
HEWLETT if PACKARD

HP ALGOL

HP 02116-9072

HP ALGOL

HEWLETT. PACKARD

11000 Wolfe Road

Cupertino, California 95014

Apri 1 1970

© Copyll.ight, 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

THIRD EDITION

First edition,
Second edition,
Third edition,

Sept. 1968
Sept. 1969
April 1970

AU rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwis<e, without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

HP ALGOL is similar to the source language defined by the ALGOL 60

Revised Report, Communications of the ACM, January, 1963. The read­

er should be familiar with ALGOL 60 and with the Hewlett-Packard

computer and standard software systems, either through completion

of Hewlett-Packard training courses or through equivalent experience.

The publication is a programmer's reference manual and is not intend­

ed to be used as a training manual.

This edition of HP ALGOL Progranuner's Reference Manual supersedes

all earlier editions and incorporates all Manual Change Sheets

issued to date.

Special features and limitations peculiar to HP ALGOL are described

in the Introduction. Section I describes the structure of ALGOL,

defining declaration, expressions, and statements. Procedures are

described in Section II. Section III covers INPUT/OUTPUT and READ/

WRITE operations and the use of FORMAT specifications. Section 'IV

explains the use of the ALGOL compiler; diagnostic messages are also

described. Section v describes how to use procedures from FORTRAN or

Assembly Language procedures in an ALGOL program.

The HP ALGOL character set and coding examples appear in the Appen­

dices.

Related Progranuner's Reference Manuals published by Hewlett-Packard

include:

Assembler 02116-9014

Basic Control System 02116-9017

FORTRAN 02116-9015

Symbolic Editor 02116-9016

Magnetic Tape System 02116-91752

iii

CONTENTS

iii PREFACE
ix INTRODUCTION

1-1 SECTION I
PROGRAM STRUCTURE

1-1 DECLARATIONS

1-1 TYPE

1-2 ARRAY

1-3 LABEL

1-3 SWITCH

1-4 EQUATE

1-5 BLOCKS

1-6 ARITHMETIC EXPRESSIONS

1-6 Operators and Types

1-8 Conditional Expressions

1-9 VARIABLES

1-9 Simple Variables

1-9 Subscripted Variables

1-10 ASSIGNMENT STATEMENTS

1-10 Types

1-11 GO TO STATEMENTS

1-12 Designational Expressions

1-12 Labels

1-12 CONDITIONAL STATEMENTS

1-14 BOOLEAN EXPRESSION

1-15 Boolean Variables

1-16 WHILE STATEMENTS

1-16 DO STATEMENT

1-17 COMPOUND STATEMENTS

1-18 FOR STATEMENTS

1-20 CASE STATEMENT

1-21 PAUSE STATEMENT

v

2-1

2-1

2-3

2-3

2-5

2-6

2-6

3-1

3-1

3-2

3-2

3-3

3-4

3-8

3-9

3-9

3-10

3-11

3-12

3-13

3-15

3-15

3-16.

3-18

3-18

3-19

3-20

3-20

3-21

3-21

3-22

3-22

3-23

SECTION II
PROCEDURES

PROCEDURE DECLARATIONS

PROCEDURE STATEMENl'S

CALL BY NAME/VALUE

FUNCTION PROCEDURES

CODE PROCEDURES

INTRINSIC PROCEDURES

SECTION III
INPUT /OUTPUT

LIST DECLARATIONS

FORMAT DECLARATIONS

FORMAT SPECIFICATIONS

Ew.d Output

Ew.d Input

Fw.d Output

Fw.d Input

Iw

Aw

@wand Kw

nx

r llh h h II
1 2··· n

NEW RECORD

REPEAT SPECIFICATIONS

FREE FIELD INPUT

Data Item Delimiters

Floating Point Input

Octal Input

Record Terminator

Comments

READ AND WRITE STATEMENTS

In-Line FORMAT Declarations

MAGNETIC TAPE STATEMENTS

UNIT-NUMBER

vi

4-1 SECTION IV
USING THE HP ALGOL COMPILER

4-1 CON!'ROL STATEMENT

4-2 OPERATING INSTRUCTIONS

4-2 DIAGNOSTIC MESSAGES

4-5 Object Program Diagnostic Messages

4-6 INDEX? Diagnostic

4-7 Library Routine Diagnostics

5-1 SECTION V
FORTRAN AND ASSEMBLER SUBROUTINES

5-1 CALLING FORTRAN SUBROUTINES FROM ALGOL

5-1 CALLING ALGOL SUBROUTINES FROM FORTRAN

5-2 CALLING ALGOL PROCEDURES FROM ASSEMBLY LANGUAGE

5-2 CALLING ASSEMBLY LANGUAGE PROCEDURES FROM ALGOL

A-1 APPENDIX A

B-l APPENDIX B

INDEX

TABLES

ix Table I-1. Reserved Identifiers

vii

INTRODUCTION

The HP ALGOL compiler is an unsegmented program requiring 8K of memory. In

addition to the major elements of ALGOL 60, HP ALGOL has the following fea-

tures:

ll Intermixing of REAL and INTEGER variables on the left-hand side
of assignment statements.

ll Unrestricted nesting of conditional statements within conditional
statements.

IT All variables treated as OWN variables.

ll Initialization of variables or arrays within type declarations.

IT Values assigned to variables with EQUATE declaration.

ll Logical unit designation in INPUT/OUTPUT statements.

IT HP FORTRAN FORMAT specifications for input/output operations-­
or for input operations, free field data.

ll The ability to reference external procedures or subroutines
written in ALGOL, FORTRAN, or Assembly Language.

HARDWARE CONFIGURATION

While the ALGOL compiler will run in a computer with 8192 words of memory

using the HP 2752A (ASR-33) or HP 2754A (ASR-35) Teleprinter, the following

minimum equipment is recommended:

Main Frame with 16384 words of core storage

HP 2737A Punched Tape Reader

HP 2753A Tape Punch

The separate tape reader increases the speed of reading source tape. The

tape punch enables the user to use the compiler in a one-pass mode, pro­

ducing a listing and an object tape in the same pass. When only the tele­

printer is provided, two passes are required if a listing is specified--one

for the binary output and one for the listing.

ix

INTRODUCTION

CHARACTER SET

HP ALGOL uses the following basic symbols:

Letters A through z (upper case only)

Digits 0 through 9

Special Characters

+ - * I + \ © • : " I •

' () [] < > = # I $ blank

Note the character differences between ALGOL 60 and HP ALGOL:

ALGOL 60 .HP ALGOL

Letters (upper and lower case) Only upper-case letters allowed

x * .. \
< <=

> >=

r #

I NOT

/\ AND

v OR

::::> (not allowed)

10

:= +or :=

11 II

FUNDAMENTALS OF HP ALGOL

The basic symbols defined in the character set are the only symbols recog­

nized by HP ALGOL. These symbols are combined to form identifiers, con­

stants, variables, and specifications; these elements are then combined to

form declarations and statements. Declarations and statements are combined

into blocks and blocks into a program. Under the syntactic rules of ALGOL,

a program can be a single block or.several blocks, nested one within another.

Similarly, a block can be a single statement or many statements se£arated by

delimiters.

x

INTRODUCTION

IDENTIFIERS AND RESERVED IDENTIFIERS

An identifier is a name used by the programmer to identify a value, usually

a variable. The first character of an identifier must be a letter; the suc­

ceding characters may be letters or digits. Spaces may not appear within an

identifier. The ALGOL compiler will recognize up to 15 characters; addition­

al characters will be ignored. An identifier must be declared before it is

used. (See Section I.)

Certain identifiers have been defined by the system as having specific mean­

ings or functions. These 11 reserved identifiers 11 must not be used by the

programmer to define his own variables. (See Table I-1.)

*ABS

AND

*ARCTAN

ARRAY

BACKSPACE

BEGIN

BOOLEAN

CASE

CODE

COMMENT

*COS

00

ELSE

Table I-1
Reserved Identifiers

END LABEL *SIGN

ENDFILE *LN SPACE

*ENTIER NOT *SQRT

EQUATE OR STEP

*EXP OUTPUT SWITCH

*FALSE PAUSE *TAN

FOR *PI *TANH

FORMAT PROCEDURE THEN

GO READ TO

IF REAL *TRUE

INPUT REWIND UNLOAD

INTEGER *ROTATE UNTIL

*KEYS *SIN VALUE

WHILE

WRITE

*These identifiers have been predeclared, in that the programmer can use

them without declaring them. He may, however, override these declarations

with his own.

xi

INTRODUCTION

CONSTANTS

The HP ALGOL compiler recognizes four types of constant--decimal, octal,

Boolean, and ASCII.

Decimal Constants

A decimal constant consists of the ten digits 0 through 9. If a decimal

constant has no decimal point and no scale factor, it is of type INTEGER; a

decimal constant with a decimal point and/or a scale factor is of type REAL.

Either may have a sign. The apostrophe (')precedes the scale factor.

+3.1416'2
2

+3.1416 x 10 = +314.16

In the examples below, the first two constants are INTEGER.; all the rest are

REAL:

ALGOL NUMERIC VALUE

0 0

177 177

. 5384 .5384

+O. 7300 .7300

-200.084 -200.084

+ 07.43'8 7.43xl0
8

9.34'+10 9.43xlo10

2'-4 2xl0-4

-.083'-:-02 -.00083

ASCII Constants

An ASCII constant may contain one or two ASCII characters enclosed in quo­

tation marks and is represented as follows:

"HP"

"A"

xii

INTRODUCTION

If only one character appears between the quotation marks, it is interpreted

as a null character followed by the character within quotes.

ALGOL

"HP"

"A"

Octal Constants

INTERNAL REPRESENTATION

0100100001010000
~~

H p

0000000001000001
~---...-

null A

An octal integer is represented by the character @ followed by a string of

octal digits. 'No sign is allowed.

Examples: @123

@100

Note that the constants "A", @101, and 65 are all equivalent.

Boolean Constants

There are two Boolean constants -- TRUE and FALSE.

COMMENTS

Comments may be inserted in an ALGOL program for clarity. A comment is

indicated either by the word COMMENT or by the ampersand (&).

The word COMMENT may be inserted anywhere in the program; all symbols between

the word COMMENT and the next semicolon are treated by the compiler as com­

ments and are printed in the listing, but do not appear in the object code.

Comments of this type may be continued for many lines.

xiii

INTRODUCTION

The (&) ampersand symbol is used for short conunents. All symbols-to the

right of the ampersand are treated as comments in the line in which the &

symbol appears. The next line of the program is treated as normal coding

unless the & symbol is repeated. The compiler also ignores these comments

when generating object code but pr_ints them on the listing. Following an

END symbol, all symbols up to the next END, ELSE, or semicolon are treated

as comments.

In the following example the third line, following the symbol BEGIN, and

all of the fourth line are comments. The last line is also treated as com-

ments.

REAL PROCEDURE INNERPRODUCT (A 1 B1 N);
VALUE N; INTEGER N; ARRAY A1 B;
BEGIN COMMENT INNERPRODUCT COMPUTES

SUM FROM I= l •.. N OF A[I] *B[I];
REAL S; INTEGER I;
S + O;

FOR I + 1 STEP l UNTIL N DO S + A[I] *B[I] +S;
INNERPRODUCT + S

END OF INNERPRODUCT

xiv

SECTION I

PROGRAM STRUCTURE

An ALGOL program is made up of two kinds of elements -- declarations and

statements. Declarations define the variables used in the program and state

their properties. Statements have the character of a command or order.

A program has the form:

BEGIN D; D; . . . D; S; S; ... S; S END$

The semicolon (;) separates one unit from the next; blank spaces are signifi­

cant only in certain FORMAT specifications and must not be used in identifi­

ers. Since END is not a statement, no semicolon is necessary after the final

statement.

The $ informs the compiler that this is the end of the program.

DECLARATIONS

Declarations describe the properties of identifiers. HP ALGOL accepts all

declarations defined for ALGOL 60 except OWN. (HP ALGOL treats all variables

as OWN.) HP ALGOL also accepts an EQUATE declaration.

TYPE

Type declarations declare that certain identifiers represent simple variables

of a given type. There are three different types--integer, real, and Boo­

lean. A type declaration consists of the symbol specifying the type, follow­

ed by a list of identifiers separated by commas.

EXAMPLES:

INTEGER I, J, K;
REAL X, Y, Z;
BOOLEAN FLAG;

1-1

PROGRAM STRUCTURE

Dynamic allocation of storage does not occur in HP ALGOL. ALGOL 60 OWN de­

claration is unnecessary, since all variables are treated as OWN and declar­

ed variables are initialized by the compiler. Initialization of a variable

is specified by following the variable in the declaration by an assignment

symbol and a constant.

EXAMPLES:

INTEGER I, J + 10, K + O;
REAL X + 1.5, Y + -2 1 5, Z;
BOOLEAN FLAG + FALSE;

ARRAY

An ARRAY declaration declares that one or more identifiers represent multi­

dimensional arrays, giving the number of dimensions and the lower and upper

bounds of each dimension. The general form is:

type ARRAY

EXAMPLES:

array name,
array name,

REAL ARRAY A
INTEGER ARRAY
ARRAY A, B, C

... '

... '
array name [bounds,
array name [bounds,

[l : l 00];

... '

... '
bounds],
bounds]

I, J [1:10, 1:10], K [-50:50];
[0:10];

... '

An array may be REAL, INTEGER, or BOOLEAN. If no type is given, REAL is

assumed.

The subscript bounds for each array are given in the first pair of brackets

following the identifier of this array in the form of a bound pair list.

Each item of this list gives the lower and upper bounds of a subscript; the

two bounds are separated by a colon (:). Since storage allocation is not

dynamic, the bounds are restricted to integers. Each lower bound must not

be greater than the corresponding upper bound.

1-2

PROGRAM STRUCTURE

An array may have its elements initialized within the declaration. This is

accomplished as in the following examples:

INTEGER ARRAY DIGITS [0:20] + 11 011 , 11 111 , 11 211 , 11 311 , 11 411 ,

11511, 11611, 11711, 11a11, 11911;

DIGITS [I] is initialized to the ASCII equivalent of I, for I .::_ 9.

DIGITS [I) is initially undefined, for I > 9. In a single array declaration,

only the last array may be initialized. Other arrays are initialized in

other declarations.

LABEL

The LABEL declaration specifies the identifiers of statements to which con­

trol may be passed by a GO TO statement.

EXAMPLE:

LABEL AL, L, Ml, SAM;

SWITCH

A switch is a set of labels which can be entered as objects of a GO TO

statement.

SWITCH <switch identifer>+ <label> , ... ,<label>

The labels of a SWITCH declaration are associated from left to right with the

set of positive integers. When the switch identifier is used as a sub­

scripted expression in a GO TO statement, the label associated with the

integer value of the subscript becomes the object of the GO TO statement.

1-3

PROGRAM STRUCTURE

EXAMPLE:

LABEL Ll, L2, L3, L4;
SWITCH S + Ll, L2, L3, L4;

I+3;
GO TO S[I];

Since the value of the subscript is 3, control passes to the statement iden­

tified by the label, L3, the third label in the list.

The ALGOL 60 general definition of a switch is not allowed. The labels

must all be declared previous to the switch declaration itself. Labels in

subblocks of an outer block may not be objects of switches declared in the

outer block. When the switch designator is undefined (in the example, when

I< O or I> 5), the GO TO statement is equivalent to a dummy statement.

EQUATE

The EQUATE declaration lets the programmer assign values to certain iden­

tifiers. The form of the EQUATE declaration is:

EQUATE variable+ constant, ... ,variable+ constant

EXAMPLE:

EQUATE N + 25, PI+ 3.14159, EPSILON+ 1-38;

EQUATE identifiers may be used anywhere in a program where a constant can

be used. Identifiers are interpreted the same as the constant to which they

are equated.

EXAMPLES:

ARRAY A [l : N, l : N];

AREA + PI * R * R;
IF X <EPSILON THEN GO TO EXIT;

1-4

PROGRAM STRUCTURE

The EQUATE identifier PI is recognized by the compiler without having to be

declared; its value is equal to 3.14159.

BLOCKS

Declarations define certain properties of the quantities used in the program,

and associate them with identifiers. An ALGOL program is segmented into

units called blocks, and a declaration of an identifier is valid for the

block in which it appears. The particular identifier may be used outside

this block for other purposes.

A block begins with the symbol BEGIN and ends with the symbol END. Follow­

ing the BEGIN are a number of declarations, then a number of statements, all

separated by semicolons:

BEGIN D; D; ' D;.S; S; ... ; s END

Since a block is a type of statement, each statement may be a block.

EXAMPLE:

BEGIN INTEGER I,J,K;
REAL X,Y;

END

S;S;
BEGIN INTEGER I;

REAL J,L;
S;S

END;

S; S;S

inner
block

outer
block

The identifiers K, x, and Y are declared in the outer block and are valid

throughout. Si.nee the inner block is also part of the outer block, K, X,

and Y are also valid there. The identifier L is declared for the inner

1-5

PROGRAM STRUCTURE

block orily and is meaningless outside it. The identifiers I and J are de­

clared in both outer and inner blocks and may have different definitions in

the two blocks. Statements in the inner block which reference I and J refer

to the variables declared in the inner block. Statements in the outer block

(but not also in the inner block) ref er to the variables declared in the

outer block.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numerical value. In sim­

ple arithmetic expressions, this value is obtained by executing the indicat­

ed arithmetic operations on the values of the quantities involved. The

value of a constant is its value; the value of a variable is the last value

assigned to it; the value of a function designator is the value arising from

the computational rules defining that function procedure.

Operators and Types

Arithmetic ~pressions must be type REAL or type INTEGER. The meaning of

these operators is as follows:

The operators +, -, and * have the standard mathematical meaning (addition,

subtraction, and multiplication). The type of an· expression is INTEGER if

both of the operands are integer, othe:r:wise type is REAL.

The operator I also has. the conventional mathematical meaning, but the re­

sultant expression type is always REAL.

The operator \ (in ALGOL 60, +) is defined only for integer operands and

results in remainderless division. The value is defined as follows:

A\B = SIGN (A/B) * ENTIER (ABS (A/B))

1-6

PROGRAM STRUCTURE

EXAMPLES:

2\ l = 2
3\2 = l
(-3)\(-2) = l
(-24)\5 = -4
7\8 = 0

The va1ue always is of type INTEGER.

The operator MOD may be used to compute the remainder of an integer division.

It is defined as follows:

A MOD B = A - B * (A\B)

EXAMPLES:

2 MOD l = 0
3 MOD 2 = l

(-3) MOD (-2) = -1

(-24) MOD 5 = -4
7 MOD 8 = 7

The operator t denotes exponentiation, and is defined as follows:

a t i (i of type INTEGER) :

if i>a, a * a * *a (i times), of the same type as a.

if i = a, if a ~ a, 1, of the same type as a.

if a = a, undefined

if i<a, if a~ O, l/(a t (-i)), of type REAL.

if a = O, or a of type INTEGER, undefined.

at r (r of type REAL):

1.'f a r*ln(a) f REAL a> , e , o type

if a = a,if r>a, a.a, of type REAL

if r::._a, undefined

if a<a, undefined

1-7

PROGRAM STRUCTURE

The.order of operations is determined by the parenthetical structure of the

expression. In the absence of parentheses, the operators are executed in

the following order:

t {first)

*/\MOD {second)

+- {third)

Operators in the same group are evaluated from left to right.

EXAMPLES:

A + B * C * D I E t F t G

(A + B) * C + D I E t (F t G)

Conditional Expressions

value =A + BxCxD
(EF)G

D
value= (A+ B)xC + -­

E(FG)

Another type bf arithmetic expression has the following form:

IF <condition> THEN <expression1> ELSE <expression2>

This expression is evaluated as follows: if the condition is true, the

value of the expression is <expression1>. If the condition is false, the

value is <expression2>.

Each of the subexpressions may have the IF fonn.

EXAMPLE:

IF A<B THEN IF A<C
IF B<C THEN B ELSE

THEN
c

A ELSE

The value of this expression is minimum {A,B,C}.

1-8

c ELSE

PROGRAM STRUCTURE

The form may be enclosed in parentheses and combined with other expressions.

EXAMPLES:

IF A<B
(IF A<B

THEN A + C ELSE B + C
THEN A ELSE B) + C

Note that the value of the two expressions is the same.

VARIABLES

There are three types of operands in arithmetic expressions -- constants,

function designators and variables. There are subscripted variables and

simple variables, each of which may be of types INTEGER or REAL.

Simple Variables

A simple variable is a single value. This value can be used in arithmetic

expressions for forming other values, and is changed by assignment state­

ments. The type of the value of a particular variable is defined in the

declaration for the variable itself.

Subscripted Variables

Subscripted variables designate values which are conponents of multidimen­

sional arrays. A subscripted variable has the form:

<identifier> [<subscript expression> , . . . ' <subscript expression>]

The number of subscript expressions must be identical to the number of di­

mensions specified in the array declaration. Each subscript must have an

integer value which lies within the boundaries specified for the array in

the array declaration.

1-9

PROGRAM STRUCTURE

EXAMPLES:

R [3, 5, 7]

ABC [I + 2, I * J + K, ENTIER (X), M [I, J, K]]

ASSIGNMENT STATEMENTS

Assignment statements are used to assign the value of an expression to one

or more variables or to procedure identifiers. The general form is:

<identifier1> + <identifier2> + ... +<expression>

Assignment to a procedure identifier may be made only within the body of a

procedure defining the value of a function designator.

EXAMPLES:

A+ B
A + B + C + D - E
A+ B [I, J] +C [3, N] - C [K , N + I]

The variables which precede the assignment symbol (+) are called left part

variables. The arithmetic expression following the last assignment symbol

is computed and is then assigned to each of the left part variables in turn,

from right to left.

Types

In contrast to ALGOL 60, the left part variables need not all be of the same

type. If a value of one type is to be assigned to a variable of a different

type, the appropriate transfer function is applied.

1-10

PROGRAM STRUCTURE

In the case of a REAL value being assigned to an INTEGER variable, the trans­

fer function has the value

ENTIER (<expression> + 0.5)

When the types of the left part variables differ, transfer functions are

applied from right to left, For example, let X and Y be of type REAL, and

I be of type INTEGER. Then the statement:

X + I+ Y + .3

will cause the following assignments to take place:

y + • 3

I + 0

x + o.o

Note that HP ALGOL uses the symbol 11 + 11 instead of the ALGOL 60 symbol

II • - II . - However, the symbol 11 : = 11 will be recognized as being equivalent.

GO TO STATEMENTS

A GO TO statement interrupts the normal sequence of operations, which is the

lexical order of statements. The general form is:

GO TO <designational expression>

GO TO defines its successor explicitly by the value of a designational ex­

pression. The next statement to be executed will be the one having this

value as a label.

EXAMPLES:

GO TO L
GO TO S [I]

1-11

PROGRAM STRUCTURE

Designational Expressions

A designational expression is an expression whose value is a label of a state­

ment. There are two types of designational expressions, labels and switch

designators. The ALGOL 60 IF type of designational expression is not allowed.

Labe~s

A label is an identifier used to name a statement as one to which control

may be passed -by a GO TO statement. More than one label may be used for a

given statement. The general form is:

<label> <label> · <label> s

Unsigned integers may not be used as labels.

EXAMPLES:

L: A+ X + l

L 1 : L2 : GO TO S

Every label must appear in a LABEL declaration in the innermost block in

which it appears.

A GO TO statement may not refer to a label in a sub-block of the block in

which the GO TO statement appears. As a result, a block may be entered

only at its head.

CONDITIONAL STATEMENTS

Conditional statements cause certain statements to be executed or skipped

depending upon certain logical conditions.

1-12

PROGRAM STRUCTURE

There are two general forms:

IF <condition> THEN s1 ELSE s2

IF <condition> THEN S

In the first form, if the condition is true, then statement s1 is executed

and s2 skipped. Otherwise, s2 is executed and s1 skipped.

In the second form~ if the condition is true, S is executed. If it is false,

S is skipped.

EXAMPLES:

IF A < B THEN A+ B ELSE B +A
IF A < B THEN A+A + l
IF A + B THEN GO TO L ELSE IF B<C

THEN GO TO M ELSE A+ B+ C+ 0

Each of the statements (following either THEN or ELSE) may itself be a condi­

tional statement. If there are fewer ELSEs than IFs, the definition of the

conditional statement is ambiguous. This is resolved in HP ALGOL by asso­

ciating each ELSE with the closest preceding unmatched IF.

For example, the statement

IF A < B THEN IF B < C THEN s, ELSE s2

is interpreted as

IF A < B THEN
{IF B < C THEN s, ELSE S2}

rather than as

IF A < B THEN {IF B < C THEN s,} ELSE S2

1-13

PROGRAM STRUCTURE

BOOLEAN EXPRESSION

A Boolean expression is one which has a logical value of TRUE or FALSE. It

consists of one or more operands associated with one or more logical oper­

ators.

EXAMPLES:

x = -2
Y > V OR Z < Q
A + B >= -5 AND Z - D > Q t 2
A > B AND A > C AND A > D
NOT (A > B OR A > C)

The values of these expressions can be determined from the

Bl B2 Bl OR B2 Bl AND

TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE

FALSE TRUE TRUE FALSE

FALSE FALSE FALSE FALSE

The complete hierarchy of operators is as follows:

t

*/\MOD

+-

< <= = >= > #

NOT

AND

OR

B2

following table:

NOT Bl

FALSE

FALSE

TRUE

TRUE

Note that the ALGOL 60 operators :l (implies) and - (equivalent) have been

eliminated due to lack of usage.

1-14

PROGRAM STRUCTURE

Boolean Variables

Just as arithmetic values can be assigned to REAL or INTEGER variables,

Boolean values can be assigned to variables of type BOOLEAN. For example,

if B1 and B2 are of type BOOLEAN, and Al, A2, and A3 are of type REAL, the

following statements are all legitimate:

Bl + Al < A2
IF Bl THEN GO TO L
IF Bl OR Al = A2 AND A2 = A3 THEN B2 + TRUE
Bl + B2 + NOT Bl
Bl + IF B2 THEN Al = A2 ELSE Al = A2 AND Bl

Boolean variables can also be subscripted, just like arithmetic variables.

EXAMPLE:

Bl [I, J, K] +NOT Bl [I - 1, J - 1, K - l]
Al +IF Bl [I] THEN Alt 2 ELSE IF Bl

THEN Al t 3
[I + l]
ELSE 0

To the HP ALGOL compiler, there is no difference between Boolean and integer

variables. As a result, Boolean operators and arithmetic operators may be

mixed within an expression.

Integer values are considered to be TRUE when they are negative and FALSE

when they are positive or zero: thus, only the sign bit (bit 15) is signifi­

cant with respect to truth or falsity. The operators AND, OR, and NOT act

upon all 16 bits, using the machine instructions AND, IOR, and CMA •

The constants TRUE and FALSE are in all ways equivalent to -1 and O. The

two expressions following are different:

IF <Boolean expression> THEN ...
IF< Boolean expression>= TRUE THEN ...

1-15

PROGRAM STRUCTURE

WHILE STATEMENTS

The WHILE statement causes repeated execution of a statement as long as a

condition exists. The general form is:

WHILE <condition> DO <statement>

When,the condition is satisfied, control passes to the next statement in

sequence. The processing flow of a WHILE statement is a follows:

EXECUTE
STATEMENT

">-N_O_~ FI NI SHED

EXAMPLE:

WHILE A < B DO
BEGIN A+ A+ l; B + B - l END

Note that the condition is tested before execution, so that if the condition

is not TRUE, the statement will not be executed--not even the first time the

condition is examined.

DO STATEMENT

The DO statement causes repeated execution of a statement UNTIL a condition

becomes TRUE.

DO <statement> UNTIL <Boolean expression>

1-16

PROGRAM STRUCTURE

EXECUTE STATEMENT

FINISHED

The statement is executed first, then the Boolean expression is tested. If

the expression is FALSE, the statement is reexecuted. If the statement is

TRUE, flow continues. Note that the IXJ statement will be executed at least

once whether the expression is TRUE or FALSE.

COMPOUND STATEMENTS

It is often necessary to treat a number of statements as a single logical

unit. A typical case is when the execution of the set of statements is sub­

ject to a condition. This is easily accomplished in ALGOL by use of the -

compound statement. A compound statement has the form:

BEGIN S; S;

EXAMPLE:

IF A < B THEN
-BEGIN A+ B;

B + B + 1
END ELSE

S END

BEGIN B + A; A + A + l END

This example is a single conditional statement. First the condition A < B

is tested. If it is true, then the statements A + B and B + B + 1 are exe­

cuted. If it is false, the statements B + A and A + A + 1 are executed.

1-17

PROGRAM STRUCTURE

Since any S can als~ be a compound statement, they can be nested indefinite­

ly.

EXAMPLE:

I + O;
IF A < 0 THEN

BEGIN I + l;
IF B < 0 THEN

BEGIN
I + 2;

END
IF C < 0 THEN I + 3

END

This example sets I to one of the following values:

I +O if A > 0
l if A < 0, B > 0
2 if A < 0, B < 0, c > 0
3 if A < 0, B < 0, c < 0

FOR STATEMENTS

The FOR statement allows repeated execution of a statement while performing

a sequence of assignments to a "control" variable within the statement. The

general form is:

FOR <integer variable>+ <initial value> STEP <increment> UNTIL <final value>
DO <s ta temen t>

The variable is assigned the initial value, the statement is executed, the

variable incremented, the statement executed again, etc. Execution termin­

ates when the control variable exceeds the final value. The initial value,

the increment, and the final value can be any expressions, including nega­

tive ones.

1-18

PROGRAM STRUCTURE

The following statement is a simple example. It sets the first n elements

of a one-dimensional array to zero:

FOR I +- l STEP UNTIL N DO A [I] +- 0

The effect is to repeat the execution of the statement following the symbol

DO (A[I]+-0) with the variable I changing its value each time. It takes on

the values

1, 2, 3, ... , N.

This FOR statement is equivalent to:

I +- l

I +- 2

A [I] +- O;

A[I]+-0;

I +- N ; A [I] +- O;

FOR statements can be nested. The following statement is the two-dimensional

analogue of the previous example:

FOR I +- l STEP UNTIL N DO

FOR J +- l STEP l UNTIL N DO A[I,J] +- 0

This is equivalent to:

A[l , 1] +- a;
A[l, 2] +- a;

A[l, NJ O;
A[2, l] O;
A[2, 2] O;

A[2, N] O;

1-19

PROGRAM STRUCTURE

A[N,l]+O;
A[N, 2] + O;

A[N, N] + O;

Some examples will serve to illustrate the possibilities of the step-until

elemel).t.

I+ l STEP l UNTIL 10 (specifies the values l, 2, 3, .•. , 10)
I+ 10 STEP -1 UNTIL l (specifies the values 10, 9, 8, ..• , 2, l)

I+ l STEP 5 UNTIL 10 specifies the values l, 6)

I + l STEP 1 UNTIL N
(If N > O; the values specified are 1, 2, 3, ••. , N.
If N <=O, the FOR list has no values at all.)

If the stepping value is 1, the symbols STEP 1 UNTIL may be replaced by the

symbol TO. For example,

FOR I + 1 STEP 1 UNTIL N
and

FOR I + 1 TO N
are equivalent.

CASE STATEMENT

The CASE statement causes the execution of one of a number of statements

following the CASE statement:

CASE <expression>
BEGIN <statement l>

<statement 2>

<statement n>
END

1-20

PROGRAM STRUCTURE

The expression will be evaluated. If its value is between 1 and n, the

statement corresponding to that value will be executed. If the value is not

between 1 and n, the entire CASE statement is bypassed.

PAUSE STATEMENT

A PAUSE statement causes the word "PAUSE" to be printed on the teleprinter

and the computer to be brought to a halt. Program execution resumes when

the RUN button is pressed. The PAUSE statement permits the operator to per­

form some action such as turning on (or off) some device.

1-21

SECTION II

PROCEDURES

Statements or blocks describing common computational processes may occur

several times in the same program, perhaps with different names used to

designate some of the quantities involved. Such a process, called a pro­

cedure, is often designated and called into execution by a special declar-

ation.

PROCEDURE DECLARATIONS

The PROCEDURE declaration defines a process, as described above. A proce­

dure is subject to the same rules of validity as any declared variable.

(See Section I.)

A procedure contains a procedure body which consists of a single statement,

most often a block. Associated with the procedure body is the procedure

heading which specifies the parameters to the procedure.

EXAMPLE:

Procedure
Heading

Procedure
Body

[PROCEDURE TRANSPOSE (A,N);
VALUE N; INTEGER N; ARRAY A;

BEGIN REAL Z; INTEGER I, J;
FOR I + 1 STEP 1 UNTIL N DO

END

FOR J + I + 1 STEP 1 UNTIL N DO
BEGIN Z + A[I,J]; A[I,J] +A[J,I];

A [J, I] + Z

END

2-1

PROCEDURES

This sample procedure transposes an n x n matrix. The procedure heading

consists of the following parts:

The reserved word: PROCEDURE

The procedure identifier: TRANSPOSE

The fonnal parameter part: {A,N);(optional)

The value part: VALUE N; (optional)

The specification part: INTEGER N; ARRAY A;' (not required if there

are no fonnal parameters)

The reserved word PROCEDURE identifies a procedure declaration. The pro­

cedure identifier calls the procedure into execution at another place in

the program. The fonnal parameter part gives the names of those identifiers

used within the procedure body, but which, when the procedure is called, are

replaced by actual parameters whose names may be different. , The value part

indicates those formal parameters to be called by value. The specification

part indicates the types of the formal parameters. In HP ALGOL, all the

formal parameters must be specified.

There are no restrictions on the types of formal parameters. Thus, they

may be any of the following:

REAL

INTEGER

BOOLEAN

ARRAY

REAL ARRAY

INTEGER ARRAY

BOOLEAN ARRAY

REAL PROCEDURE

INTEGER PROCEDURE

BOOLEAN PROCEDURE

PROCEDURE

LABEL

SWITCH

FORMAT

INPUT

OUTPUT

The procedure body may contain references to any formal parameters, to any

local variables (those declared in the procedure body itself, if it is a

block), and to any variables declared outside the procedure declaration.

2-2

PROCEDURES

PROCEDURE STATEMENTS

A procedure is called by a PROCEDURE statement.

EXAMPLE:

TRANSPOSE {S,25)
TRANSPOSE (X,25)

This statement calls the procedure which was declared with the name TRANS­

POSE. The parameters in parentheses are called actual parameters, and they

must correspond in number and type to the formal parameters specified in the

PROCEDURE declaration.

Note the correspondence in the example:

FORMAL PARAMETER

A

N

ACTUAL PARAMETER

x
25

TYPE

array

integer

When the statement TRANSPOSE (X,25) is executed, the elements in the array

X are transposed, as follows: if the value of a given element of X, say

X[I,J], was Xij before the statement is executed, then after the statement

is executed, the value is X[I,J] = Xji. This is accomplished by substitut­

ing the array X for A wherever A appears in the procedure body. This sub­

stitution is the meaning of a parameter which is called by name, not called

by value.

CALL BY NAME/VALUE

Parameters called by value are those whose names appear in the value part of

the procedure heading. The main distinction is that formal parameters

called by value are computed when the procedure is called and are treated as

local variables. Assignments to these parameters have no effect on the val­

ue of the actual parameter.

2-3

PROCEDURES

In parameters called by name, the actual parameter is substituted for the

formal parameter wherever the latter appears in the procedure body. As a

result, any assignments to the formal parameter do affect the value of the

actual parameter. When a type parameter is called by name, the actual pa­

rameter must be either a simple variable or a subscripted variable.

EXAMPLE:

PROCEDURE Pl(X);
PROCEDURE P2(X);
A+ O;

Pl (A);
P2 (A);

REAL X ; X + X + l ;
VALUE X; REAL X; X + X + l;

After the procedure Pl is called, the value of A becomes 1.0. It is changed

because Pl specifies that the parameter be called by name. If P2 is called

next, the value of A is still 1.0 since P2 specifies that its parameter is

called by value.

EXAMPLE:

INTEGER N, Z;

PROCEDURE SAMPLE (M, Y);
VALUE M; INTEGER M, Y;
BEGIN

END

INTEGER A;
A+ M;

Y + A + l
M + M + l

N + 3; Z + l;

SAMPLE (N, Z) actual parameters
Result: Z + N + l

The value of N is unchanged because M was called by value.

2-4

PROCEDURES

Only parameter types REAL, INTEGER, and BOOLEAN may be called by value.

(Arrays are not called by value because storage is not allocated dynamically.)

If an actual parameter is a procedure, then all the parameters of that pro­

cedure are called by value.

No procedure may be entered recursively, either implicitly or explicitly.

In a procedure, any variable that is neither a formal parameter nor a local

variable must be declared before the procedure declaration.

FUNCTION PROCEDURES

A function procedure is a procedure that results in a single value. This

value must be assigned somewhere in the procedure body by an assignment

statement with the procedure identifier on the left-hand side.

EXAMPLE:

REAL PROCEDURE TRACE (A,N);
VALUE N; INTEGER N; ARRAY A;

BEGIN REAL S; INTEGER I;
S + O; FOR I + 1 STEP 1 UNTIL N DOS +A[I,I] + S;
TRACE + S

END

To specify a function procedure, the word PROCEDURE must be preceded by the

type (REAL, INTEGER, or BOOLEAN). A function procedure is called by a PRO­

CEDURE statement or an expression. When a function procedure call appears

in an expression, its value is treated as that of a variable of the same

type.

2-5

PROCEDURES

CODE PROCEDURES

An ALGOL procedure may be compiled separately from a main program or be

written in Assembly Language or FORTRAN. These procedures may be referenced

from an l:\LGOL program by replacing the procedure body with the word CODE.

The specifications must all be given.

EXAMPLES:

PROCEDURE INVER (A, X, N);

VALUE N; INTEGER N; REAL A, X; CODE;

{A, B, F) ; REAL PROCEDURE INTEGRAL

VALUE A, B; REAL A, B: REAL PROCEDURE F; CODE;

A CODE procedure identifier may be a maximum of five characters. If there

are more than £ive characters, only the first five are significant.

INTRINSIC PROCEDURES

Certain identifiers are reserved for the standard functions of analysis, and

are refe.renced as procedures-:

·NAME

ABS (E)

SIGN (E)

SQRI' (E)
I

SIN (E)

COS (E)

ARCTAN (E)

TANH (.E)

LN (E)

EXP (E)

ENTIER (E)

ROTATE (I)

KEYS

TAN (E)

MEANING

absolute value of E

=l if E>O, 0 if E = 0, -1 if E < 0

~
sin E

cos E

tan-lE

tanh E

ln E
E

e

the largest integer < E

rotate I 8 bits

16-bit value of switch register

tan E

2-6

TYPE

Same as that of E

Integer

Real

Real

Real

Real

Real

Real

Real

Integer

Integer

Integer

Real

SECTION Ill

INPUT/OUTPUT

HP ALGOL input/output operations involve the following:

LIST DECLARATIONS

0 Input Lists

0 Output Lists

0 Formats

0 READ Statements

0 WRITE Statements

0 Magnetic Tape Statements

I/O lists specify that variables be read or written by a READ or WRITE

statement. The general form of an input or output list declaration is:

INPUT
OUTPUT

<list identifier> (<list element>,
<list identifier> (<list element>,

... '

... '
<list element>);
<1 i st element>),

Each list identifier refers to a list of elements; each element may be one

of the following:

a. simple variable,

b. subscripted variable,

c. list,

d. expression (only in an OUTPUT list) , or

e. FOR element.

A FOR element is like a FOR statement except that it is followed by either

a single list element or a group of list elements. A group of list ele­

ments is enclosed in brackets. An input (output) list may call on other

input (output) lists. All the elements appearing in a list must be previ­

ously declared.

3-1

INPUT/OUTPUT

EXAMPLE:

INPUT INl (A, B, C, D [I,J], FOR I + 1 TO L
DO [M[I], N[I]], X),
IN2 (X, Y, Z, INl);

OUTPUT TRIG(FOR I + 1 TO L
[I, A[I], SIN(A[I]), COS(A[I])];

FORMAT DECLARATIONS

A FORMAT specification describes the physical arrangement of data. FORMAT

specifications must be defined in the declaration part. The general form

is:

FORMAT <format identifier> (spec1, ... , r(specn' ...), specn, ...),
<format identifier> ... '

More than one format may appear in a FORMAT declaration.

Formats may be declared directly in a READ or WRITE statement, eliminating

the need for separate FORMAT statements. See the example of In-Line FORMATS

under "READ AND WRITE STATEMENTS" in this section.

FORMAT SPECIFICATIONS

The data elements in the input/output lists may be converted from external

to internal and from internal to external representation according to for­

mat conversion specifications. If the variable type in the input/output

list does not correspond to the type specified in the FORMAT declaration,

the compiler converts one type to the other. FORMAT declarations may also

contain editing codes.

3-2

INPUT /OUTPUT

Conversion Specifications

rEw.d
rFw.d
rlw
rAw

r@w}
rKw

Real number with exponent

Real number without exponent

Decimal integer

Alphanumeric

Octal integer

Editing Specifications

nX Blank field descriptor

nHh1h2 ••• hn I
Heading and labeling descriptors

11 h h h II r l 2 · · · n

r/ Begin new record

Both W and n are positive integer constants representing the width of the

field in the external character string; n may be omitted if the width is

one. The symbol d is a non-negative integer constant representing the num­

ber of digits in the fractional part of the string. The repeat count, r, is

an optional positive integer constant indicating the number of times to re­

peat the succeeding basic field descriptor. Each h is one character.

Ew.d Output

The E specification converts numbers in storage to character form for out­

put. The field occupies W positions in the output record; the number ap­

pears in floating point form right-justified in the field as:

The caret symbol, A, indicates a space.

3-3

INPUT/OUTPUT

x1 .•• xd are the most significant digits of the value of the dat~ to be

output, while ee are the digits in the exponent. Field W must be wide

enough to contain significant digits, signs, decimal point, E, and exponent.

Generally, W should be greater than or equal to d + 7.

If the field is not long enough to contain the output value, an attempt is

made to adjust the value of d (i.e., truncating part or all of the fraction)

so that a number is written in the field. If the remaining value is still

too large for the field, dollar signs ($) are inserted in the entire field.

If the field is longer than the output value, the quantity is right-justi­

fied with spaces to the left.

EXAMPLES:

Ew.d Input

FORMAT FS(El0.3);

WRITE(4, FS, A);
FORMAT F5(El2.3);

WRITE(4,F5,A);
FORMAT F5(E7.3);

WRITE { 4, F5,A);
FORMAT F5(E5.l);

WRITE(4,F5,A);

A contains +12.34 or -12.34

Result is AA. 123E+02 or A-.123E+02

A contains +12.34 or -12.34

Result is AAAA. 123E+02 or AAA-. 123E+02

A contains +12.34 or -12.34

Result is .12E+02 or -. 1E+02

A contains +12.34

Result is $$$$$

The E specification converts the number in the input field (specified by W)
'

to a real number and stores it in the appropriate storage locations.

3-4

INPUT/OUTPUT

The input field may consist of integer, fraction, and exponent subfields:

Intjger F1act~~o-n~~~Exponent
I ,,

±n ••• n.n ••• n+ee

ii~l Point

The integer subfield begins with a + or - sign or a digit and may contain a

string of digits terminated by a decimal point, an E, +, -, or the end of

the input field.

The fraction subfield begins with a decimal point and may contain a string

of digits terminated by an E, +, - or the end of the input field.

The exponent field may begin with a sign or an E and contains a string of

digits. When it begins with E, the + is optional between E and the string.

The value of the string of digits should not exceed 38. The number may ap­

pear in any position within the field; spaces in the field are ignored.

EXAMPLES:

+l.2345E2
123.456+9
-0.1234-6
. 12345E-3
1234
+12345
+1234E6

When no decimal point is present in the input quantity, d acts as a negative

power of ten scaling factor. The internal representation of the input

quantity will be:

(Integer Subfield) xlO-dxlO(Exponent Subfield)

3-5

INPUT/OUTPUT

EXAMPLE:

FORMAT F(El2.8); Input quantity= AAA1234+5AA

Conversion performed: 1234xlo-8x105

Result: 1.234

If a d value in the specification conflicts with a decimal point appearing

in an input field, the actual decimal point takes precedence.

EXAMPLE:

FORMAT F(El2.8); Input quantity= AAAAAl.234+5

Quantity stored: l .234xlo5

The field width specified by w should always be the same as the width of

the input field. When it is not, incorrect data may be read, converted and

stored. The value of w should include positions for signs, the decimal

point, the letter E, as well as the digits of the subfields:

EXAMPLE:

FORMAT Fl~(E7.2,E5.3,E9.2);

READ(5,Fl~,A,B,C);

Assuming input data in contiguous fields:

-12.3E1+1234123.46E-3

l+E7 +I +5+ I + 9 -+ I

The fields read would be:

-12.3El
+1234
123.46E-3

3-6

and converted as:

-123.
1.234
.12346

INPUT/OUTPUT

However, if specifications were:

FORMAT Fl0(E7.2,E4.3,E7.2};

The fields read would be:

-12.3El
+123
4123.46

and converted as:

-123
.123
4123.46

The effects of possible FORMAT specification errors such as the above may

not be detected by the system.

EXAMPLE:

FORMAT
Specification

E9.2
E9.4
E4.2

Input
Field

+l.2345E2
-0.1234-6
1234

3-7

Converted
Value

123.45
-.0000001234
12.34

INPUT/OUTPUT

Fw.d Output

The F specification converts real numbers in storage to character fonn for

output. The field occupies w positions and will appear as a decimal num­

ber, right~justified in the field:

f\.X ••• X. X ••• X

The x's are the most significant digits. The number of decimal places to

the right of the decimal point is specified by d. If d is zero, no digits

appear to the right of the decimal point.

The field must be wide enough to contain the significant digits, sign and

decimal point. If the number is positive, the + sign is suppressed. If the

field is not long enough to contain _the output valu~, an attempt is made to

adjust the value of d (i.e., truncating part or all of the fraction) so that

a number is written in the field. If the remaining value is still too large

for the field, dollar signs ($) are inserted in the entire field. If the

field is longer than the output value, the number is right-justified with

spaces occupying the excess positions on the left.

EXAMPLES:

I FORMAT F5(Fl0.3);

WRITE(4,F5,A};

I
I

FORMAT F5(F12.3);

WRITE(4,F5,A};
FORMAT F5(F4.3};

WRITE {4,F5,A};

A contains + 12.34 or -12.34

Result: f\.f\.f\./\.12.340 or/\./\./\. 12.340

A contains +12.34 or -12.34

Result: f\.f\.f\.f\.f\.f\.12. 340 or /\.f\.f\.f\.A-12. 340

A contains +12.34

Result: 12.3

3-8

Fw.d Input

{ FOR~T FS(F4.3);

WRITE(4,F5,A);

INPUT/OUTPUT

A contains +12345.12

Result: $$$$

The F specification input is identical to the E specification input. Al­

though the fields are generally assumed to contain only a sign, integer,

decimal point, and fraction, they may also contain an exponent subfield.

All restrictions for Ew.d input apply.

Iw

The Iw specification converts internal values to output character strings or

input character strings to internal numbers. The output external field oc­

cupies w record positions and appears right-justified as:

The x's represent the decimal digits (maximum of 5) of the integer. When

the integer is positive on output, the sign is suppressed. If an output

field is too short, dollar signs ($) will be placed in the output record.

The Iw specification, when used for input, is identical to an Fw.O specifi­

cation.

3-9

Aw

INPUT/OUTPUT

EXAMPLES:

FORMAT Fl0(I5,I5,I4,I6);

WRITE(6,Fl0,I,J,K,L);
Result: -123412345$$$$Al2345

I+ 5+ I +5+ 1+4+ l+-6-+ I
FORMAT Fl0(I5,I5,I4,Il);

READ(5,Fl0,I,J,K,L);

I contains -0123
J contains 12003
K contains 0102
L contains 3

I contains -1234
J contains +12345
K contains +12345
L contains +12345

Input contains:

-Al2312AA3AlA23

l+s +I+ 5+ I +4+11+1

The Aw specification causes alphanumeric data on an external medium to be

translated to or from ASCII form in memory. The associated list element

must be of type INTEGER.

On input, if the field indicated by w is greater than 2, the first w-2

characters are ignored; only the last two characters are read. When w equals

2, the two characters are read. If w equals 1, one character is read and

stored in the right half of a computer word; zero is entered in the left half.

On output, if the field is greater than 2, two characters are written right­

justified in the field; the leading positions are filled with spaces. If w

equals 2, the two characters are written. If w equals 1, the character in

the right half of the computer word is written.

3-10

INPUT/OUTPUT

FIELD

IGNORED ON INPUT
SPACES ON OUTPUT

MEMORY

W=l

\IGNORED ON OUTPUT
ZERO ON INPUT

EXAMPLE:

@w and Kw

Input data: AZZ213-ABCXABC137-ZZ9 @ @
INTEGER ARRAY ID[l:5]; INTEGER I2, Il, I;
FORMAT FlO(AHl,Al ,5A2);

READ(5,Fl0,I2,Il,ID);FOR I+l TO 5 DO ID [I]);
Result: I2 BC

Il 0X
ID AB

Cl
37
-Z
zg

Octal integer values are converted under either the @ or the K specification.

The field is w octal digits in length; the corresponding list element must

be INTEGER.

On input, if w is greater than or equal to 6, up to six octal digits are

stored; non-octal digits appearing within the field are ignored. If the

value of the octal digits within the field is greater than 177777, the

3-11

INPUT /OUTPUT

results are unpredictable. If w is less than 6 or if fewer than six octal

digits are encountered in the field, the number is right-justified in the

computer word and filled with leading zeros.

On output, if the field is greater than 6, six octal digits are written

right-justified in the field; the leading positions are filled with spaces.

If w equals 6, the six octal digits are written. If w is less than 6, the

w least significant octal digits are written.

nX

EXAMPLE:

Input data: 123456-1234562342342342 ,396E-05 @ @
INTEGER ARRAY 10[1:2], IE[l,2]; INTEGER IB, IC;

FORMAT Fl0(@6, @7, 2@5, 2@4);

READ(5,F10,IB,IC,ID[l]; 10[2], IE[l], IE[2]};

Result: IB 123456

IC 123456

ID 023423

042342

IE 000036

000005

The X specification is used to include n blanks in an outpwt record or to

skip n characters on input to permit spacing of input/output quantities. In

the specifications list, the comma following AX is optional. AX is inter­

preted as lX; OX is not permitted.

3-12

INPUT/OUTPUT

EXAMPLE:

FORMAT Fl0(E8. 3, 5X,F6.2,5X,I4);

WRITE(6,Fl0,A,B,I);

A contains + 123.4
B contains -12.34
I contains -123

Result: A.1234E3AAAAA-12.34AAAAA-123

Input:

WEIGHT AA10AAPRICEAA$1.98AATOTALAA$19.80

FORMAT Fl0(8X,I2,10X,F4.2, 10X,F5.2);

READ(5,Fl0,I,A,B);

Result: I contains 10
A contains 1.98
B contains 19.80

The H specification transfers any combination of eight-bit ASCII characters,

including blanks; n is an unsigned integer specifying the number of charac­

ters to the right of the H that are to be transmitted. The comma following

the H specification is optional. AH is interpreted as lH; OH is not per­

mitted.

On output, the ASCII data in the_ FORMAT statement is written in the form of

comments, titles, and headings.

3-13

INPUT /OUTPUT

EXAMPLE:

WRITE (6, Fl 0) ;

Result: THIS IS AN EXAMPLE

WRITE{6,Fl0,I,A,B);

I contains 10

A contains 1.98

B contains 19.80

Result: WEIGHTAAlO PRICEAA$Al.98AATOTALAA$19.80

On input, the data is transmitted from the unit to the FORMAT statement. A

subsequent output statement transfers the new data to the output record.

EXAMPLES:

Input:

Result:

FORMAT Fl0(31H AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA);

READ (5, Fl 0) ;

WRITE (6,Fl0);

H INPUT ALLOWS VARIABLE HEADERS

H INPUT ALLOWS VARIABLE HEADERS

3-14

INPUT/OUTPUT

11 h h h II
r 1 2 · · · n

This specification also transfers any combination of ASCII characters (ex­

cept the quotation marks). The number of characters transmitted is the num­

ber of positions between the quotation marks; field leng.th is not specified.

If r, an optional repeat count, is present, the character string within the

quotation marks is repeated that number of times. Commas preceding the in­

itial quotation mark and following the closing quotation are optional.

EXAMPLES:

FORMAT Fl 0 (11 THIS A IS A ALSO AAN AEXAMPLE 11);

WRITE(6,F10);

Result: THIS IS ALSO AN EXAMPLE

FORMAT Fl0(3 11 ABC11);

WRITE(6,Fl0);

Result: ABCABCABC

On input, the number of characters within the quotation marks is skipped on

the input field.

NOTE: If the closing quotation mark is omitted in coding
a FORMAT statement of this type, results are un­
predictable.

NEW RECORD

A slash terminates the current record and signals the beginning of a new

record of formatted data. A slash may occur anywhere in the specifications

list and need not be separated from the other list elements by commas.

3-15

INPUT/OUTPUT

Several records are skipped by indicating consecutive slashes or by preced­

ing the slash with a repetition factor; r-1 records are skipped for r/. On

output, the slash is used to skip lines, cards, or tape records; on input,

it specifies that control passes to the next record or card.

EXAMPLES:

FORMAT Fl~(22X,6HBUDGET///

6HWEIGHT,6X,5HPRICE,

9X, 5HTOTAL, BX);

WRITE(6,Fl~);

or

FORMAT Fl~(22X,6HBUDGET,3/

6HWEIGHT,6X,5HPRICE,

9X,5HTOTAL,8X);

Result:

line l AAAAAAAAAAAAAAAAAAAAAABUDGET

line 2

line 3

REPEAT SPECIFICATIONS

Field descriptors (except nH) are repeated by preceding the descriptor with

a repeat count, r. If the input/output list warrants, the conversion is in­

terpreted repetitively up to the specified number of times.

3-16

INPUT /OUTPUT

A group of field descriptors, including nH, is repeated by enclosing the

group in parentheses and preceding the left parenthesis with a group repeat

count. If no group repeat count is specified, a value of one is assumed.

Grouped field descriptors may not be nested.

EXAMPLES:

FORMAT Fl0(I5,I5,I5);

WRITE{4,Fl~,I,J,K);

can be written as

FORMAT Fl0(315);

WRITE(4,Fl~,I,J,K);

FORMAT Fl0(E8.3,5X,F6.2,5X,I4,E8.3,5X,F6.2,5X,I4);

WRITE(4,Fl0,A,B,I,C,D,J);

can be written as

FORMAT Fl0(2(E8 .. 3,5X,F6.2,5X,I4));

WRITE{4,Fl0,A,B,I,C,D,J);

A nested repetition specification would be:

FORMAT Fl0(E8.3,5X,5(F6.2,5X,14));

The group F6.2, 5X,I4 would be written five times, and the entire group,

once.

3-17

INPUT/OUTPUT

FREE FIELD INPUT

Using certain conventions in the input data, an HP ALGOL program can be

written without FORMAT statements. Special symbols included with the ASCII

input data items direct the formatting:

space Data item delimiters

I Record terminator

+ - Sign of item

.E+- Floating point number

@ Octal integer

" " Comments

All other ASCII non-numeric characters are treated as spaces (and delimiters) •

Free field input may be used for numeric data only and is indicated by an as­

terisk in the READ statement rather than a FORMAT identifier.

Data Item Delimiters

Any contiguous string of numeric and special formatting characters occurring

between two commas, a comma and a space, or two spaces, is a data item whose

value corresponds to a list element. A string of consecutive spaces is

equivalent to one space. Two consecutive commas indicate that no data item

is supplied for the corresponding list element; the current value of the list

element is unchanged. An initial comma causes the first list element to be

skipped.

3-18

INPUT /OUTPUT

EXAMPLE:

1) READ(5,*,I,J,K,L); 2) READ(5,*,I,J,K,L);
Input data: 1720, 1966/ Input data: 1266' '1794' 2000

1980 1492
Result: I contains 1720 Result: I contains 1266

J contains 1966 J contains 1966
K contains 1980 K contains 1794
L contains 1492 L contains 2000

Floating Point Input

The symbols for a floating point data item are the same as those used to

represent floating point data for FORMAT statement directed input.

Integer Fraction

~Exponent

+ ~+r-1 _n ... n.\ .. n~ee
Decimal Point

If the decimal point is not present, it is assumed to follow the last digit.

EXAMPLES:

READ(5,*,A,B,C,D,E);
Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314El
All are equivalent to 3.14

3-19

INPUT /OUTPUT

Octal Input

An octal input item has the following fonnat:

The symbol @ defines an octal integer. The x's are octal digits each in

the range of 0 through 7. List elements corresponding to the octal data

i terns are INTEGER.

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

EXAMPLE:

READ(5,*,II,JJ,KK,LL,MM};
Input data: 987, 654,. 321, 123/DESCENDING @ @

456
Result:

List Terminator

II contains 987
JJ contains 654
KK contains 321
LL contains 123
MM contains 456

If a line tenninates (@ @> and a slash has not been encountered, the

input operation terminates even though all list elements may not have been

processed. The current values of remaining elements are unchanged.

3-20

INPUT /OUTPUT

EXAMPLES:

READ(5,*,A,B,C,J,X,Y,Z);
Input Data:

Result:

Comments

A=7 .987 B=5E2 C=4.6859E-3 @ @
J=3456 @ ®
A contains 7.987
B contains 5E2
C contains 4.6859E-3
J, X, Y, Z are unchanged.

All characters appearing between a pair of quotation marks in the same line

are considered to be comments and are ignored by the compiler.

EXAMPLES:

6.7321
is a comment and ignored.

is a real number.

READ AND WRITE STATEMENTS

READ and WRITE statements have the following form:

READ
WRITE

(unit, format identifier, input list)
(unit, format identifier, output list)

The unit is an arithmetic expression with an integer value, which designates

an I/O device. The format is the name of some declared format. The ab­

sence of the format identifier implies binary I/O. An asterisk (*) instead

of a format identifier in a READ statement specifies free field input. The

absence of a list means that no variables are to be input or output, but a

format specification alone (e.g., nH) may produce input or output.

3-21

INPUT /OUTPUT

The input list or output list is a list of elements.

EXAMPLES:

READ (5, *, X, Y, Z, N, FOR I+ 1 TON DO A [I]);
WRITE (4, X, Y, X t 2, Y t 2, TRIG);

In-Line FORMAT Declarations

The information normally contained in a separate FORMAT declaration may be

incorporated into a READ or WRITE statement by using the crosshatch (#) as

follows:

may be written

MAGNETIC TAPE STATEMENTS

FORMAT F (8I6,3F7.2);
READ (l,F,A,B,C)

READ (l,#(8I6~3F7.2),A,B,C)

Statements are available in HP ALGOL to handle HP magnetic tape operations:

ENDFILE unit

REWIND unit

SPACE unit

BACKSPACE unit

UNLOAD unit

For a complete description, see the Magnetic Tape System manual,

HP 02116-91752.

3-22

INPUT/OUTPUT

UN IT-NUMBER

The integer specified for an input/output unit is a number which represents

a unit assignment. The physical device referenced depends on tables es­

tablished within the control system.

The standard unit numbers for the Basic Control System are as follows:

Number Name Usual Equipment Type

1 Keyboard Input 2752A Teleprinter t

2 Teleprinter Output 2752A Teleprinter

3. Program Library 2737A Punched Tape Reader

4 Punch Output 2753A Tape Punch

5 Input 2737A Punched Tape Reader

6 List Output 2752A Teleprinter

Installation unit numbers may be in the range 7-748 with the largest value

being determined by the number of units of equipment available at the in­

stallation. Each standard unit may be a s·eparate device, or a single de­

vice may be accessed by several standard unit numbers as well as an install­

ation unit nunber.

(For complete details, see Basic Control System Programmer's Reference

manual, HP 02116-901 7.)

tif data is to be printed on the teleprinter as it is read, unit-reference
number 1 must be used; printing occurs with no other number.

3-23

SECTION IV

USING THE HP ALGOL COMPILER

CONTROL STATEMENT

The first record of any HP ALGOL program must be a control statement. The

word HPAL is mandatory. Any combination of the following symbols may appear

next, separated by commas:

L: produce source program listing

A: produce object code listing

B: produce object tape

P: a procedure only is to be compiled

S: sense switch control

If no symbols are specified, the program will run but will not produce any

output other than diagnostic messages. A program name in quotes (the NAM

record name which must be a legitimate identifier with no blanks) may follow.

EXAMPLE:

HPAL,B,P, 11 INVRT 11

If the character "S" is inoluded in the control statement, the B, L, and A

options are read by the compiler from the switch register. The switches

corresponding to the options:

Switch Control Statement
(up) Equivalent

15 B - produce object tape

14 L - produce source listing

13 A - produce object listing

The switches are read at the beginning of each line so that any option may

be "turned off" part way through compilation. Note that the P option, if

used, must still be placed in the control statement.

4-1

USING THE HP ALGOL COMPILER

OPERATING INSTRUCTIONS

The following steps indicate the procedure for compilation of a source

program:

a. Set the teleprinter to LINE and check that all equipment to be used
is operable.

b. Load ALGOL compiler using the Basic Binary Loader.t

c. Turn on punch and list units.

d. Set Switch Register to starting address of ALGOL (000100).

e. Press LOAD ADDRESS.

f. Place source language tape in device serving as the standard input
unit (e.g., Punched Tape Reader).

g. Press RUN. The source listing will be produced on the list unit,
and relocatable binary tape on the punch unit. This tape may now
be loaded using the BCS Relocating Loader.

h. If another program is to be compiled, return to Step £.

i. If the computer prints "HPAL ??", the control statement is incor­
rect. To restart compilation, place corrected control statement in
input unit and press RUN.

DIAGNOSTIC MESSAGES

Errors detected in the source program are indicated by a code number and an

"t" below the symbol which caused the error.

Error
Code

1

2

3

4

5

Description

More than two characters used in an ASCII constant

@ not followed by an octal digit

Octal constant greater than 177777

'IWo decimal points in one number

Non-integer following apostrophe

tif Magnetic Tape System is used, set ID number of ALGOL into Switch Regis­
ter; press PRESET; set Loader switch to ENABLED; and press RUN. (Delete
Steps b, d, and e.)

4-2

Error
Code

6

7

8

w
11

12

13

14

15

16

17

18

19

2!0

21

22

23

24

25

26

27

28

4!0

41

42

43

44

45

46

47

48

49

USING THE HP ALGOL COMPILER

Description

Label declared but not defined in program

Number required but not present

Missing END

Undefined identifier

Illegal symbol

Procedure designator must be followed by left
parenthesis

Parameter types disagree

Name parameter may not be an expression

Parameter must be followed by a comma or right
parenthesis

Too many parameters

Too few parameters

Array variable not followed by a left bracket

Subscript must be followed by a comma or right bracket

Missing THEN

Missing ELSE

Illegal Assignment

Missing Right Parenthesis

Proper procedure not legal in arithmetic expression

Primary may not begin with this type quantity

Too many subscripts

Too few subscripts

Variable required

Too many external symbols

Declarative following statement

No parameters declared after left parenthesis

REAL, INTEGER, or BOOLEAN illegal with this declaration

Doubly defined identifier or reserved word found

Illegal symbol in declaration

Statement started with illegal symbol

Label not followed by colon

Label is previously defined

Semicolon expected as terminator

4-3

Error
Code

5~

51

52

53

54

55

56

57

58

59

6~

61

62

63

64

65

66

67

68

69

n
71

72

73

74

75

76

77

78

79

8~

81

USING THE HP ALGOL COMPILER

Description

Left arrow or := expected in SWITCH delcaration

Label entry expected in SWITCH declaration

Real number assigned to integer

Constant expected following left arrow or :=

Left arrow or := expected in EQUATE declaration

Left bracket expected in array declaration

Integer expected in array dimension

Colon expected in array dimension

Upper bound less than lower bound in array

Right bracket expected at end of array dimensions

Too many values for array initialization

Array size excessive (set to 2~47)

Constant expected in array initialization

Too many parameters for procedure

Right parenthesis expected at end of procedure
parameter list

Procedure parameter descriptor missing

VALUE parameter for procedure not in list

Illegal TYPE found in procedure declaration

Illegal description in procedure declaratives

Identifier not listed as procedure parameter

No type FOR variable in procedure parameter list

Semicolon found in a format declaration

Left parenthesis expected after I/O declaration name

Right parenthesis expected after I/O name parameters

Undefined label reference

Switch identifier not followed by a left bracket

Missing right bracket in switch designator

THEN missing in IF statement

DO missing in WHILE statement

FOR variable must be of type INTEGER

FOR variable must be followed by an assign symbol

STEP symbol missing in FOR clause

4-4

Error
Code

82

83

84

85

86

87

88

89

999

USING THE HP ALGOL COMPILER

Description

UNTIL symbol missing in FOR clause or DO statement

DO symbol missing in FOR clause

Parenthesis expected in READ/WRITE statement

Cormna expected in READ/WRITE statement

Free field format (*) illegal with WRITE

Unmatched [in I/O statement list

Missing BEGIN in case statement

Missing END in case statement

Program must start with BEGIN, REAL, INTEGER or
PROCEDURE

Table areas have overflowed, program is discontinued

Object Program Diagnostic Messages

During execution of the object program, diagnostic messages are printed on

the teleprinter output unit by the I/O system supplied for ALGOL programs.

When a halt occurs, the A-Register contains a code which further defines the

nature of the error:

Teleprinter
Message

*EQR

A-Register

Unit Number

Explanation

Equipment Error: End
of input tape on 2752A
Teleprinter or 2737A
Punched Tape Reader;
tape supply low on
2753A Tape Punch. B­
Register contains sta­
tus word of Equipment
Table entry.

4-5

Action

Place next tape in­
put device, or for
Tape Punch, load new
reel of tape. Press
RUN.

USING THE HP ALGOL COMPILER

Teleprinter
Message A-Register Explanation Action

*FMT 000001 FORMAT error: Irrecoverable error;

a) w or d field does
program must be re-

not contain proper compiled.

digits.

b) No decimal point
after w field.

c) w-d 4 for E speci-
fication.

*FMT 000002 a) FORMAT specifica- Irrecoverable error;
tions are nested program must be re-
more than one level compiled.
deep.

b) A FORMAT statement
contains more right
parentheses than
left parentheses.

*FMT 000003 a) Illegal character Irrecoverable error;
in FORMAT state- program must be re-
ment. compiled.

b) Format repetition
factor of zero.

*FMT 000004 Illegal character in Verify data.
fixed field input
item or number not
right-justified in
field.

*FMT 000005 A number has an ille- Verify data.
gal form (e.g., two
E's, two decimal
points, two signs etc.)

INDEX? Diagnostic

The INDEX? diagnostic will appear at run time whenever an attempt is made to

access an array with an invalid index. After INDEX? is printed, the computer

halts and the A-Register contains the address at which the illegal reference

was made. If RUN is pushed, the program continues from that point.

4-6

USING THE HP ALGOL COMPILER

Library Routine Diagnostics

During the execution of an object program referring to the library routines,

the following error codes may be printed on the teleprinter output unit when

error conditions are encountered by the specified subroutine: t

UN

OF

OR=

Error Code

03 UN

04 UN

05 OR

06 UN

07 OF

08 OF

08 UN

09 OR

Floating point underflow

Integer or floating point

Out of range

Subroutine

SQRT

.RTOR

SIN, cos
.RTOI

EXP

.ITOI

.ITOI

TAN

overflow

Condition

a < 0

x = 0, y < 0

x < 0, y =I 0

x = 0, i < 0

la! *log2e 2:_ 124

ij out of range

i = o, j.:: 0

laj > 214

t For complete details, see Program Library manual (HP 02116-9032).

4-7

SECTION V

FORTRAN AND ASSEMBLER SUBROUTINES

An ALGOL program can refer to procedures that have been prepared using

FORTRAN or assembly language; these subroutines are declared CODE procedures.

(See Section II.) Object programs generated by the ALGOL or the FORTRAN com­

piler, or by the Assembler may then be linked by the Basic Control System

Relocating Loader when the programs are loaded.

CALLING FORTRAN SUBROUTINES FROM ALGOL

A FORTRAN subroutine is called from an ALGOL program by declaring it a CODE

procedure. Since FORTRAN and ALGOL are not fully compatible, the following

rule should be obeyed:

If a parameter is an array, the formal parameter must be
specified as REAL or INTEGER (depending on the type of
array) rather than as ARRAY or INTEGER ARRAY. The actual
parameter should be the first element of the array.

EXAMPLE:

PROCEDURE F(A); REAL A; CODE;
ARRAY A [l:lf(l];
F(A[l])

The following is wrong:

PROCEDURE F (A) ; ARRAY A; CODE;

F (A);

CALLING ALGOL SUBROUTINES FROM FORTRAN

An ALGOL procedure can be called from FORTRAN if it is compiled with the P

option in the control statement. Arrays can not be passed as parameters.

5-1

FORTRAN AND ASSEMBLER SUBROUTINES

CALLING ALGOL PROCEDURES FROM ASSEMBLY LANGUAGE

The calling sequence to an ALGOL procedure from assembly Language is:

EXT proc

JSB proc

DEF <return address>

DEF par1
DEF par2

DEF par
n

<return address> •••

The ALGOL call would be:

proc (par1 , par2 , ... , parn)

CALLING ASSEMBLY LANGUAGE PROCEDURES FROM ALGOL

Assembly language procedures called from ALGOL either obtain parameters from

the calling sequence as given in C, or use the standard ALGOL entry section:

ENT P

EXT .PRAM

P NOP

JSB .PRAM

< code words >

< parameters >

JMP P, I

The code words have the following format:

First Code word: bits 15 - l~

bits 9 8 =
bits 7 6

bits 1 - ~ =

5-2

number of parameters

bit pair for first parameter

bit pair for
nd

2 parameter

bit pair for
th

5 parameter

FORTRAN AND ASSEMBLER SUBROUTINES

Second Code Word: bits 15 14 bl.'t . f 6th = pair or parameter

b . 1 ~ bi't . f 13th its - P = pair or parameter

etc.

A bit pair for a parameter is as follows: the first bit is 1 if the para­

meter is called by value, ~ if it is called by name. The second bit has no

significance for name parameters; while for value parameters, it is 1 for

real variables and 0 for integer variables.

The locations which follow the code words must contain exactly enough words

for the parameters. There are two words for each REAL, VALUE parameter, and

one word for every other parameter.

EXAMPLE:

PROCEDURE P (A, B, X, Y);
VALUE A, B; INTEGER A, X: REAL B, y;

p NOP
JSB .PRAM
OCT 113~~

A BSS 1 VALUE INTEGER
B BSS 2 VALUE REAL
x BSS 1 NAME
y BSS 1 NAME
START

All references to A and B should be direct, since they are values. All

references to X and Y should be indirect, since they are addresses.

5-3

APPENDIX A

HP CHARACTER SET

ASC II CHARACTER FORMAT

b7 0 0 0 0 I I I I

'?.L 0 0 I I 0 0 I I

b5 0 I 0 I 0 I 0 I

b4

l b3

l b2

i ~I
0 0 0 0 NULL OCo "b 0 @ p

- - --r-0 0 0 I SOM OC1 ! I A Q
- - - - -

0 0 I 0 EOA OC2 II 2 B R __ u _ - --
0 0 I I EOM DC3 * 3 c s N

DC4 - -- --A -
0 I 0 0 EOT $ 4 0 T (STOP) -U- --S-

•O I 0 I WRU ERR O/o 5 E u N s
- A - --,-

0 I I 0 RU SYNC a 6 F v
-S- --G -

0 I I I BELL LEM IAPOSl 7 G w s N - I - --E -
I 0 0 . 0 FEo So (8 H x

-G - - -D-
I 0 0 I ~ S1) 9 I y N - - - - -E I 0 I 0 LF S2 11" : J z

-0- -- -
I 0 I I Vue S3 + I

K [
~ - -

I I 0 0 FF S4 la>MMA < L \ ACK - -~ I I 0 I CR S5 - = M] - t-=-
I I I 0 so S5 > N t ~ - -
I I I I SI S7 I ? 0 - DEL

Standard 7-bit set code positional order and notation are shown below with bT the high-order
and b 1 the low-order, bit position.

EXAMPLE: The code for "R" is:

LEGEND

NULL Null/Idle DCi-DC3 Device Control
SOM Start of message DC4 (Stop) Device control (stop)
EOA End of address ERR Error
EOM End of message SYNC Synchronous idle
EQT End of transmission LEM Logical end of media
WRU "Who are you?" So-Sr Separator (information)
RU "Are you ..• ?"

1i Word separator (space, normally
BELL Audible signal non-printing)

FEo Format effector < Less than
HT Horizontal tabulation > Greater than
SK Skip (punched card) + Up arrow (Exponentiation)
LF Line feed Left arrow (Implies/Replaced by)

VTAB Vertical tabulation \ Reverse slant
FF Form feed ACK Acknowledge
CR Carriage return <D Unassigned control
so Shift out ESC Escape
SI Shift in DEL Delete/Idle

DCo Device control reserved for
data I ink escape

A-1

APPENDIX 8

EXAMPLES

EXAMPLE l

Line !1!18 declares an external procedure, "PMDIV";

line 023 calls "PMDIV". See EXAMPLE 2.

PAGE 001

001 02000 HPAL, 11 TESTE 11 ,L,B,S
002 02000 BEGIN COMMENT THIS TEST INCLUDES INTEGER ARRAYS,
003 02003 INTEGER DECLARATIONS,MOD OPERATORS,LABELS

. 004 02003 FOR STATEMENTS AND IF STATEMENTS;
005 02003 INTEGER ARRAY PRIME[l:500], DIVISOR[l:50];
006 03052 INTEGER I,N,D,K;
007 03052 INTEGER L,H;
008 03052 PROCEDURE PMDIV (A,N,B,L,H);
009 03053 VALUE H; INTEGER N,L,H; INTEGER ARRAY A,B;
010 03053 CODE;
011 03052 LABEL L2,RPEAT;
012 03054 OUTPUT TABLE(FOR K+l TO L-1 DO[DIVISOR[K]]);
013 03101 PRIME[l]+2;
014 03110 I+2;
015 03112 FOR N+3 TO 1000 DO
016 03123 BEGIN FOR D+-2 TO N-1 DO
017 03135 IF N MOD D=0 THEN GO TO L2;
018 03153 PRIME[I]+N;
019 03162 I+I+l;
020 03165 L2: END;
021 03171 RPEAT: WRITE(2,#(11 ENTER H"));
022 03206 READ(l,*,H);
023 03215 PMDIV(PRIME,I,DIVISOR,L,H);
024 03224 WRITE(2,#{ 11 H= 11 ,I6,//, 11 DIVISORS 11 ,/,l0I6),H,TABLE);
025 03255 PAUSE;
026 03256 GO TO RPEAT;
027 03257 END$

PROGRAM= 001260 BASE PAGE= 000027 ERRORS=000

B-1

EXAMPLE 2

PAGE 001

001 02000 HPAL, 11 TSUBF11 ,L,B,S,P

EXAMPLES

002 02000 COMMENT THIS PROGRAM IS AN EXTERNAL PROGRAM USED
003 02000 TO COMPUTE THE PRIME DIVISORS OF NUMBERS BETWEEN
0!1l4 {ll2{1l0{1l 1 AND 200;
005 02000 PROCEDURE PMDIV (A,N,B,L,H);
006 02001 VALUE H; INTEGER N,L,H; INTEGER ARRAY A,B;
007 02001 BEGIN INTEGER J,K; LABEL Ll,L2;
008 02013 L+ l;
0!1l9 02015 K+l;
0l0 02017 L l : FOR J+ l TO N-1 DO
011 02031 BEGIN IF H\K=l THEN GO TO L2;
012 02043 IF H\K MOD A[J]=0 THEN
013 02070 BEGIN B[L]+A[J];
014 02102 K+A[J]*K;
015 02111 L+L+l;
016 02114 END;
017 02114 END;
018 02120 GO TO Ll;
019 02121 L2: END;

PROGRAM= 000122 BASE PAGE= 000010 ERRORS=000

:S-2

EXAMPLE 3

PAGE 001

001 02000 HPAL, 11 TESTE 11 ,L,B,S

EXAMPLES

002 02000 BEGIN COMMENT THIS TEST INCLUDES INTEGER ARRAYS,
003 02003 INTEGER DECLARATIONS,MOD OPERATORS,LABELS
004 02003 FOR STATEMENTS AND IF STATEMENTS;
005 02003 INTEGER ARRAY PRIME[l:l00];
006 02150 INTEGER I,N,D,K;
007 02150 LABEL L2;
008 02151 OUTPUT LISTING(FOR K+l TO I-1 DO [PRIME[K]]);
009 02176 PRIME[l]+2;
010 02205 I+2;
011 02207 FOR N+3 TO 200 DO
012 02220 BEGIN FOR 0+2 TO N-1 DO
013 02232 IF N MOD 0=0 THEN GO TO L2;
014 02250 PRIME[I]+N;
015 02257 I+I+l;
016 02262 L2: END;
017 02266 WRITE (2 ,# (20X, 11 PRIMES 11 ,//10(I3,3X)) ,LISTING);
018 02314 END$

PROGRAM= 000315 BASE PAGE= 000021 ERRORS=000

Result of running 11 TESTE 11 , above.

PRIMES

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199
STOP
*NEXT?

B-3

EXAMPLES

EXAMPLE 4

PAGE 001

001 02000 HPAL, 11 TESTX 11 , L, B ,S
002 02000 BEGIN COMMENT THIS TEST TESTS MAG-TAPE COMMANDS;
003 02003 PROCEDURE PTAPE(X,Y,Z);
004 02005 VALUE X,Y,Z; INTEGER X,Y,Z; CODE;
005 02003 INTEGER ARRAY FI[l:3}-"FI 11 , 11 LE", 11 #11 ;

006 02007 INTEGER ARRAY RC[l:4]+"RE11 , 11 C0 11 , 11 RD 11 , 11 #11 ;

007 02013 INTEGER ARRAY BUFUR[l:9];
008 02024 INTEGER X,Y,Z,I,J,K,L,M,A,N;
009 02024 FORMAT Fl(2IHUNIT NO. OF MAG-TAPE?),F0{ 11 F11 ,3A2,I2,10X,4A2,I2);
010 02055 FORMAT F2{ 11 FFILES AND RECORDS IN ORDER AS ON MAG-TAPE 11);

011 02104 FORMAT F3(11 11);

012 02111 FORMAT F4{ 11 FFILES AND RECORDS IN REVERSE ORDER");
013 02135 FORMAT F5 { 11 FFIRST RECORD OF EACH FILE 11);

014 02154 OUTPUT FIREC(FI[l],FI[2],FI[3],I,RC[l],RC[2],RC[3],RC[4],J);
015 02225 OUTPUT BUFl(FOR M+-1 TO 9 DO BUFUR[M]);
016 02251 INPUT BUFF(FOR K+l TO 9 DO BUFUR[K]);
017 02277 LABEL BS,LN;
018 02301 WRITE{2,Fl);
019 02307 READ{l,*,A);
020 02316 Y+2; Z+0;
021 02322 PTAPE(A,Y,Z);
022 02327 FOR I+l TO 10 DO
023 02340 BEGIN FOR J+l TO 10 DO
024 02351 BEGIN WRITE(A,F0,FIREC);
025 02360 END;
026 02364 ENDFILE A;
027 02367 END;
028 02373 REWIND A;
029 02376 PTAPE(A,Y,Z);
030 02403 WRITE(6,F2);
031 02411 FOR X+l TO 3 DO WRITE(6,F3);
032 02434 FOR X+l TO 10 DO
033 02445 BEGIN
034 02445 FOR L+l TO 10 DO
035 02456 BEGIN READ{A,F0,BUFF);
036 02464 WRITE(6,F0,BUF1);
037 02473 END;
038 02477 SPACE A;
039 02502 END;
040 02506 FOR X+l TO 9 DO WRITE(6,F3);
041 02531 WRITE(6,F4);
042 02537 FOR X+l TO 3 DO WRITE(6,F3);
043 02562 N+0;
044 02564 BS: FOR I+l TO 10 DO
045 02575 BEGIN BACKSPACE A;
046 02600 BACKSPACE A;
047 02603 READ(A,F0,BUFF);
048 02611 WRITE(6,F0,BUF1);
049 02620 END;

B-4

PAGE 002

050 02624
051 02627
052 02637
053 02640 LN:
054 02643
055 02666
056 02674
057 02717
058 02730
059 02736
060 02745
061 02765
062 02771

EXAMPLES

N-+-N+l;
IF N<l0 THEN BACKSPACE A ELSE GO TO LN;
GO TO BS;
BACKSPACE A;
FOR X-+-1 TO 9 DO WRITE(6,F3);
WRITE(6,F5);
FOR X-+-1 TO 3 DO WRITE(6,F3);
FOR 1-+-l TO 10 DO
BEGIN READ(A,F0,BUFF);

WRITE(6,F0,BUF1);

END;
END$

FOR J-+-1 TO 10 DO SPACE A;

PROGRAM= 000772 BASE PAGE= 000051 ERRORS=000

Result of running 11 TESTX 11

FILES AND RECORDS IN ORDER AS ON MAG-TAPE

FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # l
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3

RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10

B-5

FILE #-4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8

RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3

. RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10

EXAMPLES

B-6

FILE # 9
FILE # 9
FILE # ·9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE #10
FILE #l(a
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #l(a
FILE #10

RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10
RECORD # l
RECORD # 2
RECORD # 3
RECORD # 4
RECORD # 5
RECORD # 6
RECORD # 7
RECORD # 8
RECORD # 9
RECORD #10

EXAMPLES

FILES AND RECORDS IN REVERSE ORDER

FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE #10
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 9
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8
FILE # 8

RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l

B-7

FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 7
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 6
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 5
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 4
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3
FILE # 3

RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l

EXAMPLES

B-8

FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # 2
FILE # l
FILE # l
FILE # 1
FILE # 1
FILE # 1
FILE # 1
FILE # 1
FILE # 1
FILE # 1
FILE # 1

RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # 1
RECORD #10
RECORD # 9
RECORD # 8
RECORD # 7
RECORD # 6
RECORD # 5
RECORD # 4
RECORD # 3
RECORD # 2
RECORD # l

FIRST RECORD OF EACH FILE

FILE # l
FILE # 2
FILE # 3
FILE # 4
FILE # 5
FILE # 6
FILE # 7
FILE # 8
FILE # 9
FILE #10

RECORD # l
RECORD # 1
RECORD # 1
RECORD # l
RECORD # l
RECORD # l
RECORD # l
RECORD # 1
RECORD # 1
RECORD # l

EXAMPLES

B-9

INDEX

Arithmetic expressions ..•.......... 1-6
ARRAY •..••..................••..•.. l-2
Array declarations•... 1-2
ASCII

Character set x,A-1
Constants•......•....... xii

Ass ernbler•....•.. 5-1, 5-2
Assignment statements•.. 1-10

Block•..•..............•..... 1-5
BOOLEAN•..•..•....... 1-2, 1-14
Boolean

Array declaration•.... 1-2
Constants•.............. xiii
Expressions ..••..•..•.•••..•.... 1-14
Type declaration ...•.••..•.•••.•. 1-1
Variables•••.....•••.•...... 1-15

Call by Name/Value .••.•..••..•..•.. 2-3
CASE STATEMENT•..........•... l-20
CHARACTER SET•..••...•.•..... x,A-1
CODE•..•..••.••.•....•.••.•• 5-1
Code procedures•.•••••..•••.••• 2-6
COMMENT••.•.••••••. xiii, 3- 21
Compiler•.....•...•...•.•. 4-1
COMPOUND STATEMENTS .••.•••••••.••. 1-17
Conditional expressions •........•.. 1-8
Conditional statements ..•..•.•.... 1-12
Constants

ASCII .•.•.•.•...•...••.•..•••...• xii
Boolean••..........• xiii
Decimal ...•..••.••.••...•.••...•. xii
Octal ..••..•..•.••...••••..•••.• xiii

Control statement .•.•.•....•..•..•. 4-1

Data Item Delimiters ..•••..••.•..• 3-18
Decimal Constants .••..•..•....•••.. xii
Declarations .•.••.••••••••••.••...• 1-1

Array .•..........•..••.••••••...• 1-2
Equate ...••....•..••.•••.•..•..•. 1-4
Format•••.•..•••..••.•.•.•.•. 3- 2
Label ...•..•.....•..••.•••••.•.•• 1-3
List•...•.•.•...•••.•••••. 3-1
Procedure ...•..••..•.•.••....•.•• 2-1
Switch ...•..•..•...•••.•..•.••.•• 1-3
Type ..•................••.••.•••• 1-1

Delimiter, Data Item .••••.•••.••.. 3-18
Designational expression •.•.••..••• 1-12

I-1

Diagnostics
Compiler .•.••...•..........•....... 4-2
INDEX ..•••....•..•.............•.•. 4-6
Library routines•.......•.••. 4-7
Object program .•••••..•..•.•..•.... 4-5

DO .•.........•...•.•••...•.•••.•.... 1-16

EQUATE•..•....•...........•... 1-4
EXAMPLES .••..•..••...........•.. B-1--B-8
Expressions

Arithmetic•....•.•.•.•...•.. 1-6
Boolean•...... 1-14
Conditional .•.•...•.•.•........•.•. 1-8
Designational•.....•..... 1-12

Floating Point Input •••••••.••••..•• 3-19
FOR statements .•••...•.••..••.•••••• 1-18
FORMAT declarations .•••••..•....••..• 3-2
Format Declarations, In-line .•.•••.. 3-22
Format specifications .•••.••••••.•••• 3-2

Aw ..•.•.•••••.•••.•••••..•••••.•.. 3-10
Ew. d ..•••••..•••••••.••••.••••• 3- 3, 3-4
Fw .•..••.••.•••••.••••.••.••••• 3-8, 3-9
Iw .••.•..••..•.•.•.•.••..••.•••••.• 3-9
Kw .•..•.•.•..•.•••••.••...•.••••.• 3-11
nH ...•.........••••.•..•...•...... 3-13
nX .•......•.••...••.•••.•.•..••.•• 3-12
@w ...•..••••..••....•..••..•....•• 3-11
II • • '' • 3-15

FORTRAN .•••.•.....•.•••••.••.••.••... 5-1
Free field input ...••••.•.••••..•••• 3-18
Function Procedures ..••••••••..•••••. 2-5
Fundamentals .•••.••••••.•••••.•.••••••• x

GO TO•...•.......•... 1-11

HARDWARE CONFIGURATION .••....•.....•.. ix

Identifiers •..•..••••••••.•...•••...•. xi
In-line Format Declarations ••.••.••. 3-22
INPUT declaration ..•••.•...•••• 3-19,3-20
INTEGER .•.•.•.•.•••.•..••..•.•...•... 1-1
Intrinsic procedures .••..•.••.•..•..• 2-6

LABEL ..•.••.•••••..•.•....••.•.• 1-3,1-12
Label declaration .•..••.•....••...•. 1-12
Labels •••..•.•..•.•.•....•...•.....• 1-12
List Terminator ..•....•.....••...... 3-20
Lists •...•.•..•••.••.••••••••.•••.•.. 3-1

INDEX
Magnetic Tape Statements•••.••• 3-22

NAME ..•...•....••••.•.•......•..•... 2-3
NEW RECORD (/) .•••..•.......••..••. 3-15

Octal constants ...•.•..•..••...••... 1-2
Octal Input •....•.•••.•••..••.•..•. 3- 20
Operating instructions ••..•....•...• 4-2
Operators•••.•••...•..••.••... l-6

PAUSE ...••..••......•.•.....•....•• 1- 21
Procedures •••..•....••.•...•..•..••. 2-1

Code •...••.•............••...•..•. 2-6
Function•.••....••....•..• 2-5
Intrinsic ..•.......•...•.•.•....•• 2-6

Program listing•........ B-1
PROCEDURE ...•......•.....•....•• 2-1 , 2- 3

READ statement ••..•..••...•••.••... 3-21
REAL .•...•.•..•••.•..•.•..•........• 1-1
Record terminator •....•.....•...•.. 3- 20
Repeat specifications ...•.••.•..... 3-16
RESERVED IDENTIFIER ...•••..•••......• xi

Statements•••.•.....•.•.•..•. 1-10
Assignment ..•..•...•...•......•.. l-10
CASE . • • . . . • ••.. 1- 20

I-2

Statements (cont.)
Compound ••.•••••••••••••.•.••...•. 1-1 7
Conditional •.••••••••••••.••.•.•.. 1-12
DO ..••••.••••••.••.•....••.••••••. l-16
FOR •.•••...•.•.••••.•...•••••..... l-18
GO TO .•.•••••••.•••••••••..•..•••. 1-11
Magnetic tape •.•.•••.•••••••••••.• 3-22
PAUSE .•••.•••••••.•••••.•..•..••.. l-21
Procedure ••.•.•.•••••.•..•....•...• 2- 3
READ ..••.•••••.••...•.••••••.•••.• 3-21
WHILE ..•.•.••••••...•••..........• l-16
WRITE••..•..•••....••.......• 3-21

STEP ...••••...•.•••..•••.••.•••.•..•. l-18
Subscripts•..•..••.•..••.•••...• l-9
SWITCH ...•.•.•....••••.•••...•.....•• l-3

Type ...•.....•...........••.••... 1-1, 1-6

Unit-number••.....•.•••........ 3- 23

VALUE .•.•..•••••..•••..... , ••.•...... 2- 3
Variables •...••....•...•••..•..••.... 1-9

Boolean••...••.....•.••.••.•.. l-15
Left part ••.•.••.•....•.••......•. l-10
Simple ••••.••••....•••..••••....... 1-9
Subscripted ...•..•...••....•....••. 1-9

WHILE ..•.•..•..••.••.••.•.•••....... 1-16
WRITE ..••••••..•.••••...•..••.••...• 3-21

w·
Z·
::::i.

~:
o·
...I.
<(•
I- .
:::>.
(.) .

FROM

HEWLETT gp PACKARD

READER COMMENT SHEET
HP ALGOL

HP 02116-9072 April 1970
Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like.

PAGE-OF_
NAME: ________________ __

ADDRESS:-----------------

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS
HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

. -"-

FOLD

FOLD

02116 - 9072

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	I-01
	I-02
	replyA
	replyB
	xBack

