HP 12794A HDLC Modem Interface installation and service manual Card Assembly: 5061-3418 Date Code: 2022 # **PRINTING HISTORY** The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, update packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this printing history page. Also, the update may contain write-in instructions. Each reprinting of this manual will incorporate all past updates; however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with its uzer-inserted update information. New editions of this manual will contain new information, as well as all updates. To determine what manual edition and update is compatible with your current software revision code, refer to the appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual. First EditionSeptember 1980 Update 1January 1982 #### NOTICE The information contained in this document is subject to change without notice. HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Fackard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another program language without the prior written consent of Hewlett-Packard Company. # SAFETY CONSIDERATIONS GF *TERAL - This product and relation documentation must be reviewed for familiarization with safety markings and instructions before operation. #### SAFETY SYMBOLS Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect tise product against damage. Indicates hazardous voltages. Indicates earth (ground) terminal (sometimes used in manual to indicate circuit common connected to grounded chassis). #### WARNING The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully und restood and met. #### CAUTION The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met. #### CAUTION #### STATIC SENSITIVE DEVICES Some of the semiconductor devices used in this equipment are susceptible to damage by static discharge. Depending on the magnitude of the charge, device substrates can be punctured or destroyed by contact or mere proximity to a static charge. These charges are generated in numerous ways such as simple contact, separation of materials, and normal motions of persons working with static sensitive devices. When handling or rervicing equipment containing static sensitive devices, adequate precautions must be taken to prevent device damage or destruction. Only those who are thoroughly familiar with industry accepted techniques for handling static sensitive devices, should attempt to service the cards with these devices. In all instances, measures must be taken to prevent static charge buildup on work surfaces and persons handling the devices. Cautions are included through this manual where handling and maintenance involve static sensitive devices. SAFETY EARTH GROUND - This is a safety class I product and is provided with a protective earthing terminal. An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation. BEFORE APPLYING POWER - Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual. If this product is to be energised via an auto-transformer (for voltage reduction) make sure the common terminal is connected to the earth terminal of the main power source. #### SERVICING #### WARNING Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel. Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. Capacitors inside this product may still be charged even when disconnected from its power source. To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement. # WARNING #### EYE HAZARD Eye protection must be worn when removing or inserting integrated circuits held in place with retaining clips. # **Definition of Terms** The following terms are defined as they are used in this manual. - asynchronous transmission No timing signals are sent with the data. Start and stop bits serve to define transmitted words. - buffer A segment of contiguous Random-Access memory locations used for temporary storage of input/output messages. - card The interface PCA (Printed Circuit Assembly). - CRC-16 (Cyclic Redundancy Check) An error detection scheme used in data communications. - DIP (Dual In-line Package) A type of integrated circuit package. - driver In a hardware sense, a driver refers to a circuit which is capable of supplying specific current and voltage requirements. In a software sense, a driver is a program that is capable of controlling a specific input/output device. - DS (Distributed System) A term used to refer to networks using Hewlett-Packard Distributed Systems hardware and software products. - firmware Software code packaged in read-only memory (ROM). - frame A transmitted message that is formatted according to HDLC protocol. - full-duplex Communications system or equipment capable of simultaneous two way data communication. - half-duplex Communications system or equipment capable of transmission in either direction, but not both directions simultaneously. - handshaking The alternating exchange of predetermined signals between two communicating devices for purposes of control. - host The computer housing the communication card. - interface A device providing electrical and mechanical compatibility between two communicating devices. The HP 12794A also provides other control features for the associated communication link. - LED (Light Emitting Diode) A component used on many printed circuit assemblies to provide a visible indication of desired information. - link Communication lines, modems, and other equipment which permit the transmission of information in data format between two or more devices. - modem (modulator-demodulator) Equipment capable of digital-to-analog and analog-to-digital signal conversion for transmission and reception via common carrier telephone lines. - PCA (Printed Circuit Assembly) Interface cards are commonly referred to as PCAs. - primary The portion of the interface responsible for transmission processes. - Primary System A preconfigured operating system included with all HP 1000 Computer systems. It can be reconfigured to meet specific system I/O and memory requirements. - receiver Any device capable of reception of electrically transmitted signals. - secondary The portion of the interface responsible for reception processes. - synchronous transmission Timing signals are transmitted with the data. No start and stop bits are used. Defined protocol characters must be used to define message blocks or frames. # **Table of Contents** | Section I | Page | |-------------------------------------|------| | GENERAL INFORMATION | | | Introduction | 1-1 | | Description | | | Equipment Supplied | 1-1 | | Identification | | | The Product | | | The Circuit Card | | | Installation and Service Manual | | | Specifications | 1-3 | | Section II | | | INSTALLATION | | | Introduction | | | Unpacking and Inspection | | | Computation of Current Requirements | 2-1 | | Firmware Installation | | | ROM Configuration Jumpers | | | DIP Switch Configuration | | | Card and Cable Installation | | | Check-out Procedure | | | Interface Card Configuration Check | | | Communication Link Check | | | Inteface Card LEDs | 2-10 | | Section III | | | PROTOCOL | | | Introduction | 3-1 | | Communications Protocol | | | HDLC Frames | | | Flag Field | | | Station Address Field | | | Control Field | | | Information Field | | | Frame Check Sequence Field | | | Error Control | | | Frame Sequencing Checks | | | Severe Error Processing | 3-5 | | Section IV | | | PRINCIPLES OF OPERATION | | | Introduction | | | Hardware Functional Description | 4- | #### **ILLUSTRATIONS** | Figure 2-1: Figure 2-2: Figure 2-3: Figure 3-1: Figure 4-1: Figure 4-2: Figure 7-1: Figure 7-2: | 12794A HDLC Modem Interface Kit Contents1-0 ROM Installation | |---|--| | J | Logic Diagram7-17/7-18 | | TABLES | | | | Specifications1-4 | | Table 2-1: | ROM Categories According to Part Type2-2 | | Table 2-2: | Jumper Requirements for
all ROM Combinations2-3 | | Table 2-3: | Switch Assignments2-5 | | Table 2-4: | Transmission Clock Rate2-6 | | | HDLC Protocol Bytes (Control Field)3-4 | | | Replaceable Parts6-3 | | | Manufacturer's Code List6-5 | | Table 7-1: | Rackalana Connections (Connector D1) | | | Backplane Connections (Connector P1)7-1 | | Table 7-2: | Modem Cable Connector Lines (Connector J1)7-4 Serial I/O Circuits and Equivalents7-6 | Fig. 1-1. 12794A HDLC Modem Interface Kit Contents # Section 1 General Information #### Introduction This manual provides general information, installation procedures, HDLC protocol information, principle of operation, maintenance instructions, replaceable parts information, and servicing diagrams for the HP 12794A HDLC Modem Interface Kit. This section contains general information concerning the HP 12794A including a description and specifications. # **Description** The HP 12794A (see Figure 1-!) provides an HP 1000 M/E/F-Series Computer with the capability to support a synchronous modem communications link to another HP 1000 M/E/F-Series computer, or to an HP 1000 L-Series computer. It is used in conjunction with DVR66 of the HP 91750A DS/1000-IV Software. The HP 12794A card plugs into a single I/O slot of an HP 1000 M/E/F-Series Computer and is assigned a single select code. The card contains a Z-80A CPU chip with associated Z-80A support chips and two ROMs containing firmware to implement HDLC protocol. Due to this on-board intelligence, the card is able to relieve a large amount of CPU overhead. Functions such as HDLC protocol generation, CRC-16 block check error control, modem control, and a hardware self-test are all handled on the interface card. The Z-80A and on-board RAM also enable the card to maintain long term communications line statistics, and input and output data buffering. # **Equipment Supplied** The standard HP 12794A HDLC Modem Interface Kit consists of the following items (see Figure 1-1): - 1. Programmable serial interface card, HP part number 5061-3418. - 2. HDLC firmware ROMs, HP part numbers 91750-80008 and 91750-80009. - 3. EIA RS-232-C modem cable (5 meter, 16.4 feet), HP part number 5061-3424. - 4. Loop-back verifier hood, HP part number 5061-3425. - 5. Installation and Service Manual, HP part number 12794-90001. The following options are available with the HP 12794A: - 1. Option 001: Upgrade discount for latest revision of interface firmware (for previously purchased firmware only). - 2. Option 002: Replace the EIA RS-232-C cable and loop-back hood with one EIA RS-449 modem cable (5 meter, 16.4 feet), HP part number 5061-3436, and RS-449 loop-back hood, HP part number 5061-3441. #### Identification #### The Product Five digits and a letter (12794A in this case) are used to identify Hewlett-Packard products used with HP computers. The five digits identify the product and the letter indicates the revision level of the product. #### The Circuit Card The circuit card supplied with the kit is identified by a part number marked on the card. In addition to the part number, the card is further identified by a letter and a date code consisting of four digits (e.g., A-2022). This designation is placed below the part number. The letter identifies the version of the etched circuit on the card. The date code (the four digits following the letter) identifies the electrical characteristics of the card with components mounted. Thus, the complete part number on the interface card could be: 5061-3418 A-2022 If the date code stamped on the HDLC interface card does not agree with the date code on the title page of this manual, there are differences between your card and the card described herein. These differences are described in manual supplements available at the nearest Hewlett-Packard Sales and Service Office (offices are listed at the back of this manual). 1 #### Installation and Service Manual The manual supplied with the kit is identified by its name and part number. Part number, 12794-90001, and publication date are printed on the title page. If the manual is revised, the publication date is changed and the List of Effective Pages (page iii) reflects the pages involved in the change. The Print History page (page ii) records the reprint dates. # **Specifications** Table 1-1 lists the specifications of the HP 12794A HDLC Modern Interface Kit. Table 1-1. Specifications TRANSMISSION MODE: Bit serial; synchronous. TRANSHISSION LINK: Full-duplex only. INTERFACE: Conforms to EIA Standard RS-232-C and RS-449. DATA TRANSFER LENGTH: Selectable frame size (128 or 1024 byte information field length). DATA TRANSFER RATE: Approximately 300, 1200, 2400, 4800, 9600, 19200, 57600, or 230000 bps. MODEM TYPES: Full-duplex, synchronous modems only. MODEM COMPATIBILITY: Refer to the data sheet for the HP 12794A. ERROR DETECTION: CRC-16 check controlled on the interface. ERROR CORRECTION: Retransmission under firmware control. POWER: Supplied by host computer as follows: 1.923A at +5V, 0.315A at +12V, 0.175A at -12V. The total power dissipated is 15.495 Watts. # Section 2 Installation #### Introduction This section provides information on unpacking, inspecting, installing, and checking the operation of the HP 12794A HDLC Modem Interface Kit. # Unpacking and Inspection Inspect the shipping package immediately upon receipt to detect any evidence of mishandling during transit. If the package is damaged, ask that the carrier's agent be present when the kit is unpacked. Carefully unpack the card and accessories and inspect for damage (scratches, broken components, etc.). If damage is noticed, notify the carrier and the nearest Hewleit-Packard Sales and Service Office listed at the back of this manual. Return the carton and packing material for the carrier's inspection. After inspecting all components, refer to the equipment supplied paragraph in Section 1 of this manual to ensure that the kit is complete. Also check the part numbers listed in that section against the part numbers on the kit components. If the kit is incomplete, or if an incorrect component has been furnished, notify the nearest Hewlett-Packard Sales and Service Office. After unpacking, inspecting, and checking part numbers of all parts of the kit, follow installation and check-out procedures as defined in this section. # **Computation of Current Requirements** The circuit card in the HP 12794A obtains its operating voltages from the computer power supply through the backplane. Before installing the card, it is necessary to determine whether the added current will overload the power supply. The current requirements of the HP 12794A are listed in the power entry of Table 1-1. Current specifications for all other interfaces can be found in the appropriate Reference or Installation and Service Manuals. #### Firmware Installation #### CAUTION #### STATIC SENSITIVE DEVICES THE ROMS, RAMS, AND Z-80A COMPONENTS USED IN THIS PRODUCT ARE SUSCEPTIBLE TO DAMAGE BY STATIC DISCHARGE. REFER TO THE SAFETY CONSIDERATIONS INFORMATION AT THE FRONT OF THIS MANUAL BEFORE REPLACING. The firmware ROMs (HP part numbers 91750-80008 and 91750-80009) are factory installed in sockets on the card. Make sure that the ROMs are installed as shown in Figure 2-1, and that the part numbers on them match those given in this paragraph. # **ROM Configuration Jumpers** A set of jumpers on the interface card provides the option of using different ROM parts in the future. The set consists of a 14 pin socket housing seven removable jumpers (XWIA through XWIG), and two hardwired jumpers on the interface card itself. Check to see that XWIA through XWIG are configured as described in Tables 2-1 and 2-2 for the specific ROMs that are installed. The hardwired jumpers, W5 and W6, are configured at the factory. W5 should be open (not installed) and W6 should be closed (installed). Refer to Figure 2-2 for the location of the socketed jumpers on the interface card, and the parts location diagram given in Section 7 for the location of the hardwired jumpers. Table 2-1. ROM Categories According to Part Type | CATEGORY | HP PART # | PART TYPE | |----------|-----------|--| | A | 1818-0762 | TI 2532 | | B. | 1818-0498 | TI 2516
Intel 2716 | | С | 1818-0850 | Intel 2732
Intel 2332
Intel 2364 | Table 2-2. Jumper Requirements for all ROM Combinations (X denotes a required jumper) | | ROM
CATEGORY | | X
W | X
W | X | X
W | X
W | X | |--------|-----------------|---|--------|--------|---|--------|--------|---| | U93 | U203 | A | B | C | D | E | P | G | | C | C | | | | ¥ | X
X | x | x | | c | A | [| | x | _ | x | X | • | | В | Ā | 1 | | X | | X | X | х | | В | В | | | X | X | X | X | x | | • | C
B | X | | | | X | | X | | A
C | В | X | | | X | X | X | | | A | В | X | | X | X | X | X | X | | В | С | X | | X | | X | | x | Fig. 2-1. ROM Installation Fig. 2-2. ROM Configuration Jumper Positions # **DIP Switch Configuration** The HP 12794A provides a Dial In-line Package (DIP) containing eight switches which may be sensed by the firmware. This set of switches is used to determine the information field size, and the transmitting clock rate and associated time-out values (time-outs are firmware controlled and not user programmable). The transmission clock rate should be set to indicate the clock rate that is supplied by the modem being used. In addition, switch number I physically enables the ability to control a forced cold load from a remote node. Configure the switch as necessary using the switch assignments given in Tables 2-3 and 2-4. Refer to Figure 2-3 for switch position on the card. Table 2-3. Switch Assignments | Switch | FUNCTION | |--------|---| | 1 | Closed to enable forced cold load (FCL)/slave request. Open to disable. | | 2 | Closed to select 1024 byte
information field. Open to select *128 byte information field. BOTH ENDS OF THE LINK MUST HAVE THIS SWITCH SET THE SAME TO AVOID DATA OVERRUN. | | 3,4,5 | Not used. | | 6,7,8 | Transmission clock rate. See Table 2-4. | | - | information field is the recommended configuration izing frame retransmissions. | Table 2-4. Transmission Clock Rate | SWITCH
SETTINGS
&,7 /% | CLOCK RATE
(bps) | | |------------------------------|---------------------|------------------------| | 8 6 | | NOTE: | | 000 | 300 | X = closed = logic "l" | | OOX | 1200 | 0 = open = logic "0" | | охо | 2400 | 1 | | OXX | 4800 | | | XOO | 9600 | | | XOX | 19200 | | | XXO | 57600 | | | XXX | 230000 | | Figure 2-3. DIP Switch Position #### Card and Cable Installation #### CAUTION ALWAYS TURN POWER OFF TO THE COMPUTER AND OTHER ASSOCIATED EQUIPMENT WHEN INSERTING OR REMOVING INTERFACE CARDS OR CABLES. FAILURE TO DO SO COULD RESULT IN DAMAGE TO THE EQUIPMENT. After ensuring that the computer power supply can handle the added load, the ROMs are properly installed, and the DIP switches are configured properly, perform the following steps: - Turn off power at the computer and the modem. Install the interface card in the desired slot in the computer card cage, noting the select code. The card should be oriented the same as all other cards in the computer: components on the top side of the card. Press the card firmly into place. - 2. Connect the cable supplied with the kit to the interface card and modem. - 3. Restore power to the computer and the modem. - 4. Initialize the new link into the network as specified in the HP 91750A DS/1000-IV Network Manager's Manual, HP part number 91750-90003. - 5. Perform the check-out procedure on the card as specified in the next paragraph. #### **Checkout Procedure** For check-out after installation, perform the interface card and communication link checks described below. #### Interface Card Configuration Check Since the interface card self-test is run each time that power is applied to the card or the card is reset, the first part of check-out is automatically performed. The following procedure will verify that the card passed the self-test and that the backplane interface circuitry is operational. It also provides a way to check the card configuration switch settings. To perform the check, enter the following commands: #### 1. RU, DSINF (cr> DSINF is a DS/1000-IV utility program that can be used to obtain information such as network configuration, communications parameters, etc. For more information on DSINF, refer to the DS/1000-IV Network Manager's Manual, HP part number 91750-90003. #### 2. LU, ##, AL <cr> LU will return information on the configuration of a specified DS/1000 interface card, where ## is the LU (Logical Unit number) of that card. Information will only be returned if the card passed the self-test. In this way, DSINF will return card configuration information as well as other useful parameters. Check to see that the returned information complies with desired card configuration. If the returned values are unexpected, check the switch settings on the interface card. If in error, reconfigure the switch and reinstall the card, going through all check-out procedures again. #### Communication Link Check Before following the procedure described in this paragraph, it is important to understand the message re-routing capabilities of the network. If there is an alternate path to the remote node being tested, message re-routing must be disabled to ensure that the desired link is being exercised. Check with the network manager about network topology and message re-routing before proceeding. A good check of the communication link is accomplished by exercising a few REMAT commands. To do this, type in the following commands after the system prompt (:): #### 1. :RU.REMAT<cr> REMAT is the program that handles operator commands for communications from one HP 1000 to another in a Distributed Systems network. It schedules the appropriate monitors to handle all outgoing and incoming requests. REMAT will prompt with a dollar sign (\$) when commands are referred to the local node only. When a remote node is referenced (another HP 1000), the prompt will become a number sign (\$). #### \$\$w,NODE1,NODE2,SC<cr> The SW (Switch) instruction defines the action and destination nodes. Set NODE1 to the node number of the neighbor node that is to be exercised. Set NODE2 to the local node's number. SC is the security code for the network. It is defined when the network is initialized. #### 3. #TI(cr> OR #TM(cr> The TI and TM (Time) commands will obtain the time from the remote node and display it on the local terminal being used for this exercise. The TI command should be used if the remote node is an HP 1000 M/E/F-Series computer. The TM command should be used if the remote node is an HP 1000 L-Series computer. If the remote node does not have the necessary monitor to handle the TI or TM command, or does not have a real-time clock, try a DL (Directory List) command or a CL (Cartridge List) command. #### 4. #EX<cr> The EX (EXit) command will end REMAT. If the above procedure is carried out successfully, the described results will be displayed with no error messages returned. If an error message is returned, refer to error code information supplied in the DS/1000-IV User's Manual, HP part number 91750-90002. For troubleshooting procedures, refer to Section 5 of this manual or the troubleshooting section of the DS/1000-IV Network Manager's Manual, HP part number 91750-90003. #### Interface Card LEDs There are four LEDs installed on the interface card. Located on the left side of the card next to the front edge connector, the LEDs are visible when the card is installed in the computer and are referenced as 0 through 3 with 0 being the LED on the right. During normal operation, LEDO being lit indicates that the interface is logically connected to the other interface on the link. LEDI being lit indicates that a transfer of data is taking place over the backplane. The LEDs are also used to indicate successful completion of the self-test with all four being off after the test and before DS software has been initialized. # Section 3 Protocol #### Introduction There are several levels of protocol involved in an HP DS/1000-IV communications link. Two of these levels are handled on the HP 12794A: line protocol and communications protocol. The first level involves timing and control signals, and electrical specifications for computer-to-modem connections. The second level involves the more complex set of rules used to control the flow of data over the communication link. Both line and communications protocols are firmware controlled on the HP 12794A. This section will present an abbreviated discussion of the communications protocol. For information on the line protocol, refer to the Communication Line Interface paragraphs in Section 4 of this manual. For a more thorough understanding of HDLC, refer to the HP Computer Systems Group Data Communications Standard, October 1977. #### **Communications Protocol** The HP 12794A is programmed via the read-only memory (ROM) on the ca d to implement High Level Data Link Control (HDLC) protocol. HDLC is a bit oriented protocol designed for use over full-duplex communications channels. The following paragraphs discuss the main characteristics of HDLC. #### **HDLC Frames** Data transfers using HDLC protocol are bit oriented as opposed to character oriented. Blocks of data are transmitted in frames, a frame being a bit stream starting and ending with a flag character. For this implementation, the flag character is the following bit pattern: #### 01111110 A frame may or may not contain data but always contains control information. There can be any number of frames in a single transmission. A frame consists of several fields as illustrated in Figure 3-1 and described in the following paragraphs. Figure 3-1. HDLC Frame Format #### Flag Field HDLC uses positional significance, not control characters, to identify the various elements of a message. The flag field is the first eight bits of a frame and the receiver uses it to count down the incoming bit stream to identify the other fields within the frame. The close flag is used to indicate the end of the frame. The firmware also uses the close flag to count back to the frame check sequence field. Zeroes are inserted and deleted as required to prevent a flag bit pattern from appearing within the frame. When five 1's appear, a 0 is inserted in the bit stream after the last 1. The receiver detects the five 1's followed by a 0 and deletes the 0. The inserted and deleted zeroes are not included in the frame check sequence. This zero insertion/deletion scheme is controlled by the Z-80A SIO chip on the HP 12794A card. Each interface on the link is continuously seaching for the flag pattern. During lulls in message flow, a series of flags is transmitted to keep the link active and synchronized. #### Station Address Field Since all links in a DS network are point-to-point, station address information is not needed as such. Instead, this field is used to convey whether the frame contains a response or a command. This information is necessary due to the data handling organization at each station on the link. Outgoing commands and incoming responses are handled by the primary portion of the firmware driver. Incoming commands and outgoing responses are handled by the secondary portion of the driver. This primary/secondary scheme is one way of implementing a full-duplex communications protocol. #### **Control Field** The control field consists of eight bits containing a command or response pattern required for control of the data link. The primary station uses the field to command the secondary to perform an operation. The secondary uses it to respond to the primary. The control field has three formats, indicating the contents and purpose of the frame as follows
(refer to Table 3-1 also): - 1. Information Transfer. This control field format indicates that the present frame contains information being transfered from the local primary to the remote secondary. - 2. Supervisory Response. A frame with a supervisory format in the control field contains no information (the information field is interpretted to be of zero length and is used to regulate traffic and request retransmissic of missed or erroneous frames. - 3. Unnumbered Command/Response. This format consists of commands and responses used to establish or disconnect the communications channel, or reject commands (those not recoverable by retransmission). #### Information Field A non-zero length information field only exists in frames designated as information transfer frames by the control field. When used, the information field is the vehicle for moving data between stations and it is unrestricted in format and contents. Information field length is selected to be 128 or 1024 bytes (corresponding to external and internal clock selection) using one of the configuration switches on the card. #### Frame Check Sequence Field This field is 16 bits in length and preceeds the closing flag. When information is present in the frame, it follows the information field, otherwise it follows the control field. Its purpose is to detect errors that occur during transmission. For the HP 12794A, the frame check sequence is computed under firmware control using the CKC-16, cyclic redundancy check, block check method. This consists of dividing a constant into the first group of bits being transmitted after the opening flag. The quotient is discarded and the remainder added to the next group of bits, which is again divided by the same constant. This continues until the closing flag is detected and the 16-bit CRC-16 remainder is sent in the frame check sequence field before the closing flag.. Table 3-1. HDLC Protocol Bytes (Control Field) | | | | ENCODING | | | | | | | | |--|-----------------------------------|--|------------------|-----------------------|------------------|---------|------------------|-----------------------|------------------|------------------| | TYPE | MNEMONIC | DESCRIPTION | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | INFO. | 1 | Information | | Nr | | P | | Ns | | 0 | | SUPRV. | RR
RNR
REJ | Receiver Ready
Receiver Not Ready
Reject | | Nr
Nr
Nr | | F
F | 0
0
1 | 0
1
0 | 0
0
0 | 1
1
1 | | U NNUM . | SARM
DISC
UA
CMDR
SIM | Set Asynchronous Disconnect Unnumbered Acknowl. Command Reject Set Initial. Mode | 0
0
0
1 | 0
1
1
0
0 | 0
0
1
0 | 0 0 0 0 | 1
0
0
0 | 1
0
0
1
1 | 1
1
1
1 | 1
1
1
1 | | Abbreviations: P - Poll bit F - Final bit Nr - Send Sequence Number Ns - Receive Sequence Number | | | | | | | | | | | ### **Error Control** As described in a previous paragraph, CRC-16 is used by the HP 12794A to detect errors in transmitted frames. There are other types of error control methods used on the link as described in the following paragraphs. # Frame Sequencing Checks Sequencing counts are kept on each interface card and transmitted as necessary to acknowledge frames received correctly. The values of these counts are sent in the control field as the following variables: Ns - Send Sequence Number. Ns is only transmitted in information frame control words and is used to tell the receiver the number of the frame being sent. Nr - Receive Sequence Number. Nr is transmitted in the control field for supervisory and information frames only and is used to acknowledge correct frame reception. The value of Nr sent is equal to the number of the next frame that is expected. The counts kept for Nr and Ns are only incremented when frames containing information are sent or received. Supervisory and unnumbered command/response frames do not affect these counts. These frames are acknowledged by proper response words. By keeping track of frames sent and received in this manner, it is possible for transmitting stations to transmit frames before the response is returned for previously transmitted frames. Also, one response can serve to acknowledge more than one received frame. This scheme increases overall link throughput. The number of unacknowledged frames allowed in this implementation of HDLC is seven. After that, outgoing messages are put in a queue and sent only when the proper response is received. If a sequence error is detected by a transmitting station, it will retransmit the frame after the last acknowledged frame and set the P (Poll) bit to signal that it is a retransmission. The P bit set also demands that the receiving station respond with a supervisory frame instead of the standard information frame acknowledgement. In the response supervisory frame, the F (Final) bit is set to indicate that it is responding to a received poll. #### Severe Error Processing The HP 12794A card is capable of detecting other types of errors besides invalid frames (CRC-16 detected errors) and sequence errors. The other detectable errors are referred to as severe errors and include such cases as: - * Unknown frame type - * Information field larger than available frame buffer - * Ns greater than seven - * Failure to acknowledge after maximum allowable retries These errors are reported to the software driver by the firmware on the card, and then an attempt is made to recover. For failure to acknowledge, the link is reset. This is similar to the original connect sequence (see Section 4, Principles of Operation, of this manual). For the other severe errors, a command reject frame is sent. # Section 4 Principles of Operation #### Introduction This section contains a description of the operation of the interface card included in the HP 12794A HDLC Modem Interface Kit. The hardware is described in terms of five major functional areas. A brief explanation of the command and status words used in communication between the card and the host computer is also given. The last part of this section is devoted to a functional-level description of the operation of the card. # **Hardware Functional Description** The card, HP part number 5061-3418, includes the following major functional areas: - * HP 1000 M/E/F-Series Computer I/O backplane interface - * Z-80A Microprocessor family subsystem (CPU, SIO, DMA and CTC) - * Read-Only Memory (ROM) - * Random-Access Memory (RAM) - * Communication line interface A block diagram illustrating the major functional areas of the card is presented in Figure 4-1. # Host Computer I/O Backplane Interface The card communicates with the HP 1000 host computer over the I/O backplane. The backplane interface circuitry can be logically divided into two major sections: the I/O data latches and the control circuitry section. The I/O data latches consist of two 8-bit input latches and two 8-bit output latches. The input latches hold 16-bit data or command words from the host computer until the card is ready to accept them. Likewise, the output latches hold 16-bit data or status words output from the card to the host computer. The control circuitry is made up of five flip-flops and other gate-level logic elements. The primary function of this section is to handle the control signals to and from I/O backplane. These signals are used to generate and acknowledge interrupts, to handshake data between the host and the card and to conform to the standard HP 1000 computer I/O backplane signal conventions. For a more detailed discussion of these signals, refer to the HP 1000 I/O Interfacing Guide, HP part number 02109-90006. #### The Z-80A Microprocessor Subsystem The heart of the card is the Z-80A CPU (Central Processing Unit). This MOS LSI microprocessor operates from a single 5 volt supply, uses a single phase clock and has a typical instruction execution time of 1.0 microsecond. The data bus is eight bits wide and the address bus is 16 bits wide. All CPU pins are TTL compatible. The Z-80A CPU employs a register-based architecture which includes two sets of six general-purpose registers which can be used as 8-bit registers or 16-bit register pairs. Additional 8-bit registers include two sets of accumulator and flag registers, and the interrupt vector and memory refresh registers. Additional 16-bit registers include the stack pointer, program counter and two index registers. The Z-80A CPU provides the intelligence for the card to function as a preprocessor to relieve the host computer of a majority of the protocol processing. An important pin on the Z-80A as far as this card is concerned is the NMI (Non-Maskable Interrupt) input pin. By pulling this input low with an STC instruction, the host computer can "get the attention of" the Z-80A. An NMI is the highest priority interrupt to the Z-80A and forces it to start fetching and executing instructions from a predetermined location in the firmware. The host software driver uses this feature to inform the card that it requires service. Various support chips are used in conjunction with the Z-80A CPU to facilitate the card's operation as an intelligent serial interface. These chips are discussed in the paragraphs that follow. #### Serial Input/Output (SIO) A Z-80A SIO chip is used on the card to provide the serial data communications channel. The major functions performed by the SIO chip are serial-to-parallel conversion of input data and parallel-to-serial conversion of output data. **HP 12794A HDLC MODEM INTERFACE** Figure 4-1. HDLC Modem Interface Functional Block Diagram 4-3/4-4 #### **Direct Memory Access (DMA)** The card uses two Z-80A DMA chips which are LSI DMA controllers. One of these DMA chips is used to transfer data from the SIO Channel to the card memory; the other is used to transfer data between the
host computer and the card memory. The primary function of the DMA logic is to transfer bytes of data in a manner that will be transparent to the Z-80A CPU software. This enables the card to achieve higher throughput rates. #### Counter Timer Circuit (CTC) The card uses one Z-80A CTC chip which provides four independent counter/timers. Two of the counter/timers are used as a baud rate generators and one is used as a timer for the HDLC protocol. The fourth is used to maximize the effective card throughput by controlling the frequency of DMA cycle stealing. #### Read-Only Memory (ROM) The card uses 6k bytes of ROM on two chips. All of the software required to implement the functions of HDLC protocol generation, backplane interaction control and modem control is contained in these chips and is referred to as firmware. The self-check routine is also contained in ROM. #### Random-Access Memory (RAM) The card has 16k bytes of dynamic RAM. This memory is used for data buffers and the storage of firmware variables. The refresh capability of the Z-80A CPU is used to provide the appropriate refresh signals to the dynamic RAM chips. #### **Communication Line Interface** The communication line interface is the point at which the card "talks" to the serial I/O transmission line. The card is capable of supporting EIA RS-232-C, CCITT V.24 and EIA RS-449 serial I/O implementations. For the purposes of this discussion, the various communications circuits are referred to by their RS-449 names. A comparison of EIA RS-232-C, CCITT V.24 and EIA RS-449 circuits and their respective signal connector pin assignments are given in Section VII. The EIA RS-449 standard consists of a combination of single-ended (EIA RS-423) and differential (EIA RS-422) drivers and receivers. The card uses both single-ended and differential drivers on some lines and only single-ended drivers on others. All of the receivers on the card are differential although some are connected in such a way that they can only receive single-ended signals. The manner in which each signal is driven or received is illustrated in Figure 4-2. Figure 4-2. Driver/Receiver Combinations A single-ended driver produces one inverted output whereas its differential counterpart drives both the inverted and non-inverted signals. It is important to note that the mark and space conventions of the protocol are preserved in both cases. The advantage of differential drivers and receivers is that they offer higher noise immunity, thus allowing longer cable lengths and higher data signalling rates. 1 When a differential receiver is connected to a single-ended driver, the remaining input is connected to ground (RS-232) or to the Receiver Common (RC) circuit of the driving device (RS-449). The various driver/receiver combinations are illustrated in Figure 4-2. The combination used depends on the modem requirements. The receivers on the card can withstand an input voltage range of \pm 0 volts and can operate with a maximum common mode input voltage of \pm 1 volts. #### Command and Status Words In addition to data words, command and status words are also exchanged between the host computer and the card. These additional words are transferred across the data bus and the data latches to aid in the process of communication between the host and the card. Command words are initiated by the host driver and fall into the following four basic categories: - Type 0 initiates a data transfer from a card buffer to a host computer buffer. - Type 1 a single word command sent directly to the card firmware. Examples include disconnect, abort current operation, etc. - Type 2 initiates a data transfer from a host computer buffer to a card buffer. - Type 3 specifies that a multiple-word command is to follow. Status words are generated by the card to inform the host of events that have occurred, are occurring or will be occurring on the card or communications line. Examples of these messages include transfer buffer ready, connect complete, error condition, message block size and modem input line status. ### **Functional-Level Description** The description given in this section is of a typical operation of the card. The host computer assumed for this discussion is an HP 1000 M/E/F-Series Computer and the communications device is a modem. A modem on the other end of the communications line is connected to an HP 1000 M/E/F/L-Series Computer, employing its own interface card. #### Power-Up Initially, the HP 1000 has been powered up and the communications line is not yet operational. At power-up, a reset signal is asserted that resets all the logic on the card, including the Z-80A components. The resetting of the Z-80A CPU invokes a ROM-resident self-test routine which makes its pass/fail message available to the host driver. #### **Connect Sequence** The communications line is powered-up with TR (Terminal Ready) asserted for those modems possessing an Auto-Answer feature. After the physical connection has been made, the two ends must be logically connected. The primary sends a SARM frame and waits for a UA frame from the secondary. In our HP 1000 to HP 1000 configuration, each card sends a SARM frame and waits for a UA frame. When this handshake sequence is complete, a logical connection exists between the two computers. The "send" handshake involves asserting RS (Request to Send) and waiting for CS (Clear to Send) from the modem. The "receive" handshake involves waiting for RR (Receiver Ready) from the modem and then hunting for the SYN bytes for synchronization. ### I/O Backplane Processing The steps involved in a transfer from the host computer to the communications line (i.e., an output transfer) are as follows (the numbers in parentheses reference the various data paths and functional areas in Figure 4-1): 1. The host (software) driver issues a request for for output buffers (command type 1) onto the data latches (7) and then causes a Z-80A NMI (5). Because of the NMI, the firmware interprets the data in the latches as a command. - 2. When a buffer becomes available, the host driver requests a transfer (command type 2) and enables the DCPC (Dual Channel Port Controller) hardware of the host. - 3. The card writes zeros to the output latches (7). This starts the DCPC transfer from the host involving the backplane latches (7), control logic (13), data bus (6), DMA chip (4) and RAM (12). - 4. The card interrupts the host (13) when the data transfer is complete. - 5. The host may transfer additional blocks of data to the the card as buffer space becomes available. Steps 2 through 4 are repeated until the message is transferred from the host to the card in its entirety. - 6. Each data block in the RAM buffer on the card is transferred via DMA (3) to the SIO (2) when the SIO chip becomes ready for the transfer. The SIO transmits the data as it is received. The CRC frame check sequence is sent as required. Keep in mind that the CPU (5) is controlling all of the processing on the card by executing instructions that it fetches from ROM (10) and (11). The steps involved in a transfer from the communications line to the host computer (i.e., an input transfer) are as follows: - 1. The host driver enables inputs from the card by enabling a command word (command type 1) into the data latches (7). - 2. The card firmware then sends a status word via the data latches (7) to the host driver informing it that an input buffer is available. - 3. The host driver issues a request for input data command type 0) and enables the DCPC hardware of the host computer. - 4. The card enables the first data word into the data latches (7) and asserts SRQ via the backplane logic (13). - 5. The host driver begins the data transfer and the data block is transferred from the RAM (13) on the card to the host via a DNA chip (4), the data bus (6), the backplane latches (7) and the backplane handshake logic (13). Steps 2 through 5 are repeated until the entire message has been transferred. - 6. The host is interrupted when the transfer is complete. # **Disconnect Sequence** The communications line is logically disconnected after each station sends a DISC frame and receives a UA frame. Either end of the DS link can initiate the disconnect sequence. The line is physically disconnected after TR and RS have been dropped. # Section 5 Maintenance # Introduction This section provides maintenance information for the HP 12794A HDLC Modem Interface Kit. Included are preventive maintenance instructions and troubleshooting information. # **Preventive Maintenance** There is no preventive maintenance (PM) necessary for the HP 12794A other than a routine inspection of the equipment which can be performed at the same time that PM is done for the entire system. The card and cables should be checked for broken components, or the presence of foreign objects. A self-test, residing in the firmware, is executed each time that power is applied to the card or the card is reset. In this manner, the interface card is checked automatically and only requires more thorough testing when specific failures occur. # **Troubleshooting Techniques** # CAUTION ALWAYS TURN POWER OFF TO THE COMPUTER AND OTHER ASSOCIATED EQUIPMENT WHEN INSERTING OR REMOVING INTERFACE CARDS OR CABLES. FAILURE TO DO SO COULD RESULT IN DAMAGE TO THE EQUIPMENT. # CAUTION #### STATIC SENSITIVE DEVICES THE ROMS, RAMS, AND Z-80A COMPONENTS USED IN THIS PRODUCT ARE SUSCEPTIBLE TO DAMAGE BY STATIC DISCHARGE. REFER TO THE SAFETY CONSIDERATIONS INFORMATION AT THE FRONT OF THIS MANUAL BEFORE REPLACING. Once it has been determined that the hardware of the HP 1000-to-HP 1000 link is failing, proceed as follows to localize the failure to the specific component failing: - 1. Run the following tests at both HP 1000s on the link: - a. DSINF Card Configuration Check. (Follow the procedure outlined in the interface card configuration check paragraphs in Section 2 of this manual.) - b. Firmware self-test. - c. Loop-back
verifier nood test. - 2. If the above procedures are carried out successfully, it is reasonably certain that the interface cards and software/firmware at the HP 1000 nodes are operational. This implies that the failure is due to the cabling, the modems used, or the line quality. The modems in the link should be checked out at this time if possible. Refer to the appropriate manuals for self-test/diagnostic information. - Other troubleshooting aids for investigating line quality and use are discussed in the last paragraphs of this section. - 3. If a failure is found using one of the above test procedures, replace the failing card or firmware and repeat the test that failed to verify that the problem has been properly corrected. If the problem is still present with new equipment, refer to the last paragraph of this section for further troubleshooting procedures. # Firmware Self-Test A self-test is available for the interface card included with the IIP 12794A. The test examines CPU operation, on-board DMA operation (channels 0 and 1), counter/timer chip performance, RAM and ROM memory, and some parts of the receiver/driver circuits and controller. The test does not check the backplane circuitry on the card. Self-test results are made available to the driver once the test is complete. To find out if the card passed the self-test, try executing the LU command after running DSINF as described in the interface card configuration check given in Section 2. The LEDs on the card will also indicate successful completion of the tests with all of them being turned off after the test is finished and before DS software has been initialized. # **Loop-Back Verifier Hood Test** Run the loop-back verifier hood test by proceeding as follows: - Quiesce the node. This allows all pending transactions to be completed and prevents new ones from starting before running the test. Follow the same procedure used in the self-test section for quiescing the node. Remove power from the computer once the node is quiescent. - Remove the cable from the front edge connector and install the loop-back verifier hood, HP part number 5061-3425, in its place, orienting the connector the same as all other connectors in the card cage. - 3. Restore power of the system. When this occurs, the self-test is automatically executed on the card. The results of the test are returned to the software driver. Restore the operating system and check that the self-test completed successfully and that the hood was sensed by running DSINF and checking the information returned with the LU command. - 4. Once it has been established that the card passed the self-test and that the hood has been sensed, a further check or the card can be accomplished by sending a message to the card and having it looped back on itself. This will thoroughly check out all message sending and receiving capabilities of the card and card/computer interaction capabilities. To configure the card to talk to itself, start by running DSMOD. Enter the command CN. DSMOD will prompt for the network security code which can be obtained from the network manager. After that has been entered, DSHOD will prompt for the node number to be changed. Enter the local DSMOD will display the current routing vector node number. for the local node which should specify LU 0. Then after the prompt for the new configuration, enter the LU # of the card that has the loop-back verifier hood installed on it. Now enter /E in response to the prompt for the next node number to be changed, and another /E to exit DSMOD. The card is now configured to talk to the local node. - 5. Run REMAT and execute some REMAT commands such as TI or DL. When this happens, the routing vector will specify that all commands to be executed at the local node should be sent out to the configured interface card. The card will transmit the data, it will be looped back through the hood, and the card will receive the data and send it back to the local CPU. If no errors are returned, this is a very good indication that the interface card and backplane circuitry are operational. - 6. Once the test is complete, run DSMOD and reconfigurate local node routing vector to again specify LU 0. - 7. To remove the loop-back verifier hood, remove power from the system and replace the hood with the cable. - 8. Restore power to the computer and reinitialize the system and DS software. Since the loop-back verifier hood test checks more areas of the card (specifically the line drivers and receivers area of the interface, and the backplane interface circuitry), it is possible for the card to pass the self-test and fail the loop-back hood test. Therefore it is important that both the self-test and the loop-back verifier hood test are run. # Other Troubleshooting Aids If problems occur that cannot be identified using the hardware tests described above, there are other troubleshooting tools available. However, these tools require more familiarity with hardware operations, HDLC protocol, and characteristics of line use for the link being tested. Therefore, a review of the Theory of Operation and Protocol sections of this manual is recommended before proceeding. Detailed troubleshooting techniques are further discussed in the DS/1000-IV Network Manager's Manual, HP part number 91750-90003. Refer to that manual for information on DS utility programs available and their use as troubleshooting aids. # Section 6 Replaceable Parts # **Introduction** This section contains information for ordering replaceable parts for the HP 12794A HDLC Modem Interface Kit. Table 6-1 gives a list of replaceable parts, and Table 6-2 contains names and manufacturers of the parts. # Replaceable Parts Table 6-1 contains a list of replaceable parts in reference designation order. The following information is listed for each part: - 1. Reference designation of the part. Refer to Table 6-1 for an explanation of the abbreviations used in the "REFERENCE DESIGNATION" column. - 2. The Hewlett-Packard part number. - 3. Part number check digit (CD). - 4. Total quantity (QTY). - 5. Description of the part. - 6. A five-digit manufacturer's code number of a typical manufacturer of the part. - 7. The manufacturer's part number. # **Ordering Information** To order replacement parts or to obtain information on parts, address the order or inquiry to the local Hewlett-Packard Sales and Service Office (Sales and Service Offices are listd at the back of this manual). To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit), and indicate the quantity required. The check digit will insure accurate and timely processing of your order. To order a part that is not listed in the replaceable parts table, specify the following information: - 1. Identification of the kit containing the part (refer to Section 1 of this manual). - 2. Description and function of the part. - 3. Quantity required. Table 6-1. Replaceable Parts | Reference
Designation | HP Part
Number | C
D | Qty | Description | Mfr
Code | Mfr Part Number | |---------------------------------|---|-----------|-------------|--|---|---| | ços | 5041-3418
1990-2442 | , | 1 | FED-01818FE FIN-1414500FED SLABWF-NYE | 20100
20100 | \$061-Je18
1990-2668 | | \$1
\$# | 1953-9015 | 7 | | Totalisto per al portere professi
Totalistos nos al To-18 Porters | 24480
24480 | 1053-0015 | | 05
05
07
512
613 | 1010-0270
1010-0270
1010-0270
1010-0270
1010-0270 | | 3 | ACTHORN-RCD 10-01P1,5x 0+m z 0
ACTHORN-RCD 10-01P1,7x
0+m z 0 | 01181
01181
01181
01181
01181 | \$1040.25
\$1040.25
\$1040.25
\$1040.25 | | 010
010
030 | 1010-0270
1010-0270
1010-0200
1010-0200 | 2244 | | NETHORNLOCO 10-6191,54 000 E 0
NETHORNLOCO 10-6191,54 000 E 0
NETHORNLOCO 10-61910,64 000 E 0
NETHORNLOCO 10-61910,64 000 E 0 | 01121
01121
01121
01121 | 2104152
2104152
2104163
2104163 | | 01
011
012
013
015 | 101-1903
1020-2703
1020-1729
1020-054
1020-1430 | 0.0000 | | IC CALM LLF PO BIN BLACHED BOS-EDSC-LBIC
BOCKELTC GO-COM, DIL BIL-DFB
IC FCM LLF FO COM FTEN B-BIL
IC BCM LLF FO COM TEN B-BIL-
IC BCM LLF FO COM TEN B-BIL-
BLILCM-DIL B-BCC FE
BMILCM-DIL B-BC | 30335
01295
20040
20040
01295 | 3101-1903
ampol 32PC
gryat 12599
1520-2300
1200-055a
8976L3101an | | 821
822
825
826 | 1620-2203
1620-1276
1620-1216
1613-0129
1200-0038 | 0 13 07 | 1 | SECUENCIC THE CONT BIP DIPORTS IC DESCRIPTION TO STRONG STRONG IC ORDER TO LESS STRONG | 34335
01295
34346
34346 | āmzol 032PC
84734 02514
86746 01384
811888
1200-0638 | | 607
631
633
633 | 1020-1009
1020-2003
1020-2009
1200-0054 | 7 00 7 0 | | IC COTH TTL LB BIM BUAL 0-BIT
BECKET-IC 40-CONT BIP BIP-BLBM
IC-6300-1 | 97363
34335
26480
20480
20480 | 74,83936
1890-3395
1890-9656
5090-1616 | | 636
637
638
641
642 | 1820-1197
1820-1000
1820-8799
1820-8883
1820-1112 | •••• | 1
1
1 | EC GATE TEL LB MAND BUAD 2-10P EC BOYN TEL LINE BRYN BUAL B-10P EC REYN TEL LB LINE REYN BUAD EC FF TEL LB B-TYPE POS-EDBE-TRIB | 01295
10326
01295
01295 | 80741.3004
8071.30
80750328P
AMAGE 32PC
80741.874AN | | yeS
yes
yes
yes | 1820-2299
1220-0054
1820-0073
1820-1881
1820-1888 | • • • • • | | BOCKET-IC 40-CONT DIP DIP-BLDR
IC FF TTL LD STOPE POS-EDGE-TRIS
IC SATE TTL LD STOP DAVA DUAL D-IMP
IC STORM TTL LINE BAVA DUAL D-IMP | 20400
20400
01295
01295 | 1820-2299
1200-0054
BATTATAN
BATTALBEON
MOTIJAN | | 951
953
953
957
961 | 1020-2145
1020-2024
1020-003
1020-1440
1020-1177 | 7 | | IC DOWN TIL LING DAVE GUAD IC DOWN TIL LB LINE DAVE GCTL IC INU TIL B MEX 1-100 IC (CM TIL LB GUAD IC GATE TIL LB MAND GUAD 2-100 | 04713
01295
01295
01295
01295 | MC36879
847418264
847418264
847418264
847418864
847418334 | | Ne2
Ne3 | 1820-1729
1820-2298
1200-054
1820-0093 | 3 7 0 | 1 | IC MUSHAPATA-BEL TIL LB N-TO-1-LINE BUGL IC LCM TIL LB COM CLEAR B-BIY BOCKET-IC NO-CONT DIP DIP-BLDS IC FF TIL B D-TYPE POB-EOSE-TAIS | 01275
20400
20400
01275 | 847aLf294
1626-1296
1206-1556
887a87au | | U66
U67
U71
U78 | 1920-1416
1820-1980
1820-1244
1810-0341
1200-0007 | | | ic SchmillToffis TYL LS 144 MEE 1-14P
ic pown TYL Ling Dava Dual Golff
IC mumafpala-Bgi TYL LS 4-70-1-Ling Dual
IC muma jaibe-Bil Ram Dyn 200-46 %-8
BOCKET-IC 16-CBNT DIP DIP-BLD8 | 01295
10324
01295
0003J
20400 | 8474L514N
#6713N
8474L6153N
UPD610D-2
1200-0807 | | U75
U76
U77 | 1200-2301
1200-0507
1020-120n
1020-1202
1020-1000 | | 3 | SOCHET-IC SO-CONT DIP DIP-SLOR IC GATE TIL LO OR GUAD S-IMP IC GATE TIL LO NAMD TPL J-IMP IC GATE TIL LINE DRYR DUAL O-IMP | 20400
01205
01205
10320 | 1200-0507
847845324
847845164
h07134 | | U02
U02
U03
U00 | 1010-03-1
1200-0007
1020-1200
1020-1201 | | • | IC ACUM TTL S LIME ROVE DUAL IC NUMS 10380-837 RAM GV4 280-MS 3-8 SOCKET-IC 16-CONT DIP DIP-SLOW IC 6ATE TTL LS ON SUAD 2-IMP IC 8ATE TTL LS AND SUAD 2-IMP TC DAME TTL LS AND SUAD 2-IMP | 10324 | WP04100-2
1200-000"
8474L83/4
8171L8004 | | ne5
ne1 | 1020-1000
1020-2117
1010-0341
1200-0607
1200-0507 | | ٠ | IC BAVE ITL LINE DAVE CUAL GOLDP IC DAVE TTL LINE DAVE QUAL IC MADS 10384-BIT RAY DVA 200-AU BOS SOCRET-IC 10-CONT DIP DIP-BLOR SOCRET-IC 28-CONT DIP DIP-BLOR | 10324
07203
0003J
20400
20400 | 90367C
90367C
UPD010D-2
1200-0007
1200-0007 | | | | | | | | | See introduction to this section for ordering information *Indicates factory selected value Table 6-1. Replaceable Parts (Continued) | Reference
Designation | HP Part
Number | CO | Qty | Description | Mfr
Code | Mfr Part Number | |--------------------------------------|---|----------|-----|--|--|--| | 4101
4101
4101 | \$000-0100
1620-1107
1620-1080
1620-2117
1616-6301
1200-6007 | ••••• | 1 | SOCRETATE TRACES AND SAN SERVING 200
IC madd Toggeredi ann san Sesving 200
IC beat aif Fird base oner 0-1mb
IC obit aif Fird base oner 0-1mb
IC obe. | 20.00
01205
10320
07203
0003J
20000 | \$0%-05%
\$0754 5000
\$0753
\$050476
\$050406
\$050406
\$1200-0007 | | #505
#501
#102
#100 | 1200-0003
1620-1100
1620-1000
1620-2117
1616-0301
1800-0007 | ••••• | 1 | SOCHET-IC 18-CD-Y 319 819-3504
IC MODS 1936-851 NAW SAY 260-NS 3-8
IC DAY AAT LIME DAAN DAAL D-IMP
IC DAY AAT LIME DAAN DAAL D-IMP
IC DAY TO LIME DAAN DAAL D-IMP
IC DAY TO LIME D-IMP
SOCHET-IC 18-CD-Y 319-3504
SOCHET-IC | 28480
0;205
18324
07203
0003;
28480 | 1200-0003
5872200
407130
9016475
Jd04100-2
1200-0007 | | n209
n201
n300 | 1200-0507
1020-1007
1020-1000
1020-2117
1010-0341
1200-0007 | | • | BOCKET-IC 28-COMT BIP BIP-BLDS IC PP TIL LB B-TYPE PDB-EDEG-TRIS PDL-IN IC DONP TIL LINE BANS BUIL B-IXP IC MODS 10384-BIT SAM BUIL
BOCKET-IC 19-COMT BIP BIP-BLDS BOCKET-IC 19-COMT DIP BIP-BLDS | 20.00
01295
10329
07203
0003J
20.00 | 1209-0507
8874,8374
887136
9036475
MP04108-2
1200-0607 | | 7001
7301
7300
7300
7300 | 1625-1478
1626-2079
1626-1407
1626-1680
1626-2117 | 1 47 0 9 | 1 | IC DOWN TTL LINE DAVE DUAL C-14P BUAP IC OFF TTL LINE DAVE DUAL C-14P IC DAVE TTL LINE DAVE DUAL C-14P IC DAVE TTL LINE DAVE DUAL | 01205
01205
01205
10320
07203 | gn74Lg157h
BN7sLB24gh
BN7sLB37an
h813A
96364TC | | nege
negt
negt | 1818. *301
1774-007
1876-1970
1880-1917
1880-1997 | | 1 | IC N=08 16384-817 88* BYN 200-48 3-8 BOCKET-IC 18-CONT DIP BIP-8688 IC MURR/NAY6-866 TIL LB 2-T0-10-1ME BURB IC per TYL LB 1-ME DRYR UCYL IC FF TIL LB 0-TYPE POS-EDSE-TRIB PRL-IN | 0003J
2000
01295
01295
01295 | UPBR108-2
1208-8007
8419-81574
8470-82004
8470-82004 | | 4497
4591
4593
4593 | 1020-1000
1020-2117
1010-0101
1200-0007
1020-1207 | • • • • | 3 | IC BATE TTL LIME DAVE SOLAP
BOCKET-IC 10-COOT DIP DIP-SLOR
IC DAVE TTL LIME DAVE SOLA 3-6
IC DAVE TTL LIME DAVE SOLAP
IC DAVE TTL LIME DAVE SOLAP | 16324
67263
60033
26486
61295 | H8713#
93347C
UPD0168#2
1200-0607
8#741830# | | US00
US00
US07 | 1820-928
1220-9185
1820-1997
1820-1997 | • • • • | 1 | misceffuncons balls it hat iff to policy bone postule barein it hat if the policy bone postule barein it hat if the policy bone postule misceffuncons balls | 27614
28486
61295
18324 | L=120==015
1200=0105
8=17=12370=
+0713= | | | 1404-0110
5061-3431 | | 1 | PINGOY, SOCIOLOGO, AND THE BALL NATIONAL | \$8+86
\$8+86 | 1480-0116
5061-3431 | | | | | | | | · | See introduction to this section for ordering information *Indicates factory selected value Table 6-2.
Manufacturer's Code List | COOE
NO. | MANUFACTURER ADDRESS | CODE
NO. | MANUFACTURER ADDRESS | |---------------|--|----------------|--| | 0003 J | Nippon Electric Co | 07263 | Fairchild Semiconductor Div Mt. View, CA 94042 | | 01121 | Allen-Bradley Co Milwaukee, WI 53204 | 18324 | Signetics Corp Sunnyvale, CA 94086 | | 01295 | Texas Instr. Inc. Semicond. Cmpnt. Div Dalles TX 75222 | 27014
28480 | Natl Semiconductor Corp Santa Clara, CA 95051
Hewlett-Packard Co. | | 03508 | General Electric Co., Semiconductor Prod. Dept | 343 35 | Corporate Hq Palo Alto, CA 94304
Advanced Micro Dev. Inc Sunnyvale CA 94086 | | 04713 | Motorola Semiconductor Prod Phoenix, AZ 85062 | 3/1344 | Motorola Inc Franklin Park, IL 60131 | # Section 7 Servicing Diagrams and Information # Introduction This section contains servicing diagrams and information for the HP 12794A HDLC Modem Interface Kit. Table 7-1. Backplane Connections (Connector P1) | PIN
NO. | Signal
Mnemonic | SIGNAL NAME | | | |------------|--------------------|---|--|--| | 1 | GND | Ground | | | | 2 | GND | Ground | | | | 3
4 | PRL | Priority Low | | | | 4 | FLAGL | Flag Signal, Lower Select Code | | | | 5 | SFC | Skip if Flag is Clear | | | | 6
7 | IRQL | Interrupt Request, Lower Select Code | | | | 7 | CLF | Clear Flag | | | | 8 | IEN | Interrupt Enable | | | | 9 | STF | Set Flag | | | | 10 | IAK | Interrupt Acknowledge | | | | 11 | Т3 | I/O Time Period 3 | | | | 12 | SKF | Skip on Flag | | | | 13 | CRS | Control Reset | | | | . 14 | LSCM | Select Code Most Significant Digit (Lower Address) | | | | 15 | IOG | I/O Group | | | | 16 | LSCL | Select Code Least Significant Digit (Lower Address) | | | | 17 | POPIO | Power On Preset to I/O | | | | 18 | BIOS | "Not" Block I/O Strobe (E-series only) | | | | 19 | SRQ | Service Request | | | | 20 | 100 | I/O Data Output Signal | | | | 21 | C LC | Clear Control | | | | 22 | STC | Set Control | | | | 23 | PRH | Priority High | | | | 24 | IOI | I/O Data Input Signal | | | | 25 | SFS | Skip if Flag is Set | | | | 26 | IOBI O | I/O Bus Input, bit O | | | Table 7-1. Backplane Pin Connector P1 (Continued) | 10B 8 | | | | | |---|-----|-------------|------------------------|--| | 10B | 27 | TORY O | 7/0 7 7 | | | 10B1 1 | | | | | | 10BI 2 | 4 | | 1/0 Bus Input, bit 9 | | | 31 | | 3 | I/O Bus Input, bit 1 | | | SIR Set Interrupt Request Interrupt Request Interrupt Request Select Code Select Code Least Significant Digit (Higher Address) I/O Bus Output, bit 0 | | 1 | I/O Bus Input, bit 2 | | | 33 | | | I/O Bus Input, bit 10 | | | Select Code Least Significant Digit (Higher Address) I/O Bus Output, bit 0 | | | | | | Higher Address I/O Bus Output, bit 0 | 1 . | | | | | 35 10B0 0 1/0 Bus Output, bit 0 | 34 | HSCL | | | | 36 | 25 | | | | | Select Code Most Significant Digit (Higher Address) I/O Bus Output, bit 1 1 1 1 1 1 1 1 1 1 | | | I/O Bus Output, bit O | | | (Higher Address) 38 | 1 | | | | | 1080 1 | 3/ | HSCM | | | | 39 | | | | | | 40 | | | I/O Bus Output, bit 1 | | | 1 | | | | | | 10B0 4 | | | - 45 - | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | 1 | | | | | 10 | | | I/O Bus Output, bit 4 | | | 10B0 3 | 3 | | | | | 46 ENF | 1 | | | | | 47 | 1 | · · · · · · | | | | 48 | | | Enable Flag | | | FLGH | 1 | | | | | (Higher Select Code) RUN RUN 51 10B0 5 1/0 Bus Output, bit 5 52 10B0 7 1/0 Bus Output, bit 6 54 10B0 8 1/0 Bus Output, bit 8 55 10B0 11 1/0 Bus Output, bit 11 56 10B0 9 1/0 Bus Output, bit 9 57 10B0 12 1/0 Bus Output, bit 12 58 10B0 10 1/0 Bus Output, bit 10 59 NOT USED 60 10B1 11 1/0 Bus Input, bit 11 61 10B0 13 1/0 Bus Output, bit 13 62 EDT End Data Transfer (DCPC) 63 NOT USED 64 10B1 3 1/0 Bus Input, bit 3 | 1 | -2 Volts | | | | SO | 49 | FLGH | Interrupt Flag Signal | | | IOBO 5 | | | (Higher Select Code) | | | 10B0 7 1/0 Bus Output, bit 7 1/0 Bus Output, bit 6 1/0 Bus Output, bit 6 1/0 Bus Output, bit 8 1/0 Bus Output, bit 11 1/0 Bus Output, bit 11 1/0 Bus Output, bit 12 1/0 Bus Output, bit 12 1/0 Bus Output, bit 10 1/0 Bus Output, bit 10 1/0 Bus Output, bit 11 1/0 Bus Output, bit 11 1/0 Bus Input, bit 11 1/0 Bus Output, bit 13 1/0 Bus Output, bit 13 EDT End Data Transfer (DCPC) 1/0 Bus Input, bit 3 1/0 Bus Input, bit 3 | | | Run | | | 10B0 7 | | IOBO 5 | I/O Bus Output, bit 5 | | | 10B0 6 | | IOBO 7 | I/O Bus Output, bit 7 | | | 10B0 8 | | IOBO 6 | | | | IOBO 11 | | IOBO 8 | | | | 10B0 9 | | | | | | 10B0 12 | | IOBO 9 | I/O Bus Output, bit 9 | | | 10B0 10 | | IOBO 12 | I/O BUs Output, bit 12 | | | NOT USED | | 10во 10 | I/O Bus Output, bit 10 | | | 61 IOBO 13 I/O Bus Output, bit 13 62 EDT End Data Transfer (DCPC) 63 NOT USED 64 IOBI 3 I/O Bus Input, bit 3 | | NOT USED | • • === | | | 61 IOBO 13 I/O Bus Output, bit 13 62 EDT End Data Transfer (DCPC) 63 NOT USED 64 IOBI 3 I/O Bus Input, bit 3 | 60 | IOBI 11 | I/O Bus Input, bit 11 | | | 62 EDT End Data Transfer (DCPC) 63 NOT USED 64 IOBI 3 I/O Bus Input, bit 3 | 61 | | I/O Bus Output, bit 13 | | | 63 NOT USED 64 IOBI 3 I/O Bus Input, bit 3 | 62 | 1 | | | | 64 IOBI 3 I/O Bus Input, bit 3 | | | - \ \ \ \ \ \ \ \ \ \ | | | | 64 | IOBI 3 | I/O Bus Input. bit 3 | | | +0+0 +7 +/O DUB OULPUL DIL 14 | 65 | IOPO 14 | I/O Bus Output, bit 14 | | | | | | | | Table 7-1. Backplane Pin Connector Pl (Continued) | 66 | PON | Power On Normal | |----|-----------|--| | 67 | BIOO | "Not" Block I/O Output (E-Series only) | | 68 | NOT USED | | | 69 | -12 Volts | | | 70 | -12 Volts | | | 71 | NOT USED | | | 72 | not used | | | 73 | BIOI | "Not" Block I/O Input (E-Series only) | | 74 | IOBO 15 | I/O Bus Ouput, bit 15 | | 75 | not used | • • | | 76 | not used | | | 77 | IOB 4 | I/O Bus Input, bit 4 | | 78 | IOB 12 | I/O Bus Input, bit 12 | | 79 | IOB 13 | I/O Bus Input, bit 13 | | 80 | IOB 5 | I/O Bus Input, bit 5 | | 81 | IOB 6 | I/O Bus Input, bit 6 | | 82 | IOB 14 | I/O Bus Input, bit 14 | | 83 | IOB 15 | I/O Bus Input, bit 15 | | 84 | IOB 7 | I/O Bus Input, bit 7 | | 85 | GMD . | Grumd | | 86 | CMD | Ground | Table 7-2. Communication Line Connector (Connector J1). | PIN NO. | SIGNAL MNEMONIC* | SIGNAL DEFINITION | |------------|------------------|-------------------------------| | 14 | | No Connection | | 1B | +12V | +12 Volts Power | | 2A | | No Connection | | 2B | +12V | +12 Volts Power | | 3A | SSD | Secondary Send Data | | 3B | | No Connection | | 44 | | No Connection | | 4B | -12V | -12 Volts Power | | 5A | | No Connection | | 5B | -12V | -12 Volts Power | | 6A | | No Connection | | 6B | | No Connection | | 7A | SRS | Secondary Request to Send | | 7B | TR(A) | Terminal Ready | | A8 | SD(U) | Send Data | | 8B | TT(B) | Terminal Timing | | 9A | RS(U) | Request to Send | | 9B | TT(U) | Terminal Timing | | 10A | TR(B) | Terminal Ready | | 10B | DAMPRT(B) | | | 11A | RS(A) | Request to Send | | j 11B | TR(U) | Terminal Ready | | 12A | TT(A) | Terminal Timing | | 12B | | No Connection | | 13A | SD(B) | Send Data | | 13B | SD(A) | Send Data | | 14A | | No Connection | | 14B | RS(B) | Request to Send | | 15A | DAMPST(B) | | | 15B | RT(B) | Receive Timing | | 16A | CS(B) | Clear To Send | | 16B | DAMPRD(B) | Class to Sand | | 17A | CS(A) | Clear to Send | | 17B | 50 | No Connection | | 18A | SQ | Signal Quality | | 188 | RC
ST(B) | Receive Common
Send Timing | | 19A | ST(B) | No Connection | | 19B | RD(B) | Receive Data | | 20A
20B | ST(A) | Send Timing | | 20B
21A | 31(A) | No Connection | | 21B | **BX16IN | 40 connection | | 22A | SRR | Secondary Receiver Ready | | 22B | | No Connection | | 220 | | | Table 7-2. Communication Line Connector J1 (Continued) | PIN NO. | SIGNAL MNEMONIC* | SIGNAL DEFINITION | |---------|------------------|---------------------------------| | 23A | RD(A) | Receive Data | | 23B | TM | Test Mode | | 24A | RR(B) | Receiver Ready | | 24B | IC | Incoming Call | | 25A | SG | Signal Ground | | 25B | SC | Signal Common | | 26A | RR(A) | Receiver Ready | | 26B | **BDATACLK+ | · | | 27 A | DM(A) | Data Mode | | 27B | DM(B) | Data Mode | | 28A | SF/SR | Select Frequency/Signaling Rate | | 28B | DD | Receive Timing | | 291 | **ASYNCCLK+ | | | 29B | DA | Terminal Timing | | 30A | **X16IN | - - | | 30B | RT(A) | Receive Timing | | 31A | SCS | Secondary Clear to Send | | 31B | DB . | Send Timing . | | 32A | SRD | Secondary Receive Data | | 32B | RL | Remote Loopback | | 334 | LL | Local Loopback | | 33B | NS | New Signal | | 34A | IS | Terminal In Service | | 34B | | No Connection | | 35A | | No Connection | | 35B | GND | Power Ground | | 36A | | No Connection | | 36B | GND | Power Ground | | 37A | | No Connection | | 37B | GND | Power Ground | | 38A | (SHIELD) | No. Commondadom | | 38B | | No Connection | | 39A | .54 | No Connection | | 39B | +5V | +5 Volts Power | | 40A | . 617 | No Connection | | 40B | +5V | +5 Volts Power | ^{*} The (A) or (B) after a mnemonic indicates portions of a differential input or output. The (U) after a mnemonic indicates a single ended version of a signal that appears elsewhere as differential. ^{**} These are TTL level signals for compatibility, they should be used only to loop back for proper firmware operation. Table 7-3. Serial I/O Circuits and Equivalents | RS-449 | Signal
RS-232 | CCITT
V.24 | DEFAULT
VALUE* | FUNCTION |
---|--|--|--------------------------|--| | RD
SD
CS
RS
TR
RT
TT
IC
DM
TM
LL
SQ
SF
SR
IS
SRD
SSD
SRS
SCS
SRR
SC
SCS
SRR
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC | ## ## ## ## ## ## ## ## ## ## ## ## ## | 104
103
106
105
108.2
109
114
115
113
125
107
142
141
140
110
126
111
——————————————————————————————— | 1-100 111 000 0000 -0 11 | RECEIVE DATA SEND DATA CLEAR TO SEND REQUEST TO SEND TERMINAL READY RECEIVER READY SEND TIMING RECEIVE TIMING TERMINAL TIMING INCOMING CALL DATA MODE TEST MOPE LOCAL LOOPBACK REMOTE LOOPBACK SIGNAL QUALITY SELECT FREQUENCY SELECT SIGNALING RATE TERMINAL IN SERVICE NEW SIGNAL SEC. RECEIVE DATA SEC. RECEIVE DATA SEC. REQUEST TO SEND SEC. CLEAR TO SEND SEC. RECEIVER READY SIGNAL GROUND SEND COMMON RECEIVE COMMON | | • | Pertain | 101
s to the | RP 12794 | PROTECTIVE GROUND A Interface only. | Figure 7-1. Integrated Circuit Base Diagrams. Figure 7-1. Integrated Circuit Base Diagrams (Continued) Figure 7-2. HP 12794A HDLC Modem Interface Parts Location Diagram. c 7 2 5 36 Figure 7-3. HP 12794A Interface Schematic Logic Diagram (Cont.) 7-21/7-22 3 8 37 # Appendix A Compatible Modems and Recommended Options # GDC 212A MODEM The GDC (General DataComm Industries, Inc.) 212A Modem provides full-duplex, synchronous or asynchronous data communications over 2-wire switched networks. It will operate at 0 to 300 bits per second with 103, 113, and 212A types of modems, or 1200 bits per second with other 212A modems. The options available and recommended for use with the HP 12794A HDLC Modem Interface Kit are: #### CUSTOMER SPECIFIED OPTIONS | GDC
CODE | FEATURE SELECTION | RECOMMENDATION | |-------------|---|----------------| | 2a | Async/Start-Stop | | | 2ъ | Sync Tx/Rx Clk | 2b (required) | | 5a | 9 bits per asynchronous character. | Don't Care | | 5Ъ | 10 bits per asynchronous character. | | | 6 a | Dir. conn. between signal and chassis ground. | 6a | | 6b | 100 ohm resistor between signal and chassis ground. | | | 7a | CC on during analog loopback test. | 7a | | 7Ъ | CC forced off during analog loopback. | | | 9a | CB off whenever CF is off. | 9a | | 9Ъ | CF has no effect on CB. | | | 10a | CE remains on in Answer Mode. | | | 10ь | CE on only during ringing. | 10ь | | lla | CI speed indicator signal enabled. | | | 11b | CI speed indicator signal disabled. | 11ъ | | 12a | CN circuit controls make busy and | | | | analog loopback. | | | 1 2b | CN inactive. | 12ь | # GDC 212A MODEM (CONTINUED) # TELEPHONE COMPANY SPECIFIED OPTIONS | GDC
CODE | FEATURE SELECTION | RECOMMENDATION | |-------------|---|----------------| | CODE | PERIORE SELECTION | FECOMENDATION | | la | Call is dropped upon receipt of 1.5 second stealy space. | | | 1ъ | Steady space has no effect on modem. | 1ь | | 3a | No steady space transmitted before disconnecting. | 3a | | 3ъ | Steady space transmitted before disconnecting. | | | 4a | Disconnect upon loss of carrier signal. | 4a | | 4b | No disconnect upon loss of carrier signal. | | | 8a | Auto-answer enabled. | 8a | | 8Ъ | Manual answer required. | | | 13a | Timing from DD receive clock (slave timing). | | | 13ь | Timing from DB transmit clock in modem | 13b (required) | | 13c | (internal timing). Timing from DA external source (external timing). | | | 14a | Tip-ring busy during analog test. | | | 14ъ | Tip-ring not busy during analog test. | 14b | | 15a | High-speed (1200 bits per second only) | Don't care | | 15Ъ | Either high-speed (1200) or low-speed (300 bits per second) | | | 16a | Receiver responds to digital loopback test command from remote modem. | Don't care | | 16ъ | Receiver responds to digital loopback test command from local modem only. | | # GDC 212A MODEM (CONTINUED) # OTHER OPTIONS | GDC | | | |-------------|--|----------------| | CODE | FEATURE SELECTION | RECOMMENDATION | | 17a | TM signal enable. | 17a | | 17ь | TM signal disable. | | | 18 a | 565/2565 Telephone. | | | 18b | 502/RTC Telephone. | 18ь | | 19a | CN line to business machine on pin 18. | 19a | | 19Ъ | CN line not connected. | | | 20a | RDL line on pin 19. | | | 20ъ | RDL line on pin 21. | 20Ъ | | 20c | RDL line disconnected. | | | 21a | CH from business machine connected. | 21 a | | 21Ь | CH from business machine disconnected. | | # BELL 212A MODEM The Bell 212A Modem provides full duplex, synchronous or synchronous communications over a 2-wire switched network. It can operate at 0 to 300 bits per second in an asynchronus mode for operation with 103, 113, or 212A types of modems, or at 1200 bits per second with other 212A modems. The options available and recommended for use with the HP 12794A HDLC Interface are: # CUSTOMER OPTIONS | OPTION | DESCRIPTION | RECOMMENDATION | |--------|--|----------------| | ZF | CC circuit on during AL test. | ZF | | ZE | CC circuit off during AL test. | | | ХJ | CH circuit controls speed. | | | XK | HS button controls speed. | XX | | YE | AL/Make Busy controlled by CN circuit or AL button. | Don't Care | | YF | AL/Make Busy controlled only by AL button, CN internally held off. | | | YC | 1200 BPS transmitter driven by internal clock. | YC (required) | | YD | 1200 BPS transmitter driven by DA circuit. | | | WI | 1200 BPS transmitter driven by Receive clock (DD). | | | YG | Character-oriented operation in the high speed mode. | | | YH | Bit synchronous operation in the high speed mode. | YH (required) | | YI | 9-bit character for 1200 bps async./start-stop operation. | | | ¥Ј | 10 bit character for 1200 bps async./start-stop operation. | YJ | | YK | Digital loop can be remotely activated in the high speed mode. | YK | | YL | No response to remote request for a digital loop. | | | XL | RL circuit enabled to activate remote digital loop. | XL | | XM | RL circuit not connected to interface. | | # BELI 212A HODEM (CONTINUED) # CUSTOMER OPTIONS (CONT.) | COSTORER OF LIONS (CONT.) | | | | | | | | |---------------------------|--|----------------|--|--|--|--|--| | OPTION | DESCRIPTION | RECOMMENDATION | | | | | | | . 8 | Call is dropped if Loss of Carrier occurs. | S | | | | | | | R | Loss of Carrier does not drop call. | | | | | | | | V | Call is dropped if steady space is received. | | | | | | | | Y | Space signal has no effect on modem. | Y | | | | | | | A | CB circuit is turned off whenever CF | Don't care | | | | | | | В | circuit goes off. CB circuit isnot affected by CF circuit. | | | | | | | | T | Steady space transmitted before dis-
connecting. | | | | | | | | ט | No space transmitted before discon-
necting. | ט | | | | | | | ZH | Auto answer enabled. | ZH | | | | | | | ZG | No response to ringing indication. | | | | | | | | x | Circuit CE remains on after call is answered. | | | | | | | | w | Circuit CE turns off after call is answered. | W | | | | | | | YO | Data can cross interface only in the high speed mode. | | | | | | | | YP | Data can cross the interface in both speed modes. | YP | | | | | | | YQ | Circuit CI indicates speed mode. | | | | | | | | YR | Circuit CI disconnected from interface. | YR | | | | | | | ХO | CN on pin 25, TM not connected. | Don't care | | | | | | | XN
XR | CN on pin 18, TM not connected.
CN on pin 18, TM on pin 25. | | | | | | | | Q | Protective ground and signal ground tied together. | Q | | | | | | | P | No connection between protective ground and signal ground. | | | | | | | # HP 37210T MODEM The Hewlett-Packard 37210T modem provides half-duplex via dial-up or full-duplex via leaded lines at transfer rates to 4800 bits per second. The options available (determined by assembly switches) and recommended for use with the HDLC Modem Interface are (full-duplex operation only): | FUNCTION OF
SWITCHES
(O-OPEN, C-CLOSED) | 4-Wire
(Leased)
Line | |---|----------------------------| | CONTROL ASSEMBLY | | | Factory Set Switches.
Must remain as set at | | | factory. S10-1, S10-6, S10-7 S11-4, S11-5 | 0 0 0
0 C | | S11-7, S11-8
S12-1 thru S12-4 | C C
0 0 0 0 | | Train Sequence.
S10-2 | С | | Receiver Turn-on Delay.
S10-3 | С | | External Rate Control
Enable/Disable.
S10-4 | · C | | 24 Pushbutton Enable/
Disable.
S10-5 | 0 | | Auto Answer Telephone
Select.
S10-8, S10-9 | ос | | Transmit Clock.
Sll-1, Sll-9 | 0 0 | | Request-to-Send Delay.
S11-2 | 0 | | 2-wire/4-wire Mode.
S11-3 | 0 | # HP 37210T MODEM (CONTINUED) | Function of
Switches
(O=OPEN, C=CLOSED) | 4-WIRE
(LEASED)
LINE | |---|----------------------------| | Carrier Select.
Sll-6 | С | | DISPLAY/PROCESSOR
ASSEMBLY | | | Factory Set Switches. | | | Must remain as set at | | | factory. | | | S1-1 thru S1-6
S1-7 | all OPEN | | S1-7
S1-8,
S1-9 | 0 0 | | J. 0, 01 7 | | | ANALOG/MEMORY ASSEMBLY | | | Amplitude and Delay | | | Equalizers. | | | S1-1, S1-2 | ОС | | \$2-1 thru \$2-4 | соос | | Output Power Programming | | | Resistor. | | | S1 - 3 | С | | Receiver Threshold Level.
S1-4 | o | | Transmitter Output Power | | | Level. | | | \$3-1 thru \$3-4 | сосо | | Secondary Channel Select.
S4-1 thru S4-3 | осс | | Phone Line Loop-back.
S4-1 | С | | 4-wire/2-wire Operation.
wire link, P/R | R | # HP 37210T MODEM (CONTINUED) | FUNCTION OF | 4-WI RE | |--|------------| | SWITCHES | (LEASED) | | (0-OPEN, C-CLOSED) | LINE | | | | | SECONDARY CHANNEL | | | | | | Receiver threshold | · | | S3-1,S3-2 | 0 0 | | | | | Tx/Rx Interlock Trans. | | | S3-3 | 0 | | 2-wire, 4-wire | | | S3-4 | С | | | | | Secondary Tx O/P Power | | | Level | | | \$2-1 thru \$2-9 | C00000000 | | 0 | | | Constant/Controlled
Carrier | | | SI-1 | C | | 51-1 | С | | Secondary channel | | | Enable | | | S1-2 | С | | | | | Primary channel Enable
S1-3 | | | 51-3 | C · | | Sacardamy shares? | | | Secondary channel
Analog Loop-back enable | | | S1-4 | 9 | | | | | | | | REMOTE COMMAND ASSEMBLY | | | Receive Address. | | | SI-1 thru SI-4 | Master | | JI I CHILU DI-4 | 0000 | | | | | | Slave | | 1 | any number | | | • | | Receiver Input | | | Attenuation. | | | S2-1 | 0 | | | L | # HP 37210T MODEM (CONTINUED) | | FUNCTION OF | 4-WIRK | |--------|---|--------------------------| | | SWI TCHES | (LEASED) | | | (O=OPEN, C=CLOSED) | LINE | | | Remote Command Transmitter | | | | Output Level. | | | | S2-2, S2-3, S2-4 | соо | | | Address Thumbwheel. | | | | Front Panel Control | O (Slave) | | Notes: | | | | * | Refer to the HP 37210T Operation for the correct switch setting | _ | | ** | OPEN - The modem has the au | ito-answer option (003). | | | CLOSED - The modem does not h | nave auto-answer. | | *** | With auto-answer, always set to Without auto-answer, refer to | | | | and Service Manual for the con | rrect setting. | # HP 37220T MODEM The HP 37220T Modem provides full-duplex, synchronous communications via leased lines at transfer rates to 9600 bits per second. The options available (determined by strapping configurations) and recommended for use with the HP 12794A HDLC Modem Interface Kit are: | SWITCH FUNCTION | SWITCH SETTINGS | (O-OPEN, C-CLOSED) | |-------------------------------------|------------------|--------------------| | TRANSMITTER STRAPPING | | | | Factory Set Switches. | S1-1 | С | | Must remain as set at | S1-8, S1-9 | 0 0 | | factory. | S2-2, S2-3, S2-9 | 000 | | Request-to-Send/ | S1-2, S1-3, S1-4 | сос | | Clear-to-Send Delay. | | | | Data-Set-Ready Control. | s1-5, s1-6, s1-7 | 000 | | Auto-Retain Enable/
Disable. | S2-1 | 0 | | Transmit Clock. | s2-4, s2-5, s2-6 | осо | | Remote Loop-back Selection. | s2-7, s2-8 | ос | | Transmit Power Level. | S3-1 thru S3-8 | all OPEN | | Telephone Line Loop-back Amplifier. | s3-9 | o | | RECEIVER STRAPPING | | | | Input Threshold Level. | S1-1, S1-2 | со | | Factory Set Switches. | S1-3 thru S1-6 | 0000 | | Must remain as set at | S1-7, S1-8, S1-9 | CCO | | factory. | | | | EXTERNAL RATE SELECT VIA | Jumper Wire | Out | | THE RS232C/V24 INTERFACE | amber wife | (disabled) | | and modely the Antoninou | | /ATPADIES/ | DIRECT MARKETING DIVISION • 1320 Kifer Road, Sunnyvale, California 94086, Telephone 408/738-8858 IIILE: 12794A HDLC Modem Interface Installation and Service Manual PART NUMBER: 12794-90001 MICROFICHE: PRINT DATE: 9/80 UPDATE: 1/82 PRINTED IN THE U.S.A. The product related to this manual is no longer in production at the Hewlett-Packard Corporation. The manual is maintained on a microfiche master at Direct Marketing Division. As a service to our customers we are providing a hardcopy print of the microfiche. The print is produced at Direct Marketing Division using a TAMERAN 1800-F Autoprint Microfiche Printing System. In addition, we are providing a duplicate of the microfiche to provide maximum flexibility for our customers. *********** # MANUAL UPDATE **MANUAL IDENTIFICATION** **UPDATE IDENTIFICATION** Title: HP 12/94A HDLC Modem Interface Update Number: 1 installation and service manual Part Number: 12794-90001 This Update Goes With: First Edition (September 1980) #### THE PURPOSE OF THIS MANUAL UPDATE is to provide new information for your manual to bring it up to date. This is important because it ensures that your manual accurately documents the current version of the product. #### THIS UPDATE CONSISTS OF this cover sheet, a printing history page, all replacement pages, and write-in instructions (if any). Replacement pages are identified by the update number at the bottom of the page. A vertical line (change bar) in the outside margin indicates new or changed text material. The change bar is not used for typographical or editorial changes that do not affect the text. ## TO UPDATE YOUR MANUAL identify the latest update (if any) already contained in your manual by referring to the printing history page. Incorporate only the updates from this packet not already included in your manual. Following the instructions on the back of this page, replace existing pages with the update pages and insert new pages as indicated. If any page is changed in two or more updates, such as the printing history page which is furnished new for each update, only the latest page will be included in the update package. Destroy all replaced pages. If "write-in" instructions are included they are listed on the back of this page. #### TECHNICAL MANUAL UPDATE (12794-90001) # DESCRIPTION Title Page/Print History Page: Replace the title page/print history page provided in this update supplement. ### Page 1-2: In item 3, under Equipment Supplied, change the RS-232-C Modem Cable to part number 5061-4914. In the description of Option 002, change HP part number 5061-3436 to 5061-4923. # Page 2-5, Table 2-3: Change the function of switch number 2 to read as follows: Closed to select #128 byte information field. Open to select 1024 byte information field. #### Page 2-6: Reverse the order of the switch segment numbers in the first column heading of table 2-4 to read: "8.7.6" Change the paragraph enclosed in Figure 2-3 to read as follows: *These switches are set to select a 1024 byte information field and 1200 bps transmission clock rate. The forced cold load feature is disabled. ### Page 2-7: Change the part number of the Network Manager's Manual, in step 4, to 91750-90010 (Volume 1). ### Page 2-8: Change the part number of the Network Manager's Manual, in step 1, to 91750-90011 (volume 2). Under Interface Card Configuration Check, note that DSINF senses the presence of a Diagnostic Hood. However, this should not be confused with the Loop-back Verifier Hood, which is the only hood supplied with the HDLC product. DSINF does not sense the loop-back verifier hood. #### Page 2-9: In the last sentence on the page, change the number of the Network Manager's Manual to 91750-90011 (Volume 2). #### Page 3-3: Change the fourth sentence under Frame Check Sequence Field to read as follows: "...the frame check sequence is computed under Z-80A SIO chip control..." ### Page 5-3: In the second paragraph under <u>Firmware Control</u>, correct the part number of the Network Managers manual to 91750-90010 (volume 1). ### Page 5-4: Delete the phrase from step 3 and step 4 that references the "the hood" being "sensed". It should be noted that DSINF only senses an installed Diagnostic Hood, not the Loop-back Verifier Hood. # HP 12794A Manual Update # Page 5-5/5-6: In the last paragraph, correct the part number of the Network Manager's Manual to 91750-90011 (Volume 2). # Page 6-3, Table 6-1: ### Change: | U27 | 1820-2096 | 9 | IC CNTR | TTL BIN DUAL 4-BIT | 01295 | SN74LS393N | |-------------|-----------|---|---------|---------------------|-------|------------| | U72 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | | 1818-1396 | 4 | | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U92 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U102 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U202 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U302 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U402 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | | U502 | 1818-1396 | 4 | IC NMOS | 16384 (16K) DYN RAM | 50088 | MK4116N-3 | ### Add: | XW1 1200-0483 0 SOCKET IC 14-CONT DIP SLI | |---| |---| | U93 | 91750-80008 | BURN IN | 1818-0498 | 28480 | 91750-80008 | |------|-------------|---------|-----------|-------|-------------| | U203 | 91750-80009 | BURN IN | 1818-0850 | 28480 | 91750-80009 | ### Page 7-4: Replace Table 7-2 with the table provided in replacement pages 7-3 through 7-6. # Page A-4/A-5: ### Correct CUSTOMER OPTIONS as follows: Option XK is required. Option YF is required. Option XM is required. Option B is recommended. Option XO is recommended. U-4