEVICES (I.E. SINGLE USER/SINGLE BUFFER)

~00~~7 .DUSR DCTST•
!·' · ~ ni 1 M • 0 US R 0 CT SP•
0VG~11 .uusR DCTFL•

1
11:'!
1 1

'ADORESS OF OfVICE START ROUTINE
JAODRESS OF OfVICE STOP ROUTINE
I FLAGS

l' "·, '" ;i.., 4
./; :>~·;'.'II 1 ~~

IDEFINE T~E FLAGS
.OUSR OCACT•1815
.ousR DC•CP•1813
.OUSR DCKMD•1a12

IACTIVE FLAG
JACCEPT CHARACTER FLAG
JTTY KEV80ARO MODE FLAG

•.. 1.:~i 1' • OUSR OCTl1S•
~~0~13 .ousR DCTBF•
,.,·~v~;14 .DUSR DCT8L•
~~~~1~ .ousR OCTIP• 
v~~~1~ .OUSR OCTDP• 
;,,.'. lH·1 1 'I • 0 US R 0 CT C N • 
c j, 111 v• it' OI • 0 U $ R DC T T 0 • 
~~~~2~ .ousR OCTCC• 
I, "' l" ~ 2 1 • 0 us R D c T f(c •
•-' ' · ? ·" < 1 • DUS R D C TL C •
·> t'f."~2 .uUSR OCTS(}J•
0~0~2J .ousR OCTS1•
"'"';V;..i«1 .ousR DCTT~·

12
1 ;'S

14
1~
16
17
2V1
211>

21
21
22
2~
DCTS~

r BUFFER SIZE C BYTES)
I SUFFER FIRST ADDRESS (BYTE)
I BUFFER LAST ADDRESS
I BUFFER INPUT POINTER (BYTE)
I BUFFER OUTPUT POINTER
I COUNT OF ACTIVE DATA
I TIMEOUT WORD (ALL INPUT DEVICES)
1 COLUMN COUNTER (ALL OUTPUT Of VICES)
I AESTA~T CONSTANT (ALL INPUT DEVICES)
1 LINE COUNTEk (ALL OUTPUT DEVICES)
1 DfVlCE SPECIAL WORD 0
I DEVICE SPECIAL ~ORO 1
r TRANSLATION ROUTINE ADDRESS

r COMMON TO ~LOCK TRANSFE~ DEVICES

! '''· \~ f·1117 .DUSR DCTk0~•7 IREAO A "LOCK
lil : 'Vi \1; 1 ~\ .ousR OCTPR0•10.J JPREREAO NEXT 1'31.0CK
I• ., r' \t 1 \ .ousR OCSTI•11 JS TART INPUT
,-.,,i,;t/tl~ .DUSR OCST0•12 rSTART CUTPuT
l.''~J·L.~13 .ousR OCCRC'Jat3 I CURRENT REQUEST ~UFFER POINTER
:,\ ,,< \'• (), 1 4 .ous~ ocncL•14 JDCT LINI<
, ,:1v f-11 ~ .ousR OCTRL•1~ JRE:AO LAST BLOCK
:-; ,,, I· 1 ~ 1 e .ousR OCTRl\l•16 IREAO Nf.XT BLOCK
t/ :1' f~, r;~ 17 .ousR OCTIN•17 I DEVICE INITIALIZATION
'IJ ... (' !JI " j7, .ousR DCTk S•2C" roEvICE RELE45E
VAV(\21 .DUSR OCNt11<•21 I NUMl.1f.R OF l::ILOCl\S o~ DEVICE

C-11

• 1·:. A Ir,.

r DEFINE THC: CHARACTERISTICS

i•;f,('ii'1f'•1 .DUSR DCCPO• 1 t; HS , DEVICE REQUIRING LEADER/TRAILER
•·.·'·>'Vi.~ .ousR OCCL.!\J• 1814 , G~APHICAL. OUTPUT DEVICE lliIT~OUT TABBIN , HARDWARE
'1: .J l•' jJ, V• ,d. .ousR i)ClOI• 1~13 , INPl.JT OE VICE REQUIRING OPERATOR INTERV
' ' .. , !·. !" 1 (i .ousR DC CNF• 1B12 r OUTPUT DEVICE WITHOUT FORM FEED HARDWA
·::ii,' f' ~I~ .ousR OCTO• 1t:,11 , TELE.TYPE OUTPUT DEVICE

,. , .. , ;; 1~1.11 M .DUSR C1(.t(f:V• H'.\11(.l , KEYBOARD DEVICE
(.: I"" 1 !' r;, .ous~ OCNAF• 1HQ , OUTPUT DEVICE REQUIRING NUt.L.S AFTER FO
' .• , ... , ... ~ {ti .,OUSR rit:RAT• HHH.'! ' RUBOIJTS .i• TE.R TABS REQUIRED

. t ; l ·--: t, 1 t1 t .·. p~ .ousR ncPCK• 1 BVl7 , DEVICE REQUIRING PARITY CHECI<
' l 1 v I.:~~ .DUSR OCLAC• 18~6 r REQIJIRES L.INE FEEDS AFTER CARRIAGE RTN
.... 4111 ,, r~ .DUSR OCFwO• 11':'104 , FULL wORO OE.VICE (ANYTHING GREATER THA
1 "V• i-1 ~ \il .DUSP DCOIR• urn~ • DIRECTORY DEVICE ,

• OEFlNE: T Hf'.-_ L>fVICE MASK 13ITS ,

,_ .. ,,
•·" ' .ousR l~STTO: 1B1~ , TTO : \'

\·~ ,,._ v: !)11/: ~ .ousR MSTT Ii:: 1 " 1 4 ' TTI
.. ; '· ~ "''t· 4 .ousR r-iSPTP• 1B13 , PTP, RTC
,_-: ;. '. !.•\ 1 !~ .ousR MSLPT• 11:\ 12 , LPT, PLT
,_, ::. , .. /it? e. .DUSR MSPTR• 1 8 1 1 , PTR
; ~ . '~ f, ·> "t-~ .OUSR MSCLiR• 11j11i'.· ' cnR, ~•TA
!.··· I I" l l i,i) .ousR MSOSK• 1 tH1Y r OSI<
.•1·'(,.; ~; __ .: p • OlJSR MSD~P• 1H7 , ()k.P

C-12

APPENDIX D

CLIINTERPRETATION OF USER COMMANDS

The action taken by the CL! upon reading a command line is sufficiently flexible so that
users can, if they wish, design programs to perform system command functions.

When the CL! reads a command line and does not recognize the first file name, the
CL! always builds a command file before the save file of that name is loaded. The
command file reflects an edited version of the command line.

For example, suppose the user issues the command line:

FOO,/

The CLI does not recognize FOO as a known command word. It builds a command file
with the byte organization shown below:

Byte Contents

0
1
2
3
4

5
6
7
8

F
0
0

null
'
-
•.

"
377

}
l
J

bit:

Each character of the file name occupies a byte. The file
name is terminated by a null byte.

Four bytes (2 words) are set aside for global switches of
FOO. Each letter switch sets a bit. A sets bit !21 of the first
word, etc., as shown in the switch/bit correspondence
diagram below.

The command file is always terminated by a 377.

.+--Byte 1, 3)IE Byte 2, 4 ----
: 111111

0 1 2 3 4 5 6 :7 8 9 0 1 2 3 4 5

l~l~l~l~l~l~l~l~l~l~IKILIMINIOIP I word 1
word 2

Note that the CLI does not attempt any interpretation of switches in building the command
file. The CLI simply sets the appropriate bit.

Additional file name arguments and local switches are handled in the same way when the
CLI builds the command file. Suppose the user types the command:

FOO/B AA Z Z/X MUMBI/

D-1

CLI INTERPRETATION OF USER COMMANDS (Continued)

The CLI would then build the following command file:

Byte

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1

Contents

F
0
0

null

A
A

null

z
z

null

M
u
M
B

null

377

1

}
}
J
J
J
}

J

Command file name FOO, terminated by
null byte.

Global switches of FOO.
Bit 1 (switch B) set ON.

Argument AA, terminated by null byte.

Four bytes set aside for local switches of AA.
None set.

Argument Z Z, terminated by null byte.

Local switches of ZZ. Bit 23 (switch X)
set ON.

Argument MUMB, terminated by null byte.

Local switches of MUMB. None set.

Command file terminator.

Since the CLI does not interpret switches, the user can set up program interpretation
of such switches. This gives the user an added means of passing information to a program
to be executed, since he can use switches as well as arguments.

The command file is always named:

COM.CM

and is created on the default directory device.

D-2

CLI INTERPRETATION OF USER COMMANDS (Continued)

A read line from a disk file will terminate on a null (as well as carriage return and form
feed.) This is quite useful in reading COM. CM arguments. The following example
illustrates how a user could read the first argument of the command file as well as its
global switches.

LDA 0, CFILE ;COM. CM POINTER
.SYSTM
.OPEN 3 ;OPEN ON CHANNEL 3
JSR EROR • ? ? , . .
LDA O,ARGl ;FIRST ARGUMENT POINTER
.SYSTM ;READ IT (THE NULL
.RDL 3 ;TERMINATOR IS ALSO
JSR EROR ;TRANSFERRED)
LDA O,GLOB ;POINTER FOR GLOBAL
LDA 1,C4 ;SWITCHES
.SYSTM ;READ FOUR BYTES
.RDS 3
JSR EROR

C4: 4
GLOB: 2*GLOB
ARGl: 2*ARG1
CFILE: 2*.CFIL

• GLOB: .BLK 2
.ARGl: .BLK 10
• CFIL: .TXT *COM.CM*

D-3

APPENDIX E

MAGNETIC TAPE BOOTSTRAPPING OF DOS

For the user with 9-track magnetic tape*, there exists a convenient facility for
saving the system file, SYS000.SV, on magnetic tape and providing a bootstrap
capability for this system. The Tape Bootstrap program is supplied in dump
format, tape number 088-000015, and is named TBOOT.SV. The procedure for
building a DOS system on magnetic tape, given that the system file, SYS000.SV,
has been created, is as follows:

Select an unused magnetic tape, mount it on the tape drive, and issue the
command:

INIT/F MTn

where n represents the unit number selected by the magnetic tape adapter. The
Tape Bootstrap program must be transferred to this reel of tape as the first
file. The command is:

XFER TBOOT. SV MTn:0

This stores the Tape Bootstrap program on tape. The system must immediately
follow the Tape Bootstrap program with SYS000. SV as file number 1. Issue
the command:

XFER SYS000. SV MTn:l

This tape, as written, can be preserved as a backup copy of the DOS system.
(No paper tape need ever be punched .)

Further, if the user wishes to save any additional files, he may use any file
number other than 0 or 1. For example,

DUMP MT0:2

To bootstrap the system from magnetic tape, take the following steps:

1. Mount the tape on unit 0. (Note that no other unit number may be used.)

2. Position the tape to load point. (The tape must be positioned to load
point to perform the bootstrap correctly.)

*The system cannot be bootstrapped from 7-track tape.

E-1

TAPE BOOTSTRAPPING OF DOS (Continued)

3. Place the unit on- line. Perform the following:

a. On machines having the Program Load feature (NOVA 800/1200)
set the console switches to 100022 and press PROGRAM LOAD.

b. On SUPERNOVA's with the CHANNEL START option, set the
console switches to octal 22 and press RESET, followed by
CHANNEL START.

or

c. On machines without the CHANNEL ST ART or PROGRAM LOAD
options, deposit NIOS MTA (60122) in location 376, deposit
377 in location 377 and press RESET, followed by START.

4. The Tape Bootstrap program will be read into memory and will
type the following message on the teletypewriter:

FULL(0) OR PARTIAL(l) ?

The user responds by striking 0 or 1, indicating a full or partial
initialization procedure. If the system has just been generated,
he must perform a full initialization. If the system has been running
and the user wishes to maintain his directory and file system
information, he can perform a partial initialization.

5. When the user responds to the query, the remainder of the system
is read into core, initialization performed, and control transferred
to the CLI which will transmit the prompt character (R). The tape
is then rewound.

If the user is bringing up his system for the first time, and he wishes to use the disk
bootstrap capability, the system must be INSTALLed. For example, after completion
of the tape bootstrap, the following commands will successfully install the system
(provided the default directory device is the selected bootstrap device).

XFER MT0:1 SYS. SV J
CHA TR SYS. SV SP,)
INSTALL SYS. SV J.

These commands are necessary and sufficient for enabling the user to bootstrap DOS
from either the fixed head disk, DSK or a removable media disk, DKP, depending
upon the bootstrap device specified at system generation time.

E-2

APPENDIX F

ADDING DEVICES TO THE SYSTEM

The I/O devices that are included as part of the DOS system are listed in Chapter 1.
The user can, however, add device drivers to DOS enabling the use of additional
devices. All changes to DOS to incorporate another device should be made at the
source level. This Appendix describes briefly the required changes to add a device.
However, to understand fully the process of adding a device driver, the user must
make a source listing of those DOS programs described in this document and study
the entries made in tables for system devices. The tapes required are available from
DGC by ordering model number 3040.

During full intialization of the system, names of all peripheral devices in the system
are added to the system file directory, SYS. DR. The device name will be entered only
if the user has forced the driver to be loaded. The general procedure for adding
a device driver is as follows:

I. Add an entry to the SITAB table in DVINIT to enable entry of a device name in
SYS.DR.

2. Declare the Device Control Table (DCT) link and the Device Control Table
address as .EXTNs in DVINIT, forcing the driver to be loaded at SYSGEN
time.

3. Add an entry to the Device Control Table Pointer Table (DCTT) in TABLES,
determining the priority of device service at interrupt time.

4. Add an entry in TABLES for the DCT link word, insuring that it is assigned
after t~e last system defined link.

5. Define and supply all DCT information and routines required. Use the Library
File Editor to add this relocatable module to the system libraries.

6. Perform a SYSGEN using the updated libraries.

Sections following describe each of these steps.

F-1

CREATING A DEVICE ENTRY IN SITAB

SIT AB is a table in DVINIT (System Device Initialization). SITAB consists of a series of
three-word entries, and the table is terminated by a word of zeroes. Each entry in
SIT AB consists of:

WORD 1

WORD2

WORD 3 -

A byte pointer to the device system name, packed left to right.

The address of the word in TABLES that contains the Device
Control Table (DCT) link for the device. *

File attributes of the device. (All system devices are declared
ATCHA and ATPER, "attribute protected" and permanent".)
The possible attributes are:

Mnemonic Bit Position Meaning

ATRP 1B0 Read protected device.
ATCHA lBl Attribute protected device.
ATPER 1Bl4 Permanent device.
ATWP 1Bl5 Write protected device.

An example of an entry in SITAB is shown below for the high speed paper tape reader:

SPTR:

2*SPTR
PTRL

ATPER+ATWP+ATCHA

.TXT

DECLARING THE DCT ADDRESS

*$PTR *

;NAME BYTE POINTER
;POINTER TO DCT LINK
;ATTRIBUTES

The last relocatable binary file of the system library, called TABLES, allocates storage
for all system tables not residing in page one. One of these tables is the Device Control
Table Pointer Table (DCTT). This table must contain an entry for every device control
table within the system. The form of each entry is:

.dvdDCT: dvd DCT

where dvd represents the DGC device mnemonic for each particular device's control
table. The label must be declared as an entry, while the control table address must
be declared as a normal external. When adding an entry, the user

* DCT links must be assigned beginning with the last link defined by the System +l.

F-2

DECLARING THE DCT ADDRESS (Continued)

can select any three-letter device mnemonic not used for a DGC device.

A DCT link equivalence must also be defined and declared as an entry. The link is
used to index the table, DCTT.

DEFINING AND SUPPLYING DCT INFORMATION

Each device defined must specify its own Device Control Table. Each table consists
of 20 words, described below.

Word 1:

Word 2:

Word 3:

Word 4:

Word 5:

Word 6:

DEVICE CONTROL TABLE (DCT) LAYOUT

Device code.

Mask word.

Clear a bit for every priority considered' higher than the priority
of this device. The devices corresponding to the priority
bits that are left cleared will be permitted to interrupt the
current device.

Device characteristic word. A list of device characteristics
is given in the table on the next page.

Link to the next DCT. (Allocate as .BLK 1)

Address of the device interrupt service routine.

This word is initialized by DVINIT.

Command enable bit word.

A series of two-letter mnemonics, added together, indicating
the operations the device can perform.

Mnemonic Order Function

OF 1 open file (always necessary)
CF 2 close file (always necessary)
RS 3 read sequential
RL 4 read line
RR 5 read random
ws 6 write sequential
WL 7 write line
WR 8 write random

F-3

DEFINING AND SUPPLYING OCT INFORMATION (continued)

MNEMONIC

DC CPO

DCCGN

DC ID I

DCC NF

DCTO

OCKEY

DCNAF

DCRAT

DCPCK

DC LAC

DC FWD

DCFFO

DCLTU

DCC80

DCDIR

DEVICE CHARACTERISTICS

BIT POSITION

lBlS

1Bl4

1Bl3

1Bl2

lBll

lBlO

1B09

1B08

1B07

1B06

1B04

1B03

1B02

lBOl

lBOO

F-4

MEANING

Device requiring leader/trailer

Device requiring tab simulation.

Device requiring operator intervention.

Device requiring form feed simulation.

Teletype output device.

Keyboard input device (uncontrollable)

Device requiring nulls after form feeds.

Device requiring rubouts after tabs.

Device requiring even parity check on
input, even parity computation on output •

Device requiring line feeds after carriage
returns.

Full word device (anything greater than
a byte).

Form feeds sent on • OPEN

Convert lower to upper case ASCII.

Read 80 columns on input if set, 72 if
reset. Send 80 characters on output, 72
if reset.

Directory Device.

DEFINING AND SUPPLYING OCT INFORMATION (Continued)

Word 7:

Word 8:

Address of the device command dispatch table.

One entry is required for every bit specified in Word 6. Further,
the table order must correspond exactly to the order of the functions
given under Word 6. For example, if Word 6 appeared as follows:

OF+CF+RR+WL

the dispatch table must look as follows:

DTAB: OFILE
CFILE
RNDOM
LINE

;OPEN FILE ROUTINE
;CLOSE FILE ROUTINE
;READ RANDOM ROUTINE
;WRITE LINE ROUTINE

Address of device start routine.

Device Start Routine Specification

Input devices: Activate the device and return.

Output devices: Character passed in ACO.

Activate the device. If the device will not interrupt as a result
of this action, return to the normal return point. Otherwise, bump RLOC
for a return to normal return+ 1.

For example:

LPTST: STA
DOAS
SKPBZ
ISZ
LOA
JMP

F-5

3, RLOC
O,LPT
LPT
RLOC
3, CSP
@RLOC

;SAVE RETURN LOCATION
;KICK PRINTER
;WILL IT INTERRUPT?
;YES, BUMP RETURN
;ST ACK POINTER IN AC3
;RETURN

DEFINING AND SUPPLYING DCT INFORMATIQN (Continued)

Word 9: Address of device clear routine.

Device Clear Routine Specification

Clear the device and return.

Word 10: Flag word used by RINGIO (allocate as • BLK 1)

Word 11: Buffer size in bytes.

Word 12: Buffer starting byte address.

Word 13: Buffer ending byte address+ 1.

Words 14-16: Variable words used by RINGIO (Allocate as .BLK 3)

Word 17: Input devices: EOF timeout constant.

• Word 18:

A parameter "SCTIM" is defined on the user parameter tape, (090-000090),
which corresponds to a time of 1 millisecond on the Supernova SC. If the
device requires six milliseconds to timeout, the word can be allocated as

6*SCTIM

Output devices: column counter (allocate as • BLK 1) •

Input devices: restart constant

Output devices: not used.

Words 19, on Spare words, which may be used for any special purpose device
temporaries or constants.

F-6

SUBROUTINE LINKAGE

Subroutine linkage among all system subprograms is implemented within the module
GSUB. Before attempting to interface a driver to the system, the user should be
familiar with the subroutine linkage facilities. Adhering to these conventions will
enable pure, reentrant routines to be written with little effort.

On all system I/O commands, the DCT address of the device requested will be
passed in AC2. The source or destination byte pointer for • RDL, • RDS, • WRL,
. WRS is passed in AC0. The record number for • RDR, • WRR is passed in
ACl. On • RDS and • WRS, the byte count is passed in ACl. These parameters
are specifically those required by the generalized RINGIO routines (see next section),
and in many cases these RING I/O routines alone suffice.

GENERALIZED RING I/O ROUTINES

The Ring I/O Module (RINGIO) provides a number of useful, general purpose,
reentrant routines for handling byte 1/0 from any device, input or output, using
the program interrupt facility. The basic ring buffer philosophy is to maintain
two pointers, a current input pointer and a current output pointer. The input
pointer indicates the first free byte slot in the buffer; the output pointer, if not
equal to the input pointer, indicates the next byte available for output. These
terms are relative. An input device "inputs" to the buffer at interrupt time and
"outputs" from the buffer at program base level. An output device "inputs"
to the buffer at program base level and "outputs" from the buffer at interrupt
time. (See diagram on the next page.)

A brief description of the major routines and their calling sequences will be given
below. More detailed information can be obtained by scanning the listing of RINGIO.
It is important to note that although buffer input/output is in byte increments,
devices transmitting larger data widths can use the same basic scheme. The card
reader, for example, inputs its full word by calling for two consecutive byte inputs.

Generalized Open Routine

Input:

Calling Sequence

AC0
AC2

JSR OPN

file name byte pointer
UFT address

error return
normal return

This routine clears the device and initializes its device control table. This implies

F-7

Generalized Open Routine (Continued)

the OCT has provided all necessary ring buffer information as well as the four
words of variable storage (Words 10, 14-16).

Input Devices

interrupt

device

base level

~ -~~ - ..., program data

Output Devices

base level

program data
~'"--->--

interrupt

~------;;;.~device

F-8

Generalized Close Routine

Input:

Calling Sequence:

AC2 - UFT address

JSR CLSO I CLSI
error return
normal re turn

(close output or close input)

CLSO should be used only to close output devices. It waits until all output has
settled, clears the column counter, clears the device, and initializes the DCT.

CLSI should be used to close input devices. It merely clears the device and initializes
the DCT.

Generalized Read Seguential

Input: DCT address in AC2
Destination byte pointer in AC0.
Destination byte count in ACl.

Calling Sequence:
JSR RDS
error return
normal return

The device will be read, a byte at a time, until the byte count requested is satisfied.
The error return is taken if:

1. End of file occurs on device. The partial count read is returned
in ACl.

2. The device has the "full word" characteristic, and an odd
number of bytes is requested.

Generalized Write Sequential

Input: DCT address in AC2.
Source data byte pointer in AC0.
Source data byte count in A Cl.

Calling Sequence:

JSR WRS
error return
normal return

F-9

Generalized Write Sequential (Continued)

The data will be read and transmitted to the device until the byte count is expired.
Neither read nor write sequential alters the data in any manner. This mode is,
therefore, the standard mode for "binary" transfers.

Generalized Read Line

Input: DCT address in AC2.
Destination byte pointer in AC0.

Calling Sequence:

Output:

JSR RDL

error return
normal return

Byte count read in AC!.

This routine is used to transmit ASCII data and terminate after transmission
of a carriage return or a form feed. All bytes transmitted are masked to seven
bits. Nulls, line feeds, and rubouts are unconditionally ignored. The error
return is taken and a system error code returned in AC2 for the following:

1. An end of file.
2. A parity error (the last character transmitted.)
3. An excessive line length (132 characters) without an appropriate

terminator.

Generalized Write Line

Input: DCT address in AC2.
Source data byte pointer in AC0.

Calling Sequence:

Output:

JSR WRL
error return
normal return

Byte count read from data area in A Cl.

This routine will transmit ASCII data to the appropriate device and terminate
after transmitting either a carriage return or a form feed. Termination will
also occur on a null but without transmitting it. Checks are made of the device
characteristics to determine whether to perform :

F-10

Generalized Write Line (Continued)

1. Parity on output.
2. Nulls after form feeds.
3. Line feeds after carriage returns.
4. Tab simulation (every 8 columns).
5. Rubouts after tabs.

The error return is taken after 132 bytes have been transmitted without detection
of a terminator.

Input to Ring Buffer

Input: Character in AC~ (left byte ignored)
DCT address in AC2.

Calling Sequence:

JSR IBUF
re turn - buffer full
re turn - buffer not full
return - buffer became full (active flag cleared)

The byte is input to the current slot in the ring buffer and all bookkeeping in
the DCT maintained. Note that for output devices the active flag should be
"set" again if the third return is taken.

Output from Buffer

Input: DCT address in AC2.

Calling Sequence:

JSR OBUF
return - buffer not empty
re turn - buffer empty (active flag cleared)

Output: Character returned in ACO (if successful) with bits 0-7 cleared.

A byte is grabbed (ifpossible)from the buffer and all ring buffer bookkeeping in the
DCT maintained.

F-11

UPDATING THE SYSTEM LIBRARY

The system library is ordered as shown in the table following. To add a driver, it
must be inserted into the library using the library file editor. It must be placed
within the library somewhere after SYSTEM and before TABLES. To insure a driver
is loaded, an • EXTN for its device control table should be declared in DVINIT.

SYSTEM LIBRARY ORDER

Relocatable Binary Title Primary Function

INIT System full and partial initializations

DVINIT System device initialization

SYSTEM System call decoding

FILE IO Disk File I/O

FILSYS File system management

GSUB General purpose subroutines and linkage

PANIC Panic module

INTD First level interrupt determination

RING IO Ring buffer I/O management

TTYDRV ASR 33 Teletype driver

PTRDRV High speed paper tape reader driver

PTPDRV High speed paper tape punch driver

PLTDRV Incremental plotter driver

LPTDRV Line printer driver

CDRDRV Card reader driver

MTADRV Magnetic tape driver

DKPDRV Disk pack driver

DSKDRV Fixed head disk driver

TABLES Tables storage allocation

F-12

SYSTEM GENERATION

To load the system, determine the additional space necessary to load your driver
plus any additional words added to the system. Invoke the SYSGEN save file and
answer all queries.

Invoke the RLDR and MK.ABS commands necessary to load and punch the system,
adjusting the value for NMAX down by the additional amount of space the system now
requires.

F-13

APPENDIX G

SYSTEM TAPES

The following dump tapes will be distributed with all DOS systems.

NUMBER

088-000003

088-000002

088-000001

088-000013

088-000008

088-000012

088-000016

088-000010

or
088-000011

NAME

System Generation
(SYSGEN. SV)

Relocatable Loader; Debug I I I
(RLDR. SV, SYS. LB)

Relocatable Assembler; Editor; Cross
Reference
(ASM. SV, EDIT. SV, XREF. SV)

Octal Editor, Binary Loader
(OEDIT. SV, JLDR.SV)

Library File Editor
(LFE. SV)

Command Line Interpreter Library
(CLI. LB)

System File 0
(SYS0. LB)

SystemLibrary lA (No magnetic tape
software)
(SYSlA. LB)

System Library lB (Magnetic tape software)
(SYSlB. LB)

Three 12K bootstrap systems will be provided in absolute binary format:

NUMBER

091-000027

091-000053

091-000058

G-1

NAME

Fixed head disk bootstrap.

Moving head disk bootstrap (4047 or 4057).

Moving head disk bootstrap (4048).

SYSTEM TAPES (Continued)

If a 9-track magnetic tape drive is part of the configuration, the tape bootstrap
program will be sent.

NUMBER

088-000015

NAME

Tape Bootstrap
(TBOOT. SV)

Two parameter tapes in ASCII will be provided:

NUMBER NAME

090-000090 User parameters.

090-000176 System parameters.

If the configuration is 16K or larger, the following compilers will be sent:

NUMBER

088-000005

088-000014

088-000006

088-000007

NAME

FORTRAN Compiler
(FIV. SV)

FOR TRAN Dispatch
(FORT. SV)

ALGOL Compiler
(ALL SV, ALGOL. SV LIBRARY)

ALGOL Compiler
(AL2. SV)

G-2

INDEX

Absolute binary file
creating a (MKABS) 3-47
input to BLDR 3-24
input to MKSA VE 3-48
loading for stand-alone A-39, 3-24
user of / Z switch in making 3-54,

3-47, B-5

Accumulators 4-1, 4-2

Address space
addressable core 4-20 to 4-22
levels of 4-22
overlay of (.EXEC) 4-23
restoring overlaid 4-24
(see also Memory)

Analyze LFE function A-22

ALGOL
command invoking 3-17
compiler under DOS A-15
TRACE program A-16

. APPEND 4-11

APPEND 3-19

ASCII-Hollerith translation 4-16

ASM 3-20

Assembler
ASM command 3-20
DOS system program A-6
loading an ASM save file A-6
programmed DOS commands to Chap. 4

Asterisk(*) convention 3-9

At sign (@)convention 3-11

Attributes (see File attributes)

Binary loader A-39, 3-24

BLDR A-39, 3-24

I - 1

Bootstrap
from disk App. B
from magnetic tape App. E
hardware configurations B-1, B-6
tapes supplied for B-1, G-1

BPUNCH 3-25

. BREAK 4-25

Break
address in UST A-12
CTRL A interrupt 2-1,6-1,A-ll
CTRL C break 2-1, 3-56, 4-25
user servicing 6-1

BREAK. SV file 2-1, 3-56, 4-25

Buffer
entry parameters C-9
implementation F-7
status parameters C-4

Byte
alignment for file name 4 -6
command file - organization D -1
I/O handling by RINGIO F-7
pointer to file name 4-4, 4-6
terminator of file name 4 -6

Card reader
device 1-2
input 4-14

Carriage return
CLI line terminator 3-1, 3-2
file name terminator 4 -6
inhibiting a 3 -2, 3 -6
representation in manual 1-3, 3-2

Channel I/O 4-1, 4 -2, 4-10

Characteristics of devices 4-9, C-7

. CHATR 4-8

CHATR 3-26

CLG
command 3-27
system program A -18

CLI
activation 3-1
address space level 4-22
command file 3 -1, App. D
command line handling 3-4 to 3-12
commands Chapt. 3
messages from 3-14 to 3-16
ready message 3-1, 3-:6
res.toration to core 1-3, 4 -22

CLI command list
ALGOL 3-17
APPEND 3-19
ASM 3-20
BLDR 3-24
BPUNCH 3-25
CHA TR 3-26
CLG 3-27
CREATE 3-29
DEB 3-30
DELETE 3-31
DIR 3-32
DISK 3-33
DUMP 3-34
EDIT 3-35
FORT 3-36
INIT 3-38
INSTALL 3-39
LFE 3-40
LIST 3-44
LOAD 3-46
MK ABS 3-47
MKSAVE 3-48
OED IT 3-49
PRINT 3-50
PUNCH 3-51
RELEASE 3-52
RENAME 3-53
RLDR 3-54
SAVE 3-56
TYPE 3-57
XFER 3-58

I-2

• CLOSE 4-12

COM. CM file
building a App. D
format for

ALGOL A-15
ASM A-6
FORT A-17
LFE A-19
RLDR A-7

Command
CLI (see CLI Command list)
programmed

• APPEND 4-11
• BREAK 4-25
• CHATR 4-8
. CLOSE 4-12
.CREAT 4-6
• DELET 4-7
• DIR 4-4
• ERTN 4-24
• EXEC 4-23
.GCHAR 4-19
.GTATR 4-9
• INIT 4-4
• INST 4-5
• MEM 4-21
• MEMI 4-21
• OPEN 4-10
.PCHAR 4-19
.RDL 4-13
• RDR 4-17
.RDS 4-14
• RENAM 4-7
.RESET 4-13
• RLSE 4-5
• RTN 4-24
.WRL 4-17
• WRR 4-19
• WRS 4-18

user-written App. D

Command file (see COM. CM)

Command line
definition 3-4
length 3-6
syntax 3-2
termination 3-4

Command line interpreter (see CLI)

Command line syntax symbols
(space) argument separator 3-2

argument separator 3-2
command terminator 3-5, 3-2

.) command line terminator

t
$
*
A-Z
0-9

@

~

\

I
A-Z
0-9

1-3, 3-1, 3-2
command line terminator

3-1,3-2
command line terminator
suppressor 3-2, 3-6
in file name 1 - 2 , 1 -1
in file name 3- 9
in file name 1 - 1
in file name 1 -1
in file name extension 1-1, 3-12
in file name prefix 1-3
indirect file (macro) 3-3, 3-11
character erase 3-2
line erase 3-2
prompt suppressor 3-2, 3-6
switch indicator 3-2, 3-7
switches 3-8
switches 3-7

Compile, load, and go (see CLG)

Compilers
ALGOL A-15
configurations for G-2
FORTRAN A-17
tapes for G-2

Configuration, DOS App. B

Core 4-20 to 4-25, A-7, A-8
(see also Address space and Memory)

I-3

Core image
saving a (.BREAK) 4-25
saving a (SAVE) 3-56

Core image file
attributes 1-4
definition 1-1
extension to name 1-2
input to MKABS 3-4 7
output of • BREAK 4-25
output of MKSAVE 3-48
output of RLDR 3-54
output of SAVE 3-5 6

Core map 3-5

• CREAT 4-6

CREATE 3-29

Cross reference symbol table 3-20,
3-22, 3-23

CTRL A interrupt 2-1, 6-1, A-11

CTRL C break 2-1, 6-1, A-12

CTRL Z TTI terminator 1-3

DCT F-1, F-3 to F-6

DEB 3-27

Debugger
DEB command 3-30
Debug I II program A-14
loading Debug I I I 3-54
effect on symbol table A-11 ff

Default directory 1-5

• DELET 4-7

DELETE 3-31

Delete LFE function A-25

Device
adding a user App. F
bootstrap 1-6, B-4
characteristics 4-9, C-7
commands 1-6
control block C-10
control table (DCT) F-1 to F-6, C-10
default directory 1-5
directory 1-4, 1-5, 5-1
mask bits C-12
master storage 1-5, B-3, 5-1
multiple file Chap. 5
prefix to file name 1-3
specifier 1-3
supported by DOS 1-2
user - driver App. F

Diagnostics (see Error messages)

. DIR 4-4

DIR 3-32, 1-6

Directory
changing default 3-32, 4-4
contents of 1-4
default 1-5
denying access to 3-52, 4-5
devices having a 1-5
referencing file name in 1-3

Disk
configuration App. B
determining space on (DISK) 3-30
fixed head 1-5, 5-1, B-1
movable head 1-5, 5-1, B-1
packs 1-5, 5-1
read or write errors 7-1
system bootstrap using App. B

DISK 3-33

I-4

Disk Operating System
bootstrap of App. B, E
commands Chap. 3, 4
configuration App. B
constants App. C
generation of App. B
installation 1-6, B-6, E-2
library F-12
loading App. B
location in core A- 7 ff
permanent files in 1-4
programs supported under App. A
stack displacements C-2
tapes supplied for App. G

DOS (see Disk Operating System)

DUMP 3-34

Dumped system programs App. A

Dumping files (DUMP) 3-34

EDIT 3-35

Editing
library file

LFE command 3-40
LFE program A-19 ff

octal
Octal editor A-35 ff
OEDIT command 3-51.

text
EDIT command 3- 37
text editor A-2 ff

End-of-file on teletype 1-2

Error messages
CLI 3-15
DOS programmed 4-26, C-5
LFE A-3

• ERTN 4-24

EST A-8

• EXEC 4-22

Extract LFE function A-31

Execution of program 3-5, 4-22

Extension to file name 1-1, 3-12

File
attribute (see File attributes)
definition 1-1
directory 1-4 ff
length 1-4
name (see File name)
search 3-12
system saved (SYS. SV) 1-6, B-5
types of

absolute binary 1-1, 3-4 7
core image 1-1, 3-51, 3-56, 3-48
library A -19 ff
listing 1-1
relocatable binary 1-1, 3-20, 3-54
save 1-1, 3-54, 3-56, 3-48
source 1-1, 3-20

File attributes
accumulator settings for 4-8
changing. 3-24, 4-8
definition of 1-4
information on 3-41, 4-9
list of 1-4, 4-8, C-4

File maintenance
APPEND 3-19
• CREAT 4-6
CREATE 3-27
• DELET 4-7
DELETE 3-30
.RENAM 4-7
RENAME 3-50

I-5

File name
definition 1 -1
device prefix 1-3
extension 1-1, 3 -12
for a device 1-2, 1-3
in command line 3-5
pointer to 4 -6
searches for 3-12
text string containing 4 -6

File status parameters C-4

Fixed head disk 1-5, 5-1, B-1

Form feed
in command line syntax 3-1, 3-2
terminating filename str.i.ng 4-6

FORT 3-36

FORTRAN IV
commands invoking 3-36, 3-27
compiler A -17
unlabeled common A-11, C-8

Full initialization 1-6, 3-38

. GCHAR 4-19

Global switch 3-8

. GTATR 4-9

Hardware malfunction 7 -1

HMA (high memory address) 4-20, A-12

Hollerith-ASCII translation 4-16

Indirect input file 3-11

• INIT 4-4

INIT 3-38 1-6, 5-2

Initialize
directory device 3-2 8, 1-6, 4-4
magnetic tape 3-38, 4-4, 5-2, E-1

Input (see I/O) I/O (continued)
programmed commands (continued)

Insert LFE function A-26 random mode
• RDR 4-17

• INST 4-5 • WRR 4-19
sequential mode

INSTALL 1-6, 3-39, B-6, E-2 • RDS 4-14
• WRS 4-18

Installing system 1-6, B-6, E-2, 4-5, 3-39 teletype (. GCHAR, . PCHAR) 4-19

Interprogram communication 4-22 to 4-24 Location counter (PC) 4-23, A-10

Interrupt (CTRL A) Letter switches 3- 8, D-1
address in UST A-11
definition 2-1 Level of address space 4-22
for unknown malfunction 7-1
user servicing of 6-1

(see also Break)

I/O
buffering implementation F-7
card reader input 4-14
CLI commands for

BPUNCH 3-25
PRINT 3-50
PUNCH 3-51
TYPE 3-57
XFER 3-58

devices 1-2
device/file equivalences 1-2, 1-3
devices added by user App. F
generalized RINGIO subroutines F-7 ff
malfunctions 7-1
messages from CLI 3-14
programmed commands

channel/file
• APPEND 4-11
• CLOSE 4-12
• OPEN 4-10
• RESET 4-13

line mode
• RDL 4-13
.WRL 4-17

I-6

LFE
command 3-40
description of program A-19 ff
error messages A-32 to A-34
functions

analyze (A) A-22
delete (D) A-25
extract (X) A-31
insert (I) A-26
merge (M) A-27
new (N) A-28
replace (R) A-29
titles (T) A -30

Library file (See also LFE)
editor A -19ff
for ALGOL A-15
for FORTRAN A-17, A-18
for system G-1

Line mode I/O 4-10

Line printer 1-2

Linkage
parameters C-19
subroutine F- 7

LIST 3-44

Listing
assembly 3-20
file for 1-1
of core map 3-54
of existing files 1-4, 3-4 4

LOAD 3-4.6

Loaders (see Relocatable loader and
Binary loader)

Loading
absolute binary tapes 3-24, A-39
addressable core for A-7ff
DOS relocatable loader A-7ff
RLDR command 3-54
system tapes B-2

Local switch 3 -8

Logical record of library file 3-40

Magnetic tape
bootstrapping from App. E
configuration 5-1, 5-2
device specifier 5-2
hardware malfunction 7 -1
initializing 5-3
reference a file on 5-3
writing a file to 5 -4
7 and 9 track 5-2

Mask bits of device C-12

Master storage device 1-5, 5-1

. MEM 4-21

• MEMI 4-21

I-7

Memory
allocation 4-20, A-7 ff
change NMAX (. MEMI) 4-21
determine available (. MEM) 4-21
loading into A -7 ff
overlay (.EXEC) 4-22 to 4-24
restore in debugger 3- 30
restore overlaid 4-24
save current state

• BREAK 4-25
SAVE 3-56

Merge LFE function A-27

MKABS 3-47

MKSAVE 3-48

Moving head disk 1-5, 5-1

Multiple file device Chap. 5

Multiply/ divide options B-1

New LFE function A-28

NMAX 4-20, A-7ff

NREL A-7

· Null terminator
of command argument D-1
of filename string 4 -6
on . WRL 4-17

Numeric switch 3-7

Octal editor
description A-35ff
OEDIT command 3-49

OEDIT 3-49

. OPEN 4-10

Output (see I/O)

Overlay core 4-22

Panics 7-1, C-6

Paper tape
punch 1-2
reader 1-2

Parameter source tapes App. C

Partial initialization 1-6, 3-38

.PCHAR 4-19

Permanent file 1-5

Plotter 1-2

Program
mode of operation Chap. 4
overlay 4-22

Programmed Command Chap. 4
(see also Commands, programmed)

Program Counter (PC) 4-23, A-10

Prompt from CLI 3-1, 3-6

PUNCH 3-51

R(ready) message 3-1, 3-6

Random access I/O 4-10

• RDL 4-13

.RDR 4-17

• RDS 4-14

Read-protected file 1-4

RELEASE 3-52, 1-6, 5-2

I-8

Releasing
directory device 1-6
magnetic tape drive 5-3

Reload dumped files (LOAD) 3-46

Relocatable assembler A-6, 3-20

Relocatable binary file
arguments to LFE 3-40
definition of 1-1
extension to file name 1-2, 3-12
input to RLDR 3-54
output from ASM 3-20

Relocatable loader A-7 ff, 3-54

.RENAM 4-7

RENAME 3-53

Replace LFE function A-29

.RESET 4-13

Resume execution in debugger 3-30, A-14

RETURN 3-1, 3-2

RLDR 3-54

• RLSE 4-5

• RTN 4-24

SAVE 3-56

Save file
attribute 1-4
definition 1-1
file name extension 1-2, 3-12
input to MKABS 3-47
output of. BREAK 4-25
output of MKSA VE 3-48
output of RLDR 3-54
output of SAVE 3-56

Search, file name 3-12

Sequential I/ 0 4-10

Source file
definition 1-1
editing A-2, 3-3.
name extension 1-1, 3-12

Space (040) terminator of filename 4-6

Specifier, device 1-3

SST A-8

Stack
displacements C-2
overflow 7 -1

Stand-alone mode 3-24, A-39

Starting address
debugger (USTDA) A -11
normal relocatable code A-7
program counter (USTPC) A-10, 4-23
save file (USTSA) A-11, 4-23
symbol table A -10
zero relocatable code A-7

Subroutines, generalized I/O F-7ff

Switches
alphabetic 3 -8
CLI handling 3 -7
global and local 3 -8
numeric 3-7
settings in command line D-1

Symbol table
adjustment of A-12
cross referencing of 3-20, 3-22, 3-23
debugger effect on A-11
loading of A-12
starting address A-10

SYSGEN App. B

I-9

System
bootstrapping App. B, E
configuration App. B
constants C-4
file (SYS~~~. SV) B-5, E-1
generation of App. B
installation 1-6
programs supported under App. A
parameters C-9 ff
saved file (SYS. SV) 1-6, B-5
tapes supplied for App. G

System library
editing A -19
list of files in F-12

• SYSTM 4-1

Tape
magnetic (see Magnetic~
system (see System, tapes)

Teletype
break or interrupt 2-1
commands given at Chapter 3
device mnemonics 1-2
end-of-file on 1-2
.GCHAR 4-19
• PCHAR 4-19

Text editor 3-32, A-2 ff

Titles LFE function A-31

Timing, added devices F-6

TRACE in ALGOL deb,ugging A-16

Transfer of file 3-55

TYPE 3-54

User file table (UFT) C-3

User parameters App. C

User-written commands App. D

User-written device drivers App. F

User Status Table (UST) A-9 ff

Write-protected file 1-4

• WRL 4-17

• WRR 4-19

• WRS 4-18

XFER 3-58

ZREL A-7

1-10

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	7-01
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	G-01
	G-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10

