
HEWLETT¢* PACKARD

MOVING-HEAD

DISC OPERATING SYSTEM

02116-91 779

MOVING-HEAD

DISC OPERATING SYSTEM

HEWLETT"' PACKARD

11000 Wolfe Road
Cupertino, California 95014

March 1971

© Copy!U_ght, 1971, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

First Edition, Aug. 1970
Second Edition, Mar. 1971

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

MOVING-HEAD DISC OPERATING SYSTEM is the progranuner's guide for the Hewlett­

Packard Moving-Head Disc Operating System (DOS-M) . DOS-M is a batch process­

ing system that executes complete jobs with little or no operator interven­

tion. For a full understanding of DOS-M the reader should be familiar with

one of the Hewlett-Packard progranuning languages, as presented in the FORTRAN

(02116-9015)' FORTRAN IV (5951-1321)' ALGOL (02116-9072) and ASSEMBLER (02116-

9014) progranuner's reference manuals and should refer to the appropriate

modules of the SOFTWARE' OPERATING PROCEDURES.

The Introduction of this manual explains the software and hardware elements

of the system. Section I presents the system organization, while Sections

II and III cover the complete set of batch and keyboard directives and pro­

gram calls to the system. All facets of DOS-M progranuning -- FORTRAN, ALGOL,

Assembler, Loader, DEBUG, and Library are presented in Section IV. Section

V assembles all the necessary information on input/output, including the plan­

ning of I/O drivers. Section VI describes use of the Extended File Manage­

ment Package. The appendices provide tables, sununaries, and sample job decks.

iii

NEW AND CHANGED INFORMATION

This new edition reflects changes to DOS-M necessary to accommodate a new

disc driver (HP 2883), the FORTRAN IV Compiler, and the Extended File

Management Package. System installation has been removed from this manual

and placed in the SOFTWARE OPERATING PROCEDURES.

iv

CONTENTS

i i i PREFACE

xi INTRODUCTION

1-1 SECTION I

SYSTEM ORGANIZATION

1-1 DOS-M

1-2 Directives

1-3 EXEC Calls

1-3 Input/Output

1-4 Core Layout

1-4 DISC USAGE

1-4 HP 2870

1-4 HP 2883

1-6 DOS-M Files

1-7 EXTENDED FILE MANAGEMENT PACKAGE

1-7 DOS-M Installation

2-1 SECTION II

DIRECTIVES

2-4 ABORT

2-5 BATCH

2-6 COMMENT

2-7 DISC-·TO-DISC DUMP

2-9 DOWN

2-10 FILE DUMP

2-12 EDIT

2-15 END-OF-FILE

2-16 EJOB

2-17 EQUIPMENT

2-19 SPECIFY SOURCE FILE

2-20 JOB

v

CONTENTS

DIRECTIVES (cont.)

2-21 LIST

2-25

2-26

2-27

2-30

2-31

2-33

2-34

2-36

2-38

2-43

LOGICAL

PAUSE

PROGRAM

PROG

PURGE

RUN

SECTOR

SYSTEM

STORE

TRACKS

2-45 TYPE

UNIT

DUMP

DUMP

SEARCH (Optional Directive)

2-46 CHANGE USER DISC

2-48 UP

2-49 DATE (Keyboard Mode Only)

2-50 GO (Keyboard Mode Only)

2-51 INITIALIZE (Keyboard Mode Only)

2-52 OFF (Keyboard Mode Only)

3- 1 SE CTI ON II I

EXEC CALLS

3-2 FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

3-2 EXEC CALLS IN ALGOL

3-3 FORMAT OF THE FORTRAN CALLING SEQUENCE

3-4 READ/WRITE

3-7 FILE READ/WRITE

3-9 I/O CONTROL

3-11 I/O STATUS

3-13 WORK AREA LIMITS

3-14 WORK AREA STATUS

3-16 PROGRAM COMPLETION

3-17 PROGRAM SUSPEND

3-19 PROGRAM SEGMENT LOAD

vi

CONTENTS

EXEC CALLS (cont.)

3-21 SEARCH FILE NAME

3-22 TIME REQUEST

3-23 CHANGE USER DISC

3-27 MAIN PROGRAM LOAD

4-1 SECTION IV
PROGRAMMING

4-1 LOAD-AND-GO FACILITY

4-2 DOS-M FORTRAN COMPILERS (Basic FORTRAN and FORTRAN IV)

4-2 Compiler Operation

4-3 PROG,FTN[4]

4-4 Comments on Basic FORTRAN

4-10 RTE/DOS ALGOL COMPILER

4-10 Compiler Operation

4-11 PROG, ALGOL

4-13 ALGOL Control Statement

4-14 ALGOL Segmentation

4-14 ALGOL I/O

4-14 ALGOL Error Messages

4-15 DOS-M ASSEMBLER

4-15 Assembler Operation

4-18 DOS-M Assembly Language

4-20 Segmented Programs

4-25 DOS-M RELOCATING LOADER

4-26 Starting the Loader

4-30 DEBUG Library Subroutine

4-32 Loader Example

4-34 Loader Error Messages

4-35 THE RELOCATABLE LIBRARIES

5-1 SECTION V
INPUT/OUTPUT

5-1 SOFTWARE I/O STRUCTURE

vii

CONTENTS

INPUT/OUTPUT (cont.)

5-1 The Equipment Table

5-4 Logical Unit Numbers

5-5 The Interrupt Table

5-5 Input/Output Drivers

5-6 System I/O

5-6 User Program I/O

5-7 Interrupt Processing

5-7 PLANNING I/O DRIVERS

5-8 Initiation Section

5-11 Completion Section

5-14 LINE PRINTER FORMATTING

5-15 MAGNETIC TAPE USAGE

6-1 SECTION VI
EXTENDED FILE MANAGEMENT PACKAGE

6-1 ENVIRONMENT

6-1 FUNCTIONS AND STRUCTURE

6-1 DOS-M Files vs. EFMP Files

6-2 EFMP Buffers and Tables

6-3 Logical Read vs. Physical Read

6-3 Logical Write vs. Physical Write

6-4 Update-Writes vs. Append-Writes

6-4 SET UP

6-5 EFMP EXEC CALLS

6-6 DEFINE

6-8 CREATE

6-10 DESTROY

6-11 OPEN

6-13 CLOSE

6-14 READ

6-16 WRITE

6-17 RESET

6-18 STATUS

viii

CONTENTS

EXTENDED FILE MANAGEMENT PACKAGE
6-19

6-20

6-21

6-22

6-23

6-24

6-25

6-26

6-27

6-29

STATUS

STATUS

STATUS

STATUS

STATUS

STATUS

STATUS

REPACK

COPY

CHANGE

6-30 POST

FUNCTION NUMBER 1

FUNCTION NUMBER 2

FUNCTION NUMBER 3

FUNCTION NUMBER 4

FUNCTION NUMBER 5

FUNCTION NUMBER 6

FUNCTION NUMBER 7

(PURGE)

FILE NAME

(cont.)

6-31 UTIL PROGRAM -- CONVERSATIONAL USE OF EFMP

6-31 Functions

6-32 :PROG,UTIL

6-34 CREATE COMMAND

6-35 DESTROY COMMAND

6-36 OPEN COMMAND

6-37

6-38

6-39

6-40

6-41

6-42

6-43

6-44

6-45

CLOSE COMMAND

RESET COMMAND

STATUS-1 COMMAND

STATUS-2 COMMAND

STATUS-3 COMMAND

STATUS-4 COMMAND

STATUS-5 COMMAND

STATUS-6 COMMAND

STATUS-7 COMMAND

6-46 REPACK COMMAND

6-47 COPY COMMAND

6-48 CHANGE COMMAND

6-49 POST COMMAND

6-50 BRIEF COMMAND

6-51 END COMMAND

6-52 GENERAL ERRORS

6-53 EFMP FILE DISC DIRECTORY

ix

CONTENTS

APPENDICES

A TABLES

B TYPICAL JOB DECKS

C RELATION TO OTHER SOFTWARE

D SUMMARY OF DIRECTIVES

E SUMMARY OF EXEC CALLS

F ALGOL EXEC CALLS

1-6

4-21

4-22

4-23

4-24

5-10

5-13

6-53

6-54

A-6

A-6

A-7

A-7

A-9

INDEX

ILLUSTRATIONS

Figure 1-1.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 5-1.

Figure 5-2.

Figure 6-1.

Figure 6-2.

Figure A-1.

Figure A-2.

Figure A-3.

Figure A-4.

Figure A-5.

x

Functional Diagram of DOS-M

Segmented Programs

Main Calling Segment

Segment Calling Segment

Main-to-Segment Jumps

I/O Driver Initiation Section

I/O Driver Completion Section

EFMP File Disc Directory Format

EFMP Disc Pack Layout

General Disc Layout

System Directory Format

User Directory Format

Directory Entry Format

Disc Layout

INTRODUCTION

In the Moving-Head Disc Operating System (DOS-M) , software modules are stored

permanently on the disc for high-speed batch processing, eliminating·slow and

inefficient paper tape loading. Input can be set up and executed in serial

order to automatically edit, translate, load and execute a set of source

programs written in HP FORTRAN (an extension of ASA BASIC FORTRAN), HP ALGOL,

HP FORTRAN IV, or HP Assembly Language. A variety of files can be stored,

edited, listed, dumped and used as input to programs.

FEATURES OF DOS-M

DOS-M contains the following highlights and features:

0 Keyboard and batch processing modes,

0 Software programming aids: FORTRAN Compiler, Assembler, Relocating

Loader, Relocatable Library, Debug Routine, Source File Editor,

and ALGOL.

0 Jobs executed in a queue with minimal operator intervention,

0 Symbolic disc files, with relative addressing,

0 Centralized and device-independent I/0 processing,

0 Modular structure,

Il Custom configuration to optimize available memory and I/O,

0 Cyclic error checking on disc read & write operations,

Il Exchangeable discs packs, and

Il Optional search of the entire system for file names.

With additional core memory, DOS-M also provides:

0 Extended Files (BK more)

xi

MINIMUM HARDWARE

The minimum hardware requirements for the Moving Head Disc Operating System

are:

1. Computer, 8,192 words of memory, Central Interrupt Processor,

DMA, halt on memory parity error.

2. HP 2870 Moving-Head Disc Drive with fixed disc and removable

cartridge or HP 2883 Disc File (requires greater than 8,192

words of memory) with one removable pack.

3. System Input Device: Teleprinter (HP 2752).

4. Batch I/O Device: Second Teleprinter (HP 2754).

In place of the HP 2754B teleprinter, the user can select one of the follow­

ing combinations instead for batch operations:

Batch List Device Batch Input Device Batch Punch Device

HP 2752A Teleprinter Punched Tape Reader Punch Unit

HP 2752A Teleprinter Mark Sense Card Reader Punch Unit

Line Printer Punched Tape Reader Punch Unit

Line Printer Mark Sense Card Reader Punch Unit

The following hardware options are available:

1. Time Base Generator (provides accounting times).

2. Extended Arithmetic Unit (EAU)·: provides hardware multiply,

divide, etc. for user programs.

EAU instructions.)

(DOS-M software contains no

3. Additional memory: 12,288, 16,384, or 32,768 words.

4. Additional I/O channels: extenders are available.

5. Memory Protect.

destroy DOS-M.)

6. Photoreader.

7. Paper Tape Punch.

8. Line Printer

(Without memory protect, user programs can

xii

9. Mark Sense Card Reader.

10. HP 3030 Magnetic Tape Unit (requires 2116 DMA).

11. Additional Disc Drives.

on HP 2883.)

12. Plotter

DOS-M SOFTWARE MODULES

(Maximum is four on HP 2870 and two

DOS-M consists of the following programs:

DOS-M Supervisor and sub-modules

DOS-M Assembler

DOS-M FORTRAN Compiler

DOS-M Relocating Loader

DOS-M Moving-Head Disc Driver or Pack Disc Driver (DVR31)

DOS-M Special Teleprinter Driver (DVR 05)

DOS-M DSGEN (the system generator)

In addition, the following programs can be included when DOS-M is generated:

RTE/DOS FORTRAN IV Compiler (SK version and 16K version)

RTE/DOS ALGOL Compiler (16K memory required)

RTE/DOS Relocatable Library (EAU or Non-EAU)

RTE/DOS FORTRAN IV Library (extended precision arithmetic)

DOS I/O Drivers (either core- or disc-resident):

Teleprinter (DVR ~~)

Photoreader (DVR ~l)

Tape Punch (DVR ~2)

Line Printer (DVR 12)

Mark Sense Card Reader (DVR 15) (uses DMA)

3030 Magnetic Tape (DVR 22) (uses 2116 DMA only)

Plotter (DVR l~)

Extended File Management Package (16K required).

xiii

DOS-M Supervisor

The DOS-M supervisory software consists of a monitor (DISCM) that is partly

core-resident and partly (optionally) disc-resident and a disc-resident job

processor (JOBPR) :

DISCM

Interrupt Processor

Executive Processor

I/O Processor

Executive modules:

$EX~l through $EX2~

NOTE: Exec modules can be made
either core- or disc­
resident when DOS-M is
generated.

xiv

JOB PR

Job Processor

File Manager

NOTE: JOBPR is always made disc­
resident when DOS-M is gen­
erated. DISCM brings it
into core when needed.

SECTION I

SYSTEM ORGANIZATION

An operating system is an organized collection of programs which increases

the productivity of a computer by providing conunon functions for all user

programs.

An operating system's function is to aid in the preparation, translation,

loading, and execution of programs. This is accomplished by an auxiliary,

quick access memory, usually a disc storage unit. The various translators,

loaders, and other software are stored permanently on the disc for use only

when needed. Since the programmer requests a compiler from the disc in-

stead of loading it by hand from paper tape, the overhead time can be signifi­

cantly reduced.

DOS-M

The Moving-Head Disc Operating System is composed of user disc files and

the DOS-M Supervisor. The Supervisor consists of two parts: a Disc Monitor

(DISCM) and a Job Processor (JOBPR). DISCM consists of modules which are

either core- or disc-resident and handle I/O transfers, requests from pro­

grams, and other supervisory tasks. The disc-resident JOBPR handles operator

and programmer directions from the batch or keyboard device.

The Moving-Head Disc Operating System affords speed and convenience. Pro­

grams can be input to DOS-M for automatic translation, loading, and execution.

For example, simple punched cards carry out load-and-go operations in DOS-M

as follows:

a. DOS-M reads the FORTRAN Compiler into core from the disc.

b. The Compiler reads the source program from an external device,

such as a card reader, and stores the relocatable binary in­

structions on the disc.

c. DOS-M reads the Loader into core from the disc.

1-1

SYSTEM ORGANIZATION

d. The Loader reads the relocatable binary programs from the disc

and stores the converted binary instructions on the disc.

e. DOS-M reads the program in from the disc and runs it.

Directives

The DOS-M Supervisor operates in response to directives input by the program­

mer or operator. Directives are strings of up to 72 characters that specify

tasks to DOS-M. They are entered in one of the two modes of DOS-M operation:

keyboard or batch. In keyboard mode, the directives are entered manually

from the teleprinter keyboard. In batch mode, directives can be input as

punched cards integrated with the source program into a job deck or from paper

tape with source in card reader.

A job is a related set of user tasks and data. In keyboard mode, the di-

rectives (tasks) are entered separately from the job data. In batch mode,

they are included in a job deck that can execute without manual intervention.

Jobs may be stacked directly upon one another in a queue.

The DOS-M directives are used for the following functions:

a Create, edit, list, dump, and purge user files (relocatable,
loader-g~nerated, source and ASCII or binary data).

Il Turn on systems programs such as FORTRAN, Assembler, etc.

a Modify the logical organization of the I/O.

Il Start and stop a job; type comments; suspend operations.

0 Translate, load and execute a user program.

a Dump core or disc memory.

0 Resume execution of suspended programs.

Il Set the date; abort programs; transfer to batch mode (from key-
board mode or batch mode); return to keyboard mode (from batch mode).

0 Check status of user disc tracks.

Il Change the subchannel of the user disc.

0 Search the various disc subchannels for specified file names.

0 Initialize (label) disc.

Il Dump a disc to another disc.

DOS-M directives are described in detail in Section II.

1-2

SYSTEM ORGANIZATION

EXEC Ca 11 s

After being translated and loaded, an executing user program communicates

with DOS-M by means of EXEC calls. An EXEC call is a JSB instruction which

transfers control to the DOS-M Supervisor.

The EXEC calls perform the following functions:

0 I/O read and write operations.

0 User file and work area read and write operations.

0 I/O control operations (backspace, EOF, etc.),

a Request I/O status.

a Change the subchannel of the user disc.

0 Request limits and status of WORK area (temporary disc storage).

0 Program completion.

a Program suspension.

0 Loading of program segments or main programs.

0 Request the time.

Section III describes EXEC calls in detail.

Input/Output

All I/O operations and interrupts are channeled through the DISCM section of

the DOS-M Supervisor. DISCM is always core-resident and maintains ultimate

control of the computer resources. (See "Softrvare I /0 Structure," Section V.)

I/O programming is device-independent. Programs written in FORTRAN, lc1.LGOL,

and Assembly Language specify a logical unit number (with a predefined func­

tion, such as data input) in I/O statements instead of a particular device.

Logical unit numbers are assigned to appropriate devices by the operator, de­

pending upon what is available. Thus, the programmer need not worry about

the type of input or output device performing the actual operation. (Sec

"Logical Unit Numbers," Section V.)

1-·3

SYSTEM ORGANIZATION

Core Layout

When DOS-M is active, the core memory is divided into a user program area

and a system area (as shown in Figure 1-1). 'The Disc Monitor program handles

all EXEC calls and, if they are legal, transfers them to the proper module

for processing. The I/O drivers handle all actual I/O transfers of infor-

mation. If some I/O drivers are disc-resident, they are read into core by

the supervisor when needed. The user program area provides space for exe-

cution of user programs. In addition, large DOS-M software modules, such as

the FORTRAN Compiler, Assembler, Relocating Loader, and Job Processor, reside

on the disc and execute in the user program area.

If the memory protect option is present, a memory protect boundary is set

between the executive area and the user program area. This boundary inter­

rupts whenever a user program attempts to execute an I/O instruction (in-

eluding a HALT) or to modify the executive area. (Instructions can reference

the switch register and overflow register.) Programs to be run in the user area

must use EXEC calls for input/output, termination, suspension, and other external

processes.

DISC USAGE
HP 2870

The controller for the moving-head disc supports up to four disc drives

(one is required). Each drive contains two discs: a fixed disc and a re-

movable cartridge. Each disc is referenced through a subchannel of the

controller. Therefore, the controller has eight subchannels (numbered 0 to

7). The channels are assigned as follows:

Disc Drive Numbers 0 1 2 3

Permanent Sub channels

Removable Subchannels

HP 2883

The controller supports one or two drives. Each drive contains a removable pack

of disc surfaces and is divided into 4 subchannels. Therefore, this controller

also has up to 8 subchaLnels. The subchannels are assigned as follows:

Disc drive 0 (subchannels 0, 1, 2, 3)

Disc drive l (subchannels 4, 5, 6, 7)

1--4

SYSTEM ORGANIZATION

Each subchannel contains 203 tracks. At least three of these tracks must be

spares. On the HP 2870, each track contains 24 sectors; on the HP 2883, 115

sectors. (A sector contains 128 16-bit words and is the smallest addressable

unit on the disc.) DOS-M normally allows two subchannels to be available to

the user: one subchannel contains the system disc and the other contains

the user disc (may be the same subchannel as the system disc). The user sub­

channel can be changed during job or program execution. In addition, an

optional system search mode is available to allow searching for user files

on any specified subchannels.

The disc storage has four parts:

1. The System Area:

Executable code created by the system generator and

hardware protected; includes DOS-M Supervisor and

other system programs.

2. The User Area (optional):

User file directory and user files (data, object

programs, source statements, etc.).

3. The Work Area:

Temporary storage for the current job.

4. Job Binary Area:

Temporary storage for relocatable object code generated

by the assembler and compilers; this is an area of

variable size and starts from the end of the disc.

All four of these areas can reside on the system subchannel. Or the user

area can be on a separate subchannel. Only one user area is available to

the system at a time. The standard user subchannel is assigned at system

generation time; this can be the system disc or another subchannel (remov­

able or permanent disc). The :UD directive and an analogous EXEC call allow

the user to temporarily change the user area to another subchannel.

Automatic track switching is provided within each subchannel.

1-5

SYSTEM ORGANIZATION

Disc Storage

System User Work Job
Area Area Area bi nary

Area

~ ~

s ystem Teleprinter
\ll

: DIRECTIVES 1--1 Output Device

~
DISC

atch Input Device MONITOR
~ ~ ~

LISTINGS
PUNCHED TAPES

B

: DIRECTIVES
SOURCE STATEMENTS I--'

DATA \V
USER
AREA (EXEC Calls)

Computer Memory

Figure 1-1. Functional Diagram of DOS-M

DOS-M Fil es

The disc provides quick access and mass storage for user files consisting

of source statements, relocatable and loader-generated object programs, and

ASCII or binary data. Each file has a name that is used to reference it.

Programs use the work area of the disc for temporary storage. The system

area contains files of systems programs, EXEC modules, a system directory,

and library subroutines (see LIST, Section II).

1-6

SYSTEM ORGANIZATION

EXTENDED FILE MANAGEMENT PACKAGE

DOS-M installations with 16K of memory can use the Extended File Management

Package (EFMP). This set of optional EXEC modules allows the user program

to set aside certain subchannels for a more powerful file structure than

that provided by DOS-M. EFMP files allow logical record size (varied under

program control), security codes, flexible buffering, sequential reads and

writes with a pointer, and detailed status information. In addition, a

utility program is available that operates in the user area. It makes these

EFMP functions, normally only usable through EXEC calls, usable from the

keyboard. For more information on EFMP, see Section VI.

DOS-M Installation

DOS-M is a series of relocatable binary software modules. Since each module

is an independent, general purpose program, the hardware and software con­

figuration of each DOS-M is quite flexible. A separate absolute program,

DSGEN, accepts the software modules and generates a configured DOS-M following

dialogue-type instructions from the user.

Certain DOS-M modules may be either core- or disc-resident. In a minimum

8K core system, all possible modules are disc-resident; but a 16K memory

allows more modules to be core-resident for greater efficiency.

An absolute copy of the configured DOS-M is stored on the disc and is pro­

tected from alteration by a hardware override switch. A bootstrap program

is used to initiate DOS-M from the disc.

1-7

SECTION II

DIRECTIVES

Directives are the direct line of corrununication between the keyboard or

batch input device and the Moving-Head Disc Operating System. The operator

enters these directives manually through the keyboard or the prograrruner

enters them on punched cards within his job deck. Directives are able to:

ll Initiate, suspend, terminate, and abort jobs,

ll Switch between keyboard and batch mode,

Il Execute, suspend, and resume programs (including

compilers, loaders, etc.),

Il Print the status of the disc tracks and the I/O tables,

Il Create and purge files of source statements, relocatable and

loader-generated binary programs, and ASCII or binary data,

Il Edit source statement files,

ll Set up source files for compilers and assemblers,

ll List and dump files, dump disc and core,

Il Declare I/O devices up and down,

ll Set the date and print corrunents,

ll Change user disc subchannel,

Il Dump a copy of a disc onto another subchannel,

ll Search specified subchannels for file names,

ll Initialize a disc, and

ll Turn off an executing program.

Il Write an end-of-file on magnetic tape.

Directives may enter DOS-M in two modes: keyboard and batch. In either

mode, all directives are listed on the teleprinter. Certain directives

are legal in one mode only; other directives are operable in both. In key­

board mode, the operator manually inputs the directives through the tele-

printer keyboard. In batch mode, the prograrruner prepares the directives on

punched cards or paper tapes and inputs them along with programs, data, etc,

in a complete job.

2-1

DIRECTIVES

Directives have the same format, regardless of the mode in which they occur:

":" followed by a directive word (first two characters are significant) and,

if necessary, a list of parameters separated by commas (maximum is 15).

For example,

: PROG, FTN ,99

When the sequence of parameters is significant, missing parameters must be

represented by commas if the following parameters are to be recognized. The

first blank character not preceded by a comma is the end of the directive.

Comments may appear after this blank; they are ignored by DOS-M. A "rubout"

anywhere in a directive deletes the entire directive, while a "control-A"

(striking the "A" key and the "control" key simultaneously) deletes the

previous character.

DOS-M has two conventions for notifying the operator that directives may be

entered. An asterisk (*) means that DOS-M is waiting for an operator atten­

tion directive (see below). An "@" with the bell signals that DOS-M is wait­

ing for further directions. (During some operations, such as editing, there

may be perceptible waits while DOS-M processes the directive.)

The operator attains control of DOS-M at any time by striking any system

teleprinter key. If the teleprinter is available, DOS-M prints an asterisk

(*) on it; if it is busy, DOS-M prints an asterisk as soon as it is free. At

this time, the operator may enter any of the following directives (describ-

ed in detail in this section) :

: ABORT

: ON

:EQ
:LU (reports only)

:TYPE

:UP
:OFF

:PAUSE

NOTE: Operator attention is disabled during the completion
phase of :EDIT and during :PURGE.

2-2

DIRECTIVES

If the operator types any other directives, DOS-M prints the following

message and returns to the executing program.

IGNORED

Some system conditions restrict allowable directives; e.g., after an I/O

ERR NR EQT# nn, the system is waiting for an :UP,nn, followed by :GO.

Under such conditions, otherwise legitimate directives will be IGNORED.

2-3

DIRECTIVES

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Format

:ABORT

Comments

ABORT carries out all the operations of an EJOB. All I/O devices are

cleared. When it returns to the batch device, DOS-M ignores all directives,

except TRACKS, OFF, BATCH, or TYPE, until it finds a new JOB directive. An

ABORT may be entered through the keyboard, even if DOS-M is in batch mode.

2-4

DIRECTIVES

BATCH

Purpose

To switch from keyboard mode to batch mode or to reassign the batch

device.

Forrna t

:BATCH,logical unit

where logical unit is the device to be used as the batch input

device.

Cornrnen ts

See "TYPE" in this section for the opposite procedure of returning from

batch mode to keyboard mode.

2-5

DI RE CTI VES

COMMENT

Purpose

To print a message on the system teleprinter.

Fonnat

:COMMENT Character String

where Character String is a message to be printed on the teleprinter.

Comments

The prograrruner may use the COMMENT directive with the PAUSE directive to

relay instructions to the operator about setting up magnetic tapes, etc.

A space (but not a corruna) is required between the directive word and the

comrnen t string .

Examples

:COMMENT PLACE MAGTAPE LABELED 11 INPUT 11 ON THE M.T. UNIT

: COMMENT PUT 11 INPUT 11 PAPERTAPE IN PHOTO READER

2-6

DIRECTIVES

DISC-TO-DISC DUMP

Purpose

i. To dump an entire disc onto another subchannel (:DD)

ii. To dump the system area (including system buffer) onto

another subchannel (:DD,X)

iii. To dump all or specified files of the user area (optionally

assigning some new file names) onto another subchannel

(:DD,U ...)

Formats

i. : DD

ii. : DD, X

iii. :DD,U[,file l[,(file A)],file 2[,(file B)], ...]

where X specifies the system area,

U specifies the user area,

file 1, file 2, specify the files to be dumped

(the entire user area if no files

are specified) ,

file A, file B, .•• specify the optional new names

for file 1, file 2, etc. (renamed

files can be intermixed with un-

changed files) .

The destination disc must be specified by a :UD directive

immediately following the :DD directive. Any other directive

will negate the :DD. (For :DD and :DD,X, the directive must

be :UD,*,n where n is not the system disc.)

2-7

DIRECTIVES

Comments

When the destination for a :DD,U is a system disc, other than the current

system, the user files are dumped in the user area following the system

files. This allows the user to dump a system and selected user files to

a single disc. (See also :IN.)

The :SS directive does not apply to :DD.

If the files of the source disc cannot completely fit on the destination disc,

DOS-M transfers as many whole files as possible and prints

TRAC # TOO BIG

If DOS-M cannot find some of the files specified to be dump, the messages

file

UNDEFINED

is printed. This does not effect dumping of the files which are defined.

If a file specified to be dumped has the same name as an existing file on

the destination disc, the message

file

DUPLICATE FILE-NAME

is printed and the file is not dumped. This does not effect dumping of

other files.

2-8

DIRECTIVES

DOWN

Purpose

To declare an I/O device unavailable for use either before or dur­

the execution of a program.

Format

: ON ,n

where n is the equipment table entry number for the device to

be set down.

Comments

The system teleprinter and the disc (logical units 1,2, and 3) cannot be

set down. :UP resets the down condition.

2-9

DIRECTIVES

FILE DUMP

Purpose

To dump a user file to a specified peripheral I/O device in

a format appropriate to the file content.

Format

:DUMP,1ogica1 unit,file[,s1[,s2]]

where logical unit is the output device to be used for the dump,

file is the user file to be dumped,

Sl and S2 are the first and last relative sectors to be

dumped.

If Sl and S2 are not given, the entire file is dumped. If only

Sl is given, then the file, starting with Sl, is dumped.

Comments

Files may be dumped on list devices or punch devices. The dump format

varies with the type of file and the type of device. See Table 2-1.

File Type

ASCII data

Binary data

Rel. binary programs

Source statements

Table 2-1

FILE DUMP Formats

Punch Device

64 characters/record

64 words/record

Relocatable binary
records (loadable)

1 statement/record

2-10

List Device

64 characters/record

8 octal words/line

8 octal words/line

1 statement/line

DIRECTIVES

Source statements are packed and do not necessarily start on sector boundaries.

Thus, if the Sl and S2 parameters are used, dumping begins with the start of

the first statement beginning in sector Sl, and ends with the last statement

beginning in sector S2 (this will probably end in the following sector).

Files in the system area cannot be dumped. Errors occur when Sl > S2, or

when either Sl or S2 is greater than the length of the file.

Examples

Where L is a source file:

: DUMP, 1 ,L

A

BB
CCC
DODD
EEEEE
FFFFFF

GGGGGGG
@

Where SSERH is a binary file:

(On the keyboard:)

: DU, 6, SSE RH, 1 , 1
@

(On the list device:)

001 0000~0 062125 072121 114535 010010 0lfb,(lJ75 010156 0H'J100
0~2400 052100 026014 026036 062fd06 042154 (lJ72023 114535
010025 010076 010077 010006 010153 114535 010033 010076
010077 010101 010117 102501 002002 026056 062006 072046
114535 010050 010123 010076 010127 010124 010006 010122
114535 010056 010076 010077 010126 010153 036006 036006
036006 036121 026003 114535 010071 010Y'76 010C/J77 010106
010120 114535 010074 010074 000006 000022 000002 000001
000000 020116 047524 020106 047525 047104 020120 051117
043522 040515 020103 047515 050114 042524 042504 000005
000011 000000 000000 000016 000002 177746 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 020040 020040 020~40 020040 020040
020040 020040 020040 000003 177777 020;J40 020501 040440
020040 041102 041040 020040 !l?41503 041440 020040 042104
042040 020040 042505 042440 020040 043106 043040 020040

2-11

DIRECTIVES

EDIT

Purpose

To perform listed edit operations on a user source file.

Format

: EDIT ,file,logical unit[,new file]

where file is the name of a source file (follows the :SS

condition) to be edited according to an edit list

(edit operations plus associated source state­

ments) input on the specified logical unit. If

new file appears, the edited source file is stored

in a new file (with the name new file) on the

same subchannel and the old file is not purged.

Otherwise, the edited source file is the updated

old file. (Follows :SS in searching for duplicate

file names.)

Position one of a source statement must not be a slash (/) or

a colon (:). The legal edit operations in an edit list are

described under Comments.

Comments

An edit list consists of several edit operations and, optionally, a series of

associated source statements (i.e., following REPLACE, INSERT). Edit opera­

tions are executed when they are entered. When using the keyboard, the oper­

ator must not enter the next operation until the previous one is completed

(completion is signaled by "@" output on the keyboard).

All edit operations begin with a slash (/), and only the first character

following the slash is required. The rest are ignored up to a comma. If a

colon (:) is encountered in column one before the end of the edit list, the

job is aborted. In the edit operation formats, the letters m and n are the

2-12

DIRECTIVES

sequence numbers of the source statements to be edited, starting with one.

Letter m signifies the starting statement, and n is the ending statements

of the operation, inclusive. In all cases, n must be greater than or equal

to m; neither can be less than one, nor greater than the last source state­

ment of the file. The m must be greater than the n of the previous operation.

All edit operations are listed on the system teleprinter as they are executed.

EDIT OPERATIONS

The following operation causes source statements m through n, inclusive, to

be deleted from the file.

/DELETE ,m[,n]

If only m is specified, only that one statement will be deleted.

By means of an edit operation, the source statements m through n can be re­

placed by one or more source statements following /REPLACE in the edit list.

I REPLACE ,m[,n]

Again, if n is absent, only m is replaced.

The format for the INSERT operation is:

/INSERT ,m

The source statements which follow /INSERT in the edit list are inserted in

the file after statement m.

In the END operation,

/END

the edit directive is terminated and DOS-M returns to its previous mode

for further directives.

2-13

Examples

If a file named SOURC contains:

Statement 1

Statement 2

Statement 3

Statement 4

Statement 5

Statement 6

Statement 7

and the EDIT directive is:

: EDIT, SOU RC, 5

DIRECTIVES

ASMB,R,B,L
NAM START

A EQU 30
B EQU 20
START NOP

LOA A
END

and the edit list, which follows :EDIT on the batch device, is:

/R,3
A EQU 100
B NOP
/D,4

/I,6

STA B
/E

then the new file equals:

Statement 1 ASMB,R,B,L
Statement 2 NAM START
Statement 3 A EQU 100
Statement 4 B NOP
Statement 5 START NOP
Statement 6 LOA A
Statement 7 STA B
Statement 8 END

2-14

DIRECTIVES

END-OF-FILE

Purpose

To write an end-of-file mark a magnetic tape.

Format

:EF[,lu]

where lu is the logical unit number of the desired magnetic

tape (default is 8).

2-15

DIRECTIVES

EJOB

Purpose

To terminate the current job normally and return to keyboard mode.

:EJOB

Comments

EJOB condenses all user discs by eliminating spaces left by non-permanent

programs. (:EJOB follows the :SS condition.} EJOB outputs a message record­

ing the total job and execution time, tnen returns to Keyboard mode. (See

STORE directive and Relocating Loader, Section IV.) All directives except

TRACKS, OFF, or BATCH are ignored until the next JOB directive.

EJOB resets logical units 1 through 9 and resets the :SS condition. EJOB

resets the user disc assignment to the standard subchannel unless the standard

is not ready or a new cartridge has been inserted (with a different label and

without a :UD directive).

When the EJOB directive occurs, a message is printed, similar to that of JOB,

giving the total rW1 time of the job and total execution time (if a time­

base generator is present). For example,

or
END JOB START RUN = 0007 MIN. 52.6 SEC. EXEC = 0001 MIN. 21 .0 SEC.

END JOB START (No TBG)

This message is printed on the system teleprinter and on the standard list

device.

2-16

DIRECTIVES

EQUIPMENT

Purpose

To list one or all entries in the equipment table.

Format

:EQ[,n]

where n, if present, indicates the one entry to be listed. If

n is absent, the entire equipment table is listed.

Comments

Each entry is output in the following format:

EQT nn CH vv DVRmm d r Uu Ss

where nn is the decimal number of the entry,

vv is the octal channel number of the device,

DVRmm is the I/O driver number for the device,

d specifies DMA if equal to D, no DMA if ~'

r specifies core-resident if equal to R, disc-resident if ~'

u is one decimal digit used for subchannel addressing,

s is the availability status of the device:

~ for not busy, and available,

1 for disabled (down) ,

2 for busy,

2-17

Example

DIRECTIVES

:EQ
EQT 01 CH 10 DVR31 D R U0 S0
EQT 02 CH 12 DVR22 D 0 U0 S0
EQT 03 CH 14 DVR05 0 R U0 S0
EQT 04 CH 15 DVR01 0 0 U0 S0
EQT 05 CH 16 DVR02 0 0 U0 S0
EQT 06 CH 17 DVR12 0 0 U0 S0
EQT 07 CH 21 DVR15 D 0 U0 S0
@

2-18

DIRECTIVES

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the

assembler and compilers. (Follows the :SS condition.)

Format

: JFILE ,file

where file is the name of a TYPE-S file on any active subchannel.

Comments

If logical unit 2 is specified as the input device when the compiler or

assembler is turned on (using :PROG) and a :JFILE has been defined, then

the compiler or assembler reads the source statements from the :JFILE.

Only one program can be translated from a file; any statements beyond the

end of the source program will be ignored. The JFILE assignment is only

changed at the end of the current job or by another JFILE directive.

It is highly recommended that the :JFILE directive immediately precede the

corresponding :PROG directive.

2-19

DIRECTIVES

JOB

Purpose

To initiate a user job and assign it a name for accounting

purposes.

Format

:JOB[,name]

where name is a string of up to five characters (starting

with an alphabetic character) which identifies

the job.

Comnents

When DOS-M processes the JOB directive, it prints an accounting message on

the system teleprinter and the list device recording the job's name (as

specified in the JOB directive), the date (as specified in the DATE directive)

and the current time (if a time base generator is present):

JOB name date TIME = xxxx MIN. xx.x SECS.
or

JOB name date (if no time-base generator)

For example,

:JOB,START
JOB START MON 6. 16.9 TIME 0013 MIN 41.6 SEC.

or
JOB START MON 6. 16.9

If an EJOB directive has not been encountered, JOB also acts as the EJOB for the

previous job. In this case, all actions of the EJOB are carried out, except for

returning to keyboard mode from batch mode, before starting the new job.

Only the first two characters of JOB are significant. DOS-M skips everything

up to the comma.

2-20

DI RE CTI VES

LIST

Purpose

To list file information recorded in the user or system director­

ies. To list and number the contents of a source file sequential-

ly statement-by-statement.

Format

(System)

(User)

:LIST,X,1ogica1 unit[,file
1

, ... J (Unaffected by :SS)

:LIST,U,1ogica1 unit[,file
1

, ... J

(Lists the specified directory entries from all the

subchannels defined by :SS.)

where X specifies the system area directory, and

U specifies a user area directory,

logical unit specifies the list device, and

file
1

, ... names the entries to be listed (if none is

specified, the entire directory is listed).

(Source) :LIST,S,logical unit, file[,m[,n]] (follows :SS)

where file names the source file to be listed on the

Comments

logical unit specified.

m and n, if present, specify the first and last statements

to be listed. If n is absentr then all state-

men ts from m on are 1 is ted. If neither appear,

then the entire field is listed. The restrictions

for m and n are the same as those for the EDIT

directive.

DIRECTORY LISTING OUTPUT

The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR. P-B

SUBCHAN = n (This is printed when :LIST switches to the next subchannel
under :SS.)

2-21

DIRECTIVES

The following lines are then printed:

name type sctrs trk sec lowerp upperp lowerb upperb entry libr p-b

where name identifies the file,

type tells what kind of file name is,

AD ASCII data

BO = binary data

RB = relocatable binary program

SS = source statements

l
disc resident I/O driver {

User File Only

DR =
LS =
SR =
XS =

library (

sys tern core-resident program J System File Only

UM =
us =

supervisor module l
user main program

user program segment
Either File

sctrs is the number of sectors in the file,

trk is the track origin of the file,

sec is the starting sector of the file within the track specified.

The information below does not appear for types AD, BD, LB, RB and SS.

lower is the lower limit (octal) of the program,
p

upper is the upper limit (octal) of the program,
p

lowerb is the lower limit (octal) of the program base page links,

upperb is the upper limit (octal) of the program base page links,

entry is the absolute octal address where execution begins,

libr is the beginning absolute octal address of the first library

routine included in the program, and

p-b is equal to T if the file is temporary and will be purged

by :EJOB unless stored by :ST,P.

If the requested file does not exist, a message appears,

file UNDEFINED

2-22

DIRECTIVES

SOURCE LISTING FORMAT

Each source statement is preceded by a four-digit decimal sequence number.

If the requested file is not a source file, a three-line message appears,

file

ILLEGAL
RE-ENTER STATEMENT ON TTY

The list is terminated by the message

**** LIST END ****

Examples

(On the keyboard:)

:LI,U,6
@

(On the list device:)

NAME TYPE SCTRS
SUBCHAN=4
EX9 SS 00080
EXM RB 00063
BBB SS 00001
SRCH RB 00~03
SSERH UM 00~H"2
ASCII AD 00200
BINRY BO 00300

DISC ORG PROG LIMITS

T001 000
T004 008
T006 023
T007 000
T007 003 10000 10271
T007 005
T015 013

B.P. LIMITS ENTRY

00713 00713 10000

dOTE: T on the "PB" column means that the entry is
tcmporar~1.

2-23

LIBR. PB

10271 T

DIRECTIVES

(On the keyboard:)

:ST,P (To make all temporary files permanentr)
@

:Ll,U,6
@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR. PB
SUBCHAN=4
EX9 SS 0~080 T001 000
EXM RB 00063 T004 008
BBB SS 00001 T006 023
SRCH RB 00003 T007 000
SSERH UM 00002 T007 003 10000 10271 00713 00713 10000 10271
ASCII AD 00200 T007 005
BINRY BD 00300 T015 013

NOTE: "PB" no longer equals "T."

(On the keyboard:)

:LI,S,6,EX19,926,936

@

(On the list device:)

ASMB,L,R,X,C,N,B
HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON
NAM DUMRX,6
ENT $LIBR,$LIBX
SPC 2
CALLING SEQUENCES: ENTRY TERMINATION

PRIVILEGED . JSB $LIBX

DOS
0926
0927
0928
0929
0930
0931 *
0932 *
0933 *
0934 *
0935 *
0936 *

JSB $LIBR
NOP DEF (PROGRAM ENTRY POINT)

**** LIST END ****

2-24

DIRECTIVES

LOGICAL UNIT

Purpose

To assign logical unit numbers (4 through 63) for a job or to

list the device reference table (logical unit assignments).

Format

:LU[,n
1
[,n)J

where n
1

and n
2

, if both present, assign the device recorded in

equipment table entry n
2

to logical unit number n
1

(both

are decimal numbers). If only n
1

is present, then the

equipment table entry number (see EQUIPMENT directive)

assigned to logical unit number n
1

is output. If no

parameters appear, the entire device reference table

is printed.

Comments

Assignments made by :LU for logical units 4 through 9 are only valid during

the current job. Assignments for 10 and above remain after EJOB. At the

beginning of each new job, the device reference table for the first nine

logical units is reset to the assignments given when the system was configured.

This insures a standard I/O organization for all users.

Example

:LU
LU01 EQT03
LU~2 EQT01
LU03 EQT01
LU04 EQT05
LU05 EQT04
LU06 EQT06
LU07 EQT07
LU08 EQT02
@

2-25

DIRECTIVES

PAUSE

Pursose

To interrupt the c~rrent job and return to the keyboard for

operator action.

Format

:PAUSE

Comments

PAUSE may be entered through the keyboard even when DOS-M is in batch mode.

PAUSE suspends thP current job until the operator inputs a GO directive.

During this time the operator may mount magnetic tapes or prepare I/O devices.

(A series of COMMENT directives or a remark in the PAUSE directive itself

can be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS-M to the job in the previous mode.

2-26

DIRECTIVES

PROGRAM DUMP

Purpose

To request that a user program be dumped when it completes

execution. Two directives are provided: PDUMP for dumping

on a normal completion, and ADUMP for dumping when the pro­

gram aborts.

Format

:PDUMP[,FwA[,LWA]][,B][,LJ
:ADUMP[,FWA[,LWA]][,B][,LJ

where FWA is the first word address, relative to the program

origin,

B means dump the base page linkage area of the program,

and,

L means dump the library subroutines used by the program.

FWA and LWA are octal numbers that specify the limits of the

program being dumped.

If LWA is missing, the entire program, starting with FWA, is

dumped.

B alone dumps all the main program, plus base page

linkages, but not the library routines.

L alone dumps only the library routines.

If no parameters are given, everything is dumped

2-27

DIRECTIVES

Comments

The dump directives, PDUMP and ADUMP, must precede the RUN or PROG request

in a job. They implicitly refer to the next program to be executed. DOS

sets a flag when it encounters either PDUMP or ADUMP, then checks the flag

the next time a program is executed. Only one of the requests will be

honored, depending upon whether the program runs normally or is aborted.

These flags are cleared when a program terminates. Any parameter following L

is ignored. If FWA is greater than LWA, a message is printed.

LIMIT ERROR
RE-ENTER STATEMENT ON TTY

The main program and library subroutines are dumped eight octal words per

line, along with the octal starting address for that line. For example,

adr
8 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

ad
8

+10
8

wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

If present, the base page dump follows the main program and library. Base

page linkages exist for page boundary crossings and subroutines. For each

line, the starting address appears first, followed by four pairs of octal

numbers. The first number of each pair records the content of the base page

word (an address elsewhere in core). The second number of each pair records

the contents of the address specified by the first item. If the first item

is the address of a subroutine, then the second item contains the last

address from which the subroutine was called. For example,

adr

adr+4
8

pair-1 pair-2 pair-3 pair-4

i tem-1

item-1

item-2

item-2

i tem-1

i tem-1

item-2 item-1

item-2 item-1

item-2

item-2

i tem-1

i tem-1

NOTE: :OFF before a program executes clears the dump flags
:OFF during program execution causes an abort dump.
:OFF during a dump terminates the dump.

2-28

i tem-2

item-2

Example

:ADUMP,015,B

:RUN,PRG9,6
LU 012140
ABRT 012140
(Page Eject)

(Main program dump)

12000 160001 002002 130573
12010 130575 170576 006004

(Page Eject)

(Base page dump)

00570 010137 002045 010711
00574 017641 000000 017015
00600 017650 000000 017615
00604 017637 000573 017571
00610 017562 021121 017534
00614 01 7544 037626 017546

DIRECTIVES

(Set up dump flag)

(Run program)

(Program aborted)

170574 006004
160001 170577

003237 010763
000400 017641
000000 017664
177205 017563
021122 017536
037626 017673

2-29

160001 002003 026012
006004 160001 170600

002045 017014 000300
000406 01 7601 000000
000000 017662 000573
001204 017714 017715
021122 017633 160656
000000 017605 000040

DIRECTIVES

PROG

Purpose

To turn on (i.e., load from the disc and begin executing) a pro­

gram from the system area or programs from the user file which

were generated through the DOS-M Relocating Loader.

:SS condition in searching for the program.)

(Follows the

Format

where name denotes a system program, such as FTN for the DOS-M

FORTRAN Compiler, ASMB for the DOS-M Assembler, LOADR

for the DOS-M Relocating Loader, or ALGOL for the

RTE/DOS ALGOL Compiler. A user program is specified

via the file name assigned in the DOS-M Relocating

Loader.

Comment

P
1

through P
5

are optional parameters which DOS-M

transfers to the program named. P
1

through P
5

must be positive integers less than 32767. The pro­

gram must retrieve the parameters immediately. This

procedure is described under :GO.

Consult Section IV for the parameters required by FTN, FTN IV, ASMB, ALGOL,

and LOADR. Additional programs may be added at system generation time if

desired.

NOTE: User programs can be run using :PROC. This may be useful when
the program needs parameters. DOS-M first searches the user
files for the program, then the system files.

Examples
:PROG,FTN,2,99
:PROG,ASMB,2,6,4

2-30

DIRECTIVES

PURGE

Purpose

To remove a user file from the user file area.

Format

where file
1
,file

2
, ... (up to 15 file names or 72 characters per

directive) designate files in the user area. These

are purged from the user area. If a file cannot be

found, a message is printed on the keyboard:

FILE UNDEFINED

If no file names are given, all temporary files are purged.

Comments

Purge follows the :SS condition. After the files are purged from the disc,

the remaining user area files are repacked for efficiency. If the end of

the user area moves below a track boundary during the purge, the work area

becomes a track larger. As each file is purged, DOS-M prints its name on

the teleprinter.

IMPORTANT NOTE: Operator attention is disabled during :PURGE.

2-31

DIRECTIVES

Example

ORIGINAL CONTENTS OF USER FILE:

DIRECTIVE:

OUTPUT:

Fl,F2,F3,F4~ FLONG, and F5 (at least)

:PURGE,FLONG,Fl,F2,D3,D7,F3,F4,F5
FLO NG
Fl
F2
03 UNDEFINED

07 UNDEFINED

F3
F4

F5

The fastest way to purge all files of a single disc is to use :IN,*.

2-32

DIRECTIVES

RUN

Purpose

To run a user program. (Follows the :SS condition.)

Format

:RUN,name[,time][,N]

where name is a user file containing the desired program,

Comments

time is an integer specifying the maximum number of minutes

the program may run (set to five minutes if not

specified). DOS-M ignores time if a time-base generator

is not present.

N, if present, tells DOS-M to allow the program to continue

running even if it makes EXEC calls with illegal re­

quest codes.

Programs which have been relocated during the current job but not stored (see

STORE directive) permanently in a user file, may be run using this directive.

If the program executes longer than the time limit, the current job is abort­

ed and DOS-M scans to the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by

any illegal request codes. The N option is provided so that programs can be

written and tested on DOS-M ultimately to execute with other HP software

which does not have the same request codes. (See Appendix C, RELATION TO

OTHER SOFTWARE.)

Example

:RUN,ROUT,15

executes program ROUT up to fifteen minutes not allowing illegal request codes.

2-33

DIRECTIVES

SECTOR DUMP

Purpose

To dump any specified sector or sectors of the current

user disc on the standard list device in either ASCII

or octal format.

Format

:SA,track,sector[,number]

:SO,track,sector[,number]

(ASCII)

(Octal)

where track and sector give the starting disc address for the

dump, and

Comments

number gives the number of sectors to be dumped. If

number is absent, only one sector is dumped. All

three parameters are decimal numbers.

The ASCII dump format (:SA) is 64 characters per record. The octal dump

format (:SO) is eight octal numbers per line. Two ASCII characters equal

one computer word (also represented by one octal number). Although :SA

dumps 64 characters per record, these do not necessarily appear on one

line since the binary numbers are converted to ASCII characters, some of

which might be linefeeds or returns.

2-34

Example

001

(On the keyboard:)

:S0,0, 1
@

(On the list device:)

000000 06 7767 017570
017613 064120 007004
010072 073773 053774
160001 001727 013733
067304 044066 037310
033774 1 70001 063773
067304 160001 073766
006004 160001 033773
003004 1 70001 067304
033774 001727 001723
067303 017606 002400
06 7761 006003 027540
067762 006003 027546
067777 006003 002004
050175 064115 074200
000000 057766 12 75 70

DI RE CTI VES

067744 077743 017613 017613 017613
077310 064117 044055 160001 044051
077761 053775 077762 077304 044056
073305 050060 027460 053763 027445
027415 027505 044052 160001 023773
073302 002004 073303 063774 073773
164000 017570 063305 050060 027440
170001 006004 063730 170001 006004
077311 027440 060154 001722 013765
070154 063761 067302 017606 063762
06 7774 017606 063311 067775 017606
044055 160001 023774 033302 1 70001
023775 033303 170001 063776 001200
064155 070155 054175 070175 006400
047740 074157 064175 074161 124003
037766 163766 002021 027571 013764

2-35

DI RE CTI VES

SYSTEM SEARCH
(Optional Directive)

Purpose

To specify a list of disc subchannels to be searched for file

names; the :SS condition applies to all EXEC calls and direc-

tives that require a file search. (No check is made for existing

duplicate file names during searches; the first file found is

used.)

Format

:SS

:SS,99

Comments

All active subchannels are searched,

starting with the current user sub­

channel, then continuing from the

highest to the lowest number.

Where n
1

,n
2

••• are subchannel numbers.

The current user subchannel is searched

first, then the subchannels specified,

starting with the lowest number.

Only the current user subchannel is

searched. This is the default condition.

Every job starts out in this condition.

The :SS directive can only be used if it was specifically allowed during

system generation. If the operator answers YES to the question

ALLOW :SS?

then :SS directives will be allowed. Otherwise, they are not, and any :SS

directive will cause the following message:

BAD CONTROL STATE.

2-36

DIRECTIVES

If a file search results in the file being found, the current user sub­

channel is changed to the subchannel containing the file. If the file was

not found, the current user subchannel is restored to its previous assign­

ment. The LIST, U directive is an exception: this directive does not

stop after it finds the file; it continues to look for duplicate entries.

When the LIST search is complete, the user subchannel is always restored.

However, if a search is interrupted before completion, the current user

disc may be on any subchannel. (This should be checked with a :UD directive.)

More than one :SS can occur during a job. The job starts in :SS,99 con­

dition until a different :SS directive is issued. Each :SS directive re­

mains in effect until another is issued. :SS directives do not apply to

file searches initiated by the Relocating Loader or to disc dumps initiated

by the :DD directive.

Whenever the user subchannel assignment is changed (except by a running

program), the system prints a message:

SUBCHAN = n

2-37

DIRECTIVES

STORE

Purpose

To create a user file on the disc and assign it a name. The

STORE directive can create relocatable object program files

(type-R), loader-generated object program files (type-P) ,

source statement files (type-S), ASCII data files (type-A),

and binary data files (type-B).

for duplicate file names.)

(Follows :SS in checking

Format

The format varies according to what type file is being created.

See Comments below for details:

'l'YPE-R

TYPE-P

TYPE-S

TYPE-A

TYPE-B

: STORE, R, file [,logical unit]

:STORE,P[,name
1

,name
2

, ... J
:STORE,S,file,logical unit

:STORE,A,file,sectors

:STORE,B,file,sectors

NOTE: The "Control @" should not be used in file names.

Comments

TYPE - R FILES

The directive format is:

:STORE,R,file[,logical unit]

where file is a name consisting of five characters or less.

2-38

DIRECTIVES

A user file is created under this name, and relocatable binary programs are

read into it from the logical unit specified or from the job binary area of

the work tracks if none is specified. The job binary area remains as it

was before the STORE directive. (See Section IV, IXJS-M FORTRAN and DOS-M

ASSEMBLY LANGUAGE.)

If DJS-M comes to an end-of-tape, it asks:

DONE?

If there are more tapes, the operator places the next tape in the reader

and replies NO; ot~erwise, he answers YES.

The user should not assign any file names that will be used as program names

as this will make loading impossible. The file may be input to the DOS-M

Relocating Loader for relocation into an executable program.

DOS-M RELOCATING LOADER.)

Examples

:STORE,R,RINE

(See Section IV,

(Stores all of the relocatable programs from the job binary area into the

file RINE created for that purpose.)

:STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the standard input device,

into the file JUGG.)

2-39

DIRECTIVES

TYPE - P FILES

The directive format is:

:STORE,P[,name
1

,name
2

,]

where name
1

,name
2

••• are programs that the DOS-M Relocating Loader had relo­

cated into executable format during the current job. Up to

14 programs per directive are allowed. If none are speci­

fied, all programs loaded during the current job are stored.

DOS-M finds these temporary programs in the user file and

converts them to permanent user files; the program name

automatically becomes the file name.

Programs loaded during the current job but not stored as files (as shown

above) may be executed normally (RUN or PROG directive) and appear in the

user directory (LIST directive). At the end of a job, however, they are

purged from the directory unless they have been converted to user files by

a STORE,P directive.

Examples

: STORE, P

(Changes all programs loaded during the current job using the Relocating

Loader into permanent user files.)

:STORE,P,ARITH,MATH,TRIG,ALGEB

(Searches for the programs listed and makes them permanent user files.)

2-40

DIRECTIVES

TYPE - S FILES

The directive format is:

:STORE,S,file,logical unit

where file is the name of the user file to be filled with source statements

from the logical unit specifi_ed. File must not duplicate a

name already present in the user or system files. The source

statement input must be terminated by a double colon (::). If

the :: is omitted, DOS-M stores the succeeding data on the disc

as if it were source statements.

If DOS comes to an end-of-tape before finding the .. ' it asks

DONE?

If there are more tapes, the operator replies NO: otherwise, he

answers YES.

When IX)S-M completes the STORE, it prints

nnnn LINES

where nnnn is the number of statements stored.

Example

:STORE,S,SOURC,5

(Reads source statements from the standard input device and stores them

in a new file SOURC.)

2-41

DIRECTIVES

TYPE - A and TYPE - B FILES

The directive format is:

:STORE,type,file,sectors

where type is either A (for ASCII character data) or B (for binary data), and

file is the name assigned to a file containing the number of sectors

requested. These requests are made prior to executing a program

to reserve a file area; no data is involved. The program may

store and retrieve data from the file through a call to EXEC.

It is the programmer's responsibility to store the right kind of data in the

file. The EXEC call must specify the file name and the relative sector with­

in the file. DOS-M checks that the file name exists and contains the sector

specified.

Example

:STORE,A,ASCII,20

(Creates a file name ASCII,20 sectors in length. A sector equals 128 words.)

2-42

DIRECTIVES

TRACKS

Purpose

To print the next available track on the current user disc.

Format

:TRACKS

Comments

The number of the first track beyond the end of the current user area,

followed by the number of faulty tracks that have been replaced by spares.

Tracks are replaced by spares when parity errors occur on read or write.

Examples

The following is an example in which no faulty tracks are reported.

(INPUT)

(OUTPUT)

: TRACKS

NEXT AVAIL TRACK = 0010

@ (End of directive processing)

2-43

DIRECTIVES

In this example, the system reports that 2 tracks have been replaced by

spares.

(INPUT)

(OUTPUT)

: TRACKS
NEXT AVAIL TRACK= 0012
BAD = 2
@ (End of directive processing)

In this example, the system reports that there are no more work tracks

available.

(INPUT)

(OUTPUT)

:TRACKS
NEXT AVAIL TRACK = NONE
@ (End of directive processing)

2-44

DIRECTIVES

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Comments

Control is returned to the teleprinter keyboard. TYPE may be entered

through the batch device or keyboard device; but when it is entered from

the keyboard, DOS-M waits until the current executing program is completed

or is aborted before returning to keyboard mode. If TYPE is entered while

already in keyboard mode, the directive is ignored.

2-45

DIRECTIVES

CHANGE USER DISC

Purpose

To change the subchannel assignment for the user disc.

Format

:UD[,[1abe1][,n]]

where label is a six-character disc label (* for an unlabeled

disc).

n is the subchannel.

Comments

Discs are labeled by the :IN directive.

Each form of the :UD directive has a different purpose:

Example

:UD
(without label or
s ubchannel)

: UD, ,n
(no label)

:UD,label,n

Ac ti on

Interrogates the current user disc subchannel

and prints its label on the system teleprinter:

SUBCHAN = n

LBL = label (or UNLBL)

If n is labeled, DOS-M prints:

LBL = label (or UNLBL)
No assignment is made.

If n is labeled with the specified label,

DOS-M assigns n as the user disc.

If n is unlabeled or has a different label,

DOS-M prints:

LBL = label (or UNLBL)
Operator can then reissue :UD,label,n with

the correct label.

2-46

DIRECTIVES

Example Action

:UD,label DOS-M searches for the label, starting with

the highest number subchannel (determined at
(no subchannel)

:UD,*,n

:UD,*

system generation). If label is found, DOS-M

makes it the user disc and prints:

SUBCHAN = n

If label is not found, DOS-M prints:

DISC NOT ON SYS

If n is unlabeled, DOS-M assigns n as the

user disc.

If n is labeled, DOS-M makes no assignment

and prints:

LBL = label

Assigns the highest number unlabeled disc as

the user disc and prints:

SUBCHAN = n

If there are no unlabeled discs, DOS-M prints:

DISC NOT ON SYS

If the :UD directive specifies a subchannel with an incorrect system pro­

prietary code (see Appendix A), DOS-M still makes the assignment, and prints:

TSB DISC or ??? DISC

If the :UD directive specifies a subchannel whose system generation code

(see Section VI) does not match that of the current system disc, DOS-M still

makes the assignment but prints:

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

The changes made by :UD are only temporary; the user disc is reset at the

end of each job.

NOTE: Before executing a :DD or :DD,X to a TSE or ??? DISC,
the disc should be initialized with :IN; otherwise,
bad tracks may be reported erroneously.

2-47

DIRECTIVES

UP

Purpose

To declare an I/O device ready for use.

Forrna t

:UP,n

where n is the equipment table entry number corresponding to the

device.

Corrrnents

The :UP directive (followed by a :GO) is usually used in response to the

following messages from DOS-M:

I/0 ERR ET EQT #n

I/0 ERR NR EQT #n

I/0 ERR PE EQT #n

where ET indicates end of tape,

NR indicates device not ready,

PE indicates parity error, and

n is the equipment entry number.

If you enter the incorrect n, DOS-M replies by printing out all the down

devices.

NOTE: The directives in the rest of this section pertain to
operation in the keyboard mode only.

2-48

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

DATE

To set the date and time for accounting purposes whenever DOS-M

is started up.

Format

:DATE,day[,hour,min]

where day is any string of ten or less characters (commas not

permitted) chosen by the operator (such as

7/10/69,10.JULY.69, etc.);

Comments

hour and min are the current time in hours and minutes on a

24-hour clock. If not given or time-base generator is

not present, they are set to zero.

The DATE directive is legal only following a start-up procedure. The

directive is not accepted any other time.

Examples

:DATE,7/10/69,12,23
:DATE,WEDNESDAY,7,45
:DATE,10JULY1969

2-49

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

GO

To resume a program that has been suspended, and optionally, to

transfer up to five parameters to that program.

Format

where P
1

through P
5

are optional parameters and must be decimal

values between ~ and 32767.

Comments

When a program suspends itself (see Section III, PROGRAM SUSPEND EXEC CALL),

it is restarted by a GO directive. Upon retun1 to a suspended program, the

initial address of the five parameters is located in the B-register. A

FORTRAN program calls the library subroutine RMPAR to transfer the parameters

to a specified 5-word array. The first statement after the suspend call, in

a FORTRAN program, must be the call to RMPAR. For example,

DIMENSION I(5)
CALL RMPAR (I)

An assembly language program should use the B-register upon return from the

suspend to obtain and save the parameters prior to making any EXEC request

or I/O request.

2-50

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

INITIALIZE

To label or unlabel the current user disc.

Format

: IN ,label

where label is a six-character name to be written on the disc

or "*" which means unlabel the disc. (The label

should not contain a "Control@.")

Comments

If the user disc is already labeled, DOS-M prints:

DOS or TSB or ??? LABEL nnnnnn (nnnnnn is existing label)

OK TO PURGE?

The operator must respond with

YES

to actually execute the directive, or

NO

to leave the disc unchanged.

If the label equals"*", the user files also are purged.

If the current user disc is labeled SYSTEM and is not hardware protected

(which means it was created by a :DD,X), the system area is destroyed and

any files are moved down to low disc.

NOTE: If the disc labeled SYSTEM is hardware pro­
tected, the computer performs a HALT 31 and
the new label is not assigned.

2-51

DIRECTIVES

Labeling a disc eliminates any old label on the disc but does not eliminate

the directory or files on the disc.

Unlabeling a disc also purges the directory.

:IN always changes the system generation code and system proprietary code

to that of the current system. :IN can prepare discs for use by DOS-M

that were formatted by a diagnostic or other software.

2··52

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

OFF

To abort the currently executing user program of system

operation without terminating th2 job.

Format

:OFF

Comments

:OFF returns the system to keyboard mode.

OFF can be used to terminate undesired lists, edits, disc-to-disc dumps,

program loops, loader operations, assemblies, and compilations.

:OFF cancels any pending :DD, :AD, or :PD directives, unless a program is

running, in which case, a pending :ADUMP is executed.

2-53

SECTION Ill

EXEC CALLS

Using EXEC calls, which are the line of communication between an executing

program and DOS-M, a program is able to:

Il Perform input and output operations,

Il Request status of I/O devices

Il Determine availability of work area tracks,

a Terminate or suspend itself,

Il Load its segments,

Il Search for file names,

Il Obtain the time of day, or

Il Change the user disc subchannel.

An EXEC call is a block of words, consisting of an executable instruction

and a list of parameters defining the request. The execution of the

instruction transfers control to DOS-M. DOS-M then determines the type

of request (from the parameter list) and, if it is legally specified,

initiates processing of the request. The executable instruction is a

jump subroutine (JSB) to EXEC.

In FORTRAN, EXEC calls are coded as CALL statements. In ALGOL, procedure

calls are used. In Assembly Language, EXEC calls are coded as a JSB,

followed by a series of parameter definitions. For any particular call,

the object code generated for the FORTRAN CALL Statement and the ALGOL

procedure call is equivalent to the corresponding Assembly Language object

code.

This section describes the basic formats of FORTRAN, ALGOL and Assembly

Language EXEC calls, then each EXEC call is presented in detail.

3-1

EXEC CALLS

FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSB EXEC
DEF *+n+l

DEF P1

l DEF P n
return point

EXEC CALLS IN ALGOL

(Used to link program to DOS-M)

(Transfer control to DOS-M)

(Defines point of return from DOS-M, n
is number of parameters; may not be an
indirect address; must be the location
immediately following the last parameter
address)

(Define addresses of parameters which
may occur anywhere in program; may be
multi-level indirect)

(Continue execution of program)

(Actual parameter values)

In ALGOL, certain conventions must be followed in making EXEC calls. First,

since EXEC is external to the program it must be declared a CODE procedure.

Second, parameters that are going to be changed must be declared "name" and

those that are not to change must be VALUE parameters. Third, when arrays

are passed as parameters, the first element of the array (not the name) must

be passed as an INTEGER type "name". Fourth, since ALGOL requires that the

format of each procedure call be defined, a program must declare a dummy ex-

ternal procedure for each type of EXEC call it makes. (These dummy procedures

must be compiled as separate procedures to provide proper Linkage in the

Loader.) 3-2

EXEC CALLS

ALGOL Example

See Appendix F for an example of an ALGOL program making an EXEC call

through an external CODE procedure.

FORMAT OF THE FORTRAN CALLING SEQUENCE

In FORTRAN, the EXEC call consists of a CALL Statement and a series of

assignment statements defining the variable parameters of the call:

where P
1

through Pn are either values or variables defined

elsewhere in the program. Variables must begin with

Example

a letter I through N, since they are integer variables.

CALL EXEC (7)

or

IRCDE = 7
CALL EXEC (IRCDE)

Equivalent calling sequence

Some EXEC call functions are handled automatically by the FORTRAN compiler

or special subroutines. (Refer to "FORTRAN," Section IV, DOS-M PROGRAMMING,

and the specific EXEC calls in this section.)

3-3

EXEC CALLS

READ/WRITE

Purpose

To transfer information to or from an external I/O device or the

work area of the disc. (IXJS-M handles track switching automatically.)

Assembly Language

EXT EXEC

JSB
DEF

DEF
DEF
DEF
DEF
DEF
DEF

EXEC
*+5 (or 7)

RCODE
CONWD
BUFFR
BUFFL
DTRAK
DSECT

(return point)

RCODE DEC
CONWD OCT
BUFFR BSS
BUFFL DEC
DTRAK DEC
DSEC DEC

1 (or 2)

conwd

n

n (or -2n)

f

g

(Transfer control to IXJS-M)

(Point of return from DOS-M; 7 is

for disc request)

(Request code)

(Control information)

(Buffer location)

(Buff er length)

(Track number-disc transfer only)

(Sector number-disc transfer only)

(Continue execution)

(l=READ, 2=WRITE)

(conwd is described in Comments)

(Buffer of n words)

(Same n; words (+) or characters (-))

(Work area track number, decimal)

(Work area sector number, decimal)

3-4

EXEC CALLS

FORTRAN

I/O transfers to regular devices are prograrmned by standard

FORTRAN READ and WRITE Statements. I/O on the work area of

the disc is done with a subroutine BINRY, described in the

Cormnents, or the FORTRAN equivalent of the EXEC call:

CALL EXEC (!CODE, ICON, IBUF, IBUFL, ITRAK, I SECT)

Comments

READ/WRITE EXEC calls carry out I/O transfers including those on the

work area of the disc. (See FILE READ/WRITE EXEC CALL.)

CONWD

The conwd, required in the calling sequence, contains the following fields:

¢ ~ W K V M LOGICAL UNIT #

BITs_j1_s ___ 1_4 ___ 1_1_3~l __ 1_2 __ 1_1 ___ 1_¢ ____ 9_,__s __ .__7--ii..-6__.. __ s ___ 4 ____ 3 ____ 2 ____ 1 ___ ¢__,

Field
w

Function
If 1, tells DOS-M to return to the calling program after

starting the I/O transfer. If W = ~' DOS-M waits until

the transfer is complete before returning.

K Used with keyboard input, specifies printing the input

as received if K = 1. If K = ¢, "no printing" is specified.

V Used when reading variable length records from punched

tape devices in binary format (M = 1, below). If V = ~'
the record length is determined by buffer length. If

M

V = 1, the record length is determined by the word count

in the first non-zero character which is read in.

Determines the mode of data transfer. If M ¢, transfer

is in ASCII character format, and if M = 1, binary format.

(Disc is always binary.)

3-5

EXEC CALLS

BINRY

User FORTRAN programs call the FORTRAN disc read/write library routine,

BINRY, to accomplish I/O in the work area. The user must specify: an array

to be used as a buffer, the length of the buffer in words (equal to the

number of elements in an integer array, double that for a real array), the

disc logical lU1it, track number, sector number, and offset in words within

the sector. (If the offset equals ~' the transfer begins on the sector

bolU1dary. If the offset equals N, then transfer skips N words of the sector

before starting). BINRY has two entry points, BREAD and BWRIT, for read

and write operations respectively. An example below gives the calling pro­

cedure.

or

DIMENSION IBUF(l~), BUF(2~)

LUN = 2

ITRI< = 12

ISECT = 63

IOFF = ~
CALL BREAD (BUF, 4~, LUN, ITRK, ISECT, IOFF),

CALL BWRIT (IBUF, l~, LUN, ITRK, ISECT, IOFF)

Waiting and No Waiting

If the program requests the no waiting option in the conwd, it can check for

the end of the I/O operation with the I/O STATUS EXEC call. In the Assembly

Language calling sequence, the buffer length can be given in words (+) or

characters (-). When the transfer is complete, the amount actually trans­

ferred can be learned by the same status call. A positive number of words

or characters, depending upon which were originally requested, is returned.

If the WAIT option is used, DOS-M returns the number of transmitted words

or characters to the B register.

NOTE: When doing "no waiting" I/O and attempting to load program
segments: 1. Under :RUN DOS-M waits for all I/O to complete
before loading the segment; and 2. under :FROG, DOS-M does
not wait.

3-6

EXEC CALLS

FILE READ/WRITE

Purpose

To transfer information to or from a file on the user disc; the

file must be referenced by name. (The :SS condition is followed.)

Assembly Language

EXT EXEC

RCODE
CONWD
BUFFR
BUFFL
FNAME

JSB EXEC
DEF *+7
DEF RCODE
DEF CONWD
DEF BUFFR
DEF BUFFL
DEF FNAME
DEF RSECT
return point

DEC 14 or 15
OCT conwd

BSS n

DEC n or -2n

ASC 3,xxxxx

RSECT DEC m

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Control information)

(Buffer location)

(Buffer length)

(File name)

(Relative sector within file)

(Continue execution)

(14 = READ, 15 = WRITE)

(See Comrnen ts 1 READ/WRITE EXEC CALL.)

(Buffer of n words)

(Same n; words (~) or characters (-))

(User file name ~ xxxxx)

(Relative sector number)

3-7

FORTRAN

DIMENSION IFILE (3)
IFILE(l) = xxxxxB

IFILE(2) xxxxxB

IFILE(3) = xxxxxB

IRCD = 14 (or 15)
ICNWD = xxxxxB

DIMENSION IBUF(lO)

EXEC CALLS

(First two characters of file name)

(Second two characters)

(Last character and blank)

(Request code)

(conwd)

CALL EXEC (IRCDE, ICNWD, IBUF, 10, IFILE, 0)

Comments

See the Comments under READ/WRITE EXEC CALL for a description of the conwd

fields needed in the above calling sequences.

To read or write on the first sector of a file, m=¢; for the last sector,

m=nurnber of sectors in the file -1. To determine the size of a file, use

the SEARCH FILE NAMES EXEC call.

Any type of file may be read, but only ASCII or binary data files may be

written.

If the DOS-M installation is likely to have more than one user disc, the

program should use the CHANGE USER DISC EXEC call without a subchannel

specified to check whether the correct user disc is currently assigned.

Alternatively, the user can use an :SS directive to set up a system search

condition for referencing files on many subchannels.

3-8

EXEC CALLS

1/0 CONTROL

Purpose

To carry out various I/O control operations, such as backspace,

write end-of-file, rewind, etc.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4(or 3)

DEF RCODE
DEF CONWD
DEF PARAM
return point

RCODE DEC 3
CONWD OCT conwd

PARAM DEC n

FORTRAN

(Transfer control to DOS-M)

(Point of return from OOS-M)

(Request code)

(Control information)

(Optional parameter)

(Continue execution)

(Request code = 3)

(See Comments)

(Required for some control functions;

see Comments)

Use the FORTRAN auxiliary I/O statements or an EXEC calling sequence.

IRCDE = 3
ICNWD = conwd

IPRAM x

(Request code)

(See Comments)

(Optional; see Comments)

CALL EXEC (IRCDE, ICNWD, IPRAM)
CALL EXEC (IRCDE, ICNWD)

3-9

EXEC CALLS

Comments

CONWD

The control word value (conwd) has two fields:

w FUNCTION CODE (see below) LOGICAL UNIT NUMBER

BITS 14 13 I 12 11 10 9 8 7 6 5 4 3 2 1

If W = 1, DOS-M returns to the calling program after starting the control

request.

If W = 0, DOS-M waits until the control request is complete before returning.

Function Code

000
001

002

003

004

005

006

007

010
011

012

177

(Octal) - Action

Unused

Write end-of-file (magnetic tape)

Backspace one record (magnetic tape)

Forward space one record (magnetic tape)

Rewind (magnetic tape)

Rewind standby (magnetic tape)

Dynamic status (magnetic tape)

Set end-of-paper tape

Generate paper tape leader

List output line spacing

(PARAM or IPRMA required)

Unused

Function code 11
8

, list output line spacing, requires the optional parameter

mentioned in the calling sequences. PARAM (or IPRAM) designates the num­

ber of lines to be spaced on the specified logical unit. A negative para­

meter specifies a page eject on a line printer or number of lines to be

spaced on the teleprinter. For details of line printer formatting, consult

Appendix E.

3-10

EXEC CALLS

1/0 STATUS

Purpose

To request the status of a particular I/O device, and the amount

transmitted in the last operation.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5
DEF RCODE
DEF CONWD
DEF STATS
DEF TLOG
return point

RCODE DEC 13
CONWD DEC n

STATS NOP
TLOG NOP

FORTRAN

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Logical unit)

(Status returned)

(Transmission log returned)

(Continue execution)

(Request code - 13)

(Logical unit number)

(Status returned here)

(Transmission log returned here)

IRCDE = 13 (Request code)

ICNWD = n (n is decimal logical unit)

CALL EXEC (IRCDE, ICNWD, I STAT, ITLOG)

3-11

EXEC CALLS

Comments

The status returned in the A-register and in STATS is the hardware status

of the device specified by the logical unit. The transmission log in the

B-register and in TLOG contains the amount of information which was trans­

ferred (a positive number of words or characters depending on which was

requested by the call initiating the transfer).

3-12

EXEC CALLS

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the work area on the system

disc and the number of sectors per track.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5
DEF RCODE
DEF FTRAK
DEF L TRAK
DEF SIZE
return point

RCODE DEC 17
FTRAK NOP
L TRAK NOP
SIZE NOP

FORTRAN

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(First track)

(Last track)

(Number of sectors/track)

(Continue execution)

(Request code= 17

(Returns first work track number here)

(Returns last work track number here)

(Returns number of sectors per track here)

IRCDE = 17 (Request code)

CALL EXEC (IRCDE, IFTRK, ILTRK, !SIZE)

Comments

This call returns the limits of the work area, that area of the system

disc which programs use for temporary storage with the READ/WRITE EXEC

call.

3-13

EXEC CALLS

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable

tracks exist in the work area of the system disc.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5
DEF RCODE
DEF NTRAK
DEF RTACK
DEF STRAK
return point

RCODE DEC 16
NTRAK DEC n

TRACK NOP
STRAK NOP

FORTRAN

IRCDE = 16

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Number of tracks desired)

(Starting track desired)

(Actual starting track)

(Continue execution)

(Request code = 16)

(Consecutive tracks desired)

(Desired track; from LIMITS call)

(Actual starting track available,

~ if n tracks not available)

(Request code)

ICNWD = n (Consecutive tracks desired)

ITRAK = m (Desired starting track)

CALL EXEC (IRCDE, ICNWD, ITRAK, ISTRK)

3-14

EXEC CALLS

Comments

This call is used with the WORK AREA LIMITS EXEC call to establish the

nature of the work area. The READ/WRITE EXEC call then transmits inform­

ation to and from this area, using the track numbers determined by this

call. DOS-M handles track switching automatically.

If a read or write is issued to a disc address that does not lie in the

WORK AREA, the message

IT nnnnn

is printed and the program is terminated.

DOS-M checks whether there are n consecutive tracks starting at the track

specified. Upon location of tracks, DOS-M returns the starting track number

to the program. If DOS-M does not locate n consecutive tracks, it returns ~

in TRAK or ITRAK.

3-15

EXEC CALLS

PROGRAM COMPLETION

Purpose

To notify DOS-M that the calling program is finished and wishes to

terminate.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 6

FORTRAN

(Transfer control to DOS-M)

(Return point from DOS-M)

(Request code)

(Request code 6)

The FORTRAN and ALGOL compilers generate a PROGRAM COMPLETION EXEC CALL

automatically when they compile an END$ or STOP statement.

3-16

EXEC CALLS

PROGRAM SUSPEND

Purpose

To suspend the calling program from execution until restarted by the

GO directive.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 7

FORTRAN

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Continue execution)

(Request Code = 7)

The library subroutine PAUSE, which is automatically called by a PAUSE

statement, generates the SUSPEND EXEC call.

3-17

EXEC CALLS

Comments

DOS-M prints a message on the system teleprinter when it processes the

PROGRAM SUSPEND EXEC call:

name SUSP

When the operator restarts the program with a GO, the B-Register contains

the address of a five-word parameter array set by the GO request. (The

parameters equal zero if no values have been given.) In a FORTRAN pro­

gram, the library subroutine RMPAR can load these parameters; however, the

call to RMPAR must occur immediately following the SUSPEND EXEC call, as

in the following example:

DIMENSION I (5)
CALL EXEC (7)
CALL RMPAR (I)

(Suspend)

(Return point; get parameters)

3-18

EXEC CALLS

PROGRAM SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into the

segment overlay area and transfer execution control to the seg­

ment's entry point. (See Section IV, DOS-M PROGRAMMING, for in­

formation on segmented programs.) Follows the :SS condition.

Assembl~ Language

EXT EXEC

JSB EXEC
DEF *+3 (to 8)

DEF RCODE
DEF SNAME
DEF PRAMl

DEF PRAM5

RCODE DEC 8

SNAME ASC 3,xxxxx

PRAMl
PRAM5

FORTRAN

I RCDE = 8
DIMENSION !NAME (3)
I NAME (1) = xxxxxB

I NAME (2) = xxxxxB

I NAME (3) xxxxxB

(Transfer control to DOS-M)

(Determine number of parameters)

(Request code)

(Segment name)

(First optional parameter)

(Fifth optional parameter)

(Request code 8)

(xxxxx is the segment name)

(Up to 5 words of parameter inform­
ation; passed to segment as parameters
are passed to a suspended program.
See PROGRAM SUSPEND.)

(First two characters)

(Second two)

(Last character)

CALL EXEC (I RCDE, I NAME [,p 1 . .. J

3-19

EXEC CALLS

Comments

In the FORTRAN or ALGOL calling sequence, the name of the segment must

be converted from ASCII to octal and stored in the !NAME array, two char­

acters per word.

See OVERLAY SEGMENTS and SEGMENTED PROGRAMS, Section IV, for a description

of segmented programs.

3-20

EXEC CALLS

SEARCH FILE NAME

Purpose

To check whether a specific file name exists in the directory

of user or system files. (Follows the :SS condition.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4
DEF RCODE
DEF FNAME
DEF NSECT
return point

(Transfer control to DOS-M)

(Return address)

(Request code)

(File name}

(Number of sectors)

RCODE DEC 18
FNAME ASC 3,xxxxx

NSECT NOP

(Request code = 18)

(xxxxx is the file name)

(Number of sectors returned here;

~ if not found)

On return, A-register contains track/sector address of file, and

B-register contains the memory address of the track/sector address.

FORTRAN

IRCDE = tB (request code)

DIMENSION !NAME (3) (File name)

!NAME (1) = xxxxxB (First two characters)

!NAME (2) = xxxxxB (Next two characters)

!NAME (3) = xxxxxB (Last character)

CALL EXEC (IRCDE, !NAME, !SECT)

3-21

EXEC CALLS

TIME REQUEST

Purpose

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3

DEF RCODE
DEF ARRAY
return point

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

RCODE
ARRAY

FORTRAN

Comments

DEC 11
BSS 5

(Time value array)

(Continue execution)

(Request code = 11)

(Time value array)

IRCDE = 11
DIMENSION ITIME (5)
CALL EXEC (IRCDE, ITIME)

When DOS-M returns, the time value array contains the time on a 24-hour clock:

ARRAY or I TIME (1) Tens of milliseconds

ARRAY + 1 or I TIME (2) Seconds

ARRAY + 2 or I TIME (3) Minutes

ARRAY + 3 or I TIME (4) Hours

ARRAY + 4 or I TIME (5) Not used, but must be present
(always = ¢)

If DOS-M does not contain a time base generator, all values in the time array

are set to zero (0).

3-22

EXEC CALLS

CHANGE USER DISC

Purpose

To change the subchannel assignment for the user disc.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (or 4)
DEF RCODE
DEF LABEL
DEF SUBCH
re tu rn po i n t

RCODE DEC 23

LABEL ASC 3, xxxxxx

SUBCH DEC (0 to 7)

FORTRAN

IRCDE = 23
DIMENSION LABEL
LABEL (l) = xx

LABEL (2) xx

LABEL (3) xx

(3)

(Transfer control to DGS-M)

(Point of return from DGS-M)

(Request code)

(Disc LabGl)

(Disc Subchanncl; or_:,tional)

(Request code; = 23)

(Label = xxxxxx)

ICHNL = M (0 through 7)
CALL EXEC (IRCDE, LABEL, ICHNL)

3-23

Comments

1. If both the label and subchannel are specified, DOS-M checks whether

the subchannel has that label. If it does, the assignment is made and

DOS-M returns. If not, DOS-M prints:

LBL = name

or UNLBL

UD nnnnn

xxxxx SUSP

(name is label on the subchannel)

(nnnnn

(xxxxx

address of EXEC call)

name of program)

The operator can load a correctly labeled disc on the subchannel and

type in

:GO

This returns to the beginning of the EXEC call (not the normal return

point) so that the program can reissue the EXEC call.

If the operator does not have a properly labeled disc (or the sub­

channel is a permanent disc), he should use :OFF or :ABORT.

2. If only a label is specified, DOS-M searches for the label, starting

with the highest subchannel. If OOS-M finds the label, it makes the

assignment.

If DOS-M cannot find the label, it suspends the program and prints:

DISC NOT mJ SYS

UO nnnnn

xxxxx SUSP

The operator can then abort the program or load a properly labeled

disc and type in:

:GO

This returns to the beginning of the EXEC call.

3-24

EXEC CALLS

3. If the label equals "*" and a subchannel is specified, DOS-M checks

whether the subchannel is unlabeled. If it is, DOS-M makes the assign­

ment. If the subchannel is labeled, DOS-M suspends the program and

prints:

LBL = name

UD nnnnn

xxxxx SUSP (xxxxx is the program)

The operator can then abort the program or load an unlabeled disc on

the proper channel and type in:

:GO

This returns to the beginning of the EXEC call.

4. If the label equals "*" and a subchannel is not given, DOS-M searches

for an unlabeled disc, starting with the highest subchannel. DOS-M

assigns the first unlabeled disc as the user disc, or if .no unlabeled

discs are found, it suspends the program and prints.

DI SC f~OT ON SYS
UD nnnnn

xxxxx SUSP

The operator can then abort the program or load an unlabeled disc

and type in:

:GO

This returns to the beginning of the EXEC call.

If the EXEC call specifies a subchannel with an incorrect system

proprietary code (see Appendix A), DOS-M still makes the assignment

but prints:

TSB DISC or ??? DISC

3-25

EXEC CALLS

If the EXEC call specifies a subchannel whose system generation code

(see Section VII) does not match that of the system disc, DOS-M

still makes the assignment, but prints:

DISC GEN CODE nnnn NOT SYS GEN CODE nnn ERR POS

The changes made by this EXEC call are only temporary, and will be

reset at the end of each job.

If the specified subchannel is not active (physically present) , DOS-M

aborts the program and prints

UD nnnnn (nnnnn = address of EXEC call)

3-26

EXEC CALLS

MAIN PROGRAM LOAD

Purpose

To load a main program from the disc into core and transfer con­

trol to its entry point. Follows the :SS condition.

Assembl~ Language

RCODE
PNAME
PRAMl
PRAMS

FORTRAN

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF PNAME
DEF PRAMl

DEF PRAM5

DEC 10
ASC 3,xxxxx

IRCDE = 10
DIMENSION INAME(3)
INAME(l) = xxxxxB

INAME(2) = xxxxxB

INAME(3) = xxxxxB

(Transfer control to DOS-M)

(Determine number of parameters)

(Request code)

(Program Name)

(First optional parameter)

(Fifth optional parameter)

(Program name)

(Up to 5 words of parameter information;
passnd to the program as parameters are
passed to suspended programs. See PROGRAM

SUSPEND.)

(First two characters)

(Next two characters)

(Last character)

CALL EXEC (IRCDE,INAME [,p
1
.. .])

3-27

SECTION IV

PROGRAMMING

Section IV describes the operating procedures and formatting conventions of

the six user programming aids of DOS-M:

D ALGOL Compiler

D FORTRAN Compiler

D FORTRAN IV Compiler

D Assembler

D Relocating Loader

D Relocatable Libraries

Using the EDIT directives, the operator creates and edits files of source

programs written in FORTRAN, ALGOL, or Assembly Language. In load-and-go

operations the DOS-M FORTRAN Compiler, FORTRAN IV Compiler, ALGOL Compiler

and DOS-M Assembler generate relocatable binary code onto temporary disc

storage. The DOS-M Relocating Loader can then relocate and merge the code

with referenced subroutines of the Relocatable Library. Once loaded, a

program is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

The Moving Bead Disc Operating System provides the facility for "load-and-go"

which is defined as compilation or assembly, loading, and execution of a

user program without using intervening object paper tapes. To accomplish

this, the compiler or assembler generates relocatable object code from

source statements and stores it on the disc in the job binary area of the

WORK tracks. Then separate directives initiate loading (PROG, LOADR) and

execution (RUN, program).

4-1

DOS-M stores the object code of several programs and associated subroutines

on the disc. The Relocating Loader locates them on the disc, and relocates

them into executable absolute program units.

DOS-M FORTRAN COMPILERS (Basic FORTRAN and FORTRAN IV)

The DOS-M FORTRAN Compilers operate under control of the DOS-M Supervisor.

The compilers reside on the disc and are read into core only when needed.

DOS-M FORTRAN and FORTRAN IV are problem-oriented programming languages.

Source programs, accepted from either an input device or a user file, are

translated into relocatable object programs, punched on paper tape, and

optionally, stored in the job binary area of the disc. The object program

can be loaded using the DOS-M Relocating Loader and executed using the RUN

or PROG directive.

Compiler Operation

The DOS-M FORTRAN compilers are started by a PROG directive. Before entering

the PROG directive, place the source program in the input device, or, if input

is from a source file, specify the file with a JFILE directive.

4-2

Where

P1

P2

P3

P4
99

logical

set to

logical

logical

PROGRAMMING

PROG, FTN [4]

:PROG,FTN [,p
1

,p
2

,p
3

,p
4

,99]

:PROG,FTN4[,p
1

,p
2

,p
3
,p

4
,99]

unit of input device (standard

2 for source file input).

unit of list device (standard

is

is

unit of punch device (standard is

lines/page on listing (standard is 56) •

5;

6) •

4) •

the job binary parameter. If present, the object

program is stored in the job binary area for later

loading. Any requested punch output still occurs.

(The 99 may occur anywhere in the parameter list,

but terminates the list.)

p
1

through p
4

are optional. If not present, the standard oper­

ation is assumed. If 99 is not present, then binary is not

placed in the job binary area.

MESSAGES TO OPERATOR DURING COMPILATION

This message is printed on the operator ·console when an end-of-tape occurs

on device #n:

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n
: GO

Compilation continues after the GO. More than one source tape can be

compiled into one program by loading the next tape before giving the GO.

4-3

PROGRAMMING

At the end of compilation, the following message is printed.

$END, FTN[4]
If the job binary area (where binary code is stored because of a 99 parameter)

overflows, the following message is printed, and compilation continues:

JBIN OVF
There is no further loading into the job binary area.

The compiler terminates if ...

0 No JFILE is declared, although logical unit 2 has been given for

input. Error E-¢¢19 is printed on the list device.

is not printed.)

($END,FTN [4]

0 There are not enough work tracks for the compiler. The following

message is printed:

#TRACKS UNAVAILABLE
0 Colons occur in the first column of a source program entered

through the batch device. (Blank cards in the source program are

ignored.) The following message is printed.

IE nnnnn

where nnnnn is the memory location of the input request.

REFERENCE ON FORTRAN IV

The HP FORTRAN IV language is completely described in FORTRAN IV Reference

Manual, 5951-1321.

Comments on Basic FORTRAN

FORTRAN CONTROL STATEMENT

Besides the standard options described in the FORTRAN manual, two new compiler

options, T and n, are available. A "T" lists the symbol table for each pro­

gram in the compilation. If a "u" follows the address of a variable, that

variable is undefined (the program does not assign a value to it). The A op­

tion includes this T option. If n appears, n is a decimal digit (1 through 9)

which specifies an error routine. The user must supply an error routine, ERRn.

If this option does not appear, the standard library error routine, ERR~, is

used. The error routine is called when an error occurs in ALOG, SQRT, .RTOR,

SIN, COS, .TROI, EXP, .ITOI or TAN.

4-4

PROGRAMMING

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [(type)]

where name is the name of the program and its main entry point.

When the program is executed using a RUN directive,

this name is used. (It should not equal any file name.)

type is a decimal digit specifying the program type.

Only types 3 (main), 5 (segment), and 6 or 7 (library)

are significant in DOS-M. The type is set to 3 if

not given.

Seven more parameters may be included but they are used only

with the Real-Time Executive System. Programs can be compiled

on DOS-M to be run under Real-Time.

I/0 LOGICAL UNIT NUMBERS

DOS-M FORTRAN function assignments for logical unit numbers are different

from regular FORTRAN. (See Section V.)

When preparing input data for the batch device, the user never puts a

colon (:) in column one of a record because the colon in first position

signifies a directive. DOS-M aborts the job if a directive occurs during

data input.

4-5

PROGRAMMING

DATA STATEMENT

A new statement, the DATA statement, has been added to DOS-M

FORTRAN. DATA sets initial values for variables and array

elements. The format of the DATA statement is:

where k is a list of variables and array elements separated by

commas,

d is a list of constants or signed constants, separated

by commas and optionally preceded by j* (j is an integer

constant).

The elements of d. are serially assigned to the elements of k .•
i i

The form j* means that the constant is assigned j times. The

k. and d. must correspond one-to-one.
i i

Elements of k. may not be from COMMON.
i

Arrays must be defined (i.e., DIMENSION) before the DATA state­

ments in which they appear. DATA statements may occur anywhere

in a program following the specification statements.

Example,

DIMENSION A(3), 1(2)
DATA A(l),A(2),A(3)/l .0,2.0,3.0/I(l),1(2)/2*1/

4-6

PROGRAMMING

EXTERNAL STATEMENT

With the new statement, EXTERNAL, subroutines and functions

can be passed as parameters in a subroutine or function call.

For example, the routine XYZ can be passed to a subroutine

if XYZ is previously declared EXTERNAL. Each program may de­

clare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

Where v
1

is the entry point of a function, subroutine

or library program.

EXAMPLE

FUNCTION RMX(X,Y,A,B)

RMX=X(A)*Y(B)

END

EXTERNAL XYZ, FL 1

Z=Q-RMX(XYZ)Fll ,3.56,4. 75)

ERROR E-~~18 means too many EXTERNALS.

Note: If a library routine, such as SIN, is used as an

EXTERNAL, the compiler changes the first letter of

the entry point to 11 %11
• Special versions of the

library routines exist with the first character

changed to "0. ft
0 •

4-7

PROGRAMMING

PAUSE & STOP

PAUSE causes the following message to be printed.

PAUSE xxxx

Where xxxx is an octal number.

To restart the program, the operator uses a GO directive.

S'IOP causes the program to terminate after the following

message.

STOP program name xxxx

Where xxxx is an octal number.

OVERLAY SEGMENTS

Segmented user programs may be written in FORTRAN, but certain conventions

are required. A segment must be defined as type 5 in the PROGRAM statement.

The segment must be initiated using the PROGRAM SEGMENT LOAD EXEC call from

main or segment. A dummy call to main must appear in each segment. In this

way, the proper linkage is established between the main and its segments.

Chaining of segments is unidirectional. Once a segment is loaded, execution

transfers to it. The segment, in turn, may call another segment using an

EXEC call, but a segment written in FORTRAN cannot return to the main program.

All communication between the main program and segments must be through

COMMON. Segments must not contain DATA Statements.

4-8

.PROGRAMMING

ERR!l> LIBRARY ROUTINE

ERR¢, the error print routine referred to under the FORTRAN

control statement prints the following message whenever an

error occurs in a library routine:

nn xx

Where nn is the routine identifier, and

xx is the error type.

The compiler generates calls to ERR¢ automatically. If the

FORTRAN control statement includes an n option, the call will

be to ERRn, a routine which the user must supply.

REFERENCE ON FORTRAN

For a complete description of the FORTRAN language, read the FORTRAN

programmer's reference manual (02116-9015).

4-9

PROGRAMMING

RTE/DOS ALGOL COMPILER

The RTE/DOS ALGOL Compiler consists of a main program and a data segment.

It requires a 16K memory computer and can operate under the control of DOS-M,

DOS, or the RTE System. The compiler resides on the disc and is read into

core when called for in a :PROG directive. RTE/DOS ALGOL is very similar

to the HP ALGOL language described in manual HP 02116-9072. The HP ALGOL

compiler implements a language much like ALGOL 60, but it is non-recursive

and has I/O capabilities.

Source programs written in DOS-M ALGOL are accepted either from an input

device or from a user file and are translated by the ALGOL Compiler into

relocatable object programs, punched on paper tape, and optionally, stored

in the job binary area of the disc. The object program can be loaded

using the DOS-M RELOCATING LOADER and executed using the RUN or PROG

directive.

Compiler Operation

The ALGOL Compiler is started by a PROG directive. Before entering the

PROG directive place the source program in the input device, or, if the

input is from a source file, specify the file with a JFILE directive. The

PROG directive for the ALGOL Compiler should take the following form:

4-10

Where

PROGRAMMING

PROG,ALGOL

p
1

Input unit (=5 if not specified). Input unit= 2

means source input from disc. The source file has

to be specified prior to this statement (by 11 JFILE 11

control statement).

p
2

List unit (=6 if not specified).

p
3

Punch unit (=4 if not specified).

p
4

Number of lines on a page (=56 if not specified).

p
5

Load-and-go parameter. To specify load-and-go,

set p
5

=99. The value of 99 is reserved for the

load-and-go parameter. Its appearance in any

position (p 7 through p) will be interpreted as
..L. 5

p
5
=99, and it also signals the end of the para-

meter list.

MESSAGES TO OPERATOR DURING COMPILATION

When the end of a source tape is encountered, the following will be out­

puted on the system teleprinter:

I/0 ERR ET EQT #n

The compiler will wait until the following messages are entered on the

system teleprinter:

:GO

4-11

PROGRAMMING

At the end of the compilation, the following message is output to the

system teleprinter:

$END, ALGOL

If the job binary area (where binary code is stored because of a "99" para­

meter in the PROG directive) overflows, the following message is output by

the system teleprinter and compilation continues:

JBIN OVF

The compilation will be completed, but there will be no further loading

of binary code into the job binary area.

The compiler terminates if ...

ll No JFILE is declared, although logical unit 2

had been specified as p
1

of the PROG directive.

The following message is output:

NO SOURCE

ll The first statement of the source file specified

by the PROG directive p
1

parameter does not begin

with the word HPAL. Or the control statement

contains an error. The following message is

output:

HPAL??

ll A colon occurs in the first position of a source

statement line. The following message is output:

IE nnnnn

where nnnnn is the memory location of the input request.

4-12

PROGRAMMING

ALGOL Control Statement

The word HPAL is mandatory. Any combination of the following symbols may

appear next, separated by commas:

L: produce source program listing

A: produce object code listing

B: produce object tape

P: a procedure only is to be compiled

If no symbols are specified, the program will run but will not produce any

output other than diagnostic messages and job binary (if requested) . A pro­

gram name in quotes (the NAM-record name which must be a legitimate identi-

fier without blanks) must follow the symbols. (It should not equal any file name.)

Sense switch control is not used with DOS-M. Two parameters may be specified

following the NAM-record name.

EXAMPLE

p
1

is a decimal digit between ~ and 9 specifying the name of

the error routine to be called if an error occurs in ALOG,

SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI, TAN. The name of

the error routine is ERRn, where n = p
1

or n = ~ if p
1

is not

specified. ERR~ is supplied in the Relocatable Library, all

other error routines must be supplied by the user.

p
2

is a decimal digit specifying the type of the program: 3 for

a main program, 5 for a segment, and 6 or 7 for a utility

subroutine or procedure. If p
2

is not specified, the type is

set to 3 for main programs and to 7 for procedures <P option

in the control statement) .

HPAL,L,B, 11 TEST 11
, 1,3

4-13

PROGRAMMING

ALGOL Segmentation

ALGOL programs can be segmented if certain conventions are followed. A

segment must be defined as type 5 in the HPAL statement. The segment must

be initiated by using the PROGRAM SEGMENT LOAD EXEC call from the main or

another segment.

In order to establish the proper linkage between a main program and its seg­

ments, each segment must declare the main a code procedure. For example, if

MAIN is the main program, the following must be declared in each segment.

PROCEDURE MAIN; CODE:

Cha.ining of segments is undirectional. Once a segment is loaded, execution

transfers to it. The segment, in turn, may call another segment using an

EXEC call, but a segment written in ALGOL cannot return to the main program.

ALGOL I/0

The HP ALGOL I/O statements should specify the proper logical unit numbers

for the DOS-M configuration. (See Section V.)

ALGOL Error Messages

See the manual HP ALGOL (HP 02116-9072) for the meanings of HP ALGOL com­

pilation time and run time error messages.

4-14

PROGRAMMING

DOS~M ASSEMBLER

The DOS-M Assembler, a segmented program that executes in the user program

area of core, operates under control of DOS-M. The Assembler consists of

a main program (ASMB) and six segments (ASMBD, ASMBl, ASMB2, ASMB3, ASMB4,

ASMBS), and resides on the disc.

DOS-M Assembly Language, a machine-oriented programming language, is very

similar to the HP Extended Assembly Language. Source programs, accepted

from either an input device or a user source file on the disc, are trans­

lated into absolute or relocatable object programs; absolute code is punched

in binary records, suitable for execution only outside of DOS-M. ASMB can

store relocatable code in the load-and-go area of the disc for on-line

execution, as well as punch it on paper tape. The DOS-M Relocating Loader

accepts assembly language relocatable object programs from paper tape, the

load-and-go area, and user files.

A source program passes through the input device only once, unless there is

insufficient disc storage space. In the latter case, two passes are re­

quired.

Assembler Operation

The DOS-M Assembler is started by a PROG directive. However, before enter­

ing the PROG directive, the operator must place the source program in the

input device. If the source program is on the disc, the operator must first

specify the file with a JFILE directive, and set parameter p
1

= logical

unit 2 in the PROG directive.

4-15

Where

PROGRAMMING

PROG,ASMB

p
1

logical unit of input device (5 is standard; 2 is

used for source file input indicated by a JFILE

directive)

p
2

logical unit of list device (6 is standard)

p
3

logical unit of punch device (4 is standard)

p4 lines/page on listing (56 is standard)

99 job binary parameter. If present, the object pro­

gram is stored in the job binary area for later

loading. Any requested punching still occurs. The

99, which may follow any parameter in the list,

terminates the list.

MESSAGES DURING ASSEMBLY

The messages described in this section are printed at the teleprinter console

or in the program listing.

When an end-of-tape occurs on device #n, this message appears on the system

teleprinter:

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up and restarts the

assembler by means of a GO directive:

:UP,n
:GO

4-16

PROGRAMMING

Thus, more than one source tape can be assembled into one program. The next

tape is loaded each time the input device goes down. The program should be

placed in the input device before entering the GO.

The following message on the system teleprinter signifies the end of

assembly:

$END ASMB

If another pass of the source program is required, the message is printed

on the system teleprinter at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and type:

:GO

If an error is found in the Assembler control statement, the following mes­

sage is printed on the system teleprinter:

$END ASMB CS

The current assembly stops.

If an end-of-file condition on source input occurs before an END statement

is found, the teleprinter signals:

$END ASMB XEND

The current assembly stops.

If source input for logical unit 2 (disc) is requested, but no file has

been declared (see JFILE, Section II), the system teleprinter signals:

$END ASMB NPRG

If the job binar1 area, where binary code is stored by a 99 parameter, over­

flows, assewbly continues but the following message is printed on the system

teleprinter:

JBIN OVF

However, no binary code is stored in the job binary area.

4-17

P ROG RAMM I NG

The next message is associated with each error diagnostic printed in the

program listing during pass 1.

nnn

nnn is the "tape" number on which the error (reported on the next line of

the listing) occurred. A program may consist of more than one tape. The

tape counter starts with one and increments by one whenever an end-of-tape

condition occurs (paper tape) or a blank card is encountered. When the

counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the

assembly is associated with a different message:

PG PPP

ppp is the page number (in the listing) of the previous error diagnostic.

PG fafafa is associated with the first error found in the program.

These messages (#nnn and PG ppp) occur on a separate line, just above each

error diagnostic in the listing.

DOS-M Assembly Language

The DOS-M Assembly Language is equivalent to extended assembly language, as

defined in the ASSEMBLER programmer's reference manual (02116-9014). A few

language changes are required to run under DOS-M; programs must request

certain functions, such as I/O, from the executive. These requests are

made using the EXEC calls described in Section III.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular assembly language;

and although only relocatable code can be run under DOS-M, the DOS-M Assembler

is able to assemble absolute code if it is specified. Absolute code is never

4-18

PROGRAMMING

stored in the job binary area. To get absolute code, the control statement

must include an "A". The "R", however, is not required for relocatable code.

An "X" causes the assembler to generate non-extended arithmetic unit code.

Examples

ASMB,L,B List and Punch Relocatable Binary

ASMB,R,L,B,X List and Punch Relocatable, non-EAU Binary.

ASMB, T ,L List and Print Symbol Table.

ASMB,A,B,L List and Punch Absolute Binary.

ORB STATEMENT

DOS-M Assembly Language does not contain the ORB statement, since information

cannot be loaded into the protected base page area by user programs. How­

ever, programs can read information from base page using absolute address

operands up to 1777
8

.

INPUT/OUTPUT

DOS-M has different function assignments for the logical unit numbers.

(See Section V.)

When preparing input for the batch device, the programmer must remember to

never put a colon (:) in column one of a source statement. DOS-M aborts

the current program if a directive (signified by : in column one) occurs

during data input.

If present, the memory protect option protects the resident supervisor from

alteration and interrupts the execution of a user program under these con­

ditions:

Il Any operation that would modify the protected area or jump into it.

Il Any I/O instruction, except those referencing the switch register
or overflow.

a Any halt instruction.

Memory protect gives control to DOS-M when an interrupt occurs, and DOS-M

checks whether it was an EXEC call. If not, the user program is aborted.

4-19

PROGRAMMING

NAM STATEMENT

The NAM psuedo-instruction allows up to eight optional parameters.

(The last seven parameters are used only by programs to be executed

under the Real-Time Executive System.) Only the first parameter is

significant in DOS-M. If the first parameter equals 3, the program

is a main program; if 5, a program se0ment; if 6, a library routine;

if 7, a subroutine. If the parameter equals another number, the

assembler and DSGEN will accept it, but the Relocating Loader will

not. (See Section VI for DSGEN program type codes.)

NAM name [,type J

where name is the name of the program (it should not equal any file

name) , and

type is the type code.

In addition to the name defined by NAM, each program has one or

more entry points defined by an ENT statement with the exception

of the main program. The transfer address on the END statement

is sufficient for the main program (type 3). Name is used in

programmer-to-DOS-M communication, while the entry points are

program-to-program communication.

Segmented Programs

User programs may be structured into a main program and several segments, as

shown in Figure 4-1. The main program begins at the start of the user pro­

gram area. The area for the segments starts immediately following the last

location of the main program. The segments reside on the disc, and are read

into core by an EXEC call, when needed. Only one segment may be in core at

a time. When a segment is read into core, it overlays the segment previously

in core.

The main program must be type 3, and the segments must be type 5. When using

DSGEN to configure the system or loading programs with LOADR, the main pro­

gram must be entered prior to its segments. One external reference from each

segment to the main routine is required for DSGEN to link the segments and

main programs. Also, each segmented program should use unique external ref­

erence symbols. Otherwise, DSGEN or LOADR may link segments and main pro­

grams incorrectly.

4-20

User
Program
Area

MAIN PROGRAM

SEGMENT 1

PROGRAMMING

-...... -r-

-------------LOW

MAIN PROGRAM

~-----------!

SEGMENT
OVERLAY

AREA

CORE MEMORY
..-ia..- HIGH

SEGMENT 3
SEGMENT 2

SEGMENT 1

MAIN PROGRAM

NOTE: TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED.

DISC MEMORY

Figure 4-1. Segmented Programs

4-21

PROGRAMMING

Figure 4-2 shows how an executing program may call in any of its segments

from the disc using the PROGRAM SEGMENT LOAD EXEC request (1-2). DOS-M

locates the segment on the disc (3-4), loads it into core (5) and begins

executing it. The segment may call in another of the main program's segments

using the same EXEC request (6).

SEGMENT
OVERLAY

AREA

CORE MEMORY
HIGH

MAIN PROGRAM

SEGMENT 1

Figure 4-2.

SEGMENT 3
SEGMENT 2

SEGMENT 1

MAIN PROGRAM

Main Calling Segment

4-22

PROGRAMMING

Figure 4-3 shows how DOS-M processes the request from the segment (7) by

locating the segment on the disc (8-9), loading it into core (10), and

beginning execution of it.

LOW

8

SEGMENT 2 DOS

' SUPERVISOR

c:J
..J LlJ
...J (.!'.)

<:(~
NAM MAIN

r r
.~o

et: EXT EXEC u..

7 ENTM

• MAIN PROGRAM

• l USER
PROGRAM

AREA

NAM SEG2 i j EXT EXEC, M DISC 10 • SEGMENTS

• l •
HIGH

CORE

Figure 4-3. Segment Calling Segment

When a main program and segment are currently residing in core, they op­

erate as a single program. Jumps from a segment to a main program (or vice

versa) can be progranuned by declaring an external symbol and referencing

it via a JMP or JSB instruction. (See Figure 4-4.) A matching entry sym-

bol must be defined as the destination in the other program. DSGEN associates

4-23

PROGRAMMING

the main programs and segments, replacing the symbolic linkage with actual

absolute addresses (i.e., a jump into a segment is executed as a jump to a

specific address). The programmer should be sure that the correct segment

is in core before any JMP instructions are executed.

Reference on Assembly Language

Consult the ASSEMBLER programmer's reference manual (02116-9014) for a full

description of assembly language.

...,r- -......

LOW

EXT S1

ENT M1

,.11- M1 JMP S1

MAIN PROGRAM

1--------- --
EXT M1

ENT S1

~ JMP M1

S1- - - - - -
....._

......-

(Segments)
HIG H

.-1 lo.- -i-

CORE MEMORY

Figure 4-4. Main-to-Segment Jumps

4-24

PROGRAMMING

DOS-M RELOCATING LOADER

The DOS-M Relocating Loader accepts relocatable object programs which have

been translated by the DOS-M Assembler, RTE/DOS ALGOL Compiler or DOS-M

FORTRAN Compiler. It generates an executable core image of each such pro­

gram on the disc. The relocatable programs may enter the loader as

a Job binary area programs translated during the current job,

a User files,

ll Punched tapes, magnetic tapes, or

a Subroutines from the disc-resident Relocatable Library.

Each main program is relocated to the start of the user area and linked to

its external references, such as library routines. Segments will overlay

the area following the main program and its subroutines. Programs may run

under control of the DEBUG library routine. The main program, plus its

subroutines and its longest segment, can be as large as the user area. With

a RUN or PROG directive, the program is called by name from the disc and

executed, or the program is stored as a permanent user file to be run

during a later job. If the JBIN is used, the loader may be executed only

once during each job, so all load-and-go assemblies or compilations must

be done prior to calling the loader.

4-25

PROGRAMMING

Starting the Loader

The DOS-M Relocating Loader is initiated by a PROG directive from the batch

or keyboard device.

PROG,LOADR

Format

P
1

determines the relocatable object program input combination:

Comments

P
1

0 for loading from jbin and relocatable library.

2 for loading from jbin, user files, and relocatable
library.

n for loading from jbin, user files, relocatable
library and paper tape, or magnetic tape (logical unit n).

P
2

list device logical unit.

P
3

0 for no DEBUG, f 0 for DEBUG.

P
4

0 for list of program load map, f ~ for none.

P 0 for list of entry point addresses, f 0 for none.
5

Selecting the DEBUG option causes DEBUG to be appended to each main program

and segment. The loader sets the primary entry point of each to DEBUG,

rather than the user routine. When the program is run, DEBUG takes control

of the program's execution and seeks instructions from the keyboard.

4-26

PROGRAMMING

RELOCATABLE FILES

A list of relocatable file names follows the PROG directive (unless P
1

equals ¢). In batch mode, the list starts on the next record and stops

at "/E". In keyboard mode, the loader prints

ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message

repeats until a /E is entered. In batch mode the list of files follows

the PROG directive on the batch input device.

file-name 1, file-name 2, .. ,/E

The file list is a series of records containing file names separated by

commas, ending with a "/E." All programs in each file are loaded unless

a particular subset of the file is specified:

file-name (prog 1, prog 2 ...)

Only the programs specified within the parenthesis are loaded from the

file-name. The file list is simply a "/E" if no files are to be loaded.

(The search for these files is made only on the current user disc; the loader

is unaffected by :SS.)

Operating the Loader

SCANNING THE PROGRAMS

The loader scans the relocatable binary programs and maintains two tables-­

one of program names, and another of entry points and externals. Since

mains are matched with segments during the scan, each main program must

occur before the associated segments. Programs from tape are stored on

the work tracks as they are read in.

If the job binary area contains any programs, it is scanned first. User

files given in the file list (if any) are scanned for entries and externals.

4-27

PROGRAMMING

If paper tape input is requested, the following messages are printed,

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device and

types

:GO

When an end-of-tape condition occurs, three messages are printed on the

system teleprinter:

I/0 ERR ET EQT# nn (paper tape only -- not magnetic tape)

LOAD TAPE
LOADR SUSP
@

The operator places the next tape in the input device, enters :UP,~, and :GO

to read the next tape. Enter :GO,l to indicate that all tapes have been

read in.

Matching Entries with Externals

After matching all possible entry points and external references in the user

programs, the loader scans the Relocatable Library (disc-resident) looking

for entry points to match the undefined external references. If undefined

external references still exist,

UNDEFINED EXTS

is printed and the external references are listed, one per line.

4-28

PROGRAMMING

To load additional programs from paper tape, the operator types:

:G0,0[,n]

where n is the logical unit number of the input device, if different from

Pl of the PROG,LOADR directive.

To continue without fulfilling external references, the operator types:

:GO,l

To specify a file name from the keyboard, the following directive is typed:

:G0,2

RELOCATION
The main and segment names become user file names once the programs are

loaded. To ensure unique file names, the loader compares all program and

segment names against the names of previous system and user files (current

user disc only). If duplicate names occur, an error message is printed

and loading stops.

The loader converts each main program into an absolute core image, stores

it on the disc, places the name in the user directory where it remains

during the current job, and lists the program address map and entry points,

if requested. After each main program, any associated segments are loaded

in the same way. When the loader is completBly finished, the following

message is printed:

LOADR COMPLETE

During the current job, the absolute core images appear in the user file

area (see LIST directive, Section II) and can be executed by name (see RUN

and FROG directives). At the end of the job, however, they disappear from

the file area, unless they are made permanent files by means of the STORE, P

directive.

4-29

PROGRAMMING

If no programs are entered, the loader prints the following messages and

terminates:

NO PROGRAi~S LOAOED.
LOADR COMPLETE

DEBUG Library Subroutine

RTE/DOS DEBUG, a subroutine of the Relocatable Library, allows prograrruners

to check for logical errors during execution. If the P
3

parameter of the

PROG, LOADR directive equals 1, the loader combines DEBUG with the user

program being loaded. The primary entry point (the location where execution

begins) is set to DEBUG. Therefore, when the program is executed with a

RUN directive, DEBUG takes control and prints the message:

BEGIN 'DEBUG' OPERATION

The programmer now enters any legal debug operation. DEBUG ignores illegal

requests and prints a message:

ENTRY ERROR

4-30

DEBUG OPERATIONS

B,A

D,A,N1[,N
2

]

D,B,Nl[,N)

M,A

R,A

S,Al,Dl

S,A
1

,D
1

,Dn

W,A,D
1

W,B,D2

W,E,DJ

W,Q,D4

X,A

A

PROGRAMMING

Instruction breakpoint at address A. (NOTE: if

A= JSB EXEC, a memory protect violation occurs.)

ASCII dump of core address N
1

or from N
1

to N
2

.

Binary dump of core address N
1

or from N
1

to N
2

.

Sets absolute base of relocatable program unit.

Execute user program starting at A. Execute starting

at next location in user program (used after a break­

point or to initiate the program at the transfer point

in the user program) .

Set D
1

in location A
1

.

Set D
1

to Dn in successive memory locations beginning

at location A
1

.

Set A-Register to Dl°

Set B-Register to D2.

Set E-Register ()J=off, non-zero=on).

Set Overflow ()J=off, non-zero=on) .

Clear breakpoint at address A.

Abort Debug operation.

4-31

PROGRAMMING

Loader Example

In the following example, DOS-M is in keyboard mode.

:PROG,LOADR,5,6,0,0,0
ENTER FILE NAME(S)OR/E
/E

LOAD TAPE
LOADR SUSP
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO, 1

Paper tape input is specified.

No files are specified.

Place paper tape in input device.

Return to loader.

End of tape.

Put in next tape.

Declare input device ready.

Repeat tape loading process 4 times.

No more paper tapes.

4-32

RELOCATING LOADER

NAME/ENTRY

QAl
*QAl
QAlA

*QAlA
QAlB

*QAlB
QAlC

*QAlC
QAlD

*QAlD
FRMTR
*.010.
*.BIO.
*.IOI.
*. IOR.
*. IAR.
*. RAR.
*.OTA.

.ENTR
*.ENTR
. FLUN
*. FLUN
.PACK
*.PACK

FLOAT
*FLOAT

IFIX
*IFIX

LOADR COMPLETE

ADDR

12000
12076
12200
12201
12262
12263
12336
12337
12364
12365
12431
14612
14665
14507
14462
14546
14522
14710
15162
15162
15230
15230
15243
15243
15350
15350
15355
15355

PROGRAMMING

Main program, starting address.

Main program, entry point.

Subroutine starting addresses and entry

points. Asterisk signifies entry point.

End of Loading.

4-33

PROGRAMMING

Loader Error Messages

During its operation the loader may print one of the following error mes­

sages on the keyboard:

Message

L01

L02

L03

L04

L05

L06

L07

urn
L09

Ll0

L 11

Ll2

Ll3

Ll4

Ll5

Ll6

Ll7

Error Messages

Checksum error on tape

Illegal record

Memory overflow

Base page overflow

Symbol table overflow

Duplicate main or segment name (may be

caused by attempting to run the loader

twice in one job)

Duplicate entry point

No main or segment transfer address

Record out of sequence

Insufficient directory or work area space

Program name table overflow

User file specified cannot be found

Program name duplication

Non-zero base page length

Segment occurred before main

Program overlay (illegal ORG)

Illegal library record.

The loader aborts (programmer must start over) on each of these conditions

and prints a message.

LOADR TERMINATED

4-34

PROGRAMMING

THE RELOCATABLE LIBRARIES

There are two libraries, or collections of relocatable subroutines that can

be used by DOS-M: the RTE/DOS Relocatable Library (EAU or Non-EAU versions)

and the RTE/DOS FORTRAN IV Library. These libraries contain mathematical

routines such as SIN and COS, and utility routines such as BINRY, etc. A

program signifies its need for a subroutine by means of an "external refer­

ence." External references are generated by EXT statements in assembly

language, by CALL statements and the compiler in FORTRAN, and by CODE pro­

cedures and the compiler in ALGOL.

When the system is generated, several combinations of libraries are possible.

Every system should contain an RTE/DOS Relocatable Library: either an EAU

version or a non-EAU version, depending on the computer hardware. This

library does not contain a formatter, but the FORTRAN IV Library contains

a formatter that handles extended precision numbers. If extended precision

arithmetic is not needed, a separate RTE/DOS Basic FORTRAN Formatter is

available to take the place of the FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in

the Relocatable Subroutines manual (02116-9032).

4-35

SECTION V
INPUT/OUTPUT

In the Moving-Head Disc Operating System, centralized control and logical

referencing of I/O operations effect simple, device-independent programming.

Each I/O device is interfaced to the computer through one or more I/O

channels which are linked by hardware to corresponding core locations for

interrupt processing. By means of several user-defined I/O tables,

multiple-device drivers, and program EXEC calls, DOS-M relieves the pro­

grammer of most I/O problems.

SOFTWARE I/0 STRUCTURE

An Equipment Table records each device's I/O channels, driver entry points,

OMA requirements, and location on disc if disc-resident. A Device Reference

Table (logical unit table) assigns an equipment table number to each of its

entries, thus allowing the prograrmner to reference changeable logical units

instead of fixed physical units.

An Interrupt Table relates each channel to an entry in the Equipment Table.

A driver is responsible for initiating and continuing operations on all

devices of an equivalent type.

The prograrmner requests I/0 by means of an EXEC call in which he specifies

only the logical unit, control information, buffer location, buffer length1

and type of operation.

5-1

INPUT/OUTPUT

The Equipment Table

The Equipment Table (EQT) has an entry for each device recognized by DOS-M

(these entries are established by the user when DOS-Mis generated). The

EQT entries reside in the permanent core-resident part of the system and

have this format:

WORD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D l R

Av

CONTENTS

Driver "Initiation" Section Address

Driver "Continuation" Section Address

l Unit #f Channel #

Equipment Type Code Status

(saved for driver use)

(saved for driver use)

Request Return Address

Request Code

Current I/O Request Control Word

Request Buff er Address

Request Buffer Length

Temporary or Disc Track #

Temporary or Starting Sector #

Temporary Storage for Driver

Upper Memory Address of Main Driver Area

Upper Memory Address of Driver Linkage Area

Starting Track # Starting Sector #

BITS ls T 14 u I 12 I 11 T lfJ I 91 8 1 T 61 s l 4 I 3 T 2I lT

D

R

Unit #

Channel #

1 if DMA channel required.

1 if driver type is core-resident.

May be used for sub-channel addressing.

I/O select code for device (lower number if multiboard

interface.)

5-2

~

}

.0's if

core­

residen t

Av

INPUT/OUTPUT

0 - Unit not busy and available

1 - Unit disabled (down)

2 - Unit busy

Status - Actual or simulated unit status at end of operation.

Equipment Type Code - Identifies type of device and associated software

driver. Assigned equipment type codes in octal are:

¢¢-¢7

¢¢

01

02

05

10-17

10

12

15

20-37

22

31

Paper Tape Devices

Teleprinter

Punched Tape Reader

High Speed Punch

Teletype (System)

Unit Record Devices

Reserved for Plotter

Line Printer

Mark Sense Card Reader

Magnetic Tape/Mass Storage and other devices capable
of both input and output

3030 Magnetic Tape

Moving-Head Disc

For equipment type codes 01 through 17, odd numbers indicate input devices

and even numbers indicate output devices (except 05, which is both input and

output).

When DOS-M initiates or continues an I/O operation, it places the address

of the EQT entry for the device into the base page communication area

(see Appendix A) before calling the driver routine.

5-3

INPUT/OUTPUT

Logical Unit Numbers

Logical unit numbers from 1 10 to 6310 provide logical addressing of the physi­

cal devices defined in the EQT. These numbers are maintained in the Device

Reference Table (DRT or logical unit table), which is created by the System

Generator (DSGEN) and can be modified by the LU directive.

Each one-word entry in the DRT contains the EQT entry number of the device

assigned to the logical unit. DOS-M has the following function assignments

for logical unit numbers.

Logical Unit

1

2

3

Restored
after

4

each 5
:JOB.

6

7

8

9

10

6\0

Number Function

System Teleprinter

User Mass Storage

System Mass Storage

Standard Punch Device

Standard Input Device

Standard List Device

Unassigned

Recommended for magnetic tape

Can be assigned to any

device by user

The user determines the number of logical units when the system is generated.

At the beginning of each JOB, logical units 1 through 9 are restored to the

values set by DSGEN (System Generator), whereas 10 through 63 are restored

only on a start-up from the disc.

Executing programs use logical unit numbers to specify the type of device

for I/O transfers. In an I/O EXEC call, the program simply specifies a

logical unit number and does not need to know which actual device or which

I/O channel handles the transfer.

5-4

INPUT/OUTPUT

The Interrupt Table

The interrupt table contains an entry, established at system generation

time, for each I/O channel in the computer which can cause an interrupt.

The entry contains the address of the EQT entry for the device on the channel.

The interrupt locations in core contain a jump subroutine to $CIC which is

the central interrupt control routine which examines the interrupt table to

decide what action to take. On a power failure interrupt, DOS-M halts.

Input/Output Drivers

The I/O driver routines, either core-or disc-resident, handle the actual

transfer of information between the computer and external devices. When a

transfer is initiated, DOS-M places the EQT entry addresses into the base

page communication area and jumps to the driver entry point. The driver

configures itself for the particular channel (in this way the same driver

can handle several devices of the same type on many channels), initiates the

transfer and returns to DOS-M. When an interrupt occurs on the channel, in­

dicating continuation or completion of the transfer, DOS-M again transfers

control to the driver. DOS-M contains only two drivers: the Moving-Head

Disc Driver (DVR31) and the System Teleprinter Driver (DVR05). However,

these drivers of the Disc Operating System (DOS, fixed-head disc/drum) are

fully compatible with DOS-M:

DVR00 Teleprinter

DVR01 Photo-reader

DVR02 High speed punch

DVRl~ Plotter

DVR12 Line Printer

DVR15 Mark Sense Card Reader

DVR22 3030 Magnetic Tape

DVR23 7970 Magnetic Tape

5-5

INPUT/OUTPUT

The driver name consists of the letters "DVR" added to the equipment type

code. In addition, the programmer can write drivers for special devices,

following the guidelines in this section. The driver is only responsible

for updating the status field in the EQT entry; DOS-M handles the availability

field.

Sys tern I/0

DOS-M itself initiates many I/O transfers. It reads in directives from

the batch or keyboard device and transfers modules in from the disc. These

functions are accomplished by $SYIO, a routine within the DOS-M Supervisor,

which calls the appropriate driver routine.

User Program I/0

The user program initiates an I/O transfer by means of an EXEC call--a

"JSB EXEC" as described in Section III. The supervisor recognizes the EXEC

call as an I/O request and sends it along to the I/O supervisor EXEC MODULE

($EX18) which determines if the driver for the requested device is core­

resident. If not, the driver is read into core from the disc.

$EX18 places the address of the EQT entry in the base page communication

area (see Appendix A, TABLES) and transfers control to the driver. The

driver configures itself to I/O operation on the appropriate channel, initiates

the transfer and returns to $EX18. DOS-M either returns to the executing

user program or waits until the I/O transfer is complete as requested by

the program.

5-6

INPUT/OUTPUT

Interrupt Processing

When an interrupt occ{rs on the computer, control is transferred to the
!

instruction in the interrupt location corresponding to the device. Each

interrupt location (m~mory locations 4 through 37) contains a "JSB $CIC"
.~ 8 8

instruction. $CIC, the Dentral interrupt control routine of DOS-M, then

performs the following:

a. Disables interrupt system

b. Saves registers, point of program suspension

c. Clears interrupt flag

d. Determines the type of interrupt

1) If power fail, halts

2) If memory protect, goes to EXEC (goes directly to EXEC

if no memory protect)

3) If time base, goes to CLOCK routine (if installed)

4) If not a legal I/O channel, returns to suspension point

5) If legal I/O channel, puts EQT entry addresses in base

page communication address and transfers to driver con­

tinuation address

e. Upon return from the I/O driver, turns on interrupt system, re­

stores registers, and returns to the point of suspension.

PLANNING I/0 DRIVERS

Before attempting to program an I/O driver, the programmer should be

thoroughly familiar with Hewlett-Packard computer hardware I/O organization,

interface kits, computer I/O instructions and Direct Memory Access (OMA).

An I/O driver, operating under control of the Input/Output Control ($EX18)

and Central Interrupt Control ($CIC) modules of DOS-M, is responsible for

all data transfer between an I/O device and the computer. The device

equipment table (EQT) entry contains the parameters of the transfer, and

the base page communication area contains the number of the allocated OMA

channel, if required.

5-7

INPUT/OUTPUT

An I/O driver includes two relocatable, closed subroutines, -- the Initiation

Section and the Completion Section. If nn is the octal equipment type code

of the device, I.nn and C.nn are the entry point names of the two sections

and DVRnn is the driver name.

Initiation Section

The I/O control module ($EX18) calls the initiation section directly when

an I/O transfer is initiated. Locations EQTl through EQT17 of the base page

communication area contain the addresses of the appropriate EQT entry. CHAN

in base page contains the number of the DMA channel assigned to the device,

if needed. This section is entered by a jump subroutine to the entry point,

I.nn. On entry, the A-register contains the select code (channel number)

of the device (bits~ through 5 of EQT entry word 3). The driver returns

to $EX18 by an indirect jump through I.nn.

Before transferring to I.nn, DOS-M places the request parameters from the

user program's EXEC call into words 7 through 13 of the EQT entry. Word 9,

CONWD, is modified to contain the request code in bits ~ through 5 in place

of the logical unit. See the EQT entry diagram and Section III, READ/WRITE

EXEC CALL, for details of the parameters.

Once initiated, the driver can use words 10 through 14 of the EQT entry in

any way, but words, 1, 2, 3, 7, 8, 9, 15, 16 and 17 must not be altered.

The driver updates the status field in word 4, if appropriate, but the rest

of word 4 must not be altered.

5-8

INPUT/OUTPUT

FUNCTIONS OF THE INITIATION SECTION

The initiation section of the driver operates with the interrupt system

disabled. The initiation section is responsible for those functions (as

flow-charted in Figure 5-1) :

1. Rejects the request and proceeds to step 5 if:

Il the device is inoperable, or

Il the request code, or other or the parameters is illegal.

2. Configures all I/O instructions in the driver to include the

select code of the device (or DMA channel) .

to DVR~S and 2870 DVR31.)

(Does not apply

3. Initializes DMA, if appropriate.

NOTE: The Initiation Section must save the DMA channel number
{found in CHAN) in the EQT entry, since it is not set on
entry to the Continuation Section.

4. Initializes software flags and activates the device. All vari­

able information pertinent to the transmission must be saved in

the EQT entry because the driver may be called for another

device before the first operation is complete.

5. R~turns to $EX18 with the A-register set to indicate initiation

or rejection and the cause of the reject:

If A ~' then the operation was initiated.

If A~~, then the operation was rejected with A set as:

1 - read or write illegal for device,

2 - control request illegal or undefined,

3 - equipment malfunction or not ready,

4 - immediate completion (for control requests).

6 - driver cannot handle a control request so the system
is instructed to wait.

5-9

Return
to

P+1

INPUT/OUTPUT

(A)= 1 or
2 reject
codes

(A)= 3,

~~~~ct 

I. nn 

Configure I/O 
Instructions 

for Device 

Initialize 
Operating, 
Condit ions, 
Flags, etc. 

Set buffer 
address, length, 
mode, etc. for 

transfer 

Return to 
P+1 

Figure 5-1. I/O Driver Initiation Section 

5-10 



INPUT/OUTPUT 

Completion Section 

OOS-M calls the completion section of the driver whenever an interrupt is 

recognized on a device associated with the driver. Before calling the 

driver, $CIC sets the EQT entry addresses in base page, sets the interrupt 

source code (select code) in the A-register, and clears the I/O interface 

or OMA flag. The interrupt system is disabled. The calling sequence for 

the completion section is: 

Location 

(P) 

(P+l) 

(P+2) 

Action 

Set A-register equal to interrupt source code 

JSB C.nn 

Completion return from C.nn 

Continuation return from C.nn 

The point of return from C.nn to $CIC indicates whether the transfer is con­

tinuing or has been completed (in which case, end-of-operation status is 

returned also). 

The completion section of the driver is responsible for the functions 

below (as flow-charted in Figure 5-2): 

1. The driver configures all I/O instructions in the Completion 

Section to reference the interrupting device, and then proceeds 

to step 2. 

2. If both OMA and device completion interrupts are expected 

and the device interrupt is significant, the OMA interrupt 

is ignored by returning to $CIC in a continuation return. 

3. Performs the input or output of the next data item if the 

device is driven under program control. If the transfer is 

not completed, the driver proceeds to step 6. 

5-11 



INPUT/OUTPUT 

4. If the driver detects a transmission error, it can re-initiate 

the transfer and attempt a retransmission. A counter for the 

number of retry attempts can be kept in the Equipment Table. 

The return to $CIC must be (P+2) as in step 6. 

5. At the end of a successful transfer or after completing the 

retry procedure, the following information must be set before 

returning to $CIC at (P+l) : 

a. Set the actual or simulated device status into 

bits ¢ through 7 of EQT word 4. 

b. Set the number of transmitted words or characters 

(depending on which the user requested) to the 

B-register. 

c. Set the A-register to indicate successful or 

unsuccessful completion. 

¢ successful completion, 

1 device malfunction or not ready, 

2 end-of-tape (information) , 

3 transmission parity error. 

6. Clears the device and DMA control on end-of-operation, or 

sets the device and DMA for the next transfer or retry. 

Returns to $CIC at: 

(P+l) - completion, with the A- and B-registers set as in 

step 5. 

(P+2) - continuation; the registers are not significant. 

5-12 



RETURN 
TO ......,._< 
P+2 

Re-inltializ 
Conditions 

RETURN 
TO 

P+2 

INPUT /OUTPUT 

C. nn 

Conf lgure 
I/O lnstructlons 

for Device 

Update 
Status in 

EQT(4) 

(8) =# 
words or 

cnaracters 
transferred 

(A) = 
Completion 

Code 

Clear 
Dev ice 
Control 

RETURN 
TO 

P+1 

Transfer next 
>---a~ Data item, RETURN 

11---~ TO 
update Indexes, P + 

2 flags, etc. 

Figure 5-2. I/O Driver Completion Section 

5-13 



INPUT/OUTPUT 

LINE PRINTER FORMATTING 

When a user program makes a READ/WRITE EXEC call to the line printer (HP 2778A 

or HP 2778A-01), the line printer driver DVR12 interprets the first character 

in the line as a carriage control character and prints it as a space.* The 

control characters have the following meanings: 

Character 

blank 

1 

* 
others 

Meaning 

Single space (print on every line), 

Double space (print on every other line), 

Eject page, 

Suppress space (overprint next line), 

Single space. 

Each printed line is followed by an automatic single space unless suppressed 

by the control character asterisk (*). Double spacing requires an additional 

single space prior to printing the next line. If the last line of a page is 

printed and the following line contains a "l", then a completely blank page 

occurs. 

When a user program makes an EXEC call for I/O CONTROL with the function bits 

in the CONWD (or the ICONWD) set to 011
8 

(see Section III), the optional para­

meter PARAM (or IPRAM) word defines the format action to be performed by the 

Line Printer: 

Parameter Word (Dec) 

1 to 55 

56 to 63 

64 

65 

Meaning 

Page Eject; 

Suppress space only the next print 
operation only; 

Space 1 to 55 lines, ignoring page 
boundaries; 

Use carriage control channel equal 
to the word - 55; 

Set automatic page eject mode; 

Clear automatic page eject mode. 

*DVR12 checks for certain program names (ALGOL, FTN, ASMB, LOADR, JOBPR); for 
these programs it prints the first character of each line and generates a 
single space. 

5-14 



INPUT/OUTPUT 

CARRIAGE CONTROL CHANNELS 

If the parameter word is 56 to 63, the printer spaces using the standard 

carriage control channels, which have the following meanings: 

Channel 1 Single space with automatic page eject. 

Channel 2 Skip to next even line with automatic page eject. 

Channel 3 Skip to next triple line with automatic page eject. 

Channel 4 Skip to next 1/2 page boundary. 

Channel 5 Skip to next 1/4 page boundary. 

Channel 6 Skip to next 1/6 page boundary. 

Channel 7 Skip to bottom of the page. 

Channel 8 Skip to top of next page. 

AUTOMATIC PAGE EJECT 

During non-automatic page eject mode, if the parameter word is equal to 56, 

then it is interpreted as equal to 1. Automatic page eject mode applies 

only to single space operations. 

MAGNETIC TAPE USAGE 

Input/output transfers to and from a HP 3030 magnetic tape unit can be pro-

grammed using the standard READ/WRITE EXEC call. (See Section III.) When 

specifying the data buffer length, the programmer must know that a buffer 

length of zero (0) causes the driver to take no action on a write or an 

ASCII read. Only the amount of data that fits within the buffer is trans­

mitted to the user on read. A zero (0) buffer length on binary read causes 

a forward skip one record. 

5-15 



INPUT/OUTPUT 

In the I/O STATUS EXEC call, bits 7-~ of the second status word contain the 

status of the magnetic tape unit. The bits have the following meaning when 

they are set (i.e., equal to one): 

BIT MEANING 

7 End-of-file record encountered while reading, forward 

spacing, or backward spacing. 

6 Start-of-tape marker sensed. 

5 End-of-tape marker sensed. 

4 Timing error on last read/write operation. 

3 I/O request rejected by magnetic tape unit. 

2 No write enable ring, or the tape unit is rewinding. 

1 Parity error on last read/write operation. 

~ Tape unit busy, or in local mode. 

The status bits are stored in the EQT entry; they are updated everytime the 

driver is called. A dynamic status request is processed as soon as the 

magnetic tape EQT entry is available (availability bits equal to 00) , and re­

turns the actual status of the device (obtained from the driver) to the call­

ing program in the A-register and to the EQT entry. 

Buffers of any length are allowed for the 7970. Buffers of less than 6 words 

for the 3030 are padded out to six words. 

1. For binary writes they are padded with binary zeros. 

2. For ASCII they are padded with ASCII Blanks. 

The maximum buffer length is 16,384 words. 

5-16 



INPUT/OUTPUT 

ERROR RECOVERY PROCEDURES 

On a read parity error, the driver rereads the record three times before 

setting the parity error status bit and returning to the calling program. 

The final read attempt is transmitted to the program buffer. 

On a write parity error, the driver continues to retry the write until one 

of these two conditions occurs: 

a) The record is successfully written, or 

b) The end-of-tape is encountered. 

On a write without the write enable ring, the magnetic tape unit is made 

unavailable (magnetic tape not ready). DOS-M prints a message: 

I/0 ERR NR EQT#n 

and waits for the operator to correct the unit and enter :GO. 

At the end-of-tape there are only two legal forward motion requests: 

a) Write end-of-file, or 

b) Read record. 

All other forward motion requests (write, forward space) cause the unit to 

be made unavailable. In addition, only one of the legal motion requests may 

be made after an end-of-tape. Backward motion requests clear the end-of-tape 

status. 

5-17 



SECTION VI 
EXTENDED FILE MANAGEMENT PACKAGE 

The Extended File Management Package (EFMP) extends the file handling capa­

bilities of DOS-M by allowing the user to create and use files with different 

record lengths, security codes, and other conveniences. EFMP consists of a 

series of additional EXEC modules and a utility program; it maintains a file 

structure that operates within, and in addition to, the standard DOS-M file 

structure. 

ENVIRONMENT 

EFMP functions in the DOS-M environment, but requires a computer with at 

least 16K memory. It is implemented through a set of EXEC modules which are 

incorporated into DOS-M at system generation time; the EXEC modules are in­

voked using the familiar EXEC call mechanism. 

FUNCTIONS AND STRUCTURE 

The EFMP modules themselves allow any program executing in the user area to 

Create/Destroy, Open/Close, Read/Write, Reset, Repack, Copy, and Post files 

on the moving-head disc. Also, EFMP makes available detailed status inform­

ation on all files and packs known to it. EFMP may be accessed conversa­

tionally from the keyboard by using UTIL, a utility program that executes in 

the user area. 

DOS-M Files vs. EFMP Files 

DOS-M maintains files that are referenced by five-character names and rela­

tive sector numbers. The user can access these files in either a keyboard 

mode (via directives) or in a programming mode (via EXEC calls). In key­

board mode, the user creates a file with the :STORE directive and operates 

6-1 



EXTENDED FILE MANAGEMENT PACKAGE 

on that file with directives such as :EDIT, :DUMP, etc. In programming mode, 

the DOS-M files are accessed by EXEC calls such as FILE READ/WRITE and 

SEARCH FILE NAME. 

In addition to the file structure, DOS-M maintains a subchannel (or user 

disc) identification scheme. User discs are first formatted either during 

system generation or by a special function of the system generator. These 

functions format the hardware tracks and set up information such as the Label 

Presence Code and System Proprietary Code. After a disc pack is formatted, 

the :INITIALIZE directive is used to set up labels (six-character codes), 

change labels, and purge old discs. 

EFMP operates within this file structure of DOS-M to set up and maintain 

additional - but distinctly different - files. Selected discs within DOS-M 

are turned over to EFMP exclusively. The user must identify them with a pack 

number of the form PNxxx, where xxx is a decimal integer. The procedure for 

doing this is described under SET UP. Within a pack, EFMP creates files of 

its own that are not known to DOS-M. They are identified by a fixed length 

name, contain a grouping of specified length records, and have a security 

code. Since only the DOS-M files can be created and accessed by directives, 

all EFMP files must be used through the EFMP EXEC calls or the UTIL program. 

EFMP files are limited in size only by the requirement that they fit within 

one subchannel or pack. To avoid confusion, all references to files within 

this section will mean EFMP files, not DOS-M files, unless specifically 

stated otherwise. 

EFMP Buffers and Tables 

To provide maximum flexibility in core size and speed of file accessing, 

EFMP allows the user to define (at execution time) the size and location of 

the tables and buffers required in core by EFMP. Two areas are defined by 

the user and provided in his program space: 

1. Opened File Table 

2. Temporary Record Buffers 

6-2 



EXTENDED FILE MANAGEMENT PACKAGE 

The Opened File Table contains all information necessary for EFMP to identify 

and access files belonging to the user. The minimum size of the Opened File 

Table is one sector (128 words) and allows approximately seven files to be 

opened concurrently. 

EFMP uses the Temporary Record Buffers as an intermediate storage area be­

tween the disc and the user's record buffer. The user defines the number of 

Temporary Record Buffers and the size of each. There must be at least one 

buffer and it must be at least two sectors (256 words) long. Particular 

files and buffers can be linked to increase the access speed of files. The 

effect of varying the number and size of these buffers cannot be predicted 

exactly and must be determined empirically by trial and error. 

NOTE: Since these tables and buffers exist in the user 
area and are not protected, extreme caution must 
be taken not to modify them in any way. 

Logical Read vs. Physical Read 

A logical read occurs each time the user requests a record from a file. At 

that time EFMP checks the appropriate Temporary Record Buffer to determine 

if the requested record is already in core. If in core, the record is trans­

ferred to the user's record buffer without actually physically reading the 

disc. If the record is not present in core, the necessary disc transfers 

are performed (physical reads--and writes, if necessary) to bring the record 

into core. If the Temporary Record Buffer is larger than the record size, 

several records are brought into core at once. 

Logical Write vs. Physical Write 

A logical write occurs each time a user requests that a record be written to 

a file. At that time, EFMP determines if that record is present in the 

Temporary Record Buffer; if it is, EFMP simply transfers the data in the 

user's record buffer to the Temporary Record Buffer and flags it as "must be 

6-3 



EXTENDED FILE MANAGEMENT PACKAGE 

written." Each succeeding read or write is treated in the same manner until 

a logical record transfer occurs for which the record is not in core, or 

until the last record in the Temporary Record Buffer is logically written. 

In these cases, the EFMP must physically write (post) the records in the 

Temporary Record Buffer (i.e., post them) on the disc. 

If the record is not present in core on a write request, EFMP locates the 

record on the disc and transfers it physically into the Temporary Record 

Buffer. The data to be written is then transferred from the user buffer to 

the Temporary Record buffer and flagged as "must be written." The read be­

fore write is necessary because records do not necessarily fall on sector 

boundaries in the disc. If a CLOSE or POST request occurs, all buffers 

flagged are written to the disc. 

Update-Writes vs. Append-Writes 

The purpose of an update-write is to change the contents of an existing record; 

the purpose of append-write is to add new records onto the end of a file. 

EFMP writes a record as an update-write whenever the record specified exists 

in a previously accessed section of a file. 

EFMP writes a record as an append-write whenever the record specified is 

beyond the previously accessed section of a file. In this case, EFMP auto­

matically inserts zeros into all records (if any) between the highest record 

previously written and the new record. 

SET UP 

There are several prerequisites for EFMP. First, the EFMP EXEC modules must 

be included in DOS-M when the system is generated. Second, when DOS-M is 

running, the user must prepare EFMP disc packs from formatted DOS-M packs or 

cartridges. 

6-4 



EXTENDED FILE MANAGEMENT PACKAGE 

The mechanism for creating EFMP packs is as follows: 

a. Insert a formatted pack into the disc drive. 

b. Make the subchannel of this pack the User Disc using 

the :UD directive. 

c. Label the pack (if unlabeled) using the :IN directive. 

d. Set up a DOS-M file which uses the entire pack (i.e., perform 

a :STORE,B directive.) 

The directive format for this function is: 

:STORE,B,PNxxx,sectors 

where xxx is a unique decimal number, 

PNxxx is the unique pack number, and 

sectors is the number of sectors available on the 

pack =- 199 * ( # sectors/track) ; 

(4776 on a fully utilized HP 2870 or 22885 

on a fully utilized HP 2883) . 

NOTE: EFMP changes the file from Type B to Type A during 
processing. 

EFMP EXEC CALLS 

The method of communication between a user program and EFMP is through the 

standard DOS-M EXEC call format. One DOS-M request code--24-- is reserved 

for EFMP requests. This, combined with an EFMP function number, determines 

what action EFMP is requested to take. 

Only the Assembly Language calling sequences are given for these EXEC calls. 

The methods for converting these calling sequences to FORTRAN or ALGOL are 

described in Section III. 

6-5 



EXTENDED FILE MANAGEMENT PACKAGE 

DEFINE 

Purpose 

To define, before any other EFMP calls are made, the number of 

16-bit words within the user program to be used by the EFMP for 

its internal buffers and tables. 

Assemb J.L Langua~ 

RCODE 
EFMPF 
OPNTB 
OPNSZ 

TRBUF 

NOT RB 

TRBSZ 

ERRNO 

JSB EXEC 
DEF *+9 
DEF RCODE 
DEF EFMPF 
DEF OPNTB 
DEF OPNSZ 
DEF TRBUF 
DEF NOTRB 
DEF TRBSZ 
DEF ERRNO 
return 

DEF 24 

DEC 1 

BSS n 

DEC n 

BSS M 

DEC p 

DEC q 

BSS 

Return Address 

Request Code 

EFMP Function Number 

Opened-File Table Address 

Opened-File Table Size 

Temp. Record Buffer Address 

No. of Temp. Record Buffers 

Temp. Record Buffer Size 

Error Number 

Continue Execution 

(Opened-File Table. n is the 

Size of Opened-File Table (in 

words). See Comment 1. 

size.) 

16-bit 

Beginning of Temp. Record Buffers. 

See Comment 2. 

No. of Temp. Record Buffers. 

See Comment 2. 

Size of each Temp. Record Buff er 

(in sectors) . 

Return point for error codes. 
See GENERAL ERRORS. 

6-6 



EXTENDED FILE MANAGEMENT PACKAGE 

Comments 

1. The size of the Opened-File Table (n) can be calculated by this formula: 

n = 3*(NOTRB)+l6*(Max. No. of Files to be OPENed) 

The minimum size of this table is one sector (128 words). This allows 

approximately seven files to be OPENed concurrently. 

2. There must be at least one temporary record buffer and it must be at 

least two sectors long (256 words). There may, however, be more buffers 

and they may be more than two sectors in size. All of the space for 

these buffers nust be allocated starting at the location TRBUF. In­

creasing the number of buffers allows disc efficiency to be increased 

by assigning a buffer exclusively to one file. Increasing the size of 

each buffer increases the speed of disc accessing by allowing more than 

one sector to be transferred per disc access. 

The total size of the Temp. Record Buffers (m) can be calculated by 

the following formula: 

m =NOTRE* TRBSZ * 128 (The minimum value for TRBSZ is 2.) 

3. All the tables and buffers are fixed by DEFINE until the end of a 

program, or another DEFINE. Each time a DEFINE occurs, all information 

contained in tables and buffers is lost, all pointers are reset, and 

EFMP assumes a fresh start. At the end of each program, DOS-M calls 

EFMP to perform a POST on any records flagged as "must be written." 

6-7 



EXTENDED FILE MANAGEMENT PACKAGE 

CREATE 

Purpose 

To set up a directory on disc with all of the information neces­

sary to create a file that can be accessed at a later time. 

Assembly Language 

JSB EXEC 
DEF *+9 Return Address 

DEF RCODE Request Code 

DEF EFMPF EFMP Function Number 

DEF FNAME File Name 

DEF PAKNO Pack Number 

DEF FLGTH File Length (in records) 

DEF RLGTH Record Length (in words) 

DEF SCODE Security Code and User Status 

DEF ERRNO Error Number 

return Continue Execution 

RCODE DEC 24 

EFMPF DEC 2 

FNAME ASC 3,xxxxx xxxxx is the name to be applied to the 

file. (First two characters cannot be 

zero or 1 774~~8 .) 

PAKNO DEC p p is the pack number. See Comments. 

FLGTH DEC q q is the number of records in the file; 

(1 < q :: 32,767) 

RLGTH DEC r r is the number of words in a record; 

(1 < r < 32,767) and r must be less -
than or equal to 1/2 the size of the 

Temp. Record Buffer. 

6-8 



EXTENDED FILE MANAGEMENT PACKAGE 

CREATE EXEC CALL (cont.) 

SCODE OCT s s is any 16-bit combination to be 

(SCODE checked by EFMP during OPEN and DESTROY. 

+ l) OCT t t is any 16-bit combination of status 

information desired by the user (referred 

to as USTAT elsewhere). 

ERRNO BSS Return point for error codes. See 

GENERAL ERRORS. 

Comments 

If PAKNO is a number between 1 and 999 it indicates the EFMP pack on which 

the file is to be created. When EFMP creates a file, it reserves the neces­

sary area on the disc after the last previous file generated. No attempt is 

made to search for an area between files. If PAKNO is equal to -1, the file 

is to be created on any pack that is available. 

If PAKNO equals zero, the file is placed on the work area of the disc and no 

area will be reserved in the EFMP packs. When such a temporary file is cre­

ated, the only directory information that is maintained is in the Opened-File 

Table. A disc-based directory is not maintained. Also, since the directory 

information is established in core during the CREATE function, the OPEN 

function is not required. The only reason for using an OPEN call for a tempo­

rary file is to assign it to a specific Temporary Record Buffer or to change 

the starting record number to a value other than 1. If no OPEN call is given, 

the first Temporary Record Buffer is used. 

When the work area is used for temporary files, EFMP reserves this whole area 

and identifies it as PN0~~. In order to keep PN~~~ from using the entire 

work area, the user must enter a STORE,B,PN~~~ directive for the system disc 

with the desired number of sectors. When EFMP has terminated, the user 

should PURGE the file PN0~~ from the work area 

6-9 



EXTENDED FILE MANAGEMENT PACKAGE 

DESTROY 

To eliminate the directory information for a particular file from 

core and the disc. The user must specify the correct security 

code for the file. The disc area is repacked only for temporary 

files. To repack the EFMP subchannels, use the REPACK EFMP call. 

Assembl~ Language 

JSB EXEC 
DEF *+7 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF PAKNO 
DEF SCODE 
DEF ERR NO 
return 

RCODE DEC 24 

EFMPF DEC 3 

FNAME ASC 3,xxxx 

PAKNO DEC n 

SCODE OCT s 

ERRiW BSS 

Return Address 

Request Code 

EFMP Function Code 

File Name 

Pack Number 

Security Code 

Error Number 

Continue Execution 

If n = ~' then FNAME refers to a temporary 

file. If n > 1 and n < 999, then FNAME 

is to be located on this pack number. 

If n = -1, then EFMP searches all of its 

packs until it finds a file that matches 

FNAME. 

s is the security code for the file 

established by the CREATE EFMP Call. 

Security code ignored on temporary 

files. 

Return point for error codes. See 

GENERAL ERRORS. 

6-10 



EXTENDED FILE MANAGEMENT PACKAGE 

OPEN 

Purpose 

To make a previously CREATED file accessible by extracting the 

necessary file information from the disc directories and placing 

it in core. The number of files that can be OPENED at any one 

time is limited by the size of the Opened File Table (see DEFINE). 

Assembly Language 

JSB EXEC 
DEF *+9 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF PAKNO 
DEF RCDNO 
DEF SCODE 
DEF BUFNO 
DEF ERR NO 
return 

RCODE DEC 24 

EFMPF DEC 4 

FNAME ASC 3,xxxxx 

PAKNO DEC n 

Return Address 

Request Code 

EFMP Function Code 

File Name 

Pack Number 

Record Number 

Security Code 

Buff er Number 

Error Number 

Continue Execution 

If n = ~, the file is a temporary file 

on the work area. If n is between 1 

and 999, EFMP looks for FNAME on the 

appropriate pack. If n = -1, EFMP 

searches all available packs for the 

requested file. 

6-11 



RCDNO DEC r 

SCODE OCT s 

BUFNO DEC b 

ERRNO BSS 

EXTENDED FILE MANAGEMENT PACKAGE 

OPEN EXEC CALL (cont.) 

If r = ~' EFMP sets the next record to 

be accessed (for sequential READS or 

WRITES) to the highest record previously 

accessed + 1. Otherwise, r can be any 

number between 1 and the maximum record 

number contained in the file. This allows 

sequential access to be initialized at 

any record. 

s is the security code established by 

the CREATE call. It must match. 

b must be a number between 1 and the 

maximum number of Temp. Record Buffers 

available. For any other number, EFMP 

uses 1. 

Return point for error codes. 

See GENERAL ERRORS. 

6-12 



EXTENDED FILE MANAGEMENT PACKAGE 

CLOSE 

Purpose 

To remove information about a particular file from the core­

based Opened-File Table. This allows an additional file to 

be OPENED. Also, CLOSE updates the user status information 

(USTAT) and the highest record accessed on the disc. 

Assembly Language 

JSB EXEC 
DEF *+6 

DEF RC ODE 
DEF EFMPF 
DEF FNAME 
DEF USTAT 
DEF ERR NO 
return 

RCODE DEC 24 

EFMPF DEC 5 

FNAME ASC 3,xxxxx 

US TAT OCT u 

ERRNO BSS 

Comments 

Return Address 

Request Code 

EFMP Function Number 

File Name 

User Status 

Error Number 

Continue Execution 

User status information (any 16-bit 

combination) to be written into the 

disc directory for the file. 

Return point for error codes. 

See GENERAL ERRORS. 

If a CLOSE is requested for a temporary file, the directory information in 

the Opened-File Table is deleted and the work area is automatically repacked. 

If a file has been COPIED to the work area, the user status (USTAT) and high­

est record assessed are not updated on the original copy of the file. 

6-13 



EXTENDED FILE MANAGEMENT PACKAGE 

READ 

Purpose 

To retrieve a specified record (random access) or the next record 

(sequential access) 

and WRITTEN. 

Assembl~ Language 

JSB EXEC 
DEF *+7 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF RCDNO 
DEF BUFFR 
DEF ERR NO 
return 

RCODE DEC 24 

EFMPF DEC 6 

FNAME ASC 3,xxxxx 

RCDNO DEC n 

BUFFR BSS m 

ERRNO BSS 

from a file that has previously been OPENED 

Return Address 

Request Code 

EFMP Function Code 

File Name 

Record Number 

Buffer for Data 

Error Number 

Continue Execution 

n is a record number between l and 

32,767. For sequential access and 

backspacing, see Comment. 

m is the length of the buff er in 

words. It must be at least the 

record length. 

Return point for error codes. 

See GENERAL ERRORS. 

6-14 



EXTENDED FILE MANAGEMENT PACKAGE 

Comments 

If RCDNO = ~' a sequential READ or WRITE is implied. This feature provides 

the program with the next record available relative to the last READ or 

WRITE performed (or OPEN operation). If RCDNO is a negative number, it 

specifies a backspace, relative to the current record (last record accessed 

plus 1), before the READ or WRITE. If an attempt is made to backspace the 

record number indicator to a value less than one, the EFMP issues an error 

and terminates the READ or WRITE. Unless needed, care should be taken so 

as not to backspace the record number indicator beyond the range of records 

held in the Temporary Record Buffer at that time, since this will initiate 

a posting operation and a physical disc access. 

6-15 



EXTENDED FILE MANAGEMENT PACKAGE 

WRITE 

Purpose 

To write into a specified record (random access) or into the 

next record (sequential access) of a file that has previously 

been OPENED. 

Assembly Language 

JSB EXEC 
:JEF *+7 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF RCDNO 
DEF BUFFR 
DEF ERRNO 
r~turn 

RCODE DEC 24 

EFMPF DEC 8 

FNAME ASC 3,xxxxx 

RCDNO DEC n 

BUFFR BSS m 

ERR NO BSS 

Return Address 

Request Code 

EFMP Function Number 

File Name 

Record Number 

Buffer for Data 

Error Number 

Continue Execution 

Same as for the READ EXEC CALL. 

Same as for READ. 

Return point for error codes. 

See GENERAL ERRORS. 

6-16 



EXTENDED FILE MANAGEMENT PACKAGE 

RESET 

Purpose 

To reset the highest record accessed pointer for a file to a 

lower value. The information beyond the pointer is lost. The 

file must be OPEN before it can be RESET. (PAKNO below provides 

an ,additional check.) 

Assembly Language 

JSB EXEC 
DEF *+7 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF PAKNO 
DEF RCDNO 
DEF ERRNO 
return 

RCODE DEC 24 

EFMPF DEC 9 

FNAME ASC 3,xxxxx 

PAKNO DEC n 

RCDNO DEC m 

ERRNO BSS 

Request Code 

EFMP Function Code 

File Name 

Pack Number 

Record Number 

Error Number 

Continue Execution 

If n = ~' EFMP searches the work area to 

find the desired file name. If n is a 

number between 1 and 999, EFMP searches 

pack number PNn to find the desired file 

name. If n -1, EFMP searches all packs. 

mis a number between~ and 32,767 

to which the highest record accessed 

pointer will be set. m must be 

lower than the current value. 

Return point for error codes. 

See GENERAL ERRORS. 

6-17 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 

Purpose 

To allow the user program access to various types of status in­

formation relative to EFMP. Several separate status functions 

(identified by unique Status Function Numbers) are provided; 

all have basically the same form of calling sequence, but they 

vary in the parameters used. 

Assembly Language 

JSB EXEC 
DEF *+9 Return Address 

DEF RCODE Request Code 

DEF EFMPF EFMP Function Code 

DEF FSTAT Status Function Number 

DEF FNAME File Name 

DEF PAKNO Pack Number 

DEF DUMMY Not Used 

DEF STATB Status Buffer 

DEF ERR NO Error Number 

return Continue Execution 

NOTE: Above is the general format for Status EFMP 
calls. The use and meaning of each parameter 
in the calling sequence varies from status 
call to status call. The parameters for each 
call are given separately below. Common to 
all status functions are: 

RCODE DEC 24 
EFMPF DEC 10 
DUMMY BSS 

6-18 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 

Purpose 

To provide the user with all information, except the security code, 

contained in the directory for a file. 

Parameters 

FSTAT 
FNAME 
PAKNO 

DEC 
ASC 3,xxxxx 

DEC m 

STATB BSS 10 

ERRNO BSS 

If m = ~' EFMP searches the work area 

for the requested file. If m is be­

tween 1 and 999, EFMP searches the pack 

of that number. For m = -1, EFMP 

searches all available packs for the 

requested file. 

The pack number is returned in the 

first word if PAKNO = -1. The remain­

ing nine words will receive the direc­

tory status information in the same 

format as the directory itself. (See 

EFMP File Disc Directory.) 

Return point for error code. 

See GENERAL ERRORS. 

6-19 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 2 

Purpose 

To determine if a file is OPEN. 

Parameters 

FSTAT DEC 2 
FNAME ASC 3,xxxxx 

PAKNO OCT 0 
STATB BSS 2 

ERRNO BSS 

Not used. 

The first word returns the pack number 

if the file is OPEN. The second word 

returns a value of ~ if the file is 

OPEN or 1 if the file is not open. 

Return point for error codes. 

See GENERAL ERRORS. 

6-20 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 3 

Purpose 

To check the security code of a file. 

Parameters 

FSTAT DEC 3 
FNAME ASC 3,xxxxx 

PAKNO DEC m 

STATB BSS 3 

ERRNO BSS 

Same as Function Number 1. 

The first word returns the pack 

number if appropriate. The second 

word is used by the user program 

to give the security code to be 

checked. The third word returns ~ 

if the code checks or 1 if it does 

not check. 

Return point for error codes. 

See GENERAL ERRORS. 

6-21 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 4 

Purpose 

To determine the number of available full sectors left between 

the highest record accessed in a file and the end of the file. 

Parameters 

FSTAT DEC 4 
FNAME ASC 3,xxxxx 

PAKNO DEC m 

STATB BSS 2 

ERRNO BSS 

Sarne as Function Number 1. 

The first word returns the pack 

number if appropriate. The second 

word returns the number of sectors 

available. 

Return point for error codes. 

See GENERAL ERRORS. 

6-22 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 5 

Purpose 

To determine the number of available sectors left between the 

last file in a pack and the end of the pack. 

Parameters 

FSTAT 
FNAME 
PAKNO 

DEC 5 
OCT 0 
DEC m 

STATB BSS 2 

ERRNO BSS 

Not used. 

Same as Function Number 1, but cannot 

equal -1. 

The first word must be present, but is 

not used. The second word returns the 

number of sectors available. 

Return point for error codes. 

See GENERAL ERRORS. 

6-23 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 6 

Purpose 

To obtain the name of the nth file on a pack where n is an integer 

between 1 and the maximum number of files on a pack. 

Parameters 

FSTAT DEC 6 
FNAME BSS 3 

PAKNO DEC m 

STATB DEC n 

ERRNO BSS 

Return point for file name or all zeroes 

if no file is present. 

m is a number between 1 and 999. 

n indicates the nth file. 

Return point for error codes. 

See GENERAL ERRORS. 

6-24 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS 
STATUS FUNCTION NUMBER 7 

Purpose 

To request all pack numbers currently available to EFMP. 

Parameters 

FSTAT DEC 7 
FNAME OCT 0 
PAKNO OCT 0 
STATB BSS 7 

ERRNO BSS 

Example 

Information returned in buffer. 

STA TB 

1.0 

762 

Not used. 

Not used. 

Return point for pack numbers. They 

are presented in ascending order of 

subchannel number. The list is 

terminated by a zero. 

Return point £or error codes. 

See GENERAL ERRORS. 

STA TB 5 

1.0 

2 

.0 (terminates list) 9.0.0 .__ ___ _ 
213 

22 

6 
(list terminates 
by being complete) 

Order of pack numbers does not imply specific subchannel numbers. 

6-25 



EXTENDED FILE MANAGEMENT PACKAGE 

REPACK (PURGE) 

Purpose 

To repack the existing files on a pack(s), removing empty spaces 

left when files have been destroyed. 

Assembly Language 

JSB EXEC 
DEF *+5 

DEF RCODE 
DEF EFMPF 
DEF PAKNO 
DEF ERR NO 
return 

RC ODE DEC 24 

EFMPF DEC 11 

PAKNO DEC n 

ERRNO BSS 

Request Code 

EFMP Function Code 

Pack Number 

Error Number 

Continue Execution 

For n between 1 and 999, only the speci­

fied pack is repacked. For n = -1, all 

the packs available to EFMP are repacked. 

Return point for error codes. 

See GENERAL ERRORS. 

CAUTION: If the EFMP disc directory contains a large number of files and 

the sizes of the Temporary Record Buffers are small, repacking 

may require considerable time. Therefore, REPACK should be 

performed when sufficient time is available. Under no circum­

stances should an ABORT be performed during a REPACK. 

6-26 



EXTENDED FILE MANAGEMENT PACKAGE 

COPY 

Purpose 

To transfer a copy of an opened file and its directory from an 

EFMP pack to the work area of DOS-M, from a pack to another pack, 

or from the work area to a pack. 

Assembly Language 

JSB EXEC 
DEF *+6 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF PAKNO 
DEF ERR NO 
return 

RC ODE DEF 24 

EFMPF DEC 12 

FNAME ASC 3,xxxxx 

PAKNO DEC n 

ERRNO BSS 

Request Code 

EFMP Function Code 

File Name 

Pack Number 

Error Number 

Continue Execution 

See Comment 1. 

If n = 0, EFMP copies the file onto the 

work area. If n is between 1 and 999, 

EFMP copies the file onto the specified 

pack. If n is between -1 and -999, EFMP 

copies the file from the work area to a 

pack specified by the 10's complement 

of n. See Comment 2. 

Return point for error codes. 

See GENERAL ERRORS. 

6-27 



EXTENDED FILE MANAGEMENT PACKAGE 

Comments 

1. Remember that a file must be OPENED before it can be COPIED. This is 

necessary to determine from which pack to copy the file. When a file 

has been copied to the work area, all READS and WRITES referencing that 

file use the work area version until the file is CLOSED. (Files copied 

from the work area to a pack continue to use the work area version for 

READS and WRITES.) Temporary copies of files do not have security codes. 

Therefore, files copied from the work area to a pack have a security code 

of ¢. When a file is copied from pack to pack, the original security 

code is retained. See CLOSE for further notes on Work Area files. 

2. If there is already a file with the same name in the destination pack 

directory, an error code is returned and the COPY is aborted. In this 

case, the user can first DESTROY the name in the destination pack, and 

then perform the COPY again. 

3. When COPYING from a pack to a pack not on the drive (and only a single 

removable pack is available), EFMP automatically requests that the user 

continually swap packs until the entire file has been COPIED. EFMP prints 

out a message and halts the computer with 1¢2¢76 in the T-Register: 

INSERT DESTINATION [SOURCE] PACK AND PRESS RUN. 

After the user inserts the appropriate pack and presses RUN, a check is 

made to determine if the proper pack has been entered. If EFMP cannot 

find the correct pack, the message is repeated. To allow the user an 

orderly exit in case the correct pack is not available, the following 

question is asked after each question: 

ENTER C OR T 

where C means to continue COPYING, and 

T means to terminate the COPY and return to the program. 

4. Care must be taken to insert the original pack (if it has been removed 

during the COPY function) into its original subchannel. 

6-28 



EXTENDED FILE MANAGEMENT PACKAGE 

CHANGE FILE NAME 

Purpose 

To change a file name. (File need not be OPEN.) 

Assembly Language 

JSB EXEC 
DEF *+7 

DEF RCODE 
DEF EFMPF 
DEF FNAME 
DEF PAKNO 
DEF SCODE 
DEF ERRNO 
return 

RCOD.E DEC 24 

EFMPF DEC 13 

FNAME ASC 3,xxxxx 

ASC 3,zzzzz 

PAKNO DEC n 

SCODE OCT m 

ERRNO BSS 

Request Code 

EFMP Function Code 

File Name 

Pack Number 

Security Code 

Error Number 

Continue Execution 

Current file name. 

New file name. 

n = ~' indicates that the file is on the 

work area. If n is between 1 and 999, 

n indicates the pack containing the file. 

If n = -1, EFMP searches all available 

packs for the current file name. 

Security code. See CREATE. 

Return point for error codes. 

See GENERAL ERRORS. 

6-29 



EXTENDED FILE MANAGEMENT PACKAGE 

POST 

To physically write on the disc all buffers that have been flagged 

as "must be written" in the Temporary Record Buffer. (That is, con­

vert all outstanding logical WRITE's into physical WRITE's.) 

Assembly Language 

JSB EXEC 
DEF *+4 

DEF RCODE 
DEF EFMPF 
DEF ERR NO 
return 

RCODE DEC 24 

EP~PF DEC 14 

ERR NO BSS 

Comments 

Request Code 

EFMP Function Code 

Error Number 

Continue Execution 

Return point for error codes. 

See GENERAL ERRORS. 

The POST operation updates the highest record accessed pointer in the disc 

directories, but not the user status word (USTAT). 

6-30 



EXTENDED FILE MANAGEMENT PACKAGE 

UTIL PROGRAM--CONVERSATIONAL USE OF EFMP 

UTIL is a program that allows access to most of the EFMP functions through 

the keyboard; it accepts commands or directives from the operator and con­

verts these into EFMP calling sequences. When EFMP has processed the call, 

UTIL reports back a successful operation or an error given by EFMP. 

Functions 

The following EFMP functions are provided by UTIL: 

1. CREATE 

2. DESTROY 

3. OPEN 

4. CLOSE 

5. STATUS (all functions) 

6. REPACK 

7. COPY 

8. CHANGE FILE NAME 

9. POST 

10. RESET 

When initiated, UTIL makes a DEFINE call to establish a Temporary Record 

Buffer of four sectors and an Opened File Table of one sector. In addition, 

UTIL provides one other function--BRIEF--that allows the operator to increase 

or decrease the amount of disc storage reserved for a file. 

NOTE: UTIL requires the FORTRAN IV version of the 
Formatter program to operate properly. 

6-31 



EXTENDED FILE MANAGEMENT PACKAGE 

: PROG, UTIL 

Purpose 

To initiate execution of the UTIL program. 

Format 

:PROG, UTIL,n 

where n = ~ to print a list of commands or 

n ·~ ~ to skip printing the list. 

List of commands message: 

/CRE,FNAME,PAKNO,FLGTH,RLGTH,SCODE,USTAT 
/DES,FNAME,PAKNO,SCODE 
/OPE,FNAME,PAKNO,RCDNO,SCODE 
/CLO,FNAME,USTAT 
/RES,FNAME,PAKNO,RCDNO 
/STA,DF,FNAME,PAKNO 
/STA,FO,rnAME 
/STA,SC,FNAME,PAKNO,SCODE 
/STA,LR,FNAME,PAKNO 
/STA, LF, PAKNO 
/STA,NF,PAKNO,STATB 
/STA,AP 
/REP,PAKNO 
/COP,FNAME,PAKNO 
/CHA,FNAMl ,FNAM2,PAKNO,SCODE 
/POS 
/BRI,FNAME,SCODE 
/END 

(All parameters are decimal.) 

6-32 



EXTENDED FILE MANAGEMENT PACKAGE 

UTIL begins by printing a message to indicate that it is ready for a 

directive: 

UTIL READY 

After it processes the directive, UTIL prints out the results of the oper­

ation (where appropriate) or any error codes that may have been returned 

by EFMP. (See GENERAL ERRORS.) When it is ready for another directive, 

UTIL prints UTIL READY. If an incorrect directive is entered, UTIL prints 

ILLEGAL OPERATION 
UTIL READY 

UTIL is terminated by typing in the command /END. 

UTIL prints any error messages on the system terminal; normal output is 

printed on the list device. 

6-33 



EXTENDED FILE MANAGEMENT PACKAGE 

CREATE COMMAND 

Purpose 

To create a new file (i.e., to invoke the CREATE function of EFMP). 

Format 

/CRE, FNAME, PAKNO, FLGTH, RLGTH, SCODE, USTAT 

See CREATE EFMP CALL for explanation of parameters. 

Example 

Example print-out: 

FILE C0 
THE FILE 
THE FILE 

/CRE, DATA, 42, 20, 126, 3901 , 1 

t t t 

IS 

file record user 
name length status 

pack 
number 

CREATED 
ON PACK# 

file 
length 

120 

security 
code 

LENGTH ~S 

THE RECORD LENGTH IS 
8 RECORDS 

8 ~JORDS 

THE SECURITY CODE IS 0 
THE USER STATUS WORD IS 0 

6-34 



EXTENDED FILE MANAGEMENT PACKAGE 

DESTROY COMMAND 

Purpose 

To destroy a file by eliminating its directory entry (i.e., to 

invoke the DESTROY EFMP function). 

Format 

/DES, FNAME, PAKNO, SCODE 

See DESTROY EFMP CALL for explanation of parameters. 

Example 

Example print-out: 

FILE C0 

/DES, DATA, 42, 3901 

DESTROYED 

t 
file 
name 

pack 
number 

security 
code 

6-35 



EXTENDED FILE MANAGEMENT PACKAGE 

OPEN COMMAND 

Purpose 

To OPEN a previously CREATED file (i.e., to invoke the OPEN 

function of EFMP). 

Format 

/OPE, FNAME, PAKNO, RCDNO, SCODE 

See OPEN EFMP CALL for explanation of parameters. 

Example 

/OPE, DATA, 42, 1 , 3901 

t t 
file security 
name code 

pack 
number 

record 
number 

Example print-out: 

FILE LOB70 OPENED 
THE FILE IS ON PACK# 120 
THE RECORD # IS 
THE SECURITY CODE IS 0 

6-36 



EXTENDED FILE MANAGEMENT PACKAGE 

CLOSE COMMAND 

Purpose 

To CLOSE a previously OPENED file (i.e., to invoke the CLOSE 

function of EFMP). 

Format 

/CLO, FNAME, USTAT 

See CLOSE EFMP CALL for explanation of parameters. 

Example 

/CLO, DATA, 2 
t 

file 
name 

user 
status 

Example print-out: 

FILE LOB70 CLOSED 
THE USER STATUS WORD IS 0 

6-37 



EXTENDED FILE MANAGEMENT PACKAGE 

RESET COMMAND 

Purpose 

To reset the highest record number accessed for a file (i.e., to 

invoke the RESET function of EFMP). 

Format 

/RES, FNAME, PAKNO, RCDNO 

See RESET EFMP CALL for explanation of the parameters. 

Example 

/RES, DATA, 42, 10 
t 

file 
name 

pack 
number 

record 
number 

Example print-out: 

FILE LOB70 RESET 
THE FILE IS ON PACK# 120 
THE RECORD # IS 0 

6-38 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-1 COMMAND 

Purpose 

To print out directory information about a file (i.e., to invoke 

STATUS function number 1 of EFMP). 

Format 

/STA, OF, FNAME, PAKNO, RCDNO 

See STATUS EFMP CALL, STATUS FUNCTION NUMBER 1 for explanation 

of the parameters and results. 

Example 

/STA, OF, DATA, 42 
t 

file 
name 

pack 
number 

Example print-out: 

FILE LOB70 STATUS 

THE FILE IS ON PACK# 120 
STARTING TRACK # IS 6 
STARTING SECTOR # IS 9 
THE FILE LENGTH IS 12 RECORDS 
THE RECORD LENGTH IS 128 WORDS 
THE USER STATUS WORD IS 0 
HIGHEST RECORD # ACCESSED IS 0 

6-39 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-2 COMMAND 

Purpose 

To determine if a file is OPEN (i.e., to invoke STATUS function 

number 2 of EFMP) . 

Format 

/STA, FO, FNAME 

See STATUS FUNCTION NUMBER 2 for explanation of the parameters 

and results. 

Example 

Example print-out: 

FILE LOB70 STATUS 
FILE IS [NOT] OPEN 

/STA, FO, DATA 
t 

file 
name 

6-40 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-3 COMMAND 

Purpose 

To check the security code of a file (i.e., to invoke STATUS 

function number 3 of EFMP). 

Format 

/STA, SC, FNAME, PAKNO, SCODE 

See STATUS FUNCTION NUMBER 3 for explanation of parameters and 

results. 

Example 

/STA, SC, DATA, 42, 3904 
t 

file 
name 

pack 
number 

security code 
to be checked 

Example print-out: 

FILE LOB70 STATUS 
THE FILE IS ON PACK# 120 
THE SECURITY CODE IS 0 
CODE CHECKS [DOES NOT CHECK] 

6-41 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-4 COMMAND 

Purpose 

To determine the number of available full sectors left between the 

highest record accessed in a file and the end of the file (i.e., to 

invoke STATUS function number 4 of EFMP). 

Format 

/STA, LR, FNAME, PAKNO 

See STATUS FUNCTION NUMBER 4 for explanation of parameters and 

results. 

Example 

/STA, LR, DATA, 42 
t 

file 
name 

pack 
number 

Example print-out: 

FILE LOB70 STATUS 
THE FILE IS ON PACK# 120 
# OF AVAILABLE SECTORS IS 12 

6-42 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-5 COMMAND 

Purpose 

To determine the number of available sectors left between the last 

file in a pack and the end of the pack (i.e., to invoke STATUS 

function number 5 of EFMP). 

Format 

/STA' LF' PAKNO 

See STATUS FUNCTION NUMBER 5 for explanation of parameters and 

results. 

Example 

/STA, LF, 42 
t 

pack 
number 

Example print-out: 

FOR PACK# 120 
# OF AVAILABLE SECTORS IS 4610 

6-43 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-6 COMMAND 

Purpose 

To obtain the name of the nth file on a pack where n is an integer 

between 1 and the maximum number of files on a pack (i.e., to in­

voke STATUS function number 6 of EFMP). 

Format 

/STA, NF, PAKNO, STATE 

See STATUS FUNCTION NUMBER 6 for explanation of parameters and 

results. 

Example 

Example print-out: 

FILE LOB70 

/STA, NF, 42, 9 

STATUS 

t 
pack 

number 

file 
number 

THE FILE IS ON PACK# 120 
FILE # 1 IN THE DIRECTORY 

6-44 



EXTENDED FILE MANAGEMENT PACKAGE 

STATUS-7 COMMAND 

Purpose 

To request all available pack numbers (i.e., to invoke STATUS 

function number 7 of EFMP). 

Format 

/STA, AP 

Example print-out: 

PACK # 120 IS AVAILABLE 

6-45 



EXTENDED FILE MANAGEMENT PACKAGE 
t 

REPACK COMMAND 

Purpose 

To repack existing packs (i.e., to invoke the REPACK EXEC CALL 

function of EFMP). 

Format 

/REP, PAKNO 

See REPACK (or purge) EFMP CALL for explanation of parameters. 

Example 

/REP, 42 (repacks pack 42) 

/REP, - 1 (repacks all packs) 

Example print-out: 

ALL PACKS AVAILABLE REPACKED 
or 

PACK # 120 REPACKED 

6-46 



EXTENDED FILE MANAGEMENT PACKAGE 

COPY COMMAND 

Purpose 

To copy a file (i.e., to invoke the COPY function of EFMP). 

Format 

/COP, FNAME, PAKNO 

See COPY EFMP CALL for explanation of parameters and messages. 

Example 

/COP, DATA, 45 

flle r 
destination 

pack 

Example print-out: 

FILE LOB70 COPIED 
THE FILE IS TEMPORARY IN WORK AREA 

FILE LOB70 COPIED 
THE FILE IS ON PACK# 120 

6-47 



EXTENDED FILE MANAGEMENT PACKAGE 

CHANGE COMMAND 

Purpose 

To change the name of a file (i.e., to invoke the CHANGE FILE 

NAME function of EFMP). 

Format 

/CHA, FNAMl, FNAM2, PAKNO, SCODE 

FNAMl is the current file name; FNAM2 is the new file name. 

See CHANGE FILE NAME EFMP CALL for explanation of other parameters. 

Example 

/CHA, DATA, STUFF, 42, 3901 
t 

old 
name 

new 
name 

Example print-out: 

FILE LOB70 OLD FILE 
FILE XXXXX NEW FILE 
THE FILE IS ON PACK# 120 
THE SECURITY CODE IS 0 

6-48 



EXTENDED FILE MANAGEMENT PACKAGE 

POST COMMAND 

Purpose 

To post files (i.e., to invoke the POST function of EFMP). 

Format 

/POS 

Example print-out: 

ALL FILES POSTED 

6-49 



EXTENDED FILE MANAGEMENT PACKAGE 

BRIEF COMMAND 

Purpose 

To increase or decrease the amount of disc storage reserved for 

a file. 

Format 

/BRI, FNAME, SCODE 

FNAME is the name of the file, and 

SCODE is the security code of the file. 

BRIEF first prints the status of the file: 

AVAILABLE RECS. = m 

NEW RECORD COUNT? 

The user types in either: 

RECORDS USED r 

/E to terminate the command and prepare UTIL for more commands, 

or 

n to change the available record count to n. 

BRIEF stores the contents of FNAME on the Work Area, destroys the current 

file, purges the pack, and CREATES and OPENS a new file. The contents of 

FNAME are transferred from the Work Area to the new file and BRIEF prints out 

a message: 

AVAILABLE RECS. = n RECORDS USED = r 

BRIEF terminates. 

Comment 

BRIEF creates and uses a temporary file named ""A A A A A" (all blanks) . 

6-50 



EXTENDED FILE MANAGEMENT PACKAGE 

END COMMAND 

Purpose 

To terminate the operation of the UTIL program. 

Format 

/END 

6-51 



EXTENDED FILE MANAGEMENT PACKAGE 

GENERAL ERRORS 

These error numbers are returned to the user program (in ERRNO) by the EFMP. 

Error 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

No. Description 

No errors. 

Invalid EFMP function number. 

Duplicate File Name. 

File Name not in directory. 

File too long for this pack. 

Invalid record length. 

Pack number not available (or Name not in directory if a 
search was made on all available pack directories). 

Invalid Security Code. 

A Temporary File must be "OPENED" with a CREATE function. 
An OPEN function can only change the Temporary Record Buff er 
number or the starting record number for a Temporary File. 

Buffer area specified in Exec call is not valid. 

Invalid Record Number. 

File not open. 

DEFINE not previously executed. 

Backspaced beyond "start-of-file.'' 

No pack space available. 

Invalid pack number. 

During a pack search, a pack was found where the entire space 
was not allocated to PNxxx. 

Work area space not sufficient 

No "Open" table space available. 

Invalid Temporary Record Buffer Number. 

Invalid number of Executive call parameters. 

End-of-File. 

COPY terminated. 

Invalid argument(s). 

Maximum number of files exceeded. 

File already OPEN. 

Record size larger than one-half of a TRB. 

The error numbers are also returned in the A-Register. 

6-52 



EXTENDED FILE MANAGEMENT PACKAGE 

EFMP FILE DISC DIRECTORY 

Word 

0 

2 

3 

4 

5 

6 

7 

8 

15 87 
Contents 

0 Bit 

1st Char. 2nd Char. 

3rd Char. 4th Char. 

5th Char. Not Used 
Starting Starting 
Trk. No. Sect. No. 

File Length 
(In Recordsl 

Record Len1th 
(In Words 

Security Code 

User Supplied Status 

Highest Record 
Number Accessed 

Figure 6-1. EFMP File Disc Directory Format 

6-53 



Sect. Word 15 

0 0 

2 

3 

4 

5 

31 

64 

65 

66 

127 

0 

2 

3 

4 

5 

6 

7 

8 

9 

I 

r= 

t---

I 

EXTENDED FILE MANAGEMENT PACKAGE 

Track 0 0 Bit 

uLB11 

11 D0 11 OR 11 TS 11 

SYS.GEN.CODE 

1st Char. 2nd Char. 

3rd Char. 4th Char. 

5tll Char. 6 tn Char. 
-·-

} ( *) or Six Char. Disc Label 

I 

CHECKSUM,0-30, (XOR) ·===l 
NEXT AVAIL. TK & SECT. 

NO. BAD TRACKS 

NEXT AVAIL. SPARE TRACK 

USED BY DOS-M 

p N 

x, x2 

X3 P l ENTRY TYPE 

TRACK SECTOR 

FILE LENGTH 

- 0 -

--

--

--

--=r 
··-

\ 
--

I 

(20010' 0) 

PNxxx, where the x's 

are no's. bet 0 & 9. 

PNxxx is the pack nwnber. 

(1,0) (In ASCII). 

{

(199*24)
10 

= 4776
10 

for HP 2870 

(199*115)
10 

= 22885
10 

for HP 2883 

) Reserved for possible 

EFMP use 

127 !TRACK/SECT. OF NEXT AVAIL. FILE AREA I 

Words 0 through 127 on sector 0 and words 0 through 5 on sector l represent 

the DOS-M format. See Appendix A for further details. 

Figure 6-2. EFMP Disc Pack Layout (Part 1 of 2) 

6-54 



Sect. Word 

2 0 

2 

8 

9 

10 

126 

127 

EXTENDED FILE MANAGEMENT PACKAGE 

Track O 

1---------------------~ 

I ( 0) I 
~----------------------

! 

(-1) if sector full 

Start of EFMP Pack 

Directory (Start of 

1st entry) 

(Start of 2nd entry) 

End of EFMP Pack Directory 

for this sector if no 

more entries. 

All succeeding sectors follow the same format as sector 2. 

End-of-directory is indicated by a zero in the word following the last directory 

entry. 

End-of-sector is indicated by a (-1) in the word following the last entry. 

Figure 6-2. EFMP Disc Pack Layout (Part 2 of 2) 

6-55 



APPENDIX A 

TABLES 

Appendix A contains several useful tables and figures. 

DOS-M BASE PAGE CONSTANTS 

LOCATION TYPE VALUE 
4.0 DEC -64 

41 DEC -1.0 

42 DEC -9 

43 DEC -8 

44 DEC -7 

45 DEC -6 

46 DEC -5 

47 DEC -4 

5.0 DEC -3 

51 DEC -2 

52 DEC -1 

53 DEC .0 

54 DEC 1 

55 DEC 2 

56 DEC 3 

57 DEC 4 

6.0 DEC 5 

61 DEC 6 

62 DEC 7 

63 DEC 8 

64 DEC 9 

65 DEC 1.0 

66 DEC 17 

67 DEC 64 

7C) OCT 17 

71 OCT 37 

72 OCT 77 

A-1 



LOCATION 

73 

74 

75 

76 

77 

TABLES 

TYPE 

OCT 

OCT 

OCT 

OCT 

OCT 

VALUE 

177 

377 

177400 

3777 

17770¢ 

DOS-M BASE PAGE SYSTEM COMMUNICATION AREA 

LOCATION 

100 

101 

102 

1¢3 

1¢4-5 

106-7 

l1¢ 

111 

112 

113 

114 

115 

l16 

117 

120 

121 

122 

123 

124 

125 

126-40 

141-53 

NAME 

UMLWA 

JBINS 

JBINC 

TBG 

CLOCK 

CLEX 

CXMX 

BATCH 

SYS TY 

DUMPS 

SYS DR 

SYS BF 

SECTR 

EQTAB 

EQT# 

LUTAB 

LUT# 

JBUF 

JFILS 

JFILC 

RON BF 

EXPG 

CONTENTS 

Last word address of user available memory 

Start track/sector of job binary area 

Current Track/sector of job binary area 

Time base generator I/O channel address 

Current system clock time 

Execution clock time 

Maximum allowable execution time 

Logical unit # of batch input device 

Logical unit # of system teletype 

Abort/Post Mortem dump flag 

System directory track/sector 

System buffer track/sector 

Number of sectors/disc track 

First word address of Equipment Table 

Number of Equipment entries 

First word address of Logical Unit table 

Number of Logical Unit entries 

Job input buffer address 

Source file starting track/sector 

Source file current track/sector 

User area file name information (11 words) 

Directory entry for current program (11 words) 

A-2 



LOCATION 

154 

155 

156 

157 

16,0 

161 

162 

163 

164 

165 

166-7,0 

1 71-73 

174 

175 

176 

177 

223 

224 

225 

226 

235 

NAME 

DISCO 

SY SSC 

SCCNT 

UDNTS 

SYN TS 

CUDSC 

CRFLG 

CU DLA 

SDLA 

CUMID 

DBUFR 

UBUFR 

TSONE 

GU DSC 

SYSCD 

JFLSC 

DIS CL 

INT AB 

INT# 

EQTl 

EQT2 

EQT3 

EQT4 

EQT17 

RQCNT 

RQRTN 

RQPl 

RQP8 

TABLES 

CONTENTS 

Disc I/O channel/last track on disc 

System subchannel 

Number of subchannels on system minus 1 

Next user disc track/sector 

Next system disc track/sector 

Curr~nt user disc subchannel 

Current disc request flag: .0 for system, 
not .0 for user 

Current user disc last access 

System disc last access 

Computer identification 

System disc triplet parameter buffer 

User disc triplet parameter buffer 

Last track/sector referenced +l 

Default user disc subchannel 

System generation code 

Source file subchannel 

User label track/sector 

First word address of interrupt table 

Number of interrupt entries 

EQT1-EQT17 are addresses of current 
Equipment Table entry 

Number of request parameters. 

Current request return address 

RQP1-RQP8 are addresses of current request 
parameters 

A-3 



LOCATION 

236 

237 

24~ 

241 

242 

243 

244 

245 

246-47 

250-51 

252 

253 

254 

255 

256 

257 

260 

261 

262 

263-65 

265 

266 

267 

270 

470 

471 

472 

NAME 

NAB RT 

XA 

XB 

XEO 

XS USP 

EXLOC 

EX# 

EXMOD 

EXMAN 

EX BAS 

IODMN 

IO DBS 

UMFWA 

UBFWA 

UBLWA 

CHAN 

OPATN 

OPFLG 

SWAP 

JOB PM 

JOB PB 

EJOBF 

RTRK 

$BUF 

$GOPT 

$IDCD 

$MDBF 

TABLES 

CONTENTS 

Illegal request code abort/no abort option 

A register contents at time of interrupt 

B register contents at time of interrupt 

E and O register contents at time of 
interrupt 

Point of suspension at time of interrupt 

Address of Exec module doublet table 

Number of Exec module doublet table entries 

Exec module # currently in Exec module 
overlay area 

Exec module low and high main core addresses 

Exec module low and high base page core 
addresses 

First word address of I/O driver module 
main area 

First word address of I/O driver module 
base page area 

First word address of user main area 

First word address of user base page area 

Last word address of user base page area 

Current DMA channel number 

Operator/keyboard attention flag 

Operator communication flag 

Job processor resident flag 

Job processor disc address/number of words 
in main 

Job processor base page number of words 

End job flag 

Real time simulation track number 

System input/output buffer (128 words) 

Point of suspension continuation address 

Input request code check 

Exec module data buffer 

A-4 



LOCATION 

474 

503 

504 

505 

506 

507 

510 

Sll 

512 

513 

514 

515 

516 

517 

520 

521 

522 

523 

524 

525 

526 

527 

530 

531 

NAME 

TEMP 

TEMP0 

TEMPl 

UTMP0 

UTMPl 

UTMP2 

TEMPS 

MSECT 

VADR 

IO DMD 

RCODE 

SXA 

SXB 

SXEO 

sxsus 
EFMP 

DSC LB 

DSCL# 

LSTCH 

TRAC# 

XFLG 

SSFLG 

CHA RC 

TYE QT 

TABLES 

CONTENTS 

System temporary (7 word buffer) 

System temporary 

System temporary 

User temporary 

User temporary 

User temporary 

System temporary 

} Available to user 

Negative number of sectors/track 

Address of instruction causing memory 
protect violation 

Current resident I/O driver module flag 

Current request code value 

Operator attention restore A register value 

Operator attention restore B register value 

Operator attention restore E and O register 
value 

Operator attention return address 

Extended file management package flag 

Disc track/sector of relocatable library 

Number of relocatable library routines 

Last disc referenced 

User file table validity flag 

Entry address for disc not ready 

System search flag 

Batch Input Character Count 

System TTY EQT4 Address 

A-5 



TABLES 

SYSTEM LABEL & BOOTSTRAP 

SYSTEM DIRECTORY 

SYSTEM FILES 

SYSTEM BUFFER/ 

USER LABEL SECTOR 

USER DIRECTORY 

USER FILES 
~--- ---- -----

WORK AREA 
1------- ---------

JOB BINARY AREA 

Figure A-1. General Disc Layout 

[;__ 1st DIRECTORY ENTRY ===:J 
Last Word of Last Directory Entry 

lst File of SYSTEM AREA 

Figure A-2. System Directory Format 

A-6 

SYSTEM AREA 
(Hardware Protected) 

USER AREA 
(Software Protected) 



Word 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 8. 

Word 9 

Word 10 

Word ll 

TABLES 

USER LABEL SECTOR 

lst Directory Entry ---------
• 
• 
• 

Last Word of Last Directory Entry 

lst File of USER Area 

Figure A-3. User Directory Format 

F N 

A M 

E pl Entry Type 

Track Sector 

File Length (in sectors) 

FWA Program 

LWA Program 

FWA Base Page Linkage Area 

LWA Base Page Linkage Area 

Program Entry Point 

FWA of LIB routine section 

TRACK Bl)UNDARY 

TRACK BOUNDARY 

For System or Loader 
Generated Binary Pro­
grams Only 

The lst five characters (in Words 1 through 3) contain the File Name 

The lower character in Word 3 contains the Type Code and 1 P1 bit, as shown below. 

Figure A-4. Directory Entry Format 

A-7 



1 P1 Bit 

TYPE 

1 

2 

3 

4 

5 

6,7 

<) No Action 

TABLES 

FILE 

System Resident 

Disc Resident Executive Supervisor Module 

Reserved for System 

User Program, Main 

Disc Resident Device Driver 

User Program, Segment 

Library 

Relocatable Binary 

ASCII Source Statements 

Binary Data 

ASCII Data 

1 Purge this entry at the end of the JOB. This bit is set by 

the LOADER and cleared by a :STORE,P[,file-name] request 

The last directory entry in each sector is followed by a word containing '-1'. 

The last entry in the directory is followed by a word containing zero. 

A-8 



One directory entry for ) 
each disc-resident module t 

End of protected area __ _ 

TABLES 

SYSTEM LABEL SECTOR 

BOOTSTRAP 

SYSTEM AREA DIRECTORY 

CORE-RESIDENT SYSTEM 

EQT TABLE 

ORT 

INTERRUPT TABLE 

EXEC MODULES 

I/0 DRIVER MODULES 

SYSTEM PROGRAMS (ASMB, 

RELOCATABLE LIBRARY 

BASE PAGE LINKAGES 

Figure A-5. Disc Layout 

A-9 

(SIZE VARIES) 

JOBPR, LOADR, ETC.) 



DISC LABELS 

Sector 0 of track 0 of each disc is used for label information. In addition, 

if the user area is on the system disc, a label also occurs in Sector 0 of the 

first track after the system area. 

The contents of the label include: 

Word 0: 

Word 1: 

Word 2: 

Words 3-5: 

Word 31: 

Label presence code (ASCII "LB"). 

System Proprietary Code: 

1. "DO" for OOS-M 

2. "TS" for Time-Shared Basic 

System generation code assigned at system generation 

time. The code can be any 4 decimal digits. 

A six-character disc label. If the first character 

equals * the disc is unlabeled. This label can only 

be set using :IN (for user areas) or by DSGEN (set to 

"SYSTEM" for system discs). 

Checksum of words 0-30. 

The first 64 words are reserved for label information. Word 65 contains the 

next available track and sector. Words 66 and 67 contain the number of bad 

tracks and the next available spare track. 

A-10 



APPENDIX B 
TYPICAL JOB DECKS 

ASSEMBLE A PROGRAM AND STORE IN FILE 

:JOB,ASMBS 
:PROG,ASMB,5,6,4,56,99 
ASMB,B,L 

NAM TEST,3 

END ENTER 
: STORE , R, AF ILE 
:JOB,NEXT JOB 

LOAD AND EXECUTE A RELOCATABLE FILE 

:JOB,LOADE 
:PROG,LOADR,2 
AFILE,/E. 
:STORE,P,TEST 
:RUN,TEST 
,~ 

1 23 

51 
j 

:JOB,NEXT JOB 

Source Program 

Data 

B-1 



TYPICAL JOB DECKS 

STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM 

:JOB,EVERY 
:STORE,S,SOURC,5 
FTN,B,L 

PROGRAM ZOOM 
DIM I(l0) 

ENDS$ 

: LIST ,S ,6 ,SOURC 
: EDIT, SOU RC, 5 
/I ,2 

/E 

:JFILE,SOURC 
:PROG,FTN,2,6,4,56,99 
:PROG,LOADR 
:RUN,ZOOM 
12 3. 62 

00001 
:RUN,ZOOM 
321.5 

} 

0.56 
:JOB,NEXT JOB 

1 
J 

Source Program 

Edit List 

Data for first run 

Data for second run 

B-2 



APPENDIX C 

RELATION TO OTHER SOFTWARE 

The Hewlett-Packard general-purpose computers can handle other HP software 

when the Moving-Head Disc Operating System is inactive. Every computer 

is shipped with the software and documentation appropriate to the system 

configuration. 

Prepare Tape System can be used to store the relocatable modules of LOS-M 

on a magnetic tape. DSGEN can then read from this magnetic tape to generate 

a system. 

In an attempt to make DOS-M compatible with the Real-Time Executive, DOS-M 

simulates the Real-Time EXEC requests as follows (See REAL-TIME SOFTWARE, 

02116-9139) : 

READ/WRITE 

I/O CONTROL 

I/O STATUS 

DISC ALLOCATION 

DISC RELEASE 

PROGRAM COMPLETION 

PROGRAM SUSPENSION 

PROGRAM SEGMENT LOAD 

PROGRAM SCHEDULE 

CURRENT TIME 

EXECUTION TIME (TIMER) 

Identical for work area of disc and 

I/O devices. 

Identical 

Status word 2 returns transmission log 

instead of Real-Time Equipment Table 

word 5. 

Simulates request in work area. 

No action; tracks cannot be released. 

Identical 

Identical 

Identical 

Treated as program main load. 

Word 5 set to 0, other words identical. 

Not accepted See N option of RUN request. 

C-1 



APPENDIX D 

SUMMARY OF DIRECTIVES 

DIRECTIVE 

:ABORT 

:AOUMP[,FWA[,LWA][,B],L] 

: BATCH, logical unit 

: COMMENT string 

:DATE,day[,hour,min] 

;00 

DESCRIPTION 

Terminate the current job. 

Dump a program if it aborts 

Switch from keyboard to batch mode, or 

reassign batch device. 

Print a message. 

Set the date and the time (if time­

base is present). 

Dump the entire current disc onto a 

disc on another subchannel. 

:DD,X Dump the system area only to another 

disc. 

:DD,U[,file[,(name)],file[,(name)] .. . ] 

:DN,n 

: DU MP , log. uni t , f i 1 e [ , S 
1 

[ , S 
2

] ] 

:EDIT,file log.unit],new] 

:EF[,logical unit] 

: EJOB 

: EQ[ ,n] 

:G0[,P
1

,P
2 
..• P

5
] 

: IN ,label 

D-1 

Dump all or specified files of the 

current user disc to another disc, 

optionally assigning new file names. 

Declare an I/O device down. 

Dump all or part of a user file to a 

peripheral I/O device. 

Edit a source statement file stored on 

disc, optionally creating a new file. 

Write end-of-file on magnetic tape. 

Terminate the current batch and/or job 

normally. 

List the equipment table. 

Continue processing a suspended program. 

Label or unlabel ("*") the current 

user disc. 



SU~MARY OF DIRECTIVES 

DI RE CTI VE 

:JFILE,file 

: JOB [,name] 

:LIST,S,log.unit,file[,m[,n]] 

:LIST ,U,log.unit[,file
1

, .. . ] 

:LIST ,X,log.unit[,file
1

, .. . ] 

:LU[,n
1

[,n
2
]] 

:OFF 

:PAUSE 

:POUMP[,FWA[,LWA]][,B][,L] 

:PROG,name[,P
1

,P
2 
... P

5
] 

:PURGE[,file
1
,file

2
, . •• ] 

: RU[~ ,name[, time] [, i~] 

:SA,track,sector[,number] 

:SU,track,sector[,number] 

:SS 

:SS,99 

DESCRI PT IOi~ 

Specify a source file on the disc for 

the assembler or compiler. 

Initiate a user job. 

List all or part of a source statement 

file. 

List all or part of the user directory. 

List all or part of the system directory. 

Assign or list logical units. 

Abort the currently executing program 

or operation without terminating the 

job. 

Suspend the current job or program. 

Dwnp a program after normal completion. 

Turn on a system or user program. 

Delete user files. 

Run a user program 

Dump disc In ASCII to standard list 

device. 

Dwnp disc in octal to standard list 

device. 

Set up system search for file names 

over all subchannels. 

Set up system search for file names 

over specified subchannels. 

Restrict search for file names to 

current user disc (plus system direc­

tory for RUN & PROG). 

D-2 



DIRECT! VE 

:STORE,A,file,sectors 

:STORE,B,file,sectors 

·- 1 
:STO~E,PL,name1 , name

2
, •• • J 

:STORE,R,filc [,log.unit] 

:STORE,S,file,log.unit 

:TRACKS 

:TYPE 

:UD[,[label][,n]] 

: UP ,n 

SUMMARY OF DIRECTIVES 

DESCRIPTION 

Reserve space for an ASCII data file. 

Reserve space for a binary data file 

Store temporary Loader generated pro­

grams as permanent files. 

Store a relocatable file from a 

peripheral I/O device or from the JBIN 

area of disc after an assembly or compi­

lation. 

Store a source statement file from a 

peripheral I/O device. 

Print the disc track status of the 

current user disc. 

Return to keyboard mode from batch mode. 

Change the subchannel assignment for 

the user disc, or request label & sub­

channel information for a user disc. 

Declare an I/O device up. 

D-3 



APPENDIX E 

SUMMARY OF EXEC CALLS 

Consult Section III for the complete details on each EXEC call. 

For each EXEC call, this appendix includes only the parameters (P
1 

through 

P )of the assembly language calling sequence. 
n 

READ/WRITE: 

RCODE DEC 1 or 2 

CONWD OCT c 

BUFFR BSS n 

BUFFL DEC n or -2n 

DTRAK DEC p 

DSECT DEC q 

I/0 CONTROL: 

RCODE DEC 3 

CONWD OCT c 

PARAM DEC n 

PROGRAM COMPLETION: 

RCODE DEC 6 

PROGRAM SUSPEND: 

RCODE DEC 7 

Transfer input or output. 

1 = read or 2 = write 

(See Section III for control information.) 

(n-word buffer) 

(buffer length, words (+), characters (-) .) 

(disc track; optional) 

(disc sector; optional) 

Carry out control operations. 

(See Section III for control information.) 

(Optional parameter required by some CONWDs.) 

Sign al end of program. 

Suspend calling program. 

E-1 



PROGRAM SEGMENT LOAD: 

RCODE DEC 8 

SNAME ASC 3,xxxxx 

TIME REQUEST: 

RCODE DEC 11 

ARRAY BSS 5 

I/0 STATUS: 

RCODE DEC 13 

CONWD DEC n 

STATS NOP 

TLOG NOP 

FI LE READ/~~RITE: 

RCODE DEC 14 or 

CONWD OCT c 

BUFFR BSS n 

15 

BUFFL DEC n or -2n 

FNAME ASC 3,xxxxx 

RSECT DEC m 

WORK AREA STATUS: 

RCODE DEC 16 

NTRAK DEC n 

TRACK NOP 

STRAK NOP 

SUMMARY OF EXEC CALLS 

Load segment of calling program. 

(xxxxx is segment name) 

Request the 24-hour time and day. 

(Time values; tens of milliseconds, seconds, 

minutes, hours, returned in that order.) 

Request device status. 

(Logical unit number) 

(Status returned here) 

(Transmission log returned here) 

Read or write a user data file. 

(14 = read or 15 =write.) 

(See Section III for control information.) 

(Buff er of n words. ) 

(Length of buffer in words (+) or 
characters (-).) 

(User file name= xxxxx.) 

(Relative sector within file.) 

Ascertain if n contiguous work tracks are 
available. 

(Number of consecutive tracks desired.) 

(Desired first track; from LIMITS call.) 

(Actual starting track, or ~ if n not 
available.) 

E-2 



SUMMARY OF EXEC CALLS 

WORK AREA LIMITS: Ascertain first and last tracks of work area. 

RCODE DEC 17 

FTRAK NOP (Returns first work track number here.) 

LTRAK NOP (Returns last work track number here.) 

SIZE NOP (Returns number of sectors per track here.) 

SEARCH FILE NAMES: 

RCODE DEC 18 

FNAME ASC 3,xxxxx 

NSECT NOP 

CHANGE USER DISC: 

RCODE DEC 23 

LABEL ASC 3,xxxxx 

SUBCH DEC (~ to 7) 

MAIN PROGRAM LOAD: 

RCODE DEC 1,0 

PNAME ASC 3,xxxxx 

Ascertain if a file name exists in the 
di rectory. 

(xxxxx is the file name.) 

(Number of sectors in file returned here, or 
,0 if not found.) 

Change the current user disc subchannel. 

(Disc label= xxxxx or ASCII 1, * for unlabel.) 

(Subchannel number; optional parameter.) 

Transfer a main program into core. 

(Program name) 

E-·3 



APPENDIX F 
ALGOL EXEC CALLS 

The program below (DXFER) reads one sector from the work area and writes 

the information into a different location in the work area. DXFER calls 

EXEC through the CODE procedure EXECX compiled externally. EXECX is 9om­

piled in the program DSKIO, although that program name is irrelevant to 

the linkage between DXFER and EXECX. 

MAIN PROGRAM 

HPAL,B,L, 11 DXFER 11 

BEGIN 
INTEGER ARRAY BUFFER[l :128]; 
BOOLEAN READX; 
INTEGER TRACK,SECTOR; 
FORMAT Fl C1SOURCE TRACK,SECTOR? 11

)' 

F2 (II DES TI NA TI ON TRACK' s ECTOR? II) ; 
PROCEDURE EXECX(RD,TRK,SCTR,BFR); 

VALUE RD,TRK,SCTR; 
BOOLEAN RD; 
INTEGER TRK,SCTR,BFR; 
CODE; 

WRITE(l ,Fl); 
READ(l ,*,TRACK,SECTOR); 
READX+TRUE; 
EXECX(READX,TRACK,SECTOR,BUFFR[l]); 
WRITE(l ,F2); 
READ(l ,* ,TRACK,SECTOR); 
READX+FALSE: 
EXECX(READX,TRACK,SECTOR,BUFFR[l]); 

END$ 

F-1 



ALGOL EXEC CALLS 

PROCEDURE 

HPAL,P,B,L, 11 DSKI0 11 

PROCEDURE EXECX(RD,TRK,SCTR,BFR); 
VALUE RD,TRK,SCTR; 
BOOLEAN RD; 
INTEGER TRK,SCTR,BFR; 

BEGIN 
PROCEDURE EXEC(IO,LU,BFR,BFSZ,TRK,SCTR); 

VALUE IO,LU,BFSZ,TRK,SCTR; 
INTEGER IO,LU,BFR,BFSZ,TRK,SCTR; 
CODE; 

I NT EGER REQCD; 
IF RD THEN REQCD~l ELSE REQCD~2; 
EXEC(REQCD,2,BFR,128,TRK,SCTR); 

END; 

F-2 



INDEX 
A E 
: ABORT ............................ 2-4 : EDIT ........................... 2-12 
:ADUMP ........................... 2-27 :EF ............................. 2-15 
ALGOL ............................ 4-10 EFMP ......................... 1-7,6-1 
ALGOL Control Statement .......... 4-13 :EJOB ........................... 2-16 
ALGOL EXEC Calls .............. 3-2,F-l END Command ..................... 6-51 
ALGOL Segmentation ............... 4-14 EFMP File Disc Directory ........ 6-53 
Append-Writes ..................... 6-4 End-Of-File ..................... 2-15 
Assembler ........................ 4-15 End Of Job ...................... 2-16 
Assembler Control Statement ...... 4-18 : EQUIPMENT ...................... 2-1 7 
Assembly Language Calling Equipment Table .................. 5-2 

Sequences ....................... 3-2 ERROR ............................ 4-9 

B 
EXEC Calls ....... l-3,3-1,6-5,E-l,F-l 
EXEC Calls In ALGOL .......... 3-2,F-l 

Base Page Constants ............... A-1 EXEC Modules ..................... xiv 
Base Page System Common Area ...... A-2 Extended File Management 
:BATCH ............................ 2-5 Package .................... 1-7,6-1 
Batch Mode .................... 1-2,2-1 EXTERNAL Statement ............... 4-7 
Begin Job ........................ 2-20 
BINRY ............................. 3-6 F 
BRIEF Command .................... 6-50 Features .......................... xi 

c File Dump ....................... 2-10 
File Read/Write EXEC Call ........ 2-7 

Change File Name EXEC Call .. 6-29,6-48 Files .................... l-6, 3-7 ,6-1 
Change User Disc ............ 2-46,3-23 FORTRAN .......................... 4-2 
Change User Disc EXEC Call ....... 3-23 FORTRAN Calling Sequence ......... 3-3 
CLOSE EFMP Call ............. 6-13,6-37 FORTRAN Control Statement ........ 4-4 
: CO~ENT .......................... 2-6 Function Code ................... 3-10 
Completion Section ............... 5-11 
Copy EFMP Call .............. 6-27,6-47 G 
Core Layout ....................... 1-4 :GO ............................. 2-50 
CREATE EFMP Call ............. 6-8,6-34 

H 
D Hardware ......................... xii 
DATA Statement .................... 4-6 HP 2870 Disc ..................... 1-4 
: DATE ............................ 2-49 HP 2883 Disc ..................... 1-4 
:DD ............................... 2-7 
DEBUG ............................ 4-30 
DEFINE EFMP Call .................. 6-6 :IN ............................. 2-51 
DESTROY EFMP Call ........... 6-10,6-35 Initialize ...................... 2-51 
Directives ................ 1-2,2-1,D-1 Initiation Section ............... 5-8 
Directory Entry Format ............ A-7 Input/Output ............ 1-3, 4-19, 5-1 
Disc Labels ...................... A-10 Installation ..................... 1-7 
Disc Layout ................... A-6,A-9 Interrupt Processing ............. 5-7 
DISCM ..................... xiv,1-1,1-3 Interrupt Table .................. 5-5 
Disc-To-Disc Dump ................. 2-7 I/O Control EXEC Call ............ 3-9 
DOS-M ............................. 1-1 I/O Drivers ...................... 5-5 
: DOWN ............................. 2-9 I/O Status EXEC Call ............ 3-11 
DSGEN ............................. 1-7 
: DUMP ............................ 2-10 

I-1 



INDEX 

J R 
: JOB ............................. 2-20 Real-Time Executive .............. C-1 
Job Binary Area .................. 4-25 Relocatable Libraries ........... 4-35 
Job Decks ..................... 1-2,A-l Relocating Loader ............... 4-25 
JOBPR ......................... xiv, 1-1 REPACK (PURGE) EFMP Call. .. 6-26, 6-46 
: JFILE ........................... 2-19 RESET EFMP Call ............ 6-17,6-38 

K 
RT\1PAR ........................... 3-18 
: RUN ............................ 2-33 

Keyboard i-lode ................. 1-2, 2-1 Running A System Program ........ 2-30 

L 
Running A User Program .......... 2-33 

Line Printer Formatting .......... 5-14 s 
:LIST ............................ 2-21 :SA ............................. 2-34 
Load-And-Go_, ...................... 4-1 Search File Name EXEC Call ...... 3-21 
Logical Read ...................... 6-3 Sector Dump ..................... 2-34 
Logical Units ................ 2-25,5-4 Segmented Programs .............. 4-20 
Logical Write ..................... 6-3 : so ............................. 2-34 
:LU .............................. 2-25 Software ........................ xiii 

M 
Specify Source File~ ............ 2-19 
:SS ............................. 2-36 

Magnetic Tape Usage .............. 5-15 STATUS EFMP Call ........... 6-18,6-39 
Main Program Load EXEC Call ...... 3-27 Status Function Number 1 ... 6-19,6-39 

N 
Status Function Number 2 ... 6-20,6-40 
Status Function Number 3 ... 6-21,6-41 

~AM Statement .................... 4-20 Status Function Number 4 ... 6-22,6-42 
No ~vai ting ........................ 3- 6 Status Function Number 5 ... 6-23,6-43 

0 Status Function Number 6 ... 6-24,6-44 
Status Function Number 7 ... 6-25,6-45 

: OFF ............................. 2-53 : STORE .......................... 2-38 
OPEN EFMP Call .............. 6-11,6-36 :STORE,A ........................ 2-42 
Opened File Table ............. 6-2,6-7 : STORE, B ........................ 2-42 
ORB Statement .................... 4-19 : STORE, P ........................ 2-40 
Other Software .................... C-1 : STORE, R ........................ 2-38 
Overlay Segments .................. 4-8 : STORE, S ........................ 2-41 

p Sub channel ....................... 1-4 
Supervisor ................... xiv,1-1 

: PAUSE ........................... 2-26 System Area ...................... 1-5 
: PDUMP ........................... 2-2 7 System I/O ....................... 5-6 
Physical Read ..................... 6-3 System Directory Format .......... A-6 
Physical Write .................... 6-3 System Search ................... 2-36 
POST_ EXEC Call .............. 6-30,6-49 
: PROG ............................ 2-30 T 
Prograrnrning ....................... 4-1 Tables ........................... A-1 
Program Completion EXEC Call ..... 3-16 Temporary Record Buffers ..... 6-2,6-7 
Program Dump ..................... 2-2 7 Time Request EXEC Call .......... 3-22 
Program Segment Load EXEC Call ... 3-19 : TRACKS ......................... 2-43 
PROGRAM Statement ................. 4-5 : TYPE ........................... 2-45 
Program Suspend EXEC Call ........ 3-17 Type-A Files .................... 2-42 
: PURGE ........................... 2-31 Type-B Files .................... 2-42 

R Type-P Files .................... 2-40 
Type-R Files .................... 2-38 

READ EFMP Call. .................. 6-14 Type-S Files .................... 2-41 
Read/Write EXEC Call .............. 3-4 

I-2 



INDEX 

u w 
:UD .............................. 2-46 Wai ting .......................... 3-6 
: UP .............................. 2-48 Work Area .................. 3-13,3-14 
Update-Writes ...........•......... 6-4 Work Area Limits EXEC Call ...... 3-13 
User Area ......................... 1-5 Work Area Status EXEC Call ...... 3-16 
User Directory Format .....•....... A-7 WRITE EFMP Call ................. 6-16 
User Program I/O .............. , ... 5-6 
UTIL ............................. 6-31 
UTIL Commands .................... 6-32 

I-3 



SO.FTWARE ft.ANU.AL CHAI\JGES 

MOVING-HEAD DISC OPERATING SYSTEM . 

. . (HP 02116-91779) 
Dated March, 1971 

Some of the items below pertain not only to the MOVING-HEAD_ DISC OPERATING 

SYSTEM manual but also to the Manual Change Sheet itself. The highest-numbered entry is the 
most current. Therefore, these changes should be recorded first. This ensures that earlier entries 
which have been modified are updated o~ this sheet. Earlier entries which no longer apply are 
superceded by later entries. " 

Change 
Number 

1 

Change 

Nlsmber 

2 

3 

, Page 

4-6. 

Page 

. C-1 

6-52 

10-71 

., nstructions 

·change the last line on the page to read: 

DATA A(1) ,A(2),A(3)/1.0,2.0,3.0/,I (1) ,I (2)/2* 1/ 

2-72 

l11structions · 

In the list of RTE exec calls, replace the description of DISC RELEASE 

with: 

"Sets location RTR K (real-time track simulation) in base page 

to zero." 

Change description of Error 12 to: 

"DEFINE not previously executed or OPEN _table used in 
previous DEFINE has been altered. Issue a new DEFINE." 

HEWLETT i1~·PACK1~RD Software Devclopmlrnt Cupertino, CaPfamia 95014 



w· 
2· 
~· 
e,, . 
z· 
o· 
-I . 
<C . 
I- . 
=> . 
CJ • 

FROM 

HEWLETT f pj PACKARD 

READER COMMENT SHEET 
MOVING-HEAD 

DISC OPERATING SYSTEM 

02116-91779 Mfl.RCH, 1971 
Hewlett-Packard welcomes your evaluation of this text. 
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like. 

PAGE_OF_ 

NAME: ~---------------------------------~ 
ADDRESS: __________________________________ _ 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE 



FOLD 

[ BUSINESS REPLY MAIL 

No Postage Necessary 1f Mailed in the U n1ted States Postage will be paid by 

MANAGER, SOFTWARE PUBLICATIONS 
HEWLETT - PACKARD 

CUPERTINO DIVISION 
11000 Wolfe Road 

Cupertino, California 
95014 

Fl AST CLASS 

PERMIT N0.141 

CUPERTINO 

CALI FORNI A 

FOLD 

FOLD FOLD 



H)-91779 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	F-01
	F-02
	I-01
	I-02
	I-03
	U-01
	replyA
	replyB
	xBack

