
HEWLETT WP PACKARD

2100 Computer Systems

TERMINAL CONTROL SYSTEM
APPLICATIONS MANUAL

TERMINAL CONTROL SYSTEM
APPLICATIONS MANUAL

HP Manual Part No. 5951-7310
Microfiche Part No. 5951-7311

HEWLETT f!i& PACKARD

Computer Systems

Printed: August 1973

©Copyright, 1973, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California, 95014.
All rights reserved. Printed in the U.S.A.

PREFACE

This manual presents a sample on-line, multi-terminal business application system which uses the
Hewlett-Packard Terminal Control System (TCS). It is intended to show how TCS can be used in
designing an overall application system and to suggest a few easy methods of task organization. It
is not meant to be a treatise on order entry, goods receiving, or invoice processing nor is it meant
to illustrate elegant coding. Some of the programming methods used are inefficient but have been
purposely chosen to clearly illustrate certain points. No hardware status checking is performed
since this would tend to cloud the issue of how to use TCS. In some cases, the code may not even
be syntactically correct FORTRAN (for example, DATA and DIMENSION statements appear
wherever this helps to illustrate a certain point).

Throughout the manual FORTRAN coding is intermixed with the explanatory text. Now and then,
coding is described in the text but does not appear in the FOR TRAN examples because it does not
exemplify the use of TCS or (in the case of some subroutines) because the particular use of TCS
is adequately illustrated elsewhere in the manual.

It is hoped that after studying this manual the reader will feel confident about using TCS to help
solve his own programming problems.

iii

INTRODUCTION . . ,

BUFFER DEFINITION .

SYSTEM ORGANIZATION

MAIN PROGRAM

SEGMENT 1: ORDER ENTRY .

SEGMENT 2: GOODS RECEIVING . .

SEGMENT 3: INVOICING ,

CONTENTS

v

1

2

3

9

17

. 27

37

INTRODUCTION

In the distribution market the most commonly performed functions for which on-line, multi­
terminal computer solutions are being sought are:

1. Order entry

2. Goods receiving

3. Invoicing

The sample application system presented in this manual shows, in a simplified way, how these
business functions may be performed using TCS and the Hewlett-Packard 2100 Disc Operating
System-Version Ill (DOS-III).

The following assumptions are made:

1. The application system must be able to handle 10 terminals and each terminal must be able
to perform any of the three business functions regardless of what functions the other termi­
nals are performing.

2. The following hardware is present:

a. An HP 2100-series computer with at least 16K words of memory.

b. 10 terminals.

c. A disc drive.

d. A magnetic tape unit.

3. The following files are present on the disc drive:

a. A customer file.

b. A vendor file.

c. A product file.

d. A spooling file.

4. Invoices are printed at the end of each day and a user subroutine (not shown in this example)
is executed after all invoices are printed to set the entire disc spooling file to zeros.

1

BUFFER DEFINITION

Before proceeding further, we must define the number of buffers required and the size of each.

The following sets of buffers are necessary:

a. A set of "terminal buffers" to be used for printing prompt messages and accepting operator
entries.

b. A set of "disc buffers" to be used for reading records from the disc or writing records to the
disc.

c. A set of "line printer" buffers to be used for printing invoices. Although we refer to these as
line printer buffers, this example actually prints the invoices on the terminals.

d. A set of "data stacks" to be used for storing all pertinent information for each terminal. The
use of these stacks makes it possible for the user segments to be re-entrant.

To allow all the terminals to be performing functions simultaneously, there must be a minimum of
ten terminal buffers. Ten will suffice for this example. The terminal buffers, each 40 words (80
characters) long, are held in the array IT.

One disc buffer would suffice. However, to provide better response time this example will use five.
The disc buffers, each 128 words long, are held in the array ID.

To allow all the terminals to be producing invoices simultaneously, there must be a minimum of
ten line printer buffers. Ten will suffice for this example. The line printer buffers, each 66 words
(132 characters) long, are held in the array IL.

There must be one data stack per terminal. The data stacks, each 15 words long, are held in the
array IS.

All of the buffers must reside in common. Therefore, all programs, segments, and subroutines must
contain the following statement:

COMMON IT(40,10)~ID(l28,5),IL(66,10),1S(l5,10),1X,IA,IB,IC

The purpose of the variables IX, IA, IB, and IC is described later in this manual.

The total buffer allocation is just under 1.9K words of memory. The buffers must now be passed
to the TCS buffer manager which will perform the buffer control functions (allocating and deallo­
cating) in response to calls from the application system:

CALL BINIT (IT,10,40,1)

CALL BINIT (ID,5,128,2)

CALL BINIT (IL,10,66,3)

CALL BINIT (IS,10,15,4)

2

SYSTEM ORGANIZATION

The overall system is organized as illustrated in Figure 1. The application programs which perform
the business functions of order entry, goods receiving, and invoicing are coded as user segments and
stored on the disc. The user main program initializes the system and thereafter merely passes con­
trol to the appropriate segments in response to operator entries.

Figure 2 illustrates the possible paths of control between the various system elements. For example,
the main program can pass control to the user segments or to TCS, the user segments can pass con­
trol to the main program or to TCS, and so forth.

TCS (in conjunction with DOS-III) takes care of "swapping" the user segments between the disc
drive and the overlay area. Whenever the currently-executing segment is dormant (i.e., paused,
suspended, or waiting for a particular 1/0 operation to be completed), it may be overlaid by another
segment which is ready to continue processing or it may be restarted for another terminal. The link
between segments and terminals and between the main program and terminals is a set of data stacks
residing in common. Whenever a segment must become dormant, it passes the current data stack
pointer to TCS. When the segment regains control, TCS passes back the appropriate data stack
pointer. Figure 3 illustrates the "swapping" of segments and the passing of data stack pointers be­
tween the segments and TCS. Figure 4 illustrates the linkage between a data stack and its associated
buffers, disc records, and terminal.

3

r--.- ~
... ..

User
User segment segments
overlay area

TCS

User main program

Common

DOS-Ill

Figure 1. Overall System Organization

4

Main program

User segments

TCS

DOS-Ill
Executive

1/0
Drivers

Figure 2. Paths Of Control Between System Elements

5

Segment
#1

Data
stack

#2.

Terminal
#10

Segment
#3

"-- -
I
\.... ___ -

••••

"\

I

Data
stack
#4

Terminal
#4

User segment
overlay area

Main program

- --,
I
I
I

Data
stack
#1

Terminal
#3

Segment

r- ___ .)

I

I
I

Data
stack
#7

Terminal
#2.

#2.

Data
stack
#6

Terminal
#1

Notes: TCS (in conjunction with DOS-111) takes care of "swapping" user segments between the disc
drive and the overlay area. Whenever a user segment becomes dormant, it passes the current
stack pointer to TCS. When the particular segment again regains control, TCS passes back the
proper stack pointer. The heavy black lines signify points where TCS exercises control. The
above configuration is a "snap shot" of a particular point in time during execution of the appli­
cation system. The main program and each user segment can actually be linked to any of the
terminals (in any combination).

Figure 3. Segment 11Swapping" and Passing of Data Stack Pointers
Between TCS and Segments

6

Terminal

Terminal
Terminal logical unit# buffer

Disc
Terminal buffer # buffer

Terminal Disc buffer#
buffer

Disc
Customer record # buffer

Product record #
.....,__ ---

Terminal
buffer

Vendor record # Disc
buffer

Working storage

Figure 4. Linkage Between a Data Stack and its Associated Buffers,
Disc Records, and Terminal

7

Disc
Files

MAIN PROGRAM

During the following discussion, refer to Figure 5. This figure is in the form of a fold-out at the end
of this section and can therefore be constantly exposed as you follow the text.

Before initializing TCS, we must first decide upon the size of the pending queue. This queue must
be large enough to accommodate all I/O requests which cannot be performed because the required
device is either busy or locked. A typical maximum situation might be that there are 35 pending
requests: 5 disc requests, 10 invoice print requests, 10 terminal I/0 requests, and 10 magnetic tape
requests. To be certain that all pending requests can be accommodated, the pending queue for this
example will be designed to accommodate 40 entries.

We must then decide upon the names of the various files and the three user segments. In this
example they are named as follows:

Customer file: CUST

Vendor file: VEND

Product file: PROD

Spooling file: SPOL

Order entry segment: SEGl

Goods receiving segment: SEG2

Invoicing segment: SEG3

Now place the segment names in one array and the file names in another (this is required by the
TCS "initialization" and "open file" requests):

DIMENSION IN(9)

DATA IN/2HSE,2HG1,2H ,2HSE,2HG2,2H ,2HSE,2HG3,2H

DIMENSION IFI(12)

DATA IFI/2HCU,2HST,2H ,2HVE,2HND,2H ,2HPR,2HOD,2H ,2HSP,2HOL,2H /

Dimension the pending queue array, the segment directory array, and a work buffer (the work buffer
is used for formatting prompt messages):

DIMENSION IPQ(360),ISD(33),K(40)

Set IA, IB, and IC to zero (the purpose of these variables is described later in this manual):

IA 0

IB 0

IC 0

Execute a TCS "initialization" request:

CALL TCS (82,IPQ,40,KK,IN,3,ISD)

The system has now been initialized.

9

Now we must open the four files. In this example this is done via a loop, as follows:

DO 10 J=l,4

10 CALL TCS (84,IFI(((J-1)*3)+1),J)

At this point a prompt message must be printed on all the terminals asking the operator to enter the
alphabetic code for the desired user function (OE= order entry; GR= goods receiving; IN=
invoicing). Assume that the terminals' logical unit numbers are 10 through 19, inclusive. To do this,
we must first get a terminal buffer:

CALL GBUF (I,1)

Using the formatter, fill the work buffer K with the prompt message:

CALL CODE

WRITE (K,20)

20 FORMAT ("ENTER CODE FOR DESIRED FUNCTION")

Then move the message to the terminal buffer:

DO 30 J=l,40

IT(J,I) = K(J)

IF (J.LT.17) GOTO 30

IT(J,I) = 20040B

30 CONTINUE

The terminal buffer now contains the message in the first 16 words with spaces in the remaining
words.

Set up the return address and then print the message on all the terminals (in this example the out­
put requests are executed via a loop):

L=O

ASSIGN 50 TO IRET

DO 40 J=l,10

KI= J+9

40 CALL TCS (2,20400B+KI,IT(l,I),40,J,IRET)

CALL TCS (53)

L=O

The above output requests are without wait. As soon as each request is either queued or initiated
by TCS, control returns immediately to the loop and the next output request is executed. When
the loop is finished, the main program suspends itself until any of the requested output operations
is complete, at which time control passes to statement 50 (the specified return address). The vari­
able L is used below for keeping track of how many terminals have completed the above output
operation.

10

At statement 50 the main program executes a TCS "status" request to find out which terminal has
completed its output operation:

50 CALL TCS (79,ISTAT,IP,ILU,ILOG)

Now we must request input from the terminal to find out what the operator wishes to do.

First get another terminal buffer (unless this is the tenth terminal to respond, in which case we can
use the same terminal buffer which was used for printing the prompt message):

L = L+l

IF (L.EQ.10) GOTO 70

60 CALL GBUF(Il,1)

Check to see if a terminal buffer is available (if one is not, execute a TCS "pause" request and then
try again):

IF(II.NE.-1) GO TO 80

CALL TCS (1, 77B,1,l,ILU)

CALL TCS (79,ISTAT,ILU,ILR,ILOG)

GO TO 60

70 II= I

At this point we have a terminal buffer and can proceed with the input request:

80 CALL TCS (1,ILU,IT(l,II),40,II)

The above input request is with wait and control will not pass to the next statement (statement 90)
until the input operation is complete. While waiting for the input operation to be completed, the
main program may be re-initiated at statement 50 for other terminals whose output operation is
complete.

When control passes to statement 90 it may be for any terminal, so we must execute a TCS "status"
request to find out which terminal has completed its input operation.

90 CALL TCS (79,ISTAT,ILZ,ILU,ILOG)

11

The variable ILU now contains the logical unit number of the terminal which just completed the
input operation and the variable ILZ contains the number of the terminal buffer which contains
the associated operator entry. Check to make sure that the operator entry makes sense:

JL= 0

JLA = ASCII code for OE

JLB =ASCII code for GR

JLC = ASCII code for IN

IF (IT(l,ILZ).EQ.JLA) GOTO 120

IF (IT(l,ILZ).EQ.JLB) GOTO 110

IF (IT(l,ILZ).EQ.JLC) GOTO 100

GOTO 130

100 JL = JL+l

110 JL = JL+l

120 JL = JL+l

130 IF (JL.EQ.O) GOTO error-handler

JL now contains the number of the segment which performs the function desired by the operator.
If JL = 0 when statement 130 is executed, the operator entry was invalid. In such a case the error­
handling routine should print an appropriate error message, move the prompt message back into
the terminal's buffer, and then pass control to statement 180.

Get a data stack and put the necessary information in it (i.e., the logical unit number of the
particular teleprinter terminal and the number of the associated terminal buffer):

140 CALL GBUF (N,4)

IS(l,N) = ILZ

18(2,N) = ILU

Now put the stack pointer in common and call the appropriate segment:

IX= N

CALL TCS (8,JL)

Check to make sure that the call was correct:

150 CALL TCS (79,ISTAT)

IF (ISTAT.NE.O) GOTO error-handler

12

Control returns to statement 150 under either of the .following two conditions:

1. The specified segment could not be found on the disc. In this case control returns immediately
to statement 150 with !STAT set to -4. The main program must then pass control to an error­
handling routine which prints an appropriate error message and then passes control to state­
ment 160.

2. The specified segment has completed its execution. In this case control returns to statement
150 with !STAT set to 0.

In either case, the stack pointer is still in IX.

Move the prompt message ("ENTER CODE FOR DESIRED FUNCTION") back into the terminal's
buffer:

160 IST = IS(l,IX)

DO 170 J=l,40

IT(J ,IST) = K(J)

IF(J.LT.17) GOTO 170

IT(J ,IST) = 20040B

170 CONTINUE

Print the message on the terminal after releasing the data stack:

IZ = IS(2,IX)

CALL PBUF (IX,4)

180 CALL TCS (2,IZ,IT(l,IST),40,IST)

Now request input from the terminal after determining (via a TCS "status" request) the logical unit
number of the particular terminal and the number of the associated terminal buffer:

CALL TCS (79,ISTAT,IST,ILS,ILOG)

CALL TCS (1,400B+ILS,IT(l,IST),40,IST)

When the input operation is complete, transfer control back to the input interpreter portion of the
main program.

GOTO 90

13

A

Set up necessary arrays

Execute TCS "initializa­
tion" request

Open required files

Read operator entry
from terminal

Analyze operator entry
and decide which segment
is to be called

Format and print prompt
message on terminal

Read operator entry
from terminal

Figure 5. Main Program Flowchart

15

SEGMENT 1: ORDER ENTRY

During the following discussion, refer to Figure 6. This figure is in the form of a fold-out at the
end of this section and can therefore be constantly exposed as you follow the text.

This segment processes newly-received customer orders entered by operators through the terminals.
It uses the following files which must previously have been opened by the main program:

Customer file:

Vendor file:

Product file:

Disc spooling file:

CUST

VEND

PROD

SPOL

The formats of the records in these files need not be precisely defined for this example, but the
records would normally contain the following data:

CUSTOMER RECORD:

a. Customer number

b. Name

c. Address

d. Delivery address

e. ''Bill to'' address

f. Credit limit

g. Current credit

h. Total purchases during current month

i. Total purchases during current year

j. Discount schedules

VENDOR RECORD:

a. Vendor number

b. Name

c. Address

d. Amount owed to vendor

e. Receipts for the current day

17

PRODUCT RECORD:

a. Product number

b. Description

c. Kind of packaging

d. Minimum quantity to be kept on hand

e. Current stock level

f. Reorder point

g. Vendor number

h. Cost

i. Selling price

j. Discount schedules

k. Tax group

1. Deposit required

m. Total amount sold during current month

n. Total amount sold during current year

DISC SPOOLING RECORD:

a. Terminal number (logical unit number)

b. Customer record number

c. Product record number

d. "end-of-invoice" indicator

The information required by the segment (i.e., the logical unit number of the terminal and the
number of the associated terminal buffer) is contained in a data stack created by the main program.
The data stack pointer is in the variable IX in common.

The first task is to dimension a work buffer (to be used for formatting output) and obtain the stack
pointer:

DIMENSION K(40)

I= IX

18

Using the formatter, format a prompt message to the operator in the terminal buffer pointed to by

the first word of the data stack:

10 CALL CODE

WRITE (K,20)

20 FORMAT ("ENTER CUSTOMER NUMBER")

DO 30 J=l,40

IT(J,IS(l,I)) = K(J)

IF (J.LT.12) GOTO 30

IT(J,IS(l,I)) = 20040B

30 CONTINUE

Now print the message on the terminal pointed to by the second word of the data stack. This out­
put request is with wait. As a result, another user function could be scheduled which would cause
this segment to be overlaid, or this segment could be scheduled for another terminal. Therefore, to
preserve the system, the stack pointer is passed to TCS with the output request:

CALL TCS (2,IS(2,I),IT(l,IS(l,I)),40,I)

The segment will be recalled when the output operation is finished. When that happens, we must
restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Read the operator entry from the terminal with wait (passing the stack pointer to TCS):

CALL TCS (1,ILU,IT(l,IS(l,1)),40,I)

When the input operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

We now have the stack pointer and (via the stack) the number of the terminal buffer which contains
the operator entry. Check to see if the operator entered /E instead of a customer number:

IF (IT(l,IS(l,I)).NE.ASCII code for IE) GOTO 40

If the operator entered /E, this signals that he has no more orders to enter. In that case, we must
execute a TCS "return to main" request after putting the stack pointer back in IX:

IX= I

CALL TCS (54)

40 CONTINUE

19

If the operator did not enter /E, we must call a subroutine to convert the customer number to a
customer record number via a hashing algorithm or some other suitable means. We pass the stack
pointer to the subroutine which places the customer record number in the third word of the data
stack:

CALL SUBl (I)

If the subroutine had had to make disc accesses (as it would if a disc-resident index or look-up table
is used), it could be made re-entrant by putting a return address obtained via an ASSIGN statement
in the data stack.

Get a disc buffer (if none is available, execute a TCS "pause" request and then try again):

50 CALL GBUF (J,2)

IF (J.NE.-1) GOTO 60

CALL TCS (l,77B,l,l,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 50

60 CONTINUE

Put the disc buffer number in the fifth word of the data stack:

IS(5,I) = J

Now read the customer record with wait (passing the stack pointer to TCS):

CALL TCS (14,3,ID(l,J),128,1,IS(3,l),I)

When the disc read operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Examine the customer record and determine whether or not he is permitted to buy (credit limit
checks, etc.).

Release the disc buffer:

CALL PBUF (IS(5,1),2)

If the customer is permitted to buy, skip to statement 100; if he is not permitted to buy, proceed
with statement 70.

70 CONTINUE

20

Using the formatter, format an error message in the terminal's buffer:

CALL CODE

WRITE (K,80)

80 FORMAT("CUSTOMER CANNOT BUY")

DO 90 J=l,40

IT(J,IS(l,I)) = K(J)

IF (J.LT.11) GOTO 90

IT(J,IS(l,I)) = 20040B

90 CONTINUE

Now print the message on the terminal with wait (passing the stack pointer to TCS):

CALL TCS (2,IS(2,I),IT(l,IS(l,I)),40,I)

When the output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Now request another customer number:

GOTO 10

100 CONTINUE

If the customer is permitted to buy, use the formatter to format a message in the terminal's buffer
asking the operator for the product number:

CALL CODE

WRITE (K,110)

110 FORMAT ("ENTER PRODUCT NUMBER")

DO 120 J=l,40

IT(J,IS(l,I)) = K(J)

IF (J.LT.11) GOTO 120

IT(J,IS(l,I)) = 20040B

120 CONTINUE

Now print the message on the terminal with wait (passing the stack pointer to TCS):

CALL TCS (2,IS(2,I),IT(l,IS(l,I)),40,I)

When the output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

21

Read the operator entry from the terminal with wait (passing the stack pointer to TC8):

CALL TC8 (l,ILU,IT(l,18(1,l)),40,I)

When the input operation is finished, restore the stack pointer:

CALL TC8 (79,18TAT,I,ILU,ILOG)

Check to see if the operator entered /E instead of an item number:

IF (IT(l,18(1,1)).NE.ASCIJ code for IE) GOTO 140

If the operator did not enter /E, skip to statement 140; if he did enter /E, proceed with statement
130.

130 CONTINUE

If the operator entered /E, this signals the end of the current order. In that case we must generate
an "end-of-invoice" spooling record, add the "end-of-invoice" record to the disc spooling file, write
the "end-of-invoice" record onto magnetic tape (as back-up in case of a disc failure), and then pro­
ceed with the next order.

Format the ''end-of-invoice" spooling record:

18(6,1) = 18(2,1)

18(7 ,I) = 18(3,1)

18(8,I) = 0

18(9',I) = 1

Terminal number (logical unit number)

Customer record number

Product record number

"end-of-invoice" indicator (set)

Call a subroutine to add the "end-of-invoice" spooling record to the disc spooling file (pac;;sing the
stack pointer to the subroutine):

CALL 8UB2 (I)

Write the "end-of-invoice" spooling record onto magnetic tape with wait (passing the stack pointer
to TC8):

CALL TC8 (2,8,18(6,1),4,I)

When the output operation is finished, restore the stack pointer:

CALL TC8 (79,18TAT,I,ILU,ILOG)

Now proceed with the next order:

GOTO 10

140 CONTINUE

22

If the operator did not enter /E, we must call a subroutine to convert the product number to a
product record number via a hashing algorithm or some other suitable means. We pass the stack
pointer to the subroutine which places the product record number in the fourth word of the data
stack:

CALL SUB3 (I)

At this point we must update the product record to reflect the new "amounts sold" totals (current
month, current year, etc.) and the new "current stock level" amount. We will read the record from
the disc with lock. This prevents any other segments from updating the product file at the same
time. However, we must also prevent this segment from trying to update the product file from two
different terminals at the same time. This problem is overcome by using the variable IA in common.
If IA= 1, then the segment cannot proceed because it is already updating a product record (in such
a case, the segment must execute a TCS "pause" request and then test IA again).

150 IF (IA.NE.1) GOTO 160

CALL TCS (1, 77B,l,l,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 150

160 IA= 1

Get a disc buffer (if none is available, execute a TCS "pause" request and then try again):

170 CALL GBUF (J,2)

IF (J.NE.-1) GOTO 180

CALL TCS (1, 77B,1,l,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 170

180 CONTINUE

Put the disc buffer number in the fifth word of the data stack:

IS(5,I) = J

Now read the product record with lock and with wait (passing the stack pointer to TCS):

CALL TCS (14,100003B,ID(l,IS(5,I)),128,3,IS(4,I),I)

When the disc read operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

23

The product record is now in the disc buffer whose number is in the fifth word of the data stack.
Examine the product record, checking to see if there is any stock left, etc. If all is okay, update
the "amounts sold" totals (current month, current year, etc.) in the product record and subtract
one from the "current stock level" field in the product record. Then write the record back to the
disc with wait (passing the stack pointer to TCS):

Arithmetic and updating statements

CALL TCS (15,3,ID(l,IS(5,I)),128,3,IS(4,I),I)

When the disc output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Release the disc buffer and unlock the disc drive:

CALL PBUF (IS(5,I),2)

CALL TCS (52,3)

Reset IA to zero to permit this segment to update the product file for other terminals:

IA= 0

Format a spooling record for the current transaction using words 6 through 9 of the data stack:

IS(6,1) = IS(2,I)

IS(7,I) = 18(3,1)

IS(8,I) = IS(4,I)

IS(9,I) = 0

Terminal number (logical unit number)

Customer record number

Product record number

"end-of-invoice" indicator (cleared)

Call a subroutine to add the spooling record to the disc spooling file:

CALL SUB2 (I)

Write the spooling record onto magnetic tape wait wait as back-up in case of a disc failure (passing
the stack pointer to TCS):

CALL TCS (2,8,IS(6,l),4,I)

After the output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,l,ILU,ILOG)

Request the next product number:

GOTO 100

24

Start

Enter customer number

Call SUB1 to obtain
customer record number

Read customer record
from disc

Enter product number

Format "end-of-invoice"
spooling record

Write "end-of-invoice"
spooling record to disc
and magnetic tape

No

Return
to main
program

Format and print error
message

Call SUB3 to obtain
product record number

Read product record
from disc

Update product record
and write it back to
the disc

Format spooling record
for transaction

Write spooling record
to disc and magnetic
tape

Figure 6. Segment 1 (Order Entry) Flowchart

25

SEGMENT 2: GOODS RECEIVING

During the following discussion, refer to Figure 7. This figure is in the form of a fold-out at the
end of this section and can therefore be constantly exposed as you follow the text.

This segment processes newly-received shipments from vendors entered by operators through the
terminals. It uses the following files which must previously have been opened by the main program:

Vendor file:

Product file:

VEND

PROD

The formats of the records in these files need not be precisely defined for this example, but the
records would normally contain the following data:

VENDOR RECORD:

a. Vendor number

b. Name

c. Address

d. Amount owed to vendor

e. Receipts for the current day

PRODUCT RECORD:

a. Product number

b. Description

c. Kind of packaging

d. Minimum quantity to be kept on-hand

e. Current stock level

f. Reorder point

g. Vendor number

h. Cost

i. Selling price

j. Discount schedules

k. Tax group

I. Deposit required

m. Total amount sold during current month

n. Total amount sold during current year

27

The information required by the segment (i.e., the logical unit number of the terminal and the
number of the associated terminal buffer) is contained in a data stack created by the main program.
The data stack pointer is in the variable IX in common.

First we must dimension a work buffer (to be used for formatting output), obtain the stack pointer,
and set the seventh word of the data stack to zero (this word is used for accumulating the new
amount owed to the current vendor):

DIMENSION K(40)

I= IX

18(7 ,I)= 0

Using the formatter, format a prompt message to the operator in the terminal buffer pointed to by
the first word in the data stack:

10 CALL CODE

WRITE (K,20)

20 FORMAT ("ENTER VENDOR NUMBER")

DO 30 J=l,40

IT(J,IS(l,I)) = K(J)

IF (J.LT.11) GOTO 30

IT(J,IS(l,I)) = 20040B

30 CONTINUE

Now print the message on the terminal pointed to by the second word of the data stack. This out­
put request is with wait. As a result, another user function could be scheduled which would cause
this segment to be overlaid, or this segment could be scheduled for another terminal. Therefore, to
preserve the system, the stack pointer is passed to TCS with the output request:

CALL TCS (2,IS(2,I),IT(l,IS(l,I)),40,I)

The segment will be recalled when the output operation is finished. When that happens, we must
restore the stack pointer:

CALL TCS (79,ISTAT,l,ILU,ILOG)

Read the operator entry from the terminal with wait (passing the stack pointer to TCS):

CALL TCS (1,ILU,IT(l,IS(l,1)),40,I)

When the input operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

28

We now have the stack pointer and (via the stack) the number of the terminal buffer which contains
the operator entry. Check to see if the operator entered /E instead of a vendor number:

IF (IT(l,IS(l,I)).NE.ASII code for IE) GOTO 40

If the operator entered /E, this signals that he has no more receipts to enter. In that case, we must
execute a TCS "return to main" request after putting the stack pointer back in IX:

IX= I

CALL TCS (54)

40 CONTINUE

If the operator did not enter /E, we must call a subroutine to convert the vendor number to a
vendor record number via a hashing algorithm or some other suitable means. We pass the stack
pointer to the subroutine which places the vendor record number in the third word of the data
stack:

CALL SUB4 (I)

If the subroutine had had to make disc accesses (as it would if a disc-resident index or look-up table
is used), it could be made re-entrant by putting a return address obtained via an ASSIGN statement
in the data stack.

Now we must ask the operator for the details of the delivery. This input is requested in two parts:

1. Product number

2. Quantity received

Using the formatter, format a prompt message in the terminal buffer requesting the product
number:

50 CALL CODE

WRITE (K,60)

60 FORMAT ("ENTER PRODUCT NUMBER")

DO 70 J=l,10

70 IT(J,IS(l,I)) = K(J)

Now print the message on the terminal with wait (passing the stack pointer to TCS):

CALL TCS (2,IS(2,I),IT(l,IS(l,I)),10,I).

When the output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Read the operator entry from the terminal with wait (passing the stack pointer to TCS):

CALL TCS (1,IS(2,I),IT(l,IS(l,I)),10,I)

29

When the input operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Check to see if the operator entered /E instead of a product number:

IF (IT(l,IS(l,l)).NE.ASCJI code for IE) GOTO 130

If the operator entered /E, this signals that there are no more product receipts to be recorded for
this vendor at this time. In that case, we must update the "amount owed to vendor" field in the
appropriate vendor record, and then proceed with the next vendor.

If the operator did not enter /E, skip to statement 130; if he entered /E, proceed with statement
80.

80 CONTINUE

At this point we must obtain the appropriate vendor record. We will read the record from the disc
with lock. This prevents other segments from updating the vendor file at the same time. However,
we must also prevent this segment from trying to update the vendor file from two different termi­
nals at the same time. This problem is overcome by using the variable IB in common. If IB = 1, then
the segment cannot proceed because it is already updating a vendor record (in such a case, the seg­
ment must execute a TCS "pause" request and then test IB again).

90 IF (IB.EQ.O) GOTO 100

CALL TCS (1, 77B,1,l,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 90

100 IB = 1

Get a disc buffer (if none is available, execute a TCS "pause" request and then try again):

110 CALL GBUF (J,2)

IF (J.NE.-1) GOTO 120

CALL TCS (1, 77B,l,1,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 110

Put the disc buffer number in the sixth word of the data stack:

120 18(6,1) = J

Now read the vendor record from the disc with lock and with wait (passing the stack pointer to
TCS):

CALL TCS (14,100003B,ID(l,IS(6,l)),128,2,IS{3,I),I)

30

When the disc read operation is finished, restore the stack pointer:

CALL TC8 (79,I8TAT,I,ILU,ILOG)

The vendor record is now in the disc buffer whose number is in the sixth word of the data stack.
Add the total contained in the seventh word of the data stack to the "amount owed to vendor"
field in the vendor record. Then write the record back to the disc with wait (passing the stack
pointer to TC8):

CALL TC8 (15,3,ID(l,I8(6,I)),128,2,I8(3,I),I)

When the disc output operation is finished, restore the stack pointer:

CALL TC8 (79,I8TAT,I,ILU,ILOG)

Unlock the disc drive and reset IB to zero:

CALL TC8 (52,3)

IB = 0

Release the disc buffer, reset the seventh word of the data stack to zero, and proceed with the
next vendor:

CALL PBUF (I8(6,I),2)

I8(7 ,I)= 0

GOTO 10

130 CONTINUE

If the operator did not enter /E, we must call a subroutine to convert the product number to a
product record number via a hashing algorithm or some other suitable means. We pass the stack
pointer to the subroutine which places the product record number in the fourth word of the
data stack:

CALL 8UB3 (I)

Using the formatter, format a prompt message in the terminal buffer requesting the quantity:

CALL CODE

WRITE (K,140)

140 FORMAT ("QUANTITY?")

DO 150 J=l,5

150 IT(J,I8(1,I)) = K(J)

Now print the message on the terminal with wait (passing the stack pointer to TC8):

CALL TC8 (2,IS(2,I),IT(l,I8(1,I)),2,I)

31

When the output operation is finished, restore the stack pointer:

CALL TC8 (79,I8TAT,I,ILU,ILOG)

Read the operator entry from the terminal with wait (passing the stack pointer to TC8):

CALL TC8 (l,I8(2,I),IT(l,I8(1,I)),3,I)

When the input operation is finished, restore the stack pointer:

CALL TC8 (79,I8TAT,I,ILU,ILOG)

Using the formatter, convert the operator entry to an integer:

DO 160 J=l,3

K(J) = IT(J,I8(1,I))

CALL CODE

160 READ (K,*)JA

Now put the converted quantity in the fifth word of the data stack:

I8(5,I) = JA

We must now read the appropriate product record from the disc, get the buying price from the
record, and multiply that by the quantity received. This tells us how much we owe the vendor for
this product. We must also update the "current stock level" field of the product record to include
the newly-received quantity.

We read the record from the disc with lock. This prevents any other segments from updating the
product file at the same time. However, we must also prevent this segment from trying to update
the product file from two different terminals at the same time. This problem is overcome by using
the variable IC in common. If IC= 1, then the segment cannot proceed because it is already up­
dating a product record (in such a case, the segment must execute a TC8 "pause" request and then
test IC again).

170 IF (IC.EQ.O) GOTO 180

CALL TC8 (1, 77B,1,l,I)

CALL TC8 (79,I8TAT,I,ILU,ILOG)

GOTO 170

180 IC= 1

32

Get a disc buffer (if one is not available, execute a TCS "pause" request and then try again):

190 CALL GBUF (J,2)

IF (J.NE.-1) GOTO 200

CALL TCS (1, 77B,l,l,I)

CALL TCS (79,IST AT ,l,ILU ,ILOG)

GOTO 190

Put the disc buffer number in the sixth word of the data stack:

200 18(6,1) = J

Now read the product record from the disc with lock and with wait (passing the stack pointer to
TCS):

CALL TCS (14,100003B,ID(l,J),128,3,IS(4,1),1)

When the disc read operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,l,ILU,ILOG)

Now multiply the cost (obtained from the product record) by the quantity (obtained from the
fifth word of the data stack). Add the result into the seventh word of the data stack. Then add the
quantity received to the "current stock level" field of the product record. Write the record back to
the disc with wait (passing the stack pointer to TCS):

Arithmetic and updating statements

CALL TCS (15,3,ID(l,IS(6,l)),128,3,IS(4,l),I)

When the disc output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,l,ILU,ILOG)

Release the disc buffer and unlock the disc drive:

CALL PBUF (IS(6,1),2)

CALL TCS (52,3)

Reset IC to zero to permit this segment to update the product file from other terminals:

IC= 0

Request the next product number:

GOTO 50

33

Enter vendor number

Call SUB4 to obtain
vendor record number

Enter product number

Read vendor record
from disc

Update vendor record

Write vendor record
back to disc

Yes Return
~---------~ to main

program

No

Call SUB3 to obtain
product record number

Enter quantity

Read product record
from disc

(Quantity) X (price)=
amount owed to vendor

Update product record

Write product record
back to disc

Figure 7. Segment 2 (Goods Receiving) Flowchart

35

SEGMENT 3: INVOICING

During the following discussion, refer to Figure 8. This figure is in the form of a fold-out at the end
of this section and can therefore be constantly exposed as you follow the text.

This segment prints invoices on the invoking terminal using the disc spooling file. A terminal. can
produce invoices only for those orders which were entered through that particular terminal. Since
this segment never writes to the disc, disc locking is not required.

The disc spooling file consists of a series of 4-word records of the following format:

Word 1:

Word 2:

Terminal number (logical unit number)

Customer record number

Word 3: Product record number

Word 4: "end-of-invoice" indicator

If the fourth word of a spooling record contains a "l," the particular record is merely an "end-of­
invoice" record (in this case the "product record number" field of the record is blank).

First get the stack pointer from common:

I= IX

Get a line printer buffer (if one is not available, execute a TCS "pause" request and then try again):

10 CALL GBUF (J,3)

IF(J.NE.-1) GOTO 20

CALL TCS (1, 77B,l,l,I)

CALL TCS (79,ISTAT,1,ILU,ILOG)

GOTO 10

20 CONTINUE

Put the line printer buffer number in the third word of the data stack:

18(3,1) = J

Now get a disc buffer (if one is not available, execute a TCS "pause" request and then try again):

30 CALL GBUF (J,2)

IF (J.NE.-1) GOTO 40

CALL TCS (1, 77B,1,l,I)

CALL TCS (79,ISTAT,I,ILU,ILOG)

GOTO 30

40 CONTINUE

37

Put the disc buffer num her in the fourth word of the data stack:

IS(4,1) = J

The segment now examines the spooling file serially and prints invoices on the terminal. We pass the
stack pointer to the subroutine SUB5 which obtains the next spooling record and places it in the last
four words of the data stack. The use of the tenth and eleventh words of the data stack is described
later in this section.

IS(lO,I) = 0

IS(ll,I) = 0

50 CALL SUB5 (I)

Now check to see if the logical unit number in the spooling record is zero ("end-of-file" record):

IF (IS(12,I).NE.O) GOTO 60

If the logical unit num her in the spooling record is zero, we have reached the end of the spooling
file. In such a case, execute a TCS "return to main" request after putting the stack pointer back
into IX and releasing the buffers:

CALL PBUF (IS(3,I),3)

CALL PBUF (IS(4,1),2)

IX= I

CALL TCS (54)

60 CONTINUE

If the logical unit number in the spooling record is non-zero, check to see if the spooling record
was created through this terminal (if it wasn't, ignore it):

IF (IS(l2,I).NE.IS(2,I)) GOTO 50

The eleventh word in the data stack is used for specifying whether or not the current spooling
record is the first item on the invoice. IS(ll,I) = 0 specifies that it is the first; IS(ll,I) i= 0
specifies that it is not. If the current spooling record is the first item on the invoice, then we must
print the customer line (name, address, etc.) before printing the detail line.

Check to see if the current spooling record is the first item on the invoice:

IF (IS(ll,l).NE.O) GOTO 70

If it is the first item, read the customer record from the disc with wait (passing the stack pointer
to TCS):

CALL TCS (14,3,ID(l,IS(4,1)),128,l,IS(l3,l),I)

38

When the disc read operation is finished, restore the stack pointer:

CALL TC8 (79,18TAT,I,ILU,ILOG)

Format the customer line in the terminal's buffer and then print it with wait (passing the stack
pointer to TC8):

Formatting statements

CALL TC8 (2,18(2,I),IT{l,18(3,1)),55,I)

When the output operation is finished, restore the stack pointer and set the eleventh word of the
data stack to "1":

CALL TC8 (79,18TAT,I,ILU,ILOG)

18(11,1) = 1

70 CONTINUE

At this point we must print the detail line and accumulate an order total in the tenth word of the
data stack. First, check to see if the current spooling record is the "end-of-invoice" record.
18(15,1) = 1 signifies "end-of-invoice."

IF (18(15,1).NE.l) GOTO 90

If the current spooling record is not the "end-of-invoice" record, skip to statement 90; if it is the
"end-of-invoice" record, proceed with statement 80.

80 CONTINUE

If the current spooling record is the "end-of-invoice" record, a detail line is not printed. Instead, we
print the invoice total line, reset the tenth and eleventh words of the data stack to zero, and pro­
ceed with the next invoice.

Format the invoice total line in the terminal's buffer and then print the line with wait (passing the
stack pointer to TC8):

Formatting statements

CALL TC8 (2,18(2,l),IT{l,18(3,1)),66,I)

When the output operation is finished, restore the stack pointer, reset the tenth and eleventh words
of the data stack to zero, and proceed with the next invoice:

CALL TC8 (79,18TAT,I,ILU,ILOG)

18(10,1) = 0

18(11,1) = 0

GOTO 50

90 CONTINUE

39

Read the product record from the disc with wait (passing the stack pointer to TCS):

CALL TCS (14,3,ID(l,IS(4,1)),128,3,IS(14,I),I)

When the disc read operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Format the detail line in the terminal's buffer and accumulate the order total in the tenth word of
the data stack.

Now print the detail line with wait (passing the stack pointer to TCS):

CALL TCS (2,18(2,I),IT(l,IS(3,I)),66,I)

When the output operation is finished, restore the stack pointer:

CALL TCS (79,ISTAT,I,ILU,ILOG)

Obtain the next spooling record:

GOTO 50

40

Start

Call SUBS to obtain
next spooling record

Read customer record
from disc

Format and print
customer line

Format and print invoice
total line

Yes

No

No

Return
to main
program

Read product record
from disc

Format detail line

Accumulate invoice
total amount

Print detail line

Figure 8. Segment 3 (Invoicing) Flowchart

41

HP MANUAL PART NO. 5951-7310
MICROFICHE PART NO. 5951-7311

HEWLETT'~ PACKARD

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	27
	28
	29
	30
	31
	32
	33
	35
	37
	38
	39
	40
	41
	xBack

