279
NG
No. HE 80

DESIGN AND IMPLEMENTATION OF A TRAC PROCESSOR
o FOR PAIRCHILD F24 COMPUTER

PHESIS

Presented to the Graduate Council of the
North Texas State University in Partial
Fulfillment of the Requirements

For the Degree of

BY

Ping Ray Chi, B. A.
' Denton, Texas

August,ui974

i

chi, Ping R., Design and Implementation of a TRAC

;Processor fcr Pairchild ?24 Computer, Master of Science

i(Ccmputer Sciences), August, 1974, 77 pp., 6 illustrationa,
2 appendices, bibliography, 7 titles. .

TRAC i3 a text-processing language-for use with a

reactive typewriter. The thesis descrlhes the design

and implementation of a TRAC processor for the Fairchild

F24 computer.

Chapter I introduces some text processing concepts,

the TRAC operations, and the implementation procedures.

Chapter II examines‘the history and characteristics of the

fTRAG language. The neXt_chapter specifies the TRAc'syntax

and primitive functions. .Ghapter IV covcrs.the‘algorithms_

jused by the processor. The last chapter discusses the

‘design exﬁerience frcm programming the processor,'examines

-the reactive action causcd by the processor, and suggests

‘adding external storage primitlve functions for a future

" version of the processor.

TABLE OF CONTENTS

LIST OF ILLUSTRACTIONS 4 + v « o o o o o o o o &

Chapter

It IHTRODUIGTION + & &8 & 8 & & * o & & o .

Text Processing

TRAC Operations

Implementation of TRAC Processor
Summary of: Ghapters

IT., REVIEW OF LITERATURE . . ¢ « o o o o &

"IIT. DESCRIPTION OF TRAC v « o o o o o o o o

Syntactic Structure

Bagic Primitive Functions

Editing of Partial Text String

Text Deletion

Diagnoatie Pacilities

Supplemented: Primitive Functions

Secondary Storage Primitive
Fynctions

IV, ALGORITHMS OF TRAC PROCESSOR .+ « o« o &

V. CONCLUSIONS AKD REGOMMEHDATIGHS o« o s .,

APPENDIX A.
APPENDIX B.

Scanner

Pushdown Automaten
Decoding of Primitive Functions
Dynamic Sterage Allocation

Execution of Some Primitive Functions

Linked Lists

Assembler and Simulator

Respease Time

Implementation of Sec@ndary'storage
. Primitive Functions

SAMPLE TRAC PROGRAMS . . « + + . .
GLOSSARY OF TERMS « + o « o 4 o o &

BIBLIGGRA?HYQ‘...-n‘;lt"...ﬁlO'.Q

iii

Page
. v

LIST OF ILLUSTRATIONS

Figure Page
1. System PFlow of TRAC Processgor .« « + « o » « o o o 33
2. Seannerhfor:IRAb v e s e 4. s s e e s s s s s & s 39
3. Flowchart af’Dee@ding ROUEING o v o v o o 0 o o o 44
4, Diagram of Linked Allocation . . . + ¢ o 4 .o« » 48
5. Storage Organization of TRAC Processor 49

6. Structure of Ferm Pointef‘and Form Store . . . « 55

iv.

CHAPTER I
INTRODUCTION

Pext processing plays a distinctive role in the field
of information gystems hecause of its generally non-arith-
metic characteristic, The object of this thesis is to
deseribe the design and'implementation of a processor for
TRAC, a conversational~text-handling langunage system for
use with a reactive typewriter. TRAC (text reckoning and
compiling) is the trademark and service m#rk of Rockford

Research Institute Incerporated in connection with its

standard computer controlling language (3).

Text Processing

Text is any combination of alphabetic, numerie, and
gpecial characters arranged in strings and other stfuc—
tures. RNatural languages, computer programs and their
data, personal letters, and even this sentence are all
considered as text, Besides TRAO, there are several @ther
languages deslgned speciflcally for processing string—
oriented text, such as COMIT, IPI~V, and SHOBOL (3).
However, apparently none of them was origlnally intended -

only for interactive on-line application.

3 TRAC Cperations

Thg‘TRAG'pr@eeasor is able to aeeept‘and execute TRAC
source programs. These programs can be procedures to
operate on the text from the. teletypewriter, The
operations (2) include accepting, naming and étoring a
character string, modifying a string, concatenating
strings, creating a macro skeleton from a string, treating
any string at any time as an executable procedure, or as
2 name, or as text, and printing out any string known te
the processor. Besides, the TRAC language allows the user
to do integer arithmetic and Boolean operatiamﬁ;and provides

diagnostic facilities.

| Implementation of TRAC Processor

The TRAC processor is implemented on model 1 of the
Fairchild F24 computer available in the Department of
Computer Sciences, North Texas State University. This 4k
memory computer system has a KSR teletype with papeéer-tape
reader/punch, a card reader, and digital-to-analog con-
verters as 1/0 devices.

The processor was written in Fairchild assembly lan-
guage and was tested under a Fairchild assembler (1) and
simulator (4) on the IBM 08/360 system of the University.
During the test the Teletype input is simulated-ﬁy punched
card; the Peletype output iz simulated by the printer.

The results obtained from the teat show only the simulated

reactive action, since neither the card reader nor the

printer is responsive., The test result is then verified

by the actual implementation of the processor in Fairchild

FZﬁ‘computer system, ”
The TRAC processor can be loaded into the Pairchild

memory as a software text-processing package by the

following steps (4):

1. The object code of the assembler is generated
in punched card form.

2. The program loading routine is loaded into
the F24 memory from paper tape.

3. The TRAC processor punched object deck is
then read. by the ¥24 card reader into the computer
memory.

A copy of the TRAC processor objegt code is also
available on paper tape punched out by the Teletype after
the cards have been read into memory (5). This paper

tape may later be reloaded into memory.

Summary of Chapters
The review of original definition and related material
of the TRAC language system ig the‘eubject'of the next
ehapter; The history, g@al,_eharécteristics, develapment,
and implementation of the language are sammar;zed.
The prospective users of the TRAC processor are.

expected to understand the structure of the TRAC language

by beingﬂexygsad to the syntax and primitive functions
briefly dise#ssed in Chapter III.

Chapter IV degcribes the pr@eedures-ef-designing.tha
processor, i.e., the detection of syntactic units, the
handling ei'variausaprimitivesg and the allocation of
memory storage.

'Ghapter-v-examings the designing experience learned
from the preaeg&ér,‘@ffers some conclusions, and suggests
future development for this-eonversatianaldtextépraeéé%ing

CHAPTER BIBLIOGRAPHY

1. Grimes, Glen T., "Design and Implementation of an
Assembler for the Fairechild ¥24 computer," unpublished
magter's problem in lieu of thesis, Department of
Computer Sciences, North Texas State University, Denton,
Texas, 1973.

2. Mooers, C. N, and Deutsch, L.P., "IRAC, a Text Handling
language," Proceedings, Association for Computing
Maghingry Twentieih National Conference, (August, 1965),
229-246,

3, Semmet, J. E., Programming language: History and Fun=-
dameﬁtals&,ﬁew Jersey, Prentice-Hall Inec,, 1969.

4, The F24 simulator on the IBM 360 and the F24 program
loader routines were provided by Prof. Dan W. Scott.

5. The memory~dump program Was provided by Prof. Dan W. Scott.

CHAPTER TI
REVIEW OF LITERATURE

TRAC was specified by €. N. Mooers in 1960 and first
implemented by L. P. Deutsch in 1964 (5). One of their
stated goals in'deﬁigning this conversational text-handling
language was that TRAC should be able to accept, name,
maﬁipﬁiate, store, delete, and retrieve aﬁ& Teletjpe char-
acter or string of characters.

‘ In addition, TRAC wag created to satisfy the following
objectives (5):

1. It should allow the user to move any named
string into a secondary storage device such as tape,
digk, drum, to retrieve it at will, and to control the
organization of the strings within the storage.

2. If is desired.that TRAC would be operated as
a component of an executive progfam to serve many
users concurrently.

3, It should be easy for a user to recover from
keyboard errors. |

4. 1t should prgdace a simple and precise syntax
independént of‘a line format on a page.

5. The format of TRAC input data should be

identical to the TRAC program; i.e., they are all

strings of characters.

Mooers and Deutsch, at the same time, gave the motives
for initiating the TRAC language. They found the_exiéting
string~processing 1énguages, such as coMiT, LISP, IPI~V,
unsatisfactory. They said that COMIT wéé‘rigid'ﬁeéahse
procedures could not be modified at the keyboard during
run time; LISP's details of syanQRWere_inelegant in
practice; IPL-V was like assembly language: mechanistic
and not user-oriented. The main inspiration,_hdwever,
came from the study about macfo-assembly system by
~ MeIlroy and Bastwood (2, 3).

Although TRAC is a'text—ﬁroeessing language, it is
characterized as allanguage system buiit with macro capa-
bility; This means that‘pbrtiens of the user's program
may be defined with formal parameters, stored, and when
supplied with actual values for the parameters, can be
called and operated upon when needed.

In the same paper {5), Mooers and Deutsch discussed
the syntactic phase of TRAC. They defiﬁed the control
characters and various functioﬁs used in the language. The
algorithm:. for evaluation 9f arTRAC sourqe_prggram&wés '
briefly covered by ﬁhem. It wés‘deséribed:in'detaii later

by Mooers (4).

Sammet (6), in 1969, gave a general imtroduction #g-
the TRAC language. She said that TRAC was,atill‘téo new
for its long-range significance to be determined, but |
Mooers' work on TRAC extensions would make the language
more powerful, Wégmer (8) covered TRAC in his book,with
emphasis on its macro attribute. Essentially their
discussions were based upon the original TRAC language
and no attempt was made to extend the ability of the
language. 1In fact, Mooers vigorously opposes any modifi-
cation of TRAC, as being a standard langaage. B

Nevertheless, one of ihe distinguishing attributes of
PRAC is its extendability. ILevine (1) discussed three
types of exténded functions which would increase the
usability of TRAG. They are RESISTORS functiens,
input/output,and graphic functions.

RESISTORS is the abbreviation of a club named the
Radically Emphatic 8tudents Interested in Science, Techno-
logy or Research Studies. It is a group of high school
studente of New Jersey interested in the TRAC language.
RESISTOR functions allowed interchange of TRAC programs
between computers and off-line storage for'installations:.
without mags-storage devices. Input/output functions were
idéal for where the TRAC "selec% devices" primitive
function would not be applicable. Graphic functions could
write straight lines, initialize display pointers, and
print x and y coordinates of a given point in the graph.

The graphic functions were reported by Teriault (1) in
more detail.

According to Mooers, TRAC was designed to be machine-
independent. This philasq@hy, Klein in 1964 (1) said, had
been achieved by the mpleﬁ:enta"tion of TRAC at that time
on the following machines: PDP—S, DP-B PDP-10, Honeywell
DDP-516, IBM 360, Hewlett-Packard 2116, He studied the
possibility of automatic and efficient translation of TRAC
between machines. He predicted problems which would arise
from the translation process,and, at the sanme ﬁime,
suggested the methods to solve thenm.

The discﬁssion of TRAC implementation from the hard-
ware system point of view was explored by Wickham and
Hamming (9). The configuration of the system they
designed to support an on-line TRAC processor was composed
of a central supervisory processor, the TRAC processor,
some teleprccessing-camputers toc handle simultaneous usefs,
and a large storage. The concluded that the general |
structure of the TRAC language can place unusual demands
on the resources of a computer system,

an of the most successful implementations of the
TRAC language system was done by Univeruity Computing
Company in 1969 for the.FASBAC system,_ Their version of
TRAC was called CASH (7). It embodied most of the
functions and conventions of PRAC and extended the

functions-to some extent. CABH has a complete set of

10

file-handling primitive functions for processing infor-
mation to and from secondary-storage deViées; this was a
practical deficiency in the original TRAC. The manual.ef'
CASH, from the user's ﬁoint of view,-pravideé clear and
-precise explanations of each TRACrprimitive function,
accompained by various examplés which resolve several

-

ambiguities of the TRAC language.

2

11 -

 CHAPTER BIBLIOGRAPHY

',Besack, L., Eichenberger P., Klein B. Kuhn., Levine

-J+y Theriault, D., and Young J., "IRAC language:
genstructien, Hse and Philesophy," presented at the
ngUS Symposium, Wakefleld Hasaachusetts, Hay 13,
1969

Eastwood, D. E., and McIlroy, M. D., "Macro Compiler
Modification of SAP," unpubliched memorandum, Bell
Telephone Laboratories, Computation Laboratqry, 1960.

McIlroy, M. D., "Macro Instruction Extensions of Compiler

Language," Association for Computin
Communicatiens, 3 (April, 1960

i Machinery
£ e 2 @

Mooers; Ci N., "TRAC, & Procedure~Deseribing Language
for the Reactive Typewriter," Association for Computing

Machinery Communjications, 9 (Mareh, 19663, 215-219.

Mooers, C. N., and Deutsch, L. P., "IRAC, a Text
Handling Ianguage,” Proceedings, Association for
Computing Machinery Twentieth National Conference,
(Angust, 1965), :229«246,

Sammet, J. E.f?rogrammimg Langunages:History and
Fundamentals, Tew Jersey, rrentice~Hall Inc., 1969.

Scott, Dan W., CASH Lan%uage Primer,. University

Cemputing Company, Dallas, 196Y.

Wegner, F. Pregrammin§ Languages, Information Structure
and ﬁachine Organ zation, New York, Mcgraw—HiIi 1968,

~Wickham, K., and Hemming C,, "The TRAC Processor,"

unpublished paper for a course given by ban W. Scott
atéSauthern Methodist University, Eallas, December
1969,

CHAPPER TIII
DESCRIPTION OF TRAC

TRAC processor accepts text strings in the 7-bit
American Standard Code for Infqrmationtlnterchange, abbre-
viated as ASCII. From the alphanumeric and special
characters -of ASCII the TRAC language defines its valid
characters, centrol charaetera,‘strings of characters,

 primitive functions,and the arguments within the functions.

Syntactic Structure

The basic structure'of TRAC language is defined in
three types of string expressions designated by #(...),
##(...), and (...). The sharp sign and parentheses are
syntactic control characters. The dots enclesed in paren-
theses are character stringe which can be dénoted by PF,
A1,A2,...,Ak, where PP is a mnemonic for some primitive
funbtion, AysAy,eee,hy are arguments for the primitive
function, and .commas sgparate the arggmeats;

The first.type of string expression #(PP,...) is
called an active function. It returns a éhafactef string
value after being evaluated, This value is to be further
evalaated,and replaces the cﬁrrent string expression.

The second type of string. expression ##(PF,...) is

called a nemtral functien. It, like an active funetion,

12

returns a character string value after evaluation,but this
%alue is not to be further evaluated.

The value returnéd by these two types of functions
conld be nuil., The null value is a string of no length.

The third type of strihg expression, (...), is called
a qqote.function. The text string within parentheses can
be an active or neutral function. It can also be any
ordinary character or string of ASCiI characters, other
than certain exceptions for parenthesis characters. Tﬁe
evaluation of this quote-mode function resulis in copyxng
the text string, without the enclosing parentheses, as
the value., In fact the text string is protected from
being evaluated.

Actually the format of text strings is more com-
plicated than what has been said. The text may contain
another function; it may consist of a pair of protected
parentheses,: or ii may be a combination'ef.both,'and other
variations. In general, the arguments of string expres-
sions may also be st?ing~expressions. |

For example, é_fRAc program may have its text strings
arranged in the following formats:

#C O),),
#HC L0), 0
#O L ##C), L#C D),
where the specific.mnemonicé of ﬁrimitive functions and

arguments are left blank. From these examples it is

13

14

apparent that there is noe restriction on the number of
nested parentheses of a TRAC program.

The scanning of this nested gtructure is from left to
right and from inside outward. It can be described by the
following example:

#(L#0 L#(C)40))).
4 3. = .2 S

The neutral function underscored by number 1 is first to
ve evaluated, The returne& value becomes the second
argument of the active function underscored by number 3.
The active function underscored by number 2 is the next
one to be evaluated. It returns a value which is to be
further scanned and evaluated. Thé value obhtained from
further evaluation will be the. third argument of the. active
function underscored by number 3,which, in tﬂrnwiéﬁtﬁéﬁ
next function to be evaluated. The returned value
eccupieé‘the position of the second érgument of the active
function underascored by number 4. ' This active function
is the last one to be processed, |

When a string is immediately followed by another
string, it is said that they are concatenated. Concate-
rnation of strings is quite simply indicatgﬁ by their
adjacen¢y; 8.8+, the ggncatematien of thg four strings
A, #(RS), ##(PS,TRAG), (v) is written as the single string
A#(RS)##(P@ITRAG)(Y); The scanning and evaluation of

15

concatenated strings follow the rule for simple strings
except that the returned string values are also
concatenated,

The scanning and evaluation of the string expressions
of TRAC programs must_terminatet This is indicated by an
end-of-string symbol *'" at the end of the text string.
This apostrophe charaétér is called by Mooers the meta
character. It may be dynamically redefined.to be any
other valid character in ASCII. The redefining primitive
function is called "chénge méfé-cﬁaracterﬁ‘and will be
discussed in a suecéeding section concerning text input

and output.

Basic Primitive Functions
The TRAC language hastsiX'basic and important
primitive funcfions to perform input and output of text
gtrings, to define and to name the strings, to call, and

to segment the strings.

Text Input and Output

The input operation is handled by the primitive
function #(RS),where RS is the primitive-function mnemenic
for.ﬁread strlng", This primitive function will read a
striﬁg of characﬁers from the teletypewrlter up to an end-
of-string symbol.

The owtput operation is taken care of by the
primitive function #(PS,...), where PS is the '

1

16

primitive-function mnemonic for "print string" and the
thfee ddts are the argument to be printed on ﬁhe teletype~
writer, PFor exampié, the execution of #(PS,THIS IS 4 TRAC
STATEMENT)' will have the character string THIS IS A TRAC
STATEMENT printed. B

" The nesting of imnput and outpgt primitive functions
#(PS,#(RS)) ' is called thé idling etring or idling
routine. This string initiates the whole TRAC processing.
It is initially loaded into a ﬁ@#@%ﬁhﬁ area of‘TRAC
processor memory. This area is called the active string.
The execution of this string causes a text string ended by
an end-of-string character to be read fraﬁ-the teletype-
writer and to replace #(RS) as the second argument of the
print string primitive function. If this input text
includes functional statements, they are performed. At
the end of the performance, if there is a non-null value
returned from the functional statemeuté, it is printed out
by the executioﬁ of a print string primitive function,
The print string primitive function itself réturns a null
ﬁalue, g0 the active string becomes empty. At this time
the TRAC processor again loads a new copy of the idling
string into fhe active string and ie ready for more input
from ‘the: teletypewriter,

The primitive function "read string" performs

rinputfing of“charaéterzstriné of arbitrary 1ength'£ermif

nated by the meta character. TRAC also provides a

17

primitive function to read a single character typed om the
teletypewriter., It is denoted as #(RC) and it means to
"read one character®, awith,no'end;cf?étring character used
to terminate the stfing.

It has been said that the charaetér‘apestrophe.indi-
cates the end of text string. It can be changed into any
other ASCIT character, by fhe yfiﬁitive function "change
meta character”, denoted by the mnemonic CM. .For example,
#(cm,##(Re))" will have the character entered on the
Teletype to be the end-of-string ;ndicatar,and this char-
acter is.printed on the teletypewriter.

Iext Definition and @alling

Any input text in TRAC can be named and defined. by
agssigning a name, This is aane}by the primitive fanction
"define string” denoted by #(DS,N,A), where DS is the
primitive~function mnemonic, § is the text string which is
te be stored in memory, and N is the name aassigned to the
text string. For example, #(DS,AA,TRAC) defines a string
named AA and associates it with the'st:ing‘value TRAC, It
wiil be recalled that the‘arguments of Es-nay-a;sé.hen
string expressions. If the3namefof thefString.&A'is.aat
changed and the‘threef&éta «+. are used to represent string
expression, then #(DS,A4,TRAC) canfbe specified in a more
general format #(DS;AA,;.}); |

18

In the TRACG language, the memory laeatianswreservea-

_apeeially for the strings defined. by DS. ara ealled form
- stare. Eaeh named strlng defined. in the form stere is
called a farm. Form -and defined string are. used. inter-
changeably.

| The form AA dg#inad by #(DS,AA,..,) cen be called
upon by the TRAC primitive function #(CL,AA). The CL
‘means "eal}-string", The execution of ﬁ{cL,AA)}eopiés‘the
sfring namedﬂfnom‘ferm'stere and the raaﬁ@ting value

replaces the string expression #(0L,AA).

Text,gggmentaxi@n‘and$callingA

The definition of a named - string in form stere can be
modified by inserting, replaaimg, and deleting characters
within the form. Befere any modification ig performed, the
tﬁrget_character or characters ef the form-store siring
mﬁst first be marked. This is done by the exeéution of
the primitive function #(SS,H,§1,X2,;.,Xn), where S8 is the
primitive-funetion mmemonic for "segment string®, N ié-ihe
name of the sfring in form'store;.and Xy 3X5s4..X, are text
arguments with which the text string is to be e@mpared.‘
The matched eharacters are marked and . gaps in the form are
created., The markers, 1n ascending ordinal value, are .
chosen from eharaeters‘outside the ASﬂII character set to .
avoid confusion and duplication. Aléé;'és maj be

repeatedly applied to a given form.

19

For example, the TRAC statement #(SS,A4A,0) will cause
the character ﬁ in namé@ string AA defined previously to |
be deleted throughout the string AA and in each case to be
replaced by a mark of ordinal value, If it is then desired
to éhange the value of string AA from éRAC tc_TRADE, the
execution of #{(CL,AA,DE) will aecoﬁpliéh the job. The
‘form named AA is fetched from store and is searched to
find the markers of ordinal v#lue 1. The locations where
the markers reside are replaced by thé;characters DE. That
means that the contents of form AA have been changed from
TRA® to TRADE, where the character @, for convenience,
indicates the marker of ordinal value 1. (The markers
ugsed in the TRAC precessor are not printéble.)

Note that #(CL,Ad) has fewer arguments than #(0L,A4,
DE). The former calls the string AA without editing; the
Jatter calls with replacing., From this example, the format
of the primitive function "call string"” may be extended to
#(GL,H,X1,X2,...,Xk), where the number of arguments is not
limited, but cannot usefally exceed the maximum number
of arguments used by SS on that form.

Phe values of argaments in thg primitive functions
88 and OL could be null. The detailed explanation of null

argumenté is covered by Moéers (1) and_Scatt (2},

20

Editing of Partial Text String

The SS and Gi deal with the whole text string. The
aegmeﬁtation and retrieval are accomplished in terms of
the entire s$ring»va1ue.'-Bey@nd that scope, the TRAC
language allows the user to manipulate p@tti@ns.af string.
As mentioned before, each defined string is stored in form
store. In order to periqrm~par£;a1¢string.eperationa;a.
p@interaisfnéeded&te point at“ﬁ“givenjéhéracterjin\fhe
sequence of @ﬁaﬁacters in the string. This pointer is
called..the position p@intﬁn\and is set ét‘the‘first?ehar—
acter of its string in form store by the define string
primitive function. Its value is changed whem the action
of partial string editing is finighed.

The first primitive funection in this elass is "eall
character?, denoted as #(CC,N,A), where CC is the
primitive-funetion mnemonic, N is the name of a defined
string in form stere, and % is the valuertesbe,returnéd if
the position pointer has reached the end of the string and
thére are no more characters to be ealled.\wﬁfter execution
of the OC primitive function, the position pointer 1is
advanced to the next. character in the string. If a marker
for segment gap is encountered, it is skipped and the next
ehéractei in sequence 1s'fe§gheé. Wﬁsing-fhe previously
defined string AA as an example, AA has valﬁe PRADE and
the form pointer points at the first ehqraeyer(T.'JThe_
execution of #{(CC,AA,EMPTY)' will give a eharaéﬁer value

21

P and-fhe position peinter is moved to point at the next
character, R.
Kot only can the user call a single character of a
defined string, but he can call several characters. This
is done by the primitive function #(CN,M,D,Z), where ON is
the primitive-function mnemonic for “call k3 oharacters“ M
is the name of a giring defined in form gtore, D is a "
string of digits, a decimal integer specifying the number of
characters to be called, and 7 is the value to be returned .
1f the position pointer goes beyénd the end of string, For
example, #(CN,A4,2,E)' will call the previously defined
form A4 an& return RA as the function value.
The integer N may also be negative. That means the
characters to be called are those -N character positions
to the left of the current position pointer. If -N char-
acters are not available, Z is the function value. Thus .
the position pointer used by (N may be moved to the left
or the right after evaluation.
Another primitive function to manipulate string
within the form is "call segment”. It has the format
- #(08,N,2), where ¢S is the primifive;fuhction mnehanim,

N is the form to be called, and Z1is the functian value.

if the;ggf%tion peinter has alrea&y reached . the end of the”
string. This primitive function cauges the defined form N

to be searched until é“sagment gap is found. The

22

characters beginning with the one pointed to by the
position pointer up to the one_preced;ng the gap marker,
beécme the returned function value, Then the position
pointer is advanced to the eharaéter fellowing the gap
marker. If a segment gap is not found, a null siring
value is returned.

The next primitive function is called "initial". It
is defined by #(IN,N,X,2), where IN is the ﬁriéifivé-
function mnemonic, N is the name of the string in ferm
store, X is any character string, and Z is the function
value returned in case the position pointer of the form is .
get at the end of the striﬁg. The *initial® primitive
function will look for the first occurrence of character

sxring X in form named N, If the match is fouﬁd,ithe
Iéharagters hetween the current position pointer of~tha
form aﬁd X become the function value and the pointer is
advénced to the first character beyond the matéhed string
X. if no match is found, the string 2 is the function -
value and the ﬁesition poi#ter is not me#ed. |

It has been men%iened tﬁat the value returned by a
primitive function goes to either active_str;ng-fer ré-
scanning~cr=neutral stning,dependigg_upen thé mode (# or
##) ef the fﬂnetign,_.F@r the primitive functions “éall
character“; "eall N chéracter”, "eall segment®, and :
"initial“; héwever, ihére is én.éxcéption; That is,hif Z

is the réturned,value when the form. pointer initially

23

points beyond the last eharacter of the string, the value 2
is to be placed in the active string and rescanned whether
or not the mode of the function is neuntral. This

exception is defined by the original TRAC (1).

The execution pf the primitive functiens described in
this section causes| the form pointer t@ be moved. ‘?his
péinter, hewever; mhy be reset to the first of the aﬁring
in form store by performing the “call.restore" primitive

function designated| by #(CR,N), where CR is the primitive-

function mnemenic, N is the name of the form with which thé
form pointer is to be restored. For example, #(CR,AA)’
will reset the form peinter of form A4 to the first char-
acter ?, Thus the definition of AA becomes TRADE again.

Text Deletlon

The TRAC language can define a texx -tring, it alse
can delete a text string. This is made possible by two
primitive functions: "delete all" and "delete definition'.
The first deletion function is denoted by #(DA), where DA
is a primitive-function mnemonic and the function is
without arguments., The execution of this primitive ..
function results in all the string definitions in form
store being deleted, The second deletion function is
denoted by #(DD,N,,N,,...,N,). DD is the primitive-
function mnemonic and it means to delete the form defi-

nitions specified by the arguments Nifﬁz,...ﬁk. For

24

example, if the form AA is to be deleted, it is accom-
plished by issuing #(DD,44)'.

Additional Primitive Functions
In‘additiop to primitive funetions strictly for text
string précessing, TRAC furnishes a limited number of
primitive ﬁunetiens't@ do comparison of strings, integer
arithmetic, andIBaeleanloperati@n. These functiong are

briefly described as follows.

Decision-Making - cemmands

The TRAC 1anguage provides two primitive functionsf
for comparison of arbitrary strings and &nithmetic values.
The string comparison is done by the primitive function
"equal' denoted by #kEQ,S1,82,YES,HO), where EQ is the
primitive-function mnemonic, and S1 and 82 areitwo . .
strings. 'If.STland S2 are identical charaéter by char-
acter, the arguﬁent YES will be the value (segment{gaps
are ignored in the comparisen) If s1 and S2 are not
‘identical the argument specified by KO is the function
valueﬂ

The integer comparison is made by primitive function
"greater than", designated'by #(GR I1,12,YE8,N0), where
GR ig the primitive—function mnemonic and I1 and I2 are
character strings defining integer values.' If the value
of I1 is greater than the value of I2, then the argument
gpecified Ey YES will be the furiction value. If the value

25

of I1 is equal to or less than the value of I2, then the
argument specified by NO 1s‘fhe function value.

For examﬁle, the evaluation of #(EQ}14,14,EE,KN&
results in a gtring value EE stored in the active string.
The execution of #(EQ,30,5,100,99) returns ﬁ¢ring value 99
in the active string. The parfermance of #(6R,89,0,YY,NN)
results in the value YY'stéred in the aeti%e string. éhe
processing of #(GR,99,99,AA,BB) ends up with the string BB

in the active siring.

Boolean Ggerati@ns

The TRAC language can handle Boolean operations on
vectors of 1's and O's., Instead of representing:the
Boolean elements in pure binary ferm, TRAC uses a sequence
of ectal-digit characters. The octal digits are defined
as the vaiue of a gr@up of three binary digits. For
example, ﬁhe binary number 101 is egquivalent to 5 in base
eight and 110101 is equal to €5 in base eight. There are
five TRAC primitive functions for performing Boolean
operations. They are union, interseqtion, complement,
shift, and rotation of bit sequence. |

The union and intersectioh actions are denoted by
#(BU,01,02) and #(BI,01,02) respectively. By and BI are
- the primifive»fuﬁétian mnéﬁenics for "Boolean ugieh“ and
"Boolean inferseétion" and 01 and 02 éfe qetal‘digits.

The‘value after evaluétion of the function is also an

26

octal digit character string. Fer'example, #(BU,5,5)
gives an octal character string value 5 and #(B1,14,10)
returns an octal character string value 10.

The complement oﬁeration is represenfed by #(Bg,01),
where BC is the pﬁimitive—functi@n mnemonic for "Boolean
complement®”, 01 is the only argument, a string of octal~
digit characters. The resulting valae after executing the
funetion is.the bit;byhbit complemeﬁt or inverse of the
bite of the value of 01. For example, #(BC,5) gives a
character-string value 2 base eight {;&gé;ks19 in binary).

The shift and rotate primitive functions have a choice
for the_direetion'of gshifting and rotation. That is,
Qctal éigiés representing binary digits can be shifted
left or right. They have formats: #(BS,D,01) and #(BR,D,
01). Bs.is the primitive-function mnemonic.for "Boolean
shift“} BR means "Boolean rétate"; 01 is the character
sfring‘of octal digits whose bit value is to be shifted D
positions. If the integer D is positive, the bit-shift
operations are done to the left. If D is negative, the
bit-shift operatiéns are done to the right. Any leading
nondecimal character in the argument siring D bfher:than
a minus sign is ignored. TFor example, #(38,2,31)"feturns
value 44, #(BS?—5,654)' giées 0153 #(33;3;61)' gives 16;
#(BR,-4,53)i.retﬁrns 56. o

27

Arithmetic Primitive Functions

TRAC provides faéilities~ta do simple integer ad-
dition, subtraction, multiplication, and division. These
are dentoed by #(AD,D1,D2,%), #(SU,D1,B1,Z), #(ML,D1,D2,%2)
and #(DV,D1,D2,%Z,R). In these primiti%e functions the
first arguments speeifj the primitiveefunotien-mnemenic,
D1 and D2 are strings of decimal ehafactersi and Z is the
function string value to be returned if arithmetic compu;
tation results in overflow {(i.e,, an incorrect result).
The condition of overflow is raised when the calculation
causes a number greater than the decimal numer 223_4 er
838608, since the Fairchild-cemputer hag a 24-bit accumu-
lator where the computation is performed, The argument R
‘0of the DV primitive fuﬁetion ig used to store the rémain-'
der after the division operation. This is not defined in
the original TRAC language. Note that any leading
nondecimal character in D1 is attached to the first of
the result string; in:DZ leading non-decimal characters
are ignored during the‘evaluatian.

The following examples of the four arithmetic
operations are self-explanatory: #(AD,15,4,0VER) " gives
195 #(sU,100,99,0NE)" gives 1; #(ML,EA4,67,8%)' gives
EA268; #(ML,100000,100000,BURR)' gives BURP; #(DV,33,24,
QT,RM)! gives 8. In decimal division, only the integer

pértién of quetienf 8 is kept as the returned value. The

28

remainder 1 is stored in the argument specified as RM,

which is defined to be a form in form store.

Diagnostic Facilities

TRAC suppliea several primitive functions as de~
bugging aids for the user. One of the primitive functions
defined in the TRAC language will list all the names of
strings defined‘in fdrm store, In the\listing,\each of
these names is preceded by some characters chosen by the
uger, This primitive function is denoted by #(LN €)y
where Lﬂ'is the primitlveafunction mnemonic for "list
name", C is any valid character or string of characters
to Dbe attached to each of the names. Assume that two
forms have been defined: AA and BB. The statement‘#(LN,
--~) results in the character string ---AA-~-~BB printed
on the Teletype. If the string --- 1is :eplaeed by the two
carriage~-control characters, carriage return and line feed,
‘the names of the forms will be listed columnwise.

Furthermore, TRAC can also print the string values of
forms defined in férm store, This primit;ve function is
uprint form definition" and is denoted by #(PF,N), where
PF is the primitive-fuﬁction mnemonic and N is name of the
form to be printed. If there is'any markef for segment
gap in the string,_it'is indicated by ordinal value in
the output. KNot énly can this function list the content

of form, but it specifies the compater~memery address

29

where the form is located in the form store. Note that
this address is not the relative position of the form name
N in‘TﬁAc program.

By execution of primitive function "trace on", the
neutral strings for each function arektyﬁed out on the
Teletype. TIn'the Teletype output the step~by-step eval~
uation of each primitive function is presented with all
the intermediate results. This‘traee can be terminated by .
executing fhe primitive function #(TF). The mnemonic
meané “trace off". These two tracing primitive functions
can be turned on .orioff any time during the execution of

TRAC program, Initially the trace is assumed to be off,

Supplemented Primitive Punctions

All the primitive functions discussed so far are
defined in original TRAQ language (1). 1In this TRAC proc-
essor, three moﬁe additional primitive functions are added
to the system. They are "decode character", "encode char-
acter”, and "implied eallﬁ. |

The primitive function "decode character” is denoted
by #(DC,X}; The value of this primitive function is the
character strimg representing the value (bgse ten) of the
ASGII‘represenyatien'of the first character ef the form
whose name is indieated by X. Taking the form named AA as
an.example; the execution af #(BC,AA)' will retafu value

84,which is the decimal equivalent of ASCII code for the

30

character T in the form string value TRADE. It is some-
times useful to convert alphahumeric names into numbers
which can be utiliged for externalstofage addresses.

The primitive function "encode character” is the con-
verse of "decode character“.& The value after encoding of
a numeric'value is a character. The format is #(EG D)
where EC is the prlmitiveafunctien mnemonic and D is a
string reyresenting the number to encoded, For example,
#(EC 49), after execution, returns the ASCII character 1.
(the character 1 has the binary value 0110001 in ASGII)

If the first argument of a string expression does not
match any primitive function that has been defined in the
TRAC language, it is assumed to be an "implied call”,

‘The mnemonic is the name of the f@nm and this form is to
be searched in form store. The value will be definition
of the form with segment gaps filled out as in CL,

During the seanning and evaluwation of TRAC primitive
functions presemted in this chapter, it is possible that
the processor is in infinite iteration or loop due to the
user's error. The break key on Telétype can stép the
action and cause the reinitialization of the processor,
Ag a matter of fact, any action, not necessarily a 1009,
at any time can be stopped by'merely a touch of the break
key. This break key is defined by Mooeréa For this

processor, the break key is replaced by the key’é#on

Teletype because when the break key on the F24 Teletypé

31
is punched, the content entered into the aceumulator is

not stable.

Auxiliary Storage Primitive Functien

All but three of the primitive functions defined in
original TRAC language (2) are inciuded in the ¥24 TRAC
pfecessor. These three primitiveffunctiens not implémented
rerform storing, fetching, and erasing forms between the
main storage and the auxiliary storage devices.

The primitive funétion "gtore block", denoted as #(SB,
¥,Nt1,N2,...Hk), stores the fdrms.N1,N2,.;.,Nk as a single
bleck of record in secondary storage devices. When the -
forms have been put into the external storage, they are
erased from form store in mémory. A new form named N is
created with its string value as the address of the bleck
in.éxternal storége. The forms stored.in‘exterﬁal storage
in the block whose address is in the form named N can be
retrieved by the primitive function "fetch block"', denoted
as #(FB,N), and can be erased by the primitive fﬁnction
"erase bléek“, denoted as #(EB,N).

This chépter has descfibéd_ﬁhe syntax elements and
various primitive functions ef‘the TRAC language.

Several PRAC examples obtained from the Teletype outputs
are inciudé& in Appendix A to demonstrate the behavior

of the language.”

32

CHAPTER BIEEEOGRAPHY

1 Mooers, C. N., "TRAC, a Proeedurenbescribing Language
for the Reactive Typewriter,"'issociation for
GeuﬁutinE Maehinerx Cemmunicati@ns, 9 (Mareh 1966),

u'age Primer, University Computing

33

CHAPPER IV
ALGORITHMS OF TRAC PROCESSOR

This chapter illustrates the TRAC processor algorithms
which were used in this implementation of TRAC on the F24
computer. Thié degceription inciudes the steps.foruscaﬁning
the TRAC programe, the techniques for dynamic-storage
allocation, and the specific features for. handling some
primitive functions. The system flow of the processor is

shown in Figure 1.

Load
_m_uylidling

routine

Sean
syntax

|

Decode.
funetion
mnemeonie

‘L

 ‘Perform
primitive
. funetion

Fig. 1--8ystem flow of TRAC processor

33

34

Scanner

The unevaluated TRAC text strings are loaded in the
active striﬁg at the beginning. The active string is a
reserved area of the TRAC precessér memory. The functions
of the scanner are to recognize the syntactic atoms of the
loaded text string, to detect the control characters, i.e.y
comma, left and right parentheses, sharp, tabulation, N
carriage :etunn, and line-feed characters, and to take
proper actien.depen@ing upon the control character scanned,
Farthermore, the scanner distinguishes active function from
neutral-function values,

A pointer is maintained within the scanner. This
pointer moves from left to right in the active atring during
the scanning process. When the current active string is
empty, i.e., there are no characters remaining in the active
string, the pointer is reset to point at the new active
string initiated by the idling string.

As characters of text string in active string are
treated‘by_the gcanner, some of them may be appended to
the right end of the neutral string, which is anoiher area
of memory reserved for storing strings of characters. It
is called neutral because characters in the string have
been operated (scanned) and thus remain neutral.

Maoers,(6) described the TRAC processing algorithm in
early 1966, The scanner is essentially based upon his

description but modification has been made in order to be

35

compatible with the iinked;list structure of thg TRAC
processor, This linked organization will be desetihed later
in this éhaptér. |
| The modification is as follows: duringAthe scanning,
extra consideration is given when a eaﬁma.is encountered in
the active gtring. It has been mentioned fhat the arguments
of a string expression are delimited by comma, and the
arguments could be characters, active functions, neutral
funetions, or quote functions. For example, in #(SH,#(AB,
3,5,888),7,NUM), the commas within #(4D,3,5,58S) delimit
simple character arguments; the comma beitween SU and #(AD,
%,5,585) separates a primitive-function mnemonic and an
active function. The address of the comma succeeding SU is
first saved and then linked with the returned string value
8 resulting from evaluation of #{AD,3,5,58S). In another
example, #(DS,A4,(32%%)), the comma after A4 is first saved
and then is linked with the string Z%ZZ%Z of quete function.
Though it is said that the address of comma is saved, it is
actually the address of delimiter for the comma in neutral
string being remembered, This will be seen in steps 5, 6,
7 of the scanner. -

A step~of-step description of scanner is presented as
follows:

1, Test active string. If it is empty, go to . step 11;
atherwise,\getmeurrent,charactér.from the. active string and

go to step 2.

36

2, If the eharacter_heing examined in the active string
is a left parenthesis, go tc step 3. Otherwise, go to
step 4.

3. The scanning pointer is moved ahead to the next
character in the active gtring until the matching right
parenthesis is found. Then the character string between
the matehing.parentheses is appended to the right end of the
neutral string. €o to step 10. Step 3 thus recognizes the
quote-mode funcition.

4. If the character being examined in the active string
is either a carriage return, a line feed, or a tabulation, go
to step 10; otherwise, go to step 5.

5. If the character being examined in the active string
is not a comma, go to gtep 6, If it is a comma, the location
to the rightmeét character of the present neutral string is
marked by a delimiter and a flag is set to indicate a comma
is found. Go to step 10.

6. If the character being examined in the active
string is not a sharp sign, go to step 8, If it is a sharp,
the scanning pointer is moved ahead to. scan the next
character. If the next character after the sharp is not a
left parenthesis, go to step 7. If it is a left parenthesis,
the beginning of an active function is indicated. The sharp
and the left parenthesis are ignored and the current locatioen’
in the neuiral string is marked to indicate the beginning

ef an active function and the beginning of an argument

37

substring. Then test the flag for comma. If it is not om,
bypass the next sentence. If itlis on, the addreass of
corresponding delimiter in neutral string is saved as a
linking address and the flag is reset. The gcanning pointer
is moved to the character following the_discarded parenthe-
sis., Go to step 10. | |

7. If the character succeeding a sharp sign is not a
sharp sign, go to step 9. If it is also. a sharp sign, the
scanning pointer is moved to point at the next character
in the active string. If the next character is not a left
parenthesis, go_te step 9. If it is a left parenthesis, a
neutral function has been. encountered. At this time, the
current location in the neutral string is marked to denote
the beginning of a neutral function and the beginning of
an argoment substring. Then test the flag for comma. If
it is not on, go to step 10. If it is on, the address of
corresponding delimiter in neutral string is saved as a
linking address and the flag is reset. Go to step 10,

8. 1If the character being examined in the active
string is not a right parenthesis, go to step 9. If it is
a right parenthesis, it triggers. the executién of the
function. The current location in the aective string is
merked as the end of an argument substring and the end of
a string'expreﬁsioﬁ., Go to the function-decoding réatine,

which is discussed in a later section,

38

9. Move the character to the right end of neutral
gtring. PThis character is not a candidate for being an
indicator for either active or neutral function. Go to
step 10.

10. Advance the active striﬁg scanning pointer one
character position and go to steﬁ 1.

11. ILoad a new copy of idling routine into the active
string. Reset the scanning pointer at the beginning of the
active string. The current neutral string is deleted (the
scanning pointer for neutral stiring is moved dufing the
function evaluation). |

The flowchart of the scanner is shoﬁn in Figures 2.1,

2,2. For simplicity, in the flowchart, the word “édvgnae"

means to advance the scanning pointer of active sfring by
one character position; the word "CC" means the current

character of the active string.

Pushdown Automaton

During the scanning procedure, a pair of preoperly

matched parentheses in the text string must be found te
indicate that the primitive funetion is ready to be executed,
The scanner uses a pushdown stack to accomplish this, This
pushdown stack is indexable and is initially empty. Each
time a left parenthesis is encountered in the text string,
the address of next available storage in the neutral string
is stored {(pushed) on the stack. The first memory cell in

the neutral string stores the first character of the

39

Syntax

scanner
Load idling
routine
Reset scan |
pointer '

Get GO
“from active
gtring

A (7o Figd 2.2)

Mark i © | Set flag
delimiter to indicate
in neutral a comma
string i found
Move
character
to neutral ,
7 -
. A From
O : Fig. 2.2)

Advance

- Advance

matching

Fig. 2.1~--Scanner for TRAC

Advance

 Yes

Mark the
beginning
of active
function

! Yes
Triggers
execution
of
funetion

Go to
function
decode
routine

_"< Step 7)

GC: ' #'

_ %'Advance

;.Yes
Mark the.
beginning
of neutrall
funqticn

40

Save a
address of

delimiter,
Reset flag

Yesm

Save
address of

3 delimiter
reset flag

Move the
character
to neutral
string

Step 9 _
T

‘ Bi ‘
7 {To Fig. 2.1)

Fig, 2.2--Scanner for TRAQ

41

primitive-~-function mmemenic for a primitive function or, in
cage of "implied call", the first character of the name of
a defined stfing in form store,

The indexable address in the pushdown stack is
| deerease@ by one whenever a matching right parenthesis is
being scanned. whenﬁthe stack becomes empty, it indicates
the end of performance ef_a primitive function., 4t this
time the scanner continues looking at the next character
in the active string. The description of storage allocation
for the pushdown stack to keep track of matching parenthe-

ses.is discussed in a later section,

Decoding of Primitive Punctions
- When a complete string expression has been recognized
and is ready for execution, the two-letter mnemonic for the
specific primitive function is decoded. The TRAC processor
is able to handle thirty-two primitive functions, as
described in Chapter III,

Among them, twenty-nine are originally defined in TRAC
language (6); three are added primitive éunctions in this
processor. They are divided into eighﬁ categories
aéeordimg to the first character ¢f the mnemonic.

| The first détegory includes thosge prim%tive names
starting with the‘lettei R, They ére primitife“funeti@ns
for input, RS (read string) and RC (read éharaeter).

The secgnd category of primiti#e functions begins

42

with the letter D. They consist of DS (define string), DA
(delete all forms), DD (delete definition), DC (decode
ehafaeter), and the arithmetic operation DV (divide).

' The mnemonics starting the letter C belong to the third
category, They are CL (call string), CC (call a character),
¢S (call segment), ¢N {call N charadteré),.and CM (change
méta character).

The mnemonics beginning with the letter S are classified
as the fourth category. They are SS (segment string) and
SU (subtract). |

The fifth category embodies the Boolean primitive
functions. They are BU {Boolean union), BI @Boolean inter-
gsection), BC (Boolean complement), BS (Booleaﬁ shi:t),_and
BR (Boolean rotate).

The éixxh‘eategery includes two'primitive mnemonics
starting with the letter E, They are EQ (equal) and EC
(encode character). | |

The mnemonics beginning with the letfer P are the
seventh categary.‘fﬁhey are Pg (print string) and PR
(print definition). |

The last eatégary includes two primitive. functions in
which the first character of mnemonics 1is unique.gmmng the
primitive functions., They are GR (greater than) and IN
(initial). |
| If the first character of mnemonic does not conform to

any of the above eight categories or the first charaecter

43

does agree but not the second, it is treated as an implied
call primitive function. The mnemonic in this case is the
name of the defined string iﬁ form store to. be called upon.
For example, #(DS,6,YYY)#(6)' will return string value YYY
on Teletype;: #(DS,6Z,222)#(6z)' will response siring ZZ2
on Teletype. .Purthermore, if both characters of the mnemonic
belong to one of the defined categories but the character
after the two-letter mnemonic is net a comma, that means
the 1ength,ef the mnéﬁonic is greater than three; then all
the characters of the mnemonic ended by a comma or a right
parenthesis are also considered as the argument of an
fimplied call®., However, carriage return, line feed, and
tabulate are ignored and will not be counted as part of the
mnemonic, For example, #(DS,GRX,XXX)#(GRX)' will return a
string value XXX. |

The flowchart of the decoding routine is illustrated in
Pigures 3.1, 3.2, 3.3.

Dynamic Storage Allocation
The allocation of storage is a significant and vital
portion of the task for developing any compiling or inter-
preti%e'type of processor. There are various metheds to
haﬁdle the fixed amount of available Remory so as te_obtain
the maximum efficiency of storage utilization (2, 5). For
the TRAC procegsor, the allecation of storage is manipuiated

dynaﬁiéally-in combination with lists of pointers.

Function Get first

decoding character

routine of
mnemonic

| Iy Yeg
" '@Get secon
it ‘ Delete
g?aracter 3eﬁinit19n
mnemonic decoded

IF, CR
and Tab

Get
another
character

' Yes

:ahether

call
%ﬁ decoded

'Get'second

mnemonic

character
of

befine
String
decoded

Division
decoded ¥

Read Get
Character | another
decoded character
* To ‘

Fig. 3-,.2 :

" decoded

Read ‘
String

Delete A1l
Definitions
decoded

Decode
character
decoded

Call
“decoded

Fig. 3.1--Flowchart of decoding routine.

| eharacter | |
of -
‘maemonic

45

Segment
String
decoded

| another

Get

character

Boolean
Union
decoded

. Boolean
Shift
decoded

Yes Yes Yes Yes
Call Sub-— BB olean Boolean
Character traction Intersec-| ! | gotate
decoded decoded tion decoded
.| decoded '

Implied | Implied

call call -

decoded decoded rﬁ

Call N
Charactersg
decoded

Boolean .

decoded

Complement

* To
- Pig. 3.3

Fig. 3.2--Flowchart of decoding routine

46

Yes

V4§ .
Get second Get
character g another | |
of character |
mnemonic . _

No

— - [_Yes Yes
R Groater Initial
decoded String than : _

| decoded decoded decoded
Print fornm
Jlefinition
‘l decoded
. / Yeg | — ,
Encode | Implied
' Character | | Call e \ “
decaded = decoded 3

Fig. 3.3--Flowchart of decoding routine

47

Structure of Linked Pointers

. The internal structure of the TRAC.processor is based
upaﬁ the linked lista,of_pointers. Eacﬁ memany‘locafian
containg a linking address to another cell which is not
necessarily next to the current memory location.

The basic information unit of the Fairchild F24 computer
ig a twenty-four-bit word. The processor, iﬁ generél, uses
the rightmost twelwe bits (bit 0-11) of the word to store
the address of next element in the list. The ten bits (bit
12-21) to the left of the above twelve bits store the data
item, The leftmost bit, that is, bit 23, is not used. The
remaining bit 22 is, most of the time, not used but acts
as a control during the scanning to indicate the mode of
the primitive function. If a neutral function'is recognized
by the scanner, bit 22 of;&he éunrént character in neuntral
string is set to O. After the function evaluation, the
returned string value goes te either active string or neutral
string,depending upon the status of bit 22 of this specific
character in neutral string. The general structure of the

linked allocation is shown in Figure 4.

Shared Memory _
Among the available 4096 ("4k") words of memory of the
Fairchild F24 computer, the fifét 1@00‘lopations are reserved
for systeﬁflaader and card loader, and approximately 2000

memory locations are occupied by the TRAC processor. The

48

23 0
Unused —TT pata | Address

Control or-i-| item pointer
unuged L ; _ﬂ-“_;:)

Unused —FTT Jate Address
Control or itenm pointer

‘unused : —M’;i)
gza_ 0

Unused 2=
‘ bata

Contrel or-i %
unused 1 item | Nil

Fig.-4-~Diagrqm of linked alloecation

remaining 1000 cells are allocated for active string, neutral
string, form store, intérmediate result, and the pushdown
stack used to search for matching parentheses in a TRAC

text string. /Thé organizafien of the memory allocation is
ghown inkﬁig@ge 5. v |

Initiaily'the TRAC pr@cess@r{reserves two hundred
locations for the pushdown stack. This allows a single
active string té eentain up to two hundred left parentheses
prior to the first right parenthesis.

Assigning a fixed amount of memory for the scanning
stack at the beginning, frees the processor to deal with
more complicated st@rage allocation policies for active
striné, neutral string, aﬁd forﬁ store without considering
whether there are enocugh memory locations for storing the

addresses of the left parentheses in active string. This

System Use

Card ILoader

TRAC Procegsor Program

Shared by

Active String
Neutral String
Form Store
Intermediate Result

Stack for Parentheges.

300

1000

3000
3200

- 4096

Fig., 5-~3Storage organization of TRAC processor

49

50

approach, by which portions of memory are permanently
reservéd for specifie usé, results in re&uctien of the time
spent on the dynamic allocation and garbage collection,
Garbage collection refers to the release of portions of
memory which are no longer required. Thedeéeriﬁtion-of
releasing memory for the TRAC processef immediately_féllows
this section. o

The remaining storage, once the stack is allccated, is
shared by active string, neutral string, form store, and
intermediate results, The big available space is not
divided into different sizea of blocks,as;has usually been
implemented (3). :Rather, it is oceupied by arbitrary
length blocks in & first~come, first-served:order, along
with a very disciplined use of pointers. | |

This free space is allocated sequentially. A pointer,
called AVAIL, pointe at the next available cell of free
space. No matter where the current memo?ry lecation is,
the next free location always follows it, except that when
the entire 4k memory is fuli, garbage collection is

performed.

Garbage Collectiom
When the available 4k memo#y.is fully occupied, garbage
collection is performed to release all previously used
memory which is net in current useland hence is not to be.

retained, The restructuring is accomplished by moving the

51

contents of all memory cells currently in use 1o one end

of available storage. The released memory locations at

the other end of storage then become. available for further
allocation,

The precedufe restructuring memorj begins with the
memory cell next to the last location of the stack. This
location is defined to be the head of the pointer list for
defined form store. (If the head is zero, it means that the
form store is empty and no named string has yet been defined.)
The address of the next available free location starts at
the cell following the head. The pointer AVAIL is set te
point at this place, At the same time, the address pointer
of the last memory location in 4k storage is adjusted to
point at this new free location.

If the head of the pointer list of defined form store
is not zero, it indicates that there are defined strings
in form store., 'In this case, all named strings in form
store are mevéd forward consecutively to become a group
of named sirings together instead of being in scattered
form as prior to the performance of garbage collection.
During the movement the address pointers of definédlstring
in ferm store arérpraperly modified to point at the newly
released memory locations.

The active and neutral strings currently in use are
not sﬁbject to garbage.eclleetien. However, if the last

address pointer, when the memory becomes full, is in either

52

active or neutral string, it is to be updated to peint at

the just released memory next to the form pointer list.

Execution of Some Primitive Functions

The fellawing two .sections single-eﬁt the téchniques
for handling the performance of twoe types of primitive
funetions. The first type is those primitive-funetians
featuring macro attributes, such as define string, segment
string, and call primitive functions. They are some of
the most important and powerful ppimitive‘functiens_defined—
in the TRAC language. The second type is those primitive
functions caleulating arithmetic integers, sauch as addition,
subtraction, multiplication, and division, The operands |
of the latter are in the form of numeric characters.
During their execution cenversion is required to transform
them from the character string format into an intérnal

numeric form for arithmetic.

Macro Primitive Eﬁnetiong

It has been mentioned that TRAC is a language coupled
with macro ability. The primitive fanctien-ﬂs,¢(definé
string) defines the macre; SS (segment string) supplies
parameﬁ@raﬂ\far the macro definition; CL (call striﬁg)
invokes.the.ealling,of a macro, |

Phe DS (define string) primitive function associates

a string name with a-string value retained in form store.

53

The TRAC processor keeps a list of pointers to point at
the addresses of the defined sirings in form store.

There is a head of the form-name list and tail of
the form-name list. Initially, both the head and the tail
have a zero value. When the first DS primitive function
is encountered in an input pregram,-the rightmost twelve
bits of the next available memory lecation pointed to by
the pointer AVAIL, are set to contain the address of next
free location. For convenience, the address of the free
location is called the form pointer. Beginning with this
location, the name of the defined string and its value are
allocated eenseéntively in free space and, meantime, they
are delimited by a memory cell, Then the AVAIL pointer
is advanced to point at the next free location which is
neighboring the last character of the form-string value.
Also the address of the current form is stared-at=the head
of the list of form store.

When the next DS primitive function is executed from
an active string, the above allocation procedure is
repeated except that the address of the current form pointer
is not stored at the head. It is, however, stored as the
leftmost twelve bitas of the.ﬁrevigga form pointer, This
linked 1ist of form pointers provides a aearehing-liét-
for defined strings in form sﬁore. The rightmost twelve
bits of each form pointer point to the-eurrent named

string and the lefitmost twelve bits point to the next

54

named string. If the leftmost twelve bit group of the
form store is zZero,. it signifies\the end of the list of
names of defined strings in form store. The diagram of
this linked list of form pointer is preseﬁtad in Figufek6.

The SS (segment string) primitive function deletes
and marks the substrings=@£'a previously defined string in-
form store when they match the argument substring given
in the S8 statement, The first step to perform this
primitive function is to find the named string in form
'store (the name being the first argument of the §S) by
searching through the form pointer list. The next step is
to mark the matched substrings. .The marker is a character
chosen in ascending ordinal”valuewoutéiﬁerthe valid char-
acter set in ASCII to avoid confusion with valid user
characters.,

If more than one substrings of form match the argu-
ment substring.given in 8S primitive function, each @f‘
the matched substring of form store .is marked by the same
ordinal value, For example, #{(DS,K,ABCABZZAABIBAB)#(5S,K,
AB)' causes four substrings AB of form xi(nndéfiiﬁed) to be
marked by the identical ordinal value 1. |

The SS primitive function accepts multiple substring
arguments; such as #(BS,A,HAAZAHAALALA)#(SS,A,HAA,ZA,LA).‘
When the suﬁatring argument HAA of §S is encountered in
the newtral etring during evaluation, two substrings HAA

of form A are marked by ordinal value 1. When the next

Head of form paintaé

Unused

Address of

first formp

pointer

e

Address of
next form
pointer

‘form store

Address of
current

55

Name and value

defined string

of

Addréss of
next form
pointer

Addrepss of
current

form atore|

Name and value

defined string

of

Address éf

Name and wvalue

" defined string

of .

Hame and value

defined string

of

Fig, 6--Structure ef.form pointer and form store

Address of
| next form | curreant
pointer form: store
Address of
Nil . lasgt form
store
Tail of form pointer

eubstring argument Zi of SS is encountered, the only
substring ZA of form A is marked by ordinal value 2, Seo
~is with the third substring argument LA except that two
substrings LA of form A are marked byherd;nal value 3;
The ¢L (call string)“primitive function examines the
oceurrence of a named stfing in form store and returns

the characters of the string as its value. 4s deseribed

in Ghapteralll, CL hag twe different=appea:ances: without

substring arguments such as #(CL,A4), end with substring
arguments such as #(CL,BB,X,Y,Z).

56.

For CL without'sabstring-arguments a search is first

performed through the list of form store to find the
defined string and then the charaeters of the string are’

returned -as the value of CIL.

For CL with substring arguments searching is not the

first thing to be done. Rather, the substring arguments
are first stored in the free area allocated to them and
each ef‘them.is.appended by a; marker. The markers are
in aépanﬁing_erder.acgardihg to‘their'ralative position
..ag substring arguments in CL primitive function.. After
substring érguments have beén_allgoated.aﬁé preceded by
mérkens; the form store is searche&‘te £ind the named
string; When it is found in form siore and consists of
gap markers, the gap markers (which have certain ordinal
values) are replacgﬁ by the substring arguments of

corres?ending ordinal values. The replacement, however,

57

is a psewdo-operation and no replacement is actually
taking place., In fact, the characters of form, if not gap
markers, are simply copled to the aetiﬁe or neutral string
depending upon the mode (# OR ##) of the functioen. If

the characters of form are gapﬁﬁérkers, the argument'
substrings in memory with the corresponding ordinal values
are also copied t@,thg active or neutral string,depending

upon the mode of the function,

Censiderations for Arithmetic Operations

Though the TRAC language ig designed for text proec-
essing, it does handle limited arithmetic operations on
integers. The integers, however, are not represented in
pure numeric format but are in character format with the
ASCITI code. The complete character set of this 7-bit code
representation can be found in various references (1, 4,
7)., This nonnumeric notation forces the processor to
convert a string of ASCII characters into a numeric value
go that internal ealculations can be performed. Further-
more, the resultes have to be eqnverted.back;te character
gtrings for intermediate string values or for funetion
values.

When the processor is tested under the simulator of
Fairchild F24 computer, the “Teletype" input ef TRAﬂ—text
strings in punehed on cards, which simnlate the actual

input in ASCII code from a teletypewriter. The cards

58

are in the character set of EBCDIC (abbreviation of IBM
360 Extended Binary Coded Decimal:lﬁterchange Code), which
is different‘frem_ASGII. | |

The simulator takes care of the conversien required
for input from EBCDIC to 8-bit (with parity). The
processor in turﬁ,"¢ﬁnvertsitheﬂseVen infermatién bifs of
the ASGII representation of the character into the internal
coded -decimal value on which the calculation is performed.
For example, the character 5 is read into the IBM/360
memory as 11110101 in EBCDIC. . The simulator makes it
0110101 in ASCII. Then the TRAG processor converts it
into 101 in binary or 5 in base ten. The addition
operation #(4D,5,5,0VER) will result the binary value 1010
or 10 in base teﬁ in the F24 accumulator. Por this value
to be printed on Teletype, it is converted to a character
gtring consgisting of two ASCII aharaet@rs 0110001
(character 1) and 0110000 (character 0). Therefore, the
PRAC processor converts the binary value after the
addiiion 1010‘ta-thé above ASCII ehaﬁaeters for Teletype
output (or for any other purpose, .for that matter).

Besides considering conversion, the TRAC pracésser
pays special attention to the prabiem of the sign
6f integers. The proper sign may be easily treated when
the arithmeticieperands are pure numeric integers.
The TRAC language accepts integers in ASCII character
gtring format. The sign, if present in téit

59

string, is also in character form. Physically, the sign.
and integer characters are cancatenated; The processor
has to interpret the sign as the sign for the integer
instead of considering it as & character alone,

Anothar.factag adding to'the gomplexity of signed
integer is that the available model 1 of the Fairchild
P24 computer can manipulate @nlyfpesitive numbers. The"
TRAC processor, however, is suﬁPOsed to be able to handle
both positive and negative integers defined by the TRAC
1angﬁage.

There are three different cases for the problem of
sign: 1. both signs are positive, 2. either one of the
signe is negative, 3. both signs are negative.

Por first case the signs, not present in tﬁe integer
operands, are assumed to be positive for all four integer
arithmetic operations. .

For the second case, in which one of the two signs is
negative as indicated by the character '-' preceding the
integer operand, considerations are given to additien,
subtraction, and multiplication, éivisien!respeet;vely.
The reasen for two respect treatments ig that, when either
one of the operand is negative, the sum and difference
may be positive or npegdtive while the produet and quotient
are always negﬁtive.

Tn addition and subtraction, such as #(AD,-3,6,PP)

60

and #(sU,-%,6,00), the integer operands preceded by the
character '-' are transformed into their two's complement
internal arithmetic formats before operation. If the sum
or difference is positive, it is simply.returned as the
string value. If the sum or difference is negative, it is
transformed into its two's complement form (this makes thé
value péaitive) and the character '-' is apﬁended to its
string value, |

In multiplication and division, such as #(ML,-4,7,4)
and #(DV,34,-7,Q,R), the integer operands precéded by ‘'-!
are not changed to their two's complement formats. Both
operands are treated as positive during the operation,

The returned string value, however, is attached byaa -t
to indicate it is negative.

For the third case, in which both signs are negative
as indicated by a '~' in front of both integer operands,
respective consideratipns are given to additi@n,_aubtractien,
and multiplication, diwiaien.

Since the sum of addition iz always negative when

‘both_the signe of inteEer operands are negative, the two

operands are treated a positive during operation. That

means the two integers are not transformed into theif-twa's
complement forms, @he rpturned_nnmenie character étring‘is
appended by. '-' to denote it is a negative value.

The difference of subiraction could be either positive

or negative when both operands are negative. For instance,

61

the integer string value of #(SU;—7,-10,PP00) is 3; the
integef string value of #(SH,-14,-6,H§) is -8, Before
subtraction, both operands are tran;fofmed into‘their.twe's
complement formats., If the numeric value after evaluation
is positive,its-string value is simply returned. If the
numeric vﬁlue after evaluation is negative, it is first
transformed into its two's complement format and then a
'-' jg attached to reflect the string value is negative,
When both operands are negative;the product and
quotient are always positive. Buring the operation the
operands are treated as positive., After evaluation the

string value is simply returned asppositive value.

4.

5.

62

CHAPTER BIBLIOGRAPHY

Gear, William C., Computer Organigzation and Programming,
McGraw-Hill Book Company, New Yfork, 1969,

Harrison, Malcolm C., Data Structures and Programming,
Scott, Foresman and Company, Glenvies, illinois, 1973.

Hassit, A., lageschute, J. W., and Lyon, L. E.,
"Implementation: of a ﬁigh Level Language Machine,“
Assgciation for camgutigg Machinery Cemmunicatiens,
16 (April, 1973), 2

International Business Machines, IBH Sgstem 360
Principles of eperation, Form No. A i

Knuth, Donald E., Pundamental Algorithms, Vol. 1 of
The Art of Computer. Programmlng, ‘Rea 1ng, Massachusetts,
Addison-Wesley Publishing Company, 1973.

Mooers, . N., "TRAC, A Procedure-Describing language
for the Reactive Typewriter," Associatien for
Computing Machinery Communications, 9 (March, 1966),

5' 90

Niklaus, Wirth, System Pro
?gggtice—Hall, Inc., Englewood.

ramming, An Introduction,
0liffs, New Jersey,

CHAFTER V
!

CONCLUSIONS AND RECOMME

This chapter will present a summary of designing
experience, offer some conclusions about the results, and
make recommendationsfor pessible further development of

the current TRAC processor..

Linked ILists

The most important aspect of the designing phase is
the choice of data ptructure for the‘preeessar. The
organization of data objects in a programming environment
is known as data structure. There are numerous data
'strmeturesz_géﬁg, sequential allocation, stack, queues,
trees, and linked lists. The performance of a program or
a programming language is affected in an important manner
by the data structure upen which it is based.

. For the TRAC processor, a sequential list is used. to
keep track of the next available free memory location; the
pushdown stack is reserved for finding matching parenthe-
ses within the nesteéxTRAc text string; linked lists are
used throughout the teit;evaluatian procedure, which
constitutes the body of the processor.

During the earliest stage of designing the processor,

sequeﬁtial allocation‘waépused to manipulate relatively.

63

64

simple TRAC primitive functions such as RS (read string),
RC (read single ¢haraater),and PS (print string). The
allocation of storage was, at that time, taken care of by
dividing the available memory into several different sizes
of blocks.

However, the sequential allocation seemed aﬁkward
when it,was appliad_ta those primitive functiems involving
defined strings such as DS (define string), S5 (segment -
string), CL {call string), ¢¢ (call character), DD (delete
definition), and other related primitive functions.. Thesge
functions have to do with, one way or the other, the
addition, movement, deletion, and repla&ement of character
strings within the given‘definedrstring., The linked lists
are'tried on these primitive functions and it is found
that the above string operations are more easily and
smoothly carried out than with the sequential allocation.
Pherefore, for unity, the linked lists are later chosen to
- be the bhasic organization to implement the processor except
that the seguential alloqatien is used to keep track of
the next free storage of the one big free area. The ori-
ginal adoption of sequential .allocation ta_handle'siﬁyle
1/0 operatioms is> discarded.

The linked lists, furthermore, trigger the idea of
"one big free area' for the problem of storage-allocatien.
The original idea_éf several blecks af-storage.éceompany—

ing the sequential allocation during the earliest phase of

65

development was also dropped. If the storage were divided
into different sizes of available area, there would be a
tendency for them to perpetuate themselves during garbage.
collection (1). By careful management of list pointers
within the only one available block, this difficulty has
been avoided.

It has been said that, for linked allocation, twelve
bits of the Pairchild twenty-four-bit word are used as.
address pointer and ten bits are used to store the charac-
ter data, If the linked sllocation were applied to a
machine with an eight-bit word, it seems not feasible
because the word can only accommodate the data item and no
space can be used as an address pointer. There is an
exception for IBM 360 and 370 systems. Their basic word
length is a byte, or eight bits, but the instruction length
can be two to six bytes. If the linked alléeatibn were
applied to a sixteen-bit word, the data item would be well
contained in the word but the aceommodatieﬁ‘ef éddress
pointer would depend upon the total size of addressable
memory of the machine.

From the above diseussion_af the possibility to
extend linked allocation to eight- or sixtéen-bit word
machines, it can be seen that thellinking a@proach takgs
up additional memory space for the links. This.wé&ld be
the dominating factor while making a cheiée'between linked

structure and other data organizations. Fdrtunately; the

66
f

data item used in the processor does nmot take up the whoie
twentyhfour;bit word and there is already enough space fér
the address pointer. |

The cohéept of list proceseing has usually been con-.
sidered as inaccessible and complicated to erdinary pro-
grammers (1). VIt is something special and thus is for a
special gfoap of programming situations. The design of
TRAC processoer, however, utilizes extensively the linked
lists, and has been benefited from this dynamic structure.
While this successful example does not, and should net,
imply.that the structure of linked lists is applicable to
every programming environment, it has been shown that the
list processing is acceptable and can be understood as long
as a judicious manipulation of linked peinters is main-

tained,

Asgembler and Simulator

The TRAC processor has been extensively tested using
the available Fairchild F24 assembler and simulator before
it is loaded into the F¥24 computer memory. As a matter of
fact, the entire desigﬁing_process is heavily a program-
ming effort., The correctness of the interpretation of
each TRAC commend is first éxamined from the printer oaﬁput
of a simulated executien. If the test result is correct,
the actual axecutian.ef‘eaeh TRAC command on the F24

camputer gsystem gives the jdentical result. Nevertheless,

67

the anthentic reactive action offered by the Teletype is
simulated by card input and printer output.

If there were no F24 assembler, there'woﬁld be almost
noiway to start developing the TRAC processor on Fairchild
cqmputer. Pure machine language programming for an on-line
application program containing about 2000 statements is
absolutely not practical. If there were no F24 simulator,
it would make the debugging of the program an unpleasant
task. Testing a program of reactive application direetiy
on the machine would usually. suffer the difficulty from
unexpected program looping and sudden machine lockup. AYv
this time the only available source to find the canse. of
error is from the switches on the computer. These switches
can tell nothing more than a snapshot of the contents of
accumulator, the location counter when the program is.
terminated, and the status of some conirol awitehés.

Though memcfy dumps can be requested on some machines; it
is more difficult to read than the symbolic listing of the
program obtained from the assembler output.

If a PRAC processor is to be develapea.and-implemented
on another machine, the assembler may not be necessary |
since the TRAC processor program could be written in a
higher—levél language which is to be translated into ma-
chine language by the compiler. ‘In other words, the need
for an assembler to develep a PRAC processor depends upon
the specific machine cmnfiguration and the available system

gsoftware,

68

As for the simulator, it is suggested that it should
be made available to simulate the reactive typewriter or
typewriter equipped with Teletype eayaﬁilities of the
specific machine, The simulator should not omnly yravide
a memory dump to show the finél-cantemts‘of each cell used,
but furnish the tracing facilities to find out the in-

struction or statement deviating the program execution.

Regponse Time

One of the major goals of the thesis is to see the
TRAC processor work. The TRAC languagé is designed fof
one~line reactive application. The user enters TRAC text
string on the Teletypé and expects immediate response
(output) from the Teletype. The time spent betweén@the =
user entering the last character of TRAC text string andthe
ﬁh%e%y@e%ggtpuxtiﬁgﬁ'the first character of outﬁut string
is ealled.respensé time. In case of null-valued function,
the outpﬁt is indicated by the action of earriage return
and 1line feed. The response time of the F24 TRAC ﬁrocesser
on the Teletype keyboard generally takes one fourth to
three seconds. The time mf‘this‘erder is required to
promise efficient performance on a reactive system,

The response time varies according te the complexity
of the TRAC text string entered on the Teletype. For ex
ample, the speed of feedback of resultiﬁg string value from
the simple TRAC statement XY' ie, of course, faster than

69

that of #(DS,4,XYXY)#(SS,4,X)#(CL,A,FEEDBACK)'. The

nested structure #(DS,12,345)#(AD,##(CL,12),#(ML,#(CC,12),

##(Cﬁ;i2,2,NOMORE),Q),Flow)' takes more time‘fer the Teletype

to respond than dorsimple étruetures. |
Another impertant factor affecting thé response time

is the performance of garbage collection. When memory gets

.full, the frequency of restructuring the available storage

incfeases. This somewhat slows down the response time.

However, the Pairchild instructions each generally take

6 second) for

1.6 to 3.2 microseconds {1 microsecond = 10
execution, This fast execution rate contriﬁutes to the not
too drastic difference of response time between complicated
and uncomplicated TRAC string expressions, between those

which require garbage colle¢tion and those which do not.

Implementation of Secondary Storage
Primitive Punctions

All but three of the primitive functions defined in
original TRAC language {(2) are included in the F24 TRAC
processor., These primitive functions are "store blockﬁ,
¥fetch block", and "erase block", as described in Chapfer
IITI. They allow thé keyboard user tQ m@vé any'named strings
(férms) into a mass~-storage. device such as disk,‘tape, or
drum, to retrieve the named strings from the‘masa storage,

and to erase the named strings in the mass storage.

70

The fauture version of the F24 TRAC processor should
be extended to handle these three pfimitive functions once
the auxiliary storage device is made available for the F24
computer system. One of the advantageS'ei“ad&ing tﬁese
external storage management functions is that they protect
the defined strings from accidental erasure. If the
defined strings in memory were unexpectedly deétreyed, a
new copy could be loaded from the external device without
having to redefine the strings. This is especially
necessary when the defined strings are too long or tee
ecomplicated to enter them again on the Teletype.

The three primitive functions are to store, fetch,
.and erase blocks of defined strings. By the time they are
implemented, the blocks of def;ned strings may further be
collected together as a higher level group. The group may
be put together to form another collection. From there on,
a more elaborate file processing ability of the TRAC |
processor could be initiated. |

1f these three primitive functions were ever added %o
the existing TRAC processor, the size of the program for
the proeess@r'wemld be necessarily increased. This matter
would, in turn, reduce the amount of free sterage in the
memory. - Nevertheless, judging from the number of program
instructions used for the existing primitive functionms,

it could be anticipated that the reducing of free memory

space would not affect the-shriaking of the ene big bleck
to0 seriously.

The above anticipation is under the circumstances
that the input/output instructions in the program dealing
with external storage are relatively simpleg that is
supposing there is an external storage ceﬁtraller handling
the interpretation of external I/0 commands instead of
letting the processor largely perform the job.

While the adding of external storage manipulation,
primitive functions would reduce the available free space;
there might be a gain of the available free storage in
the other direction, This is under the'asaumptien that
all the defined strings are to moved inte the secondary
storage by the "store block" primitive function when they
are created and to be brought into the memory by the
nfetch block" primitive function when they are needed,
When a block of defined strings is moved from mémery to
external aterége, the address of that block in the
external-storage device ig stored in memory under the
identical bl&ck name ("store block" does this). The
address of a block sufé takes lesshspaee than the actual
contents of the block. Rather, the space saved would be
traded off by the time spent on transferring blocks of |
defined strings back and forth between the main mémory.

and the secondary devices.

71

72

Therefore, it is apparent that, if the three unimple-
mented primitive funections were added to the F24 TRAC
processor, the size of the one big free area of sioragé in
memory would be affected more or less by the following
three fécteré: {{) the increase of program instructions,
(2) the control of I/O functions concerning éxﬁerna} storage
devices, (%) the movement of blocks of defined strings to
and from main storage and secondary storage.

Not only the implementation of external storage
primitive functions influences the storage allocation, but
it also will gquestion the addressability of address pointer
used in the linked allocation of the current processor.
Phat is whether the twelve bits of address pointer will be
able to point at the'address external t¢ the memory. For
the future enlargement of the TRAC processor, the effect
of the above factors on the storage allocation and the
adaptability of linked 1ists to external devices deserve

as much attention as from the file~processing point of view.

73 -

CHAPTER BIBLIOGRAPHY

1. Knuth, Donald E,, Funfamental Algorithms, Vol. I of
The Art ef Computer Programming, Reading, Massachusetts,
A&Eia@nhﬁﬁsiey'PuSiis'ing Gompany, 1973.

2. Moocers, C. N., "TRAQ, A‘Eroeedareﬁbescribing language
for the Reactive Typewriter," Association for
gomputing Machinery Communications, 9 (March, 1966),

T5-279,

3, Sammet, J. E., Programming Language: History and.
Fundamentals, New Jersey, Prentice-Ha CInc., 1969,

APPENDIX A

SAMPLE TRAC PROGRAMS
Active, Neutral, and Quote Functions
(DS, A, TRAC) g
#{DS,B(H#(CLsAII D
#(PS, (#CCLLBY)> " #(CL.B)
FIPS, ##(CLIBIY Y #CEL,AD
#'_(PS;; #(CL,BY)» " TRAC

Mis¢ellaneous Operations .

#(Bﬁ:YaTHIS 15 A TR&C PHUSHAM)'
#CS5.Ys)7

#C(CLo Y)'THISISATRACPRGGHEM
#CC5,Y,PPY'THLS

#CCS,Y,QQ2V18

#(CRLYD'
#(CL:?;&)'THEﬂ&IS&A&THQG&PEDGRAM

Strings Concatenation

#CLEL,ALTHIS 15 THE STRINGHT

#(D5, B, TEXT PROCESSING)Y* : . L
#(CLAY#(CLLB)'THIS 15 THE STRINGTEXT PROCESSING
FCCHL A 2,YYIACCNLB, 5, QR *THTEXT

#(DE, SHARP, (#)) "

FCOLL EBARPY(DE, XHL XK

FLPE,##(CLLXK)) ' XY

Square of A Number
#CDS¢5&UAﬁh,(#(ML,*.*;GVER)):*

#(55s SQUARE, %"
#(SQUARE, 12) 144

EEOLL R S v By e i x;rf Fee " s .

. . EQ ., (MLsN. #(CL,FACT, #(AD N2 =1,033,00330)°

.ﬁ(ﬁ&;@ﬁgg m;«$t;‘k. ' '
#ch,FACT,6>*7aG

74

Aetive Punetion

Aetive String
Form

Form Store

Form Position
Pointer

Jdling String

Heutfal Funetian

Neutral String

One Big Free
Area - ’

Primitive
Punction

APPENDIX B
GLOSSARY OF TERMS

thoge primitive functions (see Primitive
Function) whose values returned. from
evaluation are to be rescamned and -

,peevaluated.

the string is composed of the TRAC
programs or substring currently scanned.

a string which has been given a value
and associated with a name.

memory space occupied by the forms.

the pointer uged to point at the specifie
character of the form.

#(Ps,#(RS)); it is initially loaded in
the active sitring, causes a string
terminated by the end-of-string symbol
ftn to be read from the Teletype into
the active string, them the string is
evaluated, printed and a fresh ceopy of
the string is loaded.

those primitive functions (see Primitive
Function) whose values returned from
evaluation are not to be scanned or
evaluated.

‘a work area where string of characters

is used for execution,

an area of TRAC memory consisting of 100

lecations shared by active string, -
neutral string, and intermediate value
“"resulting from function evaluation.

TRAC instructions specify the actien
to be taken upon the string.

75

BIBLIOGRAPHY

Books

Gear, William O., Computer érgangzation.anﬁ Programming,
New York, McGraw-Hill Beok Company, 1969,

Harrison, Malcolm GEJ.Data_Strucguresﬁﬁmd Programming,
Glenvies, Illinois,'Scott;-?oreaman‘and mpany, 1973,

International Business Machines, IBM System 360 Principles
of Operation, Form No. A22-6822. T '

Knuth, Donald E., Fundamental Algogithms,i?ol. I of. The
Art of Computer Programming, Reading, Massachusetts,
Addison-Wes ey‘PuEI?shing Company, 1973.

Niklaus, Wirth, System Programming, An Introduction,
Englewood (liifs, New Jersey, Premtice~Hall, 1nc., 1973

Sammet, J. E., Programmin Langgaget'ﬂistery.and;Fun&amentals,
: Englewood Cliffs, New Jersey, Prentice-Hall, InG,, 1969.

Scott, Dan W., CASH Lengnage Primer, University cémputing
éempany,’Ballas, 1%%@. '

Wegner, P., Programming Languages, Informatiom Structure
and Machine Organization, New York, Mc@p&wrﬁiil Book
Company, 1968, '

- Articles

Hassit, A., Lageschute, J. W., and Lyom, L. E.,
"Implementation of a High Level Language Machine,®
Agsociation for Computing Machinery. Communications,

MeIlroy, M. D., “Maeﬁo.Instnuctien_Extansiens of Compiler

-

Langpagg,”aggsaéiatimn‘fartcom;utinggMa.hinerv\
Communications, > (April, 1960), 214-220.

Meqeré, Gs Hey ”@RAG;,A!Praﬂaduneeﬁéserihing;Langaagajf@r
thevﬁeactive}&yp@writ@t;",Assﬁciatimng~@r;eem_atin'”
‘Machinery Communications, 9 (Marca,” 966), 215-219,

76

Reports

Bosack, L,, Eichenberger, P., Klein B,, Levine, J.,
Theriault, D., and Young, J., "TRAC Language:
Construetion, Use and Philosophy," presented at the
?gggs Symposium, Wakefield, Massachusetts, May 13,

Mooers, C. N., and Deutsech, L. P., "TRAC, A Text Handling
Language," Proceedings, Association for. Computing
Machinery Twentieth National Gonferenee,,'“

(ﬁugust, 1965), 229246, :

Unpublished Materials

Eastwood, D. E., and MeIlroy, M. D., "Macro Compiler
Modiflcatien of S4P," unpublished memorandum, Bell
Telephone Labarataries, Gomputation Laboratmry, 1960.

Grimes, Glen T., "Design and Implementatian ef an‘Ass@mbler
for the Fairchild F24 Computer,” unpublishéd master's
problem in lieu of thesis, DBepartment of Computer
?;%ences, North Texas State. University, Denton, Teéxas,

3.

Scott, Dan W., unpublished programs of F24 simulator .on. the
IBM 360, F24 program loader, and F24 memory dump,
Department of Computer Sciences, North Texas State
University, Denton, Texas, 1973

Wickham, K., and Hamming C., "The TRAC Processor,"” .. -
unpublished .paper for a course given by Dan W. Scott
at Southern Methodist Universisy, Dallas, Decenber,
1969,

