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TRAC is a text-processing language for use with a

reactive typewriter. The thesis describes the design

and implementation of a TRAC processor for the Fairchild

F24 computer.

Chapter I introduces some text processing concepts,

the TRAC operations, and the implementation procedures.

Chapter II examines the history and -characteristics of the

TRAC language. The next chapter specifies the TRAC syntax

and primitive functions. Chapter IV covers the algorithms

used by the processor. The last chapter discusses the

design experience from programming the processor, examines

the reactive action caused by the processor, and suggests

adding external storage primitive functions for a -future

version of the processor.
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CHAPTER I

INTRODUCTION

Text processing plays a distinctive role in the field,

of information systems because of its generally non-arith-

metic characteristic. The object of this thesis is to

describe the design and implementation of a processor for

TRAC, a conversational-text-handling language system for

use with a reactive typewriter. TRAC (text reckoning and

compiling) is the trademark and service mark of Rockford

Research Institute Incorporated in connection with its

standard computer controlling language (3).

Text Processing

Text is any combination of alphabetic, numeric,and

special characters arranged in strings and other struc-

tures.. Natural languages, computer programs and their

data, personal letters, and even this sentence are all

considered as text. Besides- TRAC, there are several other

languages designed specifically for processing string-

oriented text, such as COMIT, IPL--V, and SNOBOL (3).

However, apparently none of them was originally intended

only for interactive on-line application.
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TRAC Operations

The TRAC processor is able to accept and execute TRAC

source programs. These programs can be procedures to

operate on the text from the teletypewriter. The

operations (2) include accepting, naming and storing a

character string, modifying a string, concatenating

strings, creating a macro skeleton from a string, treating

any string at any time as an executable procedure, or as

a name, or as text, and printing out any string known to

the processor. Besides, the TRAC language allows the user

to do integer arithmetic and Boolean operationE, and provides

diagnostic facilities.

Implementation of TRAC Processor

The TRAC processor is implemented on model 1 of the

Fairchild F24 computer available in the Department of

Computer Sciences, North Texas State University. This 4k

memory computer system has a KSR teletype with paper-tape

reader/punch, a card reader, and digital-to-analog con-

verters as I/o devices.

The processor was written in Fairchild assembly lan-

guage and was tested under a Fairchild assembler (1) and

simulator (4) on the IBM 05/360 system of the University.

During the test the Teletype input is simulated by punched

card; the Teletype output is simulated by the printer.

The results obtained from the test show only the simulated
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reactive action, since neither the card reader nor the

printer is responsive. The test result is then verified

by the actual implementation of the processor in Fairchild

F24 computer system.

The TRAC processor can be loaded into the Fairchild

memory as a software text-processing package by the

following steps (4):

1. The object code of the assembler is generated

in punched card form.

2. The program loading routine is loaded into

the F24 memory from paper tape.

3. The TRAC processor punched object deck is

then read by the F24 card reader into the computer

memory.

A copy of the TRAC processor object code is also

available on paper tape punched out by the Teletype after

the cards, have been read into memory (5). This paper

tape may later be reloaded into memory.

Summary of Chapters

The review of original definition and related material

of the TRAC language system is the subject of the next

chapter. The history, goal, characteristics, development,

and implementation of the language are summarized.

The prospective users of the TRAC processor are

expected to understand the structure of the TRAC language
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by being exposed to the syntax and, primitive functions

briefly discussed in Chapter III.

Chapter IV describes the procedures of designing the

processor, i.e., the detection of syntactic units, the

handling of various primitives, and the allocation of

memory storage.

Chapter V examines the designing experience learned

from the processor, offers some conclusions, and suggests

future development for this conversational'text-processing

syst em.
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CHAPTER II

REVIEW OF LITERATURE

TRAC was specified by C. N. Mooers in 1960 and first

implemented by L. P. Deutsch in 1964 (5). One of their

stated goals in designing this conversational text-handling

language was that TRAC should be able to accept, name,

manipulate, store, delete, and retrieve any Teletype char-

acter or string of characters.

In addition, TRAC was created to satisfy the following

objectives (5):

1. It should allow the user to move any named

string into a secondary storage device such as tape,

disk, drum, to retrieve it at will, and to control the

organization of the strings within the storage.

2. It is desired that TRAC would be operated as

a component of an executive program to serve many

users concurrently.

3. It should be easy for a user to recover from

keyboard errors.

4. It should produce a simple and precise syntax

independent of a line format on a page.

5. The format of TRAC input data should be

6
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identical -to the TRAC program,; i.e., they are all

strings of characters.

Mooers and Deutsch, at the same time, gave the motives

for initiating the TRAC language. They found the existing

string-processing languages, such as COMIT, LISP, IPL-V,

unsatisfactory. They said that COMIT was rigid because

procedures could not be modified at the keyboard during

run time; LISP's details of syntax were inelegant in

practice; IPL-V was like assembly language: mechanistic

and not user-oriented. The main inspiration, however,

came from the study about macro-assembly system by

McIlroy and Eastwood (2, 3).

Although TRAC is a text-processing language, it is

characterized as a language system built with macro- capa-

bility. This means that portions of the user's program

may be defined with formal parameters, stored, and when

supplied with actual values for the parameters, can be

called and operated upon when needed.

In the same paper (5), Mooers and Deutsch discussed

the syntactic phase of TRAC. They defined the control

characters and various functions used in the language. The

algorithm for evaluation of a TRAC source program' was

briefly covered by them. It was described in detail later

by Mooers (4).
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Sammet (6), in 1969, gave a general introduction to

the TRAC language. She said that TRAC was still too new

for its long-range significance to be determined, but

Mooers' work on TRAC extensions would make the language

more powerful. Wegner (8) covered TRAC in his bookwith

emphasis on its macro attribute. Essentially their

discussions were based upon the original TRAC language

and no attempt was made to extend the ability of the

language. In fact, Mooers vigorously opposes any modifi-

cation of TRAC, as being a standard language.

Nevertheless, one of the distinguishing attributes of

TRAC is its extendability. Levine (1) discussed three

types of extended functions which would increase the

usability of TRAC. They are RESISTORS functions,

input/output, and graphic functions.

RESISTORS is the abbreviation of a club named the

Radically Emphatic Students Interested in Science, Techno-

logy or Research Studies. It is a group of high school

students of New Jersey interested in the TRAC language.

RESISTOR functions allowed interchange of TRAC programs

between computers and off-line storage for installations

without mass-storage devices. Input/output functions were

ideal for where the TRAC "select devices" primitive

function would not be applicable. Graphic functions could

write straight lines, initialize display pointers, and

print x and y coordinates of a given point in the graph.
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The graphic functions were reported by Teriault (1) in

more detail.

According to Mooers, TRAC was designed to be machine-

independent. This philosophy, Klein in 1964 (1) said, had

been achieved by the implementation of TRAC at that time

on the following machines: PDP-5, PDP-8, PDP-10, Honeywell

DDP-516, IBM 360, Hewlett-Packard 2116. He studied the

possibility of automatic and efficient translation of TRAC

between machines. He predicted problems which would arise

from the translation process,and, at the same time,

suggested the methods to solve them.

The discussion of TRAC implementation from the hard-

ware system point of view was explored by Wickham and

Hamming (9). The configuration of the system they

designed to support an on-line TRAC processor was composed

of a central supervisory processor, the TRAC processor,

some teleprocessing computers to handle simultaneous users,

and a large storage. The concluded that the general

structure of the TRAC language can place unusual demands

on the resources of a computer system.

One of the most successful implementations of the

TRAC language system was done by University Computing

Company in 1969 for the FASBAC system. Their version of

TRAC was called CASH (7). It embodied most of the

functions and conventions of TRAC and extended the

functions to some extent. CASH has a complete set of
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file-handling primitive functions for processing infor-

mation to and from secondary-storage devices; this was a

practical deficiency in the original TRAC. The manual of

CASH, from the user's point of view, provides clear and

precise explanations of each TRAC primitive function,

accompained by various examples which resolve several

ambiguities of the TRAC language.
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CHAPTER III

DESCRIPTION OF TRAC

TRAC processor accepts text strings in the 7-bit

American Standard Code for Information Interchange, abbre-

viated as ASCII. From the alphanumeric and special

characters -of ASCII the TRAC language defines its valid

characters, control characters, strings of characters,

primitive functions,and the arguments within the functions.

Syntactic Structure

The basic structure of TRAC language is defined in

three types of string expressions designated by #(...),

##(...), and (...). The sharp sign and parentheses are

syntactic control characters. The dots enclosed in paren-

theses are character strings which can be denoted by PF,

AlA2 ,...,Ak, where PF is a mnemonic for some primitive

function, Al,A2 ,...,Ak are arguments for the primitive

function, and commas spparate the arguments.

The first type of string expression #(-f,...) is

called an active function. It returns a character string

value after being evaluated. This value is to be further

evaluated, and replaces the current string expression.

The second type of string expression ##(PF,...) is

called a neutral function. It, like an active function,

12
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returns a character string value after evaluation,but this

value is not to be further evaluated.

The value returned by these two types of functions

could be null. The null value is a string of no length.

The third type of string expression, (...), is called

a quote. function. The text string within parentheses can

be an active or neutral function. It can also be any

ordinary character or string of ASCII characters, other

than certain exceptions for parenthesis characters. The

evaluation of this quote-mode function results in copying

the text string, without the enclosing parentheses, as

the value. In fact the text string is protected from

being evaluated.

Actually the format of text strings is more com-

plicated than what has been said. The text may contain

another function; it may consist of a pair of protected

parentheses~i or it may be a combination of both, and other

variations. In general, the arguments of string expres-

sions may also be string expressions.

For example, a TRAC program may have its text strings

arranged in the following formats:

#( ,##( ), ),

##( ,#( ), )

#( ,##( ), ,#( )),

where the specific mnemonics of primitive functions and

arguments are left blank. From these examples it is
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apparent that there is no restriction on the number of

nested parentheses of a TRAC program.

The scanning of this nested structure is from left to

right and from inside outward. It can be described by the

following example:

#( ,#( ,##( ),#( ))).
4 3 1 2

The neutral function underscored by number 1 is first to

be evaluated. The returned value becomes the second

argument of the active function underscored by number 3.

The active function underscored by number 2 is the next

one to be evaluated. It returns a value which is to be

further scanned and evaluated. The value obtained from

further evaluation will be the third argument of the active

function underscored by number 3, which in turns thie

next function to be evaluated. The returned value

occupies the position of the second argument of the active

function underscored by number 4. -This active function

is the last one to be processed.

When a string is immediately followed by another

string, it is said that they are concatenated. Concate-

nation of strings is quite simply indicated by their

adjacency; e.&, the concatenation of the four strings

A, #(RS), ##(?S,TRAC), (Y) is written as the single string

A#(RS)##(PS,TRAC)(Y). The scanning and evaluation of
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concatenated strings follow the rule for simple strings

except that the returned string values are also

concatenated.

The scanning and evaluation of the string expressions

of TRAC programs must terminate. This is indicated by an

end-of-string symbol '' at the end of the text string.

This apostrophe character is called by Mooers the meta

character. It may be dynamically redefined to be any

other valid character in ASCII. The redefining primitive

function is called "change meta character" and will be

discussed in a succeeding section concerning text input

and output.

Basic Primitive Functions

The TRAC language has six basic and important

primitive functions to perform input and output of text

strings, to define and to name the strings, to call. and

to segment the strings.

Text Input and pU

The input operation is handled by the primitive

function #(RS), where RS is the primitive-function mnemonic

for "read string". This primitive function will read a

string of characters from the teletypewriter up to an end-

of-string symbol.

The output operation is taken care of by the

primitive function #(PS,...), where PS is the
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primitive-function mnemonic for "print string" and the

three dots are the argument to be printed on the teletype-

writer. For example, the execution of #(PS,THIS IS. A TRAC

STATEMENT)' will have the character string THIS IS A TRAC

STATEMENT printed.

The nesting of input and output primitive functions

#(PS,#(RS))' is called the idling string or idling

routine. This string initiates the whole TRAC processing.

It is initially loaded into a scratch area of TRAC

processor memory. This area is called the active string.

The execution of this string causes a text string ended by

an end-of-string character to be read from the teletype-

writer and to replace #(RS) as the second argument of the

print string primitive function. If this input text

includes functional statements, they are performed. At

the end of the performance, if there is a non-null value

returned from the functional statements, it is printed out

by the execution of a print string primitive function.

The print string primitive function itself returns a null

value, so the active string becomes empty. At this time

the TRAC processor again loads a new copy of the idling

string into the active string and is ready for more input

from te tieetypewriter.

The primitive function "read string" performs

inputting of character string of arbitrary length termi-

nated by the meta character. TRAC also provides a
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primitive function to read a single character typed on the

teletypewriter. It is denoted as #(RC) and it means to

"read one character", with no end-of-string character used

to terminate the string.

It has been said that the character apostrophe indi-

cates the end of text string. It can be changed into any

other ASCII character, by the primitive function "change

meta character", denoted by the mnemonic CM. ,For example,

#(CM,##(RC))' will have the character entered ,on the

Teletype to be the end-of-string indicator, and this char-

acter is printed on the teletypewriter.

Text Definition and allin

Any input text in TRAC can be named and defined by

assigning a name. This is done by the primitive function

"define string" denoted by #(Ds,N,A), where DS is the

primitive-function mnemonic, S is the text string which is

to be stored in memory, and N is the name assigned to the

text string. For example, #(DS,AA,TRAC) defines a string

named AA and associates it with the string value TRAC. It

will be recalled that the arguments of DS may also be

string expressions. If the name of the string AA is not

changed abnd the, three dots ... are used to represent string

expression, then #(DS,AA,TRAO) can be specified in a more

general format #(DS,AA,...
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In the TRAC language, the memory locations reserved

specially for the. strings definedby DS agre called form

store. Each named string defined in the form store is

called a form. Form and defined string are used inter-

changeably.

The form AA defined by #(DS,AA,...) can be called

upon by the TRAC primitive function #(CL,AA). The CL

means "call string". The execution of #(CLAA) copies the

string named from form store and the resulting value

replaces the string expression #(CL,AA).

Sesientation and,_alllng

The definition of a named string in form store can be

modified by inserting, replaoinig, and deleting characters

within the form. Before any modification is performed, the

target .character or characters of the form-store string

must first be marked. This is done by the execution of

the primitive function #(SS,N,ivX2 "***Xn), where SS is the

primitive-function mnemonic for "segment string", N is the

name of the string in form store, and X1 ,X2V***n are text

arguments with which the text string is to be compared.

The matched characters are marked and gaps in the form are

created. The markers, in ascending ordinal value, are

chosen from characters. outside the ASCII character set to

avoid confusion and duplication. Also, SS may be

repeatedly applied to a given form.
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For example, the TRAC statement #(SS,AA,OC) will cause

the character C in named string AA defined previously to

be deleted throughout the string AA and in each case to be

replaced by a mark of ordinal value. If it is then desired

to change the value of string AA from TRAC to TRADE, the

execution of #(CL,AA,DBE) will accomplish the job. The

form named AA is fetched from store and is searched to

find the markers of ordinal value 1. The locations where

the markers reside are replaced by the characters D*. That

means that the contents of form AA have been changed from

TRA@ to TRADE, where the character @, for convenience,

indicates the marker of ordinal value 1. (The markers

used in the TRAC processor are not printable.)

Note that #(01,AA) has fewer arguments than #(CLAA,

DE). The former calls the string AA without editing; the

latter calls with replacing. From this example, the format

of the primitive function "call string" may be extended to

#(C1,NX1,X2,.., Xk), where the number of arguments is not

limited, but cannot usefully exceed the maximum number

of arguments used by SS on that form.

The values of arguments in the primitive functions

SS and CL could be null. The detailed explanation of null

arguments is covered by Mooers (1) and Scott (2).
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Editing of Partial Text String

The SS and OL deal with the whole text string. The

segmentation and retrieval are accomplished in terms of

the entire string value. Beyond that scope, the TRAC

language allows the user to manipulate portions of string.

As mentioned before, each defined string is stored in form

store. In order to perf-orm partial string operations a

pointer is needed to point at givenn character in the

sequence of characters in the string. Tha pointer is

called the position pointer and is set at the first char-

acter of its string in form store by the define string

primitive function. Its value is changed when the action

of partial string editing is finished.

The first primitive function in this class is "call

character", denoted as #(C0,N,A), where 00 is the

primitive-function mnemonic, N ls the name of a defined

string in form store, and Z is the value to be returned if

the position pointer has reached tb end of the string and

there are no more characters to be called. After execution

of the 00 primitive function, the position pointer is

advanced to the next character in the string. If a marker

for segment gap is encountered, it is skipped and the next

character in sequence is fetched. Using the previously

defined string AA as an example, AA has value TRADE and

the form pointer points at the first character T. The

execution of #(oC,AA,EMPTY)' will give a character value
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T and the position pointer is moved to point at the next

ch4 racter, R.

Not only can the user call a single character of a

defined string, but he can call several characters. This

is done by the primitive function #(CN,M,D,Z), where ON is

the primitive-function mnemonic for "call N characters", M

is the name of a. string defined in form store, D is a

string of digits, a decimal integer specifying the number of

characters to be called, and Z is the value to be returned

if the position pointer goes beyond the end of string. Fpr

example, #(CN,AA,2,E)' will call the previously defined

form AA and return RA as the function value.

The integer N may also be negative. That means the

characters to be called are those -N character positions

to the left of the current position pointer. If -N char-

acters are rnot available, Z is the function value. Thus

the position pointer used by CN may be moved to the left

or the Pight after evaluation.

Another primitive function to manipulate string

within the form is "call segment". It has the format

#(CS,N,Z), where CS is the primitive-function mnemonic,

N is the form to be called, and Z is the function value

if the 0QAtion pointer has already reached the end of the

string. This primitive function causes the defined form N

to be searched until a segment gap is found. The
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characters beginning with the one pointed to by the

position pointer up to the one preceding the gap marker,

become the returned function value. Then the position

pointer is advanced to the character following the gap,

marker. If a segment gap is not found, a null string

value is returned.

The next primitive function is called "initial". It

is defined by #(IN,N,XZ), where IN is the primitive-

function mnemonic, N is the name of the string in form

store, X is any character string, and Z is the function

value returned in case the position pointer of the form is

set at the end of the string. The "initial" primitive

function will look for the first occurrence of characters

string X in form named N. If the match is found, the

characters between the current position pointer of the

form and X become the function value and the pointer is

advanced to the first character beyond the matched string

X. If no match is found, the string Z is the function

value and the position pointer is not moved.

It has been mentioned that the value returned by a

primitive function goes. to either active string for re-

scanning or neutral stringdepending upon the mode (# or

##) of the function. For the primitive functions "call

character", "call N character", "call segment", and

"initial", however, there is an exception. That is, if Z

is the returned value when the form pointer initially
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points beyond the last character of the string, the value Z

is to be placed in the active string and rescanned whether

or not the mode, of the function is neutral. This

exception is define by the original TRAC (1).

The execution of the primitive functions described in

this section causes the .form pointer to be moved. This

pointer, however, may be reset to the first of the string

in form store by performing the "call restore" primitive

function designated by #(CR,N), where OR is the. primitive-

function mnemonic, Nis the name of the form with whioh the

form pointer is to be restored. For example, #(CR,AA)'

will reset the form pointer of form AA to the first char-

acter T. Thus the definition of AA becomes TRADE again.

Text Deletion

The TRAC language can define a text string; it also

can delete a text string. This is made possible by two

primitive functions: "delete all" and "delete definition".

The first deletion function is denoted by #(DA), where DA

is a primitive-function mnemonic and the function is

without arguments. The execution of this primitive

function results in all the string definitions in form

store being deleted. The second deletion function is

deno ted by #O(D,Nl,N2 ,...,Nk)* DD is the primitive-

function mnemonic and it means to delete the form defi-

nitions specified by the arguments N* 2 ,...Nk' For
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example, if the form AA is to be deleted, it is accom-

plished by issuing #(DD,AA)'.

Additional Primitive Functions

In addition to primitive functions strictly for text

string processing, TRAC furnishes a limited number of

primitive functions to do comparison of strings, integer

arithmetic, and Boolean operation. These functions are

briefly described as follows.

De ci sion-Making -Commands

The TRAC language provides two primitive functions

for comparison of arbitrary strings and arithmetic values.

The string comparison is done by the primitive function

"equal" denoted by #(EQ,S1,s2,YES,No), where EQ is the

primitive-function mnemonic, and S1 and S2 are two

strings. If Si and S2 are identical character by char-

acter, the argument YES will be the value (segment gaps

are ignored in the comparison). If S1 and S2 are not

identical, the argument specified by NO is the function

value.

The integer comparison is made by primitive function

"greater than", designated by #(GR,I1,I2,YES,NO), where

GR is the primitive-function mnemonic and I1 and 12 are

character strings defining integer values. If the value

of 11 is greater than the value of 12, then the argument

specified by YES will be the function value. If the value
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of 11 is equal to or less than the value of 12, then the

argument specified by NO is the function value.

For example, the evaluation of #(EQ,14,14,FE,NN1)

results in a string value EE stored in the active string.

The execution of #(EQ,30,5,100,99) returns string value 99

in the active string. The performance of #(GR,89,0,YY,NN)

results in the value YY stored in the active string. The

processing of #(GR,99,99,AABB) ends up. with the string BB

in the active string.

Boolean Operations

The TRAO language can handle Boolean operations on

vectors of I's and O', Instead of representing the

Boolean elements in pure binary form, TRAC uses a sequence

of octal-digit characters. The octal digits are defined

as the value of a group of three binary digits. For

example, the binary number 101 is equivalent to 5 in base

eight and 110101 is equal to 65 in base eight. There are

five TRAC primitive functions for performing Boolean

operations. They are union, intersection, complement,

shift, and rotation of bit sequence.

The union and intersection actions are denoted by

#(BU,01,02) and #(BI,01,02) respectively. BU. and BI are

the primitive-function mnemonics for "Boolean union" and

"Boolean intersection" and 01 and 02 are octal digits.

The value after evaluation of the function is also an
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octal digit character string. For example, #(BU,5,5)

gives an octal character string value 5 and #(BI,14,10)

returns an octal character string value 10.

The complement operation is represented by #(BO9,01),

where BC is the primitive-function mnemonic for "Boolean

complement", 01 is the only argument, a string of octal-

digit characters. The resulting value after executing the

function is the bit-by-bit complement or inverse of the

bits of the value of 01. For example, #(BC95) gives a

character-string value 2 base eight (i.e., 010 in binary).

The shift and rotate primitive functions have a choice

for the direction of shifting and rotation. That is,

octal digits representing binary digits can be shifted

left or right., They have formats: #(BS,D,01 ) and #(BR,D,

01). BS is the primitive-function mnemonic for "Boolean

shift"; BR means "Boolean rotate"; 01 is the character

string of octal digLts whose bit value is to be shifted D

positions. If the integer D is positive, the bit-shift

operations are done to the left. If D is negative, the

bit shift operations are done to the right. Any leading

nondecimal character in the argument string D other than

a minus sign is ignored. For example, #(BS,2,31)' returns

value 44, #(BS,-5,654)' gives 015; #(BR,3,61)' gives 16;

#(BR,-4,53)' returns 56.
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Arithmetic Primitive Functions

TRAC provides facilities to do simple integer ad-

dition, subtraction, multiplication, and division. These

are dentoed by #(AD,DL1,D2,Z), #(SU,D1,D1,Z), #(ML,D1,D2,Z)

and #(DVD1,,D2,Z,R). In these primitive functions the

first arguments specify the primitive-function mnemonic,

D1 and D2 are strings of decimal characters and Z is the

function string value to be returned if arithmetic .compu-

tation results in overflow (i.e., an incorrect result).

The condition of overflow is raised when the calculation

causes a number greater than the decimal numer 223-1 or

838608,since the Fairchild computer has a 24-bit accumu-

lator where the computation is performed. The argument R

of the DY primitive function is used to store the remain-

der after the division operation. This is not defined in

the original TRAC language. Note that any leading

nondecimal character in D1 is attached to the first of

the result string; in D2 leading non-decimal characters

are ignored during the evaluation.

The following examples of the four arithmetic

operations are self-explanatory: #(AD,15,4,OVER)' gives

19; #(SU,100,99,ONE)' gives 1; #(MLEA4,67,@*)' gives

EA268; #(ML,100000,100000,BURPY' gives BURP; #(DV,33,Z4,

QTRM)' gives 8. In decimal division, only the integer

portion of quotient 8 is kept as the returned value. The
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remainder 1 is stored in the argument specified as RM,

which is defined to be a form in form store.

Diagnostic Facilities

TRAC supplies several primitive functions as de-

bugging aids for the user. One of the primitive functions

defined in the TRAC language will list all the names of

strings defined in form store. In the listing, each of

these names is preceded by some characters chosen by the

user. This primitive function is denoted by #(LN, C),

where LN is the primitive-function mnemonic for "list

name", 0 is any valid character or string of characters

to be attached to each of the names. Assume that two

forms have been defined: AA and BB. The statement #(LN,

--- ) results in the character string ---AA---BB printed

on the Teletype. If the string --- is replaced by the two

carriage-control characters, carriage return and line feed,

the names of the forms will be listed columnwise.

Furthermore, TRAC can also print the string values of

forms defined in form store. This primitive function is

"print form definition" and is denoted by #(PF,N), 
where

PF is the primitive-function. mnemonic and N is name 
of the

form to be printed. If there is any marker for segment

gap in the string, it is indicated by ordinal 
value in

the output. Not only can this function list the content

of form, but it specifies the computer memory address
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where the form is located in the form store. Note that

this address is not the relative position of the form name

N in TRAC program.

By execution of primitive function "trace on", the

neutral strings for each function are typed out on the

Teletype. In the Teletype output the step-by-step eval-

uation of each primitive function is presented with all

the intermediate results. This trace can be terminated by

executing the primitive function #(TF). The mnemonic

means "trace off". These two tracing primitive functions

can be turned on oroff any time during the execution of

TRAC program. Initially the trace is assumed to be off.

Supplemented Primitive Functions

All the primitive functions discussed so far are

defined in original TRAC language (1). In this TRAC proc-

essor, three more additional primitive functions are added

to the system. They are "decode character", "encode char-

acter", and "implied call".

The primitive function "decode character" is denoted

by #(DC,X). The value of this primitive function is the

character string representing the value (base ten) of the

ASCII representation of the first character of the form

whose name is indicated by X. Taking the form named AA as

an example, the execution of #(DC,AA)' will return value

84, which is the decimal equivalent of ASCII code for the
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character T in the form string value TRADE. It is some-

times useful to convert alphanumeric names into numbers

which can be utilized for external storage addresses.

The primitive function "encode character" is the con-

verse of "decode character". The value after encoding of

a numeric value is a character. The format is #(ECD)

where EC .s the primitive-function mnemonic and D is a

string. representing the number to encoded. For example,

#(EC,49), after execution, returns the ASCII character 1.

(the character 1 has the binary value 0110001 in ASCII).

If the first argument of a string expression does not

match any primitive function that has been defined in the

TRAC language, it is assumed to be an "implied call".

The mnemonic is the. name of the form and this form is to

be searched in form store. The value will be definition

of the form with segment gaps filled out as in CL.

During the scanning and evaluation of TRAC primitive

functions presented in this chapter, it is possible that

the processor is in infinite iteration or loop due to the

user's error. The break key on Teletype can stop the

action and cause the reinitialization of the processor.

As a matter of fact, any action, not necessarily a loop,

at any time can be stopped by merely a touch of the break

key. This break key is defined by Mooers. For this

processor, the break key is replaced by the key&-on

Teletype because when the break key on the F24 Teletype
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is punched, the content entered into the accumulator is

not stable.

Auxiliary Storage Primitive Function

All but three of the primitive functions defined in

original TRAC language (2) are included in the F24 TRAC

processor. These three primitive functions not implemented

perform storing, fetching, and erasing forms between the

main storage and the auxiliary storage devices.

The primitive function "store block"-, denoted as #(SB,

N,NIN2,...Nk), stores the forms N1,N2,...,Nk as a single

block of record in secondary storage devices. When the,

forms have been put into the external storage, they are

erased from form store in memory. A new form named N is

created with its string value as the address of the block

in external storage. The forms stored in. external storage

in the block whose address is in the form named N can be

retrieved by the primitive function "fetch block", denoted

as #(FB,N), and can be erased by the primitive function

"erase block", denoted as #(EB,N).

This chapter has described the syntax elements and

various primitive functions of the TRAC language.

Several TRAC examples obtained from the Teletype outputs

are included in Appendix A to demonstrate the behavior

of the language.
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CHAPTER IV

ALGORITHMS OF TRAC PROCESSOR

This chapter illustrates the TRAC processor algorithms

which were used in this implementation of TRAC on the F24

computer. This description includes the steps for scanning

the TRAC programs, the techniques for dynamic-storage

allocation, and the specific features for handling some

primitive functions. The system flow of the processor is

shown in Figure 1.

Load
idl ing
routine~~

Scan
syntax

Read
text

strin

Decode
function
mnemonic

End No

te

-Perform
primitive
function

Fig. 1--System flow of TRAO processor
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Scanner

The unevaluated TRAC text strings are loaded in the

active string at the beginning. The active string is a

reserved area of the TRAC processor memory. The functions

of the scanner are to recognize the syntactie atoms of the

loaded text string, to detect the control characters, i.e_.,

comma, left and right parentheses, sharp, tabulation,

carriage return, and line-feed characters, and to take

proper action depending upon the control character scanned.

Furthermore, the scanner distinguishes active function from

neutral-function values.

A pointer is maintained within the scanner. This

pointer moves from left .to right in the active string during

the scanning process. When the current active string is

empty, i.e., there are no characters remaining in the active

string, the pointer is reset to point at the new active

string initiated by the idling string.

As characters of text string in active string are

treated by the scanner,, some of them may be appended to

the right end of the neutral string, which is another area

of memory reserved for storing strings of characters. It

is called neutral because characters in the string have

been operated (scanned) and thus remain neutral.

Mooers .(6) described the TRAC processing algorithm in

early 1966. The scanner is essentially based upon his

description but modification has been made in order to be
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compatible with the linked-list structure of the TRAC

processor. This linked organization will be described later

in this chapter.

The modification is as follows; during the scanning,

extra consideration is given when a comma is encountered in

the active string. It has been mentioned that the arguments

of a string expression are delimited by comma, and the

arguments could be characters, active functions, neutral

functions, or quote functions. For example, in #(SU,#(AD,

3,5,SSS),7,NUM), the commas within #(AD,3,5,SSS) delimit

simple character arguments; the comma between SU and #(AD,

3,5,SSS) separates a primitive-function mnemonic and an

active function. The address of the comma succeeding SU is

first saved and then linked with the returned string value

8 resulting from evaluation of #(AD,3,5,SSS). In another

example, #(DSAA,(ZZZZ)), the comma after AA is first saved

and then is linked with the string ZZZZ of quote function.

Though it is said that the address of comma is saved, it is

actually the ,address of delimiter for the comma in neutral

string being remembered. This will be seen in steps 5, 6,

7 of the scanner.

A step-of-step description of scanner is presented as

follows:

1. Test active string. If it is empty, go to step 11;

otherwise, get-. current character from the- active string and

go to step 2.
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2. If the character being examined in the active string

is a left parenthesis, go to step 3. Otherwise, go to

step 4.

3. The scanning pointer is moved ahead to the next

character in the active string until the matching right

parenthesis is found. Then the character string between

the matching parentheses is appended to the right end of the

neutral string. Go to step 10. Step 3 thus recognizes the

quote-mode function.

4. If the character being examined in the active string

is either a carriage return, a line feed, or a tabulation, go

to step 10; otherwise, go to step.5.

5. If the character being examined in the active string

is not a comma, go to step 6. If it is a comma, the location

to the rightmost character of the present neutral string is

marked by a delimiter and a flag is set to indicate a comma

is found. Go to step 10.

6. If the character being examined in the active

string is not a sharp sign, go to step 8. If it is a sharp,

the scanning pointer is moved ahead to scan the next

character. If the next character after the sharp is not a

left parenthesis, go to step 7. If it is a left parenthesis,

the beginning of an active function is indicated. The sharp

and the left parenthesis are ignored and the current location

in the neutral string is marked to indicate the beginning

of an active function and the beginning of an argument
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substring. Then test the flag for comma. If it is not on,

bypass the next sentence. If it is on, the address of

corresponding delimiter in neutral string is saved as a

linking address and the flag is reset. The scanning pointer

is moved to the character following the discarded parenthe-

sis. Go to step 10,

7. If the character succeeding a sharp sign is not a

sharp sign, go to step 9. If it is also a sharp sign, the

scanning pointer is moved to point at the next character

in the active string. If the next character is not a left

parenthesis, go to step 9. If it is a left parenthesis, a

neutral function has been encountered. At this time, the

current location in the neutral string is marked to denote

the beginning of a ,neutral function and the beginning of

an argument substring. Then test the flag for .comma. If

it is not on, go to, step 10. If it is on, the address of

corresponding delimiter in neutral string is saved as a

linking address and the flag is reset. Go to step 10.

8. If the character being examined in the active

string is not a right parenthesis, go to step 9. If it is

a right parenthesis, it triggers the execution of the

function. The current location in the active string is

marked as the end of an argument substring and the end of

a string expression. Go to .the function-decoding routine,

which is discussed in a later section.
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9. Move the character to the right end of neutral

string. This character is not a candidate for being an

indicator for either active or neutral function. Go to

step 10,

10. Advance the active string scanning pointer one

character position and go to step 1.

11. Load a new copy of idling routine into the active

string. Reset the scanning pointer at the beginning of the

active string. The current neutral string is deleted (the

scanning pointer for neutral string is moved during the

function evaluation).

The flowchart of the scanner is shown in Figures 2.1,

2.2. For simplicity, in the flowchart, the word "advance"

means to advance the scanning pointer of active string by

one character position; the word "CC" means the current

character of the active string.

Pushdown Automaton

During the scanning procedure, a pair of properly

matched parentheses in the text string must be found to

indicate that the primitive function is ready to be executed.,

The scanner uses a pushdown stack to accomplish this. This

pushdown stack is indexable and is initially empty. Each

time a left parenthesis is encountered in the text string,

the address of next available .storage in the neutral string

is stored (pushed) on the stack. The first memory cell in

the neutral string stores the first character of the
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primitive-function mnemonic for a primitive function or, in

case of "implied call", the first character of the name of

a defined string in form store.

The indexable address in the pushdown stack is

decreased by one whenever a matching right parenthesis is

being scanned. When the stack becomes empty, it indicates

the end of performance of a primitive-function. At this

time the scanner continues looking at the next character

in the active string. The description of storage allocation

for the pushdown stack to keep track of matching parenthe-

ses-is discussed in a later section.

Decoding of Primitive Functions

When a complete string expression has been recognized

and is ready for execution, the two-letter mnemonic for the

specific primitive function is decoded. The TRAC processor

is able to handle thirty-two primitive functions,as

described in Chapter III.

Among them, twenty-nine are originally defined in TRAC

language (6); three are added primitive functions in this

processor. They are divided into eight categories

according to the first character of the mnemonic.

The first category includes those primitive names

starting with the letter R. They are primitive functions

for input, RS (read string) and RO (read character).

The second category of primitive functions begins
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with the letter D. They consist of DS (define string), DA

(delete all forms), DD (delete definition), DO (decode

character), and the arithmetic operation DV (divide).

The mnemonics starting the letter C belong to the third

category. They are OL (call string), CO (call a character),

aS (call segment), ON (call N characters), and CM (change

meta character).

The mnemonics beginning with the letter S are classified

as the fourth category. They are S5 (segment string) and

SU (subtract).

The fifth category embodies the Boolean primitive

functions. They are BU (Boolean union), BI (Boolean inter-

section), BC (Boolean complement), BS (Boolean shift), and

BR (Boolean rotate).

The sixth category includes two primitive mnemonics

starting with the letter E. They are EQ (equal) and EQ

(encode character).

The mnemonics beginning with the letter .P are the

seventh category. 'They are Ps (print string) and PP

(print definition).

The last category includes two primitive functions in

which the first character of mnemonics is unique among the

primitive functions. They are GR (greater than) and IN

(initial).

If the first character of mnemonic does not conform to

any of the above eight categories or the first character
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does agree but not the .second,. it is treated as an implied

call primitive function. The mnemonic. in this case is the

name of the defined string in form store to be called upon.

For example, #(Ds,G,YYY)#(G)' will return string value YYY

on Teletype; #(DSGZ,ZZZ)#(GZ). will response string ZZZ

on Teletype. .Furthermore, if both characters of the .mnemonic

belong to one of the defined categories but the character

after the two-letter mnemonic is not a comma, that means

the length of the mnemonic is greater than three, then all

the characters of the mnemonic ended by a comma or a right

parenthesis are also considered as the argument of an

"implied call". However, carriage return, line feed, and

tabulate are ignored and will not be counted as part of the

mnemonic. For example, #(DS,GRX,XXX)#(GRX)' will return a

string value XXX.

The flowchart of the decoding routine is illustrated in

Figures 3.1, 3.2, 3.3.

Dynamic Storage Allocation

The allocation of storage is a significant and vital

portion of the task for developing any compiling or inter-

pretive type of processor. There are various methods to

handle the fixed amount of available memory so as to obtain

the maximum efficiency of storage utilization (2, 5). For

the TRAC processor, the allocation of storage is manipulated

dynamically in combination with lists of pointers.
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Structure of Linked Pointers

The internal structure of the TRAC processor is based

upon the linked lists of pointers. Each memory location

contains a linking address to another cell which is not

necessarily next to the current memory location.

The basic information unit of the Fairchild F24 computer

is a twenty-four-bit word. The processor, in general, uses

the rightmost twelve bits (bit 0-11) of the word to store

the address of next element in the list. The ten bits (bit

12-21) to the left of the above twelve bits store the data

item. The leftmost bit, that is, bit 23, is not used. The

remaining bit 22 is, most of the time, not used but acts

as a control during the scanning to indicate the mode of

the primitive function. If a neutral function is recognized

by the scanner, bit 22 of-the current character in neutral

string is set to 0. After the function evaluation, the

returned string value goes to either active string or neutral

string, depending upon the status of bit 22 of this specific

character in neutral string. The general structure of the

linked allocation is shown in Figure 4.

Shared Memor

Among the available 4096 ("14k") words of memory of the

Fairchild F24 computer, the first 1000 locations are reserved

for system loader and card loader, and approximately 2000

memory locations are occupied by the TRAC processor. The
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remaining 1000 cells are allocated for active string, neutral

string, form store, intermediate result, and the pushdown

stack used to search for matching parentheses in a TRAC

text string. The organization of the memory allocation is

shown in. Figqge 5.

Initially the TRAC processor reserves two hundred

locations for the pushdown stack. This allows a single

active string to contain up to two hundred left parentheses

prior to the first right parenthesis.

Assigning a fixed amount of memory for the scanning

stack at the beginning, frees the processor to deal with

more complicated storage allocation policies for active

string, neutral string, and form store without considering

whether there are enough memory locations for storing the

addresses of the left parentheses in active string. This
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approach, by which portions of memory ape permanently

reserved for specific use, results in reduction of the time

spent on the dynamic allocation and garbage collection.

Garbage collection refers to the release of portions of

memory which are no longer required. The description of

releasing memory for the TRAC processor immediately follows

this section.

The remaining storage, once the stack is allocated, is

shared by active string, neutral string, form store, -and

intermediate results. The big available space is not

divided into different sizes of blocks,as has usually been

implemented (3). Rather, it is occupied by arbitrary

length blocks in a first.c ome, first- served order-, along

with a very disciplined use of pointers.

This free space is allocated sequentially. A pointer,

called AVAIL, points at the next available cell of free

space. No matter where the current memoQy location is,

the next free location always follows it, except that when

the entire 4k memory is full, garbage collection is

performed.

Gar Collection

When the available 4k memory is fully occupied, garbage

collection is performed to release all previously used

memory which is not in current use and hence is not to be

retained. The restructuring is accomplished by moving the
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contents of all memory cells currently in use to one end

of available storage. The released memory locations at

the other end of storage then become. available for further

allocation.

The procedure restructuring memory begins with the

memory cell next to the last location of the stack. This

location is defined to be the head of the pointer list for

defined form store. (If the head is zero, it means that the

form store is empty and no named string has yet been defined.)

The address of the next available free location starts at

the cell following the head. The pointer AVAIL is set to

point at this place. At the same time, the address pointer

of the last memory location in 4k storage is adjusted to

point at this new free location.

If the head of the pointer list of defined form store

is not zero, it indicates that there are defined strings

in form store. In this case, all named strings in form

store are moved forward consecutively to become a group

of named strings together instead of being in scattered

form as prior to the performance of garbage collection.

During the movement the address pointers of defined string

in form store are properly modified to point at the newly

released memory locations.

The active and neutral strings currently in use are

not subject to garbage collection. However, if the last

address pointer, when the memory becomes full, is in either
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active or neutral string, it is to be updated to point at

the ;ust released memory next to the form pointer list.

Execution of Some Primitive Functions

The following two sections single out the techniques

for handling the performance of two types of primitive

functions. The first type is those primitive functions

featuring macro attributes, such As define string, segment

string, and call primitive functions. They are some of

the most important and powerful primitive functions defined

in the TRAO language. The second type is those primitive

functions - calculating arithmetic integers, such as addition,

subtraction, multiplication, and division. The operands

of the latter are in the form of numeric characters.

During their execution conversion is required to transform

them from the character string format into an internal

numeric form for arithmetic.

Macro Primitive Functions

It has been mentioned that TRAC is a language coupled

with macro ability. The primitive function DS (define

string) defines the macro; SS (segment string) supplies

parameters for the macro definition; CL (call string)

invokes the calling of a macro.

The DS (define string) primitive function associates.

a string name with a-string value retained in form store.
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The TRAC processor keeps a list of pointers to point at

the addresses of the defined strings in form store.

There is a head of the form-name list and tail of

the form-name list. Initially, both the head and the tail

have a zero value. When the first DS primitive function

is encountered in an input program, the rightmost twelve

bits of the next available memory location pointed to by

the pointer AVAIL, are set to contain the address of next

free location. For convenience, the address of the free

location is called the form pointer. Beginning with this

location, the name of the defined string and its value are

allocated consecutively in free space and, meantime, they

are delimited by a memory cell. Then the AVAIL pointer

is advanced to point at the next free location which is

neighboring the last character of the form-string value.

Also the address of the current form is stored at the head

of the list of form store.

When the next DS primitive function is executed from

an active string, the above allocation procedure is

repeated except that the address. of the current form pointer

is not stored at the head. It is, however, stored as the

leftmost twelve bits of the previous form pointer. This

linked list of form pointers provides a searching list

for defined strings in form store. The rightmost twelve

bits of each form pointer point to the current named

string and the leftmost twelve bits point to the next
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named string. If the leftmost twelve bit group of the

form store is zero, it signifies the end of the list of

names of defined strings in form store. The diagram of

this linked list of form pointer is presented in Figure 6.

The SS (segment string) primitive function deletes

ard marks the substrings of a previously defined string in

form store when they match the argument substring given

in the SS statement. The first step to perform this

primitive function is to find the named string in form

store (the name being the first argument of the SS) by

searching through the form pointer list. The next step is

to mark the matched substrings. The marker is a character

chosen in ascending ordinal value outside the valid char-

acter set in ASCII to avoid confusion with valid user

characters.

If more than one substrings of form match the argu-

ment substring given in SS primitive function, each of

the matched substring of form store is marked by the same

ordinal value. For example, #(DS,,ABABZZAABLBAB)#(SS,K,

AB)' .causes four substrings AB of form K (underlined) to be

marked by the identical ordinal value 1.

The SS primitive function accepts multiple' substring

arguments, such as #(DS,A,HAAZAHAALALA)#(SS,A,HAA,ZA,LA).

When the substring argument HAA of SS is encountered in

the neutral string during evaluation, two substrings HAA

of form A are marked by ordinal value 1. When the next
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substring argument ZA of SS is encountered, the only

substring ZA of form A is marked by ordinal value 2. So

is with the third substring argument LA except that two

substrings LA of form A are marked by ordinal value 3.

The CL (call string) primitive function examines the

occurrence of a named string in form store and returns

the characters of the string as its value. As described

in Chapter ,il, CL has two different appearances: without

substring arguments such as #(CLAA), and with substring

arguments such as #(,CLBB,X,Y,Z).

For CL without substring arguments a search is first

performed through the list of form store to find the

defined string and then the characters of the string are'

returned as the value of CL.

For 01 with substring arguments searching is not the

first thing to be done. Rather, the substring arguments

are first stored in the free area allocated to them and

each of them is appended by as marker. The markers are

in ascending order according to their relative position

as substring arguments in CL primitive function. After

substring arguments have been allocated and preceded by

markers, the form store is searched to find the named

string. When it is found in form store and consists of

gap markers, the gap markers (which have certain ordinal

values) are replaced by the substring arguments of

corresponding ordinal values. The replacement, however,
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is a pseudo-operation and no replacement is actually

taking place. In fact, the characters of form, if not gap

markers, are simply copid to the active or neutral string

depending upon the mode (# OR ##) of the function. If

the characters of fPrm are gap markers, the argument

substrings in memory with the corresponding ordinal values

are also copied to the active or neutral stringdepending

upon the mode of the function.

Considerations for Arithmetic Operations

Though the TRAC language is designed for text proc-

essing, it does- handle limited arithmetic operations on

integers. The integers, however, are not represented in

pure numeric format but are in character format with the

ASCII code. The complete character set of this 7-bit code

representation can be found in various references (1, 4,

7). This nonnumeric notation forces the processor to

convert a string of ASCII characters into a numeric value

so that internal calculations can be performed. Further-

more, the results have to be converted back to character

strings for intermediate string values or for function

values.

When the processor is tested under the simulator of

Fairchild F24 computer, the "Teletype" input of TRAO-text

strings in punched on cards, which simulate the actual

input in ASCII code from a teletypewriter. The cards
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are in the character set of EBCDIC (abbreviation of IBM

360 Extended Binary Coded Decimal Interchange Code), which

is different from ASCII.

The simulator takes care of the conversion required

for input from EBCDIO to 8-bit (with parity). The

processor in turn, converts the seven information bits of

the ASCII representation of the character into the internal

coded decimal value on which the calculation is performed.

For example, the character 5 is read into the IBM/360

memory as 11110101 ,in EBODIC. The simulator makes it

0110101 in ASCII. Then the TRAC processor .converts it

into 101 in binary or 5 in base ten. The addition

operation #(AD,5,5,OYER) will result the binary value 1010

or 10 in base ten in the F24 accumulator. For this value

to be printed on Teletype, it is converted to a character

string consisting of two ASCII characters 0110001

(character 1) and 0110000 (character 0). Therefore, the

TRAC processor converts the binary value after the

addition 1010 to the above ASCII characters for Teletype

output (or for any other purpose, for that matter).

Besides considering conversion, the TRAC processor

pays special attention to the problem of the sign

of integers. The proper sign may be easily treated when

the arithmetic operands are pure numeric integers.

The TRAC language accepts integers in ASCII character

string format. The sign, if present in text
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string, is also in character form. Physically, the sign

and integer characters are concatenated. The processor

has to interpret the sign as the sign for the integer

instead of considering it as a character alone,

Another factor adding to the complexity of signed

integer is that the available model I of the Fairchild

F24 computer can manipulate only positive numbers. The

TRAC processor, however, is supposed to be able to handle

both positive and negative integers defined by the TRAC

language.

There are three different cases for the problem of

sign: I. both signs are positive, 2. either one of the

signs is negative, 3. both signs are negative.

For first case the signs, not present in the integer

operands, are assumed to be positive for all four integer

arithmetic operations.

For the second case, in which one of the two signs is

negative as indicated by the character -' preceding the

integer operand, considerations are given to addition,

subtraction, and multiplication, division respectively.

The reason for two respect treatments is that, when either

one of the operand is negative, the sum and difference

may be positive or negative while the product and quotient

are always negative.

In addition and subtraction, such as #(AD,-3,6,,PP)



60

and #(SU,-3,6,00), the integer operands preceded by the

character L-' are transformed into their two's complement

internal arithmetic formats before operation. If the sum

or difference is positive, it is simply, returned as the

string value. If the sum or difference is negative, it is

transformed into its two's complement form (this makes the

value positive) and the character '-' is appended to its

string value.

In multiplication and division, such as #(ML,-4,7,A)

and #(DV,34,-7,Q,R), the integer operands preceded by '-'

are not changed to their two's complement formats. Both

operands are treated as positive during the operation.

The returned string value, however, is attached by a '-'

to indicate it is negative.

For the third case, in which both signs are negative

as indicated by a '-' in front of both integer operands,

respective considerati ns are given to addition, subtraction,

and multiplication, division.

Since the sum of addition is always negative when

both the signs of integer operands are negative, the two

operands are treated as positive during operation. That

means the two integers are not transformed into their two's

complement forms. The returned numeric character string is

appended by '-' to denote it is a negative value.

The difference of subtraction could be either positive

or negative when both operands are negative. For instance,,
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the integer string value of #(SU,-7,-10,?POO) is 3; the

integer string value of #(SU,-14,-6,NN) is -8. Before

subtraction, both operands are transformed into their two's

complement formats. If the numeric value after evaluation

is positive, its string value is simply returned. If the

numeric value after evaluation is negative, it is first

transformed into its two's complement format and then, a

'-' is attached to reflect the string value is negative.

When both operands are negative, the product and

quotient are always. positive. During the operation the

operands are treated as positive. After evaluation the

string value is simply returned asppositive value.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This chapter will present a summary of designing

experience, offer some conclusions about the results, and

make recommendationslor possible further development of

the current TRAC processor.

Linked Lists

The most important aspect of the designing phase is

the choice of data structure for the processor. The

organization of data objects in a programming environment

is known as data structure. There are numerous data

structures: e.g, sequential allocation, stack, queues,

trees, and linked lists. The performance of a program or

a programming language is affected in an important manner

by the data structure upon which it is based.

For the TRAC processor, a sequential list is used, to

keep track of the next available free memory location; the

pushdown stack.is reserved for finding matching parenthe-

ses within the nested TRAC text string; linked lists are

used throughout the text evaluation procedure, which

constitutes the body of the processor.

During the earliest stage of designing the processor,

sequential allocation was used to manipulate relatively

63
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simple TRAC primitive functions such as RS (read string),

RO (read single character), and PS (print string). The

allocation of storage was, at that time, taken care of by

dividing the available memory into several different sizes

of blocks.

However, the sequential allocation seemed awkward

when it was applied to those primitive functions involving

defined strings such as DS (define string), SS (segment

string), CL (call string), CC (call character), DD (delete

definition), and other related primitive functions. These

functions have to do with, one way or the other, the

addition, movement, deletion, and replacement of character

strings within the given defined string. The linked lists

are tried on these primitive functions and it is found

that the above string operations are more easily and

smoothly carried out than with the sequential allocation.

Therefore, for unity, the linked lists are later chosen to

be the basic organization to implement the processor except

that the sequential allocation is used to keep track of

the next free storage of the one big free area. The ori-

ginal adoption of sequential allocation to handle simple

I/O operations is discarded.

The linked lists, furthermore, trigger the idea of

"one big free area" for the problem of storage allocation.

The original idea of several blocks of storage .accompany-

ing the sequential allocation during the earliest phase of
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development was also dropped. If the storage were divided

into different sizes of available area, there would be a

tendency for them to perpetuate themselves during garbage.

collection (1). By careful management of list pointers

within the only one available block, this difficulty has

been avoided.

It has been said that, for linked allocation, twelve

bits of the Fairchild twenty-four-bit word are used as

address pointer and ten bits are used to store the charac-

ter data. If the linked allocation were applied to a

machine with an eight-bit word, it seems not feasible

because the word can only accommodate the data item and no

space can be used as an address pointer. There is an

exception for IBM 360 and 370 systems. Their basic word

length is a byte, or eight bits, but the instruction length

can be two to six bytes. If the linked allocation were

applied to a sixteen-bit word, the data item would be well

contained in the word but the accommodation of address

pointer would depend upon the total size of addressable

memory of the machine.

From the above discussion of the possibility to

extend linked allocation to eight- or sixten-bit word

machines, it can be seen that the linking approach takes

up additional memory space for the links. This would be

the dominating factor while making a choice between linked

structure and other data organizations. Fortunately, the
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data item used in the processor does not take up the whole

twenty-four-bit word and there is already enough space for

the address pointer.

The concept of list processing has usually been con-

sidered as inaccessible and complicated to ordinary pro-

grammers (1)., It is something special and thus is for a

special group of programming situations. The design of

TRAC processor, however, utilizes extensively the linked

lists, and has been benefited from this dynamic structure.

While this successful example does not, and should not,

imply .that the structure of linked lists is applicable to

every programming environment, it has been shown that the

list processing is acceptable and can be understood as long

as a ;udicious manipulation of linked pointers is main-

tained.

Assembler and Simulator

The TRAC processor has been extensively tested using

the available Fairchild F24 assembler and simulator before

it is loaded into the F24 computer memory. As a matter of

fact, the entire designing process is heavily a program-

ming effort. The correctness of the interpretation of

each TRAC command is first examined from the printer output

of a simulated execution. If the test result is correct,

the actual execution of each TRAC command on the F24

computer system gives the identical result. Nevertheless,
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the authentic reactive action offered by the Teletype is

simulated by card input and printer output.

If there were no F24 assembler, there would be almost

notway to start developing the TRAC processor on Fairchild

computer. Pure machine language programming for an on-line

application program containing about 2000 statements is

absolutely not practical. If there were no P24 simulator,

it would make the debugging of the program an unpleasant

task. Testing a program of reactive application directly

on the machine would usually, suffer the difficulty from

unexpected program looping and sudden machine lockup. At

this time the only available source to find the cause. of

error is from the switches on the computer. These switches

can tell nothing more than a snapshot of the contents of

accumulator, the location counter when the program is

terminated, and the status of some control switches.

Though memory dumps can be requested on some machines, it

is more difficult to read than the symbolic listing of 
the

program obtained from the assembler output.

If a TRAC processor is to be developed and implemented

on another machine, the assembler may not be necessary

since the TRAC processor program could be written in a

higher-level language which is to be translated 
into ma-

chine language by the compiler. In other words,the need

for an assembler to develop a TRAC processor depends upon

the specific machine configuration and the available system

software.
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As for the simulator, it is suggested that it should

be made available to simulate the reactive typewriter or

typewriter equipped with Teletype capabilities of the

specific machine. The simulator should not only provide

a memory dump to show the final contents of each cell used,

but furnish the tracing facilities to find out the in-

struction or statement deviating the program execution.

Response Time

One of the major goals of the thesis is to see the

TRAO processor work. The TRAC language is designed for

one-line reactive application. The user enters TRAC text

string on the Teletype and expects immediate response

(output) from the Teletype. The time spent between the

user entering the last character of TRAC text string andthe

Eeletype outputtings the first character of output string

is called response time. In case of null-valued function,

the output is indicated by the action of carriage return

and line feed. The response time of the F24 TRAC processor

on the Teletype keyboard generally takes one fourth to

three seconds. The time of this order is required to

promise efficient performance on a reactive system.

The response time varies according to the complexity

of the TRAC text string entered on the Teletype. For ex-

ample, the speed of feedback of resulting string value from

the simple TRAC statement XY' is, of course, faster than
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that of #(DS,A,XYXY)#(SS,A,X)#(CL,A,FE:EDBACK)'. The

nested structure #(DS,12,345)#(AD,##(CL,12),#(ML,#(0c,12),

##(GN,12,2,NOMORE),O),Flow)' takes more time for the Teletype

to respond -than do simple structures.

Another important factor affecting the response time

is the performance of garbage collection. When memory gets

full, the frequency of restructuring the available storage

increases. This somewhat slows down the response time.

However, the Fairchild instructions each generally take

1.6 to 3.2 microseconds (1 microsecond = 10 second) for

execution. This fast execution rate contributes to the not

too drastic difference of response time between complicated

and uncomplicated TRAC string expressions, between those

which require garbage collection and those which do not.

Implementation of Secondary Storage
Primitive Functions

All but three of the primitive functions defined in

original TRAC language (2) are included in the F24 TRAC

processor. These primitive functions are "store block",

"fetch block", and "erase block", as described in Chapter

III. They allow the keyboard user to move any named strings

(forms) into a mass-storage device such as disk, tape, or

drum, to retrieve the named strings from the mass storage,

and to erase the named strings in the mass storage.
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The future version of the F24 TRAC processor should

be extended to handle these three primitive functions once

the auxiliary storage device is made available for the F24

computer system. One of the advantages of adding these

external storage management functions is that they protect

the defined strings from accidental erasure. If the

defined strings in memory were unexpectedly destroyed, a

new copy could be loaded from the external device without

having to redefine the strings. This is especially

necessary when the defined strings are too long or too

complicated to enter them again on the Teletype.

The three primitive functions are to store, fetch,

and erase blocks of defined strings. By the time they are

implemented, the blocks of defined strings may further be

collected together as a higher level group. The group may

be put together to form another collection. From there on,

a more elaborate file processing ability of the TRAC

processor could be initiated.

If these three primitive functions were ever added to

the existing TRAC processor, the size of the program for

the processor would be necessarily increased. This matter

would, in turn, reduce the amount of free storage in the

memory. Nevertheless, judging from the number of program

instructions used for the existing primitive functions,

it could be anticipated that the reducing of free memory
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space would not affect the shrinking of the one big block

too seriously.

The above anticipation is under the circumstances

that the input/output instructions in the program dealing

with external storage are relatively simple; that is

supposing there is an external storage controller handling

the interpretation of external I/0 commands instead of

letting the processor largely perform the job.

While the adding of external storage manipulation,

primitive functions would reduce the available free space;

there might be a gain of the available free storage in

the other direction. This is under the assumption that

all the defined strings are to moved into the secondary

storage by the "store block" primitive function when they

are created and to be brought into the memory by the

"fetch block" primitive function when they are needed.

When a block of defined strings is moved from memory to

external storage, the address of that block in the

external-storage device is stored in memory under the

identical block name ("store block" does this). The

address of a block sure takes less space than the actual

contents of the block. Rather, the space saved would be

traded off by the time spent on transferring blocks of

defined strings back and forth between the main memory

and the secondary devices.
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Therefore, it is apparent that, if the three unimple-

mented primitive functions were added to the F24 TRAO

processor, the size of the one big free area of storage in

memory would be affected -more or less by the following

three factors: (1) the increase of program instructions,

(2) the control of I/O functions concerning external storage

devices, (3) the movement of blocks of defined strings to

and from main storage and secondary storage.

Not only the .implementation of external storage

primitive functions influences the storage allocation, but

it also will question the addressability of address pointer

used in the linked allocation of the current processor.

That is whether the twelve bits of address pointer will be

able to point at the address external to the memory. For

the future enlargement of the TRAO processor, the effect

of the above factors on the storage allocation and the

adaptability of linked lists to external devices deserve

as much attention as from the file-processing point of view.
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APPENDIX A

SAMPLE TRAC PROGRAMS

Active, Neutral, and Quote Functions
#(DSA, TRACK '

# ) Sp B #: C L,:,A)))
#(PS,(#(CLB))'(CLB)
#(P$. ###CCL;pIB))' CLA)
#(PS*#(CLS))B'TRAC

Miscellaneous Operations
#(DSYpTHIS IS A TRA PROGRAM)'
#(S5Y, )'
#(CLY)'THISISATRACPROGRAM
#(CSYPP)'THIS

#(CR,Y)'
# (CL Yp&6) 'THIS IS&A&TRAC&PROGRAM

Strings Concatenation
#(DE.AsTHIS IS THE.S1TRING)
#(DS B. TEXT PROCESSING)"
#(CL0 A)#(CL,B)'TIH-IS I$.THE STRINGTEXT PROCESSING
#(CI ,A.2,YY)#(CNB,5,QQ)'THTEXT
# (DSSHARP.*(#) ) '
#(CL" 'SHARP) C(DS XXXX) '
#(PS ##(CL.XX))'XX

Square of A Number
#(DS,SQUARE,(#(L, *,*,OVER)))'
# (SSSUAPE, *) '
#(SQUAREo 12)1144

Factorial of -A Number

#(PGLACT) E. No5LoN, # CLFACTo #AD.N ))

#(CL'F FAT 6) 720
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APPENDIX B

GLOSSARY OF TERMS

Active Funation

Active String

Form

Form Store

Form Position
Pointer-

Idling String

Neutral Function

Neutral String,

One Big tree
Area

Primitive
Function

those primitive functions (see Primiti~e
Function) whose values returned from
evaluation are to be rescanned and
reevaluated.

the string is composed of the TRAC
programs or substring currently scanned.

a string which has been given a value
and associated with a name.

memory space occupied by the forms.

the pointer used to point at the specific
character of the form.

#(PS,#(RS)); it is initially loaded in
the active string, causes a string
terminated by the end-of-string symbol
"'" to be read from the Teletype into
the active string, then the string is
evaluated, printed and -a fresh copy of
the string is loaded.

those primitive functions (see Primitive
Function) whose values returned from
evaluation are not to be scanned or
evaluated.

a work area where string of characters
is used for execution.

an area of TRAC memory consisting of 1000
locations shared by active string,
neutral string, and intermediate value
resulting from function evaluation.

TRAC instructions specify the action
to be taken upon the string.
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