
Parallel Programming Guide
for HP-UX Systems

K-Class and V-Class Servers

Second Edition

B3909-90003

Customer Order Number: B3909-90003

March 2000

Revision History
Edition: Second

Document Number: B3909-90003
Remarks: March 2000. Added OpenMP appendix.

Edition: First

Document Number: B6056-96006
Remarks: June 1998.Initial Release.

Notice

 Copyright Hewlett-Packard Company 2000. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Table of Contents iii

Contents

Preface . xv
Scope. xvi
Notational conventions . xvii

Command syntax . xviii
Associated documents . xix

1 Introduction . 1

HP SMP architectures .2
Bus-based systems .2
Hyperplane Interconnect systems .2

Parallel programming model. .3
The shared-memory paradigm. .3
The message-passing paradigm. .4

Overview of HP optimizations. .6
Basic scalar optimizations .6
Advanced scalar optimizations .7
Parallelization. .7

2 Architecture overview . 9

System architectures .10
Data caches .12

Data alignment .12
Cache thrashing .13

Memory Systems .17
Physical memory. .17
Virtual memory. .17
Interleaving. .18
Variable-sized pages on HP-UX .23

Specifying a page size .23

3 Optimization levels . 25

HP optimization levels and features. .26
Cumulative Options .29

Using the Optimizer .30
General guidelines .30

C and C++ guidelines .31
Fortran guidelines .33

4 Standard optimization features . 35

iv Table of Contents

Machine instruction level optimizations (+O0) . 36
Constant folding . 36
Partial evaluation of test conditions . 36
Simple register assignment . 37
Data alignment on natural boundaries . 37

Block level optimizations (+O1) . 39
Branch optimization . 39
Dead code elimination. 40
Faster register allocation . 40
Instruction scheduling . 41
Peephole optimizations . 41

Routine level optimizations (+O2) . 42
Advanced constant folding and propagation . 42
Common subexpression elimination . 43
Global register allocation (GRA) . 43

Register allocation in C and C++ . 44
Loop-invariant code motion . 45
Loop unrolling . 45
Register reassociation. 47
Software pipelining . 49

Prerequisites of pipelining . 49
Strength reduction of induction variables
and constants . 51
Store and copy optimization . 52
Unused definition elimination . 52

5 Loop and cross-module optimization features. 53

Strip mining . 54
Inlining within a single source file . 55
Cloning within a single source file . 57
Data localization. 58

Conditions that inhibit data localization. 59
Loop-carried dependences (LCDs) . 59
Other loop fusion dependences . 64
Aliasing. 64
Computed or assigned GOTO statements in Fortran 67
I/O statements . 67
Multiple loop entries or exits . 68
RETURN or STOP statements in Fortran . 68
return or exit statements in C or C++ . 68
throw statements in C++ . 69
Procedure calls . 69

Loop blocking . 70

Table of Contents v

Data reuse. .71
Spatial reuse .71
Temporal reuse .72

Loop distribution .77
Loop fusion .79
Loop interchange .82
Loop unroll and jam. .84
Preventing loop reordering .89
Test promotion .90
Cross-module cloning. .91

Global and static variable optimizations .91
Global variable optimization coding standards91

Inlining across multiple source files .92

6 Parallel optimization features . 93

Levels of parallelism .94
Loop-level parallelism .94

Automatic parallelization .95
Threads. .96

Loop transformations .97
Idle thread states. .100

Determining idle thread states .100
Parallel optimizations .102

Dynamic selection. .102
Workload-based dynamic selection. .102
dynsel , no_dynsel .103

Inhibiting parallelization .105
Loop-carried dependences (LCDs) .105

Reductions .108
Preventing parallelization. .110
Parallelism in the aC++ compiler .111
Cloning across multiple source files .112

7 Controlling optimization . 113

Command-line optimization options. .114
Invoking command-line options .117

+O[no]aggressive .117
+O[no]all .118
+O[no]autopar .118
+O[no]conservative .119
+O[no]dataprefetch .119

vi Table of Contents

+O[no]dynsel . 120
+O[no]entrysched . 120
+O[no]fail_safe . 121
+O[no]fastaccess . 121
+O[no]fltacc . 121
+O[no]global_ptrs_unique[=namelist] 122
+O[no]info . 123
+O[no]initcheck . 123
+O[no]inline[= namelist] . 124
+Oinline_budget= n . 125
+O[no]libcalls . 125
+O[no]limit . 126
+O[no]loop_block . 127
+O[no]loop_transform . 127
+O[no]loop_unroll[= unroll factor] . 127
+O[no]loop_unroll_jam . 128
+O[no]moveflops . 128
+O[no]multiprocessor . 129
+O[no]parallel . 129
+O[no]parmsoverlap . 130
+O[no]pipeline . 130
+O[no]procelim . 131
+O[no]ptrs_ansi . 131
+O[no]ptrs_strongly_typed . 132
+O[no]ptrs_to_globals[= namelist] . 135
+O[no]regreassoc . 136
+O[no]report[= report_type] . 137
+O[no]sharedgra . 138
+O[no]signedpointers . 138
+O[no]size . 138
+O[no]static_prediction . 139
+O[no]vectorize . 139
+O[no]volatile . 140
+O[no]whole_program_mode . 140
+tm target . 141

C aliasing options . 143
Optimization directives and pragmas . 146

Rules for usage . 147
block_loop[(block_factor= n)] . 148
dynsel[(trip_count=n)] . 148
no_block_loop . 148
no_distribute . 148
no_dynsel . 149
no_loop_dependence(namelist) . 149

Table of Contents vii

no_loop_transform .149
no_parallel .149
no_side_effects(funclist) .150
unroll_and_jam[(unroll_factor= n)] .150

8 Optimization Report . 151

Optimization Report contents .152
Loop Report .153

Supplemental tables. .158
Analysis Table .158
Privatization Table .159
Variable Name Footnote Table .160

9 Parallel programming techniques . 175

Parallelizing directives and pragmas .176
Parallelizing loops .178

prefer_parallel .178
loop_parallel .179

Parallelizing loops with calls .179
Unparallelizable loops. .180

prefer_parallel , loop_parallel attributes181
Combining the attributes. .184
Comparing prefer_parallel , loop_parallel184
Stride-based parallelism .186
critical_section , end_critical_section189
Disabling automatic loop thread-parallelization 191

Parallelizing tasks .192
Parallelizing regions .197
Reentrant compilation. .201
Setting thread default stack size .202

Modifying thread stack size .202
Collecting parallel information .203

Number of processors .203
Number of threads .204
Thread ID .205
Stack memory type. .205

10 Data privatization . 207

Directives and pragmas for data privatization 208
Privatizing loop variables .210

loop_private .210
Denoting induction variables in parallel loops212
Secondary induction variables .213

viii Table of Contents

save_last[(list)] . 216
Privatizing task variables . 218

task_private . 218
Privatizing region variables. 220

parallel_private . 220
Induction variables in region privatization 222

11 Memory classes . 223

Porting multinode applications to single-node servers 224
Private versus shared memory . 225

thread_private . 225
node_private . 225

Memory class assignments . 226
C and C++ data objects . 227
Static assignments . 228

thread_private . 228
node_private . 231

12 Parallel synchronization. 233

Thread-parallelism. 234
Thread ID assignments . 234

Synchronization tools . 235
Using gates and barriers . 235

In C and C++ . 236
In Fortran. 236

Synchronization functions . 237
Allocation functions . 237
Deallocation functions . 238
Locking functions. 239
Unlocking functions . 240
Wait functions . 241

sync_routine . 242
loop_parallel(ordered) . 245
Critical sections. 247
Ordered sections . 248

Synchronizing code. 250
Using critical sections . 250
Using ordered sections . 253
Manual synchronization . 258

13 Troubleshooting . 265

Aliasing . 266
ANSI algorithm. 266

Table of Contents ix

Type-safe algorithm .266
Specifying aliasing modes .267
Iteration and stop values .267

Using potential aliases as addresses of variables267
Using hidden aliases as pointers .268
Using a pointer as a loop counter. .268
Aliasing stop variables .269

Global variables .269
False cache line sharing .271

Aligning data to avoid false sharing .274
Aligning arrays on cache line boundaries .274

Distributing iterations on cache line boundaries275
Thread-specific array elements .276
Scalars sharing a cache line. .277
Working with unaligned arrays .278
Working with dependences .279

Floating-point imprecision .281
Enabling sudden underflow .282

Invalid subscripts .283
Misused directives and pragmas .284

Loop-carried dependences .284
Reductions. .286
Nondeterminism of parallel execution .287

Triangular loops. .288
Parallelizing the outer loop .290
Parallelizing the inner loop .290
Examining the code .294

Compiler assumptions .296
Incrementing by zero .296
Trip counts that may overflow. .297

Linear test replacement .297
Large trip counts at +O2 and above .299

Appendix A: Porting CPSlib functions to
pthreads301

Introduction .301
Accessing pthreads .302

Mapping CPSlib functions to pthreads. .303
Environment variables .309
Using pthreads. .310

Symmetric parallelism .310
ppcall.c .311

x Table of Contents

Asymmetric parallelism . 321
create.c . 322
pth_create.c . 323

Synchronization using high-level functions. 324
Barriers . 324
Mutexes . 327

Synchronization using low-level functions . 329
Low-level locks . 329
Low-level counter semaphores . 329

Appendix B: OpenMP Parallel Programming Model. 333

What is OpenMP?. 334
HP’s Implementation of OpenMP . 335

OpenMP Command-line Options . 335
Default . 335

OpenMP Directives . 335
OpenMP Data Scope Clauses . 336
Other Supported OpenMP Clauses . 336

From HP Programming Model to OpenMP . 337
Syntax . 337

Exceptions . 338
HP Programming Model Directives . 339

Not Accepted with +Oopenmp . 339
Accepted with +Oopenmp. 340

More Information on OpenMP. 341

List of Figures xi

Figures

 Figure 1 Symmetric multiprocessor system .3
 Figure 2 Message-passing programming model .4
 Figure 3 K-Class bus configuration .10
 Figure 4 V2250 Hyperplane Interconnect view .11
 Figure 5 Array layouts—cache-thrashing. .14
 Figure 6 Array layouts—non-thrashing .15
 Figure 7 V2250 interleaving .19
 Figure 8 V2250 interleaving of arrays A and B. .22
 Figure 9 LCDs in original and interchanged loops. .62
 Figure 10 Values read into array A .67
 Figure 11 Blocked array access .73
 Figure 12 Spatial reuse of A and B .74
 Figure 13 One-dimensional parallelism in threads .97
 Figure 14 Conceptual strip mine for parallelization .98
 Figure 15 Parallelized loop .99
 Figure 16 Stride-parallelized loop .187
 Figure 17 Ordered parallelization .246
 Figure 18 LOOP_PARALLEL(ORDERED) synchronization .254
 Figure 19 Data ownership by CHUNK and NTCHUNK blocks .293

xii List of Figures

List of Tables xiii

Tables

Table 1 Locations of HP compilers .25
Table 2 Optimization levels and features .26
Table 3 Loop transformations affecting data localization .58
Table 4 Form of no_loop_dependence directive and pragma60
Table 5 Computation sequence of A(I,J) : original loop .61
Table 6 Computation sequence of A(I,J) : interchanged loop62
Table 7 Forms of block_loop , no_block_loop directives and pragmas70
Table 8 Form of no_distribute directive and pragma .77
Table 9 Forms of unroll_and_jam , no_unroll_and_jam directives

and pragmas .85
Table 10 Form of no_loop_transform directive and pragma89
Table 11 Form of MP_IDLE_THREADS_WAIT environment variable 100
Table 12 Form of dynsel directive and pragma .103
Table 13 Form of reduction directive and pragma .108
Table 14 Form of no_parallel directive and pragma .110
Table 15 Command-line optimization options .114
Table 16 +O[no]fltacc and floating-point optimizations .122
Table 17 Optimization Report contents .137
Table 18 +tm target and +DA/+DS .142
Table 19 Directive-based optimization options .146
Table 20 Form of optimization directives and pragmas .147
Table 21 Optimization Report contents .152
Table 22 Loop Report column definitions .154
Table 23 Reordering transformation values in the Loop Report 155
Table 24 Optimizing/special transformations values in the Loop Report157
Table 25 Analysis Table column definitions .158
Table 26 Privatization Table column definitions .159
Table 27 Variable Name Footnote Table column definitions .160
Table 28 Parallel directives and pragmas .176
Table 29 Forms of prefer_parallel and loop_parallel directives

 and pragmas .181
Table 30 Attributes for loop_parallel , prefer_parallel182
Table 31 Comparison of loop_parallel and prefer_parallel185
Table 32 Iteration distribution using chunk_size = 1 .186
Table 33 Iteration distribution using chunk_size = 5 .186
Table 34 Forms of critical_section/end_critical_section directives and pragmas 189
Table 35 Forms of task parallelization directives and pragmas 192
Table 36 Attributes for task parallelization .193
Table 37 Forms of region parallelization directives and pragmas198
Table 38 Attributes for region parallelization .198

xiv List of Tables

Table 39 Forms of CPS_STACK_SIZE environment variable 202
Table 40 Number of processors functions . 204
Table 41 Number of threads functions . 204
Table 42 Thread ID functions . 205
Table 43 Stack memory type functions . 205
Table 44 Data Privatization Directives and Pragmas . 208
Table 45 Form of loop_private directive and pragma . 210
Table 46 Form of save_last directive and pragma . 216
Table 47 Form of task_private directive and pragma . 218
Table 48 Form of parallel_private directive and pragma 220
Table 49 Form of memory class directives and variable declarations 226
Table 50 Forms of gate and barriers variable declarations . 235
Table 51 Forms of allocation functions . 237
Table 52 Forms of deallocation functions . 238
Table 53 Forms of locking functions . 239
Table 54 Form of unlocking functions . 240
Table 55 Form of wait functions . 241
Table 56 Form of sync_routine directive and pragma . 242
Table 57 Forms of critical_section , end_critical_section directives

 and pragmas . 247
Table 58 Forms of ordered_section , end_ordered_section directives

 and pragmas . 248
Table 59 Initial mapping of array to cache lines . 272
Table 60 Default distribution of the I loop . 273
Table 61 CPSlib library functions to pthreads mapping . 303
Table 62 CPSlib environment variables . 309
Table 63 OpenMP Directives and Required Opt Levels . 335
Table 64 OpenMP and HPPM Directives/Clauses . 337

Preface xv

Preface

This guide describes efficient methods for shared-memory programming
using the following HP-UX compilers: HP Fortran 90, HP aC++ (ANSI
C++), and HP C.

The Parallel Programming Guide for HP-UX is intended for use by
experienced Fortran 90, C, and C++ programmers. This guide describes
the enhanced features of HP-UX 11.0 compilers on single-node
multiprocessor HP technical servers. These enhancements include new
loop optimizations and constructs for creating programs to run
concurrently on multiple processors.

You need not be familiar with the HP parallel architecture, programming
models, or optimization concepts to understand the concepts introduced
in this book.

xvi Preface

Preface

Scope
This guide covers programming methods for the following HP compilers
on V2200 and V2250 and K-Class machines running HP-UX 11.0 and
higher:

• HP Fortran 90 Version 2.0 (and higher)

• HP aC++ Version 3.0 (and higher)

• HP C Version 1.2.3 (and higher)

The HP compilers now support an extensive shared-memory
programming model. HP-UX 11.0 and higher includes the required
assembler, linker, and libraries.

This guide describes how to produce programs that efficiently exploit the
features of HP parallel architecture concepts and the HP compiler set.
Producing efficient programs requires the use of efficient algorithms and
implementation. The techniques of writing an efficient algorithm are
beyond the scope of this guide. It is assumed that you have chosen the
best possible algorithm for your problem. This manual should help you
obtain the best possible performance from that algorithm.

Preface xvii

Preface

Notational conventions
This section discusses notational conventions used in this book.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types.
In command examples, monospace identifies
command output, including error messages.

italic In paragraph text, italic identifies titles of
documents.
In command syntax diagrams, italic identifies
variables that you must provide.
The following command example uses
brackets to indicate that the variable
output_file is optional:
commandinput_file [output_file]

Brackets ([]) In command examples, square brackets
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe
sign (|).
The following command example indicates
that you can enter either a or b:
command {a | b}

xviii Preface

Preface

The term “Fortran” refers to Fortran 90.

The directives and pragmas described in this book can be used with the
Fortran 90 and C compilers, unless otherwise noted. The aC++ compiler
does not support the pragmas, but does support the memory classes.
In general discussion, these directives and pragmas are presented in
lowercase type, but each compiler recognizes them regardless of their
case.

References to man pages appear in the form mnpgname(1), where
“mnpgname” is the name of the man page and is followed by its section
number enclosed in parentheses. To view this man page, type:

% man 1 mnpgname

NOTE A Note highlights important supplemental information.

Command syntax
Consider this example:

COMMANDinput_file [...] {a | b} [output_file]

• COMMAND must be typed as it appears.

• input_file indicates a file name that must be supplied by the user.

• The horizontal ellipsis in brackets indicates that additional, optional
input file names may be supplied.

• Either a or b must be supplied.

• [output_file] indicates an optional file name.

Horizontal ellipses
(...)

In command examples, horizontal ellipses
show repetition of the preceding items.

Vertical ellipses Vertical ellipses show that lines of code have
been left out of an example.

Keycap Keycap indicates the keyboard keys you must
press to execute the command example.

Preface xix

Preface

Associated documents
The following documents are listed as additional resources to help you
use the compilers and associated tools:

• Fortran 90 Programmer’s Guide—Provides extensive usage
information (including how to compile and link), suggestions and
tools for migrating to HP Fortran 90, and how to call C and HP-UX
routines for HP Fortran 90.

• HP Fortran 90 Programmer’s Notes—Provides usage information,
including instructions on how to compile and link, suggestions and tools
for migrating to HP Fortran 90, and details on calling C and HP-UX
routines from HP Fortran 90.

• Fortran 90 Programmer’s Reference—Presents complete Fortran 90
language reference information. It also covers compiler options,
compiler directives, and library information.

• HP aC++ Online Programmer’s Guide—Presents reference and
tutorial information on aC++. This manual is only available in html
format.

• HP MPI User’s Guide—Discusses message-passing programming
using Hewlett-Packard’s Message-Passing Interface library.

• Programming with Threads on HP-UX—Discusses programming
with POSIX threads.

• HP C/HP-UX Reference Manual—Presents reference information on
the C programming language, as implemented by HP.

• HP C/HP-UX Programmer’s Guide—Contains detailed discussions of
selected C topics.

• HP-UX Linker and Libraries User's Guide—Describes how to develop
software on HP-UX, using the HP compilers, assemblers, linker,
libraries, and object files.

• Managing Systems and Workgroups—Describes how to perform
various system administration tasks.

xx Preface

Preface

• Threadtime by Scott J. Norton and Mark D. DiPasquale—Provides
detailed guidelines on the basics of thread management, including
POSIX thread structure; thread management functions; and the
creation, termination and synchronization of threads.

Chapter 1 1

1 Introduction

Hewlett-Packard compilers generate efficient parallel code with little
user intervention. However, you can increase this efficiency by using the
techniques discussed in this book.

This chapter contains a discussion of the following topics:

• HP SMP architectures

• Parallel programming model

• Overview of HP optimizations

2 Chapter 1

Introduction
HP SMP architectures

HP SMP architectures
Hewlett-Packard offers single-processor and symmetric multiprocessor
(SMP) systems. This book focuses on SMP systems, specifically, those
that utilize different bus configurations for memory access. These are
briefly described in the following sections, and in more detail in the
“Architecture overview” section on page 9.

Bus-based systems
The K-Class servers are midrange servers with a bus-based architecture.
It contains one set of processors and physical memory. Memory is shared
among all the processors, with a bus serving as the interconnect. The
shared-memory architecture has a uniform access time from each
processor.

Hyperplane Interconnect systems
The V-Class servers configurations range from one to 16 processors on
the V-Class single-node system. These systems have the following
characteristics:

• Processors communicate with each other through memory and by
using I/O devices through a Hyperplane Interconnect nonblocking
crossbar.

• Scalable physical memory. The current V-Class server support up to
16 Gbytes of memory.

• Each process on an HP system can access a 16-terabyte (Tbyte)
virtual address space.

Chapter 1 3

Introduction
Parallel programming model

Parallel programming model
Parallel programming models provide perspectives from which you can
write—or adapt—code to run on a high-end HP system. You can perform
both shared-memory programming and message-passing programming
on an SMP. This book focuses on using the shared-memory paradigm,
but includes reference material and pointers to other manuals about
message passing.

The shared-memory paradigm
In the shared-memory paradigm, compilers handle optimizations, and, if
requested, parallelization. Numerous compiler directives and pragmas
are available to further increase optimization opportunities.
Parallelization can also be specified using POSIX threads (Pthreads).
Figure 1 shows the SMP model for the shared-memory paradigm.

 Figure 1 Symmetric multiprocessor system

The directives and pragmas associated with the shared-memory
programming model are discussed in “Parallel programming
techniques,” on page 175, “Memory classes,” on page 223, and “Parallel
synchronization,” on page 233.

CPU CPU CPU CPU

Memory
I/O

Symmetric multiprocessor system

4 Chapter 1

Introduction
Parallel programming model

The message-passing paradigm
HP has implemented a version of the message-passing interface (MPI)
standard known as HP MPI. This implementation is finely tuned for HP
technical servers.

In message-passing, a parallel application consists of a number of
processes that run concurrently. Each process has its own local memory.
It communicates with other processes by sending and receiving
messages. When data is passed in a message, both processes must work
to transfer the data from the local memory of one to the local memory of
the other.

Under the message-passing paradigm, functions allow you to explicitly
spawn parallel processes, communicate data among them, and
coordinate their activities. Unlike the previous model, there is no shared-
memory. Each process has its own private 16-terabyte (Tbyte) address
space, and any data that must be shared must be explicitly passed
between processes. Figure 2 shows a layout of the message-passing
paradigm.

 Figure 2 Message-passing programming model

Distributed memory model

I/O
Memory

CPU

I/O
Memory

CPU

I/O
Memory

CPU

I/O
Memory

CPU

Chapter 1 5

Introduction
Parallel programming model

Support of message passing allows programs written under this
paradigm for distributed memory to be easily ported to HP servers.
Programs that require more per-process memory than possible using
shared-memory benefit from the manually-tuned message-passing style.

For more information about HP MPI, see the HP MPI User’s Guide and
the MPI Reference.

6 Chapter 1

Introduction
Overview of HP optimizations

Overview of HP optimizations
HP compilers perform a range of user-selectable optimizations. These
new and standard optimizations, specified using compiler command-line
options, are briefly introduced here. A more thorough discussion,
including the features associated with each, is provided in “Optimization
levels,” on page 25.

Basic scalar optimizations
Basic scalar optimizations improve performance at the basic block and
program unit level.

A basic block is a sequence of statements that has a single entry point
and a single exit. Branches do not exist within the body of a basic block.
A program unit is a subroutine, function, or main program in Fortran or
a function (including main) in C and C++. Program units are also
generically referred to as procedures. Basic blocks are contained within
program units. Optimizations at the program unit level span basic
blocks.

To improve performance, basic optimizations perform the following
activities:

• Exploit the processor’s functional units and registers

• Reduce the number of times memory is accessed

• Simplify expressions

• Eliminate redundant operations

• Replace variables with constants

• Replace slow operations with faster equivalents

Chapter 1 7

Introduction
Overview of HP optimizations

Advanced scalar optimizations
Advanced scalar optimizations are primarily intended to maximize data
cache usage. This is referred to as data localization. Concentrating on
loops, these optimizations strive to encache the data most frequently
used by the loop and keep it encached so as to avoid costly memory
accesses.

Advanced scalar optimizations include several loop transformations.
Many of these optimizations either facilitate more efficient strip mining
or are performed on strip-mined loops to optimize processor data cache
usage. All of these optimizations are covered in “Controlling
optimization,” on page 113.

Advanced scalar optimizations implicitly include all basic scalar
optimizations.

Parallelization
HP compilers automatically locate and exploit loop-level parallelism in
most programs. Using the techniques described in Chapter 9, “Parallel
programming techniques”, you can help the compilers find even more
parallelism in your programs.

Loops that have been data-localized are prime candidates for
parallelization. Individual iterations of loops that contain strips of
localizable data are parcelled out among several processors and run
simultaneously. For example, the maximum number of processors that
can be used is limited by the number of iterations of the loop and by
processor availability.

While most parallelization is done on nested, data-localized loops, other
code can also be parallelized. For example, through the use of manually
inserted compiler directives, sections of code outside of loops can also be
parallelized.

Parallelization optimizations implicitly include both basic and advanced
scalar optimizations.

8 Chapter 1

Introduction
Overview of HP optimizations

Chapter 2 9

2 Architecture overview

This chapter provides an overview of Hewlett-Packard’s shared memory
K-Class and V-Class architectures. The information in this chapter
focuses on this architecture as it relates to parallel programming.

This chapter describes architectural features of HP’s K-Class and
V-Class. For more information on the family of V-Class servers, see the
V-Class Architecture manual.

10 Chapter 2

Architecture overview
System architectures

System architectures
PA-RISC processors communicate with each other, with memory, and
with peripherals through various bus configuration. The difference
between the K-Class and V-Class servers are presented by the manner in
which they access memory. The K-Class maintains a bus-based
configuration, shown in Figure 3.

 Figure 3 K-Class bus configuration

On a V-Class, processors communicate with each other, memory, and
peripherals through a nonblocking crossbar. The V-Class implementation
is achieved through the Hyperplane Interconnect, shown in Figure 4.

The HP V2250 server has one to 16 PA-8200 processors and 256 Mbytes
to 16 Gbytes of physical memory. Two CPUs and a PCI bus share a single
CPU agent. The CPUs communicate with the rest of the machine
through the CPU agent. The Memory Access Controllers (MACs) provide
the interface between the memory banks and the rest of the machine.

CPUs communicate directly with their own instruction and data caches,
which are accessed by the processor in one clock (assuming a full
pipeline). V2250 servers use 2-Mbyte off-chip instruction caches and
data caches.

Processor 1 Processor n...

Memory

I/O
System

Processor-Memory Bus

Chapter 2 11

Architecture overview
System architectures

 Figure 4 V2250 Hyperplane Interconnect view

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

Hyperplane

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

Crossbar

PCI: PCI Bus Controller

Agent: CPU Agent
MAC: Memory Access Controller

12 Chapter 2

Architecture overview
System architectures

Data caches
HP systems use cache to enhance performance. Cache sizes, as well as
cache line sizes, vary with the processor used. Data is moved between the
cache and memory using cache lines. A cache line describes the size of a
chunk of contiguous data that must be copied into or out of a cache in one
operation.

When a processor experiences a cache miss—requests data that is not
already encached—the cache line containing the address of the requested
data is moved to the cache. This cache line also contains a number of
other data objects that were not specifically requested.

One reason cache lines are employed is to allow for data reuse. Data in a
cache line is subject to reuse if, while the line is encached, any of the data
elements contained in the line besides the originally requested element
are referenced by the program, or if the originally requested element is
referenced more than once.

Because data can only be moved to and from memory as part of a cache
line, both load and store operations cause their operands to be encached.
Cache-coherency hardware, as found on a V2250, invalidates cache lines
in other processors when they are stored to by a particular processor.
This indicates to other processors that they must load the cache line from
memory the next time they reference its data.

Data alignment
Aligning data addresses on cache line boundaries allows for efficient data
reuse in loops (refer to “Data reuse” on page 71). The linker
automatically aligns data objects larger than 32 bytes in size on
a 32-byte boundary. It also aligns data greater than a page size on a 64-
byte boundary.

Only the first item in a list of data objects appearing in any of these
statements is aligned on a cache line boundary. To make the most
efficient use of available memory, the total size, in bytes, of any array
appearing in one of these statements should be an integral multiple
of 32.

Sizing your arrays this way prevents data following the first array from
becoming misaligned. Scalar variables should be listed after arrays and
ordered from longest data type to shortest. For example, REAL*8 scalars
should precede REAL*4 scalars.

Chapter 2 13

Architecture overview
System architectures

You can align data on 64-byte boundaries by doing the following. These
apply only to parallel executables:

• Using Fortran ALLOCATE statements

• Using the C functions malloc or memory_class_malloc

NOTE Aliases can inhibit data alignment. Be careful when equivalencing arrays in
Fortran.

Cache thrashing
Cache thrashing occurs when two or more data items that are frequently
needed by the program both map to the same cache address. Each time
one of the items is encached, it overwrites another needed item, causing
cache misses and impairing data reuse. This section explains how
thrashing happens on the V-Class.

A type of thrashing known as false cache line sharing is discussed in the
section “False cache line sharing” on page 271.

 Example Cache thrashing

The following Fortran example provides an example of cache thrashing:

REAL*8 ORIG(131072), NEW(131072), DISP(131072)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.
DO I = 1, N
 NEW(I) = ORIG(I) + DISP(I)
ENDDO

In this example, the arrays ORIG and DISP overwrite each other in
a 2-Mbyte cache. Because the arrays are in a COMMON block, they are
allocated in contiguous memory in the order shown. Each array element
occupies 8 bytes, so each array occupies one Mbyte (8 × 131072= 1048576
bytes). Therefore, arrays ORIG and DISP are exactly 2-Mbytes apart in
memory, and all their elements have identical cache addresses. The
layout of the arrays in memory and in the data cache is shown in
Figure 5.

14 Chapter 2

Architecture overview
System architectures

 Figure 5 Array layouts—cache-thrashing

When the addition in the body of the loop executes, the current elements
of both ORIG and DISP must be fetched from memory into the cache.
Because these elements have identical cache addresses, whichever is
fetched last overwrites the first. Processor cache data is fetched 32 bytes
at a time.

To efficiently execute a loop such as this, the unused elements in the
fetched cache line (three extra REAL*8 elements are fetched in this case)
must remain encached until they are used in subsequent iterations of the
loop. Because ORIG and DISP thrash each other, this reuse is never
possible. Every cache line of ORIG that is fetched is overwritten by the
cache line of DISP that is subsequently fetched, and vice versa. The
cache line is overwritten on every iteration. Typically, in a loop like this,
it would not be overwritten until all of its elements were used.

Memory accesses take substantially longer than cache accesses, which
severely degrades performance. Even if the overwriting involved the NEW
array, which is stored rather than loaded on each iteration, thrashing
would occur, because stores overwrite entire cache lines the same way
loads do.

The problem is easily fixed by increasing the distance between the
arrays. You can accomplish this by either increasing the array sizes or
inserting a padding array.

ORIG

DISP

NEW

Memory

Processor data cache

ORIG,

NEW

DISP

Chapter 2 15

Architecture overview
System architectures

 Example Cache padding

The following Fortran example illustrates cache padding:

REAL*8 ORIG(131072), NEW(131072), P(4),DISP(131072)
COMMON /BLK1/ ORIG, NEW, P, DISP
.
.
.

In this example, the array P(4) moves DISP 32 bytes further from ORIG
in memory. No two elements of the same index share a cache address.
This postpones cache overwriting for the given loop until the entire
current cache line is completely exploited.

The alternate approach involves increasing the size of ORIG or NEW by 4
elements (32 bytes), as shown in the following example:

REAL*8 ORIG(131072), NEW(131080), DISP(131072)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.

Here, NEW has been increased by 4 elements, providing the padding
necessary to prevent ORIG from sharing cache addresses with DISP.
Figure 6 shows how both solutions prevent thrashing.

 Figure 6 Array layouts—non-thrashing

ORIG

DISP

NEW

Memory

Processor data cache

ORIG
DISP

pad NEW

16 Chapter 2

Architecture overview
System architectures

It is important to note that this is a highly simplified, worst-case
example.

Loop blocking optimization (described in “Loop blocking” on page 70)
eliminates thrashing from certain nested loops, but not from all loops.
Declaring arrays with dimensions that are not powers of two can help,
but it does not completely eliminate the problem.

Using COMMON blocks in Fortran can also help because it allows you to
accurately measure distances between data items, making thrashing
problems easier to spot before they happen.

Chapter 2 17

Architecture overview
Memory Systems

Memory Systems
HP’s K-Class and V-Class servers maintain a single level of memory
latency. Memory functions and interleaving work similarly on both
servers, as described in the following sections.

Physical memory
Multiple, independently accessible memory banks are available on both
the K-Class and V-Class servers. In 16-processor V2250 servers, for
example, each node consists of up to 32 memory banks. This memory is
typically partitioned (by the system administrator) into system-global,
and buffer cache. It is also interleaved as described in “Interleaving” on
page 18”. The K-Class architecture supports up to four memory banks.

System-global memory is accessible by all processors in a given system.
The buffer cache is a file system cache and is used to encache items that
have been read from disk and items that are to be written to disk.

Memory interleaving is used to improve performance. For an
explanation, see the section “Interleaving” on page 18.

Virtual memory
Each process running on a V-Class or K-Class server under
HP-UX accesses its own 16-Tbyte virtual address space. Almost all of
this space is available to hold program text, data, and the stack. The
space used by the operating system is negligible.

The memory stack size is configurable. Refer to the section “Setting
thread default stack size” on page 202 for more information.

Both servers share data among all threads unless a variable is declared
to be thread private. Memory class definitions describing data
disposition across hypernodes have been retained for the V-Class. This is
primarily for potential use when porting to multinode machines.

18 Chapter 2

Architecture overview
Memory Systems

thread_private

This memory is private to each thread of a process. A
thread_private data object has a unique virtual
address for each thread. These addresses map to
unique physical addresses in hypernode-local physical
memory.

node_private

This memory is shared among the threads of a process
running on a single node. Since the V-Class and
K-Class servers are single-node machines,
node_private actually serves as one common shared
memory class.

Memory classes are discussed more fully in “Memory classes,” on
page 223.

Processes cannot access each other’s virtual address spaces. This virtual
memory maps to the physical memory of the system on which the process
is running.

Interleaving
Physical pages are interleaved across the memory banks on a cache-line
basis. There are up to 32 banks in the V2250 servers; there are up to four
on a K-Class. Contiguous cache lines are assigned in round-robin
fashion, first to the even banks, then to the odd, as shown in Figure 7 for
V2250 servers.

Interleaving speeds memory accesses by allowing several processors to
access contiguous data simultaneously. It also eliminates busy bank and
board waits for unit stride accesses. This is beneficial when a loop that
manipulates arrays is split among many processors. In the best case,
threads access data in patterns with no bank contention. Even in the
worst case, in which each thread initially needs the same data from the
same bank, after the initial contention delay, the accesses are spread out
among the banks.

Chapter 2 19

Architecture overview
Memory Systems

 Figure 7 V2250 interleaving

Cache line
10

Cache line
1

Cache line
9

Cache line
16

Cache line Cache line
0 8

Cache line
2

Cache line Cache line
4 12

Cache line Cache line
6 14

Cache line
3 11

Cache line Cache line
5 13

Cache line Cache line
7 15

Cache line

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1

20 Chapter 2

Architecture overview
Memory Systems

 Example Interleaving

The following Fortran example illustrates a nested loop that accesses
memory with very little contention. This example is greatly simplified for
illustrative purposes, but the concepts apply to arrays of any size.

REAL*8 A(12,12), B(12,12)
...
DO J = 1, N
 DO I = 1, N
 A(I,J) = B(I,J)
 ENDDO
ENDDO

Assume that arrays A and B are stored contiguously in memory, with A
starting in bank 0, processor cache line 0 for V2250 servers, as shown in
Figure 8 on page 22.

You may assume that the HP Fortran 90 compiler parallelizes the J loop
to run on as many processors as are available in the system (up to N).
Assuming N=12 and there are four processors available when the
program is run, the J loop could be divided into four new loops, each with
3 iterations. Each new loop would run to completion on a separate
processor. These four processors are identified as CPU0 through CPU3.

NOTE This example is designed to simplify illustration. In reality, the dynamic
selection optimization (discussed in “Dynamic selection” on page 102)
would, given the iteration count and available number of processors
described, cause this loop to run serially. The overhead of going parallel
would outweigh the benefits.

In order to execute the body of the I loop, A and B must be fetched from
memory and encached. Each of the four processors running the J loop
attempt to simultaneously fetch its portion of the arrays.

This means CPU0 will attempt to read arrays A and B starting at
elements (1,1) , CPU1 will attempt to start at elements (1,4) and so
on.

Because of the number of memory banks in the V2250 architecture,
interleaving removes the contention from the beginning of the loop from
the example, as shown in Figure 8.

• CPU0 needs A(1:12,1:3) and B(1:12,1:3)

• CPU1 needs A(1:12,4:6) and B(1:12,4:6)

• CPU2 needs A(1:12,7:9) and B(1:12,7:9)

Chapter 2 21

Architecture overview
Memory Systems

• CPU3 needs A(1:12,10:12) and B(1:12,10:12)

The data from the V2250 example above is spread out on different
memory banks as described below:

• A(1,1) , the first element of the chunk needed by CPU0, is on cache
line 0 in bank 0 on board 0

• A(1,4) , the first element needed by CPU1, is on cache line 9 in bank
1 on board 1

• A(1,7) , the first element needed by CPU2, is on cache line 18 in
bank 2 on board 2

• A(1,10) the first element needed by CPU3, is on cache line 27 in
bank 3 on board 3

Because of interleaving, no contention exists between the processors
when trying to read their respective portions of the arrays. Contention
may surface occasionally as the processors make their way through the
data, but the resulting delays are minimal compared to what could be
expected without interleaving.

22 Chapter 2

Architecture overview
Memory Systems

 Figure 8 V2250 interleaving of arrays A and B

Cache line
0

Cache line
8

Cache line
16

Cache line
24

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Cache line
2

Cache line
10

Cache line
18

Cache line
26

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Cache line
4

Cache line
12

Cache line
20

Cache line
28

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Cache line
6

Cache line
14

Cache line
22

Cache line
30

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Cache line
1

Cache line
9

Cache line
17

Cache line
25

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1

Cache line
3

Cache line
11

Cache line
19

Cache line
27

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Cache line
5

Cache line
13

Cache line
21

Cache line
29

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Cache line
7

Cache line
15

Cache line
23

Cache line
31

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

A(1:4,1) A(9:12,3) A(5:8,6) A(1:4,9) A(5:8,1) A(1:4,4) A(9:12,6) A(5:8,9)

A(9:12,1) A(5:8,4) A(1:4,7) A(9:12,9) A(1:4,2) A(9:12,4) A(5:8,7) A(1:4,10)

A(1:4,3) A(9:12,5) A(5:8,8) A(1:4,11) A(5:8,3) A(1:4,6) A(9:12,8) A(5:8,11)

Cache line
56

Cache line
36

Cache line
54

Cache line
63

B(9:12,7)

B(1:4,1)

B(1:4,7) B(1:4,10)

A(5:8,2) A(1:4,5) A(9:12,7) A(5:8,10) A(9:12,2) A(5:8,5) A(1:4,8) A(9:12,10)

Chapter 2 23

Architecture overview
Memory Systems

Variable-sized pages on HP-UX
Variable-sized pages are used to reduce Translation Lookaside Buffer
(TLB) misses, improving performance. A TLB is a hardware entity used
to hold a virtual to physical address translation. With variable-sized
pages, each TLB entry used can map a larger portion of an application’s
virtual address space. Thus, applications with large data sets are
mapped using fewer TLB entries, resulting in fewer TLB misses.

Using a different page size does not help if an application is not
experiencing performance degradation due to TLB misses. Additionally,
if an application uses too large a page size, fewer pages are available to
other applications on the system. This potentially results in increased
paging activity and performance degradation.

Valid page sizes on the PA-8200 processors are 4K, 16K, 64K, 256K,
1 Mbyte, 4 Mbytes, 16 Mbytes, 64 Mbytes, and 256 Mbytes. The default
configurable page size is 4K. Methods for specifying a page size are
described below. Note that the user-specified page size only requests a
specific size. The operating system takes various factors into account
when selecting the page size.

Specifying a page size
The following chatr utility command options allow you to specify
information regarding page sizes.

• +pi affects the page size for the application’s text segment

• +pd affects the page size for the application’s data segment

The following configurable kernel parameters allow you to specify
information regarding page sizes.

• vps_pagesize represents the default or minimum page size (in
kilobytes) if the user has not used chatr to specify a value. The
default is 4Kbytes.

• vps_ceiling represents the maximum page size (in kilobytes) if the
user has not used chatr to specify a value. The default is 16Kbytes.

• vps_chatr_ceiling places a restriction on the largest value (in
kilobytes) a user can specify using chatr. The default is 64 Mbytes.

For more information on the chatr utility, see the chatr(1) man page.

24 Chapter 2

Architecture overview
Memory Systems

Chapter 3 25

Optimization levels

3 Optimization levels

This chapter discusses various optimization levels available with the HP
compilers. This contains a discussion of the following topics:

• HP optimization levels and features

• Using the Optimizer

The locations of the compilers discussed in this manual are provided in
Table 1.

Table 1 Locations of HP compilers

For detailed information about optimization command-line options, and
pragmas and directives, see “Controlling optimization,” on page 113.

Compiler Description Location

f90 Fortran 90 /opt/fortran90/bin/f90

cc ANSI C /opt/ansic/bin/c89

aC++ ANSI C++ /opt/aCC/bin/aCC

26 Chapter 3

Optimization levels
HP optimization levels and features

HP optimization levels and features
This section provides an overview of optimization features which can be
through either the command-line optimization options or manual
specification using pragmas or directives.

Five optimization levels are available for use with the HP compiler: +O0
(the default), +O1, +O2, +O3, and +O4. These options have identical
names and perform identical optimizations, regardless of which compiler
you are using. They can also be specified on the compiler command line
in conjunction with other options you may want to use. HP compiler
optimization levels are described in Table 2.

Table 2 Optimization levels and features

Optimization
Levels Features Benefits

+O0 (the default) Occurs at the machine-instruction
level
Constant folding
Data alignment on natural
boundaries
Partial evaluation of test conditions
Registers (simple allocation)

Compiles fastest.

+O1

includes all of
+O0

Occurs at the block level
Branch optimization
Dead code elimination
Instruction scheduler
Peephole optimizations
Registers (faster allocation)

Produces faster programs
than +O0, and compiles faster
than level +O2.

Chapter 3 27

Optimization levels
HP optimization levels and features

+O2 (-O)

 includes all of
+O0, +O1

Occurs at the routine level
Common subexpression elimination
Constant folding (advanced) and
propagation
Loop-invariant code motion
Loop unrolling
Registers (global allocation)
Register reassociation
Software pipelining
Store/copy optimization
Strength reduction of induction
variables and constants
Unused definition elimination

Can produce faster run-time
code than +O1 if loops are
used extensively.

Run-times for loop-oriented
floating-point intensive
applications may be reduced
up to 90 per cent.

Operating system and
interactive applications that
use the optimized system
libraries may achieve 30 per
cent to 50 per cent additional
improvement.

+O3

 includes all of
+O0,+O1,+O2

Occurs at the file level
Cloning within a single source file
Data localization
Automatic and directive-specified
loop parallelization
Directive-specified region
parallelization
Directive-specified task
parallelization

Can produce faster run-time
code than +O2 on code that
frequently calls small
functions, or if loops are
extensively used. Links faster
than +O4.

Optimization
Levels Features Benefits

28 Chapter 3

Optimization levels
HP optimization levels and features

Inlining within a single source file
Loop blocking
Loop distribution
Loop fusion
Loop interchange
Loop reordering - preventing
Loop unroll and jam
Parallelization
Parallelization, preventing
Reductions
Test promotion
All of the directives and pragmas of the HP
parallel programming model are
available in the Fortran 90 and
C compilers.
prefer_parallel requests
parallelization of the following loop
loop_parallel forces
parallelization on the last loop
parallel , end_parallel
parallelizes a single code region to run
on multiple threads.
begin_tasks, next_task,
end_tasks forces parallelization of
following code section

+O4
includes all of
+O0, +O1, +O2,
+O3
Not available in
Fortran 90

Occurs at the cross-module level and
performed at link time
Cloning across multiple source files
Global/static variable optimizations
Inlining across multiple source files

Produces faster run-time code
than when +O3 global
variables are used or when
procedure calls are inlined
across modules.

Optimization
Levels Features Benefits

Chapter 3 29

Optimization levels
HP optimization levels and features

Cumulative Options
The optimization options that control an optimization level are
cumulative so that each option retains the optimizations of the previous
option. For example, entering the following command line compiles the
Fortran program foo.f with all +O2, +O1, and +O0 optimizations shown in
Table 2:

% f90 +O2 foo.f

In addition to these options, the +Oparallel option is available for use
at +O3 and above; +Onoparallel is the default, When the +Oparallel
option is specified, the compiler:

• Looks for opportunities for parallel execution in loops

• Honors the parallelism-related directives and pragmas of the HP
parallel programming model.

The +Onoautopar (no automatic parallelization) option is available for
use with +Oparallel at +O3 and above. +Oautopar is the default.
+Onoautopar causes the compiler to parallelize only those loops that
are immediately preceded by loop_parallel or prefer_parallel
directives or pragmas. For more information, refer to “Parallel
programming techniques,” on page 175.

30 Chapter 3

Optimization levels
Using the Optimizer

Using the Optimizer
Before exploring the various optimizations that are performed, it is
important to review the coding guidelines used to assist the optimizer.
This section is broken down into the following subsections:

• General guidelines

• C and C++ guidelines

• Fortran guidelines

General guidelines

The coding guidelines presented in this section help the optimizer to
optimize your program, regardless of the language in which the program
is written.

• Use local variables to help the optimizer promote variables to
registers.

• Do not use local variables before they are initialized. When you
request +O2, +O3, or +O4 optimizations, the compiler tries to detect
and indicate violations of this rule. See “+O[no]initcheck ” on
page 123 for related information.

• Use constants instead of variables in arithmetic expressions such as
shift, multiplication, division, or remainder operations.

• Position the loop inside the procedure or use a directive to call the
loop in parallel, when a loop contains a procedure call.

• Construct loops so the induction variable increases or decreases
toward zero where possible. The code generated for a loop termination
test is more efficient with a test against zero than with a test against
some other value.

• Do not reference outside the bounds of an array. Fortran provides
the -C option to check whether your program references outside array
bounds.

• Do not pass an incorrect number of arguments to a function.

Chapter 3 31

Optimization levels
Using the Optimizer

C and C++ guidelines
The coding guidelines presented in this section help the optimizer to
optimize your C and C++ programs.

• Use do loops and for loops in place of while loops. do loops and for
loops are more efficient because opportunities for removing loop-
invariant code are greater.

• Use register variables where possible.

• Use unsigned variables rather than signed, when using short or
char variables or bit-fields. This is more efficient because a signed
variable causes an extra instruction to be generated.

• Pass and return pointers to large structs instead of passing and
returning large structs by value, where possible.

• Use type-checking tools like lint to help eliminate semantic errors.

• Use local variables for the upper bounds (stop values) of loops. Using
local variables may enable the compiler to optimize the loop.

During optimization, the compiler gathers information about the use of
variables and passes this information to the optimizer. The optimizer
uses this information to ensure that every code transformation
maintains the correctness of the program, at least to the extent that the
original unoptimized program is correct.

When gathering this information, the compiler assumes that while
inside a function, the only variables that are accessed indirectly through
a pointer or by another function call are:

• Global variables (all variables with file scope)

• Local variables that have had their addresses taken either explicitly
by the & operator, or implicitly by the automatic conversion of array
references to pointers.

32 Chapter 3

Optimization levels
Using the Optimizer

In general, the preceding assumption should not pose a problem.
Standard-compliant C and C++ programs do not violate this assumption.
However, if you have code that does violate this assumption, the
optimizer can change the behavior of the program in an undesirable way.
In particular, you should follow the coding practices to ensure correct
program execution for optimized code:

• Avoid using variables that are accessed by external processes. Unless
a variable is declared with the volatile attribute, the compiler
assumes that a program’s data is accessed only by that program.
Using the volatile attribute may significantly slow down a
program.

• Avoid accessing an array other than the one being subscripted. For
example, the construct a[b-a] , where a and b are the same type of
array, actually references the array b, because it is equivalent to
*(a+(b-a)) , which is equivalent to *b . Using this construct might
yield unexpected optimization results.

• Avoid referencing outside the bounds of the objects a pointer is
pointing to. All references of the form *(p+i) are assumed to remain
within the bounds of the variable or variables that p was assigned to
point to.

• Do not rely on the memory layout scheme when manipulating
pointers, as incorrect optimizations may result. For example, if p is
pointing to the first member of a structure, do not assume that p+1
points to the second member of the structure. Additionally, if p is
pointing to the first in a list of declared variables, p+1 is not
necessarily pointing to the second variable in the list.

For more information regarding coding guidelines, see “General
guidelines” on page 30.

Chapter 3 33

Optimization levels
Using the Optimizer

Fortran guidelines
The coding guidelines presented in this section help the optimizer to
optimize Fortran programs.

As part of the optimization process, the compiler gathers information
about the use of variables and passes this information to the optimizer.
The optimizer uses this information to ensure that every code
transformation maintains the correctness of the program, at least to the
extent that the original unoptimized program is correct.

When gathering this information, the compiler assumes that inside a
routine (either a function or a subroutine) the only variables that are
accessed (directly or indirectly) are:

• COMMON variables declared in the routine

• Local variables

• Parameters to this routine

Local variables include all static and nonstatic variables.

In general, you do not need to be concerned about the preceding
assumption. However, if you have code that violates it, the optimizer can
adversely affect the behavior of the program.

Avoid using variables that are accessed by a process other than the
program. The compiler assumes that the program is the only process
accessing its data. The only exception is the shared COMMON variable in
Fortran 90.

Also avoid using extensive equivalencing and memory-mapping schemes,
where possible.

See the section “General guidelines” on page 30 for additional guidelines.

34 Chapter 3

Optimization levels
Using the Optimizer

Chapter 4 35

Standard optimization features

4 Standard optimization features

This chapter discusses the standard optimization features available with
the HP-UX compilers, including those inherent in optimization levels
+O0 through +O2. This includes a discussion of the following topics:

• Constant folding

• Partial evaluation of test conditions

• Simple register assignment

• Data alignment on natural boundaries

• Branch optimization

• Dead code elimination

• Faster register allocation

• Instruction scheduling

• Peephole optimizations

• Advanced constant folding and propagation

• Common subexpression elimination

• Global register allocation (GRA)

• Loop-invariant code motion, and unrolling

• Register reassociation

• Software pipelining

• Strength reduction of induction variables and constants

• Store and copy optimization

• Unused definition elimination

For more information as to specific command-line options, pragmas and
directives for optimization, please see “Controlling optimization,” on
page 113.

36 Chapter 4

Standard optimization features
Machine instruction level optimizations (+O0)

Machine instruction level optimizations
(+O0)
At optimization level +O0, the compiler performs optimizations that span
only a single source statement. This is the default. The +O0 machine
instruction level optimizations include:

• Constant folding

• Partial evaluation of test conditions

• Simple register assignment

• Data alignment on natural boundaries

Constant folding
Constant folding is the replacement of operations on constants with the
result of the operation. For example, Y=5+7 is replaced with Y=12.

More advanced constant folding is performed at optimization level +O2.
See the section “Advanced constant folding and propagation” on page 42
for more information.

Partial evaluation of test conditions
Where possible, the compiler determines the truth value of a logical
expression without evaluating all the operands. This is known as short-
circuiting. The Fortran example below describes this:

IF ((I .EQ. J) .OR. (I .EQ. K)) GOTO 100

If (I .EQ. J) is true, control immediately goes to 100 ; otherwise,
(I .EQ. K) must be evaluated before control can go to 100 or the
following statement.

Do not rely upon partial evaluation if you use function calls in the logical
expression because:

• There is no guarantee on the order of evaluation.

• A procedure or function call can have side effects on variable values
that may or may not be partially evaluated correctly.

Chapter 4 37

Standard optimization features
Machine instruction level optimizations (+O0)

Simple register assignment
The compiler may place frequently used variables in registers to avoid
more costly accesses to memory.

A more advanced register assignment algorithm is used at optimization
level +O2. See the section “Global register allocation (GRA)” on page 43
for more information.

Data alignment on natural boundaries
The compiler automatically aligns data objects to their natural
boundaries in memory, providing more efficient access to data. This
means that a data object’s address is integrally divisible by the length of
its data type; for example, REAL*8 objects have addresses integrally
divisible by 8 bytes.

NOTE Aliases can inhibit data alignment. Be especially careful when equivalencing
arrays in Fortran.

Declare scalar variables in order from longest to shortest data length to
ensure the efficient layout of such aligned data in memory. This
minimizes the amount of padding the compiler has to do to get the data
onto its natural boundary.

 Example Data alignment on natural boundaries

The following Fortran example describes the alignment of data objects to
their natural boundaries:

C CAUTION: POORLY ORDERED DATA FOLLOWS:
LOGICAL*2 BOOL
INTEGER*8 A, B
REAL*4 C
REAL*8 D

Here, the compiler must insert 6 unused bytes after BOOL in order to
correctly align A, and it must insert 4 unused bytes after C to correctly
align D.

38 Chapter 4

Standard optimization features
Machine instruction level optimizations (+O0)

The same data is more efficiently ordered as shown in the following
example:

C PROPERLY ORDERED DATA FOLLOWS:
 INTEGER*8 A, B
 REAL*8 D
 REAL*4 C
 LOGICAL*2 BOOL

Natural boundary alignment is performed on all data. This is not to be
confused with cache line boundary alignment.

Chapter 4 39

Standard optimization features
Block level optimizations (+O1)

Block level optimizations (+O1)
At optimization level +O1, the compiler performs optimizations on a
block level. The compiler continues to run the +O0 optimizations, with
the following additions:

• Branch optimization

• Dead code elimination

• Faster register allocation

• Instruction scheduling

• Peephole optimizations

Branch optimization
Branch optimization involves traversing the procedure and transforming
branch instruction sequences into more efficient sequences where
possible. Examples of possible transformations are:

• Deleting branches whose target is the fall-through instruction (the
target is two instructions away)

• Changing the target of the first branch to be the target of the second
(unconditional) branch when the target of a branch is an
unconditional branch

• Transforming an unconditional branch at the bottom of a loop that
branches to a conditional branch at the top of the loop into a
conditional branch at the bottom of the loop

• Changing an unconditional branch to the exit of a procedure into an
exit sequence where possible

• Changing conditional or unconditional branch instructions that
branch over a single instruction into a conditional nullification in the
following instruction

• Looking for conditional branches over unconditional branches, where
the sense of the first branch could be inverted and the second branch
deleted. These result from null THEN clauses and from THEN clauses
that only contain GOTO statements.

40 Chapter 4

Standard optimization features
Block level optimizations (+O1)

 Example Conditional/unconditional branches

The following Fortran example provides a transformation from a branch
instruction to a more efficient sequence:

 IF (L) THEN
 A=A*2
 ELSE
 GOTO 100
 ENDIF
 B=A+1
100 C=A*10

becomes:

 IF (.NOT. L) GOTO 100
 A=A*2
 B=A+1
100 C=A*10

Dead code elimination
Dead code elimination removes unreachable code that is never executed.

For example, in C:

if(0)
 a = 1;
else
 a = 2;

becomes:

 a = 2;

Faster register allocation
Faster register allocation involves:

• Inserting entry and exit code

• Generating code for operations such as multiplication and division

• Eliminating unnecessary copy instructions

• Allocating actual registers to the dummy registers in instructions

Faster register allocation, when used at +O0 or +O1, analyzes register
use faster than the global register allocation performed at +O2.

Chapter 4 41

Standard optimization features
Block level optimizations (+O1)

Instruction scheduling
The instruction scheduler optimization performs the following tasks:

• Reorders the instructions in a basic block to improve memory
pipelining. For example, where possible, a load instruction is
separated from the use of the loaded register.

• Follows a branch instruction with an instruction that is executed as
the branch occurs, where possible.

• Schedules floating-point instructions.

Peephole optimizations
A peephole optimization is a machine-dependent optimization that
makes a pass through low-level assembly-like instruction sequences of
the program. It applies patterns to a small window (peephole) of code
looking for optimization opportunities. It performs the following
optimizations:

• Changes the addressing mode of instructions so they use shorter
sequences

• Replaces low-level assembly-like instruction sequences with faster
(usually shorter) sequences and removes redundant register loads
and stores

42 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

Routine level optimizations (+O2)
At optimization level +O2, the compiler performs optimizations on a
routine level. The compiler continues to perform the optimizations
performed at +O1, with the following additions:

• Advanced constant folding and propagation

• Common subexpression elimination

• Global register allocation (GRA)

• Loop-invariant code motion

• Loop unrolling

• Register reassociation

• Software pipelining

• Strength reduction of induction variables and constants

• Store and copy optimization

• Unused definition elimination

Advanced constant folding and propagation
Constant folding computes the value of a constant expression at compile
time. Constant propagation is the automatic compile-time replacement of
variable references with a constant value previously assigned to that
variable.

 Example Advanced constant folding and propagation

The following C/C++ code example describes an advanced constant
folding and propagation:

a = 10;
b = a + 5;
c = 4 * b;

Once a is assigned, its value is propagated to the statement where b is
assigned so that the assignment reads:

b = 10 + 5;

Chapter 4 43

Standard optimization features
Routine level optimizations (+O2)

The expression 10 + 5 can then be folded. Now that b has been assigned
a constant, the value of b is propagated to the statement where c is
assigned. After all the folding and propagation, the original code is
replaced by:

a = 10;
b = 15;
c = 60;

Common subexpression elimination
Common subexpression elimination optimization identifies expressions
that appear more than once and have the same result. It then computes
the result and substitutes the result for each occurrence of the
expression. Subexpression types include instructions that load values
from memory, as well as arithmetic evaluation.

 Example Common subexpression elimination

In Fortran, for example, the code first looks like this:

A = X + Y + Z
B = X + Y + W

After this form of optimization, it becomes:

T1 = X + Y
A = T1 + Z
B = T1 + W

Global register allocation (GRA)
Scalar variables can often be stored in registers, eliminating the need for
costly memory accesses. Global register allocation (GRA) attempts to
store commonly referenced scalar variables in registers throughout the
code in which they are most frequently accessed.

The compiler automatically determines which scalar variables are the
best candidates for GRA and allocates registers accordingly.

GRA can sometimes cause problems when parallel threads attempt to
update a shared variable that has been allocated a register. In this case,
each parallel thread allocates a register for the shared variable; it is then
unlikely that the copy in memory is updated correctly as each thread
executes.

44 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

Parallel assignments to the same shared variables from multiple threads
make sense only if the assignments are contained inside critical or
ordered sections, or are executed conditionally based on the thread ID.
GRA does not allocate registers for shared variables that are assigned
within critical or ordered sections, as long as the sections are
implemented using compiler directives or sync_routine -defined
functions (refer to Chapter 12, “Parallel synchronization” for a discussion
of sync_routine). However, for conditional assignments based on the
thread ID, GRA may allocate registers that may cause wrong answers
when stored.

In such cases, GRA is disabled only for shared variables that are visible
to multiple threads by specifying +Onosharedgra . A description of this
option is located in “+O[no]sharedgra” on page 138.

In procedures with large numbers of loops, GRA can contribute to long
compile times. Therefore, GRA is only performed if the number of loops
in the procedure is below a predetermined limit. You can remove this
limit (and possibly increase compile time) by specifying +O[no]limit . A
description of this option is located in “+O[no]limit” on page 126.

This optimization is also known as coloring register allocation because of
the similarity to map-coloring algorithms in graph theory.

Register allocation in C and C++
In C and C++, you can help the optimizer understand when certain
variables are heavily used within a function by declaring these variables
with the register qualifier.

GRA may override your choices and promote a variable not declared
register to a register over a variable that is declared register , based
on estimated speed improvements.

Chapter 4 45

Standard optimization features
Routine level optimizations (+O2)

Loop-invariant code motion
The loop-invariant code motion optimization recognizes instructions
inside a loop whose results do not change and then moves the
instructions outside the loop. This optimization ensures that the
invariant code is only executed once.

 Example Loop-invariant code motion

This example begins with following C/C++ code:

x = z;
for(i=0; i<10; i++)
 a[i] = 4 * x + i;

After loop-invariant code motion, it becomes:

x = z;
t1 = 4 * x;
for(i=0; i<10; i++)
 a[i] = t1 + i;

Loop unrolling
Loop unrolling increases a loop’s step value and replicates the loop body.
Each replication is appropriately offset from the induction variable so
that all iterations are performed, given the new step.

Unrolling is total or partial. Total unrolling involves eliminating the loop
structure completely by replicating the loop body a number of times
equal to the iteration count and replacing the iteration variable with
constants. This makes sense only for loops with small iteration counts.

Loop unrolling and the unroll factor are controlled using the
+O[no]loop_unroll[=unroll factor] . This option is described on
page 127.

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit compiler options.

 Example Loop unrolling

Consider the following Fortran example:

SUBROUTINE FOO(A,B)
REAL A(10,10), B(10,10)
DO J=1, 4

46 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

 DO I=1, 4
 A(I,J) = B(I,J)
 ENDDO
ENDDO
END

The loop nest is completely unrolled as shown below:

A(1,1) = B(1,1)
A(2,1) = B(2,1)
A(3,1) = B(3,1)
A(4,1) = B(4,1)

A(1,2) = B(1,2)
A(2,2) = B(2,2)
A(3,2) = B(3,2)
A(4,2) = B(4,2)

A(1,3) = B(1,3)
A(2,3) = B(2,3)
A(3,3) = B(3,3)
A(4,3) = B(4,3)

A(1,4) = B(1,4)
A(2,4) = B(2,4)
A(3,4) = B(3,4)
A(4,4) = B(4,4)

Partial unrolling is performed on loops with larger or unknown iteration
counts. This form of unrolling retains the loop structure, but replicates
the body a number of times equal to the unroll factor and adjusts
references to the iteration variable accordingly.

 Example Loop unrolling

This example begins with the following Fortran example:

DO I = 1, 100
 A(I) = B(I) + C(I)
ENDDO

It is unrolled to a depth of four as shown below:

DO I = 1, 100, 4
 A(I) = B(I) + C(I)
 A(I+1) = B(I+1) + C(I+1)
 A(I+2) = B(I+2) + C(I+2)
 A(I+3) = B(I+3) + C(I+3)
ENDDO

Each iteration of the loop now computes four values of A instead of one
value. The compiler also generates ‘clean-up’ code for the case where the
range is not evenly divisible by the unroll factor.

Chapter 4 47

Standard optimization features
Routine level optimizations (+O2)

Register reassociation
Array references often require one or more instructions to compute the
virtual memory address of the array element specified by the subscript
expression. The register reassociation optimization implemented in
PA-RISC compilers tries to reduce the cost of computing the virtual
memory address expression for array references found in loops.

Within loops, the virtual memory address expression is rearranged and
separated into a loop-variant term and a loop-invariant term.

• Loop-variant terms are those items whose values may change from
one iteration of the loop to another.

• Loop-invariant terms are those items whose values are constant
throughout all iterations of the loop. The loop-variant term
corresponds to the difference in the virtual memory address
associated with a particular array reference from one iteration of the
loop to the next.

The register reassociation optimization dedicates a register to track the
value of the virtual memory address expression for one or more array
references in a loop and updates the register appropriately in each
iteration of a loop.

The register is initialized outside the loop to the loop-invariant portion of
the virtual memory address expression. The register is incremented or
decremented within the loop by the loop-variant portion of the virtual
memory address expression. The net result is that array references in
loops are converted into equivalent, but more efficient, pointer
dereferences.

Register reassociation can often enable another loop optimization. After
performing the register reassociation optimization, the loop variable may
be needed only to control the iteration count of the loop. If this is the
case, the original loop variable is eliminated altogether by using the PA-
RISC ADDIB and ADDB machine instructions to control the loop iteration
count.

You can enable or disable register reassociation using the
+O[no]regreassoc command-line option at +O2 and above. The default
is +Oregreassoc . See “+O[no]regreassoc ” on page 136 for more
information.

48 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

 Example Register allocation

This example begins with the following C/C++ code:

int a[10][20][30];

void example (void)
{
 int i, j, k;

 for (k = 0; k < 10; k++)
 for (j = 0; j < 10;j++)
 for (i = 0; i < 10; i++)
 a[i][j][k] = 1;
}

After register reassociation is applied, the innermost loop becomes:

int a[10][20][30];

void example (void)
{
 int i, j, k;
 register int (*p)[20][30];

 for (k = 0; k < 10; k++)
 for (j = 0; j < 10; j++)
 for (p = (int (*)[20][30]) &a[0][j][k], i = 0; i < 10;
i++)
 *(p++[0][0]) = 1;
}

As you can see, the compiler-generated temporary register variable, p,
strides through the array a in the innermost loop. This register pointer
variable is initialized outside the innermost loop and auto-incremented
within the innermost loop as a side-effect of the pointer dereference.

Chapter 4 49

Standard optimization features
Routine level optimizations (+O2)

Software pipelining
Software pipelining transforms code in order to optimize program loops.
It achieves this by rearranging the order in which instructions are
executed in a loop. Software pipelining generates code that overlaps
operations from different loop iterations. It is particularly useful for
loops that contain arithmetic operations on REAL*4 and REAL*8 data in
Fortran or on float and double data in C or C++.

The goal of this optimization is to avoid processor stalls due to memory
or hardware pipeline latencies. The software pipelining transformation
partially unrolls a loop and adds code before and after the loop to achieve
a high degree of optimization within the loop.

You can enable or disable software pipelining using the
+O[no]pipeline command-line option at +O2 and above. The default is
+Opipeline . Use +Onopipeline if a smaller program size and faster
compile time are more important than faster execution speed. See
“+O[no]pipeline ” on page 130 for more information.

Prerequisites of pipelining
Software pipelining is attempted on a loop that meets the following
criteria:

• It is the innermost loop

• There are no branches or function calls within the loop

• The loop is of moderate size

This optimization produces slightly larger program files and increases
compile time. It is most beneficial in programs containing loops that are
executed many times.

 Example Software pipelining

The following C/C++ example shows a loop before and after the software
pipelining optimization:

#define SIZ 10000
float x[SIZ], y[SIZ];
int i;
init();
for (i = 0;i<= SIZ;i++)
 x[i] = x[i] / y[i] + 4.00;

50 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

Four significant things happen in this example:

• A portion of the first iteration of the loop is performed before the loop.

• A portion of the last iteration of the loop is performed after the loop.

• The loop is unrolled twice.

• Operations from different loop iterations are interleaved with
each other.

When this loop is compiled with software pipelining, the optimization is
expressed as follows:

R1 = 0; Initialize array index

R2 = 4.00; Load constant value

R3 = X[0]; Load first X value

R4 = Y[0]; Load first Y value

R5 = R3 / R4; Perform division on first element: n =
X[0]/Y[0]

do { Begin loop

R6 = R1; Save current array index

R1++; Increment array index

R7 = X[R1]; Load current X value

R8 = Y[R1]; Load current Y value

R9 = R5 + R2; Perform addition on prior row: X[i] =
n + 4.00

R10 = R7 / R8; Perform division on current row: m =
X[i+1]/Y[i+1]

X[R6] = R9; Save result of operations on prior row

R6 = R1; Save current array index

R1++; Increment array index

R3 = X[R1]; Load next X value

R4 = Y[R1]; Load next Y value

Chapter 4 51

Standard optimization features
Routine level optimizations (+O2)

This transformation stores intermediate results of the division
instructions in unique registers (noted as n and m). These registers are
not referenced until several instructions after the division operations.
This decreases the possibility that the long latency period of the division
instructions will stall the instruction pipeline and cause processing
delays.

Strength reduction of induction variables
and constants
This optimization removes expressions that are linear functions of a loop
counter and replaces each of them with a variable that contains the
value of the function. Variables of the same linear function are computed
only once. This optimization also replaces multiplication instructions
with addition instructions wherever possible.

 Example Strength reduction of induction variables and constants

This example begins with the following C/C++ code:

for (i=0; i<25; i++) {
 r[i] = i * k;
}

After this optimization, it looks like this:

t1 = 0;
for (i=0; i<25; i++) {
 r[i] = t1;
 t1 += k;
}

R11 = R10 + R2; Perform addition on current row:
X[i+1] = m + 4.00

R5 = R3 / R4; Perform division on next row: n =
X[i+2]/Y[i+2]

X[R6] = R11 ; Save result of operations on current row

} while (R1 <= 100); End loop

R9 = R5 + R2; Perform addition on last row: X[i+2] =
n + 4.00

X[R6] = R9; Save result of operations on last row

52 Chapter 4

Standard optimization features
Routine level optimizations (+O2)

Store and copy optimization
Where possible, the store and copy optimization substitutes registers for
memory locations, by replacing store instructions with copy instructions
and deleting load instructions.

Unused definition elimination
The unused definition elimination optimization removes unused memory
location and register definitions. These definitions are often a result of
transformations made by other optimizations.

 Example Unused definition elimination

This example begins with the following C/C++ code:

f(int x){
 int a,b,c;

 a = 1;
 b = 2;
 c = x * b;
 return c;
}

After unused definition elimination, it looks like this:

f(int x) {
 int a,b,c;

 c = x * 2;
 return c;
}

The assignment a = 1 is removed because a is not used after it is
defined. Due to another +O2 optimization (constant propagation), the
c = x * b statement becomes c = x * 2 . The assignment b = 2 is
then removed as well.

Chapter 5 53

Loop and cross-module optimization features

5 Loop and cross-module
optimization features

This chapter discusses loop optimization features available with the
HP-UX compilers, including those inherent in optimization level +O3.
This includes a discussion of the following topics:

• Strip mining

• Inlining within a single source file

• Cloning within a single source file

• Data localization

• Loop blocking

• Loop distribution

• Loop fusion

• Loop interchange

• Loop unroll and jam

• Preventing loop reordering

• Test promotion

• Cross-module cloning

For more information as to specific loop optimization command-line
options, as well as related pragmas and directives for optimization,
please see “ “Controlling optimization,” on page 113.

54 Chapter 5

Loop and cross-module optimization features
Strip mining

Strip mining
Strip mining is a fundamental +O3 transformation. Used by itself,
strip mining is not profitable. However, it is used by loop blocking,
loop unroll and jam, and, in a sense, by parallelization.

Strip mining involves splitting a single loop into a nested loop. The
resulting inner loop iterates over a section or strip of the original loop,
and the new outer loop runs the inner loop enough times to cover all the
strips, achieving the necessary total number of iterations. The number of
iterations of the inner loop is known as the loop’s strip length.

 Example Strip mining

This example begins with the Fortran code below:

DO I = 1, 10000
 A(I) = A(I) * B(I)
ENDDO

Strip mining this loop using a strip length of 1000 yields the following
loop nest:

DO IOUTER = 1, 10000, 1000
 DO ISTRIP = IOUTER, IOUTER+999
 A(ISTRIP) = A(ISTRIP) * B(ISTRIP)
 ENDDO
ENDDO

In this loop, the strip length integrally divides the number of iterations,
so the loop is evenly split up. If the iteration count was not an integral
multiple of the strip length—if I went from 1 to 10500 rather than 1 to
10000, for example—the final iteration of the strip loop would execute
500 iterations instead of 1000.

Chapter 5 55

Loop and cross-module optimization features
Inlining within a single source file

Inlining within a single source file
Inlining substitutes selected function calls with copies of the function’s
object code. Only functions that meet the optimizer’s criteria are inlined.
Inlining may result in slightly larger executable files. However, this
increase in size is offset by the elimination of time-consuming procedure
calls and procedure returns.

At +O3, inlining is performed within a file; at +O4, it is performed across
files. Inlining is affected by the +O[no]inline[= namelist] and
+Oinline_budget= n command-line options. See “Controlling
optimization,” on page 113 for more information.

 Example Inlining within single source file

The following is an example of inlining at the source code level. Before
inlining, the C source file looks like this:

/* Return the greatest common divisor of two positive integers,*/
/* int1 and int2, computed using Euclid's algorithm. (Return 0 */
/* if either is not positive.) */

int gcd(int int1,int int2)
{
 int inttemp;

 if ((int1 <= 0) || (int2 <= 0)) {
 return(0);
 }
 do {
 if (int1 < int2) {
 inttemp = int1;
 int1 = int2;
 int2 = inttemp;
 }
 int1 = int1 - int2;
 } while (int1 > 0);
 return(int2);
}

main()
{
 int xval,yval,gcdxy;
 .
 . /* statements before call to gcd */
 .
 gcdxy = gcd(xval,yval);
 .
 . /* statements after call to gcd */
 .
}

56 Chapter 5

Loop and cross-module optimization features
Inlining within a single source file

After inlining, main looks like this:

main()
{
 int xval,yval,gcdxy;
 .
 . /* statements before inlined version of gcd */
 .
 {
 int int1;
 int int2;

 int1 = xval;
 int2 = yval;
 {
 int inttemp;

 if ((int1 <= 0) || (int2 <= 0)){
 gcdxy = (0);
 goto AA003;
 }
 do {
 if (int1 < int2){
 inttemp = int1;
 int1 = int2;
 int2 = inttemp;
 }
 int1 = int1 - int2;
 } while (int1 > 0);
 gcdxy = (int2);
 }
 }
AA003 : ;
 .
 . /* statements after inlined version of gcd */
 .
}

Chapter 5 57

Loop and cross-module optimization features
Cloning within a single source file

Cloning within a single source file
Cloning replaces a call to a routine by calling a clone of that routine. The
clone is optimized differently than the original routine.

Cloning can expose additional opportunities for interprocedural
optimization. At +O3, cloning is performed within a file, and at +O4,
cloning is performed across files. Cloning is enabled by default, and is
disabled by specifying the +Onoinline command-line option.

58 Chapter 5

Loop and cross-module optimization features
Data localization

Data localization
Data localization occurs as a result of various loop transformations that
occur at optimization levels +O2 or +O3. Because optimizations are
cumulative, specifying +O3 or +O4 takes advantage of the
transformations that happen at +O2.

Table 3 Loop transformations affecting data localization

Data localization keeps frequently used data in the processor data cache,
eliminating the need for more costly memory accesses.

Loops that manipulate arrays are the main candidates for localization
optimizations. Most of these loops are eligible for the various
transformations that the compiler performs at +O3. These
transformations are explained in detail in this section.

Loop
transformation Options required for behavior to occur

Loop unrolling +O2 +Oloop_unroll
(+Oloop_unroll is on by default at +O2 and above)

Loop distribution +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop interchange +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop blocking +O3 +Oloop_transform +Oloop_block
(+Oloop_transform is on by default at +O3 and above)
(+Oloop_block is off by default)

Loop fusion +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop unroll and
jam

+O3 +Oloop_transform +Oloop_unroll_jam
(+Oloop_transform is on by default at +O3 and above)
(+Oloop_unroll_jam is off by default at +O3 and above)

Chapter 5 59

Loop and cross-module optimization features
Data localization

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit compiler options.

NOTE Most of the following code examples demonstrate optimization by showing
the original code first and optimized code second. The optimized code is
shown in the same language as the original code for illustrative purposes
only.

Conditions that inhibit data localization
Any of the following conditions can inhibit or prevent data localization:

• Loop-carried dependences (LCDs)

• Other loop fusion dependences

• Aliasing

• Computed or assigned GOTO statements in Fortran

• return or exit statements in C or C++

• throw statements in C++

• Procedure calls

The following sections discuss these conditions and their effects on data
localization.

Loop-carried dependences (LCDs)
A loop-carried dependence (LCD) exists when one iteration of a loop
assigns a value to an address that is referenced or assigned on another
iteration. In some cases, LCDs can inhibit loop interchange, thereby
inhibiting localization. Typically, these cases involve array indexes that
are offset in opposite directions.

60 Chapter 5

Loop and cross-module optimization features
Data localization

To ignore LCDs, use the no_loop_dependence directive or pragma.
The form of this directive and pragma is shown in Table 4.

NOTE This directive and pragmas should only be used if you are certain that there
are no loop dependences. Otherwise, errors will result.

Table 4 Form of no_loop_dependence directive and pragma

where

namelist is a comma-separated list of variables or arrays that
have no dependences for the immediately following
loop.

 Example Loop-carried dependences

The Fortran loop below contains an LCD that inhibits interchange:

DO I = 2, M
 DO J = 2, N
 A(I,J) = A(I-1,J-1) + A(I-1,J+1)
 ENDDO
ENDDO

C and C++ loops can contain similar constructs, but to simplify
illustration, only the Fortran example is discussed here.

As written, this loop uses A(I-1,J-1) and A(I-1,J+1) to compute
A(I,J) . Table 5 shows the sequence in which values of A are computed
for this loop.

Language Form

Fortran C$DIR NO_LOOP_DEPENDENCE(namelist)

C #pragma _CNX no_loop_dependence(namelist)

Chapter 5 61

Loop and cross-module optimization features
Data localization

Table 5 Computation sequence of A(I,J) : original loop

As shown in Table 5, the original loop computes the elements of the
current row of A using the elements of the previous row of A. For all rows
except the first (which is never written), the values contained in the
previous row must be written before the current row is computed. This
dependence must be honored for the loop to yield its intended results. If a
row element of A is computed before the previous row elements are
computed, the result is incorrect.

Interchanging the I and J loops yields the following code:

DO J = 2, N
 DO I = 2, M
 A(I,J) = A(I-1,J+1) + A(I-1,J-1)
 ENDDO
ENDDO

After interchange, the loop computes values of A in the sequence shown
in Table 6.

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

2 3 A(2,3) A(1,2) A(1,4)

2 4 A(2,4) A(1,3) A(1,5)

...

3 2 A(3,2) A(2,1) A(2,3)

3 3 A(3,3) A(2,2) A(2,4)

3 4 A(3,4) A(2,3) A(2,5)

...

62 Chapter 5

Loop and cross-module optimization features
Data localization

Table 6 Computation sequence of A(I,J) : interchanged loop

Here, the elements of the current column of A are computed using the
elements of the previous column and the next column of A.

The problem here is that columns of A are being computed using
elements from the next column, which have not been written yet. This
computation violates the dependence illustrated in Table 5.

The element-to-element dependences in both the original and
interchanged loop are illustrated in Figure 9.

 Figure 9 LCDs in original and interchanged loops

The arrows in Figure 9 represent dependences from one element to
another, pointing at elements that depend on the elements at the arrows’
bases. Shaded elements indicate a typical row or column computed in the
inner loop:

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

3 2 A(3,2) A(2,1) A(2,3)

4 2 A(4,2) A(3,1) A(3,3)

...

2 3 A(2,3) A(1,2) A(1,4)

3 3 A(3,3) A(2,2) A(2,4)

4 3 A(4,3) A(3,2) A(3,4)

...

1 2 3 ...

1

2

3

..
.

I

J
1 2 3 ...

1

2

3

..
.

I

J

Original loop Interchanged loop

Chapter 5 63

Loop and cross-module optimization features
Data localization

• Darkly shaded elements have already been computed.

• Lightly shaded elements have not yet been computed.

This figure helps to illustrate the sequence in which the array elements
are cycled through by the respective loops: the original loop cycles across
all the columns in a row, then moves on to the next row. The
interchanged loop cycles down all the rows in a column first, then moves
on to the next column.

 Example Avoid loop interchange

Interchange is inhibited only by loops that contain dependences that
change when the loop is interchanged. Most LCDs do not fall into this
category and thus do not inhibit loop interchange.

Occasionally, the compiler encounters an apparent LCD. If it cannot
determine whether the LCD actually inhibits interchange, it
conservatively avoids interchanging the loop.

The following Fortran example illustrates this situation:

DO I = 1, N
 DO J = 2, M
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
ENDDO

In these examples, if IADD and JADD are either both positive or both
negative, the loop contains no interchange-inhibiting dependence.
However, if one and only one of the variables is negative, interchange is
inhibited. The compiler has no way of knowing the runtime values of
IADD and JADD, so it avoids interchanging the loop.

If you are positive that the IADD and JADD are both negative or both
positive, you can tell the compiler that the loop is free of dependences
using the no_loop_dependence directive or pragma, described in this
chapter Table 4 on page 60.

The previous Fortran loop is interchanged when the
NO_LOOP_DEPENDENCE directive is specified for A on the J loop as shown
in the following code:

 DO I = 1, N
C$DIR NO_LOOP_DEPENDENCE(A)
 DO J = 2, M
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
 ENDDO

64 Chapter 5

Loop and cross-module optimization features
Data localization

If IADD and JADD acquire opposite-signed values at runtime, these loops
may result in incorrect answers.

Other loop fusion dependences
In some cases, loop fusion is also inhibited by simpler dependences than
those that inhibit interchange. Consider the following Fortran example:

DO I = 1, N-1
 A(I) = B(I+1) + C(I)
ENDDO
DO J = 1, N-1
 D(J) = A(J+1) + E(J)
ENDDO

While it might appear that loop fusion would benefit the preceding
example, it would actually yield the following incorrect code:

DO ITEMP = 1, N-1
 A(ITEMP) = B(ITEMP+1) + C(ITEMP)
 D(ITEMP) = A(ITEMP+1) + E(ITEMP)
ENDDO

This loop produces different answers than the original loops, because the
reference to A(ITEMP+1) in the fused loop accesses a value that has not
been assigned yet, while the analogous reference to A(J+1) in the
original J loop accesses a value that was assigned in the original I loop.

Aliasing
An alias is an alternate name for an object. Aliasing occurs in a program
when two or more names are attached to the same memory location.
Aliasing is typically caused in Fortran by use of the EQUIVALENCE
statement. The use of pointers normally causes the problem in C and
C++. Passing identical actual arguments into different dummy
arguments in a Fortran subprogram can also cause aliasing, as can
passing the same address into different pointer arguments in a C or C++
function.

 Example Aliasing

Aliasing interferes with data localization because it can mask LCDs
where arrays A and B have been equivalenced. This is shown in the
following Fortran example:

INTEGER A(100,100), B(100,100), C(100,100)
EQUIVALENCE(A,B)
.
.
.

Chapter 5 65

Loop and cross-module optimization features
Data localization

DO I = 1, N
 DO J = 2, M
 A(I,J) = B(I-1,J+1) + C(I,J)
 ENDDO
ENDDO

This loop has the same problem as the loop used to demonstrate LCDs in
the previous section; because A and B refer to the same array, the loop
contains an LCD on A, which prevents interchange and thus interferes
with localization.

The C and C++ equivalent of this loop follows. Keep in mind that C and
C++ store arrays in row-major order, which requires different
subscripting to access the same elements.

int a[100][100], c[100][100], i, j;
int (*b)[100];
b = a;
.
.
.
for(i=1;i<n;i++){
 for(j=0;j<m;j++){
 a[j][i] = b[j+1][i-1] + c[j][i];
 }
}

Fortran’s EQUIVALENCE statement is imitated in C and C++; through the
use of pointers, arrays are effectively equivalenced, as shown.

Passing the same address into different dummy procedure arguments
can yield the same result. Fortran passes arguments by reference while
C and C++ pass them by value. However, pass-by-reference is simulated
in C and C++ by passing the argument’s address into a pointer in the
receiving procedure or in C++ by using references.

 Example Aliasing

The following Fortran code exhibits the same aliasing problem as the
previous example, but the alias is created by passing the same actual
argument into different dummy arguments.

NOTE The sample code below violates the Fortran standard.

.

.

.
CALL ALI(A,A,C)
.
.
.
SUBROUTINE ALI(A,B,C)
INTEGER A(100,100), B(100,100), C(100,100)

66 Chapter 5

Loop and cross-module optimization features
Data localization

DO J = 1, N
 DO I = 2, M
 A(I,J) = B(I-1,J+1) + C(I,J)
 ENDDO
ENDDO
.
.
.

The following (legal ANSI C) code shows the same argument-passing
problem in C:

.

.

.
ali(&a,&a,&c);
.
.
.
void ali(a,b,c)
int a[100][100], b[100][100], c[100][100];
{
 int i,j;
 for(j=0;j<n;j++){
 for(i=1;i<m;i++){
 a[j][i] = b[j+1][i-1] + c[j][i];
 }
 }
}

Chapter 5 67

Loop and cross-module optimization features
Data localization

Computed or assigned GOTO statements in Fortran
When the Fortran compiler encounters a computed or assigned GOTO
statement in an otherwise interchangeable loop, it cannot always
determine whether the branch destination is within the loop. Because an
out-of-loop destination would be a loop exit, these statements often
prevent loop interchange and therefore data localization.

I/O statements
The order in which values are read into or written from a loop may
change if the loop is interchanged. For this reason, I/O statements inhibit
interchange and, consequently, data localization.

 Example I/O statements

The following Fortran code is the basis for this example:

DO I = 1, 4
 DO J = 1, 4
 READ *, IA(I,J)
 ENDDO
ENDDO

Given a data stream consisting of alternating zeros and ones
(0,1,0,1,0,1...), the contents for A(I,J) for both the original loop and the
interchanged loop are shown in Figure 10.

 Figure 10 Values read into array A

1 2 3

1

2

3
I

J

1 2 3

I

J

Original loop Interchanged loop

4

4

4

1

2

3

4

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 1 1 1

0 00 0

1 1 1 1

0 00 0

68 Chapter 5

Loop and cross-module optimization features
Data localization

Multiple loop entries or exits
Loops that contain multiple entries or exits inhibit data localization
because they cannot safely be interchanged. Extra loop entries are
usually created when a loop contains a branch destination. Extra exits
are more common, however. These are often created in C and C++ using
the break statement, and in Fortran using the GOTO statement.

As noted before, the order of computation changes if the loops are
interchanged.

 Example Multiple loop entries or exits

This example begins with the following C code:

for(j=0;j<n;j++){
 for(i=0;i<m;i++){
 a[i][j] = b[i][j] + c[i][j];
 if(a[i][j] == 0) break;
 .
 .
 .
 }
}

Interchanging this loop would change the order in which the values of a
are computed. The original loop computes a column-by-column, whereas
the interchanged loop would compute it row-by-row. This means that the
interchanged loop may hit the break statement and exit after computing
a different set of elements than the original loop computes. Interchange
therefore may cause the results of the loop to differ and must be avoided.

RETURN or STOP statements in Fortran
Like loops with multiple exits, RETURN and STOP statements in Fortran
inhibit localization because they inhibit interchange. If a loop containing
a RETURN or STOP is interchanged, its order of computation may change,
giving wrong answers.

return or exit statements in C or C++
Similar to Fortran’s RETURN and STOP statements (discussed in the
previous section), return and exit statements in C and C++ inhibit
localization because they inhibit interchange.

Chapter 5 69

Loop and cross-module optimization features
Data localization

throw statements in C++
In C++, throw statements, like loops containing multiple exits, inhibit
localization because they inhibit interchange.

Procedure calls
HP compilers are unaware of the side effects of most procedures, and
therefore cannot determine whether or not they might interfere with
loop interchange. Consequently, the compilers do not perform loop
interchange in an embedded procedure call. These side effects may
include data dependences involving loop arrays, aliasing (as described in
the section “Aliasing” on page 64), and processor data cache that use
conflicts with the loop’s cache. This renders useless any data localization
optimizations performed on the loop.

NOTE The compiler can loop parallel on a loop with a procedure call if it can verify
that the procedure will not cause any side effects.

70 Chapter 5

Loop and cross-module optimization features
Loop blocking

Loop blocking
Loop blocking is a combination of strip mining and interchange that
maximizes data localization. It is provided primarily to deal with nested
loops that manipulate arrays that are too large to fit into the cache.
Under certain circumstances, loop blocking allows reuse of these arrays
by transforming the loops that manipulate them so that they manipulate
strips of the arrays that fit into the cache. Effectively, a blocked loop
accesses array elements in sections that are optimally sized to fit in the
cache.

The loop-blocking optimization is only available at +O3 (and above) in
the HP compilers; it is disabled by default. To enable loop blocking, use
the +Oloop_block option. Specifying +Onoloop_block (the default)
disables both automatic and directive-specified loop blocking. Specifying
+Onoloop_transform also disables loop blocking, as well as loop
distribution, loop interchange, loop fusion, loop unroll, and loop unroll
and jam.

Loop blocking can also be enabled for specific loops using the
block_loop directive and pragma. The block_loop and
no_block_loop directives and pragmas affect the immediately
following loop. You can also instruct the compiler to use a specific block
factor using block_loop . The no_block_loop directive and pragma
disables loop blocking for a particular loop.

The forms of these directives and pragmas is shown in Table 7.

Table 7 Forms of block_loop , no_block_loop directives and pragmas

Language Form

Fortran C$DIR BLOCK_LOOP[(BLOCK_FACTOR = n)]

C$DIR NO_BLOCK_LOOP

C #pragma _CNX block_loop[(block_factor = n)]

#pragma _CNX no_block_loop

Chapter 5 71

Loop and cross-module optimization features
Loop blocking

where

n is the requested block factor, which must be a
compile-time integer constant. The compiler uses this
value as stated. For the best performance, the block
factor multiplied by the data type size of the data in the
loop should be an integral multiple of the cache line
size.

In the absence of the block_factor argument, this directive is useful
for indicating which loop in a nest to block. In this case, the compiler
uses a heuristic to determine the block factor.

Data reuse
Data reuse is important to understand when discussing blocking. There
are two types of data reuse associated with loop blocking:

• Spatial reuse

• Temporal reuse

Spatial reuse
Spatial reuse uses data that was encached as a result of fetching another
piece of data from memory; data is fetched by cache lines. 32 bytes of
data is encached on every fetch on V2250 servers. Cache line sizes may
be different on other HP SMPs.

On the initial fetch of array data from memory within a stride-one loop,
the requested item is located anywhere in the 32 bytes. The exception is
if array is aligned on cache line boundaries. Refer to “Standard
optimization features,” on page 35, for a description of data alignment.

Starting with the cache-aligned memory fetch, the requested data is
located at the beginning of the cache line, and the rest of the cache line
contains subsequent array elements. For a REAL*4 array, this means the
requested element and the seven following elements are encached on
each fetch after the first.

If any of these seven elements could then be used on any subsequent
iterations of the loop, the loop would be exploiting spatial reuse. For
loops with strides greater than one, spatial reuse can still occur.
However, the cache lines contain fewer usable elements.

72 Chapter 5

Loop and cross-module optimization features
Loop blocking

Temporal reuse
Temporal reuse uses the same data item on more than one iteration of
the loop. An array element whose subscript does not change as a function
of the iterations of a surrounding loop exhibits temporal reuse in the
context of the loop.

Loops that stride through arrays are candidates for blocking when there
is also an outermost loop carrying spatial or temporal reuse. Blocking the
innermost loop allows data referenced by the outermore loop to remain
in the cache across multiple iterations. Blocking exploits spatial reuse by
ensuring that once fetched, cache lines are not overwritten until their
spatial reuse is exhausted. Temporal reuse is similarly exploited.

 Example Simple loop blocking

In order to exploit reuse in more realistic examples that manipulate
arrays that do not all fit in the cache, the compiler can apply a blocking
transformation.

The following Fortran example demonstrates this:

REAL*8 A(1000,1000),B(1000,1000)
REAL*8 C(1000),D(1000)
COMMON /BLK2/ A, B, C
.
.
.
DO J = 1, 1000
 DO I = 1, 1000
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
ENDDO

Here the array elements occupy nearly 16 Mbytes of memory. Thus,
blocking becomes profitable.

First the compiler strip mines the I loop:

DO J = 1, 1000
 DO IOUT = 1, 1000, IBLOCK
 DO I = IOUT, IOUT+IBLOCK-1
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
 ENDDO
ENDDO

IBLOCK is the block factor (also referred to as the strip mine length) the
compiler chooses based on the size of the arrays and size of the cache.
Note that this example assumes the chosen IBLOCK divides 1000 evenly.

Chapter 5 73

Loop and cross-module optimization features
Loop blocking

Next, the compiler moves the outer strip loop (IOUT) outward as far as
possible.

DO IOUT = 1, 1000, IBLOCK
 DO J = 1, 1000
 DO I = IOUT, IOUT+IBLOCK-1
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
 ENDDO
ENDDO

This new nest accesses IBLOCK rows of A and IBLOCK columns of B for
every iteration of J . At every iteration of IOUT, the nest accesses 1000
IBLOCK-length columns of A (or an IBLOCK × 1000 chunk of A) and 1000
IBLOCK-width rows of B are accessed. This is illustrated in Figure 11.

 Figure 11 Blocked array access

Fetches of A encache the needed element and the three elements that are
used in the three subsequent iterations, giving spatial reuse on A.
Because the I loop traverses columns of B, fetches of B encache extra
elements that are not spatially reused until J increments. IBLOCK is
chosen by the compiler to efficiently exploit spatial reuse of both A and B.

Figure 12 illustrates how cache lines of each array are fetched. A and B
both start on cache line boundaries because they are in COMMON. The
shaded area represents the initial cache line fetched.

IOUT=1

IOUT=

IOUT=1000
-IBLOCK

I

J COLUMNS

A

B

C

IBLOCK+1

ROWS

I COLUMNS

IOUT
=1

IOUT=
IBLOCK+1

J
ROWS

IOUT=
1000
-IBLOCK

D

74 Chapter 5

Loop and cross-module optimization features
Loop blocking

 Figure 12 Spatial reuse of A and B

• When A(1,1) is accessed, A(1:4,1) is fetched; A(2:4,1) is used on
subsequent iterations 2,3 and 4 of I.

• B(1:4,1) is fetched when I=1, but B(2:4,1) is not be used until J
increments to 2, 3, 4. B(1:4,2) is fetched when I=2.

Typically, IBLOCK elements of C remain in the cache for several
iterations of J before being overwritten, giving temporal reuse on C for
those iterations. By the time any of the arrays are overwritten, all
spatial reuse has been exhausted. The load of D is removed from the I
loop so that it remains in a register for all iterations of I .

 Example Matrix multiply blocking

The more complicated matrix multiply algorithm, which follows, is a
prime candidate for blocking:

REAL*8 A(1000,1000),B(1000,1000),C(1000,1000)
COMMON /BLK3/ A, B, C
.
.
.
DO I = 1, 1000
 DO J = 1, 1000
 DO K = 1, 1000
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 ENDDO
 ENDDO
ENDDO

B(1,1)

B(2,1)

B(3,1)

B(4,1)

A(1,1)

A(2,1)

A(3,1)

A(4,1)

A(5,1)

A(1,2)

A(2,2)

A(3,2)

A(4,2)

A(5,2)

J COLUMNS

I
ROWS
(elements
accessed
down
rows first) B(5,1)

B(1,2)

B(2,2)

B(3,2)

B(4,2)

B(5,2)

I COLUMNS

J
ROWS

(elements are
accessed across
columns first)

Chapter 5 75

Loop and cross-module optimization features
Loop blocking

This loop is blocked as shown below:

DO IOUT = 1, 1000, IBLOCK
 DO KOUT = 1, 1000, KBLOCK
 DO J = 1, 1000
 DO I = IOUT, IOUT+IBLOCK-1
 DO K = KOUT, KOUT+KBLOCK-1
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 ENDDO
 ENDDO
 ENDDO
 ENDDO
ENDDO

As a result, the following occurs:

• Spatial reuse of B with respect to the K loop

• Temporal reuse of B with respect to the I loop

• Spatial reuse of A with respect to the I loop

• Temporal reuse of A with respect to the J loop

• Spatial reuse of C with respect to the I loop

• Temporal reuse of C with respect to the K loop

An analogous C and C++ example follows with a different resulting
interchange:

static double a[1000][1000], b[1000][1000];
static double c[1000][1000];
.
.
.
for(i=0;i<1000;i++)
 for(j=0;j<1000;j++)
 for(k=0;k<1000;k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

The HP C and aC++ compilers interchange and block the loop in this
example to provide optimal access efficiency for the row-major C and C++
arrays. The blocked loop is shown below:

for(jout=0;jout<1000;jout+=jblk)
 for(kout=0;kout<1000;kout+=kblk)
 for(i=0;i<1000;i++)
 for(j=jout;j<jout+jblk;j++)
 for(k=kout;k<kout+kblk;k++)
 c[i][j]=c[i][j]+a[i][k]*b[k][j];

76 Chapter 5

Loop and cross-module optimization features
Loop blocking

As you can see, the interchange was done differently because of C and
C++’s different array storage strategies. This code yields:

• Spatial reuse of b with respect to the j loop

• Temporal reuse of b with respect to the i loop

• Spatial reuse of a with respect to the k loop

• Temporal reuse of a with respect to the j loop

• Spatial reuse on c with respect to the j loop

• Temporal reuse on c with respect to the k loop

Blocking is inhibited when loop interchange is inhibited. If a candidate
loop nest contains loops that cannot be interchanged, blocking is not
performed.

 Example Loop blocking

The following example shows the affect of the block_loop directive on
the code shown earlier in “Matrix multiply blocking” on page 74:

 REAL*8 A(1000,1000),B(1000,1000)
 REAL*8 C(1000,1000)
 COMMON /BLK3/ A, B, C
 .
 .
 .
 DO I = 1,1000
 DO J = 1, 1000
C$DIR BLOCK_LOOP(BLOCK_FACTOR = 112)
 DO K = 1,1000
 C(I,J) = C(I,J) + A(I,K)*B(K,J)
 ENDDO
 ENDDO
 ENDDO

The original example involving this code showed that the compiler blocks
the I and K loops. In this example, the BLOCK_LOOP directive instructs
the compiler to use a block factor of 112 for the K loop. This is an efficient
blocking factor for this example because 112 × 8 bytes = 896 bytes,
and 896/32 bytes (the cache line size) = 28, which is an integer, so partial
cache lines are not necessary. The compiler-chosen value is still used on
the I loop.

Chapter 5 77

Loop and cross-module optimization features
Loop distribution

Loop distribution
Loop distribution is another fundamental +O3 transformation necessary
for more advanced transformations. These advanced transformations
require that all calculations in a nested loop be performed inside the
innermost loop. To facilitate this, loop distribution transforms
complicated nested loops into several simple loops that contain all
computations inside the body of the innermost loop.

Loop distribution takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop distribution, as well as
loop interchange, loop blocking, loop fusion, loop unroll, and loop unroll
and jam.

Loop distribution is disabled for specific loops by specifying the
no_distribute directive or pragma immediately before the loop.

The form of this directive and pragma is shown in Table 8.

Table 8 Form of no_distribute directive and pragma

 Example Loop distribution

This example begins with the following Fortran code:

DO I = 1, N
 C(I) = 0
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
ENDDO

Loop distribution creates two copies of the I loop, separating the nested
J loop from the assignments to array C. In this way, all assignments are
moved to innermost loops. Interchange is then performed on the I and J
loops.

Language Form

Fortran C$DIR NO_DISTRIBUTE

C #pragma _CNX no_distribute

78 Chapter 5

Loop and cross-module optimization features
Loop distribution

The distribution and interchange is shown in the following transformed
code:

DO I = 1, N
 C(I) = 0
ENDDO
DO J = 1, M
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
ENDDO

Distribution can improve efficiency by reducing the number of memory
references per loop iteration and the amount of cache thrashing. It also
creates more opportunities for interchange.

Chapter 5 79

Loop and cross-module optimization features
Loop fusion

Loop fusion
Loop fusion involves creating one loop out of two or more neighboring
loops that have identical loop bounds and trip counts. This reduces loop
overhead, memory accesses, and increases register usage. It can also lead
to other optimizations. By potentially reducing the number of
parallelizable loops in a program and increasing the amount of work in
each of those loops, loop fusion can greatly reduce parallelization
overhead. Because fewer spawns and joins are necessary.

Loop fusion takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop fusion, as well as
loop distribution, loop interchange, loop blocking, loop unroll, and
loop unroll and jam.

Occasionally, loops that do not appear to be fusible become fusible as a
result of compiler transformations that precede fusion. For instance,
interchanging a loop may make it suitable for fusing with another loop.

Loop fusion is especially beneficial when applied to Fortran 90 array
assignments. The compiler translates these statements into loops; when
such loops do not contain code that inhibit fusion, they are fused.

 Example Loop fusion

This example begins with the following Fortran code:

DO I = 1, N
 A(I) = B(I) + C(I)
ENDDO
DO J = 1, N
 IF(A(J) .LT. 0) A(J) = B(J)*B(J)
ENDDO

The two loops shown above are fused into the following loop using loop
fusion:

DO I = 1, N
 A(I) = B(I) + C(I)
 IF(A(I) .LT. 0) A(I) = B(I)*B(I)
ENDDO

80 Chapter 5

Loop and cross-module optimization features
Loop fusion

 Example Loop fusion

This example begins with the following Fortran code:

REAL A(100,100), B(100,100), C(100,100)
.
.
.
C = 2.0 * B
A = A + B

The compiler first transforms these Fortran array assignments into
loops, generating code similar to that shown below.

DO TEMP1 = 1, 100
 DO TEMP2 = 1, 100
 C(TEMP2, TEMP1) = 2.0 * B(TEMP2, TEMP1)
 ENDDO
ENDDO
DO TEMP3 = 1, 100
 DO TEMP4 = 1, 100
 A(TEMP4,TEMP3)=A(TEMP4,TEMP3)+B(TEMP4,TEMP3)
 ENDDO
ENDDO

These two loops would then be fused as shown in the following loop nest:

DO TEMP1 = 1, 100
 DO TEMP2 = 1, 100
 C(TEMP2,TEMP1) = 2.0 * B(TEMP2, TEMP1)
 A(TEMP2,TEMP1)=A(TEMP2,TEMP1)+B(TEMP2,TEMP1)
 ENDDO
ENDDO

Further optimizations could be applied to this new nest as appropriate.

 Example Loop peeling

When trip counts of adjacent loops differ by only a single iteration (+1
or -1), the compiler may peel an iteration from one of the two loops so
that the loops may then be fused. The peeled iteration is performed
separately from the original loop.

The following Fortran example shows how this is implemented:

DO I = 1, N-1
 A(I) = I
ENDDO

DO J = 1, N
 A(J) = A(J) + 1
ENDDO

Chapter 5 81

Loop and cross-module optimization features
Loop fusion

As you can see, the Nth iteration of the J loop is peeled, resulting in a trip
count of N - 1 . The Nth iteration is performed outside the J loop. As a
result, the code is changed to the following:

DO I = 1, N-1
 A(I) = I
ENDDO

DO J = 1, N-1
 A(J) = A(J) + 1
ENDDO

A(N) = A(N) + 1

The I and J loops now have the same trip count and are fused, as shown
below:

DO I = 1, N-1
 A(I) = I
 A(I) = A(I) + 1
ENDDO

A(N) = A(N) + 1

82 Chapter 5

Loop and cross-module optimization features
Loop interchange

Loop interchange
The compiler may interchange (or reorder) nested loops for the following
reasons:

• To facilitate other transformations

• To relocate the loop that is the most profitable to parallelize so that it
is outermost

• To optimize inner-loop memory accesses

Loop interchange takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop interchange, as well as
loop distribution, loop blocking, loop fusion, loop unroll, and loop unroll
and jam.

 Example Loop interchange

This example begins with the Fortran matrix addition algorithm below:

DO I = 1, N
 DO J = 1, M
 A(I, J) = B(I, J) + C(I, J)
 ENDDO
ENDDO

The loop accesses the arrays A, B and C row by row, which, in Fortran, is
very inefficient. Interchanging the I and J loops, as shown in the
following example, facilitates column by column access.

DO J = 1, M
 DO I = 1, N
 A(I, J) = B(I, J) + C(I, J)
 ENDDO
ENDDO

Unlike Fortran, C and C++ access arrays in row-major order. An
analogous example in C and C++, then, employs an opposite nest
ordering, as shown below.

for(j=0;j<m;j++)
 for(i=0;i<n;i++)
 a[i][j] = b[i][j] + c[i][j];

Chapter 5 83

Loop and cross-module optimization features
Loop interchange

Interchange facilitates row-by-row access. The interchanged loop is
shown below.

for(i=0;i<n;i++)
 for(j=0;j<m;j++)
 a[i][j] = b[i][j] + c[i][j];

84 Chapter 5

Loop and cross-module optimization features
Loop unroll and jam

Loop unroll and jam
The loop unroll and jam transformation is primarily intended to increase
register exploitation and decrease memory loads and stores per
operation within an iteration of a nested loop. Improved register usage
decreases the need for main memory accesses and allows better
exploitation of certain machine instructions.

Unroll and jam involves partially unrolling one or more loops higher in
the nest than the innermost loop, and fusing (“jamming”) the resulting
loops back together. For unroll and jam to be effective, a loop must be
nested and must contain data references that are temporally reused with
respect to some loop other than the innermost (temporal reuse is
described in “Data reuse” on page 71). The unroll and jam optimization is
automatically applied only to those loops that consist strictly of a basic
block.

Loop unroll and jam takes place at +O3 and above and is not enabled by
default in the HP compilers. To enable loop unroll and jam on the
command line, use the +Oloop_unroll_jam option. This allows both
automatic and directive-specified unroll and jam. Specifying
+Onoloop_transform disables loop unroll and jam, loop distribution,
loop interchange, loop blocking, loop fusion, and loop unroll.

The unroll_and_jam directive and pragma also enables this
transformation. The no_unroll_and_jam directive and pragma is used
to disable loop unroll and jam for an individual loop.

Chapter 5 85

Loop and cross-module optimization features
Loop unroll and jam

The forms of these directives and pragmas are shown in Table 9.

Table 9 Forms of unroll_and_jam , no_unroll_and_jam directives and
pragmas

where

unroll_factor= n allows you to specify an unroll factor
for the loop in question.

NOTE Because unroll and jam is only performed on nested loops, you must ensure
that the directive or pragma is specified on a loop that, after any compiler-
initiated interchanges, is not the innermost loop. You can determine which
loops in a nest are innermost by compiling the nest without any directives
and examining the Optimization Report, described in “Optimization Report,”
on page 151.

 Example Unroll and jam

Consider the following matrix multiply loop:

DO I = 1, N
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

ENDDO
ENDDO

ENDDO

Here, the compiler can exploit a maximum of 3 registers: one for A(I,J) ,
one for B(I,K) , and one for C(K,J) .

Register exploitation is vastly increased on this loop by unrolling and
jamming the I and J loops. First, the compiler unrolls the I loop. To
simplify the illustration, an unrolling factor of 2 for I is used. This is the
number of times the contents of the loop are replicated.

Language Form

Fortran C$DIR UNROLL_AND_JAM[(UNROLL_FACTOR=n)]

C$DIR NO_UNROLL_AND_JAM

C #pragma _CNX unroll_and_jam[(unroll_factor= n)]

#pragma _CNX no_unroll_and_jam

86 Chapter 5

Loop and cross-module optimization features
Loop unroll and jam

The following Fortran example shows this replication:

DO I = 1, N, 2
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

ENDDO
ENDDO
DO J = 1, N

DO K = 1, N
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
ENDDO

ENDDO

The “jam” part of unroll and jam occurs when the loops are fused back
together, to create the following:

DO I = 1, N, 2
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
ENDDO

ENDDO

This new loop can exploit registers for two additional references: A(I,J)
and A(I+1,J) . However, the compiler still has the J loop to unroll and
jam. An unroll factor of 4 for the J loop is used, in which case unrolling
gives the following:

DO I = 1, N, 2
DO J = 1, N, 4

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
DO K = 1, N

A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)

ENDDO
DO K = 1, N

A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)

ENDDO
DO K = 1, N

A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)

ENDDO
ENDDO

ENDDO

Chapter 5 87

Loop and cross-module optimization features
Loop unroll and jam

Fusing (jamming) the unrolled loop results in the following:

DO I = 1, N, 2
DO J = 1, N, 4

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)

ENDDO
ENDDO

ENDDO

This new loop exploits more registers and requires fewer loads and
stores than the original. Recall that the original loop could use no more
than 3 registers. This unrolled-and-jammed loop can use 14, one for each
of the following references:

Fewer loads and stores per operation are required because all of the
registers containing these elements are referenced at least twice. This
particular example can also benefit from the PA-RISC FMPYFADD
instruction, which is available with PA-8x00 processors. This instruction
doubles the speed of the operations in the body of the loop by
simultaneously performing related adds and multiplies.

This is a very simplified example. In reality, the compiler attempts to
exploit as many of the PA-RISC processor’s registers as possible. For the
matrix multiply algorithm used here, the compiler would select a larger
unrolling factor, creating a much larger K loop body. This would result in
increased register exploitation and fewer loads and stores per operation.

NOTE Excessive unrolling may introduce extra register spills if the unrolled and
jammed loop body becomes too large. Each cache line has a 32-bit register
value; register spills occur when this value is exceeded. This most often
occurs as a result of continuous loop unrolling. Register spills may have
negative effects on performance.

A(I,J) B(I,K) C(K,J) A(I+1,J)

B(I+1,K) A(I,J+1) C(K,J+1) A(I+1,J+1)

A(I,J+2) C(K,J+2) A(I,J+3) A(I+1,J+2)

A(I+1,J+3) C(K,J+3)

88 Chapter 5

Loop and cross-module optimization features
Loop unroll and jam

You should attempt to select unroll factor values that align data
references in the innermost loop on cache boundaries. As a result,
references to the consecutive memory regions in the innermost loop can
have very high cache hit ratios. Unroll factors of 5 or 7 may not be good
choices because most array element sizes are either 4 bytes or 8 bytes
and the cache line size is 32 bytes. Therefore, an unroll factor of 2 or 4 is
more likely to effectively exploit cache line reuse for the references that
access consecutive memory regions.

As with all optimizations that replicate code, the number of new loops
created when the compiler performs the unroll and jam optimization is
limited by default to ensure reasonable compile times. To increase the
replication limit and possibly increase your compile time and code size,
specify the +Onosize and +Onolimit compiler options.

Chapter 5 89

Loop and cross-module optimization features
Preventing loop reordering

Preventing loop reordering
The no_loop_transform directive or pragma allows you to prevent all
loop-reordering transformations on the immediately following loop.

The form of this directive and pragma are shown in Table 10.

Table 10 Form of no_loop_transform directive and pragma

Use the command-line option +Onoloop_transform (at +O3 and above)
to disable loop distribution, loop blocking, loop fusion, loop interchange,
loop unroll, and loop unroll and jam at the file level.

Language Form

Fortran C$DIR NO_LOOP_TRANSFORM

C #pragma _CNX no_loop_transform

90 Chapter 5

Loop and cross-module optimization features
Test promotion

Test promotion
Test promotion involves promoting a test out of the loop that encloses it
by replicating the containing loop for each branch of the test. The
replicated loops contain fewer tests than the originals, or no tests at all,
so the loops execute much faster. Multiple tests are promoted, and copies
of the loop are made for each test.

 Example Test promotion

Consider the following Fortran loop:

DO I=1, 100
 DO J=1, 100
 IF(FOO .EQ. BAR) THEN
 A(I,J) = I + J
 ELSE
 A(I,J) = 0
 ENDIF
 ENDDO
ENDDO

Test promotion (and loop interchange) produces the following code:

IF(FOO .EQ. BAR) THEN
 DO J=1, 100
 DO I=1, 100
 A(I,J) = I + J
 ENDDO
 ENDDO
ELSE
 DO J=1, 100
 DO I=1, 100
 A(I,J) = 0
 ENDDO
 ENDDO
ENDIF

For loops containing large numbers of tests, loop replication can greatly
increase the size of the code.

Each DO loop in Fortran and for loop in C and C++ whose bounds are not
known at compile-time is implicitly tested to check that the loop iterates
at least once. This test may be promoted, with the promotion noted in the
Optimization Report. If you see unexpected promotions in the report,
this implicit testing may be the cause. For more information on the
Optimization Report, see “Optimization Report,” on page 151.

Chapter 5 91

Loop and cross-module optimization features
Cross-module cloning

Cross-module cloning
Cloning is the replacement of a call to a routine by a call to a clone of that
routine. The clone is optimized differently than the original routine.
Cloning can expose additional opportunities for optimization across
multiple source files.

Cloning at +O4 is performed across all procedures within the program,
and is disabled by specifying the +Onoinline command-line option.
This option is described on page 124.

Global and static variable optimizations
Global and static variable optimizations look for ways to reduce the
number of instructions required for accessing global and static variables
(COMMON and SAVE variables in Fortran, and extern and static
variables in C and C++).

The compiler normally generates two machine instructions when
referencing global variables. Depending on the locality of the global
variables, single machine instructions may sometimes be used to access
these variables. The linker rearranges the storage location of global and
static data to increase the number of variables that are referenced by
single instructions.

Global variable optimization coding standards
Because this optimization rearranges the location and data alignment of
global variables, follow the programming practices given below:

• Do not make assumptions about the relative storage location of
variables, such as generating a pointer by adding an offset to the
address of another variable.

• Do not rely on pointer or address comparisons between two different
variables.

• Do not make assumptions about the alignment of variables, such as
assuming that a short integer is aligned the same as an integer.

92 Chapter 5

Loop and cross-module optimization features
Cross-module cloning

Inlining across multiple source files
Inlining substitutes function calls with copies of the function’s object
code. Only functions that meet the optimizer’s criteria are inlined. This
may result in slightly larger executable files. However, this increase in
size is offset by the elimination of time-consuming procedure calls and
procedure returns. See the section “Inlining within a single source file”
on page 55 for an example of inlining.

Inlining at +O4 is performed across all procedures within the program.
Inlining at +O3 is done within one file.

Inlining is affected by the +O[no]inline[= namelist] and
+Oinline_budget= n command-line options. See “Controlling
optimization,” on page 113 for more information on these options.

Chapter 6 93

Parallel optimization features

6 Parallel optimization features

This chapter discusses parallel optimization features available with the
HP-UX compilers, including those inherent in optimization levels +O3
and +O4. This includes a discussion of the following topics:

• Levels of parallelism

• Threads

• Idle thread states

• Parallel optimizations

• Inhibiting parallelization

• Reductions

• Preventing parallelization

• Parallelism in the aC++ compiler

• Cloning across multiple source files

For more information as to specific parallel command-line options, as
well as pragmas and directives, please see “Controlling optimization,” on
page 113.

94 Chapter 6

Parallel optimization features
Levels of parallelism

Levels of parallelism
In the HP compilers, parallelism exists at the loop level, task level, and
region level, as described in Chapter 9, “Parallel programming
techniques”. These are briefly described as follows.

• HP compilers automatically exploit loop-level parallelism. This type
of parallelism involves dividing a loop into several smaller iteration
spaces and scheduling these to run simultaneously on the available
processors. For more information, see “Parallelizing loops” on
page 178.

Using the +Oparallel option at +O3 and above allows the compiler
to automatically parallelize loops that are profitable to parallelize.

Only loops with iteration counts that can be determined prior to loop
invocation at runtime are candidates for parallelization. Loops with
iteration counts that depend on values or conditions calculated within
the loop cannot be parallelized by any means.

• Specify task-level parallelism using the begin_tasks , next_task
and end_tasks directives and pragmas, as discussed in the section
“Parallelizing tasks” on page 192.

• Specify parallel regions using the parallel and end_parallel
directives and pragmas, as discussed in the section “Parallelizing
regions” on page 197. These directives and pragmas allow the
compiler to run identified sections of code in parallel.

Loop-level parallelism
HP compilers locate parallelism at the loop level, generating parallel
code that is automatically run on as many processors as are available at
runtime. Normally, these are all the processors on the same system
where your program is running. You can specify a smaller number of
processors using any of the following:

• loop_parallel(max_threads= m) directive and pragma—available
in Fortran 90 and C

• prefer_parallel(max_threads= m) directive and pragma—
available in Fortran 90 and C

Chapter 6 95

Parallel optimization features
Levels of parallelism

For more information on the loop_parallel and
prefer_parallel directives and pragmas see Chapter 9, “Parallel
programming techniques”.

• MP_NUMBER_OF_THREADS environment variable—This variable is
read at runtime by your program. If this variable is set to some
positive integer n, your program executes on n processors. n must be
less than or equal to the number of processors in the system where
the program is executing.

Automatic parallelization
Automatic parallelization is useful for programs containing loops. You
can use compiler directives or pragmas to improve on the automatic
optimizations and to assist the compiler in locating additional
opportunities for parallelization.

If you are writing your program entirely under the message-passing
paradigm, you must explicitly handle parallelism as discussed in the
HP MPI User’s Guide.

 Example Loop-level parallelism

This example begins with the following Fortran code:

PROGRAM PARAXPL
.
.
.
DO I = 1, 1024
 A(I) = B(I) + C(I)
 .
 .
 .
ENDDO

Assuming that the I loop does not contain any parallelization-inhibiting
code, this program can be parallelized to run on eight processors by
running 128 iterations per processor (1024 iterations divided by 8
processors = 128 iterations each). One processor would run the loop for
I = 1 to 128. The next processor would run I = 129 to 256, and so on. The
loop could similarly be parallelized to run on any number of processors,
with each one taking its appropriate share of iterations.

At a certain point, however, adding more processors does not improve
performance. The compiler generates code that runs on as many
processors as are available, but the dynamic selection optimization
(described in the section “Dynamic selection” on page 102) ensures that

96 Chapter 6

Parallel optimization features
Threads

parallel code is executed only if it is profitable to do so. If the number of
available processors does not evenly divide the number of iterations,
some processors perform fewer iterations than others.

Threads
Parallelization divides a program into threads. A thread is a single flow
of control within a process. It can be a unique flow of control that
performs a specific function, or one of several instances of a flow of
control, each of which is operating on a unique data set.

On a V-Class server, parallel shared-memory programs run as a
collection of threads on multiple processors. When a program starts, a
separate execution thread is created on each system processor on which
the program is running. All but one of these threads is then idle. The
nonidle thread is known as thread 1, and this thread runs all of the
serial code in the program.

Spawn thread IDs are assigned only to nonidle threads when they are
spawned. This occurs when thread 1 encounters parallelism and “wakes
up” other idle threads to execute the parallel code. Spawn thread IDs are
consecutive, ranging from 0 to N-1, where N is the number of threads
spawned as a result of the spawn operation. This operation defines the
current spawn context. The spawn context is the loop, task list, or region
that initiates the spawning of the threads. Spawn thread IDs are valid
only within a given spawn context.

This means that the idle threads are not assigned spawn thread IDs at
the time of their creation. When thread 1 encounters a parallel loop,
task, or region, it spawns the other threads, signaling them to begin
execution. The threads then become active, acquire spawn thread IDs,
run until their portion of the parallel code is finished, and go idle once
again, as shown in Figure 13.

NOTE Machine loading does not affect the number of threads spawned, but it may
affect the order in which the threads in a given spawn context complete.

Chapter 6 97

Parallel optimization features
Threads

 Figure 13 One-dimensional parallelism in threads

Loop transformations

Figure 13 above shows that various loop transformations can affect the
manner in which a loop is parallelized.

To implement this, the compiler transforms the loop in a manner similar
to strip mining. However, unlike in strip mining, the outer loop is
conceptual. Because the strips execute on different processors, there is
no processor to run an outer loop like the one created in traditional strip
mining.

Instead, the loop is transformed. The starting and stopping iteration
values are variables that are determined at runtime based on how many
threads are available and which thread is running the strip in question.

 Example Loop transformations

Consider the previous Fortran example written for an unspecified
number of iterations:

DO I = 1, N
 A(I) = B(I) + C(I)
ENDDO

Threads*
0

spawn

idle idle idle idle idle idle idle

spawn spawn spawn spawn spawn spawn

idle idle idle idle idle idle idle

I
=1,128

I
=129,
256

I
=257,
384

I
=385,
512

I
=513,
640

I
=641,
768

I
=769,
896

I
=897,
1024

* Numbers shown represent spawn thread IDs

PROGRAM PARAXPL
.
.
.
DO I=1,1024

 A(I)=B(I)+C(I)

 .
 .
 .
ENDDO
.
.
.

1 2 3 4 5 6 7

98 Chapter 6

Parallel optimization features
Threads

The code shown in Figure 14 is a conceptual representation of the
transformation the compiler performs on this example when it is
compiled for parallelization, assuming that N >= NumThreads .
For N < NumThreads , the compiler uses N threads, assuming there is
enough work in the loop to justify the overhead of parallelizing it. If
NumThreads is not an integral divisor of N, some threads perform fewer
iterations than others.

 Figure 14 Conceptual strip mine for parallelization

NumThreads is the number of available threads. ThrdID is the ID
number of the thread this particular loop runs on, which is between 0
and NumThreads-1 . A unique ThrdID is assigned to each thread, and
the ThrdIDs are consecutive. So, for NumThreads = 8 , as in Figure 13,
8 loops would be spawned, with ThrdIDs = 0 through 7. These 8 loops
are illustrated in Figure 15.

For each available thread do:

 DO I = ThrdID*(N/NumThreads)+1,ThrdID*(N/NumThreads)+N/NumThreads

 A(I) = B(I) + C(I)

 ENDDO

Chapter 6 99

Parallel optimization features
Threads

 Figure 15 Parallelized loop

NOTE The strip-based parallelism described here is the default. Stride-based
parallelism is possible through use of the prefer_parallel and
loop_parallel compiler directives and pragmas.

In these examples, the data being manipulated within the loop is disjoint
so that no two threads attempt to write the same data item. If two
parallel threads attempt to update the same storage location, their
actions must be synchronized. This is discussed further in “Parallel
synchronization,” on page 233.

DO I = 1, 128

 A(I) = B(I) + C(I)

ENDDO

DO I = 129, 256

 A(I) = B(I) + C(I)

ENDDO

DO I = 385, 512

 A(I) = B(I) + C(I)

ENDDO

DO I = 257, 384

 A(I) = B(I) + C(I)

ENDDO

Thread 0 Thread 1

Thread 2 Thread 3

DO I = 513, 640

 A(I) = B(I) + C(I)

ENDDO

DO I = 641, 768

 A(I) = B(I) + C(I)

ENDDO

DO I = 897, 1024

 A(I) = B(I) + C(I)

ENDDO

DO I = 769, 896

 A(I) = B(I) + C(I)

ENDDO

Thread 4 Thread 5

Thread 6 Thread 7

100 Chapter 6

Parallel optimization features
Idle thread states

Idle thread states
Idle threads can be suspended or spin-waiting. Suspended threads
release control of the processor while spin-waiting threads repeatedly
check an encached global semaphore that indicates whether or not they
have code to execute. This obviously prevents any other process from
gaining control of the CPU and can severely degrade multiprocess
performance.

Alternately, waking a suspended thread takes substantially longer than
activating a spin-waiting thread. By default, idle threads spin-wait
briefly after creation or a join, then suspend themselves if no work is
received.

When threads are suspended, HP-UX may schedule threads of another
process on their processors in order to balance machine load. However,
threads have an affinity for their original processors. HP-UX tries to
schedule unsuspended threads to their original processors in order to
exploit the presence of any data encached during the thread’s last
timeslice. This occurs only if the original processor is available.
Otherwise, the thread is assigned to the first processor to become
available.

Determining idle thread states
Use the MP_IDLE_THREADS_WAIT environment variable to determine
how threads wait. The form of the MP_IDLE_THREADS_WAIT
environment variable is shown in Table 11.

Table 11 Form of MP_IDLE_THREADS_WAIT environment variable

Language Form

Fortran, C setenv MP_IDLE_THREADS_WAIT= n

Chapter 6 101

Parallel optimization features
Idle thread states

where

n is the integer value, represented in milliseconds, that
the threads spin-wait. These have values as described
below:

• For n less than 0, the threads spin-wait.

• For n equal to or greater than 0, the threads spin-wait for n
milliseconds before being suspended.

By default, idle threads spin-wait briefly after creation or a join. They
then suspend themselves if no work is received.

102 Chapter 6

Parallel optimization features
Parallel optimizations

Parallel optimizations
Simple loops can be parallelized without the need for extensive
transformations. However, most loop transformations do enhance
optimum parallelization. For instance, loop interchange orders loops so
that the innermost loop best exploits the processor data cache, and the
outermost loop is the most efficient loop to parallelize.

Loop blocking similarly aids parallelization by maximizing cache data
reuse on each of the processors that the loop runs on. It also ensures that
each processor is working on nonoverlapping array data.

Dynamic selection
The compiler has no way of determining how many processors are
available to run compiled code. Therefore, it sometimes generates both
serial and parallel code for loops that are parallelized. Replicating the
loop in this manner is called cloning, and the resulting versions of the
loop are called clones. Cloning is also performed when the loop-iteration
count is unknown at compile-time.

It is not always profitable, however, to run the parallel clone when
multiple processors are available. Some overhead is involved in
executing parallel code. This overhead includes the time it takes to
spawn parallel threads, to privatize any variables used in the loop that
must be privatized, and to join the parallel threads when they complete
their work.

Workload-based dynamic selection
HP compilers use a powerful form of dynamic selection known as
workload-based dynamic selection. When a loop’s iteration count is
available at compile time, workload-based dynamic selection determines
the profitability of parallelizing the loop. It only writes a parallel version
to the executable if it is profitable to do so.

If the parallel version will not be needed, the compiler can omit it from
the executable to further enhance performance. This eliminates the
runtime decision as to which version to use.

The power of dynamic selection becomes more apparent when the loop’s
iteration count is unknown at compile time. In this case, the compiler
generates code that, at runtime, compares the amount of work performed

Chapter 6 103

Parallel optimization features
Parallel optimizations

in the loop nest (given the actual iteration counts) to the parallelization
overhead for the available number of processors. It then runs the parallel
version of the loop only if it is profitable to do so.

When specified with +Oparallel at +O3, workload-based dynamic
selection is enabled by default. The compiler only generates a parallel
version of the loop when +Onodynsel is selected, thereby disabling
dynamic selection. When dynamic selection is disabled, the compiler
assumes that it is profitable to parallelize all parallelizable loops and
generates both serial and parallel clones for them. In this case the
parallel version is run if there are multiple processors at runtime,
regardless of the profitability of doing so.

dynsel , no_dynsel

The dynsel and no_dynsel directives are used to specify dynamic
selection for specific loops in programs compiled using the +Onodynsel
option or to provide trip count information for specific loops in programs
compiled with dynamic selection enabled.

To disable dynamic selection for selected loops by using the no_dynsel
compiler directive or pragma. This directive or pragma is used to disable
dynamic selection on specific loops in programs compiled with dynamic
selection enabled.

The form of these directives and pragmas are shown in Table 12.

Table 12 Form of dynsel directive and pragma

Language Form

Fortran C$DIR DYNSEL [(THREAD_TRIP_COUNT = n)]

C$DIR NO_DYNSEL

C #pragma _CNX dynsel [(thread_trip_count = n)]

#pragma _CNX no_dynsel

104 Chapter 6

Parallel optimization features
Parallel optimizations

where

thread_trip_count

is an optional attribute used to specify threshold
iteration counts.
When thread_trip_count = n is specified, the
serial version of the loop is run if the iteration count is
less than n. Otherwise, the thread-parallel version is
run.
If a trip count is not specified for a dynsel directive or
pragma, the compiler uses a heuristic to estimate the
actual execution costs. This estimate is then used to
determine if it is profitable to execute the loop in
parallel.

As with all optimizations that replicate loops, the number of new loops
created when the compiler performs dynamic selection is limited by
default to ensure reasonable code sizes. To increase the replication limit
(and possibly increase your compile time and code size), specify the
+Onosize +Onolimit compiler options. These are described in
 “Controlling optimization,” on page 113.

Chapter 6 105

Parallel optimization features
Inhibiting parallelization

Inhibiting parallelization
Certain constructs, such as loop-carried dependences, inhibit
parallelization. Other types of constructs, such as procedure calls and I/O
statements, inhibit parallelism for the same reason they inhibit
localization. An exception to this is that more categories of loop-carried
dependences can inhibit parallelization than data localization. This is
described in the following sections.

Loop-carried dependences (LCDs)
The specific loop-carried dependences (LCDs) that inhibit data
localization represent a very small portion of all loop-carried
dependences. A much broader set of LCDs inhibits parallelization.
Examples of various parallel-inhibiting LCDs follows.

 Example Parallel-inhibiting LCDs

One type of LCD exists when one iteration references a variable whose
value is assigned on a later iteration. The Fortran loop below contains
this type of LCD on the array A.

DO I = 1, N - 1
 A(I) = A(I + 1) + B(I)
ENDDO

In this example, the first iteration assigns a value to A(1) and
references A(2) . The second iteration assigns a value to A(2) and
references A(3) . The reference to A(I) depends on the fact that the
I+1 th iteration, which assigns a new value to A(I) , has not yet
executed.

Forward LCDs inhibit parallelization because if the loop is broken up to
run on several processors, when I reaches its terminal value on one
processor, A(I+1) has usually already been computed by another
processor. It is, in fact, the first value computed by another processor.
Because the calculation depends on A(I+1) not being computed yet, this
would produce wrong answers.

 Example Parallel-inhibiting LCDs

Another type of LCD exists when one iteration references a variable
whose value was assigned on an earlier iteration.The Fortran loop below
contains a backward LCD on the array A.

106 Chapter 6

Parallel optimization features
Inhibiting parallelization

DO I = 2, N
 A(I) = A(I-1) + B(I)
ENDDO

Here, each iteration assigns a value to A based on the value assigned to A
in the previous iteration. If A(I-1) has not been computed before A(I)
is assigned, wrong answers result.

Backward LCDs inhibit parallelism because if the loop is broken up to
run on several processors, A(I-1) are not computed for the first
iteration of the loop on every processor except the processor running the
chunk of the loop containing I = 1 .

 Example Output LCDs

An output LCD exists when the same memory location is assigned values
on two or more iterations. A potential output LCD exists when the
compiler cannot determine whether an array subscript contains the
same values between loop iterations.

The Fortran loop below contains a potential output LCD on the array A:

DO I = 1, N
 A(J(I)) = B(I)
ENDDO

Here, if any referenced elements of J contain the same value, the same
element of A is assigned several different elements of B. In this case, as
this loop is written, any A elements that are assigned more than once
should contain the final assignment at the end of the loop. This cannot be
guaranteed if the loop is run in parallel.

 Example Apparent LCDs

The compiler chooses to not parallelize loops containing apparent LCDs
rather than risk wrong answers by doing so.

If you are sure that a loop with an apparent LCD is safe to parallelize,
you can indicate this to the compiler using the no_loop_dependence
directive or pragma, which is explained in the section “Loop-carried
dependences (LCDs)” on page 59.

The following Fortran example illustrates a NO_LOOP_DEPENDENCE
directive being used on the output LCD example presented previously:

C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, N
 A(J(I)) = B(I)
 ENDDO

Chapter 6 107

Parallel optimization features
Inhibiting parallelization

This effectively tells the compiler that no two elements of J are identical,
so there is no output LCD and the loop is safe to parallelize. If any of the
J values are identical, wrong answers could result.

108 Chapter 6

Parallel optimization features
Reductions

Reductions
In many cases, the compiler can recognize and parallelize loops
containing a special class of dependence known as a reduction. In
general, a reduction has the form:

X = X operator Y

where

X is a variable not assigned or used elsewhere in the loop,
Y is a loop constant expression not involving X, and
operator is +, * , .AND., .OR., or .XOR.

The compiler also recognizes reductions of the form:

X = function(X,Y)

where

X is a variable not assigned or referenced elsewhere in
the loop, Y is a loop constant expression not involving X,
and function is the intrinsic MAX function or intrinsic
MIN function.

Generally, the compiler automatically recognizes reductions in a loop and
is able to parallelize the loop. If the loop is under the influence of the
prefer_parallel directive or pragma, the compiler still recognizes
reductions.

However, in a loop being manipulated by the loop_parallel directive
or pragma, reduction analysis is not performed. Consequently, the loop
may not be correctly parallelized unless the reduction is enforced using
the reduction directive or pragma.

The form of this directive and pragma is shown in Table 13.

Table 13 Form of reduction directive and pragma

 Example Reduction

Language Form

Fortran C$DIR REDUCTION

C #pragma _CNX reduction

Chapter 6 109

Parallel optimization features
Reductions

Reductions commonly appear in the form of sum operations, as shown in
the following Fortran example:

DO I = 1, N
 A(I) = B(I) + C(I)
 .
 .
 .
 ASUM = ASUM + A(I)
ENDDO

Assuming this loop does not contain any parallelization-inhibiting code,
the compiler would automatically parallelize it. The code generated to
accomplish this creates temporary, thread-specific copies of ASUM for each
thread that runs the loop. When each parallel thread completes its
portion of the loop, thread 0 for the current spawn context accumulates
the thread-specific values into the global ASUM.

The following Fortran example shows the use of the reduction directive
on the above code. loop_parallel is described on on page 179.
loop_private is described on on page 210.

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP), REDUCTION(SUM)
 DO I = 1, N
 .
 .
 .
 FUNCTEMP = FUNC(X(I))
 SUM = SUM + FUNCTEMP
 .
 .
 .
 ENDDO

110 Chapter 6

Parallel optimization features
Preventing parallelization

Preventing parallelization
You can prevent parallelization on a loop-by-loop basis using the
no_parallel directive or pragma. The form of this directive and
pragma is shown in Table 14.

Table 14 Form of no_parallel directive and pragma

Use these directives to prevent parallelization of the loop that
immediately follows them. Only parallelization is inhibited; all other
loop optimizations are still applied.

 Example no_parallel

The following Fortran example illustrates the use of no_parallel :

 DO I = 1, 1000
C$DIR NO_PARALLEL
 DO J = 1, 1000
 A(I,J) = B(I,J)
 ENDDO
 ENDDO

In this example, parallelization of the J loop is prevented. The I loop can
still be parallelized.

The +Onoautopar compiler option is available to disable automatic
parallelization but allows parallelization of directive-specified loops.
Refer to “Controlling optimization,” on page 113, and “Parallel
programming techniques,” on page 175, for more information on
+Onoautopar .

Language Form

Fortran C$DIR NO_PARALLEL

C #pragma _CNX no_parallel

Chapter 6 111

Parallel optimization features
Parallelism in the aC++ compiler

Parallelism in the aC++ compiler
Parallelism in the aC++ compiler is available through the use of the
following command-line options or libraries:

• +O3 +Oparallel or +O4 +Oparallel optimization options—
Automatic parallelization is available from the compiler; see the
section “Levels of parallelism” on page 94 for more information.

• HP MPI—HP’s implementation of the message-passing interface; see
the HP MPI User’s Guide for more information.

• Pthreads (POSIX threads)— See the pthread(3t) man page or the
manual Programming with Threads on HP-UX for more information.

None of the pragmas described in this book are currently available in the
HP aC++ compiler. However, aC++ does support the memory classes
briefly explained in “Controlling optimization,” on page 113, and more
specifically in “Memory classes,” on page 223. These classes are
implemented through the storage class specifiers node_private and
thread_private .

112 Chapter 6

Parallel optimization features
Cloning across multiple source files

Cloning across multiple source files
Cloning is the replacement of a call to a routine by a call to a clone of that
routine. The clone is optimized differently than the original routine.
Cloning can expose additional opportunities for interprocedural
optimization.

Cloning at +O4 is performed across all procedures within the program.
Cloning at +O3 is done within one file. Cloning is enabled by default. It is
disabled by specifying the +Onoinline command-line option.

Chapter 7 113

Controlling optimization

7 Controlling optimization

The HP-UX compiler set includes a group of optimization controls that
are used to improve code performance. These controls can be invoked
from either the command line or from within a program using certain
directives and pragmas.

This chapter includes a discussion of the following topics:

• Command-line optimization options

• Invoking command-line options

• C aliasing options

• Optimization directives and pragmas

Refer to Chapter 3, “Optimization levels” for information on coding
guidelines that assist the optimizer. See the f90(1), cc(1), and aCC(1)
man pages for information on compiler options in general.

NOTE The HP aC++ compiler does not support the pragmas described in this
chapter.

114 Chapter 7

Controlling optimization
Command-line optimization options

Command-line optimization options
This section lists the command-line optimization options available for
use with the HP C, C++, and Fortran 90 compilers. Table 15 describes
the options and the optimization levels at which they are used.

Table 15 Command-line optimization options

Optimization options
Valid

optimization
levels

Command-line options

+O[no]aggressive +O2 , +O3, +O4

+O[no]all all

+O[no]autopar
(must be used with the +Oparallel option at +O3 or
above)

+O3, +O4

+O[no]conservative +O2 , +O3, +O4

+O[no]dataprefetch +O2 , +O3, +O4

+O[no]dynsel
(must be used with the +Oparallel option at +O3 or
above)

+O3, +O4

+O[no]entrysched +O1 , +O2,+O3 ,
+O4

+O[no]fail_safe +O1 , +O2,+O3 ,
+O4

+O[no]fastaccess all

+O[no]fltacc +O2 , +O3, +O4

+O[no]global_ptrs_unique[= namelist]
(C only)

+O2, +O3, +O4

+O[no]info all

Chapter 7 115

Controlling optimization
Command-line optimization options

+O[no]initcheck +O2 , +O3, +O4

+O[no]inline[=namelist] +O3 , +O4

+Oinline_budget =n +O3, +O4

+O[no]libcalls all

+O[no]limit +O2 , +O3, +O4

+O[no]loop_block +O3 , +O4

+O[no]loop_transform +O3 , +O4

+O[no]loop_unroll[= unroll_factor] +O2 , +O3, +O4

+O[no]loop_unroll_jam +O3 , +O4

+O[no]moveflops +O2 , +O3, +O4

+O[no]multiprocessor +O2 , +O3, +O4

+O[no]parallel +O3 , +O4

+O[no]parmsoverlap +O2 , +O3, +O4

+O[no]pipeline +O2 , +O3, +O4

+O[no]procelim all

+O[no]ptrs_ansi +O2 , +O3, +O4

+O[no]ptrs_strongly_typed +O2 , +O3, +O4

+O[no]ptrs_to_globals[=namelist]
(C only)

+O2, +O3, +O4

+O[no]regreassoc +O2 , +O3, +O4

+O[no]report[= report_type] +O3 , +O4

+O[no]sharedgra +O2 , +O3, +O4

Optimization options
Valid

optimization
levels

116 Chapter 7

Controlling optimization
Command-line optimization options

+O[no]signedpointers
(C/C++ only)

+O2, +O3, +O4

+O[no]size +O2 , +O3, +O4

+O[no]static_prediction all

+O[no]vectorize +O3 , +O4

+O[no]volatile +O1 , +O2, +O3,
+O4

+O[no]whole_program_mode +O4

Optimization options
Valid

optimization
levels

Chapter 7 117

Controlling optimization
Invoking command-line options

Invoking command-line options
At each optimization level, you can turn specific optimizations on or off
using the +O[no] optimization option. The optimization parameter is the
name of a specific optimization. The optional prefix [no] disables the
specified optimization.

The following sections describe the optimizations that are turned on or
off, their defaults, and the optimization levels at which they may be used.
In syntax descriptions, namelist represents a comma-separated list of
names.

+O[no]aggressive

Optimization level: +O2, +O3, +O4

Default: +Onoaggressive

+O[no]aggressive enables or disables optimizations that can result in
significant performance improvement, and can change a program’s
behavior. This includes the optimizations invoked by the following
advanced options (these are discussed separately in this chapter):

• +Osignedpointers (C and C++)

• +Oentrysched

• +Onofltacc

• +Olibcalls

• +Onoinitcheck

• +Ovectorize

118 Chapter 7

Controlling optimization
Invoking command-line options

+O[no]all

Optimization level: all

Default: +Onoall

Equivalent option: +Oall option is equivalent to specifying +O4
+Oaggressive +Onolimit

+Oall performs maximum optimization, including aggressive
optimizations and optimizations that can significantly increase compile
time and memory usage.

+O[no]autopar

Optimization level: +O3, +O4 (+Oparallel must also be specified)

Default: +Oautopar

When used with +Oparallel option, +Oautopar causes the compiler to
automatically parallelize loops that are safe to parallelize. A loop is
considered safe to parallelize if its iteration count can be determined at
runtime before loop invocation. It must also contain no loop-carried
dependences, procedure calls, or I/O operations.

A loop-carried dependence exists when one iteration of a loop assigns a
value to an address that is referenced or assigned on another iteration.

When used with +Oparallel , the +Onoautopar option causes the
compiler to parallelize only those loops marked by the loop_parallel
or prefer_parallel directives or pragmas. Because the compiler does
not automatically find parallel tasks or regions, user-specified task and
region parallelization is not affected by this option.

C pragmas and Fortran directives are used to improve the effect of
automatic optimizations and to assist the compiler in locating additional
opportunities for parallelization. See “Optimization directives and
pragmas” on page 146 for more information.

Chapter 7 119

Controlling optimization
Invoking command-line options

+O[no]conservative

Optimization level: +O2, +O3, +O4

Default: +Onoconservative

Equivalent option: +Oconservative is equivalent to
+Onoaggressive

+O[no]conservative causes the optimizer to make or not make
conservative assumptions about the code when optimizing.
+Oconservative is useful in assuming a particular program’s coding
style, such as whether it is standard-compliant. Specifying
+Onoconservative disables any optimizations that assume
standard-compliant code.

+O[no]dataprefetch

Optimization level: +O2, +O3, +O4

Default: +Onodataprefetch

When +Odataprefetch is used, the optimizer inserts instructions
within innermost loops to explicitly prefetch data from memory into the
data cache. For cache lines containing data to be written,
+Odataprefetch prefetches the cache lines so that they are valid for
both read and write access. Data prefetch instructions are inserted only
for data referenced within innermost loops using simple loop-varying
addresses in a simple arithmetic progression. It is only available for
PA-RISC 2.0 targets.

The math library libm contains special prefetching versions of vector
routines. If you have a PA-RISC 2.0 application containing operations on
arrays larger than one megabyte in size, using +Ovectorize in
conjunction with +Odataprefetch may substantially improve
performance.

You can also use the +Odataprefetch option for applications that have
high data cache miss overhead.

120 Chapter 7

Controlling optimization
Invoking command-line options

+O[no]dynsel

Optimization level: +O3, +O4 (+Oparallel must also be specified)

Default: +Odynsel

When specified with +Oparallel , +Odynsel enables workload-based
dynamic selection. For parallelizable loops whose iteration counts are
known at compile time, +Odynsel causes the compiler to generate either
a parallel or a serial version of the loop—depending on which is more
profitable.

This optimization also causes the compiler to generate both parallel and
serial versions of parallelizable loops whose iteration counts are
unknown at compile time. At runtime, the loop’s workload is compared to
parallelization overhead, and the parallel version is run only if it is
profitable to do so.

The +Onodynsel option disables dynamic selection and tells the
compiler that it is profitable to parallelize all parallelizable loops. The
dynsel directive and pragma are used to enable dynamic selection for
specific loops, when +Onodynsel is in effect. See the section “Dynamic
selection” on page 102 for additional information.

+O[no]entrysched

Optimization level: +O1, +O2, +O3, +O4

Default: +Onoentrysched

+Oentrysched optimizes instruction scheduling on a procedure’s entry
and exit sequences by unwinding in the entry and exit regions.
Subsequently, this option is used to increase the speed of an application.

+O[no]entrysched can also change the behavior of programs
performing exception-handling or that handle asynchronous interrupts.
The behavior of setjmp() and longjmp() is not affected.

Chapter 7 121

Controlling optimization
Invoking command-line options

+O[no]fail_safe

Optimization level: +O1, +O2, +O3, +O4

Default: +Ofail_safe

+Ofail_safe allows your compilations to continue when internal
optimization errors are detected. When an error is encountered, this
option issues a warning message and restarts the compilation at +O0.
The +Ofail_safe option is disabled when you specify +Oparallel with
+O3 or +O4 to compile with parallelization.

Using +Onofail_safe aborts your compilation when internal
optimization errors are detected.

+O[no]fastaccess

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onofastaccess at +O0, +O1, +O2 and +O3;
+Ofastaccess at +O4

+Ofastaccess performs optimization for fast access to global data
items. Use +Ofastaccess to improve execution speed at the expense of
longer compile times.

+O[no]fltacc

Optimization level: +O2, +O3, +O4

Default: none (See Table 16.)

+O[no]fltacc enables or disables optimizations that cause imprecise
floating-point results.

+Ofltacc disables optimizations that cause imprecise floating-point
results. Specifying +Ofltacc disables the generation of Fused
Multiply-Add (FMA) instructions, as well as other floating-point
optimizations. Use +Ofltacc if it is important that the compiler
evaluates floating-point expressions according to the order specified by
the language standard.

+Onofltacc improves execution speed at the expense of floating-point
precision. The +Onofltacc option allows the compiler to perform
floating-point optimizations that are algebraically correct, but may

122 Chapter 7

Controlling optimization
Invoking command-line options

result in numerical differences. These differences are generally
insignificant. The +Onofltacc option also enables the optimizer to
generate FMA instructions.

If you optimize code at +O2 or higher, and do not specify +Onofltacc or
+Ofltacc , the optimizer uses FMA instructions. However, it does not
perform floating-point optimizations that involve expression reordering.
FMA is implemented by the PA-8x00 instructions FMPYFADD and
FMPYNFADD and improves performance. Occasionally, these instructions
may produce results that may differ in accuracy from results produced by
code without FMA. In general, the differences are slight.

Table 16 presents a summary of the preceding information.

Table 16 +O[no]fltacc and floating-point optimizations

a. +O[no]fltacc is only available at +O2 and above.

+O[no]global_ptrs_unique[= namelist]

Optimization level: +O2, +O3, +O4

Default: +Onoglobal_ptrs_unique

NOTE This option is not available in Fortran or C++.

Using this C compiler option identifies unique global pointers so that the
optimizer can generate more efficient code in the presence of unique
pointers, such as using copy propagation and common subexpression
elimination. A global pointer is unique if it does not alias with any
variable in the entire program.

This option supports a comma-separated list of unique global pointer
variable names, represented by namelist in
+O[no]global_ptrs_unique[= namelist] . If namelist is not specified,
using +O[no]global_ptrs_unique informs the compiler that all [no]
global pointers are unique.

Option specifieda FMA optimizations Other floating-point
optimizations

+Ofltacc Disabled Disabled

+Onofltacc Enabled Enabled

neither option
is specified

Enabled Disabled

Chapter 7 123

Controlling optimization
Invoking command-line options

The example below states that no global pointers are unique, except a
and b:

+Oglobal_ptrs_unique=a,b

The next example says that all global pointers are unique except a and b:

+Onoglobal_ptrs_unique=a,b

+O[no]info

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onoinfo

+Oinfo displays informational messages about the optimization process.
This option is used at all optimization levels, but is most useful at +O3
and +O4. For more information about this option, see Chapter 8,
“Optimization Report” on page 113.

+O[no]initcheck

Optimization level: +O2, +O3, +O4

Default: unspecified

+O[no]initcheck performs an initialization check for the optimizer.
The optimizer has three possible states that check for initialization: on,
off, or unspecified.

• When on (+Oinitcheck), the optimizer initializes to zero any local,
scalar, and nonstatic variables that are uninitialized with respect to
at least one path leading to a use of the variable.

• When off (+Onoinitcheck), the optimizer issues warning messages
when it discovers definitely uninitialized variables, but does not
initialize them.

• When unspecified, the optimizer initializes to zero any local, scalar,
nonstatic variables that are definitely uninitialized with respect to all
paths leading to a use of the variable.

124 Chapter 7

Controlling optimization
Invoking command-line options

+O[no]inline[= namelist]
Optimization level: +O3, +O4

Default: +Oinline

When +Oinline is specified without a name list, any function can be
inlined. For successful inlining, follow the prototype definitions for
function calls in the appropriate header files.

When specified with a name list, the named functions are important
candidates for inlining. For example, the following statement indicates
that inlining be strongly considered for foo and bar :

+Oinline=foo,bar +Onoinline

All other routines are not considered for inlining because +Onoinline is
given.

NOTE The Fortran 90 and aC++ compilers accept only +O[no]inline .
No namelist values are accepted.

Use the +Onoinline[= namelist] option to exercise precise control
over which subprograms are inlined. Use of this option is guided by
knowledge of the frequency with which certain routines are called and
may be warranted by code size concerns.

When this option is disabled with a name list, the compiler does not
consider the specified routines as candidates for inlining. For example,
the following statement indicates that inlining should not be considered
for baz and x :

+Onoinline=baz,x

All other routines are considered for inlining because +Oinline is the
default.

Chapter 7 125

Controlling optimization
Invoking command-line options

+Oinline_budget= n
Optimization level: +O3, +O4

Default: +Oinline_budget=100

In +Oinline_budget= n, n is an integer in the range 1 to 1000000 that
specifies the level of aggressiveness, as follows:

n = 100 Default level of inlining

n > 100 More aggressive inlining

The optimizer is less restricted by compilation time
and code size when searching for eligible routines to
inline

n = 1 Only inline if it reduces code size

The +Onolimit and +Osize options also affect inlining. Specifying the
+Onolimit option implies specifying +Oinline_budget=200 . The
+Osize option implies +Oinline_budget=1 . However,
+Oinline_budget takes precedence over both of these options. This
means that you can override the effects on inlining of the +Onolimit
and +Osize options, by specifying the +Oinline_budget option on the
same compile line.

+O[no]libcalls

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onolibcalls at +O0 and +O1;
+Olibcalls at +O2, +O3, and +O4

+Olibcalls increases the runtime performance of code that calls
standard library routines in simple contexts. The +Olibcalls option
expands the following library calls inline:

• strcpy()

• sqrt()

• fabs()

• alloca()

Inlining takes place only if the function call follows the prototype
definition in the appropriate header file. A single call to printf() may
be replaced by a series of calls to putchar() . Calls to sprintf() and

126 Chapter 7

Controlling optimization
Invoking command-line options

strlen() may be optimized more effectively, including elimination of
some calls producing unused results. Calls to setjmp() and longjmp()
may be replaced by their equivalents _setjmp() and _longjmp() ,
which do not manipulate the process’s signal mask.

Using the +Olibcalls option invokes millicode versions of frequently
called math functions. Currently, there are millicode versions for the
following functions:

See the HP-UX Floating-Point Guide for the most up-to-date listing of
the math library functions.

+Olibcalls also improves the performance of selected library routines
(when you are not performing error checking for these routines). The
calling code must not expect to access ERRNO after the function’s return.

Using +Olibcalls with +Ofltacc gives different floating-point
calculation results than those given using +Olibcalls without
+Ofltacc .

+O[no]limit

Optimization level: +O2, +O3, +O4

Default: +Olimit

The +Olimit option suppresses optimizations that significantly increase
compile-time or that can consume a considerable amount of memory.

The +Onolimit option allows optimizations to be performed, regardless
of their effects on compile-time and memory usage. Specifying the
+Onolimit option implies specifying +Oinline_budget=200 . See the
section “+Oinline_budget= n” on page 125 for more information.

acos asin atan atan2

cos exp log log10

pow sin tan

Chapter 7 127

Controlling optimization
Invoking command-line options

+O[no]loop_block

Optimization level: +O3, +O4

Default: +Onoloop_block

+O[no]loop_block enables or disables blocking of eligible loops for
improved cache performance. The +Onoloop_block option disables both
automatic and directive-specified loop blocking. For more information on
loop blocking, see the section “Loop blocking” on page 70.

+O[no]loop_transform

Optimization level: +O3, +O4

Default: +Oloop_transform

+O[no]loop_transform enables or disables transformation of eligible
loops for improved cache performance. The most important
transformation is the interchange of nested loops to make the inner loop
unit stride, resulting in fewer cache misses.

The other transformations affected by +O[no]loop_transform are loop
distribution, loop blocking, loop fusion, loop unroll, and loop unroll and
jam. See “Optimization levels,” on page 25 for information on loop
transformations.

If you experience any problem while using +Oparallel ,
+Onoloop_transform may be a helpful option.

+O[no]loop_unroll[= unroll factor]

Optimization level: +O2, +O3, +O4

Default: +Oloop_unroll=4

+Oloop_unroll enables loop unrolling. When you use +Oloop_unroll ,
you can also suggest the unroll factor to control the code expansion. The
default unroll factor is four, meaning that the loop body is replicated four
times. By experimenting with different factors, you may improve the
performance of your program. In some cases, the compiler uses its own
unroll factor.

128 Chapter 7

Controlling optimization
Invoking command-line options

The +Onoloop_unroll option disables partial and complete unrolling.
Loop unrolling improves efficiency by eliminating loop overhead, and can
create opportunities for other optimizations, such as improved register
use and more efficient scheduling. See the section “Loop unrolling” on
page 45 for more information on unrolling.

+O[no]loop_unroll_jam

Optimization level: +O3, +O4

Default: +Onoloop_unroll_jam

The +O[no]loop_unroll_jam option enables or disables loop unrolling
and jamming. The +Onoloop_unroll_jam option (the default) disables
both automatic and directive-specified unroll and jam. Loop unrolling
and jamming increases register exploitation. For more information on
the unroll and jam optimization, see the section “Loop unroll and jam” on
page 84.

+O[no]moveflops

Optimization level: +O2, +O3, +O4

Default: +Omoveflops

+O[no]moveflops allows or disallows moving conditional floating-point
instructions out of loops. The behavior of floating-point exception
handling may be altered by this option.

Use +Onomoveflops if floating-point traps are enabled and you do not
want the behavior of floating-point exceptions to be altered by the
relocation of floating-point instructions.

Chapter 7 129

Controlling optimization
Invoking command-line options

+O[no]multiprocessor

Optimization level: +O2, +O3, +O4

Default: +Onomultiprocesssor

Specifying the +Omultiprocessor option at +O2 and above tells the
compiler to appropriately optimize several different processes on
multiprocessor machines. The optimizations are those appropriate for
executables and shared libraries.

Enabling this option incorrectly (such as on a uniprocessor machine) may
cause performance problems.

Specifying +Onomultiprocessor (the default) disables the
optimization of more than one process running on multiprocessor
machines.

+O[no]parallel

Optimization level: +O3, +O4

Default: +Onoparallel

The +Onoparallel option is the default for all optimization levels. This
option disables automatic and directive-specified parallelization.

If you compile one or more files in an application using +Oparallel ,
then the application must be linked (using the compiler driver) with the
+Oparallel option to link in the proper start-up files and runtime
support.

The +Oparallel option causes the compiler to:

• Recognize the directives and pragmas that involve parallelism, such
as begin_tasks , loop_parallel , and prefer_parallel

• Look for opportunities for parallel execution in loops

The following methods are used to specify the number of processors used
in executing your parallel programs:

• loop_parallel(max_threads= m) directive and pragma

• prefer_parallel(max_threads= m) directive and pragma

130 Chapter 7

Controlling optimization
Invoking command-line options

For a description of these directives and pragmas, see “Parallel
programming techniques,” on page 175 and “Parallel
synchronization,” on page 233. These pragmas are not available in
the HP aC++ compiler.

• MP_NUMBER_OF_THREADS environment variable, which is read at
runtime by your program. If this variable is set to some positive
integer n, your program executes on n processors. n must be less than
or equal to the number of processors in the system where the program
is executing.

The +Oparallel option is valid only at optimization level +O3 and
above. For information on parallelization, see the section “Levels of
parallelism” on page 94.

Using the +Oparallel option disables +Ofail_safe , which is enabled
by default. See the section “+O[no]fail_safe ” on page 121 for more
information.

+O[no]parmsoverlap

Optimization level: +O2, +O3, +O4

Default (Fortran): +Onoparmsoverlap

Default (C/C++): +Oparmsoverlap

+Oparmsoverlap causes the optimizer to assume that the actual
arguments of function calls overlap in memory.

+O[no]pipeline

Optimization level: +O2, +O3, +O4

Default: +Opipeline

+O[no]pipeline enables or disables software pipelining. If program
size is more important than execution speed, use +Onopipeline .

Software pipelining is particularly useful for loops containing arithmetic
operations on REAL or REAL*8 variables in Fortran or on float or
double variables in C and C++.

Chapter 7 131

Controlling optimization
Invoking command-line options

+O[no]procelim

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onoprocelim at +O0, +01 , +O2, +O3;
+Oprocelim at +O4

When +Oprocelim is specified, procedures not referenced by the
application are eliminated from the output executable file. The
+Oprocelim option reduces the size of the executable file, especially
when optimizing at +O3 and +O4, at which inlining may have removed
all of the calls to some routines.

When +Onoprocelim is specified, procedures not referenced by the
application are not eliminated from the output executable file.

If the +Oall option is enabled, the +Oprocelim option is enabled.

+O[no]ptrs_ansi

Optimization level: +O2, +O3, +O4

Default: +Onoptrs_ansi

The +Optrs_ansi option makes the following two assumptions, which
the more aggressive +Optrs_strongly_typed does not:

• int *p is assumed to point to an int field of a struct or union.

• char * is assumed to point to any type of object.

NOTE This option is not available in C++.

When both +Optrs_ansi and +Optrs_strongly_typed are specified,
+Optrs_ansi takes precedence.

132 Chapter 7

Controlling optimization
Invoking command-line options

+O[no]ptrs_strongly_typed

Optimization level: +O2, +O3, +O4

Default: +Onoptrs_strongly_typed

Use the C compiler option +Optrs_strongly_typed when pointers are
type-safe. The optimizer can use this information to generate more
efficient code.

NOTE This option is not available in C++.

Type-safe (strongly-typed) pointers point to a specific type that, in turn,
only point to objects of that type. For example, a pointer declared as a
pointer to an int is considered type-safe if that pointer points to an
object of type int only.

Based on the type-safe concept, a set of groups are built based on object
types. A given group includes all the objects of the same type.

In type-inferred aliasing, any pointer of a type in a given group (of
objects of the same type) can only point to any object from the same
group. It cannot point to a typed object from any other group.

Type casting to a different type violates type-inferring aliasing rules.
Dynamic casting is, however, allowed, as shown in Example 41.

 Example Data type interaction

The optimizer generally spills all global data from registers to memory
before any modification to global variables or any loads through pointers.
However, the optimizer can generate more efficient code if it knows how
various data types interact.

Chapter 7 133

Controlling optimization
Invoking command-line options

Consider the following example (line numbers are provided for
reference):

1 int *p;
2 float *q;
3 int a,b,c;
4 float d,e,f;
5 foo()
6 {
7 for (i=1;i<10;i++) {
8 d=e;
9 *p=...;
10 e=d+f;
11 f=*q;
12 }
13 }

With +Onoptrs_strongly_typed turned on, the pointers p and q are
assumed to be disjoint because the types they point to are different types.
Without type-inferred aliasing, *p is assumed to invalidate all the
definitions. So, the use of d and f on line 10 have to be loaded from
memory. With type-inferred aliasing, the optimizer can propagate the
copy of d and f , thus avoiding two loads and two stores.

This option is used for any application involving the use of pointers,
where those pointers are type safe. To specify when a subset of types are
type-safe, use the ptrs_strongly_typed pragma. The compiler issues
warnings for any incompatible pointer assignments that may violate the
type-inferred aliasing rules discussed in the section “C aliasing options”
on page 143.

 Example Unsafe type cast

Any type cast to a different type violates type-inferred aliasing rules. Do
not use +Optrs_strongly_typed with code that has these “unsafe”
type casts. Use the no_ptrs_strongly_typed pragma to prevent the
application of type-inferred aliasing to the unsafe type casts.

struct foo{
 int a;
 int b;
 } *P;

 struct bar {
 float a;
 int b;
 float c;
 } *q;

 P = (struct foo *) q;
 /* Incompatible pointer assignment
 through type cast */

134 Chapter 7

Controlling optimization
Invoking command-line options

 Example Generally applying type aliasing

Dynamic casting is allowed with +Optrs_strongly_typed or
+Optrs_ansi . A pointer dereference is called a dynamic cast if a cast is
applied on the pointer to a different type.

In the example below, type-inferred aliasing is generally applied on P,
not just to the particular dereference. Type-aliasing is applied to any
other dereferences of P.

 struct s {
 short int a;
 short int b;
 int c;
 } *P
 * (int *)P = 0;

For more information about type aliasing, see the section “C aliasing
options” on page 143.

Chapter 7 135

Controlling optimization
Invoking command-line options

+O[no]ptrs_to_globals[= namelist]
Optimization level: +O2, +O3, +O4

Default: +Optrs_to_globals

By default, global variables are conservatively assumed to be modified
anywhere in the program. Use the C compiler option
+Onoptrs_to_globals to specify which global variables are not
modified through pointers. This allows the optimizer to make the
program run more efficiently by incorporating copy propagation and
common subexpression elimination.

NOTE This option is not available in C++.

This option is used to specify all global variables that are not modified
using pointers, or to specify a comma-separated list of global variables
that are not modified using pointers.

The on state for this option disables some optimizations, such as
aggressive optimizations on the program’s global symbols.

For example, use the command-line option
+Onoptrs_to_globals=a,b,c to specify global variables a, b, and c to
not be accessible through pointers. The result (shown below) is that no
pointer can access these global variables. The optimizer performs copy
propagation and constant folding because storing to *p does not modify a
or b.

int a, b, c;
 float *p;
 foo()
 {
 a = 10;
 b = 20;
 *p = 1.0;
 c = a + b;
 }

If all global variables are unique, use the +Onoptrs_to_globals option
without listing the global variables (that is, without using namelist).

136 Chapter 7

Controlling optimization
Invoking command-line options

In the example below, the address of b is taken. This means b is accessed
indirectly through the pointer. You can still use +Onoptrs_to_globals
as:

+Onoptrs_to_globals +Optrs_to_globals=b.
int b,c;
int *p
p=&b;
foo()

For more information about type aliasing, see the section “C aliasing
options” on page 143.

+O[no]regreassoc

Optimization level: +O2, +O3, +O4

Default: +Oregreassoc

+O[no]regreassoc enables or disables register reassociation. This is a
technique for folding and eliminating integer arithmetic operations
within loops, especially those used for array address computations.

This optimization provides a code-improving transformation
supplementing loop-invariant code motion and strength reduction.
Additionally, when performed in conjunction with software pipelining,
register reassociation can also yield significant performance
improvement.

Chapter 7 137

Controlling optimization
Invoking command-line options

+O[no]report[= report_type]

Optimization level: +O3, +O4

Default: +Onoreport

+Oreport[= report_type] specifies the contents of the Optimization
Report. Values of report_type and the Optimization Reports they produce
are shown in Table 17.

Table 17 Optimization Report contents

The Loop Report gives information on optimizations performed on loops
and calls. Using +Oreport (without =report_type) also produces the
Loop Report.

The Privatization Table provides information on loop variables that are
privatized by the compiler.

+Oreport[= report_type] is active only at +O3 and above.
The +Onoreport option does not accept any of the report_type values.
For more information about the Optimization Report, see “Optimization
Report,” on page 151.

+Oinfo also displays information on the various optimizations being
performed by the compilers. +Oinfo is used at any optimization level,
but is most useful at +O3 and above. The default at all optimization
levels is +Onoinfo .

report_type value Report contents

all Loop Report and Privatization Table

loop Loop Report

private Loop Report and Privatization Table

report_type not given
(default)

Loop Report

138 Chapter 7

Controlling optimization
Invoking command-line options

+O[no]sharedgra

Optimization level: +O2, +O3, +O4

Default: +Osharedgra

The +Onosharedgra option disables global register allocation for
shared-memory variables that are visible to multiple threads. This
option may help if a variable shared among parallel threads is causing
wrong answers. See the section “Global register allocation (GRA)” on
page 43 for more information.

Global register allocation (+Osharedgra) is enabled by default at
optimization level +O2 and higher.

+O[no]signedpointers

Optimization level: +O2, +O3, +O4

Default: +Onosignedpointers

NOTE This option is not available in the HP Fortran 90 compiler.

The C and C++ option +O[no]signedpointers requests that the
compiler perform or not perform optimizations related to treating
pointers as signed quantities. This helps improve application runtime
speed. Applications that allocate shared memory and that compare a
pointer to shared memory with a pointer to private memory may run
incorrectly if this optimization is enabled.

+O[no]size

Optimization level: +O2, +O3, +O4

Default: +Onosize

The +Osize option suppresses optimizations that significantly increase
code size. Specifying +Osize implies specifying +Oinline_budget=1 .
See the section “+Oinline_budget= n” on page 125 for additional
information.

The +Onosize option does not prevent optimizations that can increase
code size.

Chapter 7 139

Controlling optimization
Invoking command-line options

+O[no]static_prediction

Optimization level: +O0, +O1, +O2, +O3, +O4

Default: +Onostatic_prediction

+Ostatic_prediction turns on static branch prediction for
PA-RISC 2.0 targets. Use +Ostatic_prediction to better optimize
large programs with poor instruction locality, such as operating system
and database code.

PA-RISC 2.0 predicts the direction conditional branches go in one of two
ways:

• Dynamic branch prediction uses a hardware history mechanism to
predict future executions of a branch from its last three executions. It
is transparent and quite effective, unless the hardware buffers
involved are overwhelmed by a large program with poor locality.

• Static branch prediction, when enabled, predicts each branch based
on implicit hints encoded in the branch instruction itself. The static
branch prediction is responsible for handling large codes with poor
locality for which the small dynamic hardware facility proves
inadequate.

+O[no]vectorize

Optimization level: +O3, +O4

Default: +Onovectorize

+Ovectorize allows the compiler to replace certain loops with calls to
vector routines. Use +Ovectorize to increase the execution speed of
loops.

NOTE This option is not available in the HP aC++ compiler.

When +Onovectorize is specified, loops are not replaced with calls to
vector routines.

Because the +Ovectorize option may change the order of floating-point
operations in an application, it may also change the results of those
operations slightly. See the HP-UX Floating-Point Guide for more
information.

140 Chapter 7

Controlling optimization
Invoking command-line options

The math library contains special prefetching versions of vector routines.
If you have a PA2.0 application containing operations on large arrays
(larger than 1 Megabyte in size), using +Ovectorize in conjunction
with +Odataprefetch may improve performance.

+Ovectorize is also included as part of the +Oaggressive and +Oall
options.

+O[no]volatile

Optimization level: +O1, +O2, +O3, +O4

Default: +Onovolatile

NOTE This option is not available in the HP Fortran 90 compiler.

The C and C++ option +Ovolatile implies that memory references to
global variables cannot be removed during optimization.

The +Onovolatile option indicates that all globals are not of volatile
class. This means that references to global variables are removed during
optimization.

Use this option to control the volatile semantics for all global variables.

+O[no]whole_program_mode

Optimization level: +O4

Default: +Onowhole_program_mode

Use +Owhole_program_mode to increase performance speed. This
should be used only when you are certain that only the files compiled
with +Owhole_program_mode directly access any globals that are
defined in these files.

NOTE This option is not available in the HP Fortran 90 or aC++ compilers.

+Owhole_program_mode enables the assertion that only the files that
are compiled with this option directly reference any global variables and
procedures that are defined in these files. In other words, this option
asserts that there are no unseen accesses to the globals.

When this assertion is in effect, the optimizer can hold global variables
in registers longer and delete inlined or cloned global procedures.

Chapter 7 141

Controlling optimization
Invoking command-line options

All files compiled with +Owhole_program_mode must also be compiled
with +O4. If any of the files were compiled with +O4, but were not
compiled with +Owhole_program_mode , the linker disables the
assertion for all files in the program.

The default, +Onowhole_program_mode , disables the assertion noted
above.

+tm target
Optimization level: +O0, +O1, +O2, +O3, +O4

Default target value: corresponds to the machine on which you invoke
the compiler.

This option specifies the target machine architecture for which
compilation is to be performed. Using this option causes the compiler to
perform architecture-specific optimizations.

target takes one of the following values:

• K8000 to specify K-Class servers using PA-8000 processors

• V2000 to specify V2000 servers

• V2200 to specify V2200 servers

• V2250 to specify V2250 servers

This option is valid at all optimization levels. The default target value
corresponds to the machine on which you invoke the compiler.

Using the +tm target option implies +DA and +DS settings as described in
Table 18. +DAarchitecture causes the compiler to generate code for the
architecture specified by architecture. +DSmodel causes the compiler to
use the instruction scheduler tuned to model. See the f90(1) man page,
aCC(1) page, or the cc(1) man page for more information describing the
+DA and +DS options.

142 Chapter 7

Controlling optimization
Invoking command-line options

Table 18 +tm target and +DA/+DS

If you specify +DA or +DS on the compiler command line, your setting
takes precedence over the setting implied by +tm target.

target value specified +DAarchitecture
implied

+DSmodel
implied

K8000 2.0 2.0

V2000 2.0 2.0

V2200 2.0 2.0

V2250 2.0 2.0

Chapter 7 143

Controlling optimization
C aliasing options

C aliasing options
The optimizer makes a conservative assumption that a pointer can point
to any object in the entire application. Command-line options to the C
compiler are available to inform the optimizer of an application’s pointer
usage. Using this information, the optimizer can generate more efficient
code, due to the elimination of some false assumptions.

You can direct pointer behavior to the optimizer by using the following
options:

• +O[no]ptrs_strongly_typed

• +O[no]ptrs_to_globals[= namelist]

• +O[no]global_ptrs_unique[= namelist]

• +O[no]ptrs_ansi

where

namelist is a comma-separated list of global variable names.

The following are type-inferred aliasing rules that apply when using
these +O optimization options:

• Type-aliasing optimizations are based on the assumption that pointer
dereferences obey their declared types.

• A C variable is considered address-exposed if and only if the address
of that variable is assigned to another variable or passed to a function
as an actual parameter. In general, address-exposed objects are
collected into a separate group, based on their declared types. Global
and static variables are considered address-exposed by default. Local
variables and actual parameters are considered address-exposed only
if their addresses have been computed using the address operator &.

• Dereferences of pointers to a certain type are assumed to only alias
with the corresponding equivalent group. An equivalent group
includes all the address-exposed objects of the same type. The
dereferences of pointers are also assumed to alias with other pointer
dereferences associated with the same group.

144 Chapter 7

Controlling optimization
C aliasing options

For example, in the following line:

int *p, *q;

*p and *q are assumed to alias with any objects of type int . Also, *p
and *q are assumed to alias with each other.

• Signed/unsigned type distinctions are ignored in grouping objects into
an equivalent group. Likewise, long and int types are considered to
map to the same equivalent group. However, the volatile type
qualifier is considered significant in grouping objects into equivalent
groups. For example, a pointer to int is not considered to alias with a
volatile int object.

• If two type names reduce to the same type, they are considered
synonymous.

In the following example, both types type_old and type_new reduce
to the same type, struct foo .

typedef struct foo_st type_old;
typedef type_old type_new;

• Each field of a structure type is placed in a separate equivalent group
that is distinct from the equivalent group of the field’s base type. The
assumption here is that a pointer to int is not assigned the address
of a structure field whose type is int . The actual type name of a
structure type is not considered significant in constructing equivalent
groups. For example, dereferences of a struct foo pointer and a
struct bar pointer is assumed to alias with each other even if
struct foo and struct bar have identical field declarations.

• All fields of a union type are placed in the same equivalent group,
which is distinct from the equivalent group of any of the field’s base
types. This means that all dereferences of pointers to a particular
union type are assumed to alias with each other, regardless of which
union field is being accessed.

• Address-exposed array variables are grouped into the equivalent
group of the array element type.

• Applying an explicit pointer typecast to an expression value causes
any later use of the typecast expression value to be associated with
the equivalent group of the typecast expression value.

Chapter 7 145

Controlling optimization
C aliasing options

For example, an int pointer typecast into a float pointer and then
dereferenced is assumed to potentially access objects in the float
equivalent group—and not the int equivalent group.

However, type-incompatible assignments to pointer variables do not
alter the aliasing assumptions on subsequent references of such
pointer variables.

In general, type-incompatible assignments can potentially invalidate
some of the type-safe assumptions. Such constructs may elicit
compiler warning messages.

146 Chapter 7

Controlling optimization
Optimization directives and pragmas

Optimization directives and pragmas
This section lists the directives, and pragmas available for use in
optimization. Table 19 below describes the options and the optimization
levels at which they are used. The pragmas are not supported by the
aC++ compiler.

The loop_parallel , parallel , prefer_parallel , and
end_parallel options are described in “Parallel programming
techniques,” on page 175.

Table 19 Directive-based optimization options

Directives and Pragmas
Valid

Optimization
levels

block_loop [(block_factor= n)] +O3 , +O4

dynsel[(trip_count =n)] +O3 , +O4

no_block_loop +O3 , +O4

no_distribute +O3 , +O4

no_dynsel +O3 , +O4

no_loop_dependence(namelist) +O3 , +O4

no_loop_transform +O3 , +O4

no_parallel +O3 , +O4

no_side_effects +O3 , +O4

no_unroll_and_jam +O3 , +O4

reduction(namelist) +O3 , +O4

scalar +O3 , +O4

sync_routine(routinelist) +O3 , +O4

unroll_and_jam[(unroll_factor =n)] +O3 , +O4

Chapter 7 147

Controlling optimization
Optimization directives and pragmas

Rules for usage
The form of the optimization directives and pragmas is shown in
Table 20.

NOTE The HP aC++ compiler does not support the optimization pragmas
described in this section.

Table 20 Form of optimization directives and pragmas

where

directive-list
is a comma-separated list of one or more of the
directives/pragmas described in this chapter.

• Directive names are presented here in lowercase, and they may be
specified in either case in both languages. However, #pragma must
always appear in lowercase in C.

• In the sections that follow, namelist represents a comma-separated
list of names. These names can be variables, arrays, or COMMON
blocks. In the case of a COMMON block, its name must be enclosed
within slashes. The occurrence of a lowercase n or m is used to
indicate an integer constant.

• Occurrences of gate_var are for variables that have been or are being
defined as gates. Any parameters that appear within square brackets
([]) are optional.

Language Form

Fortran C$DIR directive-list

C #pragma _CNX directive-list

148 Chapter 7

Controlling optimization
Optimization directives and pragmas

block_loop[(block_factor= n)]

block_loop[(block_factor= n)] indicates a specific loop to block and,
optionally, the block factor n. This block factor is used in the compiler’s
internal computation of loop nest-based data reuse; this is the number of
times that the data reuse has resulted as a result of loop nesting. This
figure must be an integer constant greater than or equal to 2. If no
block_factor is specified, the compiler uses a heuristic to determine
the block_factor . For more information on loop blocking, refer to
“Optimization levels” on page 25.

dynsel[(trip_count=n)]

dynsel[(trip_count=n)] enables workload-based dynamic selection for
the immediately following loop. trip_count represents the
thread_trip_count attribute, and n is an integer constant.

• When thread_trip_count = n is specified, the serial version of the
loop is run if the iteration count is less than n. Otherwise, the
thread-parallel version is run.

• For more information on dynamic selection, refer to the description of
the optimization option “+O[no]dynsel ” on page 120.

no_block_loop

no_block_loop disables loop blocking on the immediately following
loop. For more information on loop blocking, see the description of
block_loop[(block_factor= n)] in this section, or refer to the
description of the optimization option “+O[no]loop_block ” on
page 127.

no_distribute

no_distribute disables loop distribution for the immediately following
loop. For more information on loop distribution, refer to the description of
the optimization option “+O[no]loop_transform ” on page 127.

Chapter 7 149

Controlling optimization
Optimization directives and pragmas

no_dynsel

no_dynsel disables workload-based dynamic selection for the
immediately following loop. For more information on dynamic selection,
refer to the description of the optimization option “+O[no]dynsel ” on
page 120.

no_loop_dependence(namelist)
no_loop_dependence(namelist) informs the compiler that the arrays
in namelist do not have any dependences for iterations of the
immediately following loop. Use no_loop_dependence for arrays only.
Use loop_private to indicate dependence-free scalar variables.

This directive or pragma causes the compiler to ignore any dependences
that it perceives to exist. This can enhance the compiler’s ability to
optimize the loop, including parallelization.

For more information on loop dependence, refer to “Loop-carried
dependences” on page 284.

no_loop_transform

no_loop_transform prevents the compiler from performing reordering
transformations on the following loop. The compiler does not distribute,
fuse, block, interchange, unroll, unroll and jam, or parallelize a loop on
which this directive appears. For more information on
no_loop_transform , refer to the optimization option
“+O[no]loop_transform ” on page 127.

no_parallel

no_parallel prevents the compiler from generating parallel code for
the immediately following loop. For more information on no_parallel ,
refer to the optimization option “+O[no]parallel ” on page 129.

150 Chapter 7

Controlling optimization
Optimization directives and pragmas

no_side_effects(funclist)
no_side_effects(funclist) informs the compiler that the functions
appearing in funclist have no side effects wherever they appear lexically
following the directive. Side effects include modifying a function
argument, modifying a Fortran COMMON variable, performing I/O, or
calling another routine that does any of the above. The compiler can
sometimes eliminate calls to procedures that have no side effects. The
compiler may also be able to parallelize loops with calls when informed
that the called routines do not have side effects.

unroll_and_jam[(unroll_factor= n)]

unroll_and_jam[(unroll_factor= n)] causes one or more
noninnermost loops in the immediately following nest to be partially
unrolled (to a depth of n if unroll_factor is specified), then fuses the
resulting loops back together. It must be placed on a loop that ends up
being noninnermost after any compiler-initiated interchanges. For more
information on unroll_and_jam , refer to the description of
“+O[no]loop_unroll_jam ” on page 128.

Chapter 8 151

8 Optimization Report

The Optimization Report is produced by the HP Fortran 90, HP aC++,
and HP C compilers. It is most useful at optimization levels +O3 and
+O4. This chapter includes a discussion of the following topics:

• Optimization Report contents

• Loop Report

152 Chapter 8

Optimization Report
Optimization Report contents

Optimization Report contents
When you compile a program with the +Oreport[= report_type]
optimization option at the +O3 and +O4 levels, the compiler generates an
Optimization Report for each program unit. The
+Oreport[= report_type] option determines the report’s contents based
on the value of report_type, as shown in Table 21.

Table 21 Optimization Report contents

The +Onoreport option does not accept any of the report_type values.
Sample Optimization Reports are provided throughout this chapter.

report_type values Report contents

all Loop Report and Privatization Table

loop Loop Report

private Loop Report and Privatization Table

report_type not given
(default)

Loop Report

Chapter 8 153

Optimization Report
Loop Report

Loop Report
The Loop Report lists the optimizations that are performed on loops and
calls. If appropriate, the report gives reasons why a possible
optimization was not performed. Loop nests are reported in the order in
which they are encountered and separated by a blank line.

Below is a sample optimization report.

 Optimization Report

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 3 1 sub1 *Inlined call (2-4)
 8 2 iloopi:1 Serial Fused
 11 3 jloopi:2 Serial Fused
 14 4 kloopi:3 Serial Fused
 *Fused (5) (2 3 4) -> (5)
 8 5 iloopi:1 PARALLEL

Footnoted User
Var Name Var Name

iloopi:1 iloopindex
jloopi:2 jloopindex
kloopi:3 kloopindex

 Optimization for sub1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 8 1 iloopi:1 Serial Fused
 11 2 jloopi:2 Serial Fused
 14 3 kloopi:3 Serial Fused
 *Fused (4) (1 2 3) -> (4)
 8 4 iloopi:1 PARALLEL

Footnoted User
Var Name Var Name

iloopi:1 iloopindex
jloopi:2 jloopindex
kloopi:3 kloopindex

154 Chapter 8

Optimization Report
Loop Report

A description of each column of the Loop Report is shown in Table 22.

Table 22 Loop Report column definitions

Column Description

Line Num. Specifies the source line of the beginning of the loop or of the loop
from which it was derived. For cloned calls and inlined calls, the
Line Num. column specifies the source line at which the call
statement appears.

Id Num. Specifies a unique ID number for every optimized loop and for every
optimized call. This ID number can then be referenced by other parts
of the report. Both loops appearing in the original program source
and loops created by the compiler are given loop ID numbers. Loops
created by the compiler are also shown in the New Id Nums column
as described later. No distinction between compiler-generated loops
and loops that existed in the original source is made in the Id Num.
column. Loops are assigned unique, sequential numbers as they are
encountered.

Var Name Specifies the name of the iteration variable controlling the loop or the
called procedure if the line represents a call. If the variable is
compiler-generated, its name is listed as *VAR* . If it consists of a
truncated variable name followed by a colon and a number, the
number is a reference to the variable name footnote table, which
appears after the Loop Report and Analysis Table in the
Optimization Report.

Reordering
Transformation

Indicates which reordering transformations were performed.
Reordering transformations are performed on loops, calls, and loop
nests, and typically involve reordering and/or duplicating sections of
code to facilitate more efficient execution. This column has one of the
values shown in Table 23 on page 155.

New Id Nums Specifies the ID number for loops or calls created by the compiler.
These ID numbers are listed in the Id Num. column and is referenced
in other parts of the report. However, the loops and calls they
represent were not present in the original source code. In the case of
loop fusion, the number in this column indicates the new loop created
by merging all the fused loops. New ID numbers are also created for
cloned calls, inlined calls, loop blocking, loop distribution, loop
interchange, loop unroll and jam, dynamic selection, and test
promotion.

Chapter 8 155

Optimization Report
Loop Report

The following values apply to the Reordering Transformation column
described in Table 22 on page 154.

Table 23 Reordering transformation values in the Loop Report

Optimizing /
Special
Transformation

Indicates which, if any, optimizing transformations were performed.
An optimizing transformation reduces the number of operations
executed, or replaces operations with simpler operations. A special
transformation allows the compiler to optimize code under special
circumstances. When appropriate, this column has one of the values
shown in Table 24 on page 157.

Column Description

Value Description

Block Loop blocking was performed. The new loop order is indicated under
the Optimizing/Special Transformation column, as shown in
Table 24.

Cloned call A call to a subroutine was cloned.

Dist Loop distribution was performed.

DynSel Dynamic selection was performed. The numbers in the New Id Nums
column correspond to the loops created. For parallel loops, these
generally include a PARALLEL and a Serial version.

Fused The loops were fused into another loop and no longer exist. The
original loops and the new loop is indicated under the Optimizing/
Special Transformation column, as shown in Table 24.

Inlined call A call to a subroutine was inlined.

Interchange Loop interchange was performed. The new loop order is indicated
under the Optimizing/Special Transformation column, as
shown in Table 24.

None No reordering transformation was performed on the call.

PARALLEL The loop runs in thread-parallel mode.

Peel The first or last iteration of the loop was peeled in order to fuse the loop
with an adjacent loop.

Promote Test promotion was performed.

156 Chapter 8

Optimization Report
Loop Report

The following values apply to the Optimizing/special
transformations column described in Table 22 on page 154.

Serial No reordering transformation was performed on the loop.

Unroll and Jam The loop was unrolled and the nested loops were jammed (fused).

VECTOR The loop was fully or partially replaced with more efficient calls to one
or more vector routines.

* Appears at left of loop-producing transformation optimizations
(distribution, dynamic selection, blocking, fusion, interchange, call
cloning, call inlining, peeling, promotion, unroll and jam).

Value Description

Chapter 8 157

Optimization Report
Loop Report

Table 24 Optimizing/special transformations values in the Loop Report

Value Explanation

Fused The loop was fused into another loop and no longer
exists.

Reduction The compiler recognized a reduction in the loop.

Removed The compiler removed the loop.

Unrolled The loop was completely unrolled.

(OrigOrder) -> (InterchangedOrder) This information appears when Interchange is
reported under Reordering Transformation .
OrigOrder indicates the order of loops in the original
nest. InterchangedOrder indicates the new order that
occurs due to interchange. OrigOrder and
InterchangedOrder consist of user iteration variables
presented in outermost to innermost order.

(OrigLoops)->(NewLoop) This information appears when Fused is reported
under Reordering Transformation . OrigLoops
indicates the original loops that were fused by the
compiler to form the loop indicated by NewLoop.
OrigLoops and NewLoop refer to loops based on the
values from the Id Num. and New Id Nums columns
in the Loop Report.

(OrigLoopNest)->(BlockedLoopNest) This information appears when Block is reported
under Reordering Transformation .
OrigLoopNest indicates the order of the original loop
nest containing a loop that was blocked.
BlockedLoopNest indicates the order of loops after
blocking. OrigLoopNest and BlockedLoopNest refer to
user iteration variables presented in outermost to
innermost order.

158 Chapter 8

Optimization Report
Loop Report

Supplemental tables
The tables described in this section may be included in the
Optimization Report to provide information supplemental to the
Loop Report.

Analysis Table
If necessary, an Analysis Table is included in the Optimization Report to
further elaborate on optimizations reported in the Loop Report.

A description of each column in the Analysis Table is shown in Table 25.

Table 25 Analysis Table column definitions

Column Description

Line Num. Specifies the source line of the beginning of the loop
or call.

Id Num. References the ID number assigned to the loop or call
in the Loop Report.

Var Name Specifies the name of the iteration variable
controlling the loop, *VAR* (as discussed in the Var
Name description in the section “Loop Report” on
page 153).

Analysis Indicates why a transformation or optimization was
not performed, or additional information on what
was done.

Chapter 8 159

Optimization Report
Loop Report

Privatization Table
This table reports any user variables contained in a parallelized loop
that are privatized by the compiler. Because the Privatization Table
refers to loops, the Loop Report is automatically provided with it.

A description of each column in the Privatization Table is shown in Table
26.

Table 26 Privatization Table column definitions

Column Definitions

Line Num. Specifies the source line of the beginning of the
loop.

Id Num. References the ID number assigned to the loop
in the loop table.

Var Name Specifies the name of the iteration variable
controlling the loop. *VAR* may also appear in
this column, as discussed in the Var Name
description in the section “Loop Report” on
page 153.

Priv Var Specifies the name of the privatized user
variable. Compiler-generated variables that are
privatized are not reported here.

Privatization
Information
for Parallel
Loops

Provides more detail on the variable
privatizations performed.

160 Chapter 8

Optimization Report
Loop Report

Variable Name Footnote Table
Variable names that are too long to fit in the Var Name columns of the
other tables are truncated and followed by a colon and a footnote
number. These footnotes are explained in the Variable Name Footnote
Table.

A description of each column in the Variable Name Footnote Table is
shown in Table 27.

Table 27 Variable Name Footnote Table column definitions

 Example Optimization Report

The following Fortran program is the basis for the Optimization Report
shown in this example. Line numbers are provided for ease of reference.

1 PROGRAM EXAMPLE99
2 REAL A(100), B(100), C(100)
3 CALL SUB1(A,B,C)
4 END
5
6 SUBROUTINE SUB1(A,B,C)
7 REAL A(100), B(100), C(100)
8 DO ILOOPINDEX=1,100
9 A(ILOOPINDEX) = ILOOPINDEX
10 ENDDO
11 DO JLOOPINDEX=1,100
12 B(JLOOPINDEX) = A(JLOOPINDEX)**2
13 ENDDO
14 DO KLOOPINDEX=1, 100
15 C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
16 ENDDO
17 PRINT *, A(1), B(50), C(100)
18 END

The following Optimization Report is generated by compiling the
program EXAMPLE99 with the command-line options +O3 +Oparallel
+Oreport=all +Oinline=sub1 :

% f90 +O3 +Oparallel +Oreport=all +Oinline=sub1 EXAMPLE99.f

Column Definition

Footnoted Var Name Specifies the truncated variable name and
its footnote number.

User Var Name Specifies the full name of the variable as
identified in the source code.

Chapter 8 161

Optimization Report
Loop Report

Optimization for EXAMPLE99

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 3 1 sub1 *Inlined call (2-4)
 8 2 iloopi:1 Serial Fused
 11 3 jloopi:2 Serial Fused
 14 4 kloopi:3 Serial Fused
 *Fused (5) (2 3 4) -> (5)
 8 5 iloopi:1 PARALLEL
Footnoted User
Var Name Var Name

iloopi:1 iloopindex
jloopi:2 jloopindex
kloopi:3 kloopindex

 Optimization for sub1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 8 1 iloopi:1 Serial Fused
 11 2 jloopi:2 Serial Fused
 14 3 kloopi:3 Serial Fused
 *Fused (4) (1 2 3) -> (4)
 8 4 iloopi:1 PARALLEL

Footnoted User
Var Name Var Name

iloopi:1 iloopindex
jloopi:2 jloopindex
kloopi:3 kloopindex

The Optimization Report for EXAMPLE99 provides the following
information:

• Call to sub1 is inlined
The first line of the Loop Report shows that the call to sub1 was
inlined, as shown below:

3 1 sub1 *Inlined call (2-4)

• Three new loops produced
The inlining produced three new loops in EXAMPLE99: Loop #2 ,
Loop #3 , and Loop #4 . Internally, the EXAMPLE99 module that
originally looked like:

162 Chapter 8

Optimization Report
Loop Report

 1 PROGRAM EXAMPLE99
 2 REAL A(100), B(100), C(100)
 3 CALL SUB1(A,B,C)
 4 END

 now looks like this:

 PROGRAM EXAMPLE99
 REAL A(100), B(100), C(100)
 DO ILOOPINDEX=1,100 !Loop #2
 A(ILOOPINDEX) = ILOOPINDEX
 ENDDO
 DO JLOOPINDEX=1,100 !Loop #3
 B(JLOOPINDEX) = A(JLOOPINDEX)**2
 ENDDO
 DO KLOOPINDEX=1, 100 !Loop #4
 C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
 ENDDO
 PRINT *, A(1), B(50), C(100)
 END

• New loops are fused
These lines indicate that the new loops have been fused. The
following line indicates that the three loops were fused into one new
loop, Loop #5 .

 8 2 iloopi:1 Serial Fused
 11 3 jloopi:2 Serial Fused
 14 4 kloopi:3 Serial Fused
 *Fused (5) (2 3 4) (5)

After fusing, the code internally appears as the following:

 PROGRAM EXAMPLE99
 REAL A(100), B(100), C(100)
 DO ILOOPINDEX=1,100 !Loop #5
 A(ILOOPINDEX) = ILOOPINDEX
 B(ILOOPINDEX) = A(ILOOPINDEX)**2
 C(ILOOPINDEX) = A(ILOOPINDEX) + B(ILOOPINDEX)
 ENDDO
 PRINT *, A(1), B(50), C(100)
 END

Chapter 8 163

Optimization Report
Loop Report

• New loop is parallelized
In the following Loop Report line:

8 5 iloopi:1 PARALLEL

Loop #5 uses iloopi:1 as the iteration variable, referencing the
Variable Name Footnote Table; iloopi:1 corresponds to iloopindex .
The same line in the report also indicates that the newly-created
Loop #5 was parallelized.

• Variable Name Footnote Table lists iteration variables
According to the Variable Name Footnote Table (duplicated below),
the original variable iloopindex is abbreviated by the compiler as
iloopi:1 so that it fits into the Var Name columns of other reports.

jloopindex and kloopindex are abbreviated as jloopi:2 and
kloopi:3 , respectively. These names are used throughout the report
to refer to these iteration variables.

 Footnoted User
 Var Name Var Name

 iloopi:1 iloopindex
 jloopi:2 jloopindex
 kloopi:3 kloopindex

 Example Optimization Report

The following Fortran code provides an example of other transformations
the compiler performs. Line numbers are provided for ease of reference.

1 PROGRAM EXAMPLE100
2
3 INTEGER IA1(100), IA2(100), IA3(100)
4 INTEGER I1, I2
5
6 DO I = 1, 100
7 IA1(I) = I
8 IA2(I) = I * 2
9 IA3(I) = I * 3
10 ENDDO
11
12 I1 = 0
13 I2 = 100
14 CALL SUB1 (IA1, IA2, IA3, I1, I2)
15 END
16
17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO J = 1, N
20 DO I = 1, N
21 IF (I .EQ. 1) THEN

164 Chapter 8

Optimization Report
Loop Report

22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

The following Optimization Report is generated by compiling the
program EXAMPLE100 for parallelization:

% f90 +O3 +Oparallel +Oreport=all example100.f

 Optimization for SUB1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 19 1 j *Interchange (2) (j i) -> (i j)
 20 2 i *DynSel (3-4)
 20 3 i PARALLEL Reduction
 19 5 j *Promote (6-7)
 19 6 j Serial
 19 7 j Serial

 20 4 i Serial
 19 8 j *Promote (9-10)
 19 9 j Serial
 19 10 j *Promote (11-12)
 19 11 j Serial
 19 12 j Serial

Line Id Var Analysis
Num. Num. Name

 19 5 j Test on line 21 promoted out of loop
 19 8 j Test on line 21 promoted out of loop
 19 10 j Test on line 23 promoted out of loop

The report is continued on the next page.

 Optimization for clone 1 of SUB1 (6_e70_cl_sub1)

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 19 1 j *Interchange (2) (j i) -> (i j)
 20 2 i PARALLEL Reduction
 19 3 j *Promote (4-5)
 19 4 j Serial
 19 5 j *Promote (6-7)
 19 6 j Serial
 19 7 j Serial

Line Id Var Analysis

Chapter 8 165

Optimization Report
Loop Report

Num. Num. Name

 19 3 j Test on line 21 promoted out of loop
 19 5 j Test on line 23 promoted out of loop

 Optimization for example100

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 6 1 i Serial

 14 2 sub1 *Cloned call (3)
 14 3 sub1 None

Line Id Var Analysis
Num. Num. Name

 14 2 sub1 Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)

The Optimization Report for EXAMPLE100 shows Optimization Reports
for the subroutine and its clone, followed by the optimizations to the
subroutine. It includes the following information:

• Original subroutine contents
Originally, the subroutine appeared as shown below:

17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO J = 1, N
20 DO I = 1, N
21 IF (I .EQ. 1) THEN
22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

• Loop interchange performed first
The compiler first performs loop interchange (listed as Interchange
in the report) to maximize cache performance:

19 1 j *Interchange (2) (j i) -> (i j)

166 Chapter 8

Optimization Report
Loop Report

• The subroutine then becomes the following

17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO I = 1, N ! Loop #2
20 DO J = 1, N ! Loop #1
21 IF (I .EQ. 1) THEN
22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

• The program is optimized for parallelization
The compiler would like to parallelize the outermost loop in the nest,
which is now the I loop. However because the value of N is not known,
the compiler does not know how many times the I loop needs to be
executed. To ensure that the loop is executed as efficiently as possible
at runtime, the compiler replaces the I loop nest with two new copies
of the I loop nest, one to be run in parallel, the other to be run
serially.

• Dynamic selection is executed
An IF is then inserted to select the more efficient version of the loop
to execute at runtime. This method of making one copy for parallel
execution and one copy for serial execution is known as
dynamic selection, which is enabled by default when
+O3 +Oparallel is specified (see “Dynamic selection” on page 102 for
more information). This optimization is reported in the Loop Report
in the line:

 20 2 i *DynSel (3-4)

• Loop#2 creates two loops
According to the report, Loop #2 was used to create the new loops,
Loop #3 and Loop #4 . Internally, the code now is represented as
follows:

 SUBROUTINE SUB1(A, B, C, S, N)
 INTEGER A(N), B(N), C(N), S, I, J

 IF (N .GT. some_threshold) THEN

Chapter 8 167

Optimization Report
Loop Report

 DO (parallel) I = 1, N ! Loop #3
 DO J = 1, N ! Loop #5
 IF (I .EQ. 1) THEN
 S = S + A(I)
 ELSE IF (I .EQ. N) THEN
 S = S + B(I)
 ELSE
 S = S + C(I)
 ENDIF
 ENDDO
 ENDDO
 ELSE
 DO I = 1, N ! Loop #4
 DO J = 1, N ! Loop #8
 IF (I .EQ. 1) THEN
 S = S + A(I)
 ELSE IF (I .EQ. N) THEN
 S = S + B(I)
 ELSE
 S = S + C(I)
 ENDIF
 ENDDO
 ENDDO
 ENDIF
 END

• Loop#3 contains reductions
Loop #3 (which was parallelized) also contained one or more
reductions. The Reordering Transformation column indicates
that the IF statements were promoted out of Loop #5 , Loop #8 , and
Loop #10 .

• Analysis Table lists new loops
The line numbers of the promoted IF statements are listed. The first
test in Loop #5 was promoted, creating two new loops, Loop #6 and
Loop #7 . Similarly, Loop #8 has a test promoted, creating Loop #9
and Loop #10 . The test remaining in Loop #10 is then promoted,
thereby creating two additional loops. A promoted test is an IF
statement that is hoisted out of a loop. See the section “Test
promotion” on page 90 for more information. The Analysis Table
contents are shown below:

 19 5 j Test on line 21 promoted out of loop
 19 8 j Test on line 21 promoted out of loop
 19 10 j Test on line 23 promoted out of loop

168 Chapter 8

Optimization Report
Loop Report

• DO loop is not reordered
The following DO loop does not undergo any reordering
transformation:

 6 DO I = 1, 100
 7 IA1(I) = I
 8 IA2(I) = I * 2
 9 IA3(I) = I * 3
 10 ENDDO

 This fact is reported by the line

 6 1 i Serial

• sub1 is cloned
The call to the subroutine sub1 is cloned. As indicated by the
asterisk (*), the compiler produced a new call. The new call is given
the ID (3) listed in the New Id Nums column. The new call is then
listed, with None indicating that no reordering transformation was
performed on the call to the new subroutine.

 14 2 sub1 *Cloned call (3)
 14 3 sub1 None

• Cloned call is transformed
The call to the subroutine is then appended to the Loop Report to
elaborate on the Cloned call transformation. This line shows that
the clone was called in place of the original subroutine.

14 2 sub1 Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)

Chapter 8 169

Optimization Report
Loop Report

 Example Optimization Report

The following Fortran code shows loop blocking, loop peeling, loop
distribution, and loop unroll and jam. Line numbers are listed for ease of
reference.

1 PROGRAM EXAMPLE200
2
3 REAL*8 A(1000,1000), B(1000,1000), C(1000)
4 REAL*8 D(1000), E(1000)
5 INTEGER M, N
6
7 N = 1000
8 M = 1000
9
10 DO I = 1, N
11 C(I) = 0
12 DO J = 1, M
13 A(I,J) = A(I,J) + B(I,J) * C(I)
14 ENDDO
15 ENDDO
16
17 DO I = 1, N-1
18 D(I) = I
19 ENDDO
20
21 DO J = 1, N
22 E(J) = D(J) + 1
23 ENDDO
24
25 PRINT *, A(103,103), B(517, 517), D(11), E(29)
26
27 END

The following Optimization Report is generated by compiling program
EXAMPLE200 as follows:

% f90 +O3 +Oreport +Oloop_block example200.f

170 Chapter 8

Optimization Report
Loop Report

 Optimization for example3

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 10 1 i:1 *Dist (2-3)
 10 2 i:1 Serial

 10 3 i:1 *Interchange (4) (i:1 j:1) -> (j:1 i:1)
 12 4 j:1 *Block (5) (j:1 i:1) -> (i:1 j:1 i:1)
 10 5 i:1 *Promote (6-7)
 10 6 i:1 Serial Removed
 10 7 i:1 Serial
 12 8 j:1 *Unroll And Jam (9)
 12 9 j:1 *Promote (10-11)
 12 10 j:1 Serial Removed
 12 11 j:1 Serial
 10 12 i:1 Serial

 17 13 i:2 Serial Fused
 21 14 j:2 *Peel (15)
 21 15 j:2 Serial Fused
 *Fused (16) (13 15) -> (16)
 17 16 i:2 Serial

Line Id Var Analysis
Num. Num. Name

 10 5 i:1 Loop blocked by 56 iterations
 10 5 i:1 Test on line 12 promoted out of loop
 10 6 i:1 Loop blocked by 56 iterations
 10 7 i:1 Loop blocked by 56 iterations
 12 8 j:1 Loop unrolled by 8 iterations and jammed into the
innermost loop
 12 9 j:1 Test on line 10 promoted out of loop
 21 14 j:2 Peeled last iteration of loop

The Optimization Report for EXAMPLE200 provides the following results:

 10 1 i:1 *Dist (2-3)

• Several occurrences of variables noted
In this report, the Var Name column has entries such as i:1 , j:1 ,
i:2 , and j:2 . This type of entry appears when a variable is used
more than once. In EXAMPLE200, I is used as an iteration variable
twice. Consequently, i:1 refers to the first occurrence, and i:2
refers to the second occurrence.

Chapter 8 171

Optimization Report
Loop Report

• Loop #1 creates new loops
The first line of the report shows that Loop #1 , shown on line 10, is
distributed to create Loop #2 and Loop #3 :

 Initially, Loop #1 appears as shown.

 DO I = 1, N ! Loop #1
 C(I) = 0
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

 It is then distributed as follows:

 DO I = 1, N ! Loop #2
 C(I) = 0
 ENDDO

 DO I = 1, N ! Loop #3
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

• Loop #3 is interchanged to create Loop#4
The third line indicates this:

10 3 i:1 *Interchange (4) (i:1 j:1) ->
 (j:1 i:1)

 Now, the loop looks like the following code:

 DO J = 1, M ! Loop #4
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

• Nested loop is blocked
The next line of the Optimization Report indicates that the nest
rooted at Loop #4 is blocked:

12 4 j:1 *Block (5) (j:1 i:1) ->
 (i:1 j:1 i:1)

The blocked nest internally appears as follows:

 DO IOUT = 1, N, 56 ! Loop #5
 DO J = 1, M
 DO I = IOUT, IOUT + 55
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO
 ENDDO

172 Chapter 8

Optimization Report
Loop Report

• Loop #5 noted as blocked
The loop with iteration variable i:1 is the loop that was actually
blocked. The report shows *Block on Loop #4 (the j:1 loop) because
the entire nest rooted at Loop #4 is replaced by the blocked nest.

• IOUT variable facilitates loop blocking
The IOUT variable is introduced to facilitate the loop blocking. The
compiler uses a step value of 56 for the IOUT loop as reported in the
Analysis Table:

 10 5 i:1 Loop blocked by 56 iterations

• Test promotion creates new loops
The next three lines of the report show that a test was promoted out
of Loop #5 , creating Loop #6 (which is removed) and Loop #7
(which is run serially). This test—which does not appear in the source
code—is an implicit test that the compiler inserts in the code to
ensure that the loop iterates at least once.

 10 5 i:1 *Promote (6-7)
 10 6 i:1 Serial Removed
 10 7 i:1 Serial

This test is referenced again in the following line from the
Analysis Table:

 10 5 i:1 Test on line 12 promoted out of loop

• Unroll and jam creates new loop
The report indicates that the J is unrolled and jammed, creating
Loop #9 :

 12 8 j:1 *Unroll And Jam (9)

• J loop unrolled by 8 iterations
This line also indicates that the J loop is unrolled by 8 iterations and
fused:

 12 8 j:1 Loop unrolled by 8 iterations and jammed
 into the innermost loop

Chapter 8 173

Optimization Report
Loop Report

The unrolled and jammed loop results in the following code:

 DO IOUT = 1, N, 56 ! Loop #5
 DO J = 1, M, 8 ! Loop #8
 DO I = IOUT, IOUT + 55 ! Loop #9
 A(I,J) = A(I,J) + B(I,J) * C(I)
 A(I,J+1) = A(I,J+1) + B(I,J+1) * C(I)
 A(I,J+2) = A(I,J+2) + B(I,J+2) * C(I)
 A(I,J+3) = A(I,J+3) + B(I,J+3) * C(I)
 A(I,J+4) = A(I,J+4) + B(I,J+4) * C(I)
 A(I,J+5) = A(I,J+5) + B(I,J+5) * C(I)
 A(I,J+6) = A(I,J+6) + B(I,J+6) * C(I)
 A(I,J+7) = A(I,J+7) + B(I,J+7) * C(I)
 ENDDO
 ENDDO
 ENDDO

• Test promotion in Loop #9 creates new loops
The Optimization Report indicates that the compiler-inserted test in
Loop #9 is promoted out the loop, creating Loop #10 and
Loop #11 .

 12 9 j:1 *Promote (10-11)
 12 10 j:1 Serial Removed
 12 11 j:1 Serial

• Loops are fused
According to the report, the last two loops in the program are fused
(once an iteration is peeled off the second loop), then the new loop is
run serially.

 17 13 i:2 Serial Fused
 21 14 j:2 *Peel (15)
 21 15 j:2 Serial Fused
 *Fused (16) (13 15) -> (16)
 17 16 i:2 Serial

 That information is combined with the following line from the
 Analysis Table:

 21 14 j:2 Peeled last iteration of loop

• Loop peeling creates loop, enables fusion
Initially, Loop #14 has an iteration peeled to create Loop #15 , as
shown below. The loop peeling is performed to enable loop fusion.

 DO I = 1, N-1 ! Loop #13
 D(I) = I
 ENDDO

 DO J = 1, N-1 ! Loop #15
 E(J) = D(J) + 1
 ENDDO

174 Chapter 8

Optimization Report
Loop Report

• Loops are fused to create new loop
Loop #13 and Loop #15 are then fused to produce Loop #16 :

 DO I = 1, N-1 ! Loop #16
 D(I) = I
 E(I) = D(I) + 1
 ENDDO

Chapter 9 175

9 Parallel programming
techniques

The HP compiler set provides programming techniques that allow you to
increase code efficiency while achieving three-tier parallelism. This
chapter describes the following programming techniques and
requirements for implementing low-overhead parallel programs:

• Parallelizing directives and pragmas

• Parallelizing loops

• Parallelizing tasks

• Parallelizing regions

• Reentrant compilation

• Setting thread default stack size

• Collecting parallel information

NOTE The HP aC++ compiler does not support the pragmas described in this
chapter.

176 Chapter 9

Parallel programming techniques
Parallelizing directives and pragmas

Parallelizing directives and pragmas
This section summarizes the directives and pragmas used to achieve
parallelization in the HP compilers. The directives and pragmas are
listed in the order of how they would typically be used within a given
program.

Table 28 Parallel directives and pragmas

Pragma / Directive Description Level of
parallelism

prefer_parallel
[(attribute_list)]

Requests parallelization of the immediately
following loop, accepting attribute combinations
for thread-parallelism, strip-length adjustment,
and maximum number of threads. The compiler
handles data privatization and does not
parallelize the loop if it is not safe to do so.

Loop

loop_parallel
[(attribute_list)]

Forces parallelization of the immediately
following loop. Accepts attributes for thread-
parallelism, strip-length adjustment, maximum
number of threads, and ordered execution.
Requires you to manually privatize loop data and
synchronize data dependences.

Loop

parallel
[(attribute_list)]

Allow you to parallelize a single code region to
run on multiple threads. Unlike the tasking
directives, which run discrete sections of code in
parallel, parallel and end_parallel run
multiple copies of a single section. Accepts
attribute combinations for thread-parallelism
and maximum number of threads.

Within a parallel region, loop directives
(prefer_parallel , loop_parallel) and
tasking directives (begin_tasks) may appear
with the dist attribute.

Region

end_parallel Signifies the end of a parallel region (see
parallel).

Region

Chapter 9 177

Parallel programming techniques
Parallelizing directives and pragmas

begin_tasks
(attribute_list)

Defines the beginning of a series of tasks,
allowing you to parallelize consecutive blocks of
code. Accepts attribute combinations for
thread-parallelism, ordered execution, maximum
number of threads, and others.

Task

next_task Starts a block of code following a begin_tasks
block that will be executed as a parallel task.

Task

end_tasks Terminates parallel tasks started by
begin_tasks and next_task .

Task

ordered_section
(gate)

Allows you to isolate dependences within a loop
so that code contained within the ordered section
executes in iteration order. Only useful when
used with loop_parallel(ordered) .

Loop

critical_section
[(gate)]

Allows you to isolate nonordered manipulations
of a shared variable within a loop. Only one
parallel thread can execute the code contained in
the critical section at a time, eliminating possible
contention.

Loop

end_critical
section

Identifies the end of a critical section (see
critical_section).

Loop

reduction Forces reduction analysis on a loop being
manipulated by the loop_parallel directive.
See “Reductions” on page 108.

Loop

sync_routine Must be used to identify synchronization
functions that you call indirectly call in your own
routines. See “sync_routine ” on page 242.

Loop or Task

Pragma / Directive Description Level of
parallelism

178 Chapter 9

Parallel programming techniques
Parallelizing loops

Parallelizing loops
The HP compilers automatically exploit loop parallelism in dependence-
free loops. The prefer_parallel , loop_parallel , and parallel
directives and pragmas allow you to increase parallelization
opportunities and to manually control many aspects of parallelization
using simple manual loop parallelization.

The prefer_parallel and loop_parallel directives and pragmas,
apply to the immediately following loop. Data privatization is necessary
when using loop_parallel ; this is achieved by using the
loop_private directive, discussed in “Data privatization,” on page 207.
Manual data privatization using memory classes is discussed in
“Memory classes,” on page 223 and “Parallel synchronization,” on
page 233.

The parallel directives and pragmas should only be used on Fortran DO
and C for loops that have iteration counts that are determined prior to
loop invocation at runtime.

prefer_parallel

The prefer_parallel directive and pragma causes the compiler to
automatically parallelize the immediately following loop if it is free of
dependences and other parallelization inhibitors. The compiler
automatically privatizes any loop variables that must be privatized.
prefer_parallel requires less manual intervention. However, it is
less powerful than the loop_parallel directive and pragma.

See “prefer_parallel, loop_parallel attributes ” on page 181
for a description of attributes for this directive.

prefer_parallel can also be used to indicate the preferred loop in a
nest to parallelize, as shown in the following Fortran code:

 DO J = 1, 100
C$DIR PREFER_PARALLEL
 DO I = 1, 100
 .
 .
 .
 ENDDO
 ENDDO

Chapter 9 179

Parallel programming techniques
Parallelizing loops

This code indicates that PREFER_PARALLEL causes the compiler to
choose the innermost loop for parallelization, provided it is free of
dependences. PREFER_PARALLEL does not inhibit loop interchange.

The ordered attribute in a prefer_parallel directive is only useful if
the loop contains synchronized dependences. The ordered attribute is
most useful in the loop_parallel directive, described in the next
section.

loop_parallel

The loop_parallel directive forces parallelization of the immediately
following loop. The compiler does not check for data dependences,
perform variable privatization, or perform parallelization analysis. You
must synchronize any dependences manually and manually privatize
loop data as necessary. loop_parallel defaults to thread
parallelization.

See “prefer_parallel, loop_parallel attributes ” on page 181
for a description of attributes for this directive.

loop_parallel(ordered) is useful for manually parallelizing loops
that contain ordered dependences. This is described in “Parallel
synchronization,” on page 233.

Parallelizing loops with calls
loop_parallel is useful for manually parallelizing loops containing
procedure calls.

This is shown in the following Fortran code:

C$DIR LOOP_PARALLEL
 DO I = 1, N
 X(I) = FUNC(I)
 ENDDO

The call to FUNC in this loop would normally prevent it from
parallelizing. To verify that the FUNC has no side effects, review the
following conditions. A function does not have side effects if:

• It does not modify its arguments.

• It does not modify the same memory location from one call to the
next.

• It performs no I/O.

180 Chapter 9

Parallel programming techniques
Parallelizing loops

• It does not call any procedures that have side effects. If FUNC does
have side effects or is not reentrant, this loop may yield wrong
answers.

If you are sure that

FUNC

has no side effects and is compiled for reentrancy (the default), this loop
can be safely parallelized.

NOTE In some cases, global register allocation can interfere with the routine being
called. Refer to the “Global register allocation (GRA)” on page 43 for more
information.

Unparallelizable loops
The compiler does not parallelize any loop that does not have a number
of iterations that can be determined prior to loop invocation at execution
time, even when loop_parallel is specified.

This is shown in the following Fortran code:

C$DIR LOOP_PARALLEL
 DO WHILE(A(I) .GT. 0)!WILL NOT PARALLELIZE
 .
 .
 A(I) = ...
 .
 .
 ENDDO

In general, there is no way the compiler can determine the loop’s
iteration count prior to loop invocation here, so the loop cannot be
parallelized.

Chapter 9 181

Parallel programming techniques
Parallelizing loops

prefer_parallel , loop_parallel attributes
The prefer_parallel and loop_parallel directives and pragmas
maintain the same attributes. The forms of these directives and pragmas
are shown in Table 29.

Table 29 Forms of prefer_parallel and loop_parallel directives and
pragmas

where

ivar = indvar
specifies that the primary loop induction variable is
indvar. ivar = indvar is optional in Fortran, but
required in C. Use only with loop_parallel .

attribute-list
can contain one of the case-insensitive attributes noted
in Table 30.

NOTE The values of n and m must be compile-time constants for the loop
parallelization attributes in which they appear.

Language Form

Fortran C$DIR PREFER_PARALLEL[(attribute-list)]

C$DIR LOOP_PARALLEL[(attribute-list)]

C #pragma _CNX prefer_parallel[(attribute-list)]

#pragma _CNX loop_parallel(ivar = indvar[, attribute-list])

182 Chapter 9

Parallel programming techniques
Parallelizing loops

Table 30 Attributes for loop_parallel , prefer_parallel

Attribute Description

dist Causes the compiler to distribute the iterations of a
loop across active threads instead of spawning new
threads. This significantly reduces parallelization
overhead.

Must be used with prefer_parallel or
loop_parallel inside a parallel /end_parallel
region.

Can be used with any prefer_parallel or
loop_parallel attribute, except threads .

ordered Causes the iterations of the loop to be initiated in
iteration order across the processors. This is useful
only in loops with manually-synchronized dependences,
constructed using loop_parallel .

To achieve ordered parallelism, dependences must be
synchronized within ordered sections, constructed
using the ordered_section and
end_ordered_section directives.

max_threads = m Restricts execution of the specified loop to no more than
m threads if specified alone. m must be an integer
constant.

max_threads = m is useful when you know the
maximum number of threads your loop runs on
efficiently.

If specified with the chunk_size = n attribute, the
chunks are parallelized across no more than m threads.

Chapter 9 183

Parallel programming techniques
Parallelizing loops

Any loop under the influence of loop_parallel(dist) or
prefer_parallel(dist) appears in the Optimization Report as serial.
This is because it is already inside a parallel region. You can generate an
Optimization Report by specifying the +Oreport option. For more
information, see “Optimization Report,” on page 151.

chunk_size = n Divides the loop into chunks of n or fewer iterations by
which to strip mine the loop for parallelization. n must
be an integer constant.

If chunk_size = n is present alone, n or fewer loop
iterations are distributed round-robin to each available
thread until there are no remaining iterations. This is
shown in Table 32 and Table 33 on page 186.

If the number of threads does not evenly divide the
number of iterations, some threads perform one less
chunk than others.

dist, ordered Causes ordered invocation of each iteration across
existing threads.

dist, max_threads = m Causes thread-parallelism on no more than m existing
threads.

ordered, max_threads = m Causes ordered parallelism on no more than m threads.

dist, chunk_size = n Causes thread-parallelism by chunks.

dist, ordered,
max_threads = m

Causes ordered thread-parallelism on no more than m
existing threads.

chunk_size = n,
max_threads = m

Causes chunk parallelism on no more than m threads.

dist, chunk_size = n,
max_threads = m

Causes thread-parallelism by chunks on no more than
m existing threads.

Attribute Description

184 Chapter 9

Parallel programming techniques
Parallelizing loops

Combining the attributes
Table 30 shown above describes the acceptable combinations of
loop_parallel and prefer_parallel attributes. In such
combinations, the attributes are listed in any order.

The loop_parallel C pragma requires the ivar = indvar attribute,
which specifies the primary loop induction variable. If this is not present,
the compiler issues a warning and ignores the pragma. ivar should
specify only the primary induction variable. Any other loop induction
variables should be a function of this variable and should be declared
loop_private .

In Fortran, ivar is optional for DO loops. If it is not provided, the
compiler picks the primary induction variable for the loop. ivar is
required for DO, WHILE and customized loops in Fortran.

NOTE prefer_parallel does not require ivar . The compiler issues an error if
it encounters this combination.

Comparing prefer_parallel , loop_parallel

The prefer_parallel and loop_parallel directives and pragmas
are used to parallelize loops. Table 31 provides an overview of the
differences between the two pragmas/directives. See the sections
“prefer_parallel ” on page 178 and “loop_parallel ” on page 179 for
more information.

Chapter 9 185

Parallel programming techniques
Parallelizing loops

Table 31 Comparison of loop_parallel and prefer_parallel

prefer_parallel loop_parallel

Description Requests compiler to perform
parallelization analysis on the
following loop then parallelize the
loop if it is safe to do so.
When used with the +Oautopar
option (the default), it overrides
the compiler heuristic for picking
which loop in a loop nest to
parallelize.
When used with +Onoautopar ,
the compiler only performs
directive-specified parallelization.
No heuristic is used to pick the
loop in a nest to parallelize. In
such cases, prefer_parallel
requests loop parallelization.

Forces the compiler to parallelize
the following loop—assuming the
iteration count can be determined
prior to loop invocation.

Advantages Compiler automatically performs
parallelization analysis and
variable privatization.

Allows you to parallelize loops
that the compiler is not able to
automatically parallelize because
it cannot determine dependences
or side effects.

Disadvantages Loop may or may not execute in
parallel.

Requires you to:
—Check for and synchronize any
data dependences
—Perform variable privatization

186 Chapter 9

Parallel programming techniques
Parallelizing loops

Stride-based parallelism
Stride-based parallelism differs from the default strip-based parallelism
described in that:

• Strip-based parallelism divides the loop’s iterations into a number of
contiguous chunks equal to the number of available threads, and each
thread computes one chunk.

• Stride-based parallelism, set by the chunk_size= n attribute, allows
each thread to do several noncontiguous chunks.

Specifying chunk_size = ((number of iterations - 1) / number of
threads) + 1 is similar to default strip mining for parallelization.

Using chunk_size = 1 distributes individual iterations cyclically
across the processors. For example, if a loop has 1000 iterations to be
distributed among 4 processors, specifying chunk_size=1 causes the
distribution shown in Table 32.

Table 32 Iteration distribution using chunk_size = 1

For chunk_size= n, with n > 1, the distribution is round-robin. However,
it is not the same as specifying the ordered attribute. For example,
using the same loop as above, specifying chunk_size=5 produces the
distribution shown in Table 33.

Table 33 Iteration distribution using chunk_size = 5

For more information and examples on using the chunk_size = n
attribute, see “Troubleshooting,” on page 265.

CPU0 CPU1 CPU2 CPU3

Iterations 1 2 3 4

5 6 7 ...

CPU0 CPU1 CPU2 CPU3

Iterations 1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15 16, 17, 18, 19, 20

21, 22, 23, 24, 25 26, 27, 28, 29, 30 31, 32, 33, 34, 35, ...

Chapter 9 187

Parallel programming techniques
Parallelizing loops

 Example prefer_parallel , loop_parallel

The following Fortran example uses the PREFER_PARALLEL directive,
but applies to LOOP_PARALLEL as well:

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
 DO I = 1, 100
 A(I) = B(I) + C(I)
 ENDDO

In this example, the loop is parallelized by parcelling out chunks of four
iterations to each available thread. Figure 16 uses Fortran 90 array
syntax to illustrate the iterations performed by each thread, assuming
eight available threads.

Figure 16 shows that the 100 iterations of I are parcelled out in chunks
of four iterations to each of the eight available threads. After the chunks
are distributed evenly to all threads, there is one chunk left over
(iterations 97:100), which executes on thread 0.

 Figure 16 Stride-parallelized loop

A(1:4)=B(1:4)+C(1:4)

...

A(65:68)=B(65:68)+C(65:68)

A(97:100)=B(97:100)+C(97:100)

A(5:8)=B(5:8)+C(5:8)

...

A(69:72)=B(69:72)+C(69:72)

A(13:16)=B(13:16)+C(13:16)

...

A(77:80)=B(77:80)+C(77:80)

A(9:12)=B(9:12)+C(9:12)

...

A(73:76)=B(73:76)+C(73:76)

THREAD 0

THREAD 1

THREAD 2 THREAD 3

A(17:20)=B(17:20)+C(17:20)

...

A(81:84)=B(81:84)+C(81:84)

A(21:24)=B(21:24)+C(21:24)

...

A(85:88)=B(85:88)+C(85:88)

A(29:32)=B(29:32)+C(29:32)

...

A(93:96)=B(93:96)+C(93:96)

A(25:28)=B(25:28)+C(25:28)

...

A(89:92)=B(89:92)+C(89:92)

THREAD 4 THREAD 5

THREAD 6 THREAD 7

188 Chapter 9

Parallel programming techniques
Parallelizing loops

 Example prefer_parallel , loop_parallel

The chunk_size = n attribute is most useful on loops in which the
amount of work increases or decreases as a function of the iteration
count. These loops are also known as triangular loops. The following
Fortran example shows such a loop. As with the previous example,
PREFER_PARALLEL is used here, but the concept also applies to
LOOP_PARALLEL.

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
 DO J = 1,N
 DO I = J, N
 A(I,J) = ...
 .
 .
 .
 ENDDO
 ENDDO

Here, the work of the I loop decreases as J increases. By specifying a
chunk_size for the J loop, the load is more evenly balanced across the
threads executing the loop.

If this loop was strip-mined in the traditional manner, the amount of
work contained in the strips would decrease with each successive strip.
The threads performing early iterations of J would do substantially more
work than those performing later iterations.

Chapter 9 189

Parallel programming techniques
Parallelizing loops

critical_section , end_critical_section

The critical_section and end_critical_section directives and
pragmas allow you to specify sections of code in parallel loops or tasks
that must be executed by only one thread at a time. These directives
cannot be used for ordered synchronization within a
loop_parallel(ordered) loop, but are suitable for simple
synchronization in any other loop_parallel loops. Use the
ordered_section and end_ordered_section directives or pragmas
for ordered synchronization within a loop_parallel(ordered) loop.

A critical_section directive or pragma and its associated
end_critical_section must appear in the same procedure and under
the same control flow. They do not have to appear in the same procedure
as the parallel construct in which they are used. For instance, the pair
can appear in a procedure called from a parallel loop.

The forms of these directives and pragmas are shown in 9.

Table 34 Forms of critical_section/end_critical_section directives and
pragmas

The critical_section directive/pragma can take an optional gate
attribute that allows the declaration of multiple critical sections. This is
described in “Using gates and barriers” on page 235. Only simple critical
sections are discussed in this section.

Language Form

Fortran C$DIR CRITICAL_SECTION [(gate)]

C$DIR END_CRITICAL_SECTION

C #pragma _CNX critical_section [(gate)]

#pragma _CNX end_critical_section

190 Chapter 9

Parallel programming techniques
Parallelizing loops

 Example critical_section

Consider the following Fortran example:

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP)
 DO I = 1, N ! LOOP IS PARALLELIZABLE
 .
 .
 .
 FUNCTEMP = FUNC(X(I))
C$DIR CRITICAL_SECTION
 SUM = SUM + FUNCTEMP
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

Because FUNC has no side effects and is called in parallel, the I loop is
parallelized as long as the SUM variable is only updated by one thread at
a time. The critical section created around SUM ensures this behavior.

The LOOP_PARALLEL directive and the critical section directive are
required to parallelize this loop because the call to FUNC would normally
inhibit parallelization. If this call were not present, and if the loop did
not contain other parallelization inhibitors, the compiler would
automatically parallelize the reduction of SUM as described in the section
“Reductions” on page 108. However, the presence of the call necessitates
the LOOP_PARALLEL directive, which prevents the compiler from
automatically handling the reduction.

This, in turn, requires using either a critical section directive or the
reduction directive. Placing the call to FUNC outside of the critical
section allows FUNC to be called in parallel, decreasing the amount of
serial work within the critical section.

In order to justify the cost of the compiler-generated synchronization
code associated with the use of critical sections, loops that contain them
must also contain a large amount of parallelizable (non-critical section)
code. If you are unsure of the profitability of using a critical section to
help parallelize a certain loop, time the loop with and without the critical
section. This helps to determine if parallelization justifies the overhead
of the critical section.

For this particular example, the reduction directive or pragma could
have been used in place of the critical_section ,
end_critical_section combination. For more information, see the
section “Reductions” on page 108.

Chapter 9 191

Parallel programming techniques
Parallelizing loops

Disabling automatic loop thread-
parallelization
You can disable automatic loop thread-parallelization by specifying the
+Onoautopar option on the compiler command line. +Onoautopar is
only meaningful when specified with the +Oparallel option at +O3
or +O4.

This option causes the compiler to parallelize only those loops that are
immediately preceded by prefer_parallel or loop_parallel .
Because the compiler does not automatically find parallel tasks or
regions, user-specified task and region parallelization is not affected by
this option.

192 Chapter 9

Parallel programming techniques
Parallelizing tasks

Parallelizing tasks
The compiler does not automatically parallelize code outside a loop.
However, you can use tasking directives and pragmas to instruct the
compiler to parallelize this type of code.

• The begin_tasks directive and pragma tells the compiler to begin
parallelizing a series of tasks.

• The next_task directive and pragma marks the end of a task and
the start of the next task.

• The end_tasks directive and pragma marks the end of a series of
tasks to be parallelized and prevents execution from continuing until
all tasks have completed.

The sections of code delimited by these directives are referred to as a
task list. Within a task list, the compiler does not check for data
dependences, perform variable privatization, or perform parallelization
analysis. You must manually synchronize any dependences between
tasks and manually privatize data as necessary.

The forms of these directives and pragmas are shown in Table 35.

Table 35 Forms of task parallelization directives and pragmas

Language Form

Fortran C$DIR BEGIN_TASKS[(attribute-list)]

C$DIR NEXT_TASK

C$DIR END_TASKS

C #pragma _CNX begin_tasks[(attribute-list)]

#pragma _CNX next_task

#pragma _CNX end_tasks

Chapter 9 193

Parallel programming techniques
Parallelizing tasks

where

attribute-list
can contain one of the case-insensitive attributes noted
in Table 36.

The optional attribute-list can contain one of the following attribute
combinations, with m being an integer constant.

Table 36 Attributes for task parallelization

Attribute Description

dist Instructs the compiler to distribute the tasks across the currently
threads, instead of spawning new threads.

Use with other valid attributes to begin_tasks inside a
parallel /end_parallel region. begin_tasks and parallel /
end_parallel must appear inside the same function.

ordered Causes the tasks to be initiated in their lexical order. That is, the
first task in the sequence begins to run on its respective thread
before the second and so on.

In the absence of the ordered argument, the starting order is
indeterminate. While this argument ensures an ordered starting
sequence, it does not provide any synchronization between tasks,
and does not guarantee any particular ending order.

You can manually synchronize the tasks, if necessary, as described
in “Parallel synchronization,” on page 233.

max_threads = m Restricts execution of the specified loop to no more than m threads
if specified alone or with the threads attribute. m must be an
integer constant.

max_threads = m is useful when you know the maximum
number of threads on which your task runs efficiently.

Can include any combination of thread-parallel, ordered or
unordered execution.

dist, ordered Causes ordered invocation of each task across threads, as specified
in the attribute list to the parallel directive.

194 Chapter 9

Parallel programming techniques
Parallelizing tasks

NOTE Do not use tasking directives or pragmas unless you have verified that
dependences do not exist. You may insert your own synchronization code in
the code delimited by the tasking directives or pragmas. The compiler will
not performs dependence checking or synchronization on the code in these
regions. Synchronization is discussed in “Parallel synchronization,” on
page 233.

dist, max_threads
= m

Causes thread-parallelism on no more than m existing threads.

ordered,
max_threads = m

Causes ordered parallelism on no more than m threads.

dist, ordered,
max_threads = m

Causes ordered thread-parallelism on no more than m existing
threads.

Attribute Description

Chapter 9 195

Parallel programming techniques
Parallelizing tasks

 Example Parallelizing tasks

The following Fortran example shows how to insert tasking directives
into a section of code containing three tasks that can be run in parallel:

C$DIR BEGIN_TASKS

 parallel task 1

C$DIR NEXT_TASK

 parallel task 2

C$DIR NEXT_TASK

 parallel task 3

C$DIR END_TASKS

The example above specifies thread-parallelism by default. The compiler
transforms the code into a parallel loop and creates machine code
equivalent to the following Fortran code:

C$DIR LOOP_PARALLEL

 DO 40 I = 1,3

 GOTO (10,20,30)I

10 parallel task 1

 GOTO 40

20 parallel task 2

 GOTO 40

30 parallel task 3

 GOTO 40

40 CONTINUE

If there are more tasks than available threads, some threads execute
multiple tasks. If there are more threads than tasks, some threads do not
execute tasks.

In this example, the END_TASKS directive and pragma acts as a barrier.
All parallel tasks must complete before the code following END_TASKS
can execute.

196 Chapter 9

Parallel programming techniques
Parallelizing tasks

 Example Parallelizing tasks

The following C example illustrates how to use these directives to specify
simple task-parallelization:

#pragma _CNX begin_tasks, task_private(i)
for(i=0;i<n-1;i++)
 a[i] = a[i+1] + b[i];
#pragma _CNX next_task
tsub(x,y);
#pragma _CNX next_task
for(i=0;i<500;i++)
 c[i*2] = d[i];
#pragma _CNX end_tasks

In this example, one thread executes the for loop, another thread
executes the tsub(x,y) function call, and a third thread assigns the
elements of the array d to every other element of c . These threads
execute in parallel, but their starting and ending orders are
indeterminate.

The tasks are thread-parallelized. This means that there is no room for
nested parallelization within the individual parallel tasks of this
example, so the forward LCD on the for I loop is inconsequential. There
is no way for the loop to run but serially.

The loop induction variable i must be manually privatized here because
it is used to control loops in two different tasks. If i were not private,
both tasks would modify it, causing wrong answers. The task_private
directive and pragma is described in detail in the section
“task_private ” on page 218.

Task parallelism can become even more involved, as described in
“Parallel synchronization,” on page 233.

Chapter 9 197

Parallel programming techniques
Parallelizing regions

Parallelizing regions
A parallel region is a single block of code that is written to run replicated
on several threads. Certain scalar code within the parallel region is run
by each thread in preparation for work-sharing parallel constructs such
as prefer_parallel(dist) , loop_parallel(dist) , or
begin_tasks(dist) . The scalar code typically assigns data into
parallel_private variables so that subsequent references to the data
have a high cache hit rate. Within a parallel region, code execution can
be restricted to subsets of threads by using conditional blocks that test
the thread ID.

Region parallelization differs from task parallelization in that parallel
tasks are separate, contiguous blocks of code. When parallelized using
the tasking directives and pragmas, each block generally runs on a
separate thread. This is in comparison to a single parallel region, which
runs on several threads.

Specifying parallel tasks is also typically less time consuming because
each thread’s work is implicitly defined by the task boundaries. In region
parallelization, you must manually modify the region to identify
thread-specific code. However, region parallelism can reduce
parallelization overhead as discussed in the section explaining the dist
attribute.

The beginning of a parallel region is denoted by the parallel directive
or pragma. The end is denoted by the end_parallel directive or
pragma. end_parallel also prevents execution from continuing until
all copies of the parallel region have completed.

Within a parallel region, the compiler does not check for data
dependences, perform variable privatization, or perform parallelization
analysis. You must manually synchronize any dependences between
copies of the region and manually privatize data as necessary. In the
absence of a threads attribute, parallel defaults to thread
parallelization.

198 Chapter 9

Parallel programming techniques
Parallelizing regions

The forms of the regional parallelization directives and pragmas are
shown in Table 37.

Table 37 Forms of region parallelization directives and pragmas

The optional attribute-list can contain one of the following attributes (m
is an integer constant).

Table 38 Attributes for region parallelization

WARNING Do not use the parallel region directives or pragmas unless you ensure that
dependences do not exist or you insert your own synchronization code, if
necessary, in the region. The compiler performs no dependence checking or
synchronization on the code delimited by the parallel region directives and
pragmas. Synchronization is discussed in “Parallel synchronization,” on
page 233.

Language Form

Fortran C$DIR PARALLEL[(attribute-list)]

C$DIR END_PARALLEL

C #pragma _CNX parallel(attribute-list)

#pragma _CNX end_parallel

Attribute Description

max_threads = m Restricts execution of the specified region to no more than m
threads if specified alone or with the threads attribute. m must be
an integer constant.

Can include any combination of ordered, or unordered execution.

Chapter 9 199

Parallel programming techniques
Parallelizing regions

 Example Region parallelization

The following Fortran example provides an implementation of region
parallelization using the PARALLEL directive:

 REAL A(1000,8), B(1000,8), C(1000,8), RDONLY(1000), SUM(8)
 INTEGER MYTID
 .
 .
 .
C FIRST INITIALIZATION OF RDONLY IN SERIAL CODE:
 CALL INIT1(RDONLY)
 IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
C$DIR PARALLEL(MAX_THREADS = 8), PARALLEL_PRIVATE(I, J, K, MYTID)
 MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
 DO I = 1, 1000
 A(I, MYTID) = B(I, MYTID) * RDONLY(I)
 ENDDO
 IF(MYTID .EQ. 1) THEN ! ONLY THREAD 0 EXECUTES SECOND
 CALL INIT2(RDONLY) ! INITIALIZATION
 ENDIF
 DO J = 1, 1000
 B(J, MYTID) = B(J, MYTID) * RDONLY(J)
 C(J, MYTID) = A(J, MYTID) * B(J, MYTID)
 ENDDO
 DO K = 1, 1000
 SUM(MYTID) = SUM(MYTID) + A(K,MYTID) + B(K,MYTID) +
C(K,MYTID)
 ENDDO
C$DIR END_PARALLEL

In this example, all arrays written to in the parallel code have one
dimension for each of the anticipated number of parallel threads. Each
thread can work on disjoint data, there is no chance of two threads
attempting to update the same element, and, therefore, there is no need
for explicit synchronization. The RDONLY array is one-dimensional, but it
is never written to by parallel threads. Before the parallel region,
RDONLY is initialized in serial code.

The PARALLEL_PRIVATE directive is used to privatize the induction
variables used in the parallel region. This must be done so that the
various threads processing the region do not attempt to write to the same
shared induction variables. PARALLEL_PRIVATE is covered in more
detail in the section “parallel_private ” on page 220.

At the beginning of the parallel region, the NUM_THREADS() intrinsic is
called to ensure that the expected number of threads are available. Then
the MY_THREAD() intrinsic, is called by each thread to determine its
thread ID. All subsequent code in the region is executed based on this ID.
In the I loop, each thread computes one row of A using RDONLY and the
corresponding row of B.

200 Chapter 9

Parallel programming techniques
Parallelizing regions

RDONLY is reinitialized in a subroutine call that is only executed by
thread 0 before it is used again in the computation of B in the J loop. In
J , each thread computes a row again. The J loop similarly computes C.

Finally, the K loop sums each dimension of A, B, and C into the SUM array.
No synchronization is necessary here because each thread is running the
entire loop serially and assigning into a discrete element of SUM.

Chapter 9 201

Parallel programming techniques
Reentrant compilation

Reentrant compilation
By default, HP-UX parallel compilers compile for reentrancy in that the
compiler itself does not introduce static or global references beyond what
exist in the original code. Reentrant compilation causes procedures to
store uninitialized local variables on the stack. No locals can carry values
from one invocation of the procedure to the next, unless the variables
appear in Fortran COMMON blocks or DATA or SAVE statements or in C/
C++ static statements. This allows loops containing procedure calls to
be manually parallelized, assuming no other inhibitors of parallelization
exist.

When procedures are called in parallel, each thread receives a private
stack on which to allocate local variables. This allows each parallel copy
of the procedure to manipulate its local variables without interfering
with any other copy’s locals of the same name. When the procedure
returns and the parallel threads join, all values on the stack are lost.

202 Chapter 9

Parallel programming techniques
Setting thread default stack size

Setting thread default stack size
Thread 0’s stack can grow to the size specified in the maxssiz
configurable kernel parameter. Refer to the Managing Systems and
Workgroups manual for more information on configurable kernel
parameters.

Any threads your program spawns (as the result of loop_parallel or
tasking directives or pragmas) receive a default stack size of 80 Mbytes.
This means that if the following conditions exist, then you must modify
the stack size of the spawned threads using the CPS_STACK_SIZE
environment variable:

• A parallel construct declares more than 80 Mbytes of loop_private ,
task_private , or parallel_private data, or

• A subprogram with more than 80 Mbytes of local data is called in
parallel, or

• The cumulative size of all local variables in a chain of subprograms
called in parallel exceeds 80 Mbytes,

Modifying thread stack size
Under csh , you can modify the stack size of the spawned threads using
the CPS_STACK_SIZE environment variable.

The form of the CPS_STACK_SIZE environment variable is shown in
Table 39.

Table 39 Forms of CPS_STACK_SIZE environment variable

where

size_in_kbytes
is the desired stack size in kbytes. This value is read at
program start-up, and it cannot be changed during
execution.

Language Form

Fortran, C setenv CPS_STACK_SIZE size_in_kbytes

Chapter 9 203

Parallel programming techniques
Collecting parallel information

For example, the following command sets the thread stack size
to 100 Mbytes:

setenv CPS_STACK_SIZE 102400

Collecting parallel information
Several intrinsics are available to provide information regarding the
parallelism or potential parallelism of your program. These are all
integer functions, available in both 4- and 8-byte variants. They can
appear in executable statements anywhere an integer expression is
allowed.

The 8-byte functions, which are suffixed with _8 , are typically only used
in Fortran programs in which the default data lengths have been
changed using the -I8 or similar compiler options. When default integer
lengths are modified via compiler options in Fortran, the correct intrinsic
is automatically chosen regardless of which is specified. These versions
expect 8-byte input arguments and return 8-byte values.

NOTE All C/C++ code examples presented in this chapter assume that the line
below appears above the C code presented. This header file contains the
necessary type and function definitions.

#include <spp_prog_model.h>

Number of processors
Certain functions return the total number of processors on which the
process has initiated threads. These threads are not necessarily active at
the time of the call. The forms of these functions are shown in Table 40.

204 Chapter 9

Parallel programming techniques
Collecting parallel information

Table 40 Number of processors functions

num_procs is used to dimension automatic and adjustable arrays in
Fortran. It may be used in Fortran, C, and C++ to dynamically specify
array dimensions and allocate storage.

Number of threads
Certain functions return the total number of threads the process creates
at initiation, regardless of how many are idle or active. The forms of
these functions is shown in Table 41.

Table 41 Number of threads functions

The return value differs from num_procs only if threads are
oversubscribed.

Language Form

Fortran INTEGER NUM_PROCS()

INTEGER*8 NUM_PROCS_8()

C/C++ int num_procs(void);

long long num_procs_8(void);

Language Form

Fortran INTEGER NUM_THREADS()

INTEGER*8 NUM_THREADS_8()

C/C++ int num_threads(void);

long long num_threads_8(void);

Chapter 9 205

Parallel programming techniques
Collecting parallel information

Thread ID
When called from parallel code these functions return the spawn thread
ID of the calling thread, in the range 0..N-1, where nst is the number of
threads in the current spawn context (the number of threads spawned by
the last parallel construct). Use them when you wish to direct specific
tasks to specific threads inside parallel constructs. The forms of these
functions is shown in Table 42.

Table 42 Thread ID functions

When called from serial code, these functions return 0.

Stack memory type
These functions return a value representing the memory class that the
current thread stack is allocated from. The thread stack holds all the
procedure-local arrays and variables not manually assigned a class. On a
single-node system, the thread stack is created in node_private
memory by default. The forms of these functions is shown in Table 43.

Table 43 Stack memory type functions

Language Form

Fortran INTEGER MY_THREAD()

INTEGER*8 MY_THREADS_8()

C/C++ int my_thread(void);

long long my_thread_8(void);

Language Form

Fortran INTEGER MEMORY_TYPE_OF_STACK()

INTEGER*8 MEMORY_TYPE_OF_STACK_8()

C/C++ int memory_type_of_stack(void);

long long memory_type_of_stack_8(void);

206 Chapter 9

Parallel programming techniques
Collecting parallel information

Chapter 10 207

10 Data privatization

Once HP shared memory classes are assigned, they are implemented
throughout your entire program. Very efficient programs are written
using these memory classes, as described in “Memory classes,” on
page 223. However, these programs also require some manual
intervention. Any loops that manipulate variables that are explicitly
assigned to a memory class must be manually parallelized. Once a
variable is assigned a class, its class cannot change.

This chapter describes the workarounds provided by the HP Fortran 90
and C compilers to support:

• Privatizing loop variables

• Privatizing task variables

• Privatizing region variables

208 Chapter 10

Data privatization
Directives and pragmas for data privatization

Directives and pragmas for data
privatization
This section describes the various directives and pragmas that are
implemented to achieve data privatization. These directives and
pragmas are discussed in Table 44.

Table 44 Data Privatization Directives and Pragmas

These directives and pragmas allow you to easily and temporarily
privatize parallel loop, task, or region data. When used with
prefer_parallel , these directives and pragmas do not inhibit
automatic compiler optimizations. This facilitates increased performance
of your shared-memory program. It occurs with less work than is
required when using the standard memory classes for manual
parallelization and synchronization.

Directive / Pragma Description Level of
parallelism

loop_private
(namelist)

Declares a list of variables and/or arrays
private to the following loop.

Loop

parallel_private
(namelist)

Declares a list of variables and/or arrays
private to the following parallel region.

Region

save_last[(list)] Specifies that the variables in the comma-
delimited list (also named in an associated
loop_private(namelist) directive or
pragma) must have their values saved into
the shared variable of the same name at loop
termination.

Loop

task_private
(namelist)

Privatizes the variables and arrays specified
in namelist for each task specified in the
following begin_tasks /end_tasks block.

Task

Chapter 10 209

Data privatization
Directives and pragmas for data privatization

The data privatization directives and pragmas are used on local
variables and arrays of any type, but they should not be used on data
assigned to thread_private .

In some cases, data declared loop_private , task_private , or
parallel_private is stored on the stacks of the spawned threads.
Spawned thread stacks default to 80 Mbytes in size.

210 Chapter 10

Data privatization
Privatizing loop variables

Privatizing loop variables
This section describes the following directives and pragmas associated
with privatizing loop variables:

• loop_private

• save_last

loop_private

The loop_private directive and pragma declares a list of variables
and/or arrays private to the immediately following Fortran DO or C for
loop. loop_private array dimensions must be identifiable at compile-
time.

The compiler assumes that data objects declared to be loop_private
have no loop-carried dependences with respect to the parallel loops in
which they are used. If dependences exist, they must be handled
manually using the synchronization directives and techniques described
in “Parallel synchronization,” on page 233.

Each parallel thread of execution receives a private copy of the
loop_private data object for the duration of the loop. No starting
values are assumed for the data. Unless a save_last directive or
pragma is specified, no ending value is assumed. If a loop_private
data object is referenced within an iteration of the loop, it must be
assigned a value previously on that same iteration.

The form of this directive and pragma is shown in Table 45.

Table 45 Form of loop_private directive and pragma

Language Form

Fortran C$DIR LOOP_PRIVATE(namelist)

C #pragma _CNX loop_private(namelist)

Chapter 10 211

Data privatization
Privatizing loop variables

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following loop.
namelist cannot contain structures, dynamic arrays,
allocatable arrays, or automatic arrays.

 Example loop_private

The following is a Fortran example of loop_private :

C$DIR LOOP_PRIVATE(S)
 DO I = 1, N
C S IS ONLY CORRECTLY PRIVATE IF AT LEAST
C ONE IF TEST PASSES ON EACH ITERATION:
 IF(A(I) .GT. 0) S = A(I)
 IF(U(I) .LT. V(I)) S = V(I)
 IF(X(I) .LE. Y(I)) S = Z(I)
 B(I) = S * C(I) + D(I)
 ENDDO

A potential loop-carried dependence on S exists in this example. If none
of the IF tests are true on a given iteration, the value of S must wrap
around from the previous iteration. The LOOP_PRIVATE(S) directive
indicates to the compiler that S does, in fact, get assigned on every
iteration, and therefore it is safe to parallelize this loop.

If on any iteration none of the IF tests pass, an actual LCD exists and
privatizing S results in wrong answers.

 Example Using loop_private with loop_parallel

Because the compiler does not automatically perform variable
privatization in loop_parallel loops, you must manually privatize
loop data requiring privatization. This is easily done using the
loop_private directive or pragma.

212 Chapter 10

Data privatization
Privatizing loop variables

The following Fortran example shows how loop_private manually
privatizes loop data:

 SUBROUTINE PRIV(X,Y,Z)
 REAL X(1000), Y(4,1000), Z(1000)
 REAL XMFIED(1000)
C$DIR LOOP_PARALLEL, LOOP_PRIVATE(XMFIED, J)
 DO I = 1, 4
C INITIALIZE XMFIED; MFY MUST NOT WRITE TO X:
 CALL MFY(X, XMFIED)
 DO J = 1, 999
 IF (XMFIED(J) .GE. Y(I,J)) THEN
 Y(I,J) = XMFIED(J) * Z(J)
 ELSE
 XMFIED(J+1) = XMFIED(J)
 ENDIF
 ENDDO
 ENDDO
 END

Here, the LOOP_PARALLEL directive is required to parallelize the I loop
because of the call to MFY. The X and Y arrays are in shared memory by
default. X and Z are not written to, and the portions of Y written to in the
J loop’s IF statement are disjoint, so these shared arrays require no
special attention. The local array XMFIED, however, is written to. But
because XMFIED carries no values into or out of the I loop, it is privatized
using LOOP_PRIVATE. This gives each thread running the I loop its own
private copy of XMFIED, eliminating the expensive necessity of
synchronized access to XMFIED.

Note that an LCD exists for XMFIED in the J loop, but because this loop
runs serially on each processor, the dependence is safe.

Denoting induction variables in parallel loops
To safely parallelize a loop with the loop_parallel directive or
pragma, the compiler must be able to correctly determine the loop’s
primary induction variable.

The compiler can find primary Fortran DO loop induction variables. It
may, however, have trouble with DO WHILE or customized Fortran loops,
and with all loop_parallel loops in C. Therefore, when you use the
loop_parallel directive or pragma to manually parallelize a loop
other than an explicit Fortran DO loop, you should indicate the loop’s
primary induction variable using the IVAR=indvar attribute to
loop_parallel .

Chapter 10 213

Data privatization
Privatizing loop variables

 Example Denoting induction variables in parallel loops

Consider the following Fortran example:

 I = 1
C$DIR LOOP_PARALLEL(IVAR = I)
10 A(I) = ...
 .
 . ! ASSUME NO DEPENDENCES
 .
 I = I + 1
 IF(I .LE. N) GOTO 10

The above is a customized loop that uses I as its primary induction
variable. To ensure parallelization, the LOOP_PARALLEL directive is
placed immediately before the start of the loop, and the induction
variable, I , is specified.

 Example Denoting induction variables in parallel loops

Primary induction variables in C loops are difficult for the compiler to
find, so ivar is required in all loop_parallel C loops. Its use is shown
in the following example:

#pragma _CNX loop_parallel(ivar=i)
 for(i=0; i<n; i++) {
 a[i] = ...;
 .
 . /* assume no dependences */
 .
 }
}

Secondary induction variables
Secondary induction variables are variables used to track loop iterations,
even though they do not appear in the Fortran DO statement. They
cannot appear in addition to the primary induction variable in the C for
statement.

Such variables must be a function of the primary loop induction variable,
and they cannot be independent. Secondary induction variables must be
assigned loop_private .

214 Chapter 10

Data privatization
Privatizing loop variables

 Example Secondary induction variables

The following Fortran example contains an incorrectly incremented
secondary induction variable:

C WARNING: INCORRECT EXAMPLE!!!!
 J = 1
C$DIR LOOP_PARALLEL
 DO I = 1, N
 J = J + 2 ! WRONG!!!

In this example, J does not produce expected values in each iteration
because multiple threads are overwriting its value with no
synchronization. The compiler cannot privatize J because it is a loop-
carried dependence (LCD). This example is corrected by privatizing J
and making it a function of I , as shown below.

C CORRECT EXAMPLE:
 J = 1
C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(J) ! J IS PRIVATE
 DO I = 1, N
 J = (2*I)+1 ! J IS PRIVATE

As shown in the preceding example, J is assigned correct values on each
iteration because it is a function of I and is safely privatized.

 Example Secondary induction variables

In C, secondary induction variables are sometimes included in for
statements, as shown in the following example:

/* warning: unparallelizable code follows */
#pragma _CNX loop_parallel(ivar=i)
 for(i=j=0; i<n;i++,j+=2) {
 a[i] = ...;
 .
 .
 .
 }
}

Because secondary induction variables must be private to the loop and
must be a function of the primary induction variable, this example
cannot be safely parallelized using loop_parallel(ivar=i) . In the
presence of this directive, the secondary induction variable is not
recognized.

To manually parallelize this loop, you must remove j from the for
statement, privatize it, and make it a function of i .

Chapter 10 215

Data privatization
Privatizing loop variables

The following example demonstrates how to restructure the loop so that
j is a valid secondary induction variable:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(j)
 for(i=0; i<n; i++) {
 j = 2*i;
 a[i] = ...;
 .
 .
 .
 }
}

This method runs faster than placing j in a critical section because it
requires no synchronization overhead, and the private copy of j used
here can typically be more quickly accessed than a shared variable.

216 Chapter 10

Data privatization
Privatizing loop variables

save_last[(list)]
A save_last directive or pragma causes the thread that executes the
last iteration of the loop to write back the private (or local) copy of the
variable into the global reference.

The save_last directive and pragma allows you to save the final value
of loop_private data objects assigned in the last iteration of the
immediately following loop.

• If list (the optional, comma-separated list of loop_private data
objects) is specified, only the final values of those data objects in list
are saved.

• If list is not specified, the final values of all loop_private data
objects assigned in the last loop iteration are saved.

The values for this directive and pragma must be assigned in the last
iteration. If the assignment is executed conditionally, it is your
responsibility to ensure that the condition is met and the assignment
executes. Inaccurate results may occur if the assignment does not
execute on the last iteration. For loop_private arrays, only those
elements of the array assigned on the last iteration are saved.

The form of this directive and pragma is shown in Table 46.

Table 46 Form of save_last directive and pragma

save_last must appear immediately before or after the associated
loop_private directive or pragma, or on the same line.

 Example save_last

The following is a C example of save_last :

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(atemp, x, y)
#pragma _CNX save_last(atemp, x)
for(i=0;i<n;i++) {
 if(i==d[i]) atemp = a[i];
 if(i==e[i]) atemp = b[i];
 if(i==f[i]) atemp = c[i];
 a[i] = b[i] + c[i];

Language Form

Fortran C$DIR SAVE_LAST[(list)]

C #pragma _CNX save_last[(list)]

Chapter 10 217

Data privatization
Privatizing loop variables

 b[i] = atemp;
 x = atemp * a[i];
 y = atemp * c[i];
}
.
.
.
if(atemp > amax) {
.
.
.

In this example, the loop_ private variable atemp is conditionally
assigned in the loop. In order for atemp to be truly private, you must be
sure that at least one of the conditions is met so that atemp is assigned
on every iteration.

When the loop terminates, the save_last pragma ensures that atemp
and X contain the values they are assigned on the last iteration. These
values can then be used later in the program. The value of y, however, is
not available once the loop finishes because y is not specified as an
argument to save_last .

 Example save_last

There are some loop contexts in which the save_last directive and
pragma is misleading.

The following Fortran code provides an example of this:

C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(S)
C$DIR SAVE_LAST
 DO I = 1, N
 IF(G(I) .GT. 0) THEN
 S = G(I) * G(I)
 ENDIF
 ENDDO

While it may appear that the last value of S assigned is saved in this
example, you must remember that the SAVE_LAST directive applies only
to the last (Nth) iteration, with no regard for any conditionals contained
in the loop. For SAVE_LAST to be valid here, G(N) must be greater than 0
so that the assignment to S takes place on the final iteration.

Obviously, if this condition is predicted, the loop is more efficiently
written to exclude the IF test, so the presence of a SAVE_LAST in such a
loop is suspect.

218 Chapter 10

Data privatization
Privatizing task variables

Privatizing task variables
Task privatization is manually specified using the task_private
directive and pragma. task_private declares a list of variables and/or
arrays private to the immediately following tasks. It serves the same
purpose for parallel tasks that loop_private serves for loops and
parallel_private serves for regions.

task_private

The task_private directive must immediately precede, or appear on
the same line as, its corresponding begin_tasks directive. The compiler
assumes that data objects declared to be task_private have no
dependences between the tasks in which they are used. If dependences
exist, you must handle them manually using the synchronization
directives and techniques described in “Parallel synchronization,” on
page 233.

Each parallel thread of execution receives a private copy of the
task_private data object for the duration of the tasks. No starting or
ending values are assumed for the data. If a task_private data object
is referenced within a task, it must have been previously assigned a
value in that task.

The form of this directive and pragma is shown in Table 47.

Table 47 Form of task_private directive and pragma

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following
tasks. namelist cannot contain dynamic, allocatable, or
automatic arrays.

Language Form

Fortran C$DIR TASK_PRIVATE(namelist)

C #pragma _CNX task_private(namelist)

Chapter 10 219

Data privatization
Privatizing task variables

 Example task_private

The following Fortran code provides an example of task privatization:

 REAL*8 A(1000), B(1000), WRK(1000)
 .
 .
 .
C$DIR BEGIN_TASKS, TASK_PRIVATE(WRK)
 DO I = 1, N
 WRK(I) = A(I)
 ENDDO
 DO I = 1, N
 A(I) = WRK(N+1-I)
 .
 .
 .
 ENDDO
C$DIR NEXT_TASK
 DO J = 1, M
 WRK(J) = B(J)
 ENDDO
 DO J = 1, M
 B(J) = WRK(M+1-J)
 .
 .
 .
 ENDDO
C$DIR END_TASKS

In this example, the WRK array is used in the first task to temporarily
hold the A array so that its order is reversed. It serves the same purpose
for the B array in the second task. WRK is assigned before it is used in
each task.

220 Chapter 10

Data privatization
Privatizing region variables

Privatizing region variables
Regional privatization is manually specified using the
parallel_private directive or pragma. parallel_private is
provided to declare a list of variables and/or arrays private to the
immediately following parallel region. It serves the same purpose for
parallel regions as task_private does for tasks, and loop_private
does for loops.

parallel_private

The parallel_private directive must immediately precede, or appear
on the same line as, its corresponding parallel directive. Using
parallel_private asserts that there are no dependences in the
parallel region.

Do not use parallel_private if there are dependences.

Each parallel thread of execution receives a private copy of the
parallel_private data object for the duration of the region. No
starting or ending values are assumed for the data. If a
parallel_private data object is referenced within a region, it must
have been previously assigned a value in the region.

The form of this directive and pragma is shown in Table 48.

Table 48 Form of parallel_private directive and pragma

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following
parallel region. namelist cannot contain dynamic,
allocatable, or automatic arrays.

Language Form

Fortran C$DIR PARALLEL_PRIVATE(namelist)

C #pragma _CNX parallel_private(namelist)

Chapter 10 221

Data privatization
Privatizing region variables

 Example parallel_privat e

The following Fortran code shows how parallel_private privatizes
regions:

 REAL A(1000,8), B(1000,8), C(1000,8), AWORK(1000), SUM(8)
 INTEGER MYTID
 .
 .
 .
C$DIR PARALLEL(MAX_THREADS = 8)
C$DIR PARALLEL_PRIVATE(I,J,K,L,M,AWORK,MYTID)
 IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
 MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
 DO I = 1, 1000
 AWORK(I) = A(I, MYTID)
 ENDDO
 DO J = 1, 1000
 A(J, MYTID) = AWORK(J) + B(J, MYTID)
 ENDDO
 DO K = 1, 1000
 B(K, MYTID) = B(K, MYTID) * AWORK(K)
 C(K, MYTID) = A(K, MYTID) * B(K, MYTID)
 ENDDO
 DO L = 1, 1000
 SUM(MYTID) = SUM(MYTID) + A(L,MYTID) + B(L,MYTID) + C(L,MYTID)
 ENDDO
 DO M = 1, 1000
 A(M, MYTID) = AWORK(M)
 ENDDO
C$DIR END_PARALLEL

This example is similar to the example on page 197 in the way it checks
for a certain number of threads and divides up the work among those
threads. The example additionally introduces the parallel_private
variable AWORK.

Each thread initializes its private copy of AWORK to the values contained
in a dimension of the array A at the beginning of the parallel region. This
allows the threads to reference AWORK without regard to thread ID. This
is because no thread can access any other thread’s copy of AWORK.
Because AWORK cannot carry values into or out of the region, it must be
initialized within the region.

222 Chapter 10

Data privatization
Privatizing region variables

Induction variables in region privatization
All induction variables contained in a parallel region must be privatized.
Code contained in the region runs on all available threads. Failing to
privatize an induction variable would allow each thread to update the
same shared variable, creating indeterminate loop counts on every
thread.

In the previous example, in the J loop, after AWORK is initialized, AWORK
is effectively used in a reduction on A; at this point its contents are
identical to the MYTID dimension of A. After A is modified and used in the
K and L loops, each thread restores a dimension of A’s original values
from its private copy of AWORK. This carries the appropriate dimension
through the region unaltered.

Chapter 11 223

11 Memory classes

The V-Class server implements only one partition of hypernode-local
memory. This is accessed using the thread_private and
node_private virtual memory classes. This chapter includes discussion
of the following topics:

• Private versus shared memory

• Memory class assignments

The information in this chapter is provided for programmers who want
to manually optimize their shared-memory programs on a single-node
server. This is ultimately achieved by using compiler directives or
pragmas to partition memory and otherwise control compiler
optimizations. It can also be achieved using storage class specifiers in C
and C++.

224 Chapter 11

Memory classes
Porting multinode applications to single-node servers

Porting multinode applications to
single-node servers
Programs developed to run on multinode servers, such as the legacy
X-Class server, can be run on K-Class or V-Class servers. The program
runs as it would on one node of a multinode machine.

When a multinode application is executed on a single-node server:

• All PARALLEL, LOOP_PARALLEL, PREFER_PARALLEL, and
BEGIN_TASKS directives containing node attributes are ignored.

• All variables, arrays and pointers that are declared to be
NEAR_SHARED, FAR_SHARED, or BLOCK_SHARED are assigned to the
NODE_PRIVATE class.

• The THREAD_PRIVATE and NODE_PRIVATE classes remain
unchanged and function as usual.

See the Exemplar Programming Guide for HP-UX Systems for a
complete description of how to program multinode applications using HP
parallel directives.

Chapter 11 225

Memory classes
Private versus shared memory

Private versus shared memory
Private and shared data are differentiated by their accessibility and by
the physical memory classes in which they are stored.

thread_private data is stored in node-local memory. Access to
thread_private is restricted to the declaring thread.

When porting multinode applications to the HP single-node machine, all
legacy shared memory classes (such as near_shared , far_shared ,
and block_shared) are automatically mapped to the node_private
memory class. This is the default memory class on the K-Class and V-
Class servers.

thread_private

thread_private data is private to each thread of a process. Each
thread_private data object has its own unique virtual address within
a hypernode. This virtual address maps to unique physical addresses in
hypernode-local physical memory.

Any sharing of thread_private data items between threads
(regardless of whether they are running on the same node) must be done
by synchronized copying of the item into a shared variable, or by
message passing.

NOTE thread_private data cannot be initialized in C, C++, or in Fortran DATA
statements.

node_private

node_private data is shared among the threads of a process running
on a given node. It is the default memory class on the V-Class single-node
server, and does not need to be explicitly specified. node_private data
items have one virtual address, and any thread on a node can access that
node’s node_private data using the same virtual address. This virtual
address maps to a unique physical address in node-local memory.

226 Chapter 11

Memory classes
Memory class assignments

Memory class assignments
In Fortran, compiler directives are used to assign memory classes to data
items. In C and C++, memory classes are assigned through the use of
syntax extensions, which are defined in the header file
/usr/include/spp_prog_model.h . This file must be included in any
C or C++ program that uses memory classes. In C++, you can also use
operator new to assign memory classes.

• The Fortran memory class declarations must appear with other
specification statements; they cannot appear within executable
statements.

• In C and C++, parallel storage class extensions are used, so memory
classes are assigned in variable declarations.

On a single-node system, HP compilers provide mechanisms for
statically assigning memory classes. This chapter discusses these
memory class assignments.

The form of the directives and pragmas associated with is shown in
Table 49.

Table 49 Form of memory class directives and variable declarations

where (for Fortran)

memory_class_name
can be THREAD_PRIVATE, or NODE_PRIVATE

Language Form

Fortran C$DIR memory_class_name(namelist)

C/C++ #include <spp_prog_model.h>
.
.
.
[storage_class_specifier] memory_class_name type_specifier namelist

Chapter 11 227

Memory classes
Memory class assignments

namelist
is a comma-separated list of variables, arrays, and/or
COMMON block names to be assigned the class
memory_class_name. COMMON block names must be
enclosed in slashes (/), and only entire COMMON blocks
can be assigned a class. This means arrays and
variables in namelist must not also appear in a COMMON
block and must not be equivalenced to data objects in
COMMON blocks.

where (for C)

storage_class_specifier
specifies a nonautomatic storage class

memory_class_name
is the desired memory class (thread_private ,
node_private)

type_specifier
is a C or C++ data type (int , float , etc.)

namelist
is a comma-separated list of variables and/or arrays of
type type_specifier

C and C++ data objects
In C and C++, data objects that are assigned a memory class must have
static storage duration. This means that if the object is declared within a
function, it must have the storage class extern or static . If such an
object is not given one of these storage classes, its storage class defaults
to automatic and it is allocated on the stack. Stack-based objects cannot
be assigned a memory class; attempting to do so results in a compile-
time error.

Data objects declared at file scope and assigned a memory class need not
specify a storage class.

All C and C++ code examples presented in this chapter assume that the
following line appears above the code presented:

#include <spp_prog_model.h>

This header file maps user symbols to the implementation reserved
space.

228 Chapter 11

Memory classes
Memory class assignments

If operator new is used, it is also assumed that the line below appears
above the code:

#include <new.h>

If you assign a memory class to a C or C++ structure, all structure
members must be of the same class.

Once a data item is assigned a memory class, the class cannot be
changed.

Static assignments
Static memory class assignments are physically located with variable
type declarations in the source. Static memory classes are typically used
with data objects that are accessed with equal frequency by all threads.
These include objects of the thread_private and node_private
classes. Static assignments for all classes are explained in the
subsections that follow.

thread_private

Because thread_private variables are replicated for every thread,
static declarations make the most sense for them.

 Example thread_private

In Fortran, the thread_private memory class is assigned using the
THREAD_PRIVATE compiler directive, as shown in the following example:

 REAL*8 TPX(1000)
 REAL*8 TPY(1000)
 REAL*8 TPZ(1000), X, Y
 COMMON /BLK1/ TPZ, X, Y
C$DIR THREAD_PRIVATE(TPX, TPY, /BLK1/)

Each array declared here is 8000 bytes in size, and each scalar variable
is 8 bytes, for a total of 24,016 bytes of data. The entire COMMON block
BLK1 is placed in thread_private memory along with TPX and TPY. All
memory space is replicated for each thread in hypernode-local physical
memory.

Chapter 11 229

Memory classes
Memory class assignments

 Example thread_private

The following C/C++ example demonstrates several ways to declare
thread_private storage. The data objects declared here are not scoped
analogously to those declared in the Fortran example:

/* tpa is global: */
thread_private double tpa[1000];
func() {
 /* tpb is local to func: */
 static thread_private double tpb[1000];
 /* tpc, a and b are declared elsewhere: */
 extern thread_private double tpc[1000],a,b;
 .
 .
 .

The C/C++ double data type provides the same precision as Fortran’s
REAL*8. The thread_private data declared here occupies the same
amount of memory as that declared in the Fortran example. tpa is
available to all functions lexically following it in the file. tpb is local to
func and inaccessible to other functions. tpc , a, and b are declared at
filescope in another file that is linked with this one.

 Example thread_private COMMON blocks in parallel subroutines

Data local to a procedure that is called in parallel is effectively private
because storage for it is allocated on the thread’s private stack. However,
if the data is in a Fortran COMMON block (or if it appears in a DATA or
SAVE statement), it is not stored on the stack. Parallel accesses to such
nonprivate data must be synchronized if it is assigned a shared class.
Additionally, if the parallel copies of the procedure do not need to share
the data, it can be assigned a private class.

230 Chapter 11

Memory classes
Memory class assignments

Consider the following Fortran example:

 INTEGER A(1000,1000)
 .
 .
 .
C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1, N
 CALL PARCOM(A(1,I))
 .
 .
 .
 ENDDO
 SUBROUTINE PARCOM(A)
 INTEGER A(*)
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
 INTEGER TEMP1, TEMP2
 D(1:1000) = ...
 .
 .
 .
 CALL PARCOM2(A, JTA)
 .
 .
 .
 END

 SUBROUTINE PARCOM2(B,JTA)
 INTEGER B(*), JTA
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
 DO J = 1, 1000
 C(J) = D(J) * B(J)
 ENDDO
 END
 .
 .
 .

In this example, COMMON block BLK1 is declared THREAD_PRIVATE, so
every parallel instance of PARCOM gets its own copy of the arrays C and D.

Because this code is already thread-parallel when the COMMON block is
defined, no further parallelism is possible, and BLK1 is therefore suitable
for use anywhere in PARCOM. The local variables TEMP1 and TEMP2 are
allocated on the stack, so each thread effectively has private copies of
them.

Chapter 11 231

Memory classes
Memory class assignments

node_private

Because the space for node_private variables is physically replicated,
static declarations make the most sense for them.

In Fortran, the node_private memory class is assigned using the
NODE_PRIVATE compiler directive, as shown in the following example:

 REAL*8 XNP(1000)
 REAL*8 YNP(1000)
 REAL*8 ZNP(1000), X, Y
 COMMON /BLK1/ ZNP, X, Y
C$DIR NODE_PRIVATE(XNP, YNP, /BLK1/)

Again, the data requires 24,016 bytes. The contents of BLK1 are placed in
node_private memory along with XNP and YNP. Space for each data
item is replicated once per hypernode in hypernode-local physical
memory. The same virtual address is used by each thread to access its
hypernode’s copy of a data item.

node_private variables and arrays can be initialized in Fortran DATA
statements.

 Example node_private

The following example shows several ways to declare node_private
data objects in C and C++:

/* npa is global: */
node_private double npa[1000];
func() {
 /* npb is local to func: */
 static node_private double npb[1000];
 /* npc, a and b are declared elsewhere: */
 extern node_private double npc[1000],a,b;
 .
 .
 .

The node_private data declared here occupies the same amount of
memory as that declared in the Fortran example. Scoping rules for this
data are similar to those given for the thread_private C/C++ example.

232 Chapter 11

Memory classes
Memory class assignments

Chapter 12 233

12 Parallel synchronization

Most of the manual parallelization techniques discussed in “Parallel
programming techniques,” on page 175, allow you to take advantage of
the compilers’ automatic dependence checking and data privatization.
The examples that used the LOOP_PRIVATE and TASK_PRIVATE
directives and pragmas in “Data privatization,” on page 207, are
exceptions to this. In these cases, manual privatization is required, but is
performed on a loop-by-loop basis. Only the simplest data dependences
are handled.

This chapter discusses manual parallelizations and that handle multiple
and ordered data dependences. This includes a discussion of the
following topics:

• Thread-parallelism

• Synchronization tools

• Synchronizing code

234 Chapter 12

Parallel synchronization
Thread-parallelism

Thread-parallelism
Only one level of parallelism is supported: thread-parallelism. If you
attempt to spawn thread-parallelism from within a thread-parallel, your
directives on the inner thread-parallel construct are ignored.

Thread ID assignments
Programs are initiated as a collection of threads, one per available
processor. All but thread 0 are idle until parallelism is encountered.

When a process begins, the threads created to run it have unique kernel
thread IDs. Thread 0, which runs all the serial code in the program, has
kernel thread ID 0. The rest of the threads have unique but unspecified
kernel thread IDs at this point. The num_threads() intrinsic returns
the number of threads created, regardless of how many are active when
it is called.

When thread 0 encounters parallelism, it spawns some or all of the
threads created at program start. This means it causes these threads to
go from idle to active, at which point they begin working on their share of
the parallel code. All available threads are spawned by default, but this
is changed using various compiler directives.

If the parallel structure is thread-parallel, then num_threads() threads
are spawned, subject to user-specified limits. At this point, kernel thread
0 becomes spawn thread 0, and the spawned threads are assigned spawn
thread IDs ranging from 0..num_threads() -1. This range begins at
what used to be kernel thread 0.

If you manually limit the number of spawned threads, these IDs range
from 0 to one less than your limit.

Chapter 12 235

Parallel synchronization
Synchronization tools

Synchronization tools
The compiler cannot automatically parallelize loops containing complex
dependences. However, a rich set of directives, pragmas, and data types
is available to help you manually parallelize such loops by synchronizing
and ordering access to the code containing the dependence.

These directives can also be used to synchronize dependences in parallel
tasks. They allow you to efficiently exploit parallelism in structures that
would otherwise be unparallelizable.

Using gates and barriers
Gates allow you to restrict execution of a block of code to a single thread.
They are allocated, locked, unlocked, and deallocated using the functions
described in “Synchronization functions” on page 237. They can also be
used with the ordered or critical section directives, which automate the
locking and unlocking functions.

Barriers block further execution until all executing threads reach the
barrier and then thread 0 can proceed past the barrier.

Gates and barriers use dynamically allocatable variables, declared using
compiler directives in Fortran and using data declarations in C and C++.
They may be initialized and referenced only by passing them as
arguments to the functions discussed in the following sections.

The forms of these variable declarations are shown in Table 50.

Table 50 Forms of gate and barriers variable declarations

Language Form

Fortran C$DIR GATE(namelist)

C$DIR BARRIER(namelist)

C/C++ gate_t namelist;

barrier_t namelist;

236 Chapter 12

Parallel synchronization
Synchronization tools

where

namelist is a comma-separated list of one or more gate or barrier
names, as appropriate.

In C and C++
In C and C++, gates and barriers should appear only in definition and
declaration statements, and as formal, and actual arguments. They
declare default-size variables.

In Fortran
The Fortran gate and barrier variable declarations can only appear:

• In COMMON statements (statement must precede GATE directive/
BARRIER directive)

• In DIMENSION statements (statement must precede GATE directive/
BARRIER directive)

• In preceding type statements

• As dummy arguments

• As actual arguments

Gate and barrier types override other same-named types declared prior
to the gate/barrier pragmas. Once a variable is defined as a gate or
barrier, it cannot be redeclared as another type. Gates and barriers
cannot be equivalenced.

If you place gates or barriers in COMMON, the COMMON block declaration
must precede the GATE directive/BARRIER directive. The COMMON block
should contain only gates or only barriers. Arrays of gates or barriers
must be dimensioned using DIMENSION statements. The DIMENSION
statement must precede the GATE directive/BARRIER directive.

Chapter 12 237

Parallel synchronization
Synchronization tools

Synchronization functions
The Fortran, C, and C++ allocation, deallocation, lock and unlock
functions for use with gates and barriers are described in this section.
The 4- and 8-byte versions are provided. The 8-byte Fortran functions
are primarily for use with compiler options that change the default data
size to 8 bytes (for example, -I8). You must be consistent in your choice
of versions—memory allocated using an 8-byte function must be
deallocated using an 8-byte function.

Examples of using these functions are presented and explained
throughout this section.

Allocation functions
Allocation functions allocate memory for a gate or barrier. When first
allocated, gate variables are unlocked. The forms of these allocation
functions are shown in Table 51.

Table 51 Forms of allocation functions

where (in Fortran)

gate and barrier
are gate or barrier variables.

where (in C/C++)

gate_p and barrier_p
are pointers of the indicated type.

Language Form

Fortran INTEGER FUNCTION ALLOC_GATE(gate)

INTEGER FUNCTION ALLOC_BARRIER(barrier)

C/C++ int alloc_gate(gate_t * gate_p);

int alloc_barrier(barrier_t * barrier_p);

238 Chapter 12

Parallel synchronization
Synchronization tools

Deallocation functions
The deallocation functions free the memory assigned to the specified gate
or barrier variable. The forms of these deallocation functions are shown
in Table 52.

Table 52 Forms of deallocation functions

where (in Fortran)

gate and barrier
are gate or barrier variables previously declared in the
gate and barrier allocation functions.

where (in C/C++)

gate_p and barrier_p
are pointers of the indicated type.

NOTE Always free gates and barriers after using them.

Language Form

Fortran INTEGER FUNCTION FREE_GATE(gate)

INTEGER FUNCTION FREE_BARRIER(barrier)

C/C++ int free_gate(gate_t * gate_p);

int free_barrier(barrier_t * barrier_p);

Chapter 12 239

Parallel synchronization
Synchronization tools

Locking functions
The locking functions acquire a gate for exclusive access. If the gate
cannot be immediately acquired, the calling thread waits for it. The
conditional locking functions, which are prefixed with COND_ or cond_ ,
acquire a gate only if a wait is not required. If the gate is acquired, the
functions return 0; if not, they return -1.

The forms of these locking functions are shown in Table 53.

Table 53 Forms of locking functions

where (in Fortran)

gate is a gate variable.

where (in C/C++)

gate_p is a pointer of the indicated type.

Language Form

Fortran INTEGER FUNCTION LOCK_GATE(gate)

INTEGER FUNCTION COND_LOCK_GATE(gate)

C/C++ int lock_gate(gate_t * gate_p);

int cond_lock_gate(gate_t * gate_p);

240 Chapter 12

Parallel synchronization
Synchronization tools

Unlocking functions
The unlocking functions release a gate from exclusive access. Gates are
typically released by the thread that locks them, unless a gate was
locked by thread 0 in serial code. In that case it might be unlocked by a
single different thread in a parallel construct.

The form of these unlocking functions is shown in Table 54.

Table 54 Form of unlocking functions

where (in Fortran)

gate is a gate variable.

where (in C/C++)

gate_p is a pointer of the indicated type.

Language Form

Fortran INTEGER FUNCTION UNLOCK_GATE(gate)

C/C++ int unlock_gate(gate_t * gate_p);

Chapter 12 241

Parallel synchronization
Synchronization tools

Wait functions
The wait functions use a barrier to cause the calling thread to wait until
the specified number of threads call the function. At this point all
threads are released from the function simultaneously.

The form of the wait functions is shown in Table 55.

Table 55 Form of wait functions

where (in Fortran)

barrier is a barrier variable of the indicated type and nthr is
the number of threads calling the routine.

where (in C/C++)

barrier_p is a pointer of the indicated type and nthr is a pointer
referencing the number of threads calling the routine.

You can use a barrier variable in multiple calls to the wait function, if
you ensure that two such barriers are not simultaneously active. You
must also verify that nthr reflects the correct number of threads.

Language Form

Fortran INTEGER FUNCTION WAIT_BARRIER(barrier, nthr)

C/C++ int wait_barrier(barrier_t * barrier_p,const int * nthr);

242 Chapter 12

Parallel synchronization
Synchronization tools

sync_routine

Among the most basic optimizations performed by the HP compilers is
code motion, which is described in “Standard optimization features,” on
page 35. This optimization moves code across routine calls. If the routine
call is to a synchronization function that the compiler cannot identify as
such, and the code moved must execute on a certain side of it, this
movement may result in wrong answers.

The compiler is aware of all synchronization functions and does not move
code across them when they appear directly in code. However, if the
synchronization function is hidden in a user-defined routine, the
compiler has no way of knowing about it and may move code across it.

Any time you call synchronization functions indirectly using your own
routines, you must identify your routines with a sync_routine
directive or pragma.

The form of sync_routine is shown in Table 56.

Table 56 Form of sync_routine directive and pragma

where

routinelist is a comma-separated list of synchronization routines.

Language Form

Fortran C$DIR SYNC_ROUTINE (routinelist)

C #pragma CNX sync_routine (routinelist)

Chapter 12 243

Parallel synchronization
Synchronization tools

 Example sync_routine

sync_routine is effective only for the listed routines that lexically
follow it in the same file where it appears. The following Fortran code
example features the sync_routine directive:

 INTEGER MY_LOCK, MY_UNLOCK
C$DIR GATE(LOCK)
C$DIR SYNC_ROUTINE(MY_LOCK, MY_UNLOCK)
 .
 .
 .
 LCK = ALLOC_GATE(LOCK)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 LCK = MY_LOCK(LOCK)
 .
 .
 .
 SUM = SUM + A(I)
 LCK = MY_UNLOCK(LOCK)
 ENDDO
 .
 .
 .
 INTEGER FUNCTION MY_LOCK(LOCK)
C$DIR GATE(LOCK)
 LCK = LOCK_GATE(LOCK)
 MY_LOCK = LCK
 RETURN
 END

 INTEGER FUNCTION MY_UNLOCK(LOCK)
C$DIR GATE(LOCK)
 LCK = UNLOCK_GATE(LOCK)
 MY_UNLOCK = LCK
 RETURN
 END

In this example, MY_LOCK and MY_UNLOCK are user functions that call
the LOCK_GATE and UNLOCK_GATE intrinsics. The SYNC_ROUTINE
directive prevents the compiler from moving code across the calls to
MY_LOCK and MY_UNLOCK.

Programming techniques such as this are used to implement portable
code across several parallel architectures that support critical sections.
This would be done using different syntax. For example, MY_LOCK and
MY_UNLOCK could simply be modified to call the correct locking and
unlocking functions.

244 Chapter 12

Parallel synchronization
Synchronization tools

 Example sync_routine

The following C example achieves the same task as shown in the
previous Fortran example:

#include <spp_prog_model.h>
main() {
 int i, n, lck, sum, a[1000];
 gate_t lock;
#pragma _CNX sync_routine(mylock, myunlock)
 .
 .
 .
 lck = alloc_gate(&lock);
#pragma _CNX loop_parallel(ivar=i)
 for(i=0; i<n; i++) {
 lck = mylock(&lock);
 .
 .
 .
 sum = sum+a[i];
 lck = myunlock(&lock);
 }
}

int mylock(gate_t *lock) {
 int lck;
 lck = lock_gate(lock); return lck;
}
int myunlock(gate_t *lock) {
 int lck;
 lck = unlock_gate(lock);
 return lck;
}

Chapter 12 245

Parallel synchronization
Synchronization tools

loop_parallel(ordered)

The loop_parallel(ordered) directive and pragma is designed to be
used with ordered sections to execute loops with ordered dependences in
loop order. It accomplishes this by parallelizing the loop so that
consecutive iterations are initiated on separate processors, in loop order.

While loop_parallel(ordered) guarantees starting order, it does not
guarantee ending order, and it provides no automatic synchronization.
To avoid wrong answers, you must manually synchronize dependences
using the ordered section directives, pragmas, or the synchronization
intrinsics (see “Critical sections” on page 247 of this chapter for more
information).

 Example loop_parallel , ordered

The following Fortran code shows how loop_parallel(ordered) is
structured :

C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 100
 .
 . !CODE CONTAINING ORDERED SECTION
 .
 ENDDO

Assume that the body of this loop contains code that is parallelizable
except for an ordered data dependence (otherwise there is no need to
order the parallelization). Also assume that 8 threads, numbered 0..7,
are available to run the loop in parallel. Each thread would then execute
code equivalent to the following:

DO I = (my_thread()+1), 100, num_threads()
 ...
ENDDO

246 Chapter 12

Parallel synchronization
Synchronization tools

Figure 17 illustrates this assumption.

 Figure 17 Ordered parallelization

Here, thread 0 executes first, followed by thread 1, and so on. Each
thread starts its iteration after the preceding iteration has started. A
manually defined ordered section prevents one thread from executing the
code in the ordered section until the previous thread exits the section.
This means that thread 0 cannot enter the section for iteration 9 until
thread 7 exits it for iteration 8.

This is efficient only if the loop body contains enough code to keep a
thread busy until all other threads start their consecutive iterations,
thus taking advantage of parallelism.

You may find the max_threads attribute helpful when fine-tuning
loop_parallel(ordered) loops to fully exploit their parallel code.

Examples of synchronizing loop_parallel(ordered) loops are shown
in “Synchronizing code” on page 250.

DO I = 1,100,8
 ...
ENDDO

DO I = 3,100,8
...

ENDDO

DO I = 2,100,8
...

ENDDO

DO I = 4,100,8
...

ENDDO

DO I = 5,100,8
...

ENDDO

DO I = 6,100,8
 ...

ENDDO

DO I = 7,100,8
...

ENDDO

DO I = 8,100,8
...

ENDDO

THREAD 0 THREAD 1 THREAD 2 THREAD 3

THREAD 4 THREAD 5 THREAD 6 THREAD 7

Chapter 12 247

Parallel synchronization
Synchronization tools

Critical sections
Critical sections allow you to synchronize simple, nonordered
dependences. You must use the critical_section directive or pragma
to enter a critical section, and the end_critical_section directive or
pragma to exit one.

Critical sections must not contain branches to outside the section. The
two directives must appear in the same procedure, but they do not have
to be in the same procedure as the parallel construct in which they are
used. This means that the directives can exist in a procedure that is
called in parallel.

The forms of these directives and pragmas are shown in Table 57.

Table 57 Forms of critical_section , end_critical_section directives
and pragmas

where

gate is an optional gate variable used for access to the
critical section. gate must be appropriately declared as
described in the “Using gates and barriers” on
page 235.

Language Form

Fortran C$DIR CRITICAL_SECTION[(gate)]
...

C$DIR END_CRITICAL_SECTION

C #pragma _CNX critical_section[(gate)]
...

#pragma _CNX end_critical_section

248 Chapter 12

Parallel synchronization
Synchronization tools

The gate variable is required when synchronizing access to a shared
variable from multiple parallel tasks.

• When a gate variable is specified, it must be allocated (using the
alloc_gate intrinsic) outside of parallel code prior to use

• If no gate is specified, the compiler creates a unique gate for the
critical section

• When a gate is no longer needed, it should be deallocated using the
free_gate function.

NOTE Critical sections add synchronization overhead to your program. They
should only be used when the amount of parallel code is significantly larger
than the amount of code containing the dependence.

Ordered sections
Ordered sections allow you to synchronize dependences that must
execute in iteration order. The ordered_section and
end_ordered_section directives and pragmas are used to specify
critical sections within manually defined, ordered loop_parallel loops
only.

The forms of these directives and pragmas are shown in Table 58.

Table 58 Forms of ordered_section , end_ordered_section directives and
pragmas

Language Form

Fortran C$DIR ORDERED_SECTION(gate)
...

C$DIR END_ORDERED_SECTION

C #pragma _CNX ordered_section(gate)
...

#pragma _CNX end_ordered_section

Chapter 12 249

Parallel synchronization
Synchronization tools

where

gate is a required gate variable that must be allocated and,
if necessary, unlocked prior to invocation of the parallel
loop containing the ordered section. gate must be
appropriately declared as described in the “Using gates
and barriers” section of this chapter.

Ordered sections must be entered through ordered_section and
exited through end_ordered_section . They cannot contain branches
to outside the section. Ordered sections are subject to the same control
flow rules as critical sections.

NOTE As with critical sections, ordered sections should be used with care, as they
add synchronization overhead to your program. They should only be used
when the amount of parallel code is significantly larger than the amount of
code containing the dependence.

250 Chapter 12

Parallel synchronization
Synchronizing code

Synchronizing code
Code containing dependences are parallelized by synchronizing the way
the parallel tasks access the dependence. This is done manually using
the gates, barriers and synchronization functions discussed earlier in
this chapter, or semiautomatically using critical and ordered sections,
described in the following sections.

Using critical sections
The critical_section example on page 190 isolates a single critical
section in a loop, so that the critical_section directive does not
require a gate. In this case, the critical section directives automate
allocation, locking, unlocking and deallocation of the needed gate.
Multiple dependences and dependences in manually-defined parallel
tasks are handled when user-defined gates are used with the directives.

 Example critical sections

The following Fortran example, however, uses the manual methods of
code synchronization:

 REAL GLOBAL_SUM
C$DIR FAR_SHARED(GLOBAL_SUM)
C$DIR GATE(SUM_GATE)
 .
 .
 .
 LOCK = ALLOC_GATE(SUM_GATE)
C$DIR BEGIN_TASKS
 CONTRIB1 = 0.0
 DO J = 1, M
 CONTRIB1 = CONTRIB1 + FUNC1(J)
 ENDDO
 .
 .
 .
C$DIR CRITICAL_SECTION (SUM_GATE)
 GLOBAL_SUM = GLOBAL_SUM + CONTRIB1
C$DIR END_CRITICAL_SECTION
 .
 .
 .

C$DIR NEXT_TASK

Chapter 12 251

Parallel synchronization
Synchronizing code

 CONTRIB2 = 0.0
 DO I = 1, N
 CONTRIB2 = CONTRIB2 + FUNC2(J)
 ENDDO
 .
 .
 .
C$DIR CRITICAL_SECTION (SUM_GATE)
 GLOBAL_SUM = GLOBAL_SUM + CONTRIB2
C$DIR END_CRITICAL_SECTION
 .
 .
 .
C$DIR END_TASKS
 LOCK = FREE_GATE(SUM_GATE)

Here, both parallel tasks must access the shared GLOBAL_SUM variable.
To ensure that GLOBAL_SUM is updated by only one task at a time, it is
placed in a critical section. The critical sections both reference the
SUM_GATE variable. This variable is unlocked on entry into the parallel
code (gates are always unlocked when they are allocated).

When one task reaches the critical section, the CRITICAL_SECTION
directive automatically locks SUM_GATE. The END_CRITICAL_SECTION
directive unlocks SUM_GATE on exit from the section. Because access to
both critical sections is controlled by a single gate, the sections must
execute one at a time.

252 Chapter 12

Parallel synchronization
Synchronizing code

 Example Gated critical sections

Gated critical sections are also useful in loops containing multiple
critical sections when there are dependences between the critical
sections. If no dependences exist between the sections, gates are not
needed. The compiler automatically supplies a unique gate for every
critical section lacking a gate.

The C example below uses gates so that threads do not update at the
same time, within a critical section:

static far_shared float absum;
static gate_t gate1;
int adjb[...];
.
.
.
lock = alloc_gate(&gate1);
#pragma _CNX loop_parallel(ivar=i)
for(i=0;i<n;i++) {
 a[i] = b[i] + c[i];
#pragma _CNX critical_section(gate1)
 absum = absum + a[i];
#pragma _CNX end_critical_section
 if(adjb[i]) {
 b[i] = c[i] + d[i];
#pragma _CNX critical_section(gate1)
 absum = absum + b[i];
#pragma _CNX end_critical_section
 }
 .
 .
 .
}
lock = free_gate(&gate1);

The shared variable absum must be updated after a(I) is assigned and
again if b(i) is assigned. Access to absum must be guarded by the same
gate to ensure that two threads do not attempt to update it at once. The
critical sections protecting the assignment to ABSUM must explicitly
name this gate, or the compiler chooses unique gates for each section,
potentially resulting in incorrect answers.There must be a substantial
amount of parallelizable code outside of these critical sections to make
parallelizing this loop cost-effective.

Chapter 12 253

Parallel synchronization
Synchronizing code

Using ordered sections
Like critical sections, ordered sections lock and unlock a specified gate to
isolate a section of code in a loop. However, they also ensure that the
enclosed section of code executes in the same order as the iterations of
the ordered parallel loop that contains it.

Once a given thread passes through an ordered section, it cannot enter
again until all other threads have passed through in order. This ordering
is difficult to implement without using the ordered section directives or
pragmas.

You must use a loop_parallel(ordered) directive or pragma to
parallelize any loop containing an ordered section. See
“loop_parallel(ordered) ” on page 245 for a description of this.

 Example Ordered sections

The following Fortran example contains a backward loop-carried
dependence on the array A that would normally inhibit parallelization.

DO I = 2, N
 . ! PARALLELIZABLE CODE...
 .
 .
 A(I) = A(I-1) + B(I)
 . ! MORE PARALLELIZABLE CODE...
 .
 .
ENDDO

Assuming that the dependence shown is the only one in the loop, and
that a significant amount of parallel code exists elsewhere in the loop,
the dependence is isolated. The loop is parallelized as shown below:

C$DIR GATE(LCD)
 LOCK = ALLOC_GATE(LCD)
 .
 .
 .
 LOCK = UNLOCK_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 2, N
 . ! PARALLELIZABLE CODE...
 .
 .
C$DIR ORDERED_SECTION(LCD)
 A(I) = A(I-1) + B(I)

254 Chapter 12

Parallel synchronization
Synchronizing code

C$DIR END_ORDERED_SECTION
 . ! MORE PARALLELIZABLE CODE...
 .
 .
 ENDDO
 LOCK = FREE_GATE(LCD)

The ordered section containing the A(I) assignment executes in
iteration order. This ensures that the value of A(I-1) used in the
assignment is always valid. Assuming this loop runs on four threads, the
synchronization of statement execution between threads is illustrated in
Figure 18.

 Figure 18 LOOP_PARALLEL(ORDERED) synchronization

As shown by the dashed lines between initial iterations for each thread,
one ordered section must be completed before the next is allowed to begin
execution. Once a thread exits an ordered section, it cannot reenter until
all other threads have passed through in sequence.

Overlap of nonordered statements, represented as lightly shaded boxes,
allows all threads to proceed fully loaded. Only brief idle periods occur on
1, 2, and 3 at the beginning of the loop, and on 0, 1, and 2 at the end.

T
H

R
E

A
D

S

0

1

2

3

I=1 I=5 I=9 I=13 I=17

I=2 I=6 I=10 I=14 I=18

I=3 I=7 I=11 I=15 I=19

I=4 I=8 I=12 I=16 I=20

Order of statement execution

Statements contained within ordered sections
Nonordered section statements

Chapter 12 255

Parallel synchronization
Synchronizing code

 Example Ordered section limitations

Each thread in a parallel loop containing an ordered section must pass
through the ordered section exactly once on every iteration of the loop. If
you execute an ordered section conditionally, you must execute it in all
possible branches of the condition. If the code contained in the section is
not valid for some branches, you can insert a blank ordered section, as
shown in the following Fortran example:

C$DIR GATE (LCD)
 .
 .
 .
 LOCK = ALLOC_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, N
 .
 .
 .
 IF (Z(I) .GT. 0.0) THEN
C$DIR ORDERED_SECTION(LCD)
C HERE’S THE BACKWARD LCD:
 A(I) = A(I-1) + B(I)
C$DIR END_ORDERED_SECTION
 ELSE
C HERE IS THE BLANK ORDERED SECTION:
C$DIR ORDERED_SECTION(LCD)
C$DIR END_ORDERED_SECTION
 ENDIF
 .
 .
 .
 ENDDO
 LOCK = FREE_GATE(LCD)

No matter which path through the IF statement the loop takes, and
though the ELSE section is empty, it must pass through the ordered
section. This allows the compiler to properly synchronize the ordered
loop. It is assumed that a substantial amount of parallel code exists
outside the ordered sections, to offset the synchronization overhead.

256 Chapter 12

Parallel synchronization
Synchronizing code

 Example Ordered section limitations

Ordered sections within nested loops can create similar, but more
difficult to recognize, problems. Consider the following Fortran example
(gate manipulation is omitted for brevity):

C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 99
 DO J = 1,M
 .
 .
 .
C$DIR ORDERED_SECTION(ORDGATE)
 A(I,J) = A(I+1,J)
C$DIR END_ORDERED_SECTION
 .
 .
 .
 ENDDO
 ENDDO

Recall that once a given thread has passed through an ordered section, it
cannot reenter it until all other threads have passed through in order.
This is only possible in the given example if the number of available
threads integrally divides 99 (the I loop limit). If not, deadlock results.

To better understand this:

• Assume 6 threads, numbered 0 through 5, are running the parallel I
loop.

• For I = 1, J = 1, thread 0 passes through the ordered section and loops
back through J , stopping when it reaches the ordered section again
for I = 1, J = 2. It cannot enter until threads 1 through 5 (which are
executing I = 2 through 6, J = 1 respectively) pass through in
sequence. This is not a problem, and the loop proceeds through I = 96
in this fashion in parallel.

• For I > 96, all 6 threads are no longer needed. In a single loop nest
this would not pose a problem as the leftover 3 iterations would be
handled by threads 0 through 2. When thread 2 exited the ordered
section it would hit the ENDDO and the I loop would terminate
normally.

• But in this example, the J loop isolates the ordered section from the I
loop, so thread 0 executes J = 1 for I = 97, loops through J and waits
during J = 2 at the ordered section for thread 5, which has gone idle,
to complete. Threads 1 and 2 similarly execute J = 1 for I = 98 and
I = 99, and similarly wait after incrementing J to 2. The entire J loop

Chapter 12 257

Parallel synchronization
Synchronizing code

must terminate before the I loop can terminate, but the J loop can
never terminate because the idle threads 3, 4, and 5 never pass
through the ordered section. As a result, deadlock occurs.

To handle this problem, you can expand the ordered section to include
the entire j loop, as shown in the following C example:

#pragma _CNX loop_parallel(ordered,ivar=i)
for(i=0;i<99;i++) {
#pragma _CNX ordered_section(ordgate)
 for(j=0;j<m;j++) {
 .
 .
 .
 a[i][j] = a[i+1][j];
 .
 .
 .
 }
#pragma _CNX end_ordered_section
}

In this approach, each thread executes the entire j loop each time it
enters the ordered section, allowing the i loop to terminate normally
regardless of the number of threads available.

Another approach is to manually interchange the i and j loops, as
shown in the following Fortran example:

 DO J = 1, M
 LOCK = UNLOCK_GATE(ORDGATE)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 99
 .
 .
 .
C$DIR ORDERED_SECTION(ORDGATE)
 A(I,J) = A(I+1,J)
C$DIR END_ORDERED_SECTION
 .
 .
 .
 ENDDO
 ENDDO

Here, the I loop is parallelized on every iteration of the J loop. The
ordered section is not isolated from its parent loop, so the loop can
terminate normally. This example has added benefit; elements of A are
accessed more efficiently.

258 Chapter 12

Parallel synchronization
Synchronizing code

Manual synchronization
Ordered and critical sections allow you to isolate dependences in a
structured, semiautomatic manner. The same isolation is accomplished
manually using the functions discussed in “Synchronization functions”
on page 237.

 Example Critical sections and gates

Below is a simple critical section Fortran example using
loop_parallel :

C$DIR LOOP_PARALLEL
 DO I = 1, N ! LOOP IS PARALLELIZABLE
 .
 .
 .
C$DIR CRITICAL_SECTION
 SUM = SUM + X(I)
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

As shown, this example is easily implemented using critical sections. It
is manually implemented in Fortran, using gate functions, as shown
below:

C$DIR GATE(CRITSEC)
 .
 .
 .
 LOCK = ALLOC_GATE(CRITSEC)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 LOCK = LOCK_GATE(CRITSEC)
 SUM = SUM + X(I)
 LOCK = UNLOCK_GATE(CRITSEC)
 .
 .
 .
 ENDDO
 LOCK = FREE_GATE(CRITSEC)

As shown, the manual implementation requires declaring, allocating,
and deallocating a gate, which must be locked on entry into the critical
section using the LOCK_GATE function and unlocked on exit using
UNLOCK_GATE.

Chapter 12 259

Parallel synchronization
Synchronizing code

 Example Conditionally lock critical sections

Another advantage of manually defined critical sections is the ability to
conditionally lock them. This allows the task that wishes to execute the
section to proceed with other work if the lock cannot be acquired. This
construct is useful, for example, in situations where one thread is
performing I/O for several other parallel threads.

While a processing thread is reading from the input queue, the queue is
locked, and the I/O thread can move on to do output. While a processing
thread is writing to the output queue, the I/O thread can do input. This
allows the I/O thread to keep as busy as possible while the parallel
computational threads execute their (presumably large) computational
code.

This situation is illustrated in the following Fortran example. Task 1
performs I/O for the 7 other tasks, which perform parallel computations
by calling the THREAD_WRK subroutine:

 COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE (INGATE, OUTGATE)
C$DIR BARRIER (COMPBAR)
 REAL DIN(:), DOUT(:) ! I/O BUFFERS FOR TASK 1
 ALLOCATABLE DIN, DOUT ! THREAD 0 WILL ALLOCATE
 REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
 INTEGER NIN/0/,NOUT/0/ ! QUEUE ENTRY COUNTERS
C CIRCULAR BUFFER POINTERS:
 INTEGER IN_QIN/1/,OUT_QIN/1/,IN_QOUT/1/,OUT_QOUT/1/
 COMMON /DONE/ DONEIN, DONECOMP
 LOGICAL DONECOMP, DONEIN
C SIGNALS FOR COMPUTATION DONE AND INPUT DONE
 LOGICAL COMPDONE, INDONE
C FUNCTIONS TO RETURN DONECOMP AND DONEIN
 LOGICAL INFLAG, OUTFLAG ! INPUT READ AND OUTPUT WRITE FLAGS
C$DIR THREAD_PRIVATE (INFLAG,OUTFLAG) ! ONLY NEEDED BY TASK 1
C (WHICH RUNS ON THREAD 0)
 IF (NUM_THREADS() .LT. 8) STOP 1
 IN = 10
 OUT = 11
 LOCK = ALLOC_GATE(INGATE)
 LOCK = ALLOC_GATE(OUTGATE)
 IBAR = ALLOC_BARRIER(COMPBAR)
 DONECOMP = .FALSE.
C$DIR BEGIN_TASKS ! TASK 1 STARTS HERE
 INFLAG = .TRUE.
 DONEIN = .FALSE.
 ALLOCATE(DIN(1000),DOUT(1000)) ! ALLOCATE LOCAL BUFFERS
 DO WHILE(.NOT. INDONE() .OR. .NOT. COMPDONE() .OR. NOUT .GT. 0)
C DO TILL EOF AND COMPUTATION DONE AND OUTPUT DONE
 IF(NIN.LT.1000.AND.(.NOT.COMPDONE()) .AND.(.NOT. INDONE())) THEN

260 Chapter 12

Parallel synchronization
Synchronizing code

C FILL QUEUE
 IF (INFLAG) THEN ! FILL BUFFER FIRST:
 READ(IN, IOSTAT = IOS) DIN ! READ A RECORD; QUIT ON EOF
 IF(IOS .EQ. -1) THEN
 DONEIN = .TRUE. ! SIGNAL THAT INPUT IS DONE
 INFLAG = .TRUE.
 ELSE
 INFLAG = .FALSE.
 ENDIF
 ENDIF
C SYNCHRONOUSLY ENTER INTO INPUT QUEUE:
C BLOCK QUEUE ACCESS WITH INGATE:
 IF (COND_LOCK_GATE(INGATE) .EQ. 0 .AND. .NOT. INDONE()) THEN
 QIN(:,IN_QIN) = DIN(:) ! COPY INPUT BUFFER INTO QIN
 IN_QIN=1+MOD(IN_QIN,1000) ! INCREMENT INPUT BUFFER PTR
 NIN = NIN + 1 ! INCREMENT INPUT QUEUE ENTRY COUNTER
 INFLAG = .TRUE.
 LOCK = UNLOCK_GATE(INGATE) ! ALLOW INPUT QUEUE ACCESS
 ENDIF
 ENDIF
C SYNCHRONOUSLY REMOVE FROM OUTPUT QUEUE:
C BLOCK QUEUE ACCESS WITH OUTGATE:
 IF (COND_LOCK_GATE(OUTGATE) .EQ. 0) THEN
 IF (NOUT .GT. 0) THEN
 DOUT(:)=QOUT(:,OUT_QOUT) ! COPY OUTPUT QUE INTO BUFFR
 OUT_QOUT=1+MOD(OUT_QOUT,1000)
C INCREMENT OUTPUT BUFR PTR
 NOUT = NOUT - 1 ! DECREMENT OUTPUT QUEUE ENTRY COUNTR
 OUTFLAG = .TRUE.
 ELSE
 OUTFLAG = .FALSE.
 ENDIF
 LOCK = UNLOCK_GATE(OUTGATE)
C ALLOW OUTPUT QUEUE ACCESS
 IF (OUTFLAG) WRITE(OUT) DOUT ! WRITE A RECORD
 ENDIF
 ENDDO
C TASK 1 ENDS HERE
C$DIR NEXT_TASK ! TASK 2:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 3:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 4:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 5:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 6:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 7:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)

Chapter 12 261

Parallel synchronization
Synchronizing code

C$DIR NEXT_TASK ! TASK 8:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
 DONECOMP = .TRUE.
C$DIR END_TASKS
 END

Before looking at the THREAD_WRK subroutine it is necessary to examine
these parallel tasks, particularly task 1, the I/O server. Task 1 performs
all the I/O required by all the tasks:

• Conditionally locked gates control task 1’s access to one section of
code that fills the input queue and one that empties the output queue.

• Task 1 works by first filling an input buffer. The code that does this
does not require gate protection because no other tasks attempt to
access the input buffer array.

• The section of code where the input buffer is copied into the input
queue, however, must be protected by gates to prevent any threads
from trying to read the input queue while it is being filled.

The other seven tasks perform computational work, receiving their input
from and sending their output to task 1’s queues. If a task acquires a lock
on the input queue, task 1 cannot fill it until the task is done reading
from it.

• When task 1 cannot get a lock to access the input queue code, it tries
to lock the output queue code.

• If it gets a lock here, it can copy the output queue into the output
buffer array and relinquish the lock. It can then proceed to empty the
output buffer.

• If another task is writing to the output queue, task 1 loops back and
begins the entire process over again.

• When the end of the input file is reached, all computation is complete,
and the output queue is empty: task 1 is finished.

NOTE The task loops on DONEIN (using INDONE()), which is initially false. When
input is exhausted, DONEIN is set to true, signalling all tasks that there is no
more input.

The INDONE() function references DONEIN, forcing a memory reference.
If DONEIN were referenced directly, the compiler might optimize it into a
register and consequently not detect a change in its value.

262 Chapter 12

Parallel synchronization
Synchronizing code

This means that task 1 has four main jobs to do:

1 Read input into input buffer—no other tasks access the input buffer.
This is done in parallel regardless of what other tasks are doing, as
long as the buffer needs filling.

2 Copy input buffer into input queue—the other tasks read their input
from the input queue, therefore it can only be filled when no
computational task is reading it. This section of code is protected by
the INGATE gate. It can run in parallel with the computational
portions of other tasks, but only one task can access the input queue
at a time.

3 Copy output queue into output buffer—the output queue is where
other tasks write their output. It can only be emptied when no
computational task is writing to it. This section of code is protected by
the OUTGATE gate. It can run in parallel with the computational
portions of other tasks, but only one task can access the output queue
at a time.

4 Write out output buffer—no other tasks access the output buffer. This
is done in parallel regardless of what the other tasks are doing.

Next, it is important to look at the subroutine THREAD_WRK, which tasks
2-7 call to perform computations.

 SUBROUTINE
 > THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 INTEGER NIN,NOUT
 REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
 INTEGER OUT_QIN, OUT_QOUT
 COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE(INGATE, OUTGATE)
 REAL WORK(1000) ! LOCAL THREAD PRIVATE WORK ARRAY
 LOGICAL OUTFLAG, INDONE
 OUTFLAG = .FALSE.
C$DIR THREAD_PRIVATE (WORK) ! EVERY THREAD WILL CREATE A COPY

 DO WHILE(.NOT. INDONE() .OR. NIN.GT.0 .OR. OUTFLAG)
C WORK/QOUT EMPTYING LOOP
 IF (.NOT. OUTFLAG) THEN ! IF NO PENDING OUTPUT
C$DIR CRITICAL_SECTION (INGATE) ! BLOCK ACCESS TO INPUT QUE
 IF (NIN .GT. 0) THEN ! MORE WORK TO DO
 WORK(:) = QIN(:,OUT_QIN)
 OUT_QIN = 1 + MOD(OUT_QIN, 1000)
 NIN = NIN - 1
 OUTFLAG = .TRUE.
C INDICATE THAT INPUT DATA HAS BEEN RECEIVED
 ENDIF
C$DIR END_CRITICAL_SECTION
 .

Chapter 12 263

Parallel synchronization
Synchronizing code

 . ! SIGNIFICANT PARALLEL CODE HERE USING WORK ARRAY
 .
 ENDIF
 IF (OUTFLAG) THEN ! IF PENDING OUTPUT, MOVE TO OUTPUT QUEUE
C AFTER INPUT QUEUE IS USED IN COMPUTATION, FILL OUTPUT QUEUE:
C$DIR CRITICAL_SECTION (OUTGATE) ! BLOCK ACCESS TO OUTPUT QUEUE
 IF(NOUT.LT.1000) THEN
C IF THERE IS ROOM IN THE OUTPUT QUEUE
 QOUT(:,IN_QOUT) = WORK(:) ! COPY WORK INTO OUTPUT QUEUE
 IN_QOUT =1+MOD(IN_QOUT,1000) ! INCREMENT BUFFER PTR
 NOUT = NOUT + 1 ! INCREMENT OUTPUT QUEUE ENTRY COUNTER
 OUTFLAG = .FALSE. ! INDICATE NO OUTPUT PENDING
 ENDIF
C$DIR END_CRITICAL_SECTION
 ENDIF
 ENDDO ! END WORK/QOUT EMPTYING LOOP
 END ! END THREAD_WRK

 LOGICAL FUNCTION INDONE()
C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONEIN VALUE
 LOGICAL DONEIN
 COMMON /DONE/ DONEIN, DONECOMP
 INDONE = DONEIN
 END

 LOGICAL FUNCTION COMPDONE()

C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONECOMP VALUE
 LOGICAL DONECOMP
 COMMON /DONE/ DONEIN, DONECOMP
 COMPDONE= DONECOMP
 END

Notice that the gates are accessed through COMMON blocks. Each thread
that calls this subroutine allocates a thread_private WORK array.

This subroutine contains a loop that tests INDONE() .

• The loop copies the input queue into the local WORK array, then does a
significant amount of computational work that has been omitted for
simplicity.

NOTE The computational work is the main code that executes in parallel, if there is
not a large amount of it, the overhead of setting up these parallel tasks and
critical sections cannot be justified.

• The loop encompasses this computation, and also the section of code
that copies the WORK array to the output queue.

• This construct allows final output to be written after all input has
been used in computation.

264 Chapter 12

Parallel synchronization
Synchronizing code

• To avoid accessing the input queue while it is being filled or accessed
by another thread, the section of code that copies it into the local
WORK array is protected by a critical section.

NOTE This section must be unconditionally locked as the computational threads
cannot do something else until they receive their input.

Once the input queue has been copied, THREAD_WRK can perform its
large section of computational code in parallel with whatever the other
tasks are doing. After the computational section is finished, another
unconditional critical section must be entered so that the results are
written to the output queue. This prevents two threads from accessing
the output queue at once.

Problems like this require performance testing and tuning to achieve
optimal parallel efficiency. Variables such as the number of
computational threads and the size of the I/O queues are adjusted to
yield the best processor utilization.

Chapter 13 265

13 Troubleshooting

This chapter discusses common optimization problems that occasionally
occur when developing programs for SMP servers. Possible solutions to
these problems are offered where applicable.

Optimization can remove instructions, replace them, and change the
order in which they execute. In some cases, improper optimizations can
cause unexpected or incorrect results or code that slows down at higher
optimization levels. In other cases, user error can cause similar problems
in code that contains improperly used syntactically correct constructs or
directives. If you encounter any of these problems, look for the following
possible causes:

• Aliasing

• False cache line sharing

• Floating-point imprecision

• Invalid subscripts

• Misused directives and pragmas

• Triangular loops

• Compiler assumptions

NOTE Compilers perform optimizations assuming that the source code being
compiled is valid. Optimizations done on source that violates certain ANSI
standard rules can cause the compilers to generate incorrect code.

266 Chapter 13

Troubleshooting
Aliasing

Aliasing
As described in the section “Inhibiting parallelization” on page 105, an
alias is an alternate name for an object. Fortran EQUIVALENCE
statements, C pointers, and procedure calls in both languages can
potentially cause aliasing problems. Problems can and do occur at
optimization levels +O3 and above. However, code motion can also cause
aliasing problems at optimization levels +O1 and above.

Because they frequently use pointers, C programs are especially
susceptible to aliasing problems. By default, the optimizer assumes that
a pointer can point to any object in the entire application. Thus, any two
pointers are potential aliases. The C compiler has two algorithms you
can specify in place of the default: an ANSI-C aliasing algorithm and a
type-safe algorithm.

The ANSI-C algorithm is enabled [disabled] through the
+O[no]ptrs_ansi option.

The type-safe algorithm is enabled [disabled] by specifying the
command-line option +O[no]ptrs_strongly_typed .

The defaults for these options are +Onoptrs_ansi and
+Onoptrs_strongly_typed .

ANSI algorithm
ANSI C provides strict type-checking. Pointers and variables cannot
alias with pointers or variables of a different base type. The ANSI C
aliasing algorithm may not be safe if your program is not ANSI
compliant.

Type-safe algorithm
The type-safe algorithm provides stricter type-checking. This allows the
C compiler to use a stricter algorithm that eliminates many potential
aliases found by the ANSI algorithm.

Chapter 13 267

Troubleshooting
Aliasing

Specifying aliasing modes
To specify an aliasing mode, use one of the following options on the C
compiler command line:

• +Optrs_ansi

• +Optrs_strongly_typed

Additional C aliasing options are discussed in “Controlling optimization”
on page 113.

Iteration and stop values
Aliasing a variable in an array subscript can make it unsafe for the
compiler to parallelize a loop. Below are several situations that can
prevent parallelization.

Using potential aliases as addresses of variables
In the following example, the code passes &j to getval ; getval can use
that address in any number of ways, including possibly assigning it to
iptr . Even though iptr is not passed to getval , getval might still
access it as a global variable or through another alias. This situation
makes j a potential alias for *iptr .

void subex(iptr, n, j)
int *iptr, n, j;
{
 n = getval(&j,n);

 for (j--; j<n; j++)
 iptr[j] += 1;
}

This potential alias means that j and iptr[j] might occupy the same
memory space for some value of j . The assignment to iptr[j] on that
iteration would also change the value of j itself. The possible alteration
of j prevents the compiler from safely parallelizing the loop. In this case,
the Optimization Report says that no induction variable could be found
for the loop, and the compiler does not parallelize the loop. (For
information on Optimization Reports, see “Optimization Report” on
page 151).

268 Chapter 13

Troubleshooting
Aliasing

Avoid taking the address of any variable that is used as the iteration
variable for a loop. To parallelize the loop in subex , use a temporary
variable i as shown in the following code:

void subex(iptr, n, j)
int *iptr, n, j;
{
 int i;
 n = getval(&j,n);
 i=j;
 for (i--; i<n; i++)
 iptr[i] += 1;
}

Using hidden aliases as pointers
In the next example, ialex takes the address of j and assigns it to *ip .
Thus, j becomes an alias for *ip and, potentially, for *iptr . Assigned
values to iptr[j] within the loop could alter the value of j . As a result,
the compiler cannot use j as an induction variable and, without an
induction variable, it cannot count the iterations of the loop. When the
compiler cannot find the loop’s iteration count the compiler cannot
parallelize the loop.

int *ip;
void ialex(iptr)
int *iptr;{
 int j;
 *ip = &j;{
 for (j=0; j<2048; j++)
 iptr[j] = 107;
}

To parallelize this loop, remove the line of code that takes the address of
j or introduce a temporary variable.

Using a pointer as a loop counter
Compiling the following function, the compiler finds that *j is not an
induction variable. This is because an assignment to iptr[*j] could
alter the value of *j within the loop. The compiler does not parallelize
the loop.

void ialex2(iptr, j, n)
int *iptr;
int *j, n;
{
 for (*j=0; *j<n; (*j)++)
 iptr[*j] = 107;
}

Chapter 13 269

Troubleshooting
Aliasing

Again, this problem is solved by introducing a temporary iteration
variable.

Aliasing stop variables
In the following code, the stop variable n becomes a possible alias for
*iptr when &n is passed to foo . This means that n is altered during the
execution of the loop. As a result, the compiler cannot count the number
of iterations and cannot parallelize the loop.

void salex(int *iptr, int n)
{
 int i;
 foo(&n);
 for (i=0; i < n; i++)
 iptr[i] += iptr[i];
 return;
}

To parallelize the affected loop, eliminate the call to foo , move the call
below the loop. In this case, flow-sensitive analysis takes care of the
aliasing. You can also create a temporary variable as shown below:

void salex(int *iptr, int n)
{
 int i, tmp;
 foo(&n);
 tmp = n;
 for (i=0; i < tmp; i++)
 iptr[i] += iptr[i];
 return;
}

Because tmp is not aliased to iptr , the loop has a fixed stop value and
the compiler parallelizes it.

Global variables
Potential aliases involving global variables cause optimization problems
in many programs. The compiler cannot tell whether another function
causes a global variable to become aliased.

The following code uses a global variable, n, as a stop value. Because n
may have its address taken and assigned to ik outside the scope of the
function, n must be considered a potential alias for *ik . The value of n,
therefore, is altered on any iteration of the loop. The compiler cannot
determine the stop value and cannot parallelize the loop.

270 Chapter 13

Troubleshooting
Aliasing

int n, *ik;
void foo(int *ik)
{
 int i;

 for (i=0; i<n; i++)
 ik[i]=i;
}

Using a temporary local variable solves the problem.

int n;
void foo(int *ik)
{
 int i,stop = n;

 for (i=0; i<stop; ++i)
 ik[i]=i;
}

If ik is a global variable instead of a pointer, the problem does not occur.
Global variables do not cause aliasing problems except when pointers are
involved. The following code is parallelized:

int n, ik[1000];
void foo()
{
 int i;

 for (i=0; i<n; i++)
 ik[i] = i;
}

Chapter 13 271

Troubleshooting
False cache line sharing

False cache line sharing
False cache line sharing is a form of cache thrashing. It occurs whenever
two or more threads in a parallel program are assigning different data
items in the same cache line. This section discusses how to avoid false
cache line sharing by restructuring the data layout and controlling the
distribution of loop iterations among threads.

Consider the following Fortran code:

REAL*4 A(8)
DO I = 1, 8
 A(I) = ...
 .
 .
 .
ENDDO

Assume there are eight threads, each executing one of the above
iterations. A(1) is on a processor cache line boundary (32-byte boundary
for V2250 servers) so that all eight elements are in the same cache line.
Only one thread at a time can “own” the cache line, so not only is the
above loop, in effect, run serially, but every assignment by a thread
requires an invalidation of the line in the cache of its previous “owner.”
These problems would likely eliminate any benefit of parallelization.

Taking all of the above into consideration, review the code:

REAL*4 B(100,100)
DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
ENDDO

Assume there are eight threads working on the I loop in parallel.
The J loop cannot be parallelized because of the dependence. Table 60 on
page 273 shows how the array maps to cache lines, assuming that
B(1,1) is on a cache line boundary. Array entries that fall on cache line
boundaries are in shaded cells. Array entries that fall on cache line
boundaries are noted by hashmarks(#).

272 Chapter 13

Troubleshooting
False cache line sharing

Table 59 Initial mapping of array to cache lines

Array entries surrounded by hashmarks(#) are on cache line boundaries.

HP compilers, by default, give each thread about the same number of
iterations, assigning (if necessary) one extra iteration to some threads.
This happens until all iterations are assigned to a thread. Table 60
shows the default distribution of the I loop across 8 threads.

1, 1 1, 2 1, 3 1, 4 . . . 1, 99 1,100

2, 1 2, 2 2, 3 2, 4 . . . 2, 99 2,100

3, 1 3, 2 3, 3 3, 4 . . . 3, 99 3,100

4, 1 4, 2 4, 3 4, 4 . . . 4, 99 4,100

5, 1 5, 2 5, 3 5, 4 . . . 5, 99 5,100

6, 1 6, 2 6, 3 6, 4 . . . 6, 99 6,100

7, 1 7, 2 7, 3 7, 4 . . . 7, 99 7,100

8, 1 8, 2 8, 3 8, 4 . . . 8, 99 8,100

9, 1 9, 2 9, 3 9, 4 . . . 9, 99 9,100

10, 1 10, 2 10, 3 10, 4 . . . 10, 99 10,100

11, 1 11, 2 11, 3 11, 4 . . . 11, 99 11,100

12, 1 12, 2 12, 3 12, 4 . . . 12, 99 12,100

13, 1 13, 2 13, 3 13, 4 . . . 13, 99 13, 100

. .

97, 1 97, 2 97, 3 97, 4 . . . 97, 99 97,100

98, 1 98, 2 98, 3 98, 4 . . . 98, 99 98,100

99, 1 99, 2 99, 3 99, 4 . . . 99, 99 99,100

100, 1 100, 2 100, 3 100, 4 . . . 100, 99 100,100

Chapter 13 273

Troubleshooting
False cache line sharing

Table 60 Default distribution of the I loop

This distribution of iterations causes threads to share cache lines. For
example, thread 0 assigns the elements B(9:12,1) , and thread 1
assigns elements B(13:16,1) in the same cache line. In fact, every
thread shares cache lines with at least one other thread. Most share
cache lines with two other threads. This type of sharing is called false
because it is a result of the data layout and the compiler’s distribution of
iterations. It is not inherent in the algorithm itself. Therefore, it is
reduced or even removed by:

1 Restructuring the data layout by aligning data on cache line
boundaries

2 Controlling the iteration distribution.

Thread ID Iteration range Number
of iterations

0 1-12 12

1 13-25 13

2 26-37 12

3 38-50 13

4 51-62 12

5 63-75 13

6 76-87 12

7 88-100 13

274 Chapter 13

Troubleshooting
False cache line sharing

Aligning data to avoid false sharing
Because false cache line sharing is partially due to the layout of the data,
one step in avoiding it is to adjust the layout. Adjustments are typically
made by aligning data on cache line boundaries. Aligning arrays
generally improves performance. However, it can occasionally decrease
performance.

The second step in avoiding false cache line sharing is to adjust the
distribution of loop iterations. This is covered in “Distributing iterations
on cache line boundaries” on page 275.

Aligning arrays on cache line boundaries
Note the assumption that in the previous example, array B starts on a
cache line boundary. The methods below force arrays in Fortran to start
on cache line boundaries:

• Using uninitialized COMMON blocks (blocks with no DATA statements).
These blocks start on 64-byte boundaries.

• Using ALLOCATE statements. These statements return addresses on
64-byte boundaries. This only applies to parallel executables.

The methods below force arrays in C to start on cache line boundaries:

• Using the functions malloc or memory_class_malloc . These
functions return pointers on 64-byte boundaries.

• Using uninitialized global arrays or structs that are at least 32 bytes.
Such arrays and structs are aligned on 64-byte boundaries.

• Using uninitialized data of the external storage class in C that is at
least 32 bytes. Data is aligned on 64-byte boundaries.

Chapter 13 275

Troubleshooting
False cache line sharing

Distributing iterations on cache line
boundaries
Recall that the default iteration distribution causes thread 0 to work on
iterations 1-12 and thread 1 to work on iterations 13-25, and so on. Even
though the cache lines are aligned across the columns of the array (see
Table 60 on page 273), the iteration distribution still needs to be
changed. Use the CHUNK_SIZE attribute to change the distribution:

 REAL*4 B(112,100)
 COMMON /ALIGNED/ B
C$DIR PREFER_PARALLEL (CHUNK_SIZE=16)
 DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
 ENDDO

You must specify a constant CHUNK_SIZE attribute. However, the ideal is
to distribute work so that all but one thread works on the same number
of whole cache lines, and the remaining thread works on any partial
cache line. For example, given the following:

NITS = number of iterations

NTHDS = number of threads

LSIZE = line size in words (8 for 4-byte data, 4 for 8-byte data, 2
for 16-byte data) size in words (8 for 4-byte data

the ideal CHUNK_SIZE would be:

CHUNK_SIZE = LSIZE * (1 + ((1 + (NITS - 1) / LSIZE) - 1)/NTHDS)

For the code above, these numbers are:

NITS = 100

LSIZE = 8 (aligns on V2250 boundaries for 4-byte data)

NTHDS =8

CHUNK_SIZE = 8 * (1 + ((1 + (100 - 1) / 8) - 1) / 8)
 = 8 * (1 + ((1 + 12) - 1) / 8)
 = 8 * (1 + (12) / 8)
 = 8 * (1 + 1)
 = 16

CHUNK_SIZE = 16 causes threads 0, 1, ..., 6 to execute iterations 1-16,
17-32, ..., 81-96, respectively. Thread 7 executes iterations 97-100. As a
result there is no false cache line sharing, and parallel performance is
greatly improved.

276 Chapter 13

Troubleshooting
False cache line sharing

You cannot specify the ideal CHUNK_SIZE for every loop. However, using

CHUNK_SIZE = x

where x times the data size (in bytes) is an integral multiple of 32,
eliminates false cache line sharing. This is only if the following two
conditions below are met:

• The arrays are already properly aligned (as discussed earlier in this
section).

• The first iteration accesses the first element of each array being
assigned. For example, in a loop DO I = 2, N , because the loop
starts at I = 2 , the first iteration does not access the first element of
the array. Consequently, the iteration distribution does not match the
cache line alignment.

The number 32 is used because the cache line size is 32 bytes for V2250
servers.

Thread-specific array elements
Sometimes a parallel loop has each thread update a unique element of a
shared array, which is further processed by thread 0 outside the loop.

Consider the following Fortran code in which false sharing occurs:

 REAL*4 S(8)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 S(MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S
 .
 .
 .
 ENDDO
C$DIR NO_PARALLEL
 DO J = 1, NUM_THREADS()
 = ...S(J) ! THREAD 0 POST-PROCESSES S
 ENDDO

The problem here is that potentially all the elements of S are in a single
cache line, so the assignments cause false sharing. One approach is to
change the code to force the unique elements into different cache lines, as
indicated in the following code:

Chapter 13 277

Troubleshooting
False cache line sharing

 REAL*4 S(8,8)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 S(1,MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S
 .
 .
 .
 ENDDO
C$DIR NO_PARALLEL
 DO J = 1, NUM_THREADS()
 = ...S(1,J) ! THREAD 0 POST-PROCESSES S
 ENDDO

Scalars sharing a cache line
Sometimes parallel tasks assign unique scalar variables that are in the
same cache line, as in the following code:

 COMMON /RESULTS/ SUM, PRODUCT
C$DIR BEGIN_TASKS
 DO I = 1, N
 .
 .
 .
 SUM = SUM + ...
 .
 .
 .
 ENDDO
C$DIR NEXT_TASK
 DO J = 1, M
 .
 .
 .
 PRODUCT = PRODUCT * ...
 .
 .
 .
 ENDDO
C$DIR END_TASKS

278 Chapter 13

Troubleshooting
False cache line sharing

Working with unaligned arrays
The most common cache-thrashing complication using arrays and loops
occurs when arrays assigned within a loop are unaligned with each other.
There are several possible causes for this:

• Arrays that are local to a routine are allocated on the stack.

• Array dummy arguments might be passed an element other than the
first in the actual argument.

• Array elements might be assigned with different offset indexes.

Consider the following Fortran code:

COMMON /OKAY/ X(112,100)
 ...
CALL UNALIGNED (X(I,J))
 ...
SUBROUTINE UNALIGNED (Y)
REAL*4 Y(*)
 ! Y(1) PROBABLY NOT ON A CACHE LINE BOUNDARY

The address of Y(1) is unknown. However, if elements of Y are heavily
assigned in this routine, it may be worthwhile to compute an alignment,
given by the following formula:

LREM = LSIZE - ((
(LOC(Y(1))-4, LSIZE* x) + 4) / x)

where

LSIZE is the appropriate cache line size in words

x is the data size for elements of Y

For this case, LSIZE on V2250 servers is 32 bytes in single precision
words (8 words). Note that:

((MOD (LOC(Y(1))-4, LSIZE*4) + 4) /4)

returns a value in the set 1, 2, 3, ..., LSIZE , so LREM is in the range 0 to 7.

Then a loop such as:

DO I = 1, N
 Y(I) = ...
ENDDO

Chapter 13 279

Troubleshooting
False cache line sharing

is transformed to:

C$DIR NO_PARALLEL
 DO I = 1, MIN (LREM, N) ! 0 <= LREM < 8
 Y(I) = ...
 ENDDO
C$DIR PREFER_PARALLEL (CHUNK_SIZE = 16)
 DO I = LREM+1, N
 ! Y(LREM+1) IS ON A CACHE LINE BOUNDARY
 Y(I) = ...
 ENDDO

The first loop takes care of elements from the first (if any) partial cache
line of data. The second loop begins on a cache line boundary, and is
controlled with CHUNK_SIZE to avoid false sharing among the threads.

Working with dependences
Data dependences in loops may prevent parallelization and prevent the
elimination of false cache line sharing. If certain conditions are met,
some performance gains are achieved.

For example, consider the following code:

COMMON /ALIGNED / P(128,128), Q(128,128), R(128,128)
REAL*4 P, Q, R
DO J = 2, 128
 DO I = 2, 127
 P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.)
 Q(I ,J) = SQRT (Q(I ,J-1) + 1./3.)
 R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.)
 ENDDO
ENDDO

Only the I loop is parallelized, due to the loop-carried dependences in the
J loop. It is impossible to distribute the iterations so that there is no false
cache line sharing in the above loop. If all loops that refer to these arrays
always use the same offsets (which is unlikely) then you could make
dimension adjustments that would allow a better iteration distribution.

For example, the following would work well for 8 threads:

 COMMON /ADJUSTED/ P(128,128), PAD1(15), Q(128,128),
 > PAD2(15), R(128,128)

 DO J = 2, 128
C$DIR PREFER_PARALLEL (CHUNK_SIZE=16)
 DO I = 2, 127
 P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.)
 Q(I ,J) = SQRT (Q(I ,J-1) + 1./3.)
 R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.)
 ENDDO
 ENDDO

280 Chapter 13

Troubleshooting
False cache line sharing

Padding 60 bytes before the declarations of both Q and R causes the
P(1,J) , Q(2,J) , and R(3,J) to be aligned on 64-byte boundaries for all
J . Combined with a CHUNK_SIZE of 16, this causes threads to assign
data to unique whole cache lines.

You can usually find a mix of all the above problems in some CPU-
intensive loops. You cannot avoid all false cache line sharing, but by
careful inspection of the problems and careful application of some of the
workarounds shown here, you can significantly enhance the performance
of your parallel loops.

Chapter 13 281

Troubleshooting
Floating-point imprecision

Floating-point imprecision
The compiler applies normal arithmetic rules to real numbers. It
assumes that two arithmetically equivalent expressions produce the
same numerical result.

Most real numbers cannot be represented exactly in digital computers.
Instead, these numbers are rounded to a floating-point value that is
represented. When optimization changes the evaluation order of a
floating-point expression, the results can change. Possible consequences
of floating-point roundoff include program aborts, division by zero,
address errors, and incorrect results.

In any parallel program, the execution order of the instructions differs
from the serial version of the same program. This can cause noticeable
roundoff differences between the two versions. Running a parallel code
under different machine configurations or conditions can also yield
roundoff differences, because the execution order can differ under
differing machine conditions, causing roundoff errors to propagate in
different orders between executions. Accumulator variables (reductions)
are especially susceptible to these problems.

Consider the following Fortran example:

C$DIR GATE(ACCUM_LOCK)
 LK = ALLOC_GATE(ACCUM_LOCK)
 .
 .
 .
 LK = UNLOCK_GATE(ACCUM_LOCK)
C$DIR BEGIN_TASKS, TASK_PRIVATE(I)
 CALL COMPUTE(A)
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM + A
C$DIR END_CRITICAL_SECTION
C$DIR NEXT_TASK

 DO I = 1, 10000
 B(I) = FUNC(I)
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM + B(I)
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

282 Chapter 13

Troubleshooting
Floating-point imprecision

C$DIR NEXT_TASK
 DO I = 1, 10000
 X = X + C(I) + D(I)
 ENDDO
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM/X
C$DIR END_CRITICAL_SECTION
C$DIR END_TASKS

Here, three parallel tasks are all manipulating the real variable ACCUM,
using real variables which have themselves been manipulated. Each
manipulation is subject to roundoff error, so the total roundoff error here
might be substantial.

When the program runs in serial, the tasks execute in their written
order, and the roundoff errors accumulate in that order. However, if the
tasks run in parallel, there is no guarantee as to what order the tasks
run in. This means that the roundoff error accumulates in a different
order than it does during the serial run.

Depending on machine conditions, the tasks may run in different orders
during different parallel runs also, potentially accumulating roundoff
errors differently and yielding different answers.

Problems with floating-point precision can also occur when a program
tests the value of a variable without allowing enough tolerance for
roundoff errors. To solve the problem, adjust the tolerances to allow for
greater roundoff errors or declare the variables to be of a higher
precision (use the double type instead of float in C and C++, or
REAL*8 rather than REAL*4 in Fortran). Testing floating-point numbers
for exact equality is strongly discouraged.

Enabling sudden underflow
By default, PA-RISC processor hardware represents a floating point
number in denormalized format when the number is tiny. A floating
point number is considered tiny if its exponent field is zero but its
mantissa is nonzero. This practice is extremely costly in terms of
execution time and seldom provides any benefit.

You can enable sudden underflow (flush to zero) of denormalized values
by passing the +FPD flag to the linker. This is done using the -W compiler
option.

For more information, refer to the HP-UX Floating-Point Guide.

Chapter 13 283

Troubleshooting
Invalid subscripts

The following example shows an f90 command line issuing this
command:

%f90 -Wl,+FPD prog.f

This command line compiles the program prog.f and instructs the
linker to enable sudden underflow.

Invalid subscripts
An array reference in which any subscript falls outside declared bounds
for that dimension is called an invalid subscript. Invalid subscripts are a
common cause of answers that vary between optimization levels and
programs that abort and result in a core dump.

Use the command-line option -C (check subscripts) with f90 to check
that each subscript is within its array bounds. See the f90(1) man page
for more information. The C and aC++ compilers do not have an option
corresponding to the Fortran compiler’s -C option.

284 Chapter 13

Troubleshooting
Misused directives and pragmas

Misused directives and pragmas
Misused directives and pragmas are a common cause of wrong answers.
Some of the more common misuses of directives and pragmas involve the
following:

• Loop-carried dependences

• Reductions

• Nondeterminism of parallel execution

Descriptions of and methods for avoiding the items listed above are
described in the sections below.

Loop-carried dependences
Forcing parallelization of a loop containing a call is safe only if the called
routine contains no dependences.

Do not assume that it is always safe to parallelize a loop whose data is
safe to localize. You can safely localize loop data in loops that do not
contain a loop-carried dependence (LCD) of the form shown in the
following Fortran loop:

DO I = 2, M
 DO J = 1, N
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
ENDDO

where one of IADD and JADD is negative and the other is positive. This is
explained in detail in the section “Conditions that inhibit data
localization” on page 59.

You cannot safely parallelize a loop that contains any kind of LCD,
except by using ordered sections around the LCDs as described in the
section “Ordered sections” on page 248. Also see the section “Inhibiting
parallelization” on page 105.

Chapter 13 285

Troubleshooting
Misused directives and pragmas

The MAIN section of the Fortran program below initializes A, calls CALC,
and outputs the new array values. In subroutine CALC, the indirect index
used in A(IN(I)) introduces a potential dependence that prevents the
compiler from parallelizing CALC’s I loop.

PROGRAM MAIN
REAL A(1025)
INTEGER IN(1025)
COMMON /DATA/ A
DO I = 1, 1025
 IN(I) = I
ENDDO
CALL CALC(IN)
CALL OUTPUT(A)
END

SUBROUTINE CALC(IN)
INTEGER IN(1025)
REAL A(1025)
COMMON /DATA/ A
DO I = 1, 1025
 A(I) = A(IN(I))
ENDDO
RETURN
END

Because you know that IN(I) = I , you can use the
NO_LOOP_DEPENDENCE directive, as shown below. This directive allows
the compiler to ignore the apparent dependence and parallelize the loop,
when compiling with +O3 +Oparallel .

 SUBROUTINE CALC(IN)
 INTEGER IN(1025)
 REAL A(1025)
 COMMON /DATA/ A
C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, 1025
 A(I) = A(IN(I))
 ENDDO
 RETURN
 END

286 Chapter 13

Troubleshooting
Misused directives and pragmas

Reductions
Reductions are a special class of dependence that the compiler can
parallelize. An apparent LCD can prevent the compiler from
parallelizing a loop containing a reduction.

The loop in the following Fortran example is not parallelized because of
an apparent dependence between the references to A(I) on line 6 and
the assignment to A(JA(J)) on line 7. The compiler does not realize that
the values of the elements of JA never coincide with the values of I .
Assuming that they might collide, the compiler conservatively avoids
parallelizing the loop.

DO I = 1,100
 JA(I) = I + 10
ENDDO
DO I = 1, 100
 DO J = I, 100
 A(I) = A(I) + B(J) * C(J) !LINE 6
 A(JA(J)) = B(J) + C(J) !LINE 7
 ENDDO
ENDDO

NOTE In this example, as well as the examples that follow, the apparent
dependence becomes real if any of the values of the elements of JA are
equal to the values iterated over by I .

A no_loop_dependence directive or pragma placed before the J loop
tells the compiler that the indirect subscript does not cause a true
dependence. Because reductions are a form of dependence, this directive
also tells the compiler to ignore the reduction on A(I) , which it would
normally handle. Ignoring this reduction causes the compiler to generate
incorrect code for the assignment on line 6. The apparent dependence on
line 7 is properly handled because of the directive. The resulting code
runs fast but produces incorrect answers.

Chapter 13 287

Troubleshooting
Misused directives and pragmas

To solve this problem, distribute the J loop, isolating the reduction from
the other statements, as shown in the following Fortran example:

 DO I = 1, 100
 DO J = I, 100
 A(I) = A(I) + B(J) * C(J)
 ENDDO
 ENDDO
C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, 100
 DO J = I, 100
 A(JA(J)) = B(J) + C(J)
 ENDDO
 ENDDO

The apparent dependence is removed, and both loops are optimized.

Nondeterminism of parallel execution
In a parallel program, threads do not execute in a predictable or
determined order. If you force the compiler to parallelize a loop when a
dependence exists, the results are unpredictable and can vary from one
execution to the next.

Consider the following Fortran code:

DO I = 1, N-1
 A(I) = A(I+1) * B(I)
 .
 .
 .
ENDDO

The compiler does not parallelize this code as written because of the
dependence on A(I) . This dependence requires that the original value of
A(I+1) be available for the computation of A(I) .

If this code was parallelized, some values of A would be assigned by some
processors before they were used by others, resulting in incorrect
assignments.

Because the results depend on the order in which statements execute,
the errors are nondeterministic. The loop must therefore execute in
iteration order to ensure that all values of A are computed correctly.

Loops containing dependences can sometimes be manually parallelized
using the LOOP_PARALLEL(ORDERED) directive as described in “Parallel
synchronization” on page 233. Unless you are sure that no loop-carried
dependence exists, it is safest to let the compiler choose which loops to
parallelize.

288 Chapter 13

Troubleshooting
Triangular loops

Triangular loops
A triangular loop is a loop nest with an inner loop whose upper or lower
bound (but not both) is a function of the outer loop’s index. Examples of a
lower triangular loop and an upper triangular loop are given below. To
simplify explanations, only Fortran examples are provided in this
section.

Lower triangular loop

DO J = 1, N
 DO I = J+1, N
 F(I) = F(I) + ... + X(I,J) + ...

..
.

Elements
referenced
in array X
(shaded cells)

J

3

...

I

1

2

321

Chapter 13 289

Troubleshooting
Triangular loops

While the compiler can usually auto-parallelize one of the outer or inner
loops, there are typically performance problems in either case:

• If the outer loop is parallelized by assigning contiguous chunks of
iterations to each of the threads, the load is severely unbalanced. For
example, in the lower triangular example above, the thread doing the
last chunk of iterations does far less work than the thread doing the
first chunk.

• If the inner loop is auto-parallelized, then on each outer iteration in
the J loop, the threads are assigned to work on a different set of
iterations in the I loop, thus losing access to some of their previously
encached elements of F and thrashing each other’s caches in the
process.

By manually controlling the parallelization, you can greatly improve the
performance of a triangular loop. Parallelizing the outer loop is generally
more beneficial than parallelizing the inner loop. The next two sections
explain how to achieve the enhanced performance.

Upper triangular loop

DO J = 1, N
 DO I = 1, J-1
 F(I) = F(I) + ... + X(I,J) + ...

Elements
referenced
in array X
(shaded cells)

..
.

J

3

...

I

1

2

321

290 Chapter 13

Troubleshooting
Triangular loops

Parallelizing the outer loop
Certain directives allow you to control the parallelization of the outer
loop in a triangular loop to optimize the performance of the loop nest.

For the outer loop, assign iterations to threads in a balanced manner.
The simplest method is to assign the threads one at a time using the
CHUNK_SIZE attribute:

C$DIR PREFER_PARALLEL (CHUNK_SIZE = 1)
 DO J = 1, N
 DO I = J+1, N
 Y(I,J) = Y(I,J) + ...X(I,J)...

This causes each thread to execute in the following manner:

 DO J = MY_THREAD() + 1, N, NUM_THREADS()
 DO I = J+1, N
 Y(I,J) = Y(I,J) + ...X(I,J)...

where 0 <= MY_THREAD() < NUM_THREADS()

In this case, the first thread still does more work than the last, but the
imbalance is greatly reduced. For example, assume N = 128 and there
are 8 threads. Then the default parallel compilation would cause thread
0 to do J = 1 to 16, resulting in 1912 inner iterations, whereas thread 7
does J = 113 to 128, resulting in 120 inner iterations. With
chunk_size = 1 , thread 0 does 1072 inner iterations, and thread 7 does
1023.

Parallelizing the inner loop
If the outer loop cannot be parallelized, it is recommended that you
parallelize the inner loop if possible. There are two issues to be aware of
when parallelizing the inner loop:

• Cache thrashing

Consider the parallelization of the following inner loop:

 DO J = I+1, N
F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)

where I varies in the outer loop iteration.

Chapter 13 291

Troubleshooting
Triangular loops

The default iteration distribution has each thread processing a
contiguous chunk of iterations of approximately the same number as
every other thread. The amount of work per thread is about the same;
however, from one outer iteration to the next, threads work on
different elements in F, resulting in cache thrashing.

• The overhead of parallelization

If the loop cannot be interchanged to be outermost (or at least
outermore), then the overhead of parallelization is compounded by
the number of outer loop iterations.

The scheme below assigns “ownership” of elements to threads on a cache
line basis so that threads always work on the same cache lines and
retain data locality from one iteration to the next. In addition, the
parallel directive is used to spawn threads just once. The outer,
nonparallel loop is replicated on all processors, and the inner loop
iterations are manually distributed to the threads.

C F IS KNOWN TO BEGIN ON A CACHE LINE BOUNDARY
 NTHD = NUM_THREADS()
 CHUNK = 8 ! CHUNK * DATA SIZE (4 BYTES)
 ! EQUALS PROCESSOR CACHE LINE SIZE;
 ! A SINGLE THREAD WORKS ON CHUNK = 8
 ! ITERATIONS AT A TIME
 NTCHUNK = NTHD * CHUNK ! A CHUNK TO BE SPLIT AMONG THE THREADS
 ...
C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
 ID = MY_THREAD() + 1 ! UNIQUE THREAD ID
 DO I = 1, N
 JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
 > + (ID-1) * CHUNK + 1
 DO JJ = JS, N, NTCHUNK
 DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
 F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
 ENDDO
 ENDDO
 ENDDO
C$DIR END_PARALLEL

The idea is to assign a fixed ownership of cache lines of F and to assign a
distribution of those cache lines to threads that keeps as many threads
busy computing whole cache lines for as long as possible. Using
CHUNK = 8 for 4-byte data makes each thread work on 8 iterations
covering a total of 32 bytes—the processor cache line size for V2250
servers.

292 Chapter 13

Troubleshooting
Triangular loops

In general, set CHUNK equal to the smallest value that multiplies by the
data size to give a multiple of 32 (the processor cache line size on V2250
servers). Smaller values of CHUNK keep most threads busy most of the
time.

Because of the ever-decreasing work in the triangular loop, there are
fewer cache lines left to compute than there are threads. Consequently,
threads drop out until there is only one thread left to compute those
iterations associated with the last cache line. Compare this distribution
to the default distribution that causes false cache line sharing and
consequent thrashing when all threads attempt to compute data into a
few cache lines. See “False cache line sharing” on page 271 in this
chapter.

The scheme above maps a sequence of NTCHUNK-sized blocks over the F
array. Within each block, each thread owns a specific cache line of data.
The relationship between data, threads, and blocks of size NTCHUNK is
shown in Figure 19 on page 293.

Chapter 13 293

Troubleshooting
Triangular loops

 Figure 19 Data ownership by CHUNK and NTCHUNK blocks

CHUNK is the number of iterations a thread works on at one time. The
idea is to make a thread work on the same elements of F from one
iteration of I to the next (except for those that are already complete).

The scheme above causes thread 0 to do all work associated with the
cache lines starting at F(1) , F(1+NTCHUNK), F(1+2*NTCHUNK) , and so
on. Likewise, thread 1 does the work associated with the cache lines
starting at F(9) , F(9+NTCHUNK), F(9+2*NTCHUNK) , and so on.

NTCHUNK 1

NTCHUNK 2

thread 0

thread 1

thread 2

thread 7

thread 0

thread 1

F(17) ... F(24)

F(25) ... F(32)

F(1) ... F(8)

F(9) ... F(16)

F(33) ... F(40)

...

CHUNKs of F Associated

F(41) ... F(48)

F(49) ... F(56)

F(57) ... F(64)

F(65) ... F(72)

F(73) ... F(80)

F(81) ...

thread 5

thread 3

thread 4

thread 6

thread

CHUNKs of F Associated
thread

294 Chapter 13

Troubleshooting
Triangular loops

If a thread assigns certain elements of F for I = 2, then it is certain that
the same thread encached those elements of F in iteration I = 1. This
eliminates cache thrashing among the threads.

Examining the code
Having established the idea of assigning cache line ownership, consider
the following Fortran code in more detail:

C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
 ID = MY_THREAD() + 1 ! UNIQUE THREAD ID
 DO I = 1, N
 JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
 > + (ID-1) * CHUNK + 1
 DO JJ = JS, N, NTCHUNK
 DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
 F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
 ENDDO
 ENDDO
 ENDDO
C$DIR END_PARALLEL

C$DIR PARALLEL, PARALLEL_PRIVATE(ID,JS,JJ,J,I)

Spawns threads, each of which begins executing the
statements in the parallel region. Each thread has a
private version of the variables ID , JS, JJ , J , and I .

ID = MY_THREAD() + 1 ! UNIQUE THREAD ID

Establishes a unique ID for each thread, in the
range 1 to num_threads() .

DO I = 1, N

Executes all threads of the I loop redundantly (instead
of thread 0 executing it alone).

JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
+ (ID-1) * CHUNK + 1

Determines, for a given value of I+1 , which NTCHUNK
the value I+1 falls then. Then it assigns a unique
CHUNK of it to each thread ID . Suppose that there are
ntc NTCHUNKs, where ntc is approximately N/NTCHUNK.
Then the expression:

Chapter 13 295

Troubleshooting
Triangular loops

(I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK)

returns a value in the range 1 to ntc for a given value of
I+1 . Then the expression:

((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK

identifies the start of an NTCHUNK that contains I+1 or
is immediately above I+1 for a given value of ID .

For the NTCHUNK that contains I+1 , if the cache lines
owned by a thread either contain I+1 or are above I+1
in memory, this expression returns this NTCHUNK. If the
cache lines owned by a thread are below I+1 in this
NTCHUNK, this expression returns the next highest
NTCHUNK. In other words, if there is no work for a
particular thread to do in this NTCHUNK, then start
working in the next one.

(ID-1) * CHUNK + 1

identifies the start of the particular cache line for the
thread to compute within this NTCHUNK.

DO JJ = JS, N, NTCHUNK

runs a unique set of cache lines starting at its specific
JS and continuing into succeeding NTCHUNKs until all
the work is done.

DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)

performs the work within a single cache line. If the
starting index (I+1) is greater than the first element in
the cache line (JS) then start with I+1 . If the ending
index (N) is less than the last element in the cache line,
then finish with N.

The following are observations of the preceding loops:

• Most of the “complicated” arithmetic is an outer loop iterations.

• You can replace divides with shift instructions because they involve
powers of two.

• If this application were to be run on an V2250 single-node machine, it
would be appropriate to choose a chunk size of 8 for 4-byte data.

296 Chapter 13

Troubleshooting
Compiler assumptions

Compiler assumptions
Compiler assumptions can produce faulty optimized code when the
source code contains:

• Iterations by zero

• Trip counts that may overflow at optimization levels +O2 and above

Descriptions of, and methods for, avoiding the items listed above are in
the following sections.

Incrementing by zero
The compiler assumes that whenever a variable is being incremented on
each iteration of a loop, the variable is being incremented by a loop-
invariant amount other than zero. If the compiler parallelizes a loop that
increments a variable by zero on each trip, the loop can produce incorrect
answers or cause the program to abort. This error can occur when a
variable used as an incrementation value is accidentally set to zero. If
the compiler detects that the variable has been set to zero, the compiler
does not parallelize the loop. If the compiler cannot detect the
assignment, however, the symptoms described below occur.

The following Fortran code shows two loops that increment by zero:

CALL SUB1(0)
.
.
.
SUBROUTINE SUB1(IZR)
DIMENSION A(100), B(100), C(100)
J = 1
DO I = 1, 100, IZR ! INCREMENT VALUE OF 0 IS
 ! NON-STANDARD
 A(I) = B(I)
ENDDO
PRINT *, A(11)
DO I = 1, 100
 J = J + IZR
 B(I) = A(J)
 A(J) = C(I)
ENDDO
PRINT *, A(1)
PRINT *, B(11)
END

Chapter 13 297

Troubleshooting
Compiler assumptions

Because IZR is an argument passed to SUB1, the compiler does not detect
that IZR has been set to zero. Both loops parallelize at
+O3 +Oparallel +Onodynsel .

The loops compile at +O3, but the first loop, which specifies the step as
part of the DO statement (or as part of the for statement in C), attempts
to parcel out loop iterations by a step of IZR . At runtime, this loop is
infinite.

Due to dependences, the second loop would not behave predictably when
parallelized—if it were ever reached at runtime. The compiler does not
detect the dependences because it assumes J is an induction variable.

Trip counts that may overflow
Some loop optimizations at +O2 and above may cause the variable on
which the trip count is based to overflow. A loop’s trip count is the
number of times the loop executes. The compiler assumes that each
induction variable is increasing (or decreasing) without overflow during
the loop. Any overflowing induction variable may be used by the compiler
as a basis for the trip count. The following sections discuss when this
overflow may occur and how to avoid it.

Linear test replacement
When optimizing loops, the compiler often disregards the original
induction variable, using instead a variable or value that better indicates
the actual stride of the loop. A loop’s stride is the value by which the
iteration variable increases on each iteration. By picking the largest
possible stride, the compiler reduces the execution time of the loop by
reducing the number of arithmetic operations within each iteration.

The Fortran code below contains an example of a loop in which the
induction variable may be replaced by the compiler:

 ICONST = 64
 ITOT = 0
 DO IND = 1,N
 IPACK = (IND*1024)*ICONST**2
 IF(IPACK .LE. (N/2)*1024*ICONST**2)
 > ITOT = ITOT + IPACK
 .
 .
 .
 ENDDO
 END

298 Chapter 13

Troubleshooting
Compiler assumptions

Executing this loop using IND as the induction variable with a stride of 1
would be extremely inefficient. Therefore, the compiler picks IPACK as
the induction variable and uses the amount by which it increases on each
iteration, 1024*642 or 222, as the stride.

The trip count (N in the example), or just trip, is the number of times the
loop executes, and the start value is the initial value of the induction
variable.

Linear test replacement, a standard optimization at levels +O2 and
above, normally does not cause problems. However, when the loop stride
is very large a large trip count can cause the loop limit value
(start+((trip-1)*stride)) to overflow.

In the code above, the induction variable is a 4-byte integer, which
occupies 32 bits in memory. That means if start+((trip-1)*stride) (1+((N-
1)*222)) is greater than 231-1, the value overflows into the sign bit and is
treated as a negative number. If the stride value is negative, the absolute
value of start+((trip-1)*stride) must be not exceed 231. When a loop has a
positive stride and the trip count overflows, the loop stops executing
when the overflow occurs because the limit becomes negative—assuming
a positive stride—and the termination test fails.

Because the largest allowable value for start+((trip-1)*stride) is 231-1,
the start value is 1, and the stride is 222, the maximum trip count for the
loop is found.

Chapter 13 299

Troubleshooting
Compiler assumptions

The stride, trip, and start values for a loop must satisfy the following
inequality:

start + ((trip - 1) * stride) ≤ 2 31

The start value is 1, so trip is solved as follows:

start + ((trip - 1) * stride) ≤ 2 31

1 + (trip - 1) * 2 22 ≤ 2 31

(trip - 1) * 2 22 ≤ 2 31 - 1

trip - 1 ≤ 2 9 - 2 -22

trip ≤ 2 9 - 2 -22 + 1

trip ≤ 512

The maximum value for n in the given loop, then, is 512.

NOTE If you find that certain loops give wrong answers at optimization levels +O2
or higher, the problem may be test replacement. If you still want to optimize
these loops at +O2 or above, restructure them to force the compiler to
choose a different induction variable.

Large trip counts at +O2 and above
When a loop is optimized at level +O2 or above, its trip count must
occupy no more than a signed 32-bit storage location. The largest
positive value that can fit in this space is 231 - 1 (2,147,483,647). Loops
with trip counts that cannot be determined at compile time but that
exceed 231 - 1 at runtime yield wrong answers.

This limitation only applies at optimization levels +O2 and above.

A loop with a trip count that overflows 32 bits is optimized by manually
strip mining the loop.

300 Chapter 13

Troubleshooting
Compiler assumptions

Appendix A 301

A Porting CPSlib functions to
pthreads

Introduction
The Compiler Parallel Support Library (CPSlib) is a library of thread
management and synchronization routines that was initially developed
to control parallelism on HP’s legacy multinode systems. Most programs
fully exploited their parallelism using higher-level devices such as
automatic parallelization, compiler directives, and message-passing.
CPSlib, however, provides a lower-level interface for the few cases that
required it.

With the introduction of the V2250 series server, HP recommends the
use of POSIX threads (pthreads) for purposes of thread management and
parallelism. Pthreads provide portability for programmers who want to
use their applications on multiple platforms.

This appendix describes how CPSlib functions map to pthread functions,
and how to write a pthread program to perform the same tasks as CPSlib
functions. Topics included in this chapter include:

• Accessing pthreads

• Symmetric parallelism

• Asymmetric parallelism

• Synchronization using high-level functions

• Synchronization using low-level functions

If you are running on a server released prior to the V2250 and require
explicit information on CPSlib, refer to the Exemplar Programming
Guide for HP-UX systems.

302 Appendix A

Porting CPSlib functions to pthreads
Introduction

Accessing pthreads
When you use pthreads routines, your program must include the
<pthread.h > header file and the pthreads library must be explicitly
linked to your program.

For example, assume the program prog.c contains calls to pthreads
routines. To compile the program so that it links in the pthreads library,
issue the following command:

% cc -D_POSIX_C_SOURCE=199506L prog.c -lpthread

The -D_POSIX_C_SOURCE=199506L string indicates the appropriate
POSIX revision level. In the example above, the level is indicated as
199506L.

Appendix A 303

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

Mapping CPSlib functions to pthreads
Table 61shows the mapping of the CPSlib functions to pthread functions.
Where applicable, a pthread function is listed as corresponding to the
appropriate CPSlib function. For instances where there is no
corresponding pthread function, pthread examples that mimic CPSlib
functionality are provided.

The CPSlib functions are grouped by type: barriers, informational, low-
level locks, low-level counter semaphores, symmetrics and asymmetrics,
and mutexes.

Table 61 CPSlib library functions to pthreads mapping

CPSlib
function

Maps to pthread
function

Symmetric parallel functions

cps_nsthreads N/A

See “Symmetric parallelism” on page 310 for more
information.

cps_ppcall N/A

See “Symmetric parallelism” on page 310 for more
information. Nesting is not supported in this example.

cps_ppcalln N/A

See “Symmetric parallelism” on page 310 for more
information.

cps_ppcallv N/A

No example provided.

cps_stid N/A

See “Symmetric parallelism” on page 310 for more
information.

304 Appendix A

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_wait_attr N/A

See “Symmetric parallelism” on page 310 for more
information.

Asymmetric parallel functions

cps_thread_create pthread_create

See “Asymmetric parallelism” on page 321 for more
information.

cps_thread_createn pthread_create

Only supports passing of one argument.

See “Asymmetric parallelism” on page 321 for more
information.

cps_thread_exit pthread_exit

See “Asymmetric parallelism” on page 321 for more
information.

cps_thread_register_lock This function was formerly used in conjunction with
m_lock . It is now obsolete, and is replaced with one call
to pthread_join .

See “Asymmetric parallelism” on page 321 for more
information.

cps_thread_wait N/A

No example available.

Informational

cps_complex_cpus pthread_num_processors_np

The HP pthread_num_processors_np function returns
the number of processors on the machine.

CPSlib
function

Maps to pthread
function

Appendix A 305

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_complex_nodes N/A

This functionality can be added using the appropriate
calls in your ppcall code.

cps_complex_nthreads N/A

This functionality can be added using the appropriate
calls in your ppcall code.

cps_is_parallel N/A

See the ppcall.c example on page 310 for more
information.

cps_plevel Because pthreads have no concept of levels, this function
is obsolete.

cps_set_threads N/A

See the ppcall.c example on page 310 for more
information.

cps_topology Use pthread_num_processors_np() to set up your
configuration as a single-node machine.

Synchronization using high-level barriers

cps_barrier N/A

See the my_barrier.c example in on page 324 for more
information.

cps_barrier_alloc N/A

See the my_barrier.c example in on page 324 for more
information.

CPSlib
function

Maps to pthread
function

306 Appendix A

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_barrier_free N/A

See the my_barrier.c example in on page 324 for more
information.

Synchronization using high-level mutexes

cps_limited_spin_mutex_
alloc

pthread_mutex_init

The CPS mutex allocate functions allocated memory and
initialized the mutex. When you use pthread mutexes,
you must use pthread_mutex_init to allocate the
memory and initialize it.

See pth_mutex.c on page 324 for a description of using
pthreads.

cps_mutex_alloc pthread_mutex_init

The CPS mutex allocate functions allocated memory and
initialized the mutex. When you use pthread mutexes,
you must use pthread_mutex_init to allocate the
memory and initialize it.

See pth_mutex.c on page 324 for a description of using
pthreads.

cps_mutex_free pthread_mutex_destroy

cps_mutex_free formerly uninitalized the mutex, and
called free to release memory. When using pthread
mutexes, you must first call pthread_mutex_destroy .

See pth_mutex.c on page 324 for a description of using
pthreads.

cps_mutex_lock pthread_mutex_lock

See pth_mutex.c on page 324 for a description of using
pthreads.

CPSlib
function

Maps to pthread
function

Appendix A 307

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

cps_mutex_trylock pthread_mutex_trylock

See pth_mutex.c on page 324 for a description of using
pthreads.

cps_mutex_unlock pthread_mutex_unlock

See pth_mutex.c on page 324 for a description of using
pthreads.

Synchronization using low-level locks

[mc]_cond_lock pthread_mutex_trylock

[mc]_free32 pthread_mutex_destroy

cps_mutex_free formerly uninitalized the mutex, and
called free to release memory. When using pthread
mutexes, you must call pthread_mutex_destroy .

[mc]_init32 pthread_mutex_init

[mc]_lock pthread_mutex_lock

[mc]_unlock pthread_mutex_unlock

Synchronization using low-level counter semaphores

[mc]_fetch32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

[mc]_fetch_and_add32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

[mc]_fetch_and_clear32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

CPSlib
function

Maps to pthread
function

308 Appendix A

Porting CPSlib functions to pthreads
Mapping CPSlib functions to pthreads

[mc]_fetch_and_dec32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

[mc]_fetch_and_inc32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

[mc]_fetch_and_set32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

[mc]_init32 N/A

See fetch_and_inc.c example on page 329 for a
description of using pthreads.

CPSlib
function

Maps to pthread
function

Appendix A 309

Porting CPSlib functions to pthreads
Environment variables

Environment variables
Unlike CPSlib, pthreads does not use environment variables to establish
thread attributes. pthreads implements function calls to achieve the
same results. However, when using the HP compiler set, the
environment variables below must be set to define attributes.

The table below describes the environment variables and how pthreads
handles the same or similar tasks.

The environment variables below must be set for use with the HP
compilers if you are not explicitly using pthreads.

Table 62 CPSlib environment variables

Environment variable Description How handled by pthreads

MP_NUMBER_OF_THREADS Sets the number of
threads that the
compiler allocates at
startup time.

By default, under HP-UX you can
create more threads than you
have processors for.

MP_IDLE_THREADS_WAIT Indicates how idle
compiler threads
should wait.

The values can be:
-1 - spin wait;
 0 - suspend wait;
N - spin suspend where N > 0.

CPS_STACK_SIZE Tells the compiler
what size stack to
allocate for all it’s
child threads. The
default stacksize is 80
Mbyte.

Pthreads allow you to set the
stack size using attributes. The
attribute call is
pthread_attr_setstacksize .
The value of CPS_STACK_SIZE is
specified in Kbytes.

310 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

Using pthreads
Some CPSlib functions map directly to existing pthread functions, as
shown in Table 61 on page 303. However, certain CPSlib functions, such
as cps_plevel , are obsolete in the scope of pthreads. While about half
of the CPSlib functions do not map to pthreads, their tasks can be
simulated by the programmer.

The examples presented in the following sections demonstrate various
constructs that can be programmed to mimic unmappable CPSlib
functions in pthreads. The examples shown here are provided as a first
step in replacing previous functionality provided by CPSlib with POSIX
thread standard calls.

This is not a tutorial in pthreads, nor do these examples describe
complex pthreads operations, such as nesting. For a definitive
description of how to use pthreads functions, see the book Threadtime by
Scott Norton and Mark D. Dipasquale.

Symmetric parallelism
Symmetric parallel threads are spawned in CPSlib using cps_ppcall()
or cps_ppcalln() . There is no logical mapping of these CPSlib
functions to pthread functions. However you can create a program,
similar to the one shown in the ppcall.c example below, to achieve the
same results.

This example also includes the following CPSlib thread information
functions:

• my_nsthreads (a map created for cps_nthreads) returns the
number of threads in the current spawn context.

• my_stid (a map created for cps_stid) returns the spawn thread ID
of the calling thread.

The ppcall.c example performs other tasks associated with
symmetrical thread processing, including the following:

• Allocates a cell barrier data structure based upon the number of
threads in the current process by calling my_barrier_alloc

Appendix A 311

Porting CPSlib functions to pthreads
Using pthreads

• Provides a barrier for threads to “join” or synchronize after parallel
work is completed by calling my_join_barrier

• Creates data structures for threads created using pthread_create

• Uses the CPS_STACK_SIZE environment variable to determine the
stacksize

• Determines the number of threads to create by calling
pthread_num_processors_np()

• Returns the number of threads by calling my_nsthreads()

• Returns the is_parallel flag by calling my_is_parallel()

ppcall.c

/*
 * ppcall.c
 * function
 * Symmetric parallel interface to using pthreads
 * called my_thread package.
 *
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <spp_prog_model.h>
#include <pthread.h>
#include <stdlib.h>
#include <errno.h>
#include "my_ppcall.h"

#define K 1024
#define MB K*K

struct thread_data {
int stid;

 int nsthreads;
 int release_flag; r};
};

typedef struct thread_data thread_t;
typedef struct thread_data *thread_p;

#define WAIT_UNKNOWN0
#define WAIT_SPIN1
#define WAIT_SUSPEND2

#define MAX_THREADS64

#define W_CACHE_SIZE 8

312 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

#define B_CACHE_SIZE 32

typedef struct {
 int volatile c_cell;
 int c_pad[W_CACHE_SIZE-1];
} cell_t;

#define ICELL_SZ (sizeof(int)*3+sizeof(char *))

struct cell_barrier {
 int br_c_magic;
 int volatile br_c_release;
 char * br_c_free_ptr;
 int br_c_cell_cnt;
 char br_c_pad[B_CACHE_SIZE-ICELL_SZ];
 cell_t br_c_cells[1];
};

#define BR_CELL_T_SIZE(x) (sizeof(struct cell_barrier) +
 (sizeof(cell_t)*x))

/*
 * ALIGN - to align objects on specific alignments (usually on
 * cache line boundaries.
 *
 * arguments
 * obj- pointer object to align
 * alignment- alignment to align obj on
 *
 * Notes:
 * We cast obj to a long, so that this code will work in
 * either narrow or wide modes of the compilers.
 */
#define ALIGN(obj, alignment)\
 ((((long) obj) + alignment - 1) & ~(alignment - 1))

typedef struct cell_barrier * cell_barrier_t;

/*
 * File Variable Dictionary:
 *
 * my_thread_mutex- mutex to control access to the following:
 * my_func, idle_release_flag, my_arg,
 * my_call_thread_max, my_threads_are_init,
 * my_threads_are_parallel.
 *
 * idle_release_flag - flag to release spinning
 * idle threads
 * my_func - user specified function to call
 * my_arg - argument to pass to my_func
 * my_call_thread_max - maximum number of threads
 * needed on this ppcall
 * my_threads_are_init - my thread package init flag
 * my_threads_are_parallel - we are executing parallel
 * code flag
 * my_thread_ids - list of child thread ids

Appendix A 313

Porting CPSlib functions to pthreads
Using pthreads

 * my_barrier - barrier used by the join
 * my_thread_ptr - the current thread thread
 - pointer in thread-private
 * memory.
 */

static pthread_mutex_tmy_thread_mutex =
PTHREAD_MUTEX_INITIALIZER;
static int volatile idle_release_flag = 0;
static void (*my_func)(void *);
static void *my_arg;
static int my_call_thread_max;
static int my_stacksize = 8*MB;
static int thread_count = 1;
static int my_threads_are_init = 0;
static int volatile my_threads_are_parallel = 0;
static pthread_t my_thread_ids[MAX_THREADS];
static cell_barrier_t my_barrier;

static thread_p thread_private my_thread_ptr;

/*
 * my_barrier_alloc
 * Allocate cell barrier data structure based upon the
 * number of threads that are in the current process.
 *
 * arguments
 * brc - pointer pointer to the user cell barrier
 * n - number of threads that will use this barrier
 *
 * return
 * 0- success
 * -1- failed to allocate cell barrier
 */

static int
my_barrier_alloc(cell_barrier_t *brc, int n)
{
 cell_barrier_t b;
 char *p;
 int i;

/*
 * Allocate cell barrier for 'n' threads
 */
if ((p = (char *) malloc(BR_CELL_T_SIZE(n))) == 0)
return -1;

/*
 * Align the barrier on a cache line for maximum
 performance.
*/

314 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

 b = (cell_barrier_t) ALIGN(p, B_CACHE_SIZE);
 b->br_c_magic = 0x4200beef;
 b->br_c_cell_cnt = n; /* keep track of the # of threads */
 b->br_c_release = 0; /* initialize release flag */
 b->br_c_free_ptr = p; /* keep track of orginal malloc ptr */

 for(i = 0; i < n; i++)
 b->br_c_cells[i].c_cell = 0;/* zero the cell flags */

 *brc = b;

 return 0;
}
/*
 * my_join_barrier
 * Provide a barrier for all threads to sync up at, after
 * they have finished performing parallel work.
 *
 * arguments
 * b - pointer to cell barrier
 * id - id of the thread (need to be in the
 * range of 0 - (N-1), where N is the
 *number of threads).

 * return
 *none
 */

static void
my_join_barrier(cell_barrier_t b, int id)
{
int i, key;

/*
 * Get the release flag value, before we signal that we
 * are at the barrier.
 */
key = b->br_c_release;

if (id == 0) {
/*
 * make thread 0 (i.e. parent thread) wait for the child
 * threads to show up.
 */
for(i = 1; i < thread_count; i++) {
/*
 * wait on the Nth cell
 */
while (b->br_c_cells[i].c_cell == 0)
/* spin */;

/*
 * We can reset the Nth cell now,
 * because it is not being used anymore
 * until the next barrier.
/*

Appendix A 315

Porting CPSlib functions to pthreads
Using pthreads

b->br_c_cells[i].c_cell = 0;
}

/*
 * signal all of the child threads to leave the barrier.
 */
++b->br_c_release;
} else {
/*
 * signal that the Nth thread has arrived at the barrier.
 */
b->br_c_cells[id].c_cell = -1;

while (key == b->br_c_release)
/* spin */;
}
}

/*
 * idle_threads
 * All of the process child threads will execute this
 * code. It is the idle loop where the child threads wait
 * for parallel work.
 * arguments
 * thr- thread pointer
 *
 * algorithm:
 * Initialize some thread specific data structures.
 * Loop forever on the following:
 * Wait until we have work.
 * Get global values on what work needs to be done.
 * Call user specified function with argument.
 * Call barrier code to sync up all threads.
 */static void
idle_threads(thread_p thr)
{
/*
 * initialized the thread thread-private memory pointer.
 */
my_thread_ptr = thr;

 for(;;) {
 /*
 * threads spin here waiting for work to be assign
 * to them.
 */
 while(thr->release_flag == idle_release_flag)
 /* spin until idle_release_flag changes */;

 thr->release_flag = idle_release_flag;
 thr->nsthreads = my_call_thread_max;

 /*
 * call user function with their specified argument.
 */
 if (thr->stid < my_call_thread_max)

316 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

 (*my_func)(my_arg);
 /*
 * make all threads join before they were to the idle

 loop.
 */
my_join_barrier(my_barrier, thr->stid);
 }
}
/** create_threads
 * This routine creates all of the MY THREADS package data
 * structures and child threads.
 *
 * arguments:
 * none
 *
 * return:
 * none
 *
 * algorithm:
 * Allocate data structures for a thread
 * Create the thread via the pthread_create call.
 * If the create call is successful, repeat until the
 * number of threads equal the number of processors.
 *
 */

static void
create_threads()
{
 pthread_attr_t attr;
 char *env_val;
 int i, rv, cpus, processors;
 thread_p thr;

 /*
 * allocate and initialize the thread structure for the
 * parent thread.
 */
 if ((thr = (thread_p) malloc(sizeof(thread_t))) == NULL) {
 fprintf(stderr,"my_threads: Fatal error: can not
 allocate memory for main thread\n");
 abort();
 }
 my_thread_ptr = thr;

 thr->stid = 0;
 thr->release_flag = 0;

 /*
 * initialize attribute structure
 */
 (void) pthread_attr_init(&attr);

 /*
 * Check to see if the CPS_STACK_SIZE env variable is defined.

Appendix A 317

Porting CPSlib functions to pthreads
Using pthreads

 * If it is, then use that as the stacksize.
 */
 if ((env_val = getenv("CPS_STACK_SIZE")) != NULL) {
 int val;
 val = atoi(env_val);
 if (val > 128)
 my_stacksize = val * K;
}

(void) pthread_attr_setstacksize(&attr,my_stacksize);

/*
 * determine how many threads we will create.
 */
processors = cpus = pthread_num_processors_np();
if ((env_val = getenv("MP_NUMBER_OF_THREADS")) != NULL) {
 int val;

 val = atoi(env_val);
 if (val >= 1)
 cpus = val;
}

for(i = 1; i < cpus && i < MAX_THREADS; i++) {
 /*
 * allocate and initialize thread data structure.
 */
 if ((thr = (thread_p) malloc(sizeof(thread_t))) == NULL)
 break;

 thr->stid = i;
 thr->release_flag = 0;

 rv = pthread_create(&my_thread_ids[i-1], &attr,
 (void *(*)(void *))idle_threads, (void *) thr);
 if (rv != 0) {
 free(thr);
 break;
 }
 thread_count++;
 }

 my_threads_are_init = 1;

 my_barrier_alloc(&my_barrier, thread_count);

 /*
 * since we are done with this attribute, get rid of it.
 */
 (void) pthread_attr_destroy(&attr);
}

/*
 * my_ppcall
 * Call user specified routine in parallel.
 *

318 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

 * arguments:
 * max- maximum number of threads that are needed.
 * func- user specified function to call
 * arg- user specified argument to pass to func
 *
 * return:
 * 0- success
 * -1- error
 *
 * algorithm:
 * If we are already parallel, then return with an error
 * code. Allocate threads and internal data structures,
 * if this is the first call.
 * Determine how many threads we need.
 * Set global variables.
 * Signal the child threads that they have parallel work.
 * At this point we signal all of the child threads and
 * let them determine if they need to take part in the
 * parallel call. Call the user specified function.
 * Barrier call will sync up all threads.
 */

int
my_ppcall(int max, void (*func)(void *), void *arg)
{
 thread_p thr;
 int i, suspend;

 /*
 * check for error conditions
 */
 if (max <= 0 || func == NULL)
 return EINVAL;

 if (my_threads_are_parallel)
 return EAGAIN;

 (void) pthread_mutex_lock(&my_thread_mutex);
 if (my_threads_are_parallel) {
 (void) pthread_mutex_unlock(&my_thread_mutex);
 return EAGAIN;
 }

 /*
 * create the child threads, if they are not already created.
 */
 if (!my_threads_are_init)
 create_threads();

 /*
 * set global variables to communicate to child threads.
 */
 if (max > thread_count)
 my_call_thread_max = thread_count;
 else
 my_call_thread_max = max;

Appendix A 319

Porting CPSlib functions to pthreads
Using pthreads

 my_func = func;
 my_arg = arg;

 my_thread_ptr->nsthreads = my_call_thread_max;

 ++my_threads_are_parallel;

 /*
 * signal all of the child threads to exit the spin loop
 */
 ++idle_release_flag;

 (void) pthread_mutex_unlock(&my_thread_mutex);

 /*
 * call user func with user specified argument
 */
 (*my_func)(my_arg);

 /*
 * call join to make sure all of the threads are done doing
 * there work.
 */
 my_join_barrier(my_barrier, my_thread_ptr->stid);

 (void) pthread_mutex_lock(&my_thread_mutex);

 /*
 * reset the parallel flag
 */
 my_threads_are_parallel = 0;

 (void) pthread_mutex_unlock(&my_thread_mutex);

 return 0;
}

/*

* my_stid
 * Return thread spawn thread id. This will be in the range
 * of 0 to N-1, where N is the number of threads in the
 * process.
 * arguments:
 * none
 *
 * return
 * spawn thread id
 */

int
my_stid(void)
{
return my_thread_ptr->stid;
}

320 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

/*
 * my_nsthreads
 * Return the number of threads in the current spawn.
 *
 * arguments:
 * none
 *
 * return
 * number of threads in the current spawn
 */

int
my_nsthreads(void)
{
 return my_thread_ptr->nsthreads;
}

/*
 * my_is_parallel
 * Return the is parallel flag
 *
 * arguments:
 * none
 *
 * return
 * 1- if we are parallel
 * 0- otherwise
 */

int
my_is_parallel(void)
{
 int rv;

 /*
 * if my_threads_are_init is set, then we are parallel,
 * otherwise we not.
 */
 (void) pthread_mutex_lock(&my_thread_mutex);
 rv = my_threads_are_init;
 (void) pthread_mutex_unlock(&my_thread_mutex);

 return rv;
}

/*
 * my_complex_cpus
 * Return the number of threads in the current process.
 *
 * arguments:
 * none
 *
 * return
 * number of threads created by this process
 */

Appendix A 321

Porting CPSlib functions to pthreads
Using pthreads

int
my_complex_cpus(void)
{
 int rv;

 /*
 * Return the number of threads that we current have.
 */
 (void) pthread_mutex_lock(&my_thread_mutex);
 rv = thread_count;
 (void) pthread_mutex_unlock(&my_thread_mutex);

 return rv;
}

Asymmetric parallelism
Asymmetric parallelism is used when each thread executes a different,
independent instruction stream. Asymmetric threads are analogous to
the Unix fork system call construct in that the threads are disjoined.

Some of the asymmetric CPSlib functions map to pthread functions,
while others are no longer used, as noted below:

• cps_thread_create() spawned asymmetric threads and now maps
to the pthread function pthread_create() .

• cps_thread_createn() , which spawned asymmetric threads with
multiple arguments, also maps to pthread_create() . However,
pthread_create() only supports the passing of one argument.

• CPSlib terminated asymmetric threads using cps_thread_exit() ,
which now maps to the pthread function pthread_exit() .

• cps_thread_register_lock has no corresponding pthread
function. It was formerly used in conjunction with m_lock , both of
which have been replaced with one call to pthread_join .

• cps_plevel() , the CPSlib function which determined the current
level of parallelism, does not have a corresponding pthread function,
because levels do not mean anything to pthreads.

The first example in this section cps_create.c , provides an example of
the above CPSlib functions being used to create asymmetric parallelism.

322 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

create.c

/*
 * create.c
 * Show how to use all of the cps asymmetric functions.
 *
 */

#include <cps.h>

mem_sema_t wait_lock;

void
tfunc(void *arg)
{
 int i;

 /*
 * Register the wait_lock, so that the parent thread
 * can wait on us to exit.
 */
 (void) cps_thread_register_lock(&wait_lock);

 for(i = 0; i < 100000; i++)
 /* spin for a spell */;

 printf("tfunc: ktid = %d\n", cps_ktid());
 cps_thread_exit();
}

main()
{
 int node = 0;
 ktid_t ktid;

 /*
 * Initialize and lock the wait_lock.
 */
 m_init32(&wait_lock, &node);
 m_cond_lock(&wait_lock);

 ktid = cps_thread_create(&node, tfunc, NULL);

 /*
 * We wait for the wait_lock to be release. That is
 * how we know that the child thread
 * has terminated.
 */
 m_lock(&wait_lock);

 exit(0);
}

Appendix A 323

Porting CPSlib functions to pthreads
Using pthreads

pth_create.c

The example below shows how to use the pth_create.c function to
map to asymmetric functions provided by the CPSlib example.

/*
 * pth_create.c
 * Show how to use all of the pthread functions that
 map to cps asymmetric functions.
 *
 *
 */
#include <pthread.h>

void
tfunc(void *arg)
{
 int i;

 for(i = 0; i < 100000; i++)
 /* spin for a spell */;

 printf("tfunc: ktid = %d\n", pthread_self());
 pthread_exit(0);
}

main()
{
 pthread_t ktid;
 int status;

 (void) pthread_create(&ktid, NULL, (void *(*)(void *)
 tfunc, NULL);

 /*
 * Wait for the child to terminate.
 */
 (void) pthread_join(ktid, NULL);

 exit(0);
}

324 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

Synchronization using high-level functions
This section demonstrates how to use barriers and mutexes to
synchronize symmetrically parallel code.

Barriers
Implicit barriers are operations in a program where threads are
restricted from completion based upon the status of the other threads.
For example, in the ppcall.c example (on page 311), a join operation
occurs after all spawned threads terminate and before the function
returns. This type of implicit barrier is often the only type of barrier
required.

The my_barrier.c example shown below provides a pthreads
implementation of CPSlib barrier routines. This includes the following
example functions:

• my_init_barrier is similar to the cps_barrier_alloc function
in that it allocates the barrier (br) and sets its associated memory
counter to zero.

• my_barrier , like the CPSlib function cps_barrier , operates as
barrier wait routine. When the value of the shared counter is equal to
the argument n (number of threads), the counter is set to zero.

• my_barrier-destroy , like cps_barrier_free , releases the
barrier.

my_barrier.c
/*
 * my_barrier.c
 *Code to support a fetch and increment type barrier.
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

/*
 * barrier
 * magic barrier valid flag
 * counter shared counter between threads
 * release shared release flag, used to signal waiting
 * threads to stop waiting.
 * lock binary semaphore use to control read/write

Appendix A 325

Porting CPSlib functions to pthreads
Using pthreads

 * access to counter and write access to
 * release.
 */

struct barrier {
 int magic;
 int volatile counter;
 int volatile release;
 pthread_mutex_t lock;
};

#define VALID_BARRIER 0x4242beef
#define INVALID_BARRIER 0xdeadbeef

typedef struct barrier barrier_t;
typedef struct barrier *barrier_p;

/*
 * my_barrier_init
 * Initialized a barrier for use.
 *
 * arguments
 * br- pointer to the barrier to be initialize.
 *
 * return
 * 0- success
 * >0- error code of failure.
 */

int
my_barrier_init(barrier_p *br)
{
 barrier_p b, n;
 int rv;

 b = (barrier_p) *br;

 if (b != NULL)
 return EINVAL;

 if ((n = (barrier_p) malloc(sizeof(*n))) == NULL)
 return ENOMEM;

 if ((rv = pthread_mutex_init(&n->lock, NULL)) != 0)
 return rv;

 n->magic = VALID_BARRIER;
 n->counter = 0;
 n->release = 0;

 *br = n;

 return 0;
}

/*

326 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

 * my_barrier
 * barrier wait routine.
 *
 * arguments
 * br - barrier to wait on
 * n - number of threads to wait on
 *
 * return
 * 0 - success
 * EINVAL - invalid arguments
 */
int
my_barrier(barrier_p br, int n)
{
 int rv;
 int key;

 if (br == NULL || br->magic != VALID_BARRIER)
 return EINVAL;

 pthread_mutex_lock(&br->lock);

 key = br->release;/* get release flag */
 rv = br->counter++;/* fetch and inc shared counter */

 /*
 * See if we are the last thread into the barrier
 */
if (rv == n-1) {
/*
 * We are the last thread, so clear the counter

 * and signal the other threads by changing the
 * release flag.
 */
br->counter = 0;
++br->release;
pthread_mutex_unlock(&br->lock);
} else {
pthread_mutex_unlock(&br->lock);

/*
 * We are not the last thread, so wait
 * until the release flag changes.
 */
while(key == br->release)
/* spin */;
}

return 0;
}

/*
 * my_barrier_destroy
 *destroy a barrier
 *

Appendix A 327

Porting CPSlib functions to pthreads
Using pthreads

 * arguments
 *b- barrier to destory
 *
 * return
 *0- success
 *> 0 - error code for why can not destroy barrier
 */

int
my_barrier_destroy(barrier_p *b)
{
barrier_p br = (barrier_p) *b;
int rv;

if (br == NULL || br->magic != VALID_BARRIER)
return EINVAL;

if ((rv = pthread_mutex_destroy(&br->lock)) != 0)
return rv;

br->magic = INVALID_BARRIER;
br->counter = 0;
br->release = 0;

*b = NULL;

return 0;
}

Mutexes
Mutexes (binary semaphores) allow threads to control access to shared
data and resources. The CPSlib mutex functions map directly to existing
pthread mutex functions as shown in Table 61 on page 303. The example
below, pth_mutex.c , shows a basic pthread mutex program using the
pthread_mutex_init , pthread_mutex_lock ,
pthread_mutex_trylock , and pthread_mutex_unlock .

There are some differences between the behavior of CPSlib mutex
functions and low-level locks (cache semaphores and memory
semaphores) and the behavior of pthread mutex functions, as described
below:

• CPS cache and memory semaphores do not perform deadlock
detection.

• The default pthread mutex does not perform deadlock detection
under HP-UX. This may be different from other operating systems.
pthread_mutex_lock will only detect deadlock if the mutex is of the
type PTHREAD_MUTEX_ERRORCHECK.

328 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

• All of the CPSlib unlock routines allow other threads to release a lock
that they do not own. This is not true with pthread_mutex_unlock .
If you do this with pthread_mutex_unlock , it will result in
undesirable behavior.

pth_mutex.c
/*
 * pth_mutex.c
 * Demostrate pthread mutex calls.
 *
 * Notes when switching from cps mutex, cache semaphore or
 * memory semaphores to pthread mutex:
 *
 *1) Cps cache and memory semaphores did no checking.
 *2) All of the cps semaphore unlock routines allow
 * other threads to release a lock that they do not
 * own. This is not the case with
 * pthread_mutex_unlock. It is either a error or a
 * undefinedbehavior.
 *3) The default pthread mutex does not do deadlock
 * detection under HP-UX (this can be different on
 other operation systems).
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

pthread_mutex_t counter_lock;
int volatile counter = 0;

void
tfunc()
{
 (void) pthread_mutex_lock(&counter_lock);
 ++counter;
 (void) pthread_mutex_unlock(&counter_lock);
}

main()
{
 pthread_t tid;

 if ((errno = pthread_mutex_init(&counter_lock, NULL)) != 0)
{
 perror("pth_mutex: pthread_mutex_init failed");
 abort();
}

 if ((errno = pthread_create(&tid, NULL, (void *(*)(void *))
 tfunc, NULL)) != 0) {

Appendix A 329

Porting CPSlib functions to pthreads
Using pthreads

 perror("pth_mutex: pthread_create failed");
 abort();
}

tfunc();

(void) pthread_join(tid, NULL);

 if ((errno = pthread_mutex_destroy(&counter_lock)) != 0) {
 perror("pth_mutex: pthread_mutex_destroy failed");
 abort();
}

 if (counter != 2) {
 errno = EINVAL;
 perror("pth_mutex: counter value is wrong");
 abort();
}
 printf("PASSED\n");
 exit(0);
}

Synchronization using low-level functions
This section demonstrates how to use semaphores to synchronize
symmetrically parallel code. This includes functions, such as low-level
locks, for which there are pthread mappings, and low-level counter
semaphores for which there are no pthread mappings. In this instance,
an example is provided so that you can create a program to emulate
CPSlib functions, using pthreads.

Low-level locks
The disposition of CPSlib’s low-level locking functions is handled by the
pthread mutex functions (as described in Table 61 on page 303). See
“Mutexes” on page 327 for an example of how to use pthread mutexes.

Low-level counter semaphores
The CPSlib [mc]_init32 routines allocate and set the low-level CPSlib
semaphores to be used as counters. There are no pthread mappings for
these functions. However, a pthread example is provided below.

This example, fetch_and_inc.c , documents the following tasks:

• my_init allocates a counter semaphore and initializes the counter
associated with it (p) to a value.

330 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

• my_fetch_and_clear returns the current value of the counter
associated with the semaphore and clears the counter.

• my_fetch_and_inc increments the value of the counter associated
with the semaphore and returns the old value.

• my_fetch_and_dec decrements the value of the counter associated
with the semaphore and returns the old value.

• my_fetch_and_add adds a value (int val) to the counter associated
with the semaphore and returns the old value of the integer.

• my_fetch_and_set returns the current value of the counter
associated with the semaphore, and sets the semaphore to the new
value contained in int val .

The [mc]_init32 routines allocate and set the low-level cps
semaphores to be used as either counters or locks. An example for
counters provides pthread implementation in the place of the following
CPSlib functions:

• [mc]fetch32

• [mc]_fetch_and_clear32

• [mc]_fetch_and_inc32

• [mc]_fetch_and_dec32

• [mc]_fetch_and_add32

• [mc]_fetch_and_set32

fetch_and_inc.c
/*
 * fetch_and_inc
 * How to support fetch_and_inc type semaphores using pthreads
 *
 */

#ifndef _HPUX_SOURCE
#define _HPUX_SOURCE
#endif

#include <pthread.h>
#include <errno.h>

struct fetch_and_inc {
 int volatilevalue;
 pthread_mutex_tlock;

Appendix A 331

Porting CPSlib functions to pthreads
Using pthreads

};

typedef struct fetch_and_inc fetch_and_inc_t;
typedef struct fetch_and_inc *fetch_and_inc_p;

int
my_init(fetch_and_inc_p *counter, int val)
{
 fetch_and_inc_p p;
 int rv;

 if ((p = (fetch_and_inc_p) malloc(sizeof(*p))) == NULL)
 return ENOMEM;

 if ((rv = pthread_mutex_init(&p->lock, NULL)) != 0)
 return rv;

 p->value = val;

 *counter = p;

 return 0;
}

int
my_fetch(fetch_and_inc_p counter)
{
 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

int
my_fetch_and_clear(fetch_and_inc_p counter)
{
 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value;
 counter->value = 0;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

int
my_fetch_and_inc(fetch_and_inc_p counter)
{

332 Appendix A

Porting CPSlib functions to pthreads
Using pthreads

 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value++;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

int
my_fetch_and_dec(fetch_and_inc_p counter)
{
 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value--;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

int
my_fetch_and_add(fetch_and_inc_p counter, int val)
{
 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value;
 counter->value += val;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

int
my_fetch_and_set(fetch_and_inc_p counter, int val)
{
 int rv;

 pthread_mutex_lock(&counter->lock);

 rv = counter->value;
 counter->value = val;

 pthread_mutex_unlock(&counter->lock);

 return rv;
}

Appendix B 333

B OpenMP Parallel Programming
Model

This appendix discusses HP’s native subset implementation of the
OpenMP parallel programming model, including OpenMP directives and
command line options in the f90 front end and bridge. Topics covered
include:

• What is OpenMP?

• HP’s implementation of OpenMP

• From HP Programming Model (HPPM) to OpenMP

334 Appendix B

OpenMP Parallel Programming Model
What is OpenMP?

What is OpenMP?
OpenMP is a portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing parallel
applications on platforms ranging from the desktop to the
supercomputer. The OpenMP Application Program Interface (API)
supports multi-platform shared-memory parallel programming in
Fortran on all architectures, including UNIX and Windows NT.

Appendix B 335

OpenMP Parallel Programming Model
HP’s Implementation of OpenMP

HP’s Implementation of OpenMP
HP’s native subset implementation of OpenMP includes nine supported
directives and four supported data scope clauses, as well as an additional
supported clause. This implementation is discussed below.

OpenMP Command-line Options
The OpenMP directives implemented by HP (and discussed later in this
appendix) are only accepted if the new command-line option—
+Oopenmp—is given. +Oopenmp is accepted at all opt levels.

Default
The default command line option is +Onoopenmp. If +Oopenmp is not
given, all OpenMP directives (c$omp) are ignored.

OpenMP Directives
This section discusses the implementation of each of the OpenMP
directives. In general, work-sharing directives are only accepted at opt
level +03 and above; synchronization directives are accepted at all opt
levels. Following is each OpenMP directive and its required opt level:

Table 63 OpenMP Directives and Required Opt Levels

Directive Opt Level

PARALLEL +03

PARALLEL DO +03

PARALLEL SECTIONS +03

DO +03

SECTIONS +03

SECTION +03

336 Appendix B

OpenMP Parallel Programming Model
HP’s Implementation of OpenMP

OpenMP Data Scope Clauses
Following are HP’s OpenMP supported data scope clauses:

• PRIVATE

• SHARED

• DEFAULT

• LASTPRIVATE

Other Supported OpenMP Clauses
ORDERED

CRITICAL +00

ORDERED +00

BARRIER +00

Directive Opt Level

Appendix B 337

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

From HP Programming Model to
OpenMP
This section discusses migration from the HP Programming Model
(HPPM) to the OpenMP parallel programming model.

Syntax
The OpenMP parallel programming model is very similar to the current
HP Programming Model (HPPM). The general thread model is the same,
the spawn (fork) mechanisms behave in a similar fashion, etc. However,
the specific syntax to specify the underlying semantics has been changed
significantly.

The following table shows the OpenMP directive or clause (relative to the
directive) and the equivalent HPPM directive or clause that implements
the same functionality. Certain clauses are valid on multiple directives,
but are typically listed only once unless there is a distinction warranting
further explanation.

Exceptions are defined immediately following the table.

Table 64 OpenMP and HPPM Directives/Clauses

OpenMP HPPM

!$OMP parallel
private (list)
shared (list)
default (private|shared|n

one)

!$dir parallel
task_private(list)
<‘shared’ is default>
<None, see below>

!$OMP do

schedule(static[,chunkcon
stant])

ordered

!$dir
loop_parallel(dist)

blocked(chunkconstan
t)

ordered

!$OMP sections !$dir begin_tasks(dist)

!$OMP section !$dir next_task

338 Appendix B

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

Exceptions

• private(list) / loop_private(list)

OpenMP allows the induction variable to be a member of the variable
list. HPPM does not.

• default(private|shared|none)

!$OMP parallel do
<see parallel and do

clauses>

!$dir loop_parallel
<see parallel and

loop_parallel(dist)
clauses>

!$OMP parallel sections
<see parallel and sections

clauses>

!$dir begin_tasks
<see parallel and

begin_tasks(dist)
clauses>

!$OMP critical[(name)] !$dir
critical_section[(name
)]

!$OMP barrier !$dir wait_barrier

!$OMP ordered !$dir ordered_section

!$OMP end_parallel <none>

!$OMP end_sections !$dir end_tasks

!$OMP end_parallel_sections !$dir end_tasks

!$OMP end_parallel_do <none>

!$OMP end_critical !$dir
end_critical_section

!$OMP end_ordered !$dir
end_ordered_section

!$OMP end_do <none>

OpenMP HPPM

Appendix B 339

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

The HPPM defaults to “shared ” and allows the user to specify which
variables should be private. The HP model does not provide “none”;
therefore, undeclared variables will be treated as shared.

• schedule(static[,chunkconstant]) /
blocked([constant])

Only manifest constants are supported today.

HP Programming Model Directives
This section describes how the HP Programming Model (HPPM)
directives are affected by the implementation of OpenMP.

Not Accepted with +Oopenmp

These HPPM directives will not be accepted when +Oopenmp is given.

• parallel

• end_parallel

• loop_parallel

• prefer_parallel

• begin_tasks

• next_task

• end_tasks

• critical_section

• end_critical_section

• ordered_section

• end_ordered_section

• loop_private

• parallel_private

• task_private

• save_last

• reduction

• dynsel

340 Appendix B

OpenMP Parallel Programming Model
From HP Programming Model to OpenMP

• barrier

• gate

• sync_routine

• thread_private

• node_private

• thread_private_pointer

• node_private_pointer

• near_shared

• far_shared

• block_shared

• near_shared_pointer

• far_shared_pointer

NOTE If +Oopenmp is given, the directives above are ignored.

Accepted with +Oopenmp

These HPPM directives will continue to be accepted when +Oopenmp is
given.

• options

• no_dynsel

• no_unroll_and_jam

• no_parallel

• no_block_loop

• no_loop_transform

• no_distribute

• no_loop_dependence

• scalar

• unroll_and_jam

• block_loop

Appendix B 341

OpenMP Parallel Programming Model
More Information on OpenMP

More Information on OpenMP
For more information on OpenMP, see www.openmp.org.

342 Appendix B

OpenMP Parallel Programming Model
More Information on OpenMP

Glossary 343

Glossary

absolute address An address
that does not undergo virtual-to-
physical address translation when
used to reference memory or the
I/O register area.

accumulator A variable used to
accumulate value. Accumulators
are typically assigned a function of
themselves, which can create
dependences when done in loops.

actual argument In Fortran, a
value that is passed by a call to a
procedure (function or subroutine).
The actual argument appears in
the source of the calling procedure;
the argument that appears in the
source of the called procedure is a
dummy argument. C and C++
conventions refer to actual
arguments as actual parameters.

actual parameter In C and
C++, a value that is passed by a
call to a procedure (function). The
actual parameter appears in the
source of the calling procedure; the
parameter that appears in the
source of the called procedure is a
formal parameter. Fortran
conventions refer to actual
parameters as actual arguments.

address A number used by the
operating system to identify a
storage location.

address space Memory space,
either physical or virtual, available
to a process.

alias An alternative name for
some object, especially an
alternative variable name that
refers to a memory location.
Aliases can cause data
dependences, which prevent the
compiler from parallelizing parts
of a program.

alignment A condition in which
the address, in memory, of a given
data item is integrally divisible by
a particular integer value, often
the size of the data item itself.
Alignment simplifies the
addressing of such data items.

allocatable array In Fortran
90, a named array whose rank is
specified at compile time, but
whose bounds are determined at
run time.

allocate An action performed by
a program at runtime in which
memory is reserved to hold data of
a given type. In Fortran 90, this is
done through the creation of
allocatable arrays. In C, it is done
through the dynamic creation of
memory blocks using malloc . In
C++, it is done through the
dynamic creation of memory blocks
using malloc or new.

344 Glossary

ALU Arithmetic logic unit. A
basic element of the central
processing unit (CPU) where
arithmetic and logical operations
are performed.

Amdahl’s law A statement that
the ultimate performance of a
computer system is limited by the
slowest component. In the context
of HP servers this is interpreted to
mean that the serial component of
the application code will restrict
the maximum speed-up that is
achievable.

American National Standards
Institute (ANSI) A repository
and coordinating agency for
standards implemented in the
U.S. Its activities include the
production of Federal Information
Processing (FIPS) standards for
the Department of Defense (DoD).

ANSI See American National
Standards Institute.

apparent recurrence A
condition or construct that fails to
provide the compiler with
sufficient information to determine
whether or not a recurrence exists.
Also called a potential recurrence.

argument In Fortran, either a
variable declared in the argument
list of a procedure (function or
subroutine) that receives a value
when the procedure is called
(dummy argument) or the variable
or constant that is passed by a call
to a procedure (actual argument).
C and C++ conventions refer to
arguments as parameters.

arithmetic logic unit (ALU) A
basic element of the central
processing unit (CPU) where
arithmetic and logical operations
are performed.

array An ordered structure of
operands of the same data type.
The structure of an array is
defined by its rank, shape, and
data type.

array section A Fortran 90
construct that defines a subset of
an array by providing starting and
ending elements and strides for
each dimension. For an array
A(4,4) , A(2:4:2,2:4:2) is an
array section containing only the
evenly indexed elements A(2,2) ,
A(4,2) , A(2,4) , and A(4,4) .

array-valued argument In
Fortran 90, an array section that is
an actual argument to a
subprogram.

ASCII American Standard Code
for Information Interchange. This
encodes printable and non-
printable characters into a range
of integers.

assembler A program that
converts assembly language
programs into executable machine
code.

assembly language A
programming language whose
executable statements can each be
translated directly into a
corresponding machine
instruction of a particular
computer system.

Glossary 345

automatic array In Fortran, an
array of explicit rank that is not a
dummy argument and is declared
in a subprogram.

bandwidth A measure of the
rate at which data can be moved
through a device or circuit.
Bandwidth is usually measured in
millions of bytes per second
(Mbytes/sec) or millions of bits per
second (Mbits/sec).

bank conflict An attempt to
access a particular memory bank
before a previous access to the
bank is complete, or when the
bank is not yet finished recycling
(i.e., refreshing).

barrier A structure used by the
compiler in barrier
synchronization. Also sometimes
used to refer to the construct used
to implement barrier
synchronization. See also barrier
synchronization.

barrier synchronization A
control mechanism used in parallel
programming that ensures all
threads have completed an
operation before continuing
execution past the barrier in
sequential mode. On HP servers,
barrier synchronization can be
automated by certain CPSlib
routines and compiler directives.
See also barrier.

basic block A linear sequence of
machine instructions with a single
entry and a single exit.

bit A binary digit.

blocking factor Integer
representing the stride of the outer
strip of a pair of loops created by
blocking.

branch A class of instructions
which change the value of the
program counter to a value other
than that of the next sequential
instruction.

byte A group of contiguous bits
starting on an addressable
boundary. A byte is 8 bits in
length.

cache A small, high-speed buffer
memory used in modern computer
systems to hold temporarily those
portions of the contents of the
memory that are, or are believed to
be, currently in use. Cache
memory is physically separate
from main memory and can be
accessed with substantially less
latency. HP servers employ
separate data and instruction
cache memories.

cache, direct mapped A form
of cache memory that addresses
encached data by a function of the
data’s virtual address. On V2250
servers, the processor cache
address is identical to the least-
significant 21 bits of the data’s
virtual address. This means cache
thrashing can occur when the
virtual addresses of two data items
are an exact multiple of 2 Mbyte
(21 bits) apart.

cache hit A cache hit occurs if
data to be loaded is residing in the
cache.

346 Glossary

cache line A chunk of
contiguous data that is copied into
a cache in one operation. On V2250
servers, processor cache lines are
32 bytes

cache memory A small, high-
speed buffer memory used in
modern computer systems to hold
temporarily those portions of the
contents of the memory that are, or
are believed to be, currently in use.
Cache memory is physically
separate from main memory and
can be accessed with substantially
less latency. V2250 servers employ
separate data and instruction
caches.

cache miss A cache miss occurs
if data to be loaded is not residing
in the cache.

cache purge The act of
invalidating or removing entries in
a cache memory.

cache thrashing Cache
thrashing occurs when two or more
data items that are frequently
needed by the program map to the
same cache address. In this case,
each time one of the items is
encached it overwrites another
needed item, causing constant
cache misses and impairing data
reuse. Cache thrashing also occurs
when two or more threads are
simultaneously writing to the
same cache line.

central processing unit
(CPU) The central processing
unit (CPU) is that portion of a
computer that recognizes and
executes the instruction set.

clock cycle The duration of the
square wave pulse sent throughout
a computer system to synchronize
operations.

clone A compiler-generated copy
of a loop or procedure. When the
HP compilers generate code for a
parallelizable loop, they generate
two versions: a serial clone and a
parallel clone. See also dynamic
selection.

code A computer program,
either in source form or in the form
of an executable image on a
machine.

coherency A term frequently
applied to caches. If a data item is
referenced by a particular
processor on a multiprocessor
system, the data is copied into that
processor’s cache and is updated
there if the processor modifies the
data. If another processor
references the data while a copy is
still in the first processor’s cache, a
mechanism is needed to ensure
that the second processor does not
use an outdated copy of the data
from memory. The state that is
achieved when both processors’
caches always have the latest
value for the data is called cache
coherency. On multiprocessor
servers an item of data may reside
concurrently in several processors’
caches.

column-major order Memory
representation of an array such
that the columns are stored
contiguously. For example, given a
two-dimensional array A(3,4) ,
the array element A(3,1)
immediately precedes element

Glossary 347

A(1,2) in memory. This is the
default storage method for arrays
in Fortran.

compiler A computer program
that translates computer code
written in a high-level
programming language, such as
Fortran, into equivalent machine
language.

concurrent In parallel
processing, threads that can
execute at the same time are called
concurrent threads.

conditional induction
variable A loop induction
variable that is not necessarily
incremented on every iteration.

constant folding Replacement
of an operation on constant
operands with the result of the
operation.

constant propagation The
automatic compile-time
replacement of variable references
with a constant value previously
assigned to that variable. Constant
propagation is performed within a
single procedure by conventional
compilers.

conventional compiler A
compiler that cannot perform
interprocedural optimization.

counter A variable that is used
to count the number of times an
operation occurs.

CPA CPU Agent. The gate array
on V2250 servers that provides a
high-speed interface between pairs
of PA-RISC processors and the
crossbar. Also called the CPU
Agent and the agent.

CPU Central processing unit.
The central processing unit (CPU)
is that portion of a computer that
recognizes and executes the
instruction set.

CPU Agent The gate array on
V2250 servers that provides a
high-speed interface between pairs
of PA-RISC processors and the
crossbar.

CPU-private memory Data
that is accessible by a single
thread only (not shared among the
threads constituting a process). A
thread-private data object has a
unique virtual address which maps
to a unique physical address.
Threads access the physical copies
of thread-private data residing on
their own hypernode when they
access thread-private virtual
addresses.

CPU time The amount of time
the CPU requires to execute a
program. Because programs share
access to a CPU, the wall-clock
time of a program may not be the
same as its CPU time. If a program
can use multiple processors, the
CPU time may be greater than the
wall-clock time. (See wall-clock
time.)

critical section A portion of a
parallel program that can be
executed by only one thread at a
time.

crossbar A switching device
that connects the CPUs, banks of
memory, and I/O controller on a
single hypernode of a V2250
server. Because the crossbar is
nonblocking, all ports can run at

348 Glossary

full bandwidth simultaneously,
provided there is not contention for
a particular port.

CSR Control/Status Register. A
CSR is a software-addressable
hardware register used to hold
control information or state.

data cache (Dcache) A small
cache memory with a fast access
time. This cache holds prefetched
and current data. On V2250
servers, processors have 2-Mbyte
off-chip caches. See also cache,
direct mapped.

data dependence A
relationship between two
statements in a program, such that
one statement must precede the
other to produce the intended
result. (See also loop-carried
dependence (LCD) and loop-
independent dependence (LID).)

data localization
Optimizations designed to keep
frequently used data in the
processor data cache, thus
eliminating the need for more
costly memory accesses.

data type A property of a data
item that determines how its bits
are grouped and interpreted. For
processor instructions, the data
type identifies the size of the
operand and the significance of the
bits in the operand. Some example
data types include INTEGER, int ,
REAL, and float .

Dcache Data cache. A small
cache memory with a one clock
cycle access time under pipelined
conditions. This cache holds

prefetched and current data.On
V2250 servers, this cache is 2
Mbytes.

deadlock A condition in which a
thread waits indefinitely for some
condition or action that cannot, or
will not, occur.

direct memory access (DMA)
A method for gaining direct access
to memory and achieving data
transfers without involving the
CPU.

distributed memory A
memory architecture used in
multi-CPU systems, in which the
system’s memory is physically
divided among the processors. In
most distributed-memory
architectures, memory is accessible
from the single processor that
owns it. Sharing of data requires
explicit message passing.

distributed part A loop
generated by the compiler in the
process of loop distribution.

DMA Direct memory access. A
method for gaining direct access to
memory and achieving data
transfers without involving the
CPU.

double A double-precision
floating-point number that is
stored in 64 bits in C and C++.

doubleword A primitive data
operand which is 8 bytes (64 bits)
in length. Also called a longword.
See also word.

dummy argument In Fortran, a
variable declared in the argument
list of a procedure (function or
subroutine) that receives a value

Glossary 349

when the procedure is called. The
dummy argument appears in the
source of the called procedure; the
parameter that appears in the
source of the calling procedure is
an actual argument. C and C++
conventions refer to dummy
arguments as formal parameters.

dynamic selection The process
by which the compiler chooses the
appropriate runtime clone of a
loop. See also clone.

encache To copy data or
instructions into a cache.

exception A hardware-detected
event that interrupts the running
of a program, process, or system.
See also fault.

execution stream A series of
instructions executed by a CPU.

fault A type of interruption
caused by an instruction
requesting a legitimate action that
cannot be carried out immediately
due to a system problem.

floating-point A numerical
representation of a real number.
On V2250 servers, a floating point
operand has a sign (positive or
negative) part, an exponent part,
and a fraction part. The fraction is
a fractional representation. The
exponent is the value used to
produce a power of two scale factor
(or portion) that is subsequently
used to multiply the fraction to
produce an unsigned value.

FLOPS Floating-point
operations per second. A standard
measure of computer processing
power in the scientific community.

formal parameter In C and
C++, a variable declared in the
parameter list of a procedure
(function) that receives a value
when the procedure is called. The
formal parameter appears in the
source of the called procedure; the
parameter that appears in the
source of the calling procedure is
an actual parameter. Fortran
conventions refer to formal
parameters as dummy arguments.

Fortran A high-level software
language used mainly for
scientific applications.

Fortran 90 The international
standard for Fortran adopted in
1991.

function A procedure whose
call can be imbedded within
another statement, such as an
assignment or test. Any procedure
in C or C++ or a procedure defined
as a FUNCTION in Fortran.

functional unit (FU) A part of
a CPU that performs a set of
operations on quantities stored in
registers.

gate A construct that restricts
execution of a block of code to a
single thread. A thread locks a
gate on entering the gated block of
code and unlocks the gate on
exiting the block. When the gate is
locked, no other threads can enter.
Compiler directives can be used to
automate gate constructs; gates
can also be implemented using
semaphores.

Gbyte See gigabyte.

350 Glossary

gigabyte 1073741824 (230)
bytes.

global optimization A
restructuring of program
statements that is not confined to a
single basic block. Global
optimization, unlike
interprocedural optimization, is
confined to a single procedure.
Global optimization is done by HP
compilers at optimization level +O2
and above.

global register allocation
(GRA) A method by which the
compiler attempts to store
commonly-referenced scalar
variables in registers throughout
the code in which they are most
frequently accessed.

global variable A variable
whose scope is greater than a
single procedure. In C and C++
programs, a global variable is a
variable that is defined outside of
any one procedure. Fortran has no
global variables per se, but COMMON
blocks can be used to make certain
memory locations globally
accessible.

granularity In the context of
parallelism, a measure of the
relative size of the computation
done by a thread or parallel
construct. Performance is
generally an increasing function of
the granularity. In higher-level
language programs, possible sizes
are routine, loop, block, statement,
and expression. Fine granularity
can be exhibited by parallel loops,
tasks and expressions, Coarse
granularity can be exhibited by
parallel processes.

hand-rolled loop A loop, more
common in Fortran than C or C++,
that is constructed using IF tests
and GOTO statements rather than
a language-provided loop structure
such as DO.

hidden alias An alias that,
because of the structure of a
program or the standards of the
language, goes undetected by the
compiler. Hidden aliases can result
in undetected data dependences,
which may result in wrong
answers.

High Performance Fortran
(HPF) An ad-hoc language
extension of Fortran 90 that
provides user-directed data
distribution and alignment. HPF is
not a standard, but rather a set of
features desirable for parallel
programming.

hoist An optimization process
that moves a memory load
operation from within a loop to the
basic block preceding the loop.

HP Hewlett-Packard, the
manufacturer of the PA-RISC
chips used as processors in V2250
servers.

HP-UX Hewlett-Packard’s Unix-
based operating system for its
PA-RISC workstations and
servers.

hypercube A topology used in
some massively parallel processing
systems. Each processor is
connected to its binary neighbors.
The number of processors in the
system is always a power of two;
that power is referred to as the
dimension of the hypercube. For

Glossary 351

example, a 10-dimensional
hypercube has 210, or 1,024
processors.

hypernode A set of processors
and physical memory organized as
a symmetric multiprocessor (SMP)
running a single image of the
operating system. Nonscalable
servers and V2250 servers consist
of one hypernode. When discussing
multidimensional parallelism or
memory classes, hypernodes are
generally called nodes.

Icache Instruction cache. This
cache holds prefetched instructions
and permits the simultaneous
decoding of one instruction with
the execution of a previous
instruction. On V2250 servers, this
cache is 2 Mbytes.

IEEE Institute for Electrical
and Electronic Engineers. An
international professional
organization and a member of
ANSI and ISO.

induction variable A variable
that changes linearly within the
loop, that is, whose value is
incremented by a constant amount
on every iteration. For example, in
the following Fortran loop, I , J and
K are induction variables, but L is
not.

DO I = 1, N
 J = J + 2
 K = K + N
 L = L + I
ENDDO

inlining The replacement of a
procedure (function or subroutine)
call, within the source of a calling
procedure, by a copy of the called
procedure’s code.

Institute for Electrical and
Electronic Engineers (IEEE)
An international professional
organization and a member of
ANSI and ISO.

instruction One of the basic
operations performed by a CPU.

instruction cache (Icache)
This cache holds prefetched
instructions and permits the
simultaneous decoding of one
instruction with the execution of a
previous instruction. On V2250
servers, this cache is 2 Mbytes.

instruction mnemonic A
symbolic name for a machine
instruction.

integral division Division that
results in a whole number solution
with no remainder. For example,
10 is integrally divisible by 2, but
not by 3.

interface A logical path
between any two modules or
systems.

interleaved memory Memory
that is divided into multiple banks
to permit concurrent memory
accesses. The number of separate
memory banks is referred to as the
memory stride.

interprocedural
optimization Automatic
analysis of relationships and
interfaces between all subroutines
and data structures within a

352 Glossary

program. Traditional compilers
analyze only the relationships
within the procedure being
compiled.

interprocessor
communication The process of
moving or sharing data, and
synchronizing operations between
processors on a multiprocessor
system.

intrinsic A function or
subroutine that is an inherent part
of a computer language. For
example, SIN is a Fortran
intrinsic.

job scheduler That portion of
the operating system that
schedules and manages the
execution of all processes.

join The synchronized
termination of parallel execution
by spawned tasks or threads.

jump Departure from normal
one-step incrementing of the
program counter.

kbyte See kilobyte.

kernel The core of the operating
system where basic system
facilities, such as file access and
memory management functions,
are performed.

kernel thread identifier
(ktid) A unique integer identifier
(not necessarily sequential)
assigned when a thread is created.

kilobyte 1024 (210) bytes.

latency The time delay between
the issuing of an instruction and
the completion of the operation. A
common benchmark used for

comparing systems is the latency
of coherent memory access
instructions. This particular
latency measurement is believed to
be a good indication of the
scalability of a system; low latency
equates to low system overhead as
system size increases.

linker A software tool that
combines separate object code
modules into a single object code
module or executable program.

load An instruction used to move
the contents of a memory location
into a register.

locality of reference An
attribute of a memory reference
pattern that refers to the
likelihood of an address of a
memory reference being
physically close to the CPU
making the reference.

local optimization
Restructuring of program
statements within the scope of a
basic block. Local optimization is
done by HP compilers at
optimization level +O1 and above.

localization Data localization.
Optimizations designed to keep
frequently used data in the
processor data cache, thus
eliminating the need for more
costly memory accesses.

logical address Logical address
space is that address as seen by
the application program.

logical memory Virtual
memory. The memory space as
seen by the program, which may be
larger than the available physical

Glossary 353

memory. The virtual memory of a
V2250 server can be up to 16
Tbytes. HP-UX can map this
virtual memory to a smaller set of
physical memory, using disk space
to make up the difference if
necessary. Also called
virtual memory.

longword (l) Doubleword. A
primitive data operand which is 8
bytes (64 bits) in length. See also
word.

loop blocking A loop
transformation that strip mines
and interchanges a loop to provide
optimal reuse of the encachable
loop data.

loop-carried dependence
(LCD) A dependence between
two operations executed on
different iterations of a given loop
and on the same iteration of all
enclosing loops. A loop carries a
dependence from an indexed
assignment to an indexed use if,
for some iteration of the loop, the
assignment stores into an address
that is referred to on a different
iteration of the loop.

loop constant A constant or
expression whose value does not
change within a loop.

loop distribution The
restructuring of a loop nest to
create simple loop nests. Loop
distribution creates two or more
loops, called distributed parts,
which can serve to make
parallelization more efficient by
increasing the opportunities for
loop interchange and isolating code
that must run serially from

parallelizable code. It can also
improve data localization and
other optimizations.

loop-independent dependence
(LID) A dependence between two
operations executed on the same
iteration of all enclosing loops such
that one operation must precede
the other to produce correct
results.

loop induction variable See
induction variable.

loop interchange The
reordering of nested loops. Loop
interchange is generally done to
increase the granularity of the
parallelizable loop(s) present or to
allow more efficient access to loop
data.

loop invariant Loop constant. A
constant or expression whose value
does not change within a loop.

loop invariant computation
An operation that yields the same
result on every iteration of a loop.

loop replication The process of
transforming one loop into more
than one loop to facilitate an
optimization. The optimizations
that replicate loops are IF-DO and
if-for optimizations, dynamic
selection, loop unrolling, and loop
blocking.

machine exception A fatal
error in the system that cannot be
handled by the operating system.
See also exception.

main memory Physical
memory other than what the
processor caches.

354 Glossary

main procedure A procedure
invoked by the operating system
when an application program
starts up. The main procedure is
the main program in Fortran; in C
and C++, it is the function main().

main program In a Fortran
program, the program section
invoked by the operating system
when the program starts up.

Mbyte See megabyte (Mbyte).

megabyte (Mbyte) 1048576
(220) bytes.

megaflops (MFLOPS) One
million floating-point operations
per second.

memory bank conflict An
attempt to access a particular
memory bank before a previous
access to the bank is complete, or
when the bank is not yet finished
recycling (i.e., refreshing).

memory management The
hardware and software that
control memory page mapping and
memory protection.

message Data copied from one
process to another (or the same)
process. The copy is initiated by
the sending process, which
specifies the receiving process. The
sending and receiving processes
need not share a common address
space. (Note: depending on the
context, a process may be a
thread.)

Message-Passing Interface
(MPI) A message-passing and
process control library. For
information on the Hewlett-

Packard implementation of MPI,
refer to the HP MPI User’s Guide
(B6011-90001).

message passing A type of
programming in which program
modules (often running on
different processors or different
hosts) communicate with each
other by means of system library
calls that package, transmit, and
receive data. All message-passing
library calls must be explicitly
coded by the programmer.

MIMD (multiple instruction
stream multiple data stream)
A computer architecture that uses
multiple processors, each
processing its own set of
instructions simultaneously and
independently of others. MIMD
also describes when processes are
performing different operations on
different data. Compare
with SIMD.

multiprocessing The creation
and scheduling of processes on any
subset of CPUs in a system
configuration.

mutex A variable used to
construct an area (region of code)
of mutual exclusion. When a mutex
is locked, entry to the area is
prohibited; when the mutex is free,
entry is allowed.

mutual exclusion A protocol
that prevents access to a given
resource by more than one thread
at a time.

negate An instruction that
changes the sign of a number.

Glossary 355

network A system of
interconnected computers that
enables machines and their users
to exchange information and
share resources.

node On HP scalable and
nonscalable servers, a node is
equivalent to a hypernode. The
term “node” is generally used in
place of hypernode.

non-uniform memory access
(NUMA) This term describes
memory access times in systems in
which accessing different types of
memory (for example, memory
local to the current hypernode or
memory remote to the current
hypernode) results in non-uniform
access times.

nonblocking crossbar A
switching device that connects the
CPUs, banks of memory, and I/O
controller on a single hypernode.
Because the crossbar is
nonblocking, all ports can run at
full bandwidth simultaneously
provided there is not contention for
a particular port.

NUMA Non-uniform memory
access. This term describes
memory access times in systems in
which accessing different types of
memory (for example, memory
local to the current hypernode or
memory remote to the current
hypernode) results in non-uniform
access times.

offset In the context of a process
address space, an integer value
that is added to a base address to
calculate a memory address.
Offsets in V2250 servers are 64-bit

values, and must keep address
values within a single 16-Tbyte
memory space.

opcode A predefined sequence of
bits in an instruction that specifies
the operation to be performed.

operating system The program
that manages the resources of a
computer system. V2250 servers
use the HP-UX operating system.

optimization The refining of
application software programs to
minimize processing time.
Optimization takes maximum
advantage of a computer’s
hardware features and minimizes
idle processor time.

optimization level The degree
to which source code is optimized
by the compiler. The HP
compilers offer five levels of
optimization: level +O0, +O1, +O2,
+O3, and +O4. The +O4 option is
not available in Fortran 90.

oversubscript An array
reference that falls outside
declared bounds.

oversubscription In the
context of parallel threads, a
process attribute that permits the
creation of more threads within a
process than the number of
processors available to the process.

PA-RISC The Hewlett-Packard
Precision Architecture reduced
instruction set.

packet A group of related items.
A packet may refer to the
arguments of a subroutine or to a
group of bytes that is transmitted
over a network.

356 Glossary

page A page is the unit of virtual
or physical memory controlled by
the memory management
hardware and software. On HP-UX
servers, the default page size is 4 K
(4,096) contiguous bytes. Valid
page sizes are: 4 K, 16 K, 64 K, 256
K, 1 Mbyte, 4 Mbytes, 16 Mbytes,
64 Mbytes, and 256 Mbytes.
See also virtual memory.

page fault A page fault occurs
when a process requests data that
is not currently in memory. This
requires the operating system to
retrieve the page containing the
requested data from disk.

page frame A page frame is the
unit of physical memory in which
pages are placed. Referenced and
modified bits associated with each
page frame aid in memory
management.

parallel optimization The
transformation of source code into
parallel code (parallelization) and
restructuring of code to enhance
parallel performance.

parallelization The process of
transforming serial code to a form
of code that can run
simultaneously on multiple CPUs
while preserving semantics. When
+O3 +Oparallel is specified, the
HP compilers automatically
parallelize loops in your program
and recognize compiler directives
and pragmas with which you can
manually specify parallelization of
loops, tasks, and regions.

parallelization, loop The
process of splitting a loop into
several smaller loops, each of

which operates on a subset of the
data of the original loop, and
generating code to run these loops
on separate processors in parallel.

parallelization, ordered The
process of splitting a loop into
several smaller loops, each of
which iterates over a subset of the
original data with a stride equal to
the number of loops created, and
generating code to run these loops
on separate processors. Each
iteration in an ordered parallel
loop begins execution in the
original iteration order, allowing
dependences within the loop to be
synchronized to yield correct
results via gate constructs.

parallelization, stride-based
The process of splitting up a loop
into several smaller loops, each of
which iterates over several
discontiguous chunks of data, and
generating code to run these loops
on separate processors in parallel.
Stride-based parallelism can only
be achieved manually by using
compiler directives.

parallelization, strip-based
The process of splitting up a loop
into several smaller loops, each of
which iterates over a single
contiguous subset of the data of
the original loop, and generating
code to run these loops on separate
processors in parallel. Strip-based
parallelism is the default for
automatic parallelism and for
directive-initiated loop parallelism
in absence of the chunk_size = n
or ordered attributes.

Glossary 357

parallelization, task The
process of splitting up source code
into independent sections which
can safely be run in parallel on
available processors. HP
programming languages provide
compiler directives and pragmas
that allow you to identify parallel
tasks in source code.

parameter In C and C++, either
a variable declared in the
parameter list of a procedure
(function) that receives a value
when the procedure is called
(formal parameter) or the variable
or constant that is passed by a call
to a procedure (actual parameter).
In Fortran, a symbolic name for a
constant.

path An environment variable
that you set within your shell that
allows you to access commands in
various directories without having
to specify a complete path name.

physical address A unique
identifier that selects a particular
location in the computer’s
memory. Because HP-UX supports
virtual memory, programs address
data by its virtual address; HP-UX
then maps this address to the
appropriate physical address. See
also virtual address.

physical address space The
set of possible addresses for a
particular physical memory.

physical memory Computer
hardware that stores data. V2250
servers can contain up to 16
Gbytes of physical memory on a
16-processor hypernode.

pipeline An overlapping
operating cycle function that is
used to increase the speed of
computers. Pipelining provides a
means by which multiple
operations occur concurrently by
beginning one instruction
sequence before another has
completed. Maximum efficiency is
achieved when the pipeline is
“full,” that is, when all stages are
operating on separate instructions.

pipelining Issuing instructions
in an order that best uses the
pipeline.

procedure A unit of program
code. In Fortran, a function,
subroutine, or main program; in C
and C++, a function.

process A collection of one or
more execution streams within a
single logical address space; an
executable program. A process is
made up of one or more threads.

process memory The portion of
system memory that is used by an
executing process.

programming model A
description of the features
available to efficiently program a
certain computer architecture.

program unit A procedure or
main section of a program.

queue A data structure in which
entries are made at one end and
deletions at the other. Often
referred to as first-in, first-out
(FIFO).

rank The number of dimensions
of an array.

358 Glossary

read A memory operation in
which the contents of a memory
location are copied and passed to
another part of the system.

recurrence A cycle of
dependences among the operations
within a loop in which an operation
in one iteration depends on the
result of a following operation that
executes in a previous iteration.

recursion An operation that is
defined, at least in part, by a
repeated application of itself.

recursive call A condition in
which the sequence of instructions
in a procedure causes the
procedure itself to be invoked
again. Such a procedure must be
compiled for reentrancy.

reduced instruction set
computer (RISC) An
architectural concept that applies
to the definition of the instruction
set of a processor. A RISC
instruction set is an orthogonal
instruction set that is easy to
decode in hardware and for which
a compiler can generate highly
optimized code. The PA-RISC
processor used in V2250 servers
employ a RISC architecture.

reduction An arithmetic
operation that performs a
transformation on an array to
produce a scalar result.

reentrancy The ability of a
program unit to be executed by
multiple threads at the same time.
Each invocation maintains a
private copy of its local data and a
private stack to store compiler-
generated temporary variables.

Procedures must be compiled for
reentrancy in order to be invoked
in parallel or to be used for
recursive calls. HP compilers
compile for reentrancy by default.

reference Any operation that
requires a cache line to be
encached; this includes load as
well as store operations, because
writing to any element in a cache
line requires the entire cache line
to be encached.

register A hardware entity that
contains an address, operand, or
instruction status information.

reuse, data In the context of a
loop, the ability to use data fetched
for one loop operation in another
operation. In the context of a
cache, reusing data that was
encached for a previous operation;
because data is fetched as part of a
cache line, if any of the other items
in the cache line are used before
the line is flushed to memory,
reuse has occurred.

reuse, spatial Reusing data
that resides in the cache as a
result of the fetching of another
piece of data from memory.
Typically, this involves using array
elements that are contiguous to
(and therefore part of the cache
line of) an element that has
already been used, and therefore is
already encached.

reuse, temporal Reusing a
data item that has been used
previously.

RISC Reduced instruction set
computer. An architectural concept
that applies to the definition of the

Glossary 359

instruction set of a processor. A
RISC instruction set is an
orthogonal instruction set that is
easy to decode in hardware and for
which a compiler can generate
highly optimized code. The
PA-RISC processor used in V2250
servers employs a RISC
architecture.

rounding A method of
obtaining a representation of a
number that has less precision
than the original in which the
closest number representable
under the lower precision system
is used.

row-major order Memory
representation of an array such
that the rows of an array are
stored contiguously. For example,
given a two-dimensional array
A[3][4] , array element A[0][3]
immediately precedes A[1][0] in
memory. This is the default storage
method for arrays in C.

scope The domain in which a
variable is visible in source code.
The rules that determine scope are
different for Fortran and C/C++.

semaphore An integer variable
assigned one of two values: one
value to indicate that it is “locked,”
and another to indicate that it is
“free.” Semaphores can be used to
synchronize parallel threads.
Pthreads provides a set of
manipulation functions to
facilitate this.

shape The number of elements
in each dimension of an array.

shared virtual memory A
memory architecture in which
memory can be accessed by all
processors in the system. This
architecture can also support
virtual memory.

shell An interactive command
interpreter that is the interface
between the user and the Unix
operating system.

SIMD (single instruction
stream multiple data stream)
A computer architecture that
performs one operation on multiple
sets of data. A processor (separate
from the SMP array) is used for
the control logic, and the
processors in the SMP array
perform the instruction on the
data. Compare with MIMD
(multiple instruction stream
multiple data stream).

single A single-precision
floating-point number stored in 32
bits. See also double.

SMP Symmetric multiprocessor.
A multiprocessor computer in
which all the processors have
equal access to all machine
resources. Symmetric
multiprocessors have no manager
or worker processors; the
operating system runs on any or
all of the processors.

socket An endpoint used for
interprocess communication.

socket pair Bidirectional pipes
that enable application programs
to set up two-way communication
between processes that share a
common ancestor.

360 Glossary

source code The uncompiled
version of a program, written in a
high-level language such as
Fortran or C.

source file A file that contains
program source code.

space A contiguous range of
virtual addresses within the
system-wide virtual address
space. Spaces are 16 Tbytes in the
V2250 servers.

spatial reference An attribute
of a memory reference pattern that
pertains to the likelihood of a
subsequent memory reference
address being numerically close to
a previously referenced address.

spawn To activate existing
threads.

spawn context A parallel loop,
task list, or region that initiates
the spawning of threads and
defines the structure within which
the threads’ spawn thread IDs are
valid.

spawn thread identifier
(stid) A sequential integer
identifier associated with a
particular thread that has been
spawned. stids are only assigned to
spawned threads, and they are
assigned within a spawn context;
therefore, duplicate stids may be
present amongst the threads of a
program, but stids are always
unique within the scope of their
spawn context. stids are assigned
sequentially and run from 0 to one
less than the number of threads
spawned in a particular spawn
context.

SPMD Single program multiple
data. A single program executing
simultaneously on several
processors. This is usually taken to
mean that there is redundant
execution of sequential scalar code
on all processors.

stack A data structure in which
the last item entered is the first to
be removed. Also referred to as
last-in, first-out (LIFO). HP-UX
provides every thread with a stack
which is used to pass arguments to
functions and subroutines and for
local variable storage.

store An instruction used to
move the contents of a register to
memory.

strip length, parallel In strip-
based parallelism, the amount by
which the induction variable of a
parallel inner loop is advanced on
each iteration of the (conceptual)
controlling outer loop.

strip mining The
transformation of a single loop into
two nested loops. Conceptually,
this is how parallel loops are
created by default. A conceptual
outer loop advances the initial
value of the inner loop’s induction
variable by the parallel strip
length. The parallel strip length is
based on the trip count of the loop
and the amount of code in the loop
body. Strip mining is also used by
the data localization optimization.

subroutine A software module
that can be invoked from anywhere
in a program.

Glossary 361

superscalar A class of RISC
processors that allow multiple
instructions to be issued in each
clock period.

Symmetric Multiprocessor
(SMP) A multiprocessor
computer in which all the
processors have equal access to all
machine resources. Symmetric
multiprocessors have no manager
or worker processors; the
operating system runs on any or
all of the processors.

synchronization A method of
coordinating the actions of
multiple threads so that
operations occur in the right
sequence. When manually
optimizing code, you can
synchronize programs using
compiler directives, calls to library
routines, or assembly-language
instructions. You do so, however, at
the cost of additional overhead;
synchronization may cause at least
one CPU to wait for another.

system administrator
(sysadmin) The person
responsible for managing the
administration of a system.

system manager The person
responsible for the management
and operation of a computer
system. Also called the system
administrator and the sysadmin.

Tbyte See terabyte (Tbyte).

terabyte (Tbyte)
1099511627776 (240) bytes.

term A constant or symbolic
name that is part of an expression.

thread An independent
execution stream that is executed
by a CPU. One or more threads,
each of which can execute on a
different CPU, make up each
process. Memory, files, signals, and
other process attributes are
generally shared among threads in
a given process, enabling the
threads to cooperate in solving the
common problem. Threads are
created and terminated by
instructions that can be
automatically generated by HP
compilers, inserted by adding
compiler directives to source code,
or coded explicitly using library
calls or assembly-language.

thread create To activate
existing threads.

thread identifier An integer
identifier associated with a
particular thread. See thread
identifier, kernel (ktid) and thread
identifier, spawn (stid).

thread identifier, kernel
(ktid) A unique integer identifier
(not necessarily sequential)
assigned when a thread is created.

thread identifier, spawn
(stid) A sequential integer
identifier associated with a
particular thread that has been
spawned. stids are only assigned to
spawned threads, and they are
assigned within a spawn context;
therefore, duplicate stids may be
present amongst the threads of a
program, but stids are always
unique within the scope of their
spawn context. stids are assigned
sequentially and run from 0 to one

362 Glossary

less than the number of threads
spawned in a particular spawn
context.

thread-private memory Data
that is accessible by a single
thread only (not shared among the
threads constituting a process).

translation lookaside buffer
A hardware entity that contains
information necessary to translate
a virtual memory reference to the
corresponding physical page and to
validate memory accesses.

TLB See translation lookaside
buffer.

trip count The number of
iterations a loop executes.

unsigned A value that is always
positive.

user interface The portion of a
computer program that processes
input entered by a human and
provides output for human users.

utility A software tool designed
to perform a frequently used
support function.

vector An ordered list of items
in a computer’s memory, contained
within an array. A simple vector is
defined as having a starting
address, a length, and a stride. An
indirect address vector is defined
as having a relative base address
and a vector of values to be applied
as offsets to the base.

vector processor A processor
whose instruction set includes
instructions that perform

operations on a vector of data (such
as a row or column of an array) in
an optimized fashion.

virtual address The address by
which programs access their data.
HP-UX maps this address to the
appropriate physical memory
address. See also space.

virtual aliases Two different
virtual addresses that map to the
same physical memory address.

virtual machine A collection of
computing resources configured so
that a user or process can access
any of the resources, regardless of
their physical location or operating
system, from a single interface.

virtual memory The memory
space as seen by the program,
which is typically larger than the
available physical memory. The
virtual memory of a V2250 server
can be up to 16 Tbytes. The
operating system maps this virtual
memory to a smaller set of physical
memory, using disk space to make
up the difference if necessary. Also
called logical memory.

wall-clock time The
chronological time an application
requires to complete its processing.
If an application starts running at
1:00 p.m. and finishes at 5:00 a.m.
the following morning, its wall-
clock time is sixteen hours.
Compare with CPU time.

word A contiguous group of
bytes that make up a primitive
data operand and start on an
addressable boundary. In V2250

Glossary 363

servers a word is four
bytes (32 bits) in length. See also
doubleword.

workstation A stand-alone
computer that has its own
processor, memory, and possibly a
disk drive and can typically sit on
a user’s desk.

write A memory operation in
which a memory location is
updated with new data.

zero In floating-point number
representations, zero is
represented by the sign bit with a
value of zero and the exponent
with a value of zero.

364 Glossary

365

Index

Symbols
&operator, 31
+DA, 142
+DAarchitecture, 141
+DS, 142
+DSmodel, 141
+O[no]aggressive, 114
+O[no]all, 114, 118
+O[no]autopar, 114, 118
+O[no]conservative, 114, 119
+O[no]dataprefetch, 114, 119
+O[no]dynsel, 114, 120, 149
+O[no]entrysched, 117, 120
+O[no]fail_safe, 114, 121
+O[no]fastaccess, 114, 121
+O[no]fltacc, 114, 117, 121
+O[no]global_ptrs_unique, 114, 122, 143
+O[no]info, 114, 123, 151
+O[no]initcheck, 115, 117, 123
+O[no]inline, 55, 57, 91, 92, 112, 115, 124
+O[no]libcalls, 115, 117, 125
+O[no]limit, 59, 115, 118, 126
+O[no]loop_block, 58, 70, 115, 127, 148
+O[no]loop_transform, 58, 70, 79, 82, 84, 89, 115,

127, 148
+O[no]loop_unroll, 58, 127
+O[no]loop_unroll_jam, 84, 115, 128, 150
+O[no]moveflops, 115, 128
+O[no]multiprocessor, 115, 129
+O[no]parallel, 94, 115, 149, 160
+O[no]parmsoverlap, 115, 130
+O[no]pipeline, 49, 115, 130
+O[no]procelim, 115, 131
+O[no]ptrs_ansi, 115, 131, 143, 267
+O[no]ptrs_strongly_typed, 115, 132, 267
+O[no]ptrs_to_globals, 115, 135, 143
+O[no]regreassoc, 115, 136
+O[no]report, 115, 137, 152, 160
+O[no]sharedgra, 115, 138
+O[no]signedpointers, 116, 117, 138
+O[no]size, 59, 116, 138
+O[no]static_prediction, 116, 139
+O[no]vectorize, 116, 117, 139

+O[no]volatile, 116, 140
+O[no]whole_program_mode, 116, 140
+O0 optimization, 26
+O1 optimization, 26
+O2 optimization, 27, 40, 58
+O3, 111
+O3 optimization, 27, 55, 57, 58, 70, 77, 79, 82,

84, 89
+O4, 111
+O4 optimization, 55, 57
+Oinline_budget, 55, 92, 115, 125
+Onoinitcheck, 30
+Oparallel, 111
+pd, 23
+pi, 23
+tmtarget, 141
[mc]_fetch_and_add32(), 330
[mc]_fetch_and_clear32(), 330
[mc]_fetch_and_dec32(), 330
[mc]_fetch_and_inc32(), 330
[mc]_fetch_and_set3(), 330
[mc]_fetch32(), 330
[mc]_init32(), 329

A
aC++ compiler

location of, 25
register allocation, 44

aC++, parallelism in, 111
accessing pthreads, 301, 302
accumulator variables, 281
actual registers, 40
address space, virtual, 17
address-exposed array variables, 144
addressing, 41
advanced scalar optimizations, 7
aggressive optimizations, 118
algorithm, type-safe, 266
aliases, 12

hidden, 268
potential, 267

aliasing, 59, 64, 69, 266

366

algorithm, 266
examples, 64, 65
mode, 267
rules, 132
stop variables, 269

aliasing rules, type-inferred, 143
alignment

data, 26, 37
of arrays, 274
simple, 26

alloc_barrier functions, 237
alloc_gate functions, 237
alloca(), 125
ALLOCATE statement, 12, 274
allocating

barriers, 235
gates, 235
shared memory, 138
storage, 204

allocation functions, 237
alternate name for object, 64
Analysis Table, 154, 158
analysis, flow-sensitive, 269
ANSI C, 266

aliasing algorithm, 266
ANSI standard rules, 265
architecture

SMP, 1, 2
architecture optimizations, 141
arguments

block_factor, 71
dummy, 236

arithmetic expressions, 30, 43, 49, 51, 136
array, 32

address computations, 136
address-exposed, 144
bounds of, 30
data, fetch, 71
dimensions, 204
indexes, 59
references, 31
subscript, 106

arrays

access order, 82
alignment of, 274
dummy arguments, 278
equivalencing, 12
global, 274
LOOP_PRIVATE, 216
of type specifier, 227
store, 64
strips of, 70
unaligned, 278

asin math function, 126
assertion, linker disables, 141
asymmetric parallelism, 321
asynchronous interrupts, 120
atan math function, 126
atan2 math function, 126
attributes

LOOP_PARALLEL, 181
PREFER_PARALLEL, 181
volatile, 32

automatic parallelism, 94
avoid loop interchange, 63

B
barrier variable declaration, 235
barriers, 235, 324

allocating, 235
deallocating, 238
equivalencing, 236
high-level, 305
wait, 241

basic blocks, 6
BEGIN_TASKS directive and pragma, 94, 177,

192
block factor, 76
BLOCK_LOOP directive and pragma, 70, 76, 146,

148
blocking, loop, 70
bold monospace, xvii
brackets, xvii

curly, xvii
branch

367

destination, 67, 68
dynamic prediction, 139
optimization, 26
static prediction, 139

branches
conditional, 39, 139
instruction, 41
transforming, 39
unconditional, 39

C
C aliasing options, 113
C compiler

location of, 25
register allocation, 44

-C compiler option, 283
cache

contiguous, 18
data, 12
line, 12
line boundaries, 275
line size, 71
lines, fetch, 73
lines, fixed ownership, 291
padding, 15
semaphores, 327
thrashing, 13, 78, 271, 290

cache line boundaries
force arrays on (C), 274
force arrays on (Fortran), 274

cache-coherency, 12
cache-line, 18
calls

cloned, 154, 155
inlined, 154, 155

char, 31
chatr utility, 23
check subscripts, 283
child threads, 309
CHUNK_SIZE, 275
class, 227

memory, 223, 225, 226, 227, 228

clauses, other supported
OpenMP, 336

cloned
calls, 154, 155
procedures, delete, 140

cloning, 57, 102, 112
across files, 57
across multiple files, 112
at +O4, 91
within files, 57
within one source file, 57

Code, 250
code

contiguous, 197
dead, 26
entry, 40
examining, 294
exit, 40
isolate in loop, 253
loop-invariant, 45
motion, 136, 242, 266
parallelizing outside loop, 192
scalar, 197
size, 124
synchronizing, 250
transformation, 33

coding
guidelines, 30, 31
standards, 91

command syntax, xviii
command-line options, 55, 115

+O[no]_block_loop, 70
+O[no]_loop_transform, 89
+O[no]aggressive, 114, 117
+O[no]all, 114, 118
+O[no]autopar, 114, 118
+O[no]conservative, 114, 119
+O[no]dataprefetch, 114, 119
+O[no]dynsel, 114, 120
+O[no]entrysched, 114, 120
+O[no]fail_safe, 114, 121
+O[no]fastaccess, 114, 121
+O[no]fltacc, 114, 121

368

+O[no]global_ptrs, 143
+O[no]global_ptrs_unique, 114, 122
+O[no]info, 114, 123
+O[no]initcheck, 123
+O[no]inline, 55, 91, 92, 115, 124
+O[no]libcalls, 115, 125
+O[no]limit, 45, 115, 126
+O[no]loop_block, 115, 127
+O[no]loop_transform, 58, 70, 79, 89, 115, 127
+O[no]loop_unroll, 58, 127

+O[no]loop_unroll, 115
+O[no]loop_unroll_jam, 58, 115, 128
+O[no]moveflops, 115, 128
+O[no]multiprocessor, 115, 129
+O[no]parallel, 94, 115, 129
+O[no]parmsoverlap, 115, 130
+O[no]pipeline, 49, 115, 130
+O[no]procelim, 115, 131
+O[no]ptrs_ansi, 115, 131, 143, 267
+O[no]ptrs_strongly_typed, 115, 132, 267
+O[no]ptrs_to_globals, 115, 135, 143
+O[no]regreassoc, 115, 136
+O[no]report, 115, 137
+O[no]sharedgra, 115, 138
+O[no]signedpointers, 116, 138
+O[no]size, 45, 116, 138
+O[no]static_prediction, 116, 139
+O[no]vectorize, 116, 139
+O[no]volatile, 116, 140
+O[no]whole_program_mode, 116, 140
+Oinline_budget, 55, 92, 115, 125
+tmtarget, 141

COMMON, 33
blocks, 18, 147, 227, 274
statement, 236
variable, 91, 150

common subexpression elimination, 42, 43, 135
compilation, abort, 121
compile

reentrant, 201
time, 44, 126

compile time, increase, 49
compiler assumptions, 296

compiler options
-C, 283
-W, 282

Compiler Parallel Support Library, 301
compilers

location of, 25
location of aC++, 25
location of C, 25
location of Fortran 90, 25

cond_lock_gate functions, 239
conditional

blocks, 197
branches, 139

constant
folding, 26
induction, 27

contiguous
cache lines, 18
code, 197

control variable, 30
copy propagation, 135
core dump, 283
CPS cache, 327
cps_barrier_free(), 324
cps_nsthreads(), 303
cps_nthreads(), 310
cps_plevel(), 321
cps_ppcall(), 310
cps_ppcalln(), 310
cps_ppcallv(), 303
CPS_STACK_SIZE, 202, 309
cps_stid(), 303, 310
cps_thread_create(), 321
cps_thread_createn(), 321
cps_thread_exit(), 321
cps_thread_register_lock(), 321
CPSlib, 301

low-level counter semaphores, 329
low-level locking functions, 329
unlock routines, 328
unmappable functions in pthreads, 310

CPSlib asymmetric functions, 304
cps_thread_create(), 304

369

cps_thread_createn(), 304
cps_thread_exit(), 304
cps_thread_register_lock(), 304
cps_thread_wait(), 304

CPSlib informational functions, 304
cps_complex_cpus(), 304
cps_complex_nodes(), 305
cps_complex_nthreads(), 305
cps_is_parallel(), 305
cps_plevel(), 305
cps_set_threads(), 305
cps_topology(), 305

CPSlib symmetric functions, 303
cps_nsthreads(), 303
cps_ppcall(), 303
cps_ppcalln(), 303
cps_ppcallv(), 303
cps_stid(), 303
cps_wait_attr(), 304

CPSlib synchronization functions, 306, 307
[mc]_cond_lock(), 307
[mc]_fetch_and_add32(), 307
[mc]_fetch_and_clear32(), 307
[mc]_fetch_and_dec32(), 308
[mc]_fetch_and_inc32(), 308
[mc]_fetch_and_set32(), 308
[mc]_fetch32(), 307
[mc]_free32(), 307
[mc]_init32(), 307, 308
cps_barrier(), 305
cps_barrier_alloc(), 305
cps_barrier_free(), 306
cps_limited_spin_mutex_alloc(), 306
cps_mutex_alloc(), 306
cps_mutex_free(), 306
cps_mutex_lock(), 306
cps_mutex_trylock(), 307
cps_mutex_unlock(), 307

CPU agent, 10
create

temporary variable, 269
threads, 309

critical sections, 247

conditionally lock, 259
using, 250

CRITICAL_SECTION directive and pragma, 177,
189, 247

example, 190, 250, 252
cross-module optimization, 53
cumlative optimizations, 58
cumulative options, 29
curly brackets, xvii

D
data

alignment, 12, 26, 37, 71, 91
cache, 7, 12, 58, 69, 119
dependences, 179, 185, 192, 279
encached, 13
exploit cache, 102
item, 228, 231
items, different, 271
layout, 271
local to procedure, 229
localization, 27, 58, 59, 64, 69
multiple dependences, 233
object, 210
objects (C/C++), 227
prefetch, 119
private, 225
privatizing, 208
reuse, 12, 13, 71
segment, 23
shared, 229
type statements (C/C++), 235
types, double, 229

data scope clauses
OpenMP, 336

DATA statement, 225, 274
data-localized loops, 7
dead code elimination, 26, 40
deadlock, detect with pthreads, 327
deallocating

barriers, 238
gates, 235, 250

370

deallocation functions, 238
default stack size, 175, 202
delete

cloned procedures, 140
inlined procedures, 140

dependences, 220
data, 179, 185, 192, 279
element-to-element, 62
ignore, 149
loop-carried, 279, 284
multiple, 233
nonordered, 247
ordered data, 233
other loop fusion, 64
synchronize, 197
synchronized, 182
synchronizing, 248

dereferences of pointers, 143
DIMENSION statement, 236
Dipasquale, Mark D., 310
directives

BEGIN_TASKS, 94, 177, 192
BLOCK_LOOP, 70, 76, 146, 148
CRITICAL_SECTION, 177, 189, 247, 250
DYNSEL, 146, 148
END_CRITICAL_SECTION, 177, 189, 247
END_ORDERED_SECTION, 248
END_PARALLEL, 28, 94, 176
END_TASKS, 94, 177, 192
LOOP_PARALLEL, 28, 94, 118, 176, 179, 181,

185
LOOP_PARALLEL(ORDERED), 245
LOOP_PRIVATE, 208, 210
misused, 284
NEXT_TASK, 94, 177, 192
NO_BLOCK_LOOP, 70, 146, 148
NO_DISTRIBUTE, 77, 146, 148
NO_DYNSEL, 146, 149
NO_LOOP_DEPENDENCE, 60, 63, 149
NO_LOOP_TRANSFORM, 89, 146, 149
NO_PARALLEL, 110, 146, 149
NO_SIDE_EFFECTS, 146, 150
NO_UNROLL_AND_JAM, 85, 146

OpenMP, 335
ORDERED_SECTION, 177, 248
PARALLEL, 94, 176
parallel, 28
PARALLEL_PRIVATE, 208, 220
PREFER_PARALLEL, 28, 94, 176, 178, 181,

185
privatizing, 208
REDUCTION, 146, 177
SAVE_LAST, 208, 216
SCALAR, 146
SYNC_ROUTINE, 146, 177, 242
TASK_PRIVATE, 196, 208, 218
UNROLL_AND_JAM, 85, 146, 150

disable
automatic parallelism, 110
global register allocation, 138
LCDs, 60
loop thread parallelization, 191

division, 40
DO loops, 178, 210
DO WHILE loops, 184
double, 49

data types, 229
variable, 130, 282

dummy
argument, 236
arguments, 278
registers, 40

dynamic selection, 120, 154, 155
workload-based, 102, 149

DYNSEL directive and pragma, 146, 148

E
element-to-element dependences, 62
ellipses, vertical, xviii
encache memory, 20
END_CRITICAL_SECTION directive and

pragma, 177, 189, 247
end_parallel, 28
END_PARALLEL directive and pragma, 28, 94,

176

371

END_TASKS directive and pragma, 94, 177, 192
enhance performance, 12
entry code, 40
environment variables

and pthreads, 309
CPS_STACK_SIZE, 202, 309
MP_IDLE_THREADS_WAIT, 100, 309
MP_NUMBER_OF_THREADS, 94, 130, 309

EQUIVALENCE statement, 64, 266
equivalencing

barriers, 236
gates, 236

equivalent groups, constructing, 144
ERRNO, 126
examining code, 294
examples

aliasing, 64
apparent LCDs, 106
avoid loop interchange, 63
branches, 40
cache padding, 15
cache thrashing, 13
common subexpression elimination, 43
conditionally lock critical sections, 259
critical sections and gates, 258
CRITICAL_SECTION, 190, 250
data alignment, 37
denoting induction variables in parallel loops,

213
gated critical sections, 252
I/O statements, 67
inlining with one file, 55
inlining within one source file, 55
interleaving, 20
loop blocking, 76
loop distribution, 77
loop fusion, 80
loop interchange, 82
loop peeling, 80
loop transformations, 97
loop unrolling, 45, 46
LOOP_PARALLEL, 187, 188
LOOP_PARALLEL(ORDERED), 245

LOOP_PRIVATE, 211
loop-invariant code motion, 45
loop-level parallelism, 94
matrix multiply blocking, 74
multiple loop entries/exits, 68
NO_PARALLEL, 110
node_private, 231
Optimization Report, 160
ordered section limitations, 255, 256
output LCDs, 106
PARALLEL_PRIVATE, 221
parallelizing regions, 199
parallelizing tasks, 195, 196
PREFER_PARALLEL, 187, 188
reduction, 109
SAVE_LAST, 216
secondary induction variables, 214
software pipelining, 49
strength reduction, 52
strip mining, 54
SYNC_ROUTINE, 243, 244
TASK_PRIVATE, 219
test promotion, 90
thread_private, 228, 229
thread_private COMMON blocks in parallel

subroutines, 229
type aliasing, 134
unroll and jam, 85
unsafe type cast, 133
unused definition elimination, 52
using LOOP_PRIVATE w/LOOP_PARALLEL,

211
executable files, large, 55, 92
execution speed, 130
Exemplar Programming Guide for HP-UX

systems, 301
exit

code, 40
statement, 68

explicit pointer typecast, 144
exploit data cache, 102
extern variable, 91
external, 274

372

F
fabs(), 125
fall-through instruction, 39
false cache line sharing, 13, 271
faster register allocation, 40
file

level, 89
scope, 31, 227

file-level optimization, 27
fixed ownership of cache lines, 291
float, 49
float variable, 130
floating-point

calculation, 126
expression, 281
imprecision, 281
instructions, 128
traps, 128

floating-point instructions, 41
flow-sensitive analysis, 269
flush to zero, 282
FMA, 121
folding, 43, 136
for loop, 178, 210
force

arrays to start on cache line boundaries (C), 274
arrays to start on cache line boundaries

(Fortran), 274
parallelization, 176, 179
reduction, 177

form of
alloc_barrier, 237
alloc_gate, 237
barrier, 235
block_loop, 70
cond_lock_gate, 239
CRITICAL_SECTION, 247
directive names, 147
END_CRITICAL_SECTION, 247
END_ORDERED_SECTION, 248
free_barrier, 238
free_gate, 238
gate, 235

lock_gate, 239
LOOP_PRIVATE, 210
memory class assignments, 226
no_block_loop, 70
no_distribute, 77
no_loop_dependence, 60
no_loop_transform, 89
no_unroll_and_jam, 85
ORDERED_SECTION, 248
PARALLEL_PRIVATE, 220
pragma names, 147
reduction, 108
SAVE_LAST, 216
SYNC_ROUTINE directive and pragma, 242
TASK_PRIVATE, 218
unlock_gate, 240
unroll_and_jam, 85

Fortran 90 compiler
guidelines, 33
location of, 25

free_barrier functions, 238
free_gate functions, 238
functions

alloc_barrier, 237
alloc_gate, 237
allocation, 237
cond_lock_gate, 239
deallocation, 238
free_barrier, 238
free_gate, 238
lock_gate, 239
locking, 239
malloc (C), 13, 274
memory_class_malloc (C), 13, 274
number of processors, 203
number of threads, 204
stack memory type, 205
synchronization, 237
thread ID, 205
unlock_gate, 240
unlocking, 240
wait_barrier, 241

functions, CPSlib

373

[mc]_cond_lock(), 307
[mc]_fetch_and_add32(), 307, 330
[mc]_fetch_and_clear32(), 307, 330
[mc]_fetch_and_dec32(), 308, 330
[mc]_fetch_and_inc32(), 308, 330
[mc]_fetch_and_set3(), 330
[mc]_fetch_and_set32(), 308
[mc]_fetch32(), 307, 330
[mc]_free32(), 307
[mc]_init32(), 307, 308, 329
asymmetric, 304
cps_barrier(), 305
cps_barrier_alloc(), 305
cps_barrier_free(), 306, 324
cps_complex_cpus(), 304
cps_complex_nodes(), 305
cps_complex_nthreads(), 305
cps_is_parallel(), 305
cps_limited_spin_mutex_alloc(), 306
cps_mutex_alloc(), 306
cps_mutex_free(), 306
cps_mutex_lock(), 306
cps_mutex_trylock(), 307
cps_mutex_unlock(), 307
cps_nthreads(), 310
cps_plevel(), 305, 321
cps_ppcall(), 303, 310
cps_ppcalln(), 303, 310
cps_ppcallv(), 303
cps_set_threads(), 305
cps_stid(), 303, 310
cps_thread_create(), 304, 321
cps_thread_createn(), 304, 321
cps_thread_exit(), 304, 321
cps_thread_register_lock(), 304, 321
cps_thread_wait(), 304
cps_topology(), 305
cps_wait_attr(), 304
high-level mutexes, 306
high-level-barriers, 305
informational, 304
low-level counter semaphores, 307
low-level locks, 307

symmetric, 303
functions, math

acos, 126
asin, 126
atan, 126
atan2, 126
cos, 126
exp, 126
log, 126
log10, 126
pow, 126
sin, 126
tan, 126

functions, pthread
[mc]_unlock(), 307
pthread_create(), 304
pthread_exit(), 304
pthread_join(), 304
pthread_mutex_destroy(), 306
pthread_mutex_init(), 306, 307, 327
pthread_mutex_lock(), 306, 307, 327
pthread_mutex_trylock(), 307, 327
pthread_mutex_unlock(), 307, 327, 328
pthread_num_processors_np(), 304, 305, 311

G
gate variable declaration, 235
gates, 147, 189, 235

allocating, 235
deallocating, 235, 250
equivalencing, 236
locking, 235
unlocking, 235
user-defined, 250

global
arrays, 274
optimization, 91
pointers, 122
register allocation, 37, 42, 43, 138
variables, 31, 135, 140, 269

GOTO statement, 39, 67, 68
GRA, 37, 42, 43, 138

374

guidelines
aC++, 30, 31
C, 30, 31
coding, 31
Fortran 90, 30, 33

H
hardware history mechanism, 139
header file, 124, 226
hidden

aliases, 268
ordered sections, 284

horizontal ellipses, xviii
HP MPI, 4
HP MPI User’s Guide, 5, 111
HP-UX Floating-Point Guide, 126, 139, 282
hypernode, V2250, 11

I
I/O statement, 67
idle

CPS threads, 309
threads, 100

increase replication limit, 87
incrementing by zero, 296
induction

constants, 27
variables, 27, 196

induction variables, 51, 212, 213, 268
in region privatization, 222

information, parallel, 203
inhibit

data localization, 59
fusion, 79
localization, 68, 69
loop blocking, 76
loop interchange, 60, 179
parallelization, 266

inlined calls, 154, 155
inlined procedures

delete, 140
inlining, 124

across multiple files, 92
aggressive, 125
at +O3, 92
at +O4, 92
default level, 125
within one source file, 55

inner-loop memory accesses, 82
instruction

fall-through, 39
scheduler, 26, 41
scheduling, 39, 120

integer arithmetic operations, 136
interchange, loop, 63, 68, 77, 82, 90
interleaving, 17, 18, 19, 20
interprocedural optimization, 57
invalid subscripts, 265, 283
italic, xvii
iteration

distribution, controlling, 273
distribution, default, 275
stop values, 267

iterations, consecutive, 245

K
K-Class servers, 9, 225
kernel parameter, 202
kernel parameters, 23

L
large trip counts, 299
LCDs, 59, 279, 284

disable, 60
output, 106

levels
block, 26
optimization, 299

library calls
alloca(), 125
fabs(), 125
sqrt(), 125
strcpy(), 125

library routines, 126

375

limitations, ordered sections, 255, 256
linear

functions, 51
test replacement, 297

lint, 31
local variables, 31, 209
localization, data, 27, 58
location of compilers, 25
lock_gate functions, 239
locking

functions, 239
gates, 235

locks, low-level, 307
log math function, 126
logical expression, 36
loop, 216

arrays, 69
blocked, 70
blocking, 27, 54, 58, 70, 76, 79, 82, 85, 89, 127,

154, 155
blocking, inhibit, 76
branch destination, 67
counter, 268
customized, 213
dependence, 149
disjoint, 99
distribution, 27, 58, 70, 79, 82, 85, 89, 127, 154,

155
distribution, disable, 148
entries, extra, 68
entries, multiple, 59
fused, 157, 162
fusion, 27, 58, 70, 79, 80, 82, 89, 127, 155
fusion dependences, 59, 64
induction, 181
induction variable, 196
interchange, 27, 58, 67, 68, 69, 70, 76, 77, 79,

82, 85, 89, 90, 154, 155
interchange, avoid, 63
interchange, inhibit, 60, 179
interchanges, 150
invocation, 185
iterations, 271

jamming, 128
multiple entries in, 68
nest, 45, 76
nested, 20, 84, 85
nests, 153
number of, 104
optimization, 53
optimize, 149
overhead, eliminating, 128
parallelizing, 212
peeled iteration of, 80
peeling, 80, 155
preventing, 28
promotion, 155
reduction, 157
relocate, 82
removing, 157
reordering, 28, 89
replication, 45, 58
restrict execution, 182
serial, 20, 183
source line of, 159
strip length, 54
table, 159
thread parallelization, 191
transformations, 7, 58, 82, 97
unroll, 45, 79, 82, 84, 89, 127
unroll and jam, 28, 54, 58, 79, 82, 84, 89, 127,

154, 155
unroll factors, 87
unroll_and_jam, 70
unrolling, 42, 45, 46, 58, 128

Loop Report, 137, 151, 153, 159
loop unrolling example, 45
loop, strip, 72
LOOP_PARALLEL, 181
loop_parallel, 28
LOOP_PARALLEL directive and pragma, 28, 94,

118, 129, 176, 179, 185
example, 187, 188, 213

LOOP_PARALLEL(ORDERED) directive and
pragma, 245, 287

example, 245

376

LOOP_PRIVATE directive and pragma, 208, 210
arrays, 216
example, 211

loop-carried dependences, 59, 60, 279, 284
loop-invariant, 46

code, 42, 45
code motion, 136

loop-iteration count, 102
loops

adjacent, 80
constructing, 30
data-localized, 7
DO (Fortran), 178, 210
DO WHILE (Fortran), 184
exploit parallel code, 246
for (C), 178, 210
fusable, 79
fusing, 150
induction variables in parallel, 212
multiple entries, 68
neighboring, 79
number of parallelizable, 79
parallelizing, 175
parallelizing inner, 290
parallelizing outer, 290
privatization for, 159
privatizing, 207
reducing, 79
replicated, 90
safely parallelizing, 267
simple, 102
that manipulate variables, 207
triangular, 188, 288
unparallelizable, 180

loop-variant, 46
low-level

counter semaphores, 307, 329
LSIZE, 278

M
machine

instruction optimization, 26

instructions, 84
loading, 96

MACs, 10
malloc, 12, 274
man pages, xviii
Managing Systems and Workgroups, 202
manual

parallelization, 179, 208
synchronization, 208, 258

map-coloring, 44
Mark D. Dipasquale, 310
math functions, 126
matrix multiply blocking, 74
memory

banks, 10
encached, 20
hypernode local, 223
inner-loop access, 82
layout scheme, 32
mapping, 33
overlap, 130
physical, 17
references, 140
semaphores, 327
space, occupying same, 267
usage, 126
virtual, 18, 46

Memory Access Controllers, 10
memory class, 208, 228

assignments, 226
declarations (C/C++), 226
declarations (Fortran), 226
misused, 265
node_private, 223, 225, 231
thread_private, 223, 225

memory_class_malloc, 12, 13, 274
message-passing, 4
minimum page size, 23
misused

directives and pragmas, 284
memory classes, 265

monospace, xvii
MP_IDLE_THREADS_WAIT, 100, 309

377

MP_NUMBER_OF_THREADS, 94, 130, 309
MPI, 4
multinode servers, 301
multiple

data dependences, 233
entries in loop, 68
exits, 69

multiplication, 40
mutexes, 324, 327

high-level, 306

N
natural boundaries, 37
nested

loop, 20
parallelism, 234

NEXT_TASK directive and pragma, 94, 177, 192
NO_BLOCK_LOOP directive and pragma, 70,

146, 148
NO_DISTRIBUTE directive and pragma, 77, 146,

148
NO_DYNSEL directive and pragma, 146, 149
NO_LOOP_DEPENDENCE directive and

pragma, 60, 63, 149, 286
directives

NO_LOOP_DEPENDENCE, 146
NO_LOOP_TRANSFORM directive and pragma,

89, 146, 149
NO_PARALLEL directive and pragma, 110, 146,

149
NO_SIDE_EFFECTS directive and pragma, 146,

150
NO_UNROLL_AND_JAM directive and pragma,

85, 146
NO_UNROLL_JAM directive and pragma, 84
node_private, 111

example, 231
static assignment of, 228, 231
virtual memory class, 223, 225

nondeterminism of parallel execution, 284, 287
nonordered

dependences, 247

manipulations, 177
nonstatic variables, 33, 123
Norton, Scott, 310
notational conventions, xvii
number of

processors, 129, 203
threads, 204

O
O, 143
objects, stack-based, 227
offset indexes, 278
OpenMP, 334

clauses, other supported, 336
Command-line Options, 335

default, 335
data scope clauses, 336
defined, 334
directives, 335
Directives and Required Opt Levels, 335
effect on HPPM directives, 339
HP’s implementation of, 335
More information, 341
syntax, 337
www.openmp.org, 341

operands, 36
optimization, 26

+O0, 26
+O1, 26
+O2, 27, 40, 58
+O3, 27, 55, 57, 58, 70, 77, 79, 82, 84, 89
+O4, 55, 57
aliasing, 64
block-level, 26, 39
branch, 26, 39
cloning within one file, 57
command-line options, 26, 93
cross-module, 53, 91
cumulative, 58
data localization, 58, 69
dead code, 39
directives, 113

378

faster register allocation, 39
features, 26, 35, 53
file-level, 27
FMA, 122
global, 91
I/O statements, 67
inlining across multiple files, 92
inlining within one file, 55
interprocedural, 57, 112
levels, 25, 266, 299
loop, 53
loop blocking, 70
loop distribution, 77
loop fusion, 79
loop interchange, 82
loop unroll and jam, 84
multiple loop entries, 68
multiple loop exits, 68
options, 113
peephole, 26, 39, 41
pragmas, 113
routine-level, 27, 42
static variable, 91
store/copy, 27
strip mining, 54
test promotion, 90
unit-level, 6
using, 30
valid options, 114

Optimization Report, 85, 90, 151, 158, 183
contents, 137

Optimization Reports, 267
optimizations

advanced, 7
advanced scalar, 7
aggressive, 118
architecture-specific, 141
floating-point, 121
increase code size, 138
loop reordering, 89
scalar, 6, 7
suppress, 138
that replicate code, 87

optimize
instruction scheduling, 120
large programs, 139
loop, 149

ordered
data dependences, 233
parallelism, 194, 246
sections, 248

ordered sections
hidden, 284
limitations of, 255, 256
using, 253

ORDERED_SECTION directive and pragma,177,
248

output LCDs, 106
overflowing trip counts, 297
overlap, memory, 130

P
PA-8200, 23
page size, minimum, 23
parallel

assignments, 44
command-line options, 93
construct, 247
executables, 12
execution, 287
information functions, 175, 203
programming, 9
programming techniques, 175
regions, 176
structure, 234
synchronization, 233
tasks, 177
threads, 138

PARALLEL directive and pragma, 94, 176
PARALLEL_PRIVATE directive and pragma,

208, 220
example, 221

parallelism, 29, 110
asymmetric, 321
automatic, 94

379

in aC++, 111
inhibit, 28
levels of, 94
loop level, 94
nested, 234
ordered, 194, 246
region level, 94
stride-based, 186
strip-based, 99, 186
task level, 94
thread, 234
unordered, 193

parallelization, 28, 54
force, 176, 179
in aC++, 28
increase, 178
inhibit, 266
manual, 179, 208
overhead, 291
prevent, 28
preventing, 110

parallelizing
code outside a loop, 192
consecutive code blocks, 177
inner loops, 290
loop, 212
loops, safely, 267
next loops, 178
outer loops, 290
regions, 197
tasks, 192
threads, 183, 191

parameters, kernel, 23
partial evaluation, 36
PCI bus controller, 10
peephole optimization, 26, 41
performance

enhance, 12
shared-memory programs, 208

physical memory, 17
pipelining, 41

prerequisites, 49
software, 49

pointers, 31
C, 266
dereferences, 143
strongly-typed, 132
type-safe, 132
using as loop counter, 268

poor locality, 139
porting

CPSlib functions to pthreads, 301
multinode applications, 225
X-Class to K-Class, 224
X-Class to V-Class, 224

POSIX threads, 111, 301
potential alias, 267
pow math function, 126
pragmas

begin_tasks, 94, 177, 192
block_loop, 70, 76, 146, 148
critical_section, 177, 189, 247
crtitical_section, 250
dynsel, 146, 148
end_critical_section, 177, 189, 247
end_ordered_section, 248
end_parallel, 28, 94, 176
end_tasks, 94, 177, 192
loop_parallel, 28, 94, 118, 176, 179, 181, 185
loop_parallel(ordered), 245
loop_private, 208, 210
misused, 284
next_task, 94, 177, 192
no_block_loop, 70, 146, 148
no_distribute, 146, 148
no_dynsel, 146, 149
no_loop_dependence, 60, 146, 149
no_loop_transform, 89, 146, 149
no_parallel, 110, 146, 149
no_side_effects, 146, 150
no_unroll_and_jam, 85, 146
ordered_section, 177, 248
parallel, 28, 94, 176
parallel_private, 208, 220
prefer_parallel, 28, 94, 176, 178, 181, 185
privatizing, 208

380

reduction, 146, 177
save_last, 208, 216
scalar, 146
sync_routine, 44, 146, 177, 242
task_private, 196, 208, 218
unroll_and_jam, 85, 146, 150

prefer_parallel, 182
PREFER_PARALLEL directive and pragma, 28,

94, 129, 176, 178, 181, 185
example, 187, 188

prevent
loop interchange, 67
parallel code, 149
parallelism, 110

primary induction variable, 184
private data, 225
privatization

data, 185
variable, 159

Privatization Table, 137, 152, 159
privatizing

directives, 208
loop data, 210
loops, 159
parallel loops, 208
pragmas, 208
regions, 208, 220
tasks, 208, 218
variables, 208

procedure calls, 59, 266
procedures, 6
processors

number of, 203
specify number of, 129

program
behavior, 120
overhead, 248, 249, 291
units, 6

programming models
message-passing, 4
shared-memory, 3

programming parallel, 9
propagation, 43

prototype definition, 125
pthread

mutex functions, 327
mutexes, 329

pthread asymmetric functions
pthread_create(), 304
pthread_exit(), 304
pthread_join(), 304

pthread informational functions
pthread_num_processors_np(), 304, 305

pthread synchronization functions
[mc]_unlock(), 307
pthread_mutex_destroy(), 306
pthread_mutex_init(), 306, 307
pthread_mutex_lock(), 306, 307
pthread_mutex_trylock(), 307
pthread_mutex_unlock(), 307

pthread.h, 302
pthread_mutex_init(), 327
pthread_mutex_lock(), 327
pthread_mutex_trylock(), 327
pthread_mutex_unlock(), 327, 328
pthreads, 111, 301

accessing, 301, 302
and environment variables, 309

R
REAL variable, 130
REAL*8 variable, 130, 282
reduction

examples, 109
force, 177
form of, 108
loop, 157

REDUCTION directive and pragma, 146, 177
reductions, 28, 281, 284, 286
reentrant compilation, 175, 201
region privatization, induction variables in, 222
regions

parallelizing, 175, 197
parallelizing, example, 199
privatizing, 207, 220

381

register
allocation, 44
allocation, disable, 138
exploitation, 128
increase exploitation of, 84
reassociation, 46
usage, 79
use, improved, 128

registers, 26, 51
global allocation, 37, 42, 43
simple alignment, 37

reordering, 154
replicate code, 87
replication limit, increase, 87
report_type, 137, 152
report_type values

all, 152
loop, 152
none, 152
private, 152

RETURN statement, 59, 68
return statement, 59, 68
reuse

spatial, 71, 74
temporal, 71, 74, 84

routine-level optimization, 27, 42
routines

user-defined, 242
vector, 139

rules
ANSI standard, 265
scoping, 231

S
SAVE variable, 91
SAVE_LAST directive and pragma, 208, 216

example, 216
scalar

code, 197
optimizations, 6, 7
variables, 43, 277

SCALAR directive and pragma, 146

scheduler, instruction, 41
scope of this manual, xvi
scoping rules, 231
Scott Norton, 310
secondary induction variables, 213

example, 214
semaphores

binary, 327
low-level, 307
low-level counter, 329

serial
function, 20
loop, 183

servers
K-Class, 9, 141
V2250, 9, 141
V-Class, 9, 141

shared
data, 4
variable, 177

shared-memory, 3
shared-memory programs, optimize, 223
short, 31
short-circuiting, 36
signed/unsigned type distinctions, 144
simple loops, 102
sin math function, 126
single-node servers

porting multinode apps to, 225
SMP

architecture, 1, 2
software pipelining, 27, 42, 49, 130, 136
space, virtual address, 17
spatial reuse, 71, 74
spawn

parallel processes, 4
thread ID, 96
threads, 209

speed, execution, 130
spin

suspend, 309
wait, 309

spp_prog_model.h, 203, 226

382

sqrt(), 125
stack

memory type, 205
size, default, 202

stack-based objects, 227
statements

ALLOCATE (Fortran), 13, 274
COMMON (Fortran), 236
DATA (Fortran), 225, 274
DIMENSION (Fortran), 236
EQUIVALENCE (Fortran), 64, 266
exit (C/C++), 68
GOTO (Fortran), 67, 68
I/O (Fortran), 67
return (C/C++), 59, 68
RETURN (Fortran), 59, 68
stop (C/C++), 59
STOP (Fortran), 59, 68
throw (C++), 69
type, 236

static
variables, 33, 91

static assignments
node_private, 228, 231
thread_private, 228

STOP statement, 59, 68
stop statement, 59
stop variables, 269
storage class, 227

external, 274
storage location

of global data, 91
of static data, 91

strcpy(), 125
strength reduction, 27, 51, 136
stride-based parallelism, 186
strip mining, 54, 97

example, 54
length, 72

strip-based parallelism, 99, 186
strip-mining, 7
strlen(), 125
strongly-typed pointers, 132

structs, 31, 274
structure type, 144
subroutine call, 155
sudden underflow, enabling, 282
sum operations, 109
suppress optimizations, 138
suspend wait, 309
sync_routine, 44, 242
SYNC_ROUTINE directive and pragma, 146, 177

example, 243, 244
synchronization

functions, 237
intrinsics, 245
manual, 208, 258
parallel, 233
using high-level barriers, 305
using high-level mutexes, 306
using low-level counter semaphores, 307

synchronize
code, 250
dependences, 197
symmetrically parallel code, 324

syntax
OpenMP, 337

syntax extensions, 226
syntax, command, xviii

T
tan math function, 126
TASK_PRIVATE directive and pragma, 196, 208,

218
example, 219

tasks
parallelizing, 175, 177, 192
parallelizing, example, 195, 196
privatizing, 207, 218

Tbyte, 4
temporal reuse, 71, 74, 84
terabyte, 4
test

conditions, 26
promotion, 28, 90, 154

383

text segment, 23
THEN clause, 39
thrashing, cache, 290
thread, 148

affinity, 100
ID, 205, 234
ID assignments, 234
idle, 96
noidle, 96
spawn ID, 96
stack, 205
suspended, 100
waking a, 100

thread_private, 111
example, 228, 229
static assignment of, 228
virtual memory class, 223, 225

thread_trip_count, 104
thread-parallel construct, 234
threads, 96

child, 309
create, 309
idle, 100, 309
number of, 204
parallelizing, 183, 191
spawn parallel, 102
spawned, 209

thread-specific array elements, 276
Threadtime, 310
threshold iteration counts, 104
throw statement, 59, 69
time, 118
transformations, 39

loop, 97
reordering, 149

triangular loops, 188, 288
trip counts

large, 299
overflowing, 297

type
aliasing, 134, 136
casting, 132
names, synonymous, 144

specifier, 227
statements, 236
union, 144

type-checking, 266
type-incompatible assignments, 145
type-inferred aliasing rules, 143
type-safe

algorithm, 266
pointers, 132

U
unaligned arrays, 278
uninitialized variables, 123
union type, 144
unlock_gate function, 240
unlocking

functions, 240
gates, 235

unordered parallelism, 193
unparallelizable loops, 180
Unroll and Jam, 156
unroll and jam, 28

automatic, 128
directive-specified, 128

unroll factors, 46, 87
UNROLL_AND_JAM directive and pragma, 85,

146, 150
unrolling, excessive, 87
unsafe type cast, 133
unused definition elimination, 52
using

a pointer as a loop counter, 268
critical sections, 250
hidden aliases as pointers, 268
ordered sections, 253

V
V2250 servers, 9, 71, 141, 223

chunk size, 295
hypernode overview, 11

valid page sizes, 23
variables

384

accumulator, 281
char, 31
COMMON (Fortran), 33, 91, 150
create temporary, 269
double (C/C++), 130, 282
extern (C/C++), 91
float (C/C++), 130
global, 31, 135, 140, 269
induction, 27, 45, 213, 222, 268
iteration, 45
local, 30, 31, 33, 209
loop induction, 181
nonstatic, 33, 123
primary induction, 184
privatizing, 159, 185, 208
REAL (Fortran), 130
REAL*8 (Fortran), 130, 282
register, 31
SAVE (Fortran), 91
scalar, 37, 43, 277
secondary induction, 213
secondary induction, example, 214
shared, 177, 225
shared-memory, 138
short, 31
static, 33, 123
static (C/C++), 91
stop, 269
uninitialized, 123
values of, 36

V-Class Architecture manual, 9
V-Class servers, 9, 225

hypernode overview, 11
vector routines, 139, 140
vertical ellipses, xviii
virtual

address space, 17
memory, 18
memory address, 46

volatile attribute, 32
vps_ceiling, 23
vps_chatr_ceiling, 23
vps_pagesize, 23

W
-W compiler option, 282
wait_barrier functions, 241
workload-based dynamic selection, 102, 149

X
X-class, 224

