
HEWLETT f PJ PACKARD

HP i\LGOL
Refer~ence Manual

HP ALGOL
Reference Manual

=

HEWLETT f!iPJ PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

PART NO. 02116-9072 Printed In U.S.A. 11/76

~IST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the margin of the page. Original pages (Change 0) do not include a change number. Insert latest changed
pages and destroy superseded pages.

Change 0 (Original) NOV 1976

ii

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright© 1976 by HEWLETT-PACKARD COMPANY

[----~~--~-------------P_RE_F_A_CE~
This manual describes the HP ALGOL language for Hewlett-Packard 2000 computer systems.
HP ALGOL is similar to the source language described in "Revised Report on the Algorithmic
Language ALGOL 60," Communications of the ACM, January, 1963.

Different versions of HP ALGOL have been designed to run on these operating systems:

SIO Subsystem
DOS III Operating Systems
Real-Time Executive II (RTE-II)
Real-Time Executive III (RTE-III)

In addition, programs compiled by ALGOL can run under the Basic Control System (BCS) and
RTE memory based systems. You should check the reference manual of your system for
information on how HP ALGOL is implemented.

This is a reference manual, not a training manual. You should already be familiar with your
operating system and have had some programming experience.

For information concerning subroutines provided with your system, see DOS/RTE Relocatable
Library Reference Manual (Part No. 24998-90001).

The first section of this manual describes ALGOL programs in general, and includes a
comparison of HP ALGOL and ALGOL 60. The second section defines the basic concepts of
ALGOL and explains how to declare identifiers. Section III gives a detailed description of
assignment, GO TO, IF, CASE, WHILE, DO, FOR, and PAUSE statements. Input/Output
statements and declarations are described in section IV. An explanation of procedures, both
internal and external, is presented in section V. Section VI gives some general information
about the HP ALGOL compiler. Section VII presents sample HP ALGOL programs. HP
ALGOL and HP FORTRAN IV are compared in section VIII. Appendix A contains compiler
and system error messages. Appendix B contains the HP ALGOL syntax in BNF productions.
Appendix C lists the Hewlett-Packard character set for computer systems.

iii/iv

Section I
INTRODUCTION

Page

Algorithms and Programs 1-1
HP ALGOL Programs 1-1
HP ALGOL and ALGOL 60 1-3

Section II Page
BASIC CONCEPTS
Constants .. 2-1

Decimal constants · .. 2-2
ASCII Constants 2-2
Octal Constants 2-2
Boolean Constants 2-2

Identifiers ... 2-2
Declarations 2-3

EQUATE Declaration 2-3
Type Declaration 2-4
ARRAY Declaration 2-4
LABEL Declaration 2-5
SWITCH Declaration 2-6

Variables .. 2-6
Arithmetic Expressions 2-7
Boolean Expressions 2-9
Conditional Expressions 2-10
Assigned Expressions 2-11
Intrinsic Functions and Predeclared
Identifiers 2-11
Cmnments 2-12

Section rnI Page
ALGOL STATEMENTS
Labels ... 3-1
Assignment Statements 3-1
GO TO Statement 3-2
IF Statement 3-3
CASE Statement 3-4
WHILE Statement 3-6
DO Statement 3-7
FOR Statement 3-8
PAUSE Statement 3-9
Dummy Statement 3-10
Blocks .. 3-10

Section IV Page
INPUT/OUTPUT
INPUT List 4-1
OUTPUT List 4-2
FORMAT Declaration 4-2

Real Format Specifications 4-2
Integer Format Specifications 4-5
Editing Specifications 4-7
Specification Separators 4-8
Repeat Count 4-8

Carriag1°' Control 4-9
Free Field Input 4-9
READ Statement 4-10
WRITE Statement 4-10
Examples 4-11
Magnetic Tape Statements 4-15

CONTENTS

Section V
PROCEDURES

Page

Parameters 5-1
Procedure Declarations 5-2
Calling Procedures 5-3
Function Procedures 5-4
CODE procedures 5-4
Separately Compiled Procedures 5-4

ALGOL Procedures 5-5
Calling FORTRAN Routines
from ALGOL 5-5
Calling ALGOL Procedures
from FORTRAN 5-6
Calling ALGOL Procedures from
Assembly Language 5-7
Calling Assembly Language Routines
from ALGOL 5-7

Section VI Page
THE HP ALGOL COMPILER
Environment 6-1
Control Statement 6-1
Program Input 6-2
Program Listing 6-2

Section VII Page
PROGRAM EXAMPLES
Taylor Series for EXP, SIN, and COS 7-1
Read Text and Count Characters 7-5
Call System Routines 7-6

Section VIII Page
HP ALGOL AND HP FORTRAN IV
Program Format 8-1
Variables and Constants 8-1
Arrays ... 8-1
Statement Numbers 8-2
Expressions 8-2
EXTERNAL Statement 8-2
COMMON and EQUIVALENCE Statements 8-2
DATA Statement 8-2
Assignment Statement 8-3
GO TO Statement 8-3
ASSIGN TO and Assigned GO TO Statements 8-3
Computed GO TO Statement 8-3
Arithmetic IF Statement 8-3
Logical IF Statement 8-3
CALL Statement 8-4
RETURN and STOP Statement 8-4
CONTINUE Statement 8-4
PAUSE Statement 8-4
DO Statement 8-4
END Statement 8-4
I/O Statements 8-5
Functions and Subroutines 8-5

v

~ONTENTS (continued)

Appendix A Page Appendix C Page
Errors .. A-1 HEWLETT-PACKARD CHARACTER SET

FOR COMPUTER SYSTEMS C-1
Appendix B Page
HP ALGOL BNF SYNTAX B-1

TABLES

Title Page

Reserved ALGOL Identifiers 2-3
ALGOL Intrinsic Functions 2-11
Predeclared ALGOL Variables 2-12

vi

[11u11rh'1 INTRODUCTION ,, 1 I

The word ALGOL is an acronym for ALGOrighmic Language. This section has been written to
give you a brief introduction to algorithms, to describe the structure of ALGOL programs, and
to point out the differences between ALGOL 60 and HP ALGOL.

1-1. ALGORITHMS AND PROGRAMS

An algorithm is a step by step method used to solve a problem or accomplish some task. A
common algorithm is the definition of a factorial:

Factorial of n (n!):
If n = 0 then n! = 1.
If n > 0 then n! = n x (n-1) x ... x 3 x 2 x 1.

Example: 5! = 5 x 4 x 3 x 2 x 1 = 120

In this form you can understand the algorithm, but it cannot be executed on a computer. A
computer program is an algorithm that has been written in a language which the computer
understands. ALGOL is one such computer language.

A compiler is a program that translates computer programs from a symbolic language (such as
ALGOL or FORTRAN) into binary code that can be loaded on a computer. The program read
into the compiler is called the source code or source program. The machine instructions
generated by the compiler are called the object code or object program. The object code can be
loaded and executed on a computer.

The steps to producing a computer program are:

1. Define the problem.
2. Write an algorithm to solve the problem.
3. Translate the algorithm into ALGOL.
4. Run the ALGOL compiler to produce relocatable object code.
5. Run the loader to combine subroutines and produce executable machine code.
6. Execute the machine code.

1-:!. HP ALGOL PROGRAMS

HP ALGOL statements and declarations do not have to begin in any particular column. (They
must end by column 72.) One statement can be spread over several lines or several statements
can appear on one line. Statements are separated from each other with semicolons (;).

HP ALGOL is a block structured language. An ALGOL block is a series of declaratons and/or
statements that start with the word BEGIN and terminate with the word END.

1-1

As an example of HP ALGOL, here is a program to calculate a factorial:

PAGE 001

001
002
003
004
005
006
007
008
009
010
011
012
013
014

00000
00000
00001
00001
00001
00004
00040
00042
00045
00046
00052
00052
00056
00101

HPAL,L, 11 FACTL 11

BEGIN
COMMENT THIS PROGRAM READS A NUMBER FROM THE

SYSTEM CONSOLE CLU 1> AND PRINTS ITS FACTORIAL;
INTEGER N, FACTL;
RE ADC 1 , * , N > ;
FACTL : = 1 ;
WHILE N > 0 DO

BEGIN
FACTL := FACTL*N;
N := N - 1
END;

WRITEC1, #(11 FACTORIAL =11 16>, FACTL>;
END$

PROGRAM= 000105 ERRORS=OOO

Line 1 contains the control statement. The L indicates that the program is to be listed as it is
compiled. The name of the program (in this case F ACTL) is enclosed in quotes.

Line 2 is the first line of the program. Because a program is a block, the first statement must
always be the word BEGIN.

Lines 3 and 4 contain a comment. Comments are included in programs to help the reader
understand what the program does. Comments are ignored by the compiler and do not affect
the object code that is generated. The semicolon terminates the comment.

Line 5 declares two integer variables: N and F ACTL. Any variables used exclusively within a
block must be declared at the beginning of the block.

Line 6 is the first executable statement in the program. It reads a number from logical unit 1
and puts it into N.

Line 7 initializes the factorial to one.

Line 8 is the beginning of a WHILE statement. The condition is checked (N greater than zero)
and the following block is executed while the condition is true. If N is zero the first time it is
checked, the block is never executed.

Line 9 is the beginning of an inner block.

Line 10 multiplies FACTL by N.

Line 11 sets up the value of N for the next iteration of the WHILE block.

Line 12 terminates the block that started in line 9. After line 11 is executed, the condition in
line 8 is checked again.

Line 13 is executed only after the WHILE condition is false. The value of the factorial of N is
printed on logical unit 1.

1-2

Line 14 terminates the block that began in line 2. The"$" indicates that this is the end of the
program.

This program listing was formatted to clearly show ALGOL's block structure by indenting the
statements. This is not required - it could have been compacted to:

0 0 'I 0 0 0 0 0 HPAL, L, 11 FACTL II

002 00000 BEGIN INTEGER N,FACTL;READC1,*, N>;FACTL:=1 ;WHILE N>
003 00042 0 DO BEGIN FACTL:=FACTL*N;N:=N-1 END;WRITEC1, #(
004 00064 II FACTORIAL =11 I5>,FACTL> END$

PROGRAM= 000105 ERRORS=OOO

Although both programs produce the same object code, the first one is easier to read and
undlerstand. Most of the program examples in this book indent blocks three spaces.

1-:t HP ALGOL AND ALGOL 60

This subsection describes the differences between HP ALGOL and ALGOL 60. If you are not
already familiar with ALGOL 60, you may skip this discussion.

In addition to the major elements of ALGOL 60, HP ALGOL provides the following extensions:

1. REAL and INTEGER variables can be intermixed on the left side of assignment state­
ments.

Example:

INTEGER A; REAL B;
A := B := O;

2. IF statements can be nested within IF statements.

Example:

IF A=B THEN IF B=C THEN D=1 ELSE D=3;

3. All variables are treated as OWN variables (their values are not changed when execution
terminates in the block where they are declared).

4. Variables and arrays can be initialized as you declare them.

5. Program constants can be given symbolic names with the EQUATE declaration.

Example:

EQUATE TABLESIZE := 126;
ARRAY TABLEC1 :TABLESIZEJ;

1-3

6. READ and WRITE statements use FORMAT specifications and Logical Unit numbers (as
in FORTRAN).

7. You can reference external routines written in HP ALGOL, FORTRAN, or Assembly
Language.

8. Because HP ALGOL treats Boolean and integer expressions in the same manner, you can
use NOT, AND, and OR in arithmetic expressions.

9. You can replace "STEP 1 UNTIL" with "TO" in FOR statements (only when the step value
is 1).

10. You can define one word (integer) octal and ASCII constants.

11. Comments can be inserted after an ampersand (&) on any line.

12. The DO ... UNTIL, PAUSE and CASE statements have been added.

HP ALGOL also differs from ALGOL 60 in the following areas:

1. Recursion is not supported.

2. Parameters are called by reference instead of by name. (Parameters can also be called by
value.)

3. The definition of a switch is not as general.

4. Lower case letters are not included in the basic character set. In addition, the following
characters are substituted for ALGOL 60 characters:

ALGOL60 HP ALGOL MEANING

x * Multiplication
\ Integer Division

::::::; <= Less Than or Equal
~ >= Greater Than or Equal
¥: # Not Equal
--, NOT Logical Not
/\ AND Logical And
v OR Logical Or

I Scaling Factor for Real Constants 10

' ' II String Quotes

You may use the standard ALGOL assignment operator := or the HP ALGOL assignment
operator~. The symbols :J (Logical Implies) and= (Logical Equate) are not included in HP
ALGOL.

5. You cannot use the FOR list and WHILE form of the FOR statement.

6. Array bound values must be integer constants.

7. You must declare labels before you define them.

8. Storage for arrays and variables is not dynamic.

1-4

I
L l

lMIW1
BASIC CONCEPTS! 11 I

Th:is section has been written to explain the basic elements of HP ALGOL: constants, iden­
tifiers, declarations, expressions, intrinsic functions, and program comments.

2-1. CONSTANTS

Constants are values used in your program that do not change. You can use four types of
constants in HP ALGOL programs: decimal, octal, Boolean, and ASCII.

2-2. DBCIMAL CONST ANTS

Decimal constants may be either real or integer numbers.

Real numbers use two words (32 bits) of memory. They have a 23 bit fraction (plus sign bit) and
a seven bit (plus sign) exponent. Real numbers are significant to six or seven decimal digits,
depending on the leading digit in the fraction. The largest number that can be represented is
2127 (approximately 1038

). The smallest positive number is 2-127 (approximately 10-38
).

Integer numbers require one word (16 bits) of memory. They are represented in two's comple­
ment form and can take any integer value between -32768 and 32767.

If you write a number and include a decimal point or scale factor, the compiler generates a two
word real constant. Otherwise a one word integer constant is created. All decimal constants
may be either signed or unsigned.

You may write real decimal constants as a number multiplied by an integral power of ten
(scientific notation) by following the number with an apostrophe (')and a signed or unsigned
integer. The apostrophe and power are called a scale factor.

Here are examples of decimal constants:

ALGOL Constant

0
o.o

-325
+426
-.5384

· -· 5 • 384 I -1
200.
+200.0

.,0002'6
~~- '+2

'3

Internal Value

0
0.0

--325
426

-.5384
-.5384

200.0
200.0
200.0
200.0

1000.0

Type

Integer
Real
Integer
Integer
Real
Real
Real
Real
Real
Real
Real

2-1

2-3. ASCII CONSTANTS

ASCII constants are 1or2 ASCII characters enclosed in quotes~·). Each character requires 1/2
word (8 bits) of storage. If you include only one character between the quotation marks, the
character is placed in the right half of a word and the left half is filled with zeros.

ASCII constants are stored as integers. The internal representation of character values is
described in Appendix C. Here are examples of ASCII constants:

ALGOL Constant

11 HP 11

"A"
II A"
"A II

2-4. OCTAL CONSTANTS

Internal Value (octal)

044120
000101
020101
040440

You can use octal (base 8) constants by typing a commercial at sign (@) followed by up to six
octal digits. Octal constants must be in the range 0 to 177777. They are stored as integers. For
negative numbers, place a minus (-) in front of the @

Examples:

@1230
@1030
-@121

(The constants 11 A11
, @1 01 , and 65 generate the same internal value.)

2-5. BOOLEAN CONSTANTS

There are two Boolean constants: TRUE and FALSE. Internally, TRUE= -1 (all bits on) and
FALSE = 0 (all bits off). Boolean constants are treated as integers.

2-6. IDENTIFIERS

Identifiers are names you can use to reference procedures, statements, variables and con­
stants. The first character of an identifier must be a letter; succeeding characters may be
letters or digits. You can have as many characters as you want in an identifier, but only the
first fifteen are significant. (Additional characters are ignored.)

A number of identifiers already have special meanings in ALGOL. You may not use the
identifiers in table 2-1 except as noted.

2-2

Table 2-1. Reserved ALGOL Identifiers

*ABS ENDFILE *LN *SQRT
AND *ENTIER NOT STEP

*ARCTAN EQUATE OR SWITCH
ARl~AY *EXP OUTPUT *TAN
BACKSPACE *FALSE PAUSE *TANH
BEGIN FOR *Pl THEN
BOOLEAN FORMAT PROCEDURE TO
CASE GO READ *TRUE
CODE IF REAL UNLOAD
COMMENT INPUT REWIND UNTIL

*COS INTEGER *ROTATE VALUE
DO *KEYS *SIN WHILE
ELSE LABEL *SIGN WRITE
END SPACE

*These identifiers have been predeclared in that you can use them without declaring them. You
may, however, override these declarations with your own.

2 -~ _,. DECLARATIONS

ALGOL programs consist of declarations and statements. Declarations are non-executable.
They describe the properties of identifiers you use in your program. You must declare iden­
tifiers at the beginning of the outermost block where they are used. This section discusses five
types of declarations: Equate, Type, Array, Label, and Switch. Input, Output, and Format
declarations are discussed in Section IV. Procedure declarations are discussed in Section V.

Declarations are separated by semicolons.

2-8. EQUATE DECLARATION

You can assign identifiers to program constants with the EQUATE declaration. The form of
the EQUAT1~ declaration is:

EQUATE <variable> <constant>, ... , <variable> <constant>

Example:

EQUATE KEYBDARD:=1, BLANK:="", MASK:=@177, EPSILON:= 1 38;

EQUATE identifiers may be used anywhere in a program where a constant can be used. The
EQUATE declaration is particularly useful to set constants which may change if the program
is redesigned.

Example:

EQUATE MAXLEN := 5, MAXENTRY := 100;
INTEGER ARRAY NAME[1 :MAXENTRY, 1 :MAXLENl;

2-3

NOTE

Throughout this book, the assignment operator := is used. HP
ALGOL also accepts~ L on some terminals) as an assign­
ment operator. You can use either one where := is shown in
this book.

2-9. TYPE DECLARATION

Type declarations tell the compiler the names of simple variables and the type of data they are
to contain. You can initialize variables when you declare them. The types of variables are
REAL, INTEGER, or BOOLEAN. The general form of the type declaration is:

REAL <identifier> := <constant>, ... ,<identifier> - <constant>
or

INTEGER <identifier> := <constant>, ... ,<identifier> - <constant>
or

BOOLEAN <identifier> - <constant>, ... ,<identifier> := <constant>

The ":= <constant>" portion, which is entirely optional and may be omitted, assigns an initial
value to the variable.

Examples:

INTEGER I,J:=O,K:=@30,N:= 11 N11
, START,M:=-3;

REAL X,Y,Z:=O.O;
BOOLEAN FLAG, MOREDATA;

If you don't specify an initial value, the HP ALGOL compiler does not provide one. The value of
uninitialized variables depends upon the loader of your system.

2-10. ARRAY DECLARATION

The ARRAY declaration declares multi-dimensional arrays and gives the lower and upper
bounds of each dimension. There is no limit to the number of dimensions an array may have.
The bounds must be integer constants with the lower bound less than or equal to the upper
bound.

In array declarations, you specify the type and write the word ARRAY followed by a list of
identifiers (the names of the arrays separated by commas) and a list of bound pairs enclosed in
brackets. The bound pairs are the lower and upper bound for each subscript separated by a
colon. All the identifiers in the list have the number of dimensions and subscript limits given
by the bound pairs.

If you want to declare several different sized arrays of the same type, follow the first declara­
tion with a comma, give a list of new identifiers, and specify new bound pairs. There is no limit
to the number of arrays you can define in an array declaration.

2-4

The general form of the ARRAY declaration is:

<type> AR HAY <identifier>, ... ,<identifier>[< lower bound>:< upper bound>,
... ,<lower bound>:< upper bound>], ... ,

<identifier>, ... ,<identifier>[< lower bound>:< upper bound>, ... J

An array may be REAL, INTEGER, or BOOLEAN. If no type is given, REAL is assumed.

Examples:

REAL ARRAY TABLEC0:20, 1 :12];
INTEGER ARRAY CONTROLCO :®31] ,CHARSC 11 11

:
11

_
11

] ,UPPERCASEC 11 A11
:

11 2 11
];

BOOLEAN ARRAY USEDC-321 :OJ;
ARRAY MATRIX1, MATRIX2, MATRIX3 (1 :4,1 :6],

MATRIX4, MATRIXS (1 :3,1 :3,1 :10];

In the last example, MATRIX!, MATRIX2, and MATRIX3 are REAL 4 by 6 arrays. MATRIX4
and MATRIX5 are REAL 3 by 3 by 10 arrays.

Array are stored in consecutive memory locations with the rightmost dimension increasing
first.

Example:

ARRAY AC1 :3,1 :3,1 :3]

is stored in the order
A[1:,1,1], A[1,1,2], A[1,1,3], A[1,2,1], A[1,2,2], A[1,2,3], A[1,3,1], A[1,3,2], A[1,3,3], A[2,l,1],
A[2:,1,2], ... , A[3,3,2],A[3,3,3J

You can initialize the elements of an array when you declare it by placing an assignment
operator after the bounds list and following it with a list of constants separated by commas. In
an array declaration, only the last array named may be initialized. (Other arrays can be
initialized in other declarations.)

Example:

INTEGER ARRAY DIGITS C0:20] ·= 11 011
,

11 111
,

11 2 11
,

11 3 11
,

11 4 11
,

11511, 11611, 11711, 11911, 11911;

In this example, the first ten elements (0 through 9) of DIGITS are initialized to the ASCII
representation of their index. Elements 10 through 20 are undefined.

2-11. LABEL DECLARATION

The label declaration indicates that you will use the specified identifiers as labels of state­
ments in your program. Labels may be used in GO TO statements or passed as parameters to
subiroutines.

2-5

The general form of the label declaration is:

LABEL <identifier>, ... , <identifier>;

Example:

LABEL ERROR, RESTART, LOOP;

All declared labels must be defined (assigned to a statement) somewhere in your program.
Defining labels is described in Section III.

2-12. SWITCH DECLARATION

A switch is a set of labels which can be entered as objects of a GO TO statement. During
execution of the GO TO statement, the switch identifier uses an indexing parameter to
determine which label is used.

General format:

SWITCH <identifier> := <label>, ... , <label> ;

There is no limit to the number of labels which may be used in the switch. The labels are
associated from left to right with the positive integers (1,2,3 ...).

Example:

LABEL L1 ,L2,L3,FINISH;
SWITCH SW := L1 ,L2,L2,L3,FINISH;
INTEGER I;

I : = 3;
GO TO SW[ll;

In this example the indexing parameter, I, is set to 3. Control is passed to L2, the third label in
the switch list.

All the labels must be declared before the switch declaration. When the indexing parameter is
less than 1 or greater than the number of labels, the GO TO statement is bypassed; execution
continues with the next statement.

2-13. VARIABLES

There are two types of ALGOL variables: simple variables and subscripted (array) variables.
Each of these may be real, integer, or Boolean, depending on how you declared them.

Variables must be declared before you use them. Subscripted variable names must be followed
by subscript expressions enclosed in brackets. The general form is:

<identifier>[< expression>, ... , <expression>]

2-6

The number of subscript expressions must be identical to the number of dimensions specified
in the array declaration. Each subscript must have an integer value which lies within the
bounds specified for the array in its declaration.

Examples:

TABLECI, J+3*Al
USEDC TEXTC3*Xl+1

If your program tries to access an array element beyond its declared bounds, the INDEX? error
message is printed and 0 is returned as the value of the element.

2-·14. ARITHMETIC EXPRESSIONS

An arithmetic expression is a mathematical formula containing constants, variables, func­
tions, parenthesis, and arithmetic operators. (Constants, variables, functions, and paren­
thesized expressions are known as primaries.) The value of a variable is the last value
assigned to jt. The value of a function is the value resulting from the computation defining the
function procedure.

The following operators are valid for arithmetic expressions:

A

*
I
\

MOD
+

NOT
AND
DR

Exponentiation Ct on some terminals)
Multiplication
Real Di vision
Integer Division
Remainder from Integer Division
Addition
Subtraction
Complement bits
Logical AND bits
Inclusive OR bits

All operators except NOT work on two operands. NOT works on one operand.

The results of arithmetic operations can be real or integer. For+, - , and* the result is real
unless both of the operands are integer. The operator I always produces a real result. The
results are always integer for"""' NOT, AND, and OR.

Examples of""", MOD, and logical functions:

Expression

7\8
3\2
(-3)\(-2)
C-24)\5
7 MOD 8
3 MOD 2
C-3>MDDC-2>
C-24>MDD 5
@777 AND @12345
@077 OR @120000
NOT @123456

Value

0
1
1
-4
7
1
-1
-4
@000345
@120077
@054321

2-7

WARNING

Integer and real overflow resulting from arithmetic op­
erations may not be detected during program execution.

The operator" denotes exponentiation and is defined as follows for integer I, real R, and real
or integer A:

A" I

A"R

I> 0: A* A* ... *A (I times). Result is the same type as A.
I= 0 and A¥:0: 1. Result is the same type as A.
l<O and A¥:0: 1/(A"(-1)). Result is REAL.
l~O and A= 0: Undefined

A> 0: EXP(R*LN(A)). Result is REAL.
A= 0 and R>O: 0.0. Result is REAL.
A=O and R~O or
A< 0 and R¥: 0: Undefined.

You can mix integer and real operands in an expression. If a real result is assigned to an
integer, the result is rounded to the nearest integer, not truncated.

The order of operations is determined by parentheses and the normal precedence of operators.
The normal precedence is:

" Highest
*I \MOD

l + -

NOT
AND
OR Lowest

If operands have the same precedence, they are performed from left to right.

Examples of arithmetic expressions:

ALGOL Mathematics

2"1"J

2"Cl"J>

B • C•D
A+ + F

E

D
CA+B>*C+D/CE+F> (A+ B) • C +

E + F

x . z
y

2-8

2-·1 s. BC>OLEAN EXPRESSIONS

A Boolean expression is a rule for computing a logical value (TRUE or FALSE). The following
relational operators are valid in Boolean expressions:

<
<=
=
>=
>

Less Than
Less Than or Equal
Equal
Greater Than or Equal
Greater Than
Not Equal

The meaning of the logical operators NOT, AND, and OR is given by the following truth table
where Bl and B2 are Boolean expressions:

Bl B2 BlORB2 Bl AND B2 NOT Bl

TRUE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE FALSE
FALSE TRUE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE TRUE

Examples of Boolean expressions:

x = -2~.46
CCHAR >= 11 A11 AND CHAR <= 11 Z11 > OR CCHAR >= 11 011 AND CHAR <= 11911

)

A"2 < 100
3*Q > 4*A+2 AND Q>O.O
A<B AND 8#0
NOT CCHAR < 11 A11 OR CHAR > 11 Z11 >

As shown in the examples, arithmetic expressions can be part of Boolean relations. The
complete hierarchy of operations is:

A Highest

* I \ MOD
+ -

< <= = >= > #

NOT
AND

OR Lowest

As with arithmetic expressions, Boolean expressions can be parenthesized to change the
precedence of operations.

In HP ALGOL, there is no difference between Boolean and integer values. As a result, Boolean
and arithmetic operations can be mixed within expressions.

Integer values are considered to be true when they are negative and false when they are
positive or zero. (Only the sign bit is significant in determining the logical value.) The Boolean
constants THUE and FALSE are equivalent to - 1 and 0.

2-9

For all logical operations, only the sign bit is used. Because of this, evaluation of a Boolean
expression may produce a value that is not -1 (TRUE) or 0 (FALSE). For example, the
following code may not work:

FLAG := A>B;
IF FLAG = TRUE THEN

<statement>;

As a result of the> operation, only the sign bit is set in FLAG, and the value may not be TRUE
even when A is greater than B. Instead of this, you should use:

FLAG := A>B;
IF FLAG THEN

<statement>;

WARNING

Integer overflow resulting from Boolean expressions is
not detected during program execution. Integer overflow
can result from comparing integer values that differ by
more than 32767.

2-16. CONDITIONAL EXPRESSIONS

Another type of arithmetic expression is the Conditional Expression. It has the form:

IF <Boolean expression> THEN <expression 1> ELSE <expression 2>

The Boolean expression is evaluated first. If it results in a true value, the value of the
expression is <expression 1>. Otherwise the value is <expression 2>. Each of the subexpres­
sions may have the conditional form.

Examples:

IF A>O THEN A ELSE -A
IF FLAG THEN N ELSE N+3
IF CHAR >= 11 A11 AND CHAR <= 11Z" THEN ALPHA ELSE NUMERIC
IF A<B THEN

IF A<C THEN A ELSE C
ELSE IF B<C THEN B ELSE C

The value of the first expression is the absolute value of A. The value of the last expression is
the minimum of A, B, and C.

Conditional expressions may be enclosed in parentheses and combined with other expressions.

2-10

Example:

CIF A<B THEN A ELSE B> + C
is equivalent to

IF A<B THEN A+C ELSE B+C

A conditional expression may be used anywhere an arithmetic expression is 1-egal.

2-117. ASSIGNED EXPRESSIONS

Arithmetic subexpressions can be assigned to variables within expressions. To do this, enclose
the assignment within parentheses. For example, the expression

3 + rn: = 3* 2 > + 7

has the value 16. In addition, it assigns the value 6 to the variable A.

The subexpression can be any arithmetic, Boolean or conditional expression.

2-118. INTRINSIC FUNCTIONS AND PREDECLARED IDENTIFIERS

HP ALGOL provides 13 intrinsic functions. The intrinsics which require a parameter will
accept an expression enclosed in parentheses. (If you are passing a variable, constant, or
function value as the parameter, no parentheses are needed.) The trigonometric functions use
radian measure. The intrinsic functions are listed in table 2-2.

Table 2-2. ALGOL Intrinsic Functions

TYPE OF VALID RANGE
NAME MEANING RESULT OF PARAMETER

ABS X Absolute Value; IXI Same as X
SIGN X 1 if x > 0 Integer

0 if.X = 0
-1 if x < 0

SORT X Square Root; Vx Real x~o

SIN X Trigonometric Sine Real I Xhr + 1 /2 I ~ 215

cos x Trigonometric Cosine Real I Xhr I ~ 214
TAN X Trigonometric Tangent Real x ~ 214
Al=tCTAN X Arctangent; tan-1 X Real
TANH X Hyperbolic Tangent Real
LN X Natural Logarithm (base e Real X>O
EXP X Exponential; ex Real X < 124/log2 e
El\JTIER X Truncation; Integer x < 32767

Largest Integer ~ X
ROTATE I Rotate I 8 Bits; Integer Integer

Swap Halfwords
Kl::YS Value of Switch Register Integer (No Parameter)

2-11

The parameter passed to ROTATE must be an integer. KEYS does not have a parameter; it
returns the value stored in the Switch Register. All other intrinsics accept an integer or real
parameter.

Examples:

ABS SINC3*X>
SQRT 3
EXPC4*I + 2>

Some of the intrinsics generate run-time errors if the value of the parameter is not in an
acceptable range. (See Appendix A for error messages.)

In addition to intrinsic procedures, ALGOL has predeclared values for the identifiers PI,
TRUE, and FALSE. You use them as you would use constants. Their values and types are
listed in table 2-3.

Table 2-3. Predeclared ALGOL Variables

NAME VALUE TYPE

Pl 3.14159 Real
TRUE -1 Integer
FALSE 0 Integer

You can override the standard meaning of intrinsic functions and predeclared identifiers by
declaring them in your program.

2-19. COMMENTS

Comments are statements you include to explain a program; they do not affect the code that is
generated. In ALGOL programs, a comment may be included anywhere a space would be
permitted. Comments have several forms in HP ALGOL programs.

All characters between the word COMMENT and the next semicolon are treated as comments.
They may be continued for many lines.

Characters on a line to the right of an ampersand (&) are treated as comments. ·

The compiler ignores all symbols following an END statement up to the next END, ELSE,
UNTIL, semicolon or dollar sign.

Here is an example of a commented procedure:

2-12

REAL PROCEDURE INNERPRODUCTCA,B,N>;
VALUE N; INTEGER N; ARRAY A,B;
BEGIN COMMENT COMPUTE THE SUM OF ACil*B[Il

FOR I BETWEEN 1 AND N;
REAL SUM; & HOLDS SUM OF PRODUCTS
INTEGER I;& INDEXING VARIABLE
SUM := 0.0;
FOR I : = 1 TO N DO

SUM :=SUM+ ACil*B[ll;
INNERPRODUCT := SUM
END OF INNERPRODUCT;

[11u11ru1 ALGOL STATEMENTS ·
1 111

I

This section describes the executable statements in HP ALGOL (except I/O statements). Any
identifiers referenced by ALGOL statements must be declared before they are used.

Statements are separated from one another by semicolons.

3.·1. LABELS

A label is an identifier used to reference a statement. As described in Section II, labels must be
declared before they are defined or referenced.

You define a label by placing it and a colon(:) before the statement it references. Several labels
may reference the same statement. The general form is

<label>:< label>: ... <label> :<statement>

Examples:

L 1 : A : = B* 3;
LOOP: L2: L4: COUNT : = COUNT + 1 ;

Labels can he placed before an END statement ifthe preceding statement is terminated with a
semicolon.

3-:!. ASSIGNMENT STATEMENTS

You can use assignment statements to assign the value of an expression to one or more
variables. The general form is

<identifier 1 > := <identifier 2> ... <identifier n> := <expression>

The expression following the last assignment operator(:=) is computed and then assigned to
each of the variables in turn from right to left. (HP ALGOL also accepts the symbol~ in place
of:==.)

Examples:

AREA::= 2*PI*R;
A : = TABLE C 1 , 1 l : = C : = 0 ;.
TERM ~= CIF 2 MOD K = 0 THEN 1 ELSE -1>*CXAC2*K+1))/(2*K+1)
FLAG ::= LEN<15;

3-1

The variables which precede the assignment operator are called left part variables. They do
not all need to be of the same type. In any case, the effect of the statement is the same as if you
wrote

<identifier n> .- <expression> ;

<identifier 2> <identifier 3> ;
<identifier 1 > := <identifier 2>;

If a real value is assigned to an integer, the result is rounded (not truncated). The result is the
same as adding .5 and truncating. If the real portion is exactly .5, the number is rounded up to
the next integer.

Example:

Suppose X and Y are real and I is integer. The statement

X := I := Y := .7;

causes the following assignments

y : = . 7;
I : = 1 ;
x : = 1 • 0 ;

3-3. GO TO STATEMENT

The GO TO statement causes an unconditional transfer of program execution to a labeled
statement. The general form is

GO TO <designational expression>

The designational expression can be a label or a switch. As explained in Section II, a switch is a
set oflabels used with an indexing parameter. The general form of a GO TO statement using a
switch is

GO TO <switch identifier>[< expression>]

Examples:

GO TO FINISH;
GO TO SW3[3*1 - 41;

You should not jump into the middle of a block from outside the block. A block should be
entered only at its head. Otherwise, run time errors can occur.

The IF, CASE, WHILE, DO, and FOR statements provide efficient ways to control program
execution. Good programmers usually can write entire ALGOL programs without using one
GO TO statement. (The most common use for GO TO statements is to jump to the end of a block
when an error is detected.)

3-2

3-4. IF STATEMENT

You can use the IF statement to select a statement (or block) to be executed depending upon a
condition. The IF statement has two general forms:

IF <Boolean expression> THEN <statement 1 > ELSE <statement 2>
or

IF <Boolean expression> THEN <statement 1 >

These correspond to the following flowcharts:

TF~UE

Evaluate
Boolean

Expression

FALSE

Execute

Statem[t_1 ___ --i..,....------S-ta-te-ment 2

(continue)

Evaluate
Boolean

Expression

Execute
Statement 1

(continue)

FALSE

In the first form, if the Boolean expression is true statement 1 is executed and statement 2 is
skipped. Otherwise statement 1 is skipped and statement 2 is executed. If you use this form,
you must be sure not to insert a semicolon between statement 1 and ELSE.

In the second form, statement 1 is executed when the Boolean expression is true. Otherwise it
is skipped.

Examples:

IF A>B THEN MAX:=A ELSE MAX := B;
IF A=B THEN FOUND := TRUE;
IF NOT FOUND THEN GO TO LOOP;

Each of the statements following the THEN or ELSE can be an IF statement. Each ELSE is
always associated with the closest preceding unmatched IF.

3-3

For example,

IF A<B THEN IF B<C THEN <statement 1> ELSE <statement 2>;

is interpreted as

IF A<B THEN
BEGIN
IF B<C THEN

<statement 1 >
ELSE

<statement 2>
END;

not as

IF A<B THEN
BEGIN
IF B<C THEN

<statement 1 >
END

ELSE
<statement 2>;

Statement 1 is executed when A< B and B< C. Statement 2 is executed when A< B and B;;: C.
(In the second section of code, statement 2 is executed whenever A;?: B.)

3-5. CASE ST A TE ME NT

The CASE statement is another method you can use to select statements (or blocks). One
statement from any number of ALGOL statements is chosen depending on the value of an
arithmetic expression. The general form of the CASE statement is:

CASE <expression>
BEGIN
<statement 1>;
<statement 2>;

<statement n>
END

The expression is evaluated. Real results are rounded to the nearest integer. If the expression
is between 1 and n, the statement corresponding to that value is executed. Otherwise the
entire CASE statement is bypassed.

3-4

The flowchart corresponding to the CASE statement is

Statement 1

Evaluate
Expression

• • • • • • Execute
Statement n

[

Execute

____.

~-----...--------=----_J

Example:

CASE INDEX+3
BEGIN
LENGTH := O;
DONE := TRUE;

(continue)

TERM := SINCDEGREES*Pl/180.0)
END;

3-5

3-6. WHILE STATEMENT

The WHILE statement causes repetition of a statement (or block) as long as a condition is true.
The general form is

WHILE <Boolean expression> DO <statement>

The flow chart for the WHILE statement is

Evaluate
Boolean

Expression

Execute
Statement

FALSE

(continue)

The statement will never be executed if the condition is false for the first iteration.

Example:

I : = 1 ;
WHILE X#TABLE[Il AND 1<50 DO

I := I + 1;

This example finds the element in the array TABLE that is equal to X (if any exists).

3-6

3-,r. DO STATEMENT

The DO statement causes repetition of a statement (or block) until a condition becomes true. It
differs from the WHILE statement in that the statement is executed the first time through
whether the condition is true or false. The form of the statement is

DO <statement> UNTIL <Boolean expression>

The flow chart for the DO statement is

Example:

I : = 1 ;
DO

BEGIN
READCS, *, TABLECil>;
I := I+1
END

FALSE

UNTIL I>SO OR TABLECil=O.O;

Execute
Statement

Evaluate
Boolean

Expression

(continue)

This example puts numbers in an array until a zero is read or the table is full.

3-7

3-8. FOR STATEMENTS

You can use the FOR statement to repeat a statement (or block) while assigning a sequence of
values to a control variable. The general form of the FOR statement is

FOR <variable> := <initial value> STEP <increment> UNTIL
<final value> DO <statement>

The control variable must be a declared integer variable. The initial value, increment, and
final value can be any expression, including negative ones.

The flow chart for this statement is

variable :=
initial
value

Execute
Statement

variable :=
variable +
increment

yes

(continue)

The control variable is assigned the initial value. Then the statement is executed while the
control variable is incremented until it exceeds the final value in the direction (positive or
negative) of the increment. (If the initial exceeds the final value, the statement is never
executed.)

The statement

FOR I:=J STEP K UNTIL L DO <statement>;

3-8

is equivalent to

I : = J;
LOOP: IF SIGNCK>*I > SIGNCK>*L THEN GO TO DONE;

<statement>;
I := I + K;
GO TO LOOP;

DONE: <continuation of program>;

If the increment or final value is an expression (not a simple variable) it will be calculated and
saved before the statement is executed. The value will not be modified while the FOR
statement is executing. (If the increment or final value is a simple variable, changes to the
variable will affect the increment or final value.)

If the increment is an expression which evaluates to zero, the control variable will not change
value.

If the increment is 1, you can replace "STEP 1 UNTIL" with "TO". For example,

FOR I:=1 TON DO

is equivalent to

FOR I:= 1 STEP 1 UNTIL N DO

One use of FOR statements is to initialize arrays. Suppose A is an N by N array. You can set
all 1the elements to zero with

FOR I : = 1 TO N DO
FOR J := 1 TO N DO

A[I,JJ := 0.0;

3-91. PAUSE STATEMENT

The PAUSE statement causes your program to halt. You can use it for debugging purposes or
for changes to the hardware (mounting a tape, for example). The form of the statement is

PAUSE

This statement performs different functions in different operating systems:

For RTE and DOS, the PAUSE statement causes the job to be suspended until an operator
enters a GO directive.

For SIO, the word "PAUSE" is printed on the system console and the computer is halted.
Program execution continues when the operator presses the RUN button.

3-9

3-10. DUMMY STATEMENTS

Sometimes you may find it useful to specify a statement which causes no operation. You can do
this by placing an extra semicolon in the program.

One use for a dummy statement is in a case statement when you want no operation for values
of the controling expression. For example, suppose you want no operation when N is equal to
three. You could write

CASE N
BEGIN
X ·= SIN X;
Y := COS Y;

X : = X*X
END;

You can also use dummy statements to place labels.

Example:

I:= 1+1;
EXIT1: END;

3-11. BLOCKS

As stated in the introduction, a block is a section of code that starts with BEGIN and
terminates with END.

BEGIN and END are not considered statements; they are block brackets. No semicolon is
needed after BEGIN and none is needed between the last statement of a block and END. If you
insert a semicolon, it is treated as a dummy statement.

ALGOL blocks have the general form

BEGIN
<declaration> ;
<declaration> ;

<declaration>;
<statement>;
<statement>;

<statement>
END

All declarations must be specified before any executable statements. If there are no declara­
tions, the block is known as a compound statement.

A block is a type of ALGOL statement. Each block may have any number blocks within it.
Declarations made in a block are valid only within the block (and any blocks contained in the

3-10

block). You can redeclare identifiers for an inner block, as shown in this example:

BEGIN
INTEGER I,J,K;
REAL X,Y,Z;

J: = 1 ;
I : = 3;

BEGIN
INTEGER I,X,L;

I : =: 7;
J: =•4;

END
END$

Inner Block

In this example, the variables I, J, K, X, Y, and Z are declared in the outer block. The variables
I, X:, and Lare declared in the inner block. Because the names I and X are declared in both
blocks, two different values may be referenced, depending on whether the statement referenc­
ing the variable is in the inner block or not. Only one location is referenced for the variables J,
K, Y, and Z throughout the blocks. The variable L is valid only in the inner block. (Such
variables are said to be local.) After the outer block is executed, J has the value 4 and I has the
value 3.

You can use local variables to perform functions that are contained within inner blocks. This is
one way to be sure that variables in the main program are not unintentionally altered.

Blocks can be nested indefinitely.

Example:

BEGIN
I := O;
IF A<O THEN

BEGIN
I :: = 1 ;
IF B<O THEN

BEGIN

END
END

I : = 2;
IF C<O THEN I:= 3
END

After executing this code, I has the value

0 if A~O
1 if A<O and B~O
2 if A<O and B<O and c~o
3 if A<O and B<O and C<O

3-11/3-12

[11u11M1• INPUT/OUTPUT -, IV I

The basic HP ALGOL input and output statements are READ and WRITE. You can declare
I/O Hsts and format specifications to be used with READ and WRITE. HP ALGOL also has
statements for Magnetic Tape I/O.

The input list, output list, and format declarations are like other ALGOL declarations in that
they must come at the beginning of a block (before any executable statements).

4-1. INPUT LIST

You can declare a list (or lists) of items that will be used in READ statements. The general
form of the INPUT declaration is

INPUT <list identifier>(< list element>, ... , <list element>), ... ,
<list identifier>(< list element>, ... , <list element>)

Whenever you use the list identifier in a READ statement, you refer to all the elements in the
associated list. Input list elements can be

a simple variable,
a subscripted variable,
another input list identifier, or
a FOR element.

A FOR element is similar to the FOR statement, except the statement part is replaced by one
or more input list elements. If more than one element is used, they must be enclosed in
brackets.

Examples of FOR elements:

FOR : = STEP 2 UNTIL 10 DO TABLECil

FOR J ·= 1 TO N DO
CVCJl, FOR I:= 1 TON DO CACl,Jl, BCI,Jlll

All the elements in an input list must be previously declared.

Examples of ilnput lists:

INPUT IN1CA, BC2l, FOR I:= 1 TON DO TBLCil>,
IN2CX, Y, IN1, Z>;

4-1

4-2. OUTPUT LISTS

You can declare a list (or lists) of items that will later be used in WRITE statements. The form
is similar to the INPUT declaration:

OUTPUT <list identifier>(< list element>, ... , <list element>), ... ,
<list identifier>(< list element>, ... , <list element>)

Output list elements may be

a simple variable,
a subscripted variable,
another output list identifier,
a FOR element, or
an expression.

Examples of output lists:

OUTPUT TRIGCFOR I:= 1 TON DO
CI, ACil, SIN ACil, COS ACill>,

NOTUSEFULC3*I, PI/180.0, 14.321, X*Y+2);

4-3. FORMAT DECLARATIONS

You use FORMAT declarations to describe the arrangement of data that is read or written.
(You will probably find that free field input is superior to formatted input for numeric data.)
The general form of the FORMAT declaration is:

FORMAT <format identifier> (<specification> ... <specification>), ... ,
<format identifier> (<specification> ... <specification>)

The format specifications are separated by commas or slashes.

Format specifications fall into three classes: Real, Integer, and Editing.

4-4. REAL FORMAT SPECIFICATIONS

You can transfer data to and from real values with the following specifications:

E Exponent
F Fixed Point
G General

In addition, you can specify that real values are read or written with a scale factor.

4-2

4-5. E SPECIFICATION: EXPONENT

Format: E w. d
w == field width
d = number of digits in fraction

Input: The number in the input field is converted to a real number and stored.

The number read must have the form of an ALGOL decimal constant, except the
character Eis used instead of' for a scale factor. If the exponent is signed, the Eis
not necessary. Thus, 12.0E+ 02, 12E2, and 12+ 02 all represent 1200.0. The
number may be positioned anywhere within the field. Spaces in the field are
ignored.

When no decimal point is present in the input field, d acts as a negative power of
ten scaling factor (otherwise it does nothing). The internal value of the quantity
will be

(integer portion) x 10-d x 1oexponent portion

Example: Suppose the characters 1234+ 5 appear in a field read with an El2.8 specifica­
tion. The result is 1.234.

Output: 'The output field consists of

a blank or negative sign
a decimal point
the d most significant digits of the internal value
the sign of the exponent
a two digit exponent.

The field must be wide enough to contain the sign, decimal point, d digits, and
exponent. For this reason, w should be at least d+ 5. If the field is not large
enough, dollar signs($) are inserted in the entire field. If the field is longer than
the output value, the quantity is right-justified with spaces to the left. The
number printed is rounded (not truncated).

4-6. F SPECIFICATION: FIXED POINT

Format: F w. d
w == field width
d = number of digits in fraction

Input: Same as E Specification.

Output: The value occupies w positions and appears as a decimal number with d digits
following a decimal point (no exponent). The quantity is right justified in the
field, and rounded.

The field must be wide enough to hold the significant digits, sign (if the value is
negative), and decimal point. If the field is too short, dollar signs are placed in
the entire field.

4-3

4-7. G SPECIFICATION: GENERAL

Format: Gw. d
w = field width
d = number of digits in fraction

Input: Same as E Format

Output: The G specification acts like an E or F specification, depending on the magnitude
of the value being output. If X is the value being printed, the G format is the
same as:

Magnitude

.1 ~ x < 1
l~X<lO

1oa-2~ x < 1oa-1

ioa-1 ~ x < ma

All other values

Equivalent Specification

F Cw- 4). d, 4X
F Cw- 4). Cd-1), 4X

F Cw- 4). 1 , 4 X
FCw-4). 0 ,4X

Ew. d

4-8. SCALE FACTOR. A scale factor provides a way to normalize real values. (It has no
effect on integer values.)

Format: nP
n = an integer or negative integer constant

The default scale factor is 0. During a formatted I/O operation, once a scale factor is estab­
lished it remains in effect until another scale factor is read.

4-4

Input: If there is an exponent in the external field, the scale factor has no effect.
Otherwise the internally represented number is equal to the external number
times 10-n.

Output: E specification: The real constant part is multiplied by ion and the exponent is
decreased by n.

F specification: The value is multiplied by ion.

G specification: No effect if the value is in range for F representation. Otherwise
it has the same result as for E.

Examples:

-1PE10.4, 1PF10.3, 2PG18.8, OPF6.2

4-fJI. INTEGER FORMAT SPECIFICATIONS

You can transfer data to and from integer variables with the following specifications:

@, K, and 0
A
R
L

Decimal Integer
Octal
ASCII
ASCII, Right-Justified
Logical (Boolean)

4-10. I SPECIFICATION: DECIMAL INTEGER

Format: I w
w = width of field

Input: The characters in the input field are read as a signed or unsigned decimal integer
constant. Blanks (both leading and trailing) are treated as zeros.

Output: The internal value is converted to a decimal integer constant right justified in its
field. (The sign is printed only if the value is negative.) If the field is too short,
dollar signs are placed in the entire field.

4-11. @, K, AND 0 SPECIFICATIONS: OCTAL

Format: @w or
Kw or
Ow

w = width of field

Input: Ifw ~ 6, up to six octal digits are stored; non-octal digits are ignored. The value of
the field must be no greater than 177777. If w < 6 or less than six octal digits are
read from the field, the number is right-justified 1n a computer word and filled
with leading zeros.

Output: If w ~ 6, six octal digits are written right-justified in the field. (Leading positions
are filled with blanks.) If w< 6, the w least significant (rightmost) digits are
written.

4-Ut A SPECIFICATION: ASCII

Format: Aw
w = field width

Input: If w ~ 2, the rightmost two characters are taken from the field. (The first w- 2
characters are ignored.) If w = 1, one character is read and stored in the left half of
a computer word; blank is stored in the right half.

Output: If w ~ 2, two characters are written in the field with w- 2 leading blanks. If w= 1,
the character in the left half of the word is written.

4-5

w >2

FIELD

SPACES ON OUTPUT

MEMORY

W=2 W=i

IGNORED ON OUTPUT

BLANK ON INPUT

The Al and A2 format for character 1/0 correspond to ASCII constants with a blank included
as the second character when w= 1.

4-13. R SPECIFICATION: ASCII, RIGHT-JUSTIFIED

Format: Rw
w = field width

R specifications are the same as A specifications when w > 1.

Input: When w= 1, one character is read and stored in the right half of a computer word.
Binary zero is stored in the left half.

Output: When w= 1, the character in the right half of the word is written.

W>2

FIELD

SPACES ON OUTPUT

MEMORY

W=2 W=i

IGNORED ON OUTPUT

ZERO ON INPUT

The R format corresponds to ASCII constant format.

4-14. L SPECIFICATION: LOGICAL (BOOLEAN)

4-6

Format: L w

w = width of field

Input: The input field may contain leading blanks, but the first non-blank character must
be a T (for TRUE) or F (for FALSE). Any characters may follow the Tor F.

WARNING

The L specification converts an input T into the FOR­
TRAN .TRUE. = - 32767 (octal 100000), not the ALGOL
TRUE = -1. (Note that the sign bit is set correctly.) F
converts to FALSE.

Output: If the internal value is negative, the character T is printed as the rightmost
character in the field. Otherwise the character F is printed. The left w-1 charac­
ters are blanks.

4-15. EDITING SPECIFICATIONS

In addition to real and integer number specifications, you can use editing specifications in
FOHMAT declarations.

4-H>. STRING SPECIFICATION

Format: 11
C1C2 ... Cw

11

w = field width (number of characters)
c1 = any ASCII character except 11

Input: The number of characters within the quotes are skipped on the input record.

Output: The characters between the quotes are written.

WARNING

If you omit the closing quote, the compiler will read all
the text of your program up to the next quote as part of
the character string. If the program ends before a second
quote is read, the compiler will expect more input.

4-17. H01LLERITH SPECIFICATION

Format: w H C1C2 ••. Cw

w = field width (default = 1)
c1 = any ASCII character

This specification is similar to the string specification. Thew characters following the H are
considered part of the Hollerith string. A quote can be included. You must have exactly w
characters following the H as part of the Hollerith string.

Input: The characters in the external field replace the characters in the field specifica­
tion.

Output:: The characters in the field are written.

4-7

Examples:

29HTHE 11 SPECIF I CAT ION IS EASIER
35HYOU MUST COUNT CHARACTERS CORRECTLY

4-18. X SPECIFICATION

Format: wX
w = field width (default = 1)

Input: w characters are skipped.

Output: w blanks are placed in the output field.

This specification allows you to separate fields.

4-19. SPECIFICATION SEPARATORS

The specifications in a FORMAT declaration must be separated from one another by a comma
(,) or slash (/). The comma acts only as a character which separates two specifications. The
slash terminates a record. A series of slashes causes records to be skipped on input or lines to
be skipped on output.

Example:

FORMAT F1C3X, 11 X= 11
, F7.2, 3X, 11 Y= 11

, F7.2/"2*X+Y=", F10.2>,
F2C//1X,1PE10.3,0PFG.4///15,®4//);

4-20. REPEAT COUNT

You can repeat real and integer specifications or a slash several times in a format specification
by placing an integer constant (the repeat count) before the E, F, G, I,@, K, 0, A, R, L, or/. For
example,

3I3,2FS.2,3/1P2E10.3

is equivalent to

I3,I3,I3,FS.2,FS.2,///1PE10.3,E10.3

You can repeat groups of specifications by enclosing them in parentheses and placing a repeat
count in front.

Examples:

4-8

2C2CF7.2,3X>,FS.1>
4C SC"*">, 3X>

4-,21. C"RRIAGE CONTROL

If you are using a line printer as the output device, the first character of each line is used to
determine how the printer spaces before it prints a line. The following characters have special
meanings when they appear in column 1:

0
1

*
blank

double space
eject page
suppress spacing (overprint)
single spage

Any other character is treated like a blank. When the first character is used for carriage
control, it is not printed.

If your output device is a terminal, when the last character is a ~ or _ the normal carriage
return is supressed; the next 1/0 operation begins where the_ would have been printed. This is
useful in asking questions:

WRITEC1, #("WHAT IS THE LU NUMBER?_"));
READC1, *, LISTLU>;

4-22. FFlEE FIELD INPUT

Your program can read numeirc input without format specifications if you place an asterisk(*)
instead of a format identifier in a READ statement. When your program reads free field input,
it recognizes input values by scanning for the characters

+ or -

E
@

II II

I
0 to 9

space or ,

sign of item
decimal point
scaling factor
octal integer
comments
record terminator
digits
delimiter

All other characters are treated as separators between data items.

DATA ITEMS. Real and integer values are represented in the same form as E and I formatted
input. Octal values are represented in the same form as octal constants within the program.
Any characters between quotes are ignored.

DATA ITEM DELIMITERS. During input, you usually separate data items by a space or
comma. Any of the characters not listed above can also be used. The data items are read and
transferred to the corresponding variables in the input list. Two consecutive commas indicate
that no value is supplied for the corresponding list variable; its current value remains
unchanged. (An initial comma causes the first variable to be skipped.)

4-9

RECORD TERMINATOR. A slash within a record causes the next record to be read; the
remainder of the current record is skipped. If a record terminates and a slash has not been
read, the input operation terminates even if all the input elements have not been assigned new
values.

4-23. READ STATEMENT

The READ statement transfers values from an I/O device to program variables. The general
form of the READ statement is

READ (<unit>, <format part>, <input list>)

The unit is an integer arithmetic expression which designates an I/O logical unit number.

The format part can be

the name of a format identifier

the symbol # followed by format specifications enclosed in parentheses (in-line
format)

the symbol *, indicating free field input.

If the format part is left out, an unformatted record consisting of binary values is read. Consult
the driver manual of your device for its binary I/O format.

The input list can be any of the input elements allowed in the INPUT specification. If the input
list is omitted, a record is skipped.

For formatted input, when a READ statement is executed, one record is read. Additional
records are read only as indicated by the format specification. Any unprocessed characters on
the current record are ignored. If there are fewer input elements than format specifications,
the unused specifications are ignored. If there are more elements than specifications, a new
record is read and format control continues with the group of specifications terminated by the
last preceding right parenthesis.

4-24. WRITE STATEMENT

The WRITE statement transfers internal values to an I/O device. The general form of the
WRITE statement is:

WRITE (<unit>, <format part>, <output list>)

The unit is an integer arithmetic expression which designates an I/O logical unit number.

The format part can be

the name of a format identifier

the symbol # followed by format specifications enclosed in parentheses (in-line
format).

(There is no free field output.)

4-10

If the format part is left out, an unformatted record consisting of binary values is written.
Consult the driver manual of your device for its binary 1/0 format.

The output list can be any of the output elements allowed in the OUTPUT declaration. If the
format specifications don't require any values, the output list is not necessary.

For formatted output, when a WRITE statement is executed the values are printed according
to the corresponding format specifications. The specifications are interpreted from left to right.
If there are fewer values to be printed than specifications, the extra specifications are ignored.
If format control continues to the last right parenthesis and more values are to be printed, a
new line is started and format control continues with the group repeat specification termi­
nated by the last preceding right parenthesis.

4-:25. EXAMPLES

These programs have been written to show the use of FORMAT specifications and 1/0 state­
ments.

The first program shows the effect of a scaling factor. The four values read were all typed as
3212.5, but have different internal values due to different scaling factors.

In the second part of the program, values are printed using different scaling factors and
different real specifications, all with the same basic field width.

PAGE 001

00·1 00000
00:2 00000
0 0 :3 00 0 01
00•4 00003
0 0 !5 00013
00'5 00013
007 00031
0 013 00047
0 0~3 00047
010 00047
01 ·1 00073
01:2 00126
01 :3 00152
01 ·4 00152
01 !5 00220
om 00242
017 00261
01 IB 00270
01 !3 00277
020 00277
021 00315
02:2 00323
023 00323
024 00331
0215 00350
0215 00357
027 00366
02:9 00375
02'9 00401

HPAL,L,"FMTS"
BEGIN
INTEGER I;
REAL X1 ,X2,X3,X4;

OUTPUT XSCX1 ,X2,X3,X4),
X1SCX1 ,X1 ,X1 ,X1 >;

FORMAT
FMT1C E15.5, 1PE15.5, 2PE15.5, 3PE15.5, 4PE15.5>,
FMT2C1X,F14.3,1X,1PF14.3,1X,2PF14.3,1X,3PF14.3,1X,4PF14.3>,
FMT3C G15.5, 1PG15.5, 2PG15.5, 3PG15.5, 4PG15.5>;

RE ADC 1 , F MT 1 , X 1 , X 2 , X 3 , X 4 > ;
WRITEC6, #C///"ONUMBERS READ:"»;
WRITEC6, #(5C1X,F14.3>>, XS);
WRITEC6, FMT1, XS>;
WRITEC6, FMT2, XS>;

WRITEC6, #(/ 11 07.5 " 111 >>;
FOR I : = 1 STEP 5 UNTIL 20 DO

BEGIN
X1 :•7.5"1;
WRITEC6, 111(11 01 •, 13>, I>;
WRITEC6, FMT1, X1S>;
WRITEC6, FMT2, X1S>;
WRITEC6, FMT3, X1S>;
END;

END$

PROGRAM• 000405 ERRORS=OOO

4-11

Program output:

NUMBERS READ:
3212.500 321 .250 32.125 3.213

.32125E+04 3.21250E+02 32.1250E+OO 321 .250E-02
3212.500 3212.500 3212.500 3212.500

7. 5 "

I = 1
.75000E+01 7.50000E+OO 75.0000E-01 750.000E-02

7.500 75.000 750.000 7500.000
7.5000 7.5000 7.5000 7.5000

6
.17798E+06 1.77979E+05 17.7979E+04 177.979E+03
177978. 531 1779785.312 17797853.125 177978531 .250
.17798E+06 1 .77979E+05 17.7979E+04 177.979E+03

I = 11
.42235E+10 4.22351E+09 42.2351E+08 422.351E+07

4223513599.998 42235135999.98 422351359999.7 4223513599997.
.42235E+10 4.22351E+09 42.2351E+08 422.351E+07

I = 16
.10023E+15 1. 00226E+14 10.0226E+13 100.226E+12

$$$$$$$$$$$$$$ $$$$$$$$$$$$$$ $$$$$$$$$$$$$$ $$$$$$$$$$$$$$
.10023E+15 1. 00226E+14 10.0226E+13 100.226E+12

4-12

The second program generates values for two arrays, then calls a procedure to print each
array. The procedure is designed to print any possible values from any sized N by N array. The
E12.4 format is used because it allows real values of any magnitude to be printed with four
significant digits. Five fields are printed per line. (If the array is larger than 5 by 5, more than
one line is used for each row.)

PAGE 001

0 01
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

00000
00000
00001
00001
00004
00242
00245
00245
00246
00246
00252
00255
00324
00332
00340
00340
00347
00361
00365
00366
00366
00374
00402
00443
00451
00457
00521
00527
00533
00546
00552

HPAL,L, 11 ARRI0 11

BEGIN
COMMENT READ AND WRITE ARRAYS;
I NTE GER I , J;
ARRAY AH1:8,1:8J, A2[1:3,1:3J;
FORMAT UPC 11 111 >;

PROCEDURE PRINTARRAYCA,N>;
VALUE N; ARRAY A; INTEGER N;
BEGIN & PRINT AN N BY N ARRAY
INTEGER I,J; &INDEX VARIABLES
OUTPUT ARRAYOUTCFOR J:=1 TO N DO
FORMAT ARRAYFMTC C1P5E12.4> >;
FOR I:=1 TON DO

BEGIN
WRITEC6, ARRAYFMT, ARRAYOUT>;
WRITEC6, #(11 11 >>;
END;

END OF PRINTARRAY;

FOR I := 1 TO 8 DO
FOR J := 1 TO 8 DO

A1CI,JJ := I + J + I/J;
FOR I : = 1 TO 3 DO

FOR J := 1 TO 3 DO
A2CI,JJ ·= I*J + I/J;

WRITEC6,UP>;
PRINTARRAYCA1 ,8>;
WRITEC6,#C/////));
PRINTARRAYCA2,3>;
END$

PROGRAM= 000556 ERRORS=OOO

ACI,JJ>;

4-13

Program output:

3.0000E+OO 3.5000E+OO 4.3333E+OO 5.2500E+OO 6.2000E+OO
7 .1667E+OO 8.1429E+OO 9.1250E+OO

5.0000E+OO 5.0000E+OO 5.6667E+OO 6.5000E+OO 7.4000E+OO
8.3333E+OO 9.2857E+OO 1.0250E+01

7.0000E+OO 6.5000E+OO 7.0000E+OO 7.7500E+OO 8.6000E+OO
9.5000E+OO 1. 0429E+01 1 .1375E+01

9.0000E+OO 8.0000E+OO 8.3333E+OO 9.0000E+OO 9.8000E+OO
1 • 0667E+01 1.1571E+01 1. 2500E+01

1 .1 OOOE+01 9.5000E+OO 9.6667E+OO 1. 0250E+01 1 .1 OOOE+01
1 • 1833E + 01 1. 2714E+01 1. 3625E+01

1. 3000E+01 1 .1 OOOE+01 1 .1 OOOE+01 1.1500E+01 1. 2200E+01
1 .3000E+01 1 .3857E+01 1 .4750E+01

1. 5000E+01 1. 2500E+01 1. 2333E+01 1 .2750E+01 1. 3400E+01
1 .4167E+01 1. 5000E+01 1. 5875E+01

1. 7000E+01 1. 4000E+01 1 • 3667E+ 01 1.4000E+01 1. 4600E+01
1. 5333E+01 1 • 6143E+01 1. 7000E+01

2.0000E+OO 2.SOOOE+OO 3.3333E+OO

4.0000E+OO 5.0000E+OO 6.6667E+OO

6.0000E+OO 7.SOOOE+OO 10.0000E+OO

4-14

4-26. MAGNETIC TAPE STATEMENTS

You can perform five magnetic tape operations in HP ALGOL. In these statements the unit is
an integer expression designating the magnetic tape logical unit number.

SPACE <unit>

Spaces the tape forward one record or causes one end-of-record gap.

BACKSPACE <unit>

Backspaces the tape one record.

ENDFILE <unit>

Prints an end-of-file mark.

REWIND <unit>

Returns the tape to the load point in auto mode.

UNLOAD <unit>

Puts the unit in local mode and rewinds the tape.

4-15 /4-16

[j 111111.111
PROCEDURES :

1

v I

When you write an ALGOL program, you may find that sections of code performing the same
operation appear in several different places. You can write one procedure to perform the
computations and execute it from your program wherever it is needed.

Procedures may be written and compiled separately from your program. When you do this,
procedures are similar to subroutines of FORTRAN and Assembly Language.

You can write procedures within your program. Internal procedures are more flexible than
subroutines because they can reference identifiers declared for the block in which they are
wriltten.

Pro.cedures must be declared before they are used. If procedure A calls procedure B, procedure
B must be declared before procedure A (unless it is declared within procedure A). No procedure
may be entered recursively, either implicitly or explicitly.

s-·1. PARAMETERS

When you declare a procedure, you can specify parameters that will be passed when it is called.
You include in the procedure heading a list of the formal parameters - the symbolic names for
the items provided when the call is made. The formal parameters must be declared as to type
in the procedure heading. Formal parameters can have any ALGOL declaration:

REAL
INTEGER
BOOLEAN
ARRAY
REAL ARRAY

INTEGER ARRAY
BOOLEAN ARRAY
REAL PROCEDURE
INTEGER PROCEDURE
BOOLEAN PROCEDURE
PROCEDURE

LABEL
SWITCH
FORMAT
INPUT
OUTPUT

Formal parameters are either called by value or called by reference. If you specify that a
formal parameter is called by value, the parameter is computed when the procedure is called
and this result is used as a local variable within the procedure. Otherwise, the address of the
parameter 'is passed to the procedure. Only REAL, INTEGER and BOOLEAN variables or
expressions (not entire arrays) can be passed by value. Only identifiers (not expressions or
constants) can be passed by reference.

When you call a procedure, you can provide a list of actual parameters - the items which are
substituted for the formal parameters in the procedure declaration.

Actual parameters called by value may be expressions. Actual parameters called by reference
must be identifiers.

Value parameters are treated as local variables within the procedure. Assignments to these
parameters have no effect on the value of the corresponding actual parameter.

5-1

Any modifications to formal parameters passed by reference affect the corresponding actual
parameter.

Example:

PROCEDURE CHANGECX>;
REAL X;
x := x + 1;

PROCEDURE NOCHANGECX>;
VALUE X;REAL X;
x := x + 1;

A : = 0;
CHANGECA>;
NOCHANGECA>;

After the procedure CHANGE is called, A has the value 1. A's value remains 1 after
NOCHANGE is called because it is passed by value.

If an actual parameter is itself a procedure, all of its parameters must be called by value. (See
the SUMS example in Section VII.)

5-2. PROCEDURE DECLARATIONS

A procedure declaration describes a process. The process is not executed until the procedure is
called. A procedure declaration consists of two parts: the procedure heading, which gives the
name of the procedure and describes any formal parameters, and the procedure body, which
describes the process that takes place.

Example:

PROCEDURE TRANSPDSECA,N>;
VALUE N; INTEGER N; ARRAY A;
BEGIN
COMMENT TRANSPOSE AN N BY N MATRIX;
INTEGER I,J; & USED TO INDEX MATRIX
REAL Z; & HOLDS VALUE DURING TRANSFER
FOR I : = 1 TD N DO

FDR J := 1+1 TO N DD
BEGIN
Z := ACI,Jl;
ACI,Jl := A[J,ll;
ACJ,Il := Z;
END

END OF TRANSPOSE;

This procedure's heading consists of the following parts:

1. PROCEDURE The reserved word PROCEDURE.

2. TRANSPOSE The procedure name. It must be a legal identifier.

5-2

3. CA, N > The formal parameter part. The identifiers of the formal
parameters must be enclosed in parentheses

4. A semicolon to terminate the first part.

5. 'VALUE t~ ; The reserved word VALUE followed by a list of any parame­
ters passed by value. A semicolon terminates the list. (Pa­
rameters passed by reference are not listed in the procedure
heading.)

6. INTEGER N; ARRAY A; Specifications for each of the formal parameters. A semico­
lon separates identifiers of different types. The order of the
identifiers is not important.

A procedure body can consist of a single statement or (as in this example) a block.

Much of the heading is not needed if no parameters are passed. For example, here is a
procedure to put the next character read from logical unit 5 into the program variable CHAR.

PROCEDURE GETCHAR;
BEGIN
COMMENT GLOBAL VARIABLES USED BY GETCHAR:

BUFFER HOLDS INPUT TEXT
COLUMN POINTS TO CURRENT TEXT POSITION
CHAR CURRENT INPUT CHARACTER;

IF COLUMN > 71 THEN
BEGIN
INTEGER I;
READCS, #(80R1>, FOR !:=1 TO 80 DO BUFFER[IJ>;
COLUMN := 1
END;

CHAR := BUFFER[COLUMNJ;
COLUMN := COLUMN+1
END OF GETCHAR;

The procedure body may refer to any formal parameters, local variables, and those identifiers
which have been declared in the block containing the procedure.

5-3~. CALLING PROCEDURES

You call a procedure by writing its name followed by any actual parameters enclosed in
parentheses. The procedure call is treated by the compiler like any other ALGOL command.

For example, here are calls to the procedure defined in the previous subsection:

TRANSPOSECTABLE,25>;
GETCHAR;

The actual parameters must correspond in number and type to the formal parameters specified
in the procedure declaration.

5-3

5-4. FUNCTION PROCEDURES

A function procedure is a procedure that returns a single value. For function procedures, the
word PROCEDURE is preceded by the type of the value that is returned (REAL, INTEGER, or
BOOLEAN). You use the procedure name as a simple variable within the function. The value
returned is the last value assigned to the procedure name.

Example:

BOOLEAN PROCEDURE ALPHANUMERICCCH>;
INTEGER CH;
ALPHANUMERIC := CCH >= "A" AND

CCH >= 11 011 AND
CH <= "Z"> OR
CH < = 11 9 11 >;

This function returns the value TRUE when the parameter, CH, is an alphabetic or numeric
character.

You call function procedures by using them as you would use an expression. The function's
value is treated like the value of a variable of the same type.

Example:

IF ALPHANUMERICCCHAR> THEN TOKEN:=7;

5-5. CODE PROCEDURES

Procedures may be compiled or assembled separately from the main ALGOL program. You can
declare such procedures by including a procedure heading in your program and replacing the
procedure body with the reserved word CODE. (All the parameters must be specified, as in
regular procedures.)

Examples:

PROCEDURE INVERCA,X,N>;
VALUE N;INTEGER N;REAL A,X;
CODE;

REAL PROCEDURE INTEGRALCA,B,F>;
VALUE A,B;REAL A,B;REAL PROCEDURE F;
CODE;

The names of CODE procedures have a maximum of five characters. Any characters beyond
the fifth are ignored.

5-6. SEPARATEL V COMPILED PROCEDURES

Any CODE procedures you specify in your program can be written in ALGOL, FORTRAN, or
Assembly Language. The object code segments can be linked by the Relocating Loader before
the program is executed.

5-4

5-7. ALGOL PROCEDURES

When you compile ALGOL procedures separately from a main program, you must use the "P"
option in the HPAL control statement (Seeton VI). The first line is the procedure declaration
(not BEGIN). The procedure is terminated with END; (not END$).

Example:

PAGE 001

00'1 00000
oo:~ 00000
00:3 00002
00•4 00002
00!5 00006
00'5 00010
007 00037
OOB 00045
00!3 00045

HPAL,L,P, 11 SUM11

INTEGER PROCEDURE SUMCV,N>;
INTEGER ARRAY V; INTEGER
BEGIN & ALGOL PROCEDURE
INTEGER I;
SUM :• O;
FOR 1:=1 TD N DD

SUM :=SUM+ V[I]
END;

PROGRAM• 000062 ERRORS=OOO

N;
TD SUM ELEMENTS VC 1] ••• VCN]

The control statement name in quotes is used as the NAM record. The name in the procedure
declaration is used as the entry point. (The two should usually be the same.) For correct
execution, the procedure heading must agree with the main program's CODE procedure
heading as to the number of parameters and parameter types.

5-8. CALLING FORTRAN ROUTINES FROM ALGOL

You can call subroutines written in FORTRAN the same way you call ALGOL procedures:
write the name of the subroutine followed by any parameters enclosed in parentheses. FOR­
TRAN functions are treated similarly.

Arrays are stored differently in FORTRAN and ALGOL. The name of an array in FORTRAN
reforences the first element of the array. In ALGOL, the name of an array references a
description of the array (type, number of dimensions, bounds for each dimension, and starting
address).

If you wish to call a FORTRAN routine that manipulates an array, specify the formal
parameter (in the heading) as being REAL or INTEGER (depending on the type of the array)
rather than as ARRAY or INTEGER ARRAY. The actual parameter (in the call) should be the
first element of the array. Arrays should also be handled this way in Assembly Language
routines that have been written to be called from FORTRAN.

5-5

Example:

FTN4,L
INTEGER FUNCTION SUMCV,N>
INTEGER VC1)

C FORTRAN FUNCTION TO SUM ELEMENTS VC1> ... VCN>
SUM = 0
DO 1 0 I= 1 , N
SUM = SUM + VCI>

1 0 CONTINUE
RETURN
END
END$

HPAL,L,"MPRG1"
BEGIN
INTEGER RESULT, J;
INTEGER ARRAY AC1 :201;
INTEGER PROCEDURE SUMCV,N>;

INTEGER V,N;
CODE;

RESULT := SUMCAC1 l, J>;

END$

The following is the WRONG WAY to call the FORTRAN routine:

INTEGER PROCEDURE SUMCV,N>;
ARRAY V;INTEGER N;
CODE;

RESULT:=SUMCA,J>

FORTRAN
Function

ALGOL
Main Program

You can pass VALUE parameters to FORTRAN subroutines. However, the FORTRAN routine
will not treat the parameters as being called by value. Changes to parameters which are not
expressions will result in changes to the corresponding actual parameters in the main pro­
gram. For this reason, you must be absolutly sure a FORTRAN subroutine does not modify
constants passed as parameters.

5-9. CALLING ALGOL PROCEDURES FROM FORTRAN

ALGOL procedures compiled with the P option in the control statement can be called from
FORTRAN. Arrays cannot be passed as parameters.

5-6

5-10. CALLING ALGOL PROCEDURES FROM ASSEMBLY
LANGUAGE

If you want to call an ALGOL procedure from Assembly Language, you must provide the
return address and the address of parameters.

Suppose you want to call the ALGOL procedure that has been compiled with the heading

PROCEDURE TESTCA,B,C,D,E>;
VALUE A,B;INTEGER A,C;REAL B,D;LABEL E;

In the Assembly Language program, you would write

EXT TEST
,JSB TEST
DEF RTNPT
DEF PARM1
DEF PARM2
DEF PARM3
DEF PARM4
DEF LABL1

RTNPT EQU *

LABL1 EQU *

PARM1 13SS 1
PARM2 13SS 2
PARM3 BSS 1
PARM4 13SS 2

DECLARE TEST EXTERNAL
JUMP TO TEST
ADDRESS OF RETURN
INTEGER VALUE PARAMETER
REAL VALUE PARAMETER
INTEGER PARAMETER
REAL PARAMETER
LABEL PARAMETER
RETURN POINT

STORAGE FOR INTEGER VALUE PARAMETER
STORAGE FOR REAL VALUE PARAMETER
STORAGE FOR INTEGER PARAMETER
STORAGE FOR REAL PARAMETER

This would be equivalent to calling TEST from ALGOL with

TESTCPARM1 ,PARM2,PARM3,PARM4,LABL1>;

This is also the standard HP calling sequence for FORTRAN and Assembly Language. Value
and reference parameters are passed in the same way; the difference is the way they are
treated within the subroutine.

5-11. CALLING ASSEMBLY LANGUAGE ROUTINES FROM ALGOL

You can call Assembly Language routines from ALGOL if they have been written to pass the
correct parameter values and addresses.

When you write Assembly Language. routines to be called from ALGOL, you can obtain
parameters from the calling sequence shown above or you can use the standard ALGOL
parameter processing routine .PRAM.

5-7

The general calling sequence for .PRAM is

JSB .PRAM
<code words (maximum = 7)>
<storage for parameters>

The code words tell .PRAM the number of parameters, indicate which parameters are called by
reference and which are called by value, and specify whether value parameters are real or
integer. Code words have the following format:

First code word:
bits 15 through 10 Number of parameters (maximum= 52)

9 8 Bit pair for first parameter
7 6 Bit pair for second parameter

1 0 Bit pair for fifth parameter

Second code word:
bits 15 through 14 Bit pair for sixth parameter

1 0 Bit pair for 13th parameter

Similarly, code word 3 contains bit pairs for parameters 14-21, code word 4 contains bit pairs
for parameters 22-29, etc.

Each parameter's bit pair has the following meaning: The left bit is 1 ifthe parameter is called
by value, 0 if it is called by reference. The right bit is not used for parameters called by
reference; for value parameters it is 1 for real variables and 0 for integer (or Boolean)
variables.

Following the code words, you must reserve exactly enough words to store the address or value
of each parameter. Real parameters passed by value require two words; all others require one
word .

. PRAM also places the return address in the word preceding the JSB .PRAM instruction.

Example:

If the procedure TEST given above were written in Assembly Language, the entry portion
could be

TEST NOP ENTRY POINT
JSB .PRAM
OCT 013300 CODE WORD

A BSS 1 VALUE <INTEGER>
B BSS 2 VALUE CREAL>
c BSS 1 REFERENCE <INTEGER>
D BSS 1 REFERENCE CREAL>
E BSS 1 REFERENCE <LABEL>

5-8

.PHAM places the values of A and Band the addresses ofC, D, and E in the locations provided.
Within the subroutine you· can refer to A and B directly. C and D should be referenced
indirectly. If you want to transfer control to label E (an address in the calling program) you
would write

JMP E, I

To return to the calling program you would write

JMP
1
TEST,I

You can use the Relocatable Library routines .INDA (get address) or .INDR (get value) to
access ALGOL array elements from Assembly Language. ALGOL maintains a table for each
array as follows:

TABLE DEC number of indices C+ = real, -
DEC size of 1st dimension
DEC -lower bound of 1st dimension
DEC size of 2nd dimension
DEC -lower bound of 2nd dimension

DEC size of last dimension
DEC -lower bound of last dimension

integer)

DEF starting address of array elements

When you pass the name of an array to a subroutine, you are passing the address of the first
word in the array table.

To call the :indexing routines use the following code:

JSB .INDA Cor .INDR>
DEF array table
DEC -number of indices
DEF first subscript value

DEF last subscript value

If you call .INDA, the address of the array element is placed in the A-Register. For .INDR, the
value of the array element is placed in the A-Register (for integer arrays) or the A- and
B-Hegisters (for real arrays). For both routines, if the subscript values are not within their
bounds, the INDEX? error message is printed and the routine returns a zero.

5-9

For example, here is the subroutine SUM coded in Assembly Language:

PAGE 0002 N01

0001
0002
0003*
0004*
0005*
0006*
0007
0008
0009
0010
0011
0012
0013
0014*
0015*
0016
0017
0018
0019
0020*
0021*
0022
0023
0024
0025
0026*
0027
0028
0029
0030
0031
0032
0033
0034*
0035
0036
0037
0038
0039*
0040
0041
0042*
0043
0044
0045
0046
0047

ASMB,L,R
00000 NAM SUM,7

INTEGER FUNCTION CALLED FROM ALGOL WITH
SUMCV,N>;

TO SUM ELEMENTS V[1J ... V[NJ WHERE VIS AN
INTEGER ARRAY AND N IS AN INTEGER VARIABLE.

ENT SUM
00000 000000 SUM NOP

00001 016001 x
00002 004000
00003 000000
00004 000000

v
N

EXT
JSB
OCT
BSS
BSS

.PRAM

.PRAM
004000
1
1

ENTRY POINT

PICK UP PARAMETERS
CODE WORD
ADDRESS OF ARRAY V
ADDRESS OF N

INITIALIZE SUM1 AND FOR LOOP COUNTER
00005 062033R LDA ZERO
00006 072031R STA SUM1
00007 062034R LOA ONE
00010 072032R STA I ·=

FOR I:=1 TON DO SUM1:•SUM1+V[IJ;
00011 003004 TEST CMA, INA
00012 142004R ADA N,I
00013 002020 SSA
00014 026027R JMP ENDFR

00015 016002X
00016 100003R
00017 177777
00020 000032R
00021 042031 R
00022 072031R

00023 062032R
00024 002004
00025 072032R
00026 026011R

EXT .INDR
JSB .INDR
DEF V, I
DEC -1
DEF I
ADA SUM1
STA SUM1

LDA
INA
STA I
JMP TEST

00027 062031R ENDFR LDA SUM1
00030 126000R JMP SUM,I

00031 000000
00032 000000
00033 000000
00034 000001

SUM1
I
ZERO
ONE

BSS 1
BSS 1
DEC 0
DEC 1
END

CHECK FOR END
OF FOR LOOP

Cl>N)

PUT
V [I l

IN
A-REGISTER

SUM1 : • SUM1 + V[I l

INCREMENT I FOR NEXT
ITERATION AND CONTINUE

IN FOR LOOP

PUT SUM IN A-REGISTER
RETURN TO CALLING ROUTINE

** NO ERRORS *TOTAL **RTE ASMB 750420**

5-10

[
This section has been written to explain some of the features and requirements of the HP
ALGOL compiler.

6-·1. ENIVIRONMENT

HP ALGOL is a one pass compiler. It exists in two versions:

SIO System - The HP ALGOL compiler provides off-line compilation in BCS based systems. A
tape punch is required to provide simultaneous punching of an object tape with listing for
one pass compilation.

RTE-II/RTE-III/DOS-The HP ALGOL compiler provide on-line compilation in interactive or
batch mode. It uses 8K words of background area in RTE and comparable space in DOS.
The relocatable programs produced by this HP ALGOL compiler can execute in DOS,
RTE-II, RTE-III, and RTE memory based systems.

6-:2. CC>NTROL STATEMENT

The first statement the ALGOL compiler reads must be an HPAL control statement. If the first
four characters of the first record are anything other than HP AL, the error message HP AL?? is
printed on the system console and the compiler halts.

You can use any of the following options in the control statement:

L - list source program
A - list octal code produced for each statement
B - produce object tape
P - a procedure only is to be compiled
S - sense switch register CSIO only)

Any options must be separated by commas.

Th•~ name of the program enclosed in quotes also appears in the control statement. (This name
becomes the NAM record name. It must be a legitimate identifier.) For DOS and RTE, the
name appears after any options; for SIO it must be listed first (after HPAL).

Examples:

HPAL ~' L, B, P, 11 NAME 11

HPAL~"NAME 11 ,L,B,P

COOS/RTE>
CSID>

6-1

For SIO, when the S option is used the B, L, and A options are read by the compiler from the
switch register. (The P option must still be placed in the control statement if it is used.) If the
associated bit in the switch register is on, the following options are in effect:

Bit Option

15 B
14 L
13 A

The switch register is read at the beginning of each line. Any option may be turned on or off
partially through a compilation.

If no options are specified for a compilation, the compiler only produces diagnostic messages.

6-3. PROGRAM INPUT

The ALGOL compiler reads records from the logical unit you specify when you run the
compiler. No matter how long the record is, the compiler only uses the first 72 characters. (You
can use columns 73-80 on cards for identification or sequence numbers.)

The compiler accepts blank lines. However, some 1/0 drivers read a blank record as an
end-of-file indicator and signal that no more data is expected. (If disc input is used, do not
include null lines. Make sure each line contains at least one character.)

The compiler senses the end of a program in two ways: when all the BEGINs are matched with
ENDs or when a$ is read after an END. If your program contains an error, the BEGIN-END
pairs may not be matched and compilation may terminate before the entire source program is
read.

6-4. PROGRAM LISTING

When you use the L option in the HPAL statement, the program is listed as it is read. In
addition, two numbers are printed to the left of each line: the sequence number of each source
line and the relative octal address of the object code produced for that line. The relative address
is added to the start address printed by the loader to give the absolute address of each line in
your program. This address can be useful if you have run-time errors.

When you compile with option A, the object code listing consists of the octal code and
equivalent assembly language statements generated for each program statement. The first
octal number is the relative location in memory that will contain the object code. The second
number either gives the octal instruction code (if an instruction is placed in memory) or a
numeric value (for constants). The equivalent assembly language statements are listed to the
right of the octal code.

6-2

This partial listing shows the effect of the L and A options:

001 00000 HPAL,L,A, 11 DMT 11

002 00000 BEGIN
00000 000000 NOP

003 00001 INTEGER ARRAY NAME C 1 : 5 l: • 11 TR 11 11 IB11 "BY";
00001
00002 1 77777 NAME
00003 000005
00004 '177777
00005 000006 R
00006 052122
00007 044502
00010 041131
00011

004 00013 INTEGER CHAR;
00013 CHAR

005 00014 WHILE CHAR#"

00001
00001 026014 R
00014

00014 062013 R
00015 026042 R
00016
00042 042016 R
00043 002003

006 00044 BEGIN
00044

II DO

007 00045 READC1, #(R1>, CHAR>;
00045 062017 R
00046 006404
00047 014001 x
00050 000053 R
00051
00052
00053 024122
00054 030451

BSS 000001
OCT 177777
OCT 000005
OCT 177777
DEF * +1
OCT 052122
OCT 044502
OCT 041131
BSS 000002

BSS 000001

ORG 000001
JMP 000014
ORR

LDA CHAR
JMP 000042
BSS 000024
ADA 000016
SZA,RSS

BSS 000001

LDA 000017
CLB,INB
JSB .DID.
DEF u3
BSS 000001
BSS 000001
ASC 1, CR
ASC 1 , 1 >

Array Table

Storage for Array

6-3/6-4

[I
IUllM11

PROGRAM EXAMPLES! vu I

This section contains ALGOL programs that were compiled and executed under the RTE-III
operating system.

7-il. TAYLOR SERIES FOR EXP, SIN, AND COS

[If you do not have a mathematical background, you may want to skip this example.]

One method of evaluating logarithmic and trigonometric functions by polynomials is to use
Taylor series. (If you do not know what Taylor series are, consult a basic Calculus textbook.)
Three well known Taylor series are

sin x =

cos x =

00

I:.:'.:.
k=O k!

I.: c - l)k x2k+l

k=O (2k+ l)!

oc

I: c-1)k x2k

k=O (2k)!

CI dlenotes summation and ! denotes the factorial function.)

All three of these infinite sums can be approximated by summations to a number of terms. The
greater the number, the closer the result is to the true value.

The following program evaluates the series for 5, 10, and 30 terms. It also prints the values of
the ALGOL intrinsic function for EXP, SIN, and COS.

The first part of the listing contains eight procedures that return real values when called.
Lines 9-15 define a procedure (FACTL) to calculate factorials. Lines 20-28 define procedures
that evaluate terms for the sums shown above. The procedures in lines 33-41 are included so
intrinsics can be passed as arguments to the PRINTVALUE procedure. The last real procedure
(SUM) uses the terms in lines 20-28 to calculate a sum to a given number of terms. Most of the
work of the program takes place in PRINTVALUES; it writes a heading, increments X from
-2 to 2, and prints three sums for each value of X. The actual call to the SUM procedure
appears in the OUTPUT statement (line 63). The main program, which begins in line 81, is
rather trivial. It prints headings and calls PRINTVALUES for each different summation.

7-1

PAGE 001

001 00000 HPAL,L, 11 SUMS 11

002 00000 BEGIN
003 00001 COMMENT PROGRAM TO CALCULATE VALUES FOR EXPCX), SINCX>,
004 00001 AND COSCX> BY TAYLOR SERIES WITH 5, 10, AND 30
005 00001 TERMS, AND VALUES OF X BETWEEN -2 AND 2;
006 00001 &
007 00001 &
008 00001 &
009 00001 REAL PROCEDURE FACTLCN>;
010 00005 VALUE N; INTEGER N;
011 00005 BEGIN &CALCULATE THE FACTORIAL OF N CN!)
012 00010 INTEGER I;
01 3 0001 2 F ACTL · = 1 . 0;
01 4 00043 FOR I · = 2 TO N DO FACTL : = FACTL * I;
015 00063 END;
016 00066 &
017 00066 &
018 00066 &
019 00066 & PROCEDURES TO CALCULATE TERMS FOR EXP, SIN, AND COS
020 00066 REAL PROCEDURE EXPSUMCX,K>;
021 00071 VALUE X,K; REAL X; INTEGER K;
022 00071 EXPSUM :• CXAK)/FACTLCK>;
023 00120 REAL PROCEDURE SINSUMCX,K>;
024 00123 VALUE X,K; REAL X; INTEGER K;
025 00123 SINSUM := C-1)AK*XAC2*K+1)/FACTLC2*K+1);
026 00177 REAL PROCEDURE COSSUMCX,K>;
027 00202 VALUE X,K; REAL X; INTEGER K;
028 00202 COSSUM := C-1)AK*XAC2*K>IFACTLC2*K>;
029 00301 &
030 00301 &
031 00301 &
032 00301 & DUMMY PROCEDURES SO INTRINSICS CAN BE PARAMETERS
033 00301 REAL PROCEDURE EXP1CX>;
034 003~4 VALUE X; REAL X;
035 00304 EXP1 : = EXP X;
036 00317 REAL PROCEDURE SIN1CX>;
037 00322 VALUE X; REAL X;
038 00322 SIN1 := SIN X;
039 00335 REAL PROCEDURE COS1CX>;
040 00340 VALUE X; REAL X;
041 00340 COS1 : = COS X;

7-2

PAGE 002

042 00353 &
043 00353 &
044 00353 &
045 00353 REAL PROCEDURE SUMCK1 ,X,FUNCT>;
046 00356 VALUE K1 ,X; INTEGER K1; REAL X; REAL PROCEDURE FUNCT;
047 00356 BEGIN & SUM UP TERMS IN SERIES
048 00364 INTEGER K;
049 00366 SUM := 0.0;
050 00372 FOR K :• 0 TO K1 DO
051 00400 SUM ·• SUM + FUNCTCX,K>;
052 00414 END;
053 00417 &
054 00417 &
055 00417 &
056 00417 &
057 00417 PROCEDURE PRINTVALUESCINTRINSIC, FUNCTION>;
058 00420 REAL PROCEDURE INTRINSIC, FUNCTION;
059 00420 BEGIN & CALCULATE AND OUTPUT VALUES
060 00424 INTEGER ARRAY NC1:3l := 5, 10, 30;
061 00434 INTEGER I; REAL X;
062 00437 OUTPUT SUMS
063 00437 CX,INTRINSICCX>,FOR 1:=1 TO 3 DO SUMCNCil,X,FUNCTION>>;
064 00475 FORMAT NUMBERSCF7.2, 1P4E14.5),
065 00505 HEADINGC"O X11 ,7X, 11 INTRINSIC 11 ,8X, 11 SUMC5> 11 ,8X, 11 SUMC10> 11

066 00535 7X, 11 SUMC30> 11 >;
067 00544 &
068 00544 WRITEC6,HEADING>;
069 00552 x := -2.0;
070 00556 WHILE X <• 2.0 DO
071 00563 BEGIN
072 00564 WRITEC6, NUMBERS, SUMS>;
073 00573 x := x + .33333;
074 00601 END;
075 00602 END;
076 00603 ,s,
077 00603 ,s,
078 00603 ,s,
079 00603 & BEGINNING OF MAIN PROGRAM
080 00603 &
081 00603 li.IRITEC6, #(11 1EVALUATION OF INTRINSICS BY SERIES"
082 00634 // 11 0INTRINSIC 1 = EXP"»;
083 00651 PRINTVALUESCEXP1 ,EXPSUM>;
084 00655 li.IRITEC6, #C/ 11 0INTRINSIC 2 • SIN"»;
085 00700 PRINTVALUESCSIN1 ,SINSUM>;
086 00704 li.IRITEC6, #C/ 11 0INTRINSIC 3 = COS"»;
087 00727 PRINTVALUESCCOS1 ,COSSUM>;
088 00733 END$

PROGRAM• 000737 ERRORS=OOO

7-3

EVALUATION OF INTRINSICS BY SERIES

INTRINSIC 1 = EXP

x INTRINSIC SUMC5> SUMC10) SUMC30)
-2.00 1. 35335E-01 6.66667E-02 1.35379E-01 1.35335E-01
-1 .67 1. 88875E-01 1 .64951 E-01 1. 88881 E-01 1. 88875E-01
-1. 33 2.63595E-01 2.57063E-01 2.63596E-01 2.63595E-01
-1 . 0 0 3.67876E-01 3.66663E-01 3.67876E-01 3.67876E-01
-.67 5 .1341 OE-01 5.13299E-01 5.13410E-01 5.13410E-01
-.33 7. 16519E-01 7 .16517E-01 7.16519E-01 7.16519E-01
-.00 9.99980E-01 9.99980E-01 9.99980E-01 9.99980E-01

.33 1 .39558E+OO 1 . 395 5 SE+ 0 0 1. 39558E+OO 1 .39558E+OO

.67 1 .94768E+OO 1 .94755E+OO 1 .94768E+OO 1 .94768E+OO
1 . 00 2.71820E+OO 2.71658E+OO 2.71820E+OO 2.71820E+OO
1. 33 3.79354E+OO 3.78396E+OO 3.79354E+OO 3.79354E+OO
1 .67 5.29429E+OO 5.25564E+OO 5.29429E+OO 5.29429E+OO
2.00 7.38876E+OO 7.26638E+OO 7.38870E+OO 7.38876E+OO

INTRINSIC 2 = SIN

x INTRINSIC SUMC5> SUMC10) SUMC30>
-2.00 -9. 09297E-01 -9.09296E-01 -9. 09298E-01 -9.09298E-01
-1 .67 -9.95408E-01 -9.95408E-01 -9.95408E-01 -9.95408E-01
-1.33 -9.71940E-01 -9.71940E-01 -9.71940E-01 -9.71940E-01
-1 . 00 -8.41476E-01 -8.41477E-01 -8.41477E-01 -8. 41477E-01
-.67 -6. 18381 E-01 -6.18381 E-01 -6.18381E-01 -6.18381E-01
-.33 -3.27211E-01 -3.27211E-01 -3.27211E-01 -3.27211E-01
-.00 -2.03848E-05 -2.03848E-05 -2.03848E-05 -2.03848E-05

.33 3.27172E-01 3.27172E-01 3.27172E-01 3.27172E-01

.67 6. 18348E-01 6.18349E-01 6. 18349E- 01 6.18349E-01
1 . 0 0 8.41455E-01 8.41455E-01 8.41455E-01 8.41455E-01
1. 33 9. 71930E-01 9.71930E-01 9.71930E-01 9.71930E-01
1. 67 9.95412E-01 9.95411E-01 9.95412E-01 9.95412E-01
2.00 9.09314E-01 9.09313E-01 9.09315E-01 9.09315E-01

INTRINSIC 3 • COS

x INTRINSIC SUMCS> SUMC10) SUMC30>
-2.00 -4.16147E-01 -4.16155E-01 -4.16147E-01 -4.16147E-01
-1. 67 -9.57270E-02 -9.57279E-02 -9.57270E-02 -9.57270E-02
-1. 33 2.35231E-01 2.35231E-01 2.35231E-01 2.35231E-01
-1 . 0 0 5.40294E-01 5.40294E-01 5.40294E-01 5.40294E-01

- .67 7.85879E-01 7.85879E-01 7.85879E-01 7.85879E-01
-.33 9.44951E-01 9.44951E-01 9.44951E-01 9.44951E-01
-.00 1.00000E+OO 1.00000E+OO 1. OOOOOE+OO 1. OOOOOE+OO

.33 9.44965E-01 9.44965E-01 9.44965E-01 9.44965E-01

.67 7.85904E-01 7.85904E-01 7.85904E-01 7.85904E-01
1 . 0 0 5.40328E-01 5.40328E-01 5.40328E-01 5.40328E-01
1. 33 2.35270E-01 2.35270E-01 2.35270E-01 2.35270E-01
1. 67 -9.56867E-02 -9.56876E-02 -9.56867E-02 -9.56867E-02

7-4

7-:!. RE:AD TEXT AND COUNT CHARACTERS

This program shows how to work with characters. All ASCII constants in the program are one
character in the right half of their word, with the left half filled with zeroes. This corresponds
to the Rl format for reading and writing. If the Al format were used for 1/0, all the ASCII
constants would have to include a blank as the right character.

Note that ASCII constants can be used as array subscripts and as control values in a FOR
statement. 1~he compiler converts them to their octal equivalept.

PAGE 001

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

00000
00000
00 001
00001
0 0001
00001
00003
00107
00233
00234
00234
00234
00302
00302
00302
00322
00325
00326
00360
00367
00372
00372
00425
00433
00456
00464
00465
00465
00465
00507
00516
00546

HPAL,L, 11 COUNT 11

BEGIN
&
COMMENT READ TEXT FROM TERMINAL AND COUNT EACH CHARACTER;
&
INTEGER I;
INTEGER ARRAY CHARC 11 11

:
11

_
11 1,&HOLDS COUNT FOR EACH CHARACTER

TEXTC1 :801; &HOLDS INPUT CHARACTERS
BOOLEAN DONE := FALSE;
&
& INITIALIZE CHARACTER COUNTS TO ZERO
FOR I :=II II TO .. _ .. DO CHARCil ·= 0;
&
& WRITE HEADING AND READ TEXT
WRITEC6, #("1 INPUT TEXT:"/));
WHILE NOT DONE DO

&

BEGIN
READC1, #CSOR1), FOR 1:=1 TO 80 DO TEXTCID;
IF TEXTC1 l • 11

/
11 THEN DONE := TRUE

ELSE
BEGIN
WRITEC6, #(1X,80R1>, FOR 1:=1 TO 80 DO TEXTCil>;
FOR I : = 1 TO 80 DO

CHARCTEXTCIJJ ·= CHARCTEXTCill +
END

END;

& LIST CHARACTERS USED AND CHARACTER COUNT
WRITEC6, #(11 0CHARACTERS USED:"»;
FOR I := II 11 +1 TO .. _ .. DO

IF CHARCil#O THEN WRITEC6, #(3X,R1,I6>, l,CHARCI])
END$

PROGRAM= 000557 ERRORS•OOO

7-5

Program Output:

INPUT TEXT:

THIS IS A TEST TO SEE IF THE PROGRAM "COUNT" WORKS. THE
PROGRAM READS TEXT, PRINTS IT, THEN COUNTS THE NUMBER OF
TIMES EACH CHARACTER APPEARS. THE END OF TEXT IS SIGNALED
BY A 11

/
11 IN COLUMN 1. AFTER ALL THE TEXT IS READ, THE

CHARACTER COUNTS ARE PRINTED.

CHARACTERS USED:
II 4

3
4

I 1
1 1
A 1 7
B 2
c 9
D 5
E 26
F 4
G 3
H 11
I 1 1
K 1
L 4
M 5
N 11
0 1 0
p 6
R 1 7
s 1 4
T 27
u 5
w 1
x 3
y 1

7-3. CALL SYSTEM ROUTINES

This program calls several routines provided with the RTE system:

RMPAR -a routine to pick up run-time parameters from the RUN, ON or GO command. You
pass as a parameter the first of five consecutive words. After executing RMPAR,
these five words contain the run-time parameters. Because the routine uses the
B-register, you cannot pass an element of an array as the parameter. Instead,
declare five consecutive integers and pass the first of these as the parameter.

EXEC - the standard RTE system executive routine that can be used for many different
functions. You can pass from 1 to 9 parameters to EXEC. However, ALGOL
programs must declare a fixed number of parameters for each procedure. One
solution to this conflict is to define dummy external routines for each EXEC call
that requires a different number of parameters (EXEC2 for 2 parameters, EXEC3
for 3 parameters, etc.). An example of an assembly language routine to patch in a
call to the real EXEC routine is shown after the main program.

ABREG -A routine that returns the A- and B-registers in the two integer parameters
passed. This routine is useful to pick up information left in the registers by EXEC.

7-6

The program first picks up the logical unit number for the console from RMPAR. It then gets
the current time from EXEC and uses EXEC to read the user's name. ABREG obtains the
length of the name from the B-register. The main loop of the program prints status informa­
tion for logical unit numbers read from the console.

PAGE 001

001 00000 HPAL,L, 11 STATS 11

002 00000 BEGIN
003 00001 &
004 00001 COMMENT THIS PROGRAM PERFORMS EXEC CALLS REQUIRING 2, 3,
005 00001 AND 4 PARAMETERS;
006 00001 &
007 00001 INTEGER LEN · • 20, & NAME LENGTH FOR READ
008 00003 LU, & LOGICAL UNIT NUMBER
009 00004 EQT5, & EQT WORD 5 STORAGE
010 00005 KEYED, & LU FOR CONSOLE
011 00006 P2,P3,P4,P5, & USED FOR RMPAR
012 00012 A, B, & VALUES OF A- AND B-REGISTERS
013 00014 I; & COUNTER
014 00015 &
015 00015 INTEGER ARRAY TIMEC1:5l,NAMEC1:20l;
016 00056 FORMAT TIMEFMT
017 00056 ("/STATUS: CURRENT TIME: DAY 11 ,14,3X,3CI2, 11

:
11 >,I2>;

018 00107 OUTPUT TIMEVALCFOR I:• 5 STEP -1 UNTIL 1 DO TIMECil>;
019 00155 &
020 00155 &
021 00155 & DUMMY EXEC ROUTINES
022 00155 PROCEDURE EXEC2CP1 ,P2>;
023 001~6 VALUE P1 ;INTEGER P1 ,P2;
024 00156 CODE;
025 00155 PROCEDURE EXEC3CP1 ,P2,P3>;
026 00156 VALUE P1 ,P2; INTEGER P1 ,P2,P3;
027 00156 CODE;
028 00155 PROCEDURE EXEC4CP1,P2,P3,P4>;
029 00156 VALUE P1 ,P2;INTEGER P1 ,P2,P3,P4;
030 00156 CODE;
031 00155 &
032 00155 & SYSTEM ROUTINE TO PICK UP RUN-TIME PARAMETERS
033 00155 PROCEDURE RMPARCP1>;
034 00156 INTEGER P1;
035 00156 CODE;
036 00155 &
037 00155 & SYSTEM ROUTINE TO GET VALUES OF A- AND B-REGISTERS
038 00155 PROCEDURE ABREGCA,B>;
039 00156 INTEGER A,B;
040 00156 CODE;
041 00155 &
042 00155 &
043 00155 &
044 00155 & BEGINNING OF PROGRAM
045 00155 &
046 00155 & PICK UP KEYBOARD LU VIA RMPAR
047 00155 RMPARCKEYBD>;
048 00160 IF KEYED < 1 THEN KEYED := 1;
049 00166 &
050 00166 & GET TIME AND PRINT MESSAGE
051 00166 EXEC2C11 ,TIMEC1 l>;
052 00177 WRITECKEYBD, TIMEFMT, TIMEVAL>;

7-7

Page 002

053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077

00206
00206
00206
00235
00240
00253
00257
00261
00263
00263
00263
00266
00267
00274
00326
00333
00362
00371
00372
00372
00372
00403
00412
00451
00455

&
& GET USER 1 S NAME <LENGTH GOES IN B REGISTER>
WRITECKEYBD, #(11 /STATUS: WHAT IS YOUR NAME?"»;
P2 := KEYBD+®400;
EXEC4C1,P2,NAME[1 l ,LEN>;
ABREGCA, B>;
LEN := B;
LU := KEYBD;
&
& PROMPT FOR LU AND PRINT STATUS WORD
WHILE LU > 0 DO

&

BEGIN
EXEC3C13, LU, EQT5>;
WRITECKEYBD,#(11 /STATUS: EQT5 OF DEVICE 11 ,I3, 11

•
11 ,K6>,

LU,EQT5>;
WRITECKEYBD, #(11 /STATUS: NEXT LU CEND = 0):_11 »;
READCKEYBD, *, LU>;
END;

& GET TIME AND PRINT ENDING MESSAGE
EXEC 2 C 1 1 , T I ME [1 l > ;
WRITECKEYBD, TIMEFMT, TIMEVAL>;
WRITECKEYBD,#(11 /STATUS: GOODBYE 11 ,20A2>, FOR I:•1 TO LEN DD

NAME[IJ>;
END$

PROGRAM= 000461 ERRORS=OOO

The following assembly language subroutine is called by a jump to any of the dummy EXEC
routines. It stores a JSB to the true EXEC routine over the dummy jump in the main program,
then jumps back and executes the EXEC call. When the original call is executed again, it
points to the true EXEC routine.

7-8

PAGE 0002 #01

0001 ASMB,L,R
0002 00000 NAM EXEC0,7
0003** USED TO FIX ALGOL EXEC CALLS
0004 EXT EXEC
0005 ENT EXEC1 ,EXEC2,EXEC3,EXEC4,EXEC5
0006 ENT EXEC6,EXEC7,EXEC8,EXEC9
0007 00000 EXEC1 EQU *
0008 00000 EXEC2 EQU *
0009 00000 EXEC3 EQU *
0010 00000 EXEC4 EQU *
0011 00000 EXECS EQU *
0012 00000 EXEC6 EQU *
0013 00000 EXEC7 EQU *
0014 00000 EXECS EQU *
0015 00000 EXEC9 EQU *
0016*
0017 00000 000000 EXE CO NOP ENTRY POINT
0018 0 0001 072011R STA SAVE SAVE A-REGISTER
0019 00002 003400 CCA
0020 00003 042000R ADA EX ECO A-REG POINTS TO EXEC CALL
0021 00004 072000R STA EX ECO
0022 00005 062012R LOA JSBEX LOAD A-REG WITH REAL EXEC CALL
0023 00006 172000R STA EXECO,I REPLACE JSB INSTRUCTION
0024 00007 062011R LOA SAVE RESTORE A-REGISTER
0025 00010 126000R JMP EXECO,I RETURN
0026*
0027 00011 000000 SAVE BSS 1 SAVE AREA FOR A-REG
0028 00012 016001X JS BEX JSB EXEC REPLACING INSTRUCTION
0029 END

** NO ERRORS *TOTAL **RTE ASMB 750420*

Output from program:

/STATUS: CURRENT TIME: DAY 91 11 : 1 0 : 1 3: 55
/STATUS: WHAT IS YOUR NAME?
DAVE
/STATUS: EQTS OF DEVICE 7 = 002400
/STATUS: NEXT LU CEND "' 0): 2
/STATUS: EQT5 OF DEVICE 2 = 014400
/STATUS: NEXT LU <END "' 0): 1
/STATUS: EQTS OF DEVICE 1 "' 000000
/STATUS: NEXT LU CEND "' O>: 6
/STATUS: EQTS OF DEVICE 6 = 005000
/STATUS: NEXT LU CEND = 0):0
/STATUS: CURRENT TIME: DAY 91 1 1 : 1 0 : 51 : 34
/STATUS: GOODBYE DAVE

7-9 /7-10

[l
lMl!.1.11

~H~F_,~A~L~G~OL~AN~D~H~P ~FO~R~T~R~AN~IV~-' VIII I

This section has been written for the experienced FORTRAN programmer who wants to
program in ALGOL. If you do not already know FORTRAN, you may skip this discussion~

Complete descriptions of ALGOL statements are not given here. Consult the proper section of
this manual for further information.

This section compares HP FORTRAN IV and HP ALGOL. Comparison between other versions
of FORTRAN and ALGOL is not implied.

s-·1. PROGRAM FORMAT

Unlike FORTRAN statements, which have a comment column, a statement number field, a
continuation column, and a statement field, ALGOL statements can begin in any column (they
must end by column 72) and run for as many lines as you need. Statements are separated by
semicolons (;). Several statements can appear on the same line.

Spaces act as delimiters in ALGOL. As in FORTRAN, extra spaces are ignored.

8-:~. VARIABLES AND CONSTANTS

FORTRAN's real and integer number formats are the same as ALGOL's. ALGOL does not use
double precision or complex numbers. ALGOL's Boolean values are similar to FORTRAN's
logical values.

Any FORTRAN integer number is legal in ALGOL. ALGOL's real constants use ' for scale
factors in place of E. Hollerith constants are enclosed in 11 instead of being preceded by lH or
2H. The logical constants in ALGOL are TRUE and FALSE (not .TRUE. and .FALSE.). Octal
constants are preceded by@ instead of being followed by B. (Any sign goes in front of the@.)

There are no default type declarations in ALGOL. Each variable must be declared explicitly
before it is used. The identifiers shown in table 2-1 may not be used except as noted.

Only alphanumeric and numeric characters (not$) may be used in ALGOL identifiers, and
embedded bfanks are not allowed. Identifiers must begin with an alphabetic character and can
continue for as many characters as you need.

8-:3. AHRA VS

Arrays can have as many dimensions as you need. The bounds of each subscript, which must be
defined when you declare the array, can be any integer constants, positive or negative. (The
lower bound does not default to 1.)

8-1

When referencing an array element, use brackets, not parentheses, around the subscript
expression. During execution of an ALGOL program, the subscript is checked every time an
array is referenced. If it is not within the specified bounds, an error message is printed.

8-4. STATEMENT NUMBERS

ALGOL statements are not numbered. However, you may reference a statement with a label.
Labels are defined by placing the label (any legal identifier) and a colon before the statement.

8-5. EXPRESSIONS

The FORTRAN exponentiation operator** is replaced in ALGOL by A. All other FORTRAN
operators have the same meaning in ALGOL, except I always produces a real result. Integer
division is performed with ""'.

The FORTRAN logical operators .OR., .AND., and .NOT. are replaced in ALGOL with OR,
AND, and NOT.

The FORTRAN relational operators and their equivalent ALGOL symbols are

.LT. <

.LE. <=
.EQ.
.NE. #

.GT. >

.GE. >=

The precedence of operators in arithmetic and logical expressions is the same in FORTRAN
and ALGOL. In mixed mode expresions, the conversions between real and integer results
within the expression may be different for the two languages.

8-6. EXTERNAL STATEMENT

Each external function and subroutine in ALGOL must be declared as a regular procedure.
The instructions for the routine are replaced by the word CODE.

8-7. COMMON AND EQUIVALENCE STATEMENTS

There are no statements in ALGOL which perform the functions of FORTRAN's COMMON
and EQUIVALENCE declarations. CALGOL's EQUATE declaration is completely different
from FORTRAN's EQUIVALENCE.)

8-8. DATA STATEMENT

There is no DATA statement in ALGOL. However, you can assign initial values to variables
and arrays as you declare them.

8-2

8-!9. ASSIGNMENT STATEMENTS

ALGOL assignments are the same as in FORTRAN except the symbols := or~ replace
FORTRAN's =.

8-·10. GC> TO STATEMENT

The FORTRAN and ALGOL GO TO statements are equivalent. (In ALGOL, GO TO must be
two words.) Because ALGOL provides many ways to control program execution, you can
usually write entire programs without one GO TO statement.

9 .. ·11. ASSIGN TO AND ASSIGNED GO TO STATEMENTS

ALGOL does not have a construct exactly the same as the ASSIGN TO statement; they are not
needed because labels can be passed to subroutines as parameters. The ASSIGNED GO TO
statement of FORTRAN is similar to an ALGOL GO TO with a switch as the destination.

8-·12. CC>MPUTED GO TO STATEMENT

An ALGOL GO TO statement with a switch as the destination is similar to FORTRAN's
computed GO TO. The ALGOL CASE statement can also be used in much the same way.

8-'13. AFUTHMETIC IF STATEMENT

There is no ALGOL statement directly equivlent to the arithmetic IF statement. You can,
however, use the ALGOL IF statement in the following way:

E := <expression>;
IF E<O THEN GO TO <statement 1 label>

ELSE IF E=O THEN GO TO <statement 2 label>
ELSE GO TO <statement 3 label>;

A better solution using blocks instead of GO TO statements can usually be found.

8-'14. LOGICAL IF STATEMENT

ALGOL's IF statement is similar to FORTRAN's, but it also allows an ELSE clause.

8-3

8-15. CALL STATEMENT

There is no need for a CALL statement in ALGOL. You invoke a subroutine by writing its
name as a statement. As in FORTRAN, any parameters are enclosed in parenthesis following
the subroutine name.

8-16. RETURN AND STOP STATEMENTS

RETURN and STOP statements are not needed in ALGOL. Control is returned to a main
program or to the operating system when the final END is reached during execution.

8-17. CONTINUE STATEMENT

ALGOL dummy statements perform the same functions as FORTRAN's CONTINUE.

8-18. PAUSE STATEMENT

The PA USE statement performs the same function in both languages. You cannot use an octal
number with an ALGOL PAUSE.

8-19. DO STATEMENT

FORTRAN's DO statement is similar to ALGOL's FOR statement. (Do not confuse it with
ALGOL's DO statement.) The statements in the range of a FORTRAN DO statement are
always executed at least once. The FOR statement block is not executed when the initial value
exceeds the final value. ALGOL's FOR statement is more powerful - it allows negative values
for the control variable, terminal parameter, and step size.

8-20. END STATEMENT

The FORTRAN and ALGOL END statements are similar, but should not be considered as
equivalent. ALGOL's END is not a statement, but is used with BEGIN to delimit blocks of
code.

8-4

8-:!1. 1/0 STATEMENTS

FOJRTRAN and ALGOL use the same formatter for 1/0. The FORMAT statements of each
language are equivalent. Because ALGOL does not have double precision values, you cannot
use D format specifications. All other format specifications are legal in ALGOL. Unformatted
input and binary 1/0 are the same in ALGOL as in FORTRAN.

The ALGOL READ and WRITE statements perform the functions of their FORTRAN counter­
parts. ALGOL can write expressions (not just variables). You cannot output an entire ALGOL
array by specifying its name. FORTRAN's implied DO list is replaced by FOR elements in
ALGOL.

ALGOL has magnetic tape statements that are similar to FORTRAN's.

8-:!2. FUNCTIONS AND SUBROUTINES

ALGOL procedures are similar to FORTRAN's functions and subroutines. You can call AL­
GOL, FORTRAN, or Assembly Language routines from ALGOL. ALGOL provides additional
control of parameters by allowing passage by value or reference. (FORTRAN passes parame­
ters by reference only.)

8-5 /8-6

[I

UHMM
ERRORS _I A I

A-11. COMPILER ERROR MESSAGES

If the first record of your source program is not an HP AL control statement, the compiler halts
and prints HPAL?? on the system console.

Errors detected in the source program are indicated by a numeric error code. An arrow (j) is
printed below the symbol the compiler was processing when it discovered the error.

Sometimes one mistake in your program will cause numerous errors. For example, if you do
not declare an identifier properly, an error message appears anywhere you reference the
identifier in your program. A semicolon before an ELSE or UNTIL (in a DO statement) can
cause the compiler to lose track of the blocks in your program.

Here are the compiler error codes and a description of the condition causing the error:

ERROR
CODE

l

2

3

5

6

7

8

10

11

12

13

14

15

DESCRIPTION

More than two characters used in an ASCII constant.

@ not followed by an octal digit.

Octal constant greater than 177777.

Two decimal points in one number.

Non-integer following apostrophe in scale factor.

Label declared but not defined in program.

Number required but not present.

Missing END.

Undefined identifier.

Illegal symbol.

Procedure designator must be followed by left
par en thesis.

Parameter types disagree.

Reference parameter must be a variable.

Parameter must be followed by a comma or right
parenthesis.

A-1

A-2

ERROR
CODE

16

17

18

19

20

21

22

23

24

25

26

27

28

40

41

42

43

44

45

46

47

48

49

DESCRIPTION

Too many parameters.

Too few parameters.

Array variable not followed by a left bracket.

Subscript must be followed by a comma or right
bracket.

Missing THEN.

Missing ELSE.

Illegal assignment.

Missing right parenthesis.

Proper procedure not legal in arithmetic expression.

Primary may not begin with this type quantity.

Too many subscripts.

Too few subscripts.

Variable required.

Too many external symbols (maximum = 255)

Declaration following statement.

No parameters declared after left parenthesis.

REAL, INTEGER, or BOOLEAN illegal with this
declaration.

Doubly defined identifier or reserved word.

Illegal symbol in declaration.

Statement started with undefined identifier or illegal
symbol.

Label not followed by colon.

Label is previously defined.

Semicolon expected as terminator.

ERROR
CODE

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

DESCRIPTION

Left arrow or := expected in SWITCH declaration.

Label entry expected in SWITCH declaration.

Real number assigned to integer in declaration.

Constant expected following left arrow or := .

Left arrow or := expected in EQUATE declaration.

Left bracket expected in ARRAY declaration.

Integer expected in array dimension.

Colon expected :in array dimension.

Upper array bound less than lower bound.

Right bracket expected at end of array dimensions.

Too many values for array initialization.

Array size excessive (32767). Set to 1024.

Constant expected in array initialization.

Too many parameters for procedure.

Right parenthesis expected at end of procedure
parameter list.

Procedure parameter descriptor missing.

VALUE parameter for procedure not in list.

Illegal type in procedure declaration.

Illegal description in procedure declaratives.

Identifier not listed as procedure parameter.

No type for variable in procedure parameter list.

Semicolon found in FORMAT declaration.

Left parenthesis expected after I/O declaration name.

Right parenthesis expected after I/O name
parameters.

A-3

ERROR
CODE

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

100

999

DESCRIPTION

Undefined label reference.

SWITCH identifier not followed by left bracket.

Missing right bracket in SWITCH designator.

THEN missing in IF statement.

DO missing in WHILE statement.

FOR variable must be in integer.

FOR variable must be followed by left arrow or :=.

STEP missing in FOR clause.

UNTIL missing in FOR clause or DO statement.

DO missing in FOR clause.

Parenthesis expected in READ/WRITE statement.

Comma expected in READ/WRITE statement.

Free field format (*) illegal with WRITE.

Unmatched left bracket in I/O statement list.

Missing BEGIN in CASE statement.

Missing END in CASE statement.

Program must start with BEGIN, REAL, INTEGER
or PROCEDURE.

Table areas overflowed.

A-2. RUN-TIME ERROR MESSAGES

When you run your ALGOL program, several kinds of errors may be reported.

A-4

WARNING

Integer or real value overflow may not be recognized
during execution of arithmetic operations. Integers
"wrap around" (from 32767 to -32768) and real numbers
are assigned the largest value (1. 70141' 38).

A-a. RELOCATABLE LIBRARY MESSAGES

During execution of a relocatable library subroutine, any error messages consist of the calling
program name, a two digit subroutine identifier, and a two character error type indicator. (See
DOS-RTE Relocatable Library Reference Manual, Part Number 24998-90001, for further
details.) The message is printed in the following form:

program name nn error type address

program name is the name of your program

nn is a number in the range 02-14 (decimal) that identifies the subroutine which
generated the error.

error type is OF for integer or floating point overflow,
OR for out of range, or
UN for floating point underflow.

address is the absolute octal address of the memory location where the error occured.

These error messages can occur when ALGOL intrinsics are used or during an exponentiation
operation. Suppose X and Y are real values and I and J are integers. Then the following
relocatable subroutines are called for these computations: X" Y .RTOR (real to real); X" I
.RTOI (real to integer); I" J .ITOI (integer to integer).

ERROR CODE SUBROUTINE CONDITION

02 UN LN x~ 0

03 UN SQRT X<O

04 UN .RTOR X=O and Y~O or
X<O and Y:rf 0

05 OR SIN I! + ~ I > 215

05 OR cos I; I > 215

06 UN .RTOI X=O, l~O

07 OF EXP x~ ~
log2 e

07 OF .RTOR I X*LN(X)[~ 124

08 OF .ITOI p ~ 223

08 UN .ITOI I= 0, J ~ 0

09 OR TAN x > 214

A-5

A-4. INDEX? DIAGNOSTIC MESSAGE

The message INDEX? appears during execution whenever an array is accessed with an invalid
index. For DOS and RTE, the absolute address of the violation is printed and exection
continues. Zero is returned as the value of the array element. For SIO i;ind BCS, the computer
halts with the address in the A-register.

A-5. 1/0 ERROR MESSAGES

During execution of your program, the following messages may be printed on the console. For
SIO and BCS the computer halts and the code which further defines the error is contained in
the A-register. For DOS and RTE, the error message is printed in a form similar to the
Relocatable Library messages.

ERROR CODE

*EQR Unit Number

FMT ERR 1

FMT ERR 2

FMT ERR 3

FMT ERR 4

FMT ERR 5

A-6

EXPLANATION AND ACTION

SIO only. Equipment error: end of input tape or tape
supply low on tape punch. B-Register contains the
status word of the equipment table entry. Place the
next tape into the input device or load a new reel of
tape. Press RUN.

FORMAT specification error:

a. w or d field does not contain digits.
b. No decimal point after w field.
c. w-d ~ 4 for E specification.

Fix the error in your source code and compile your
program again.

FORMAT specifications are nested more than one
level deep or FORMAT declaration contains un­
balanced parentheses. Fix the error in your source
code and recompile your program.

FORMAT declaration contains an illegal character
or a repetition factor of zero or specifies more char­
acters than possible for the device. Fix the error in
your source code and recompile your program.

Illegal character read in fixed field input or number
not right-justified in field. Check your data.

An input number has an illegal form (such as two
E's, two decimal points, two signs, etc.). Check your
data.

I
L

HP ALGOL BNF SYNTAX l~H~l.J,

This appendix contains a precise definition of HP ALGOL in the formal metalanguage derived
from the Backus-Naur Form (BNF) of syntax definition. The BNF notation consists of"produc­
tions" or syntax equations, each of which is in the following form:

<syntactic entity> : := <syntactic expression>

This can be read as ''the entity on the left is composed of the ordered collection of one or more of
the expressions on the right."

If the entity has more than one expression, they are separated by a vertical bar. These
expressions represent choices for any given expansion of the entity.

The bold face characters are the "terminal" symbols; the character itself appears in the entity.

The productions are listed in a "bottom-up" fashion, that is, the simplest elements of the
language are listed first, then more complex elements are defined in terms of the simpler
elements. If you are more familiar with a "top-down" description, read the definitions starting
with the last one and work back to the first one.

Basic Symbols

<empty> ::== the null string of symbols

<character> : := any single character

<letter> ::=A I B IC ID IE IF IG I H 11 IJ IK IL IM IN 10 IP IQ IR IS IT IU IV IW IX IV IZ

<octal digit> ::= 011121314151617

<di9it> ::= <octal digit>l819

<IO!~ical constant> .. - TRUE I FALSE

Identifiers

< id,3ntifie r> : := < letter> I< identifier>< letter> I< identifier>< dig it>

Numbers

<unsigned integer> ::= <digit>l<unsigned integer><digit>

<integer> : := <unsigned integer> I+< unsigned integer>!-< unsigned integer>

<octal integer> ::= @<octal digit>l<octal integer><octal digit>

B-1

<ASCII constant> ::= 11 <character>" I" <character><character>"

<equate identifier> : := <identifier>

<decimal fraction> : := .<unsigned integer>

<exponent part> : := ' <integer>

<decimal number> ::= <unsigned integer>l<unsigned integer>.!
<decimal fraction> I< unsigned integer>< decimal fraction>

<unsigned number> ::= <decimal number>l<exponent part>I
<decimal number><exponent part>

<number> ::= <unsigned number>/<octal integer>/<ASCll constant>/
<logical constant>/< equate identifier>

<signed number> .. - <number>/+< number>/-< number>

Variables

<variable identifier> : := <identifier>

<simple variable> ::= <variable identifier>

<subscript expression> : := <expression>

<subscript list> : := <subscript expression> I< subscript list>,< subscript expression>

<array identifier> : := <identifier>

<subscripted variable> : := <array identifier>[< subscript list>]

<variable> ::= <simple variable>/<subscripted variable>

Function Designators

<procedure identifier> : := <identifier>

<actual parameter> : := <expression>/< identifier>

<actual parameter list> : := <actual parameter>/< actual parameter list>,< actual parameter>

<actual parameter part> : := <empty> I(< actual parameter list>)

<function designator> : := <procedure identifier>< actual parameter part>

Arithmetic Expressions

<adding operator> ::= + / -

<multiplying operator> .. - * I I I \ I MOD

B-2

<rnath intrinsic> ::= ABS I SIGN I SQRT I SIN I COS I ARCTAN I TANH I LN I EXP I
ENTIER I ROTATE I TAN

<intrinsic> :::= KEYS I< math intrinsic>< primary>

<primary> :::= <number> I< variable> I< function designator> I(< expression>)I <intrinsic>

<factor> ::== <primary>l<factor>A<primary>

<term> ::= <factor>l<term><multiplying operator><factor>

<simple expression> ::= <term>l<adding operator><term>I
<simple expression>< adding operator>< term>

<redational operator> ::= < I <= I = I >= I > I #

<relation> ::= <simple expre$sion>I
<simple expression>< relational operator>< simple expression>

<denial> ::== <relation>! NOT <denial>

<conjunction> ::= <denial>l<conjunction> AND <denial>

<disjunction> ::= <conjunction>l<disjuction> OR <conjunction>

<if clause> : := IF <expression> THEN

<expression> ::= <disjunction>!< if clause><simple expression> ELSE <expression>!
(<variable>< assignment operator>< expression>)

Designational Expression

<label> : := <identifier>

<switch identifier> : := <identifier>

<designational expression> : := <label> I< switch identifier> [<expression>]

Format Declarations

<format identifier> : := <identifier>

<repeat count> ::= <unsigned integer>

<field width> ::= <unsigned integer>

<fraction width> ::= <unsigned integer>

<scale factor> : := <unsigned integer>

B-3

<basic real element> ::= E<field width> .<fraction width>I
F<field width> .<fraction width> I G<field width> .<fraction width>

<real element> ::= <basic real element>j<repeat count><basic real element>!
<scale factor> P< basic real element> I
<scale factor> P< repeat count>< basic real element>

<basic integer element> ::= l<field width>I L<field width>IO<field width>I
K<field width>I @<field width> I A< field width>I R<field width>I X

<integer element> : := <basic integer element> I< repeat count>< basic integer element>

<character string> : := <character> I< character string>< character>

<string element> ::= <field width>H<character string>!
11 <character string (not containing 11)>11

<element separator> ::= , I I

<format element> ::= <real element>l<integer element>j<string element>!
(<format list>)I< repeat factor> (<format list>)I/ I< repeat factor>/

<format list> ::= <format element>l<format list><element separator><format element>

<format segment> ::= <format identifier> (<format list>)

<format declaration> ::= FORMAT <format segment>!
<format declaration> ,<format segment>

Procedure Declarations

<formal parameter> ::= <identifier>

<formal parameter list> ::= <formal parameter>l<formal parameter list>,<formal parameter>

<formal parameter part> : := <empty> I(< formal parameter list>)

<identifier list> ::= <identifier> I< identifier list>,< identifier>

<value part> ::= <empty>! VALUE <identifier list>;

<specifier> ::= <type>I ARRAY I <type> ARRAY I LABEL I SWITCH I
PROCEDURE !<type> PROCEDURE I FORMAT I INPUT I OUTPUT

<specification part> ::= <empty>j<specifier><identifier list> ;I
<specification part>< specifier>< identifier list>;

<procedure heading> ::= <procedure identifier><formal parameter part>;
<value part>< specification part>

<procedure body> ::= <statement>! CODE

B-4

<procedure declaration> ::= PROCEDURE <procedure heading>< procedure body> I
<type> PROCEDURE <procedure heading>< procedure body>

n~eclarations

<integer type> ::= INTEGER I BOOLEAN

<type> ::= REAL I< integer type>

<initialized identifier> ::= <identifier><assignment operator><signed number>

<simple variable declaration> : := <identifier> I< initialized identifier>

<type declaration> ::= <type><simple variable declaration>!
<type declaration>,< simple variable declaration>

<lower bound> : := <signed number>

<upper bound> ::= <signed number>

<bound pair> : := <lower bound> :<upper bound>

<bound pair list> ::= <bound pair>l<bound pair list>,<bound pair>

<array identifier list> : := <array identifier> I <array identifier list>,< array identifier>

<array segment> : := <array identifier list>[< bound pair list>]

<simple array list> ::= <array segment>! <simple array list>,< array segment>

<constant list> ::= <signed number>l<constant list>,<signed number>

<array list> ::=<simple array list>! <simple array list>< assignment operator>< constant list>

<array declaration> ::= ARRAY <array list>l<type> ARRAY <array list>

<label declaration> ::= LABEL <label>l<label declaration>,<label>

<switch declaration> : := SWITCH <switch identifier>< assignment operator>< label> I
<switch declaration>,< label>

<e!quate declaration> ::= EQUATE <initialized! identifier>!
<equate declaration>,< initialized identifier>

<input identifier> ::= <identifier>

<input list element> ::= <variable> I< input identifier> I
<for clause>< input list element> I[< input list>]

<input list> ::= <input list element>l<input list>,<input list element>

<input segment> : := <input identifier> (<input list>)

B-5

<input declaration> ::= INPUT <input segment> I <input declaration>,< input segment>

<output identifier> : := <identifier>

<output list element> ::= <expression>l<output identifier>!
<for clause>< output list element> I [<output list>]

<output list> ::= <output list element>! <output list>,<output list element>

<output segment> : := <output identifier> (<output list>)

<output declaration> ::= OUTPUT <output segment>!
<output declaration>,< output segment>

<declaration> : := <type declaration> I< array declaration> I <label declaration> I
<switch declaration>l<equate declaration>! <input declaration>!
<output declaration>l<format declaration>! <procedure declaration>

Basic Statements

<go to> ::= GO TO I GO

<go to stateme.nt> ::= <go to><designational expression>

<dummy statement> : := <empty>

<procedure statement> ::= <procedure identifier>< actual parameter part>

<pause statement> ::= PAUSE

<do statement> ::= DO <statement> UNTIL <expression>

<case head> ::= CASE <expression> BEGIN <statement>

<case body> ::= <case head>l<case body> ;<statement>

<case statement> ::= <case body> END

<basic statement> ::= <go to statement>l<dummy statement>! <procedure statement>!
<pause statement>l<do statement>! <case statement>

Assignment Statements

<assignment operator> ::= ~ I .-

<left part> ::= <variable><assignment operator>

<left part list> ::= <left part>l<left part list><left part>

<assignment statement> : := <left part list>< expression>

B-6

1/0 Statements

<unit> : := <expression>

<mag tape command> .. - ENDFILE I REWIND I UNLOAD I SPACE I BACKSPACE

<mag tape statement> ::= <mag tape command>< unit>

<free- field part> : := *

< in!ine format> ::= #(<format list>

<output format part> ::= <format identifier>l<inline format>

<format part> ::= <free field part>l<output format part>

<read statement> : := READ(< unit>,< format part>,< input list>)I
READ(< unit>,< format part>) I READ(< unit>,< input list>)

<write statement> : := WRITE(< unit>,< output format part>,< output list>)I
WRITE(< unit>,< output format part>)I WRITE(< unit>,< output list>)

< 1/0 statement> ::= <mag tape statement> I< read statement> I <write statement>

Compound Statements, Blocks, and Programs

<step specification> ::= STEP <expression> UNTIL I TO

<for clause> ::= FOR <variable><assignment operator><expression>
<step specification>< expression> DO

<while clause> ::= WHILE <expression> DO

<closed statement> : := <basic statement> I< assignment statement> I
< 1/0 statement>J<while clause><closed statement>!
<if clause><closed statement> ELSE <closed statement> I
<for clause><closed statement>J<compound statement>!
<block> I< label>:< closed statement>

<open statement> ::= <if clause><statement>I
<if clause><closed statement> ELSE <open statement>!
<for clause><open statement>j<while clause><open statement>!
<label> ::<open statement>

<statement> : := <open statement> I< closed statement>

B-7

<block head> ::= BEGIN <declaration> ;I< block head>< declaration>;

<block body> : := <block head>< statement> I< block body> ;<statement>

<block> ::= <blockbody> END

<compound head> ::= BEGIN <statement>l<compound head> ;<statement>

<compound statement> : := <compound head> END

<program> : := < procedure declaration> ;I< block> ;I< compound statement> ;

B-8

[_______ H_P_C_H_A_R_A_C_T_E_R_S_E_T___,] ~H~l.J,

Effect of Control key *

r- ~
j.-ooo-0J1B--.j.-040-011B--.j.-100-131B-.l~140-111B--.j

00
1

01
0

2

01

3

1

4 5

0 0 0 0 0 NUL OLE SP 0 @ P

0 0 0 1 1 SOH DC1 I 1 A Q

0 0 1 0 2 STX DC2 " 2 B R

6 7

p

a q

b
l--+--+-·-+--+-------~~--+~--...-------t--~~-+--~--+---~--+--~----1-----~

0 0 1 1 3 ETX DC3 # 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d
l--+--+-·-+--+-------~~-1--~~---~-~-+------1----~-----~--+--~--+-----t

0 1 0 1 5 ENO NAK % 5 E U

0 1 1 0 6 ACK SYN & 6 F V
I

0 1 1 1 7 BEL ETB 7 G W

1 0 0 0 8 BS CAN (8 H X

1 0 0 1 9 HT EM) 9 I Y

1 0 1 0 10 LF SUB * : J Z
--1--------jl---·

1 0 l 1 11 VT ESC + ; K [

1 1 0 0 12 FF FS < L \

1 1 0 1 13 CR GS - = M I

1 1 1 0 14 SO RS > N

1 1 1 1 15 SI us I ? 0

32 CONTROL
CODES

I\

Upshifted
Lower Case

..,.____ 64 CHARACTER SET ---.j

e u

v

g w

h x

y

z

k {

m }

n

0 DEL

.,..____ 96 CHARACTER SET ----------..i
1......---------- 128 CHARACTER SET----------

9206- 1 A

EXAMPLE: The representation for the character "K" (column 4, row 11) is.

BINARY

OCTAL

t>-, b5 bs b4 b3 b2 bl

0 0 1 0 1 1 ...__ ...__
3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control- H is a backspace.

C-1

Decimal
Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

127

9206- 16

Octal Values

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementation of ANS X3.4-1968 (USASCll) and ANS X3.32-1973. Some devices may substitute
alternate characiers from those shown in this chart (for example, Line Drawing Set or Scandanavian font) Consult the manual
for your device.

The left and right byte columns show the octal patterns in a 16 brt wcird when the character occupies bits 8 to 14 (left byte) or O
to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For
example, "AB" produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes

Octal Values
Mnemonic Graphic 1

Meaning Decimal Character
Left Byte Right Byte Value Left Byte Right Byte

000000 000000 NUL t-tJ Null 32 020000 000040

000400 000001 SOH ~ Start of Heading 33 020400 000041 I

001000 000002 STX 5x Start of Text 34 021000 000042
,.

001400 000003 ETX E"x End of Text 35 021400 000043 #

002000 000004 EOT E,- End of Transmission 36 022000 000044 $

002400 000005 ENO Ea Enquiry 37 b22400 000045 %

003000 000006 ACK ~ Acknowledge 38 023000 000046 &

003400 000007 BEL 0 Bell, Atterition Signal 39 023400 000047 ~

004000 000010 BS ~ Backspace 40 024000 000050 (

004400 000011 HT ~ Horizontal Tabulation 41 024400 000051)

005000 000012 LF LF Line Feed 42 025CXlO 000052 *
005400 000013 VT ~ Vertical Tabulation 43 025400 000053 +
006000 000014 FF FF Form Feed 44 026000' 000054

'
006400 000015 CR ~ Carriage Return 45 026400 000055 -

007000 000016 so ~ Shift Out } Alternate
007400 000017 SI 51 Shift In Character Set

46 027000 000056

47 027400 000057 I

010000 000020 OLE q_ Data Link Escape 48 030000 000060 0

010400 000021 DC1 01 Device Control 1 (X-ON) 49 030400 000061 1

011000 000022 DC2 02 Device Control 2 (TAPE) 50 031000 000062 2

011400 000023 DC3 03 Device Control 3 (X-OFF) 51 031400 000063 3

012000 000024 DC4 04 Device Control 4 (TAPE) 52 032000 000064 4

012400 000025 NAK ~ Negative Acknowledge 53 032400 000065 5
013000 000026 SYN ~ Synchronous Idle 54 033000 000066 6

013400 000027 ETB E"a End of Transmission Block 55 033400 000067 7

014000 000030 CAN ~ Cancel 56 034000 000070 8

014400 000031 EM '1-1 End of Medium 57 034400 000071 9

015000 000032 SUB 5s Substitute 58 035000 000072 :

015400 000033 ESC ~ Escape2 59 035400 000073 ;

016000 000034 FS FS File Separator 60 036000 000074 <
016400 000035 GS cs Group Separator 61 036400 000075 =

017000 000036 RS "'s Record Separator 62 037000 000076 >
017400 000037 us ~ Unit Separator 63 037400 000077 ?

077400 000177 DEL • Delete, Rubout 3

Meaning

Space, Blank

Exclamation Point

Quotation Mark

Number Sign, Pound Sign

Dollar Sign

Percent

Ampersand, And Sign

Apostrophe, Acute Accent

Left (opening) Parenthesis

Right (closing) Parenthesis

Asterisk, Star

Plus

Comma, Cedilla

Hyphen, ~inus, Dash

Period, Decimal Point

Slash, Slant

1

Digits, Numbers

Colon

Semicolon

Less Than

Equals

Greater Than

Question Mark

Octal Values
Decimal

Value Left Byte Right Byte

64 040000 000100

65 040400 000101

66 041000 000102

67 041400 000103

68 042000 000104

69 042400 000105

70 043000 000106

71 043400 000107

72 044000 000110

73 044400 000111

74 045000 000112

75 045400 000113

76 046000 000114

77 046400 000115

78 047000 000116

79 047400 000117

80 050000 000120

81 050400 000121

82 051000 000122

83 051400 000123

84 052000 000124

85 052400 000125

86 053000 000126

87 053400 000127

88 054000 000130

89 054400 000131

90 055000 000132

91 055400 000133

92 056000 000134

93 056400 000135

94 057000 000136

95 057400 000137

9206- 1C

Octal Values
Character Meaning Decimal Character Meaning

Value Left Byte Right Byte

@ Commercial At 96 060000 000140 \
Grave Accent 5

A

l B

c
D

97 060400 000141 a

l 98 061000 000142 b

99 061400 000143 c

100 062000 000144 d

E 101 062400 000145 e

F 102 063000 000146 f

G 103 063400 000147 g

H 104 064000 000150 h

I 105 064400 000151 i

J 106 065000 000152 J

K 107 065400 000153 k

L 108 066000 000154 I

M 109 066400 000155 m

N
Upper Case Alphabet,

110 067000 000156 n Lower Case Letters5

0
Capital Letters

111 067400 000157 0

p 112 070000 000160 p

0 113 070400 000161 q

R 114 071000 000162 r

s 115 071400 000163 s

T 116 072000 000164 t

u 117 072400 000165 u

v 118 073000 000166 v

w 119 073400 000167 w

x 120 074000 000170 x

y 121 074400 000171 y

z 122 075000 000172 z

[Left (opening) Bracket 123 075400 000173 { Left (opening) Brace5

""
Backslash, Reverse Slant 124 076000 000174 I Vertical Lines

I

l Right (closing) Bracket 125 076400 000175 } Right (closing) Braces

" i Caret, Circumflex; Up Arrow 4 126 077000 000176 - Tilde, Overline5

- <-- Underline; Back Arrow 4

Notes 'This is the standard display representation. The software and hardware in your system determine if the control code is
displayed, executed, or ignored. Some devices display all control codes as ", "@", or space.

2Escape is the first character of a special control sequence. For example, ESC followed by "J" clears the display on a 2640
terminal

30elete may be displayed as "_", "@", or space.

4 Normally, ihe carei and underline are displayed. Some devices sut:istitute the up arrow and back arrow.

5Some devices upshift lower case letters and symbols (\through -) to the corresponding upper case character (@ through
"). For example, the left brace would be converted to a left bracket

ABREG Routine, 7-6
ABS Intrinsic, 2-11
Algorithm, 1-1
ALGOL 60, 1-3

A

ARCT AN Intrinsic, 2-11
Arithmetic Expressions, 2-7
Arithmetic Operators Precedence, 2-8, 2-9
ARRAY Declaration, 2-4
Arrays, 5-fi, 5-9, 6-3
ASCII Constants, 2-2, 4-6, 7-5, C-1
Assembly Language, 5-7
Assigned Expressions, 2-11
Assignment Statement, 3-1, B-6

B

BACKSPACE Statement, 4-15
BEGIN, 1-1, 3-10, 6-2
Block, 1-1, 2-3, 3-2, :3-10, B-7
BNF Syntax, B-1
Boolean

Declaration, 2-4
Expressions, 2-9
Values, 2-2, 2-9

Carriage Control, 4-H
CASE Statement, 3-4
Character Set, C-1
Comments, 2-12

c

Compound Statement, 3-10, B-7
Conditionall Expressions, 2-10
Constants, 2-1
COS Intrinsic, 2-11, A-5

Decimal Constants, 2-1
Declarations, 2-3, B-fi

ARRAY, 2-4
BOOLEAN, 2-4
EQUATE, 2-3
FORMAT, 4-2
INPUT, 4-1
INTEGER, 2-4
LABEL, 2-5
OUTPUT, 4-2
PROCEDURE, 5-2
REAL, 2-4
SWITCH, 2-6

DO Statement, 3-7, A-1
Dummy Statement, 3-10

D

E

Eject Page, 4-9
END, 1-1, 2-12, 3-1, 3-10, 6-2
ENDFILE Statement, 4-15
ENTIER Intrinsic, 2-11
EQUATE Declaration, 2-3
Error Messages

Compiler, A-1
Run-Time, A-5

INDEX

Example Programs, 1-2, 1-3, 2-12, 4-11, 5-2, 5-3, 5-6,
5-10, 7-1

EXEC Routine, 7-6
EXP Intrinsic, 2-11, A-5
Exponentiation, 2-8, A-5
Expressions

Arithmetic, 2-7
Assigned, 2-11
Boolean, 2-9
Conditional, 2-10

Factorial, 1-1, 7-1

F

FALSE, 2-2, 2-9, 2-12, 4-7
FOR Elements (I/0 Lists), 4-1
FOR Statement, 3-8
FORMAT Declaration, 4-2, 4-10, B-3
FORMAT Specifications

A, 4-5
E, 4-3
F, 4-3
G, 4-4
H (Hollerith), 4-7
I, 4-5
K, 4-5
L, 4-6
0, 4-5
P, 4-4
R, 4-6
Repeat Count, 4-8
Scale Factor, 4-4
Separators, 4-8
String, 4-7
X, 4-8
@, 4-5

Formatted 1/0, 4-10, 4-11
FORTRAN, 4-7, 8-1

Procedures, 5-5
Free Field Input, 4-9
Function Procedures, 5-4, B-2

G

GO TO Statement, 2-6, 3-2

I-1

H

HPAL Control Statement, 6-1

Identifiers, 2-2, B-1
In-Line FORMAT, 4-10
IF Statement, 3-3

I

INDEX? Error, 2-7, 5-9, A-6
INPUT Declaration, 4-1
INTEGER Declaration, 2-4
Integer Numbers, 2-1
Intrinsic Functions, 2-11, 7-1

KEYS Intrinsic, 2-11

Labels, 2-5, 3-1, 3-2, 3-10
LN Intrinsic, 2-11, A-5
Local Variables, 3-11

K

L

M

Magnetic Tape Statements, 4-15

Object Code, 1-1
Octal Constants, 2-2
OUTPUT Declaration, 4-2

Parameters
Actual, 5-1, 5-3
Formal, 5-1, 5-2
Reference, 5-1
Value, 5-1, 5-3, 5-6

PAUSE Statement, 3-9
PI, 2-12
Primaries, 2-7
Procedures, 5-1

Calling, 5-3
CODE, 5-4

0

p

Declaration, 5-2, B-4
Function, 5-4, B-2
Separately Compiled, 5-4

READ Statement, 4-10
REAL Declaration, 2-4
Real Numbers, 2-1
Reserved Identifiers, 2-3

1-2

R

REWIND Statement, 4-15
RMP AR Routine, 7-6
ROTATE Intrinsic, 2-11

Scale Factor, 2-1, 4-3, 4-4
SIGN Intrinsic, 2-11
SIN Intrinsic, 2-11, A-5
Source Code, 1-1
SP ACE Statement, 4-15
SQRT Intrinsic, 2-11, A-5
Statements

Assignment, 3-1
BACKSPACE, 4-15

s

Blocks, 1-1, 2-3, 3-2, 3-10, B-7
CASE, 3-4
Compound, 3-10, B-7
DO, 3-7, A-1
Dummy, 3-10
ENDFILE, 4-15
FOR, 3-8
GO TO, 2-6, 3-2
HPAL (Control), 6-1
IF, 3-3
Magnetic Tape, 4-15
PAUSE, 3-9
READ, 4-10
REWIND, 4-15
SPACE, 4-15
UNLOAD, 4-15
WHILE, 3-6
WRITE, 4-10

Subscripts, 2-4, 2-6
Switches, 2-6, 3-2

TAN Intrinsic, 2-11, A-5
TANH Intrinsic, 2-11
TRUE, 2-2, 2-9, 2-12, 4-7

T

u

Unformatted (Binary) 1/0, 4-10, 4-11
UNLOAD Statement, 4-15

Variables, 2-6, B-1

WHILE Statement, 3-6
WRITE Statement, 4-10

v

w

READER COMMENT SHEET

02116-9072 Nov 1976

HP ALGOL

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual teclhnically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard Company
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

PART NO. 02116-9072
Printed in U.S.A. 11176

HEWLETT if PACKARD

Sales and service from 172 offices in 65 countries.
11000 Wolle Road. Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	8-01
	8-02
	8-03
	8-04
	8-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	I-01
	I-02
	replyA
	replyB
	xBack

